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Abstract. We introduce a new notion called fractional stochastic nonlocal condition,
and then we study approximate controllability of class of fractional stochastic nonlin-
ear differential equations of Sobolev type in Hilbert spaces. We use Hölder’s inequality,
fixed point technique, fractional calculus, stochastic analysis and methods adopted di-
rectly from deterministic control problems for the main results. A new set of sufficient
conditions is formulated and proved for the fractional stochastic control system to be
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1 Introduction

We are concerned with the following fractional stochastic nonlocal system of Sobolev type

CDq
t [Lx(t)] = Mx(t) + Bu(t) + f (t, x(t)) + σ1(t, x(t))

dw1(t)
dt

, (1.1)

LD1−q
t x(t)|t=0 = σ2(t, x(t))

dw2(t)
dt

, (1.2)

where CDq
t and LD1−q

t are the Caputo and Riemann–Liouville fractional derivatives with 0 <

q ≤ 1, and t ∈ J = [0, b]. Let X and Y be two Hilbert spaces and let the state x(·) take
its values in X. We assume that the operators L and M are defined on domains contained
in X and ranges contained in Y, the control function u(·) belongs to the space L2

Γ(J, U), a
Hilbert space of admissible control functions with U as a Hilbert space and B is a bounded
linear operator from U into Y. It is also assumed that f : J × X → Y, σ1 : J × X → L0

2 and
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σ2 : J × X → L0
2 are appropriate functions; x0 is a Γ0 measurable X-valued random variable

independent of w1 and w2. Here L0
2, Γ, Γ0, w1 and w2 will be specified later.

During the past three decades, fractional differential equations and their applications have
gained a lot of importance, mainly because this field has become a powerful tool in modeling
several complex phenomena in numerous seemingly diverse and widespread fields of science
and engineering [2, 5, 11, 16, 18, 28, 29, 32]. Recently, there has been a significant develop-
ment in the existence results for boundary value problems of nonlinear fractional differential
equations and inclusions [1, 6].

One of the important fundamental concepts in mathematical control theory is controlla-
bility, it plays a vital role in both deterministic and stochastic control systems. Since, the
controllability notion has extensive industrial and biological applications, in the literature,
there are many different notions of controllability, both for linear and nonlinear dynamical
systems. Controllability of the deterministic and stochastic dynamical control systems in in-
finite dimensional spaces is well-developed using different kind of approaches. It should
be mentioned that the theory of controllability for nonlinear fractional dynamical systems is
still in the initial stage. There are few works in controllability problems for different kind of
systems described by fractional differential equations [41, 42].

The exact controllability for semilinear fractional order system, when the nonlinear term is
independent of the control function, is proved by many authors [3, 12, 38]. In these papers, the
authors have proved the exact controllability by assuming that the controllability operator has
an induced inverse on a quotient space. However, if the semigroup associated with the system
is compact then the controllability operator is also compact and hence the induced inverse
does not exist because the state space is infinite dimensional [46]. Thus, the concept of exact
controllability is too strong and has limited applicability and the approximate controllability
is a weaker concept than complete controllability and it is completely adequate in applications
for these control systems.

In [10, 44] the approximate controllability of first order delay control systems has been
proved when nonlinear term is a function of both state function and control function by
assuming that the corresponding linear system be approximately controllable. To prove the
approximate controllability of a first order system, with or without delay, a relation between
the reachable set of a semilinear system and that of the corresponding linear system is proved
in [4, 9, 20, 21, 45]. There are several papers devoted to the approximate controllability for
semilinear control systems, when the nonlinear term is independent of control function [25,
39, 40, 43].

Stochastic differential equations have attracted great interest due to its applications in
various fields of science and engineering. There are many interesting results on the theory
and applications of stochastic differential equations, (see [3, 7, 8, 30, 36] and the references
therein). To build more realistic models in economics, social sciences, chemistry, finance,
physics and other areas, stochastic effects need to be taken into account. Therefore, many
real world problems can be modeled by stochastic differential equations. The deterministic
models often fluctuate due to noise, so we must move from deterministic control to stochastic
control problems.

In the present literature there is only a limited number of papers that deal with the ap-
proximate controllability of fractional stochastic systems [27], as well as with the existence
and controllability results of fractional evolution equations of Sobolev type [26].

R. Sakthivel et al. [37] studied the approximate controllability of a class of dynamic control
systems described by nonlinear fractional stochastic differential equations in Hilbert spaces.
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In [24], the authors proved the approximate controllability of Sobolev type nonlocal fractional
stochastic dynamic systems in Hilbert spaces. More recent works can be found in [41, 42].
A. Debbouche, D. Baleanu and R. P. Agarwal [13] established a class of fractional nonlocal non-
linear integro-differential equations of Sobolev type using new solution operators. M. Fečkan,
J. R. Wang and Y. Zhou [19] presented the controllability results corresponding to two ad-
missible control sets for fractional functional evolution equations of Sobolev type in Banach
spaces with the help of two new characteristic solution operators and their properties, such
as boundedness and compactness. Debbouche and Torres [14, 15] introduced both fractional
nonlocal condition and nonlocal control condition for establishing approximate controllability
of fractional delay differential equations and inclusions.

In this work, we present a new concept in stochastic analysis that we present a nonlo-
cal condition given in stochastic term together with Riemann–Liouville fractional derivative,
then we use this tool to establish the approximate controllability of Sobolev type fractional
deterministic nonlocal stochastic control systems in Hilbert spaces.

The paper is organized as follows: in Section 2, we present some essential facts in frac-
tional calculus, semigroup theory, stochastic analysis and control theory that will be used to
obtain our main results. In Section 3, we state and prove existence and approximate control-
lability results for Sobolev type fractional stochastic system (1.1)–(1.2). Finally, in Section 4,
as an example, a fractional partial dynamical stochastic control differential equation with a
fractional stochastic nonlocal condition is considered.

2 Preliminaries

In this section we give some basic definitions, notations, properties and lemmas, which will
be used throughout the work. In particular, we state main properties of fractional calculus
[22, 31, 34], well known facts in semigroup theory [23, 33, 49] and elementary principles of
stochastic analysis [30, 35].

Definition 2.1. The fractional integral of order α > 0 of a function f ∈ L1([a, b], R+) is given
by

Iα
a f (t) =

1
Γ(α)

∫ t

a
(t− s)α−1 f (s) ds,

where Γ is the gamma function. If a = 0, we can write Iα f (t) = (gα ∗ f )(t), where

gα(t) :=

{
1

Γ(α) tα−1, t > 0,

0, t ≤ 0,

and as usual, ∗ denotes the convolution of functions. Moreover, lim
α→0

gα(t) = δ(t), with δ the

delta Dirac function.

Definition 2.2. The Riemann–Liouville derivative of order n− 1 < α < n, n ∈N, for a function
f ∈ C([0, ∞)) is given by

LDα f (t) =
1

Γ(n− α)

dn

dtn

∫ t

0

f (s)
(t− s)α+1−n ds, t > 0.
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Definition 2.3. The Caputo derivative of order n − 1 < α < n, n ∈ N, for a function f ∈
C([0, ∞)) is given by

CDα f (t) = LDα

(
f (t)−

n−1

∑
k=0

tk

k!
f (k)(0)

)
, t > 0.

Remark 2.4. The following properties hold (see, e.g., [50]).

(i) If f ∈ Cn([0, ∞)), then

CDα f (t) =
1

Γ(n− α)

∫ t

0

f (n)(s)
(t− s)α+1−n ds = In−α f n(t), t > 0, n− 1 < α < n, n ∈N.

(ii) The Caputo derivative of a constant is equal to zero.

(iii) If f is an abstract function with values in X, then the integrals which appear in Defini-
tions 2.1–2.3 are taken in Bochner’s sense.

We introduce the following assumptions on the operators L and M.

(H1) L and M are linear operators, and M is closed.

(H2) D(L) ⊂ D(M) and L is bijective.

(H3) L−1 : Y → D(L) ⊂ X is a linear compact operator.

Remark 2.5. From (H3), we deduce that L−1 is bounded operators, for short, we denote by
C = ‖L−1‖. Note (H3) also implies that L is closed since the fact: L−1 is closed and injective,
then its inverse is also closed. It comes from (H1)–(H3) and the closed graph theorem, we
obtain the boundedness of the linear operator ML−1 : Y → Y. Consequently, ML−1 generates
a semigroup {S(t) := eML−1t, t ≥ 0}. We suppose that M0 := supt≥0 ‖S(t)‖ < ∞.
According to previous definitions, it is suitable to rewrite problem (1.1)–(1.2) as the equivalent
integral equation

Lx(t) = Lx(0) +
1

Γ(q)

∫ t

0
(t− s)q−1[Mx(s) + Bu(s) + f (s, x(s))] ds

+
1

Γ(q)

∫ t

0
(t− s)q−1σ1(s, x(s)) dw1(s),

(2.1)

provided the integrals in (2.1) exist.

Remark 2.6. We note that:

(a) For the nonlocal condition, the function x(0) is dependent on t.

(b) The Riemann–Liouville fractional derivative of x(0) is well defined and LD1−q
t x(0) 6= 0.

(c) The function x(0) takes the form x0 +
1

Γ(1−q)

∫ t
0 (t− s)−qσ2(s, x(s)) dw2(s), where x(0)|t=0 =

x0.

(d) The explicit and implicit integrals given in (2.1) exist (taken in Bochner’s sense).
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Before formulating the definition of mild solution of (1.1)–(1.2), we first we recall. Let (Ω, Γ, P)
be a complete probability space equipped with a normal filtration Γt, t ∈ J satisfying the usual
conditions (i.e., right continuous and Γ0 containing all P-null sets). We consider four real sep-
arable spaces X, Y, E and U, and Q-Wiener process on (Ω, Γb, P) with the linear bounded co-
variance operator Q such that trQ < ∞. We assume that there exist complete orthonormal sys-
tems {e1,n}n≥1, {e2,n}n≥1 in E, bounded sequences of non-negative real numbers {λ1,n}, {λ2,n}
such that Qe1,n = λ1,ne1,n, Qe2,n = λ2,ne2,n, n = 1, 2, . . . , and sequences {β1,n}n≥1, {β2,n}n≥1 of
independent Brownian motions such that

〈w1(t), e1〉 =
∞

∑
n=1

√
λ1,n 〈e1,n, e1〉 β1,n(t), e1 ∈ E, t ∈ J,

〈w2(t), e2〉 =
∞

∑
n=1

√
λ2,n 〈e2,n, e2〉 β2,n(t), e2 ∈ E, t ∈ J,

and Γt = Γw1,w2
t , where Γw1,w2

t is the sigma algebra generated by {(w1(s), w2(s)) : 0 ≤ s ≤ t}.
Let L0

2 = L2(Q1/2E; X) be the space of all Hilbert–Schmidt operators from Q1/2 E to X with the
inner product 〈ψ, π〉 L0

2 = tr[ψQπ∗]. Let L2(Γb, X) be the Banach space of all Γb-measurable
square integrable random variables with values in the Hilbert space X. Let E(·) denote
the expectation with respect to the measure P. Let C(J; L2(Γ, X)) be the Hilbert space of
continuous maps from J into L2(Γ, X) satisfying supt∈J E ||x(t)||2 < ∞. Let H2(J; X) be a
closed subspace of C(J; L2(Γ, X)) consisting of a measurable and Γt-adapted X-valued pro-
cess x ∈ C(J; L2(Γ, X)) endowed with the norm ‖x‖H2 = (supt∈J E‖x(t)‖2

X)
1/2. For details, we

refer the reader to [35, 37] and references therein.
The following results will be used throughout this paper.

Lemma 2.7 ([27]). Let G : J×Ω→ L0
2 be a strongly measurable mapping such that

∫ b
0 E‖G(t)‖p

L0
2
dt <

∞. Then

E
∥∥∥∥∫ t

0
G(s) dw(s)

∥∥∥∥p

≤ LG

∫ t

0
E‖G(s)‖p

L0
2

ds

for all 0 ≤ t ≤ b and p ≥ 2, where LG is the constant involving p and b.

Now, we present the mild solution of the problem (1.1)–(1.2).

Definition 2.8 (Compare with [11, 17] and [19, 50]). A stochastic process x ∈ H2(J, X) is a
mild solution of (1.1)–(1.2) if for each control u ∈ L2

Γ(J, U), it satisfies the following integral
equation:

x(t) = S(t)L
[

x0 +
1

Γ(1− q)

∫ t

0
(t− s)−qσ2(s, x(s)) dw2(s)

]
+
∫ t

0
(t− s)q−1T (t− s)[Bu(s) + f (s, x(s))] ds

+
∫ t

0
(t− s)q−1T (t− s)σ(s, x(s)) dw(s),

(2.2)

where S(t) and T (t) are characteristic operators given by

S(t) =
∫ ∞

0
L−1ξq(θ)S(tqθ) dθ and T (t) = q

∫ ∞

0
L−1θξq(θ)S(tqθ) dθ.

Here, S(t) is a C0-semigroup generated by the linear operator ML−1 : Y → Y; ξq is a probabil-
ity density function defined on (0, ∞),that is ξq(θ) ≥ 0, θ ∈ (0, ∞) and

∫ ∞
0 ξq(θ)dθ = 1.
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Lemma 2.9 ([47, 48, 50]). The operators {S(t)}t≥0 and {T (t)}t≥0 are strongly continuous, i.e., for
x ∈ X and 0 ≤ t1 < t2 ≤ b, we have ‖S(t2)x − S(t1)x‖ → 0 and ‖T (t2)x − T (t1)x‖ → 0 as
t2 → t1.

We impose the following conditions on data of the problem.

(i) For any fixed t ≥ 0,S(t) and T (t) are bounded linear operators, i.e., for any x ∈ X,

‖S(t)x‖ ≤ CM0‖x‖, ‖T (t)x‖ ≤ CM0

Γ(q)
‖x‖.

(ii) The functions f : J × X → Y, σ1 : J × X → L0
2 and σ2 : J × X → L0

2 satisfy linear growth
and Lipschitz conditions. Moreover, there exist positive constants N1, N2 > 0, L1, L2 > 0
and k1, k2 > 0 such that

‖ f (t, x)− f (t, y)‖2 ≤ N1‖x− y‖2, ‖ f (t, x)‖2 ≤ N2(1 + ‖x‖2),

‖σ1(t, x)− σ1(t, y)‖2
L0

2
≤ L1‖x− y‖2, ‖σ1(t, x)‖2

L0
2
≤ L2(1 + ‖x‖2),

‖σ2(t, x)− σ2(t, y)‖2
L0

2
≤ k1‖x− y‖2, ‖σ2(t, x)‖2

L0
2
≤ k2(1 + ‖x‖2).

(iii) The linear stochastic system is approximately controllable on J.

For each 0 ≤ t < b, the operator α(αI + Ψb
0)
−1 → 0 in the strong operator topology as α→ 0+,

where Ψb
0 =

∫ b
0 (b − s)2(q−1)T (b − s)BB∗T ∗(b − s) ds is the controllability Gramian, here B∗

denotes the adjoint of B and T ∗(t) is the adjoint of T (t).
Observe that Sobolev type linear fractional deterministic control system

CDq
t [Lx(t)] = Mx(t) + Bu(t), t ∈ J, (2.3)

x(0) = x0, (2.4)

corresponding to (1.1)–(1.2) is approximately controllable on J iff the operator α(αI +Ψb
0)
−1 →

0 strongly as α → 0+. The approximate controllability for linear fractional deterministic
control system (2.3)–(2.4) is a natural generalization of approximate controllability of linear
first order control system (q = 1 and L is the identity) [14].

Definition 2.10. System (1.1)–(1.2) is approximately controllable on J if <(b) = L2(Ω, Γb, X),
where

<(b) = {x(b) = x(b, u) : u ∈ L2
Γ(J, U)},

here L2
Γ(J, U), is the closed subspace of L2

Γ(J ×Ω; U), consisting of all Γt adapted, U-valued
stochastic processes.

The following lemma is required to define the control function [37].

Lemma 2.11. For any x̃b ∈ L2(Γb, X), there exists ϕ̃ ∈ L2
Γ(Ω; L2(0, b; L0

2)) such that x̃b = Ex̃b +∫ b
0 ϕ̃(s) dw(s).
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Now for any α > 0 and x̃b ∈ L2(Γb, X), we define the control function in the following
form

uα(t, x)

= B∗(b− t)q−1T ∗(b− t)
[
(αI + Ψb

0)
−1
{

Ex̃b

− S(b)L
(

x0 +
1

Γ(1− q)

∫ t

0
(t− s)−qσ2(s, x(s)) dw2(s)

)}
+
∫ t

0
(αI + Ψb

0)
−1 ϕ̃(s) dw1(s)

]
− B∗(b− t)q−1T ∗(b− t)

∫ t

0
(αI + Ψb

0)
−1(b− s)q−1T (b− s) f (s, x(s)) ds

− B∗(b− t)q−1T ∗(b− t)
∫ t

0
(αI + Ψb

0)
−1(b− s)q−1T (b− s)σ1(s, x(s)) dw1(s).

Lemma 2.12. There exist positive real constants M̂, N̂ such that for all x, y ∈ H2, we have

E‖uα(t, x)− uα(t, y)‖2 ≤ M̂E‖x(t)− y(t)‖2, (2.5)

E‖uα(t, x)‖2 ≤ N̂
(

1
b
+ E ‖x(t)‖2

)
. (2.6)

Proof. We start to prove (2.5). Let x, y ∈ H2, from the Hölder’s inequality, Lemma 2.7 and the
assumption on the data, we obtain

E‖uα(t, x)− uα(t, y)‖2

≤ 3E
∥∥∥∥B∗(b− t)q−1T ∗(b− t)(αI + Ψb

0)
−1 S(b)L

Γ(1− q)

×
∫ t

0
(t− s)−q[σ2(s, x(s))− σ2(s, y(s))] dw2(s)

∥∥∥∥2

+ 3E
∥∥∥∥B∗(b− t)q−1T ∗(b− t)

×
∫ t

0
(αI + Ψb

0)
−1(b− s)q−1T (b− s)[ f (s, x(s))− f (s, y(s))] ds

∥∥∥∥2

+ 3E
∥∥∥∥B∗(b− t)q−1T ∗(b− t)

×
∫ t

0
(αI + Ψb

0)
−1(b− s)q−1T (b− s)[σ1(s, x(s))− σ1(s, y(s))] dw1(s)

∥∥∥∥2

≤ 3
α2 ‖B‖

2 (b)2q−2
(

CM0

Γ(q)

)2 (CM0‖L‖
Γ(1− q)

)2 b−2q+1

(−2q + 1)
k1

∫ t

0
E ‖x(s)− y(s)‖2 ds

+
3
α2 ‖B‖

2 (b)2q−2
(

CM0

Γ(q)

)4 b2q−1

(2q− 1)
N1

∫ t

0
E ‖x(s)− y(s)‖2 ds

+
3
α2 ‖B‖

2 (b)2q−2
(

CM0

Γ(q)

)4 b2q−1

(2q− 1)
L1

∫ t

0
E ‖x(s)− y(s)‖2 ds

≤ M̂E ‖x(t)− y(t)‖2 ,

where

M̂ =
3
α2 ‖B‖

2(b)2q−2

{(
CM0

Γ(q)

)2 (CM0‖L‖
Γ(1− q)

)2 b−2q+1

(−2q + 1)
bk1 +

(
CM0

Γ(q)

)4 b2q−1

(2q− 1)
b[N1 + L1]

}
.
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The proof of the inequality (2.6) can be established in a similar way to that of (2.5).

3 Approximate controllability

In this section, we formulate and prove conditions for the existence and approximate con-
trollability results of the fractional stochastic nonlocal dynamic control system of Sobolev
type (1.1)–(1.2) using the contraction mapping principle. For any α > 0, define the operator
Fα : H2 → H2 by

Fαx(t) = S(t)L
[

x0 +
1

Γ(1− q)

∫ t

0
(t− s)−qσ2(s, x(s)) dw2(s)

]
+
∫ t

0
(t− s)q−1T (t− s)[Buα(s, x) + f (s, x(s))] ds

+
∫ t

0
(t− s)q−1T (t− s)σ1(s, x(s)) dw1(s).

(3.1)

We state and prove the following lemma, which will be used for the main results.

Lemma 3.1. For any x ∈ H2, Fα(x)(t) is continuous on J in L2-sense.

Proof. Let 0 ≤ t1 < t2 ≤ b. Then for any fixed x ∈ H2, from (3.1), we have

E ‖(Fαx)(t2)− (Fαx)(t1)‖2 ≤ 4

[
4

∑
i=1

E ‖Πx
i (t2)−Πx

i (t1)‖2

]
.

From Lemma 2.7, we begin with the first term

E ‖Πx
1(t2)−Πx

1(t1)‖2

= E
∥∥∥∥S(t2)L

[
x0 +

1
Γ(1− q)

∫ t2

0
(t2 − s)−qσ2(s, x(s)) dw2(s)

]
− S(t1)L

[
x0 +

1
Γ(1− q)

∫ t1

0
(t1 − s)−qσ2(s, x(s)) dw2(s)

]∥∥∥∥2

≤ E
∥∥∥∥(S(t2)− S(t1)) L

[
1

Γ(1− q)

∫ t1

0
(t1 − s)−qσ2(s, x(s)) dw2(s)

]∥∥∥∥2

+ E
∥∥∥∥S(t2)L

[
1

Γ(1− q)

∫ t1

0
((t2 − s)−q − (t1 − s)−q)σ2(s, x(s)) dw2(s)

]∥∥∥∥2

+ E
∥∥∥∥S(t2)L

[
1

Γ(1− q)

∫ t2

t1

(t2 − s)−qσ2(s, x(s)) dw2(s)
]∥∥∥∥2

≤ ‖L‖2

[
Lσ

t−2q+1
1

(−2q + 1)

(
1

Γ(1− q)

)2

k2(1 + ‖x‖2)

]
E‖S(t2)− S(t1)‖2

+ ‖S(t2)‖2‖L‖2
[(

1
Γ(1− q)

)2

Lσ

(∫ t1

0
((t2 − s)−q − (t1 − s)−q)2 ds

)
×
(∫ t1

0
E‖σ2(s, x(s))‖2 ds

)]
+ ‖S(t2)‖2‖L‖2

[(
1

Γ(1− q)

)2 (t2 − t1)
−2q+1

(−2q + 1)
Lσ

∫ t2

t1

E‖σ2(s, x(s))‖2 ds

]
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The strong continuity of S(t) implies that the right-hand side of the last inequality tends to
zero as t2 − t1 → 0.

Next, it follows from Hölder’s inequality and assumptions on the data that

E ‖Πx
2(t2)−Πx

2(t1)‖2

= E
∥∥∥∥∫ t2

0
(t2 − s)q−1T (t2 − s)Buα(s, x) ds−

∫ t1

0
(t1 − s)q−1T (t1 − s)Buα(s, x) ds

∥∥∥∥2

≤ E
∥∥∥∥∫ t1

0
(t1 − s)q−1(T (t2 − s)− T (t1 − s))Buα(s, x) ds

∥∥∥∥2

+ E
∥∥∥∥∫ t1

0
((t2 − s)q−1 − (t1 − s)q−1)T (t2 − s)Buα(s, x) ds

∥∥∥∥2

+ E
∥∥∥∥∫ t2

t1

(t2 − s)q−1T (t2 − s)Buα(s, x) ds
∥∥∥∥2

≤
t2q−1
1

2q− 1

∫ t1

0
E ‖(T (t2 − s)− T (t1 − s))Buα(s, x) ds‖2

+

(
CM0

Γ(q)

)2

‖B‖2
(∫ t1

0
((t2 − s)q−1 − (t1 − s)q−1)2 ds

)(∫ t1

0
E ‖uα(s, x)‖2 ds

)
+

(t2 − t1)
2q−1

1− 2q

(
CM0

Γ(q)

)2

‖B‖2
∫ t2

t1

E ‖uα(s, x)‖2 ds.

Also, we have

E ‖Πx
3(t2)−Πx

3(t1)‖2

= E
∥∥∥∥∫ t2

0
(t2 − s)q−1T (t2 − s) f (s, x(s)) ds−

∫ t1

0
(t1 − s)q−1T (t1 − s) f (s, x(s)) ds

∥∥∥∥2

≤ E
∥∥∥∥∫ t1

0
(t1 − s)q−1(T (t2 − s)− T (t1 − s)) f (s, x(s)) ds

∥∥∥∥2

+ E
∥∥∥∥∫ t1

0
((t2 − s)q−1 − (t1 − s)q−1)T (t2 − s) f (s, x(s)) ds

∥∥∥∥2

+ E
∥∥∥∥∫ t2

t1

(t2 − s)q−1T (t2 − s) f (s, x(s)) ds
∥∥∥∥2

≤
t2q−1
1

2q− 1

∫ t1

0
E ‖(T (t2 − s)− T (t1 − s)) f (s, x(s)) ds‖2

+

(
CM0

Γ(q)

)2 (∫ t1

0
((t2 − s)q−1 − (t1 − s)q−1)2 ds

)(∫ t1

0
E ‖ f (s, x(s))‖2 ds

)
+

(t2 − t1)
2q−1

1− 2q

(
CM0

Γ(q)

)2 ∫ t2

t1

E ‖ f (s, x(s))‖2 ds.

Furthermore, we use Lemma 2.7 and previous assumptions, we obtain

E ‖Πx
4(t2)−Πx

4(t1)‖2

= E
∥∥∥∥∫ t2

0
(t2 − s)q−1T (t2 − s)σ(s, x(s)) dw(s)−

∫ t1

0
(t1 − s)q−1T (t1 − s)σ(s, x(s)) dw(s)

∥∥∥∥2
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≤ E
∥∥∥∥∫ t1

0
(t1 − s)q−1(T (t2 − s)− T (t1 − s))σ(s, x(s)) dw(s)

∥∥∥∥2

+ E
∥∥∥∥∫ t1

0
((t2 − s)q−1 − (t1 − s)q−1)T (t2 − s)σ(s, x(s)) dw(s)

∥∥∥∥2

+ E
∥∥∥∥∫ t2

t1

(t2 − s)q−1T (t2 − s)σ(s, x(s)) dw(s)
∥∥∥∥2

≤ Lσ
t2q−1
1

2q− 1

∫ t1

0
E ‖(T (t2 − s)− T (t1 − s))σ(s, x(s)) ds‖2

+ Lσ

(∫ t1

0
((t2 − s)q−1 − (t1 − s)q−1)2 ds

)(∫ t1

0
E ‖T (t2 − s)σ(s, x(s))‖2 ds

)
+ Lσ

(t2 − t1)
2q−1

1− 2q

(
CM0

Γ(q)

)2 ∫ t2

t1

E ‖T (t2 − s)σ(s, x(s))‖2 ds.

Hence using the strong continuity of T (t) and Lebesgue’s dominated convergence theorem,
we conclude that the right-hand side of the above inequalities tends to zero as t2 − t1 → 0.
Thus, we conclude Fα(x)(t) is continuous from the right of [0, b). A similar argument shows
that it is also continuous from the left of (0, b].

Theorem 3.2. Assume hypotheses (i) and (ii) are satisfied. Then the system (1.1)–(1.2) has a mild
solution on J.

Proof. We prove the existence of a fixed point of the operator Fα by using the contraction
mapping principle. First, we show that Fα(H2) ⊂ H2. Let x ∈ H2. From (3.1), we obtain

E ‖Fαx(t)‖2 ≤ 4

[
sup
t∈J

4

∑
i=1

E ‖Πx
i (t)‖

2

]
. (3.2)

Using assumptions (i)–(ii), Lemma 2.12, and standard computations yield

sup
t∈J

E ‖Πx
1(t)‖

2 ≤ C2M2
0‖L‖2

[
‖x0‖2 +

(
1

Γ(1− q)

)2 b−2q+1

(−2q + 1)
Lσk2(1 + ‖x‖2)

]
(3.3)

and

sup
t∈J

4

∑
i=2

E ‖Πx
i (t)‖

2 ≤
(

CM0

Γ(q)

)2 b2q−1

2q− 1
‖B‖2 N̂

(
1
b
+ ‖x‖2

H2

)
+

(
CM0

Γ(q)

)2 [ b2q−1

2q− 1
N2 −

b2q−1

2q− 1
L2Lσ

] (
1 + ‖x‖2

H2

)
.

(3.4)

Hence (3.2)–(3.4) imply that E‖Fαx‖2
H2

< ∞. By Lemma 3.1, Fαx ∈ H2. Thus for each α > 0,
the operator Fα maps H2 into itself. Next, we use the Banach fixed point theorem to prove
that Fα has a unique fixed point in H2. We claim that there exists a natural n such that Fn

α is a
contraction on H2. Indeed, let x, y ∈ H2, we have

E ‖(Fαx)(t)− (Fαy)(t)‖2 ≤ 4
4

∑
i=1

E
∥∥Πx

i (t)−Πy
i (t)

∥∥2

≤ 4k1C2M2
0‖L‖2Lσ

(
1

Γ(1− q)

)2 b−2q+1

(−2q + 1)
E‖x(t)− y(t)‖2
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+ 4
(

CM0

Γ(q)

)2 [
M̂‖B‖2 b2q−1

2q− 1
+

b2q−1

2q− 1
N1 +

b2q−1

2q− 1
L1Lσ

]
× E ‖x(t)− y(t)‖2 .

Hence, we obtain a positive real constant γ(α) such that

E ‖(Fαx)(t)− (Fαy)(t)‖2 ≤ γ(α)E ‖x(t)− y(t)‖2 , (3.5)

for all t ∈ J and all x, y ∈ H2. For any natural number n, it follows from successive iteration
of above inequality (3.5) that, by taking the supremum over J,

‖(Fn
α x)(t)− (Fn

α y)(t)‖2
H2
≤ γn(α)

n!
‖x− y‖2

H2
. (3.6)

For any fixed α > 0, for sufficiently large n, γn(α)
n! < 1. It follows from (3.6) that Fn

α is
a contraction mapping, so that the contraction principle ensures that the operator Fα has a
unique fixed point xα in H2, which is a mild solution of (1.1)–(1.2).

Theorem 3.3. Assume that the assumptions (i)–(iii) hold. Further, if the functions f , σ1 and σ2 are
uniformly bounded and {T (t) : t ≥ 0} is compact, then the system (1.1)–(1.2) is approximately
controllable on J.

Proof. Let xα be a fixed point of Fα. By using the stochastic Fubini theorem, it can be easily
seen that

xα(b) = x̃b − α(αI + Ψ)−1
(

Ex̃b − S(b)L
[

x0 +
1

Γ(1− q)

∫ t

0
(t− s)−qσ2(s, xα(s)) dw2(s)

])
+ α

∫ b

0
(αI + Ψb

s)
−1(b− s)q−1T (b− s) f (s, xα(s)) ds

+ α
∫ b

0
(αI + Ψb

s)
−1[(b− s)q−1T (b− s)σ1(s, xα(s))− ϕ̃(s)] dw1(s).

It follows from the assumption on f , σ1 and σ2 that there exists D̂ > 0 such that

‖ f (s, xα(s))‖2 + ‖σ1(s, xα(s))‖2 + ‖σ2(s, xα(s))‖2 ≤ D̂ (3.7)

for all s ∈ J. Then there is a subsequence still denoted by { f (s, xα(s)), σ1(s, xα(s)), σ2(s, xα(s))}
which converges weakly to some { f (s), σ1(s), σ2(s)} in Y× L0

2 × L0
2.

From the above equation, we have

E ‖xα(b)− x̃b‖2

≤ 8E
(∥∥∥α(αI + Ψb

0)
−1(Ex̃b − S(b)Lx0)

∥∥∥2
)

+ 8E
(
‖α(αI + Ψb

0)
−1‖2‖S(b)L

1
Γ(1− q)

‖2
∫ b

0
(b− s)−q ‖σ2(s, xα(s))− σ2(s))‖2

L0
2

ds
)

+ 8E
(
‖α(αI + Ψb

0)
−1‖2‖S(b)L

1
Γ(1− q)

‖2
∫ b

0
(b− s)−q ‖σ2(s))‖2

L0
2

ds
)

+ 8E
(∫ b

0
(b− s)q−1

∥∥∥α(αI + Ψb
s)
−1 ϕ̃(s)

∥∥∥2

L0
2

ds
)

+ 8E
(∫ b

0
(b− s)q−1

∥∥∥α(αI + Ψb
s)
−1
∥∥∥ ‖T (b− s)( f (s, xα(s))− f (s))‖ ds

)2
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+ 8E
(∫ b

0
(b− s)q−1

∥∥∥α(αI + Ψb
s)
−1T (b− s) f (s)

∥∥∥ ds
)2

+ 8E
(∫ b

0
(b− s)q−1

∥∥∥α(αI + Ψb
s)
−1
∥∥∥ ‖T (b− s)(σ1(s, xα(s))− σ1(s))‖2

L0
2

ds
)

+ 8E
(∫ b

0
(b− s)q−1

∥∥∥α(αI + Ψb
s)
−1T (b− s)σ1(s)

∥∥∥2

L0
2

ds
)

.

On the other hand, by assumption (iii), for all 0 ≤ s < b the operator α(αI + Ψb
s)
−1 → 0

strongly as α → 0+ and moreover ‖α(αI + Ψb
s)
−1‖ ≤ 1. Thus, by the Lebesgue dominated

convergence theorem and the compactness of both S(t) and T (t) implies that E‖xα(b)− x̃b‖2

→ 0 as α→ 0+. Hence, we conclude the approximate controllability of (1.1)–(1.2).

In order to illustrate the abstract results of this work, we give the following example.

4 Example

Consider a fractional partial stochastic nonlocal control equation of Sobolev type

∂q

∂tq

[
x(z, t)− xzz(z, t)

]
− ∂2

∂z2 x(z, t) = µ(z, t) + f̂ (t, x(z, t)) + σ̂(t, x(z, t))
dŵ1(t)

dt
, (4.1)

x(z, 0) = x0(z) +
1

Γ(1− q)

m

∑
k=1

ck

∫ t

0
(t− s)−qx(z, tk) dŵ2(s), z ∈ [0, 1], (4.2)

x(0, t) = x(1, t) = 0, t ∈ J, (4.3)

where 0 < q ≤ 1, 0 < t1 < · · · < tm < b and ck are positive constants, k = 1, . . . , m;
the functions x(t)(z) = x(z, t), f (t, x(t))(z) = f̂ (t, x(z, t)), σ1(t, x(t))(z) = σ̂(t, x(z, t)) and
σ2(t, x(t))(z) = ∑m

k=1 ckx(z, tk). The bounded linear operator B : U → X is defined by
Bu(t)(z) = µ(z, t), 0 ≤ z ≤ 1, u ∈ U; ŵ1(t) and ŵ2(t) are two sided and standard one
dimensional Brownian motions defined on the filtered probability space (Ω, Γ, P).

Let X = E = U = L2[0, 1], define the operators L : D(L) ⊂ X → Y and M : D(M) ⊂ X → Y
by Lx = x− x′′ and Mx = −x′′ where domains D(L) and D(M) are given by

{x ∈ X : x, x′ are absolutely continuous, x′′ ∈ X, x(0) = x(1) = 0}.

Then L and M can be written respectively as

Lx =
∞

∑
n=1

(1 + n2)(x, xn)xn, x ∈ D(L) and Mx =
∞

∑
n=1
−n2(x, xn)xn, x ∈ D(M),

where xn(z) = (
√

2/π) sin nz, n = 1, 2, . . . is the orthogonal set of eigenfunctions of M.
Further, for any x ∈ X we have

L−1x =
∞

∑
n=1

1
1 + n2 (x, xn)xn, ML−1x =

∞

∑
n=1

−n2

1 + n2 (x, xn)xn,

and

S(t)x =
∞

∑
n=1

exp
(
−n2t

1 + n2

)
(x, xn)xn.
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It is easy to see that L−1 is compact, bounded with ‖L−1‖ ≤ 1 and ML−1 generates the
above strongly continuous semigroup S(t) on Y with ‖S(t)‖ ≤ e−t ≤ 1. Therefore, with the
above choices, the system (4.1)–(4.3) can be written as an abstract formulation of (1.1)–(1.2)
and thus Theorem 3.2 can be applied to guarantee the existence of mild solution of (4.1)–
(4.3). Moreover, it can be easily seen that Sobolev type deterministic linear fractional control
system corresponding to (4.1)–(4.3) is approximately controllable on J, which means that all
conditions of Theorem 3.3 are satisfied. Thus, fractional stochastic nonlinear control system
of Sobolev type (4.1)–(4.3) is approximately controllable on J.
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