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Abstract

We consider a system consisting of a quasilinear parabolic equation
and a first order ordinary differential equation containing functional de-
pendence on the unknown functions. The existence and some properties
of solutions in (0,∞) will be proved.

Introduction

In this work we consider initial-boundary value problems for the system

Dtu−

n
∑

i=1

Di[ai(t, x, u(t, x), Du(t, x);u,w)]+ (0.1)

a0(t, x, u(t, x), Du(t, x);u,w) = f(t, x),

Dtw = F (t, x;u,w) in QT = (0, T ) × Ω, T ∈ (0,∞) (0.2)

where the functions

ai : QT × R
n+1 × Lp(0, T ;V1) × L2(QT ) → R

(with a closed linear subspace V1 of the Sobolev space W 1,p(Ω), 2 ≤ p < ∞)
satisfy conditions which are generalizations of the usual conditions for quasilin-
ear parabolic differential equations, considered by using the theory of monotone
type operators (see, e.g., [2], [7], [13]) but the equation (0.1) is not uniformly
parabolic in a sense, analogous to the linear case. Further,

F : QT × Lp(0, T ;V1) × L2(QT ) → R

satisfies a Lipschitz condition.
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In [12] the existence of weak solutions in QT was proved. In this present
paper this result will be extended to Q∞ = (0,∞) × Ω and some properties
(boundedness, asymptotic property as t→ ∞) of the solutions will be shown.

Such problems arise, e.g., when considering diffusion and transport in porous
media with variable porosity, see [5], [8]. In [8] J.D. Logan, M.R. Petersen, T.S.
Shores considered and numerically studied a nonlinear system, consisting of a
parabolic, an elliptic and an ODE which describes reaction-mineralogy-porosity
changes in porous media. System (0.1), (0.2) was motivated by that system. In
[3], [4] Á. Besenyei considered a more general system of a parabolic PDE, an
elliptic PDE and an ODE.

1 Existence of solutions

Let Ω ⊂ R
n be a bounded domain having the uniform C1 regularity property

(see [1]) and p ≥ 2 be a real number. Denote by W 1,p(Ω) the usual Sobolev
space of real valued functions with the norm

‖ u ‖=

[
∫

Ω

(|Du|p + |u|p)

]1/p

.

Let V1 ⊂ W 1,p(Ω) be a closed linear subspace containing W 1,p
0 (Ω) (the closure

of C∞

0 (Ω) in W 1,p(Ω)). Denote by Lp(0, T ;V1) the Banach space of the set of
measurable functions u : (0, T ) → V1 such that ‖ u ‖p

V1
is integrable and define

the norm by

‖ u ‖p
Lp(0,T ;V1)

=

∫ T

0

‖ u(t) ‖p
V1
dt.

The dual space of Lp(0, T ;V1) is Lq(0, T ;V ?
1 ) where 1/p + 1/q = 1 and V ?

1 is
the dual space of V1 (see, e.g., [7], [13]).

On functions ai we assume:
(A1). The functions ai : QT × R

n+1 × Lp(0, T ;V1) × L2(Ω) → R satisfy
the Carathéodory conditions for arbitrary fixed (u,w) ∈ Lp(0, T ;V1) × L2(Ω)
(i = 0, 1, ..., n).

(A2). There exist bounded (nonlinear) operators g1 : Lp(0, T ;V1)×L
2(Ω) →

R
+ and k1 : Lp(0, T ;V1) × L2(Ω) → Lq(Ω) such that

|ai(t, x, ζ0, ζ;u,w)| ≤ g1(u,w)[|ζ0|
p−1 + |ζ|p−1] + [k1(u,w)](x), i = 0, 1, ..., n

for a.e. (t, x) ∈ QT , each (ζ0, ζ) ∈ R
n+1 and (u,w) ∈ Lp(0, T ;V1) × L2(Ω).

(A3).
∑n

i=1[ai(t, x, ζ0, ζ;u,w) − ai(t, x, ζ0, ζ
?;u,w)](ζi − ζ?

i ) > 0 if ζ 6= ζ?.
(A4). There exist bounded operators g2 : Lp(0, T ;V1) × L2(Ω) → C[0, T ],

k2 : Lp(0, T ;V1) × L2(Ω) → L1(QT ) such that

n
∑

i=0

ai(t, x, ζ0, ζ;u,w)ζi ≥ [g2(u,w)](t)[|ζ0|
p + |ζ|p] − [k2(u,w)](t, x)
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for a.e. (t, x) ∈ QT , all (ζ0, ζ) ∈ R
n+1, (u,w) ∈ Lp(0, T ;V1) × L2(Ω) and (with

some positive constants)

[g2(u,w)]t) ≥ const(1+ ‖ u ‖Lp(0,t;V1))
−σ?

(1+ ‖ w ‖L2(Qt))
−β?

(1.3)

‖ k2(u,w) ‖L1(Qt)≤ const(1+ ‖ u ‖Lp(0,t;V1))
σ(1+ ‖ w ‖L2(Qt))

β (1.4)

where
0 < σ? < p− 1, 0 ≤ σ < p− σ?

and β, β? ≥ 0 satisfy

β? + σ? < p− 1, β? + σ? + β + σ < p.

(A5). There exists δ > 0 such that if (uk) → u weakly in Lp(0, T ;V1),
strongly in Lp(0, T ;W 1−δ,p(Ω)) and (wk) → w in L2(Ω) then for i = 0, 1, ..., n

ai(t, x, uk(t, x), Duk(t, x);uk, wk) − ai(t, x, uk(t, x), Duk(t, x);u,w) → 0

in Lq(QT ).
Definition Assuming (A1)-(A5) we define operatorA : Lp(0, T ;V1)×L

2(QT ) →
Lq(0, T ;V ?

1 ) by

[A(u,w), v] =

∫ T

0

〈A(u,w)(t), v(t)〉dt =

∫

QT

{

n
∑

i=1

ai(t, x, u(t, x), Du(t, x);u,w)Div + a0(t, x, u(t, x), Du(t, x);u,w)v

}

dtdx,

(u,w) ∈ Lp(0, T ;V1) × L2(QT ), v ∈ Lp(0, T ;V1)

where the brackets 〈·, ·〉, [·, ·] mean the dualities in spaces V ?
1 , V1 and Lq(0, T ;V ?

1 ),
Lp(0, T ;V1), respectively.

On function F : QT × Lp(0, T ;V1) × L2(QT ) → R assume
(F1). For each fixed (u,w) ∈ Lp(0, T ;V1) × L2(QT ), F (·;u,w) ∈ L2(QT ).
(F2). F satisfies the following (global) Lipschitz condition: for each t ∈

(0, T ], (u,w), (u?, w?) ∈ X we have

‖ F (·;u,w) − F (·;u?, w?) ‖2
L2(Qt)

≤

K
[

‖ u− u? ‖2
Lp(0,t;W 1−δ,p(Ω)) + ‖ w − w? ‖2

L2(Qt)

]

.

In [12] the following theorem was proved.

Theorem 1.1 Assume (A1) - (A5) and (F1), (F2). Then for any f ∈ Lq(0, T ;V ?
1 )

and w0 ∈ L2(QT ) there exists u ∈ Lp(0, T ;V1), w ∈ L2(QT ) such that Dtu ∈
Lq(0, T ;V ?

1 ), Dtw ∈ L2(QT ) and

Dtu+A(u,w) = f, u(0) = 0, . (1.5)

Dtw = F (t, x;u,w) for a.e. (t, x) ∈ QT , w(0) = w0. (1.6)
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Now assume
(F ′

1) F has the form F (t, x;u,w) = F̂ (t, x, w(t, x);u,w) and F̂ : QT ×
R × X → R satisfies: for each fixed (u,w) ∈ Lp(0, T ;V1) × L2(QT ), ξ ∈ R,
F̂ (·, ξ;u,w) ∈ L2(QT ).

(F ′

2) There exist constants K, K1(c1) such that if |ξ|, |ξ?| ≤ c1 then for each
t ∈ (0, T ], (u,w), (u?, w?) ∈ Lp(0, T ;V1) × L2(QT with the property |w|, |w?| ≤
c1 in QT

|F̂ (t, x, ξ;u,w) − F̂ (t, x, ξ?;u?, w?)|2 ≤

K ‖ u− u? ‖2
Lp(0,t;W 1−δ,p(Ω)) +K1(c1)

[

‖ w − w? ‖2
L2(Qt)

+|ξ − ξ?|2
]

.

(F ′

3) There exists a constant c0 > 0 such that for a.e. (t, x) and all u,w

F̂ (t, x, ξ;u,w)ξ ≤ 0 if |ξ| ≥ c0.

Theorem 1.2 Assume (A1) - (A5) and (F ′

1) - (F ′

3) such that operators g2, k2

in (A4) satisfy the following modified inequalities instead of (1.3) and (1.4):

[g2(u,w)](t) ≥ const(1+ ‖ u ‖Lp(0,t;V1))
−σ?

(1 + g3(‖ w ‖L2(Qt))
−1,

‖ k2(u,w) ‖L1(Qt)≤ const(1+ ‖ u ‖Lp(0,t;V1))
σ(1+ ‖ w ‖L2(Qt))

where g3, g4 are monotone nondecreasing positive functions, 0 < σ? < p − 1,
0 ≤ σ < p− σ?.

Then for any f ∈ Lq(0, T ;V ?
1 ) and w0 ∈ L2(QT ) there exists u ∈ Lp(0, T ;V1),

w ∈ L2(QT ) such that Dtu ∈ Lq(0, T ;V ?
1 ), Dtw ∈ L2(QT ) and (1.5), (1.6) hold.

This theorem is a consequence of Theorem 1.1 (see also [12]): set

c?0 = max{c0, ‖ w0 ‖L∞(Ω)}

and let χ ∈ C∞

0 (R) be such that χ(ξ) = ξ for |ξ| ≤ c?0 and define functions F̃ ,
ãi by

F̃ (t, x;u,w) = F̂ (t, x, χ(w(t, x));u, χ(w)),

ãi(t, x, ζ0, ζ;u,w) = ai(t, x, ζ0, ζ;u, χ(w)),

Then by Theorem 1.1 there exists a solution (u,w) of (1.5), (1.6) with F̃ , ãi

(instead of F , ai, respectively). It is not difficult to show that for a.e. x ∈ Ω,
all t ∈ [0, T ], |w(t, x)| ≤ c?0 by (F ′

3) and so (u,w) satisfies the original problem,
too.

Now we formulate existence theorems in (0,∞). Denote by Lp
loc(0,∞;V1)

the set of functions v : (0,∞) → V1 such that for each fixed finite T > 0,
v|(0,T ) ∈ Lp(0, T ;V1) and let Q∞ = (0,∞) × Ω, Lα

loc(Q∞) the set of functions
v : Q∞ → R such that v|QT

∈ Lα(QT ) for any finite T > 0.
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Theorem 1.3 Assume that the functions

ai : Q∞ × R
n+1 × Lp

loc(0,∞;V1) × L2
loc(Q∞ → R

satisfy the assumptions (A1) - (A5) for any finite T and that ai(t, x, ζ0, ζ;u,w)|QT

depend only on u |(0,T ) and w |QT
(Volterra property). Further, the function

F : Q∞ × Lp
loc(0,∞;V1) × L2

loc(Q∞ → R

satisfies (F1), (F2) for arbitrary fixed T and has the Volterra property.
Then for each f ∈ Lq

loc(0,∞;V ?
1 ), w0 ∈ L2(Ω) there exist u ∈ Lp

loc(0,∞;V1),
w ∈ L2

loc(Q∞) which satisfy (1.5), (1.6) for any finite T .

The idea of the proof. The Volterra property implies that if u,w are solutions
in QT then for arbitrary T̃ < T , their restriction to QT̃ are solutions in QT̃ .
Therefore, if lim(Tj) = +∞, T1 < T2 < ... < Tj < ... and uj, wj are solutions in
QTj

then, by using a ’diagonal process’, we can select a subsequence of (uj, wj)
which converges in QT for arbitrary finite T to (u,w), a solution of (1.5), (1.6)
in Q∞. (For more details see, e.g., [10].) Similarly can be proved

Theorem 1.4 Assume that the functions

ai : Q∞ × R
n+1 × Lp

loc(0,∞;V1) × L2
loc(Q∞ → R

satisfy the assumptions of Theorem 1.2 for any finite T and they have the
Volterra property; the function

F̂ : Q∞ × R × Lp
loc(0,∞;V1) × L2

loc(Q∞ → R

satisfies (F ′

1) - (F ′

3) for arbitrary fixed T and has the Volterra property.
Then for each f ∈ Lq

loc(0,∞;V ?
1 ), w0 ∈ L2(Ω) there exist u ∈ Lp

loc(0,∞;V1),
w ∈ L2

loc(Q∞) which satisfy (1.5), (1.6) for any finite T .

2 Boundedness and stabilization

Theorem 2.1 Assume that the functions ai, F̂ satisfy the conditions of The-
orem 1.4 such that for all u ∈ Lp

loc(0,∞;V1), w ∈ L∞

loc(Q∞), t ∈ (0,∞) the
operators g2, k2 in (A4) satisfy

[g2(u,w)](t) ≥ const

[

1 + sup
τ∈[0,T ]

y(τ)

]−σ?/2

·

[

1 + g3( sup
τ∈[0,T ]

z(τ))

]−1

(2.7)

∫

Ω

[k2(u,w)](t, x)dx ≤ (2.8)

const

[

1 + sup
τ∈[0,T ]

y(τ)σ/2 + ϕ(t) sup
τ∈[0,T ]

y(τ)(p−σ?)/2

]

·

[

1 + g4( sup
τ∈[0,T ]

z(τ))

]
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where 0 < σ? < p − 1, 0 < σ < p − σ?, lim∞ ϕ = 0, g3, g4 are monotone
nondecreasing positive functions,

y(τ) =

∫

Ω

u(τ, x)2dx, z(τ) =‖ w(τ, ·) ‖L∞(Ω) .

Further, the constant c0 in (F ′

3) is independent of T , ‖ f(t) ‖V ?
1

is bounded for
t ∈ (0,∞).

Then for a solution u ∈ Lp
loc(0,∞;V1), w ∈ L∞

loc(Q∞) of (1.5), (1.6) with
w0 ∈ L∞(Ω) and arbitrary initial condition on u, y and z are bounded in (0,∞).

Proof Since the constant c0 in (F ′

3) is independent of T , it is easy to show that

|w(t, x)| ≤ max
{

c0, ‖ w0 ‖L∞(Ω)

}

for a.e. x ∈ Ω, all t > 0 (see the idea of the proof of Theorem 1.2, i.e. z is
bounded.

Further, applying (1.5) to u(t) ∈ V1, by (A4) we obtain

1

2
y′(t) + [g2(u,w)](t) ‖ u(t) ‖p

V1
−

∫

Ω

[k2(u,w)](t, x)dx ≤ (2.9)

〈f(t), u(t)〉 ≤‖ f(t) ‖V ?
1
‖ u(t) ‖V1

≤ const ‖ u(t) ‖V1

since ‖ f(t) ‖V ?
1

is bounded. Young’s inequality implies

‖ u(t) ‖V1
≤ ε[g2(u,w)](t)1/p ‖ u(t) ‖V1

·
1

ε[g2(u,w)](t)1/p
≤ (2.10)

εp

p
[g2(u,w)](t) ‖ u(t) ‖p

V1
+

1

qεq[g2(u,w)](t)q/p
.

Choosing sufficiently small ε < 0, one obtains from (2.9), (2.10)

1

2
y′(t) +

1

2
[g2(u,w)](t) ‖ u(t) ‖p

V1
≤

∫

Ω

[k2(u,w)](t, x)dx + const[g2(u,w)](t)−q/p

(2.11)
Since by Hölder’s inequality , p ≥ 2,

‖ u(t) ‖p
V1
≥ consty(t)p/2,

(2.7), (2.8), (2.11) and the boundedness of z imply (with some positive constant
c?)

y′(t) + c?y(t)p/2

[

1 + sup
τ∈[0,T ]

y(τ)

]−σ?/2

≤ (2.12)

const

[

1 + sup
τ∈[0,T ]

y(τ)σ/2 + ϕ(t) sup
τ∈[0,T ]

y(τ)(p−σ?)/2 + sup
τ∈[0,T ]

y(τ)(q/p)(σ?/2)

]

.

Since 0 ≤ σ < p − σ? < p, (q/p)σ? < p − σ?, lim∞ ϕ = 0, it is not difficult to
show that (2.12) implies the boundedness of y(t) (see [11]).

Now we formulate an attractivity result.
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Theorem 2.2 Assume that the functions ai, F̂ satisfy the conditions of Theo-
rem 2.1 such that for all u ∈ Lp

loc(0,∞;V1), w ∈ L∞

loc(Q∞), t ∈ (0,∞)

∫

Ω

[k2(u,w)](t, x)dx ≤ ϕ(t)

[

sup
τ∈[0,T ]

y(τ)(p−σ?)/2

]

·

[

1 + g4( sup
τ∈[0,T ]

z(τ))

]

.

(2.13)
Further,

lim
t→∞

‖ f(t) ‖V ?
1
= 0, (2.14)

ξF̂ (t, x, ξ;u,w) ≤ −g(ξ)ξ (2.15)

with a strictly monotone increasing continuous function g satisfying g(0) = 0.
Then for a solution u ∈ Lp

loc(0,∞;V1), w ∈ L∞

loc(Q∞) of (1.5), (1.6) with
w0 ∈ L∞(Ω) and arbitrary initial condition on u, for the functions defined in
Theorem 2.1 we have

lim
∞

y = 0, (2.16)

lim
∞

z = 0. (2.17)

Proof By (1.6) and (2.15) for a.e. x ∈ Ω, t 7→ w(t, x) is continuous and
monotone decreasing and for a.e. (t, x)

Dtw(t, x) ≤ −g(w(t, x)) if w(t, x) > 0

thus for a.e. x ∈ Ω satisfying w0(x) > 0,

w(t, x) ≤ w0(x) − tg(w(t, x)) for a.e. x ∈ Ω until w(t, x) > 0

(g is monotone increasing, t 7→ w(t, x) is monotone decreasing). Consequently,

tg(w(t, x)) ≤ w0(x), thus w(t, x) ≤ g−1

(

‖ w0 ‖L∞(Ω)

t

)

for a.e. x ∈ Ω with w0(x) > 0 until w(t, x) > 0. In the case w0(x) < 0 we obtain

w(t, x) ≥ −g−1

(

‖ w0 ‖L∞(Ω)

t

)

for a.e. x ∈ Ω until w(t, x) < 0. If for some t1, w(t1, x) = 0 then w(t, x) = 0 for
t > t1. Hence we obtain (2.17).

In order to prove (2.16), we use (2.13) and so we obtain (similarly to (2.12))

y′(t) + c?y(t)p/2

[

1 + sup
τ∈[0,T ]

y(τ)

]−σ?/2

≤ (2.18)

const ϕ(t)

[

1 + sup
τ∈[0,T ]

y(τ)(p−σ?)/2

]

+ const ‖ f(t) ‖V ?
1

sup
τ∈[0,T ]

y(τ)(q/p)(σ?/2).
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Since y is bounded and limϕ∞ = 0, by using (2.14) one can derive from (2.18)
the equality (2.16) (see, e.g., [9]).

Remark In the case g(ξ) = −α1ξ (where α1 is a positive constant)

|w(t, x)| ≤ |w0(x)| exp(−α1t) for a.e. (t, x)

and the inequality

−α2ξ
2 ≤ ξF̂ (t, x, ξ;u,w) ≤ 0 (α2 > 0)

implies
|w(t, x)| ≥ |w0(x)| exp(−α2t) for a.e. (t, x).

Now we formulate a stabilization result.

Theorem 2.3 Assume that conditions of Theorem 2.1 are satisfied such that
(A2), (A4) hold for all T > 0 with operators

g1, g2 : Lp
loc(0,∞;V1) × L2

loc(Q∞) → R
+, (2.19)

k1 : Lp
loc(0,∞;V1) × L2

loc(Q∞) → Lq(Ω); (2.20)

for arbitrary fixed u ∈ Lp
loc(0,∞;V1), w ∈ L2

loc(Q∞) such that

∫

Ω

u(t, x)2dx, ‖ w(t, ·) ‖L∞ , t ∈ (0,∞) are bounded (2.21)

and for every (ζ0, ζ) ∈ R, a.a. x ∈ Ω

lim
t→∞

ai(t, x, ζ0, ζ;u,w) = ai,∞(x, ζ0, ζ), i = 0, 1, ..., n (2.22)

exist and are finite where ai,∞ satisfy the Carathéodory conditions.
Further, for every fixed u ∈ Lp

loc(0,∞;V1), w ∈ L2
loc(Q∞)

n
∑

i=0

[ai(t, x, ζ0, ζ;u,w) − ai(t, x, ζ
?
0 , ζ

?;u,w)](ζi − ζ?
i ) ≥ (2.23)

[g2(u,w)](t)[|ζ0 − ζ?
0 |

p + |ζ − ζ?|p] − [k3(u,w)](t, x)

with some operator

k3 : Lp
loc(0,∞;V1) × L2

loc(Q∞) → L1(Q∞) (2.24)

satisfying

lim
t→∞

∫

Ω

[k3(u,w)](t, x)dx = 0 (2.25)

for all fixed u,w satisfying (2.21).
On F̂ assume

F̂ (t, x, ξ;u,w)[ξ − w∞(x)] ≤ −g(ξ − w∞(x))[ξ − w∞(x)] (2.26)
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with some w∞ ∈ L∞(Ω) where g is a strictly monotone increasing function with
g(0) = 0.

Finally, there exists f∞ ∈ V ?
1 such that

lim
t→∞

‖ f(t) − f∞ ‖V ?
1
= 0. (2.27)

Then for a solution u ∈ Lp
loc(0,∞;V1), w ∈ L∞

loc(Q∞) of (1.5), (1.6) in (0,∞)
with w0 ∈ L∞(Ω), any initial condition on u we have

lim
t→∞

‖ u(t) − u∞ ‖L2(Ω)= 0, (2.28)

lim
T→∞

∫ T+a

T−a

‖ u(t) − u∞ ‖p
V1
dt = 0 for arbitrary fixed a > 0, (2.29)

lim
t→∞

‖ w(t, ·) − w∞ ‖L∞(Ω)= 0, (2.30)

where u∞ ∈ V1 is the unique solution to

A∞(u∞) = f∞ (2.31)

and the operator A∞ : V1 → V ?
1 is defined by

〈A∞(z), v〉 =

n
∑

i=1

∫

Ω

ai,∞(x, z(x), Dz(x))Div(x)dx+

∫

Ω

a0,∞(x, z(x), Dz(x))v(x)dx, z, v ∈ V1.

Proof Equality (2.30) follows from (2.26) similarly as it was proved in Theorem
2.2. By Theorem 2.1 (2.21) holds. Applying (A2) (by using (2.19), (2.20)) to
u(t) = ũ, w(t) = w̃ where ũ ∈ V1, w̃ ∈ L2(Ω), we obtain from (2.22)

|ai,∞(x, ζ0, ζ)| ≤ c1(|ζ0|
p−1 + |ζ|p−1) + k̃1(x)

with some constant c1 and k̃1 ∈ Lq(Ω). Similarly, Vitali’s theorem, (2.19),
(2.20), (2.22) - (2.25) imply

n
∑

i=1

∫

Ω

[ai,∞(x, z(x), Dz(x)) − ai,∞(x, z?(x), Dz?(x))][Diz(x) −Diz
?(x)]dx+

∫

Ω

[a0,∞(x, z(x), Dz(x)) − a0,∞(x, z?(x), Dz?(x))][z(x) − z?(x)]dx ≥

c2

∫

Ω

[|z(x) − z?(x)|p + |Dz(x) −Dz?(x)|p]dx for any z, z? ∈ V1.

Consequently, A∞ : V1 → V ?
1 is bounded, hemicontinuous, strictly monotone

and coercive which implies the existence of a unique solution of (2.31) (see, e.g.,
[13]).
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If u,w are solutions of (1.5), (1.6) in (0,∞) then by (2.31) we obtain

〈Dt[u(t) − u∞], u(t) − u∞〉 + 〈A(u,w)(t) −A∞(u∞), u(t) − u∞〉 = (2.32)

〈f(t) − f∞, u(t) − u∞〉.

It is well known ( see [13]) that

y(t) = 〈u(t) − u∞, u(t) − u∞〉 =

∫

Ω

[u(t) − u∞]2dx

is absolutely continuous and the first term in (2.32) equals to 1/2y′(t) for a.e. t.
Further, for the second term in (2.32) we have by (2.23) and Young’s inequality

〈[A(u,w)](t) −A∞(u∞), u(t) − u∞〉 = (2.33)

〈[A(u,w)](t) − [Au,w(u∞)](t), u(t) − u∞〉+

〈[Au,w(u∞)](t) −A∞(u∞), u(t) − u∞〉 ≥

g2(u,w) ‖ u(t) − u∞ ‖p
V1

−

∫

Ω

[k3(u,w)](t, x)dx−

εp

p
‖ u(t) − u∞ ‖p

V1
−

1

qεq
‖ [Au,w(u∞)](t) −A∞(u∞) ‖q

V ?
1

with arbitrary ε > 0 where we used the notation

〈[Au,w(u∞)](t), z〉 =

∫

Ω

{

n
∑

i=1

ai(t, x, u∞(x), Du∞(x);u,w)Diz + a0(t, x, u∞(x), Du∞(x);u,w)z

}

.

By Vitali’s theorem we obtain from (A2), (2.19), (2.20), (2.22)

lim
t→∞

‖ [Au,w(u∞)](t) −A∞(u∞) ‖V ?
1
= 0. (2.34)

Finally, by Young’s inequality, for the right hand side of (2.32) we have

|〈f(t) − f∞, u(t) − u∞〉| ≤
εp

p
‖ u(t) − u∞ ‖p

V1
+

1

qεq
‖ f(t) − f∞ ‖q

V ?
1

. (2.35)

Thus, choosing sufficiently small ε > 0, (2.21), (2.25), (2.27), (2.32) - (2.35)
yield

y′(t) + c? ‖ u(t) − u∞ ‖p
V1
≤ ψ(t), (2.36)

thus by Hölder’s inequality

y′(t) + c??y(t)p/2 ≤ ψ(t), (2.37)

where limt→∞ ψ(t) = 0 and c?, c?? are positive constants. Similarly to (2.16),
one obtains (2.28) from (2.37). Combining (2.28) and (2.36) one obtains (2.29).
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Examples Now we consider examples satisfying the conditions of Theorems
1.4 - 2.3. (Examples for Theorems 1.1, 1.3 see in [12].) Let ai(t, x, ζ0, ζ;u,w)
have the form

ai(t, x, ζ0, ζ;u,w) = b1([H1(u)])b2([H2(w)])αi(t, x, ζ0, ζ), i = 1, ..., n, (2.38)

a0(t, x, ζ0, ζ;u,w) = b1([H1(u)])b2([H2(w)])α0(t, x, ζ0, ζ)+ (2.39)

b̂0([F0(u)](t, x))b̃0(G0(w))α̂0(t, x, ζ0, ζ)

where αi satisfy the usual conditions: they are Carathéodory functions;

|αi(t, x, ζ0, ζ)| ≤ c1(|ζ0|
p−1 + |ζ|p−1) + k1(x)

with some constant c1, k1 ∈ Lq(Ω), i = 0, 1, ..., n;

n
∑

i=1

[αi(t, x, ζ0, ζ) − αi(t, x, ζ0, ζ
?)](ζi − ζ?

i ) > 0 if ζ 6= ζ?;

n
∑

i=0

αi(t, x, ζ0, ζ)ζi ≥ c2(|ζ0|
p + |ζ|p)

with some constant c2 > 0. E.g. functions

αi = ζi|ζ|
p−2, i = 1, ..., n, α0 = ζ0|ζ0|

p−2

satisfy the above conditions. The function α̂0 satisfies the Carathéodory condi-
tion and

|α̂0(t, x, ζ0, ζ)| ≤ c1(|ζ0|
ρ̂ + |ζ|ρ̂), 0 ≤ ρ̂ < p− 1 (2.40)

Further, b1, b2, b̂0, b̃0 are continuous functions, satisfying (with some positive
constants)

b1(Θ) ≥
const

1 + |Θ|σ? , |b̂0(Θ)| ≤ const|Θ|p−1−ρ?

with 0 < σ? < p− 1, σ? + ρ̂ < ρ? < p− 1,

b2(Θ) ≥
const

1 + g3(Θ)
, |b̃0(Θ)| ≤ const[1 + g4(Θ)].

(g3, g4 are monotone nondecreasing positive functions.)
Finally,

H1 : Lp
loc(0,∞;W 1−δ,p(Ω))) → C(Q∞), H2 : L2

loc(Q∞) → C(Q∞),

F0 : Lp
loc(0,∞;W 1−δ,p(Ω))) → Lp

loc(Q∞), G0 : L2
loc(Q∞) → L2

loc(Q∞)

are linear operators of Volterra type such that for any fixed finite T > 0 their
restrictions

H1 : Lp(0, T ;W 1−δ,p(Ω))) → C(QT ), H2 : L2(QT ) → C(QT ),
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F0 : Lp(0, T ;W 1−δ,p(Ω))) → Lp(QT ), G0 : L2(QT ) → L2(QT )

are uniformly bounded with respect to T ∈ (0,∞). [H1(u)](t, x) may have e.g.
one of the forms:

∫

Qt

d(t, x, τ, ξ)u(τ, ξ)dτdξ where sup
(t,x)∈QT

∫

QT

|d(t, x, τ, ξ)|qdτdξ <∞,

∫

Γt

d(t, x, τ, ξ)v(τ, ξ)dτdσξ where sup
(t,x)∈QT

∫

ΓT

|d(t, x, τ, ξ)|qdτdσξ <∞.

Examples for F0, G0 see in [11].
By using Young’s inequality, one can prove that the assumptions on ai in

Theorem 1.4 are fulfilled for the above example (see [11]). The assumptions on
ai in Theorem 2.1 are satisfied for the above example if

‖ H1(u) ‖C(QT )≤ const sup
τ∈[0,T ]

{
∫

Ω

u(τ, x)2dx

}1/2

, (2.41)

‖ F0(u) ‖Lp(QT )≤ const sup
τ∈[0,T ]

{
∫

Ω

u(τ, x)2dx

}1/2

(2.42)

with constants not depending on T . (2.41) is satisfied if e.g.

[H1(u)](t, x) =

∫

Qt

d(t, x, τ, ξ)u(τ, ξ)dτdξ where

sup
(t,x)∈Q∞

∫

∞

0

[
∫

Ω

|d(t, x, τ, ξ)|2dξ

]1/2

dτ <∞.

The assumptions on ai in Theorem 2.2 are satisfied if (2.41), (2.42) hold and
(instead of (2.40))

|α̂0(t, x, ζ0, ζ)| ≤ ϕ1(t)(|ζ0|
ρ̂ + |ζ|ρ̂), 0 ≤ ρ̂ < p− 1 (2.43)

where lim∞ ϕ1 = 0.
Finally, the following modification of functions (2.38), (2.39) satisfy the con-

ditions of Theorem 2.3: for simplicity e.g.

αi = ζi|ζ|
p−2 for i = 1, ..., n, α0 = ζ0|ζ0|

p−2,

(2.43) is valid and instead of b1(H1(u)), b2(H2(w)) we have b1(t,H1(u)), b2(t,H2(w)),
respectively, where (with some positive constants)

b1(t,Θ) =
const

1 + ψ1(t)|Θ|σ? , b2(t,Θ) =
const

1 + ψ2(t)g3(Θ)
, lim

∞

ψj = 0.
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