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Abstract. In this work we consider a partial integro-differential equation. We
reformulate it a functional integro-differential equation in a suitable Hilbert
space. We apply the method of lines to establish the existence and uniqueness
of a strong solution.

1. Introduction

In the present analysis we are concerned with the following partial integro-
differential equation,
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






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
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
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∂2w(x,t)
∂t2

= ∂2w(x,t)
∂x2 + q(x)∂w(x,t)

∂t
+ f1(x, t, w(x, t), ∂w(x,t)

∂t
)

+
∫ t

0
k(t, s)

[

∂2w(x,s)
∂x2 + f2(x, s, w(x, s), ∂w(x,s)

∂s
)
]

ds,

(x, t) ∈ (0, 1) × (0, T ], 0 < T < ∞,
w(x, 0) = g1(x), ∂w

∂t
(x, 0) = g2(x), x ∈ (0, 1),

w(0, t) = 0 = w(1, t), t ∈ [0, T ],

(1.1)

where the unknown function w : [0, 1] × [0, T ] → C, the coefficient function of the
damping term ∂w

∂t
, q : [0, 1] → C satisfies certain integrability conditions, stated

later, fi : (0, 1) × [0, T ] × C2 → C, gi : (0, 1) → C, i = 1, 2; and k : [0, T ]2 → C are
given functions satisfying certain required conditions.

In the next section we transform (1.1) as a Cauchy problem for the following
functional integro-differential equation in the product Hilbert space H := H1

0 (0, 1)×
L2(0, 1),

{

du
dt

− Au =
∫ t

0
k(t, s)Au(s)ds + F (t, ut),

u0 = φ,
(1.2)

where A : D(A) ⊂ H → H is shown to be the infinitesimal generator of a contraction
semigroup in H and the nonlinear function F : [0, T ] × C0 → H. Here the space
Ct := C([−T, t];H), t ∈ [0, T ], is the Banach space of all continuous functions from
[−T, t] into H endowed with the norm

‖χ‖Ct
:= sup

−T≤s≤t

‖χ(s)‖H, χ ∈ Ct,
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‖.‖H being the norm in H given by

‖u‖2
H := ‖u1‖

2
H1

0
+ ‖u2‖

2
L2, u = (u1, u2) ∈ H1

0 (0, 1) × L2(0, 1),

‖u1‖
2
H1

0

=

∫ 1

0

[

|u′(x)|2 + |u(x)|2
]

dx,

‖u2‖
2
L2 =

∫ 1

0

|u(x)|2dx.

The space C0 is called the “history space” or the phase space. We also show that
F verifies a Lipschitz condition under certain assumptions on the functions f1 and
f2.

Our aim is to apply Rothe’s method to (1.2) involving delays to establish the
existence and uniqueness of a strong solution which in turn will guarantee the well-
posedness of (1.1). The delay differential equations arise in the study of various
population dynamical models [9]. The method of lines is a powerful tool for proving
the existence and uniqueness of solutions to evolution equations. This method is
oriented towards the numerical approximations. For instance, we refer to Rektorys
[11] for a rich illustration of the method applied to various interesting physical prob-
lems. Until today, the application of method of lines includes only those nonlinear
differential and Volterra integro-differential equations (VIDEs) in which bounded,
though nonlinear, operators appear inside the integrals, see Kacur [6, 7], Rektorys
[11], Bahuguna and Raghavendra [2] and Bahuguna, Pani and Raghavendra [5].
In the present study we extend the application of the method of lines to a class
of nonlinear VIDEs in which differential operators occur inside the integrals and
hence are unbounded. Motivation for considering such problems arises from the
theory of wave propagation under the influence of damping, see Bahuguna [1], and
Bahuguna and Shukla [4] and references cited therein.

2. Reformulation and Main Result

In order to reformulate (1.1) as (1.2) we choose the following settings. We
consider the complex Hilbert space L2(0, 1) of all square integrable complex-valued
functions on (0, 1) with the norm ‖.‖L2 introduced earlier. We shall also be dealing
with the Sobolev spaces Hd(0, 1) and Hd

0 (0, 1) for d = 1, 2, · · · (cf. Pazy [10] or
Engel and Nagel [8] for definitions and details).

We assume that q : [0, 1] → C is measurable and satisfies the following conditions.
(C1) There exist constants γ ≥ 0 and δ > 0 such that

|Im q(x)| ≤ γ Re q(x), Re q(x) ≤ −δ, a.e. x ∈ [0, 1],

where Re q(x) and Im q(x) denote the real and imaginary parts of q(x).
(C2) For every 0 < ε < 1/2, q ∈ L2[ε, 1 − ε] and the map x 7→ x(1 − x)q2(x) is

in L1[0, 1].
We define

D(P ) = {u ∈ L2(0, 1) : q(.)u(.) ∈ L2(0, 1)}, (Pu)(x) = q(x)u(x), (2.1)

D(A0) = H2(0, 1) × (D(P ) ∩ H1
0 (0, 1)), A0 =

(

0 I
∂2

∂x2 P

)

. (2.2)
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Under the conditions (C1) and (C2) on q, it follows that the closure A, of A0 is
given by

D(A) = H2
0 (0, 1) × H1

0 (0, 1), (2.3)

A =

(

0 I
−C∗C Q

)

, (2.4)

where Q = C∗−1PC−1, is a bounded linear operator on L2(0, 1), is the infinitesimal
generator of a C0-semigroup of contractions in H (cf. Engel and Nagel [8], page
381). Here, for any operator L, L represents the closure of L.

With these operators introduced and for g1 ∈ H1
0 (0, 1) and g2 ∈ L2(0, 1), we

rewrite (1.1) as
{

du
dt

− Au = F1(t, u(t)) +
∫ t

0
k(t, s)[Bu(s) + F2(s, u(s))]ds,

u(0) = (g1, g2),
(2.5)

where

D(B) = D(A), (2.6)

B =

(

0 0
−C∗C 0

)

, (2.7)

and, for i = 1, 2, Fi : [0, T ]×H → H are given by

Fi(t, (u1, u2))(x) = (0, fi(x, t, u1(x, t), u2(x, t))), u = (u1, u2) ∈ H.

We put t − s = −η in the integral term in (2.5) to obtain
∫ t

0

k(t, s)F2(s, u(s))ds =

∫ 0

−t

k(t, t + η)F2(t + η, u(t + η))dη (2.8)

=

∫ 0

−t

k(t, t + η)F2(t + η, ut(η))dη. (2.9)

Thus, if for any u ∈ CT := C([0, T ];H) and t ∈ [0, T ], we let ut ∈ C0 := C([−T, 0];H)
given by ut(η) = u(t + η), η ∈ [−t, 0] and ut(η) = u(0) for η ∈ [−T,−t], we may
rewrite (2.5) as (1.2) where F : [0, T ]× C0 → H, given by

F (t, χ) = F1(t, χ(0)(t))+

∫ 0

−t

k(t, t+ η)[(B −A)χ(η)(s)+F2(s, χ(η)(s))]ds, χ ∈ C0,

and φ ∈ C0 is given by

φ(η) ≡ u(0) = (g1, g2), η ∈ [−T, 0].

We list here the properties of the linear operator A, the nonlinear map F and
the kernel k.

(P1) The operator A : D(A) ⊂ H → H is the infinitesimal generator of a C0

semigroup S(t) of contractions in H.
(P2) The function F : [0, T ]×C0 → H satisfies the Lipschitz condition, i.e., there

exists a positive constant LF such that

‖F (t1, χ1) − F (t2, χ2)‖H ≤ LF [|t1 − t2| + ‖χ1 − χ2‖C0
],

for (ti, χi) ∈ [0, T ]× C0, i = 1, 2.
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(P3) The function k : [0, T ]2 → R is continuous and there exists a positive
constant Lk such that

|k(t1, s) − k(t2, s)| ≤ Lk|t1 − t2|, t1, t2 ∈ [0, T ].

We have the following main result.

Theorem 2.1. Suppose that (P1)-(P3) are satisfied and φ ∈ C0 is Lipschitz contin-
uous. Then there exists a unique u ∈ CT , with u0 = φ, u(t) ∈ D(A), a.e. t ∈ [0, T ],
u(t) is Lipschitz continuous on [0, T ] and satisfies (1.2) a.e. on [0, T ].

3. Discretization Scheme and A Priori Estimates

To apply Rothe’s method, We use the following procedure. For any positive
integer n we consider a partition tnj defined by tnj = jh; h = T/n, j = 0, 1, 2, . . . , n.

Set un
0 = φ(0) for all n ∈ N. For j = 1, 2, . . . , n, we define un

j ∈ D(A) the unique
solutions of each of the equations

un
j − un

j−1

h
− Aun

j = Fn
j + h

j−1
∑

i=0

kn
ji Aun

i , (3.1)

Where Fn
j = F (tnj , ũn

j−1) and kn
ji = k(tnj , tni ) 1 ≤ i ≤ j ≤ n. and ũn

0 (t) = φ(t)
for t ∈ [−T, 0], ũn

0 (t) = φ(0) for t ∈ [0, T ] and for 2 ≤ j ≤ n,

ũn
j (θ) =

{

φ(tnj + θ), θ ≤ −tnj ,

un
i−1 + (θ − tnj+1−i)δu

n
i , θ ≥ −tnj , θ ∈ [−tnj+1−i,−tnj−i], 1 ≤ i ≤ j.

Now, the existence of a unique un
j ∈ D(A) satisfying (3.1) follows from the m-

dissipativity of A and by Theorems 1.4.2 and 1.4.3 in Pazy [10]. In order to ensure
the existence of a unique solution un

j ∈ D(A) of (3.1) we rewrite it as

un
j = (I − hA)−1

[

un
j−1 + hFn

j + h2

j−1
∑

i=0

kn
jiAun

i

]

,

as (I − hA)−1 exists for all h > 0. The existence of unique un
j ∈ D(A) satisfying

(3.1) is ensured.

Definition 3.1. We define the Rothe sequence {Un} ⊂ C([−T, T ];H) given by

Un(t) =

{

φ(t), t ∈ [−T, 0]

un
j−1 + (t − tnj−1)δu

n
j , t ∈ [tnj−1, t

n
j ], j = 1, 2, . . . , n.

and a sequence {Xn} of step functions from [−T, T ] into H given by

Xn(t) = φ(t), t ∈ [−T, 0] Xn(t) = un
j , t ∈ (tnj−1, t

n
j ], j = 1, 2, . . . , n.

We prove the convergence of the sequence {Un} to the unique solution of the
problem as n → ∞ using some a priori estimates on {Un}. For convenience, we
shall denote by C a generic constant, i.e., KC, eKC , etc., will be replace by C
where K is a positive constant independent of j, h and n.

We shall use later the following lemma due to Sloan and Thomee [12].
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Lemma 3.2. Let {wn} be a sequence of nonnegative real numbers satisfying

wn ≤ αn +

n−1
∑

i=0

βiwi, n > 0,

where {αn} is a nondecreasing sequence of nonnegative real numbers and βn ≥ 0.
Then

wn ≤ αn exp{

n−1
∑

i=0

βi}, n > 0.

Furthermore, we also require the following lemma for later use.

Lemma 3.3. Let C > 0, h > 0 and let {αj}
n
j=1 be a sequence of nonnegative real

numbers satisfying

αj ≤ (1 + Ch)αj−1 + Ch2

j−1
∑

i=1

αi + Ch, 2 ≤ j ≤ n. (3.2)

Then

αj ≤ (1 + Ch)j [α1 + jCh2

j−1
∑

i=1

αi + jCh], 2 ≤ j ≤ n.

Proof. From (3.2)

αj−1 ≤ (1 + Ch)αj−2 + Ch2

j−2
∑

p=1

αp + Ch

≤ (1 + Ch)αj−2 + Ch2

j−1
∑

p=1

αp + Ch. (3.3)

Putting in (3.2)

αj ≤ (1 + Ch)2αj−2 + Ch2[1 + (1 + Ch)]

j−1
∑

p=1

αp + Ch[1 + (1 + Ch)]. (3.4)

By repeating the above process

αj ≤ (1 + Ch)(j−1)α1 + Ch2[1 + (1 + Ch) + · · · + (1 + Ch)(j−1)]

j−1
∑

p=1

αp

+ Ch[1 + (1 + Ch) + · · · + (1 + Ch)(j−1)]

≤ (1 + Ch)j [α1 + jCh2

j−1
∑

p=1

αp + jCh]. (3.5)

This completes the proof of the lemma.
�

Lemma 3.4. There exists a constant C independent of j, h and n such that

‖δun
j ‖H ≤ C.
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Proof. From (3.1) for j = 1 we get

δun
1 − hAδun

1 = Au0 + Fn
1 + hkn

10Au0.

Theorem 1.4.2 [10] implies that

‖δun
1‖H ≤ ‖Au0 + Fn

1 + hkn
10Au0‖H ≤ C.

Hence ‖Aun
1‖H ≤ C. Let 2 ≤ j ≤ n. Subtracting (3.1) for j − 1 from (3.1) for j,

we get

δun
j − hAδun

j = δun
j−1 + Fn

j − Fn
j−1 + hkn

jj−1Aun
j−1 +

j−2
∑

i=0

[kn
ji − kn

j−1i]Aun
i .

Applying Theorem 1.4.2 of [10] again, we get

‖δun
j ‖H ≤ ‖δun

j−1‖H + ‖Fn
j − Fn

j−1‖H + h|kn
jj−1|‖Aun

j−1‖H

+ h

j−2
∑

i=0

|kn
ji − kn

j−1i|‖Aun
i ‖H. (3.6)

Now using Lipschitz continuity of the function F

‖Fn
j − Fn

j−1‖H = ‖F (tnj , ũn
j−1) − F (tnj−1, ũ

n
j−2)‖H

≤ LF (|tnj − tnj−1| + ‖ũn
j−1 − ũn

j−2‖C0
)

≤ Ch(1 + max
1≤p≤j−1

‖δun
p‖H). (3.7)

Then (3.6) becomes

‖δun
j ‖H ≤ ‖δun

j−1‖H + Ch(1 + max
1≤p≤j−1

‖δun
p‖H) + Ch2

j−1
∑

i=0

‖Aun
i ‖H

≤ (1 + Ch) max
1≤p≤j−1

‖δun
p‖H + Ch2

j−1
∑

i=0

‖Aun
i ‖H + Ch. (3.8)

From (3.1), for 2 ≤ i ≤ j, we have

‖Aun
i ‖H ≤ ‖δun

i ‖H + ‖Fn
i ‖H + Ch

i−1
∑

p=0

‖Aun
p‖H. (3.9)

Again using Lipchitz continuity of F

‖Fn
i ‖H = ‖F (tni , ũn

i−1) − F (tni−1, 0)‖H + ‖F (tni−1, 0)‖H

≤ LF (|tni − tni−1| + ‖ũn
i−1‖C0

) + max
0≤t≤T

‖F (t, 0)‖H

≤ C(h + h

i−1
∑

p=1

‖δũn
p‖C0

+ ‖ũ0‖C0
) + max

0≤t≤T
‖F (t, 0)‖H. (3.10)

Then (3.9) becomes

‖Aun
i ‖H ≤ C(1 + max

1≤p≤i
‖δun

p‖H) + Ch + Ch

i−1
∑

p=1

‖Aun
p‖H. (3.11)
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Applying Lemma 3.2 in (3.11), we get

‖Aun
i ‖H ≤ CeCT (1 + max

1≤p≤i
‖δun

p‖H). (3.12)

Using (3.12) in (3.8), we have

max
1≤p≤j

‖δun
p‖H ≤ (1 + Ch) max

1≤p≤j−1
‖δun

p‖H + Ch2

j−1
∑

p=1

max
1≤p≤i

‖δun
p‖H + Ch. (3.13)

To use Lemma 3.3 in (3.13), we take αj = max1≤p≤j ‖δu
n
p‖H and the fact that

(1 + Ch)j ≤ eCT , 2 ≤ j ≤ l and α1 ≤ C to get the estimate

max
1≤p≤j

‖δun
p‖H ≤ C + Ch

j−1
∑

p=1

max
1≤p≤j−1

‖δun
p‖H. (3.14)

Again we apply Lemma 3.2 to get the required estimate. This completes the proof
of the lemma. �

Remark 3.5. Each of the functions {Un} is Lipschitz continuous with uniform
Lipschitz constant, i.e.,

‖Un(t) − Un(s)‖H ≤ C|t − s|, t, s ∈ [0, T ].

Furthermore,

‖Un(t) − Xn(t)‖H ≤
C

n
.

Definition 3.6. We define the sequence {Fn} and {Kn} of step functions [0, T ]
into H by

Kn(0) = 0, Kn(t) = h

j−1
∑

i=0

kn
jiAun

i , t ∈ (tnj−1, t
n
j ], (3.15)

Fn(0) = F (0, φ), Fn(t) = F (tnj , ũn
j−1), t ∈ (tnj−1, t

n
j ]. (3.16)

Lemma 3.7. Under the given assumptions we have
(a) {Kn(t)} is uniformly bounded;

(b)
∫ t

0
AXn(s)ds = u0 − Un(t) −

∫ t

0
Kn(s)ds −

∫ t

0
Fn(s);

(c) d−

dt
Un(t) − AXn(t) = Kn(t) + Fn(t), t ∈ (0, T ],

where d−

dt
is the left-derivative.

Proof. (a) This is a direct consequence of the estimates in (3.12) and (3.14).
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(b) For 2 ≤ j ≤ n and t ∈ (tnj−1, t
n
j ], by Definition 3.1, we have

∫ t

0

AXn(s)ds =

j−1
∑

i=1

∫ tn
i

tn
i−1

AXn(s)ds +

∫ t

tn
j−1

AXn(s)ds

=

j−1
∑

i=1

(un
i − un

i−1) +
1

h
(t − tnj−1)(u

n
j − un

j−1)

− h

j−1
∑

i=1

[

h
i−1
∑

p=0

kn
ipAun

p

]

− (t − tnj−1)[h

j−1
∑

p=0

kn
ipAup]

− h

j−1
∑

i=0

Fn
i − (t − tnj−1)F

n
j

= u0 − Un(t) −

∫ t

0

Kn(s)ds −

∫ t

0

Fn(s)ds

When j = 1, t ∈ (0, tn1 ]. we have
∫ t

0

AXn(s)ds = tAun
1

=
t

h
(un

1 − un
0 ) − thkn

10Au0 − tFn
1

= u0 − Un(t) −

∫ t

0

Kn(s)ds −

∫ t

0

Fn(s)ds.

(c) for t ∈ (tnj−1, t
n
j ],

AXn(t) = Aun
j and

d−un

dt
(t) =

1

h
(un

j − un
j−1).

Therefore,

d−un

dt
(t) − AXn(t) =

1

h
(un

j − un
j−1) − Aun

j

= h

j−1
∑

i=0

kn
jiAun

i + Fn
j

= Kn(t) + Fn(t).

This completes the proof of the lemma. �

In the next lemma we prove the local uniform convergence of the Rothe sequence.

Lemma 3.8. There exist a subsequence {Unp} of {Un} and a function u : [0, T ] →
D(A) such that Unp → u in C([0, T ];H), and AUnp(t) ⇀ Au(t) uniformly in H
as p → ∞, where ⇀ denotes the weak convergence in H. Furthermore, Au(t) is
weakly continuous on [0, T ].

Proof. Since {Un(t)} and {AXn(t)} are uniformly bounded in the Hilbert space
H, there exist weakly convergent subsequences {Unp(t)} and {AXnp(t)} (we take
the same indices without loss of generality otherwise we first take the subsequence

EJQTDE, 2008 No. 4, p. 8



{Unp(t)} of {Un(t)} and then take the subsequence {Unpn (t)} and {AXnpn (t)}
of {Unp(t)} and {AXnp(t)}, respectively). Thus, there exist functions u, w :
[0, T ] → H such that Unp(t) ⇀ u(t) and AXnp(t) ⇀ w(t) as p → ∞. Also,
we have Xnp(t) ⇀ u(t) as p → ∞. Clearly, {Xnp(t)} and {AXnp(t)} are uni-
formly bounded and Xnp(t) ⇀ u(t) and AXnp(t) ⇀ w(t) as p → ∞. Since
D(A) = H2

0 (0, 1) × H1
0 (0, 1) is compactly embedded in H = H1

0 (0, 1) × L2(0, 1), it
follows that (I + A)−1 : H → H is compact. The boundedness of V n = (I + A)Un

and the compactness of (I + A)−1 imply that Un = (I + A)−1V n has a conver-
gent subsequence. For convenience, we again denote this convergent subsequence
by {Unp}. Thus, Unp(t) → u(t) as p → ∞. Also, Xnp(t) → u(t) as p → ∞. By
the maximal dissipativity of A, it follows that u(t) ∈ D(A) and AXnp(t) ⇀ Au(t).
Since Unp is Lipschitz continuous with uniform Lipschitz constant, it follows that
{Unp} is equi-continuous in C([0, T ];H) and {Unp(t)} is relatively compact in H.
Hence by Ascoli-Arzela theorem, Unp → u as p → ∞ in C([0, T ];H).

To show the weak continuity of Au(t) in t, let {tp} ⊂ [0, T ] such that tp → t as
p → ∞, t ∈ [0, T ]. Then u(tp) → u(t) and since ‖Au(tp)‖H ≤ C, there exists a
subsequence {Au(tkp

)} ⊂ {Au(tp)} such that Au(tpm
) ⇀ z(t) as m → ∞. Since

u(tpm
) → u(t) and Au(tpm

) ⇀ z(t) as m → ∞, it follows as above that u(t) ∈ D(A)
and Au(t) = z(t). Hence Au(t) is weakly continuous. This completes the proof of
the lemma. �

Lemma 3.9. Au(t) is Bochner integrable on [0, T ].

For a proof of this lemma we refer to Bahuguna and Raghavendra [2].

Lemma 3.10. Let {Kn(t)} be the sequence of functions defined by (3.15) and

K(φ)(t) =

∫ t

0

k(t, s)φ(s)ds,

where φ : [0, T ] → H is Bochner integrable. We have

Knp(t) ⇀ K(Au)(t),

uniformly on [0, T ] as p → ∞.

Proof. We first show that Knp(t)−K(AXnp)(t) → 0 uniformly on [0, T ] as p → ∞.
For t ∈ (t

np

j−1, t
np

j ], we have

Knp(t) − K(AXnp)(t) = h

j−1
∑

i=0

k
np

ji Au
np

i −

∫ t

0

k(t, s)AXnp(s) ds

=

j−1
∑

i=1

[

∫ t
np

i

t
np

i−1

[k
np

ji − k(t, s)] ds

]

Au
np

i

+hk(t
np

j , t
np

0 )Au
np

0 −
[

∫ t

t
np

j−1

k(t, s) ds
]

Au
np

j .

Since ‖Au
np

j ‖H ≤ C, and k : [0, T ] → R Lipschitz continuous imply that the last

two terms on the right hand side tend to zero strongly and uniformly on [0, T ] as
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p → ∞. we have

‖Knp(t) − K(AXnp)(t)‖H ≤ C[

j−2
∑

i=0

∫ t
np

i+1

t
np

i

|k
np

ji − k(t, s)|ds.

Now, since k satisfies (K3) hence k(t, s) is uniformly continuous in t as well as in
s on [0, T ]. Hence for each ε > 0 we can choose n sufficiently large such that for
|t1 − t2| + |s1 − s2| < h = T

n
, ti, si ∈ [0, T ], i = 1, 2, we have

|k(t1, s1) − k(t2, s2)| <
ε

CT
.

Then for sufficiently large n, we have

‖Knp(t) − K(AXnp)(t)‖H ≤
ε

CT
Cjh < ε,

Which show that Knp(t) − K(AXnp)(t) → 0 as p → ∞, uniformly on [0, T ]. Now

we show that K(Xnp)(t) ⇀
∫ t

0
k(t, s)Au(s) ds uniformly as p → ∞. For any v ∈ H,

We note that 〈Au(t), v〉 is continuous hence we may write

〈

∫ t

0

k(t, s)Au(s) ds, v〉 =

∫ t

0

k(t, s)〈Au(s), v〉 ds.

Now, for any v ∈ H,

〈K(Xnp)(t), v〉 = 〈

∫ t

0

k(t, s)AXnp(s)ds, v〉

=

j−2
∑

i=0

∫ t
np

i+1

t
np

i

k(t, s)〈Au
np

i+1, v〉ds

+

∫ t

t
np

j−1

k(t, s)〈Au
np

j , v〉ds →

∫ t

0

k(t, s)〈Au(s), v〉 ds,

as p → ∞. This completes the proof of the lemma. �

Proof of the Theorem 2.1.

Proof. From Lemma 3.7, for each v ∈ H, and t ∈ (0, T ] we have

〈Unp(t), v〉 = 〈u0, v〉 +

∫ t

0

〈AXnp(s), v〉ds +

∫ t

0

〈Knp(s) + Fnp(s), v〉 ds.

Passing to the limit as p → ∞ using bounded convergence theorem and Lemmas
3.8 and 3.10, we obtain

〈u(t), v〉 = 〈u0, v〉 +

∫ t

0

〈Au(s), v〉ds +

∫ t

0

〈K(u)(s) + F (s, us), v〉 ds. (3.17)

The integrands in (3.17) are continuous on [0, T ] for each fixed v ∈ H and hence
〈u(t), v〉 is continuously differentiable. The boundedness of Au(t) on [0, T ] implies
that K(u)(t) is Lipschitz continuous. Making use of Lemma 3.10 and continuity of
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K(u)(t) and F (t, ut) on [0, T ] in (3.17) we obtain the existence of a strong derivative
on u(t) almost everywhere on [0, T ] and

du(t)

dt
− Au(t) = F (t, ut) +

∫ t

0

k(t, s)Au(s) ds, a.e. t ∈ [0, T ], u0 = φ. (3.18)

This show that u(t) ia a strong solution to (1.2) since u(0) = φ and u(t) is absolutely
(in fact Lipschitz) continuous on [0, T ] satisfying (1.2) a.e on [0, T ]. Now we prove
the uniqueness. Since k is a real valued Lipschitz continuous function on [0, T ], it
is differentiable a.e. on [0, T ] and its derivative is essentially bounded on [0, T ]. Let
u1 and u2 be two solutions of (1.2) and let u = u1 − u2. Then

u(t) =

∫ t

0

T (t− s)[F (s, (u1)s) − F (s, (u2)s)

+

∫ s

0

k(s, τ)Au(τ) dτ ] ds

=

∫ t

0

T (t− s)[F (s, (u1)s) − F (s, (u2)s)]ds

+

∫ t

0

(
∫ s

0

k(s, τ)T (t − s)Au(τ)) dτ

)

ds

=

∫ t

0

T (t− s)[F (s, (u1)s) − F (s, (u2)s)]ds

+

∫ t

0

(
∫ t

τ

k(s, τ)T (t − s)Au(τ)) ds

)

dτ

=

∫ t

0

T (t− s)[F (s, (u1)s) − F (s, (u2)s)]ds

+

∫ t

0

(
∫ t−τ

0

k(t − η, τ)T (η)Au(τ)) dη

)

dτ. (3.19)

Since u(τ) ∈ D(A) for τ ∈ [0, T ], we have T (η)Au(τ) = ∂
∂η

(T (η)u(τ)) (cf. Theorem

1.2.4 in Pazy). Thus, we have

u(t) =

∫ t

0

T (t − s)[f(s, (u1)s) − f(s, (u2)s)]ds

+

∫ t

0

(
∫ t−τ

0

k(t − η, τ)
∂

∂η
(T (η)u(τ)) dη

)

dτ

=

∫ t

0

T (t − s)[f(s, (u1)s) − f(s, (u2)s)]ds

+

∫ t

0

k(τ, τ)T (t − τ)u(τ)dτ −

∫ t

0

k(t, τ)u(τ)dτ

+

∫ t

0

(
∫ t−τ

0

k′(t − η, τ)T (η)u(τ)dη

)

dτ. (3.20)
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Now taking the norm and using the fact that ‖T (t)‖H ≤ 1, we have

max
0≤r≤t

‖u(r)‖H ≤ C

∫ t

0

max
0≤r≤s

‖u(r)‖H ds.

Gronwall’s inequality implies that u(t) ≡ 0. This completes the proof of the theo-
rem. �
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