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Abstract. First we prove that an n X n complex linear system is Hyers—Ulam stable if
and only if it is dichotomic (i.e. its associated matrix has no eigenvalues on the imagi-
nary axis iR). Also we show that the scalar differential equation of order n,

X () = apx V() 4 a1 ) (B) +anx(t), e Ry = [0,00),
is Hyers—Ulam stable if and only if the algebraic equation
2" =a 2" a1z +ay

has no roots on the imaginary axis.
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1 Introduction

In 1940 S. M. Ulam posed some open problems, see [28] and [29]. One of these problems refers
to the stability of a certain functional equation. The first answer to this problem was given by
D. H. Hyers in 1941, see [10]. After that, this was called the Hyers—Ulam problem and its study
became a widely studied subject for many mathematicians. It seems that M. Obltoza [21] was
the first author who proved a result concerning Hyers—Ulam stability of differential equations.
C. Alsina and R. Ger, [1], investigated Hyers—Ulam stability of first order linear differential
equations, and, after that, their results were generalized by S. E. Takahasi, H. Takagi, T. Miura
and S. Miyajima in [27], L. Sun and S.-M. Jung, in [11], [12] and [13] and G. Wang, M. Zhou
in [30]. For comprehensive information we refer readers to the two recent expository papers
by N. Brillouét-Belluot, J. Brzdek, K. Ciepliniski [2] and by Z. Moszner [20]. The Hyers—Ulam
problems for second order differential equations were studied by Y. Li, J]. Huang in [18], Y. Li,
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Y. Shen [16], Y. Li in [17] and P. Gavrutd, S.-M. Jung, Y. Li in [6]. Also M. N. Qarawani, [25],
studied Hyers—Ulam stability for linear and nonlinear second order differential equations.

In [15], Y. Li and Y. Shen characterized the Hyers-Ulam stability of linear differential
equation of order two, under the assumption that its associated characteristic equation has
two different positive roots.

M. Obloza, [22], has connected Hyers-Ulam and Lyapunov stability for ordinary differen-
tial equations. See also the papers of J. Brzdek and S.-M. Jung [14], and of D. Popa and I. Rasa
[23] and [24] for further interesting details concerning this subject.

Over the past decades, the Hyers—Ulam stability of operator equations has been widely
discussed. In [19] the authors describe the results on Hyers-Ulam stability for n-th order
linear differential operator p(D), p being a complex valued polynomial of degree n and D a
differential operator. They prove that the differential operator equation p(D)f = 0 is Hyers—
Ulam stable if and only if the algebraic equation p(z) = 0 has no pure imaginary solutions.

In the very recent paper [7], the authors investigate a special case of Hyers-Ulam stability
for linear differential equations by using the Laplace transform method. Instead of uniform
distance between solutions they estimate the pointwise distance.

In this paper we prove that a linear differential systems (driven by a n X n matrix A) is
Hyers—Ulam stable if and only if it is dichotomic, that is spectrum of A does not intersect the
imaginary axis. Thus we provide a spectral criteria for Hyers-Ulam stability. Our method uses
only elementary settings. Nevertheless, the idea that Hyers-Ulam stability and exponential
dichotomy are equivalent seems to be new and it can enlarge the area of investigations on
Hyers—-Ulam stability. As a special case, we also show that the scalar differential equation of
order n,

x(n)(t) - alx(nil)(t) +oot an—lxl(t) + anx(t)r te ]R+ = [0, Oo)/
is Hyers—Ulam stable if and only if its associated algebraic equation
' =mZ" Vb b,z ay,

has no roots on the imaginary axis.

Now we outline the Hyers-Ulam problem for a matrix A.

Let R be the set of all nonnegative real numbers, and let A be an n x n complex matrix,
n being a positive integer. Consider the system

X (t) = Ax(t), teR, = [0,00). (A)

Let € be a positive real number. A C"-valued function y is called an e-approximate solution
for (A) if

ly'(t) — Ay(t)]| <&, VEER,,

where || - || denotes the Euclidean norm on C", i.e. for

x=(E,..., &) €C", |x|*= Y I&
k=0

Let n and m be two positive integers. The set of all n x m matrices having complex entries
is denoted by C"*™. The spaces C" and C"*! are identified by the usual way. The space C"*"
becomes a Banach algebra when we endow it with the operatorial norm

L — ||L|| = sup ||Lx| : C"" — R,.
Ixfl<1
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In the following we denote by [M];; the element of the matrix M located at the intersection
of the i-th row and the j-th column. The matrix A is said to be Hyers-Ulam stable if there
exists a nonnegative absolute constant L such that for every e-approximate solution ¢ of (A),
there exists an exact solution 6 of (A) such that

sup [|¢(t) —0(£)]| < Le.

teRy

2 Notations and some results

Throughout the paper, A stands for an n x n complex matrix while P4(z) := det(zI — A)
denotes its characteristic polynomial. I denotes the identity matrix of order n. The set 0(A) :=
{A1, Ay, ..., A}, consisting of all roots of Py, is called the spectrum of A. As is well-known,

Pa(z) = (z— A1)™ -+ (z — Af)™,

where my, my, ..., my are the algebraic multiplicities of the eigenvalues Ay, ..., Ay, respectively.
Then, m1 + - - - +m = n and

C" =ker(A— MI)™ @ - - B ker(A — A(I)™. (2.1)

We also mention that the dimension of ker(A — A;I)" is m;. For every integer j with
1 < j < kand every t € R, the subspace ker(A — A;I)"™ is et4-invariant. Indeed, let

Fn(t) = Z]-I\i 0 (t;‘)j, N being a positive integer. As is well-known, the sequence of functions

(Fx) converges uniformly on real compact intervals to the map t > et4. On the other hand,
EN(-) (A= A" = (A= AI)™FN(-),

and we get the assertion by passing to the limit for N — co. As a consequence of (2.1), for
each x € C" there exists x; € ker(A — A;I)" such that

ey =efxg + x4+ -+ ey, te Ry

Moreover, e/4x; belongs to ker(A — A;I)"i for all t € R and there exists a C"-valued poly-
nomial pj(t) of degree at most m; — 1 such that

x(t) = etAx]- = eA/tp]-x(t), teR, 1<j<k. (2.2)

This is well-known from properties of the generalized eigenspace. See [8, pp. 104-107] for
further details.
The decomposition (2.1) yields

C" = X;(A) ® X (A) & Xu(A),

where

k
Xs(A) = b ker(A — A;1)™,
j=1, Re (1;)<0

XQ(A) = @ ker(A - A].I)mj
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and
k

Xy (A) = D ker(A — A;I)"™
j=1, Re (1,)>0
The subspaces X;(A) and X, (A) are called the stable and respectively the unstable subspace
of A.
The circle and closed disk of radius  which are centered on the eigenvalue A; = c(A), are
respectively:

C;/()L]) = {Z eC: ‘Z—)L]" = 1"}
and
D(A) ={zeC:|z— A <1}

where 7 is a positive real number, small enough such that ¢(A) N D,(A;)
an n X n complex matrix P, verifying P? = P, is called a projection. Let 1
it follows that

{A;}. Recall that
j<

< k. From (2.1)

I=E) +E\,+---+E),

where E,, := E; : C" — C" is defined by E;x := x;. Obviously, E; (1 < j < k) are projections

which are called spectral projections assoc1ated to the matrix A. It is well-known [4, Chapter

7] that
1

o _ -1
Ej= faw(zl A dz. (2.3)

The equation (2.3) will be used in the proof of Lemma 4.4 below.
The first result of this paper reads as follows.

Theorem 2.1. The matrix A is Hyers—Ulam stable if and only if it is dichotomic.

For the proof of the Theorem 2.1, we need the following proposition, which contains
equivalent characterizations for exponential dichotomy. This result is certainly known but
we include it and its proof here for the sake of completeness. Further details about different
characterizations of dichotomy can be found in the book of W. A. Coppel, see [3, Chapter 3].

Proposition 2.2. The following three statements concerning the matrix A are equivalent.
() A is dichotomic.

(B) There exists a projection P, commuting with A, and there exist positive constants Ny, N, vy, v2
such that

(B1)  |[e"Px|| < Nye™"1!||Px||, for all x € C", for every t > 0,
(B2) || (I = P)x]|| < Noe"||(I — P)x||, for all x € C" and for all t < 0.
(7v) For each continuous and bounded function f: Ry — C", there exists a unique bounded solution,

starting from the unstable subspace of A (i.e. with the initial conditions belonging to X,,(A)), of
the equation

y'(t) = Ay(t) + f(t), t=0. (A, f)
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Proof. () = (B). A is dichotomic, so Ap(A) = {0} and then C" = X;(A) & X,(A). Every
x € C" can be written as x = x; + x, with x; € X;(A) and x, € X,(A). Let P := C" — C"
defined by Px := x,. It is obvious that the matrix P is a projection. Moreover, using (2.2) it can
be seen that (1) and (B2) are fulfilled for certain positive constants Ny, Ny, v1, v5.

(B) = (a). Suppose that there exists A € o(A) with Re(A) = 0. Then there is xo # 0,
xo € C" such that Axy = Axo and thus ¢!4Pxy = e'*Px for all t € R, where the fact that P
commutes with A (and then with ¢/4) was used. If Pxy # 0, then (B;) yields

e = ¢ = Il 1,z
which is a contradiction. If Pxg = 0, then (I — P)xp # 0 and (B2) gives
Je4(0 = Py = ]t = Pyl = 12 = Pyl < Nae™ (1 = P, e <0,

which is also a contradiction.
(a) = (). Since the matrix A is dichotomic, the map

t—y(t) = /Ote(t_S)APf(s) ds — /Oo e =)A(1 — P)f(s)ds,

t

is a solution of (4, f). See [3, Chapter 3] for more details. Indeed, the second integral is well
defined because, from (f,), we have

[ e 4= Prs)| ds < [ Nae 1= P e

N>
= = Pll[|flleo-
2

Also from (), the solution y(-) is bounded on R, since
Ny N;
sup y(t)] < (SLIPI -+ 321~ P ) sup 7o)l
£>0 V1 V2 £>0

Moreover, y(0) = — [7e™*A(I — P)f(s)ds € X,(A) because X,(A) is a closed subspace
and it is invariant under any exponential of A.

It remains to show that we have uniqueness. Suppose that there exist two bounded solu-
tions on Ry of (A4, f), denoted by y1(-) and y»(+). Then

t
yi(t) = ez -I-/ =) (s)ds, t>0
0

and t
ya(t) = ez, +/ e(t’S)Af(s) ds, t>0,
0

with zq,2; € X, (A).

Since y1(t) — y2(t) = € (z1 — z2), y1(+) — y2(-) is bounded on R, and because A is di-
chotomic it follows that z; — z; € X;(A). On the other hand, by the assumption, we have that
21,22 € Xy(A). This yields z1 — zp € X, (A). But A;(A) N A, (A) = {0} and therefore z; = z».

(7) = (a). Suppose that there exists A € 0(A), with Re(A) = 0. Then there exists xo # 0
such that Axyp = Axp, and therefore et4xy = eMx, for all t € R.

tA(
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Let f(t) := eMxp for t > 0. Obviously, f is a bounded and continuous function and from
the hypothesis, there exists a unique zg € &, (A) such that the map

t
t s etz + / et=9)AeMs 20 ds
0
is bounded on R;. But
t t
etzy + / et=9)AM xo ds = etz + / =546y ds
0 0

t

= etz + / eMxg ds
0

= etAzo + te“xo.

If zo = 0, obviously we arrive at a contradiction, since the map t — teMx, is unbounded. If
zo # 0, from the spectral decomposition theorem there are two positive constants N and v
such that |efzg|| > Ne'! for all + > 0, and a contradiction arises again. O

3 Hyers-Ulam stability and exponential dichotomy for linear
differential systems

We can see an e-approximate solution of (A) as an exact solution of (A, p) corresponding to a
forced term p(-) which is bounded by e.

Remark 3.1. Let e be an arbitrary positive number. The matrix A (or the system (A)) is Hyers—
Ulam stable if and only if there exists a nonnegative constant L such that for every C"-valued
continuous map p = p(t) bounded by ¢ on R, and every x € C", there exists xo € C" such
that

sup < Le.

t>0

t
e (x — x) +/0 =4 (s) ds

Proof. Let ¢ > 0. Assume that the system (A) is Hyers-Ulam stable. Let p(-) be a C"-valued
continuous function on Ry and let x € C". We prove that the map

t
t— p(t) == e x +/ e=)4p(s)ds : R, — C" (3.1)
0

is an e-approximative solution for (A). Indeed, the derivative of ¢ is given by

¢'(t) = Ae'x + <etA /teSAp(s) ds>
0

t
= Ae'x 4 Ae'l /0 e *4p(s) ds + e (1)

= Ap(t) +p(t), Vt>0,

/

Therefore, ||¢'(t) — Ap(t)|| = [|p(t)]| < e. Let now L be as in the definition of Hyers—Ulam
stability and 6(-) an exact solution of (A) such that ||¢ — 6|« < Le. This inequality yields

t
e (x — x) +/O e=9)4p(s) ds

sup < Lg, (3.2)

t>0

where x( := 6(0).
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To prove the converse statement, let e > 0 and ¢ be an e-approximative solution of (A).
Then the map t — p(t) = ¢'(t) — Ap(t) is continuous on R and ||p||e < & Let L > 0 as in
the assumption and for x = ¢(0) let choose xo € C" such that (3.2) holds. Set §(t) := e'4xy. To
finish the proof it is enough to show that

e g x+/

This is an elementary fact and the details are omitted. O

Proof of Theorem 2.1.

Necessity. Suppose that A is not dichotomic, i.e. Ap(A) # {0}. Then, there exists A; in c(A),
with A; = ipj, u; € R. Let e > 0 be fixed and set p(t) := e’i'ug, with ||ug|| < e. Obviously,
the function p is continuous and bounded by e. By assumption, the matrix A is Hyers-Ulam
stable. Hence, the solution

t
y(t) = e (x—x0)+ [ e p(s)ds, xm e
0

of the Cauchy problem

(A p)

{wu>=Aww+pa» £>0
y(0) = x — xo,

is bounded by Le. By using the spectral decomposition theorem, (see also Lemma 4.3 below,
[9, Theorem 2], [5, p. 510] or [26, p. 308]), there exists an # x n matrix-valued polynomial P;(t)
having the degree at most m; — 1, such that

Eje'h = ei'Py(t),  Vt>0. (3.3)
Then the map
t»—>E[ (x —x0 +/ (t=s)A } x,x9 € C",

should also be bounded by Le.
On the other hand,

t . t
Ej [etA(x — xp) —l—/o e(t_S)Ap(s)ds} = e"i'P;(t) (x — xq) —I—/O Ei(e"~%p(s)) ds,

and
/Eets ds—/EetSA”‘/uods
= /0 etselt=S)i Pi(t — s)ug ds
= it /Ot Pi(t —s)ugds = e'i'q;(t),
where

%uwafga—g%%,
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is a polynomial, as well. Now by choosing an appropriate vector ug # 0,
deg|P;(t)(x — x0)] < deg[P;(#)] = deg[P;(t)uo] <1+ deg[P;(t)] = deglq;(1)]-

Therefore, the solution y(t) = e [Pi(t)(x — x0) + gj(t)] is unbounded and we have a contra-
diction.
Sufficiency. The absolute constant L will be chosen later.

Let p : Ry — C" be a continuous function, with ||p|lc < € and let x € C". By Proposition
2.2, there exists a unique bounded solution y(-) of (A, p) starting from the subspace X, (A).
Set up == y(0) € &, (A). Since A is dichotomic, the map

t 9]
t'—>/0 e!=5)4Pp(s) ds —/t e =5)A(1 — P)p(s) ds

is a bounded solution on R of (A4, f). Then,

Iy =

Ny N
< (SHPI+ 2=l )
1 V2

t
etAuo—F/ =) (s) ds
0

t 00
/ e=9)4pp(s) ds —/ =)A= P)p(s) ds

0 t

The desired assertion follows by choosing L = <Ij—f IIP]| + 11\/[—22 IIT— P||) and setting xg = x — 1.

O
4 Hyers-Ulam stability and exponential dichotomy for scalar
differential equations of higher order
Let us consider the following differential equations for t € R,
X)) = arx D) + - 4 a1 X () + apx(t) 4.1)
and
X (1) = apx V() 4 - ax(t) +6(8), (4.2)

where 6 : R, — C is a continuous function and aj € C1<j<n.
To the differential equation (4.2) we associate the system

X'(t) = AX(t)+O(t), X(t),0(t) e C",

where
x(0) = (x(0,2(0),...,.x" ),
0 1 0 0
0 o0 1 0
A= s
0 0 0 1
Ay Ap—1 Ap—2 ay

is an n X n matrix and
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Remark 4.1. Let ¢ be an arbitrary positive number. The differential equation (4.1) is Hyers—
Ulam stable if and only if there exists a nonnegative constant L such that for every C-valued

continuous map 6 = 6(t) bounded by ¢ on R, and every x € C", there exists xg € C" such
that

t
sup [em(x — x0) +/ e=4@(s) ds] < Le.
>0 0 11
For every z € C, consider the n x n matrix
z -1 0 e 0
0 z -1 . 0
zZI - A= : : : - :
0 0 0 . -1
—Aay —Aay—1 —Ap-2 - Z—M

If z € p(A) = C\ c(A), this matrix is invertible and it is obvious to see that the n-th column
of its inverse is given by

1
1 z
Lu[(zI — A)7] = :
COoly [(Z ) ] PA (Z)
anl
Theorem 4.2. The following statements are equivalent:
(«) The differential equation (4.1) is Hyers—Ulam stable.
(B) The matrix A is dichotomic.
(7v) The characteristic equation
AV — A — g, AT g, =0 (4.3)

has no roots on the imaginary axis.

Proof. The statements (B) and (vy) are equivalent since the spectrum of A is equal to the set of
all roots of (4.3).

(a) = (B). Suppose that A is not dichotomic. Then, there exists A; in 0(A), with A; = iy;,
pi € R. Let e > 0 and set O(t) := e'*i'ug, where

g = (0,...,0,00)" € C” (4.4)
and vy is a nonzero complex scalar satisfying |vg| < e. Clearly, the function ® is continuous
and bounded by e. The differential equation (4.1) is Hyers—Ulam stable, so

t
[em(x — x0) +/ e=4@(s) ds]
0

sup
£>0

< Le.

11

Then the map t + [E]-(etA(x —x0) + [ el=940(s) ds)} ,, 1s bounded on R by Le, as well
On the other hand, in view of (3.3), one has

[E]- (etA(x —x) + /Ot =940 (s) ds)} L= [eintPj(t)(x - xo)} Lt [/Ot Ejel'"940(s) ds)

11
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We already know from the proof of Theorem 2.1 that the degree of the scalar-valued
polynomial in ¢, [[Pj(t)(x — x0)]]11, is less than or equal to m; — 1. In the following we prove
that

‘ t
pj(t) =e ! [/o Eje(t’s)A(@(s)ds)

is a polynomial in ¢ of degree m;. More exactly, we show that p;(t) = c;t"" where c; is a certain
nonzero constant which will be settled later.
We need two lemmas.

11

Lemma 4.3. With the above notations, we have

- TN (A = i)
e_”‘ftetAE]- = kzo 7( k]'/lk n) E]'tk = Q]‘A(t). (45)

Proof. For every x € ker(A —iy;I)"™ and any integer p > m; one has (A —iu;jI)Px = 0.
Therefore,

(A—iyI)PE; =0, forall p>m;.

Thus,
7i]/l]'t tAE _ (A*i]/ljl) E _ - (A_llu]I)rE r_mj_1 (A_ly]l)rE r
eIt — ¢ R M
r= r=

Lemma 4.4. The degree of the scalar polynomial [Q;a(t)]1,, given in (4.5), is equal to m; — 1.
Pa(2)
(Z—A]')mj ’
analytic on D, (A;). By (2.3) and (4.5) it is enough to prove that

LMD 1 7{
1n 2711 G (7))
is a nonzero scalar.

We analyse two particular cases and then the general case arises naturally.
For mj =1, [Qja(t)]1n = [Ej]1» and therefore

Proof. Let us consider the scalar polynomial g;(z) := Clearly, the map z — e is
]

(A—AD)mit

G R(z, A)

dz
1n

<0>:1f 1 d:lf G R S
“in = o G, (7)) Pa(z) “7 omi C(A) Z—Aj “ qi(A;) 70

where the Cauchy integral formula was used.
For m; = 2, we have

[t -

1n m(
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which yields

1
(UZ]f A-Ml :]f TIONp R
i = o wm[ 1!‘MLAHuﬁZ 2i mmz—Afh QKM>#O

By continuing in this way, we obtain:

(A=A D)m=1)

k!

R(z, A)
1)1
(m; —1)! "
1
_ 1 0 (_a.mi-1 M=l 3 30 z
= Da(z)(m; — 1)t ( Gy (A" - Gl 1(=4) ) 3
7n—1
1 1
o Z;{Zo C;j—lzk(_)\]‘)m] ok
- (m]'—l)!PA(Z)
— 1
_ E=apmtt 7
(m]'—l)!PA(Z) (ﬂ’l]—1>'<Z—)\])
and by applying again the Cauchy theorem, we get
— A—ADm=D
uif’ D 17{ ( i) —R(z,A)| dz
2711 C () (m]' — 1). I
B 1
(mj —1)!q;(A;)
which is a nonzero scalar and we get the desired assertion.
Remark 4.5. A similar argument allows us to state that
A—AD)*
agl:l) = 1]4 !R(Z,A)dz =0
(A7)

2711
¢ 1n
whenever mj > 1 and k < mj — 1.

Returning to the proof of the theorem, note that in view of (4.5):

t

t . . .
[/ E]'e(ts)A@(S)dS} — /elﬂf(tfs) [e*lﬂj(ffs)Eje(tfs)Aelﬂfsuo} ds
0 o 11

t
= eiy]'t /[Q]A]ln(t — S)UO ds
0

‘ (A— Al
:eli‘jt/ [E Z ) t—s)k] vy ds
0
1n

Y 1
:e%‘f/ (=) Ly ds
0 (mj—l)!q]‘@j)( ) :

. 1
— ezy]titm]vol
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vp being the scalar defined in (4.4).
Then

, t
efzﬂjt [E] (etA(x — XO) + /0 e(t*S)A@)(S) d5>:|11 = [P](t) (x — xO)]ll + p](t)
is a polynomial in ¢ of degree m; > 1, since it is the sum of a polynomial of degree m; with a
polynomial of degree at most m; — 1. This contradicts the fact that the map

t
t— [Ej <etA(x — x0) +/O et=54@(s) ds)]n
is bounded on R,
(B) = («). The assertion follows via the proof of the second part of the Theorem 2.1.
O
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