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EIGENFUNCTION EXPANSIONS OF A QUADRATIC PENCIL

OF DIFFERENTIAL OPERATORS WITH PERIODIC

GENERALIZED POTENTIAL

MANAF DZH. MANAFOV AND ABDULLAH KABLAN

Abstract. In this article we obtain the eigenfunction expansions of a qua-
dratic pencil of Sturm�Liouville operators with periodic coe�cients. The im-
portant point to note here is the given potential is a �rst order generalized
function.

1. introduction

The idea of expanding an arbitrary function in terms of the solutions of a second-
order di�erential equation goes back to the time of Sturm and Liouville, more than
a hundred years ago. The �rst satisfactory proofs were constructed by various au-
thors early in the twentieth century. The second-order linear di�erential equation
with real periodic coe�cients, commonly known as Hill's equation, has been inves-
tigated by many mathematicians. An account of much of this theory is given in [9].
Further results relating to spectral theory are given in [4]. A characterization of
the spectrum of Hill's operator is studied in [11]. The spectral problems of the
quadratic pencil of di�erential operators with periodic potential are investigated
in [7]. In the same place one can �nd wide bibliography. Di�erential operators
with periodic generalized potential are widely used in applications to quantum and
atomic physics to produce exact solvable models of complicated physical phenomena
in [1�3,5, 8, 12,15].

In this paper, we study the eigenfunction problems of the following quadratic
pencil of di�erential equation with generalized potential

(1.1) `α[y] := −y′′ + 2αλ

∞∑
n=−∞

δ(x− n)y + q(x)y = λ2y, x ∈ R,

where q(x) is a 1-periodic, real, non-negative and piecewise continuous function;
δ(x) is the Dirac's delta function; α 6= 0 is a real number and λ is a spectral
parameter.

The equation (1.1) is equivalent to the following many-point boundary problem:

(1.2) − y′′(x) + q(x)y = λ2y

(1.3)

(
y(n+)

y′(n+)

)
=

(
1 0

2αλ 1

)(
y(n−)

y′(n −)

)

2010 Mathematics Subject Classi�cation. 34L10, 47A10, 47E05.
Key words and phrases. Quadratic pencil of di�erential operators; spectral analysis; periodic

point δ-interactions, eigenfunction expansions.

EJQTDE, 2013 No. 76, p. 1



such that y(x) ∈ H2,2(R\Z)
⋂
H2,1(R), where the symbolHm,n denotes the Sobolev

space (see [14]).
In order to obtain an eigenfunction expansion of (1.1) we have to know the

structure of spectrum and we will expose this in Sections 2�4.

2. Hill's discriminant and Floquet theory

The Hill discriminant is at the heart of the spectral theory of the periodic Sturm�
Liouville operator. If y(x) is a solution of (1.1), then so is also y(x + 1). But
generally, y(x+ 1) is not the same as y(x) and, indeed, (1.1) does not need to have
a non-trivial solution with period 1, (see [4]). From (1.3), we give below that (1.1)
has the property that there is a non-zero constant ρ and a non-trivial solution y(x)
such that from the properties of the delta function

(2.1)

(
1 0

−2αλ 1

)(
y(x+ 1)

y′(x+ 1)

)
= ρ

(
y(x)

y′(x)

)
.

Let θ(x, λ) and ϕ(x, λ) be linearly independent solutions of (1.2) which satisfy the
initial conditions

(2.2) θ(0, λ) = 1, θ′(0, λ) = 0, ϕ(0, λ) = 0, ϕ′(0, λ) = 1.

Since θ(x + 1, λ) and ϕ(x + 1, λ) are also linearly independent solutions of (1.2),
they can be written as a linear combination of θ(x, λ) and ϕ(x, λ). Furthermore,
every solution of (1.2) has the form

y(x, λ) = c1θ(x, λ) + c2ϕ(x, λ)

where c1 and c2 are constants. To obtain a non-trivial solution of the system with
respect to c1 and c2 by using the facts above and condition (2.1), the following
equality must be satis�ed

ρ2 − [ϕ′(1, λ) + θ(1, λ)− 2αλϕ(1, λ)]ρ+ 1 = 0.

This is a quadratic equation for ρ and it is satis�ed by at least one non-zero value
of ρ. Suppose that this equation has distinct solutions ρ1 and ρ2. Since ρ1 and ρ2
are non-zero, we can de�ne µ1 and µ2 such that eµk = ρk, (k = 1, 2). Now de�ne
Yk(x, λ) = e−µkxyk(x, λ). Thus the general solution of (1.1) has the Floquet form

y(x, λ) = c1e
µ1xY1(x, λ) + c2e

µ2xY2(x, λ).

The function F (λ) de�ned by

(2.3) F (λ) = ϕ′(1, λ) + θ(1, λ)− 2αλϕ(1, λ)

is called a discriminant of (1.1) and we consider �ve cases as follows (see [4, pp.
6�7]):

(1) F (λ) > 2. There is a real number µ 6= 0 such that ρ = eµ, ρ = e−µ. Thus

(2.4) y(x, λ) = c1e
µxY1(x, λ) + c2e

−µxY2(x, λ).

(2) F (λ) < −2. The situation here is the same as in (1). Here µ must now be
replaced by µ+ iπ in (2.4).

(3) −2 < F (λ) < 2. There is a real number ν with 0 < ν < π (or −π < ν < 0)
such that

y(x, λ) = c1e
iνxY1(x, λ) + c2e

−iνxY2(x, λ).
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(4) F (λ) = ±2. Then there is only one non-trivial solution y1(x, λ). Let us
denote the other solution by y2(x, λ), de�ned as below, such that y1(x, λ) and
y2(x, λ) are linearly independent.

y1(x, λ) = eµxY1(x, λ),

y2(x, λ) = eµx
[
d1
ρ
xY1(x, λ) + Y2(x, λ)

]
.

where d1 is a constant and d1 = 0 if and only if θ′(1, λ) = 2αλ and ϕ(1, λ) = 0.
(5) If λ is not a real number, then the possible alternatives are: If F (λ) is real,

then one of the above cases is valid. If F (λ) is not real, then there is a complex
number µ such that ρ = eµ, ρ = e−µ and (1.1) has two linearly independent solutions
y1(x, λ) = eµxY1(x, λ), y2(x, λ) = e−µxY2(x, λ), where Y1(x, λ) and Y2(x, λ) are
periodic with period 1.

De�nition 2.1. The equation (1.1) is said to be (a) unstable if all non-trivial
solutions are unbounded in (−∞,∞), (b) conditionally stable if there is a non-
trivial solution which is bounded in (−∞,∞), (c) stable if all non-trivial solutions
are bounded in (−∞,∞).

From this de�nition and �ve cases above, we obtain the following theorem.

Theorem 2.2. For �xed λ ∈ (−∞,∞), the equation (1.1) is unstable if |F (λ)| > 2
and stable if |F (λ)| < 2 and also stable if |F (λ)| = 2 and θ′(1, λ) = 2αλ, ϕ(1, λ) = 0.
Finally if |F (λ)| = 2 and θ′(1, λ) 6= 2αλ or ϕ(1, λ) 6= 0 then (1.1) is conditionally
stable.

3. Stability and instability intervals

For 0 ≤ x ≤ 1 the equation

(3.1) y′′ + [λ2 − q(x)]y = 0

and the boundary conditions

(3.2) y(1) = eity(0), y′(1) = eit[y′(0) + 2αλy(0)]

are called a t-quasi-periodic boundary problem, where t ∈ [0, 2π).
First we de�ne the linear operator in the Hilbert space H = L2(0, 1) by Lt as

follows:
Lty := −y′′ + q(x)y

with domain

D(Lt)={y|y(x) ∈ H2,1(0, 1), `0[y] ∈ H, y(1) = eity(0), y′(1) = eit[y′(0)+2αλy(0)]}.

Theorem 3.1. The eigenvalues of the operator Lt are real and the eigenvalues
λn(t) are the values of λ which satisfy the equation F (λ) = 2 cos t.

Proof. Suppose that λ is an eigenvalue of the operator Lt and that y(x) is a cor-
responding eigenfunction such that (y, y) = 1. Taking the inner product of both
sides of (3.1) with y(x) and using (3.2) we get

λ2 + 2α|y(0)|2λ−
∫ 1

0

{
|y′(x)|2 + q(x)|y(x)|2

}
dx = 0.
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Since α is a real number and q(x) ≥ 0, the roots of this equation are real numbers.
Substituting ρ = exp(it) into (2.3), we obtain F (λ) = 2 cos t.

Theorem 3.2. The eigenvalues of the operator Lt are simple for t 6= mπ (m =
0,±1,±2, . . .).

Proof. We suppose that t 6= mπ (m = 0,±1,±2, . . .) and y1(x) and y2(x) are lin-
early independent eigenfunctions corresponding to the eigenvalue λ of the operator
Lt. Thus, for all λ, the solutions of the equation (3.1) especially θ(x, λ) and ϕ(x, λ)
can be written as a linear combination of the functions y1(x) and y2(x) and these
solutions satisfy the boundary conditions (3.2). It follows that

F (λ) = θ(1, λ) + ϕ′(1, λ)− 2αλϕ(1, λ)

= eitθ(0, λ) + eit[ϕ′(0, λ) + 2αλϕ(0, λ)]− 2αλϕ(0, λ) = 2eit.

From Theorem 3.1, we arrive at cos t = eit. But this equality holds only for t =
mπ (m = 0,±1,±2, . . .) which contradicts the assumption.

The periodic and quasi-periodic problems associated with (3.1) and (3.2) corre-
spond to the cases when m is an even (resp. odd) number and their eigenvalues are
the zeros of F (λ) = 2 (resp. F (λ) = −2).

Theorem 3.3. The eigenvalues of the operator Lt are of the second order if and
only if

ϕ(1, λ) = 0, θ′(1, λ) = 2αλ.

Proof. The proof of the theorem is immediately obtained from the fact that ϕ(x, λ)
and θ(x, λ) satisfy the conditions (3.2).

It follows from the formula in [16, p. 292], for large |λ|

(3.3) F (λ) = 2
√

1 + α2 sin(λ+ β) +O

(
e|Imλ|

|λ|

)
,

where tanβ = −1/α. From using the asymptotic formula (3.3) and applying
Rouché's theorem, we can see that the equation F (λ) = 2 cos t has countable many
roots: λk(t) (k = 0,±1,±2, . . .). Hence from Theorem 3.1, all eigenvalues λk(t)
(k = 0,±1,±2, . . .) are nonzero real numbers and satisfy the following inequalities

(3.4) · · · ≤ λ−2(t) ≤ λ−1(t) ≤ λ0(t) ≤ λ1(t) ≤ λ2(t) ≤ · · ·
Now we will give existence and certain form of stability and instability intervals

of the equation (1.1). For this, we will use the properties of the function F (λ).

Lemma 3.4. For q(x) 6= 0, F (0) > 2.

Lemma 3.5. If F (λ) < 2 then dF (λ)
dλ 6= 0.

Lemma 3.6. Let |F (λ)| = 2. Then dF (λ0)
dλ = 0 if and only if

(3.5) ϕ(1, λ0) = 0, θ′(1, λ0) = 2αλ0.

In addition
a) Let F (λ0) = 2. If dF (λ0)

dλ = 0 then d2F (λ0)
dλ2 < 0.

b) Let F (λ0) = −2. If dF (λ0)
dλ = 0 then d2F (λ0)

dλ2 > 0.
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The proofs of these lemmas are seen by using the method in [16, p. 290]. Con-
sidering all lemmas above, we can derive the following results:

Corollary 3.7. The functions F (λ) ∓ 2 do not have a zero of order higher than
second.

Corollary 3.8. The zeros of the function F (λ)− 2 are of the second order if and
only if F (λ) has a maximum value at these zeros. The zeros of the function F (λ)+2
are of the second order if and only if F (λ) has a minimum value at these zeros.

Theorem 3.9.

1) Let α±2k, α
±
2k+1 (k = 0,±1,±2, . . .) be eigenvalues of the periodic and quasi-

periodic boundary problem respectively. Then the numbers α±2k and α±2k+1 occur
in the order

· · · < α−−2 ≤ α
+
−2 < α−−1 ≤ α

+
−1 < α−0 ≤ α

+
0 < α−1 ≤ α

+
1 < α−2 ≤ α

+
2 < · · ·

2) In the intervals [α+
2k, α

−
2k+1], F (λ) decreases from +2 to −2. In the intervals

[α+
2k+1, α

−
2k+2], F (λ) increases from −2 to +2.

3) In the intervals (α−2k, α
+
2k), F (λ) > 2. In the intervals (α−2k+1, α

+
2k+1), F (λ) <

−2.

Thus the stability intervals of (1.1) are (α+
k−1, α

−
k ) and that the conditional

stability intervals are the closures of these intervals. The instability intervals of
(1.1) are (α−k , α

+
k ).

4. Nature of the spectrum of the operator L(λ)

We denote the pencil operator in L2(R) of the di�erential expression

d2

dx2
+ λ2 − 2αλ

∞∑
n=−∞

δ(x− n)− q(x)

by L(λ) and D is a maximal domain such that

D =
{
y | y(x) ∈ H2,2(R\Z) ∩H2,1(R), y(n+) = y(n−) = y(n),

y′(n+)− y′(n−) = 2αλy(n), −y′′ + 2αλ

∞∑
n=−∞

δ(x− n)y + q(x)y ∈ L2(R)
}
.

We note that the functions y′′ and 2αλ
∑∞
n=−∞ δ(x − n)y are (delta type) gen-

eralized functions of order 1, such that −y′′ + 2αλ
∑∞
n=−∞ δ(x − n)y in L2(R),

(see [10]).
Let us denote the set consisting of the conditional stability intervals of (1.1)

by S. We prove �rst in this section that the spectrum of L(λ) denoted by σ is
continuous, that is, L(λ) has no eigenvalues, and then that σ coincides with S.

Theorem 4.1. The spectrum of L(λ) is continuous.
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Proof. If L(λ) had an eigenvalue λ0 with corresponding eigenfunction ψ(x), we
would have L(λ)ψ(x) = 0. Then ψ(x) would be a non-trivial solution of (1.1). But
from cases 1�5 of §2, (1.1) has no such non-trivial solution ψ(x) in L2(−∞,∞) for
any complex number λ and this �nishes the proof.

Theorem 4.2. The sets σ and S are identical.

Proof. We show �rst that S ⊂ σ. We suppose then that if λ0 is any point in S
then λ0 is also in σ. Referring to cases 1�5 of §2, there is, for λ0 in S, at least one
non-trivial solution ψ(x) of (1.1), with λ = λ0, such that |ρ| = 1.

On the other hand, let g(x) be any function with a continuous second derivative
in [0, 1] such that

g(0) = 0, g(1) = 1, g′(0) = g′′(0) = g′(1) = g′′(1) = 0, 0 ≤ g(x) ≤ 1.

Now de�ne a sequence {fn(x)} as follows

fn(x) = bnψ(x)hn(x)

in (−∞,∞), where

hn(x) =


1, |x| ≤ (n− 1)

g(n− |x|), (n− 1) ≤ |x| ≤ n
0, |x| ≥ n

and bn is the normalization constant making ‖fn‖ = 1. Since hn(x) = 1 throughout
(−n, n) except for any interval of length 1 at each end, we have

bn ∼
(

2n

∫ 1

0

|ψ(x)|2dx
)− 1

2

as n→∞. In particular,

(4.1) bn → 0

as n→∞. It is clear that, fn(x) ∈ D and

L(λ0)fn(x) = bn[2ψ′(x)h′n(x) + ψ(x)h′′n(x)]

hence

‖L(λ0)fn(x)‖ ≤ |bn|[2 ‖ψ′(x)h′n(x)‖+ ‖ψ(x)h′′n(x)‖] ≤ K|bn|,
where K is a nonnegative number and does not depend on n. From (4.1), we get
that ‖L(λ0)fn(x)‖ → 0 as n→∞. It follows from Theorem 5.2.2 in [4, p. 81] that
λ0 is in σ, and therefore S ⊂ σ.

To prove the reverse inclusion σ ⊂ S, we suppose now that λ0 is not in S and
prove that λ0 is not in σ. For λ0 is not in S, the following three possibilities can
occur:

i) λ0 ∈ (−∞,∞) and |F (λ0)| > 2;
ii) Imλ0 6= 0 and |F (λ0)| is real;
iii) Imλ0 6= 0 and |F (λ0)| is not real.
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i) The analysis for F (λ0) > 2 and F (λ0) < −2 is virtually the same and so we
write it out only for F (λ0) > 2. Then there are solutions ψ1(x) and ψ2(x) of
(1.1), with λ = λ0. Thus, we de�ne the Green's function G(x, ξ;λ0) for the
equation L(λ0) = f(x) from using the method in [13] and then we de�ne the
linear operator R by

(4.2) y(x, λ0) = Rf(x) =

∫ ∞
−∞

G(x, ξ;λ0)f(ξ)dξ

where f(x) ∈ L2(−∞,∞). It can be seen that R is a bounded operator. This
means that λ0 is in the resolvent set of L(λ0) and so λ0 is not in σ.

ii) It is enough to show that |F (λ0)| > 2, then the same proof works for this case.
Indeed, if |F (λ0)| ≤ 2, then there's at least one t0 ∈ (−∞,∞) which satis�es
the equality F (λ0) = 2 cos t0. This means that λ0 is the eigenvalue and from
Theorem 3.1 this eigenvalue is a real number. This contradicts our assumption
Imλ0 6= 0.

iii) There are two linearly independent solutions of (1.1) for λ = λ0. Hence the
same proof as in i) works for this case, too.

Corollary 4.3. The operator L(λ) has a continuous spectrum consisting of the
intervals [α+

k−1, α
−
k ] (k = 0,±1,±2, . . .).

De�nition 4.4. In the sequel, the segments on the real axis [α+
k−1, α

−
k ] (k =

0,±1,±2, . . .) will be said to be the bands of the spectrum of the operator L(λ),
and the intervals (α−k , α

+
k ) (k = 0,±1,±2, . . .) will be called the gaps.

Theorem 4.5. The number of gaps in the spectrum of L(λ) is in�nite and the
lengths of gaps tend to in�nity as n→∞, (q(x) 6= 0).

Proof. If we apply arguments stated in [16, p. 296] for the function F (λ) = θ(1, λ)+
ϕ′(1, λ) + 2αλϕ(1, λ) then we �nd

(α+
2n)2 − (α−2n)2 = 4απn+O(1).

5. Eigenfunction expansions

In the present section, we obtain the eigenfunction expansions by using the above
results and the methods in [6] and [7]. First, we consider the Green's function of
the t-quasi periodic boundary problem (3.1), (3.2). After long processes, we have
the Green's function, (see [13]),

(5.1) Gt(x, ξ;λ) =
1

∆t(λ)
[θ(x, λ)ht(ξ, λ)− ϕ(x, λ)gt(ξ, λ)] + ω(x, ξ, λ),

where

(5.2) ∆t(λ) = −[F (λ)− 2 cos t],

(5.3) ht(ξ, λ) = ϕ(1, λ)θ(ξ, λ) + [e−it − θ(1, λ)]ϕ(ξ, λ),
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(5.4)
gt (ξ, λ) =

[
e−it − ϕ′(1, λ)

]
θ (ξ, λ) + θ′(1, λ)ϕ (ξ, λ)

−2αλ [θ(1, λ)ϕ (ξ, λ)− θ (ξ, λ)ϕ(1, λ)] ,

ω(x, ξ;λ) =

{
ϕ(x, λ)θ(ξ, λ)− θ(ξ, λ)ϕ(x, λ), 0 ≤ ξ ≤ x

0, x ≤ ξ ≤ 1.

Thus for all f(x) ∈ L2[0, 1], the solution of the t-quasi periodic boundary problem
(3.1), (3.2) can be written as

y(x, λ) =

∫ 1

0

Gt(x, ξ;λ)f(ξ)dξ.

Theorem 5.1. The following formula is correct for t 6= πm, (m = 0,±1,±2, . . .).

(5.5) Gt(x, ξ;λ) = −bk(t)ψk,t(x)ψk,t(ξ)

λ− λk(t)
+ ωk,t(x, ξ;λ),

where

(5.6) bk(t) =

{
ϕ(1, λk(t))

dF (λk(t))

dλ

}−1
,

(5.7) ψk,t(x) = ϕ(1, λk(t))θ(x, λk(t)) + [eit − θ(1, λk(t))]ϕ(x, λk(t))

and ωk,t(x, ξ;λ) is a regular function about a point λ = λk(t).

It is easy to check that ψk,t(x), determined by (5.7), satis�es the following two
equalities

(5.8) ψk,t (1) = eitψk,t (0) , ψ′k,t (1) = eit
[
ψ′k,t (0) + 2αλψk,t (0)

]
.

Consequently, these functions are the solutions of the t-quasi periodic boundary
problem (3.1), (3.2).

Theorem 5.2. We suppose that the function f(x) is twice (continuously) di�eren-
tiable and supp f(x) ⊂ (0, 1). Then as |λ| → ∞

(5.9)

1∫
0

Gt (x, ξ;λ) f (ξ) dξ =
f (x)

λ2
+O

(
1

λ3

)
.

So by using contour integration method, Parseval's equality, (5.5) and (5.9) we
arrive at

(5.10)

∞∑
k=−∞

bk (t)

∣∣∣∣ 1∫
0

f (x) ψ̄k,t (x) dx

∣∣∣∣2 = 0,

−
∞∑

k=−∞
λk (t) bk (t)

∣∣∣∣ 1∫
0

f (x) ψ̄k,t (x) dx

∣∣∣∣2 =
1∫
0

|f (x)|2 dx.

These equalities can also be derived for f(x) ∈ L2[0, 1]. Now we will obtain the
eigenfunction expansion on the real axis. Let f(x) be a continuous function and
vanish except on a �nite interval. Let us consider the following function (see [6])

(5.11) ft (x) =

∞∑
m=−∞

f (x+m) e−imt
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Since f(x) is a �nite function, this sum is also �nite. It is easy to check that the
function ψk,t(x) de�ned for −∞ < x <∞ satis�es the following equality

(5.12) ψk,t (x+ 1) = eitψk,t (x) .

Thus from (5.11) and (5.12), we get

(5.13)

1∫
0

ft (x) ψ̄k,t (x) dx =

∞∫
−∞

f (x) ψ̄k,t (x) dx.

Replacing ft(x) by f(x) in equalities (5.10) we obtain

(5.14)

∞∑
k=−∞

bk (t)

∣∣∣∣ 1∫
0

ft (x) ψ̄k,t (x) dx

∣∣∣∣2 = 0,

−
∞∑

k=−∞
λk (t) bk (t)

∣∣∣∣ 1∫
0

ft (x) ψ̄k,t (x) dx

∣∣∣∣2 =
1∫
0

|ft (x)|2 dx.

Furthermore, from (5.7) and (5.13) we have the following equality

1∫
0

ft (x) ψ̄k,t (x) dx = ϕ (1, λk)F1 (λk) +
[
e−it − θ (1, λk)

]
F2 (λk) ,

where λk = λk(t) and

(5.15) F1 (λ) =

∞∫
−∞

f (x) θ (x, λ) dx, F2 (λ) =

∞∫
−∞

f (x)ϕ (x, λ) dx.

Without loss of generality we can assume that f(x) is a real function. After some
operations we have

(5.16)

∣∣∣∣∣∣
1∫

0

ft (x) ψ̄ (x) dx

∣∣∣∣∣∣
2

= ϕ (1, λk (t)) Φ (λk (t)) ,

where

(5.17)
Φ (λk (t)) = ϕ (1, λ)F2

1 (λ)− [θ′ (1, λ)− 2αλθ (1, λ)]F2
2 (λ)

+ [ϕ′ (1, λ)− θ (1, λ)− 2αλϕ (1, λ)]F1 (λ)F2 (λ) .

By substituting (5.16) in (5.14) and using (5.6) we arrive at

(5.18)

∞∑
k=−∞

Φ (λk (t)) υ (λk (t)) λ̇k (t) = 0,

∞∑
k=−∞

λk (t) Φ (λk (t)) υ (λk (t)) λ̇k (t) =
1∫
0

|ft (x)|2 dx

where the dot denotes the derivative with respect to t and

(5.19) υ (λ) =
{

4− [θ (1, λ) + ϕ′ (1, λ)− 2αλϕ (1, λ)]
2
}− 1

2

.
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We integrate both sides of the equations (5.18) with respect to t over [0, π] and
take into account the conditional stability set of the equation (1.1). Then substitute
λ for λk(t) in all integrals we arrive at the following expansion formulas

(5.20)

0 =

 ∞∑
k=−∞

α−
2k+1∫
α+

2k

−
∞∑

k=−∞

α−
2k+2∫

α+
2k+1

Ψ (x, λ) υ (λ) dλ,

f (x) = 1
π

 ∞∑
k=−∞

α−
2k+1∫
α+

2k

−
∞∑

k=−∞

α−
2k+2∫

α+
2k+1

λΨ (x, λ) υ (λ) dλ,

where

Ψ (x, λ) = Φ1 (λ) θ (x, λ) + Φ2 (λ)ϕ (x, λ) ,

Φ1 (λ) =ϕ (1, λ)F1 (λ) +
1

2
[ϕ′ (1, λ)− θ (1, λ)]F2 (λ) ,

Φ2 (λ) =
1

2
[ϕ′ (1, λ)− θ (1, λ)− 2αλϕ(1, λ)]F1 (λ)

− [θ′ (1, λ)− 2αλθ(1, λ)]F2 (λ) ,

(5.21)

where the functions F1(λ) and F2(λ) are obtained from formulas (5.15) and υ (λ)
is given in (5.19).

We note that these results have been given for di�erential operators but not for
the quadratic pencil with regular potential in [16] and for higher order self-adjoint
di�erential operators in [17].

Acknowledgments

The authors have dedicated this paper, in gratitude for useful consultation in
their work, as a sign of deep respect to the memory of the Academician of the
Azerbaijan National Academy of Science, Professor M. G. Gasymov.

The �rst author was supported by Grant No. FEFBAP 2009/0013 of Ad�yaman
University of Research Project Coordination (AYUBAP), Turkey.

References

[1] Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden H., Solvable models in quantum me-

chanics, Springer Verlag-New York, 1998.
[2] Avron, J., Exner, P., Last, Y., Periodic Schrödinger operators with large gaps and Wannier�

Stark ladders, Phys. Rev. Lett., 72:896�899, 1994.
[3] Demkov, Yu. N., Ostrovsky, V. N., Zero-Range potentials and their applications in atomic

physics, Plenum-New York, 1988.
[4] Eastham, M. S. P., The Spectral theory of periodic di�erential equations, Scottish Academic

Press-Edinburgh-London, 1973.
[5] Gekhtman, M. M., Stankevich, I. V., The generalized Kronig-Penney problem, Funk. Analysis

and Its Appl., 11(1):51�52, 1977.
[6] Gelfand, I. M., Expansion in characteristic functions of an equation with periodic coe�cients,

Doklady Akad. Nauk., 73:1117�1120, 1950.
[7] Guseinov, G. Sh., On a quadratic pencil Sturm�Liouville operators with periodic coe�cients,

Vesnik Moskov Univ.-Ser. 1 Math Mekh., 3:14�21, 1984.
[8] Kurasov, P., Larson, J., Spectral asymptotics for Schrödinger operators with periodic point

interactions, J. Math. Anal. Appl., 266:127�148, 2002.
[9] Magnus, W., Winkler, S., Hill's equation, Interscience-New York, 1966.

EJQTDE, 2013 No. 76, p. 10



[10] Manafov, M. Dzh., Description of the domain of an ordinary di�erential operator with gen-
eralized potentials (in Russian), Di�er. Uravneniya 32(5):706�707, 1996; translation in Dif-

ferential Equations 32(5):716�718, 1996.
[11] Marchenko, V. A., Ostrovskii, I. V., A characterization of the spectrum of Hill's operator,

Mat. Sb., 97(4):540�606, 1975.
[12] Mikhailets, V. A., Sobolev, A. V., Common eigenvalue problem and periodic Schrödinger

operators, Journal of Functional Analysis, 165:150�172, 1999.
[13] Naimark, M. A., Linear di�erential operators, Frederick Ungar Publishing Co-New York,

1968.
[14] Reed, M., Simon, B., Methods of modern mathematical physics II � Fourier analysis, self-

adjointness, Academic Press-New York, 1975.
[15] Sahin, M., Manafov, M. Dzh., Spectrum of di�erential operator with periodic generalized

potential, Abstract and Applied Analysis, ID: 74595, 8 pages, 2007.
[16] Titchmarsh, E. C., Eigenfunction expansions associated with second-order di�erential equa-

tions, Clarendon Press-Oxford, 1962.
[17] Tkachenko, V., Eigenfunction expansions associated with one-dimensional periodic di�eren-

tial operators of order 2n, J. Functional Analysis and Its Applications, 41(1):54�72, 2007.

(Received August 19, 2013)

Faculty of Arts and Sciences, Department of Mathematics, Ad�yaman University,

Ad�yaman, 02040, Turkey

E-mail address, Corresponding author: mmanafov@adiyaman.edu.tr

Faculty of Arts and Sciences, Department of Mathematics, Gaz
iantep University,

Gaz
iantep, 27310, Turkey

E-mail address: kablan@gantep.edu.tr

EJQTDE, 2013 No. 76, p. 11


	1. introduction
	2. Hill's discriminant and Floquet theory
	3. Stability and instability intervals
	4. Nature of the spectrum of the operator L()
	5. Eigenfunction expansions
	Acknowledgments
	References

