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1. INTRODUCTION

It is well known that Perov (see [20]) extended the classical Banach con-
traction principle in the setting of spaces endowed with vector-valued metrics
(see also Perov and Kibenko [21]). The purpose of this paper is to extend
Krasnoselskii’s fixed point theorem to the case of generalized Banach spaces
for singlevalued and multivalued operators. As applications, we will give
some existence results for abstract system of Fredholm-Volterra type differ-
ential equations. Perov’s theorem and Krasnoselskii’s theorem are important
abstract tools for the study of differential and integral equation systems.
There is a vast literature concerning these two important theorems in non-
linear analysis, see, for example [3], [1], [11], [18], [19], [22], [23], [24], [26],
[27], [28], [29], etc. respectively [4], [5], [6], [7], [10], [16], [19], etc.

Recall first some basic results (see [11] and [29]) which are needed for the
main results of this paper. Notice that in Precup [29] and Filip-Petrusel [11],
are pointed out some advantages of a vector-valued norm with respect to the
usual scalar norms.

Definition 1.1. ([20]) Let X be a nonempty set and consider the space
R’ endowed with the usual component-wise partial order. The mapping
d: X x X — R which satisfies all the usual axioms of the metric is called
a generalized metric in the Perov’s sense and (X, d) is called a generalized
metric space.
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Let (X,d) be a generalized metric space in Perov’s sense. Thus, if v,r €

R™ v := (v1,v9,...,0p) and r := (r1,7r9,...,Ty), then by v < r we mean
v; < ry, for each i € {1,2,...,m} and by v < r we mean v; < r;, for each
i€ {1,2,...,m}. Also, |v| := (Jv1], |v2];-- -, |vm])-

If u,v € R™, with u := (uy,ug,...,uy) and v := (vy,ve,...,0y), then
max(u,v) := (max(ug,v1),. .., max(tm,,vy)). If ¢ € R, then v < ¢ means

v; < ¢, for each i € {1,2,...,m}.

For the sake of simplicity, we will make an identification between row and
column vectors in R™.

Notice that the generalized metric space in the sense of Perov is a partic-
ular case of Riesz spaces (see [15], [38]) and of, so-called, cone metric spaces
(or K-metric space) (see [37], [14]). The advantages of this approach consist
in the possibility to obtain some nice properties of the fixed point set and to
give several applications.

Let (X,d) be a generalized metric space in Perov’s sense. For r :=
(ri, -+ ,rm) € R™ with r; > 0 for each i € {1,2,--- ,m}, we will denote
by

B (zg,r) :={r € X : d(xg,z) <7}

the open ball centered in zg with radius r and by

B(xg,r) :={x e X :d(zo,z) <r}
the closed ball centered in zy with radius r.
We mention that for generalized metric spaces in Perov’s sense, the notions
of convergent sequence, Cauchy sequence, completeness, open subset and
closed subset are similar to those for usual metric spaces.

Definition 1.2. A square matrix of real numbers is said to be convergent
to zero if and only if its spectral radius p(A) is strictly less than 1. In other
words, this means that all the eigenvalues of A are in the open unit disc, i.e.,
|IA| < 1, for every A € C with det (A — AXI) = 0, where I denotes the unit
matrix of My, ,,(R) (see [35]).

Definition 1.3. ([33]) Let (X, d) be a generalized metric space and let f :
X — X be an operator. Then, f is called an A-contraction if and only if
A€ My, (Ry) is a matrix convergent to zero and

d(f (z), f(y)) < Ad(z,y), for any z,y € X.

Theorem 1.4. (Perov [20]). Let (X,d) be a complete generalized metric
space and f : X — X be an A-contraction mapping. Then:

i) there exists a unique fived point v* € X for f and the sequence (), cy
of successive approzimations for f (i.e., x, = f" (x9),n € N*) is con-
vergent to x*, for all xg € X and each n € N*.

i) d(zp,a*) < A" (I — A) "V d (20, 21), for all n € N*.

iii) d(z,2*) < (I — A~ d(x, f(x)), for all z € X.

The proof of Theorem 1.4 uses some properties of matrices which are

convergent to zero.
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Lemma 1.5. (see [2], [35]) Let A € My, . (Ry). Then the following state-
ments are equivalent:

i) A is a matriz convergent to zero;
i) A" — 0 as n — 00;
iii) The matriz I — A is non-singular and (I — A)™' = T+ A+.. . +A"+.. ;
w) The matriz I — A is non-singular and (I — A)™" has nonnegative ele-
ments;
v) A"q — 0 and gA™ — 0 as n — oo, for any ¢ € R™.

Remark 1.6. ([29]) Some examples of matrices convergent to zero are:

a

1)A:<Z b >,Wherea,b€R+anda+b<1;
a
a

Z),Wherea,be]RJr and a + b < 1;

3) A= ( @ i >,where a,b,c € Ry and max {a,c} < 1.

In particular, if £ is a linear space, then || -|| : E — R is a vector-valued
norm if (in a similar way to the vector-valued metric) it satisfies the classical
axioms of a norm. In this case, the pair (E,| - ||) is called a generalized
normed space. If the generalized metric generated by the norm | - || (i.e.,
d(z,y) := ||z —y]|) is complete then the space (E, ||-||) is called a generalized
Banach space.

As a consequence of Perov’s Theorem we have the following result.

Theorem 1.7. Let (E,||-||) be a generalized Banach space and f : E — E be
an A-contraction. Then 1g— f is a homeomorfism, i.e., 1p— f is continuous,
bijective and its inverse (1g — f)~! is continuous too.

Proof. The continuity of 1z — f is obvious, since f is continuous. In order to
prove the bijectivity of 1 — f, let us consider any y € E and the equation
(1g — f)(x) =y, x € E. If we define the operator g : E — FE by g(x) :=
f(z)+y, then the above equation can be re-written as a fixed point problem
for g, i.e., z = g(x). Since f is an A-contraction, we get that that g is an
A-contraction too. Hence g has a unique fixed point 2* € E. Thus 1g — f is
bijective. The continuity of (1g — f)~! follows in a similar way to the case
of usual Banach space. O

Another consequence of Perov’s Theorem is the following local variant
which improves Theorem 2.1 in [1].

Theorem 1.8. Let (X,d) be a complete generalized metric space, let xg €
X\ Fiz(f) and f: X — X be an A-contraction mapping around x.

Then there exists R := (I — A)~Yd(zo, f(x0)) such that B(zg, R) is invari-
ant with respect to f. Morover, in this case f has a unique fixed point in

B((L‘Q,R).
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Proof. Let x € B(xg, R). Then we have:
d(f(x),z0) < d(f(x), f(x0)) + d(f(z0), z0) < Ad(z, x0) + d(f(z0), z0) <
AR +d(f (o), o) = A(I — A)~ d(x, f(x0)) + d(o, f(x0)) = R.

For the second conclusion we apply Perov’s Theorem on B (o, R). O

For our main results, we also need some concepts in generalized metric
spaces (see, for example, [12], [38], [39]).

Definition 1.9. ([38]) Let (X,d) be a generalized metric space. A subset
C of X is called compact if every open cover of C' has a finite subcover. A
set C of a topological space is said to be relatively compact if its closure is
compact.

Definition 1.10. (|32]) Let X, Y be two normed generalized spaces, K C X
and f: K — Y an operator. Then f is called:

i) compact, if for any bounded subset A C K we have that f (A) is rela-
tively compact (or equivalently f (A) is compact);
ii) complete continuous, if f is continuous and compact;
iii) with relatively compact range, if f is continuous and f (K) is relatively
compact.

We recall now the following Schauder type theorem (see, for example,
Theorem (3.2) in [12]).

Theorem 1.11. Let (X, ||-||) be a generalized Banach space, let Y € P,, (X)
and g : Y — Y be a continuous operator with relatively compact range. Then
g has at least one fixed point in Y .

For the multivalued case, in the context of a generalized metric space
(X, d), we will use the following notations and definitions.

P (X) - the set of all nonempty subsets of X;

P(X) = P(X) U {0};

P, (X) - the set of all nonempty closed subsets of X;

Py o1 (X) - the set of all nonempty bounded and closed subsets of X;

If (X,]|-]||) is a generalized normed space, then:

Py c1,cv (X) - the set of all nonempty bounded, closed and convex subsets
of X;

P.p.co (X) - the set of all nonempty compact and convex subsets of X.

Let (X, d) be a metric space. Then we introduce the following functionals.

D;: P(X)xP(X)—Ry,D4(A,B) =inf{d(a,b):a € A,b € B} - the
gap functional;
pd: P(X)x P(X)— Ry U{+o00},p4(A,B) =sup{D(a,B):a€ A} -
the excess functional;
Hy: P(X) X P(X) - RJr U {+Oo}aHd (AaB) = maX{p(A,B),p(B,A)} -
the Pompeiu-Hausdorff functional.
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If (X, d) is a generalized metric space with d(z,y) := e , then
dm (2, y)
we denote by
Dy, (A, B)
D(A,B) := e the vector gap functional on P(X),
Dy (A, B)
by
Pdy (Aa B)
p(A,B) = e the vector excess functional,
Pd,, (A, B)
and by
Hgy (A, B)
H(A,B) := e the vector Pompeiu-Hausdorff functional.
H,; (A, B)

Notice that, throughout this paper, we will make an identification between
row and column vectors in R™.
We recall the following known result (see for example ([33])).

Lemma 1.12. Let (X, ||]|) be a generalized Banach space. Then:
HY+ZY+W)<H(ZW), foreachY, Z, W € Py (X).

Definition 1.13. ([3]) Let (X, d) be a generalized metric space, Y C X and
F:Y — P (X) be a multivalued operator. Then, F' is called a multivalued
A-contraction if and only if A € My, (Ry) is a matrix convergent to zero
and for any z,y € Y and for each u € F (x), there exists v € T (y) such that

d(u,v) < Ad(x,y).

Definition 1.14. ([3]) Let (X,d) be a generalized metric space. Then
F : X — P(X) is a multivalued weakly Picard operator (briefly MW P
operator), if for each € X and y € F (x), there exists a sequence (zy,)
such that:

i) o =1, 21 =y;

i) zpi1 € F (zp);

iii) the sequence (x,), oy is convergent to a fixed point of F.

neN

A sequence (xp), oy satisfying (i) and (ii) in the above definition is said
to be a sequence of successive approximations for F' starting from (zg,z1) €
Graph(F).

For examples of MW P operators see [31| and [25], while for some fixed
point results for multivalued A-contractions, see [25] and [11].

Notice now that using the generalized Pompeiu-Hausdorff functional on
P, o (X) the concept of multivalued contraction mapping introduced by S.B.
Nadler Jr. can be extended to generalized metric spaces in the sense of

Perov.
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Definition 1.15. ([3]) Let (X, d) be a generalized metric space, ¥ C X and
let F':Y — Py, (X) be a multivalued operator. Then, F' is called a multi-
valued A-contraction in the sense of Nadler if and only if A € M, », (R})
is a matrix convergent to zero and

H(F(x),F (y)) < Ad(z,y) , for any z,y € Y.

Notice that if F': X — P, (X) is a multivalued A -contraction in Nadler’s
sense, then F' is a multivalued A-contraction too, but, in general, the reverse
implication does not hold.

In the last part of this section, we will present several continuity results
for multivalued operators.

If X, Y are two generalized metric spaces, we recall that a multivalued
operator F': X — P (Y) is said to be:

a) lower semi-continuous (briefly l.s.c.) in xg € X if and only if for any
open set U C X such that F (xg) NU # 0, there exists a neighborhood V'
for o such that for any z € V', we have that F () N U # 0.

b) upper semi-continuous (briefly u.s.c.) in xg € X if and only if for any
open set U C X such that F'(z9) C U there exists a neighborhood V for z
such that for any = € V, we have that F'(z) C U.

¢) continuous in zp € X if and only if it is both Ls.c. and u.s.c.

The multivalued operator F': X — P (Y') is called

a) Hausdorff lower semi-continuous (briefly H-l.s.c.) in zg € X if and
only if for any ¢ = (e1,--- , &) € R with ¢; > 0 for each i € {1,--- ,m},
there exists n = (m1,--- ,nm) € RY with n; > 0 for each 7 € {1,--- ,m},
such that for any = € B (z9,n), we have F (xg) C V (F (x);e), where

V(F(x);e)={z € X :D(z,F (z)) <e}.

b) Hausdorff upper semi-continuous (briefly H-u.s.c.) in zy € X if
and only if for each € = (e1,--- ,ep) € R with g; > 0 there exists n =
(i, ,mm) € RY with n; > 0 for each ¢ € {1,--- ,m}, such that for all
x € B(xo;n) we have F(z) C V(F(xo);e€).

c¢) Hausdorff continuous (briefly H-c.) n xzy € X if and only if it both
H-ls.c. and H-us.c.

Notice that, if the multivalued operator F' : X — P (Y) has compact
values, then the continuity and the H-continuity of F' are equivalent.

Recall also the fact that the image of a compact set through an u.s.c.
multivalued operator with compact values is compact too.

2. MAIN RESULTS

In this section, we will prove Krasnoselskii type fixed point theorems in
generalized Banach spaces for singlevalued and multivalued operators.

Theorem 2.1. Let (X, ||-||) be a generalized Banach space andY € P ¢, (X).
Assume that the operators f,g:Y — X satisfies the properties:

i) [ is an A-contraction;

i1) g is continuous;
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iii) g (Y) is relatively compact and f (x) + g (y) €Y for any x,y €Y.
Then f 4 g has a fived point in Y.

Proof. We show that for any = € Y, the operator u, : ¥ — Y, u, (y) =
f(y) + g (x) is an A-contraction. Notice first that, from the second part of
(iii), the operator u, is well-defined. Next let us observe that
[tz (Y1) — ua (g2) | = 1f (1) = f (w2)ll < Allyr — g2, for any y1, 42 € Y.
Thus, u, is an A-contraction. By Theorem 1.4, it follows that there exists
a unique g, € Y such that f(y,) + g (x) = y,. Next we define c: Y — Y,
¢() = I L6
(1) c(x)=fle(z)]+g(x), forany z € Y.
We prove that ¢ is continuous. Indeed, since
le(@) = e @) || = I/ [c@)]+g (@) = f[e(2)] =g ()]
< | le@] = fle@)]]+llg @) =g ()]
< Ale@) —c(@)]+lg (@) -9 )],
we obtain that
2) le(@) = (@)l < (1= A) g (@) =g (=)
Thus, by the continuity of g, we have

l|c(x) —c ()] A, 0, as o’ I

Notice now that, from (1) and Theorem 1.7, we have that ¢ = (1y — f)"log.

Since g (Y) is relatively compact and c is continuous, we have that ¢ (Y")
is relatively compact too and, thus, by Theorem 1.11, there exists z € Y
with ¢(z) =z, i.e., f(z) + g (x) = z. Hence, the proof is complete. O

Remark 2.2. For a similar result see Viorel [36].

In the case of multivalued operators, first we give the multivalued form
of Theorem 1.4 for multivalued A-contractions in the sense of Nadler which
was quoted as an open question in [3].

Lemma 2.3. Let (X,d) be a generalized metric space, A,B C X, q > 1.
Then, for any a € A, there exists b € B such that

d(a,b) < qH (A, B).

Proof. Suppose first that A = B. Then we can choose b = a such that
the property holds. Next, suppose A # B. Then H;(A,B) # 0 for all
i € {l,...,m}. We will prove the conclusion by contradiction. Thus, we
suppose that there exists a € A, for any b € B such that

d(a,b) £ ¢H (A, B).
It follows that there exists j € {1,...,m} such that

d]' (a, b) > qu (A, B) .
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Passing to gnlf? , we get the contradiction
€

Hj (A,B) > Dj (A,B) > qu (A,B) > Hj (A,B) ,
which completes the proof. O

Lemma 2.4. Let (X,d) be a generalized metric space. Then D (x, A) = 0 if
and only if ¢ € A.

Proof. We show that A ={z € X | D (x,A) = 0}.
Let « € A, equivalent, for any r € R with 7 > 0 we have AN B (x,r) #
equivalent, for any r € R’ with > 0, there exists a € A such that d (z, a)

0
<
r, equivalent, D (z, A) = 0. O

Lemma 2.5. Let A € My, , (Ry) be a matriz convergent to zero. Then,
there exists QQ > 1 such that for any q € (1, Q) we have that ¢A is convergent
to 0.

Proof. Since A is convergent to zero, we have that the spectral radius p (A4) <

1. Next, since gp (4) = p(¢A) < 1, we can choose @ := W > 1 and hence,

the conclusion follows. O

Theorem 2.6. Let (X,d) be a complete generalized metric space and F :
X — Py (X) be a multivalued A-contraction in Nadler’s sense. Then, for
each x € X and y € F(x) there exists a sequence (xy),cy of successive
approzimations for F starting from (x,y) € Graph(F) which converge to a
fized point x* € X of F and we have the following estimations:

(a) d(xn, z*) < A" (I — A" d (20, 21), for any n € N*.

(b) d(xo,2*) < (I — A" d (xg, 7).

Proof. Let xp € X and z1 € F (x0). Let ¢ € (1,Q), where @ is defined by
the above lemma. Then, by Lemma 2.3, there exists xg € F' (1) such that

d(z1,32) < qH (F (20) , F (31)) < qAd (w0, 21) -

For xy € F (x1), there exists x3 € F' (z2) such that
d (g, x3) < qH (F (x1), F (22)) < qAd (x1, ) < (qA)*d (20, x1) .

Inductively, there exists x,4+1 € F' (z,,) such that

d(zp, tn1) < (qA)" d(xg,x1), for any n € N*.
We have

d(Zn, Tnip) < d(Tn, Tng1) + ..o+ d(Tnip-1, Tnyp)

(qA)" d (z0,21) + ... + (qA)" P d (0, 1)
= (qA)" {I +qA+.. (qA)p_l] d (o, 1)
< qA”[I_{_qA—}— (qA)p*1+...]d(x0,:v1)

= (qA)" (I — qA)~"d (o, 21).
EJQTDE, 2012 No. 85, p. 8
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Thus
(3)  d(xn,Tnip) < (qA)" (I — qA) ' d(z0,21), for n € N* and p € N*.

Letting n — oo, by Lemma 2.5, it follows that (x,) is a Cauchy sequence

in X. Since X is complete, it follows that there exists * € X such that

d
r, — =¥, n — oo. Thus,

Dy (z*, F (z*))
D (z*, F (z¥)) =
Dy, (z*, F (z*))
dy (x*,mn+1) + D, (xn—f—la F (‘T*))

A

dm (2%, Zp41) + D (Tpg1, F (2%))
d(z*,zp41) + D (zpg1, F (27))
d(z*,xpt1) + H (F (x), F (z%))
d(z*, pt1) + Ad (2, %)
and letting n — oo, we get that D (z*, F' (z*)) = 0. By Lemma 2.4, it follows

that «* € F (z*). Hence, z* € F (z*). Moreover, letting p — oo in (3), we
obtain

IN A

d(zn,2") < (qgA)" (I —qA)_ld(xo,ml), for any n € N*.

Thus,
d(xg,z%) < d(xg,21) + d(x1,2%)
< d(xo, 1) + qA (I — qA) " d (wo,m1)
[I—i—qA(I qA)” ]d(w 1)
=l +qAI +qA+...+(qA)" +..)]d(z0,21)
[I+qA+ gA)? ]d(xo,xl
= (I —qA) ™" d (20, 21)
and letting ¢ \, 1, we get that d (zo,2*) < (I — A)~'d (zo,z1). O

A local result in the multivalued case is the following.

Theorem 2.7. Let (X,d) be a generalized complete metric space, zg € X \
Fiz(F) and F : Y — Py (X) be a multivalued A-contraction in the sense
of Nadler around xg. Then, there exists R := (I — A)~'8(wo, F(z0)) such
that B(ﬂ:o,R) 15 inwariant with respect to F'. Moreover, in this case F has
at least one fized point in B(xg, R).

Proof. Let x € B(zg, R). Then, for any y € F(z) we have:
d(xo,y) < 6(xo, F(z0)) + H(F(x0), F(z)) < 6(x0, F(20)) + Ad(0, 7) <
§(z0, F(x0)) + AR = 8(xo, F(20)) + A(I — A)~16(xo, F(x0)) =

)
(I — A)~'6(xo, F(x0)) = R.
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This shows that F(z) C B(zo,R). For the second conclusion we apply
Theorem 2.6. U

Another useful result is the following data dependence theorem.

Lemma 2.8. Let (X,d) be a complete generalized metric space and Fy, Fy :
X — Pyo (X) be two multivalued A-contractions in Nadler’s sense. Then:

SUPPd, (Fi(z), Fa(2))
p (Fiz (Fy), Fiz (Fy)) < (I - A)™*
SUPPd, (F1(z), Fa(z))

Proof. Let xg € Fiz (F1) arbitrary chosen. Then, there exists f5° (g, z1) €
Fiz (F») such that

d [zo, f5° (z0,21)] < (I — A)~"d (20, 21), for any x1 € F (zp).
Let g € (1, ﬁ). For xy € Fi(xg), there exists z1 € Fy (zg) such that
d (zo,x1) < qp [F1 (z0) , F2 (20)] -
Then, we obtain
d (wo, f5° (z0,21)) < (I — A)~" qp (F (wo) , Fa (w0))
pa, (F1 (o) , F2 (20))

<qI-4)" N
Pd, (F1 (20)  F2 (20))
SUp i, (F1 (z0) , F2 (z0))
<q(I—A)"
suppd,, (F1 (z0) , F» (x0))

rzeX
Letting ¢ \, 1, we get that
suppq, (F1 (z) , F2 (7))

rzeX
p(Fiz (Fy), Fiz (Fy)] < (I — A)™! ,
suppq,, (F1 (x) , Fz (z))
zeX
which completes the proof. O

We extend now, to the case of a generalized Banach space, a result given
in L. Rybinski [30].

Theorem 2.9. Let (X,d) be a generalized metric space and Y be a closed
subset of a generalized Banach space (Z,||-||). Assume that the multivalued
operator F': X XY — Py ¢, (Y) satisfies the following conditions:

i) A is a matriz convergent to zero and
H(F ('Iayl) ’F(x’y2)) <A Hyl - y2|| ) fOT’ each ('Iayl) ) (xayQ) € X X Y;

i) for everyy €Y, F(-,y) is H-l.s.c. on X.
EJQTDE, 2012 No. 85, p. 10



Then there exists a continuous mapping f : X XY — 'Y such that:

f(z,y) € F(z, f(z,y)), for each (z,y) € X xY.
Proof. Let us consider the sequence of continuous operators f, : X xY — Y
with property: there exists a matrix convergent to zero M € My, ., (Ry),
M > A and q € <1 > such that for any (z,y) € X x Y and for n =

2,3,... we have

10) |fn (x’y) - fnfl ('Iay)| < qM |fn71 ('Iay) - fn72 (x,y)|7

and for n € N* we have

20) D(fn (.%',y) ,F((L‘,fn ((L’,y))) <M ’fn ((L’,y) - fn—l (.%',y)’
Inductively, we get that

’fn (xay) - fn—l (%Z/)‘ < (qM)n_l ‘fl (xay) - fO (.%',y)‘ )
for any n € N*. Thus, it is easy to observe that

| frtp (@, y) = fu (@,9)] < (@M)" (T = ¢M) " | f1 (,y) — fo (z,9)],

for any n € N* and p € N*. Letting n — oo it follows that (f,) is a Cauchy
sequence in X x Y and also, convergent. We denote f (x,y) = lim f, (z,y).
n—oo

Thus,

D(f (z,y), F(z, f(2,9)))
< |f(x,y) _fn(xay)| +D(fn($,y),F($,f($,y)))
< |f (x’y) _fn (x,y)| +M|fn ('Iay) —fn,1 (x’y)|

and then, f (z,y) € F (z, f (z,y)) for any (z,y) € X x Y.
Since, for n large enough, the operator f,, is continuous and the operator
(z,y) — |f1(z,y) — fo(x,y)| is continuous. Then, by the inequality

|f(zy) = f (@o,yo)l <1f (2,9) — fu (@, 9)| + | fn (2,9) — fn (20, 90)]
+ | (20, y0) — f (20, 90)]
< (gM)" (I = gM)~ | f1 (2, y) = fo (z,9)]
+ | fn (z,y) — fu (0, y0)|
+ (gM)" (I = ¢M) ™" | f1 (w0, %0) — fo (z0,30)] ,

we conclude that f is continuous, for any (z,y) € X x Y.
We suppose that the operators f1,. .., f, satisfying 1°) and 2°) are defined.
We choose a continuous selection f,_1 for the multivalued operator F. Let

fn(z,y) € F(x, fno1 (x,y)), then
D (fn(z,y), F(z, fn(2,y)) < H (F (2, fa-1 (2, 9)), F (2, fu (2,9)))
< A |fn (x’y) - fn,1 (x,y)| )

1
? p(M)

for any (x,y) € X x Y. Thus,
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for any (x,y) € X xY and the inequality 2°) is satisfied by f,. Since F' (-,y)
is H-l.s.c. on X, via Lemma 1 from L. Rybinski [30], we have that the
multivalued operator

G:(z,y) = F (2, fn(2,9) 0 {fn (2,9) + ¢M [ fn (2,9) = fo-1 (2,9)[}

is H-l.s.c. and admits a continuous selection. Finally, we get the continuous
operator f,4+1 which satisfies inequalities 1°) and 2°). O

For proving a multivalued version of Krasnoselskii’s theorem in generalized
Banach spaces we need some auxiliary results.

Lemma 2.10. (X, ||-|]|) be a generalized Banach space. Assume that the
operator F': X — Py (X) is a multivalued A-contraction in Nadler’s sense.
Then, the multivalued operator 1x — F is continuous with respect to the
Hausdorff-Pompeiu generalized metric on Py(X)., surjective and (1x — F)~!
has closed graph.

Proof. Since F'is an A-contraction, we get immediately get that F' is contin-
uous with respect to the Hausdorff-Pompeiu generalized metric on P, (X).
Thus, 1x — F is continuous with respect to the Hausdorff-Pompeiu general-
ized metric on Py (X). Let us show now that 1x — F' is surjective. For each
y € X, we are looking for an element z,, € X such that (1y — F)(z,) = y.
The problem is equivalent with a fixed point problem for the multivalued
operator T'(z) = y + F(x). Since

H(T(21),T(x2)) = H(y+F(x1), y+F(22)) = H(F(x1), F(22)) < Ad(x1, 72),
we get that 7T is a multivalued A-contraction. Hence, by Theorem 2.6, T" has
at least one fixed point Z, € X. This proves the surjectivity of 1x — F'. For
the last conclusion of this lemma, notice first that (1x — F)™' : X — P(X).
In order to prove that the graph of (1x — F)~! is closed, consider a sequence
(Yn)nen which converges in X to y and a sequence x, € (1x — F)"!(y,)
which converges in X to z. We will prove that € (1x — F)~!(y). For this
purpose, it is enough to prove that y € x — F/(z). Then we have:

D(y,x — F(z)) = D(z,y + F(z)) <
d(z,2n) + D(Tn,yn + F(zn)) + H(yn + F(zn),y + F(z)) <
d(@,2n) + H(yn + F(zn), yn + F(2)) + H(yn + F(2),y + F(2)) =
d(x, ) + H(F(xn), F(2)) + d(ypn,y) < d(z,x,) + Ad(zy, ) + d(yn,y) — 0,
as n — —+00. U

Recall now a well-known fact, which also takes place in generalized normed
spaces.

Lemma 2.11. Let X be a generalized normed space. Then for x,y € X and
for A € Py(X) we have: D(x,A+y) = D(y,x — A).

Another version of the above lemma involves the so-called metrically reg-

ularity of a multivalued operator.
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Lemma 2.12. (X, |-||) be a generalized Banach space. Assume that the
operator F': X — Py (X) is a multivalued A-contraction in Nadler’s sense.
Then, the multivalued operator 1x — F is continuous with respect to the
Hausdorff-Pompeiu generalized metric on P (X), surjective. If additionally,
we suppose that 1x — F is metrically reqular at each x € X for yg € X, i.e.,
(z,y0) € Graph(1x —F') and there exists a constant k > 0 and neighborhoods
U of x and V of yo such that

D(u,(1x — F)"'(v)) < kD(v, (1x — F)(u)), for allu € U and v €'V,
then (1x — F)~! is u.s.c. in yo.

-1

Proof. We will prove the upper semicontinuity of (1x — F))~" in arbitrary

yo € X. For this purpose, we have to show that for each ¢ = (g1, -+ ,&p,) €
R with e; > 0 for every i € {1,--- ,m} there exists n = (1, - ,nm) € R
with n; > 0 for every ¢ € {1,--- ,m}, such that the following implication
holds

y € Blyoin) = (Ix —F)"'(y) € V((lx — F)" (o) e).
Let y € B(yo;n) and = € (1x — F)~*(y). We will show that
D(z,(1x — F) ' (y)) < e.
Since x € (1x — F)~'(y) we get that y €  — F(x). Then
D(, (1x — F)"\(y0)) < kD(yo, (1x — F)(x))
< k[d(yo,y) + D(y, x — F(x))] < kn.
If we chose n < 1, then we get the conclusion. O

We will present now a Krasnoselskii type theorem for multivalued opera-
tors in generalized Banach spaces.

Theorem 2.13. Let (X, ||-||) be a generalized Banach space andY € Pgy, o,y (X).
Assume that the operators F' 1Y — Py oy (X),G 1Y — P e (X) satisfy
the properties:

i) F(y1)+ G (y2) CY, for each y1,y2 € Y;
i1) F is a multivalued A-contraction mapping in Nadler’s sense;
i) G is l.s.c and G (Y') is relatively compact.

Then F' + G has a fizxed point in Y.
Proof. We show that for any x € Y, the operator
T,:Y — Pcp,cv (Y) T (y) =F (y) +G (.%')
is a multivalued A-contraction. We have that
H (T (y1),Tx (y2)) = H (F (y1) + G (2), F (y2) + G (2))
< H(F (1), F(y2)) < Allyr —y2l|, for any y1,y2 € Y.

Thus, T is a multivalued A-contraction. By Theorem 2.6, it follows that for
any x € Y the fixed point set of the multivalued operator T, namely

Fix (T,)={yeY:ye F(y)+G(x)}
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is nonempty and closed. Moreover, since T, has compact values, by a similar
argument to [26] we get that Fiz (T,) is compact.
Since, the multivalued operator

U:Y XY = Pypeo(Y), Ulz,y) =F(y)+ G (z)

satisfies the hypothesis of Theorem 2.9, there exists a continuous mapping « :
Y xY — Y such that u (z,y) € F (u(z,y))+ G (z), for each (z,y) € Y x Y.
We consider now the singlevalued operator ¢ : Y — Y, ¢(z) = u(z,x),
for each x € Y. Then c(z) € F(c(x)) + G(x), for each z € Y and thus
c(x) € Fiz(Ty), for each x € Y. The above relation is equivalent with

c(x) € (ly — F)"Y(G(x)), for each z €Y.

Now, we prove that ¢(Y) is relatively compact. Notice that, since G (Y)
is relatively compact, it is enough to show that the multivalued operator
(ly — F)~!is us.c. and has compact values. The upper semicontinuity
follows by Lemma 2.10, by taking into account that Y is compact, while the
compactness of the values of (1y — F)~! is a consequence of the fact that
it has closed values in the compact set Y. Thus, the operator ¢ : Y — Y
satisfies the assumptions of Theorem 1.11. Let * € Y be a fixed point for c.
Hence, we have that 2* = ¢ (2*) € F (¢ (2*))+ G (z*) = F (2*)+ G (z*). O

Using an idea of T.A. Burton (see [5]), let us observe that the condition
i) in the previous result (Theorem 2.13) can be relaxed as follows.

Theorem 2.14. Let (X, ||-||) be a generalized Banach space andY € Pgy, oy (X).
Assume that the operators F' 1Y — Py oy (X),G 1Y — P oy (X) satisfy
the properties:

i)yeF(y) +G(z),z €Y thenyeY;

i1) F is a multivalued A-contraction mapping in Nadler’s sense;

iii) G is l.s.c and G (Y') is relatively compact.

Then F' + G has a fived point in Y.

Remark 2.15. Let us suppose that the conditions #i) and #ii) of Theorem
2.14 holds. If there exists r € R’ such that for Y = {z € X : ||lz|| < r}
we have G(Y) C Y and ||y|| < D (y,F (y)), y € Y, then the conclusion of
Theorem 2.14 holds.

Indeed, let y € F (y) + G (x),x € Y. Then there exists u € F (y) such
that y —u € G (x),z € Y. Since

Iyl <D (y, F(y) <lly—ull <||G@)]| <r

we have that y € Y. Hence, the conclusion of Theorem 2.14 holds.
Another Krasnoselskii type fixed point theorem for the sum of two multi-
valued operator more appropiate for applications is given now below.

Theorem 2.16. Let (X, ||-||) be a generalized Banach space andY € Py ¢ o, (X).
Assume that the operators F' 1Y — Py oy (X),G 1Y — P co (X) satisfy
the properties:

i) F(y1)+ G (y2) CY, for each y1,y2 € Y;
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i1) F is a multivalued A-contraction mapping in Nadler’s sense;
iii) G is l.s.c and G (Y') is relatively compact;
iv) the multivalued operator 1y — F is metrically reqular on'Y.

Then F + G has a fived point in Y .

Proof. The proof is similar to the proof of Theorem 2.13. The only modifica-
tion consist in the fact that this time we are using the property of metrically
regularity of 1y — F' (instead of the compactness of V') to get that ¢ (Y) is
relatively compact. O

3. AN APPLICATION

It is known that the classical form of Krasnoselskii’s Theorem has a lot
of interesting applications. See, for example, T.A. Burton [4], [5], [6], [7], L.
Collatz [8] A. Petrusel [24], R. Precup-A. Viorel [27], [28], M. Zuluaga [40],

etc.
Our purpose is to give some applications of our Krasnoselskii type fixed
point theorems in a generalized Banach spaces.

Theorem 3.1. Let I = [0, a] (with a > 0) be an interval of the real azis and
consider the following system of integral equations

{ z1 () = A1 f(f ki(t,s, 21 (s),x2(s))ds + A1z [y 11 (8,21 (s), 22 (s)) ds
x9 (t) = Ao1 f(f ko (t, 5,21 (s), 22 (s)) ds + Aoz [y I2 (¢, 5,21 (), 22 (s)) ds

fort €I, where \jj € R, fori,j e {1,2}.
We assume that:
i) k1,11 € C(I* x R™ x RP,R") and ky,ly € C (12 x R™ x RP,RP);

i1) there exists the matriz A = ( a2 ) € Ms s (Ry) such that
G21  G22 ’

ki (t, s,u1,u2) — ki (t,8,01,v2)] < @it |ur — vi| + aze |ug — va|, for each
(t,s,,u1,u2), (t,s,v1,v9) € I? x R™ x RP i €{1,2};

T1
ii1) < |Arz| ) < ( 2],\,4211 ), where M;, = max foa]li (t,s,21(s),x2(s))|ds,

| A2z ot t€[0,a)

fori e {1,2} and r := < :1 >, with 1,19 > 0;
2

o ( \A11!)§<W}am> )
[Az1] Balaarr i Fazra)

Then, there exists (29,29) € C(I,R") x C (I,RP) such that the system
(3.1) has at least one solution z* = (z%,z3) € B (29,m1) x B (29,r2) C
C(I,R") x C(I,RP).
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Proof. For the sake of simplicity let us denote X; := R" and X5 := R?. For
i€ {1,2} and z := < il ) € C(I,X1)xC(I,X3), we define
2

firgi : O (1, X1) x C (I, X2) — C(I,X;),
T fix, T+ g,

t
fiz () := A / ki (t,s,z1(s),z2(s))ds, for any t € I,
0

gix (t) == )\ig/ i (t,s,21(s),2z2(s))ds, for any t € I.
0

By 1), the operators f; and g; are well defined, for i € {1,2}. Morover, the
system 3.1 can be re-written as a fixed point equation of the following form

r=(f+g)(w),

*
where f := h and g := gi). Obviously, z* := xi is a solution
f2 92 T3
for our system of integral equations if and only if x* is a fixed point for the

operator f + g.
Let us show that f and g satisfies the assumptions of Theorem 2.1. Let
x = (x1,22), y := (y1,y2) € C (I,X1) x C (I, X3). We have

|fi (z) (1) = fi (y) (D]x,

< |>\z'1|/0 ki (t, 8,21 (s) 22 () — ki (£, 8,91 (5), 92 ()| x, ds
< il /0 (an 21 (5) = 91 ()], + aiz |72 (5) — 3 (5)], ) s

t t
= |Aa (au |21 — w1l g, / eds + a2 [[v2 — 2| g, / 6T3d5>
0 0

i )
< Pl (o lles — a1y, + a1 — ol ) for i € {1,2),

sup e~ Juy (t)|x,

— ( Mullg, \ _ | teloa
where ||u|| 5 == < uallp, ) = sup e~ us (1) x, | 7 > 0 denotes the
t€[0,a]

Bielecki-type norm on the generalized Banach space C (I, X1) x C (I, X2).
Thus, we obtain that

Ail .
2] s lfer — i, + s lles — ) for € {1,2),

fi () = fi )| 5, <
These inequalities can be written in a vectorial form

1f (@) = FW)llp < M|z = yllp,

- <\/\z‘1\az‘j> _
T i,j=1,2
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Taking 7 large enough it follows that the matrix M is convergent to zero
and thus, f is an A-contraction. By Theorem 2.6, we have that there exists
a unique fixed point 2° = (29,29) € C (I, X1) x C (I, X») for f = (f1, f2).
Let Y := B(a{;71) x B(23;72) € C (I, X1) x C (I, X3).
The operator g is continuous and, by a classical argument, we get that
g (Y) is relatively compact.

We will show that we can choose r = ( :1 > (with 71,79 > 0), such that
2

f(Yyc B (x?,%) x B <x8,%2>

Let z € Y, ie., (z1,22) € B(2Y;r1) x B(x3;75). We will show that

0 1f1(2) = 2y 5
x)—z|c:= < ;
i) == ({0 e ) < (4
where || - ||c denotes the Cebisev norm in the space of continuous function

on I.
We have

|fi (@) (1) = 27 (0)] , = [ 1 (2) () = [1(@®) (1), <
| A11] /0 |kt (t, 8,21 (8),22(s))ds — ky (t, s,x? (s) ,3:8 (s)) |x,ds <
< P\n!/o (a11]z1(s) — 27(s)|x, + arzlaz (s) — 23 (5) [x,)ds

t
< |)\11|/ (ar1]lz1 — 2Yc, + arz]|z2 — 29|, )ds
0

< |A11(a11ry + agars)a.
Taking malx, we have that
te

r
If1 (@) = aPlley < [Anlaanir + aiers) < 51

In a similar manner, we get
T2
1f2 (2) = 25lc, < [Aarla(azir + agars) < 5

Thus, we get

(4) Hﬂm—ﬂb§<§>.

We will show now that

ie.,

kool

191(2)]lcy )
x = < .
l@)le ( lg2(@)llc. ) — \ 5
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Indeed, for z = (z1,22) € Y, we have

|91($)(t)|fS|A12|jﬁa|l1(tas,wl(s)a$2(8))|d8 < [ A2 My, .

Taking max and using #ii), we have

tel
lon @) lley < Pl < -
By a similar approach we get
lgz @) llcs < Prea|M, < 5

Thus
- - T
g (z) C B(0, 51) x B(0, 52), for each xz € Y.

Then, the operator f + g has the property (f + ¢)(Y) C Y. Hence, the
conclusion follows by Theorem 2.1. O

Remark 3.2. In a similar way, using a multivalued version of Krasnosel-
skii’s theorem in generalized metric spaces, existence results for the following
integral inclusion system in C' (I,R"™) x C' (I,RP):

{ z1(t) € M1 fg K (t,s,21(s),22(s))ds + Mg [y L1 (¢, 5,21 (s) , @2 (s)) ds
x2 (t) € Aoy fg Ky (t,s,21 (s), 22 (s)) ds + Mgz [y Lo (t, 5,21 (s) , w2 (s)) ds

for t € I :=[0,a] (where \;; € R, 4,5 € {1,2}) can be given.
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