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Oscillation criteria for third order delay nonlinear

differential equations

Elmetwally M. Elabbasy, Taher S. Hassan∗, and Bassant M. Elmatary

Abstract. The purpose of this paper is to give oscillation criteria for the
third order delay nonlinear differential equation

[a2(t){(a1(t)(x′(t))α1 )′}α2 ]′ + q(t)f(x(g(t))) = 0,

via comparison with some first differential equations whose oscillatory char-
acters are known. Our results generalize and improve some known results for
oscillation of third order nonlinear differential equations. Some examples are
given to illustrate the main results.

1. Introduction

In this paper, we are concerned with the oscillation of third order delay non-
linear differential equation

[a2(t){(a1(t) (x′(t))
α1)′}α2 ]′ + q(t)f(x(g(t))) = 0, (1.1)

where the following conditions are satisfied

(A1): a1(t), a2(t) and q (t) ∈ C([t0,∞) , (0,∞));
(A2): α1, α2 are quotient of odd positive integers;
(A3): f ∈ C(R, R) such that xf(x) > 0, f ′(x) > 0 for all x 6= 0 and

−f(−xy) ≥ f(xy) ≥ f(x)f(y) for xy > 0;
(A4): g(t) ∈ C1([t0,∞) , R), g(t) ≤ t for t ∈ [t0,∞) and lim

t→∞

g(t) = ∞.

We mean by a solution of equation (1.1) a function x (t) : [tx,∞) → R, tx ≥
t0 such that x (t) , a1(t) (x′(t))

α1 , a2(t){(a1(t)(x
′(t))α1)′}α2 are continuous and dif-

ferentiable for all t ∈ [tx,∞) and satisfies (1.1) for all t ∈ [tx,∞) and satisfy
sup{|x (t)| : t ≥ T } > 0 for any T ≥ tx. A solution of equation (1.1) is called
oscillatory if it has arbitrary large zeros, otherwise it is called nonoscillatory. In the
sequel it will be always assumed that equation (1.1) has nontrivial solutions which
exist for all t0 ≥ 0. Equation (1.1) is called oscillatory if all solutions are oscillatory.
In the last few years, the oscillation theory and asymptotic behavior of differen-
tial equations and their applications have received more and more attentions, the
reader is referred to the papers [1]- [18] and the references cited therein. Our aim
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is to investigate the oscillatory criteria for all solutions of equation (1.1) with the
cases, for k = 1, 2

∫

∞

t0

a
−

1

α
k

k (t)dt = ∞, (1.2)

and
∫

∞

t0

a
−

1

α
k

k (t)dt < ∞. (1.3)

Our results have different natural as they are Riccati transformation technique and
depend on new comparison principles that enable us to deduce properties of the
third order nonlinear differential equation from oscillation the first order nonlinear
delay differential equation. Recently, [7, 12] establish oscillation criteria for the
third order nonlinear differential equation of the form

(a(t) (x′′(t))
α
)′ + q(t)f(x(g(t))) = 0,

via comparison with first order oscillatory differential equations.
The purpose of this paper is to extend the above mentioned oscillation criteria

which is established by [7,12] , for the more general third order delay differential
equation (1.1) for both of the cases (1.2) and (1.3). Hence our results will improve
and extend results in [7,12], and many known results on nonlinear oscillation.

2. Main Results

Before stating our main results, we start with the following lemmas which will
play an important role in the proofs of our main results. We let,

δ(t, t0) :=

∫ t

t0

a
−

1

α1

1 (v)dv, δk(t) :=

∫

∞

t

a
−

1

α
k

k (v)dv, k = 1, 2.

Lemma 2.1. Assume that, for all sufficiently large T1 ∈ [t0,∞), there is a
T > T1 such that g(t) > T1 for t ≥ T and
(H1) either

∫

∞

t0

a
−

1

α2

2 (t)dt = ∞, (2.1)

or

∫

∞

T

(

a
−

1

α2

2 (s)

(∫ s

T

(

q(r)f(δ
1

α1

2 (g(r)))f(δ(g(r), T ))

)

dr

)
1

α2

)

ds = ∞, (2.2)

(H2) either
∫

∞

t0

a
−

1

α1

1 (t)dt = ∞, (2.3)
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or

∫

∞

t0



a
−

1

α1

1 (s)

(

∫ s

t0

a
−

1

α2

2 (u)

(∫ u

t0

(q(v)f (δ1(v))) dv

)
1

α2

du

)
1

α1



 ds = ∞, (2.4)

hold. Let x be an eventually positive solution of the equation (1.1). Then, either

(1) x′ (t) > 0, (a1(t) (x′(t))
α1)′ > 0 for all t ≥ T ;

or
(2) x′ (t) < 0, (a1(t) (x′(t))

α1)′ > 0 for all t ≥ T.

Proof. Pick t1 ≥ t0 such that x(g(t)) > 0, for t ≥ t1. From equation (1.1),
(A1) and (A3), we have, [a2(t){(a1(t) (x′(t))

α1)′}α2 ]′ < 0, for all t ≥ t1. Then
a2(t) (a1(t) (x′(t))

α1)′ is strictly decreasing on [t1,∞), and thus x′ (t) and (a1(t) (x′(t))
α1)′ are

eventually of one sign. We claim that (a1(t) (x′(t))α1)′ > 0 on [t1,∞). If not, then,
we have two cases.
Case (1) There exists t2 ≥ t1, sufficiently large, such that

x′ (t) > 0 and (a1(t) (x′(t))
α1)′ < 0 for t ≥ t2.

Case (2) There exists t2 ≥ t1, sufficiently large, such that

x′ (t) < 0 and (a1(t) (x′(t))
α1)′ < 0 for t ≥ t2.

For the case (1), we have, a1(t) (x′(t))
α1 is strictly decreasing on [t2,∞) and there

exists a negative constant M such that

a2(t){(a1(t)(x
′(t))α1)′}α2 < M for all t ≥ t2.

Dividing by a2(t) and integrating from t2 to t, we get

a1(t)(x
′(t))α1 ≤ a1(t2) (x′(t2))

α1 + M
1

α2

∫ t

t2

a
−

1

α2

2 (s)ds.

Letting t → ∞, and using (2.1) then a1(t) (x′(t))
α1 → −∞, which contradicts that

x′(t) > 0. Hence (2.2) is satisfied, we have

x(t) − x(t3) =

∫ t

t3

x′ (u) du

=

∫ t

t3

a
−

1

α1

1 (u)
(

a1(u) (x′(u))
α1
)

1

α1 du

≥
(

a1(t) (x′(t))
α1
)

1

α1

∫ t

t3

a
−

1

α1

1 (u)du, for t ≥ t3,

and hence

x(t) ≥
(

a1(t) (x′(t))
α1
)

1

α1

∫ t

t3

a
−

1

α1

1 (u)du for t ≥ t3.
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There exists a t4 ≥ t3 with g(t) ≥ t3 for all t ≥ t4 such that

x(g(t)) ≥
(

a1(g(t)) (x′(g(t)))
α1
)

1

α1 δ(g(t), t3) for t ≥ t4.

From Eq.(1.1), (A3) and the above inequality, we get, for t ≥ t4,

0 ≥ (a2(t)(y
′(t))α2 )

′

+ q(t)f(y
1

α1 (g(t)))f (δ(g(t), t3)) , (2.5)

where y(t) := a1(t) (x′(t))
α1 . It is clear that y(t) > 0 and y′(t) < 0. It follows that

−a2(t)(y
′(t))α2 ≥ −a2(t4)(y

′(t4)) for t ≥ t4,

thus

−y′(t) ≥ −
a

1

α
2

2 (t4)y
′(t4)

a
1

α
2

2 (t)

for t ≥ t4.

Integrating the above inequality from t to ∞, we get

y(t) ≥ −a
1

α2

2 (t4)y
′(t4)δ2(t),

then,
y(t) ≥ k1δ2(t), for t ≥ t5,

where k1 := −a
1

α2

2 (t4)y
′(t4) > 0. There exists a t5 ≥ t4 with g(t) ≥ t4 for all

t ≥ t5 such that
y(g(t)) ≥ k1δ2(g(t)) for all t ≥ t5.

By integrating (2.5) from t5 to t and using the above inequality, we obtain
∫ t

t5

q(r)f(k
1

α1

1 δ
1

α1

2 (g(r)))f(δ(g(r), t3)))dr ≤ a2(t5)(y
′(t5))

α2 − a2(t)(y
′(t))α2 ,

Using (A3), we get

(

b

a2(t)

∫ t

t5

(

q(r)f(δ
1

α1

2 (g(r))f(δ(g(r), t3))

)

dr

)

1

α2

≤ −y′(t),

where b := f(k
1

α1

1 ). Integrating the above inequality from t5 to ∞, we get

b
1

α2

∫

∞

t5

(

a
−1

α2

2 (s)

(∫ s

t5

(

q(r)f(δ
1

α1

2 (g(r)))f(δ(g(r), t3))

)

dr

)
1

α2

)

ds ≤ y(t5) < ∞,

which contradicts the condition (2.2).
For the case (2), we have

a1(t) (x′(t))
α1 ≤ a1(t2) (x′(t2))

α1 = k < 0.

Dividing by a1(t) and integrating from t2 to t, we get

x(t) ≤ x(t2) + k
1

α1

∫ t

t2

a
−

1

α1

1 (s)ds.
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Letting t → ∞, then (2.3) yields x(t) → −∞ this contradicts the fact that x(t) >

0. Otherwise, if (2.4) is satisfied. One can choose t3 ≥ t2 with g(t) ≥ t2 for all
t ≥ t3 such that

x(g(t)) > −
(

a1(g(t)) (x′(g(t)))
α1
)

1

α1 δ1(g(t))

≥ k2δ1(g(t)), for all t ≥ t3,

where k2 := −
(

a1(t2) (x′(t2))
α1
)

1

α1 > 0. Thus equation (1.1) and (A3) yield

(

a2(t){(a1(t) (x′(t))
α1)′}α2

)′

= −q(t)f(x(g(t)))

≤ Lq(t)f (δ1(g(t))) ,

where L := −f(k2). Integrating the above inequality from t3 to t, we get

a2(t){(a1(t) (x′(t))
α1)′}α2 ≤ L

∫ t

t3

(q(s)f(δ1(g(s))) ds.

Hence,

(a1(t) (x′(t))
α1)′ ≤ L

1

α2 a
−

1

α2

2 (t)

(∫ t

t3

(q(s)f(δ1(g(s))) ds

)

1

α2

.

Again integrating the above inequality from t3 to t, we get

a1(t) (x′(t))
α1 ≤ L

1

α2

∫ t

t3

a
−

1

α2

2 (s)

(∫ s

t3

(q(u)f(δ1(g(u))) du

)
1

α2

ds.

It follows that

x′(t) ≤ ka
−

1

α1

1 (t)

(

∫ t

t3

a
−

1

α2

2 (s)

(∫ s

t3

(q(u)f(δ1(g(u)) du

)
1

α2

ds

)
1

α1

,

where k := L
1

α1α2 . Finally, integrating the last inequality from t3 to t, we have

x(t) ≤

k

∫ t

t3



a
−

1

α1

1 (s)

(

∫ s

t3

a
−

1

α2

2 (u)

(∫ u

t3

(q(v)f(δ1(g(v))) dv

)
1

α2

du

)
1

α1



 ds.

From condition (2.4), we get x(t) → −∞ as t → ∞ which contradicts that x(t) is

a positive solution of (1.1). Then, we have
(

a1(t) (x′(t))
α1
)

′

> 0 for t ≥ t1 and of
one sign thus either x′ (t) > 0 or x′ (t) < 0. The proof is complete.

Lemma 2.2. Assume that (H1) and (H2) hold. Let x(t) be an eventually positive
solution of the equation (1.1) for all t ∈ [t0,∞) and suppose that Case (2) of Lemma
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2.1 holds. If

∫

∞

t0

a
−

1

α1

1 (v)

[

∫

∞

v

a
−

1
α2

2 (u)

(∫

∞

u

q(s)ds

)
1

α2

du

]
1

α1

dv = ∞, (2.6)

then x(t) → 0 as t → ∞.

Proof. Pick t1 ≥ t0 such that x(g(t)) > 0, for t ≥ t1. Since x(t) is positive
decreasing solution of the equation (1.1) then, we get, lim

t→∞

x(t) = l1 ≥ 0. Assume

l1 > 0, then, x(g(t)) ≥ l1 for t ≥ t2 ≥ t1. Integrating equation (1.1) from t to ∞, we
find

a2(t){(a1(t) (x′(t))
α1)′}α2 ≥

∫

∞

t

q(s)f(x(g(s)))ds.

It follows from (A3) and (A4) that

(a1(t) (x′(t))
α1)′ ≥

(

f(l1)

a2(t)

)
1

α2

(∫

∞

t

q(s)ds

)
1

α2

.

Integrating the above inequality from t to ∞, we get

−x′(t) ≥
f

1
α1α2 (l1)

a
1

α1

1 (t)

[

∫

∞

t

a
−

1
α2

2 (u)

(
∫

∞

u

q(s)ds

)
1

α2

du

]
1

α1

.

By integrating the last inequality from t2 to ∞, we find that

x(t2) ≥ f
1

α1α2 (l1)

∫

∞

t2

a
−

1

α1

1 (v)

[

∫

∞

v

a
−

1
α2

2 (u)

(∫

∞

u

q(s)ds

)
1

α2

du

]
1

α1

dv.

This contradicts to the condition (2.6), then lim
t→∞

x(t) = 0.

Theorem 2.1. Let (H1), (H2) and g′(t) > 0 on [t0,∞) hold and there exists
a function ξ (t) such that

ξ′ (t) ≥ 0, ξ (t) > t and g(ξ (ξ (t))) < t. (2.7)

If both first order delay equations

y′(t) + q(t)f(y
1

α1α2 (g(t)))f

(

∫ g(t)

t0

a
−

1

α1

1 (s)

[∫ s

t0

a
−

1
α2

2 (u)du

]
1

α1

ds

)

= 0, (2.8)

and

x′(t) + a
−

1

α1

1 (t)f
1

α1α2 (x((η (t)))





∫ ξ(t)

t

a
−

1
α2

2 (s)

(

∫ ξ(s)

s

q(u)du

)
1

α2

ds





1

α1

= 0,

(2.9)
where η(t) := g(ξ (ξ (t))), are oscillatory, then equation (1.1) is oscillatory.
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Proof. Assume (1.1) has a nonoscillatory solution. Then, without loss of
generality, there is a t1 ≥ t0, sufficiently large such that x (t) > 0 and x (g(t)) > 0 on
[t1,∞) . From equation (1.1), (A1) and (A3), we have [a2(t){(a1(t) (x′(t))

α1)′}α2 ]′ <

0 for all t ≥ t1. That is a2(t) (a1(t) (x′(t))
α1)′ is strictly decreasing on [t1,∞) and

thus (a1(t) (x′(t))
α1)′ and x′(t) are eventually of one sign. Then, from Lemma 2.1,

we have the following cases, for t2 ≥ t1, is sufficiently large
(1) x′ (t) > 0, (a1(t) (x′(t))

α1)′ > 0;
(2) x′ (t) < 0, (a1(t) (x′(t))α1)′ > 0.

For the case (1), we have

a1(t) (x′(t))
α1 = a1(t2) (x′(t2))

α1 +

∫ t

t2

a
−

1

α2

2 (s)y
1

α2 (s)ds

≥ y
1

α2 (t)

∫ t

t2

a
−

1

α2

2 (s)ds,

where y(t) := a2(t){(a1(t) (x′(t))
α1)′}α2 . It follows that

x′(t) ≥ a
−

1

α1

1 (t)y
1

α1α2 (t)

[
∫ t

t2

a
−

1

α2

2 (s)ds

]

1

α1

.

Integrating the above inequality from t2 to t, we get

x(t) ≥

∫ t

t2

a
−

1

α1

1 (s)y
1

α1α2 (s)

[∫ s

t2

a
−

1

α2

2 (u)du

]
1

α1

ds

≥ y
1

α1α2 (t)

∫ t

t2

a
−

1

α1

1 (s)

[∫ s

t2

a
−

1

α2

2 (u)du

]
1

α1

ds.

There exists t3 ≥ t2 such that g(t) ≥ t2 for all t ≥ t3. Then

x(g(t)) ≥ y
1

α1α2 (g(t))

∫ g(t)

t2

a
−

1

α1

1 (s)

[∫ s

t2

a
−

1

α2

2 (u)du

]
1

α1

ds, for all t ≥ t3.

Thus equation (1.1) and (A3) yield, for all t ≥ t3.

−y′(t) = q(t)f(x(g(t)))

≥ q(t)f(y
1

α1α2 (g(t)))f

(

∫ g(t)

t2

a
−

1

α1

1 (s)

[∫ s

t2

a
−

1

α2

2 (u)du

]
1

α1

ds

)

.

Integrating the above inequality from t to ∞, we get

y(t) ≥

∫

∞

t

q(s)f(y
1

α1α2 (g(s)))f

(

∫ g(s)

t2

a
−

1

α1

1 (v)

[∫ v

t2

a
−

1

α2

2 (u)du

]
1

α1

dv

)

ds.
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The function y(t) is obviously strictly decreasing. Hence, by Theorem 1 in [18] there
exists a positive solution of equation (2.8) which tends to zero this contradicts that
(2.8) is oscillatory.
For the case (2). Integrating equation (1.1) from t to ξ (t) , we obtain

a2(t){(a1(t) (x′(t))
α1)′}α2 ≥

∫ ξ(t)

t

q(s)f(x(g(s)))ds.

Using (2.7)and (A3), we get

(a1(t) (x′(t))
α1)′ ≥ a

−
1

α2

2 (t)f
1

α2 (x(g(ξ (t))))

(

∫ ξ(t)

t

q(s)ds

)
1

α2

.

Integrating again the last inequality from t to ξ (t) , we get

−a1(t) (x′(t))
α1 ≥

∫ ξ(t)

t

a
−

1

α2

2 (u)f
1

α2 (x(g(ξ (u))))

(

∫ ξ(u)

u

q(s)ds

)
1

α2

du.

It follows that

−x′(t) ≥ f
1

α2α1 (x(η (t)))a
−

1

α1

1 (t)





∫ ξ(t)

t

a
−

1

α2

2 (u)

(

∫ ξ(u)

u

q(s)ds

)
1

α2

du





1

α1

.

By integrate the above inequality from t to ∞, we have

x(t) ≥ f
1

α2α1 (x(η (t)))

∫

∞

t

a
−

1

α1

1 (v)





∫ ξ(v)

v

a
−

1

α2

2 (u)

(

∫ ξ(u)

u

q(s)ds

)
1

α2

du





1

α1

dv

In view of Theorem 1 in [18] there exists a positive solution of equation (2.9)
which tends to zero which contradicts that (2.9) is oscillatory then equation (1.1)
is oscillatory. The proof is complete.

The following result is obtained by combining case (1) in the proof of Theorem
2.1 with Lemma 2.2.

Theorem 2.2. Assume that the first order delay equation (2.8) is oscillatory,
(2.6), (H1) and (H2) hold. Then every solution x(t) of equation (1.1) is either
oscillatory or tends to zero as t → ∞.

Remark 2.1. Let a1(t) = 1 and α1 = 1 Theorem 2.1 and Theorem 2.2 are
reduced to [7, Theorem 3 and Theorem 2].

In the following examples are given to illustrate the main results.
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Example 2.1. Consider the third order delay differential equation




[

t

(

1

t2
(y′ (t))

1

3

)

′

]3




′

+
1

t
y
(

t
1

5

)

= 0, t ≥ 1. (2.10)

We note that

f (y) = y, g (t) = t
1

5 < t, g′ (t) > 0, lim
t→∞

g (t) = lim
t→∞

t
1

5 = ∞,

and

a1(t) =
1

t2
, a2(t) = t, α1 =

1

3
, α2 = 3,

and
∫

∞

1

a
−

1

α1

1 (u)du = ∞,

∫

∞

1

a
−

1

α2

2 (u)du = ∞.

It easy to see that condition (2.6) holds and Eq.(2.8), reduces to

y′(t) +
1

t

(

b1t
9

5 + b2t
5

3 + b3t
23

15 − b4t
7

5

)

y
(

t
1

5

)

= 0. (2.11)

where b1, b2, b3, b4 are constants. On the other hand, Theorem 2.1.1 in [17]
guarantees oscillation of (2.11) provided that

lim
t→∞

∫ t

t
1

5

1

s

(

b1s
9

5 + b2s
5

3 + b3s
23

15 − b4s
7

5

)

ds >
1

e
,

and according to Theorem 2.2. every nonoscillatory solution of Eq.(2.10) tends to
zero as t → ∞.

Example 2.2. Consider the third order delay differential equation
(

t3
(

t6 (y′ (t))
)′
)

′

+ t11y

(

t

2

)

= 0, t ≥ 1. (2.12)

We note that

f (y) = y, g (t) = t
1

5 < t, g′ (t) > 0, lim
t→∞

g (t) = lim
t→∞

t

2
= ∞,

and

a1(t) = t4, a2(t) = t3, α1 = α2 = 1,

and
∫

∞

1

a
−

1

α1

1 (u)du =
1

5
< ∞,

∫

∞

1

a
−

1

α2

2 (u)du =
1

2
< ∞.

It easy to see that conditions(2.6), (2.2) and (2.4) hold. Eq.(2.8), reduces to

y′(t) + t11
(t7 − 112t2 + 320)

35t7
y

(

t

2

)

= 0. (2.13)

EJQTDE, 2012 No. 5, p. 9



on the other hand, Theorem 2.1.1 in [17] guarantees oscillation of (2.13) provided
that

lim
t→∞

∫ t

t/2

t11
(t7 − 112t2 + 320)

35t7
>

1

e
,

and according to Theorem 2.2. every nonoscillatory solution of Eq.(2.12) tends to
zero as t → ∞.
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