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Abstract. In this note, we consider a critical elliptic equation perturbed by a logarithmic
type subcritical term in R4, and investigate how the logarithmic term affects the exis-
tence of weak solutions to such a problem. Since the logarithmic term does not satisfy
the standard monotonicity condition, essential difficulty arises when one looks for weak
solutions to this problem in the variational framework. After some delicate estimates
on the logarithmic term we can control the mountain pass level of the corresponding
functional so that it satisfies the local compactness condition. Then a positive weak
solution follows with the application of the Mountain Pass Lemma and the Brézis–Lieb
Lemma. Our result implies that the logarithmic term plays a positive role for the prob-
lem to admit positive solutions.
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1 Introduction and the main results

In this note, we confine ourselves to the following critical elliptic problem with a logarithmic
type perturbation {

−∆u = λ|u|q−2u ln u2 + u3, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1.1)

where Ω ⊂ R4 is a bounded smooth domain with boundary ∂Ω, q ∈ (2, 4) and λ > 0 is a
parameter. Without loss of generality, we may assume that 0 ∈ Ω.

It is clear that problem (1.1) is a special form of the following elliptic boundary value
problem {

(−∆)mu = µu + f (x, u) + |u|p−2u, x ∈ Ω,

Dαu = 0, f or |α| ≤ m − 1, x ∈ ∂Ω,
(1.2)

where m ∈ N, Ω ⊂ RN(N > 2m) is a bounded smooth domain, µ ∈ R, p = 2N
N−2m and f (x, u)

is a nonlinear term. One of the main features of the equation in (1.2) is that it involves a critical
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term in the sense that the embedding Hm
0 (Ω) ↪→ Lp(Ω) is not compact, which brings essential

difficulty in proving the existence of weak solutions to (1.2). Therefore, the study of elliptic
problems with critical exponents is not only interesting, but also challenging. However, it was
mainly after the pioneering work of Brézis and Nirenberg [2] that such problems were exten-
sively investigated, and remarkable progress has been made on the existence, nonexistence
and multiplicity of weak solutions to such problems.

On the other hand, partial differential equations with logarithmic nonlinearities have also
been attracting more and more attention in recent years due to their wide applications in
many applied sciences. Interested readers may refer to [3, 5, 8–11] and the references therein
for the study of different kinds of equations with logarithmic nonlinearity. For example, when
m = 1, f (x, u) = µu ln u2 (µ ̸= 0), Deng et al. [3] considered the existence and nonexistence of
positive solutions to problem (1.2). With the help of some delicate estimates on the logarithmic
term, they showed, among many other interesting results, that problem (1.2) admits a positive
mountain pass type solution when N ≥ 4, λ ∈ R and µ > 0, which is also a ground state
solution. Later, the main results in [3] were extended to second order elliptic system by Hajaiej
et al. [4] and to critical bi-harmonic equation by Li et al. [5].

It is worth pointing out that the exponent of the logarithmic term in all the above men-
tioned literature is q = 2, and it seems that there is no result for q > 2. Motivated mainly by
[3, 5, 11] we will consider problem (1.1) and investigate what role the logarithmic term plays
for the problem to admit weak solutions. Since the logarithmic term does not satisfy the stan-
dard monotonicity condition, additional difficulty arises when we look for weak solutions to
problem (1.1) by using variational methods. A key step in this process is to control the moun-
tain pass level of the corresponding energy functional from above by a small constant such
that it satisfies the (PS) condition locally. This is done with the help of some very delicate esti-
mates on the logarithmic function of the truncated Talenti’s functions. Then by combining the
Mountain Pass Lemma with the Brézis–Lieb Lemma, we can show for q ∈ (2, 4) that problem
(1.1) admits a positive mountain pass type solution for all λ > 0, which, compared with the
case λ = 0 (see Remark 1.2 below), means that the logarithmic type subcritical perturbation
plays a positive role for problem (1.1) to admit positive solutions.

The notations used in this paper are almost standard. We use ∥ · ∥p to denote the Lp(Ω)

norm for 1 ≤ p ≤ ∞, and equip the Sobolev space H1
0(Ω) with the norm ∥u∥ := ∥u∥H1

0 (Ω) =

∥∇u∥2. The dual space of H1
0(Ω) is denoted by H−1(Ω) and the dual pair between H1

0(Ω)

and H−1(Ω) is written as ⟨·, ·⟩. For each Banach space B, we use → and ⇀ to denote the
strong and weak convergence in it, respectively. We also use C, C1, C2, . . . to denote (possibly
different) positive constants. The positive constant S denotes the best embedding constant
from H1

0(Ω) to L4(Ω), i.e.,

S = inf
u∈H1

0 (Ω)\{0}

∥u∥2

∥u∥2
4

. (1.3)

Finally, Br(x0) is a ball of radius r centered at x0 and Br(0) is simply written as Br when no
confusion arises. The symbol O(t) means |O(t)

t | ≤ C as t → 0 and on(1) is an infinitesimal as
n → ∞.

The energy functional associated with problem (1.1) and its Fréchet derivative are denoted
respectively by I(u) and I′(u), i.e.,

I(u) =
1
2
∥u∥2 +

2λ

q2 ∥u∥q
q −

λ

q

∫
Ω
|u|q ln u2dx − 1

4
∥u∥4

4, u ∈ H1
0(Ω), (1.4)
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and

⟨I′(u), ϕ⟩ =
∫

Ω
∇u∇ϕdx − λ

∫
Ω
|u|q−2uϕ ln u2dx −

∫
Ω

u3ϕdx, u, ϕ ∈ H1
0(Ω). (1.5)

It is obviously that I(u) is a C1 functional on H1
0(Ω), and each critical point of I(u) is also a

weak solution to problem (1.1). Since I(u) = I(|u|), we may assume that u ≥ 0 in the sequel.
The main result of this paper is the following theorem.

Theorem 1.1. Assume that q ∈ (2, 4). Then problem (1.1) admits a positive mountain pass type
solution u for all λ > 0.

Remark 1.2. In [6], Pohožaev showed that problem (1.1) with λ = 0 admits no positive solu-
tion if Ω is star-shaped. However, Theorem 1.1 shows that this situation can be reversed when
the logarithmic term is introduced. This means that the logarithmic term plays a positive role
for problem (1.1) to admit positive solutions.

Remark 1.3. The solution obtained in Theorem 1.1 is actually a ground state solution to prob-
lem (1.1). To see this, set

N =
{

u ∈ H1
0(Ω) \ {0} : ⟨I′(u), u⟩ = 0

}
,

c1 = infu∈N I(u) and c2 = infu∈H1
0 (Ω)\{0} maxt≥0 I(tu). Then it is easily to verify that c1 = c2.

Let c0 be the mountain pass level defined in Lemma 2.7. Since q ∈ (2, 4), one sees that
I(tu) < 0 for u ∈ H1

0(Ω) \ {0} and t large enough, which implies that c0 ≤ c2. Noticing that
the Nehari’s manifold N separates H1

0(Ω) into two components. The component containing
the origin also contains a small ball around the origin. Moreover I(u) ≥ 0 for all u in this
component, by the assumption q ∈ (2, 4). Thus every γ ∈ Γ has to cross N and c1 ≤ c0.
Therefore, c0 = c1 and the solution u obtained in Theorem 1.1 is a ground state solution.

Remark 1.4. When q = 2 and N = 3, 4, Deng et al. [3] also considered the case that λ < 0,
and obtained a positive solution by using the Mountain Pass Lemma without compactness
condition. However, it seems quite difficult to derive the same conclusion for q ∈ (2, 4). This
can be seen from (2.23) and (2.24). Indeed, from (2.23) and (2.24) we know that compared with∫

Ω |uε|q ln u2
ε dx, ∥uε∥q

q is an infinitesimal of higher order as ε → 0 and consequently we can
not control the mountain pass level as was done in [3]. So the treatment for the case q ∈ (2, 4)
must be different from those in [3] and new ideas and techniques may be needed.

2 Proof of the main result

We begin this section with some definitions, lemmas and basic inequalities, which will be
used in the proof of the main result.

Definition 2.1. ((PS)c condition) Assume that B is a real Banach space, I : B → R is a C1

functional and c ∈ R. We say that I satisfies the (PS)c condition if any sequence {un} ⊂ B
such that

I(un) → c and I′(un) → 0 in B′ (the dual space of B) as n → ∞

has a convergent subsequence.
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Lemma 2.2 (Mountain Pass Lemma [5,7]). Assume that (B, ∥ · ∥B) is a real Banach space, I : B →
R is a C1 functional and there exist α > 0 and ρ > 0 such that I satisfies the following mountain pass
geometry

(i) I(u) ≥ α > 0 if ∥u∥B = ρ;

(ii) There exists a u ∈ B such that ∥u∥B > ρ and I(u) < 0.

Then there exist a sequence {un} ⊂ B such that I(un) → c0 and I ′(un) → 0 in B′ as n → ∞, where

c0 := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) ≥ α, Γ = {γ ∈ C([0, 1], B) : γ(0) = 0, γ(1) = u} .

Furthermore, c0 (which is usually called the mountain level) is a critical value of I if I satisfies the
(PS)c0 condition.

Lemma 2.3 (Brézis–Lieb Lemma [1]). Let p ∈ (1, ∞). Suppose that {un} is a bounded sequence in
Lp(Ω) and un → u a.e. in Ω. Then

lim
n→∞

(∥un∥p
p − ∥un − u∥p

p) = ∥u∥p
p.

Lemma 2.4. For any δ > 0, there exists a positive constant Cδ such that

| ln t| ≤ Cδ(tδ + t−δ), ∀ t > 0, (2.1)

ln t ≤ tδ

eδ
, ∀ t ≥ 1. (2.2)

In order to apply the Mountain Pass Lemma, we then verify the mountain pass geometry
for I around 0 when q ∈ (2, 4) and λ > 0.

Lemma 2.5. Assume that q ∈ (2, 4) and λ > 0. Then I(u) satisfies the mountain pass geometry
around 0.

Proof. By recalling (2.2) with δ ∈ (0, 4− q) and making use of the Sobolev embedding inequal-
ity, one has

I(u) =
1
2
∥u∥2 +

2λ

q2 ∥u∥q
q −

λ

q

∫
Ω
|u|q ln u2dx − 1

4
∥u∥4

4

≥ 1
2
∥u∥2 − λ

q

∫
Ω1

|u|q ln u2dx − λ

q

∫
Ω2

|u|q ln u2dx − 1
4
∥u∥4

4

≥ 1
2
∥u∥2 − C∥u∥q+δ − 1

4
S−2∥u∥4

= ∥u∥2
(

1
2
− C∥u∥q+δ−2 − 1

4
S−2∥u∥2

)
,

where Ω1 = {x ∈ Ω : |u(x)| < 1}, Ω2 = {x ∈ Ω : |u(x)| ≥ 1}. Hence, there exist positive
constants α and ρ such that

I(u) ≥ α for all ∥u∥ = ρ.

On the other hand, for any v ∈ H1
0(Ω) \ {0}, one has limt→∞ I(tv) = −∞ since q < 4,

which ensures that there exists a t(v) > 0 such that ∥t(v)v∥ > ρ and I(t(v)v) < 0. Thus, I
satisfies the mountain pass geometry around 0. The proof is complete.
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Next, we shall verify that I satisfies the (PS)c condition when c < 1
4 S2. This condition will

play a key role in showing the existence of weak solutions to problem (1.1).

Lemma 2.6. Assume that q ∈ (2, 4) and λ > 0. Then I(u) satisfies the (PS)c condition when
c < 1

4 S2.

Proof. Let {un} ⊂ H1
0(Ω) be a (PS) sequence for I(u) at the level c with c < 1

4 S2, i.e., I(un) → c
and I′(un) → 0 in H−1(Ω) as n → ∞. First, we claim that {un} is bounded. Indeed, from the
definition of the (PS) sequence, one obtains, for n suitably large, that

c + 1 + o(1)∥un∥ ≥ I(un)−
1
q
⟨I′(un), un⟩

=

(
1
2
− 1

q

)
∥un∥2 +

2λ

q2 ∥un∥q
q +

(
1
q
− 1

4

)
∥un∥4

4

≥
(

1
2
− 1

q

)
∥un∥2,

which implies that {un} is bounded in H1
0(Ω). Consequently, there is a subsequence of {un}

(still denoted by {un}) such that, as n → ∞,

un ⇀ u in H1
0(Ω),

un → u in Lr(Ω) (1 ≤ r < 4),

un ⇀ u in L4(Ω),

|un|2un ⇀ |u|2u in L
4
3 (Ω),

un → u a.e. in Ω.

(2.3)

Next, we show that

lim
n→∞

∫
Ω
|un|q ln u2

ndx =
∫

Ω
|u|q ln u2dx. (2.4)

Indeed, since un → u a.e. in Ω as n → ∞, we get

|un|q ln u2
n → |u|q ln u2 a.e. in Ω. (2.5)

Moreover, by recalling (2.2) with δ < 4 − q and (2.3), one has∣∣|un|q ln u2
n
∣∣ ≤ Cδ(|un|q−δ + |un|q+δ) → Cδ(|u|q−δ + |u|q+δ) in L1(Ω). (2.6)

Then (2.4) follows from (2.5), (2.6) and Lebesgue’s dominated convergence theorem. Similarly,

lim
n→∞

∫
Ω
|un|q−2unϕ ln u2

ndx =
∫

Ω
|u|q−2uϕ ln u2dx, ∀ ϕ ∈ H1

0(Ω). (2.7)

To prove that un → u in H1
0(Ω) as n → ∞, set wn = un − u. Then {wn} is also a bounded

sequence in H1
0(Ω), and therefore there exists a subsequence of {wn} (which we still denote

by {wn}) such that
lim
n→∞

∥wn∥2 = l ≥ 0. (2.8)

We claim that l = 0. Indeed, in view of the weak convergence un ⇀ u in H1
0(Ω), we have

∥un∥2 = ∥wn∥2 + ∥u∥2 + on(1), n → ∞. (2.9)
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Moreover, (2.3) implies that we can apply the Brézis–Lieb Lemma to obtain

∥un∥4
4 = ∥wn∥4

4 + ∥u∥4
4 + on(1), n → ∞. (2.10)

With (2.3), (2.4), (2.7), (2.9), (2.10) at hand and recalling the boundedness of {un} and the
assumption that I′(un) → 0 in H−1(Ω), we have

on(1) = ⟨I′(un), un⟩ = ⟨I′(u), u⟩+ ∥wn∥2 − ∥wn∥4
4 + on(1), n → ∞, (2.11)

and
on(1) = ⟨I′(un), ϕ⟩ = ⟨I′(u), ϕ⟩+ on(1), n → ∞, ∀ ϕ ∈ H1

0(Ω). (2.12)

It follows from (2.12) that u is a weak solution to problem (1.1).
Choosing ϕ = u in (2.12), one obtains

⟨I′(u), u⟩ = 0, (2.13)

which, together with (2.11), implies that

∥wn∥2 − ∥wn∥4
4 = on(1), n → ∞. (2.14)

In addition, by the Sobolev embedding one has

∥wn∥4
4 ≤ S−2∥wn∥4, ∀ n ∈ N. (2.15)

Letting n → ∞ on both sides of (2.15) and recalling (2.8) and (2.14), one arrives at

l ≤ S−2l2. (2.16)

If l > 0, then
l ≥ S2. (2.17)

On one hand, by virtue of (2.13), we have

I(u) = I(u)− 1
q
⟨I′(u), u⟩ =

(
1
2
− 1

q

)
∥u∥2 +

2λ

q2 ∥u∥q
q +

(
1
q
− 1

4

)
∥u∥4

4 ≥ 0,

since q ∈ (2, 4) and λ > 0.
On the other hand, in view of (2.3), (2.4), (2.9), (2.10) and the fact that I(un) = c + on(1) as

n → ∞, we deduce that

on(1) + c = I(un) = I(u) +
1
2
∥wn∥2 − 1

4
∥wn∥4

4 + on(1), n → ∞,

which yields

I(u) = c − 1
2
∥wn∥2 +

1
4
∥wn∥4

4 + on(1), n → ∞.

From this and recalling (2.8), (2.14) and (2.17) one has

I(u) = c −
(

1
2
− 1

4

)
l ≤ c − 1

4
S2 < 0,

which is a contradiction. Therefore, we have limn→∞ ∥wn∥2 = l = 0, i.e., un → u in H1
0(Ω) as

n → ∞. The proof is complete.
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Lemma 2.7. Assume that q ∈ (2, 4) and λ > 0. If there exists a v ∈ H1
0(Ω) \ {0} such that

sup
t≥0

I(tv) <
1
4

S2, (2.18)

then problem (1.1) possesses a nontrivial weak solution.

Proof. From Lemma 2.5, we know that I satisfies the mountain pass geometry around 0. Con-
sequently, in view of Lemma 2.2, there exists a sequence {un} ⊂ H1

0(Ω) such that I(un) → c0

and I′(un) → 0 in H−1(Ω) as n → ∞, where

0 < α ≤ c0 = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)), Γ = {γ ∈ C([0, 1], H1
0(Ω)) : γ(0) = 0, γ(1) = t(v)v}, (2.19)

and t(v) > 0 is the constant determined in the proof of Lemma 2.5. According to (2.18), we
have

c0 ≤ max
t∈[0,1]

I(tt(v)v) ≤ sup
t≥0

I(tv) <
1
4

S2. (2.20)

Then by (2.20) and Lemma 2.6, we know that there exists a convergent subsequence of {un}
(still denoted by {un}), such that un → u in H1

0(Ω) as n → ∞, which implies that I(u) = c0

and I′(u) = 0, i.e., u is a nontrivial mountain pass type solution to problem (1.1). The proof is
complete.

From Lemma 2.7 it is easily seen that a nontrivial nonnegative mountain pass type solution
to problem (1.1) follows once we can find a v ∈ H1

0(Ω) \ {0} such that (2.18) holds. This is
done with the help of some delicate estimates on the truncated Talenti’s functions, inspired
mainly by Brézis and Nirenberg [2], Deng et al. [3] and Li et al. [5].

For any ε > 0, define

Uε(x) =
√

8ε

ε2 + |x|2 , x ∈ R4. (2.21)

It is well known that Uε(x) is a solution to the critical problem

−∆u = u3, x ∈ R4,

which is also a minimizer for S.

Lemma 2.8. Let φ ∈ C∞
0 (Ω) satisfy 0 ≤ φ(x) ≤ 1 in Ω and

φ(x) =

{
1, |x| < R,

0, |x| > 2R,

where R > 0 is a constant such that B2R(0) ⊂ Ω. Set uε(x) = φ(x)Uε(x). Then, as ε → 0,

∥uε∥2 = S2 + O(ε2),

∥uε∥4
4 = S2 + O(ε4),

(2.22)

∥uε∥q
q = O(ε4−q), 2 < q < 4, (2.23)

and ∫
Ω
|uε|q ln u2

ε dx = Cε4−q ln
(

1
ε

)
+ O(ε4−q). (2.24)
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Proof. (2.22) is well known and can be referred, for example, to [2] and [3]. We only prove
(2.23) and (2.24).

By the definition of uε, one has

∥uε∥q
q = C

∫
B2R

φq(x)εq

(ε2 + |x|2)q dx

= C
∫

BR

εq

(ε2 + |x|2)q dx + C
∫

B2R\BR

φq(x)εq

(ε2 + |x|2)q dx

= I1 + O(εq).

By direct computation, we obtain

I1 = C
∫

BR/ε

εq · ε4

ε2q(1 + |y|2)q dy = Cε4−q
∫ R/ε

0

r3

(1 + r2)q dr

= Cε4−q
(∫ ∞

0

r3

(1 + r2)q dr −
∫ ∞

R/ε

r3

(1 + r2)q dr
)

= Cε4−q − O(εq),

where we have used the fact that

∣∣∣∣∫ ∞

R/ε

r3

(1 + r2)q dr
∣∣∣∣ ≤ ∫ ∞

R/ε
r3−2qdr = O(ε2q−4).

Therefore,

∥uε∥q
q = Cε4−q + O(εq) = O(ε4−q).

Next we prove (2.24). Set

J =
∫

Ω
|uε|q ln u2

ε dx

=
∫

Ω
φq(x)Uq

ε (x) ln φ2(x)dx +
∫

Ω
φq(x)Uq

ε (x) ln U2
ε (x)dx

=
∫

Ω
φq(x)Uq

ε (x) ln φ2(x)dx+
∫

BR

Uq
ε (x) ln U2

ε (x)dx+
∫

B2R\BR

φq(x)Uq
ε (x) ln U2

ε (x)dx

= J1 + J2 + J3,

(2.25)

where

|J1| =
∣∣∣∣∫B2R\BR

φq(x)Uq
ε (x) ln φ2(x)dx

∣∣∣∣ ≤ C
∫

B2R\BR

Uq
ε (x)dx = O(εq). (2.26)

By applying (2.1) with δ1 ∈ (0, 2q − 4) to J3, one has

|J3| ≤ Cδ1

∫
B2R\BR

(
Uq−δ1

ε (x) + Uq+δ1
ε (x)

)
dx = O(εq−δ1). (2.27)
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To estimate J2, we rewrite it as follows:

J2 =
∫

BR

Uq
ε (x) ln U2

ε (x)dx

= C
∫

BR

εq

(ε2 + |x|2)q ln
(

Cε2

(ε2 + |x|2)2

)
dx

= Cε4−q
∫

BR/ε

1
(1 + |y|2)q ln

(
C

ε2(1 + |y|2)2

)
dy

= Cε4−q ln
(

1
ε

) ∫
BR/ε

1
(1 + |y|2)q dy + Cε4−q

∫
BR/ε

1
(1 + |y|2)q ln

(
C

1 + |y|2

)
dy

= Cε4−q ln
(

1
ε

)[∫
R4

1
(1 + |y|2)q dy −

∫
Bc

R/ε

1
(1 + |y|2)q dy

]

+ Cε4−q
∫

BR/ε

1
(1 + |y|2)q ln

(
C

1 + |y|2

)
dy

= Cε4−q ln
(

1
ε

)
− Cε4−q ln

(
1
ε

) ∫
Bc

R/ε

1
(1 + |y|2)q dy

+ Cε4−q
∫

BR/ε

1
(1 + |y|2)q ln

(
C

1 + |y|2

)
dy,

(2.28)

where ∣∣∣∣∣
∫

Bc
R/ε

1
(1 + |y|2)q dy

∣∣∣∣∣ ≤ C
∫ ∞

R/ε

r3

(1 + r2)q dr = O(ε2q−4). (2.29)

The last term in (2.28) can be estimated as follows:∣∣∣∣∫BR/ε

1
(1 + |y|2)q ln

(
C

1 + |y|2

)
dy

∣∣∣∣
=

∣∣∣∣∣
∫

R4

1
(1 + |y|2)q ln

(
C

1 + |y|2

)
dy −

∫
Bc

R/ε

1
(1 + |y|2)q ln

(
C

1 + |y|2

)
dy

∣∣∣∣∣
=

∣∣∣∣∣C −
∫

Bc
R/ε

1
(1 + |y|2)q ln

(
C

1 + |y|2

)
dy

∣∣∣∣∣
≤ C + Cδ2

∫
Bc

R/ε

(
1

(1 + |y|2)q−δ2
+

1
(1 + |y|2)q+δ2

)
dy

= C + O(ε2q−4−2δ2),

(2.30)

where we have used (2.1) with δ2 ∈ (0, q− 2). Substituting (2.26)–(2.30) into (2.25) and noticing
the choice of δ1 and δ2 one sees that

J = O(εq) + Cε4−q ln
(

1
ε

)
+ O

(
εq ln

(
1
ε

))
+ O(ε4−q) + O(εq−2δ2) + O(εq−δ1)

= Cε4−q ln
(

1
ε

)
+ O(ε4−q).

Therefore, (2.24) is valid. The proof is complete.

On the basis of the estimates in Lemma 2.8, we can find a v ∈ H1
0(Ω) \ {0} such that (2.18)

holds.
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Lemma 2.9. Assume that q ∈ (2, 4) and λ > 0. Then for ε > 0 suitably small, we have

sup
t≥0

I(tuε) <
1
4

S2. (2.31)

Proof. Let uε be given in Lemma 2.8 and set ψuε(t) = I(tuε). Then limt→0 ψuε(t) = 0, ψuε(t) > 0
for suitably small t > 0 and limt→+∞ ψuε(t) = −∞ uniformly for ε ∈ (0, ε1), where ε1 > 0 is a
suitably small but fixed number. Consequently, for each ε ∈ (0, ε1), there exists a tε ∈ (0,+∞)

such that
sup
t≥0

I(tuε) = sup
t≥0

ψuε(t) = ψuε(tε),

and

ψ′
uε
(tε) = tε

(
∥uε∥2 − λtq−2

ε

∫
Ω
|uε|q ln(tεuε)

2dx − t2
ε∥uε∥4

4

)
= 0,

which implies that

∥uε∥2 = t2
ε∥uε∥4

4 + λtq−2
ε

∫
Ω
|uε|q ln u2

ε dx + λtq−2
ε ln t2

ε∥uε∥q
q. (2.32)

Combining (2.22)–(2.24) with (2.32) we see that there exist 0 < T0 < T0 such that, for ε > 0
uniformly small,

T0 ≤ tε ≤ T0. (2.33)

By the boundedness of tε and (2.22)–(2.24) one gets

sup
t≥0

I(tuε) = I(tεuε) =
1
2

t2
ε∥uε∥2 − 1

4
t4
ε∥uε∥4

2 +
2λ

q2 tq
ε∥uε∥q

q −
λ

q

∫
Ω
|tεuε|q ln(tεuε)

2dx

=
1
2

t2
ε∥uε∥2 − 1

4
t4
ε∥uε∥4

2 +
λ

q
tq
ε (

2
q
− ln t2

ε )∥uε∥q
q −

λ

q
tq
ε

∫
Ω
|uε|q ln u2

ε dx

=

(
1
2

t2
ε −

1
4

t4
ε

) (
S2 + O(ε2)

)
+ O(ε4−q)− λ

q
tq
ε

(
Cε4−q ln

(
1
ε

)
+ O(ε4−q)

)
≤ 1

4
S2 + O(ε2) + O(ε4−q)− Cε4−q ln

(
1
ε

)
.

(2.34)

Since 2 < q < 4, we see that

lim
ε→0

ε2

ε4−q ln
( 1

ε

) = 0, lim
ε→0

ε4−q

ε4−q ln
( 1

ε

) = 0. (2.35)

Consequently, it follows from (2.34) and (2.35) that supt≥0 I(tuε) <
1
4 S2 for sufficiently small

ε > 0. The proof is complete.

With the above lemmas at hand, we are now in the position to prove Theorem 1.1.

Proof of Theorem 1.1. Assume that q ∈ (2, 4) and λ > 0. By virtue of Lemmas 2.5, 2.7
and 2.9 we know that problem (1.1) admits a nontrivial mountain pass type solution u. The
nonnegativity of u follows from the nonnegativity of the (PS) sequence {un} which we have
assumed without loss of generality to be valid since the energy functional I(u) satisfies I(u) =
I(|u|) for any u ∈ H1

0(Ω). Finally, by applying the standard arguments used in the proof of
Theorem 1.2 in [3] we can show that the solution is positive in Ω. The proof is complete.

Remark 2.10. Although we only consider problem (1.1) when the space dimension N = 4, the
same result can be obtained for general N ≥ 5 with little modification when q ∈ (2, 2N

N−2 ) and
λ > 0. Interested readers may check it themselves.
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