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Abstract. We deal with limit cycles bifurcating from the period annulus of Liénard sys-
tem with a hyperelliptic Hamiltonian of degree five under quartic perturbation, where
Liénard system has a normal form ẋ = y, ẏ = x(x − 1)(x2 + ax + b), a2 − 4b < 0. It
is proved that the perturbation of this system can produce at most six limit cycles for
a = b = 2.
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1 Introduction

In the qualitative theory of real planar differential systems, one of research focus is the number
and configuration of limit cycles, which belong to the context of the second part of Hilbert’s
16th Problem. Until now the problem still remains to be unsolved even though a lot of works
have been done. As well known, Arnold [1] proposed a weaker version of this problem, the
so-called infinitesimal Hilbert’s 16th problem, that is to study the number of isolated zeros of
the Abelian integrals obtained from integrating polynomial 1-forms over ovals of polynomial
Hamiltonian.

Consider perturbations of the Hamiltonian systemẋ = Hy(x, y) + εP(x, y),

ẏ = −Hx(x, y) + εQ(x, y),
(1.1)

where H(x, y) is a polynomial of degree n + 1, P(x, y) and Q(x, y) are polynomials of degree
m in x, y, and ε is a small parameter.

We assume that there is a family of ovals Γh ⊂ {(x, y) | H(x, y) = h}, continuously
depending on a parameter h ∈ (h1, h2), then the Abelian integral of system (1.1) is defined as

I(h) =
∮

Γh

P(x, y)dy − Q(x, y)dx, (1.2)

BCorresponding author. Email: mathsyishao@126.com

https://doi.org/10.14232/ejqtde.2024.1.62
https://www.math.u-szeged.hu/ejqtde/


2 Y. Shao and C. A

where Γh is the open punctured neighborhood foliated by periodic orbits of system (1.1) as
ε = 0. The displacement function d(h, ε) of system (1.1) is defined on a segment transversal to
the flow, which is parameterized by the Hamiltonian value h, then

d(h, ε) =
∮

Γh

dH = ε(I(h) + O(ε)). (1.3)

Hence, if I(h) is not identically zero, then the number of isolated zeros of the Abelian integral
I(h) (or be called the first order Melnikov function) gives an upper bound for the number of
limit cycles of system (1.1) in any compact region of period annulus. It is well known that the
limit cycles bifurcating from the period annulus is called Poincaré bifurcation.

The generalized Liénard system ẋ = y, ẏ = f (x) + εyg(x) of type (m, n) has rich dynamic
behavior, where m and n are degrees of polynomials f (x) and g(x), respectively. If m = 2, 3
and ε = 0, then Hamiltonian functions of this system are called elliptic. Many authors studied
the bifurcations of limit cycles on this system. Dumortier and Li have made a complete
investigate for Liénard system of type (3, 2) in a series of papers (see [3–6]), and they proved
that the upper bound of number of isolated zeroes of Abelian integrals is five. In [11], the
authors also investigated some Liénard systems of type (3, 2) with symmetry, which exist at
most two limit cycles.

If m ≥ 4 and ε = 0, then Hamiltonian functions of the above Liénard system are called
hyperelliptic. In [7], Gavrilov and Iliev given the topological classification of hyperelliptic
Hamiltonian system of degree five, its normal form of Hamiltonian function is

H(x, y) =
1
2

y2 +
λµ

2
x2 − λ + µ + λµ

3
x3 +

1 + λ + µ

4
x4 − 1

5
x5, (1.4)

where there are eleven cases having period annulus. J. Wang (see [15,16]) studied the number
of limit cycles of two classes of Liénard systems of type (4, 3) and (4, 2), in which unperturbed
systems has a saddle and degenerated polycycle, respectively. The authors of [20] obtained
lower bounds of the number of limit cycles for a Liénard system of type (4, n) having two
elementary centers, where 20 ≤ n ≤ 24.

In this paper, we choose one of eleven cases in [7], that is, we investigation Poincaré
bifurcation for a Liénard system of type (4, 3) with hyperelliptic Hamiltonian H(x, y) = h,
h ∈ (h1, h2) in (1.4) having a pair of conjugated complex critical points. The perturbation
system is as followsẋ = y,

ẏ = x(x − 1)(x2 + ax + b) + ε(α + βx + γx2 + x3)y, a2 − 4b < 0.
(1.5)

It is easy to know that the unperturbed system of (1.5) has a bounded period annulus sur-
rounding the elementary center (0, 0), corresponding to endpoint h1, and a homoclinic loop
(bounder of period annulus) passing through hyperbolic saddle (1, 0), corresponding to end-
point h2. By (1.2), we know that the Abelian integral of system (1.5) is

I(h) =
∫

Γh

(α + βx + γx2 + x3)ydx = αI0(h) + βI1(h) + γI2(h) + I3(h), (1.6)

where Ii(h) =
∫

Γh
xiydx, i = 0, 1, 2, 3 and Γh is the compact component of H(x, y) = h, defined

by (1.5).
There are many techniques and arguments to tackle the problem of bounding the num-

ber of zeroes of Abelian integrals, lots of them are very long and non-trivial, see [2]. Since
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Hamiltonian function H(x, y) has the higher degree, a purely algebraic criterion proposed
in [8] and [12] are usual methods. These methods can transfer the estimation the number
of zeros of Abelian integrals to that of the number of real roots of linear combinations of a
tuple (I0(h), I1(h), I2(h), I3(h)) of associated semi-algebraic systems (SAS for short). This cri-
terion can reduce the difficulties of qualitative analysis in limit cycle bifurcating from a center.
Nonetheless, it is challenging and very difficult to obtain the cyclicity of this family of period
annuli that depends on the variables a, b indeed, which need to verify the problem whether
the collection of Abelian integrals is an ECT-system or a Chebyshev system with accuracy k
(see [8]). We attempt several values of the variables a, b by using software Maple, which lead
to a desktop computer to a dead end due to the huge polynomials with huge coefficients and
thousands of terms.

In the present paper, we take a = b = 2, and use approaches of real root isolation and
interval analysis to get the number of roots of huge polynomial, as a result, we can obtain the
number of zeros of Abelian integrals of system (1.5) for a = b = 2. We rewrite system (1.5) as{

ẋ = y,

ẏ = x(x − 1)(x2 + 2x + 2) + ε(α + βx + γx2 + x3)y,
(1.7)

where α, β, γ are arbitrary real constants and ε > 0 is a small parameter, and the first integral
of (1.7) is

H(x, y) =
1
2

y2 + x2 − 1
4

x4 − 1
5

x5 = h, h ∈
(

0,
11
20

)
(1.8)

as ε = 0. The projection interval of the period annulus Γh on the x-axis is (x0, 1), where
x0 ≈ −0.763592319985, and it is an intersection of the homoclinic loop with the negative half
axis of the x-axis. Phase portrait of the unperturbed system of (1.7) see Figure 1.1.

Figure 1.1: Phase portrait of system (1.5) when ε = 0.

The main purpose in this paper is to show that system (1.7) can undergo Poincaré bifurca-
tion from the period annulus surrounding the origin. We can prove that the Abelian integral
I(h) has at most six zeros (taken into account muitiplicity), see Proposition 3.1 in Section 3.
Proposition 3.1 and the equation (1.3) imply that system (1.7) can produce at most six limit
cycles. The main results of this paper as follows.

Theorem 1.1. The number of limit cycles of system (1.7) bifurcating from period annulus surrounding
the center is at most six for arbitrary value of parameters α, β, γ.
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Note that unperturbed system of (1.7) has a period annulus surrounding the elementary
center, its outer boundary is a saddle loop. According to Roussarie’s theorem [14], the upper
bound of number of isolated zeros of the Abelian integral I(h) covers the number of limit
cycles from center, from period annulus and from the homoclinic loop, therefore we have the
following Theorem.

Theorem 1.2. System (1.7) could give rise to at most six limit cycles in the finite plane surrounding
the origin for sufficiently small ε and any parameters α, β, γ.

The paper is organized as follows. In Section 2, we introduce some definitions and prop-
erties of Chebyshev systems. In Section 3, we study the number of zeros of Abelian integral
I(h) and obtain the maximal number of limit cycles bifurcating from period annulus by using
Chebyshev criterion. Hence Proposition 3.1 is main result of this paper.

2 Preliminary properties

In order to study the number of isolated zeros of Abelian integral I(h) in h ∈ (0, 11
20 ), Grau et

al. in [8] give a Chebyshev criterion, which check whether (I0, I1, I2, I3) in (1.6) is an extended
complete Chebyshev system or Chebyshev system with accuracy k. Hence we introduce some
preliminary definitions and properties, the reader can refer to [8, 12] or the recent paper [13]
for more details.

Definition 2.1. Let φ0(x), φ1(x), . . . , φn−1(x) be analytic functions on an open interval L of R.

(i) The set of functions (φ0(x), φ1(x), . . . , φn−1(x)) is a Chebyshev system (T-system) with
accuracy k on L if any nontrivial linear combination

α0φ0(x) + α1φ1(x) + · · ·+ αn−1φn−1(x)

has at most n + k − 1 isolated zeros for x ∈ L.

(ii) The set of functions (φ0(x), φ1(x), . . . , φn−1(x)) is an extended complete Chebyshev sys-
tem (ECT-system) on L if for all m = 1, 2, . . . , n, any nontrivial linear combination

α0φ0(x) + α1φ1(x) + · · ·+ αm−1φm−1(x)

has at most m − 1 isolated zeros on L counted with multiplicities.

(iii) The continuous Wronskian of (φ0(x), φ1(x), . . . , φm−1(x)) at x ∈ L is

W[φ0, φ1, . . . , φm−1](x) = Det(φ
(i)
j (x))0≤i,j≤m−1 =

∣∣∣∣∣∣∣∣∣∣
φ0(x) · · · φm−1(x)
φ′

0(x) · · · φ′
m−1(x)

...
. . .

...
φ
(m−1)
0 (x) · · · φ

(m−1)
m−1 (x)

∣∣∣∣∣∣∣∣∣∣
,

where φ′
j(x) and φ

(i)
j (x)(i ≥ 2) represent the derivative of one order and the ith order of

φj(x), respectively.

Lemma 2.2 ([10] or [8]). (φ0(x), φ1(x), . . . , φn−1(x)) is an extended complete Chebyshev system on
L if and only if, for each m = 1, 2, . . . , n,

W[φ0, φ1, . . . , φm−1](x) ̸= 0 for all x ∈ L.
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Now we rewrite the first integral (1.8) as

H(x, y) = A(x) + B(x)y2, (2.1)

where

A(x) = x2 − 1
4

x4 − 1
5

x5, B(x) =
1
2

and H(x, y) is an analytic function in open interval. There exists a period annulus filled by
the set of ovals Γh ∈ {(x, y)|H(x, y) = h, h ∈ (0, 11

20 )} and H(0, 0) = 0 is a local minimum.
It is easy to verify that xA′(x) = x2(1 − x)(x2 + 2x + 2) > 0 for any x ∈ (x0, 1) \ 0 (x0 ≈
−0.763592319985). Thus, there exists an analytic involution z = σ(x) (σ ◦ σ = Id and σ ̸= Id)
with x0 < z < 0 such that

A(x) = A(σ(x)) for all x ∈ (0, 1)

and σ(0) = 0. Using Theorem A in [12], we get the following lemma.

Lemma 2.3. Assume that gi(x) are an analytic function on the interval (x0, 1), i = 0, 1, 2, 3. Denote

Īi(h) =
∫

Γh

gi(x)y2s−1dx,

where Γh is the set of periodic orbit surrounding the origin inside the level curve {A(x)+B(x)y2m = h}
for each h ∈ (0, 11

20 ). Let

φi(x) =
gi(x)

A′(x)(B(x))
2s−1
2m

− gi(σ(x))

A′(σ(x))(B(σ(x)))
2s−1
2m

.

If the following statements hold:

(i) W[φ0, φ1, . . . , φm](x) is not vanish on (0, 1) for m = 1, 2, . . . , n − 2;

(ii) W[φ0, φ1, . . . , φn−1](x) has k zeroes on (0, 1) counted with multiplicities, and

(iii) s > m(n + k − 2),

then ( Ī0(h), Ī1(h), . . . , Īn−1(h)) has at most n + k − 1 isolated zeros on (0, 11
20 ) counted with multiplic-

ities.

To prove Proposition 3.1 in Section 3, note that Ii(h) =
∫

Γh
xiydx, s = 1, m = 1 and n = 4,

even if k = 0, but the condition s > 2 in Lemma 2.3 would not be satisfied. Hence we can not
apply Lemma 2.3 directly. We need promote the power y in the integrand of Ii(h) such that
the conditions s > m(n + k − 2) = k + 2 hold. By using Lemma 4.1 in [8], we have

Lemma 2.4. Let Γh be an oval inside the level curve {A(x) + B(x)y2 = h}. If there exists a function
U(x) such that U(x)

A′(x) is analytic at x = 0. Then, for any s ∈ N,

∫
Γh

U(x)ys−2dx =
∫

Γh

V(x)ysdx,

where V(x) = 2
s

( B(x)U(x)
A′(x)

)′ − B′(x)U(x)
A′(x) .
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In order to get the number of real roots of linear combinations of a tuple (I0(h), I1(h), I2(h),
I3(h)) in (1.6), Lemma 2.3 is a main criterion in our paper. By applying this criterion, we can
transfer the estimation of the number of real zeroes of Abelian integral to that of the number of
real roots of a tuple, which reduce a semi-algebraic systems(SAS) and the reader is referred to
see [18,19] for more details. The key to solve of SAS question is to solve polynomial equations.

We suppose that the polynomial equation W(x, z) = 0 has a real root (x∗, z∗) at the rect-
angle domain D = {(x, z) | (x, z) ∈ (0, 1)× (x0, 0)}, where the variables x, z also satisfy the
equation q(x, z) = 0, where z = σ(x) is an involution and σ′(x) < 0. Solving this SAS question
is to solve common root of systems of equations of two unknowns W(x, z) = 0, q(x, z) = 0.
We divide analytic techniques into three steps.

Step 1 (Elimination variable by resultant): We can elimination variable x (or z) by the theory
of resultant, that is, variables x, z satisfy the resultant equation

R(z) = res(W(x, z), q(x, y), x) = 0 or R̄(x) = res(W(x, z), q(x, y), z) = 0.

Step 2 (Interval isolation of real root): Without loss of generality, Assume that the resultant
equation R̄(x) = 0 has a real root x∗ in [x1, x2] ⊂ [0, 1] (corresponding z∗ in [z1, z2] ⊂ [x0, 0])
by using command realroot in Maple. We substitute x = x1 and x = x2 into p(x, z) = 0, and
let maximal interval of isolation real root of equation p(x, z) = 0 be [z11, z12] ⊂ [z1, z2]. Thus
we minimize the possible existing the rectangle domain of the common roots of W(x, z) = 0
and q(x, y) = 0.

However, it should be noted that if we solve R̄(x) = 0 directly without using interval isola-
tion of real root, then we can only get a approximation of x∗. But the results of these numerical
calculation are sometimes unreliable due to the thousands of terms of polynomials with huge
coefficients, a famous cautionary example see [17], and example of numerical calculation see
Lemma 3.4 [iv] of [9].

Step 3 (Analysis of common real roots): Let the above the rectangle domain be ABCD, where
A(x1, z12), B(x1, z11), C(x2, z11) and D(x2, z12). We can analysize whether the rectangle domain
has a common root or not by positive and negative values of W(x, z) and q(x, z) at vertices
A, B, C, D, the involution and the intermediate value theorem of continuous function. The
detailed application skills see proof of Lemma 3.2.

3 Poincaré bifurcations of system (1.7)

In this Section, to prove Theorem 1.1, firstly, we will study the number of isolated zeros of
Abelian integral I(h) in h ∈ (0, 11

20 ) , that is the following Proposition 3.1.

Proposition 3.1. For arbitrary value of parameters (α, β, γ), the Abelian integral I(h) of system (1.7)
has at most six zeros (counting multiplicities) in h ∈ (0, 11

20 ).

The main tools of proving Proposition 3.1 are Lemmas 2.2–2.4. Hence we need to check
the Chebyshev property of the Abelian integral (1.6). Proof of Proposition 3.1 will be given at
the end of this section.

Now applying Lemma 2.4, we rewrite Ii(h) in (1.7) as

Ii(h) =
1
h

∫
Γh

(
A(x) +

1
2

y2
)

xiydx =
1
h

∫
Γh

[
xi A(x)y +

1
2

xiy3
]

dx

=
1
h

∫
Γh

Vi(x)y3dx, i = 0, 1, 2, 3,
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where

Vi(x) =
xiνi(x)

60(x − 1)2(x2 + 2x + 2)2

with

νi(x) = (160 + 40i)− (130 + 30i)x2 − (112 + 28i)x3

+ (35 + 5i)x4 + (68 + 9i)x5 + (34 + 4i)x6.

To promote the power y such that the condition s > 2 (suppose k = 0) is satisfied, by using
Lemma 2.4 again, we obtain that

Ii(h) =
1
h2

∫
Γh

(
A(x) +

1
2

y2
)

Vi(x)y3dx

=
1
h2

∫
Γh

[
Vi(x)A(x)y3 +

1
2

Vi(x)y5
]

dx =
1
h2

∫
Γh

gi(x)y5dx,

where

gi(x) =
xiτi(x)

6000(x − 1)4(x2 + 2x + 2)4 (3.1)

with

τi(x) = (38400 + 16000i + 1600i2)− (62400 + 24800i + 2400i2)x2

− (51840 + 21920i + 2240i2)x3 + (44300 + 15200i + 1300i2)x4

+ (81120 + 27600i + 2400i2)x5 + (23992 + 8324i + 804i2)x6

− (41480 + 11990i + 820i2)x7 − (37939 + 10782i + 719i2)x8

− (5354 + 1851i + 134i2)x9 + (11096 + 2375i + 121i2)x10

+ (7344 + 1492i + 72i2)x11 + (1836 + 352i + 16i2)x12.

Denote

Īi(h) = h2 Ii(h) =
∫

Γh

gi(x)y5dx, h ∈
(

0,
11
20

)
.

We can see that gi(x) is analytic on (x0, 1) and (I0(h), I1(h), I2(h), I3(h)) is an ECT-system or T-
system on (0, 11

20 ) if and only if so is ( Ī0(h), Ī1(h), Ī2(h), Ī3(h)). Therefore, applying Lemma 2.4
to ( Ī0(h), Ī1(h), Ī2(h), Ī3(h)) with s = 3, we have

φ̄i(x, z) = ḡi(x)− ḡi(z) =
(

4
√

2gi

A′

)
(x)−

(
4
√

2gi

A′

)
(z), i = 0, 1, 2, 3, (3.2)

where

ḡi(x) =
√

2xi−1τi(x)
1500(1 − x)5(x2 + 2x + 2)5 ,

ḡi(z) =
√

2zi−1τi(z)
1500(1 − z)5(z2 + 2z + 2)5

and z = σ(x) is an involution function.
On the other hand, due to

A(x)− A(z) =
1
20

(x − z)p(x, z) = 0,
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where

p(x, z) = −20(x + z) + 5(x3 + x2z + xz2 + z3) + 4(x4 + x3z + x2z2 + xz3 + z4).

Since σ(0) = 0, It turns out that z = σ(x) is defined by means of p(x, z) = 0. Moreover, we
get that

σ′(x) =
dz
dx

= − p′x(x, z)
p′z(x, z)

, (3.3)

where

p′x(x, z) = −20 + 15x2 + 10xz + 5z2 + 16x3 + 12x2z + 8xz2 + 4z3,

p′z(x, z) = −20 + 5x2 + 10xz + 15z2 + 4x3 + 8x2z + 12xz2 + 16z3.

By Lemma 2.2, we find that the Wronskian W[(φ̄0, φ̄1, φ̄2, φ̄3)](x) has two zeros on (0, 1) by
interval analysis, which shows that (φ̄0, φ̄1, φ̄2, φ̄3) is not an ECT-system on (0, 1). According
to Lemma 2.3(iii), we need to take s > m(n+ k− 2) = 4. Hence we lift the power of y in the in-
tegrand of Ii(h) to 2s− 1 = 9. But we find that the associated Wronskian W[(φ0, φ1, φ2, φ3)](x)
has three zeros for x ∈ (0, 1). So we further take s = 6 and lift the power of y of integrand
of Ii(h) to 2s − 1 = 11, fortunately, the associated Wronskian W[(φ̃0, φ̃1, φ̃2, φ̃3)](x) has still
three zeros, all of the first order Wronskians W[(φ̃i)](x)(i = 0, 1, 2, 3), the second order Wron-
skians W[(φ̃2, φ̃1)](x) and the third order Wronskians W[(φ̃2, φ̃1, φ̃0)](x) have all no zero for
x ∈ (0, 1), which give us hope to obtain the number of zeros of linear combinations of the
tuple of functions (φ̃0, φ̃1, φ̃2, φ̃3) by Lemma 2.3.

Repeating the above procedures, it follows from Lemma 2.4 that

Ĩi(h) = h5 Ii(h) =
∫

Γh

Fi(x)y11dx, h ∈
(

0,
11
20

)
. (3.4)

where

Fi(x) =
xiGi(x)

33264000000(x − 1)10(x2 + 2x + 2)10 ,

and Gi(x) is a polynomial of degree 30 in x, we omit it here because the polynomial has a
longer expression. Let

φ̃i(x, z) =
(

32
√

2Fi

A′

)
(x)−

(
32
√

2Fi

A′

)
(z), i = 0, 1, 2, 3, (3.5)

where z = σ(x) is an involution and x ∈ (0, 1).
According to Lemma 2.3, we need to compute the number of zeros of many Wronskians,

moreover, each of Wronskians is a the huge polynomial with huge coefficients and hundreds
of items. After many attempts to the ordered linear combinations of associated criterion
function (φ̃0, φ̃1, φ̃2, φ̃3), finally we find that the tuple of functions (φ̃2, φ̃1, φ̃0, φ̃3) satisfy the
statements in Lemma 2.3. Then we get the following lemma.

Lemma 3.2. ( Ĩ2(h), Ĩ1(h), Ĩ0(h), Ĩ3(h)) has at most six isolated zeros on (0, 11
20 ) counted with multi-

plicities.

Proof. It follows from Lemma 2.3 that we need to verify the statements (i) and (ii). For this
purpose, we divide the proof into four cases.

Case 1: The fourth Wronskian W[φ̃2, φ̃1, φ̃0, φ̃3](x, z) has three zeros for (x, z) ∈ (0, 1)× (x0, 0).
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With the help of the computer algebraic system Maple, by direct computation, we get that

W[φ̃2, φ̃1, φ̃0, φ̃3](x, z)

= − (x − z)10ω4(x, z)
8341981409179687500000000000000x4z4q4(x)q4(z)(p′z(x, z))6 ,

(3.6)

where ω4(x, z) is a polynomial of degree 228 in (x, z), p′z(x, z) as in (3.3),

q4(x) = (x − 1)38(x2 + 2x + 1)38, q4(z) = (z − 1)38(z2 + 2z − 1)38,

and z = σ(x) is an implicit function determined by the polynomial equation p(x, z) = 0.
Meanwhile, we find that ω4(x, z) is symmetric polynomial with respect to x, z.

We assert that p′z(x, z) ̸= 0 for any (x, z) ∈ (0, 1) × (x0, 0). In fact, by computing the
resultant R(p′z, p, z) with respect to z between p′z(x, z) and p(x, z), we have

R(p′z, p, z) = 8000(4x3 + 13x2 + 22x + 11)(4x3 + 5x2 − 20)

× (16x6 − 24x5 − 7x4 − 68x3 + 256x2 − 296x + 148).

It is easy to verify that three polynomial factors in R(p′z, p, z) have not zeros in x ∈ (0, 1). This
implies W[φ̃2, φ̃1, φ̃0, φ̃3](x, z) is well defined in (0, 1)× (x0, 0).

Next we calculate the resultant with respect to z between ω4(x, z) and p(x, z) and obtain

R(ω4, p, z) = 396154108207169536000000000000(x − 1)28(x2 + 20 + 2)28ϕ4(x),

where ϕ4(x) is a polynomial of degree 828 in x.
Note that ω4(x, z) and p(x, z) are symmetric polynomials with respect to x, z and z = σ(x)

is an involution. Therefore the resultant R(ω4, p, z)(or R(ω4, p, x)) between ω4(x, z) and p(x, z)
with respect to x (or z) suffices that the statement R(ω4, q, x) = R(ω4, q, z)|z=x. By command
realroot in Maple, we get that ϕ4(x) has five isolate zeros x∗i (i = 1, 2, 3, 4, 5) in (0, 1) and three
isolate zeros z∗i (i = 1, 2, 3) in (x0, 0)(x0 ≈ −0.763592319985). List of the isolation intervals of
these zeros are as follows

x∗1 ∈ [x̂11, x̂12] =

[
73134709858141

140737488355328
,

36567354929071
70368744177664

]
,

x∗2 ∈ [x̂21, x̂22] =

[
42527490909395
70368744177664

,
85054981818791

140737488355328

]
,

x∗3 ∈ [x̂31, x̂32] =

[
29671532711011
35184372088832

,
118686130844045
140737488355328

]
,

x∗4 ∈ [x̂41, x̂42] =

[
122355652851087
140737488355328

,
7647228303193
8796093022208

]
,

x∗5 ∈ [x̂51, x̂52] =

[
137735701579791
140737488355328

,
8608481348737
8796093022208

]
and

z∗1 ∈ [ẑ11, ẑ12] =

[
− 53678146230419

70368744177664
,−107356292460837

140737488355328

]
,

z∗2 ∈ [ẑ21, ẑ22] =

[
− 102328736960905

140737488355328
,−12791092120113

17592186044416

]
,

z∗3 ∈ [ẑ31, ẑ32] =

[
− 80910761056793

140737488355328
,−10113845132099

17592186044416

]
.
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Figure 3.1: The sketch graph of ω4(x, z) =
0 and p(x, z) = 0 intersecting in the rect-
angle A1B1C1D1.

Figure 3.2: The sketch graph of ω4(x, z) =
0 and p(x, z) = 0 intersecting in the rect-
angle A3B3C3D3.

Since z = σ(x) is an involution determined by p(x, z) = 0 and satisfy σ′(x) < 0 for
x ∈ (0, 1), which imply that ω4(x, z) and p(x, z) = 0 have at most three common real roots.
Firstly, we substitute z = ẑ11 and z = ẑ12 into p(x, z), then equation p(x, z) = 0 has one root
in interval

[x11, x12] =

[
68867850789901
70368744177664

,
137735701579803
140737488355328

]
,

and

[x21, x22] =

[
34433925394947
35184372088832

,
137735701579789
140737488355328

]
,

respectively. It is easy to verify that interval [x11, x12] ⊃ [x̂51, x̂52] and [x21, x22] ⊃ [x̂51, x̂52],
which shows that ω4(x, z) and p(x, z) = 0 possibly have common real root.

Let the four vertices of closed rectangle containing the point (x∗5 , z∗1) be A1(x̂51, ẑ12),
B1(x̂51, ẑ11), C1(x̂52, ẑ11) and D1(x̂52, ẑ12), see Figure 3.1. Substituting coordinates of four ver-
tices A1, B1, C1, D1 into ω4(x, z), we get that

ω4(A1) = −1103261 · · · 6171875
1000814 · · · 7682176

, ω4(B1) = −2177946 · · · 3395375
1973759 · · · 7196544

,

ω4(C1) =
3939512 · · · 4495625
2780712 · · · 3723776

, ω4(D1) =
3353939 · · · 1640625
2365568 · · · 5694464

,

here we omit digits using dots for brevity because their numerators and denominators are all
huge numbers.

Note that ω4(A1) < 0, ω4(B1) < 0, ω4(C1) > 0 and ω4(D1) > 0, by command fsolve in
Maple, we find that ω4(x, z) has not zero at the sides A1B1 and C1D1 of rectangle A1B1C1D1

as x = x̂51 and x = x̂52, respectively, which implies that ω4(x, z) < 0 at the side A1B1

and ω4(x, z) > 0 at the side C1D1. Meanwhile, the zero set of polynomial ω4(x, z) inter-
secting with the sides B1C1 and A1D1 of rectangle forms a simple curve ended by points
(0.9786710221234176135, ẑ11) and (0.9786710221234176104, ẑ12), respectively.

Using the same sequence, substituting coordinates of four vertices A1, B1, C1, D1 into
p(x, z), we have

p(A1) = −1656260 · · · 5869779
9807971 · · · 0539264

, p(B1) =
9711472 · · · 0200531
9807971 · · · 0539264

,

p(C1) =
5556451 · · · 8475385
6129982 · · · 4408704

, p(D1) = −2477410 · · · 4753759
9807971 · · · 0539264

.
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By direct computation, we get that p(x, z) < 0 at the side A1D1, p(x, z) > 0 at the side B1C1,
a simple curve p(x, z) = 0 intersect the side A1B1 with point (x̂51,−0.76281233746184644)
and the side C1D1 with point (x̂52,−0.76281233746184695). According to the Intermediate
Value Theorem, curves ω4(x, z) = 0 intersect transversely with p(x, z) = 0 in the rectangle
A1B1C1D1, which implies that ω4(x, z) = 0 and p(x, z) = 0 have and only have one common
solution in the associated rectangle. Hence W[φ̃2, φ̃1, φ̃0, φ̃3](x, z) has one zero in the rectangle
A1B1C1D1.

Secondly, we substitute z = ẑ21 and z = ẑ22 into p(x, z), we find that p(x, z) = 0 has one
root in interval

[x̄11, x̄12] =

[
59343065422023
70368744177664

,
118686130844047
140737488355328

]
,

and

[x̄21, x̄22] =

[
118686130844043
140737488355328

,
29671532711011
35184372088832

]
,

respectively. Note that

[min(x̄11, x̄21), max(x̄12, x̄22)] = [x̄21, x̄12] ⊃ [x̂31, x̂32].

By similar discussion and computation to the above procedure and omitting the details for the
sake of brevity, we get that W[φ̃2, φ̃1, φ̃0, φ̃3](x, z) has also one zero in the rectangle A2B2C2D2,
where the vertices A2(x̂31, ẑ22), B2(x̂31, ẑ21), C2(x̂32, ẑ21) and D2(x̂32, ẑ22).

Finally, we substitute z = ẑ31 into p(x, z) = 0 and get that it has one root just in interval
[x̂21, x̂22]. Using the same sequence, let A3(x̂21, ẑ32), B3(x̂21, ẑ31), C3(x̂22, ẑ31) and D3(x̂22, ẑ32),
see Figure 3.2. In the rectangle A3B3C3D3, we obtain that

ω4(A3) < 0, ω4(B3) < 0, ω4(C3) > 0, ω4(D3) > 0,

and
p(A3) < 0, p(B3) > 0, p(C3) < 0, p(D3) < 0,

here we omit the specific values of ω4(x, z) and p(x, z) at A3, B3, C3, D3 for brevity.
By similar analysis, we find that one simple curve ω4(x, z) = 0 in the rectangle A3B3C3D3

intersect the side A3D3 with point (0.604351994715489, ẑ32) and the side B3C3 with point
(0.604351994715488, ẑ31), the other simple curve p(x, z) = 0 intersect the side A3B3 with
point (x̂21,−0.574905535137251) and the side B3C3 with point (0.604351994715491, ẑ31). Since
0.604351994715491 > 0.604351994715488, it is obvious that curves ω4(x, z) = 0 and p(x, z) = 0
has one intersection in the rectangle A3B3C3D3, which shows that W[φ̃2, φ̃1, φ̃0, φ̃3](x, z) has
one zero in the rectangle A3B3C3D3.

To sum up, we prove that W[φ̃2, φ̃1, φ̃0, φ̃3](x, z) has three zeros for (x, z) ∈ (0, 1)× (x0, 0).

Case 2: The third Wronskian W[φ̃2, φ̃1, φ̃0](x, z) has no zero for (x, z) ∈ (0, 1)× (x0, 0).
Applying the same method as the fourth Wronskian, we obtain the third Wronskian

W[φ̃2, φ̃1, φ̃0](x, z) =
√

2(x − z)6ω3(x, z)
577799578125000000000000x3z3q3(x)q3(z)(p′z(x, z))3 , (3.7)

where ω3(x, z) is a asymmetric polynomial of degree 177 in (x, z), p′z(x, z) as in (3.3),

q3(x) = (x − 1)30(x2 + 2x + 2)30 and q3(z) = (z − 1)30(z2 + 2z + 2)30.
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The resultant with respect to x between ω3(x, z) and p(x, z) is

R(ω3, p, x) = 629407744000000z2(z − 1)24(z2 + 2z + 2)24ϕ3(z),

here ϕ3(z) is a polynomial of degree 636 in z. We find three isolate zeros of ϕ3(z) in (x0, 0)
and one isolate zero in (0, 1). These real root isolation intervals are as follows

z̃1 ∈ [z̃11, z̃12] =

[
− 771

2024
,−6167

8192

]
, z̃2 ∈ [z̃21, z̃22] =

[
− 39

64
,−4991

8192

]
,

z̃3 ∈ [z̃31, z̃32] =

[
− 3753

16384
,− 7505

32768

]
, x̃ ∈ [x̃11, x̃12] =

[
6279
8192

,
785

1024

]
.

We take interval end points x̃11 and x̃12 into interval polynomial equation p(x, z)) = 0 and
get two real roots intervals in (x0, 0)

[z̄11, z̄12] =

[
− 5637

8192
,

1409
2408

]
, [z̄21, z̄22] =

[
− 2819

4096
,

5637
8192

]
,

respectively. We find that each of intervals [z̄i,1, z̄i,2](i = 1, 2) has not intersection with any of
the intervals [z̃i,1, z̃i,2] for i = 1, 2, 3, which implies that there does not exist value of (x, z) in
plane area D = (0, 1)× (x0, 0) such that both ω3(x, z) = 0 and p(x, z) = 0 hold simultaneously.
This shows that W[φ̃2, φ̃1, φ̃0](x, z) ̸= 0 for (x, z) ∈ (0, 1)× (x0, 0).

Case 3: The second Wronskian W[φ̃2, φ̃1](x, z) has no zero for (x, z) ∈ (0, 1)× (x0, 0).
By similar calculation to Case 2, we get that

W[φ̃2, φ̃1](x, z) =
(x − z)3ω2(x, z)

10005187500000000q2(x)q2(z)p′z(x, z)
, (3.8)

where ω2(x, z) is a asymmetric polynomial of degree 120 in (x, z),

q1(x) = (x − 1)21(x2 + 2x + 2)21 and q1(z) = (z − 1)21(z2 + 2z + 2)21. (3.9)

The resultant with respect to x between ω2(x, z) and p(x, z) is

R(ω1, p, x) = 6400(z − 1)18(z2 + 2z + 2)18ϕ2(z),

where ϕ2(z) is a polynomial of degree 426 in z.
Using command realroot in Maple, we find that ϕ2(z) has two zero in the interval (x0, 0)

and one zero in (0, 1), which are

z1 ∈ [z11, z12] =

[
− 93303

131072
,−46651

65536

]
, z2 ∈ [z21, z22] =

[
− 85549

262144
,−21387

65536

]
,

x ∈ [x1, x2] =

[
39715
65536

,
79431
131073

]
.

By solving polynomial equations p([xi, z]) = 0 (i = 1, 2), we get the following the isolation
intervals of real root z

[z̄11, z̄12] =

[
− 75527

131072
,−37763

65536

]
and [z̄21, z̄22] =

[
− 9441

16384
,− 75527

131072

]
.
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We find that the intervals [z̄11, z̄12] and [z̄21, z̄22] have not intersection with intervals [z11, z12]

and [z21, z22]. This shows that ω2(x, z) = 0 and p(x, z) = 0 have no common root for x0 < z <

0 < x < 1. Therefore, W[φ̄2, φ̄1](x, z) ̸= 0 for all (x, z) ∈ (0, 1)× (x0, 0).

Case 4: The first Wronskian W[φ̃2](x, z) has no zero for (x, z) ∈ (0, 1)× (x0, 0).
We get easily that the first Wronskian

W[φ̃2](x, z) = φ̃2(x, z) =
√

2(x − z)ω1(x, z)
346500000q1(x)q1(z)

, (3.10)

where ω1(x, z) is a polynomial of degree 63 in (x, z),

q1(x) = (x − 1)11(x2 + 2x + 2)11 and q1(z) = (z − 1)11(z2 + 2z + 2)11.

The resultant between ω1(x, z) and p(x, z) with respect to x is

R(ω1, p, x) = (z − 1)10(z2 + 2z + 2)10ϕ1(z),

where ϕ1(z) is a polynomial of degree 222 in z. It is easy to know that ϕ1(z) ̸= 0 for z ∈ (x0, 0)
by command realroot in Maple , which implies that ω1(x, z) = 0 and p(x, z) = 0 have no
common root. Hence W[φ̃2](x, z) ̸= 0 for all (x, z) ∈ (0, 1)× (x0, 0).

Summarizing the above cases 1-4, we have verified that the statements (i) and (ii) in
Lemma 2.3 are hold. It follows from Lemma 2.3 that Lemma 3.2 holds, thus we finish proof
of Lemma 3.2.

Proof of Proposition 3.1. Since h5 Ii(h) = Ĩi(h), i = 0, 1, 2, 3, any linear combination of
( Ĩ0, Ĩ1, Ĩ2, Ĩ3) has the same number of zeros as that occurs with (I0, I1, I2, I3). It is easy to
see that Abelian integral in (1.6) together with Hamiltonian (1.8) is the linear span of genera-
tors (I0, I1, I2, I3). By Lemma 3.2, we know that any linear combination of ( Ĩ0, Ĩ1, Ĩ2, Ĩ3) has at
most six zeros on (0, 11

20 ) counted with multiplicities, this implies that any linear combination
of (I0, I1, I2, I3) has also at most six zeros. Therefore, the Abelian integral I(h) has at most six
zeros for arbitrary parameters (α, β, γ). The proof of Proposition 3.1 is completed.

Proof of Theorem 1.1. By Proposition 3.1 and the equation (1.3), if I(h) is not identically
zero, then system (1.7) has at most six limit cycles bifurcating from the period annulus of
unperturbed system of (1.7) by Poincaré bifurcation. Thus we complete proof of Theorem 1.1.
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