

Existence of two infinite families of solutions to a singular superlinear equation on exterior domains

Narayan Aryal[™] and Joseph Iaia

University of North Texas, 1155 Union Circle #311430, Denton, TX 76203, USA

Received 10 May 2024, appeared 25 November 2024 Communicated by Bo Zhang

Abstract. We are concerned with the radial solutions of the Dirichlet problem $-\Delta u = K(|x|)f(u)$ on the exterior of the ball of radius R > 0 centered at the origin in \mathbb{R}^N with $N \ge 3$ where f is superlinear at ∞ and has a singularity at 0 with $f(u) \sim \frac{1}{|u|^{q-1}u}$ and 0 < q < 1 for small u. We prove that if $K(|x|) \sim |x|^{-\alpha}$ with $\alpha > 2(N-1)$ then there exist two infinite families of sign-changing radial solutions. **Keywords:** exterior domains, singular, superlinear, radial solution.

2020 Mathematics Subject Classification: 34B40, 35B05.

1 Introduction

In this paper we study the radial solutions of

$$-\Delta u = K(|x|)f(u) \text{ on } \mathbb{R}^N \setminus B_R(0)$$
(1.1)

$$u(x) = 0 \text{ on } \partial B_R(0), \quad \lim_{|x| \to \infty} u(x) = 0 \tag{1.2}$$

where $\Delta : C^k(\mathbb{R}^N) \to C^{k-2}(\mathbb{R}^N)$ denotes the *N*-dimensional Laplacian, $B_R(0)$ denotes the unit ball centered at the origin, |x| denotes the Euclidean distance of x, and $u : \mathbb{R}^N \to \mathbb{R}$ with $N \ge 3$.

Numerous papers have proved the existence of *positive* solutions of these equations with K(|x|) = 1. See for example [4,5,10]. In [10], Miyamoto and Naito studied the problem in the domain $B_R(0) \setminus \{0\}$. Some other papers have dealt with the *positive* solutions of these equations with various nonlinearities f(u) and $K(|x|) \sim |x|^{-\alpha}$ with $\alpha > 0$. (See [1,9,11]).

We prove the existence of sign-changing solutions of (1.1)–(1.2) and analyze their properties. The papers [2,3,7,8] examined the case where the non-linear function f(u) in (1.1) has a unique positive zero. We choose a superlinear function f(u) that has no positive zeros.

Our study of the solutions of (1.1)–(1.2) is based on the following assumptions:

[™]Corresponding author. Email: narayanaryal@my.unt.edu

- (*H1*) $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ is odd, locally Lipschitz, and f > 0 on $(0, \infty)$. (So, by the symmetry of f about the origin, f < 0 on $(-\infty, 0)$),
- (H2) $f(u) = |u|^{p-1}u + g(u)$ with p > 1 for large u and $\lim_{u \to \infty} \frac{|g(u)|}{|u|^p} = 0$,
- (*H3*) there exists a locally Lipschitz function $g_1 : \mathbb{R} \to \mathbb{R}$ such that $f(u) = \frac{1}{|u|^{q-1}u} + g_1(u)$ with 0 < q < 1 and $g_1(0) = 0$,
- (H4) K(r), K'(r) are continuous on $[R, \infty)$ with K(r) > 0 such that $2(N-1) + \frac{rK'}{K} < 0$ on $[R, \infty)$,
- (*H5*) there exist a constant $k_0 > 0$ and $\alpha > 2(N-1)$ such that $\frac{k_0}{r^{\alpha}} \leq K(r)$ on $[R, \infty)$.

Let $F(u) = \int_0^u f(t) dt$. From (*H3*) it follows that f is integrable at 0 and therefore F is continuous with F(0) = 0. Also, since f is odd and f > 0 on $(0, \infty)$, it follows that F is even and F(u) > 0 for $u \neq 0$.

Since we are studying the radial solutions of (1.1)–(1.2), we let u(x) = u(|x|) = u(r) where $r = |x| = \sqrt{x_1^2 + x_2^2 + \dots + x_N^2}$. Denoting $\frac{\partial u}{\partial r}$ by u' and $\frac{\partial^2 u}{\partial r^2}$ by u'' then (1.1)–(1.2) becomes:

$$u''(r) + \frac{N-1}{r}u'(r) + K(r)f(u) = 0 \quad \text{for } R < r < \infty,$$
(1.3)

$$u(R) = 0, \quad \lim_{r \to \infty} u(r) = 0.$$
 (1.4)

In this paper we prove the following:

Theorem 1.1. Assume (H1)–(H5) hold and $N \ge 3$. There exist two infinite families of non-trivial radial solutions of (1.3)–(1.4). In addition, $\exists n_0 \ge 0$ such that for every $n \ge n_0$ then there are at least two solutions of (1.3)–(1.4) with exactly n zeros on (R, ∞) .

2 Preliminaries and behavior for large *a*

We prove the existence of a solution of (1.3)–(1.4) with

$$u(R) = 0, \quad u'(R) = a > 0$$
 (2.1)

on $[R, R + \epsilon)$ for some $\epsilon > 0$. We denote u(r) by $u_a(r)$ to emphasize the dependence of u on the initial parameter a. We begin first by making the following change of variables

$$u_a(r) = v_a(r^{2-N}).$$

Let $r^{2-N} = t$ and denote R^{2-N} by R^* . We observe then that solving (1.3), (2.1) is equivalent to solving the following initial value problem

$$v_a'' + h(t)f(v_a) = 0$$
 on $(0, R^*)$ (2.2)

$$v_a(R^*) = 0, \quad v'_a(R^*) = -\frac{aR^{N-1}}{N-2} < 0$$
 (2.3)

where $h(t) = \frac{t^{\frac{2(N-1)}{2-N}}K(t^{\frac{1}{2-N}})}{(N-2)^2}$. We will then try to find values of *a* such that $v_a(0) = 0$. From (*H*4), (*H*5), and the definition of h(t) it follows that

$$h(t) > 0, h'(t) > 0$$
 on $(0, R^*]$
and $\exists h_1 > 0$ such that $h_1 t^{\tilde{\alpha}} \le h(t)$ on $(0, R^*]$ where $\tilde{\alpha} = \frac{\alpha - 2(N-1)}{N-2} > 0.$ (2.4)

We first prove the existence of a solution for (2.2)–(2.3) on $[R^* - \epsilon, R^*]$ for some $\epsilon > 0$. To do this, we transform this equation into an integral equation and use the contraction mapping principle to solve it. Let t > 0 and let v_a be a solution of (2.2)–(2.3). By integrating (2.2) over (t, R^*) and using (2.3) we obtain

$$v'_{a}(t) = -\frac{aR^{N-1}}{N-2} + \int_{t}^{R^{*}} h(x)f(v_{a}(x)) dx.$$
(2.5)

Now integrate (2.5) over (t, R^*) and use (2.3). This gives

$$v_a(t) = \frac{aR^{N-1}}{N-2}(R^* - t) - \int_t^{R^*} \left(\int_s^{R^*} h(x) f(v_a(x)) \, dx \right) ds.$$
(2.6)

Letting $v_a(t) = (R^* - t)y(t)$ and $y(R^*) \equiv \lim_{t \to R^{*-}} \frac{v_a(t)}{R^* - t} = -v'_a(R^*) = \frac{aR^{N-1}}{N-2}$, we can rewrite the equation (2.6) in terms of y(t) as

$$y(t) = \frac{aR^{N-1}}{N-2} - \frac{1}{R^* - t} \int_t^{R^*} \left(\int_s^{R^*} h(x) f\left((R^* - x)y(x) \right) \, dx \right) ds.$$
(2.7)

We now solve (2.7) by defining an operator on an appropriate space and showing that it has a fixed point. For this, let a > 0 and consider the Banach space

$$X = \left\{ y \in C[R^* - \epsilon, R^*] : y(R^*) = \frac{aR^{N-1}}{N-2}, \left| y(t) - \frac{aR^{N-1}}{N-2} \right| \le \frac{aR^{N-1}}{2(N-2)} \text{ on } [R^* - \epsilon, R^*] \right\}$$

equipped with the supremum norm defined by

$$||y|| = \sup_{x \in [R^* - \epsilon, R^*]} |y(x)|.$$

We define a map $T: X \to C[R^* - \epsilon, R^*]$ by

$$(Ty)(t) = \frac{aR^{N-1}}{N-2} - \frac{1}{R^* - t} \int_t^{R^*} \left(\int_s^{R^*} h(x) f\left((R^* - x)y(x) \right) dx \right) ds \quad \text{for } R^* - \epsilon \le t < R^*$$
 (2.8)

and $T(R^*) = \frac{aR^{N-1}}{N-2}$. Since $f = \frac{1}{|u|^{q-1}u} + g_1(u)$ by (H3), we have from (2.8) that

$$(Ty)(t) = \frac{aR^{N-1}}{N-2} - \frac{1}{R^* - t} \int_t^{R^*} \left(\int_s^{R^*} h(x) \left(\frac{1}{(R^* - x)^q y^q(x)} + g_1 \left((R^* - x) y(x) \right) \right) dx \right) ds.$$
(2.9)

Since 0 < q < 1 by (*H3*), it follows that $\frac{1}{(R^*-x)^q}$ is integrable on $[0, R^*]$. Using this fact together with that g_1 is locally Lipschitz, it can be shown that *T* is a contraction mapping from *X* into itself for sufficiently small ϵ (the details are carried out in [3]). Thus by the contraction mapping principle [6], there exists a unique element $y \in X$ such that Ty = y on

 $[R^* - \epsilon, R^*]$. Hence, we obtain a solution $v_a(t) = (R^* - t)y(t)$ of (2.2)–(2.3) on $[R^* - \epsilon, R^*]$ if a > 0 and $\epsilon > 0$ is sufficiently small.

Next let $(R_1, R^*]$ be the maximal half-open interval of existence of the solution to (2.2)–(2.3). Now we define the energy of the solution

$$E_a = \frac{1}{2} \frac{v_a'^2}{h(t)} + F(v_a) \quad \text{for } R_1 < t \le R^*.$$
(2.10)

Then it follows from (2.2) and (2.4) that

$$E'_{a} = -\frac{v'_{a}^{2}h'}{2h^{2}} \le 0 \quad \text{on } (R_{1}, R^{*}].$$
 (2.11)

Thus, E_a is non-increasing on $(R_1, R^*]$ and hence for $R_1 < t \le R^*$ we have

$$0 < \frac{1}{2} \frac{a^2 R^{2(N-1)}}{(N-2)^2 h(R^*)} = \frac{1}{2} \frac{v_a'^2(R^*)}{h(R^*)} = E_a(R^*) \le E_a = \frac{1}{2} \frac{v_a'^2}{h(t)} + F(v_a) \quad \text{on } (R_1, R^*].$$
(2.12)

So $E_a > 0$ on $(R_1, R^*]$.

We next claim that the solution of (2.2)–(2.3) exists on $[0, R^*]$ and analyze the properties of the solution in several lemmas.

Lemma 2.1. Assume (H1)–(H5) hold, $N \ge 3$ and a > 0. Let v_a be the solution of (2.2)–(2.3). Then v_a can be extended to the maximal interval $[0, R^*]$.

Proof. Let v_a be the unique solution of (2.2)–(2.3) on the maximal half-open interval of existence $(R_1, R^*]$. We show that $R_1 = 0$. Suppose on the contrary that $R_1 > 0$. Using (2.2), (2.4) and that $F(v_a) \ge 0$ we obtain

$$\left(\frac{1}{2}v_a^{\prime 2} + h(t)F(v_a)\right)' = h'(t)F(v_a) \ge 0 \quad \text{on } (R_1, R^*].$$
(2.13)

Let $0 < t < R_1$. Now by integrating (2.13) over (t, R^*) , using (2.3) and that h(t) > 0, $F(v_a) \ge 0$ we obtain

$$\frac{1}{2}v_a^{\prime 2} \le \frac{1}{2}v_a^{\prime 2} + h(t)F(v_a) \le \frac{1}{2}\frac{a^2R^{2(N-1)}}{(N-2)^2} \quad \text{on } (R_1, R^*].$$
(2.14)

Therefore,

$$|v'_a| \le \frac{aR^{N-1}}{N-2}$$
 on $(R_1, R^*]$. (2.15)

Also, we have

$$|v_a| = \left| \int_t^{R^*} v_a' \, ds \right| \le \int_t^{R^*} |v_a'| \, ds \le \frac{aR^{N-1}}{N-2}(R^*-t) \le \frac{aR^{N-1}}{N-2}R^* = \frac{aR}{N-2} \quad \text{on } (R_1, R^*].$$
(2.16)

Now let $(t_n) \subset (R_1, R^*]$ such that $t_n \to R_1^+$. Then by the mean value theorem and (2.15) we obtain

$$|v_a(t_n) - v_a(t_m)| = |v_a'(c_{n,m})||t_n - t_m| \le \frac{aR^{N-1}}{N-2}|t_n - t_m| \to 0$$
 as $m, n \to \infty$.

This shows that $(v_a(t_n))$ is a Cauchy sequence on $(R_1, R^*]$ and so $\exists L \in \mathbb{R}$ such that $\lim_{t\to R_1^+} v_a(t) = L$. Also since $h(t)F(v_a)$ and $h'(t)F(v_a)$ are continuous on $(R_1, R^*]$, integrating (2.13) on (t, R^*) we see that $\lim_{t\to R_1^+} v'_a(t) = L_1$ exists. From (2.12) we see $0 < E_a \leq \frac{1}{2}\frac{L_1^2}{h(R^*)} + F(L)$ on $(R_1, R^*]$ which shows that L and L_1 cannot both be zero. Now if L = 0 then $L_1 \neq 0$ and we can use the contraction mapping principle as we did earlier to extend our solution to $(R_1 - \delta, R^*]$ for some $\delta > 0$. On the other hand, if $L \neq 0$, then we can use the standard existence theorem for ordinary differential equations to obtain a solution on $(R_1 - \delta, R^*]$ for some $\delta > 0$. Therefore in both cases the solution of (2.2)-(2.3) can be extended to $(R_1 - \delta, R^*]$ for some $\delta > 0$, contradicting the maximality of $(R_1, R^*]$. Hence $R_1 = 0$. It then follows from (2.15) and (2.16) that v_a and v'_a are bounded on $(0, R^*]$ and so in a similar way to earlier we see that the limits $\lim_{t\to 0^+} v_a(t)$ and $\lim_{t\to 0^+} v'_a(t)$ exist. Thus v_a and v'_a are defined and continuous $[0, R^*]$.

Remark 2.2. If v_a solves (2.2)–(2.3) and $z \in (0, R^*)$ is such that $v_a(z) = 0$ then by (2.12), $0 < E_a(z_a) = \frac{1}{2} \frac{v_a'^2(z)}{h(z)}$ and hence $v_a'(z) \neq 0$. Thus the zeros of v_a on $(0, R^*)$ are simple. Also, since $\lim_{u\to 0} |f(u)| = \infty$, by (H3) it follows that the solution to (2.2)–(2.3) is twice differentiable except at points where $v_a(t_0) = 0$. Therefore, by a solution v_a of (2.2)–(2.3) we mean a continuously differentiable function v_a on $[0, R^*]$ that satisfies the equation (2.6) with (2.3).

Lemma 2.3. Assume (H1)–(H5) hold, $N \ge 3$ and a > 0. Let v_a solve (2.2)–(2.3) on $[0, R^*]$. Then v_a depends continuously on the initial parameter a on $[0, R^*]$.

Proof. Let $0 < a_1 < a < a_2$. Then from (2.15) we have

$$|v'_a| \le \frac{aR^{N-1}}{N-2} \le a_2c_1$$
 for all *a* such that $0 < a_1 \le a \le a_2$ (2.17)

where $c_1 = \frac{R^{N-1}}{N-2}$. And from (2.16) we have

$$|v_a| = \frac{aR}{N-2} \le a_2 c_2 \quad \text{for all } a \text{ such that } 0 < a_1 \le a \le a_2$$
(2.18)

where $c_2 = \frac{R}{N-2}$. Thus, (2.17) and (2.18) show that the upper bounds for $|v_a|, |v'_a|$ can be chosen to be independent of *a* on $[0, R^*]$ for all *a* such that $0 < a_1 \le a \le a_2$.

Now let $\tilde{a} > 0$ and suppose $a \to \tilde{a}$. Then, we want to show that $v_a \to v_{\tilde{a}}$ uniformly on $[0, R^*]$. Suppose on the contrary, that there is a subsequence $(a_j) \subset \mathbb{R}$ such that $a_j \to \tilde{a}$ as $j \to \infty$ and $\epsilon_0 > 0$ such that

$$|v_{a_i}(t_j) - v_{\tilde{a}}(t_j)| \ge \epsilon_0$$
 for some sequence $t_j \in [0, R^*]$. (2.19)

Since $a_j \to \tilde{a}$, there exists $N_0 \in \mathbb{N}$ such that for all $j \ge N_0 |a_j| \le \tilde{a} + 1$. From (2.15) and (2.16) we know that v_a and v'_a are uniformly bounded on the compact domain $[0, R^*]$. Hence, by the Arzelà–Ascoli theorem, there exists a subsequence $(v_{a_{j_k}}) \subset (v_{a_j})$ such that $v_{a_{j_k}} \to v_{\tilde{a}}$ uniformly on $[0, R^*]$ as $k \to \infty$. Therefore, as $k \to \infty$ from (2.19) we obtain

$$0 \leftarrow |v_{a_{j_k}}(t_{j_k}) - v_{\tilde{a}}(t_{j_k})| \ge \epsilon_0$$

which is a contradiction. Thus, $v_a \rightarrow v_{\tilde{a}}$ uniformly on $[0, R^*]$ and this completes the proof of the lemma.

Lemma 2.4. Assume (H1)–(H5) hold and $N \ge 3$. If a > 0 and v_a is a solution of (2.2)–(2.3), then v_a has at most finitely many zeros on $(0, R^*)$.

Proof. Suppose on the contrary that \exists a sequence $(z_{k,a}) \subset (0, R^*)$ with $0 < \cdots < z_{2,a} < z_{1,a}$ such that $v_a(z_{k,a}) = 0$. Then $z_{k,a}$ converges to some z_a^* on $[0, R^*]$. Since v_a has infinitely many zeros, $z_{k,a}$, and $v'_a(z_{k,a}) \neq 0$ by the Remark 2.2, it follows that v_a has infinitely many local extrema, $\{M_{k,a}\}_{k=1}^{\infty}$, with $z_{k+1,a} < M_{k,a} < z_{k,a}$ and so $\lim_{k\to\infty} M_{k,a} = z_a^*$. Since $E_a(t) > 0$ on $(0, R^*]$ and E is non-increasing by (2.12) we have $F(v_a(M_{k,a})) = E_a(M_{k,a}) \geq \frac{1}{2} \frac{a^2 R^{2(N-1)}}{(N-2)^2 h(R^*)} > 0$. So $\exists \beta_a > 0$ such that $|v_a(M_{k,a})| \geq \beta_a$ for all k. Now by the mean value theorem and (2.15) $\exists t_{k,a} \in (M_{k,a}, z_{k,a})$ such that

$$0 < \beta_a \le |v_a(M_{k,a})| = |v_a(M_{k,a}) - v_a(z_{k,a})| = |v_a'(t_{k,a})| |M_{k,a} - z_{k,a}| \le \frac{aR^{N-1}}{(N-2)} |M_{k,a} - z_{k,a}|.$$
(2.20)

Since $M_{k,a} \to z_a^*$ and $z_{k,a} \to z_a^*$ as $k \to \infty$, the right-hand side of (2.20) goes to 0 as $k \to \infty$ which gives a contradiction. Therefore v_a has at most finitely many zeros on $(0, R^*)$ for a > 0.

Lemma 2.5. Assume (H1)–(H5) hold, $N \ge 3$ and let v_a solve (2.5). Then for a > 0 sufficiently large v_a has a local maximum, M_a . In addition, $v_a(M_a) \to \infty$ and $M_a \to R^*$ as $a \to \infty$.

Proof. First we show for any $0 \le t_0 < R^*$ that $\max_{[t_0,R^*)} |v_a(t)| \to \infty$ as $a \to \infty$.

If v_a has a local maximum $M_a \in [t_0, R^*)$, then $v'_a(M_a) = 0$. So, by letting $t = M_a$ in (2.12) we obtain

$$F(v_a(M_a)) \ge \frac{1}{2} \frac{a^2 R^{2(N-1)}}{h(R^*)(N-2)^2}.$$
(2.21)

Since $h(R^*) > 0$, it follows that the right-hand side of (2.21) approaches infinity as $a \to \infty$ and hence from the definition of *F* we see that

$$v_a(M_a) \to \infty \quad \text{as } a \to \infty.$$
 (2.22)

On the other hand, if v_a has no local maximum on (t_0, R^*) then v_a is decreasing on (t_0, R^*) . We want to show that $\max_{[t_0, R^*)} |v_a(t)| \to \infty$ as $a \to \infty$. Suppose on the contrary that this is false. Then there exists a constant $c_3 > 0$ independent of a such that $|v_a(t)| \le c_3$ on $[t_0, R^*]$. Then by the continuity of F there exists $c_4 > 0$ such that $F(v_a(t)) \le c_4$. Using this and (2.3), it follows from (2.12) that

$$\frac{1}{2}\frac{v_a^{\prime 2}(t)}{h(t)} + c_4 \ge \frac{1}{2}\frac{v_a^{\prime 2}(t)}{h(t)} + F(v_a(t)) \ge \frac{1}{2}\frac{v_a^{\prime 2}(R^*)}{h(R^*)} = \frac{1}{2}a^2c_5^2 \quad \text{on } [t_0, R^*]$$
(2.23)

where $c_5 = \frac{R^{N-1}}{(N-2)\sqrt{h(R^*)}}$. Rewriting (2.23) we obtain

$$|v_a'(t)| \ge \sqrt{a^2 c_5^2 - 2c_4} \sqrt{h(t)}.$$
(2.24)

By (2.4) there exists $h_1 > 0$ such that $h(t) \ge h_1 t^{\tilde{\alpha}}$ on $[t_0, R^*]$. By using this and choosing *a* sufficiently large we can ensure that

$$|v_a'(t)| \ge \frac{ac_5}{2}\sqrt{h(t)} \ge \frac{ac_5}{2}\sqrt{h_1}t^{\frac{\tilde{a}}{2}}.$$
(2.25)

Since v_a is decreasing, then by (2.25) we have $v'_a < 0$ on $[t_0, R^*]$. Now integrating (2.25) over (t_0, R^*) yields

$$c_{3} \geq v_{a}(t_{0}) = \int_{t_{0}}^{R^{*}} -v_{a}'(t) dt \geq \frac{ac_{5}}{2}\sqrt{h_{1}}\int_{t_{0}}^{R^{*}} t^{\frac{\tilde{\alpha}}{2}} dt = \frac{ac_{5}}{2}\sqrt{h_{1}}\left(\frac{(R^{*})^{\frac{\tilde{\alpha}}{2}+1} - t_{0}^{\frac{\tilde{\alpha}}{2}+1}}{\tilde{\alpha}+2}\right).$$
(2.26)

The left hand side of (2.26) is a constant while the right-hand side approaches ∞ as $a \to \infty$ which is a contradiction. Thus we conclude that for any $t_0 \in [0, R^*)$

$$\max_{[t_0,R^*)} |v_a(t)| \to \infty \quad \text{as } a \to \infty.$$
(2.27)

We claim next that v_a has a local max, M_a , and $\frac{1}{2}R^* < M_a < R^*$ if *a* is sufficiently large. Suppose on the contrary that v_a is decreasing on $[\frac{1}{2}R^*, R^*]$. Let

$$C_a = \frac{1}{2} \min_{\left[\frac{1}{2}R^*, \frac{3}{4}R^*\right]} \frac{h(t)f(v_a)}{v_a}.$$
(2.28)

By letting $t_0 = \frac{3}{4}R^*$ in (2.27), we obtain $v_a(\frac{3}{4}R^*) \to \infty$ as $a \to \infty$. Since v_a is decreasing on the interval $[\frac{1}{2}R^*, \frac{3}{4}R^*]$ we see that $v_a \to \infty$ uniformly as $a \to \infty$ on the interval $[\frac{1}{2}R^*, \frac{3}{4}R^*]$. By (2.4) $h_1t^{\tilde{\alpha}} \le h(t)$ on $(0, R^*]$ for some constant $h_1 > 0$ from which it follows that h(t) is bounded from below on $[\frac{1}{2}R^*, \frac{3}{4}R^*]$. Also we have $f(v_a) = |v_a|^{p-1}v_a + g(v_a)$ by (H2) and so it follows that if v_a is large then $f(v_a) \ge \frac{1}{2}v_a^p$. It then follows from this that $\frac{f(v_a)}{v_a} \ge \frac{1}{2}v_a^{p-1}(t) \ge \frac{1}{2}v_a^{p-1}(\frac{3}{4}R^*)$ on $[\frac{1}{2}R^*, \frac{3}{4}R^*]$. Since p-1 > 0 and $v_a(\frac{3}{4}R^*) \to \infty$ as $a \to \infty$, then we see $\frac{f(v_a)}{v_a} \to \infty$ on $[\frac{1}{2}R^*, \frac{3}{4}R^*]$ as $a \to \infty$. And since h is bounded from below on $[\frac{1}{2}R^*, \frac{3}{4}R^*]$, it follows from this and (2.28) that

$$C_a \to \infty$$
 as $a \to \infty$.

Now we consider the differential equation

$$w_a'' + C_a w_a = 0 (2.29)$$

with

$$w_{a}\left(\frac{3}{4}R^{*}\right) = v_{a}\left(\frac{3}{4}R^{*}\right) > 0,$$

$$w_{a}'\left(\frac{3}{4}R^{*}\right) = v_{a}'\left(\frac{3}{4}R^{*}\right) < 0.$$
(2.30)

Clearly, $\{\cos \sqrt{C_a}(t - \frac{3}{4}R^*), \sin \sqrt{C_a}(t - \frac{3}{4}R^*)\}$ is a fundamental set of solutions of (2.29). So, $w_a = \alpha_1 \cos \sqrt{C_a}(t - \frac{3}{4}R^*) + \alpha_2 \sin \sqrt{C_a}(t - \frac{3}{4}R^*)$ for some constants α_1 and α_2 . We also know that the distance between two consecutive zeros of w_a is $\frac{\pi}{\sqrt{C_a}} \to 0$ as $a \to \infty$. So, for a > 0 sufficiently large we have $\frac{1}{2}R^* < \frac{3}{4}R^* - \frac{\pi}{\sqrt{C_a}}$. Therefore, for a > 0 sufficiently large w_a has a zero on $[\frac{1}{2}R^*, \frac{3}{4}R^*]$ and hence has a local maximum \tilde{M} on this interval with $w'_a < 0$ on $(\tilde{M}, \frac{3}{4}R^*]$.

Next, we rewrite equation (2.2) and consider

$$v_a'' + \left(\frac{h(t)f(v_a)}{v_a}\right)v_a = 0.$$
(2.31)

Multiplying (2.29) by v_a , (2.31) by w_a , and subtracting we obtain

$$(w'_a v_a - w_a v'_a)' + \left(C_a - \frac{h(t)f(v_a)}{v_a}\right)w_a v_a = 0.$$

Integrating this on $(\tilde{M}, \frac{3}{4}R^*)$ and using (2.30) gives

$$w_{a}(\tilde{M})v_{a}'(\tilde{M}) = \int_{\tilde{M}}^{\frac{3}{4}R^{*}} \left(\frac{h(t)f(v_{a})}{v_{a}} - C_{a}\right) w_{a}v_{a} dt.$$
(2.32)

Since $w_a(\tilde{M}) > 0$, $C_a < \frac{h(t)f(v_a)}{v_a}$ on $[0, \frac{3}{4}R^*]$, and w_a, v_a stay positive on $[\tilde{M}, \frac{3}{4}R^*]$ it follows from (2.32) that $v'_a(\tilde{M}) > 0$, contradicting our assumption that v_a is decreasing on $[\frac{1}{2}R^*, R^*]$. Thus v_a has a local maximum, M_a , and $\frac{1}{2}R^* < M_a < R^*$ with v_a decreasing on $[M_a, R^*]$ for a > 0 sufficiently large. It also follows immediately from (2.22) that $v_a(M_a) \to \infty$ as $a \to \infty$.

Next we show that $M_a \to R^*$ as $a \to \infty$. Since v_a is decreasing on $[M_a, R^*)$ and $v_a(R^*) = 0$ so we see $v_a > 0$ on $[M_a, R^*)$. But then from (2.2) we know $v''_a = -h(t)f(v_a) < 0$ on $[M_a, R^*)$ and so v_a is concave down on $[M_a, R^*)$. This implies

$$v_a \left(\lambda M_a + (1-\lambda) R^*\right) \ge \lambda v_a(M_a) + (1-\lambda) v_a(R^*) \quad \text{for } 0 \le \lambda \le 1$$

So by letting $\lambda = \frac{1}{2}$ we obtain

$$v_a\left(\frac{M_a+R^*}{2}\right) \ge \frac{v_a(M_a)+v_a(R^*)}{2} = \frac{v_a(M_a)}{2} \to \infty \quad \text{as } a \to \infty.$$
(2.33)

By the superlinearity of *f* it follows that $f(v_a(t)) \ge \frac{1}{2}v_a^p(t)$ on $[M_a, \frac{M_a+R^*}{2}]$ if *a* is sufficiently large. By using this in (2.2) we obtain

$$v_a'' = -h(t)f(v_a(t)) \le -\frac{1}{2}v_a^p(t).$$

Now integrating this on $[M_a, t]$ where $M_a \le t \le \frac{M_a + R^*}{2}$ and recalling that M_a is a local maximum of v_a with v_a decreasing on $[M_a, R^*]$ yields

$$v_a'(t) \leq -\frac{1}{2} \int_{M_a}^t v_a^p(x) \, dx \leq -\frac{1}{2} v_a^p(t) \int_{M_a}^t h(x) \, dx.$$

Rewriting the above gives

$$\frac{-v_a'}{v_a^p} \ge \frac{1}{2} \int_{M_a}^t h(x) \, dx$$

Integrating again on (M_a, t) gives,

$$\frac{1}{(p-1)v_a^{p-1}(t)} \ge \frac{1}{p-1}[v_a^{1-p}(t) - v_a^{1-p}(M_a)] \ge \frac{1}{2}\int_{M_a}^t \int_{M_a}^s h(x) \, dx \, ds$$

Evaluating at $t = \frac{M_a + R^*}{2}$ we obtain

$$\frac{1}{(p-1)v_a^{p-1}(\frac{M_a+R^*}{2})} \ge \frac{1}{2} \int_{M_a}^{\frac{M_a+R^*}{2}} \int_{M_a}^{s} h(x) \, dx \, ds.$$
(2.34)

Since p - 1 > 0, it follows from (2.33) that the left-hand side of (2.34) goes to zero as $a \to \infty$. Thus, since h(x) > 0 and h is continuous on $[M_a, R^*]$, it follows from (2.34) that $M_a \to R^*$ as $a \to \infty$. This completes the lemma. **Lemma 2.6.** Assume (H1)–(H5) hold, $N \ge 3$ and let v_a solve (2.5). Then for a > 0 sufficiently large v_a has a zero, z_a , with $0 < z_a < M_a < R^*$ where $z_a \to R^*$ and $|v'_a(z_a)| \to \infty$ as $a \to \infty$. In addition, if a is sufficiently large and $n \ge 1$, then v_a has n zeros on $(0, R^*)$.

Proof. First we show that $\exists z_a \in (0, M_a)$ such that $v_a(z_a) = 0$. Suppose on the contrary that v_a stays positive on $(0, M_a)$. We note that v_a cannot have a positive critical point on $(0, M_a)$. If it has a positive critical point c_a with $v'_a > 0$ on (c_a, M_a) , then $v_a(c_a) > 0$ and $v''_a(c_a) \ge 0$. So by (2.2) $f(v_a(c_a)) \le 0$ but then $v_a(c_a) \le 0$ contradicting that $v_a > 0$ on $(0, M_a)$. Thus v_a is increasing on $(0, R^*)$. Next recall from (2.11) that $E'_a \le 0$ on $(0, R^*]$. So we have

$$\frac{1}{2}\frac{v_a'^2}{h(t)} + F(v_a) \ge F(v_a(M_a)) \quad \text{on } (0, M_a].$$
(2.35)

Rewriting (2.35) and integrating on $(0, M_a)$ by making the change of variable $s = v_a(t)$ gives

$$\int_{0}^{M_{a}} \sqrt{2h(t)} dt \leq \int_{0}^{M_{a}} \frac{v_{a}'(t) dt}{\sqrt{F(V_{a}(M_{a}) - F(v_{a}(t)))}} = \int_{v_{a}(0)}^{v_{a}(M_{a})} \frac{ds}{\sqrt{F(v_{a}(M_{a})) - F(s)}} \leq \int_{0}^{v_{a}(M_{a})} \frac{ds}{\sqrt{F(v_{a}(M_{a})) - F(s)}}.$$
(2.36)

We now estimate the integral on the right-hand side of (2.36). Letting $s = v_a(M_a)x$, we obtain

$$\int_{0}^{v_{a}(M_{a})} \frac{ds}{\sqrt{F(v_{a}(M_{a})) - F(s)}} = \frac{v_{a}(M_{a})}{\sqrt{F(v_{a}(M_{a}))}} \int_{0}^{1} \frac{dx}{\sqrt{1 - \frac{F(v_{a}(M_{a})x)}{F(v_{a}(M_{a}))}}}.$$
(2.37)

Let $G(u) = \int_0^u g(s) \, ds$. Then by (H2) it follows that

$$\frac{F(v_a(M_a)x)}{F(v_a(M_a))} = \frac{v_a^{p+1}(M_a)x^{p+1} + G(v_a(M_a)x)}{v_a^{p+1}(M_a) + G(v_a(M_a))} \\
= \frac{x^{p+1} + \frac{G(v_a(M_a)x)}{v_a^{p+1}(M_a)}}{1 + \frac{G(v_a(M_a))}{v_a^{p+1}(M_a)}}.$$
(2.38)

By (*H*2) and L'Hôpital's rule it follows that $\frac{|G(u)|}{|u^{p+1}|} \to 0$ as $u \to \infty$. This implies that given $\epsilon > 0$ there exists U such that $|G(u)| \le \epsilon |u|^{p+1}$ for $|u| \ge U$. Also the continuity of G implies that there exists $c_6 > 0$ such that $|G(u)| \le c_6$ for $|u| \le U$. Therefore

$$|G(u)| \le c_6 + \epsilon |u|^{p+1}$$
 for all u .

Letting $u = v_a(M_a)x$ in the above inequality and using (2.22) we obtain

$$\frac{|G(v_a(M_a)x)|}{v_a^{p+1}(M_a)} \le \frac{c_6}{v_a^{p+1}(M_a)} + \epsilon x^{p+1}$$
$$\le \frac{c_6}{v_a^{p+1}(M_a)} + \epsilon (R^*)^{p+1}$$
$$\le 2(R^*)^{p+1}\epsilon \quad \text{for } a \text{ sufficiently large.}$$

Therefore $\lim_{a\to\infty} \frac{G(v_a(M_a)x)}{v_a^{p+1}(M_a)} = 0$ uniformly on [0,1]. In particular it follows that $\lim_{a\to\infty} \frac{G(v_a(M_a))}{v_a^{p+1}(M_a)} = 0$. Thus it follows from (2.38) that $\frac{F(v_a(M_a)x)}{F(v_a(M_a))} \to x^{p+1}$ uniformly as $a \to \infty$.

Also we know that $\int_0^1 \frac{dx}{\sqrt{1-x^{p+1}}} < \infty$ since p > 1. So it follows from this and the fact that f is superlinear that $\frac{v_a(M_a)}{\sqrt{F(v_a(M_a))}} \to 0$ as $a \to \infty$. Therefore it follows from (2.37) that

$$\lim_{a\to\infty}\int_0^{v_a(M_a)}\frac{ds}{\sqrt{F(v_a(M_a))-F(s)}}=0.$$

Hence, the right-hand side of (2.36) goes to 0 as $a \to \infty$. However, we know h(t) > 0 on $(0, R^*)$ and $M_a \to R^*$ as $a \to \infty$ (by Lemma 2.4), so the integral on the left-hand side of (2.36) goes to $\int_0^{R^*} \sqrt{2h(t)} dt > 0$ which gives a contradiction. Therefore v_a has a zero, z_a , with $0 < z_a < M_a < R^*$. Now we show that $z_a \to R^*$ as $a \to \infty$. Rewriting (2.35) and integrating on (z_a, M_a) by letting $x = v_a(t)$ we obtain

$$\int_{0}^{v_{a}(M_{a})} \frac{dx}{\sqrt{F(v_{a}(M_{a})) - F(x)}} \ge \int_{z_{a}}^{M_{a}} \sqrt{2h(t)} dt.$$
(2.39)

As we have just proved above that the left-hand side of (2.39) goes to 0 as $a \to \infty$. Thus since h > 0 is continuous we must have $(M_a - z_a) \to 0$ as $a \to \infty$. Since we know from Lemma 2.4 that $M_a \to R^*$ as $a \to \infty$, it follows that $z_a \to R^*$ as $a \to \infty$.

Next we show that $|v'_a(z_a)| \to \infty$ as $a \to \infty$. Since $0 < z_a < M_a$ and E_a is non-increasing we have

$$\frac{1}{2}\frac{v_a^{\prime 2}(z_a)}{h(z_a)} = E_a(z_a) \ge E_a(M_a) = F(v_a(M_a)).$$

So by rewriting this we obtain

$$2h(z_a)F(v_a(M_a)) \le v_a^{2}(z_a).$$
(2.40)

Since $z_a \to R^*$ as $a \to \infty$ and h is continuous then $h(z_a) \to h(R^*) > 0$ as $a \to \infty$. Also, in Lemma 2.4 we saw that $v_a(M_a) \to \infty$ as $a \to \infty$ and thus since F is continuous, it follows that $F(v_a(M_a)) \to \infty$ as $a \to \infty$. Thus, from (2.40) we see that $v_a'^2(z_a) \to \infty$ as $a \to \infty$ which then implies $|v_a'(z_a)| \to \infty$ as $a \to \infty$.

Finally, we denote the largest zero of v_a on $(0, R^*)$ as $z_{1,a}$. Using a similar argument as in Lemma 2.5, it can be shown that v_a has a local minimum, $m_a \in (0, z_{1,a})$ if a is sufficiently large. And by following a similar argument as above we can show that there exists a second zero, $z_{2,a} \in (0, m_a)$ of $v_a, z_{2,a} \rightarrow R^*$ as $a \rightarrow \infty$, and $|v'_a(z_{2,a})| \rightarrow \infty$ as $a \rightarrow \infty$. Continuing in this way if a is sufficiently large and n is a given non-negative integer, then v_a has n zeros on $(0, R^*)$ if a is sufficiently large.

3 Behavior for small a > 0

Lemma 3.1. Assume (H1)–(H5) hold and let v_a solve (2.2)–(2.3). Suppose *a* is sufficiently small. Then v_a has a zero, z_a , and a local maximum, M_a , with $0 < z_a < M_a < R^*$. In addition, $z_a \to R^*$, $M_a \to R^*$, $|v'_a(z_a)| \to 0$, and $v_a(M_a) \to 0$ as $a \to 0^+$. Furthermore, given $n \ge 1$, if *a* is sufficiently small then v_a has *n* zeros on $(0, R^*)$.

Proof. First we want to show that v_a has a zero on $(0, R^*)$ if *a* is sufficiently small. Suppose on the contrary that $v_a > 0$ on $(0, R^*)$ for all a > 0. By (2.6) we have

$$v_a(t) = \frac{aR^{N-1}}{N-2}(R^* - t) - \int_t^{R^*} \left(\int_s^{R^*} h(x) f(v_a(x)) \, dx \right) ds.$$
(3.1)

Since $v_a > 0$ near R^* it follows from (2.2) that $v''_a < 0$ near R^* so by integrating this inequality twice we obtain

$$0 < v_a < \frac{aR^{N-1}}{N-2}(R^* - t).$$
(3.2)

From (*H1*) and (*H3*) there exists $f_1 > 0$ such that $f(v_a) \ge f_1 v_a^{-q}$. Substituting this into (3.1) gives

$$v_a(t) \le ac_7(R^* - t) - f_1 \int_t^{R^*} \left(\int_s^{R^*} h(x) v_a^{-q}(x) \, dx \right) ds \tag{3.3}$$

where $c_7 = \frac{R^{N-1}}{N-2}$. Since *h* is increasing on $[0, R^*]$ then from (3.2) and (3.3) we obtain

$$v_a(t) \le ac_7(R^* - t) - f_1h(t) \int_t^{R^*} \left(\int_s^{R^*} v_a^{-q}(x) \, dx \right) ds = ac_7(R^* - t) - \frac{f_1h(t)(R^* - t)^{2-q}}{a^q c_7^q (1 - q)(2 - q)}.$$
 (3.4)

Therefore if $v_a > 0$ on $[\frac{R^*}{2}, R^*]$, then from (3.4) we obtain

$$\frac{f_1 h(t) (R^* - t)^{1-q}}{c_7^{q+1} (1-q)(2-q)} \le a^{q+1}.$$
(3.5)

Letting $t = \frac{R^*}{2}$ in (3.5) we obtain

$$\frac{f_1 h(\frac{R^*}{2})(R^*)^{1-q}}{c_7^{q+1} 2^{1-q} (1-q)(2-q)} \le a^{q+1}.$$
(3.6)

The left-hand side of (3.6) is a positive constant but the right-hand side goes to 0 as $a \to 0^+$. Thus we obtain a contradiction if *a* is sufficiently small. Hence v_a has a zero, z_a , on $[\frac{R^*}{2}, R^*]$ if a > 0 is sufficiently small and $v_a > 0$ on (z_a, R^*) . Since $v_a(z_a) = 0 = v_a(R^*)$ and $v'_a(R^*) < 0$, it follows that v_a has a local maximum, M_a , with $0 < z_a < M_a < R^*$.

Next by letting $t = z_a$ in (3.5) we obtain

$$\frac{f_1h(z_a)(R^*-z_a)^{1-q}}{c_7^{q+1}(1-q)(2-q)} \le a^{q+1}.$$
(3.7)

Since the right-hand side of (3.7) goes to 0 as $a \to 0^+$ it follows that $z_a \to R^*$ as $a \to 0^+$. Since $z_a < M_a < R^*$ it then follows that $M_a \to R^*$ as $a \to 0^+$.

Next we know that $\frac{1}{2}v_a^{\prime 2} + h(t)F(v_a)$ is increasing by (2.13). So it follows that

$$\frac{1}{2}v_a^{\prime 2}(z_a) = \frac{1}{2}v_a^{\prime 2}(z_a) + h(z_a)F(v_a(z_a)) \le \frac{1}{2}v_a^{\prime 2}(R^*) + h(R^*)F(v_a(R^*)) = \frac{1}{2}\frac{a^2R^{2(N-1)}}{(N-2)^2}.$$
 (3.8)

The right-hand side of (3.8) goes to 0 as $a \to 0^+$ which implies that $|v'_a(z_a)| \to 0$ as $a \to 0^+$.

Now we show that $v_a(M_a) \to 0$ as $a \to 0^+$. From (2.16) we have $|v_a| \leq \frac{aR}{N-2}$ on $(0, R^*)$. Since $v_a(M_a) \geq 0$ it then follows that

$$0 \le v_a(M_a) \le rac{aR}{N-2} o 0 \quad ext{as } a o 0^+.$$

Now if we denote the largest zero of v_a on $(0, R^*)$ as $z_{1,a}$ then by using a similar argument as above we can show that v_a has a local minimum, m_a , on $(0, z_{1,a})$ if a is sufficiently small. Also, it can be shown that there exists a zero, $z_{2,a} \in (0, m_a)$ of v_a and $z_{2,a} \rightarrow R^*$ as $a \rightarrow 0^+$. Continuing in this way, given $n \ge 1$ then v_a has n zeros on $(0, R^*)$ if a is sufficiently small. \Box

4 **Proof of Theorem 1.1**

Let $n \ge 0$ and consider the set

 $S_n = \{a > 0 \mid v_a \text{ solves (2.2)-(2.3) and } v_a \text{ has exactly } n \text{ zeros on } (0, R^*)\}.$

By Lemma 2.4 we observe that if a > 0 then $S_n \neq \emptyset$ for some n. Let $n_0 \ge 0$ be the least integer n such that $S_n \neq \emptyset$ (i.e, $S_{n_0} \neq \emptyset$ and $S_n = \emptyset$ for all $0 \le n < n_0$). Also it follows from Lemma 2.6 that S_{n_0} is bounded from above. So let

$$a_{n_0}^+ = \sup S_{n_0}$$

Lemma 4.1. $v_{a_n^+}$ has exactly n zeros, $v_{a_n^+}(0) = 0$, and $v'_{a_n^+}(0) \neq 0$ for all $n \ge n_0$.

Proof. It follows from the definition of S_{n_0} that $v_{a_{n_0}^+}$ has at least n_0 zeros on $(0, R^*)$. Suppose that $v_{a_{n_0}^+}$ has an $(n_0 + 1)$ st zero. Then by the continuous dependence of v_a on a it follows that v_a has an $(n_0 + 1)$ st zero if a is sufficiently close to a_{n_0} . But if we choose $a \in S_{n_0}$ such that $a < a_{n_0}$ and a is sufficiently close to a_{n_0} , then v_a has only n_0 zeros on $(0, R^*)$ which gives a contradiction. Thus $v_{a_{n_0}^+}$ has exactly n_0 zeros on $(0, R^*)$. Now we want to show that $v_{a_{n_0}^+}(0) = 0$. Assume without the loss of generality that $v_{a_{n_0}^+} > 0$ on $(0, z_{a_{n_0}})$. Then by the continuity of $v_{a_{n_0}^+}$ we have $v_{a_{n_0}^+}(0) \ge 0$. Suppose $v_{a_{n_0}^+}(0) > 0$. Since the zeros of v_a are simple and $v_a(0) > 0$ it follows that v_a has exactly n_0 zeros on $(0, R^*)$ if a is close to a_{n_0} . But if $a > a_{n_0}$ then v_a has at least $n_0 + 1$ zeros on $(0, R^*)$ which is a contradiction. Therefore, we must have $v_{a_{n_0}^+}(0) = 0$.

Next we want to show that $v'_{a_{n_0}^+}(0) \neq 0$. Assume without loss of generality that $v_{a_{n_0}^+} > 0$ on $(0, z_{n_0})$ where z_{n_0} is the n_0^{th} zero of $a_{n_0}^+$ on $(0, R^*)$. Since $v_{a_{n_0}^+}$ solves (2.2) we have

$$v_{a_{n_0}^+}'' + h(t)f(v_{a_{n_0}^+}) = 0.$$

From the above equation it follows that

$$(tv'_{a^+_{n_0}} - v_{a^+_{n_0}})' = tv''_{a^+_{n_0}} = -th(t)f(v_{a^+_{n_0}}) < 0.$$

Thus, $tv'_{a_{n_0}^+} - v_{a_{n_0}^+}$ is decreasing. Also, since $\lim_{t\to 0^+} (tv'_{a_{n_0}^+} - v_{a_{n_0}^+}) = 0$ we have that $(tv'_{a_{n_0}^+} - v_{a_{n_0}^+}) \le 0$ on $(0, z_{n_0})$. It then follows that

$$\left(\frac{v_{a_{n_0}^+}}{t}\right)' \le 0. \tag{4.1}$$

Since $v_{a_{n_0}^+} > 0$ on $(0, z_{a_{n_0}})$, we see from (4.1) that $\lim_{t\to 0^+} \frac{v_{a_{n_0}^+}}{t}$ exists. Integrating (4.1) on (t, t_0) we obtain

$$0 < \frac{v_{a_{n_0}^+}(t_0)}{t_0} \leq \lim_{t \to 0^+} \frac{v_{a_{n_0}^+}(t)}{t} = v_{a_{n_0}^+}'(0).$$

Therefore, $v'_{a_{n_0}}(0) > 0$.

Next let

$$S_{n_0+1} = \{a > 0 \mid v_a \text{ solves (2.2)-(2.3) and } v_a \text{ has exactly } (n_0+1) \text{ zeros on } (0, R^*)\}.$$

If *a* is sufficiently close to $a_{n_0}^+$ with $a > a_{n_0}^+$, then by the definition of $a_{n_0}^+$ it follows that v_a has an $(n_0 + 1)$ st zero, $z_{a_{n_0}+1} \in (0, R^*)$. By integrating (2.13) on (t, R^*) we obtain

$$\frac{1}{2}v_a^{\prime 2} = \frac{1}{2}\frac{a^2 R^{2(N-1)}}{(N-2)^2} - \int_t^{R^*} h' F(v_a).$$
(4.2)

Similarly, we have

$$\frac{1}{2}v_{a_{n_0}^+}^{\prime 2} = \frac{1}{2}\frac{{a_{n_0}^+}^2 R^{2(N-1)}}{(N-2)^2} - \int_t^{R^*} h' F(v_{a_{n_0}^+}).$$
(4.3)

Since $v_a \to v_{a_{n_0}^+}$ uniformly as $a \to a_{n_0}^+$ it follows from (4.2) and (4.3) that

$$\lim_{a \to a_{n_0}^+} v_a'^2 = v_{a_{n_0}^+}'^2 \text{ uniformly on } [0, t_0] \text{ for } t_0 > 0.$$
(4.4)

Since $v_{a_{n_0}}^{\prime 2}(0) > 0$ it follows from (4.4) that $v_a'(t) \neq 0$ if $a > a_{n_0}^+$ and a close to $a_{n_0}^+$ and t is close to 0. Hence, v_a has at most $(n_0 + 1)$ zeros and therefore v_a has exactly $(n_0 + 1)$ zeros if a is sufficiently close to $a_{n_0}^+$ and $a > a_{n_0}^+$. Thus, $S_{n_0+1} \neq \emptyset$. Also it follows from Lemma 2.6 that S_{n_0+1} is bounded above.

Now let

$$a_{n_0+1}^+ = \sup S_{n_0+1}.$$

Then by using a similar argument as above we can show that $v_{a_{n_0}^++1}$ has exactly $(n_0 + 1)$ zeros on $(0, R^*)$ and that $v_{a_{n_0}^++1}(0) = 0$. Continuation of this process will generate an infinite family of solutions $\{v_{a_n^+}\}_{n \ge n_0}$ of (2.2)–(2.3) where $v_{a_n^+}$ has exactly n zeros on $(0, R^*)$ and $v_{a_{n_0}^+}(0) = 0$.

To complete the proof we again consider the set S_{n_0} as above which is non-empty. By Lemma 3.1 it follows that S_{n_0} is bounded from below by a positive real number. So we define

$$a_{n_0}^- = \inf S_{n_0}.$$

Then by using the continuous dependence of the solution v_a on a as above we can show that $v_{a_{n_0}}$ has exactly n_0 zeros and $v_{a_{n_0}}(0) = 0$ and $v'_{a_{n_0}}(0) \neq 0$. Now it may be possible that S_{n_0} is a singleton set. Then we have $a_{n_0}^- = a_{n_0}^+$. In this case there is only one solution with n_0 zeros. But we know that if $a > a_{n_0}^+$ then $S_{n_0+1} \neq \emptyset$. Also if $a < a_{n_0}^- = a_{n_0}^+$ and a is close to $a_{n_0}^-$, then v_a has exactly $(n_0 + 1)$ zeros. Thus S_{n_0+1} has at least two points. Next let

$$a_{n_0+1}^- = \inf S_{n_0+1}$$

Then $a_{n_0+1}^- < a_{n_0+1}^+$ and we can also show that $v_{a_{n_0}^-+1}$ has exactly $(n_0 + 1)$ solutions and $v_{a_{n_0}^-+1}(0) = 0$. Thus, $v_{a_{n_0}^++1}$ and $v_{a_{n_0}^-+1}$ are two solutions with exactly $(n_0 + 1)$ zeros on $(0, R^*)$. Continuation of this process will generate a second infinite family of solutions $\{v_{a_n^-}\}_{n \ge n_0}$ of (2.2)–(2.3) where $v_{a_n^-}$ has exactly n zeros on $(0, R^*)$ and $v_{a_{n_0}^-}(0) = 0$.

Finally, by letting $u_n^+(t) = v_{a_n}^+(t^{\frac{1}{2-N}})$ and $u_n^-(t) = v_{a_n}^-(t^{\frac{1}{2-N}})$ we obtain two infinite families of solutions of (1.3)–(1.4) with prescribed number of zeros. This ends the proof of Theorem 1.1.

Acknowledgements

We would like to thank the anonymous referee(s) for carefully reading our manuscript and providing insightful comments which helped improving the quality of our paper.

References

- A. ABEBE, M. CHHETRI, L. SANKAR, R. SHIVAJI, Positive solutions for a class of superlinear semipositone systems on exterior domains, *Bound. Value Probl.* 2014, 2014:198, 9 pp. https://doi.org/10.1186/s13661-014-0198-z
- [2] M. ALI, J. IAIA, Existence and nonexistence for singular sublinear problems on exterior domains, *Electron. J. Differential Equations* 2021, No. 3, 1–17. https://doi.org/10.58997/ ejde.2021.03
- [3] M. ALI, J. IAIA, Infinitely many solutions for a singular, semilinear problem on exterior domains, *Electron. J. Differential Equations* 2021, No. 68, 1–17. https://doi.org/10.58997/ ejde.2021.68
- [4] H. BERESTYCKI, P. L. LIONS, Non-linear scalar field equations I, Arch. Rational Mech. Anal. 82(1983), 313–347. https://doi.org/10.1007/BF00250555
- [5] H. BERESTYCKI, P. L. LIONS, L. A. PELETIER, AN ODE approach to the existence of positive solutions for semilinear problems in ℝ^N, *Indiana Univ. Math. J.* **30**(1981), No. 1, 141–157. https://doi.org/10.1137/1024101
- [6] L. EVANS, Partial differential equations, 2nd ed., American Mathematical Society, 2010. https://doi.org/10.1090/gsm/019
- [7] J. IAIA, Existence of solutions for semilinear problems on exterior domains, *Electron. J. Differential Equations* 2020, No. 34, 1–10. https://doi.org/10.58997/ejde.2020.34
- [8] J. IAIA, Existence of solutions for semilinear problems with prescribed number of zeros on exterior domains, J. Math. Anal. Appl. 446(2017), 591–604. https://doi.org/10.1016/ j.jmaa.2016.08.063
- [9] E. K. LEE, R. SHIVAJI, B. SON, Positive radial solutions to classes of singular problems on the exterior of a ball, J. Math. Anal. Appl. 434(2016), No. 2, 1597–1611. https://doi.org/ 10.1016/j.jmaa.2015.09.072
- [10] Y. МІҰАМОТО, Y. NAITO, Singular solutions for semilinear elliptic equations with general supercritical growth, Ann. Mat. Pura Appl. (4) 202(2023), 341–366. https://doi.org/10. 1007/s10231-022-01244-4
- [11] L. SANKAR, S. SASI, R. SHIVAJI, Semipositone problems with falling zeros on exterior domains, J. Math. Anal. Appl. 401(2013), No. 1, 146–153. https://doi.org/10.1016/j. jmaa.2012.11.031