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Abstract. We study asymptotic properties of nonoscillatory solutions for a
four-dimensional system

∆xn = Cn y
1

γ
n

∆yn = Bn z
1

β
n

∆zn = An w
1

α
n

∆wn = Dn xδ
n+τ .

In particular, we give sufficient conditions that any bounded nonoscillatory
solution tends to zero and any unbounded nonoscillatory solution tends to
infinity in all its components.
This paper is in final form and no version of it will be submitted for publication
elsewhere.

1. Introduction

In this paper, we study asymptotic behavior of solutions of a four-dimensional
system

(S)

∆xn = Cn y
1

γ
n

∆yn = Bn z
1

β
n

∆zn = An w
1

α
n

∆wn = Dn xδ
n+τ

where n ∈ N, α, β, γ, δ are the ratios of odd positive integers, τ is nonnegative
integer, and {An} , {Bn} , {Cn} , {Dn} are positive real sequences defined for n ∈ N

such that

(1.1)

∞
∑

n=1

An = ∞,

∞
∑

n=1

Cn = ∞.
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The system (S) is a prototype of even-order systems and represents a large class
of difference equations. By using the notation

An = a
−

1

α
n Bn = b

−
1

β
n Cn = c

−
1

γ
n Dn = dn,

the system (S) can be written as a fourth-order nonlinear difference equation of the
form

(E) ∆
(

an

(

∆
(

bn (∆ (cn (∆xn)
γ
))

β
))α)

− dnxδ
n+τ = 0.

Vice versa, if x is a solution of (E) and

x[1]
n = cn (∆xn)

γ
, x[2]

n = bn

(

∆x[1]
n

)β

, x[3]
n = an

(

∆x[2]
n

)α

are the so called quasi-differences of x, then the vector (x, x[1], x[2], x[3]) is a solution
of (S).

When dn < 0, asymptotic and oscillatory properties of (E) have been widely
investigated in the literature, see e.g.[?]–[?] and references therein. When dn > 0,
according of our knowledge, equation (E) or system (S) has not been investigated.

If α = β = γ = 1 and τ = 2, then (S) reduces to the difference equation

(1.2) ∆ (an∆(bn∆(cn∆xn))) − dnxδ
n+2 = 0

which special case is the fourth order formally self-adjoint difference equation

(1.3) ∆2
(

bn∆2xn

)

− dnxn+2 = 0.

Observe that equation (??) is usually considered under the assumption

∞
∑

n=1

1

an
=

∞
∑

n=1

1

bn
=

∞
∑

n=1

1

cn
= ∞,

i.e. the difference operator is in the so called canonical form.
By a solution of the system (S) we mean a vector sequence (x, y, z, w) which

satisfies the system (S) for n ∈ N. A solution of the system (S) is said to be
oscillatory if all of its component x, y, z, w are oscillatory. Otherwise, a solution is
said to be nonoscillatory. The component x is said to be oscillatory if for any n0 ≥ 1
there exists n > n0 such that xn+1xn ≤ 0. The oscillation of the components y, z,
w is defined by the same way. A solution of the system (S) is said to be bounded
if all of its component x, y, z, w are bounded. Otherwise, a solution is said to be
unbounded.

We say that the system (S) has weak property B if every nonoscillatory solution
of (S) satisfies

(1.4) xnzn > 0 and ynwn > 0 for large n,

and property B if any nonoscillatory solution of (S) satisfies either

(1.5) lim
n→∞

|xn| = lim
n→∞

|yn| = lim
n→∞

|zn| = lim
n→∞

|wn| = ∞,

or

(1.6) lim
n→∞

xn = lim
n→∞

yn = lim
n→∞

zn = lim
n→∞

wn = 0.

EJQTDE, Proc. 9th Coll. QTDE, 2012 No. 4, p. 2



Property B is defined in accordance with those for higher order differential equations
or for the system of differential equations, see [?] and references therein. Property
B is an analogue of the so called property A which reads for the even order systems
that all their solutions are oscillatory. For this reason, sometimes instead of the
weak property B, the system (S), those nonoscillatory solutions satisfy (??), is said
to be almost oscillatory. Solutions satisfying (??) and xnyn > 0 are called strongly
monotone solutions, while solutions satisfying (??) and xnyn < 0 are called Kneser
solutions. Hence, weak property B means that any nonoscillatory solution is either
Kneser or strongly monotone solutions and property B means that these solutions
are either unbounded or vanishing at infinity in all their components.

The aim of this paper is to investigate asymptotic behavior of nonoscillatory
solutions of system (S). We give sufficient conditions that (S) has weak property
B and property B. Both cases when the series

∑

Bn is divergent or convergent are
considered and the role of the integer-valued argument τ is pointed out, as well.
Our results can be applied to the linear system.

2. Preliminaries

First, we point out some basic properties of the system (S) given by (??).

Lemma 1. Let (x, y, z, w) be a solution of system (S). The solution (x, y, z, w) is
nonoscillatory if and only if any of its components x, y, z, w is either positive or
negative for large n.

Proof. It is sufficient to prove that if (x, y, z, w) is a nonoscillatory solution of (S),
then all components are either positive or negative for large n. First assume that
xn > 0 for n ≥ n0 (n0 ∈ N). From the fourth equation of the system (S) we
have that wn is strictly increasing for n ≥ N0 and so, it is of one sign for large
n. Proceeding by the same argument we get that z and y are monotone and of
one sign for large n. The remaining cases when any of the components y, z, w is
eventually positive or negative can be treated by the same way. �

Remark 1. If the system (S) has a solution (x, y, z, w), then it has also a solution
(−x,−y,−z,−w). In view of Lemma ??, when studying nonoscillatory solutions,
we can focus for solutions those first component is eventually positive.

The following lemma describes the possible types of nonoscillatory solutions.

Lemma 2. Any nonoscillatory solution (x, y, z, w) of system (S) with eventually
positive x is one of the following types:
type(a) xn > 0 yn > 0 zn > 0 wn > 0 for large n,
type(b) xn > 0 yn > 0 zn > 0 wn < 0 for large n,
type(c) xn > 0 yn < 0 zn > 0 wn < 0 for large n,
type(d) xn > 0 yn > 0 zn < 0 wn < 0 for large n,
type(e) xn > 0 yn < 0 zn > 0 wn > 0 for large n.

Proof. Let (x, y, z, w) be a solution of (S) such that xn > 0 for large n. First,
assume that there exists solution such that yn < 0, zn < 0 for all large n. From
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the second equation of (S) we have ∆yn < 0 and this implies that exist k > 0 such
that yn ≤ −k for large n. By summation of the first equation of (S) we have

xn − xn0
=

n−1
∑

i=n0

Ci · y
1

γ

i ≤ −k
1

γ

n−1
∑

i=n0

Ci.

Passing n → ∞, we get lim xn = −∞, which is a contradiction with the fact xn > 0.
Now let us suppose that there exists solution such that zn < 0, wn > 0 for large n.
Since w is eventually positive increasing, there exist k > 0 such that wn ≥ k. By
summation of the third equation of (S) we have

zn − zn0
=

n−1
∑

i=n0

Ai · w
1

α

i ≥ k
1

α

n−1
∑

i=n0

Ai,

so, passing n → ∞, we get a contradiction with the fact zn < 0. �

Remark 2. Strongly monotone solutions are of type (a) and Kneser solutions are
of type (c).

Lemma 3. (i) Any solution of type (b) or (c) satisfies limn→∞ wn = 0.
(ii) Any solution of type (c) or (e) satisfies limn→∞ yn = 0.

(iii) If solution of type (d) is bounded, then limn→∞ yn = 0 and limn→∞ wn = 0.

Proof. Claim (i). Suppose that (x, y, z, w) is a nonoscillatory solution of type (b) or
(c). Then w is eventually negative increasing, thus there exists limn→∞ wn = h ≤ 0.

Suppose h < 0. Then wn ≤ h and from the third equation of the system (S) we
obtain

zn = zn0
+

n−1
∑

j=n0

Ajw
1

α

j ≤ zn0
+ h

1

α ·

n−1
∑

j=n0

Aj ,

from where zn → −∞ as n → ∞. This contradicts the fact that zn > 0, and
therefore limn→∞ wn = 0.

Claim (ii). If (x, y, z, w) is of type (c) or (e), then there exists limn→∞ yn = k,
k ≤ 0. If k < 0, then from the first equation we get xn → −∞ as n → ∞, which is
a contradiction with the positiveness of x.

Claim (iii). Obviously, y and w are bounded. If yn ≥ h > 0, then by summation
of the first equation we get x → ∞, which is a contradiction. Similarly, if w ≤ k < 0,
then from the third equation we get a contradiction with the boundedness of z. �

Lemma 4. (i) Any solution of type (a) or (b) satisfies limn→∞ xn = ∞.

(ii) Any solution of type (a) or (e) satisfies limn→∞ zn = ∞.

Proof. Let (x, y, z, w) be a solution of type (a) or (b). Then there exists n0 ∈ N

such that xn > 0, yn > 0 and zn > 0 for n ≥ n0. Thus there exists k > 0 such that
yn ≥ k for n ≥ n0 and from the first equation

xn − xn0
=

n−1
∑

i=n0

Ci · y
1

γ

i ≥ k
1

γ

n−1
∑

i=n0

Ci.

Passing n → ∞ we get xn → ∞ for n → ∞.
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The second statement follows from the third equation using a similar argument.
�

Summarizing, by Lemma ?? the unbounded solutions are of type (a),(b) and (e).
Solutions of type (d) can be bounded or unbounded.

3. Weak property B

Our investigation is motivated by the following simple criterion in order to have
(S) property B.

Proposition 1. If

(3.1)

∞
∑

n=1

Bn = ∞,

then any nonoscillatory solution of (S) with eventually positive x is of type (a), (b)
or (c), and moreover, solutions of type (c) satisfies

lim
n→∞

yn = lim
n→∞

zn = lim
n→∞

wn = 0,

and solutions of type (a)

lim
n→∞

xn = lim
n→∞

yn = lim
n→∞

zn = ∞.

In addition, if

(3.2)

∞
∑

n=1

Dn = ∞,

then (S) has property B.

Proof. In view of Lemma ?? we show that there exist no type (d) and (e) solutions.
Let (x, y, z, w) be a solution of type (d) or (e). Then y is bounded and z is either
positive increasing or negative decreasing. By summation of the second equation
we get that y is unbounded, which is contradiction.

Let (??) hold. If (x, y, z, w) is of type (b) solution, then x is bounded away from
zero and from the fourth equation we get that w → ∞, which is a contradiction.
Hence any nonoscillatory solution is either strongly monotone or Kneser.

Asymptotic properties of type (c) solutions follow from Lemma ?? and reasoning
as in the proof of this lemma with the components z (and x if (??) holds). Similarly,
properties of type (a) solutions follow follow from Lemma ?? and reasoning as in
the proof of this lemma with the components y, w. �

In view of Proposition ??, in the sequel, we assume
∞
∑

n=1

Dn < ∞.

Theorem 1. If either

(3.3)

∞
∑

n=1

Dn





n−1+τ
∑

j=n0

Cj





δ

= ∞
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or

(3.4)

∞
∑

n=1

Dn





n−1+τ
∑

j=n0

Cj





δ

< ∞,

∞
∑

n=1

An





∞
∑

j=n

Dj

(

j−1+τ
∑

k=1

Ck

)δ




1

α

= ∞,

then solutions of type (b) do not exist. In addition, if (??) holds, then system (S)
has weak property B.

Proof. Assume that (x, y, z, w) is type (b) solution. Then z and w are bounded
and there exists k > 0 and n0 ≥ 1 such that yn ≥ k and xn ≥ 0 for n ≥ n0. Thus
from the first equation we have

(3.5) xn ≥ k1/γ
n−1
∑

i=n0

Ci for n ≥ n0.

Moreover, by Lemma ??, limn→∞ wn = 0.
If (??) holds, then by summation of the fourth equation of (S) we get

(3.6) wn − wn0
=

n−1
∑

i=n0

Dix
δ
i+τ ≥ kδ/γ

n−1
∑

i=n0

Di





i−1+τ
∑

j=n0

Cj





δ

and passing n → ∞ we get the contradiction with the boundedness of w.
If (??) holds, then by summation of the fourth equation of (S) from n to ∞ we

get

−wn =

∞
∑

i=n

Dix
δ
i+τ ≥ kδ/γ

∞
∑

i=n

Di





i−1+τ
∑

j=n0

Cj





δ

,

which yields, by summation of the third equation of (S),

zn0
− zn = +

n−1
∑

j=n0

Aj (−wj)
1

α ≥ kδ/αγ
n−1
∑

j=n0

Ai





∞
∑

j=i

Dj

(

j−1+τ
∑

k=n0

Ck

)δ




1

α

.

Passing n → ∞ we get the contradiction with the boundedness of z.
In view of Proposition ??, solutions of type (d) and (e) do not exist, thus (S)

has weak property B. �

Assumption (??) can be relaxed and the following extension of Theorem ??
holds.

Theorem 2. Assume (??) and

(3.7)

∞
∑

n=1

Bn







n−1
∑

k=1

Ak





∞
∑

j=k

Dj





1/α






1/β

= ∞.

Then the system (S) has weak property B.

EJQTDE, Proc. 9th Coll. QTDE, 2012 No. 4, p. 6



Proof. By Theorem ??, the assumption (??) ensures that solutions of type (b) do
not exist.

Obviously, (??) implies that

∞
∑

n=1

Bn

(

n−1
∑

k=1

Ak

)1/β

= ∞.

Assume that (x, y, z, w) is type (e) solution. Then x and y are bounded and
there exist k > 0 and n0 ≥ 1 such that wn ≥ k for n ≥ n0. Thus

(3.8) zn ≥ k1/α
n−1
∑

i=n0

Ai for n ≥ n0,

and using the second equation we have

(3.9) yn − yn0
≥ k1/αβ

n−1
∑

i=n0

Bi

(

i−1
∑

k=1

Ak

)1/β

.

Passing n → ∞ we get the contradiction that y is bounded. Hence, solutions of
type (e) do not exist.

Let (x, y, z, w) be type (d) solution. Then y and w are bounded and there exist
n0 ≥ 1 and positive constant k, l such that xn ≥ k and −zn ≥ l for n ≥ n0. If
yn ≥ h > 0 for large n, then using the estimations (??) and (??) with constant
h and passing n → ∞, the condition (??) yields that wn is unbounded, which is
a contradiction. Thus limn→∞ yn = 0. Similarly, if −wn ≥ h > 0 for large n,
then using estimations (??) with constant h where z is replaced by −z, and by
summation of the second equation of (S) from n to ∞

(3.10) yn =
∞
∑

i=n

Bi(−z
1/β
i ) ≥ h1/αβ

∞
∑

i=n

Bi





i−1
∑

j=n0

Aj





1/β

,

from where we get, as n → ∞, a contradiction that y is bounded. Hence, also
limn→∞ wn = 0. From here and the fact that xn ≥ k we get

(3.11) −wn ≥ kδ
∞
∑

i=n

Di, zn0
− zn ≥ kδ/α

n−1
∑

k=1

Ak





∞
∑

j=k

Dj





1/α

.

By summation of the second equation and substituing into z, we get

(3.12) yn0
− yn =

n−1
∑

j=n0

Bj (−zj)
1

β ≥ k
δ

αβ

n−1
∑

i=n0

Bi







i−1
∑

j=1

Aj





∞
∑

k=j

Dk





1/α






1/β

.

Passing n → ∞, assumption (??) yields a contradiction with the boundedness of
y. Hence, also solutions of type (d) do not exist and any nonoscillatory solutions
with the positive first component are of type (a) or (c). �
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4. Bounded and unbounded solutions

In this section we study bounded and unbounded solutions. We start with the
properties of bounded solutions.

Theorem 3. If (??) holds, then every bounded nonoscillatory solution of (S) is
Kneser solution and satisfies limn→∞ xn = 0.

Proof. Assume that (x, y, z, w) is a bounded nonoscillatory solution of type (d).
Then there exist n0 ≥ 1 and positive constant k, l such that xn ≥ k and −zn ≥ l

for n ≥ n0 and by Lemma ?? we have

(4.1) lim
n→∞

yn = lim
n→∞

wn = 0.

Now, by the same argument as in the proof of Theorem ?? we get (??) and (??),
which leads to a contradition with the boundedness of y. Therefore, solution of
type (d) does not exist.

Let (x, y, z, w) be a solution of type (c). Then all of its components have the
finite limit and (??) holds. If xn ≥ k > 0 for large n, then wn satisfies (??) and
using the same argument as in the proof of Theorem ?? we get a contradiction.
Therefore, limn→∞ xn = 0. �

Next result describes properties of strongly monotone solutions.

Theorem 4. Assume

(4.2)

∞
∑

n=1

Bn

(

n−1
∑

k=1

Ak

)1/β

= ∞

and

(4.3)

∞
∑

n=1

Dn







n−1+τ
∑

i=1

Ci





i−1
∑

j=1

Bj

(

j−1
∑

k=1

Ak

)

1

β





1

γ







δ

= ∞.

Then strongly monotone solutions of (S) satisfies (??).

Proof. Let (x, y, z, w) be a type (a) solution of (S). We prove that it satisfies (??). In
view of Lemma ?? it is sufficient to prove that limn→∞ yn = ∞ and limn→∞ wn =
∞.

Since x, y, z are positive as for type (b) solutions, the estimation (??) holds.
Moreover, wn is increasing and positive and so there exists k > 0 such that wn ≥ k

for large n and

zn − zn0
=

n−1
∑

i=n0

Aiw
1

α

i ≥ k
1

α

n−1
∑

i=n0

Ai.

Thus from the second equation of the system (S) we obtain

yn ≥

n−1
∑

i=n0

Biz
1

β

i ≥ k
1

αβ

n−1
∑

i=n0

Bi





i−1
∑

j=n0

Aj





1

β
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and therefore the sequence yn → ∞ for n → ∞. Finally, from the fourth and first
equation of the system (S) and using previous inequality we get

wn ≥

n−1
∑

i=n0

Dix
δ
i+τ ≥

n−1
∑

i=n0

Di







i−1+τ
∑

j=n0

Cj



k
1

αβ

j−1
∑

k=n0

Bk

(

k−1
∑

t=n0

At

)

1

β





1

γ







δ

wn ≥ k
δ

αβγ

n−1
∑

i=n0

Di







i−1+τ
∑

j=n0

Cj





j−1
∑

k=n0

Bk

(

k−1
∑

t=n0

At

)

1

β





1

γ







δ

and so as n → ∞ we get lim wn = ∞. �

5. Property B

Applying Theorems ??, ??, ??, we get the following conditions ensuring that
system (S) has property B.

Corollary 1. Let assumptions of Theorem ?? hold. If either
∑

Bn is divergent or
∑

Bn is convergent and

∞
∑

n=1

Cn

(

∞
∑

i=n

Bi

)1/γ

= ∞,

then system (S) has property B.

Proof. Condition (??) implies that (??) holds and condition (??) implies that (??)
holds. It remains to prove limn→∞zn = 0 for type (c) solutions. If zn ≥ l > 0 then
by summation of the second equation we get

−yn ≥ l1/β
∞
∑

i=n

Bi.

Then from the first equation we get

xn0
− xn =

n−1
∑

i=n0

Ci (−yi)
1/γ ≥ l1/βγ

n−1
∑

i=n0

Ci





∞
∑

j=i

Bj





1/γ

and passing n → ∞ we get the contradiction with the boundedness of x. Now the
conclusion follows from Theorems ??–??. �

Remark 3. Assume (??) and (??) with τ = 0. Then, because (??) holds for τ > 0,
system (S) has property B for any τ ≥ 0.
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Consider a four-dimensional symmetric system

(T)

∆xn = An · y
1

α
n

∆yn = Bn · z
1

β
n

∆zn = An · w
1

α
n

∆wn = Bn · x
1

β

n+τ .

Applying Corollary ?? to this system, we get the following result.

Corollary 2. If either (??) or

∞
∑

n=1

Bn < ∞,

∞
∑

n=1

Bn







n−1
∑

k=1

Ak





∞
∑

j=k

Bj





1/α






1/β

= ∞,

then system (T) has property B for any τ ≥ 0.

Proof. Condition (??) reduces to (??). Obviously, in view of (??), this condition
is satisfied, and so the conclusion follows from Corollary ??. �

Remark 4. Our results can be applied to equation (E). A solution x of (E) is called
nonoscillatory if x is eventually positive or eventually negative. By Lemma ?? a
solution (x, y, z, w) of system (S) is nonoscillatory if and only if x is nonoscilla-
tory solution of equation (E). Property B reads for (E) as the property that any

nonoscillatory solution of (E) satisfies either limx
[i]
n = 0 or lim

∣

∣

∣
x

[i]
n

∣

∣

∣
= ∞ for all

i = 0, 1, 2, 3, where x
[0]
n = xn.

6. Concluding remarks

Here we discuss the role of the integer-valued argument τ in (S) to the behavior
of nonoscillatory solutions.

(1) The argument τ appears in conditions (??) and (??). The condition (??)
ensures the nonexistence of type (b) solutions (Theorem 1) and that solutions of
type (d) satisfy lim yn = 0 (proof of Theorem 2). It is a question if Theorem ??
and Corollary ?? remain to hold if (??) is replaced by (??).

(2) Assume that the series
∑

B is divergent. By Theorem ??, if (??) holds, then
(S) has a weak property B. It would be interesting to study the existence of solutions
of type (b).

(3) Any solution of (S) with the positive initial conditions is strongly monotone.
Hence, system (S) has always these solutions. It is an open problem whether
Kneser solutions exist and if the argument τ can change the (non)existence of
Kneser solutions.
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