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1Department of Economics, Society, Politics (DESP), University of Urbino, Italy
2Department of Mathematical Analysis and Numerical Analysis, Comenius University in Bratislava,

Mlynská dolina, 842 48 Bratislava, Slovakia
3Mathematical Institute of Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia

4Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025, China

Received 16 October 2023, appeared 17 June 2024

Communicated by Josef Diblík

Abstract. We derive Melnikov type conditions for the persistence of heteroclinic so-
lutions in perturbed slowly varying discontinuous differential equations. Opposite to
[J. Differential Equations 400(2024), 314–375] we assume that the unperturbed (frozen)
equation has a parametric system of heteroclinic solutions and extend a result in [SIAM
J. Math. Anal. 18(1987), 612–629] and [SIAM J. Math. Anal. 19(1988), 1254–1255] to
higher dimensional non-Hamiltonian discontinuous singularly perturbed differential
equations.

Keywords: discontinuous differential equations, heteroclinic solutions, Melnikov con-
ditions, persistence.

2020 Mathematics Subject Classification: Primary 34C37, Secondary 34C23, 34D15,
37G20.

1 Introduction

Let h(x, y), fi(x, y) : Rn × Rm → R, i = 1, . . . , N + 1, be Cr-functions, r ≥ 2, bounded on
Rn × Rm together with their derivatives, and c1 < c2 < . . . < cN < cN+1 be real numbers.

In this paper we study the problem of existence of continuous, piecewise smooth, bounded
solutions of a singularly perturbed equation like

ẋ = f (x, y),
ẏ = εg(x, y, ε)

(1.1)

where x ∈ Rn, y ∈ Rm, ε ∈ R, ε > 0 and

f (x, y) :=


fi(x, y) if ci−1 < h(x, y) < ci,

i = 1, . . . , N
fN+1(x, y) if h(x, y) > cN

(1.2)
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where we take for notational simplicity c0 = −∞. It is assumed that for all y ∈ Rm, the frozen
system

ẋ = f (x, y) (1.3)

has hyperbolic fixed points x = w±(y) with an associated piecewise Cr, heteroclinic solu-
tion u(t, y) intersecting transversally the manifolds Si(y) = {x | h(x, y) = ci}. We intend to
give a Melnikov like condition guaranteeing that the perturbed system (1.1) has a solution
(x(t, ε), y(t, ε)) such that supt∈R |x(t, ε) − u(t, y(t, ε))| → 0 as ε → 0. This paper has been
motivated by [10, 11] where the authors considered a perturbation of a smooth, Hamiltonian,
three-dimensional system. The main result of our paper (Theorem 6.2) concerns higher di-
mension, discontinuous and not necessarily Hamiltonian systems. Moreover the approach in
[10, 11] is basically geometrical, while in this paper it is based on Lyapunov–Schmidt reduc-
tion.

This paper is a continuation of series of our works [3–6] on the study of existence of
bounded solutions for slowly varying discontinuous differential equations. Papers [3–5] deal
with the persistence of periodic solutions in case of existence of either a single or a family of
periodic solutions for the frozen system (1.3). Next, in [6] generic conditions have been given
for persistence of an isolated homoclinic-heteroclinic solution for the frozen system. Thus it
is a natural step to study the case when the frozen system possesses a parametric system of
bounded-homoclinic-heteroclinic solutions, which is the purpose of this paper.

To prove Theorem 6.2 we use a general result in [6] concerning the characterization of
bounded solutions on both the positive and the negative line for the perturbed equation,
Then, in [6], this result is used, jointly with a Lyapunov–Schmidt reduction, to write down a
bifurcation equation which is the scalar product of certain vectors with the difference at t = 0
of the value of these solutions. Now, in [6] the case is considered where this function has a
simple zero at ε = 0, while in this paper it is identically zero at ε = 0. This fact makes a big
difference and indeed the Melnikov functions obtained in the two cases are quite different.

We now briefly sketch the content of this paper. For the reader convenience and also for
the completeness of this paper, we recall necessary results from [6] in Sections 2–5. Namely,
Section 2 provides basic assumptions and defines the piecewise smooth heteroclinic solution
of the unperturbed system. Section 3 recalls the definition of exponential dichotomy and
extends this notion to discontinuous, piecewise linear, systems with jumps at some points;
moreover some results concerning existence of bounded solutions on either t ≥ 0 and t ≤ 0
are extended to these systems. In Section 4 we construct families of bounded solutions and
describes them in terms of some parameters. These solutions are continuous and piecewise
smooth and give the bounded solutions we look for, when they assume the same value at
t = 0. Section 5 defines the discontinuous variational equation.

Our main results are proved in Section 6 where we obtain a Melnikov-type condition
assuring that the bifurcation function has a manifold of solutions. Motivated by [8], Section 7,
is devoted to the construction of an example of application of the main result of this paper.
Although the equation is three-dimensional and Hamiltonian, the vector field is discontinuous
and then the results in [8, 10, 11] do not apply.

Finally, in Section 8 we show that the Melnikov function given here extends to the hetero-
clinic case with finitely many discontinuity points, the Melnikov function given in [5] for the
periodic case with two discontinuity points.

In the whole paper we will use the following notation. Given a vector v or a matrix A with
vT, AT we denote the transpose of v, A.
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2 Notation and basic assumptions

Let Ω ⊂ Rn be a bounded domain, c1 < . . . < cN+1 be real numbers and h : Ω × Rm → R be
a Cr-functions, r ≥ 2, with bounded derivatives. For ℓ = 1, . . . , N + 1, we set

Ωℓ = {(x, y) ∈ Ω × Rm | ci−1 ≤ h(x, y) < ci},

where we set for simplicity, c0 = −∞. Then let fℓ : Ω × Rm → Rn be Cr-functions, bounded
together with their derivatives in Ω × Rm.

First we give the definition of solutions of equation

ẋ = fi(x, y), (x, y) ∈ Ωi, i = 1, . . . , N + 1 (2.1)

we are considering in this paper.

Definition 2.1. A continuous, piecewise smooth function u(t, y) is a solution of equation (2.1)
on t ≥ 0 intersecting transversally the sets Si(y) = {x ∈ Ω | h(x, y) = ci}, i = 1, . . . , N, if there
exist η > 0 and Cr-functions bounded together with their derivatives 0 < t1(y) < . . . < tN(y)
such that the following conditions hold for 1 ≤ i ≤ N (note that we set t0(y) = 0)

a1) u̇(t, y) = fi(u(t, y), y) for ti−1(y) < t < ti(y) and u̇(t, y) = fN+1(u(t, y), y) for t > tN(y);

a2) h(u(ti(y), y), y) = ci, and hx(u(ti(y), y), y)u̇(ti(y)±, y) > 2η;

a3) ci−1 < h(u(t, y), y) < ci, for ti−1(y) < t < ti(y) and h(u(t, y), y) > cN , for t > tN(y).

Similarly, a continuous, piecewise smooth function u(t, y) is a solution of equation (2.1) on
t ≤ 0 intersecting transversally the sets Si(y), if there exist η > 0 and Cr-functions bounded
together with their derivatives t−N(y) < . . . < t−1(y) < 0 such that the following conditions
hold for any 1 ≤ i ≤ N:

a′1) u̇(t, y) = fi(u(t, y), y) for t−i(y) < t < t−i+1(y) and u̇(t, y) = fN+1(u(t, y), y) for t <

t−N(y);

a′2) h(u(t−i(y), y), y) = ci, and hx(u(t−i(y), y), y)u̇(t−i(y)±, y) < −2η;

a′3) ci−1 < h(u(t, y), y) < ci, for t−i(y) < t < t−i+1(y) and h(u(t, y), y) > cN , for t < t−N(y).

In this paper we assume that a continuous, piecewise smooth solution u(t, y) of equation
(2.1) exist, for t ∈ R, such that the following conditions hold.

A1) w0(y) := u(0, y) and its derivatives are bounded functions on Rm and w0(y) belongs to
an open and bounded subset B ⊂ Rn such that B × Rm ⊂ Ω1.

A2) There exist smooth and bounded functions w±(y) and µ0 > 0, such that

fN+1(w±(y), y) = 0,

h(w±(y), y)− cN > µ0,

for any y ∈ Rm and
lim

t→±∞
u(t, y)− w±(y) = 0

uniformly with respect to y ∈ Rm.
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Figure 2.1: The piecewise C1 bounded solution of (1.3). For simplicity we write w±
j

instead of w±
j (y).

A3) For any y ∈ Rm, fN+1,x(w±(y), y) have k eigenvalues with negative real parts and n − k
eigenvalues with positive real parts, counted with multiplicities and there exists δ0 > 0
such that all these eigenvalues satisfy

|Re λ(y)| > δ0.

We set

t0(y) = 0, ∀y ∈ Rm.

So, we are considering solutions of (2.1) which are contained in C × Rn ⊂ Ω × Rm, where
C is a compact subset of Ω. Then we may and will assume that Ω = Rn.

Remark 2.2. i) As in [6], all results in this paper can be easily generalised to the case where
the solutions exit transversally Ωi and enter into either Ωi+1 or Ωi−1 transversally. We can
formalize all of this as follows: there exists (j0, . . . , jM) such that given ji then ji+1 is either
ji − 1 or ji + 1 and for ti(y) < t < ti+1(y) we have

cji−1 < h(u(t, y), y) < cji .

Moreover

|hx(u(ti(y), y), y) fi(u(ti(y), y), y)| > 2η.

for any i = 1, . . . , N. A similar generalization can be made for t ≤ 0 and all other assumption
will be changed accordingly.
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ii) From a2) and a′2) it follows that, for i = 1, . . . , N:

∂

∂t
h(u(t, y), y)|t=ti(y) ≥ 0,

∂

∂t
h(u(t, y), y)|t=0 ≥ 0

that is

hx(u(ti(y), y), y) fi−1(u(ti(y), y), y) ≥ 0,

hx(u(ti(y), y), y) fi(u(ti(y), y), y) ≥ 0.

Similarly

hx(u(t−i(y), y), y) fi(u(t−i(y), y), y) ≤ 0;

hx(u(t−i(y), y), y) fi+1(u(t−i(y), y), y) ≤ 0.

So a2) and a′2) are a kind of transversality assumption on u(t, y).

Let w±
0 (y) = u(0, y) and set, for i = 1, . . . , N:

w±
i (y) = u(t±i(y), y) ∈ Si(y). (2.2)

The following result has been proved in [6]

Lemma 2.3. w±
i (y) are Cr-functions bounded together with their derivatives. Moreover u(t, y) and

its derivatives with respect to y are bounded uniformly with respect to y, on both t ≥ t+N(y) and
t ≤ t−N(y).

Let i = 1, . . . , N + 1. For t ≥ 0, let u+
i (t, y) be the solution of ẋ = fi(x, y) such that

u+
i (ti−1(y), y) = w+

i−1(y). Similarly, let u−
i (t, y) be the solution of ẋ = fi(x, y) such that

u−
i (t1−i(y), y) = w−

i−1(y). Note that u±
i (t, y) is defined for t ∈ R and

u(t, y) =
{

u−
i (t, y) for t−i(y) ≤ t ≤ t1−i(y), i = 1, . . . N + 1,

u+
i (t, y) for ti−1(y) ≤ t ≤ ti(y), i = 1, . . . , N + 1

(2.3)

where, for simplicity, we set t−N−1(y) = −∞ and tN+1(y) = ∞. Note that

u+
i (ti(y), y) = u(ti(y), y) = w+

i (y) = u+
i+1(ti(y), y)

and similarly,
u−

i (t−i(y), y) = u(t−i(y), y) = w−
i (y) = u−

i+1(t−i(y), y).

3 Exponential dichotomy for piecewise discontinuous systems

A basic tool in this paper is the notion of exponential dichotomy, whose definition we recall
here. Let J be either [a, ∞), (−∞, a], or R and A(t), t ∈ J, be a n × n continuous matrix. We
say that the linear system

ẋ = A(t)x, x ∈ Rn (3.1)
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has an exponential dichotomy on J if there exist a projection P : Rn → Rn and constants
δ > 0 and K ≥ 1 such that the fundamental matrix X(t) of (3.1) satisfying X(a) = I, when
J = [a, ∞), (−∞, a], or X(0) = I when J = R, satisfies

|X(t)PX(s)−1| ≤ Ke−δ(t−s), for s ≤ t, s, t ∈ J,

|X(s)(I − P)X(t)−1| ≤ Ke−δ(t−s), for s ≤ t, s, t ∈ J.

K and δ are called the constant and the exponent of the exponential dichotomy.
In [6] the notion of exponential dichotomy has been extended to systems with discontinu-

ities.
Let t0 < t1 < . . . < tN be real numbers, B1, . . . , BN be invertible n × n matrices and A(t),

t ≥ t0 be a piecewise continuous matrix with possible discontinuity jumps at t = t1, . . . , tN ,
that is

A(t) =


Ai(t) if ti−1 ≤ t < ti,

i = 1, . . . , N
AN+1(t) if t ≥ tN

(3.2)

where Ai(t) is continuous for ti−1 ≤ t ≤ ti, AN+1(t) is continuous for t ≥ tN . Note that A(t)
is continuous for t ≥ t0, t ̸= ti, i ̸= 1, . . . , N and right-continuous at t = ti, i = 1, . . . , N with
possible jumps at t = ti, i = 1, . . . , N given by the matrix Ai+1(ti)− Ai(ti).

For t ≥ t0 the fundamental matrix of the linear, discontinuous, system

ẋ = A(t)x,

x(t+i ) = Bix(t−i ), i = 1, . . . , N
(3.3)

is defined as

X+(t) =


U1(t) if 0 ≤ t < t1,
Ui+1(t)Ui+1(ti)

−1BiX+(t−i ) if ti ≤ t < ti+1,
i = 1 . . . , N − 1

UN+1(t)UN+1(tN)
−1BNX+(t−N) if t ≥ tN ,

where Ui(t) is the fundamental matrix of the linear systems

ẋ = Ai(t)x

on R, that is U̇i(t) = Ai(t)Ui(t), t ∈ R, and Ui(0) = I.
Similarly, if t−N < . . . t−1 < t0 and

A(t) =


AN+1(t) if t ≤ t−N ,
Ai(t) if t−i < t ≤ t−i+1,

i = 1, . . . , N
(3.4)

where Ai(t) is continuous for t−i−1 ≤ t ≤ t−i and AN+1(t) is continuous for t ≤ t−N , the
fundamental matrix, for t ≤ t0, of the linear, discontinuous, system

ẋ = A(t)x,

x(t+−i) = Bix(t−−i)
(3.5)

is

X−(t) =


U1(t) if t−1 < t ≤ 0,
Ui+1(t)Ui+1(t−i)

−1B−1
i X−(t+−i) if t−i−1 < t ≤ t−i,

i = 1, . . . , N − 1
UN+1(t)UN+1(t−N)

−1B−1
N X+(t+−N) if t ≤ t−N .
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Note that, on t ≤ t0, A(t) is continuous for t ≤ t0, t ̸= t−i, i ̸= 1, . . . , N and left-continuous
at t = t−i, i = 1, . . . , N with possible jumps at t = t−i, i = 1, . . . , N given by the matrix
Ai(t−i)− A−i+1(t−i).

Remark 3.1. As a matter of facts, for t ≥ t0, we will consider

A(t) =


Ai(t) if ti−1 ≤ t ≤ ti,

i = 1, . . . , N
AN+1(t) if t ≥ tN

and similarly for t ≤ t0. This may cause a duplicate definition of A(t) at t = ti, however it
will be always clear which one among the functions Ai(t) will be taken into account at that
point.

Without loss of generality we may and will assume that t0 = 0.

Note that X+(t) is continuous for t ̸= t1, . . . , tN and right-continuous at t = t1, . . . , tN and
X−(t) is continuous for t ̸= t−1, . . . , t−N and left-continuous at t = t−1, . . . , t−N .

It is clear that Ẋ±(t) = A(t)X±(t), for any ±t ≥ 0, t ̸= t±1, . . . , t±N , X±(0) = I, the identity
matrix, and

X+(t+i ) = BiX+(t−i ),

X−(t+−i) = BiX−(t−−i)
(3.6)

for any i = 1, . . . , N. Actually we can write

X+(ti) = BiX+(t−i ), X−(t−i) = B−1
i X−(t+−i)

since X+(t) is right-continuous and X−(t) is left-continuous.

Remark 3.2. Let τ ≥ 0 be a fixed number. For t ≥ 0, x(t) = X+(t)X+(τ)−1 x̃ is the right-
continuous solution of 

ẋ = A(t)x, for t ≥ 0, t ̸= t1, . . . , tN

x(t+i ) = Bix(t−i )
x(τ+) = x̃.

(3.7)

Indeed, it is obvious that ẋ(t) = A(t)x(t) for t ≥ 0, t ̸= t1, . . . , tN and that x(t+i ) = Bix(t−i ),
since X+(t+i ) = BiX+(t−i ). Moreover, for any τ ≥ 0 we have x(τ+) = X+(τ+)X+(τ)−1 x̃ =

X+(τ)X+(τ)−1 x̃ = x̃, since X+(t) is right-continuous at any t ≥ 0.
Similarly, for t ≤ 0 and any fixed τ ≤ 0, x(t) = X−(t)X−(τ)−1 x̃ is the left-continuous

solution of 
ẋ = A(t)x, for t ≤ 0, t ̸= t−1, . . . , t−N

x(t−−i) = B−1
i x(t+−i)

x(τ−) = x̃.
(3.8)

The following results have been proved in [6]:

Lemma 3.3. Suppose that the linear system

ẋ = AN+1(t)x

has an exponential dichotomy on t ≥ tN (resp. t ≤ t−N) with constant K, exponent δ and projection
P+ (resp. P− when t ≤ t−N). Then, the linear system (3.3) (resp. (3.5)) with A(t) as in (3.2) (resp.
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(3.4)) has an exponential dichotomy on R+, (resp. R−) with the same exponent δ, constant K̃ ≥ K and
projection

P̃+ = X+(t+N)
−1P+X+(t+N),

P̃− = X−(t−−N)
−1P−X−(t−−N).

(3.9)

Lemma 3.4. Let A(t) be either as in (3.2) or (3.4). Suppose that the condition of Lemma 3.3 holds and
let P̃± be as in (3.9). Then ξ+ ∈ RP̃+ if and only if the solution of the discontinuous system (3.3)
such that x(0) = ξ+ is bounded for t ≥ 0. Similarly, ξ− ∈ N P̃− if and only if the solution of the
discontinuous system (3.5) such that x(0) = ξ− is bounded for t ≤ 0.

Lemma 3.5. Let Bi, i = 1, . . . , N, be invertible n × n matrices and k(t) be a bounded integrable
function for t ≥ 0, (resp. t ≤ 0). Suppose the condition of Lemma 3.3 hold and set

P̃τ
+ = X+(τ)P̃+X+(τ)

−1,

P̃τ
− = X−(−τ)P̃−X−(−τ)−1

where P̃± is as in (3.9) and 0 ≤ τ ∈ R is a fixed number. Then, for any ξ+ ∈ RP̃τ
+ (resp. ξ− ∈ N P̃τ

−)
the linear inhomogeneous system

ẋ = A(t)x + k(t),

x(t+i ) = Bix(t−i ), i = 1, . . . , N

P̃τ
+x(τ) = ξ+

(3.10)

with t ≥ 0, [resp.

ẋ = A(t)x + k(t),

x(t−i ) = B−1
i x(t+i ),

(I − P̃τ
−)x(−τ) = ξ−

when t ≤ 0] has the unique right-continuous, [resp. left-continuous when t ≤ 0] bounded solution

x(t) = X+(t)P̃+X+(τ)
−1ξ+ +

∫ t

τ
X+(t)P̃+X+(s)−1k(s)ds

−
∫ ∞

t
X+(t)(I − P̃+)X+(s)−1k(s)ds

(3.11)

[resp.

x(t) = X−(t)(I − P̃−)X−(−τ)−1ξ− +
∫ t

−∞
X−(t)P̃−X−(s)−1k(s)ds

−
∫ −τ

t
X−(t)(I − P̃−)X−(s)−1k(s)ds

(3.12)

if t ≤ 0]. Moreover such a solution satisfies

sup
t≥τ

|x(t)| ≤ K[|ξ+|+ 2δ−1 sup
t≥0

|k(t)|] (3.13)

if t ≥ 0 [resp.
sup
t≤−τ

|x(t)| ≤ K[|ξ−|+ 2δ−1 sup
t≤0

|k(t)|] (3.14)

if t ≤ 0].
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4 Bounded solutions on the half lines

From A3) we know that the number of the eigenvalues of fN+1,x(w±(y), y) with negative
(and then also positive) real parts, counted with multiplicities, is independent of y ∈ Rm.
Moreover it also follows that all eigenvalues are bounded functions of y ∈ Rm. Indeed, since
fN+1,x(w±(y), y) is bounded, the matrix I − λ−1 fN+1,x(w±(y), y) is invertible for |λ| > R,
sufficiently large and independent of y. Hence all eigenvalues have to satisfy |λ| ≤ R.

Let δ0 be any positive number strictly less than min{|Re λ(y)|}, where λ(y) are the eigen-
values of fN+1,x(w±(y), y). According to [7] the system ẋ = fN+1,x(w±(y), y)x has an expo-
nential dichotomy on R with exponent δ0 and spectral projection (of rank k)

P0
±(y) =

1
2πi

∫
Γ
(zI − fN+1,x(w±(y), y))−1dz

= ∑
Reλ(y)<0

Res((zI − fN+1,x(w±(y), y))−1, z = λ(y))

where Res(F(z), z = z0) is the residual of the meromorphic function F(z) at z0 and Γ is a
closed curve that contains in its interior all eigenvalues of fN+1,x(w±(y), y) with negative real
parts, but none of those with positive real parts. Hence |P0(y)| ≤ M, for any y ∈ Rm and
some M ≥ 1.

Now, recalling (2.3), from A2) and the boundedness of tN(y), it follows immediately that

lim
t→±∞

u±
N+1(t, y) = w±(y)

uniformly with respect to y ∈ Rm.
Let T+ > supy∈Rm tN(y), T− < infy∈Rm t−N(y) and take 0 < δ < δ0. From the roughness of

exponential dichotomies (cfr. [7, Proposition 2, p. 34]) the linear systems

ẋ = fN+1,x(u+
N+1(t + T+, y), y)x (4.1)

and
ẋ = fN+1,x(u−

N+1(t + T−, y), y)x (4.2)

have an exponential dichotomy on R+, R− resp., uniformly with respect to y ∈ Rm, with
projections P+(y), resp. P−(y), of rank k, constant K and exponent δ. Moreover, according to
[8, Proposition 2.3], it can be assumed that, for |y − y0| sufficiently small it results: N P+(y) =
N P+(y0), RP−(y) = RP−(y0) and in this case the projections are smooth with respect to y.
Note that, N P+(y) = N P+(y0) and RP−(y) = RP−(y0) are equivalent to

P+(y) = P+(y)P+(y0), P+(y0) = P+(y0)P+(y)

P−(y) = P−(y0)P−(y), P−(y0) = P−(y)P−(y0).
(4.3)

Let U±
i (t, y) be the fundamental matrix of

ẋ = fi,x(u±
i (t, y), y)x

in R± resp., that is

U̇±
i (t, y) = fi,x(u±

i (t, y), y)U±
i (t, y), ±t ≥ 0,

U±
i (0, y) = I.

As in [6] we see that
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Lemma 4.1. For any τ ∈ R the linear system

ẋ = fN+1,x(u+
N+1(t, y), y)x, (4.4)

resp.
ẋ = fN+1,x(u−

N+1(t, y), y)x, (4.5)

has an exponential dichotomy on t ≥ τ, resp. t ≤ τ, with exponent δ, constant K̃ independent on y
and projections

Q+(y) = U+
N+1(τ, y)U+

N+1(T+, y)−1P+(y)U+
N+1(T+, y)U+

N+1(τ, y)−1

Q−(y) = U−
N+1(τ, y)U−

N+1(T−, y)−1P−(y)U−
N+1(T−, y)U−

N+1(τ, y)−1.

In particular, if τ = T+, resp. τ = T−, then Q+(y) = P+(y), resp. Q−(y) = P−(y), and K̃ = K.

Finally, the following result holds (see [6, Theorems 4.3, 4.5]).

Theorem 4.2. There exist ρ > 0, bounded Cr-functions

t∗−N(ξ−, α, ε) < . . . < t∗−1(ξ−, α, ε) < t∗0(ξ−, α, ε) = 0 < t∗1(ξ+, α, ε) < . . . < t∗N(ξ+, α, ε)

such that, for all i = 1, . . . , N,

lim
(ξ+,ε)→0

|t∗i (ξ+, α, ε)− ti(α)| = 0,

lim
(ξ−,ε)→0

|t∗−i(ξ−, α, ε)− t−i(α)| = 0

uniformly with respect to α ∈ Rm, and continuous, piecewise Cr, solutions of (1.1)

(x±(t, ξ±, α, ε), y±(t, ξ±, α, ε))

defined for t ≥ 0 and t ≤ 0 resp., and such that

ci−1 < h(x+(t, ξ+, α, ε), y+(t, ξ+, α, ε)) < ci, for t∗i−1(ξ+, α, ε) < t < t∗i (ξ+, α, ε),

h(x+(t, ξ+, α, ε), y+(t, ξ+, α, ε)) > cN , for t > t∗N(ξ+, α, ε),

ci−1 < h(x−(t, ξ−, α, ε), y−(t, ξ−, α, ε)) < ci, for t∗−i(ξ−, α, ε) < t < t∗−i+1(ξ−, α, ε),

h(x−(t, ξ−, α, ε), y−(t, ξ−, α, ε)) > cN , for t < t∗−N(ξ−, α, ε),

h(x+(t∗i (ξ+, α, ε), ξ+, α, ε), y+(t∗i (ξ+, α, ε), ξ+, α, ε)) = ci,

h(x−(t∗−i(ξ−, α, ε), ξ−, α, ε), y−(t∗−i(ξ−, α, ε), ξ−, α, ε)) = ci,
∂

∂t
h(x+(t, ξ+, α, ε), y+(t, ξ+, α, ε))|t=t∗i (ξ+,α,ε) > η,

∂

∂t
h(x−(t, ξ−, α, ε), y−(t, ξ−, α, ε))|t=t∗−i(ξ−,α,ε) < −η,

y±(T±, ξ±, α, ε) = α,

P+(α)[x(T+)− u(T+, α)] = ξ+,

(I − P−(α))[x(T−)− u(T−, α)] = ξ−
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where c0 = −∞. Moreover

sup
t≥0

|x+(t, ξ+, α, ε)− u(t, y+(t, ξ+, α, ε))| < ρ,

sup
t≤0

|x−(t, ξ−, α, ε)− u(t, y−(t, ξ−, α, ε))| < ρ
(4.6)

and

sup
t≥0

|x+(t, ξ+, α, ε)− u(t, y+(t, ξ+, α, ε))| → 0 as |ξ+|+ |ε| → 0,

sup
t≤0

|x−(t, ξ−, α, ε)− u(t, y−(t, ξ−, α, ε))| → 0 as |ξ−|+ |ε| → 0
(4.7)

uniformly with respect to α as well as

lim
ε→0

y±(0, ξ±, α, ε) = α

uniformly with respect to (ξ±, α).

Remark 4.3. According to Theorem 4.2 we have

h(x+(t∗i (ξ+, α, ε), ξ+, α, ε), y+(t∗i (ξ+, α, ε), ξ+, α, ε)) = ci,

h(x−(t∗−i(ξ−, α, ε), ξ−, α, ε), y−(t∗−i(ξ−, α, ε), ξ−, α, ε)) = ci.
(4.8)

Differentiating (4.8) with respect to ξ+, ξ−, at ε = 0 we obtain a formula for the derivatives

∂t∗i
∂ξ+

(ξ+, α, 0),
∂t∗−i

∂ξ−
(ξ−, α, 0), i = 1, . . . , N.

However we have to distinguish when t → t∗i (ξ+, α, 0)+ or t → t∗i (ξ+, α, 0)− (resp. t →
t∗−i(ξ−, α, 0)+ or t → t∗−i(ξ−, α, 0)−). For example if t → t∗i (ξ+, α, 0)+, x+(t, ξ+, α, 0) is the
solution of ẋ = fi+1(x, α) and then, differentiating (4.8) with respect to ξ+, we get, with
t∗i = t∗i (ξ+, α, 0):

hx(x+(t∗i , ξ+, α, 0), α)[ fi+1(x+(t∗i , ξ+, α, 0), α)
∂t∗i
∂ξ+

(ξ+, α, 0) + x+,ξ+(t
∗+
i , ξ+, α, 0)] = 0.

Vice versa, when t → t∗i (ξ+, α, 0)−, x+(t, ξ+, α, 0) is the solution of ẋ = fi(x, α) and then

hx(x+(t∗i , ξ+, α, 0), α)[ fi(x+(t∗i , ξ+, α, 0), α)
∂t∗i
∂ξ+

(ξ+, α, 0) + x+,ξ+(t
∗−
i , ξ+, α, 0)] = 0.

Similarly we get, with t∗−i = t∗−i(ξ−, α, 0):

hx(x−(t∗−i, ξ−, α, 0), α)[ fi+1(x−(t∗−i, ξ−, α, 0), α)
∂t∗−i

∂ξ−
(ξ−, α, 0) + x−,ξ−(t

∗−
−i , ξ−, α, 0)] = 0

and

hx(x−(t∗−i, ξ−, α, 0), α)[ fi(x+(t∗−i, ξ−, α, 0), α)
∂t∗−i

∂ξ−
(ξ−, α, 0) + x−,ξ−(t

∗+
−i , ξ−, α, 0)] = 0.

We will use this remark in the next section.
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5 The discontinuous variational equation

For any fixed α ∈ Rm and ℓ = ±1, . . . ,±N we define linear operators Bℓ(α) : Rn → Rn as
follows:

Bℓ(α)x = x − hx(u(tℓ(α), α), α)x
hx(u(tℓ(α), α), α)u̇(tℓ(α)−, α)

[u̇(tℓ(α)−, α), α)− u̇(tℓ(α)+, α), α)]. (5.1)

The following result has been proved in [6, Propositioon 5.1, 5.2].

Proposition 5.1. For any α ∈ Rm, x 7→ Bℓ(α)x are invertible linear maps. Moreover x+,ξ+(t, 0, α, 0)
is a solution of

ẋ = A(t, α)x :=


fi,x(u(t, α), α)x if ti−1(α) ≤ t < ti(α),

i = 1, . . . , N
fN+1,x(u(t, α), α)x if t ≥ tN(α),

x(ti(α)
+) = Bi(α)x(ti(α)

−), i = 1, . . . , N

(5.2)

which is C1 for t ̸= ti(α), bounded for t ≥ 0 and can be assumed to be right-continuous at t = ti(α).
Similarly x−,ξ−(t, 0, α, 0) is a solution of

ẋ = A(t, α)x :=


fi,x(u(t, α), α)x if t−i(α) < t ≤ t−i+1(α),

i = 1, . . . , N
fN+1,x(u(t, α), α)x if t ≤ t−N(α)

x(t−i(α)
+) = B−i(α)x(t−i(α)

−), i = 1, . . . , N

(5.3)

which is C1 for t ̸= t−i(α),bounded for t ≤ 0 and can be assumed to be left-continuous at t = t−i(α).
Finally, for t ≥ 0, resp. t ≤ 0, the function

u̇(t, α) =


u̇+

i (t, α) for ti−1(α) ≤ t < ti(α),
i = 1, . . . , N

u̇+
N+1(t, α) for t ≥ TN(α)

resp.

u̇(t, α) =


u̇−

i (t, α) for t−i(α) < t ≤ t−i+1(α),
i = 1, . . . , N

u̇−
N+1(t, α) for t ≤ T−N(α)

is a solution of (5.2) (resp. (5.3)) bounded on t ≥ 0 (resp, t ≤ 0).

6 Main result

First we recall that P+(y) is the projections of the exponential dichotomy on t ≥ 0, of the linear
system (4.1) with constant K and exponent δ. Then, from Lemma 4.1, we see that (4.4) has an
exponential dichotomy on t ≥ tN(y) with exponent δ and projection

U+
N+1(tN(y), y)U+

N+1(T+, y)−1P+(y)U+
N+1(T+, y)U+

N+1(tN(y), y)−1.

Similarly, the linear system (4.5) has an exponential dichotomy on t ≤ t−N(y) with exponent
δ and projection

U−
N+1(t−N(y), y)U−

N+1(T−, y)−1P−(y)U−
N+1(T−, y)U−

N+1(t−N(y), y)−1.

From Lemma 3.3–3.4 we obtain the following
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Proposition 6.1. For any α ∈ Rm, the discontinuous linear system (5.2), resp. (5.3), has an exponen-
tial dichotomy on R+, resp. R−, with projections Q+(α), resp. Q−(α), given by

Q+(α) = X+(tN(α)
+, α)−1U+

N+1(tN(α), α)U+
N+1(T+, α)−1

· P+(α)U+
N+1(T+, α)U+

N+1(tN(α), α)−1X+(tN(α)
+, α)

Q−(α) = X−(t−N(α)
−, α)−1U−

N+1(t−N(α), α)U−
N+1(T−, α)−1

· P−(α)U−
N+1(T−, α)U−

N+1(t−N(α), α)−1X−(t−N(α)
−, α)

where

X+(t+N(α), α) = BN(α)U+
N(tN(α))U+

N(tN−1(α), α)−1 . . . B1(α)U+
1 (t1(α), α)

X−(t−N(α)
−, α) = B−N(α)

−1U−
N(t−N(α))U−

N(t−N+1(α), α)−1 . . . B−1(α)
−1U−

1 (t−1(α), α).

Moreover RQ+(α) (resp. NQ−(α)) is the space of initial conditions of solutions of (5.2), resp. (5.3),
right-continuous, when t ≥ 0 (resp. left-continuous, when t ≤ 0) and bounded on R+, (resp, on R−).

We assume the following condition holds:

A5) For any α ∈ Rm, dim[RQ+(α) ∩NQ−(α)] = d ≤ m.

From Proposition 5.1 we know that u̇(0, α) ∈ RQ+(α) ∩NQ−(α) so

1 ≤ dim[RQ+(α) +NQ−(α)]
⊥ = d.

Next, from A3) it follows that dimRQ+(α) = k and dimNQ−(α) = n − k, hence d ≤
min{k, n − k}.

Let ψ1(α), . . . , ψd(α) ∈ Rn be such that

[RQ+(α) +NQ−(α)]
⊥ = span{ψ1(α), . . . , ψd(α)}.

Without loss of generality we assume that {ψ1(α), . . . , ψd(α)} is an orthonormal set.
The purpose of this section is to prove the following

Theorem 6.2. Suppose that A1)–A5) hold. Suppose further that there exists α0 ∈ Rm such that the
vector function

M(α) :=
(∫ ∞

−∞
ψj(α)

TG(t, α)uy(t, α)g(u(t, α), α, 0)dt
)

j=1,...,d

where

G(t, α) =

{
Q−(α)X−(t, α)−1 if t ≤ 0,
(I − Q+(α))X+(t, α)−1 if t ≥ 0

satisfies M(α0) = 0 and rank M′(α0) = d. Then there exists ρ > 0 and ε0 > 0 such that for
0 ≤ ε ≤ ε0 system (1.1) has a (m − d)-dimensional manifold of continuous, piecewise Cr solutions
(x(t), y(t)) such that

sup
t∈R

|x(t)− u(t, y(t)) < ρ,

sup
t∈R

|x(t)− u(t, y(t))| → 0

as ε → 0.
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Proof. Arguing as in [6, Theorem 6.2] we know that

x+(t, ξ+, α, ε) = u(t, y+(t, ξ+, α, ε)) + X+(t, α)ξ̃+

+
∫ t

0
X+(t, α)Q+(α)X+(s, α)−1b+(s)ds

s −
∫ ∞

t
X+(t, α)(I − Q+(α))X+(s, α)−1b+(s)ds

(6.1)

where

b+(t) = b+(t, ξ+, α, ε)

:= f (x+(t, ξ+, α, ε), y+(t, ξ+, α, ε))− f (u(t, y+(t, ξ+, α, ε)), y+(t, ξ+, α, ε))

−A(t, α)[x+(t, ξ+, α, ε)− u(t, y+(t, ξ+, α, ε))]

− εuy(t, y+(t, ξ+, α, ε))g(x+(t, ξ+, α, ε), y+(t, ξ+, α, ε), ε)

and
ξ̃+ = Q+(α)[x+(0, ξ+, α, ε)− u(0, y+(0, ξ+, α, ε))] ∈ RQ+(α).

Moreover, for ε sufficiently small, the map (ξ+, α) 7→ (ξ̃+, y+(0, ξ+, α, ε)) from RP+(α)× Rm

into RQ+(α)× Rm is linearly invertible.

Similarly, for |α− − y0| sufficiently small we have

x−(t, ξ−, α−, ε) = u(t, y−(t, ξ−, α−, ε)) + X−(t, α−)ξ̃−

+
∫ t

−∞
X−(t, α−)Q−(α−)X−(s, α−)

−1b−(s)ds

−
∫ 0

t
X−(t, α−)(I − Q−(α−))X−(s, α−)

−1b−(s)ds

(6.2)

where

b−(t) = b−(t, ξ−, α−, ε)

:= f (x−(t, ξ−, α−, ε), y−(t, ξ−, α−, ε))− f (u(t, y−(t, ξ−, α−, ε)), y−(t, ξ−, α−, ε))

−A(t, α−)[x−(t, ξ−, α−, ε)− u(t, y−(t, ξ−, α−, ε))]

− εuy(t, y−(t, ξ−, α−, ε))g(x−(t, ξ−, α−, ε), y−(t, ξ−, α−, ε), ε)

and
ξ̃− = [I − Q−(α−)][x−(0, ξ−, α−, ε)− u(0, y−(0, ξ+, α−, ε))] ∈ NQ−(α−).

Moreover, for ε sufficiently small, the map (ξ−, α−) 7→ (ξ̃−, y−(0, ξ−, α−, ε)) from N P−(α−)×
Rm into NQ−(α−)× Rm is linearly invertible.

From (6.1)-(6.2) we get, for |α − y0|+ |α− − y0| sufficiently small

x+(0, ξ+, α, ε)− x−(0, ξ−, α−, ε)

= u(0, y+(0, ξ+, α, ε))− u(0, y−(0, ξ−, α−, ε)) + ξ̃+ − ξ̃−

−
∫ ∞

0
(I − Q+(α))X+(s, α)−1b+(s)ds −

∫ 0

−∞
Q−(α−)X−(s, α−)

−1b−(s)ds.

(6.3)

Then the system {
x+(0, ξ+, α, ε) = x−(0, ξ−, α−, ε),
y+(0, ξ+, α, ε) = y−(0, ξ−, α−, ε)
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is equivalent to {
ξ̃+ − ξ̃− = k(ξ+, ξ−, α, α−, ε),
y−(0, ξ−, α−, ε)− y+(0, ξ+, α, ε) = 0

(6.4)

where

k(ξ+, ξ−, α, α−, ε) =
∫ ∞

0
(I − Q+(α))X+(s, α)−1b+(s)ds +

∫ 0

−∞
Q−(α−)X−(s, α−)

−1b−(s)ds.

Differentiating b+(t) = b+(t, ξ+, α, ε) with respect to ξ+ at ξ+ = 0, ε = 0 and also using
x+(t, 0, α, 0) = u(t, α), y+(t, 0, α, 0) = α, we see that, for ti−1(α) < t < ti(α), we have

∂b+
∂ξ+

(t, 0, α, 0) = [ fi,x(u(t, α), α)− A(t, α)]x+,ξ+(t, 0, α, 0) = 0

and for t > tN(α):

∂b+
∂ξ+

(t, 0, α, 0) = [ fN+1,x(u(t, α), α)− A(t, α)]x+,ξ+(t, 0, α,0) = 0.

Then
∂

∂ξ+

[∫ ∞

0
(I − Q+(α))X+(s, α)−1b+(s)ds

]
ξ+=0,ε=0

= 0.

Similarly we get, for |α− − y0| sufficiently small,

∂

∂ξ−

[∫ 0

−∞
Q−(α−)X−(s, α−)

−1b−(s)ds
]

ξ−=0,ε=0
= 0.

As a consequence (6.4) reads:

ξ̃+ − ξ̃− = R1(ξ̃+, ξ̃−, α, α−, ε),

α− − α = R2(ξ̃+, ξ̃−, α, α−, ε)
(6.5)

where

R1(ξ̃+, ξ̃−, α, α−, ε) = k(ξ+, ξ−, α, α−, ε)

ξ̃+ = Q+(α)[x+(0, ξ+, α, ε)− u(0, y+(0, ξ+, α, ε))]

ξ̃− = [I − Q−(α−)][x−(0, ξ−, α−, ε)− u(0, y−(0, ξ−, α−, ε))].

Note that, being (ξ+, ξ−) 7→ (ξ̃+, ξ̃−) linearly invertible, we derive: R1(ξ̃+, ξ̃−, α, α−, ε) =

O(|ξ̃+|2 + |ξ̃−|2 + |ε|) and R2(ξ̃+, ξ̃−, α, α−, ε) = O(|ε|), uniformly with respect to (α, α−).
Now, as ξ̃− ∈ NQ−(α−), we have

(I − Q−(α))ξ̃− = ξ̃− − (Q−(α)− Q−(α−))ξ̃−

and hence
1
2
|ξ̃−| ≤ |(I − Q−(α))ξ̃−| ≤ 2|ξ̃−|

provided |α− − y0| and |α − y0| are sufficiently small. Hence the map ξ̃− 7→ (I − Q−(α))ξ̃−
from NQ−(α−) into NQ−(α) is linearly invertible. Then, setting

ξ̄+ = ξ̃+, ξ̄− = (I − Q−(α))ξ̃−, (6.6)

(6.5) can be written as

ξ̄+ − ξ̄− = R̄1(ξ̄+, ξ̄−, α, α−, ε),

α− − α = R̄2(ξ̄+, ξ̄−, α, α−, ε)
(6.7)
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with

(ξ̄+, ξ̄−) ∈ RQ+(α)×NQ−(α),

R̄1(ξ̄+, ξ̄−, α, α−, ε) = R1(ξ̃+, ξ̃−, α, α−, ε),

R̄2(ξ̄+, ξ̄−, α+, α−, ε) = R2(ξ̃+, ξ̃−, α, α−, ε)

where (ξ̃+, ξ̃−) is the point corresponding to (ξ̄+, ξ̄−) through (6.6). Note that it holds
R̄1(ξ̄+, ξ̄−, α, α−, ε) = O(|ξ̄+|2 + |ξ̄−|2 + |ε|), R̄2(ξ̄+, ξ̄−, α, α−, ε) = O(|ε|) uniformly with re-
spect to (α, α−).

Let α, α− be such that |α − y0| and |α− − y0| are sufficiently small. The map (ξ̄+, ξ̄−) 7→
ξ̄+ − ξ̄− is a linear map from RQ+(α)×NQ−(α) into RQ+(α) +NQ−(α) whose kernel is
RQ+(α) ∩NQ−(α) which, by assumption A5), is d-dimensional.

Let W(α) ⊂ RQ+(α) be a complement of RQ+(α) ∩NQ−(α) in RQ+(α), so that

RQ+(α) +NQ−(α) = W(α)⊕NQ−(α).

Note that dim W(α) = k − d and

Rn = [RQ+(α) +NQ−(α)]⊕ span{ψ1(α), . . . , ψd(α)}.

Next, let Q(α) : Rn → Rn be the orthogonal projection such that RQ(α) = RQ+(α) +

NQ−(α) and NQ(α) = span{ψ1(α), . . . , ψd(α)}. Since

(I − Q(α))x ∈ NQ(α) = span{ψ1(α), . . . , ψd(α)}

and (ψ1(α), . . . , ψd(α)) is orthonormal we get

(I − Q(α))x =
d

∑
j−1

⟨ψj(α), (I − Q(α))x⟩ψj(α)

=
d

∑
j−1

⟨(I − Q(α))ψj(α), x⟩ψj(α) =
d

∑
j−1

(ψj(α)
Tx)ψj(α).

Hence we replace (6.7) with

ξ̄+ − ξ̄− = Q(α)R̄1(ξ̄+, ξ̄−, α, α−, ε),

α − α− = R̄2(ξ̄+, ξ̄−, α, α−, ε),

ψT
j (α)R̄1(ξ̄+, ξ̄−, α, α−, ε) = 0.

(6.8)

We solve (6.8) for (ξ̄+, ξ̄−, α, α−) ∈ W(α)×NQ−(α)× Rm × Rm in terms of ε.
Since dim[RQ+(α) +NQ−(α)] = n − d, we see that for any fixed ε

ξ̄+ − ξ̄− = Q(α)R̄1(ξ̄+, ξ̄−, α, α−, ε)],

α − α− = R̄2(ξ̄+, ξ̄−, α, α−, ε)
(6.9)

is essentially a system of n − d + m equations in the n − d + 2m variables (ξ̄+, ξ̄−, α, α−) such
that, when ε = 0, has the solution

(ξ̄+, ξ̄−) = (0, 0), α− = α.
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The Jacobian matrix at this point is

J =
(

L 0 0
0 IRm −IRm

)
where L : W ×NQ−(α) → W ⊕NQ−(α) is the invertible linear map given by L(ξ̄+, ξ̄−) =

ξ̄+ − ξ̄−. We have
rank J = n − d + m

hence, for ε ̸= 0 and sufficiently small (6.9) has a m-dimensional Cr-manifold of solutions

ξ̄+ = ξ̄+(α, ε), ξ̄− = ξ̄−(α, ε), α− = α−(α, ε)

where

|ξ̄±(α, ε)| = O(|ε|),
|α−(α, ε)− α| = O(|ε|)

(6.10)

uniformly with respect to α. Plugging this solution in the third equation in (6.8) we obtain the
system of equations

ψT
j (α)R̄1(ξ̄+(α, ε), ξ̄−(α, ε), α, α−(α, ε), ε) = 0, j = 1, . . . , d.

As R̄1(0, 0, α, α, 0) = 0 we see that this equation is identically satisfied when ε = 0, so we
replace it with

M(α, ε) = 0

where M(α, ε) is the Cr−1-function:

M(α, ε) =


ε−1

(
ψT

j (α)[R̄1(ξ̄+(α, ε), ξ̄−(α, ε), α, α−(α, ε), ε)
)

j=1,...,d
for ε ̸= 0,[(

∂
∂ε ψT

j (α)R̄1(ξ̄+(α, ε), ξ̄−(α, ε), α, α−(α, ε), ε)
)

j=1,...,d

]
|ε=0

for ε = 0.

We have already observed that R̄1(ξ̄+, ξ̄−, α, α−, ε) = O(|ξ̄+|2 + |ξ̄−|2 + |ε|) uniformly with
respect to (α, α−), then

M(α, 0) =
(

ψT
j (α)R̄1,ε(0, 0, α, α, 0)]

)
j=1,...,d

.

We now compute R̄1,ε(0, 0, α, α, 0). Since the map (ξ̃+, ξ̃−) 7→ (ξ̄+, ξ̄−) where ξ̄+ = ξ̃+ and
ξ̄− = (I − Q(α))ξ̃− is a linear isomorphism we see that

R̄1(0, 0, α, α, ε) = k(0, 0, α, α, ε)

and hence

R̄1ε(0, 0, α, α, 0) = kε(0, 0, α, α, 0)

=
∫ 0

−∞
Q−(α)X−(t, α)−1 ∂b−

∂ε
(t, 0, 0, α, α, 0)dt

+
∫ ∞

0
(I − Q+(α))X+(t, α)−1 ∂b+

∂ε
(t, 0, 0, α, α, 0)dt
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that is

M(α, 0) =
(∫ ∞

−∞
ψT

j (t, α)bε(t, 0, 0, α, α, 0)dt
)

j=1,...,d

where

ψT
j (t, α) =

{
ψT

j (α)Q−(α)X−(t, α)−1 if t < 0,
ψT

j (α)(I − Q+(α))X+(t, α)−1 if t ≥ 0
(6.11)

and

bε(t, 0, 0, α, α, 0) =

{
∂b−
∂ε (t, 0, 0, α, α, 0) if t < 0,

∂b+
∂ε (t, 0, 0, α, α, 0) if t ≥ 0.

Now, it is easy to check that{
∂b−
∂ε (t, 0, 0, α, α, 0) if t < 0,

∂b+
∂ε (t, 0, 0, α, α, 0) if t ≥ 0

= −uy(t, α)g(u(t, α), α, 0).

Hence

M(α, 0) = −
(∫ ∞

−∞
ψT

j (t, α)uy(t, α)g(u(t, α), α, 0)dt
)

j=1,...,d
= −M(α). (6.12)

The thesis follows now from the Implicit Function Theorem.

Remark 6.3. i) The orthonormal basis (ψ1(α), . . . , ψd(α)) of [RQ+(α) + NQ−(α)]⊥ can be
replaced by any independent set (ψ̃1(α), . . . , ψ̃d(α)) such that

Rn = [RQ+(α) +NQ−(α)]⊕ span{ψ̃1(α), . . . , ψ̃d(α)}.

Indeed, let ⟨·, ·⟩ be a scalar product on Rn such that

[RQ+(α) +NQ−(α)]
⊥ = span{ψ̃1(α), . . . , ψ̃d(α)}

and let (ψ1(α), . . . , ψd(α)) be an orthonormal basis of span{ψ̃1(α), . . . , ψ̃d(α)}. Then a smooth,
invertible d × d matrix N(α) exists such that

(ψ̃1(α) . . . ψ̃d(α)) = (ψ1(α) . . . ψd(α))N(α).

Set

M̃(α) =

[∫ ∞

−∞
ψ̃T

j (t, α)uy(t, α)g(u(t, α), α, 0)dt
]

j=1,...,d
.

We have

[ψ̃j(α)
Tuy(t, α)g(u(t, α), α, 0)]j=1,...,d

= (ψ̃1(α) . . . ψ̃d(α))
T[uy(t, α)g(u(t, α), α, 0)]

= N(α)T(ψ1(α) . . . ψd(α))
Tuy(t, α)g(u(t, α), α, 0)

= N(α)T[ψj(α)
T[uy(t, α)g(u(t, α), α, 0)]j=1,...,d

that is
M̃(α) = N(α)T M(α).

Now, assuming that M(α0) = 0 and rank M′(α0) = d, we see that M̃(α0) = N(α0)T M(α0) = 0
and

M̃′(α0) = N(α0)
T M′(α0).
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So M̃(α0) = 0 and rank M̃′(α0) = d. The vice versa is proved in the same way using the
equality

M(α) = [N(α)T]−1M̃(α).

ii) The adjoint system to (5.2) and (5.3) is given by [1]

ẇ = −AT(t, α)w if t ≥ 0,

w(ti(α)
+) = (B∗

i (α)
T)−1w(ti(α)

−),

w(t−i(α)
+) = (B∗,i(α)

T)−1w(t−i(α)
−).

(6.13)

It is easy to check that, if ψ(α) ∈ [RQ+(α) +NQ−(α)]⊥, the function ψ(t, α) defined in (6.11)
is a bounded solution of (6.13). We prove that if

span{ψ1(α), . . . , ψd(α)} = [RQ+(α) +NQ−(α)]
⊥

then {ψ1(t, α), . . . , ψd(t, α)} is a basis for the space of the bounded solutions of (6.13). Indeed,
the fundamental matrix of (6.13) on t ≥ 0 is [X+(t, α))T]−1, and the fundamental matrix of
(6.13) on t ≤ 0 is [X−(t, α))T]−1. As a consequence (6.13) has an exponential dichotomy on
R+ and R− with projections (I − QT

+) and (I − QT
−) respectively. So, the space of bounded

solutions of (6.13), C1 for t ̸= t±i(α), are those whose initial condition belongs to

R(I − QT
+(α)) ∩N (I − QT

−(α)) = (RQ+v)⊥ ∩ (NQ−(α))
⊥ = (RQ+(α) +NQ−(α))

⊥.

Then the dimension of the space of solutions of (6.13), bounded on R, is d and vectors
{ψ1(t, α), . . . , ψd(t, α)} span this space.

As in [5, 9] we see that if x(t, α) and ψ(t, α) are bounded solutions on R of (5.2)–(5.3) and
(6.13) resp., both continuous for t ̸= t±i(α) then ψ(t, α)Tx(t, α) is constant on R.

7 An example

The simplest case of application of Theorem 6.2 is when d = 1 that is when

RQ+(α) ∩NQ−(α) = span{u̇(0, α)}.

This condition is trivially satisfied when n = 2 since in this case k = n − k = 1. Moreover,
when n = 2, we also have dimRQ+(α) = dimNQ−(α) = 1 and hence

RQ+(α) = NQ−(α) = span{u̇(0, α)}. (7.1)

In this section we consider examples of applications of Theorem 6.2 with n = 2, m = 1 and
d = 1. Let

J =
(

0 −1
1 0

)
.

The following result that has been proved in [6]:

Proposition 7.1. Consider the system in R3:

ẋ1 = F1(x1, x2, y),

ẋ2 = F2(x1, x2, y),

ẏ = εg(x1, x2, y).

(7.2)
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and suppose that for any α ∈ R, the unperturbed equation

ẋ1 = F1(x1, x2, α),

ẋ2 = F2(x1, x2, α)
(7.3)

has a solution u(t, α) satisfying assumptions A1)− A5). Let

A(t, α) = [ajk(t, α)]1≤j,k≤2 := [Fj,xk(u1(t), u2(t), α)]1≤j,k≤2,

Bi(α) as in (5.1) and

v(t, α) := e−
∫ t

0 a11(s,α)+a22(s,α)ds Ju̇(t, y0) = e−
∫ t

0 a11(s,α)+a22(s,α)ds
(
−u̇2(t, α)

u̇1(t, α)

)
. (7.4)

Then the space of bounded solution of the adjoint variational system are of the form

ψ(t, α) =


µ−N(α)v(t, α) for t ≤ t−N(α),
µ−i(α)v(t, α), for t−i−1(α) < t ≤ t−i(α),
µi(α)v(t, α), for ti(α) ≤ t < ti+1(α),
µN(α)v(t, α) for t ≥ tN(α)

where µ−N(α) ̸= 0 is arbitrary and, for any i = 1, . . . , N,

µ−i+1(α)v(t−i(α)
+, α) = µ−i(α)[B−i(α)

T]−1v(t−i(α)
−, α),

µi(α)v(ti(α)
+, α) = µi−1(α)[Bi(α)

T]−1v(ti(α)
−, α).

(7.5)

Remark 7.2. i) From (7.5) we have

µ−i+1(α)Ju̇(t−i(α)
+, α)) = µ−i(α)[BT

−i(α)]
−1 Ju̇(t−i(α)

−, α)),

µi(α)Ju̇(ti(α)
+, α)) = µi−1(α)[BT

i (α)]
−1 Ju̇(ti(α)

−, α))

and then

µi(α)∥u̇(ti(α)
+, α))∥2 = µi(α)⟨Ju̇(ti(α)

+, α)), Ju̇(ti(α)
+, α))⟩,

= µi−1(α)⟨[BT
i (α)]

−1 Ju̇(ti(α)
−, α)), Ju̇(ti(α)

+, α))⟩

and similarly

µ−i+1(α)∥u̇(t−i(α)
+, α))∥2 = µ−i(α)⟨Ju̇(t−i(α)

+, α)), Ju̇(t−i(α)
+, α))⟩,

= µ−i(α)⟨[BT
−i(α)]

−1 Ju̇(t−i(α)
−, α)), Ju̇(t−i(α)

+, α))⟩.

Hence all µi(α)’s can be computed in terms of u̇(ti(α)
±, α)).

ii) Since µ−N(α) ̸= 0 and all Bi(α), B−i(α) are invertible, we see that µ±i(α) ̸= 0 for all
i = 0, . . . , N.

The next Proposition, proved in [6], states that in some circumstances all µi(α)’s are equal.
This case is of particular interest, since then we can take ψ(t, α) = v(t, α) and the Melnikov
condition reads

∆(α0) = 0, rank ∆′(α0) = d

where

∆(α) :=
∫ ∞

−∞
e−

∫ t
0 a11(s,α)+a22(s,α)ds

(
−u̇2(t, α)

u̇1(t, α)

)T (
u1,α(t, α)

u2,α(t, α)

)
g(u(t, α), α, 0)dt.

If, moreover, a11(t, α) + a22(t, α) = 0 we have

∆(α) =
∫ ∞

−∞
[u̇1(t, α)u2,α(t, α)− u̇2(t, α)u1,α(t, α)]g(u(t, α), α, 0)dt. (7.6)
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Proposition 7.3. Equations (7.5) are satisfied with µi = 1, i = −N, . . . , N, if and only if there exist
ν±i (α), i = 1, . . . , N, such that

J[ fi+1(u(t±i(α), α), α)− fi(u(t±i(α), α), α)] = νi(α)
±hx(u(t±i(α), α), α)T. (7.7)

For example, suppose
h(x, y) = xk

where either k = 1 or k = 2. Recalling that

fi(x, y) =
(

Fi
1(x1, x2, y)

Fi
2(x1, x2, y)

)
we get, omitting arguments (that can be either (u(t−i), y0) or (u(ti), y0)) for simplicity:

J[ fi+1 − fi] =

(
Fi

2 − Fi+1
2

Fi+1
1 − Fi

1

)
and then (7.7) holds if and only if

Fi
k(u(t±i(α)), α) = Fi+1

k (u(t±i(α)), α) (7.8)

for all i = 1, . . . , N.

As a concrete example we consider the following two dimensional equation (see [8]):

ẍ = λp(t)Φ(x)

where λ ≫ 1 is a large parameter, p(t) > 0 is a positive, C2, periodic function, and Φ(x) is a
piecewise C2 function such that

Φ(x) =
{

Φ−(x) if x < 1
2 ,

Φ+(x) if x > 1
2 .

Then h(x1, x2) = x1 and the discontinuity manifold is S = {x1 = 1
2}.

Taking λ = ε−2 and changing the time scale t 7→ ε−1t, the equation reads

ẍ = p(y)Φ(x),

ẏ = ε
(7.9)

or

ẋ1 = x2,

ẋ2 = p(y)Φ(x1),

ẏ = ε.

We assume that x = 0, ẋ = 0 is a hyperbolic fixed point of equation ẍ = Φ(x) with an
associated solution (u(t), u̇(t)), homoclinic to (0, 0) and such that

0 < u(t) <
1
2

for t < t− or t > t+,

u(t) >
1
2

for t− < t < t+,

u(t+) = u(t−) =
1
2

,

u̇(t±) ̸= 0.

(7.10)
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Then (7.9) has the family of homoclinic solutions

(u(t, α), u̇(t, α)) = (u(t
√

p(α)),
√

p(α)u̇(t
√

p(α)))

that satisfy assumptions A1)–A4). Note that, according to assumption we have

t±(α) =
t±√
p(α)

and ∣∣∣∣(u(t, α)

u̇(t, α)

)∣∣∣∣ ≤ √
1 + p(α)e−δt

√
p(α) ≤

√
1 + pmaxe−δt

√
pmin

where 0 < pmin := min{p(α)} < max{p(α)} := pmax.
As F1(x1, x2, y) = x2 is continuous and h(x1, x2, y) = x1 we see that (7.8) is certainly

satisfied. Then

∆(α) =
∫ ∞

−∞

√
p(α)u̇(t

√
p(α))

[
p′(α)

2
√

p(α)
u̇(t

√
p(α)) +

√
p(α)ü(t

√
p(α))

tp′(α)
2
√

p(α))

]

− p(α)ü(t
√

p(α)u̇(t
√

p(α))
tp′(α)

2
√

p(α))
dt =

1
2

p′(α)
∫ ∞

−∞
u̇(t

√
p(α))2dt

=
p′(α)

2
√

p(α)

∫ ∞

−∞
u̇(t)2dt.

As a consequence ∆(α) has a simple zero at α = α0 if and only if p(α) has a non degenerate
critical point at α = α0. From Theorem 6.2 we conclude with the following

Proposition 7.4. Let Φ±(x) be C2-functions and suppose that

ẍ = Φ(x) :=
{

Φ−(x) if 0 < x < 1
2 ,

Φ+(x) if x > 1
2

has the hyperbolic fixed point (u, u̇) = (0, 0) together with a homoclinic orbit such that (7.10) holds.
Then, if p(α) is a periodic C2-functions having a non-degenerate maximum (or minimum) at α = α0

then there exists λ0 ≫ 1 and a unique, C1, α(λ) such that limλ→∞ α(λ) = α0 and for λ > λ0 the
perturbed equation

ẍ = λp(t)Φ(x)

has a solution (x(t, λ), ẋ(t, λ)) such that

sup
t∈R

|x(t, λ)− u(t, tλ− 1
2 + α(λ))| → 0,

sup
t∈R

|ẋ(t, λ)− u̇(t, tλ− 1
2 + α(λ)))| → 0

as λ → ∞.

As a concrete example we take

Φ±(x) = ∓x, p(y) = 2 + sin y
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so that system (7.9) reads

ẍ = (2 + sin(y))x, x <
1
2

,

ẍ = −(2 + sin(y))x, x >
1
2

,

ẏ = ε.

(7.11)

The homoclinic solution of the frozen system (ε = 0) is

u(t) =


e

π
4
2 et if t ≤ −π

4 ,
1√
2

cos t if −π
4 ≤ t ≤ π

4 ,
e

π
4
2 e−t if t ≥ π

4 .

Solving p′(α) = cos α = 0, we get α1 = π
2 and α2 = 3π

2 with p′′(α1,2) = − sin α1,2 = ∓1 ̸= 0.
Now we add some numerical figures of solutions of (7.11) near

v(t) = u
(

t
√

2 + sin(α1 + εt)
)

and
w(t) = u

(
t
√

2 + sin(α2 + εt)
)

for ε small, say ε = 0.1 and for
y(0) ∼ α1,2. (7.12)

Note
v(0) = w(0) = u(0) =

1√
2

, v̇(0) = ẇ(0) = u̇(0) = 0.

Here we draw some pictures of the solutions of equation (7.11) where we take y(0) = π
2 ± 0.05.

In all these pictures we take ε = 0.1. Figures 7.2–7.5 in the paper show the curves of (t, x(t))

Figure 7.1: The plot of (v(t), v̇(t)) for t ∈ (−10, 10).

and (x(t), x′(t)) corresponding to ε = 0.1.
In the case of keeping initial conditions unchanged but taking ε = 0.01, we have the

following Figures 7.6–7.9.
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Figure 7.2: The plot of (t, x(t)) and (x(t), ẋ(t)) for t = [−3, 3] with y(0) = π
2 +

0.05, x(0) = 1√
2
+ 0.05, ẋ(0) = 0. Note that the solution escapes very quickly from

a neighbourhood of the fixed point x = ẋ = 0 as t → ±∞.

Figure 7.3: The plot of (t, x(t)) and (x(t), ẋ(t)) for t = [−10, 10] with y(0) = π
2 + 0.05,

x(0) = 1√
2
− 0.05, ẋ(0) = 0. Here the solution looks like a periodic solution in the

bounded domain 0.2 ≤ x ≤ 0.7, −0.8 ≤ ẋ ≤ 0.8.

Figure 7.4: The plot of (t, x(t)) and (x(t), ẋ(t)) for t = [−10, 10] with y(0) = π
2 − 0.05,

x(0) = 1√
2
− 0.05, ẋ(0) = 0. Also in this case the solution looks like a periodic solution

in the bounded domain 0.2 ≤ x ≤ 0.7, −0.8 ≤ ẋ ≤ 0.8.
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Figure 7.5: The plot of (t, x(t)) and (x(t), ẋ(t)) for t = [−3, 3] with y(0) = π
2 − 0.05,

x(0) = 1√
2
+ 0.05, ẋ(0) = 0. For these initial values the solution escapes very quickly

from a neighbourhood of the fixed point x = ẋ = 0 as t → ±∞.

Figure 7.6: Corresponding to the case of ε = 0.01 in Figure 7.2.

Figure 7.7: Corresponding to the case of ε = 0.01 in Figure 7.3.
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Figure 7.8: Corresponding to the case of ε = 0.01 in Figure 7.4.

Figure 7.9: Corresponding to the case of ε = 0.01 in Figure 7.5.

8 Concluding remark

According to the results in [4], with the correction given in [5], the Melnikov function in the
periodic case, with two discontinuity points and a family of periodic solutions u(t, α) of the
unperturbed equation, is

∫ T(α)/2

−T(α)/2
ψj(t, α)T fy(u(t, α), α)yε(t, 0, α, 0) dt

+ ψj(t∗(α)+, α)T hy,∗yε,∗
hx,∗ f+,∗

( f−,∗ − f+,∗) + ψj(t∗(α)+, α)T h∗yy∗ε
h∗x f ∗−

( f ∗+ − f ∗−).

In the following we prove that −M(α) extends the above expression to the heteroclinic case
(i.e. with ∞ replacing T(α)) with several discontinuity points.

Differentiating u̇(t, y) = f (u(t, y), y) with respect to y we see that, for t ̸= t±i(α), i =

1, . . . , N:

u̇y(t, α) = A(t, α)uy(t, α) + fy(u(t, α), α)

and then

d
dt
(uy(t, α)yε(t, 0, α, 0)) = u̇y(t, α)yε(t, 0, α, 0) + uy(t, α)ẏε(t, 0, α, 0)

= A(t, α)uy(t, α)yε(t, 0, α, 0) + fy(u(t, α), α)yε(t, 0, α, 0) + uy(t, α)g(u(t, α), α).
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So

∫ ∞

−∞
ψT

j (t, α)uy(t, α)g(u(t, α), α, 0)dt

=
∫ ∞

−∞
ψT

j (t, α)

[
d
dt
(uy(t, α)yε(t, 0, α, 0))− A(t, α)uy(t, α)yε(t, 0, α, 0)

− fy(u(t, α), α)yε(t, 0, α, 0)
]
dt

=
∫ ∞

−∞
ψT

j (t, α)
d
dt
(uy(t, α)yε(t, 0, α, 0)) + ψ̇T

j (t, α)uy(t, α)yε(t, 0, α, 0)

− ψT
j (t, α) fy(u(t, α), α)yε(t, 0, α, 0)dt

=
∫ ∞

−∞

d
dt
[ψT

j (t, α)uy(t, α)yε(t, 0, α, 0)]− ψT
j (t, α) fy(u(t, α), α)yε(t, 0, α, 0)dt.

Then the j-th component of −M(α), say −Mj(α), is

−Mj(α) =
∫ ∞

−∞
ψT

j (t, α) fy(u(t, α), α)yε(t, 0, α, 0)dt

−
∫ ∞

−∞

d
dt
[ψT

j (t, α)uy(t, α)yε(t, 0, α, 0)]dt.

Using the continuity of yε(t, ξ, α, η) we get:

∫ ∞

−∞

d
dt
[ψT

j (t, α)uy(t, α)yε(t, 0, α, 0)]dt

=
∫ t−N(α)

−∞

d
dt
[ψT

j (t, α)uy(t, α)yε(t, 0, α, 0)]dt

+
N−1

∑
i=−N

∫ ti+1(α)

ti(α)

d
dt
[ψT

j (t, α)uy(t, α)yε(t, 0, α, 0)]dt

+
∫ ∞

tN(α)

d
dt
[ψT

j (t, α)uy(t, α)yε(t, 0, α, 0)]dt

= ψT
j (t−N(α)

−, α)uy(t−N(α)
−, α)yε(t−N(α), 0, α, 0)

+
N−1

∑
i=−N

[
ψT

j (ti+1(α)
−, α)uy(ti+1(α)

−, α)yε(ti+1(α), 0, α, 0)

− ψT
j (ti(α)

+, α)uy(ti(α)
+, α)yε(ti(α), 0, α, 0)

]
− ψT

j (tN(α)
+, α)uy(tN(α)

+, α)yε(tN(α), 0, α, 0)

= ψT
j (t−N(α)

−, α)uy(t−N(α)
−, α)yε(t−N(α), 0, α, 0)

+
N

∑
i=−N+1

ψT
j (ti(α)

−, α)uy(ti(α)
−, α)yε(ti(α), 0, α, 0)

−
N−1

∑
i=−N

ψT
j (ti(α)

+, α)uy(ti(α)
+, α)yε(ti(α), 0, α, 0)

− ψT
j (tN(α)

+, α)uy(tN(α)
+, α)yε(tN(α), 0, α, 0)
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= ψT
j (t−N(α)

−, α)uy(t−N(α)
−, α)yε(t−N(α), 0, α, 0)

+
N−1

∑
i=−N+1

[ψT
j (ti(α)

−, α)uy(ti(α)
−, α)− ψT

j (ti(α)
+, α)uy(ti(α)

+, α)]yε(ti(α), 0, α, 0)

+ ψT
j (tN(α)

−, α)uy(tN(α)
−, α)yε(tN(α), 0, α, 0)

− ψT
j (t−N(α)

+, α)uy(t−N(α)
+, α)yε(t−N(α), 0, α, 0)

− ψT
j (tN(α)

+, α)uy(tN(α)
+, α)yε(tN(α), 0, α, 0)

=
N

∑
i=−N

[ψT
j (ti(α)

−, α)uy(ti(α)
−, α)− ψT

j (ti(α)
+, α)uy(ti(α)

+, α)]yε(ti(α), 0, α, 0)

=
N

∑
i=−N,i ̸=0

[ψT
j (ti(α)

−, α)uy(ti(α)
−, α)− ψT

j (ti(α)
+, α)uy(ti(α)

+, α)]yε(ti(α), 0, α, 0).

The last equality follows from the fact that ψj(t, α) and uy(t, α) are continuous at t = t0(α) = 0.
Next, from (3.6)–(6.11) we see that, for any ℓ = ±1, . . . ,±N, we have

ψT
j (tℓ(α)

−, α) = ψT
j (tℓ(α)

+, α)Bℓ(α)

Hence: ∫ ∞

−∞

d
dt
[ψT

j (t, α)uy(t, α)yε(t, 0, α, 0)]dt

N

∑
ℓ=−N,ℓ ̸=0

ψT
j (tℓ(α)

+, α)[Bℓ(α)uy(tℓ(α)−, α)− uy(tℓ(α)+, α)]yε(tℓ(α), 0, α, 0).

From (5.1) we obtain

Bℓ(α)uy(tℓ(α)−, α)− uy(tℓ(α)−, α)

=−
hx(u(tℓ(α), α), α)uy(tℓ(α)−, α)

hx(u(tℓ(α), α), α)u̇(tℓ(α)−, α), α)
(u̇(tℓ(α)−, α)− u̇(tℓ(α)+, α)).

Differentiating h(u(tℓ(α), α), α) = c|ℓ| with respect to α we get

hx(u(tℓ(α), α), α)uy(tℓ(α)−, α)

= −hx(u(tℓ(α), α), y)u̇(tℓ(α)−, α)t′ℓ(α)− hy(u(tℓ(α), α), α)

and then

Bℓ(α)uy(tℓ(α)−, α)− uy(tℓ(α)−, α)

=
hx(u(tℓ(α), α), α)u̇(tℓ(α)−, y)t′ℓ(α) + hy(u(tℓ(α), α), α)

hx(u(tℓ(α), α), α)u̇(tℓ(α)−, α)
(u̇(tℓ(α)−, α)− u̇(tℓ(α)+, α))

=

[
t′ℓ(α) +

hy(u(tℓ(α), α), α)

hx(u(tℓ(α), α), α)u̇(tℓ(α)−, α)

]
(u̇(tℓ(α)−, α)− u̇(tℓ(α)+, α)).

So

Bℓ(α)uy(tℓ(α)−, α)− uy(tℓ(α)+, α)

= uy(tℓ(α)−, α)− uy(tℓ(α)+, α) + t′ℓ(α)[u̇(tℓ(α)
−, α)− u̇(tℓ(α)+, α)]

+
hy(u(tℓ(α), α), α)

hx(u(tℓ(α), α), α)u̇(tℓ(α)−, α)
(u̇(tℓ(α)−, α)− u̇(tℓ(α)+, α)).

(8.1)
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Next, for tℓ(α) < t < tℓ+1(α) we have:

u(t, α) = u(tℓ(α)−, α) +
∫ t

tℓ(α)
u̇(s, α)ds.

Hence
uy(tℓ(α)+, α) = u̇(tℓ(α)−, α)t′ℓ(α) + uy(tℓ(α)−, α)− u̇(tℓ(α)+, α)t′ℓ(α)

and then
uy(tℓ(α)−, α)− uy(tℓ(α)+, α) = [u̇(tℓ(α)+, α)− u̇(tℓ(α)−, α)]t′ℓ(α). (8.2)

Plugging (8.2) into (8.1) we finally obtain:

[Bℓ(α)uy(tℓ(α)−, α)− uy(tℓ(α)+, α)]yε(tℓ(α), 0, α, 0)

=
hy(u(tℓ(α), α), α)yε(tℓ(α), 0, α, 0)

hx(u(tℓ(α), α), α)u̇(tℓ(α)−, α)
(u̇(tℓ(α)−, α)− u̇(tℓ(α)+, α))

Putting everything together we finally get:

−Mj(α) =
∫ ∞

−∞
ψT

j (t, α) fy(u(t, α), α)yε(t, 0, α, 0)dt

+
N

∑
i=1

ψT
j (t−i(α)

+, α)
hy(u(t−i(α), α), α)yε(t−i(α), 0, α, 0)

hx(u(t−i(α), α), α) fi+1(u(t−i(α), α), α)

· ( fi(u(t−i(α), α), α)− fi+1(u(t−i(α), α), α))

+
N

∑
i=1

ψT
j (ti(α)

+, α)
hy(u(ti(α), α), α)yε(ti(α), 0, α, 0)
hx(u(ti(α), α), α) fi(u(ti(α), α), α)

· ( fi+1(u(ti(α), α), α)− fi(u(ti(α), α), α)).

(8.3)

This completes the proof that −M(α) extends the Melnikov function for the periodic case with
two discontinuity points to the heteroclinic case with a finite number of discontinuity points.
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