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Abstract. This paper tightens the classical Poincaré–Bendixson theory for a positively
invariant, simply-connected compact set M in a continuously differentiable planar vec-
tor field by further characterizing for any point p ∈ M, the composition of the limit
sets ω(p) and α(p) after counting separately the fixed points on M’s boundary and
interior. In particular, when M contains finitely many boundary but no interior fixed
points, ω(p) contains only a single fixed point, and when M may have infinitely many
boundary but no interior fixed points, ω(p) can, in addition, be a continuum of fixed
points. When M contains only one interior and finitely many boundary fixed points,
ω(p) or α(p) contains exclusively a fixed point, a closed orbit or the union of the inte-
rior fixed point and homoclinic orbits joining it to itself. When M contains in general
a finite number of fixed points and neither ω(p) nor α(p) is a closed orbit or contains
just a fixed point, at least one of ω(p) and α(p) excludes all boundary fixed points and
consists only of a number of the interior fixed points and orbits connecting them.
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1 Introduction

Determining the asymptotic behavior of general continuous vector fields, even qualitatively,
is still a daunting task. In the nineteenth century, Poincaré studied this problem for planar
systems by focusing on the global behavior of the systems’ trajectories without integrating the
corresponding differential equations [7, 13]. The analysis was later completed by Bendixson
[2]. The related classical results are commonly referred to as the Poincaré–Bendixson theorem
[2, 7, 9–11, 14–17]. Consider the vector field

ẋ = f (x), x ∈ R2 (1.1)
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where f is C1 on an open set U in R2. A point x∗ ∈ R2 is a “fixed point” of the vector field if
f (x∗) = 0. Denote the omega and alpha limit sets of a point p by ω(p) and α(p), respectively.

Theorem 1.1 (Poincaré–Bendixson theorem [23, Theorem 9.0.6], [12, Theorem 1.8]). For the
vector field (1.1), let M ⊂ U be a positively invariant complex for the vector field containing a finite
number of fixed points. For any p ∈ M, one of the following holds:

1. ω(p) is a fixed point;

2. ω(p) is a closed orbit;

3. ω(p) consists of a finite number of fixed points p1, . . . , pn and orbits γ with α(γ) = pi and
ω(γ) = pj, where pi and pj are not necessarily different. Moreover, for two distinct fixed points
pi and pj, there exists at most one orbit γ such that α(γ) = pi and ω(γ) = pj.

From this theorem, although possibilities such as strange attractors and chaotic orbits can
be easily ruled out, the third case in the theorem still gives rise to sometimes a large number
of possible limiting behaviors. For example, when M contains just four fixed points on its
boundary, there can be more than 300 different compositions of ω(p) even under the simpli-
fying assumption that there is at most one homoclinic orbit at each fixed point. Some existing
results have tried to reduce the possible scenarios; in [1, Theorem 68], [18, Theorem 3] the
third case has been stated more precisely by stipulating that the trajectories γ must be the
continuations of one another, and in [19, Section 3.7, Theorem 3] the number of homoclinic
orbits at each fixed point is limited by one when the vector field is “relatively prime analytic".
However, then for the example just mentioned, ω(p) can still have more than 50 different com-
positions. This example shows that if one is interested in categorizing all possible asymptotic
behaviors of a planar system qualitatively, a greatly needed task in fields such as mathematical
biology [4], one may still encounter difficulty even with the help of the existing most tightened
form of Poincaré–Bendixson theorem.

The aim of this paper is to reduce the number of possible compositions of the limit sets of
a vector field when knowing the number of fixed points on the boundary and in the interior
of a given positively invariant, simply-connected compact set M.

Notations: Let ϕ(t, x) denote the flow generated by the vector field (1.1), which is the solution
of (1.1) passing through x at time t. For a point p ∈ R2, let O(p) denote the orbit of p
defined by O(p) =

{
x ∈ R2 | x = ϕ(t, p), t ∈ R

}
, and O+(p) denote the positive semi-orbit of p,

defined by O+(p) =
{

x ∈ R2 | x = ϕ(t, p), t ≥ 0
}

[23]. Correspondingly, for p1, p2 ∈ O+(p),
define the segment semi-orbit O+(p) from p1 to p2 as O+(p2) − O+(p1). A homoclinic orbit
is a trajectory that joins a fixed point to itself. For a set M, denote its interior by Int M, its
boundary by ∂M, and its closure by M.

2 Main results

We first review some basic relevant results. The following lemma is applicable to higher
dimensional spaces, but we restrict it here to the plane.

Lemma 2.1 ([23, Proposition 8.1.3], [3, Theorem 3-3.6]). For the vector field (1.1), let M ⊂ U
be a positively invariant compact set. Then for any point p ∈ M, it holds that ω(p) is nonempty,
connected, and compact.
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Figure 2.1: The two possible cases for the positive semi-orbit O+(p) in the proof
of Theorem 2.4.

A continuous connected arc in the plane is said to be transverse to the vector field, if the
vector field has no fixed points on the arc and nowhere becomes tangent to the arc [11]. By
a transversal we refer to a closed line segment L that is transverse to the vector field. Due
to the continuity of the vector field, clearly one can construct a transversal through any non-
fixed point. The following lemma illustrates how the flow through a point p approaches a
transversal through a non-fixed omega limit point q ∈ ω(p) when it exists.

Lemma 2.2 ([8, reformulation of Lemma 1.26]). For the vector field (1.1), consider a point p ∈ U
such that O(p) ⊂ U . Let q ∈ ω(p) be a non-fixed point of (1.1) and let L be a transversal through q.
Then there exists a sequence {ti} → ∞, such that {ϕ(ti, p)} ∈ L and {ϕ(ti, p)} → q.

The following result guarantees the existence of a fixed point inside a closed orbit [3, 6, 9,
23]:

Lemma 2.3 ([23, Corollary 6.0.2]). Enclosed by any closed orbit of (1.1) in U , there must be at least
one fixed point.

Now we are ready to present the main results of the paper.

2.1 M has no interior fixed point

Theorem 2.4 (No interior fixed points, positively invariant vector field). For the vector field (1.1),
consider a positively invariant, simply-connected compact set M ⊂ U that contains a finite number of
fixed points, all on ∂M. Then for any p ∈ M, ω(p) is a fixed point on ∂M.

Proof. From Theorem 1.1, it suffices to prove that ω(p) contains only fixed points since then
only situation 1 is possible and the corresponding fixed point can only be on ∂M as Int M
contains no fixed points. We prove this by contradiction, so assume on the contrary that there
is a non-fixed point q ∈ ω(p). Then one can construct a transversal L through q, and from
Lemma 2.2, we know that O+(p) intersects L for infinitely many times and such intersection
points are in M since O+(p) ⊂ M. So one can pick two consecutive intersection points p1

and p2 such that the line segment p1 p2 lies in M. Should p1 and p2 coincide, ω(p) would be a
closed orbit, lying in M, but encircling no fixed point as all the fixed points are on ∂M. This
cannot happen in view of Lemma 2.3, and thus, p1 and p2 must be distinct.

As illustrated by Fig. 2.1, we construct the simply-connected compact set S whose bound-
ary is formed by the segment semi-orbit O+(p) from p1 to p2 and the line segment p1 p2. Since
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Figure 2.2: Phase portrait examples for an invariant compact set ∆. (a) e1 and
q2 are hyperbolic saddle, e3 is a hyperbolic stable and e2 is a center fixed point.
The stable invariant manifold of q2 divides ∆ into Z1 and Z2. Theorem 2.5
and the local stability results imply that for each z ∈ Int Z1, α(z) = e2 and
ω(z) = e3, and for each z ∈ Int Z2, α(z) = ω(z) = e2. (b) e1, e3 and q1 are
hyperbolic saddle, e2 is a hyperbolic unstable, and g is a hyperbolic stable fixed
point. Because of Theorem 2.7, the local stability results and the fact that no
limit cycle exists, ω(p) = {g} for all p ∈ int(∆). Hence, the unique out-going
trajectory from q1, denoted by γ1, converges to g. The rest of the orbits in int(∆)
start from e2 and end at g. This is because any out-going trajectory from e2,
e.g., γ2, together with γ1 divide the simplex into the zones Z1 and Z2, each of
which satisfy the condition of M in Theorem 2.7. Hence, every trajectory in
Int Zi, i = 1, 2, starts from e2 and end at g. (c) e2 and g are hyperbolic saddle, e1

and e3 are hyperbolic unstable and q3 and q2 are hyperbolic stable fixed points.
The trajectories γ1 and γ2 lie on the unstable invariant manifold of g. Because
of Theorem 2.7 and the local stability results, the unstable invariant manifold
of g is confined to q2 and q3 and the stable invariant manifold of g is confined
to e1 and e3. This results in the four zones Z1, . . . ,Z4. In view of Theorem 2.4,
∀z ∈ Int Z1, α(z) = e1 and ω(z) = q2, ∀z ∈ Int Z2, α(z) = e1 and ω(z) = q3,
∀z ∈ Int Z3, α(z) = e3 and ω(z) = q3, and ∀z ∈ Int Z4, α(z) = e3 and ω(z) = q2.

O+(p) always intersects L from the same side to the other, the orientation of the p1-to-p2 semi-
orbit with respect to the line segment p1 p2 must be one of the two cases shown in Fig. 2.1.
From the definition of L, the vector field at any point on p1 p2 intersects p1 p2 from the same
side of the line, and thus S is either positively invariant as shown in Fig. 2.1.(a) or negatively
invariant as shown in Fig. 2.1.(b).

Since the boundary p1-to-p2 semi-orbit and p1 p2 both lie in M, we know that S ⊆ M.
Hence, Int S ⊆ Int M and contains no fixed point. Moreover, neither O+(p) nor L contains
any fixed point, so ∂S does not contain any fixed point. Therefore, S contains no fixed point.
Consequently, if S is positively invariant, applying Theorem 1.1, we know that for any point
s ∈ S , ω(s) can only be a closed orbit confined in S . But this contradicts Lemma 2.3. If on the
other hand, S is negatively invariant, we apply the same argument after inverting the direction
of the vector field and again reach the same contradiction. So the proof is complete.

In term of the example given in the introduction, Theorem 2.4 implies that ω(p) in the
example can only be one of the fixed points, so at most four possibilities. If in addition to being
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positively invariant, M is also negatively invariant, i.e., M is invariant, then Theorem 2.4 can
get even more strengthened.

Theorem 2.5 (No interior fixed points, invariant vector field). For the vector field (1.1), consider
an invariant, simply-connected compact set M ⊂ U that contains a finite number of fixed points, all
on ∂M. Then for any p ∈ M, both ω(p) and α(p) are fixed points, not necessarily different, on ∂M.

Proof. Theorem 2.4 implies that for any p ∈ M, ω(p) contains only a single fixed point on
∂M. The same holds for α(p) after reversing the direction of the vector field since M is also
negatively invariant. This completes the proof.

Fig. 2.2 demonstrates an example from planar replicator dynamics [20–22], where the trian-
gle e1e2e3, known as a face, is invariant. Part (a) corresponds to Theorem 2.5. The reader may
refer to [4, 5] for all 49 possible qualitatively different phase portraits of the dynamics.

2.2 M has no interior, but infinitely many boundary fixed points

We obtain the following theorem that is the counterpart of Theorem 2.4 when the vector field
may have infinitely many fixed points on ∂M.

Theorem 2.6. For the vector field (1.1), consider a positively invariant, simply-connected compact set
M ⊂ U that has no interior fixed point, but may contain an infinite number of fixed points on ∂M.
Then for any p ∈ M, one of the following two holds:

1. ω(p) is a fixed point on ∂M;

2. ω(p) is a continuum of fixed points on ∂M.

Proof. Following similar steps as those in the proof for Theorem 2.4, one can construct the
simply-connected compact set S as illustrated in Fig. 2.1. Using similar arguments for S as
those in the proof for Theorem 2.4, after applying Theorem 6.1 in [7], which is the extension
of Poincaré–Bendixson theorem to the case when there are infinitely many fixed points, one
knows that ω(p) does not contain any fixed point. On the other hand, ω(p) has to be con-
nected in view of Lemma 2.1, so it can only be a connected subset of the fixed points in M,
which is either a fixed point or a continuum of fixed points on ∂M.

2.3 M has exactly one interior fixed point

Now we present the counterpart of Theorem 2.4 discussing the case when M contains exactly
one interior and finitely many boundary fixed points.

Theorem 2.7 (One interior fixed point). For the vector field (1.1), consider a positively invariant,
simply-connected compact set M ⊂ U that contains exactly one interior fixed point x∗ and a finite
number of fixed points on its boundary. Then for any p ∈ M, at least one of the following holds:

1. ω(p) is a fixed point, a closed orbit encircling x∗ or the union of {x∗} and a (possibly union of)
homoclinic orbit(s) joining x∗ to itself;

2. α(p) is {x∗}, a closed orbit encircling x∗ or the union of {x∗} and a (possibly union of) homo-
clinic orbit(s) joining x∗ to itself.
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Proof. We investigate all possibilities for ω(p) and show that each results in one of the cases
of the theorem. Should ω(p) be a singleton fixed point or a closed orbit that has to encircle
g according to Lemma 2.3, we arrive at Part 1. of the theorem. So consider the situation
when ω(p) is neither. It then follows Theorem 1.1 that ω(p) contains non-fixed points; we
pick one such point q and construct a transversal L through q. From Lemma 2.2, we know
that O+(p) intersects L for infinitely many times. Consider two consecutive intersections p1

and p2 which have to be distinctive since ω(p) is not a closed orbit. We construct the simply-
connected compact set S whose boundary is formed by the semi-orbit O+(p) from p1 to p2

and the line segment p1 p2. Similar to the proof of Theorem 2.4, one can show that:

(i) S is in the form of one of the two cases shown in Fig. 2.1,

(ii) S is positively invariant in Case (a) of the figure and negatively invariant in Case (b),
and

(iii) x∗ ∈ Int S is the only fixed point in S .

If S is positively invariant, O+(p) ∩ Int S ̸= ∅, implying the existence of some sp ∈
O+(p) ∩ Int S . Consequently, ω(sp) = ω(p). Then, applying Theorem 1.1, we know that
ω(sp) consists of a number of fixed points in S and the orbits connecting them. However,
since x∗ is the only fixed point in Int M, such orbits can only connect x∗ to itself. So ω(sp) is
the union of {x∗} and a (possibly union of) homoclinic orbit(s) joining x∗ to itself, so is ω(p).
So in this case Part 1 of the theorem holds.

Otherwise, if S is negatively invariant, then there exists a point sp ∈ O−(p) ∩ Int S where
O−(p) is the same as O+(p), but when time is reversed. Consequently, after reversing the
direction of the vector field, one can check the three cases in Theorem 1.1 as ω(sp) lead to the
three cases in Part 2 of the theorem respectively.

Theorem 2.7 is indeed restricting the third case of Theorem 1.1, for at least one of the ω or
α limit sets. Note that if, in addition, x∗ is hyperbolic and the vector field contains no closed
orbits, then for any point p ∈ M, either ω(p) is a fixed point or α(p) = {x∗}. See Fig. 2.2.(b)
and (c) for two examples. We highlight that the first case in Theorem 2.7 may not cover all
possibilities for ω(p) (see Fig. 2.3); however, then the second case of the Theorem will be in
force, determining the structure of α(p).

It is also worth mentioning that some cases in Part 1 and Part 2 of Theorem 2.7 never take
place at the same time. For example, it is impossible to have both ω(p) and α(p) being the
union of {x∗} and a homoclinic orbit joining x∗ to itself. We exclude such cases for general
positively invariant compact regions as follows. A point is periodic if it is on a closed orbit.

Proposition 2.8. Let M ⊂ U be a positively invariant compact set under the vector field (1.1). For
any non-periodic point p ∈ M, if ω(p) = α(p), then the limit sets contain only fixed points.

Either Lemma 9.0.2 in [23] or the results on the characterization of non-periodic orbits in
[6] can be used for the proof, which we skip here. In case M contains finitely many fixed
points, we can sharpen the result of Proposition 2.8 by using Proposition 8.1.3 in [23].

Corollary 2.9. For the vector field (1.1), let M ⊂ U be a positively invariant compact set containing
a finite number of fixed points. Then for any non-periodic point p ∈ M, if ω(p) = α(p), then the
limit sets exclusively contain a single fixed point.
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Figure 2.3: Phase portrait example for an invariant compact set M defined by
the triangle e1e2e3, where e1, e2 and e3 are fixed points. There is exactly one
interior fixed point, g. For every point p in the interior of M, the ω-limit set
of p equals ∂M, that is the union of the fixed points e1, e2 and e3 and the
heteroclinic orbits connecting them to each other. This is not covered by the first
case of Theorem 2.7. However, α(p) = {x∗}, which is satisfied by the second
case of Theorem 2.7.

2.4 M has finitely many interior fixed points

Following the previous subsection of having one interior fixed point in the positively invariant
compact set M, we now extend the result to the more general case of having finitely many
interior fixed points in M.

Theorem 2.10 (Finitely many interior fixed points). For the vector field (1.1), consider a positively
invariant, simply-connected compact set M ⊂ U containing a finite number of fixed points. Then for
any point p ∈ M, at least one of the following holds:

1. ω(p) is a fixed point, a closed orbit encircling at least one interior fixed point or the union of
some interior fixed points together with the orbits connecting them;

2. α(p) is an interior fixed point, a closed orbit encircling at least one interior fixed point or the
union of some interior fixed points together with the orbits connecting them.

Proof. The proof is similar to that for Theorem 2.7 and we omit it here.

Compared to the classical form of Poincaré–Bendixson Theorem 1.1, what Theorem 2.10
has further clarified is the role of the interior fixed points of M play to influence the topo-
logical structure of the limit sets. For example, as an immediate result of Theorem 2.10, if
the third case of Theorem 1.1 takes place for p, then ω(p) and α(p) cannot be free of interior
fixed points at the same time; in other words, unless ω(p) is simply a fixed point or a closed
orbit, some interior fixed points must be in either ω(p) or α(p). Another implication of The-
orem 2.10 is the exclusion of the boundary fixed points from one of ω(p) and α(p). From
Theorem 2.10, if ω(p) is not simply a fixed point, then at least one of ω(p) or α(p) does not
contain any boundary fixed point. In a sense, this implies that the interior fixed points are
more important for determining the structures of the limit sets. Finally, we note that Corol-
lary 2.9 can also be utilized here to rule out some trivial cases when ω(p) and α(p) are the
same.

At the end of this section, we present the following version of Theorem 2.10 without
requiring M to be simply connected.
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Theorem 2.11. For the vector field (1.1), consider a positively invariant, compact set M ⊂ U that
contains a finite number of fixed points. Then for any p ∈ M, at least one of the following holds:

1. ω(p) is a fixed point, a closed orbit or the union of some interior fixed points with the orbits
connecting them;

2. α(p) is one of the interior fixed points, a closed orbit or the union of some interior fixed points
with the orbits connecting them.

Proof. The proof is similar to that of Theorem 2.7. The difference is that if ω(p) or α(p) is a
closed orbit, it may encircle areas that do not belong to M.
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