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Abstract. We consider a class of degenerate elliptic fully nonlinear equations with
applications to Grad equations:{

|Du|γM+
λ,Λ
(

D2u(x)
)
= f

(
|u ≥ u(x)|

)
in Ω

u = g on ∂Ω,

where γ ≥ 1 is a constant, Ω is a bounded domain in RN with C1,1 boundary. We prove
the existence of a W2,p-viscosity solution to the above equation, which degenerates
when the gradient of the solution vanishes.

Keywords: fully nonlinear degenerate elliptic equations, viscosity solution, Pucci’s ex-
tremal operator, Dirichlet boundary value problem.
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1 Introduction

We investigate the following degenerate problem:{
|Du|γM+

λ,Λ

(
D2u(x)

)
= f

(
|u ≥ u(x)|

)
in Ω

u = g on ∂Ω,
(1.1)

where γ ≥ 1 is a constant, Ω is a bounded domain in RN with C1,1 boundary, | · | denotes
the Lebesgue measure in RN , f : [0, |Ω|] −→ R is a non-decreasing, non-negative continuous
function and u : Ω −→ R. Here, M+

λ,Λ is the Pucci’s extremal operator. In our setting, by
u ≥ u(x), we mean,

{ω ∈ Ω : u(ω) ≥ u(x)}

called the superlevel sets of u. We establish the existence of a W2,p-viscosity solution (also
known as Lp-viscosity solution) to (1.1). It is worth mentioning that the notion of W2,p-
viscosity solution was defined by Caffarelli et al. [7]. In the case when γ = 0 in (1.1), the
existence of a W2,p-viscosity solution is proven by L. Caffarelli and I. Tomasetti [8].
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The pioneer contribution in this direction was due to H. Grad [12], who introduced such
equations, which appear in plasma physics, called “Grad equations”. In their seminal work,
Grad examined the following equation in three-dimension:

∆Ψ = F(V, Ψ, Ψ′, Ψ′′),

where the right hand side (R.H.S.) represents a second-order differential operator acting on
Ψ(V) for a surface defined by Ψ = constant. Here, Ψ′(V) represents the derivative with
respect to volume and Ψ(V) stands for the inverse function to V(Ψ), denoting the volume
enclosed by Ψ. Furthermore, they pointed out the potential for simplifying plasma equations
by introducing u∗ defined as:

u∗(t):= inf
{

s : |u < s| ≥ t
}

.

These equations, also known as Queer Differential Equations in the literature, have a wide
range of applications across various fields. One notable application is their appearance in
plasma modeling, specifically in analyzing plasma confined within toroidal containers. We
refer to [12] for the details. Moreover, these equations exhibit connections in financial math-
ematics, see [23]. R. Temam [22] pioneered the investigation of problems akin to (1.1) con-
cerning the Laplacian, a direction extensively examined by several researchers. They notably
established the existence of solutions to equations having the model structure:

∆u = g
(
|u < u(x)|, u(x)

)
+ f (x),

by exploiting the properties of directional derivatives of u∗. For further insights into this topic,
we refer the interested readers to the works of J. Mossino and R. Temam [17], as well as those
by P. Laurence and E. Stredulinsky [15, 16], along with the related references therein.

In all the aforementioned research works, the problem was studied using variational meth-
ods. However, in a recent work, L. Caffarelli and I. Tomasetti [8] studied the equation similar
to J. Mossino and R. Temam [17] for fully nonlinear uniformly elliptic operators using the
viscosity approach. Specifically, they addressed the following problem:{

F
(

D2u(x)
)
= f

(
|u ≥ u(x)|

)
in Ω

u = g on ∂Ω,

where F represents a convex, uniformly elliptic operator. They established the existence of a
W2,p-viscosity solution u to this problem, satisfying the following estimate:

∥u∥W2,p(Ω) ≤ C
[
∥u∥∞,Ω + ∥g∥W2,p(Ω) + ∥ f

(
|u ≥ u(x)|

)
∥p,Ω

]
.

For further insights into the existence and qualitative questions pertaining to extremal Pucci’s
equations, we refer to [10, 11, 18, 20, 21, 24–26] .

Concurrently, equations involving gradient degenerate fully nonlinear elliptic operators
have been widely investigated over the past decade. Pioneering works in this direction are
attributed to I. Birindelli and F. Demengel. They proved several important results for these op-
erators in a series of papers. These contributions involve comparison principle and Liouville-
type results [3], regularity and uniqueness of eigenvalues and eigenfunctions [4, 5], C1,α regu-
larity in the radial case [6]. Furthermore, the equations of the form:

|Du|γF(D2u) = f in B1, (1.2)



Degenerate equations concerning to Grad equations 3

when γ ≥ 0 is a constant and f ∈ L∞(B1, R), were investigated by C. Imbert and L. Silvestre
[13]. In particular, they established the interior C1,α regularity of solutions for equations of the
form (1.2). One may also see [19] for insights into variable exponent degenerate mixed fully
nonlinear local and nonlocal equations.

Motivated by the above works and recently by the work of L. Caffarelli and I. Tomasetti
[8], it is natural to ask the following question:

Question: Do we have the existence of a viscosity solution to (1.1)?

The aim of this paper is to answer this question affirmatively. The crucial difference to our
problem from [8] is due to the fact that |Du|γM+

λ,Λ(D2u) degenerates along the set of critical
points,

C:= {x : Du(x) = 0}.

The problem is challenging due to the following reasons:

(C1) The R.H.S. of (1.1) is a function of measure of superlevel sets. This makes the problem
nonlocal.

(C2) The L.H.S. of (1.1) is degenerate. The fundamental theory of Lp-viscosity solutions does
not work directly here since it requires the uniform ellipticity of the operator. Also,
when f ∈ C(Ω), the problem can be discussed in the C-viscosity sense but in the case of
discontinuous data, when f ∈ Lp(Ω), the problem needs to be treated in the Lp-viscosity
sense. We point out that this situation occurs while approximating the R.H.S. of (1.1).

We use the Lp-viscosity solution approach for Monge–Ampère equation as in [1, 8] to
(1.1). To handle the above mentioned challenges, we first consider the following approximate
problem: {

|Du|γM+
λ,Λ

(
D2u(x)

)
+ ε∆u = f

(
|u ≥ u(x)|

)
in Ω

u = g on ∂Ω,
(1.3)

for ε > 0. Further, using the approximations in the R.H.S. of the equation and exploiting the
results available for uniform elliptic operators, for instance, Theorem 2.5 and Theorem 2.7 (see
next), we establish the existence of a viscosity solution to the approximate problem (1.3). This
yields the existence of a viscosity solution to (1.1). More precisely, using the idea of Amadori
et al. [1], we first get the existence of a W2,p-viscosity solution to the approximate problem
(1.3) by invoking Theorem 2.1 [8]. We recall that the estimate established in [8] is not adequate
to claim the uniform bound on the W2,p-viscosity solution of (1.3). To show the existence of
a solution to the original problem (1.1), we seek the uniform bound on the solutions of (1.3),
which is crucial in approaching ε −→ 0+. We invoke the Alexandroff–Bakelman–Pucci (ABP)
estimates from Caffarelli et al. [7] to sort this issue. These estimates play a crucial role in
obtaining uniform bounds on the W2,p-viscosity solutions to (1.3).

Throughout the paper, we consider Ω to be a bounded C1,1 domain in RN , N ≥ 2.
The main result of this paper is the following:

Theorem 1.1. Let γ ≥ 1 be a constant. Let Ω ⊂ RN be a bounded C1,1 domain. Let f ∈
C
(
[0, |Ω|], R

)
be a non-decreasing, non-negative function and g ∈ W2,p(Ω) ∩ C(Ω), p > N. Con-

sider the problem {
|Du|γM+

λ,Λ

(
D2u(x)

)
= f

(
|u ≥ u(x)|

)
in Ω

u = g on ∂Ω.
(1.4)



4 P. Oza

Then, there exists a W2,p-viscosity solution of (1.4). Moreover, the solution satisfies the following
estimate:

∥u∥W2,p(Ω) ≤ C
(
∥u∥∞,Ω + ∥g∥W2,p(Ω) + ∥ f (|u ≥ u(x)|)∥p,Ω

)
,

where C > 0 is a constant.

Remark 1.2. By Sobolev’s embedding theorem we have that the solution is C1,α(Ω) regular
for any 0 < α < 1.

The organization of the paper is as follows. In Section 2, we recall the basic definitions
and several key results used in the ensuing sections of the paper. Section 3 is devoted to the
proof of our main result. Here, we sketch the plan of our proof:

(i) Perturb the left-hand side (L.H.S.), i.e., the operator |Du|γM+
λ,Λ

(
D2u

)
by adding ε∆u,

for ε > 0. (This makes the problem uniformly elliptic.)

(ii) Fix a Lipschitz function v in the R.H.S. of (1.3).

(iii) Construct a sequence of Lp-functions converging to R.H.S. (for fixed Lipschitz function
v) and obtain a sequence of solutions.

(iv) Obtain the existence of solution to equation pertaining |Du|γM+
λ,Λ

(
D2u

)
+ ε∆u for fixed

Lipschitz function v in the R.H.S.

(v) Use Theorem 2.1 [8] (an application of Schaefer fixed point theorem) to show the exis-
tence of a solution to (1.3).

(vi) Establish the existence of a W2,p-viscosity solution to (1.4).

2 Preliminaries

We recall that a continuous mapping F : SN −→ R is uniformly elliptic if:
For any A ∈ SN , where SN is the set of all N × N real symmetric matrices, there exist two
positive constants Λ ≥ λ > 0 s.t.

λ∥B∥ ≤ F(A + B)− F(A) ≤ NΛ∥B∥ for all positive semi-definite B ∈ SN ,

and ∥B∥ is the largest eigenvalue of B. Here, we have the usual partial ordering: A ≤ B in SN

means that ⟨Aξ, ξ⟩ ≤ ⟨Bξ, ξ⟩ for any ξ ∈ RN . In other words, B − A is positive semidefinite.
Let S ∈ SN , then for the given two parameters Λ ≥ λ > 0, Pucci’s maximal operator is

defined as follows:
M+

λ,Λ(S):= Λ ∑
ei≥0

ei + λ ∑
ei<0

ei,

where {ei}N
i=1 are the eigenvalues of S. This operator is uniformly elliptic and subadditive,

that is
M+

λ,Λ(A + B) ≤ M+
λ,Λ(A) +M+

λ,Λ(B),

for A, B ∈ SN . Clearly, for λ = Λ = 1, M+
λ,Λ ≡ ∆, the classical Laplace operator.

Next, we recall the notion of a viscosity solution. M. G. Crandall and P.-L. Lions [9] were
the first to introduce the concept of a viscosity solution. Now, we recall the definition of
continuous viscosity solution to the following equation:

|Du|γF
(

D2u(x)
)
= f in Ω, (2.1)
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for f ∈ C(Ω).

Definition 2.1 ([3]). Let u : Ω −→ R be an upper semicontinuous (USC) function in Ω. Then,
u is called a viscosity subsolution of (2.1) if

|Dφ(x)|γF
(

D2φ(x)
)
≥ f (x),

whenever φ ∈ C2(Ω) and x ∈ Ω is a local maximizer of u − φ with Dφ ̸= 0 ∈ RN .

Definition 2.2 ([3]). Let u : Ω −→ R be a lower semicontinuous (LSC) function in Ω. Then, u
is called a viscosity supersolution of (2.1) if

|Dψ(x)|γF
(

D2ψ(x)
)
≤ f (x),

whenever ψ ∈ C2(Ω) and x ∈ Ω is a local minimizer of u − ψ with Dψ ̸= 0 ∈ RN .

Definition 2.3 ([3]). A continuous function u is said to be a viscosity solution to (2.1) if it is a
supersolution as well as subsolution to (2.1).

Let h ∈ Lp(Ω), g ∈ W2,p(Ω) ∩ C(Ω) for p > N. Let us consider the problem{
|Du|γM+

λ,Λ(D2u) = h in Ω,

u = g on ∂Ω.
(2.2)

We mention that the classical definition of W2,p-viscosity solution can not be applied for (2.2),
due to the lack of uniform ellipticity. Consider the problem:{

|Du|γM+
λ,Λ

(
D2u

)
+ ε∆u = h in Ω

u = g on ∂Ω,
(2.3)

for p ∈ RN . Motivated by Caffarelli et al. [7] and Ishii et al. [14], we define the Lp-viscosity
subsolution (supersolution) to (2.3) as follows.

Definition 2.4. Let u be an USC (respectively, LSC) function on Ω. We say that u is an Lp-
viscosity subsolution (respectively, supersolution) to (2.3) if u ≤ g (resp., u ≥ g) on ∂Ω and
for all ϕ ∈ W2,p(Ω),

ess lim inf
x−→y

(
|Dϕ(x)|γM+

λ,Λ

(
D2ϕ(x)

)
+ ε∆ϕ(x)− h(x)

)
≥ 0

(
resp., ess lim sup

x−→y

(
|Dϕ(x)|γM+

λ,Λ

(
D2ϕ(x)

)
+ ε∆ϕ(x)− h(x)

)
≤ 0

)
,

for y ∈ Ω, the point of local maxima (respectively, minima) to u − ϕ.

We say that any continuous function u is an Lp-viscosity solution to (2.3) if it is both
Lp-viscosity subsolution and supersolution to (2.3). Now, we state a result concerning the ex-
istence and uniqueness of W2,p-viscosity solution to the operator F under certain hypotheses.
The following result is due to N. Winter [27].
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Theorem 2.5 ([27, Theorem 4.6]). Let Ω be a bounded C1,1 domain in RN . Let F(p, M) be a uni-
formly elliptic operator and convex in M-variable. Also, let F(0, 0) ≡ 0 in Ω, f ∈ Lp(Ω) and
g ∈ W2,p(Ω) for p > N. Then, there exists a unique W2,p-viscosity solution to{

F(Du, D2u) = f in Ω

u = g on ∂Ω.

Moreover, u ∈ W2,p(Ω) and

∥u∥W2,p(Ω) ≤ C
(
∥u∥∞,Ω + ∥g∥W2,p(Ω) + ∥ f ∥p,Ω

)
,

for some positive constant C.

Theorem 2.6 ([2, Theorem 1.1]). Let Ω be a bounded domain with C2-boundary. Let γ ≥ 0 and F
be a uniformly elliptic operator and f ∈ C(Ω), g ∈ C1,β(∂Ω) for some β ∈ (0, 1). Then, any viscosity
solution u of {

|Du|γF
(

D2u
)
= f in Ω

u = g on ∂Ω

is in C1,α for some α = α(λ, Λ, ∥ f ∥∞,Ω, N, Ω, , β). Moreover, u satisfies the following estimate

∥u∥C1,α(Ω) ≤ C
(
∥g∥C1,β(∂Ω) + ∥u∥∞,Ω + ∥ f ∥

1
1+γ

∞,Ω

)
,

for some positive constant C = C(α).

The following result plays an important role in Step 5 of the proof of our main result.

Theorem 2.7 ([7, Theorem 3.8]). Let Fi, F be uniformly elliptic and p > N. Let f , fi ∈ Lp(Ω). Let
ui ∈ C(Ω) be W2,p-viscosity subsolutions (supersolutions) to

Fi(D2ui) = fi in Ω,

for i = 1, 2, . . . Assume that ui −→ u locally uniformly in Ω. Also, assume that if for each B(x0, r) ⊂
Ω and g ∈ W2,p(B(x0, r)), we have∥∥(Fi(D2ui)− fi(x)− F(D2(u)) + f (x)

)+∥∥
p,B(x0,r) −→ 0,(∥∥(Fi(D2ui)− fi(x)− F(D2(u)) + f (x)

)−∥∥
p,B(x0,r) −→ 0

)
.

Then, u is a W2,p-viscosity subsolution (supersolution) to

F(D2u) = f in Ω.

3 Proof of our main result

Proof of Theorem 1.1. The original problem is{
|Du|γM+

λ,Λ

(
D2u(x)

)
= f

(
|u ≥ u(x)|

)
in Ω

u = g on ∂Ω.
(3.1)
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Step 1: Perturbing the L.H.S. by adding ε∆u. Consider the approximate problem:{
|Du|γM+

λ,Λ

(
D2u

)
+ ε∆u = f

(
|u ≥ u(x)|

)
in Ω

u = g on ∂Ω,
(3.2)

for ε > 0. Since, Gu := |Du|γM+
λ,Λ

(
D2u

)
+ ε∆u is uniformly elliptic, so by Theorem 2.1 [8],

we immediately have the existence of a W2,p-viscosity solution (say uε) to (3.2) satisfying the
following estimate:

∥uε∥W2,p(Ω) ≤ C
(
∥uε∥∞,Ω + ∥g∥W2,p(Ω) + ∥ f

(
|uε ≥ uε(x)|

)
∥p,Ω

)
.

By the above estimate, one can not directly claim the uniform bound on uε, which is crucial
in order to pass the limit ε −→ 0 to establish the existence of W2,p-viscosity solution to (3.1).
To overcome this difficulty, we further approximate problem (3.2).

Step 2: Freeze a Lipschitz function v for the R.H.S.. Next, following the arguments similar
to [8], we fix a Lipschitz function v in Ω, and consider hv(x):= f

(
|v ≥ v(x)|

)
and reduce to

the following problem: {
|Du|γM+

λ,Λ

(
D2u

)
+ ε∆u = hv in Ω

u = g on ∂Ω.
(3.3)

Step 3: Building a sequence of functions in R.H.S. We consider a sequence of functions{
hi

v
}∞

i=1 defined as

hi
v(x):= f

(
i
∫ 1

i

0
|v ≥ v(x)− t|dt

)
.

We approximate the function
hv(x)

(
= f

(
|v ≥ v(x)|

))
in the R.H.S. of (3.3) by the sequence of functions

{
hi

v
}∞

i=1. Hence, we have the following
approximate problem: {

|Du|γM+
λ,Λ

(
D2u

)
+ ε∆u = hi

v in Ω

u = g on ∂Ω,
(3.4)

for i ≥ 1. Since
{

hi
v
}
∈ Lp(Ω). For each i, by Theorem 2.5, we have the existence of a unique

W2,p-viscosity solution to (3.4).

Lemma 3.1. There exists a unique W2,p-viscosity solution to (3.4). Moreover, it satisfies the following
estimate:

∥ui
ε∥W2,p(Ω) ≤ C

(
max

∂Ω
g + ∥g∥W2,p(Ω) + f (|Ω|)|Ω|

1
p

)
.

Proof. By Theorem 2.5, we have the existence of a unique W2,p-viscosity solution ui
ε to (3.4)

satisfying the following estimate:

∥ui
ε∥W2,p(Ω) ≤ C

(
∥ui

ε∥∞,Ω + ∥g∥W2,p(Ω) + ∥hi
v∥p,Ω

)
,

Also, it is easy to observe that
∥hi

v∥∞,Ω ≤ f (|Ω|), (3.5)
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and

∥hi
v∥p,Ω =

( ∫
Ω
|hi

v(x)|pdx
) 1

p

≤ ∥hi
v∥∞,Ω|Ω|

1
p

≤ f (|Ω|)|Ω|
1
p ,

(3.6)

for each i ≥ 1. Thus the sequence of functions hi
v is uniformly bounded. Now, by ABP

estimates established in [7], we have

sup
Ω

ui
ε ≤ sup

∂Ω
ui

ε + C∥hi
v∥p,Ω,

and similarly for the infΩ ui
ε. For more details, see Proposition 3.3 [7]. Using this along with

the estimates (3.5) and (3.6), we have the following:

∥ui
ε∥W2,p(Ω) ≤ C̃,

where C̃ is a positive constant independent of i and ε.

Step 4: Establish the existence of solution to (3.3). It further gives that {ui
ε} is uniformly

bounded in W2,p(Ω) (with respect to i). Now, by reflexivity of W2,p(Ω), ui
ε converges weakly

in W2,p(Ω). Moreover, since p > N/2. Using the similar arguments as above, we have the
existence of a subsequence such that ui

ε −→ uε,v in the Lipschitz norm. As a consequence of
Theorem 2.7, uε,v is a W2,p-viscosity solution to (3.3). Moreover, uε,v satisfies the following
estimate:

∥uε,v∥W2,p(Ω) ≤ C
(

max
∂Ω

|g|+ ∥g∥W2,p(Ω) + ∥ f (|v ≥ v(x)|)∥p,Ω

)
.

Step 5: Establish the existence of solution to (3.2). Further, using Theorem 2.1 [8] (an appli-
cation of Schaefer fixed point theorem), we have the existence of a W2,p-viscosity solution to
(3.2) for each 0 < ε < 1, say uε (a Lipschitz fixed point). Moreover, uε satisfies the following
estimate:

∥uε∥W2,p(Ω) ≤ C
(

max
∂Ω

|g|+ ∥g∥W2,p(Ω) + ∥ f (|uε ≥ uε(x)|)∥p,Ω

)
. (3.7)

Step 6: Establish the existence of solution to (3.1) on ε −→ 0. Since uε is uniformly bounded
in W2,p(Ω) (with respect to ε) so we have that along some subsequence, uε converges weakly
in W2,p(Ω). Moreover, by the Rellich–Kondrasov theorem, along some subsequence uε −→ u
in C(Ω) (since p > N) to a Lipschitz function u. We further claim that u is an Lp-viscosity
solution to (3.1). We use the idea of [1]. We just check the supersolution part. Further, one can
check for the subsolution part using the similar arguments. Let, if possible, assume that u is
not an Lp-viscosity supersolution to (3.1). Then by definition, there exists a point x0 ∈ Ω and
a function ϕ ∈ W2,p(Ω) with Dϕ ̸= 0 such that u − ϕ has local minimum at x0 and

|Dϕ|γM+
λ,Λ(D2ϕ)− f (|u ≥ u(x0)|) ≥ α a.e. in some ball B(x0, r), (3.8)

for some constant α > 0. In other words, u − ϕ restricted to B(x0, r) has a global strict minima
at x0. Next, using the above information, we get a contradiction by constructing a function
ϕε = ϕ − ψε corresponding to uε such that

|Dϕε|γM+
λ,Λ(D2ϕε) + ε∆ϕε − f (|u ≥ u(x0)|) ≥ α a.e. in B(x0, r) (3.9)
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for small enough ε > 0 and

ϕε −→ ϕ uniformly.

Now, since uε is an Lp-viscosity solution to (3.2) so (3.9) implies that uε − ϕε can not attain
minimum in the ball B(x0, r). However, since uε − ϕε is continuous and B(x0, r) is compact.
Therefore, uε − ϕε attains minimum in B(x0, r). Let it be xε. It gives that xε −→ x0 along some
subsequence. It further implies that xε ∈ B(x0, r) for small enough ε, which is a contradiction.
Thus such a function ϕ constructed in (3.8) does not exist, which proves our claim that u is an
Lp-supersolution to (3.1). Similarly, one can check the subsolution part.

Next, we show that u is the limit function of the sequence of functions uε as ε −→ 0. Let
if possible, ε i and ε̃i be two sequences approaching 0 with u and ũ being the corresponding
limit functions to the sequences, respectively. Up to subsequences, we may assume that

· · · ≤ ε̃i+1 ≤ ε i ≤ ε̃i ≤ ε i−1 ≤ · · · .

Our aim is to show that w = uε i − uε̃i+1
≤ 0. If we show that

|Dw|γM+
λ,Λ(D2w) + ε∆w ≥ 0 in Ω (in C-viscosity sense),

we are done. As by comparison principle, we would immediately get w ≤ 0. Therefore,
uε i ≤ uε̃i+1

. Thus, in order to show that

w = uε i − uε̃i+1
≤ 0,

we only need to show that

|Dw|γM+
λ,Λ(D2w) + ε i∆w ≥ 0.

As shown above, it immediately gives w ≤ 0. Let us assume the contrary, i.e., there exists
some point x0 ∈ Ω such that for some φ ∈ C2(Ω), w − φ attains local maxima at x0, i.e., there
exists a ball B(x0, r) such that

|Dφ|γM+
λ,Λ(D2φ) + ε i∆φ ≤ −α in B(x0, r),

for some α > 0 and w − φ =
(
uε i − uε̃i+1

)
− φ = uε i −

(
uε̃i+1

+ φ
)

has a global strict maximum
at x0 in B(x0, r). Now, consider a function

Ψ := φ + uε̃i+1
.

Clearly, Ψ ∈ W2,p(Ω) and touches uεi from above at x0. Also, consider a test function, Φ for
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uε̃i+1
touching from below with |DΦ(x0)| sufficiently larger than |Dφ(x0)|. We have

|DΨ(x0)|γM+
λ,Λ

(
D2Ψ(x0)

)
+ ε i∆Ψ(x0)− f

(
|u ≥ u(x0)|

)
+ α

≤ |DΨ(x0)|γ
(
M+

λ,Λ

(
D2φ(x0)

)
+M+

λ,Λ

(
D2Φ(x0)

))
+ ε i∆φ(x0)

+ ε i∆Φ(x0)− f
(
|u ≥ u(x0)|

)
+ α

= |DΨ(x0)|γM+
λ,Λ

(
D2φ(x0)

)
+ ε i∆φ(x0) + |DΨ(x0)|γM+

λ,Λ

(
D2Φ(x0)

)
+ ε i∆Φ(x0)− f

(
|u ≥ u(x0)|

)
+ α

= |Dφ(x0) + DΦ(x0)|γM+
λ,Λ

(
D2φ(x0)

)
+ ε i∆φ(x0) + α

+ |Dφ(x0) + DΦ(x0)|γM+
λ,Λ(D2Φ(x0)) + ε i∆Φ(x0)− f

(
|u ≥ u(x0)|

)
≤ |Dφ(x0) + DΦ(x0)|γ

|Dφ(x0)|γ
(
− α − ε i∆φ(x0)

)
+ ε i∆φ(x0) + α

+
|Dφ(x0) + DΦ(x0)|γ

|DΦ(x0)|γ
(

f
(
|u ≥ u(x0)|

)
− ε i∆Φ(x0)

)
+ ε i∆Φ(x0)

− f
(
|u ≥ u(x0)|

)
≤ |Dφ(x0) + DΦ(x0)|γ

|Dφ(x0)|γ
(
− α − ε i∆φ(x0)

)
+ ε i∆φ(x0) + α

+ 2γ−1 |Dφ(x0)|γ + |DΦ(x0)|γ
|DΦ(x0)|γ

(
f
(
|u ≥ u(x0)|

)
− ε i∆Φ(x0)

)
+ ε i∆Φ(x0)

− f
(
|u ≥ u(x0)|

)
≤
(
− α − ε i∆φ(x0)

) ( |Dφ(x0) + DΦ(x0)|γ
|Dφ(x0)|γ

− 1
)

+
(

f
(
|u ≥ u(x0)|

)
− ε i∆Φ(x0)

) (
2γ−1

(
|Dφ(x0)|γ + |DΦ(x0)|γ

)
|DΦ(x0)|γ

− 1

)
,

(3.10)

for all large enough i ∈ N. Note that in the second last step we used the fact that for any
positive real numbers a, b and r ≥ 1, we have

|a + b|r ≤ 2r−1(|a|r + |b|r
)
.

Further, by the choice of test function Φ made before (3.10), we have

M+
λ,Λ(D2Ψ) + ε i∆Ψ − f

(
|u ≥ u(x0)|

)
≤ −α < 0,

which contradicts the fact that uεi is an Lp-viscosity solution to (3.2). Thus we have that
uε i ≤ uε̃i+1

. Letting i −→ ∞, we get u ≤ ũ. Also, following the similar arguments, one can
show that uε̃i+1

≤ uε i . Thus, we have ũ ≤ u and hence u = ũ.
Therefore, we have the existence of a W2,p-viscosity solution, u to (3.1). Moreover, by (3.7), we
have the following estimate:

∥u∥W2,p(Ω) ≤ C
(
∥u∥∞,Ω + ∥g∥W2,p(Ω) + ∥ f (|u ≥ u(x)|)∥p,Ω

)
.
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