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Abstract. In this paper, we study the existence of nodal solutions of some nonlinear
boundary value problems for ordinary differential equations of fourth order with a
spectral parameter in the boundary condition. To do this, we first study the global bi-
furcation of solutions from zero and infinity of the corresponding nonlinear eigenvalue
problems in classes with a fixed oscillation count. Then, using these global bifurcation
results, we prove the existence of solutions of the considered nonlinear boundary value
problems with a fixed number of nodes.
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1 Introduction

In this paper, we consider the existence of nodal solutions to the following nonlinear boundary
value problem for ordinary differential equations of fourth order

ℓ(y) ≡ (p(x)y′′(x))′′ − (q(x)y′(x))′ = χr(x)h(y(x)), x ∈ (0, l), (1.1)

y′(0) cos α − (py′′)(0) sin α = 0, (1.2)

y(0) cos β + Ty(0) sin β = 0, (1.3)

y′(l) cos γ + (py′′)(l) sin γ = 0, (1.4)

(aλ + b)y(l)− (cλ + d)Ty(l) = 0, (1.5)

where Ty ≡ (py′′)′ − qy′, p is a positive twice continuously differentiable function on [0, l], q
is a non-negative continuously differentiable function on [0, l], χ is a positive number, r(x) is
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a positive continuous function on [0, l], α, β, γ, a, b, c, d are real constants such that α, β, γ ∈
[0, π/2] and σ = bc − ad > 0. The nonlinear term h has the form f + g, where f and g are
real-valued continuous on R functions that satisfy the following conditions:

f
0
, f0, f

∞
, f ∞ ∈ R with f

0
̸= f 0, f

∞
̸= f ∞, (1.6)

where

f
0
= lim inf

|s|→0

f (s)
s

, f 0 = lim sup
|s|→0

f (s)
s

, (1.7)

f
∞
= lim inf

|s|→+∞

f (s)
s

, f ∞ = lim sup
|s|→+∞

f (s)
s

; (1.8)

sg(s) > 0 for s ∈ R \{0}; (1.9)

there exist positive constants g0, g∞ ∈ (0,+∞) such that

g0 = lim
|s|→0

g(s)
s

, g∞ = lim
|s|→+∞

g(s)
s

. (1.10)

The subject of this paper is to determine the interval of χ, in which there are solutions to
problem (1.1)–(1.5) that have a fixed number of simple zeros in (0, l).

It is well known that boundary value problems for ordinary differential equations arise in
the study of many different processes of natural science, see [9,10,12,14,17] and the references
therein. For example, problem (1.1)–(1.5) arises when studying of bending (of deformation)
of a homogeneous rod, in the cross sections of which a longitudinal force acts and at the right
end of which the mass is concentrated or on this end a tracking force acts.

Problems similar to (1.1)–(1.5) for ordinary differential equations of second and fourth
orders have been considered before in, for example, [8, 11, 13, 16, 18–22, 26–28]. In [8, 11, 18–
21, 26], the authors using the global bifurcation results of [1, 2, 7, 8, 11, 18, 23–25] show that
there are nontrivial solutions of the considered nonlinear problems, which have the usual
nodal properties (unfortunately, there are gaps in the proofs of the main assertions in [11,
Theorems 2.2 and 3.1] and [18, Theorem 3.1]). Similar results were obtained in the paper
[22] by analytical methods involving the Prüfer angular functions. Should be noted that in
[13, 26, 27], problems with local and nonlocal boundary conditions are considered and the
existence of positive solutions of these problems is established.

In the present paper, using the global bifurcation results from [1–4, 6] and removing the
above gaps (see the proof of Steps 1–3 of Theorem 3.1), we prove the existence of two different
solutions to problem (1.1)–(1.5) with a fixed number of nodal points.

The rest of this article is organized as follows. Section 2 provides, which we need in the
future, known facts about the unilateral global bifurcation of solutions from zero and infinity
of nonlinear eigenvalue problems for fourth-order ordinary differential equations. In Section
3, we determine an interval for a parameter χ, in which there are nodal solutions to problem
(1.1)–(1.5). In this case, the proof of the main theorem, i.e. Theorem 3.1 consists of 4 steps. In
Step 1, using (1.6), (1.7) and the first condition from (1.10), we find bifurcation intervals from
zero and prove the existence of two families of unbounded components of the solution set
of problem (1.1)–(1.5) bifurcating from these intervals and contained in classes with a fixed
number of nodes. In Step 2, using (1.6), (1.8) and the second condition from (1.10), we find
bifurcation intervals from infinity and prove the existence of two families of unbounded com-
ponents of the set of solutions bifurcating from these intervals and contained in classes with a
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fixed number of nodes in the neighborhood of these intervals, which either intersect another
bifurcation interval, or intersect the line of trivial solutions, or have unbounded projections
onto the line of trivial solutions. In Step 3, it is established that the global components of
solutions to problem (1.1)–(1.5) bifurcating from intervals infinity are also contained in the
corresponding classes with a fixed number of nodes and coincide with the corresponding
components of solutions bifurcating from intervals of the line of trivial solutions.

2 Preliminary

We consider the following linear eigenvalue problem{
ℓ(y)(x) = λr(x)y(x), x ∈ (0, l),

y ∈ (b.c.)λ,
. (2.1)

where λ ∈ C is a spectral parameter, (b.c.)λ is a set of functions satisfying the boundary
conditions (1.2)–(1.5).

The spectral properties of (2.1) were studied in [15], where, in particular, it was shown
that the spectrum of this problem is discrete and consists of an infinitely increasing sequence
{λk}∞

k=1 of real and simple eigenvalues. Moreover, if c = 0, then eigenfunction yk(x), k ∈ N,
corresponding to the eigenvalue λk has exactly k − 1 simple zeros in (0, 1); if c ̸= 0, then there
exists N ∈ N such that the eigenfunction yk(x) corresponding to the eigenvalue λk has for
k ≤ N exactly k − 1 and for k > N exactly k − 2 simple zeros in (0, l).

Remark 2.1. Throughout what follows we will assume that the coefficients of boundary con-
ditions are chosen such that the first eigenvalue of problem (2.1) is positive.

Let E be a Banach space C3[0, l] ∩ BC0 with the norm ∥y∥3 = ∑3
s=0 ∥ y(s)∥∞, where ∥y∥∞ =

maxx∈[0, l] |y (x)| and BC0 is a set of functions which satisfy the boundary conditions (1.2)–(1.4).
From now on ν will denote an element of {+ , −} that is, either ν = + or ν = − .
In a recent paper [4, § 2, pp. 4–5], using the Prüfer type transformation for each k ∈ N

and each ν, the authors constructed sets Sν
k of functions y ∈ E, which have the oscillatory

properties of eigenfunctions of the linear problem (2.1) and their derivatives. Note that the
sets S+

k , S−
k and Sk = S+

k ∪ S−
k are pairwise disjoint open subsets of E. Moreover, it was

shown in [1, Lemma 2.2] that if y ∈ ∂Sν
k (∂Sk), then y has at least one zero of multiplicity 4 in

(0, l).
To study the existence of solutions to problem (1.1)–(1.5) with a fixed number of nodes,

consider the following nonlinear eigenvalue problem{
ℓ(y) = λr(x)y + h̃(x, y, y′, y′′, y′′′, λ), x ∈ (0, l),

y ∈ (b.c.)λ.
(2.2)

Here h̃ has a representation f̃ + g̃, where f̃ and g̃ are real-valued continuous functions on
[0, l]× R5 that satisfy the following conditions: there exist constants M̃ > 0 and sufficiently
small τ0 > 0 such that∣∣∣ f̃ (x, y, s, v, w, λ)

y

∣∣∣ ≤ M̃, (x, y, s, v, w) ∈ [0, l]× R4, 0 < |y|+ |s|+ |v|+ |w| ≤ τ0,

y ̸= 0, λ ∈ R;
(2.3)
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g̃(x, y, s, v, w, λ) = o (|y|+ |s|+ |v|+ |w|) as |y|+ |s|+ |v|+ |w| → 0, (2.4)

uniformly in x ∈ [0, l] and λ ∈ Λ for each bounded interval Λ ⊂ R, or there exist constants
˜̃M > 0 and sufficiently large κ0 > 0 such that∣∣∣ f̃ (x, y, s, v, w, λ)

y

∣∣∣ ≤ ˜̃M, (x, y, s, v, w) ∈ [0, l]× R4, |y|+ |s|+ |v|+ |w| ≥ κ0,

y ̸= 0, λ ∈ R;
(2.5)

g̃(x, y, s, v, w, λ) = o (|y|+ |s|+ |v|+ |w|) as |y|+ |s|+ |v|+ |w| → ∞, (2.6)

uniformly in x ∈ [0, l] and λ ∈ Λ.
If conditions (2.3) and (2.4) are satisfied, then the bifurcation of nontrivial solutions of

problem (2.2) from the line of trivial solutions R × {0} = {(λ, 0) : λ ∈ R} is considered. In
this case, the global bifurcation of nontrivial solutions of problem (2.2) is studied in [4], where
the following results are obtained.

Lemma 2.2 ([4, Lemmas 3 and 4]). Let conditions (2.3) and (2.4) be satisfied. Then for each k ∈ N

and each ν the set of bifurcation points of (2.2) with respect to the set R × Sν
k is nonempty and lies in

Ĩk × {0}, where Ĩk =
[
λk − M̃

r0
, λk +

M̃
r0

]
, r0 = minx∈[0, l] r(x).

For each k ∈ N and each ν let D̃ν
k be the union of all the components of the set of nontrivial

solutions to problem (2.2) bifurcating from the points of the interval Ĩk × {0} with respect to
R × Sν

k . Moreover, let Dν
k = D̃ν

k ∪ ( Ĩk × {0}). Note that Dν
k is connected, but D̃ν

k may not be
connected in R × E.

Theorem 2.3 ([4, Theorem 3]). Let conditions (2.3) and (2.4) be satisfied. Then for each k ∈ N and
each ν the set D̃ν

k is nonempty, lies in R × Sν
k and is unbounded in R × E.

In the case when conditions (2.5) and (2.6) are satisfied, then we consider the bifurcation of
nontrivial solutions to problem (2.2) from infinity, or rather from the line R×{∞} = {(λ, ∞) :
λ ∈ R}. Global bifurcation of nontrivial solutions of problem (2.2) from infinity with respect
to the set R × Sν

k was considered in [3] in the case of f̃ ≡ 0. Using the results of [1, 3] and [4]
following the corresponding arguments in [6], we can obtain the following results.

Lemma 2.4. Let conditions (2.5) and (2.6) be satisfied. Then for each k ∈ N and each ν the set of
asymptotic bifurcation points of problem (2.2) with respect to the set R × Sν

k is nonempty and lies in
˜̃Ik × {∞}, where ˜̃Ik =

[
λk −

˜̃M
r0

, λk +
˜̃M

r0

]
.

For each k ∈ N and each ν let ˜̃Dν
k be the union of all the components of the set of nontrivial

solutions to problem (2.2) bifurcating from the points of the interval ˜̃Ik × {∞} with respect
to the set R × Sν

k . Moreover, let Dν, ∗
k = ˜̃Dν

k ∪
( ˜̃Ik × {∞}

)
(in this case we add the points

{(λ, ∞) : λ ∈ R} to our space R × E and define an appropriate topology on the resulting set).
Note that Dν, ∗

k is connected.

Theorem 2.5. For each k ∈ N and each ν the set ˜̃Dν
k is nonempty and for this set at least one of the

following statements holds:

(i) the set ˜̃Dν
k meets ˜̃Ik′ × {∞} with respect to R × Sν′

k′ for some (k′, ν′) ̸= (k, ν);

(ii) the set ˜̃Dν
k meets R × {0} for some λ ∈ R;

(iii) the projection of ˜̃Dν
k on R × {0} is unbounded.

In addition, if cases (ii) and (iii) are not satisfied for the union ˜̃Dk = ˜̃D+
k ∪ ˜̃D−

k , then case (i) is
satisfied for it with k′ ̸= k.
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3 Existence of solutions to problem (1.1)–(1.5) with fixed oscillation
count

In this section we will determine the interval of χ, in which there exist nodal solutions of
problem (1.1)–(1.5).

Theorem 3.1. Let g0 > − f
0
, g∞ > − f

∞
, and for some k ∈ N one of the following conditions is

satisfied:
λk

g0 + f
0

< χ <
λk

g∞ + f ∞

;
λk

g∞ + f
∞

< χ <
λk

g0 + f 0

.

Then there are two solutions ỹ+k and ỹ−k of problem (1.1)–(1.5) such that ỹ+k ∈ S+
k and ỹ−k ∈ S−

k , i.e.,
ỹ+k has either k − 1 or k − 2 simple zeros in (0, l) and is positive near x = 0, and ỹ−k has either k − 1
or k − 2 simple zeros in (0, l) and is negative near x = 0.

Proof. To prove the theorem, consider the following nonlinear eigenvalue problem{
ℓ(y)(x) = λχr(x)g(y(x)) + χr(x) f (y(x)), x ∈ (0, l),

y ∈ (b.c.)λ,
(3.1)

where λ ∈ R is an eigenvalue parameter.

Step 1. It follows from the first condition of (1.10) that the function g(s), s ∈ R, can be
represented in the following form

g(s) = sg0 + ρ(s), (3.2)

where ρ(s) is a real-valued continuous functions on R that satisfies the condition

lim
|s|→ 0

ρ(s)
s

= 0. (3.3)

Let ζ(u) = max|s|∈[0, u] |ρ(s)|. It is obvious that the function ζ(u) is nondecreasing on
[0,+∞).

It follows from (3.3) that for any sufficiently small ε > 0 one can find a sufficiently small
δε > 0 such that for any s ∈ R satisfying condition |s| < δε we have |ρ(s)| < ε|s|. Then we
have

ζ(u)
u

< ε for any u ∈ (0, δε). (3.4)

Since the function ζ(u) is nondecreasing on [0,+∞) for any x ∈ [0, l] we get

|ρ(y(x))|
∥y∥3

≤ ζ(∥y∥∞)

∥y∥3
≤ ζ(∥y∥3)

∥y∥3
. (3.5)

Let y ∈ E such that ∥y∥3 < δε. Then by (3.4) we have

ζ(∥y∥3)

∥y∥3
< ε,

and consequently, for any x ∈ [0, l] we get

|ρ(y(x))|
∥y∥3

< ε for any x ∈ [0, l], (3.6)
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in view of (3.5). Therefore, it follows from (3.6) that

∥ρ(y)∥∞ = o(∥y∥3) as ∥y∥3 → 0. (3.7)

Considering (3.2), the problem (3.1) can be written in the following equivalent form{
ℓ(y)(x) = λχr(x)g0y(x) + χr(x) f (y(x)) + λχr(x)ρ(y(x)), x ∈ (0, l),

y ∈ (b.c.)λ.
(3.8)

Let δ0 > 0 be a sufficiently small number. Then it follows from (1.6) and (1.7) that there
exists sufficiently small σ0 ∈ (0, τ0) such that

f
0
− g0δ0

2
<

f (s)
s

< f 0 +
g0δ0

2
for any s ∈ R, 0 < |s| < σ0. (3.9)

Relation (3.9) implies that∣∣∣∣ f (s)
s

∣∣∣∣ ≤ M̃0 for any s ∈ R, 0 < |s| < σ0, (3.10)

where M̃0 = max
{∣∣ f

0
− g0δ0

2

∣∣, ∣∣ f 0 +
g0δ0

2

∣∣} > 0. Then by (3.7) (see also (3.6)) and (3.10) it
follows from Lemma 2.2 that for each k ∈ N and each ν the set of bifurcation points of (3.8)
(or (3.1)) with respect to the set R×Sν

k is nonempty. If (λ∗, 0) is a bifurcation point of problem
(3.8) with respect to R × Sν

k , then there exists a sequence {(λ∗
n, y∗n)}∞

n=1 ⊂ R × Sν
k such that{

ℓ(y∗n)(x) = λ∗
nχr(x)g0y∗n(x) + χr(x) f (y∗n(x)) + λ∗

nχr(x)ρ(y∗n(x)), x ∈ (0, l),

y∗n ∈ (b.c.)λ∗
n
,

(3.11)

and
(λ∗

n, y∗n) → (λ∗, 0) in R × E as n → ∞. (3.12)

Let

φ∗
n(x) =

{
− f (ỹ∗n(x))

ỹ∗n(x) if ỹ∗n(x) ̸= 0,
0 if ỹ∗n(x) = 0.

(3.13)

Then by (3.13) it follows from (3.11) that for each n ∈ N the pair (λ∗
n, y∗n) is a solution of the

following linearizable problem{
1

χr(x)g0
ℓ(y)(x) + 1

g0
φ∗

n(x)y(x) = λy(x) + 1
g0

λρ(y(x)), x ∈ (0, l),

y ∈ (b.c.)λ.
(3.14)

In view of (3.12) we can choose n ∈ N so large that

−
(

f 0
g0

+
δ0

2

)
<

1
g0

φ∗
n(x) < −

(
f

0
g0

− δ0

2

)
for any x ∈ [0, l], (3.15)

in view of (3.9) and (3.13).
It follows from [5, Remark 4.2 and Theorem 4.3] that for each fixed n ∈ N the eigenvalues

of the linear eigenvalue problem{
1

χr(x)g0
ℓ(y)(x) + 1

g0
φ∗

n(x)y(x) = λy(x), x ∈ (0, l),

y ∈ (b.c.)λ,
(3.16)
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are real and simple, and form an infinitely increasing sequence {λ∗
k, n}∞

k=1; moreover, the eigen-
function y∗k, n(x), k ∈ N, corresponding to the eigenvalue λ∗

k, n lies in Sk.
In view of relation (3.15), by following the arguments in Lemmas 5.1 and 5.3 of [1] we get

λ̃k −
f 0
g0

− δ0

2
≤ λ∗

k, n ≤ λ̃k −
f

0
g0

+
δ0

2
, (3.17)

where λ̃k, k ∈ N, is a kth eigenvalue of the linear eigenvalue problem{
1

χr(x)g0
ℓ(y)(x) = λy(x), x ∈ (0, l),

y ∈ (b.c.)λ.
(3.18)

Since (λ∗
k, n, 0) is a unique bifurcation point of problem (3.14) with respect to R × Sν

k by
(3.12) we can again choose n ∈ N so large that

λ∗
k, n −

δ0

2
< λ∗

n < λ∗
k, n +

δ0

2
. (3.19)

Then it follows from (3.17) and (3.19) that

λ̃k −
f 0
g0

− δ0 < λ∗
n < λ̃k −

f
0

g0
+ δ0 , (3.20)

whence, with regard to (3.12), we obtain

λ̃k −
f 0
g0

− δ0 ≤ λ∗ ≤ λ̃k −
f

0
g0

+ δ0 . (3.21)

As can be seen from (3.18) that λk = χg0λ̃k for each k ∈ N. Consequently, it follows from
(3.21) that

λk

χg0
−

f 0
g0

− δ0 ≤ λ∗ ≤ λk

χg0
−

f
0

g0
+ δ0 . (3.22)

Since δ0 is arbitrary small enough, it follows from (3.22) that

λk

χg0
−

f 0
g0

≤ λ∗ ≤ λk

χg0
−

f
0

g0
. (3.23)

Thus, (3.23) shows that the bifurcation points of problem (3.1) (or (3.8)) with respect to the set
R × Sν

k are contained in the interval I0
k × {0}, where

I0
k =

[
λk

χg0
−

f 0
g0

,
λk

χg0
−

f
0

g0

]
.

Then, by Theorem 2.3, for each k ∈ N and each ν there exists a component Dν
k, 0 of the

set of solutions of problem (3.1), which contains I0
k × {0}, lies in (R × Sν

k ) ∪ (I0
k × {0}) and is

unbounded in R × E.

Step 2. By the second condition in (1.10) we can represent the function g(s), s ∈ R, as follows:

g(s) = sg∞ + ϱ(s), (3.24)
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where

lim
|s|→+∞

ϱ(s)
s

= 0. (3.25)

Let ς(u) = max|s|∈ [0, u] |ϱ(s)|. It is obvious that the function ς(u) is nondecreasing on
[0,+∞).

In view of (3.25), for any sufficiently small ε > 0 there exists a sufficiently large ∆ε > 0
such that

|ϱ(s)| < 1
2

ε|s| for any s ∈ R, |s| > ∆ε. (3.26)

Let u ∈ [∆ε, ∞) be arbitrary. Then we have

ς(u) = max
{

max
|s|∈ [0, ∆ε]

|ϱ(s)|, max
|s|∈ [∆ε, u]

|ϱ(s)|
}

. (3.27)

Let Kε = max|s|∈ [0, ∆ε] |ϱ(s)|. We will choose ∆1, ε > ∆ε so large that Kε
∆1, ε

< 1
2 ε.

Now let u > ∆1, ε. Then by (3.26) it follows from (3.27) that

ς(u)
u

=
max{Kε, max|s|∈ [∆ε, u] |ϱ(s)|}

u
≤

max{Kε, 1
2 ε u}

u

= max
{

Kε

u
,

1
2

ε

}
≤ max

{
Kε

∆1, ε
,

1
2

ε

}
≤ 1

2
ε < ε.

(3.28)

Since the function ς(u) is nondecreasing on [0,+∞) for any x ∈ [0, l] we have

|ϱ(y(x))|
∥y∥3

≤ ς(∥y∥∞)

∥y∥3
≤ ς(∥y∥3)

∥y∥3
. (3.29)

If ∥y∥3 > ∆1, ε, then by (3.28) it follows from (3.29) that

|ϱ(y(x))|
∥y∥3

< ε for any x ∈ [0, l],

which shows that
∥ϱ(y)∥∞ = o(∥y∥3) as ∥y∥3 → ∞. (3.30)

Taking into account (3.24), we can rewrite the problem (3.1) in the following equivalent
form {

ℓ(y)(x) = λχr(x)g∞y(x) + χr(x) f (y(x)) + λχr(x)ϱ(y(x)), x ∈ (0, l),

y ∈ (b.c.)λ.
(3.31)

Using [1, Lemma 5.1], Lemma 2.4, relations (1.6), (1.8), (3.30) and following the above
arguments, we can show that if (λ̃∗, ∞) is an asymptotic bifurcation point of problem (3.1) (or
(3.31)), then

λ̃∗ ∈ I∞
k =

[
λk

χg∞
− f ∞

g∞
,

λk

χg∞
−

f
∞

g∞

]
.

Hence it follows from Theorem 2.5 that for each k ∈ N and each ν there exists a component
Dν

k, ∞ of the set of solutions to problem (3.1) containing I∞
k × {∞} and for which at least one

of the following statements holds:

(i) the set Dν
k, ∞ meets I∞

k′ × {∞} with respect to R × Sν′
k′ for some (k′, ν′) ̸= (k, ν);
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(ii) the set Dν
k, ∞ meets R × {0} for some λ ∈ R;

(iii) the projection of Dν
k, ∞ on R × {0} is unbounded.

Step 3. By following the arguments in Theorem 3.3 of [25] we can show that for each k ∈ N

and each ν, Dν
k, ∞\(I∞

k × {∞}) ⊂ R × Sν
k , and consequently, alternative (i) above for Dν

k, ∞
cannot hold. Moreover, if Dν

k, ∞ meets R × {0} for some λ ∈ R, then λ ∈ I0
k . Similarly, if Dν

k, 0
meets R × {∞} for some λ ∈ R, then λ ∈ I∞

k . Hence we conclude that if Dν
k, ∞ has a bounded

projection on R × {0}, then D+
k, 0 = D+

k, ∞ and D−
k, 0 = D−

k, ∞.
Now we show that for each k ∈ N and each ν the set Dν

k, ∞ has a bounded projection on
R × {0}. Indeed, otherwise there exists a sequence {(λn, yn)}∞

n=1 ⊂ (Dν
k, ∞\Qk,∞) ⊂ (R × Sν

k )

such that
lim
n→∞

λn = ±∞, (3.32)

where Qk,∞ is a some neighborhood of I∞
k × {∞}.

By (1.6)–(1.10) there exists a positive constants κ0, κ1 and κ2 such that

κ0 ≤ g(s)
s

≤ κ1 and
∣∣∣∣ f (s)

s

∣∣∣∣ ≤ κ2 for any s ∈ R, s ̸= 0. (3.33)

We define the functions φn(x) and ϕn(x), x ∈ [0, l], as follows:

φn(x) =

{ g(yn(x))
yn(x) if yn(x) ̸= 0,

0 if yn(x) = 0,
ϕn(x) =

{
− f (yn(x))

yn(x) if yn(x) ̸= 0,

0 if yn(x) = 0.
(3.34)

Since yn ∈ Sν
k by (3.34) it follows from (3.1) that λn for each n ∈ N is kth eigenvalue of the

following linear eigenvalue problem{
ℓ(y)(x) + χr(x)ϕn(x) y(x) = λχr(x)φn(x) y(x)), x ∈ (0, l),

y ∈ (b.c.)λ.
(3.35)

By (3.33) from (3.34) we get

κ0 ≤ φn(x) ≤ κ1 and |ϕn(x)| ≤ κ2 for any x ∈ [0, l]. (3.36)

It is known (see [1, 4]) that problem (3.35) reduces to the spectral problem for the self-
adjoint operator in the Hilbert space H = L2(0, l)⊕ C with corresponding scalar product. In
view of (3.36), by the maximum-minimum property of eigenvalues (see [1, 2]) we obtain that
the eigenvalues of problem (3.35) are uniformly bounded from below with respect to n ∈ N.
Consequently, the relation

lim
n→∞

λn = −∞

is not possible. Should be noted that the relation

lim
n→∞

λn = +∞,

is also impossible, since for a sufficiently large n, by [5, Theorem 4.3], the number of zeros of
the function yn will be large enough, which contradicts the condition yn ∈ Sν

k .
Therefore, for any k ∈ N we have

D+
k, 0 = D+

k, ∞ and D−
k, 0 = D−

k, ∞. (3.37)
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Step 4. It is obvious that any solution to problem (3.1) of the form (1, y) gives a solution y to
problem (1.1)–(1.5). In order for problem (1.1)–(1.5) to have a solution y which is contained in
Sν

k for some k ∈ N, by (3.37) it is sufficient that on the real axis R the interval I0
k lies to the left

of 1 and the interval I∞
k lies to the right of 1, or the interval I0

k lies to the right of 1, and the
interval I∞

k lies to the left of 1.
Let the conditions g0 > − f

0
and g∞ > − f

∞
be satisfied. Hence we have g∞ > − f ∞. If the

condition λk
g0+ f

0
< χ < λk

g∞+ f ∞
is satisfied, then we get

λk

χg0
−

f
0

g0
<

λk
λk

g0+ f
0

g0
−

f
0

g0
=

λk(g0 + f
0
)

λkg0
−

λk f
0

λkg0
= 1

and
λk

χg∞
− f ∞

g∞
>

λk
λk

g∞+ f ∞
g∞

− f ∞
g∞

=
λk(g∞ + f ∞)

λkg∞
− λk f ∞

λkg∞
= 1.

The case in which λk
g∞+ f

∞
< χ < λk

g0+ f 0
can be considered in a similar way. The proof of this

theorem is complete.

Step 4 of the proof of Theorem 3.1 makes it possible to obtain other conditions for the
existence of solutions to problem (1.1)–(1.5) contained in the sets S+

k and S−
k for some k ∈ N.

Theorem 3.2. Let g0 > − f
0
, − f ∞ < g∞ ≤ − f

∞
, and for some k ∈ N the following condition is

satisfied:
λk

g0 + f
0

< χ <
λk

g∞ + f ∞

.

Then the statement of Theorem 3.1 holds.

Theorem 3.3. Let g0 > − f
0
, g∞ ≤ − f ∞, and for some k ∈ N the following condition is satisfied:

χ >
λk

g0 + f
0

.

Then the statement of Theorem 3.1 holds.

Theorem 3.4. Let − f 0 < g0 ≤ − f
0
, g∞ > − f

∞
, and for some k ∈ N the following condition is

satisfied:
λk

g∞ + f
∞

< χ <
λk

g0 + f 0

.

Then the statement of Theorem 3.1 holds.

Theorem 3.5. Let g0 ≤ − f 0, g∞ > − f
∞

, and for some k ∈ N the following condition is satisfied:

χ >
λk

g∞ + f
∞

.

Then the statement of Theorem 3.1 holds.

The proofs of these theorems are similar to that of Step 4 of Theorem 3.1.
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