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Abstract. We are concerned with the global bifurcation of positive solutions for semi-
linear elliptic systems of the form

−∆u = λ f (u, v) in Ω,
−∆v = λg(u, v) in Ω,
u = v = 0 on ∂Ω,

where λ ∈ R is the bifurcation parameter, Ω ⊂ RN , N ≥ 2 is a bounded domain with
smooth boundary ∂Ω. We establish the existence of an unbounded branch of positive
solutions, emanating from the origin, which is bounded in positive λ-direction. The
nonlinearities f , g ∈ C1(R × R, (0, ∞)) are nondecreasing for each variable and have
superlinear growth at infinity. The proof of our main result is based upon bifurcation
theory. In addition, as an application for our main result, when f and g subject to the
upper growth bound, by a technique of taking superior limit for components, then we
may show that the branch must bifurcate from infinity at λ = 0.
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1 Introduction

Let B be the unit ball in RN . D. D. Joseph and T. S. Lundgren [12] considered{
−∆u = λeu, x ∈ B,

u = 0, x ∈ ∂B
(1.1)

and found a very interesting phenomenon that the behaviour of the connected component of
positive solutions of (1.1) heavily depends on the dimension N, see Figure 1.1 below.
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Figure 1.1: Global continua for (1.1) depend on N

Fourth order analogue of (1.1), a biharmonic elliptic problem{
∆2u = λeu, x ∈ B,

u = |∇u| = 0, x ∈ ∂B
(1.2)

has been extensively studied by several authors, see G. Arioli, F. Gazzola, H.-C. Grunau, E.
Mitidieri [2] and A. Ferrero, H.-C. Grunau [8] and the references therein.

For elliptic systems, Ph. Clément, D. G. de Figueiredo and E. Mitidieri [7] investigated the
existence of positive solution of a Dirichlet problem for

− ∆u = f (v), −∆v = f (u) (1.3)

in a bounded convex domain Ω of RN with smooth boundary. Furthermore, the authors
considered the existence of nontrivial solutions for the biharmonic equation subject to Navier
boundary conditions. Namely

∆2u = g(u) in Ω, u = ∆u = 0 on ∂Ω.

This problem is a special case of (1.3) when f (v) = v.
Recently, M. Chhetri, P. Girg [6] considered the elliptic system

−∆u = λ f̂ (v) in Ω,

−∆v = λĝ(u) in Ω,

u = v = 0 on ∂Ω,

(1.4)

where λ ∈ R is the bifurcation parameter and Ω ⊂ RN , N ≥ 2, is a bounded domain with C2,η-
boundary ∂Ω for some η ∈ (0, 1). The nonlinearities f̂ , ĝ : R → (0,+∞) are nondecreasing
continuous functions and have superlinear growth at infinity, i.e.

lim
s→+∞

f̂ (s)
s

= +∞ = lim
s→+∞

ĝ(s)
s

.

Then the authors established the global structure of positive solutions for system (1.4).
Of course the natural question is whether or not we may show the global structure of

positive solutions for the more general system
−∆u = λ f (u, v) in Ω,

−∆v = λg(u, v) in Ω,

u = v = 0 on ∂Ω,

(1.5)



Global bifurcation of positive solutions for elliptic systems 3

where λ ∈ R is the bifurcation parameter. We make the following assumptions throughout
the paper.

(H1) f , g ∈ C1(R × R, (0,+∞)) are nondecreasing for each variable and there exists a τ >

0, satisfy

min
{

∂ f
∂s

(s, t),
∂ f
∂t

(s, t)
}

>
f (s, t)
s + t

for (s, t) ∈ R2\Bτ,

min
{

∂g
∂s

(s, t),
∂g
∂t

(s, t)
}

>
g(s, t)
s + t

for (s, t) ∈ R2\Bτ,

where Bτ := {(s, t) ∈ R2 : |s|2 + |t|2 ≤ τ};

(H2) lim
s+t→+∞

f (s, t)
s + t

= lim
s+t→+∞

g(s, t)
s + t

= +∞.

Notice that the functions satisfying (H1)–(H2) are easy to illustrate, for example f (s, t) =

(s + t)5 + 1, g(s, t) = (s + t)3 + 2.

For system of equations with λ = 1, see [9–11] for N = 2 and [1, 3, 4] for N ≥ 3, where
existence results were discussed, but no any information about the Connectivity Properties of
positive solution set are provided. In fact, these positive solutions of (1.5) may not lie on one
bifurcating set.

It is the purpose of this paper to show the existence of a unbounded component of pos-
itive solutions of (1.5) by use bifurcation theory and a technique of taking superior limit for
components, see [15, 16].

In order to better state our result, we will briefly introduce the following notations that
were defined in more detail in [6] and extend the use of these definitions to all systems
throughout the paper.

Let
E := [W1,2

0 (Ω) ∩ W2,r(Ω)]2 and X := [Lr(Ω)]2

be Banach spaces endowed with norms

∥(w1, w2)∥E := ∥w1∥W2,r(Ω) + ∥w2∥W2,r(Ω) and ∥(w1, w2)∥X := ∥w1∥Lr(Ω) + ∥w2∥Lr(Ω),

respectively for r > N. By assumption r > N, W2,r(Ω) is continuously imbedded into
C1,η(Ω) for some η ∈ (0, 1). Thus there exists ξ∗ > 0 such that ∥ω∥L∞(Ω) ≤ ξ∗∥ω∥W2,r(Ω) holds
for all ω ∈ W2,r(Ω). By a solution of (1.5) we mean (λ, (u, v)) ∈ R × E which solves (1.5)
in the strong sense, that is, (u, v) ∈ W2,r(Ω) × W2,r(Ω) and (λ, (u, v)) satisfies (1.5) almost
everywhere in Ω. Now define S := {(λ, (u, v)) ∈ R × E : (λ, (u, v)) solution of (1.5)}.

Definition 1.1 ([6]).

(1) By a continuum of solutions of (1.5) we mean a subset of S which is closed and connected.

(2) By a component of solutions set S we mean a continuum which is maximal with respect
to inclusion ordering.

(3) λ∞ ∈ R is a bifurcation point from infinity if the solution set S contains a sequence
(λn, (un, vn)) such that λn → λ∞ and ∥(un, vn)∥E → +∞ as n → +∞.

The main result of the paper is the following.
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Theorem 1.2. Let (H1)–(H2) hold, then there exists an unbounded component C ⊂ S satisfying the
following:

(a) For any λ ∈ (0, λ∗), (λ, (u, v)) ∈ C is positive, i.e. u > 0 and v > 0.

(b) If λ = 0, then (0, (0, 0)) is the unique element belonging to C.

(c) Projλ∈[0,+∞) C := {λ ∈ [0,+∞) : ∃ (u, v) ∈ E with (λ, (u, v)) ∈ C} ⊂ [0, λ∗).

(d) There exists a sequence of positive solutions {(λn, (un, vn))} ∈ C satisfying λn ∈ (0, λ∗) for all
n ∈ N and limn→+∞ ∥(un, vn)∥E → +∞.

Remark 1.3. In the special case Ω is convex, M. Chhetri, P. Girg [6] show that the only
bifurcation point of positive solutions of (1.4) from infinity with f̂ (v) = vp, ĝ(u) = uq at
λ = 0 under the critical hyperbola condition

1
p + 1

+
1

q + 1
>

N − 2
N

. (1.6)

The proof of this result in [6] is deeply depend on the uniform priori bound. For system
(1.4), condition (1.6) is optimal for obtaining the priori estimate when f̂ (v) = vp, ĝ(u) = uq.
But for the more general system (1.5), the conditions for obtaining a priori bound are more
complicated, and the proof will be more difficult if we want to obtain the similar results. We
give the specific proof in Section 5.

The rest of paper is arranged as follows: In Section 2 we present the nonexistence result of
(1.5). Section 3 is devoted to asymptotically positively homogeneous system by using a global
continuation principle. In Section 4, we prove Theorem 1.2. In final section, as an application
of Theorem 1.2, by applying some priori estimates, see [17], we attempt to understand the
structure of the resulting continua of positive solutions.

2 Statement of the nonexistence result

Let µ1 > 0 be the principal eigenvalue of{
−∆φ = µφ in Ω,

φ = 0 on ∂Ω,

and φ1 ∈ W1,2
0 (Ω) be the corresponding eigenfunction, then ∂φ1

∂−→n < 0 on Ω, where −→n is the
outward unit normal on ∂Ω. Without loss of generality, we normalize the eigenfunction such
that φ1 > 0 in Ω.

We shall prove the nonexistence result.

Theorem 2.1. Suppose there exist a1, a2, α1, α2 > 0 such that

f (s, t) > a1(s + t) + α1, g(s, t) > a2(s + t) + α2, ∀ (s, t) ∈ R2. (2.1)

Then for λ ≥ λ∗ := µ1
2a∗ , there are no solutions for (1.5), where a∗ := min{a1, a2}.

Remark 2.2. We notice that in order to obtain the nonexistence result of solutions for (1.5), it
suffices to show that f and g satisfy (2.1), which is weaker than (H2).
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Proof. By (H1), since f , g are positive functions, all solutions (λ, (u, v)) of (1.5) with λ >

0 must satisfy u, v > 0 in Ω by the maximum principle. Let (λ, (u, v)) be a solution of
(1.5) with λ > 0. Then

−∆(u + v) > λ(a1(u + v) + α1) + λ(a2(u + v) + α2)

> 2λa∗(u + v) + 2λα∗ = 2λa∗
(

u + v +
α∗

a∗
)

in Ω,

where a∗ := min{a1, a2}, α∗ := min{α1, α2}. Therefore, we have

−∆
(

u + v +
α∗

a∗
)
> 2λa∗

(
u + v +

α∗

a∗
)

in Ω.

Denoting w := u + v + α∗

a∗ , we see that w > 0 on Ω and

−∆w > 2λa∗w in Ω.

Since −∆φ1 = µ1φ1 in Ω, φ1 = 0 on ∂Ω. We have∫
Ω
(φ1∆w − w∆φ1)dx <

∫
Ω
(−2λa∗wφ1 + wµ1φ1)dx = (−2λa∗ + µ1)

∫
Ω
(wφ1)dx. (2.2)

On the other hand, since φ1 = 0 on ∂Ω, inf
∂Ω

w > 0 and ∂φ1
∂−→n < 0 on ∂Ω, we get

∫
Ω
(φ1∆w − w∆φ1)dx =

∫
∂Ω

(φ1∇w − w∇φ1) · −→n dS = −
∫

∂Ω
w∇φ1 · −→n dS. (2.3)

Then we have

−
∫

∂Ω
w∇φ1 · −→n dS ≥ − inf

∂Ω
w

∫
∂Ω

∂φ1

∂−→n
dS > 0. (2.4)

It follows from (2.2), (2.3) and (2.4) that for (u, v) to be a solution of (1.5) for λ > 0, we must
have λ < µ1

2a∗ . Therefore, (1.5) has no solution for λ ≥ λ∗ := µ1
2a∗ .

3 Asymptotically positively homogeneous system

In order to discuss the auxiliary result, we mention some properties of the following eigen-
value problem 

−∆w1 = λ[a11(x)w1 + a12(x)w2] in Ω,

−∆w2 = λ[a21(x)w1 + a22(x)w2] in Ω,

w1 = w2 = 0 on ∂Ω,

(3.1)

where aij : Ω → (0, ∞) are continuous function(i, j = 1, 2). It follows from [14, Theo-
rem 4.1] that (3.1) has exactly one positive principal eigenvalue λ1 and associated eigenfunc-
tion (χ1, ψ1) is positive in Ω.

Remark 3.1. If aij = constant (i, j = 1, 2), the principal eigenvalue of (3.1) and the corre-
sponding eigenfunction are related to µ1 and φ1 (µ1 and φ1 are defined in the Section 2.)

For example, let a11 = 2, a12 = 9, a21 = 4, a22 = 2, the principal eigenvalue of (3.1) is
µ1
8 and the associated eigenfunction is ( 3

2 φ1, φ1). The detailed calculation method is shown in
Appendix 2 of [5].
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Now, let us consider an asymptotically positively homogeneous system
−∆u = λ[a11(x)u+ + a12(x)v+] + λ f̃ (u, v) in Ω,

−∆v = λ[a21(x)u+ + a22(x)v+] + λg̃(u, v) in Ω,

u = v = 0 on ∂Ω,

(3.2)

where s+ := max{s, 0}, aij(i, j = 1, 2) are as in (3.1) and λ ∈ R is the bifurcation parameter.
f̃ , g̃ : R × R → R satisfy the following assumptions:

(F1) f̃ , g̃ are continuous and bounded functions;

(F2) a11s+ + a12t+ + f̃ (s, t) > 0, a21s+ + a22t+ + g̃(s, t) > 0 for all (s, t) ∈ R × R.

By a solution of (3.2) we mean (λ, (u, v)) ∈ R × E which solves (3.2) in the strong sense. Now
let T := {(λ, (u, v)) : (λ, (u, v)) solution of (3.2)}. We shall prove the following bifurcation
result.

Theorem 3.2. Let (F1)–(F2) hold. Then λ1 is the only bifurcation point from infinity for (3.2).
Moreover, there exists a component X ⊂ T bifurcating from infinity at λ1 and satisfies:

(i) for λ > 0 and (λ, (u, v)) ∈ X , then u > 0 and v > 0;

(ii) for λ = 0, (u, v) = (0, 0) is the unique solution of (3.2) and (0, (0, 0)) ∈ X ;

(iii) Projλ X := {λ ∈ R : ∃ (u, v) ∈ E with (λ, (u, v)) ∈ X} is bounded from above and unbounded
from below.

To prove this theorem, we use a variant of Krasnoselskii’s necessary condition for bifur-
cation from infinity (Lemma 3.4), Theorem 2.1 and the global continuation principle of Leray
and Schauder (Lemma 3.3) below.

Lemma 3.3 ([19]). Let Y be a Banach space with Y ̸= {0} and let F : Y → Y be compact. Then the
solution component Ĉ ⊂ R × Y of the equation

x = λF(x)

which contains (0, 0) ∈ R × Y is unbounded as are both subsets

Ĉ± := Ĉ ∩ (R± × Y),

where R+ := [0,+∞) and R− := (−∞, 0].

System (3.2) is equivalent to

(u, v) = λL+(u, v) + λH(u, v), (3.3)

where L+ : E → E is defined by

(u, v) 7→ (−∆)−1(a11(x)u+ + a12(x)v+, a21(x)u+ + a22(x)v+)

and H : E → E is defined by

(u, v) 7→ (−∆)−1( f̃ (u, v), g̃(u, v)).
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Notice that L+ is not linear but both L+ and H are continuous and compact. Moreover, since
f̃ and g̃ are bounded, H satisfies

lim
∥(u,v)∥E→+∞

∥H(u, v)∥E

∥(u, v)∥E
= 0. (3.4)

For asymptotically linear problem, a necessary condition for bifurcation from infinity was
established in [13]. Inspired by this work, we prove the following lemma to show that the
unique possible bifurcation point from infinity for (3.3) is λ1.

Lemma 3.4. If λ∞ is a bifurcation point from infinity for (3.3), then λ∞ = λ1. Moreover, for any
sequence (λj, (uj, vj)) ∈ R × E with λj → λ1 and ∥(uj, vj)∥E → +∞ as j → +∞. There exists a
subsequence (λjk , (ujk , vjk)) of (λj, (uj, vj)) such that

lim
jk→+∞

(ujk , vjk)

∥(ujk , vjk)∥E
=

(χ1, ψ1)

∥(χ1, ψ1)∥E
, (3.5)

where the convergence is in C1,η(Ω)× C1,η(Ω) for some η ∈ (0, 1).

Proof. Now by the same argument in the proof of [6, Proposition 3.1], with obvious changes,
we may deduce the desired results. Let (λj, (uj, vj)) ∈ R × E be solutions of (3.2) such that

∥(uj, vj)∥E → +∞ and λj → λ∞. Then (ûj, v̂j) =
(uj,vj)

∥(uj,vj)∥E
satisfies

ûj = λj(−∆)−1
(

a11(x)û+
j + a12(x)v̂+j +

f̃ (uj, vj)

∥(uj, vj)∥E

)
,

v̂j = λj(−∆)−1
(

a21(x)û+
j + a22(x)v̂+j +

g̃(uj, vj)

∥(uj, vj)∥E

)
,

or equivalently satisfied

(ûj, v̂j) = λjL+(ûj, v̂j) + λj
H(uj, vj)

∥(uj, vj)∥E
.

It then follows from (3.4) that the right hand side is bounded in X (independent of j).
Hence ∥ûj∥W2,r(Ω) and ∥v̂j∥W2,r(Ω) are bounded (independent of j) and so are ∥ûj∥C1,η(Ω) and

∥v̂j∥C1,η(Ω) for some η ∈ (0, 1). Since C1,η′
(Ω) ↪→ C1,η(Ω) compactly for η′ ∈ (0, η), passing to

subsequences, ûj → û, v̂j → v̂ in C1,η′
(Ω). Therefore, (λ∞, (û, v̂)) satisfies

− ∆û = λ∞[a11(x)û+ + a12(x)v̂+] in Ω, (3.6)

− ∆v̂ = λ∞[a21(x)û+ + a22(x)v̂+] in Ω, (3.7)

û = v̂ = 0 on ∂Ω.

Suppose λ∞ ≤ 0. Since û+ ≥ 0 and v̂+ ≥ 0, it follows by applying the maximum principle
to (3.6) that û ≡ 0 and hence repeating the same argument using (3.7) we get v̂ ≡ 0 as well.
This leads to a contradiction since ∥(û, v̂)∥E = 1.

For λ∞ > 0, we distinguish two cases: v̂+ ≡ 0 and v̂+ ̸≡ 0. In the first case, if û+ ≡ 0, from
(3.6), using the maximum principle, a contradiction as before. If û+ ̸≡ 0, then it follows from
(3.7) and a21 > 0 that v̂ > 0 in Ω. However, this contradicts v̂+ ≡ 0.
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In the case v̂+ ̸≡ 0, we may get û+ ̸≡ 0 in Ω from (3.6) by the maximum principle, which
in turn implies û > 0 and v̂ > 0 in Ω from (3.6) and (3.7) by the maximum principle again.
Thus λ∞ > 0 and û, v̂ > 0 in Ω satisfy the linear eigenvalue problem (3.1). However, we
already discussed that (3.1) has precisely one eigenvalue λ1 with componentwise positive
eigenfunction (χ1, ψ1). Therefore, it must be that λ∞ = λ1 and

(û, v̂) =
(χ1, ψ1)

∥(χ1, ψ1)∥E
.

Now we will complete the proof of Theorem 3.2.

Proof. (3.3) satisfies the hypotheses of Lemma 3.3 with F := L+ + H. Then there exist un-
bounded continua

X± ⊂ T̂ := {(λ, (u, v)) ∈ R × E : (λ, (u, v)) is a solution of (3.2)}

containing (0, (0, 0)). By Theorem 2.1,

X+ ⊂ ([0, λ∗)× E)

and thus X+ must be unbounded in the Banach space E-direction. Then X := X+ ∪ X− is a
component containing (0, (0, 0)). By Lemma 3.4, λ1 is the only bifurcation point from infinity
from (3.3) and X+ is unbounded in the E-direction, hence X+ must bifurcate from infinity at
λ1. By similar argument in [6], we will verify that X satisfies the properties (i)-(iii).

It follows from assumption (F2) that u, v > 0 in Ω whenever (λ, (u, v)) ∈ X and λ > 0.
This implies part (i). For λ = 0, (u, v) = (0, 0) is the only solution of (3.2) and (0, (0, 0)) ∈ X .
Hence part (ii) holds. Applying Lemma 3.3, we see that X− must be unbounded in R × E.
However, by part (ii) and the fact that λ1 is the unique bifurcation point from infinity for
(3.3), we see that X− must be unbounded in the negative λ-direction. Hence (−∞, λ1) ⊂
ProjλX .

4 Proof of main result

For n ∈ N, let
A f

n := {(s, t) ∈ R2
+ : f (s, t) = n(s + t)},

where R+ := [0,+∞). We shall show that A f
n contains a curve Γ f

n which can be (globally)
parametrized as the graph of a decreasing function.

First, we state and prove several preliminary results.

Lemma 4.1. There exists n0 > 0 such that for any n > n0, A f
n ̸= ∅.

Proof. It follows from (H1) and (H2) that there exists n0 > 0 such that for any n > n0, there
exists (s∗n, s∗n) ∈ R2

+ with f (s∗n, s∗n) = 2ns∗n. Consequently, A f
n ̸= ∅.

For given θ ∈ [0,+∞), let
t = θs, s ∈ [0,+∞).

Obviously, (H1) and (H2) imply that lim
s→∞

f (s,θs)
s+θs = ∞. For any n > n0, denote

A f
n,θ :=

{
(s, θs) : (s, θs) ∈ A f

n

}
.

Fix n > n0, analogous to proof of Lemma 4.1, it is easy to see A f
n,θ ̸= ∅.
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Lemma 4.2. Fix n > n0, there exists Mn > 0 independent of θ ∈ [0,+∞) such that

sup
{

s + θs : (s, θs) ∈ A f
n
}
≤ Mn.

Proof. Suppose on the contrary that there exists a sequence {(sk, θksk)} ∈ A f
n such that

limk→∞(sk + θksk) = ∞. Then it follows from (H2) that

lim
(sk+θksk)→+∞

f (sk, θksk)

sk + θksk
= +∞.

This contradicts the fact that f (sk, θksk) = n(sk + θksk).

Fix θ ∈ [0,+∞), define

γn(θ) := max
{

s ∈ R+ : (s, θs) ∈ A f
n,θ

}
.

Lemma 4.3. For any M > 0 and θ ∈ [0,+∞), there exists n1 > n0 > 0 such that (γn(θ))2 +

(θγn(θ))2 > M for any n > n1.

Proof. Suppose on the contrary that there exists a sequence {(θn, γn(θn))} such that (γn(θn))2+

(θnγn(θn))2 is bounded for any n > n1. After taking a subsequence if necessary, we have

(θn, γn(θn)) → (θ∗, γ∗) as n → ∞

in R2
+. Since (γn(θn), θnγn(θn)) ∈ A f

n, then

f (γn(θn), θnγn(θn)) = n(γn(θn) + θnγn(θn)).

It is easy to verify that

f (γ∗, θ∗γ∗) = n(γ∗ + θ∗γ∗) → ∞ as n → ∞,

this contradicts the fact that f (γ∗, θ∗γ∗) is bounded since θ∗ ∈ [0,+∞).

For (s, t) ∈ R2
+, denote

F(s, t) := f (s, t)− n(s + t).

Let
s̃ := sup{s ∈ R+ : (s, 0) ∈ A f

n,0}.

Then Lemma 4.2 implies s̃ < ∞.

Lemma 4.4. There exists n2 > n1 > 0 such that for n > n2, there exists a decreasing function
t = Γ f

n(s) for s ∈ (0, s̃), which joins the point (s̃, 0) to a point (0, t̂) for some t̂ < ∞.

Proof. For given θ ∈ (0,+∞), we know that (γn(θ), θγn(θ)) ∈ A f
n. By (H1), we have

min
{

ft(γn(θ), θγn(θ)), fs(γn(θ), θγn(θ))

}
>

f (γn(θ), θγn(θ))

γn(θ) + θγn(θ)
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if n sufficiently large. Therefore,

Ft(γn(θ), θγn(θ)) = ft(γn(θ), θγn(θ))− n

>
f (γn(θ), θγn(θ))

γn(θ) + θγn(θ)
− n

=
n(γn(θ) + θγn(θ))

γn(θ) + θγn(θ)
− n

= 0

for sufficiently large n. By similar argument, we can obtain Fs(γn(θ), θγn(θ)) > 0 for suffi-
ciently large n. Consequently, applying the implicit function existence theorem, there exists a
unique curve t = Γ f

n(s) in (γn(θ)− δ, γn(θ) + δ) for sufficiently small δ > 0, and

(Γ f
n(s))′ = −Fs(s, t)

Ft(s, t)
= − fs(s, t)− n

ft(s, t)− n
< 0

for sufficiently large n. Thus there exists n2 > n1 > 0 such that for n > n2, Γ f
n(s) is a

decreasing function for s ∈ (γn(θ)− δ, γn(θ) + δ). By the standard extension method, we may
get a decreasing function Γ f

n(·) defined on (0, s̃).
By Lemma 4.2, we have {(γn(θ), θγn(θ)) : θ ∈ (0,+∞)} ⊂ A f

n is bounded. This together
with the fact that Γ f

n(s) is decreasing, we can deduce that limθ→0+(γn(θ), θγn(θ)) = (ŝ, 0) for
ŝ ∈ (0,+∞) and limθ→+∞(γn(θ), θγn(θ)) = (0, t̂) for some t̂ < ∞. Obviously, we have ŝ = s̃
by the definition of s̃.

It is easy to see that there exists n∗, n∗ such that for all n ≥ n∗, Γ f
n divide R2

+ into two
parts

R2
+ = Ω f

n ∪ Γ f
n ∪ U f

n , Ω f
n ∩ U f

n = ∅,

and for all n ≥ n∗, Γg
n divide R2

+ into two parts

R2
+ = Ωg

n ∪ Γg
n ∪ Ug

n , Ωg
n ∩ Ug

n = ∅,

where Ω f
n, Ωg

n are bounded, and U f
n , Ug

n are unbounded.

4.1 Approximation problems

Fix n ∈ N and define fn(t, s), gn(t, s) : R2 → (0, ∞) by

fn(s, t) =

{
f (s, t), (s, t) ∈ Ω f

n,

n(s + t), (s, t) ∈ U f
n ∪ Γ f

n,

gn(s, t) =

{
g(s, t), (s, t) ∈ Ωg

n,

n(s + t), (s, t) ∈ Ug
n ∪ Γg

n.

Then fn and gn are continuous functions on R2.
For each n ∈ N, we consider the following problem

−∆u = λ fn(u, v) in Ω,

−∆v = λgn(u, v) in Ω,

u = v = 0 on ∂Ω,

(4.1)
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which approaches (1.5) as n → ∞. We will use Theorem 3.2 to treat (4.1) and thus we rewrite
(4.1) in the form of (3.2) as

−∆u = λ[nu+ + nv+] + λ f̃n(u, v) in Ω,

−∆v = λ[nu+ + nv+] + λg̃n(u, v) in Ω,

u = v = 0 on ∂Ω,

(4.2)

where
f̃n(s, t) := fn(s, t)− ns+ − nt+, g̃n(s, t) := gn(s, t)− ns+ − nt+.

We note that f̃n and g̃n are bounded in R2. Indeed, since fn is nondecreasing for each variable
and fn(s, t) = f (s, t) > 0 for (s, t) ∈ Ω

f
n, we get

| f̃n(s, t)| ≤ sup
(s,t)∈R2

| fn(s, t)− n(s+ + t+)| ≤ sup
(s,t)∈Ω f

n

| fn(s, t)− n(s+ + t+)|+ f (0, 0) = constant,

where the constant is independent of s, t and depends on n. We can repeat the same
argument for g̃n. Since fn(s, t), gn(s, t) > 0, it is easy to see that (4.2) satisfies the hypotheses
of Theorem 3.2 with a11 = n, a12 = n, a21 = n, a22 = n, f̃ = f̃n, g̃ = g̃n, and λ1 = λ1,A, where

A =

(
n n
n n

)
.

Then by Theorem 3.2, λ1,A is the unique bifurcation point from infinity for (4.2) and there
exists a component Cn of positive solutions of (4.2) bifurcating from infinity at λ1,A satisfying
the properties (i)–(iii) of Theorem 3.2. In particular, (0, (0, 0)) ∈ Cn, Cn is bounded above by
λ∗ × E (λ∗ is as in Theorem 2.1) and Cn does not cross {0} × E except through the point
(0, (0, 0)).

4.2 Passing to the limit

We first state some properties of the superior limit of a certain infinity collection of connected
sets.

Definition 4.5 ([18]). Let X be a Banach space and {Cn : n = 1, 2, . . . } be a certain infinite
collection of subsets of X. Then the superior limit D of {Cn} is defined by

D := lim sup
n→∞

Cn = {x ∈ X : ∃{ni} ⊂ N and xni ∈ Cni , such that xni → x}.

Lemma 4.6 ([15]). Let X be a Banach space and let {Cn} be a family of closed connected subsets of X.
Assume that:

(i) there exist zn ∈ Cn, n = 1, 2, . . . , and z∗ ∈ X, such that zn → z∗;

(ii) rn = sup{∥x∥ : x ∈ Cn} = ∞;

(iii) for every R > 0, (
⋃∞

n=1)∩ BR is a relatively compact set of X, where BR = {x ∈ X : ∥x∥ ≤ R}.

Then there exists an unbounded component C in D and z∗ ∈ C.
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By means of the corresponding auxiliary equations (4.2), we obtained a sequence of un-
bounded components Cn, and this enables us to find an unbounded component C satisfying

C ⊂ lim sup
n→∞

Cn.

It following from the existence of Γ f
n and Γg

n that fn(s, t) = f (t, s), gn(s, t) = g(t, s) for
n → ∞. Thus (λ, (u, v)) ∈ C solves the original problem (1.5) when n → ∞. Now we
verify {Cn} satisfying the assumptions of Lemma 4.6. By the definition of continuum and
component, Cn is closed.

Since all of Cn contain (0, (0, 0)), we can choose zn ∈ Cn such that zn = (0, (0, 0)) for
n = 1, 2, . . . Clearly, zn → z∗ = (0, (0, 0)), the assumption (i) of Lemma 4.6 is satisfied.

By unboundedness of Cn, obviously, we have

rn = sup{|λ|+ ∥(u, v)∥E : (λ, (u, v)) ∈ Cn} = +∞.

(iii) in Lemma 4.6 can be deduced directly from the Arzelà–Ascoli theorem and the defi-
nition of fn, gn. Therefore, the superior limit of Cn contains a component C.

It follows from (H1) that u, v > 0 in Ω for λ > 0 whenever (λ, (u, v)) ∈ C, which estab-
lishes part (a), Clearly, (0, (0, 0)) ∈ C, which together with the maximum principle establish
part (b). Part (c) follows from Theorem 2.1. By construction of C, there exists a sequence
(λn, (un, vn)) ∈ C such that 0 < λn < λ∗ (λ∗ is as in Theorem 2.1 ) and un > 0, vn > 0 for all
n ∈ N, and ∥(un, vn)∥E → +∞ as n → +∞. Thus C is unbounded in the Banach space E. This
establishes part (d) and completes the proof of Theorem 1.2.

5 Application of Theorem 1.2

The unbounded component C from Theorem 1.2 may bifurcate from infinity at any or all
λ ∈ [0, λ∗]. Next, As an application of Theorem 1.2, we will show that, under additional
assumptions on f and g, the component C must approach towards the hyperplane λ = 0 as
the norm ∥(u, v)∥E grows large.

5.1 Main result

Theorem 5.1. Let (H1)–(H2) hold. Assume

f (u, v) ≤ C1(1 + vp1 + up2), u, v ≥ 0, x ∈ Ω, (5.1)

g(u, v) ≤ C1(1 + uq1 + vq2), u, v ≥ 0, x ∈ Ω, (5.2)

f (u, v) + g(u, v) ≥ κ(u + v)− C1, u, v ≥ 0, x ∈ Ω, (5.3)

here p1, q1 > 0, p1q1 > 1, p2, q2 ≥ 1, C1 > 0 and κ > µ1 (µ1 defined in Section 2). Define

α =
2(p1 + 1)
p1q1 − 1

, β =
2(q1 + 1)
p1q1 − 1

.

If
max{α, β} > N − 1 (5.4)

and
p2, q2 <

N + 1
N − 1

. (5.5)

Then λ∞ = 0 is the unique bifurcation point from infinity in [0, λ∗], for the component C ⊆ S from
Theorem 1.2. More specifically,
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(i) There exists a sequence of positive solutions (λn, (un, vn)) ∈ C with λn ∈ [0, λ∗) for all n ∈
N such that ∥(un, vn)∥E → +∞ and λn → 0+ as n → +∞.

(ii) Any sequence (λn, (un, vn)) ∈ C such that ∥(un, vn)∥E → +∞ as n → ∞ and λn > 0 must
satisfy λn → 0+ as n → +∞.

It is worth noting that for problem (1.5) satisfying (H1), (H2) and (5.1)–(5.5), the solutions
(λ, (u, v)) ∈ R × E.

Lemma 5.2. Assume (5.1)–(5.5) hold. Let λn ∈ R be a sequence with λ1 < λ∗ such that λn ↘ 0+ as
n → +∞. Then for each n ∈ N, there exists Cn := C(λn) such that any solution (λ, (u, v)) of
(1.5) satisfies

∥u∥L∞(Ω), ∥v∥L∞(Ω) ≤ Cn, for all λ ∈ [λn, λ∗)

and Cn → +∞ as n → +∞.

Proof. We begin by observing that under above hypotheses uniform a priori bound result
holds [17, Theorem 1.1] for positive solutions of (1.5). By retracing the proof of [17, Theorem
2.1, Proposition 3.1] with λ f and λg (in place of f and g) we will establish the dependence of
the uniform bounds on λ.

First, let b∗ > λ∗, we consider the system (1.5) with λ ∈ [λn, b∗] under the assumptions

|λ f (u, v)| ≤ b∗C1(|v|p1 + |u|p2) + b∗h2(x), u, v ∈ R, x ∈ Ω, (5.6)

|λg(u, v)| ≤ b∗C1(|u|q1 + |v|q2) + b∗h2(x), u, v ∈ R, x ∈ Ω, (5.7)

aλ f (u, v) + bλg(u, v) ≥ κλn(au + bv)− b∗C1, u, v ≥ 0, x ∈ Ω, (5.8)

with p1, q1 > 0, p1q1 > 1, p2, q2 ≥ 1, h2 ∈ Lγ(Ω), γ > N
2 , a, b > 0, κλn > µ1 and C1 ≥ 0. By

[17, Theorem 2.1, Proposition 3.1], we know any nonnegative solution of (1.5) satisfies

∥u∥L∞(Ω), ∥v∥L∞(Ω) ≤ Cn, for all λ ∈ [λn, b∗].

The constant Cn depends only on p1, q1, p2, q2, γ, C1 and the norms of h2 in h2 ∈ Lγ(Ω).

Next, we show Cn → +∞ as n → +∞. In fact, by Theorem 1.2, we know that there
exists a sequence of positive solutions (λn, (un, vn)) ∈ C such that λn ∈ (0, λ∗) for all n ∈
N and ∥(un, vn)∥E → +∞ as n → +∞.

For n ∈ N, let

sup{∥(u, v)∥E : (λ, (u, v)) ∈ C, λn < λ < λ∗} =: Bn,

then clearly
Bn ≤ Cn.

For (λn, (un, vn)) ∈ C, we have

lim
n→+∞

∥(un, vn)∥E = ∞,

therefore,
lim

n→+∞
Bn = ∞,

thus
lim

n→+∞
Cn = ∞.
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Now we will complete the proof of Theorem 5.1.

Proof of Theorem 5.1. By Lemma 5.2, the component C must bifurcate from infinity at λ = 0 and
by construction (0, (0, 0)) ∈ C. Part (i) follows from the construction of C and the fact that
C cannot cross the hyperplane {0} × E.

Let {λn, (un, vn)} ∈ C with ∥(un, vn)∥E → +∞ as n → +∞ and λn > 0 for all n ∈ N.
Suppose to the contrary that λn → λ̃ > 0 as n → +∞. By Lemma 5.2,

∥un∥L∞(Ω), ∥vn∥L∞(Ω) ≤ Cλ̃ < +∞

for all λ ∈ [ λ̃
2 , λ∗), a contradiction to ∥(un, vn)∥E → +∞ as n → +∞. Hence part (ii) follows.

This completes the proof of Theorem 5.1.

5.2 Examples

Let f (u, v) = (u + v)τ + 1, g(u, v) = (u + 2v)τ + 1, where τ ∈ (1, N+1
N−1 ).

It is easy to see f , g satisfy (H1) and (H2). When C1 is large enough, there exist τ <

p2, q2 < N+1
N−1 , p1, q1 > τ and p1q1 > 1, such that (5.1)–(5.5) hold. Then there exists an

unbounded continuum C and λ∞ = 0 is the unique bifurcation point from infinity in [0, λ∗].
Such as, when N = 3. Let f (u, v) = (u + v)

3
2 + 1, g(u, v) = (u + 2v)

3
2 + 1, then (H1) and

(H2) hold. We set p2, q2 = 7
4 , p1 = 7

5 , q1 = 16
7 , then (5.1)–(5.5) hold.
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