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We investigate a scheduling problem in which packets, or datagrams, may be fragmented. While there are a few
applications to scheduling with datagram fragmentation, our model of the problem is derived from a scheduling
problem present in data over CATV networks. In the scheduling problem, datagrams of variable lengths must be
assigned (packed) into fixed length time slots. One of the capabilities of the system is the ability to break a datagram
into several fragments. When a datagram is fragmented, extra bits are added to the original datagram to enable the
reassembly of all the fragments.

We convert the scheduling problem into the problem of bin packing with item fragmentation, which we define in
the following way: we are asked to pack a list of items into a minimum number of unit capacity bins, each item
may be fragmented in which case overhead units are added to the size of every fragment. The cost associated with
fragmentation renders the problem NP-hard; therefore, an approximation algorithm is needed. We define a version of
the well-known Next-Fit algorithm, capable of fragmenting items, and investigate its performance. We present both
worst case and average case results and compare them to the case where fragmentation is not allowed.
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1 Introduction
We address the class of transmission scheduling problems in which packets of variable lengths must be
assigned into fixed length time slots (see e.g., [3]). Our model of the problem is derived from a scheduling
problem present in data over CATV (Community Antenna Television) networks. In particular we refer to
Data-Over-Cable Service Interface Specification (DOCSIS), standard of the Multimedia Cable Network
System (MCNS) standard committee (see [18] for a detailed description). When using CATV networks for
data communication the data subscribers are connected via a cable modem to the headend. The headend
is responsible for the scheduling of all transmissions in the upstream direction (from the cable modem to
the headend). Scheduling is done by dividing the upstream, in time, into a stream of numbered mini-slots.
The headend receives requests from the modems for allocation of datagram transmission. The length of
each datagram can vary and may require a different number of mini-slots. From time to time, the headend
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publishes aMAP in which it allocates mini-slots to one modem or a group of modems. The scheduling
problem is that of allocating the mini-slots to be published in the MAP, or in other words, how to order
the datagram transmission in the best possible way.

The headend must consider two kinds of datagram allocations:

1. Fixed Location- allocations for connections with timing demands, such as a CBR (constant bit rate)
connection. These connections must be scheduled so as to ensure delivering the guaranteed service.
Fixed location datagrams are therefore scheduled in fixed, periodically located mini-slots.

2. Free Location- allocations for connections without timing demands, such as a best effort connec-
tion. Free location datagrams can use any of the mini-slots.

The headend therefore performs the allocation in two stages. In the first stage it schedules, or allocates,
all fixed location datagrams. We assume that after the fixed allocations have been made, a gap ofU
mini-slots is left between successive fixed allocations. In the second stage all free location datagrams are
scheduled. The free allocations must fit into the gaps left by the fixed allocations. One of the capabilities
of the system is the ability to break a datagram into smaller pieces calledfragments. When a datagram is
fragmented, i.e., transmitted over non successive mini-slots, extra bits are added to the original datagram
to enable the reassembly of all the fragments at the headend. In a typical CATV network one mini-slot is
added to every fragment.

We model the scheduling problem as a bin packing problem. The relation to the bin packing problem
should be clear. The items are the free location datagrams that should be scheduled, each of which may
require a different number of mini-slots. The bins are defined by the gaps between every two successive
fixed allocations in the MAP. The goal is to use the available mini-slots in the MAP in the best way.

Because of its applicability to a large number of applications and because of its theoretical interest
bin packing has been widely researched and investigated (see, e.g., [7], [11] and [2] for a comprehensive
survey). Since the problem, as many of its derivatives, is NP-hard [8] many approximation algorithms
have been developed for it (see, e.g., [12], [14] and [1] for a survey). To analyze the scheduling problem
we introduce a new variant of bin packing which we callbin packing with item fragmentation. We
convert the scheduling problem into the problem of bin packing with item fragmentation and show that
the two are strongly related. The subject of item fragmentation in bin packing problems has received
almost no attention so far. This paper concentrates on aspects that were heretofore never researched, such
as developing an algorithm for the problem and investigating its performance.

The cost associated with fragmentation renders the bin packing problem nontrivial. In the scheduling
problem, where items correspond to datagrams, the cost is due to the extra overhead bits that are added to
each fragment for reassembly purposes. Other fragmentation costs can be those resulting from processing
time or reassembly delay. It is interesting to note that when the cost associated with fragmentation is
ignored the packing problem becomes trivial, and when the cost is very high, it does not pay to fragment
items and we face the classical bin packing problem. Hence, the problem is interesting with the middle-
range costs. It has been shown in [16] that for non zero cost, the problem of bin packing with item
fragmentation is NP-hard.

We present an analysis of the Next-Fit (NF) algorithm, which is perhaps the simplest algorithm for bin
packing. The algorithm keeps only one open bin and packs items according to their order, into the open
bin. When an item does not fit in the open bin, the bin is closed and a new bin is opened. The NF algorithm
is very simple, can be implemented to run in linear time, and requires only one open bin (bounded space).
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It is therefore interesting to investigate the performance of such an algorithm before considering other,
more complicated, algorithms.

We point out that the practical scheduling problem may actually be somewhat more complicated than
the problem we present here since the bins may not be of uniform size. This situation is likely to happen
for example when the fixed location allocations are a result of several CBR connections with different
intervals between successive allocations. In such cases we may also face a situation where some items are
bigger than some of the bins. While the problem of variable size bins is beyond the scope of this paper,
we do mention some results we obtained while analyzing this case. The analysis of variable size bins, as
well as the analysis of algorithms other than NF, appears in [17].

Our work contains several contributions. We introduce the variant of bin packing with item fragmen-
tation and relate it to scheduling problems where datagrams may be fragmented. Our analysis of the
scheduling algorithm contributes new results to the literature of bin packing. Finally, we developed a new
technique for average case analysis which has some important advantages over existing techniques.

The remainder of the paper is organized as follows. In Section 2 we formally define the problem.
Section 3 presents worst case analysis of the scheduling algorithm. Section 4 is devoted to average case
analysis.

2 Problem Statement and Definitions
In this section we formally define the problem of bin packing with item fragmentation and show its relation
to the scheduling problem. We define the problem similar to the classical bin packing problem. In the
classical one-dimensional bin packing problem, we are given a list of itemsL = (a1,a2, ...,an), each with
a sizes(ai) ∈ (0,1] and are asked to pack them into a minimum number of unit capacity bins. To handle
fragmentation, we use a discrete version of the problem and add a fragmentation cost function that adds
overhead bits to each fragment. We proceed to formally define the problem.

Bin Packing with Item Fragmentation (BP-IF) : We are given a list ofn itemsL = (a1,a2, ...,an),
each with a sizes(ai) ∈ {1,2, ...,U}. The items must be packed into a minimum number of bins, which
are all the size ofU units. When packing a fragment of an item, one unit of overhead is added to the size
of everyfragment.

The analysis of bin packing algorithms is traditionally divided into worst case analysis and average
case analysis. In worst case analysis we are usually interested in theasymptotic worst case performance
ratio. For a given list of items,L and algorithmA, let A(L) be the number of bins used when algorithmA
is applied to listL, let OPT(L) denote the optimum number of bins for a packing ofL, and letRA(L) ≡
A(L)/OPT(L). Theasymptotic worst case performance ratio R∞

A is defined to be

R∞
A ≡ inf{r ≥ 1 : for someN> 0, RA(L)≤ r for all L with OPT(L)≥ N} (1)

A different approach for estimating the performance of an algorithm is an average case analysis. In
this case we assume that item sizes are taken from a given distributionH and we try to estimate the
performance ratio of an algorithm, when it is applied to a list taken from that distribution. For a given
algorithm A and a list ofn items Ln, generated according to distributionH, the asymptotic expected
performance ratiois defined as follows:

R
∞
A (H)≡ lim

n→∞
E [RA(Ln)] = lim

n→∞
E

[
A(Ln)

OPT(Ln)

]
(2)



142 Nir Namman and Raphael Rom

Schedule Efficiency: To evaluate the performance of a scheduling algorithmA, we compare the channel
utilization achieved byA to that of the best possible schedule. Lets(L) denote the total sum of all item

sizes inL, the channel utilization of algorithmA is CA(L) = s(L)
A(L)·U . The worst case schedule efficiency,

which we denote byηA, is exactly the inverse of the worst case performance ratio ofA

ηA(L) =
s(L)/(A(L) ·U)

s(L)/(OPT(L) ·U)
= (RA(L))−1 (3)

η∞
A = (R∞

A)−1

The expected schedule efficiency is the inverse of the expected performance ratio ofA: η∞
A = (R∞

A)−1.
In this paper we analyze the performance of the Next-Fit algorithm. We denote by NFf the version of

NF capable of fragmenting items and define the NFf algorithm similarly to NF.
Algorithm NF f - In each stage there is only one open bin. The items are packed, according to their

order in the listL, into the open bin. When an item does not fit in the open bin it is fragmented into two
parts. The first part fills the open bin and the bin is closed. The second part is packed into a new bin which
becomes the open bin.

In the reminder of this paper we concentrate on the bin packing problem. We calculate both the worst
case and the expected asymptotic performance ratio of the NFf algorithm and compare it to known results
about the NF algorithm. The schedule efficiency of the algorithms is easily derived from the performance
ratio using (3).

3 Worst Case Analysis
The NF algorithm is the least efficient among all standard bin packing algorithms. The asymptotic worst
case performance ratio of the algorithm is the worst possible

R∞
NF =

2U
U +1

, for every U ≥ 2. (4)

We now analyze the performance of the NFf algorithm for the problem of bin packing with item frag-
mentation. As we shell see, the ability to fragment items may considerably improve the performance of
the NF algorithm.

Theorem 1 The asymptotic worst case performance ratio of algorithm NFf is R∞
NFf

= U
U−2, for every

U ≥ 6.

Proof: We first prove the upper bound and then provide an example to establish the lower bound.

Claim 3.1 R∞
NFf
≤ U

U−2 , for every U> 2.

Proof: The NFf algorithm may pack at most two fragments in each bin (one fragment when the bin is
opened and another when the bin is closed). There are therefore at most 2 overhead units in a bin which
means that the number of bins used when the algorithm is applied to listL is at mostds(L)/(U−2)e. The
optimal packing ofL requires at leastds(L)/Ue bins and the claim follows. 2
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Claim 3.2 R∞
NFf
≥ U

U−2 , for every U≥ 6.

Proof: We present an example that proves the lower bound. Let us first consider the case where the bin
sizeU is an even number. As a worst case example we choose the following listL: The first item is of
sizeU/2, the nextU2 −2 items are of size 1. The rest of the list repeats this patternkU times. The optimal
packing avoids fragmentations by packing bins with two items of sizeU/2, orU items of size 1. The total
number of bins used isOPT(L) = (U −2)k. On the other hand, algorithm NFf fragments each item of
sizeU/2 (except for the first item). Overall 2(kU−1) units of overhead are added to the packing and the
number of bins used by NFf is therefore

NFf (L) =
⌈

U
2

k+2
kU−1

U
+
(

U
2
−2

)
k

⌉
=
⌈
Uk− 2

U

⌉
= Uk.

A worst case example for the case whereU is an odd number is similar. The first item inL is of size
(U−1)/2, the nextU−1

2 −1 items are of size 1. The rest of the list repeats this patternkU times. It is easy

to verify that this list produces the same ratio. It follows from the examples that:R∞
NFf

= NFf (L)
OPT(L) ≥

U
U−2,

U ≥ 6. 2

The combination of the above claims proves the theorem. 2

There is a considerable difference between the worst case performance ratios of NF and NFf . Since
both algorithms work in a similar way, we conclude that the improved performance ratio of NFf is due to
its ability to fragment items. Note that the performance ratio of any algorithm that adopts the simple rule
of filling a bin whenever an item is fragmented, cannot be worse than that of NFf .

Finally, we point out a few more properties of the worst case performance ratio of the NFf algorithm.
The results are taken from [17] and we present them here without a proof.

• When the bin size is very small Theorem 1 does not hold (because items of size 2 are not frag-
mented). For the values 3≤U ≤ 5 we show that the worst case asymptotic performance ratio of
NFf is R∞

NFf
= 3

2.

• For a more general case, wherer (instead of 1) units of overhead are added to the size of every
fragment, it can be shown by similar arguments thatR∞

NFf
= U

U−2r , for everyU > 4r +2.

• As we mentioned, in the scheduling problem the bins may be of different sizes. We denote byU the
average bin size and show that for the case of variable size bins the worst case performance ratio of
NFf is R∞

NFf
= U

U−2
, for everyU ≥ 5.

• The worst case results do not change if we allow the items to be of any size, that is, we assume that
the size of some items may be larger than the size of some (or all) of the bins.

4 Average Case Analysis
The worst case analysis we presented, provides an upper bound on the performance ratio of the NFf

algorithm. However, from a practical point of view it may be too pessimistic, since the worst case may
rarely occur. To learn about the typical behavior of the algorithm we present an average case analysis.
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Since the results of an average case analysis depend on the item-size distribution, it is desirable to be able
to calculate results for any given distribution. We therefore consider some general item-size distribution
assuming only that the items are independent, identically distributed (i.i.d). Let us define the problem in
a formal way.

Average case analysis of BP-IF: We are give a list ofn itemsL = (a1,a2, ...,an). The size of each item
is independently chosen from the finite sets(at) ∈ {1,2, ...,U}. The probability to choose an item of size
i is hi , i.e., for all t: hi = Pr(s(at) = i). The goal is to pack the items into a minimum number of bins
of equal sizeU . When packing a fragment of an item, one unit of overhead is added to the size ofevery
fragment.

The first average case analysis of the NF algorithm was done by Coffman, So, Hofri and Yao [5] who
showed that the asymptotic expected performance ratio for continuous uniform distribution isR

∞
NF = 4

3.
For discrete uniform distribution, in the ranges(at) ∈ {1,2, ...,U}, it has been shown in [3] that the NF
algorithm has the following asymptotic expected performance ratio:

R
∞
NF =

2(2U +1)
3(U +1)

. (5)

Note that the result for the continuous uniform distribution is reached whenU → ∞.
The above mentioned results were achieved by using different techniques, all of which are fairly com-

plicated (see, for example [5], [10] and [13]). We present here, what we believe to be a much easier
method of calculating the asymptotic expected performance ratio. We first use this method to repeat the
analysis of the NF algorithm. We next apply it to the new problem of bin packing with item fragmentation,
to find the expected performance ratio of the NFf algorithm.

4.1 Average Case Analysis of the NF Algorithm
We use a Markov chain to describe the packing of the algorithm. The state of the algorithm, which we
denote byNt , is the content of the open bin aftert items were packed. Since the bin size isU and there
are n items to pack, the possible states of the algorithm are 1≤ Nt ≤ U , 1≤ t ≤ n. The probability
distribution forNt+1 is completely determined by the value ofNt , which renders the process a Markov
chain. We consider only the cases where the Markov chain describing the algorithm is ergodic. Note
that this is very reasonable since the chain is finite and for most item size distributions it would also be
irreducible and acyclic, hence ergodic. If the chain is not ergodic, it is necessary to apply the analysis we
present on the irreducible part of the chain which is accessible from the initial state (empty bins).

AssumeNt−1 = j and the algorithm now packs itemat . If the open bin cannot contain the item, i.e.,
j + s(at)>U , the item is packed in a new bin. The previous open bin containsU− j unused units which
we call overhead units. We say that the overhead units ”increased” the size ofat and define itscombined-
sizeto be the actual size of the item, plus the overhead units it created. For example, say the algorithm
is in stateNt = 2 and the next item is of sizeU . The overhead in this case isU −2 units and we say the
combined sizeof the item isU +U−2.

Denote byoht the overhead added to the size of itemat . For an algorithmA and a listLn of n items, we
define the expected average combined size of all items to be

In
av(A)≡ E

[
1
n

n

∑
t=1

(s(at)+oht)

]
(6)
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We define the expectedasymptotic average combined sizeof all items as

Iav(A)≡ lim
n→∞

In
av(A) (7)

SinceIA(H) accounts for both the used and wasted space in the bins, we can state the following relation
betweenIA(H) andA(L):

IA(H) = lim
n→∞

E

[
U ·A(Ln)

n

]
(8)

We now use a property of the optimal packing that ensures that for any item size distribution the tails of
the distribution ofOPT(Ln) decline rapidly enough withn [19], so that asn→∞, E[A(Ln)/OPT(Ln)] and
E[A(Ln)]/E[OPT(Ln)] converge to the same limit [6]. Therefore the asymptotic expected performance
ratio is given by

R
∞
A = lim

n→∞
E

[
A(Ln)

OPT(Ln)

]
= lim

n→∞

E [A(Ln)]
E [OPT(Ln)]

= lim
n→∞

U
n E [A(Ln)]

U
n E [OPT(Ln)]

=
Iav(A)

Iav(OPT)
(9)

To find the asymptotic expected performance ratio of the NF algorithm, we must calculate bothIav(OPT)
andIav(NF). Since bin packing is NP-hard, findingIav(OPT) for certain item size distributions may re-
quire exponential time inn. Fortunately, we do know that for several important distributions, including
the uniform distribution, the overhead of the optimal packing can be neglected [2]. For such distributions
we have

Iav(OPT) =
U

∑
i=1

i ·hi = h (10)

In cases whereIav(OPT) is not known we can still find the channel utilization of the algorithm by replacing
Iav(OPT) with h, i.e., the average item size of the given distribution.

To find Iav(NF) we use the Markov chain describing the algorithm. Denote byP the transition matrix of
the Markov chain and byΠ = (Π1, ...ΠU ) the equilibrium probability vector satisfyingΠ = ΠP. Assume
NF packs a long list ofn items; denote byn j the number of visits in statej during the packing. Since we
consider ergodic chains, we have the following property:

Pr
(
limn→∞

n j
n = Π j

)
= 1, which is usually written as limn→∞

n j
n = Π j , a.s.(almost surely).

We now denote byn j,i the number of items of sizei packed when the algorithm is in statej. The
probability for the next item in the list to be of sizei, hi , is unrelated to the state of the algorithm.
Therefore we can use the Law of large numbers to establish the following property ofn j,i :

lim
n→∞

n j,i

n
= lim

n→∞

n j

n
·hi = Π j ·hi , a.s. (11)

The overhead added to each item is related to both the state of the algorithm and the size of the item.
We denote byohi( j) the overhead added to an item of sizei which is packed when the algorithm is in state
j. We calculate the average combined size of the items in the following way:

Iav(NF) = lim
n→∞

In
av(NF) = lim

n→∞
E

[
1
n

U

∑
j=1

U

∑
i=1

n j,i · (i +ohi( j))

]
(12)

= E

[
U

∑
j=1

U

∑
i=1

lim
n→∞

n j,i

n
· (i +ohi( j))

]
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Substituting (11) we get

Iav(NF) =
U

∑
j=1

U

∑
i=1

Π j ·hi · (i +ohi( j)) (13)

To simplify (13) we use the following definitions:

h≡ ∑U
i=1 i ·hi average size of items (without overhead)

OH( j)≡ ∑U
i=1hi ·ohi( j) average overhead in statej

OH ≡ ∑U
j=1 Π j ·OH( j) average overhead size

(14)

Equation (13) now becomes:

Iav(NF) =
U

∑
j=1

Π j ·
U

∑
i=1

i ·hi +
U

∑
j=1

Π j ·
U

∑
i=1

hi ·ohi( j) = h+
U

∑
j=1

Π j ·OH( j) = h+OH (15)

The expression in (15) is very intuitive; the asymptotic average combined size of the items is made of
the average size of the items plus the average size of the overhead. To calculate the expected performance
ratio we must find two components:

1. The equilibrium probabilities of the Markov chain,Π. We find Π by constructing the transition
matrixP and calculating the equilibrium probability vector satisfying:Π = ΠP.

2. The overhead componentsohi( j). This is easily obtained from the packing rules of the algorithm.

Our technique of average case analysis has two advantages: it is suitable for analyzing any (i.i.d) item
size distribution, both discrete and continuous, and the calculation is relatively easy. These properties are
important since in most real-world applications of bin packing the items are drawn from afiniteset, which
is rarely uniform.

In the next subsection we calculate specific results for the case of discrete uniform distribution.

4.1.1 Discrete Uniform Distribution
Discrete uniform distribution means thathi = 1

U , ∀i. It is easy to see that in this case the Markov chain
is ergodic. An important characteristic of the discrete uniform distribution is that the overhead of the
optimal packing is negligible. To state it formally, letLn be a list ofn items drawn from a discrete uniform
distributionH and lets(Ln) be the total size of all items inLn. The expected wasted space of the optimal
packing has the following property [4]:

W
n
OPT (H) = E [U ·OPT(Ln)−s(Ln)] = O

(√
n
)

From the above result we conclude that limn→∞ E
[

U ·OPT(Ln)
s(Ln)

]
= 1. We therefore neglect the overhead

of the optimal packing in calculating the asymptotic expected performance ratio. CalculatingIav(OPT) is
now trivial

Iav(OPT) =
U

∑
i=1

i ·hi =
1
U

U

∑
i=1

i =
U +1

2
(16)
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We use (15) to find the average combined size of the items. We first find the equilibrium probabilities of
the Markov chain. LetP be theU ×U transition matrix describing the chain and letΠ = (Π1, ...,ΠU ) be
the equilibrium probability vector satisfying:Π = ΠP. There is a symmetry in the lines of the transition
matrixP, in a sense that linej and lineU− j are identical. Forj ≤

⌊
U
2

⌋
we have

Pj,k =
1
U
·


0 1≤ k≤ j

1 j < k≤U− j

2 U− j < k≤U

∣∣∣∣∣∣∣∣∣∣
1≤ j ≤

⌊
U
2

⌋
(17)

The last line isPU,k = 1
U , 1≤ k≤U .

The simple structure of the matrixP enables an easy solution to the set of equationsΠ = ΠP.

Π j =
2 j

U(U +1)
(18)

Next we compute the overhead componentOH( j). When theNF algorithm is in statej any item bigger
thanU − j creates an overhead ofU − j units; all other items are packed without overhead. Hence, the
average overhead in statej is

OH( j) =
U

∑
i=1

hi ·ohi( j) =
U

∑
i=U− j+1

U− j
U

=
j(U− j)

U
(19)

We now use (18) and (19) to find the average combined size of the items

Iav(NF) = h+
U

∑
j=1

Π j ·OH( j) =
U +1

2
+

U

∑
j=1

2 j
U(U +1)

· j(U− j)
U

(20)

=
U +1

2
+

U

∑
j=1

2 j2 (U− j)
U2 (U +1)

=
2U +1

3

We useIav(NF) andIav(OPT) to obtain the asymptotic expected performance ratio

R
∞
NF =

Iav(NF)
Iav(OPT)

=
(2U +1)/3
(U +1)/2

=
2(2U +1)
3(U +1)

(21)

The result we obtain for the asymptotic expected performance ratio is in accordance with results re-
ported in [3]. The asymptotic worst case performance ratio is given in (4). We compare the two, for
several values ofU , in Table 1. We observe that in both cases the asymptotic performance ratio increases
with the bin size. There is, however, a dramatic difference between the worst case performance ratio
and the expected performance ratio. The average case results are therefore not as bad as the worst case
analysis indicates.
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Tab. 1: Expected and worst case asymptotic performance ratio of the NF algorithm.

Bin Size Worst case ratio Average case ratio
U R∞

NF R
∞
NF

3 1.5 1.166...
4 1.6 1.2
6 1.714... 1.238...
10 1.818... 1.272...
100 1.980... 1.326...
∞ 2 1.3333...

4.2 Average Case Analysis of the NF f Algorithm

We now use the same method we used for analyzing the NF algorithm, to analyze the case where item
fragmentation is allowed, i.e., the NFf algorithm. In this subsection we assume the items are taken from
a discrete uniform distribution, that ishi = 1

U , ∀i. Note that the overhead this time is due to fragmentation
or an unused free space (if the content of a closed bin isU−1).

The first stage in our analysis of NFf , is to find the equilibrium probabilities of the Markov chain. Let
us describe the components of the transition matrixP

Pj,k =
1
U
·


0 k≤ 2, k≤ j ≤U−k

2 j ∈ {k−2, k−1} 3≤ k

1 else

(22)

The set of equations defined byΠ = ΠP is

Π1 =
1
U

ΠU (23)

Π2 =
1
U

(Π1 + ΠU−1 + ΠU ) (24)

Π j =
1
U

(1+ Π j−1 + Π j−2), 3≤ j ≤U (25)

Note that the solution to (25) (if it were the only equation) isΠ j = 1
U−2. Unlike the case of NF, the

solution to the set of equations (23)-(25) is not simple. We therefore defer the calculation of a closed form
solution to subsection 4.2.1 and proceed to calculateOH( j), the average overhead in stateN = j. Note
that when an item is fragmented over two bins, 2 units of overhead are added to it. In stateN = U −1
all items of size 2 or more are packed in the next bin, so only 1 unit of overhead is added to them. The
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average overhead in stateN = j is therefore

OH( j) =
1
U
·


2 j 1≤ j ≤U−2

U−1 j = U−1

0 j = U

(26)

We can now express the average combined size of the items

Iav(NFf ) =
U +1

2
+

U

∑
j=1

Π j ·OH( j) =
U +1

2
+

U−1
U

ΠU−1 +
U−2

∑
j=1

Π j ·
2 j
U

(27)

Similar to (16), the overhead of the optimal packing is negligibleIav(OPT) = U+1
2 .

The asymptotic expected performance ratio is therefore

R
∞
NFf

= 1+
2

U +1

(
U−1

U
ΠU−1+

U−2

∑
j=1

Π j ·
2 j
U

)
(28)

At this point we do not have a closed form solution to the equilibrium probabilities and therefore we
cannot present the expected performance ratio in closed form. It is easy, however, to find a numerical
solution for every value ofU . In Table 2 we present the asymptotic expected and worst case performance
ratio of NFf for several values ofU .

Tab. 2: Expected and worst case asymptotic performance ratio of the NFf algorithm.

Bin Size Worst case ratio Average case ratio
U R∞

NFf
R

∞
NFf

3 1.5 1.1666...
4 1.5 1.1961...
5 1.5 1.2097...
10 1.25 1.1676...
20 1.1111... 1.0938...
100 1.0204... 1.0198...
∞ 1 1

Recall that, according to Theorem 1, the worst case performance ratio of NFf is R∞
NFf

= U
U−2. Figures 1

and 2 present the asymptotic expected performance ratio of the NFf and NF algorithms together with
the worst case performance ratio of NFf . We observe that the difference between the worst case and the
average case for NFf is not as significant as in NF, that is, the expected performance ratio of the NFf

algorithm is not far from its worst case performance ratio. This is obvious for large values ofU since
the worst case ratio converges to one, but it also indicates that even under a uniform distribution the NFf

algorithm produces almost the worst possible packing. An interesting question, which we leave open, is
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Fig. 1: Expected and worst case performance ratio of the NFf and NF algorithms.

whether other, more efficient, algorithms can produce a better packing. In this respect we note that in the
case where fragmentation is not allowed, there is a big difference between the performance of NF and the
performance of other online algorithms, such as First-Fit and Best-Fit, for which the asymptotic expected
performance ratio, for any value ofU , is [2]: R

∞
FF = R

∞
BF = 1.

Finally we note that it is not difficult to repeat the analysis we presented, for the general case, wherer
units of overhead are added to the size of every fragment. We show in [17] that in this case the equivalent
of (28) is

R
∞
NFf

= 1+
2

U +1

(
U−2r

∑
j=1

Π j ·
2 j r
U

+
U

∑
j=U−2r+1

Π j ·
j (U− j)

U

)
(29)

4.2.1 Calculating the Expected Performance Ratio
In this subsection we derive a closed form solution of the expected performance ratio. Since this closed
form solution is rather complex, we also provide an approximation of the expected performance ratio.
The approximation is much easier to use and the approximation error, for all but small values ofU , is
insignificant.

We substituteN = E[N] = ∑U
j=1 j ·Π j in (28), to expressR

∞
NFf

in the following way:

R
∞
NFf

= 1+
2

U +1

(
2
U

N−U−1
U

ΠU−1−2ΠU

)
(30)
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Fig. 2: Expected and worst case performance ratio of the NFf and NF algorithms for values ofU ≤ 15.

To calculate the value ofN we use a generating function:G(z) = ∑U
j=1 Π j zj . We use the equilibrium

equations (23) - (25) to get

G(z) = Π1z+ Π2z2 +
U

∑
j=3

1
U

(1+ Π j−1 + Π j−2)zj (31)

=
1
U

ΠU z+
1
U

(
ΠU−1 +

U +1
U

ΠU

)
z2 +

U

∑
j=3

1
U

(1+ Π j−1 + Π j−2)zj

Arranging the above expression we get

G(z) =
ΠU zU+2 +(ΠU + ΠU−1)zU+1− (ΠU + ΠU−1)z2−ΠU z−∑U

j=3zj

z2 +z−U
(32)

To findN we calculate the derivative of the generating function atz= 1

N =
dG(z)

dz
|z=1 =

U(U +1)−4UΠU −2(U−1)ΠU−1

2(U−2)
(33)
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Substituting (33) in (30) we get an expression for the asymptotic expected performance ratio

R
∞
NFf

= 1+
2

U +1

(
2
U

N−U−1
U

ΠU−1−2ΠU

)
=

U
U−2

− 4U2ΠU +2U(U−1)ΠU−1

(U +1)U(U−2)
(34)

We now have an expression which is a function ofΠU−1 andΠU

R
∞
NFf

=
U

U−2
− 4UΠU +2(U−1)ΠU−1

(U +1)(U−2)
(35)

Observe that the first part of the expression is equivalent to the worst case performance ratio. The
second part constitutes the difference between the worst case and the average case.

To find the expected performance ratio we must now calculate the probabilitiesΠU ,ΠU−1. We do so
by exploring the roots of the generating function given in (32). Note that the denominator is a square
polynomial with two roots. Since the generating function is analytic for any value ofz, the roots of the
denominator are necessarily roots of the numerator also. This information provides two equations from
which ΠU andΠU−1 can be found. Denote byz1 andz2 the roots of the denominator

z1 =−1
2

+

√
U +

1
4
, z2 =−1

2
−
√

U +
1
4

Substitutingz1 in the numerator we get

ΠU zU+2
1 +(ΠU + ΠU−1)(zU+1

1 −z2
1)−ΠU z1−

U

∑
j=3

zj
1 = 0 (36)

We get the same equation if we substitutez2 in the numerator. Using the two equations it is now a
straightforward algebraic exercise to findΠU andΠU−1.

ΠU =
U

(2−U)

√
4U +1

(
(−U)U−1+1

)
+zU−2

2 (2U +z2 (1−U))+zU−2
1 (z1 (U−1)−2U)

√
4U +1

(
(−U)U−1

)
+
(
zU
1 −zU

2

)
(U +1)

(37)

ΠU−1 =
1

(2−U)
(z2−1)

(
zU+1
1 −z3

1

)(
zU
2 −1

)
− (z1−1)

(
zU+1
2 −z3

2

)(
zU
1 −1

)
√

4U +1
(

(−U)U−1
)

+
(
zU
1 −zU

2

)
(U +1)

(38)

To find the expected performance ratio we substitute (37) and (38) in (35).
The expression we obtained for the expected performance ratio enables exact calculation for any value

of U but does not provide too much insight. To get a better understanding we note that (25) gives us a
very good approximation:ΠU = ΠU−1 = 1

U−2. The approximation is getting better the largerU is. Using
the approximation we get

R
∞
NFf

=
U

U−2
− 4UΠU +2(U−1)ΠU−1

(U +1)(U−2)
∼=

U
U−2

−
4U 1

U−2 +2(U−1) 1
U−2

(U +1)(U−2)
(39)

=
U

U−2
− 6U−2

(U +1)(U−2)2

Comparing the exact value of the asymptotic expected performance ratio to the approximation, we find
that forU = 7 the difference is about 0.3%, forU = 10 the difference is less than 0.003% and for larger
values ofU the approximation error is insignificant.
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4.3 General Item Size Distribution
In this subsection we demonstrate how the analysis can be applied to any item size distribution. We
assume the items are i.i.d and the probability to draw an item of sizei is hi . As we mentioned earlier,
since findingIav(OPT) may be difficult, we calculate the bin utilization which requires findingIav(NFf )
only. We use (15) to calculate the average combined size of the items. The construction of the transition
matrix and the calculation of the equilibrium probabilities is similar to the one presented in the previous
section. The calculation of the overhead componentohi( j) (overhead added to an item of sizei which is
packed in statej) is simple

ohi( j) =


0 j + i ≤U

2 j + i >U, j ≤U−2

1 j + i >U, j = U +1

(40)

Example: We present an example using typical parameters of a data over CATV network. We assume
a mini-slot is 25 microsecond and 16 bytes are transmitted in each mini-slot. In data over CATV networks
a cable modem transfers IP datagrams using Ethernet packets. We therefore assume the datagram have
typical Ethernet distribution with datagram sizes of 4, 8, 16, 64, and 94 mini-slots, and with the following
probabilities:h4 = 0.5, h8 = 0.1, h16 = 0.05, h64 = 0.15, andh94 = 0.2. The average item size of the
given distribution ish = 32. We assume the bin size isU = 100 mini-slots, which corresponds to 2.5
millisecond.

We are interested in the channel utilization of algorithms NF and NFf . Using our average case analysis
we find thatIav(NF) = 40.5 andIav(NFf ) = 32.6. The channel utilization of NF is thereforeC

∞
NF = 0.79.

The channel utilization of NFf is considerably betterC
∞
NFf

= 0.981. The corresponding worst case results
for the example areC∞

NF = 0.505 andC∞
NFf

= 0.98.

5 Conclusions
We studied a scheduling problem in which datagrams my be fragmented. Such scheduling problem is
present in data over CATV networks as well as in several other applications (e.g., [3], [16]). The analysis
we presented can also serve as a tool for evaluating the benefits of fragmentation in other systems. For
example, several reservation-based satellite systems present a similar scheduling problem to that of data
over CATV (see e.g., [9], [15]) but fragmentation is not currently implemented in such systems.

To analyze the scheduling problem we introduced a new variant of bin packing that allows item frag-
mentation. We converted the scheduling problem into the problem of bin packing with item fragmentation
and showed that the two problems are strongly related. We defined the NFf algorithm and performed both
worst case and average case analysis to evaluate the schedule efficiency of the algorithm. We developed
a new technique, based on calculating the overhead produced during the packing, to derive our average
case results. This technique may prove useful in analyzing other problems.

We found that fragmentation can considerably improve the schedule efficiency of an algorithm. An
important characteristic is that the schedule efficiency is increasing with the bin size (the gap between
fixed allocations). This means that for large bin sizes, the efficiency of NFf is not far from the optimum.
While NFf is not very efficient, it may still be chosen as a practical scheduling algorithm since it has some
important advantage over other algorithms; NFf is very simple and is suitable for online and bounded-
space scheduling. Moreover, it keeps a first-in-first-out order of transmissions.
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There are several possible extensions to the work presented in this paper; some of them are addressed
in [17]. From a practical point of view, other bin packing algorithms, should also be considered. We
expect algorithms such as First-Fit (FF) and First-Fit Decreasing (FFD) [11], to perform better than NF.
The improved performance has to be weighed against the advantages of the NFf algorithm. Another
interesting extension is to consider the case where the fixed allocations in the MAP create variable size
gaps. This time the scheduling problem is modeled as a variant of variable size bin packing.
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