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ABSTRACT. A main theme of the paper is a conjecture of Bloch-Kato on
the image ofp-adic regulator maps for a proper smooth varigtyover an
algebraic number field. The conjecture for a regulator map of particular
degree and weight is related to finiteness of two arithmdijeas: One is
the p-primary torsion part of the Chow group in codimensibaf X. An-
other is an unramified cohomology group &f. As an application, for a
regular modelZ” of X over the integer ring ok, we prove an injectivity
result on the torsion cycle class map of codimeng&iavith values in a new
p-adic cohomology of?" introduced by the second author, which is a can-
didate of the conjectural étale motivic cohomology withtércoefficients

of Beilinson-Lichtenbaum.
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1 INTRODUCTION

Letk be an algebraic number field and (&t be the absolute Galois group Galk),
wherek denotes a fixed algebraic closurefofLet X be a projective smooth variety
overk and putX := X ®; k. Fix a primep and integers, m > 1. A main theme
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526 S. SAITO AND K. SATO

of this paper is a conjecture of Bloch and Kato concerningittiiege of thep-adic
regulator map

red"m . CHT(X, m) ® Qp — Hclont(kv H'e?tT_m_l(Yv QP(T)))

from Bloch’s higher Chow group to continuous Galois cohamggl of G, ([BK2]
Conjecture 5.3). Sef3 below for the definition of this map in the cagem) = (2, 1).
This conjecture affirms that its image agrees with the sutespa

Hy(k, HG ™"~ (X,Qp(r))) € Hoonl(k, HE(X, Qp(2)))

defined in loc. cit. (se&2.1 below), and plays a crucial role in the so-called Tama-
gawa number conjecture on special valueg dgfinctions attached t& . In terms of
Galois representations, the conjecture means that@ension of continuoug-adic
representations afy,

0— HY ™ 1 X,Qu(r)) — E — Q, — 0
arises from d -extension of motives ovéy
0 — R~ " Y X)(r) — M — h(Speck)) — 0,

if and only if F is a de Rham representation @f,. There has been only very few
known results on the conjecture. In this paper we considefdliowing condition,
which is the Bloch-Kato conjecture in the special casen) = (2,1):

H1: The image of the regulator map
reg:=reg”' : CH*(X,1) ® Q, — Hln(k, HA(X,Q,(2))).

agrees withH ) (k, H3(X,Q,(2))).
We also consider a variant:

H1x: The image of the regulator map with, /Z,-coefficients
re%y, /z, CH*(X,1) ® Qp/Zy — Hga(k, HH(X,Qp/Zy(2)))

agrees withH } (k, H3(X,Q,/Zy(2)))ow (see§2.1for H}(k,—)). Here for an
abelian groupM, Mp;, denotes its maximal divisible subgroup.

We will show thatH1 always impliesH1x, which is not straight-forward. On the
other hand the converse holds as well under some assumptg®es Remark 3.2.5
below for details.

Fact 1.1 The conditiorH1 holds in the following cases
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p-ADIC REGULATOR AND FINITENESS 527

(1) H%(X, 0x) = 0 ([CTR1], [CTR2], [Sal])

(2) X isthe self-product of an elliptic curve over= Q with square-free conductor
and without complex multiplication, and> 5 ([Md], [FI], [LS], [Lal]).

(3) X is the elliptic modular surface of leveloverk = Q andp > 5 ([La2]).
(4) X is a Fermat quartic surface ovér= Q or Q(v/—1) andp > 5 ([O]).

A main result of this paper relates the conditHr * to finiteness of two arithmetic
objects. One is thg-primary torsion part of the Chow group HY) of algebraic cy-
cles of codimension two o modulo rational equivalence. Another is an unramified
cohomology ofX', which we are going to introduce in what follows.

Let o, be the integer ring of, and putS := Specoy,). We assume the following:

AssuMPTION 1.2 There exists a regular schens& which is proper and flat ove$
and whose generic fiber i§. Moreover,Z™ has good or semistable reduction at each
closed point of5 of characteristicp.

Let K = k(X) be the function field ofX. For an integegy > 0, let 2°? be the
set of all pointsz € 2" of codimensiory. Fix an integem > 0. Roughly speak-
ing, the unramified cohomology groug’; ™! (K, Q,/Z,(n)) is defined as the sub-
group of H2 ! (Spe¢K), Q,/Z,(n)) consisting of those elements that are “unrami-
fied” along ally € 2°!. For a precise definition, we need thedic étale Tate twist
T,.(n) = T,.(n) 4 introduced in [SH]. This object is defined N®( 2%, Z/p"), the
derived category of bounded complexes of étale sheavBgtmodules onZ’, and
expected to coincide with'(2)2 ®@“Z/p". HereI'(2)Z denotes the conjectural étale
motivic complex of Beilinson-Lichtenbaum [Be], [Li1]. Weote that the restriction
of T.(n) to Z'[p~!] := 2 ®z Z[p~'] is isomorphic tou’", wherey,~ denotes the
étale sheaf op-th roots of unity. Ther2 " (K, Q,/Z,(n)) is defined as the kernel
of the boundary map of étale cohomology groups

H (SpedK), Qp/Zy(n)) — D Hy*(Speco..), Too(n)),
zeXT

whereT.,(n) denotedim ;> Tr(n). There are natural isomorphisms
H&r(Ka Q:D/ZP(O)) = Hélt(‘% QP/Z;D) and H&r(Ka Qp/Zp(l)) = Br(%)p-tor&

where B(.2") denotes the Grothendieck-Brauer grdiif) 2", Gm), and for an abelian
group M, M,rs denotes itp-primary torsion part. An intriguing question is as to
whether the groug; ™! (K, Q,/Z,(n)) is finite, which is related to several signifi-
cant theorems and conjectures in arithmetic geometry (seeafk 4.3.1 below). In
this paper we are concerned with the case 2. A crucial role will be played by the
following subgroup ofH3.(K, Q,/Z,(2)):

H(K, X5 Qp/Z,(2))
= Im(HA(X, Qp/Z,(2)) — H(SPeEK), Qy/Z,(2)) ) N HH(K, Qp/Zy(2)).
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It will turn out that CH (X)) ,ors and H3,(K, X; Q,/Z,(2)) are cofinitely generated
overZz, if Coker(reg@p/ZP)Di\, is cofinitely generated ove#, (cf. Proposition 3.3.2,
Lemma 5.2.3). Our main finiteness result is the following:

THEOREM 1.3 Let.Z" be asin Assumptioh.2, and assume > 5. Then
(1) H1x implies thatCH?(X),ors and H3.(K, X; Q,/Z,(2)) are finite.

(2) Assume that the reduced part of every closed fibef0fS has simple nor-
mal crossings orZ”, and that the Tate conjecture holds in codimensidor
the irreducible components of those fibésse the beginning &f7 for the pre-
cise contents of the last assumpliofhen the finiteness @H?(X),ors and
H3(K,X;Q,/Z,(2)) impliesH1x.

We do not need Assumption 1.2 to deduce the finiteness 6{ &H},-ors from H1x,

by the alteration theorem of de Jong [dJ] (see also Remark @)L below). How-
ever, we need a regular proper modgl as above crucially in our computations on
H3(K, X;Q,/Z,(2)). The assertion (2) is a converse of (1) under the assumption o
the Tate conjecture. We obtain the following result from digen 1.3 (1) (see also the
proof of Theorem 1.6 i§5.1 below):

COROLLARY 1.4 H3(K, X;Q,/Z,(2)) is finite in the four cases in Fadt1 under
the assumptiod.2).

We will also prove variants of Theorem 1.3 over local integegs (see Theorems
3.1.1,5.1.1 and 7.1.1 below). As for the finiteness&f(K, Q,/Z,(2)) over local
integer rings, Spiess proved tha§ (K, Q,/Z,(2)) = 0, assuming that,, is an¢-adic
local integer ring with? # p and that eithef/?(X, 0'x) = 0 or 2" is a product of two
smooth elliptic curves ove$ ([Spi] §4). In [SSa], the authors extended his vanishing
result to a more general situation thagtis ¢-adic local with? # p and thatZ™ has
generalized semistable reduction. Finally we have to rkmteat there exists a smooth
projective surfacel with p,(X) # 0 over a local field; for which the conditiorH 1
does not hold and such that éﬁ()tors is infinite [AS].

We next explain an application of the above finiteness régultcycle class map
of arithmetic schemes. Let us recall the following fact du€bolliot-Théléne, Sansuc,
Soulé and Gros:

Fact 1.5 ([CTSS], [Gr]) Let X be a proper smooth variety over a finite field of
characteristic/ > 0. Letp be a prime number, which may be the samé.aghen the
cycle class map restricted to theprimary torsion part

CH*(X)ptors — Hal( X, Z/p"(2))

is injective for a sufficiently large > 0. HereZ/p"(2) denotesp;iﬁ2 if £ # p. Oth-
erwiseZ/p"(2) denotedh; Q% ., [—2] with 1. Q% ., theétale subsheaf of the loga-
rithmic part of the Hodge-Witt sheaf; Q3 ([BI1], [II]) .
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p-ADIC REGULATOR AND FINITENESS 529

In this paper, we study an arithmetic variant of this fact. &pect that a similar
result holds for proper regular arithmetic schemes, iegular schemes which are
proper flat of finite type over the integer ring of a number fieldx local field. To be
more precise, lek, o, and X be as before and le2” be as in Assumption 1.2. The
p-adic étale Tate twist, (2) = %,(2) 2~ mentioned before replac&y/p”(2) in Fact
1.5, and there is a cycle class map

07 : CHY (') [p" — HH( 2, %(2)).
We are concerned with the induced map
Qi—tor&r : CHQ(%)p-tors — Hgt('%a T (2)).

It is shown in [SH] that the group on the right hand side is é&niSo the injectivity
of this map is closely related with the finiteness ofﬁl%”)p_tors. The second main
result of this paper concerns the injectivity of this map:

THEOREM 1.6 (§5) Assume that/?(X, Ox) = 0. ThenCHQ(%)p_torsisfinite and
gf)_tora,. is injective for a sufficiently large > 0.

The finiteness of CH2"),ors in this theorem is originally due to Salberger [Sal],
Colliot-Thélene and Raskind [CTR1], [CTR2]. Note thaetl exists a projective
smooth surfac& over a number field witti ?(V, &) = 0 for which the map

CHQ(V)p-tors — Hy(V, M?Q)

is not injective for some bad primeand any- > 1 [Su] (cf. [PS]). Our result suggests
that we are able to recover the injectivity of torsion cydeess maps by considering
a proper regular model df over the ring of integers ik. The fundamental ideas of
Theorem 1.6 are the following. A crucial point of the proofatct 1.5 in [CTSS] and
[Gr] is Deligne’s proof of the Weil conjecture [De2]. In thethmetic situation, the
role of the Weil conjecture is replaced by the conditléi, which implies the finite-
ness of CH(X)pors and H3.(K, X; Q,/Z,(2)) by Theorem 1.3(1). The injectivity
resultin Theorem 1.6 is derived from the finiteness of thdgeats.

This paper is organized as follows. §8, we will review some fundamental facts
on Galois cohomology groups and Selmer groups which will §edurequently in
this paper. In§3, we will prove the finiteness of Cﬂ-(IX)p_tors in Theorem 1.3(1).
In 84, we will review p-adic étale Tate twists briefly and then provide some funda-
mental lemmas on cycle class maps and unramified cohomolagypsg. In§5, we
will first reduce Theorem 1.6 to Theorem 1.3 (1), and then cedhe finiteness of
H3(K,X;Q,/Z,(2)) in Theorem 1.3 (1) to Key Lemma 5.4.1. §6, we will prove
that key lemma, which will complete the proof of Theorem 18 §7 will be devoted
to the proof of Theorem 1.3(2). In the appendix A, we will indé an observation
that the finiteness ofl3.(K, Q,/Z,(2)) is deduced from the Beilinson-Lichtenbaum
conjectures on motivic complexes.
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NOTATION

1.6. For an abelian group/ and a positive integen, , M and M /n denote the

kernel and the cokernel of the map = M, respectively. Seg2.3 below for other
notation for abelian groups. For a figlgk denotes a fixed separable closure, éihd
denotes the absolute Galois group Gdk). For a discret&,-moduleM , H*(k, M)
denote the Galois cohomology groufig (G, M), which are the same as the étale
cohomology groups of Spék) with coefficients in the étale sheaf associated with

1.7. Unless indicated otherwise, all cohomology groupscbemes are taken over
the étale topology. For a schemdg an étale shea# on X (or more generally an
object in the derived category of sheavesXg) and a point € X, we often write
H:(X,.7) for H:(Spe¢CUx ), #). For a pure-dimensional schemeand a non-
negative integeq, let X7 be the set of all points oX" of codimensiory. For a point
x € X, letk(z) be its residue field. For an integer> 0 and a noetherian excellent
schemeX, CH, (X) denotes the Chow group of algebraic cycles’6f dimension
n modulo rational equivalence. K is pure-dimensional and regular, we will often
write CHY™(X)="(x) for this group. For an integral schen of finite type over
SpecQ), SpedZ) or Spe¢Z,), we define CA(X, 1) as the cohomology group, at
the middle, of the Gersten complex of Miln&f-groups

KNL) — P w)* — P z,

yeX!?! reX?

whereL denotes the function field of . As is well-known, this group coincides with
a higher Chow group ([BI3], [Le2]) by localization sequesoé higher Chow groups
([Bl4], [Lel]) and the Nesterenko-Suslin theorem [NS] (df]).

1.8. In§54—7, we will work under the following setting. Létbe an algebraic number
field or its completion at a finite place. Let be the integer ring of and putS :=
Specoy). Letp be a prime number, and le&t” be a regular scheme which is proper
flat of finite type ovelS and satisfies the following condition:

AssumMPTION 1.8.1 If pis not invertible inog, then 2™ has good or semistable re-
duction at each closed point 6fof characteristicp.

This condition is the same as Assumption 1.2 whésa number field.
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p-ADIC REGULATOR AND FINITENESS 531

1.9. Letk be an algebraic number field, and 1t — S = Spedoy) be asin 1.8. In
this situation, we will often use the following notation. @ closed point € S, let
0, (resp.k,) be the completion of; (resp.k) atv, and letF, be the residue field of
k.. We put

%} = ®°k 0y, XU =% ®0k kﬂu7 Y’U =2 ®0k F'U

and writej, : X, — 2, (resp.i, : Y, < 2,) for the natural open (resp. closed)
immersion. We put, := Y, xp, F,, and writeX for the set of all closed point ofi
of characteristip.

1.10. Letk be an¢-adic local field with? a prime number, and le2” — S = Specoy,)
be as in 1.8. In this situation, we will often use the follogrinotation. LefF be the
residue field ofc and put

X =2 R, k, Y =2 ®,,F.

We writej : X — 2 (resp.i : Y — Z) for the natural open (resp. closed)
immersion. Let&"" be the maximal unramified extensionigfand leto"" be its integer
ring. We put

2NV =2 ®,, 0", XY= 2 ®,, kY, Y =Y xpF.
2 PRELIMINARIES ON GALOIS COHOMOLOGY

In this section, we provide some preliminary lemmas which beé frequently used
in this paper. Lek be an algebraic number field (global field) or its completiba a
finite place (local field). Leb, be the integer ring of, and putS := Specoy.). Letp
be a prime number. [ is global, we often write’ for the set of the closed points on
S of characteristig.

2.1 SELMER GROUP

Let X be a proper smooth variety over Speg and putX := X ®y k. If k is global,
we fix a non-empty open subség C S \ X for which there exists a proper smooth
morphism2y, — Uy with 2y, xy, k ~ X. Forv € St, letk, andF, be as in the
notation 1.9. In this section we are concerned wtixmodules

Vi=H"(X,Q,(n)) and A:=H'"(X,Q,/Zy(n)).

For M = V or A and a non-empty open subdétC Uy, let H*(U, M) denote the
étale cohomology groups with coefficients in the smoottrasloa Us; associated to
M.

DEFINITION 2.1.1 (1) Assume that is local. LetH ;(k,V) andH, (k, V') be as
defined inBK2] (3.7). For x € {f, g}, we define

H!(k,A) :==m(H}(k,V) — H'(k, A)).

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 525-594



532 S. SAITO AND K. SATO

(2) Assume that is global. ForM € {V, A} and a non-empty open subgétC S,
we define the subgroud; ;;(k, M) C Hgon(k, M) as the kernel of the natural
map

H(}ont(kv’ M) H Hclont(kva M)

HL (kM '
contk, M) — H H}(kij) Hgl(kvaM)

veU?! veS\U

If U C Uy, we have
H} gk, M) = Ker((H' (U, M) — [ ves\r Haon{lo M)/ Hy (o, M)).
We define the groufl; (k, M) and Hyy(k, M) as

Hy(k, M) = lim H}y(k, M),  Hpg(k, M) := lim H'(U, M),
UcUy UcCUy

whereU runs through all non-empty open subsetslipf These groups are
independent of the choice b and 2y, (cf.[EGA4] 8.8.2.5)

() If kis local, we defingi.,(k, M) to be Hl,(k, M) for M € {V, A}.
Note thatH;.(k, A) = H'(k, A).

2.2  p-ADIC POINT OF MOTIVES

We provide a key lemma from-adic Hodge theory which play crucial roles in this
paper (see Corollary 2.2.3 below). Assume thit ap-adic local field, and that there
exists a regular schem®” which is proper flat of finite type ove§ = Spedo;,) with

2 ®,, k ~ X and which has semistable reduction. Leindn be non-negative
integers. Put

Vii=H"(X,Q,), Vi(n) == V' ®q, Qu(n),
and _ _
H'™N %, 17<n Rj.Qp(n)) == Q, @2z, 1£1 H+Y(Z, TgnRj*Mf?rn),
r>1

where;j denotes the natural open immersi@n— 2. There is a natural pull-back
map _ _
o HTY(Z, T<nRj:Qp(n)) — H™Y(X, Qp(n)).

Let H (2, 7<, Rj.Q,(n))° be the kernel of the composite map
o s N2, m<n RjuQy(n) ~ HHH(X,Qp(n) — (VI ().
For this group, there is a composite map
a: HN (2, 7<nRjQp(n)° — FUH™H(X,Qp(n)) — Heonlk, V' (1))

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 525-594



p-ADIC REGULATOR AND FINITENESS 533

Here the first arrow is induced by, the second is an edge homomorphism in a
Hochschild-Serre spectral sequence

Y = Hipyh, V" (n) = Hst (X, Qp(m) (= H' (X, Qy(n)).

and F'* denotes the filtration of/*™!(X,Q,(n)) resulting from this spectral se-
quence. To provide with Corollary 2.2.3 below concerning ithage ofa, we need
some strong results ipradic Hodge theory. We first recall the following comparison
theorem of log syntomic complexes apéhdic vanishing cycles due to Tsuji, which
extends a comparison result of Kurihara [Ku] to semistabfaifies. LetY be the
closed fiber 0of2™ — S andlet. : Y — 2" be the natural closed immersion.

THEOREM 2.2.1 ([Ts2] Theorem 5.1 For integersn,r with0 < n < p — 2 and
r > 1, there is a canonical isomorphism

NS (n) = L (ren RjuSE) in DY(Ze Z/p7),
wheres!s(n) = 5198 (n) o- is the log syntomic complex defined by Kia2].
Put

H*(Z,555(n)) = Qp @3, lim H*(Z,5)%¢(n)),
r>1
and defineg7+1 (.2, sgf(n))o as the kernel of the composite map
i o ~ i . o i G
HUZ g8 (n) = HEUZ, ren RjQy(n) = (VI ()™,

where we have used the propernesg0fverS. There is an induced map

7 HH (2 s ()0 2 HH 2 m<n BjaQp(m)° = Heondk, V().

Concerning this map, we have the following fact due to Larsgef Nekovar:

THEOREM 2.2.2 ([La3], [Ne2] Theorem 3.1 Im(7) agrees withH | (k, V' (n)).

As an immediate consequence of these facts, we obtain

COROLLARY 2.2.3 Assume thap > n + 2. Thenlm(a@) = H, (k, V'(n)).

REMARK 2.2.4 (1) Theorem2.2.2is an extension of thg-adic point conjecture
raised by Schneider in the good reduction cgSeh]. This conjecture was

proved by Langer-SaitfLS] in a special case and by Nekiwv[Nel] in the
general case.

(2) Theoren?.2.2holds unconditionally op, if we define7‘+1 (%, sgf(n)) using
Tsuji's version of log syntomic complex&s (n) (r > 1) in [Ts1] §2.
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2.3 ELEMENTARY FACTS ON Z,-MODULES

For an abelian group/, let Mp;, be its maximal divisible subgroup. For a torsion
abelian groupV/, let Cotok M) be the cotorsion pat! / Mpjy.

DEFINITION 2.3.1 LetM be aZ,-module.

(1) We say thai\/ is cofinitely generated ove#, (or simply, cofinitely generated),
if its Pontryagin duaHomy,, (M, Q,/Z,) is a finitely generated.,-module.

(2) We say that\] is cofinitely generated up to a finite-exponent groug/, is
cofinitely generated an@otor( M) has a finite exponent.

(3) We say thatM is divisible up to a finite-exponent group,@otor( M) has a
finite exponent.

LeEmMMA 2.3.2 Let0 - L — M — N — 0 be a short exact sequence %f-
modules.

(1) Assume thaf., M and N are cofinitely generated. Then there is a positive
integerry such that for any- > r, we have an exact sequence of finite abelian
p-groups

0— prL — prM — ,»N — Cotor(L) — Cotor(M) — Cotor(N) — 0.

Consequently, taking the projective limit of this exactsetge with respect to
r > ro there is an exact sequence of finitely generaiganodules

0— T,(L) = Tp(M) — T,(N) — Cotor(L) — Cotor(M) — Cotor(N) — 0,
where for an abelian groug, T,,(A) denotes itp-adic Tate module.

(2) Assume that. is cofinitely generated up to a finite-exponent group. Assume
further that M is divisible, and thatV is cofinitely generated and divisible.
ThenL and M are cofinitely generated.

(3) Assume thatf. is divisible up to a finite-exponent group. Then for a divisib
subgroupD C N and its inverse imag®’ C M, the induced magpD’)py, —
D is surjective. In particular, the natural maj/py, — Npjy IS surjective.

(4) If Lpiy = Npiw = 0, then we havé/p;, = 0.

Proof. (1) There is a commutative diagram with exact rows

0 L M N 0
Xprl Xprl Xprl
0 L M N 0
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One obtains the assertion by applying the snake lemma todihgram, noting
Cotor(A) ~ A/p" for a cofinitely generated,-module A and a sufficiently large
r> 1.

(2) Our task is to show that Cotat) is finite. By a similar argument as for (1),
there is an exact sequence for a sufficiently large 1

0— prL — prM — ,»N — Cotor(L) — 0,

where we have used the assumptiong.oand M. Hence the finiteness of Cotdr)
follows from the assumption tha¥ is cofinitely generated.
(3) We have only to show the cage= Npy,. For aZ,-moduleA, we have

Apiy = Im (Homy, (Q,,, 4) — A)

by [J1] Lemma (4.3.a). Since E%t((@p, L) = 0 by the assumption oh, the follow-
ing natural map is surjective:

Homy, (Q,, M) — Homy, (Q,, N).

By these facts, the natural magpi, — Npiy iS surjective.
(4) For aZ,-moduleA, we have

Apy = 0 <= Hony, (Q,,A) =0
by [J1] Remark (4.7). The assertion follows from this faatl #me exact sequence
0 — Homg, (Q,, L) — Homg, (Q,, M) — Homyg, (Q,, N).

This completes the proof of the lemma. O

2.4 DivisIBLE PART OF Hl(k, A)

Let the notation be as i§2.1. We prove here the following general lemma, which will
be used frequently if§3—7:

LEMMA 2.4.1 Under the notation in Definitio.1.1we have
Im(Hipg(k, V) — H'(k,A)) = H'(k, A)pw,
Im(H,(k,V)— H'(k,A)) = Hy(k, A)piv-

Proof. The assertion is clear ¥ is local. Assume thak is global. Without loss of
generality we may assume thatis divisible. We prove only the second equality and
omit the first one (see Remark 2.4.9 (2) below). UgtC S be as ing2.1. We have

Im(Hjy(k,V) = H'(U,A)) = H; ;(k, A)pi (2.4.2)

for non-empty opei/ C Up. This follows from a commutative diagram with exact
rows
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0—=H},(kV)—=H'(UV)—= [ Heonlko.V)/Hy(ko, V)
veS\U

o ﬁl
0—=H}y(k,A) —= B U, A)— [[ H'(k0, A)/H}(ky, A)

veS\U

and the facts that Cokgr) is finite and that Ke(i3) is finitely generated oveZ,,. By
(2.4.2), the second equality of the lemma is reduced to thafimg assertion:

limy (HJy(k, Aow) = (13 H},U<k,A>>) oiv. (243)

Uucly Ucls
To show this equality, we will prove the following sublemma:

SUBLEMMA 2.4.4 For an open subséf C Uy, put
Cy = Cokel(Hj , (k, A) — Hj ;(k, A)).

Then there exists a non-empty open subget. U, such that the quotiertt; /Cy, is
divisible for any open subsét C Uy;.

We first finish our proof of (2.4.3) admitting this sublemmaetll/; C U, be a
non-empty open subset as in Sublemma 2.4.4. Noting}ﬂjg;(k, A) is cofinitely
generated, there is an exact sequence of finite groups

Cotor(H} 1y, (k, A)) — Cotor(H  ;(k, A)) — CotonCy/Cy,) — 0

for openU C U; by Lemma 2.3.2(1). By this exact sequence and Sublemma, 2.4.4
the natural map Cot¢H ;;, (k, A)) — Cotor H} ;;(k, A)) is surjective for any open
U c Uy, which implies that the inductive limit

lim Cotor(Hy ;7 (k, A))
UCUyp

is a finite group. The equality (2.4.3) follows easily fronisth
Proof of Sublemma 2.4.%Ve need the following general fact:

SUBLEMMA 2.4.5 Let N = {N,}.eca be aninductive system of cofinitely generated
Z,-modules indexed by a filtered sétsuch thatCoke(N, — N)) is divisible for
any two\, X' € A with M > A\ LetL be a cofinitely generated,-module and
{f» : Nx = L}sca beZ,-homomorphisms compatible with the transition maps of
N. Then there exists, € A such thatCoker(Ker(f»,) — Ker(fy)) is divisible for
any\ > \g.
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Proof of Sublemma 2.4.5et f, : Noo — L be the limit of f\. The assumption on
N implies that for any two\, A’ € A with A’ > A, the quotient Inifx/)/Im(fy) is
divisible, so that

Cotor(Im(fy)) — Cotor(Im(fy/)) is surjective (2.4.6)

By the equality Inff,) = hg aca IM(f)), there is a short exact sequence

0 — lim (IM(f2)ow) — IM(foo) — lim Cotor(Im(f)) — 0,
AeA A€A
and the last term is finite by the fact (2.4.6) and the assumptiatL is cofinitely
generated. Hence we get
lim (Im(fA)Di\,) = Im(fOO)Di\,.

—
S

>
S

Since In{f-)oiv has finite corank, there exists an elemegt € A such that
Im(fx)piv = IM(foo)oiv fOr any A > Ag. This fact and (2.4.6) imply the equality

Im(f\) =Im(fy,) foranyX > \g. (2.4.7)
Now let\ € A satisfyA > A\g. Applying the snake lemma to the commutative diagram

NAQ —>]\7/\—>]\7/\/]V,\0 —0

fxol fAl |

0——1L L——0,

we get an exact sequence

Ker(fy,) — Ker(fa,) — Na/Ny, — Coker(fy,) — Cokel(fy),

which proves Sublemma 2.4.5, beucaég/ N, is divisible by assumption. O
We now turn to the proof of Sublemma 2.4.4. For non-empty dpen Uy, there is a
commutative diagram with exact rows

HY(Up,A) —  H'(UA) — @ A1 2% g1, A)
veUp\U

] | |
0= @ Hj(ko,A)= @ Hj,(ko,A)—= @ HJ(kv,A),
veS\Up veS\U veUg\U

where we put
H}g(kzv, A) := H'(ky, A)/H, (ky, A)

for simplicity. The upper row is obtained from a localizatiexact sequence of étale
cohomology and the isomorphism

H*(Uy, A) ~ H' (k,,, A)/H (F,, A) ~ A(~1)%* forv e Uy \ U,
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where we have used the fact that the actiod/gpfon A is unramified ab € Uy. The
mapay is obtained from the facts théf, (k,, A) = H' (k,, A)pw if v ¢ ¥ and that
H(F,, A) is divisible (recall thatd is assumed to be divisible). It gives

Ker(ay) = @ (A(=1)) pw. (2.4.8)

’UGU()\U

Now let ¢y be the composite map

v Kerar) = @ A% 2% H2 (U, A),
veU\U

and let
Yy : Ker(gy) — Cokelry,)

be the map induced by the above diagram. Note that
Cu ~ Ker(vy), since Hj ;(k, A) = Ker(ry).

By (2.4.8), the inductive systefKer(ay)}ucu, and the mapgéy tucu, satisfy
the assumptions in Sublemma 2.4.5. Hence there exists &mpty open subset
U’ C U, such that Kefpy)/Ker(¢y) is divisible for any oper/ c U’. Then
applying Sublemma 2.4.5 again to the inductive sysf&er(¢y ) } vy and the maps
{Yv}vucur, we conclude that there exists a non-empty open sdiset U’ such that
the quotient

Ker(yy) /Ker(yy, ) = Cu /Cu,

is divisible for any open subsét C U;. This completes the proof of Sublemma 2.4.4
and Lemma 2.4.1. O

REMARK 2.4.9 (1) By the argument after Sublemria4.4 Cotor(Hgl(k,A)) is
finite if A is divisible.

(2) One obtains the first equality in Lemn2a4.1 by replacing the local terms
H) (k. A) in the above diagram wit@otor( #* (k,, A)).

2.5 COTORSION PART OF H'(k, A)

Assume that is global, and let the notation be as§@.1. We investigate here the
boundary map
Suo : H' (k, A) — @ A(-1)%
ve(Up)t
arising from a localization exact sequence of étale cologyeand the purity for dis-

crete valuation rings. Concerning this map, we prove thieviehg standard lemma,
which will be used in our proof of Theorem 1.3:
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LEMMA 2.5.1 (1) The map

Suoow : H'(k, Aoy — €D (A1) )ow
v€(Up)?t

induced bydy, has cofinitely generated cokernel.

(2) The map

0y, Cotor : COtOl(Hl (k, A) — @ CO'[Or(A(_l)GEv)
UE(U())I

induced by, has finite kernel and cofinitely generated cokernel.
We have nothing to say about the finiteness of the cokernélesit maps.

Proof. For a non-empty opeli C Uj, there is a commutative diagram of cofinitely
generated,-modules

H'(U, A)ow — D vevo\v ((A(il)GFv)DiV

Bu

D vevo\v A(=1)" ——— H?(Us, A),

ay

H'(Up, A) — H'(U, A)

where the lower row is obtained from a localization exacusege of étale cohomol-
ogy and the purity for discrete valuation rings, angdis induced by . Let

fu : Coto H* (U, A)) — @ Cotor( A(—1)%)
veUp\U

be the map induced by . By a diagram chase, we obtain an exact sequence
Ker(fy) — Cokef~y) — Cokelay) — Cokel( fy) — 0.

Taking the inductive limit with respect to all non-empty opsubsetd/ c U,, we
obtain an exact sequence

Ker(du, cotor) — Cokerdy, piv) — hg Cokellay) — Cokel(dy, cotor) — 0,
UcUy

where we have used Lemma 2.4.1 to obtain the equalities

Ker(dy, cotor) = hg Ker(fy) and Cokefdy, piv) = hg Coker(yy ).
UcCUy UcCUy

Sincelim 7y, Cokerfay) is a subgroup of7?(Uy, A), it is cofinitely generated.
Hence the assertions in Lemma 2.5.1 are reduced to showattd<#1dy, cotor) iS

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 525-594



540 S. SAITO AND K. SATO

finite. We prove this finiteness assertion. The lower row efabove diagram yields
exact sequences

Cotor{ H'(Uy, A)) — Cotor(H*(U, A)) — Cotor(Im(ay)) — 0,  (2.5.2)
T,(Im(8y)) — Cotoim(ar)) — @5  Cotor( A(—1)%w), (2.5.3)
’UGU()\U
where the second exact sequence arises from the short egaetree
0—Im(ay) — @ A1) — Im(By) — 0
’UGU()\U
(cf. Lemma 2.3.2(1)). Taking the inductive limit of (2.5.&jth respect to all non-
empty operly C Uy, we obtain the finiteness of the kernel of the map
Cotor H'(k, A)) — lim  Cotor(Im(ay)).
UcUy

Taking the inductive limit of (2.5.3) with respect to all nempty operl/ C Uy, we
see that the kernel of the map

lim Cotor(Im(ar)) — € Cotor(A(—1)%),
UcCUg ’UE(U())l

is finite, because we have
lig T,(Im(Bv)) C Tp(H?(Uo, A))
UcCUy

and the group on the right hand side is a finitely generaigdnodule. Thus
Ker(du,,cotor) is finite and we obtain Lemma 2.5.1. O

2.6 LocAL-GLOBAL PRINCIPLE

Let the notation be as i§2.1. If k is local, then the Galois cohomological dimension
cd(k) is 2 (cf. [Se] 11.4.3). In the case thdt is global, we have d&) = 2 either

if p > 3 orif kis totally imaginary. OtherwiseH%(k, A) is finite 2-torsion for

q > 3 (cf. loc. cit. 11.4.4 Proposition 13, 11.6.3 Theorem B). Asrfthe second Galois
cohomology groups, the following local-global principleedto Jannsen [J2] plays a
fundamental role in this paper (see also loc.§itCorollary 7):

THEOREM 2.6.1 ([J2] §4 Theorem 4 Assume that is global and thai # 2(n—1).
Let P be the set of all places &f Then the map

Hz(kv Hi(yv QP/ZP(TL))) — @ H2(k717 Hi(77 QP/ZP(TL)))
veP
has finite kernel and cokernel, and the map
H2(k7 Hl(yv QP/Z;D(H))DW) — @ Hz(kvv Hl(yv @P/Zp(n))DiV)

veEP

is bijective.
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We apply these facts to the filtratiaRi® on H*(X,Q,/Z,(n)) resulting from the
Hochschild-Serre spectral sequence

By" = H"(k, H'(X,Qp/Zy(n))) = H" (X, Qp/Zp(n)). (2.6.2)
COROLLARY 2.6.3 Assume that is global and that # 2n. Then
(1) F?H'(X,Q,/Zy(n)) is cofinitely generated up to a finite-exponent group.
(2) Forv € P, putX, := X ®, k,. Then the natural maps

FPHY(X, Qp/Zy(n)) — @ F2H'(Xy, Qp/Zy(n)),

F’HY(X, Qp/Zp(n))ow — @ FQHi(Xanp/Zp(n))Div

have finite kernel and cokern@nd the second map is surjectjve

Proof. Let oy, be the integer ring of, and putS := Specoy). Note that the set of all
finite places of agrees withS*.

(1) The groupH 2(k,, H=2(X,Q,/Z,(n))ow) is divisible and cofinitely gener-
ated for any € S, and itis zero ifp Jv and X has good reduction at by the local
Poitou-Tate duality [Se] II.5.2 Théoréme 2 and Delign@sof of the Weil conjecture
[De2] (see [Sat2] Lemma 2.4 for details). The assertiorofedl from this fact and
Theorem 2.6.1.

(2) We prove the assertion only for the first map. The asseftio the second
map is similar and left to the reader. For simplicity, we assuhat

(#) p > 3 or k is totally imaginary.

Otherwise one can check the assertion by repeating the sgomaents as below in the
category of abelian groups modulo finite abelian groups. e have cd(k) = 2
and there is a commutative diagram

H2(k, H(X, Qp/Zp(n))) —= P H?(ky, H (X, Q,/Zy(n)))

veST

F2HY(X,Q,/Zy(n)) ——— P F*H'(X,, Qp/Zy(n)),
veS?t

where the vertical arrows are edge homomorphisms of Hodls8krre spectral se-
guences and these arrows are surjective. Since

H?(k,, H*(X,Q,/Z,(n))) = 0 for archimedean places

by (1), the top horizontal arrow has finite kernel and cokernelbgdrem 2.6.1. Hence
it is enough to show that the right vertical arrow has finitenled. For anyv € S, the
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v-component of this map has finite kernel by Deligne’s criteifiDe1] (see also [Sat2]
Remark 1.2). Ifv is prime top and X has good reduction at then thev-component
is injective. Indeed, there is an exact sequence resultmmg 2 Hochschild-Serre
spectral sequence and the fact thgtgd = 2:

H™Y (X0, Qp/Zp(n)) S HHX,Qp/Zy(n))
— HQ(kvaHi_Q(Yv Qp/ZP(n))) — FQHi(Xanp/ZP("))-

The edge homomorphisthis surjective by the commutative square

Hi_l(yvv Qp/Zp(n)) —> Hi_l(?vv @p/Zp(”)))GF“

| |

H™ (X0, Qp/Zp(n)) —= HY(X,Q,/Zy(n))) .

HereY, denotes the reduction of atv andY,, denotesy, QF, F,. The left (resp.
right) vertical arrow arises from the proper base-changertm (resp. proper smooth
base-change theorem), and the top horizontal arrow is ciivgeby the fact that
cd(F,) = 1. Thus we obtain the assertion. O

3 FINITENESS OF TORSION IN A CHOW GROUP

Letk, S,p andX be as in the beginning ¢2, and letX be a proper smooth geomet-
rically integral variety over Spég). We introduce the following technical condition:

HO: The groupHZ (X, Q,(2))%* is trivial.

If k& is global, HO always holds by Deligne’s proof of the Weil conjecture [De2jhen
k is local,HO holds ifdim(X) = 2 or if X has good reduction (cf. [CTR2P); it is
in general a consequence of the monodromy-weight congactur

3.1 FINITENESS OF CH?(X),-tors

The purpose of this section is to show the following resultjol is a generaliza-
tion of a result of Langer [La4] Proposition 3 and implies flmteness assertion on
CH?(X)p-tors in Theorem 1.3 (1):

THEOREM 3.1.1 AssumeéHO0, H1x* and eitherp > 5 or the equality
H; (ka H? (Ya QP/ZP(2)))DW =H' (kv H2(77 Qp/ZP(Q)))DiV- (*g)

ThenCH?(X),-1ors is finite.
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REMARK 3.1.2 (1) (x,) holds if H?(X,0x) = 0 or if k is ¢-adic local with
{# p.

(2) Crucial facts to this theorem are Lemm2.2 3.3.5and3.5.2below. The short
exact sequence in Lemr&2.2is an important consequence of the Merkur’'ev-
Suslin theorenfMS].

(3) In Theorem3.1.1, we do not need to assume thdthas good or semistable
reduction at any prime of dividing p (cf. 1.8.1) because we do not need this
assumption in Lemma.5.2by the alteration theorem of de Jofdy].

3.2 REGULATOR MAP
We recall here the definition of the regulator maps
reg, : CH*(X,1) ® A — Hipq(k, H*(X, A(2))) (3.2.1)

with A = Q, or Q,/Z,, assumingd0. The general framework on étale Chern class
maps and regulator maps is due to Soulé [Sol], [So2]. Weidechere a more ele-
mentary construction of reg which will be useful in this paper. L&t := k(X ) be
the function field ofX. Take an open subsé&}y C S\ ¥ = S[p~!] and a smooth
proper schemeZy, overU, satisfying Zu, xu, Spec¢k) ~ X. For an open subset
U C Uy, put 2y := Zu, xu, U and define

N'H*( 2y, p3?) = Ker(H* (2, p5?) — H* (K, u$?)).
LEMMA 3.2.2 Foran open subsdt C Uy, there is an exact sequence
0 — CH*(2y,1)/p" — N'H*(2y, 15?) — p»CH (2u) — 0
See§1.7 for the definition oCH? (2, 1).

Proof. The following argument is due to Bloch [BI], Lecture 5. We a#dt for the
convenience of the reader. There is a localization spestience

EY = @ HU(2y,pS?) = H (2, uS?). (3.2.3)
ze(ZXu)

By the relative smooth purity, there is an isomorphism

E}"" ~ @ H”fu(x,uf??*“), (3.2.4)
ze(Zu)v

which implies thatViH3 (27, uf??) is isomorphic to the cohomology of the Bloch-
Ogus complex

HQ(K7M§2) — @ Hl(ya:u’pr) — @ Z/p7
ye(Zu)?t z€(2v)?
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By Hilbert's theorem 90 and the Merkur'ev-Suslin theoremgMthis complex is
isomorphic to the Gersten complex

KN K)/pm— P )/ — Pz
ye(Zu)t z€(Zu)?
On the other hand, there is an exact sequence obtained byramiahase
0 — CH*(2y,1)® Z/p" — CH*(2y, 1;Z/p") — »»CH*(2y) — 0.

Here CH(2y,1;Z/p") denotes the cohomology of the above Gersten complex and
it is isomorphic toN'H? (2, u5?). Thus we obtain the lemma. a

Put
M?:= HY(X,A(2)) with Aec {Qp,Qp/Z,}.

For an open subsét C Uy let H*(U, M 1) be the étale cohomology with coefficients
in the smooth sheaf associated with?. There is a Leray spectral sequence

EY’ = HY(U,M") = H""" (2, A(2)).
By Lemma 3.2.2, there is a natural map
CH*(Z2u,1) ® A — H3(2u, A(2)).
Noting thatE3? is zero or finite byHO, we define the map
regy, 4 : CH(2y,1) ® A — H' (U, M?)

as the composite of the above map with an edge homomorphidm akeray spectral
sequence. Finally we define rggn (3.2.1) by passing to the limit over all non-empty
openU C Uy. Our construction of regdoes not depend on the choicelaf or Z,.

REMARK 3.2.5 By Lemma2.4.1, H1 always impliedH 1. If & is local, H1* con-
versely impliedH 1. If k is global, one can check th&1x impliesH1, assuming that
the groupKer(CH?(2y,) — CH*(X)) is finitely generated up to torsion and that the
Tate conjecture for divisors holds for almost all closed ifébef 27, /Uo.

3.3 PROOF OF THEOREM 3.1.1

We start the proof of Theorem 3.1.1, which will be completed3.5 below. By
Lemma 3.2.2, there is an exact sequence

0— CHQ(X, 1) ®@ Qp/Zy L N1H3(X7 Qp/Zy(2)) — CH2(X)p-tors — 0,
(3.3.1)
where we put

NH*(X,Qp/Z,(2)) 1= Ker(H* (X, Qp/Zy(2)) — H* (K, Qp/Zy(2))).

In view of (3.3.1), Theorem 3.1.1 is reduced to the following propositions:
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ProrosiTiON 3.3.2 (1) If k is local, thenCHQ(X)p_torS is cofinitely generated
overZy.

(2) Assume that is global, and thatCoker(reg@p/Zp)Di\, is cofinitely generated
overzZ,. ThenCH? (X)p-tors Is cOfinitely generated ovét,,.

ProprosITION 3.3.3 Assumeéd0, H1x and eitherp > 5 or (x,). Then we have
Im(¢) = NlHB(Xa Qp/Zp(Q))Div-
We will prove Proposition 3.3.2 i§3.4 below, and Proposition 3.3.3§8.5 below.

REMARK 3.3.4 (1) If k is local, then H3(X,Q,/Z,(2)) is cofinitely gener-
ated. Hence Propositio.3.2 (1)immediately follows from the exact sequence
(3.3.1)

(2) Whenk is global, thent* (k, A)oi /H} (k, A)py With A := H*(X, Qp/Zy(2))
is cofinitely generated by Lemrdat.1 HenceH1x* implies the second assump-
tion of Proposition3.3.2 (2)

Let F'* be the filtration onH*(X,Q,/Z,(2)) resulting from the Hochschild-Serre
spectral sequence (2.6.2). The following fact due to Sghrewill play key roles in
our proof of the above two propositions:

LeMmMA 3.3.5 ([Sal] Main Lemma 3.9 The following group has a finite exponent

N'H3(X,Q,/Z,(2)) O F*H (X, Q,/Z,(2)).

3.4 PROOF OF PROPOSITION 3.3.2
For (1), see Remark 3.3.4 (1). We assume thiatglobal, and prove (2). Put
H? = H*(X,Q,/Z,(2)) and I :=¢(CH*(X,1)®Q,/Z,) C H?
(cf. (3.3.1)). LetF* be the filtration onH? resulting from the spectral sequence
(2.6.2), and putN'H?® := N'H3(X,Q,/Z,(2)). We havel’ C (F'H3)py =
(H3)piv by HO, and there is a filtration of/3
0C I+ (F*H?py C (F'H?)py C H®.

By (3.3.1), the inclusiolV'H? ¢ H? induces an inclusion CHX),ors C H?/T .
We show that the image of this inclusion is cofinitely genedausing the above fil-
tration onH?3. It suffices to show the following lemma:

LEMMA 3.4.1 (1) The kernel o€H?*(X),1ors — H?/(I" 4 (F2H?)py) is finite.

(2) The image 0€CH*(X),1ors — H>/(F'H?)py is finite.
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(3) The second assumption of Proposit®.2 (2)implies that the group
M := (F'H?)ow /(I" + (F*H?)piv)
is cofinitely generated.

Proof. (1) There is an exact sequence

HS
I+ (F2H3)Div-

NH3 N (F2H3)p

— CH*(X),tors —
I'N (F2H3)py, (X)pors

Hence (1) follows from Lemma 3.3.5 and Corollary 2.6.3 (1).
(2) LetUy and Zy, — Uy be as ing3.2. For non-empty opeli C Uy, thereis a
commutative diagram up to a sign

NH3(2v,Qp/Zy(2)) — CH(2y) © Z,

l"
H( 2y, Qp/Zp(2)) —= H (v, Zy(2))
by the same argument as for [CTS$§], Proposition 1. Here the top arrow is the
composite ofN'H?( 2, Q,/Z,(2)) — CH?(21) putors (cf. Lemma 3.2.2) with the
natural inclusion. The bottom arrow is a Bockstein map aeditht vertical arrow is

the cycle class map ofy;. Taking the inductive limit with respect to all non-empty
U c Uy, we see that the left square of the following diagram coms(up to a sign):

N'H? — CH*(X) ® Z,
/\L l@ind m

H3 —= Hiny(X, Zy(2)) — Heond X, Zp(2)),

whereH, (X, Z,(2)) denotes the continuous étale cohomology [J1] and theotto
right arrow is by definition the inductive limit, with respgdo U C U,, of the natural
restriction map

H4(%U’ ZP(2)) - Héont(%Uvzp(Q)) - Hélont(X’ ZP(2))-

The right triangle of the diagram commutes by the definitiboyele classes in loc.
cit. Theorem (3.23). This diagram and the exact sequen8elj3iield a commutative
diagram (up to a sign)

CH?(X) ptors— CH*(X) ® Z,,

-

H? [(F'H?)ow —— Heon( X, Zp(2)),
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where the bottom arrow is injective 50 and loc. cit. Theorem (5.14). Now the
assertion follows from that fact that [mony) is finitely generated ovef,, ([Sa] The-
orem (4-4)).
(3) Put
N := (F'H?)ow /{I" + (F?H’ N (F'H”)pw)} = Cokex(reg, /7 )oiv,
which is cofinitely generated by assumption and fits into ategequence
(F?H® N (F'H®)pw) /(F?H?)pyy — M — N — 0.

The first group in this sequence has a finite exponent by Goyo.6.3(1),V is
divisible and cofinitely generated, afd is divisible. Hencel/ is cofinitely generated
by Lemma 2.3.2 (2). This completes the proof of Lemma 3.4dLRroposition 3.3.2.
O

3.5 PROOF OF PROPOSITION 3.3.3
We put
NFIH?)(X’ QP/ZP(2>> = NlHB(Xa QP/ZP(2)) N FlHB(Xa QP/ZP(2))'

Note thatN'H?3(X,Q,/Z,(2))ov = NF'H?*(X,Q,/Z,(2))oi by HO. There is an
edge homomorphism of the spectral sequence (2.6.2)

b PUHY(X,Q,/2,(2) — H'(k, B*(X,Q,/Z,(2))).  (35.1)

The composite of in (3.3.1) and) agrees with reg, ;- Hence by Lemma 3.3.5, the
assertion of Proposition 3.3.3 is reduced to the foﬁowbrglrlna, which generalizes
[LS] Lemma (5.7) and extends [Lal] Lemma (3.3):

LEMMA 3.5.2 Assume eithep > 5 or (x4) (but we do not assum1x). Then we
have

G(NF'H*(X,Qp/Zy(2))ow) C Hy(k, H*(X, Qp/Zp(2)))-

We start the proof of this lemma. The assertion is obviousutite assumption
(*4). Hence we are done ¥ is ¢-adic local with¢ # p (cf. Remark 3.1.2(1)). It
remains to deal with the following two cases:

(1) % is p-adic local withp > 5.
(2) k is global andy > 5.

PutA := H?(X,Q,/Z,(2)) for simplicity. We first reduce the case (2) to the case
(1). Suppose that is global. Then there is a commutative diagram

NFH3(X,Q,/Zy(2))on ——— H'(k, A)

| |

[T NFH (X0, Qp/Zp()on — [ H'(ko, 4),
vest veST
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where the vertical arrows are natural restriction maps.hydiagram and the defini-
tion of H; (k, A), the case (2) is reduced to the case (1).

We prove the case (1). We first reduce the problem to the caseewh has
semistable reduction. By the alteration theorem of de Jdal fhere exists a proper
flat generically finite morphis’X’ — X such thatX” is projective smooth ovérand
has a proper flat regular model over the integral clost@ o in I'(X’, Ox,) with
semistable reduction. Put

L:=Frado’) and A :=H*(X'®1k Qy/Z,(2)).
Then there is a commutative diagram whose vertical arrowsnatural restriction

maps

NF'H3(X,Q,/Zy(2))oy — H'(k, A) —— H'(k, A)/H, (k, A)

| | l

NFH3(X',Qp/Z(2))oy —= HY(L, A') — H'(L, A')/HN(L, A").

Our task is to show that the composite of the upper row is zBezauseX’ and X
are proper smooth varieties overthe restriction map : A — A’ has a quasi-section
s: A" - Awith sor = d-id 4, whered denotes the extension degree of the function
field of X’ @, k over that ofX. Hence by the functoriality ofi}(k, A) in A, the
right vertical arrow in the above diagram has finite kerned] the problem is reduced
to showing that the composite of the lower row is zero. Thusaveereduced to the
case thatX has a proper flat regular modél” over.S = Spedco;) with semistable
reduction. We prove this case in what follows.

Letj: X — 2 be the natural open immersion. There is a natural injectiap m

Qp : Hg(% TSQRJ'*/,L®2) GEENG 1{3()(7 M?})

pT

induced by the natural morphism, Rj.u5° — Rj.us?. By Corollary 2.2.3, it
suffices to show the following two lemmas (see also Remarlé &élow):

LeEMMA 3.5.3 N'H3(X, pu5?) C Im(ay,) foranyr > 1.
LEMMA 3.5.4 Put
H3(<%7§2Rj*(@p/zp(2)> = hﬂ H3(<%7§2Rj*lﬁ§r2)v

r>1
and define13( 2, 7<2 Rj.Q,/Z,(2))° as the kernel of the natural map
H (X, 7<2Rj.Qyp/ Zp(2)) — H* (X, Qp/Zp(2)).
Then the canonical map
H (2,72 RjQp(2))° — H (X, 7<2RjuQy/Zp(2))°
has finite cokernel, whetH? (2, 7<2 Rj.Q,(2))° is as we defined i§2.2
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To prove Lemma 3.5.3, we need the following fact due to Hagihavhose latter
vanishing will be used later i§6:

LeMMA 3.5.5 ([SH]A.2.4, A.2.6 Letn,r andc be integers witm > 0 andr, ¢ >
1. Then for anyy < n + ¢ and any closed subschemieC Y with codimg-(Z) > ¢,
we have

HY(Z, r<nRjep™) = 0 = HL ™ (2, Toni1 Rjup).

Proof of Lemma 3.5.3Me compute the local-global spectral sequence
EY = @ HY(Zm<aRjpS?) = H" (2, m<aRjpS?).
zeZe
By the first part of Lemma 3.5.5 and the smooth purity for oo X, we have

Eu,v _ HY (K7 M?Q) (|f u = 0)
' P zexe H (2, uS2) (if v < 2).

Repeating the same computation as in the proof of Lemma,32.Bbtain
N'H3(X,py$?) ~ By® = EL? < H3 (2, 72 Rjul?),

which implies Lemma 3.5.3. O

REMARK 3.5.6 Lemma3.5.3extends a result of Langer-Saiff.S] Lemma(5.4))

to regular semistable families and removes the assumptifirail] Lemma(3.1) con-
cerning Gersten’s conjecture for algebraic-groups. Therefore the same assumption
in loc. cit. TheorenA has been removed as well.

Proof of Lemma 3.5.4By the Bloch-Kato-Hyodo theorem on the structurepeddic
vanishing cycles ([BK1], [Hy]), there is a distinguishethtrgle of the following form
in D*(2%) (cf. [SH], (4.3.3)):
TSQRJ'*/,L92 — TS2Rj*M?7‘2+S — TSQR.]'*/L?? — (TSQRj*M;?TQ)[l]
Taking étale cohomology groups, we obtain a long exactesecg
<= HY(Z, ngRj*,uf?TQ) — HY(Z, ngRj*u?ﬁS) — HY(Z, ngRj*,u?f)
— H™ (7, TSQRj*‘LL?TQ) — e (3.5.7)
We claim thatH (%, ngRj*u;??) is finite for anyq andr. Indeed, the claim is
reduced to the case= 1 by the exactness of (3.5.7) and this case follows from the
Bloch-Kato-Hyodo theorem mentioned above and the progsroE?” overS. Hence

taking the projective limit of (3.5.7) with respect toand then taking the inductive
limit with respect tos we obtain a long exact sequence

<= HY(Z,7<2RjZp(2)) — H (X, 7<2Rj:Qp(2)) — H(Z,7<2RjxQp/Zy(2))
— H™Y (2, 7<2RjuZp(2)) = -,
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whereH9(Z, T<2 Rj.Z,(2)) is finitely generated oveL,, for anyq. The assertion in
the lemma easily follows from this exact sequence and aairttihg exact sequence
of étale cohomology groups of. The details are straight-forward and left to the
reader. O

This completes the proof of Lemma 3.5.2, Proposition 3.8@Eheorem 3.1.1.
4  CycLE CLASS MAP AND UNRAMIFIED COHOMOLOGY

Letk,S,p, & andK be as in the notation 1.8. In particular, we always assunte tha
Z satisfies 1.8.1. In this section we give a brief review-@fdic étale Tate twists and
provide some preliminary results on cycle class maps. Thia reault of this section

is Corollary 4.4.3 below.

4.1 p-ApiCc ETALE TATE TWIST

Let n andr be positive integers. We recall here the fundamental ptigsgiS1)—
(S7) listed below of the objecE,.(n) = T,.(n)s € D°(Za, Z/p") introduced by
the second author [SH]. The propertig$l), (S2), (S3) and (S4) characterizes
T,.(n) uniquely up to a unique isomorphism I ( 2z, Z/p").

(S1) There is an isomorphist: T, (n)[y ~ p2™ onV := 27 [p~'].
(S2) %,(n)is concentrated ifi0, n].

(S3) LetZ c £ be alocally closed regular subscheme of pure codimensisith
ch(Z) = p. Leti : Z — 2 be the natural immersion. Then there is a canonical
Gysin isomorphism

Gys': W Qs [-n —d = T<nicRiIT,(n)  in D*(Zew Z/p"),

wherell; Q7 | . denotes thétale subsheaf of the logarithmic part of the Hodge-
Witt sheafit,. QF, ([BI1], [II]).

(S4) Forz € 2" andq € Z>o, we definéZ/p"(q) € D*(zer, Z/p") as

(e (if ch(x) # p)
Z/p"(q) = {W-Qq [—q] (if ch(z) = p).

z,log

Then fory, z € 2" with ¢ := codim(z) = codim(y) + 1, there is a commutative
diagram

val

H=+L(y, Z/p" (n — ¢ + 1)) ——> H"(3,Z,/p" (n — c))
Gys;;l lGVSZ;
Hy e (2,5, (n)) — s H* (2, T, (n).
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Here forz € 27, Gys is induced by the Gysin map {i$3) (resp. the abso-
lute purity [RZ], [Th], [FG)) if ch(z) = p (resp.ch(z) # p). The arrows'°
denotes the boundary map of a localization exact sequerct8‘ardenotes the
boundary map of Galois cohomology groups due to HKGT] §1.

(S5) LetY be the union of the fibers ot/ .S of characteristicp. We define thétale
sheafu{ ' onY as

n—1 ,_ val . . n—1 n—2
Vy, = Ker(a : @yeyo Ty Qy log — @x@n T W1 log)

where fory € Y, i, denotes the canonical map— Y. Let: andj be as
follows

V= %[pil](—j> X <Ly,
Then there is a distinguished triangle I’ ( 2z, Z/p")

Z*V{}71[ n—1] % <. (n) N TenRjpus" 2*1/371[ n),
wheret’ is induced by the isomorphismin (S1) and the acyclicity property
(S2). The arrowg arises from the Gysin morphisms (3), ¢ is induced by
the boundary maps of Galois cohomology gro(gs(S4)).

(S6) There is a canonical distinguished triangle of the follogvfiorm in D®(2%):

s

Trrs(n) — Tu(n) 225 T, ()[1] 5 Trpa(n)[1):

(S7) HY(Z,%,(n)) is finite for anyr andi (by the properness of").

Whenk is p-adic local withp > n + 2 and.2" is smooth ovesS, theni*T,.(n) is
isomorphic to the syntomic complex. (n) of Kato [Kal], which is the derived image
of a syntomic sheaf of Fontaine-Messing [FM]. This factdels from a result of
Kurihara [Ku] and(S5). Therefore our objec¥,.(n) extends the syntomic complexes
to the global situation. Note also thaft,. (n) is not the log syntomic comples‘&Og
unlessn > dim(2"), because the latter object is isomorphicrte,i* Rj.ju, ®n by
Theorem 2.2.1.

REMARK 4.1.1 The above properties &8, (n) deeply rely on the computation on
theétale sheaf op-adic vanishing cycles due to Bloch-Kg®K1] and HyoddHy].

LEMMA 4.1.2 Put

(2, T, () o= i HUZ5, (), HO(Z, T () i= limg HO(2. T, (w)

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 525-594



552 S. SAITO AND K. SATO

andH9(Z,%q,(n)) :== HI(Z,%z,(n))®z,Q,. Thenthere is along exact sequence
of Z,-modules

e HY(, T2, () — HI2, T, (1) — HI(Z, Tuc(n))
— HON (2, T, (1) —

)

whereH (%, %z, (n)) is finitely generated ovek,,, H9( %2, T (n)) is cofinitely gen-
erated ovetZ,, and H4(Z, Tq, (n)) is finite-dimensional oveQ,,.

Proof. The assertions immediately follow froif86) and (S7). The details are
straight-forward and left to the reader. O

4.2 CycLE CLASS MAP

Let us review the definition of the cycle map
o) : CH () /p" — H*(Z, %1 (n)).
Consider the local-global spectral sequence

B = @ HUZT0) — H (250, (42)
TEX ™

By (S3) and the absolute cohomological purity [FG] (cf. [RZ], [Thije have

B = @ BTy (n—w) forv<n  (422)
reXv

This implies that there is an edge homomorphBi" — H?" (2, T,.(n)) with
Ey™ ~ cOker(ava' P yean H'(y, 2/p (1)) — @ vearn H(x, Z/p’“))
= CH"(2)/p",
whered*? is as in(S4). We defineo” as the composite map
oy 1 CH™(2)/p" = Ey"" — H*™ (2, %, (n)).
In what follows, we restrict our attention to the case- 2.

LEMMA 4.2.3 LetZ C 2 be a closed subscheme of pure codimensj@nd letK
be the function field of2". Put

N'HY(Z,%,(2)) == Ker(H(Z,%,(2)) = H' (K, u5?)),
N2HL(2,%,(2)) = Ker( Hy(2,%,(2) > @D wemo HAZ.T,(2))).
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(1) N'H3(2,%,.(2)) is isomorphic to the cohomology of the Gersten complex
modulop”

KN K) /0" — P ww) /" — P z/p,
yeX! zeX?
and there is an exact sequence
0 — CH*(2,1)/p" — N'H*(Z,%,(2)) — ,~CH}(Z") — 0.
See1.7for the definition oCH? (2, 1).

(2) There are isomorphisms

HY(2,%,(2)) = Ker(0": P oezo k() /" = e /"),
N°Hy (2, %(2)) ~ COker(ava' P ez 5 /P = B wen Z/p")
=CHa—2(2)/p",
whered denotes the Krull dimension of .

Proof. (1) follows from a similar argument as for the proof of Lemma2.3, using the
spectral sequence

B = @ HI(Z,T,(2) = H"(2,%.(2) ((4.2.1) withn = 2)

e
(4.2.4)

and the purity isomorphism

EY~ @ H(w,Z/p"(2—w) forv<2  ((4.2.1)withn = 2).

TeEX Y
(4.2.5)

More precisely, sinceEg’” = 0 for (u,v) with w > v andv < 2, we have
NH3(%,%,.(2)) ~ Ey?, which is isomorphic to the cohomology of the Gersten

complex in the assertion by Hilbert’s theorem 90, the MeldwsSuslin theorem [MS]
and(S4). One can prove (2) in the same way as for (1), using the speeimaence

Bt = @ HIU(2,T,(2) = HET(2,5,.(2)
rEZXvNZ
and the purity isomorphism
EY~ @ H(x,Z/p"(2—u))  forv <2
Iezu—l

instead of (4.2.4) and (4.2.5). The details are straightod and left to the reader]
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COROLLARY 4.2.6 ,»CH?(2") is finite for anyr > 1, and CH*(2)ors IS
cofinitely generated.

Proof. The finiteness of,-CH?*(2") follows from the exact sequence in Lemma
4.2.3(1) andS7) in §4.1. The second assertion follows from Lemma 4.1.2 and the
facts that CH(2") p-tors is @ subquotient off 3 (2, T (2)). O

4.3 UNRAMIFIED COHOMOLOGY
Let K be the function field of2". We define the unramified cohomology groups
HIYK,Z/p"(n)) and H (K, Q,/Z,(n)) as follows:
Hi (K2 (n) 1= Ker (B (K, 1) = @) year B H(2,T0(n))
Hi (K, Qp/Zy(n)) = lim HG (K, Z/p" (n)).

M=

We mention some remarks on these groups:
REMARK 4.3.1 (1) Forn =0, we have
HY(K,Z/p"(0) = HN(Z.Z/p") and HY(K,Qy/Z,(0) = H(2,Q,/Zy).
If k is global, thend (K, Q,/Z,(0)) is finite by a theorem of Katz-LarL] .
(2) Forn =1, we have
H2(K,Z/p' (1)) = Br(2) and  HA(K,Q,/Zy(1)) = Br(2)piors

If & is global, the finiteness di% (K, Q,/Z,(1)) is equivalent to the finiteness
of the Tate-Shafarevich group of the Picard varietyXofcf. [G] Ill, [Tal]).

(3) Forn = d := dim(2"), H& (K, Q,/Z,(d)) agrees with a group considered
by Kato[KCT], who conjectures that

HEYK,Q,/Zy(d)) =0 if p# 2 or k has no embedding inf&.

His conjecture is a generalization, to higher-dimensiopaper arithmetic
schemes, of the corresponding classical fact on the Brarsngs of local and
global integer rings. The = 2 case is proved ifKCT] and thed = 3 case is
proved in[JS].

We restrict our atttention to the cage= 2 in what follows. The following standard
proposition related! 3. (K, Z/p" (2)) with the cycle class mag?, which will be useful
later.
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ProprosITION 4.3.2 For a positive integer, there is an exact sequence
0 — N'HY(Z,%,(2)) —— H(2.%:(2)) — H(K,Z/p"(2))
— CH(2)y T HY(2T.(2).
Consequently, taking the inductive limit or> 1, we get an exact sequence
0— N 2,Tw(2) —— HY2,Twc(2)) — HE(K,Qp/Z,(2))

— CHY(2) ® Q,/Z, "’Q—H HY(Z,%(2)) .
(4.3.3)

Proof. Consider the spectral sequence (4.2.4). SiEEg = 0 for (u,v) with u > v
andv < 2 by (4.2.5), there is an exact sequnece

0— Ey® — H3(2,%,.(2)) = Ey® - E? — HY(2,%,.(2)).

One obtains the assertion by rewriting théseterms by similar arguments as for the
proof of Lemma 4.2.3 (1). O

REMARK 4.3.4 Because the group#l*(Z2,%~(2)) are cofinitely generated by
Lemma4.1.2 the sequencgt.3.3)implies thatd 3 (K, Q,/Z,(2)) is cofinitely gener-
ated if and only iiCH*(2") ® Q, /Z, is cofinitely generated.

We next prove thati3 (K, Q,/Z,(2)) is related with the torsion part of the cokernel
of a cycle class map, assuming its finiteness. This resulhwailbe used in the rest of
this paper, but shows an arithmetic meanindfgf( K, Q,/Z,(2)). See also Appendix
B below for a zeta value formula for threefolds over finite dg@lusing unramified
cohomology.

PROPOSITION 4.3.5 Assume that{3 (K, Q,/Z,(2)) is finite. Then the order of
Coker(o7, : CH(2") ® Zy — H*(2,%2,(2))) ptors
agrees with that of/3.(K,Q,/Z,(2)).

Proof. Note thatH*(2, Tz, (2)) is finitely generated ovef, by Lemma 4.1.2, so
that Coke(g%p)p_tors is finite. Consider the following commutative diagram wikaet
rows (cf. Lemma 4.1.2):

0 — CH?(2) ptors - CHX(2)®Zp, > CHX(Z)®Q, — CH(Z)®Qp/Zy — O

aJ, Q%p J, Qép l Qép/z‘p J,
0 — Coto(H*(%,T00(2))) = H*(Z,T2,(2)) = H'(2,%,(2) = H'(Z T (2)),

where the arrow denotes the map obtained from the short exact sequence imaem
4.2.3(1) and the arrows and ¢ are natural maps. See Lemma 4.4.2 below for the
commutativity of the left square. By the finitenessHyf.(K, Q,/Z,(2)), we see that

Cokel(a) ~ g H* (2, T0o(2)) := H3 (X, T0o (2))/N'H3 (2, T 0o (2))
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(cf. Lemma 4.2.3 (1)) and that the natural map (‘@%L) — Ker(gép/zp) is zero (cf.
(4.3.3)). The latter conclusion further implies that thene of the induced map
Im(b) — Im(c) is divisible. Noting these facts, we obtain a short exactieage

0 — gy H* (2, %0 (2)) — Cokero?, ) ptors — Ker(ap, /) — 0
by a diagram chase on the above diagram. Comparing this seguéth (4.3.3), we

obtain the assertion. O

4.4 ToRrSION CYCLE CLASS MAP OF CODIMENSION TwoO
We defineH3 (K, X;Q,/Z,(2)) as the following subgroup dfi3.(K, Q,/Z,(2)):
Im(HB(X, Qp/Zp(2)) — HB(Ka QP/ZP(2>)) N HSr(Ka Qp/Zp(2)).

In this subsection we relate the finiteness of this group wihinjectivity of torsion
cycle class maps of codimension two (see Corollary 4.4.8elwhich will be used
in the proof of Theorem 1.6. We start with the following prsjimn.

PrOPOSITION 4.4.1 Assume that the quotient
9y H? (2, Foo(2)) 1= HP (2, To0(2)) /N'H? (2, T (2))
is finite. Then there exists a positive integgisuch that the kernel of the map
Optorsr : CHA (2 ) prors —» HY (2, %,(2))
agrees With CH?(.2") -tors)piv for anyr > rq.
We need the following lemma to prove this proposition (cfTES] Proposition 1):

LEMMA 4.4.2 Forintegersr, s > 0, there is a commutative diagram up to a sign

NH3(2,%,(2)) — ,-CH}(2)

2
B

So,r
H(2,%,(2)) —— HY(2,%,(2)),
wherea, denotes the boundary map in the short exact sequence of Lén2n3g1)

and ¢? . denotes the cycle class map restricted to,-CH?(2"). The arrows, . is
the connecting morphism of the distinguished triangl&S6):

Ty a(2) — To(2) 25 5,21 L5 T 2)1).

Proof of Lemma 4.4.2.Note that N'H?(%,T:(2)) is generated by the image of
H2(%,%5(2)) for closed subsetg c 2 of pure codimensioni. We fix such a
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Z, and endow it with the reduced subscheme structure. Theaadiagram which
commutes obviously

HY(2,%,(2)) > HY(2,%,(2))
HY(2,T,(2) — HY(2,T,(2))
We show that the image of the uppkr. lies in the subgroup
N2HY(2,%,(2)) = Ker(HL(2,%,(2)) > @D cez0 HAZ,5,(2)
~ Coker( 0" : @) -cz0 k(=) /9" = P acn /')
= CHa—2(2)/p" (d := dim(2"))
(cf. Lemma 4.2.3). Indeed, there is a commutative diagrati @dact bottom row

s,7

Hy(%,%:(2)) Hy(%,%:(2))

| |

D HH (2, T44(2) —= @ HI2,%4(2) == ) HA(2,5,(2)),

z€Z0 z€Z0 z€Z°

whose bottom left arrow is surjective by the purity(3) and Hilbert’s theorem 90:
HY(2,%,(2) = HY (%, Z/p' (1) = w(2)* Jp' for t=r+s,s.

Hence the lowed; , is the zero map and the image of the upfer is contained in
N2HL(Z,%,(2)). Now the composite map

H(2,5,(2)) 25 N*HL(2,5,(2)) = CHa—(2) [p" — CHA(2) /"
agrees, up to a sign, with the composite map
HY(Z,%5(2)) = NH3(Z,%5(2)) =5 ,«CH}(Z) — CH*(Z) — CH*(2)/p"

by (S4) and computations on boudary maps (see [CTSS] Proof of Pitapo$, Step
6). We obtain the commutativity in question from these faoecause the cycle class
map? for cycles onZ is given by the composite map

CHy2(Z)/p" =~ N°Hz(2,%,(2)) — Hz(2,%,(2)) = HY(2,%,(2))
by definition. O

Proof of Proposition 4.4.1.The following argument is essentially the same as the
proof of [CTSS] Corollaire 3. Taking the inductive limit dfi¢ diagram in Lemma
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4.4.2 with respect te > 1, we obtain a diagram whose square commutes up to a sign
and whose bottom row is exact

NH¥ (2, %00 (2)) —=> CH*(2 ) putors

2
,1 l @p-tors,
r

HY(2, T (2)) —Zs HY(2,T00(2) — HA(2,5,(2)).

Since Kefa,) is divisible by Lemma 4.2.3 (1), this diagram induces théofeing
commutative diagram up to a sign:

Coto N H3 (2, T oo (2))) —== COto CH (.2 ) ptore)

2
l Cp-tors, -

HY(2,%:(2)),

[

COtON H* (2, T (2))) — 2> Cotor H* (2, T (2)))

where the bottom row remains exact, and the injectivity efdbntral vertical arrow
follows from the finiteness of §rH>(2, T (2)). Because CotdH 3 (2, T (2)))
is finite by (S7) and Lemma 4.1.2, the maj, - is injective for anyr for which p”
annihilates Cotdi7®(2, T (2))). Thus we obtain Proposition 4.4.1. O

COROLLARY 4.4.3 If H3.(K, X;Q,/Z,(2)) is finite, then there is a positive integer
ro such thatKer(o2 1ors.) = (CH?(2") p-tors)oiv for anyr > ro.

Proof. Since gi, H3( 2, T (2)) is a subgroup off3.(K, X;Q,/Z,(2)) (cf. (4.3.3)),
the assumption implies thatQ#H 3 (.2, T (2)) is finite. Hence the assertion follows
from Proposition 4.4.1. O

REMARK 4.4.4 If k is ¢-adic local with¢ # p, then we hav& ., (2) = Q,/Z,(2) by
definition and

HY(Z,Te0(2)) = HY(Z,Qp/Zp(2)) > H (Y, Qp/Zy(2))

by the proper base-change theorem, whEreenotes the closed fiber &f /S. The
last group is finite by Deligne’s proof of the Weil conject{De?2]. Hencegf,_tors,. for
Z is injective for a sufficiently large > 1 by Propositiord.4.1 On the other hand,
if £ is global orp-adic local, thenH?3( 2, T, (2)) is not in general finite. Therefore
we need to consider the finiteness of the gréfi( K, X; Q,/Z,(2)) to investigate
the injectivity ofo? o -

5 FINITENESS OF AN UNRAMIFIED COHOMOLOGY GROUP

Letk,S,p, & and K be as in the notation 1.8. We always assume 1.8.1 throughout
this and the next section.
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5.1 FINITENESS OF H3 (K, X;Q,/Zy(2))

In this and the next section, we prove the following resultich implies the finiteness
of H3.(K, X;Q,/Z,(2)) in Theorem 1.3 (1). See the beginningsaffor HO.

THEOREM 5.1.1 AssumeéHO0, H1x* and eitherp > 5 or the equality
H; (k, H? (7, QP/ZP(Q)))DW = H' (k, H? (77 @P/ZP(Q)))DW' (*g)
ThenHZ.(K, X;Q,/Z,(2)) is finite.

In this section we reduce Theorem 5.1.1 to Key Lemma 5.4té&ta§5.4 below. We
will prove the key lemma ifg6. We first prove Theorem 1.6 admitting Theorem 5.1.1.

Proof of Theorem 1.6The assumptio{?(X, Ox) = 0 impliesH1x and ) (cf.
Fact 1.1, Remark 3.2.5, Remark 3.1.2(1)). HehGR K, X;Q,/Z,(2)) is finite by
Theorem 5.1.1. By Corollary 4.4.3, there is a positive ieteg such that

Ker(gi—torsr) = (CH2(%)p—tors)DiV for anyr > ro.

Thus it remains to check that élﬂ%)p_mfs is finite, which follows from the finiteness
of CHQ(X),,_K,,S (cf. Theorem 3.1.1) and [CTR2] Lemma 3.3. This completes the
proof. O

5.2 PROOF OF THEOREM 5.1.1, STEP 1

We reduce Theorem 5.1.1 to Proposition 5.2.2 below N8t 3 (X, Q, /Z,(2)) (resp.
gy H3(X,Q,/Z,(2))) be the kernel (resp. the image) of the natural map

H(X,Qp/Z(2)) — H*(K,Qp/Zy(2)).
In view of Lemma 4.2.3, there is a commutative diagram witaaxows
N3 (X,Qp/Zy(2)) — H*(X,Qp/Zp(2)) — griyH*(X,Q,/Zy(2))
51l 52l 5l

D N°HyY (2,%x(2) = @ Hy, (2.%=(2) » @ @ Hy(2,%=(2)),
veST ve St veST yeY)
(5.2.1)

where the arrows, andd arise from boundary maps of localization exact sequences
andé; is induced by the right square. Note that we have

Ker(d) = HG (K. X;Qy/Zy(2)).
ProprosITION 5.2.2 Assumdl0, H1x and eitherp > 5 or (x,). Then we have

Ker(d)piy = 0.
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The proof of this proposition will be started §b.3 below and finished in the next
section. We first finish the proof of Theorem 5.1.1, admitti#rgposition 5.2.2. It
suffices to show the following lemma (see also Remark 3.3)4 (2

LEMMA 5.2.3 (1) If kis local, thenKer(?) is cofinitely generated ovét,,.

(2) Assume thak is global, and thatCoker(reng/Zp)Di\, is cofinitely generated

over Zy, Wherereg@p/zp denotes the regulator maf8.2.1) ThenKer(d) is
cofinitely generated ovét,,.

Proof. (1) is obvious, becausH?(X, Q,/Z,(2)) is cofinitely generated. We prove
(2). We use the notation fixed in 1.9. By Lemma 4.12( .2, T.(2)) is cofinitely
generated. Hence it suffices to show CdRer is cofinitely generated, wherg is as
in (5.2.1). There is a commutative diagram

CH*(X,1) ® Q,/Z, —— N'H*(X,Q,/Z,(2))

o| |

D CHi2(Y,) ©Qp/Z, —=> P N°Hy, (2,T(2)),

veST veST

where the bottom isomorphism follows from Lemma 4.2.3 (2] ans the boundary
map of the localization sequence of higher Chow groups. Sexl( for the top
arrow. SinceN°Hy. (%2, T (2)) is cofinitely generated for any € S*, it suffices to
show that for a sufficiently small non-empty open suliset S, the cokernel of the
boundary map

O : CH (X, 1) ® Qp/Zy — P CHa2(V,) ® Qy/7Z,
ve(U)?

is cofinitely generated. Note that GHh(Y,) = CH(Y,) if Y, is smooth. Now let
U be a non-empty open subset®f\ X for which 2" xg U — U is smooth. Put
A= H*(X,Q,/Z,(2)), viewed as a smooth sheaf 6f. There is a commutative
diagram up to a sign

ety /2.,
CH2(X,1) ® Q,/Z, " HV(k, A)

| |

P cH' (V) 2 Q)/z, —= @ A(-1)%.

veU? veU?
See§2.5 for ;. The bottom arrowy; is defined as the composite map

CH'(Y,) @ Qp/Zp — H?(Yy, Qp/Zp(1)) = H? (Yo, Qp/Zp(1)+ = A(=1)%,
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where the first injective map is the cycle class map for digsanY,. Note that
Cokel(dy) is divisible and that Kegr;) has a finite exponent by the isomorphisms

Ker(e) = H'(Fy, H' (Yy,Qp/Zy(1))) = H' (F,, Cotor H' (X, Qp/Zy(1))))

for v € U, where the first isomorphism follows from the HochschildBespec-
tral sequence fo¥,,, and the second follows from Deligne’s proof of the Weil con-
jecture [De2] and the proper smooth base-change thediény,, Q,/Z,(1)) =~
H'(X,Q,/Z,(1)). Hence to prove that Cok@ly ) is cofinitely generated, it suffices
to show that the map

9 =100y : CH(X,1) ® Qp/Zy, — P (A(-1)%)py
veU?

has cofinitely generated cokernel (cf. Lemma 2.3.2 (2))a|5'rrCoke|(reg@p/Zp)Di\,
is cofinitely generated by assumption, which implies tlahas cofinitely generated
cokernel by Lemma 2.5.1 (1). Thus we obtain Lemma 5.2.3. O

5.3 PROOF OF THEOREM 5.1.1, STEP 2

We construct a key commutative diagram (5.3.3) below andgtemma 5.3.5, which
play key roles in our proof of Proposition 5.2.2. We need s@m&iminaries. We
suppose that is global until the end of Lemma 5.3.1. L&t C S be the set of the
closed points o of characteristip. For non-empty opety C S, put

2y =% xsU and 2y[p~':= 2y xs (S\ 2).

Letju : 2Zu[p~'] — Zv be the natural open immersion. There is a natural injective
map

av, : H3 (2, r<aRjvapy’) = H3(Zup™], i)
induced by the canonical morphismas Rju.ps° — Rju.ps: .
LEMMA 5.3.1 We haveV'H3(2y[p~Y, u5?) C Im(au,,).
Proof. We compute the local-global spectral sequence

B @ HE v H 2 res R,
ze(Zu)v

By the absolute cohomological purity [FG] and Lemma 3.5)5\{ have

EUY H” (K5 :LL?TQ) ('f u = 0)
T\ Deevie B i) (i 0 <2).

Repeating the same computation as in the proof of Lemma,32.Bbtain

N2l 1) = By = EL? o HY (2, reaRjvaig?),
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which completes the proof of Lemma 5.3.1. O

Now we suppose thatis either local or global, and put

H3(X,Q,/Z,(2)) (if k is ¢-adic local with? # p)
w.— J H3 (2, 7<2Rj.Qp /Ly (2)) (if k is p-adic local)
lim H3( 2y, 7<2Rju«Q,/Z,(2)) (if k is global),
scucs
(5.3.2)

wherej in the second case denotes the natural open immerSiern 2", and the
limit in the last case is taken over all non-empty open swiget .S which contain
J). By Lemma 3.5.3 and Lemma 5.3.1, there are inclusions

N'H*(X,Qp/Zp(2)) C W C H(X,Qy/Zy(2))
and a commutative diagram
NF'H?(X,Qp/Zp(2))ov ——— (¥ )oiv (5.3.3)
S,
H'(k, H*(X,Qp/Zy(2))).
Here NF'H3(X,Q,/Z,(2)) is as we defined if3.5, and we put
w0 =Ker(# — H*(X,Q,/Z,(2))). (5.3.4)

The arrowsv andv are induced by the edge homomorphism (3.5.1). We show here
the following lemma, which extends Lemma 3.5.2 under Asdiond..8.1:

LEMMA 5.3.5 Assume eithep > 5 or (x4). Then we have
Im(w) € Hj(k, H*(X,Q,/Zy(2))).

REMARK 5.3.6 We will prove the equalitym(w) = H}(k, H*(X,Qp/Zy(2)))oi
under the same assumptions, later in Len¥a2

The following corollary of Lemma 5.3.5 will be used later§b.4:
COROLLARY 5.3.7 Assuméd0, H1x and eitherp > 5 or (x,). Then we have

Im(v) = Im(w) = Hgl(k;,H2(7, Qp/Zy(2)))piv-

Proof of Lemma&.3.5 The assertion under the second condition is rather obviaus.
particular, we are done i is /-adic local with¢ # p (cf. Remark 3.1.2 (1)). Ik is
p-adic local withp > 5, the assertion follows from Corollary 2.2.3 and Lemma 3.5.4
Before proving the global case, we show the following sulmlean
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SUBLEMMA 5.3.8 Let k be an/-adic local field with¢ # p. Let 2" be a proper
smooth scheme ovér:= Specoy). PutA := H*(X,Q,/Z,(n)) and

Hi (X, Qp/Zp(n)) := |m(Hi+1(<% Qp/Zp(n)) — H™ (X, Qp/ZP(”)))-
Then we have
Hj(k, A) C Im(F'H™ (X, Qp/Zy(n)) N HG (X, Qp/Zp(n)) — H' (k, A))

and the quotientis annihilated (A /Api, ), whereF'* denotes the filtration induced
by the Hochschild-Serre spectral seque(.é.2)

Proof. PutA := Q,/Z,, and letF be the residue field of. By the proper smooth
base-change theore@;, acts onA through the quotienty. It suffices to show the
following two claims:

(i) We have
Im(F'H™ (X, A(n)) N HSN (X, A(n)) — H'(k, A)) = H'(F, A),
whereH(FF, A) is regarded as a subgroup &f'(k, A) by an inflation map.

(i) We have
Hj(k,A) C H'(F, A)

and the quotient is annihilated by (A/Apy ).

We show these claims. L&t be the closed fiber of" /.S, and consider a commutative
diagram with exact rows

0 ——= H'(F,H'(Y, A(n))) ——= H""'(Y, A(n)) ———= H""'(Y, A(n)))*

o1 Uzl Zlas

0 H' (k, A) ————= H"™"(X, A(n))/F* —— H""(X, A(n)))*,

where the exactness of the upper (resp. lower) row folloamfihe fact that czy) =
1 (resp. cdGy) = 2). The arrowsr; andos are induced by the isomorphism

H*(Y,A(n)) ~ H*(X,A(n)) (proper smooth base-change theorem)
The arrowo, is induced by
o s HHU(Y, A(n)) = H*Y(2, A(n)) — H™*(X, A(n)).
Since In{o}) = Hi (X, A(n)) by definition, the claim (i) follows from the above

diagram. The second assertion immediately follows fromféoe thatH}(k:, A) =
Im(H(F, A)piy — H'(k, A)). This completes the proof of Sublemma 5.3.8. [
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We prove Lemma 5.3.5 in the case tlas global withp > 5. Let # and#° be as
in (5.3.2) and (5.3.4), respectively, and put

A= H*(X,Q,/Z,(2)).

Note that(# °)pw = #biw by HO. By a similar argument as for Lemma 2.4.1, we
have

Yo = lim H*( 20, 7<2Rjr+Qp/Zy(2))oiv-
scucs

Here the limit is taken over all non-empty open subdéts. S which containX’,
andjy; denotes the natural open immersign; [p—!] — 2. By this equality and
the definition ongl(k,A) (cf. Definition 2.1.1), it suffices to show the following
sublemma:

SUBLEMMA 5.3.9 Let U be an open subset &f containing X', and fix an open
subsetU’ of U \ X for which 2+ — U’ is smooth(and prope). Put #y :=
H3( 2y, 7<2Rju+Q,/Z,(2)). Then for anyr € (#)ow, its diagonal image

- H' (ky, A) H (o, A)

is zero.

Proof. Since (#1)o is divisible, it suffices to show that is killed by a positive
integer independent af By Lemma5.3.87, withv € (U’)! is killed by #(A/Apy ).
Next we comput&, withv € X, Let 2, andj, : X, — %, be asin 1.9, and put

Wy i= H* (X, 7<aRjuQyp [ Z,(2)).
By HO overk, we have
Im((#u)ow — #,) C Ker(#;, = H*(X,Qp/Zy(2))oiv-

Hence Corollary 2.2.3 and Lemma 3.5.4 imply tmat = 0 for v € X. Finally,
because the product of the other components

H H(k,, A)
1
veS\(U'UX) Hy (ky, 4)

is a finite group, we see that all local componentg @fre annihilated by a positive
integer independent af. Thus we obtain the sublemma and Lemma 5.3.5. 0

5.4 PROOF OF THEOREM 5.1.1, STEP 3
We reduce Proposition 5.2.2 to Key Lemma 5.4.1 below. Weaapthe conditions in

Proposition 5.2.2 with another condition
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N1: We havelm(w) = Im(v) in (5.3.3) and Cokerreg, ,; )ow is
cofinitely generated ovef,,. Here reqy, sz, denotes the regulator map
(3.2.1)

Indeed, assumin@I0, H1x and eitherp > 5 or (x,), we see thaiN1 holds by
Corollary 5.3.7 and the fact that the quotie‘iﬁ(k,A)Di\,/Hgl(k,A)Di\,, with A =
H?*(X,Q,/Z,(2)), is cofinitely generated ovef, for (cf. Lemma 2.4.1). Thus
Proposition 5.2.2 is reduced to the following:

KEY LEMMA 5.4.1 Assumdl0 andN1. Then we hav&er(d)py, = 0.
This lemma will be proved in the next section.

6 PRrRoOOF OoF THE KEY LEMMA

The notation remains as in the previous section. We alwasimas 1.8.1 throughout
this section. The aim of this section is to prove Key Lemmals.4

6.1 Proor or KEY LEMMA 5.4.1

Let
0:HY(X,Q,/Z,(2) — D P Hy(2,T(2))

veS?t ye(yv)o
be the map induced Ryin (5.2.1). Put

© = H*(X,Q,/Z,(2)) [ (N'H (X, Qp/Zy(2))0w)
and let® C O be the image of Kéb). Note that we have

6 = Ker(6 - g H (X, Q)/Z,(2)) 5 P vest @ vervp Hi(2,50(2)))
and a short exact sequence
0 — Coton(N'H?(X,Q,/Z,(2))) — 6 —> Ker(d) — 0.

If & is global, the assumption of Proposition 3.3.2 (2) is saiisfiy the conditiomN1.
Hence CotofN'H?3(X,Q,/Z,(2))) is finite in both case is local and global (cf.
Proposition 3.3.2, (3.3.1)). By the above short exact secg@nd Lemma 2.3.2(3),
our task is to show

Opy = 0, assuming HO and N1.

Let F* be the filtration onH?3(X,Q,/Z,(2)) resulting from the Hochschild-Serre
spectral sequence (2.6.2). We define the filtratioh on © as that induced by
F*H3(X,Q,/Z,(2)), and define the filtratiod*© C O as the pull-back of*6.

SinceHO implies the finiteness of §©, it suffices to show
(F'©)py =0, assumingN1. (6.1.1)

The following lemma will play key roles:
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LEMMA 6.1.2 Suppose that is local. Then the following composite map has finite
kernel

0o s H2(k, H'(X,Q,/Z,(2)) — H*(X,Q,/Z,(2)) = @ H(2,%(2)).

Here the first map is obtained by the Hochschild-Serre spésquencé2.6.2)and
the fact thatcd(k) = 2 (cf. §2.6). Consequently, the group?H3(X,Q,/Z,(2)) N
Ker(d) is finite.

Admitting this lemma, we will prove (6.1.1) i§§6.2—6.3. We will prove Lemma 6.1.2
in §6.4.
6.2 PROOF OF (6.1.1)IN THE LocAL CASE

We prove (6.1.1) assuming thatis local and that Lemma 6.1.2 holds. Lébe the
residue field of. By Lemma 6.1.2F26 is finite. We prove that If¥'*© — grk.o)

is finite, which is exactly the finiteness of@ and implies (6.1.1). Le¥ and#°
be as in (5.3.2) and (5.3.4), respectivé¥1 implies

orpO ~ F'H3(X,Q,/Z,(2))/(#°)on + F?H*(X,Q,/Z,(2))). (6.2.1)

If p # ch(F), then the group on the right hand side is clearly finitep K= ch(FF),

then Lemma 6.2.2 below implies that the image%@ — grk.O is a subquotient of
Cotor(#?), which is finite by the proof of Lemma 3.5.4. Thus we are reditoe

LEMMA 6.2.2 If p = ch(F), thenKer(d) C 7.
We do not need to assurk®0 or N1 in this lemma.

Proof. Let the notation be as in 1.10. Note thét = H3( 2, 7<2Rj.Q,/Z,(2)) by
definition. There is a commutative diagram with distingeidhows inD®(.2, Z/p")

T(2) — Rjps? —— Ri.Ri'S, (2)[1]] —— = T(2)[1]

tL Ri*Ri!(t)[l]l t[I]L

T<aRjups? —— Rjupl? — RivRi' (T<aRjup?)[1] —— (t<2Rj.ps?)[1],

wheret is as in(S5) in §4.1. The central square of this diagram gives rise to the left
square of the following commutative diagram (whose rowsnateexact):

HY(X,Qp/Zp(2) —  Hy(2,T(2))  — D@ Hy(%,T(2))

yeYo

H ! !

H(X,Qp/Zy(2)) = HO(Y,i" R*j.Qy/Zy(2)) =2 E@O H(y,i" R*j.Qyp/Zp(2)).
(6.2.3)
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Here the middle and the right vertical arrow is obtained ftbencomposite morphism

Ri. Ri' (t)[1]
—_—

Ri.Ri'T,.(2)[1] RiRi'T<o Rjupa? [1] <= T3 Rj.ps?,

and the right square commutes by the functoriality of restmh maps. The composite
of the upper row i9. We have Kefe;) = # obviously, and, is injective by the
second assertion of Lemma 3.5.5. Hence we havéoKer Ker(ezoe;) = Ker(ey) =
. O

6.3 PROOF OF (6.1.1)IN THE GLOBAL CASE

We prove (6.1.1) assuming thatis global and that Lemma 6.1.2 holds. L#t and
#° be as in (5.3.2) and (5.3.4), respectivé¥l implies

OrpO ~ F'H*(X,Q,/Z,(2))/(#°)on + F°H*(X,Q,/Z,(2))).  (6.3.1)
We first prove the following lemma, where we do not assiiteor N1:
LEMMA 6.3.2 Ker(d) C 7.

Proof. We use the notation in 1.9. By the same argument as for thd pfa@mma
6.2.2, we obtain a commutative diagram analogous to (6.2.3)

H(X,Qp/Zp(2)) — ®1H$U(%Tw(2)) — D D HH(2To(2)

veS veSL ye(Yy)0

|| ! !

H(X,Qp/Zp(2)) 5 @ HO(Ye,iiR%j0xQp/Zp(2)) 2 @ @ HO(y i5R50.Qp/Zp(2))
ver VEX ye(Yy)O

The composite of the upper row &8 The assertion follows from the facts that
Ker(e1) = # and thak; is injective (cf. Lemma 3.5.5). O

We prove (6.1.1). By Lemma 2.3.2 (4), it suffcies to show that
(Fzé)DiV =0= (gr}vé)DiV-

SinceF?H?*(X,Q,/Z,(2))NKer(d) has afinite exponent (Corollary 2.6.3 (2), Lemma

6.1.2), we havéF20)py, = 0. We show(grk.6)py = 0. By (6.3.1) and Lemma 6.3.2,
we have

grkO c Z =W/ (# Vo + Z)  with Z := w° N F?H?(X,Q,/Zy(2)).
By Corollary 2.6.3 (1), Cotdr7) has a finite exponent, which implies
(9rk.0)pi C Zpiy = Coto( # O)py, = 0
(cf. Lemma 2.3.2(3)). Thus we obtain (6.1.1).
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6.4 PROOF OF LEMMA 6.1.2

The case that is p-adic local follows from [Sat1l] Theorem 3.1, Lemma 3.2 (1) (c
[Ts3]). More precisely, 2" is assumed in [SatEB to have strict semistable reduction,
but one can remove the strictness assumption easily. Thédate left to the reader.

We prove Lemma 6.1.2 assuming thats ¢-adic local with¢ # p. Note that
in this caseZ"/S may not have semistable reduction.4f /S has strict semistable
reduction, then the assertion is proved in [Satl] Theoreim @e prove the general
case. Put

A:=Q,/Z,

for simplicity. By the alteration theorem of de Jong [dJ], take a proper generically
finite morphismf : 27 — X such thatZ” has strict semistable reduction over
the normalization5’ = Specoy/) of S in Z”. sNote thab, is the composite of a
composite map

0+ H(k, HY (X, A(2)) — HP(X, A@2)) 5 H3(2, A(2)
with a pull-back map

HY(2,A(2) — €D Hy(2,A2)). (6.4.1)

yeYy?o

Here the arrow'°° is the boundary map of a localization exact sequence. Theae i
commutative diagram

H2(k, H (X, A(2)) —— H}(2, A(2))

f*l | lf*

H2(, HY (X', A(2)) —> Hib (27, A(2),

whereX’ := 27 ®,,, k andY” denotes the closed fiber ¢#”/S’. We have already
shown that Kefo}) is finite, and a standard norm argument shows that the leftaer
arrow has finite kernel. Thus K@x;) is finite as well. It remains to show

LEMMA 6.4.2 Im(d3) N N2H{ (2, A(2)) is finite, whereN?H{. (2, A(2)) denotes
the kernel of the maf6.4.1)

Proof. First we note that
Im(ds) C Im(H'(F, H2(2™", A(2))) — Hy (2, A(2))).
Indeed, this follows from the fact that factors as follows:
H?(k,H (X, A(2))) ~ H'(F, H' (k" H (X, A(2))))
— H'(F, H*(X", A(2))) — H'(F, HX(2'", A(2))) — Hy (2, A(2)).
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Hence it suffices to show the finiteness of the kernel of thepmmite map

v HY(F, HA( 2V, A(2) — HEH(2,A2) — @ HNZ.A@2)).
yeYo

There is a commutative diagram with exact rows and columns

CHy—2(Y)® A ———=CHy 2(Y)® A

| [

H(F, Hp(27, A(2))) ——— Hy (2, A(2)) ————= HL(2", A(2))

Tl |

D A — @ HZ"A2),

yeY?o ne(Y)O0
whose columns arise from the isomorphisms
N?Hy (2, A(2)) ~ CHy_»(Y)® A,  N°He-(2", A(2)) ~ CHq_2(Y) ® A

with d := dim(Z") (see Lemma 4.2.3(2), noting that.(2) = A(2) in this situa-
tion). The middle exact row arises from the Hochschild-&epectral sequence for
the coveringZ™" — 2. A diagram chase shows that Kej ~ Ker(), and we are
reduced to showing the finiteness of Ker Because the natural restriction map

CHd72(Y)/CHd72(Y)tors — CHd72( )/CHd 2( )tors

is injective by the standard norm argument, the finitenedéeof:) follows from the
following general lemma:

LEMMA 6.4.3 Lete be a positive integer and léf be a scheme which is separated of
finite type overr’ := F with dim(Z) < e. Then the grouftH._1(Z)/CH._1(Z)tors
is a finitely generated abelian group.

Proof of Lemmd.4.3 Obviously we may suppose th4tis reduced. We first reduced
the problem to the case whefgis proper. Take a dense open immersibr— 7'

with Z' is proper. WritingZ"” for Z’ \ Z, there is an exact sequence
CH._1(Z2") — CH._1(Z') — CH._1(Z) — 0,

where CH_;(Z") is finitely generated free abelian group becalise(Z”) < e — 1.
Letf: Z — Z be the normalization. Sincgis birational and finite, one easily sees
that the cokernel of, : CH._1(Z) — CH._1(Z) is finite. Thus we may assuni¢

is a proper normal variety of dimensierover F'. SinceF' is algebraically closed/
has anF'-rational point. Now the theory of Picard functor (cf. [Mg5) implies the
functorial isomorphisms CH ;(Z) ~ Picz,p(F), where Pig,r denotes the Picard
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functor for Z/F. This functor is representable by a group scheme and fitstfireto
exact sequence of group schemes

0— PICE/F — PiCZ/F — NSZ/F — 0,

where Pi(}/F is quasi-projective oveF and the reduce part of NG is associated
with a finitely generated abelian group. SinEes the algebraic closure of a finite
field, the group Pig, -(F") is torsion. Lemma 6.4.3 follows immediately from these
facts. O

This completes the proof of Lemma 6.4.2, Lemma 6.1.2 and¢lgddtnma 5.4.1.00
7 COKERNEL OF THE REGULATOR MAP

Letk,S,p, & and K be as in the notation 1.8. We always assume 1.8.1 throughout
this section. For a proper smooth geometrically integreietyaZ over a finite fieldF.
we say thathe Tate conjecture holds in codimensibfor Z, if the étale cycle class
map

CHY(Z) ® Qy — H*(Z @r F,Q,(1))°*

is surjective for a prime number # ch(F) ([Tal], [Ta2]). By [Mil] Theorems
4.1 and 6.1, this condition is independent/of4 ch(IF) and equivalent to that the
Grothendieck-Brauer group BY) = H?(Z, Gy) is finite.

7.1 STATEMENT OF THE RESULT

Let ¥ be the category oZ,-modules modulo the Serre subcategory consisting of
p-primary torsion abelian groups of finite-exponent. In thétion, we prove the
following result, which implies Theorem 1.3 (2) (see theibatg of §3 for HO):

THEOREM 7.1.1 AssumeHO and eitherp > 5 or the equality
Hg1 (k, H? (7, Qp/Zp(2)))ow = H' (k, H? (77 Qp/Zy(2)))oiv- (*g)
Assume further the following conditians

T: The reduced part of every closed fiber®T/S has simple normal crossings on
&, and the Tate conjecture holds in codimensidier the irreducible compo-
nents of those fibers.

F: Cotor(CHQ(X)p_torS) has a finite exponent.
Then there exists a short exact sequencé in
Moreover the image of the last map contaiig (K, X; Q,/Z,(2))piv-

This result is a generalization of Theorems 3.1.1 and 5.adeuthe assumptioff.
The formulation of Theorem 7.1.1 in this final version was inirspired by discus-
sions with Masanori Asakura.

0— CHQ(X)p-IOFS — — ng(Ka X;Qp/Zp(2)).
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7.2 PROOF OF THEOREM 7.1.1

Let
0 H(X,Q,/Z,(2) — P P Hj(2,T(2)).

vES ye(Yy,)"

be the map induced hyin (5.2.1). Let# be asin (5.3.2) and Ie#'° be as in (5.3.4).
We need the following two lemmas:

LEMMA 7.2.1 Assume thdT holds. Then we have
Yo C Ker(d) + F?H?*(X,Q,/Z,(2)).
LEMMA 7.2.2 Assume eithep > 5 or (x4). Then we have
Im(w) = HE(k, H*(X, Qp/Z(2)))oi,
wherew is as in(5.3.3)

Lemma 7.2.1 will be proved if§7.4-7.5 below, and Lemma 7.2.2 will be proved in
§7.3 below. We prove Theorem 7.1.1 in this subsection, admgithese lemmas. Let

H® .= H*(X,Q,/Z,(2)), N'H®c H®> and F'H®>cC H®
be as ing3.4, and put
NF'H? .= N'H*N F'H?® and A:= H*(X,Q,/Z,(2)).

We see that
Cotor{ N'H?) has a finite exponent (7.2.3)

by the exact sequence (3.3.1) and the assumftj@nd moreover that

Cotor{ NF'H?) has a finite exponent (7.2.4)

by HO.
We work in% for a while to simplify the arguments. BYO, (3.3.1) and Lemma
3.3.5, there is a short exact sequenc&’in

0 — CH*(X)ptors — H' (k, A)/Im(reg, ,, ) — H'(k, A)/NF — 0,

where NF denotes the image dVF'H? in H'(k, A). By the assumptionp’ > 5
or (x,)" and Lemma 3.5.2, the composite ma¥F''H?)pyy — F'H? — H'(k, A)
factors through (k, A). Therefore we obtain a short exact sequencé in

0 — CH*(X)ptors — H, (k, A)/Im(reg, ,; ) — Hy(k, A)/NFpy — 0,

whose exactness follows from (7.2.4) and the fact that therabmap( NF*H3)py, —
NFpy is surjective (cf. Corollary 2.6.3 (1) and Lemma 2.3.2 (3))remains to con-
struct an injective map

a: Hy(k,A)/NFoy — H(K, X;Q,/Zy(2)) in %
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whose image contain§3.(K, X;Q,/Z,(2))oiv-
We work in the usual categorg,-modules in what follows. There aig,-
homomorphisms
H (K, X;Qp/2,(2) ——— H*/N'H? (7.2.5)
™ i (finite-exponent kernel)

H3/(N1H3 + 1,7*2[{3)7

where is induced by the definition off3 (K, X; Q,/Z,(2)) and Ke(r) has a finite
exponent by Lemma 3.3.5 (i.er,is an isomorphism ir¢’). On the other hand, there
is a diagram ofZ,-submodules of{?

(N'H?)py = NH3 0 #pi C Wow 25 Ker(d) + F2H3
N1H3 C Ker. ) 6.2.2and 6.3.2 W,

where the inclusion Kép) C # is obvious wheri is ¢-adic local with¢ # p. Since
NIH3 N #py is divisible up to a finite-exponent group by (7.2.3), we have

Wow /(N*H? 0 #ow) ~ (W /N'H?)pi, (7.2.6)
by Lemma 2.3.2(3). Now for a subgrougd C H?3, let M be its image into

H3/(N'H? + F?H?). Then we havé/p,, C Ker(d) C # by the above diagram, and
moreover

Wow = (Ker(a))ow = (¥ )ow (7.2.7)

by (7.2.6) and the fact that Ker) has a finite exponent (cf. Lemma 2.3.2 (3)). Noting
that Coke(Hgl(k, A)) has a finite exponent (Remark 2.4.9 (1)), we define the desired
mapa in ¢ as that induced by the following diagram:

Hgl(k,A)/NFDiv o > ng(K,X;Qp/Zp(Q))

iﬂ'ob

H;(k’a A)Div/NFDiv —T (W)Div - - Ker(a),

where the right vertical map is surjective by the definitidnt. (K, X; Q,/Z,(2))

and has finite-exponent kernel by the diagram (7.2.5). Ttenar is obtained from
Lemma 7.2.2, which is surjective 0 and has finite-exponent kernel by (7.2.4). By
the last fact is injective in¢’. Finally Im(«) containsH32.(K, X;Q,/Z,(2))ow by

the surjectivity ofr and (7.2.7). Thus we obtain Theorem 7.1.1 assuming Lemmas
7.2.1and 7.2.2.
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7.3 PROOF OF LEMMA 7.2.2

If k£ is local, then the assertion follows from Corollary 2.2.2ldremma 3.5.4. We
show the inclusion Irfw) > H}(k, H*(X,Q,/Z,(2)))owv, assuming thak is global
(the inclusion in the other direction has been proved in Lent8.5). Putd :=
H?*(X,Q,/Z,(2)). By Lemma 2.3.2(3), it is enough to show the following:

(i) The image of the composite map
WO e FUHY(X, Q) Z,(2) —— H' (k, A)

containsH;(k, A)piv, where the arrow) is as in(3.5.1)

(i) The kernel of this composite map is cofinitely generated @yfitaite-exponent
group.
(i) follows from Corollary 2.6.3 (1). We prove (i) in whatlows. We use the notation
fixed in 1.9. LetU C S be a non-empty open subset which contaihand for which
Zuv — U is smooth outside of. Letjy : 2y[p~t] — 2u be the natural open
immersion. Put’ := U \ X andA := Q,/Z,. Forv € X, put

M, = F'H*(X,, A(2))/(H* (20, T<2R(j0)« A(2))°)ow,
where the superscriptmeans the subgroup of elements which vanishes in
H3(X,A@2)) ~ H(X, @, T, A(2)).
We construct a commutative diagram with exact rows

0 —— Ker(ryy) ——= FUH(2y[p"], A@2) — % ) M,
veXr

cu Yu bzl

HY (U, A) — P H}, k., A),
vel

0 — Ker(ay)

whereF!on H3(Zy[p~1], A(2)) means the filtration resulting from the Hochschild-
Serre spectral sequence (3.2.3) #&;[p~!], and+y is an edge homomorphism of
that spectral sequence. The arrawsanday; are natural pull-back maps, and we put

Hj,(ky, A) := H' (ky, A)/Hy (ky, A).

The existence ofx; follows from the local case of Lemma 7.2.2, arid denotes the
map induced by the right square. Note that (er) containsH ; ;;(k, A). Now let

c: W= lim Ker(ry) — lim Ker(ay)
rYcucs XYcucs

be the inductive limit ok;;, whereU runs through all non-empty open subsetsSof
which containsY’ and for whichZy, — U is smooth outside ob/. Because the group
on the right hand side contaittg] (k, A), it remains to show that
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(iii) Coker(c) has a finite exponent.
(iv) 71 is contained in#°.

(iv) is rather straight-forward and left to the reader. Wewer (iii)). ForU c S as
above, applying the snake lemma to the above diagram, wéaethe kernel of the
natural map

Coker(cyy) — Coker()y)

is a subquotient of Kébs;). By the local case of Lemma 7.2.2, we have
Ker(bs) ~ € IM(F°H*(X,, A(2)) = M,)
veX
and the group on the right hand side is finite by Lemma 7.5.@vbeOn the other
hand Cokefyyy) is zero ifp > 3, and killed by2 if p = 2. Hence passing to the limit,
we see that Cokér) has a finite exponent. This completes the proof of Lemma 7.2.2
7.4 PROOF OF LEMMA 7.2.1, STEP 1

We start the proof of Lemma 7.2.1. Our task is to show the Biolu
2(Fow) CO(FH? (X, Qp/Zy(2)))- (7.4.1)
If k is global, then the assertion is reduced to the local cagause the natural map
FPH?(X,Qy/Zp(2)) — @ FPH? (X, Qp/Zy(2))
veS?T

has finite cokernel by Corollary 2.6.3(2).

Assume now thak is local. In this subsection, we treat the case thist¢-adic
local with ¢ = p. We use the notation fixed in 1.10. Recall thhahas simple normal
crossings oriZ” by the assumptioff’. Note that factors as

H*(X,Qp/Zy(2)) — Hy (2,Qp/Zy(2)) — @ H;(% Qp/Zp(2)),
yeyo
and that Info) C Im(:). There is a short exact sequence
0 — HN(F, Hp (2™, Qp/Zy(2))) — Hy (2, Qp/Zp(2))
— He(2'",Q,/Z,(2))%" — 0

arising from a Hochschild-Serre spectral sequence. We Kexe) ~ CH;_»(Y) ®
Q,/Z, with d := dim(Z") by Lemma 4.2.3(2). Hence to show the inclusion (7.4.1),
it suffices to prove

ProposITION 7.4.2 (1) Assume thdT holds. Then the composite map
CHa—2(Y) ® Qp/Zp — Hy (2, Qp/Zp(2)) — He-( 2, Qp/Z(2))
(7.4.3)
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is an isomorphism up to finite groups. Consequently, we have
Im(u) ~ H(F, Hy( 2", Qp/Z(2)))
up to finite groups.
(2) The image of the composite map
HP(k, HY (X, Qp/Z(2))) — H(X,Qp/Zy(2)) — Hy (2, Qp/Zp(2))
containsH ' (F, H2(2", Qp/Zy(2)))oiv-
We first show the following lemma:

LEmMA 7.4.4 (1) Consider the Mayer-Vietoris spectral sequence obtaineoh fr
the absolute puritycf. [RZ], [Th], [FG])
B = H* AV, Q) Zp(u + 1)) = HEP (2, Qp/Z(2)),
(7.4.5)

whereY (@ denotes the disjoint union gffold intersections of distinct irre-
ducible components of the reduced partof Then there are isomorphisms up
to finite groups

Hl(Fa H%(%ura Qp/Zp(2))) ~ Hl(Fa E27174)7
H (27, Qp/Z,(2))° ~ (By)%".

(2) As aGr-module HO(k", H?(X,Q,)) has weight< 2.

Proof of Lemma 7.4.4(1) SinceE;"" = 0 for any (u,v) with u > 0 or 2u + v < 2,
there is a short exact sequence

0— By® — HA(ZY,Q,/Z,(2))) — Ey " — 0, (7.4.6)

and the edge homomaorphism
ESA — H%(%ur7 Qp/Zp(2))), (7.4.7)

where we haveZ; * = Ker(d; V*) andES* = Coked; ") andd; ** is the Gysin
mapH°(Y?,Q,/Z,) — H*(Y™",Q,/Z,(1))). Note thatE}"" is pure of weight
v — 4 by Deligne’s proof of the Weil conjecture [De2], so thét(F, E%) (i = 0,1)
is finite unlese = 4. The assertions immediately follow from these facts.

(2) By the alteration theorem of de Jong [dJ], we may assumaeZh is pro-
jective and has semistable reduction ogerlf X is a surface, then the assertion is
proved in [RZ]. Otherwise, take a closed immersigh— PY =: P. By [JS] Propo-
sition 4.3 (b), there exists a hyperplafle C P which is flat overS and for which
¥ = Z xp H is regular with semistable reduction ov€r The restriction map
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H*(X,Qp,) — H*(Z,Q,)(Z = & x,, k) is injective by the weak and hard Lef-
schetz theorems. Hence the claim is reduced to the casefatssr This completes
the proof of the lemma. O

Proof of Proposition 7.4.2(1) Note that the composite map (7.4.3) in question has
finite kernel by Lemma 6.4.3 and the arguments in the proofevhina 6.4.2. We
prove that (7.4.3) has finite cokernel, assuniingBy the Kummer theory, there is a
short exact sequence

0 — PicY VY ®Q,/Z, — H*YWY,Q,/Z,(1)) — Br(Y V), 1006 — 0
(7.4.8)
—1,4

and the differential mapl; " of the spectral sequence (7.4.5) factors through the
Gysin map
HO(?(Q)va/ZP) - PiC(Y(l)) ® Qp/Zyp,

whose cokernel is Cil»(Y) ® Q,/Z,. Hence in view of the computations in the
proof of Lemma 7.4.4 (1), the Gysin map

CHy—2(Y) ® Qp/Zy — He( 2", Qp/Zp(2))

(cf. Lemma 4.2.3(2)) factors through the map (7.4.7) and btaio a commutative
diagram

CHu»(Y) @ Qp/Zy ~ 2 HA( W, Q, /Z,(2))C

l T(u.?)

B

)

where the left vertical arrow has finite cokernel (and kérbglLemma 6.4.3 and a
standard norm argument. The right vertical arrow has firdteemel (and is injective)
by Lemma 7.4.4(1). Thus it suffices to show that the bottonizbotal arrow has
finite cokernel. By the exact sequence (7.4.8), there is & sRact sequence

0 — CHy_»(Y) ® Q,/Z, — Ey* — Br(Y M), 10s — 0.

Our task is to show thgBr(Y (V) ,.ors) ©* is finite, which follows from the assumption
T and the finiteness of the kernel of the natural map

H'(Gr, Pic(?(l)) ® Qp/Zp) — H'(Gr, HQ(?(I)a Qp/Z,(1)))

(cf. Lemma 7.6.2 ir§7.6 below). Thus we obtain the assertion.
(2) Since cdk"") = 1, there is a short exact sequence

0— H' (K", H'(X, Qu/Z(2))) = H* (X", Qu/Zp(2)) = H*(X,Qu/Zy(2))"*" — 0
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arising from a Hochschild-Serre spectral sequence. By Lamm.4 the last group
has weight< —2, and we have isomorphisms up to finite groups

H?(k, HH (X, Qp/Zp(2))) = H(F, H' (K", H' (X, Q,/Z(2))))
~ HY(F, H*(X",Q,/Z,(2))). (7.4.9)

Now we plug the short exact sequence (7.4.6) into the lcatidiz exact sequence
H2(XY,Qp/Zp(2) — HA(ZY,Q,/Z,(2))) 5 HY (27, Qp/Z,(2))-

Note thati®(2'Y", Q,/Z,(2)) ~ H3(Y,Q,/Z,(2)), so that it has weight —1 (cf.
[De2]). Let X" be as in (7.4.5). Sinc&, " is pure of weight, the induced map

Ey Mt — HY(27Y,Q,/7,(2)))/a(Ey)
has finite image. Hence the composite map
H2(XY,Qy/Zy(2)) — HH( 2V, Qp/Zy(2))) — E;
has finite cokernel, and the following map has finite cokeaseklell:
H'(F, H*(X",Q,/Z,(2))) — H'(F, E;"%).

Now Proposition 7.4.2 (2) follows from this fact togethertlw{7.4.9) and the first
isomorphism in Lemma 7.4.4(1). O

REMARK 7.4.10 Let.J be the set of the irreducible componentdé#) and put
A:=Ker(g : 27 - NS(YW)) with  NS(yY):= @ Ns(v,),

yey?o°

where fory € Y°, Y, denotes the closurfy} C Y andNS(Y,) denotes its Kron-
Severi group. The arrow’ arises from the Gysin mag’ — Pic(Y (). One can
easily show, assumin@ and using Lemm&.6.2in §7.6 below, that the corank of
HY(F, E;M) overZ, is equal to the rank ofA overZ. Hence Propositio7.4.2 (2)
implies the inequality

dimg, (H? (k, H(X,Qy(2))) > dimg(4A ® Q), (7.4.11)

which will be used in the next subsection.

7.5 PROOF OF LEMMA 7.2.1, STEP 2

We prove Lemma 7.2.1, assuming tlais p-adic local (see 1.10 for notation). We
first show the following lemma:

LEMMA 7.5.1 We have

FHY(X,Qp/Z,(2)) C H (2, 7<2Rj.Qp/Z,(2)) (= W),
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Proof of Lemma 7.5.1There is a distinguished triangle iR®(2a, Z/p") by §4.1
(S5)

’

i*yll/,'r'[_g] ! 57(2) ' TSQRj*,U/?TQ ; ’L*Vﬂl/,7[_2] (752)

Applying Ri' to this triangle, we obtain a distinguished trianglef(Yzy, Z/p")

Gys? .

Ri'
Vi [-3] 2 Ryt 9

T (2) — i*(r2s Rjupy?) [~ 1] —=15,[-2),  (7.5.3)

where Gy$ := Ri'(g) and we have used the natural isomorphism
(123 Rjupy?)[-1] = Ri' (<o Rjupiy?).
Now let us recall the commutative diagram (6.2.3):

HY(X,Qp/Z(2)) —  Hy(2,T(2)) — D Hy(2,T(2))

yeYo

H ! |

H*(X,Qp/Zy(2)) = HO(Y,i*R*j.Qp/Zp(2)) = @ H°(y,i"R*j.Qp/Zy(2)),

y€eYo

where the middle and the right vertical arrows are inducedbyt) in (7.5.3). By
the proof of Lemma 6.2.2, we havé® (.2, 7<2 Rj.Q,/Z,(2)) = Ker(ezeq). Hence
it suffices to show the image of the composite map

00+ H2(k, HY (X, Qu/Z,(2)) — HY(X.Qp/2,(2) > @ HAZ,Tw(2)

yeYy?o

is contained in Kegf\). By the distinguished triangle (7.5.3), K& agrees with the
image of the Gysin map

Gys:= P Gys : P H'(y, W 1) = P Hy(2,Tw(2)).

yey?o° yey?o yeyo

On the other hand, factors into the following maps up to a sign, by the commuta-
tivity of the central square in [SH] (4.4.2):

H?(k, H' (X, Q) /Z,(2))) = H'(F, H' (k" H' (X, Qp/Zy(2))))
— H'(F, H*(X",Q,/Z,(2))) = H' (F, H(Y , v )

— Hl(F, @ne?o HO (1, Wi Q};,log)) — @yeyo H' (y, Wao 0 10g)

DD yevo HAZ,To(2),

1 — 15 1 i i
Wherez/?,Oo = lim Vg Thus we obtain the assertion. O
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We start the proof of Lemma 7.2.1, i.e., the inclusion (7),4aksuming thak is p-
adic local. The triangle (7.5.2) gives rise to the upper exaw of the following
commutative diagram with exact rows (cf. [SH] (4.4.2)):

32,0 (2)) — H (2, r<oRjupy?) —— H' (Y, 1y,,)
N
3(‘% z (2)) I HB(Xa :u?g) - H;l,(%, ‘IT'(Q)))

whereo (resp. Gyé) is as in (7.5.2) (resp. (7.5.3)). Hence the niapestricted to
W = H3(Z,7<2Rj.Q,/Z,(2)) factors as

W — H' (Y vy ) — HY(2,%00(2) — €D Hy(2,Tw(2)),

yeyo

wherevy, ,, := lim vy, By Lemmas 7.5.1 and 6.1.2, it suffices to show that the
corank of

Im(Hl(Y, o) = @D yero HA(Z, zoo(2))) (7.5.4)

is not greater thadimg, H?(k, H'(X,Q,(2))). We pursue an analogy to the case
p # ch(F) by replacingHy. (2, Q,/Z,(2)) with H'(Y, vy, ). There is an exact
sequence

0 — HY(F, H(Y, V%,oo)) — H' (Y, vy o) — H'(Y, V%OO)GF —0

arising from a Hochschild-Serre spectral sequence. B]®airollary 2.2.7, there is
a Mayer-Vietoris spectral sequence

a,b a v (1—a a a N
EPt = HP (YO wee ol )= H (Y g ).

Note thatE®" is of weightb — 1 so thatH'(F, E*) is finite unless = 1. Thus we
obtain isomorphisms up to finite groups

HYF, H(Y, vy ) ~ H'(F, EybY, (7.5.5)

HY (Y, vg _)CF o~ (E9Y)%F (7.5.6)

with £ 11 = Ker(d; ') and ES'" = Cokerd; "), whered; "' is the Gysin map
HY(Y®,Qp/Zy) — H'(YW, W Q) 1,)-

There is an exact sequence@f-modules (cf. (7.6.1) below)

0 — PicY V) ® Qp/Zy — H' (YD, Wae Qpry) ) — BIY ) ptors — 0.
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Hence we see that the group (7.5.4) coincides with the imagg 6F, HO(Y', vy )
up to finite groups by the conditio’, the same computation as for Proposition
7.4.2(1) and [CTSS] p. 782 Théoreme 3. Now we are reducsbdwing

dimg, H2(k, H'(X,Q,(2))) > coran H'(F, H°(Y, v )
= coranK H'(F, E; 1)),

where the last equality follows from (7.5.5). As is seen imRek 7.4.10, the right
hand side is equal tdimg(A ® Q) under the conditiorT. On the other hand, by
[J2] Corollary 7, the left hand side does not change when eplaces with another
primep’. Thus the desired inequality follows from (7.4.11). Thisngmetes the proof
of Lemma 7.2.1 and Theorem 7.1.1. O

7.6 APPENDIX TO SECTION 7

Let Z be a proper smooth variety over a finite fiédd For a positive integeim, we
define the object/mZ(1) € D*(Ze, Z/mZ) as

Z/mZ(l) = D (W'QlZ,log[_l])

where we factorizedh asm’ - p” with (p, m’) = 1. There is a distinguished triangle
of Kummer theory foiGy, := G,z in D°(Ze)

Z/mZ(1) — Gm =3 G — Z/mZ(1)[1].
So there is a short exact sequencé&gfmodules
0 — Pic(Z)/m — H*(Z,Z/mZ(1)) — ,Br(Z) — 0,

whereZ := Z ® F. Taking the inductive limit with respect ta > 1, we obtain a
short exact sequence 6f-modules

0 — Pic(Z) ® Q/Z > H*(Z,Q/Z(1)) — Br(Z) — 0. (7.6.1)

Concerning the arrow, we prove the following lemma, which has been used in this
section.

LEMMA 7.6.2 The mapH*(F,Pic(Z) ® Q/Z) — HY(F, H*(Z,Q/Z(1)) induced
by « has finite kernel.

Proof. Note that Pi¢Z) ® Q/Z =~ (NS(Z)/NS(Z)irs) ® Q/Z. By a theo-
rem of Matsusaka [Ma] Theorem 4, the group O®/Div(Z)nym is isomorphic to
NS(Z)/NS(Z )iors,» Where Di(Z) denotes the group of Weil divisors éh Div(Z)num
denotes the subgroup of Weil divisors numerically equivate zero. By this fact
and the fact that N&) is finitely generated, there exists a finite fam{lg;};<; of
proper smooth curves ov&rwhich are finite oveZ and for which the kernel of the
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natural map N&) — @
a commutative diagram

se1 NS(C;) with C; := C; ®r F is torsion. Now consider

H'(F,NS(Z) ® Q/Z) ——— H'(F, H*(Z,Q/Z(1))),

| |

P H'(F.NS(C)) © Q/z) — P H'(F, H*(C;,Q/Z(1))).

i€l icl

By a standard norm argument, one can easily show that thedeftal map has finite
kernel. The bottom horizontal arrow is bijective, becausgB) = 0 for anyi € I
by Tsen’s theorem (cf. [Se] 11.3.3). Hence the top horizbateow has finite kernel
and we obtain the lemma. O

A RELATION WITH CONJECTURES OF BEILINSON AND LICHTENBAUM

Let k,p, S, 2 and K be as in the notation 1.8. We always assume 1.8.1 in what
follows. The Zariski siteZz,c 0n a scheme always meangét/Z)zar, andZe means
the usual small étale site. The main result of this appeisdoposition A.1.3 below.

A.1 Motivic COMPLEX AND CONJECTURES

Let Z(2)zar = Z(2)55, be the motivic complex o2z, defined by using Bloch's

Zar
cycle complex, and I6L(2)e be its étale sheafification, which are, by works of Levine

([Lel], [Le2]), considered as strong candidates for motadmplexes of Beilinson-
Lichtenbaum ([Be], [Lil1]) in Zariski and étale topologgspectively (see also [Li2],
[Li3]). We put

Hzal 2, 2(2)) := Hza 2, 2(2)zar),  Hed 2, 2(2)) := He( 2, Z(2)er).

In this appendix, we observe that the finitenes&gf K, Q,/Z,(2)) is deduced from
the following conjectures on motivic complexes:

CONJECTURE A.1.1 Lete : Zet — Zzar be the natural continuous map of sites.
Then

(1) (Beilinson-Lichtenbaum conjectyraNVe have
Z(2)zar = T<2Re.Z(2)er  In D(Zzar).
(2) (Hilbert's theorem@0). We haveR3e, Z(2)st = 0.
(3) (Kummer theory o2 [p~!]ey). We haveZ(2)et)| 2 [p-1] QL Z/p" ~ Mf}?.

This conjecture holds if2” is smooth ovelS by a result of Geisser [Gel] Theorem
1.2 and the Merkur’ev-Suslin theorem [MS] (see also [GL2rfRek 5.9).
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CONJECTURE A.1.2 Let~? be the canonical map
7?1 CHY(Z) = Hza 2, 2(2)) — He( 2. Z(2)).
Then thep-primary torsion part ofCoker(v?) is finite.

This conjecture is based on Lichtenbaum’s conjecture [tha} H (2, Z(2)) is a
finitely generated abelian group (by the propernesofS). The aim of this ap-
pendix is to prove the following:

PROPOSITION A.1.3 If ConjecturesA.1.1 andA.1.2 hold, thenH3 (K, Q,/Z,(2))
is finite.

This proposition is reduced to the following lemma:

LEMMA A.1.4 (1) If ConjectureA.1.1 holds, then forr > 1 there is an exact
sequence

0 — Cokera,.) — Hi(K,Z/p"(2)) — Ker(o?) — 0,
whereq,. denotes the map
ap: prCHA () —  HA(Z,Z(2))
induced byy?, and¢? denotes the cycle class map
o2 CHA(2) /1 —> HA(2,%,(2)).
(2) If ConjecturesA.1.1 andA.1.2 hold, thenCokerag, /z, ) andKer(Qép/Zp) are
finite, whereng, /7, = lig,?l Q andg?@p/zp = lig,?l 0.

To prove this lemma, we need the following sublemma, whiehvariant of Geisser’s
arguments in [Gel}6 and provides a Kummer theory on the whoté extending
Conjecture A.1.1(3):

SUBLEMMA A.1.5 PUtZ/p"(2)et := Z(2)er ®" Z/p". If ConjectureA.1.1 holds,
then there is a unique isomorphism

Z/p"(2)et = T(2) in D(Ze, Z/p")
that extends the isomorphism in Conjectdrd.1 (3).

We prove Sublemma A.1.5 §A.2 below and Lemma A.1.4 i§A.3 below.

A.2 PROOF OF SUBLEMMA A.1.5

By Conjecture A.1.1(3), we have only to consider the casergvhés not invertible
onS. Let us note that
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(*)  Z/p"(2)etis concentrated in degrees?
by Conjecture A.1.1(1) and (2). L&t, Y, ¢ andj be as follows:
V.= %[p’l](—j>%<i—7yy

whereY denotes the union of the fibers 8f /S of characteristip. In étale topology,
we defineRi' andRj, for unbounded complexes by the method of Spaltenstein [Spal]
We will prove

T<sRi'Z/p" (2)er ~ vy, [-3] in D(Yer, Z/p"), (A.2.1)

using ¢) (see(S5) in §4.1 for 1/11/,7,). We first prove Sublemma A.1.5 admitting this
isomorphism. SINCEZ(2)e)|v @ Z/p" ~ u&? by Conjecture A.1.1(3), we obtain a
distinguished triangle from (A.2.1) and)(

iy [—3] — Z/p"(2)et — T<aRjupl? — iy, [-2)].

Hence comparing this distinguished triangle with that®3) in §4.1, we obtain the
desired isomorphism in the sublemma, whose uniguenessv®from [SH] Lemmas
1.1and 1.2(2).

In what follows, we prove (A.2.1). Putt’ := Z(2)zar @ Z/p" and.¥ :=
Z/p" (2)e for simplicity. Lete : Z& — Zzar be as in Conjecture A.1.1. In Zariski
topology, we defingri’,,, and Rjzar. for unbounded complexes in the usual way by
the finiteness of cohomological dimension. Becaw$e= ¢*.# is concentrated
in degrees< 2 by (x), there is a commutative diagram with distinguished rows in
D2, Zp")

e H —— T<26" Rjzanjzar X —> (nge*iZar*Ri!ZarJi/)[l] — 6*%/[1]

| | | |

¥ ——— T Rjen j&l ——— (T<zien Ris L) 1] —— Z[1],
where the upper (resp. lower) row is obtained from the laedilbn triangle in the
Zariski (resp. étale) topology and the arrowandg are canonical base-change mor-

phisms. Sincex is an isomorphism ([MS], [SV], [GL2])# is an isomorphism as well.
Hence (A.2.1) is reduced to showing

T<3Riya X ~ ey,vy,[-3] in € D(Yzar Z/p"), (A.2.2)

whereey : Ya — Yzar denotes the natural continuous map of sites and we have used
the base-change isomorphistizar. = iet.c3- ((Gel] Proposition 2.2 (a)). Finally we
show (A.2.2). Consider the local-global spectral sequémtee Zariski topology

B = @ R™ien(RibRibyH ) — R Vib ¥,
reX*NY
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where forz € Y, i, denotes the natural map— Y. We have

EY ~ @CEE‘%”QY Zm*ez*m Qi;gg (|f V= 2)
oo (otherwise)

by the localization sequence of higher Chow groups [Lel] semlilts of Geisser-
Levine ([GL1] Proposition 3.1, Theorem 7.1), where foe Y, ¢, denotes the nat-
ural continuous mape; — xzar Of Sites. By this description of/;-terms and the
compatibility of boundary maps ([GL2] Lemma 3.2, see alsg] [Sppendix), we ob-
tain (A.2.2). This completes the proof of Sublemma A.1.5.

A.3 PROOF OF LEMMA A.1.4

(1) By Sublemma A.1.5, there is an exact sequence
0 — Hy(2,2(2))/p" — HHZ,Tr(2)) — pr Ho( 21 Z(2)) — 0.
By Conjecture A.1.1 (1) and (2), we have
Hg(2,2(2)) ~ H3,( 2, L(2)) = CH (2. 1).
Thus we get an exact sequence
0 — CH (2, 1)/p" — HY(2,%:(2)) — pr Hao( 2, Z(2)) — 0.
On the other hand, there is an exact sequence
0— N'HZ(2,%,(2) = HHZ,%,.(2)) = HH(K,Z/p"(2)) — Ker(o?) — 0

by Proposition 4.3.2 (see Lemma 4.2.3 f§f). In view of these facts and the short
exact sequence in Lemma 4.2.3 (1), we get the desired exqaotisee.

(2) By Conjecture A.1.1(1) and (2), the mapin Conjecture A.1.2 is injective.
Hence we get an exact sequence

0 — Coker(a,) —+ ,-Coke(r?) — CHA(2)/p" 8 HA(Z,2(2)) /"
Noting that the composite of? /p” and the injective map
Hg( 2, 2(2)) [p" —— Hg( 2, % (2))
obtained from Sublemma A.1.5 coincides with we get a short exact sequence
0 — Cokela,.) — ,-Cokery?) — Ker(o?) — 0,

which implies the finiteness of Cokerg,,z,) and Ke(gép/zp) under Conjecture
A.1.2. This completes the proof of Lemma A.1.4 and Propmsif.1.3. O
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B ZETA VALUE OF THREEFOLDS OVER FINITE FIELDS

In this appendix B, all cohomology groups of schemes aretaker the étale topol-
ogy. LetX be a projective smooth geometrically integral threefoldra finite field
F,, and letK be the function field ofX (the case of fourfolds is treated in a recent
paper of Kohmoto [Ko]). We define the unramified cohomoladffy™ (K, Q/Z(n))

in the same way as in 1.8. We show that the groups

HZ(K,Q/Z(1)) =Br(X) and H(K, Q/Z(2))
are related with the value of the Hasse-Weil zeta fundfioy, s) ats = 2:
¢"(X,2) = lim ¢(X, 5)(1 — 757, where gy := ord—s ¢(X, s).
s—

Let
6 : CH*(X) — Hom(CH!(X),Z)

be the map induced by the intersection pairing and the degege
CH2(X) x CH'(X) — CH3(X) = CHo(X) <5 7.
The mapd has finite cokernel by a theorem of Matsusaka [Ma] Theoremeld&fine
% .= |Cokeld)].
We prove the following formula (compare with the formula &€2]):

THEOREM B.1 Assume thaBr(X) and H3.(K,Q/Z(2)) are finite. Ther(* (X, 2)
equals the following rational number up to a sign

H3(K,Q/Z(2))| 1 o .
qX(X,ﬁx,Q) . | Tér(XQ;( <(% ))| . H |CH2 (X, Z)tors|( 1)° H |CH1(X, Z)tors|( 1) ,
1=0 1=0

where CH?*(X, i) and CH'(X,4) denote Bloch’s higher Chow grougsI3] and
x(X, Ox,2) denotes the following integer

(X, O0x,2) = Z(A)iﬂ' (2 — i) dimp, H/(X,Q%) (0<i<2, 0<j<3).
i.J

This theorem follows from a theorem of Milne ([Mi2] TheoremiPand Proposition

B.2 below. For integerg n > 0, we define

HY(X,Z(n)) = [ [ H'(X, Ze(n)),
all ¢
where/ runs through all prime numbers, afti (X, Z,(n)) (p := ch(F,)) is defined
as
Hl(Xa ZP(”)) = I&H Hlin(Xv W“ QnX,log)'

r>1
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ProrosiTiON B.2 (1) We have

CH*(X,4 — i)tors (i=0,1,2,3)

(CHY (X, i — 6)ors)* (i=6,7), (B3)

HY(X,7(2)) ~ {

where for an abelian group/, we put
M* :=Hom(M,Q/Z).

Furthermore,CH' (X, j)iors and CH? (X, j )ors are finite for anyj > 0, and we
have

CHY(X,j)ors=0 for j>2 and CH*(X,j)rs=0 for j > 4.

(2) Assume thaBr(X) is finite. Then we have
H™(X,Z(2) )uors = Br(X)",
and the cycle class map
CH*(X) ® Zy — H*(X,Z(2))
has finite cokernel for any prime number

(3) Assume thaBr(X) and H3(K,Q/Z(2)) are finite. Then the following map
given by the cup product with the canonical element Z ~ H'(F,,Z) has
finite kernel and cokernel

et HY(X,Z(2)) — H°(X,7Z(2)),
and we have the following equality of rational numbers

[Ker(e))| _ [H&E, Q/Z(2))] - [CH* (X )iors
|Coker(e?)] |Br(X)|- % '

Proof of Proposition B.2(1) By standard arguments on limits, there is a long exact
sequence

s HY(X,Z(2)) — HY(X,Z(2)) ®2 Q — H'(X,Q/7Z(2))
. Hi+1(X,i(2)) —

By [CTSS] p. 780 Théoréme 2, p. 782 Théoréme 3, we see that
H(X,Z(2)) andH'(X,Q/Z(2)) are finite fori # 4, 5.
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Hence we have
HY(X,Z(2)) ~ H~'(X,Q/Z(2)) for i+ 4,5,6.
On the other hand, there is an exact sequence
0 — CHY(X,5 - i) ®Q/Z — H 1 (X,Q/Z(2)) — CH*(X,4 — i)tors — 0

for i < 3 ([MS], [SV], [GL1], [GL2]), where CH'(X,5 — i) ® Q/Z must be zero
because it is divisible and finite. Thus we get the isomorphiB.3) fori < 3, the
finiteness of CA(X, j)iors for j > 1 and the vanishing of CHX, j)irs for j > 4.
The finiteness of CH X, 0)tors = CH?* (X )tors (cf. [CTSS] p. 780 Théoreme 1) follows
from the exact sequence

0 — CH*(X,1) ® Q/Z — N'H*(X,Q/Z(2)) — CH*(X)iors — 0
(cf. Lemma 3.2.2), where we put
N'H?(X,Q/Z(2)) := Ker(H*(X,Q/Z(2)) — H’(K,Q/Z(2))).
As for the case = 6, 7 of (B.3), we have
H'(X,2(2))" ~ H(X,Q/Z(1))
by a theorem of Milne [Mi2] Theorem 1.14 (a). It remains towho
CHY(X, jhors =~ H 79 (X,Q/Z(1)) for j >0,

which can be checked by similar arguments as before.
(2) We haveH®(X,7Z(2))* ~ H?(X,Q/Z(1)) and an exact sequence

0 — CHY(X)®Q/Z — H?*(X,Q/Z(1)) — Br(X) — 0. (B.4)

Hence we havéH (X, Z(Q))tors)* ~ Br(X), assuming BfX) is finite. To show the
second assertion fdr# ch(F,), it is enough to show that the cycle class map

CH(X) ® Qy — H*(X,Qe(2))"

is surjective, wherd” := Gal(F,/F,). The assumption on BKX ) implies the bijec-
tivity of the cycle class map

CH'(X) ® Q, = H2(X,Qq(1))"

by [Ta2] Proposition (4.3) (see also [Mil] Theorem 4.1), #malassertion follow from
[Ta2] Proposition (5.1). As for the cage= ch(F,), one can easily pursue an analogy
using crystalline cohomology, whose details are left tortfeler.

(3) The finiteness assumption on(Bf) implies the conditionSS(X,1,¢) in
[Mi2] for all prime numberg by loc. cit. Proposition 0.3. Hencg&S(X, 2, ¢) holds
by the Poincaré duality, and has finite kernel and cokernel by loc. cit. Theorem 0.1.
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To show the equality assertion, we put

CH*(X) := lim CH*(X)/n,

n>1

and consider the following commutative square (cf. [Mi3hkma 5.4):

CH?(X) ——2—— Hom(CH!(X), Z)

| |
HY(X,Z(2)) ——— H*(X,Z(2)),
where the top arrow) denotes the map induced By The arrowa denotes the cycle
class map of codimensidn andg denotes the Pontryagin dual of the cycle class map

with Q/Z-coefficients in (B.4). The arrow is injective (cf. (4.3.3)) and we have
Coker()| = [Hi (K, Q/Z(2))|

by the finiteness assumption & (K, Q/Z(2)) and (2) (cf. Proposition 4.3.5). The
arrow 5 is surjective and we have

5 (2 «
Ker(8) = H*(X,Z(2))ors =~ Br(X)*,
by Milne’s lemma ([Mi3] Lemma 5.3) and the isomorphism &) ® 7 ~

HQ(X,Z(l)) (cf. [Ta2] Proposition (4.3)), where we have used again thigefiess
assumption on BiX ). Therefore in view of the finiteness of Ket), the map® has
finite kernel and we obtain

Ker(@) = 6|\_|2 (X)tors = CH? (X)torSa

where we have used the finiteness of?q:H)tors in (1). Finally the assertion follows
from the following equality concerning the above diagram:

[Ker(©)| _ [Ker(a)]  [Ker(e!)]  [Ker(B)|

|Coker©)| |Cokelw)| |Cokel(e?)| |Cokels)]
This completes the proof of Proposition B.2 and Theorem B.1. O
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