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1 Introduction

D. Ray Fulkerson (1922–1976) made fundamental and lasting contributions to
combinatorial mathematics, optimization, and operations research [2]. He is
probably best known for his work on network flows and in particular for the
famous max flow–min cut theorem, stating that the maximum amount of a flow
from a node s to a node t in a directed graph equals the minimum capacity of
a cut separating s from t.
Less known is the fact that he also made important contributions to project

scheduling. One deals with time-cost tradeoff analysis of project networks,
which he solved with min-cost flow techniques. This method has meanwhile
entered standard text books such as [1] (often as an exercise of application of
flow methods) and will not be discussed here.
The much less known contribution concerns project planning when the in-

dividual job times are random variables. Fulkerson was one of the first to

Figure 1: Ray Fulkerson at Robert Bland’s wedding
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Figure 2: Polaris A-3 at Cape Canaveral ( c©Wikimedia Commons)

recognize the deficiency of the then state-of-the-art operations research tech-
niques, and he developed a method for better analysis that has started a whole
stream of research on risk analysis in project planning.
This chapter tells the story of this contribution.

2 The background [10, 3]

During the Cold War, around the late fifties and early sixties, Lockheed Corpo-
ration developed and built the first version of the Polaris missile for the United
States Navy as part of the United States arsenal of nuclear weapons. It was
a two-stage solid-fuel nuclear-armed submarine-launched intercontinental bal-
listic missile with a range of 4.600 km that replaced the earlier cruise missile
launch systems based on submarines [3].
The complexity of this and similar projects required new planning tools that

could deal with research and development programs for which time is an un-
certain but critical factor. To support the Polaris project, the Navy’s Spe-
cial Projects Office developed the Program Evaluation and Review Technique
(PERT), which still is applied as a decision-making tool in project planning.
Willard Fazar, Head of the Program Evaluation Branch of the Special Projects
Office [4] recalls:

The Navy’s Special Projects Office, charged with developing the
Polaris-Submarine weapon system and the Fleet Ballistic Missile
capability, has developed a statistical technique for measuring and
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forecasting progress in research and development programs. This
Program Evaluation and Review Technique (code-named PERT) is
applied as a decision-making tool designed to save time in achiev-
ing end-objectives, and is of particular interest to those engaged
in research and development programs for which time is a critical
factor.

The new technique takes recognition of three factors that influence
successful achievement of research and development program ob-
jectives: time, resources, and technical performance specifications.
PERT employs time as the variable that reflects planned resource-
applications and performance specifications. With units of time as
a common denominator, PERT quantifies knowledge about the un-
certainties involved in developmental programs requiring effort at
the edge of, or beyond, current knowledge of the subject – effort for
which little or no previous experience exists.

[. . . ]

The concept of PERT was developed by an operations research team
staffed with representatives from the Operations Research Depart-
ment of Booz, Allen and Hamilton; the Evaluation Office of the
Lockheed Missile Systems Division; and the Program Evaluation
Branch, Special Projects Office, of the Department of the Navy.

I will explain the main idea underlying PERT in the next section. Fulkerson
noticed that PERT makes a systematic error, as it generally underestimates
the expected makespan of a project. He worked at the RAND Cooperation at
that time and wrote in research memorandum RM-3075-PR prepared for the
United States Air Force [6] and later published in slightly revised form in [5]:

The calculation of project duration times and project cost by
means of network models has become increasingly popular within
the last few years. These models, which go by such names as
PERT (Program Evaluation Review Technique), PEP (Program
Evaluation Procedure), Critical Path Scheduling, Project Cost
Curve Scheduling, and others, have the common feature that un-
certainties in job times are either ignored or handled outside the
network analysis, usually by replacing each distribution of job times
by its expected value.

He continues his criticism of PERT in the follow-up report RM-3075-PR [7]:

The PERT model of a project usually assumes independent random
variables for job times, instead of deterministic times [. . . ]. But the
usual practice has been to replace these random variables by their
expected values, thereby obtaining a deterministic problem. The
solution of this deterministic problem always provides an optimistic
estimate of the expected length of the project.
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[. . . ]

Although the analysis of a PERT model, with fixed job times, is
trivial from the mathematical point of view, the model itself appears
to be a useful one, judging from its widespread acceptance and use
throughout industry today. But it should be added that it is difficult
to assess the usefulness of PERT on this basis alone, since the model
has been the subject of much hard-sell advertising and exaggerated
claims.

Fulkerson instead suggests an algorithm that uses discrete random job times
and calculates a much better lower bound on the expected project makespan
than the one obtained by the PERT. It was published in 1962 [5] and has
become one of the fundamental papers in the area of project risk analysis.

I will outline some of the underlying mathematics of this development in the
next section. Part of that exposition is taken from [11].

3 Coping with uncertainty in scheduling: The math

In real-life projects, it usually does not suffice to find good schedules for fixed
deterministic processing times, since these times mostly are only rough esti-
mates and subject to unpredictable changes due to unforeseen events such as
weather conditions, obstruction of resource usage, delay of jobs and others.
In order to model such influences, PERT assumes that the processing time

of a job j ∈ V = {1, . . . , n} is assumed to be a random variable pj . Then
p = (p1,p2, . . . ,pn) denotes the (random) vector of job processing times, which
is distributed according to a joint probability distribution Q. This distribution
Q is assumed to be known, though sometimes, also partial information may
suffice. In general, Q may contain stochastic dependencies, but most methods
require that the job processing times are stochastically independent. (Fulkerson
allows some dependencies in his method, see below.))
Jobs are subject to precedence constraints given by a directed acyclic graph

G = (V,E). We refer to G also as the project network. Now consider a
particular realization p = (p1, . . . , pn) of the random processing time vector
p = (p1,p2, . . . ,pn). Since there are no resource constraints, every job j can
complete at its earliest possible completion time Cj = Cj(p), which is equal to
the length of a longest path in G that ends with j, where the length of a job j

is its processing time pj .
The earliest project completion or makespan for the realization p is then

Cmax(p) := maxjCj(p) = maxP
∑

j∈P pj , where P ranges over all inclusion-
maximal paths of G. Since the processing times pj are random, the
makespan Cmax is also a random variable, and it may be written as Cmax =
maxP

∑

j∈P pj , i.e., as the maximum of sums over subsets of a common set of
random variables. An example is given in Figure 3.
The main goal of project risk analysis is to obtain information about the

distribution of this random variable Cmax.
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Cmax = max { 
p1 + p3 + p6 ,



p1 + p5 + p7 ,



p2 + p4 + p6 , 



p2 + p4 + p7 ,



p2 + p5 + p7   }
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Figure 3: An example project network and its makespan Cmax

Fulkerson noticed the systematic underestimation

Cmax

(

E(p1), . . . , E(pn)
)

≤ E
(

Cmax(p1, . . . ,pn)
)

when one compares the “deterministic makespan” Cmax(E(p1), . . . , E(pn)) ob-
tained from the expected processing times E(pj) with the expected makespan
E(Cmax(p)). This error may in fact become arbitrarily large with increasing
number of jobs or increasing variances of the processing times [9]. Equal-
ity holds if and only if there is one path that is the longest with probabil-
ity 1, see Theorem 1 below. The error becomes even worse if one compares
the deterministic value Cmax(E(p1), . . . , E(pn)) with quantiles tq such that
Prob{Cmax(p) ≤ tq} ≥ q for large values of q (say q = 0.9 or 0.95).

A simple example is given in Figure 4 for a project with n parallel jobs that
are independent and uniformly distributed on [0,2]. Then the deterministic
makespan Cmax(E(p1), . . . , E(pn)) = 1, while Prob(Cmax ≤ 1) → 0 for n →
∞. Similarly, all quantiles tq → 2 for n → ∞ (and q > 0).

This is the reason why good practical planning tools should incorporate
stochastic methods.

0 1 2

1

q

t

Prob(Cmax≤ t)

Figure 4: Distribution function of the makespan for n = 1, 2, 4, 8 parallel jobs
that are independent and uniformly distributed on [0,2].
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Theorem 1. Let G = (V,E) be a project network with random processing time

vector p. Then

Cmax

(

E(p1), . . . , E(pn)
)

≤ E(Cmax

(

p1, . . . ,pn)
)

.

Equality holds iff there is one path that is the longest with probability 1.

Proof. Since Cmax is the maximum of sums of processing times, it is obviously a
convex function of p. Thus the inequality is a special case of Jensen’s inequality
for convex functions. We give here an elementary proof for Cmax.
Let P1, . . . , Pk be the inclusion-maximal paths of G and let Y1, . . . , Yk denote

their (random) length, i.e., Yi :=
∑

j∈Pi
pj. Then Cmax = maxi Yi, and

Cmax(E(p)) = max
i

∑

j∈Pi

E(pj) = max
i

E(
∑

j∈Pi

pj) = max
i

E(Yi)

= E(Yi0) assume that the maximum is attained at i0

≤ E(max
i

Yi) since Yi0 ≤ max
i

Yi as functions of p

= E(Cmax(p)).

Now assume that Y1 is the longest path with probability 1. Then, with prob-
ability 1, Cmax = Y1 ≥ Yi. Hence E(Cmax) = E(Y1) ≥ E(Yi) and the above
calculation yields Cmax(E(p)) = maxi E(Yi) = E(Y1) = E(Cmax).
In the other direction assume that E(Cmax(p)) = Cmax(E(p)). Let w.l.o.g.

P1 be the longest path w.r.t. expected processing times E(pj). Then E(Y1) =
E(Cmax(p)) and

0 = E
(

Cmax(p)
)

− Cmax

(

E(p)
)

= E
(

max
i

Yi −maxE(Yi)
)

= E(maxE(Yi)− Y1) =

∫

(

maxE(Yi)− Y1

)

dQ.

Since the integrand in non-negative, it follows that it is 0 with probability 1.
Hence Y1 = maxE(Yi) = Cmax with probability 1.

The probabilistic version of PERT is based on the second statement of this
theorem. It only analyzes the distribution of the path with the longest expected
path length. It thus fails when there are many paths that are critical with high
probability.
The algorithm of Fulkerson uses the arc diagram of the precedence graph

G, which is common also to PERT. It considers jobs of a project as arcs of
a directed graph instead of vertices. This construction uses a directed acyclic
graph D = (N,A) with a unique source s and a unique sink t. Every job j of G
is represented by an arc of D such that precedence constraints are preserved,
i.e., if (i, j) is an edge of G, then there is a path from the end node of i to
the start node of j in D. Figure 5 gives an example. Such a representation
is called an arc diagram (sometimes also PERT network) of the project. In

Documenta Mathematica · Extra Volume ISMP (2012) 211–219



D. Ray Fulkerson and Project Scheduling 217

Arc diagram

jobs are arcs of digraph D
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Figure 5: Arc diagram of the project network of Figure 3

general, one needs additional arcs (so-called dummy arcs) to properly represent
the precedence constraints. Arc diagrams are thus not unique, but as dummy
arcs obtain processing time 0, this ambiguity has no influence on the makespan.
Fulkerson assumes that stochastic dependencies may only occur in job bun-

dles, where a bundle consists of all jobs with the same end node in the arc
diagram. His algorithm then computes for each node v a value tv that is iter-
atively obtained along a topological sort of the arc diagram as

tv = EQv

(

max
(u,v)∈E

{tu + p(u,v)}
)

,

where Qv is the joint distribution of the processing times in the bundle of jobs
ending in v, and the maximum is taken over all arcs in this bundle. A simple
inductive argument shows that this gives indeed a lower bound on the expected
makespan.
Fulkerson applies this to discrete job processing times, and so his algorithm

is exponential in the maximum size of a bundle. He already noticed that it is
computationally difficult to compute the exact value of the expected makespan,
which was later mathematically confirmed by Hagstrom [8]. Hagstrom consid-
ers the following two problems:

Mean: Given a project network with discrete, independent pro-
cessing times pj , compute the expected makespan E(Cmax(p)).

DF: Given a project network with discrete, independent processing
times pj and a time t, compute the probability Prob{Cmax(p) ≤ t}
that the project finishes by time t.

She shows thatDF and the 2-state versions of Mean, in which every processing
time pj has only two discrete values, are #P-complete.
The complexity status of the general version of Mean is open (only the

2-state version, which has a short encoding, is known to be #P-complete).
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If the processing times pj may take more than 2 values, the problem has a
longer encoding that in principle could admit a polynomial algorithm for solving
Mean. However, Hagstrom provides some evidence that problems with a long
encoding may still be difficult, since Mean and DF cannot be solved in time
polynomial in the number of values of Cmax(p) unless P = NP.

These results show that efficient methods for calculating the expected make-
span or quantiles of the distribution function of the makespan are very unlikely
to exist, and thus justify the great interest in approximate methods such as
bounds, simulation etc. that started with the work of Fulkerson. The search
for “expected completion time” +network in Google Scholar currently shows
more than 1,500 results.
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