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Abstract. We provide results on the smoothness of normalisers
in connected reductive algebraic groups G over fields k of positive
characteristic p. Specifically we we give bounds on p which guarantee
that normalisers of subalgebras of g in G are smooth, i.e. so that
the Lie algebras of these normalisers coincide with the infinitesimal
normalisers.

One of our main tools is to exploit cohomology vanishing of small
dimensional modules. Along the way, we obtain complete reducibility
results for small dimensional modules in the spirit of similar results
due to Jantzen, Guralnick, Serre and Bendel–Nakano–Pillen.
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1 Introduction

Let G be an affine group scheme over an algebraically closed field k. We say
G is smooth if dimLie(G) = dimG. A famous theorem of Cartier states that
every affine group over a field of characteristic zero is smooth. Therefore,
in this situation, the category of smooth group schemes is closed under the
scheme-theoretic constructions of taking centres, centralisers, normalisers and
transporters. However, Cartier’s theorem fails rather comprehensively in pos-
itive characteristic. A classic example of a non-smooth algebraic group is the
group scheme µp whose points are the pth roots of unity; this is not smooth
over a field of characteristic p—its Lie algebra is 1-dimensional, but its k-points
consist just of the identity element. Furthermore, since µp is also the scheme-
theoretic centre of SLp, the centre of this reductive1 group is also not smooth
over a field of characteristic p. This means that the group-theoretic centre of
SLp misses important infinitesimal information about the centre (for instance,
the fact that SLp is not adjoint).
Nonetheless, centralisers are usually smooth. For example, it is a critical result
of Richardson [Ric67, Lem. 6.6], used extensively in the theory of nilpotent
orbits, that the centraliser Ge = CG(e) of an element e of g = Lie(G) is
smooth whenever p is a very good prime for G.2 (Note that smoothness of the
centraliser, or what is the same, the separability of the orbit map G → G · e

1We call a smooth algebraic group G reductive provided that Ru(G0) = 1.
2Recall that p is good if the following holds: p is not 2 if G contains a factor not of type

A, p is not 3 if G contains an exceptional factor and p is not 5 if G contains a factor of type
E8. The prime p is very good if it is good and it does not divide n+1 for any factor of G of
type An.
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On the Smoothness of Normalisers. . . 3

can be restated as Lie(Ge(k)) = cg(e).) In fact the centralisers of subgroup
schemes of a connected reductive group G are usually smooth: work of Bate–
Martin–Röhrle–Tange and the first author (cf. Proposition 3.1) gives precise
information on the characteristic p of k, depending on the root datum of G, for
centralisers of all subgroup schemes of G to be smooth. It suffices, for instance,
for p to be very good for G. Furthermore, centralisers of all subgroup schemes
of GLn are smooth.
The situation for normalisers is much less straightforward, which may explain
why results in this direction have been unforthcoming until now. For example,
even when G = GLn, for any n ≥ 3 and any p > 0 an arbitrary prime, there are
connected smooth subgroups of G with non-smooth normalisers (see Lemma
11.11 below). In light of this situation, perhaps it is surprising that there are
any general situations in which normalisers of subgroup schemes are smooth.
However, we prove that for sufficiently large p depending on the connected
reductive algebraic group G, (a) all normalisers of height one subgroup schemes
(in fact the normalisers of all subspaces of the Lie algebra of G); and (b) all
normalisers of connected reductive subgroups are indeed smooth. Theorem 3.2
makes (b) precise and the proof is a straightforward reduction to the case of
centralisers. Our main result follows.

Theorem A. There exists a constant c = c(r) such that if p > c and G is any
connected reductive group of rank r then all normalisers NG(h) of all subspaces
h of g are smooth.
More precisely, let d be the dimension of a minimal faithful representation of
G. Then all normalisers of subspaces of g are smooth provided that p > 22d.
In particular, if G = GLn we may take p > 22n.

Remarks 1.1. (a). Clearly, the constant c(r) in the theorem may be defined as
22d

′

for d′ the maximal dimension of a minimal faithful module of a connected
reductive group of rank r.
(b). Note that the maximum is finite since there are only a finite number
of isomorphism types of connected reductive groups of a given rank over an
algebraically closed field k. Each of these arises by base change from a split
reductive group defined over the integers, so one can consider the theorem as
a statement that for a fixed group GZ, the conclusion holds for each reduction
modulo p of GZ, whenever p is sufficiently large.

It is natural to ask if lower bounds for the constant c in Theorem A exist.
In §11, we present a menagerie of examples where smoothness of normalisers
fails; in particular, in Example 11.4 we give a p-subalgebra of gl2n+12 with non-
smooth normaliser whenever p|Fn, the nth Fibonacci number. Since Fn ∼ 1.6n

and infinitely many Fibonacci numbers are expected to be prime, we conclude
that c(G) should grow exponentially with the rank of G. In other words the
bound on p in the theorem is likely to be of the right order.
The obstruction to finding linear bounds for c comes from the fact that one
cannot, in general, lift the maximal tori of Lie-theoretic normalisers to group-
theoretic normalisers. However, many interesting subalgebras of g have nor-
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4 Herpel and Stewart

malisers which are generated by nilpotent elements (such as maximal semisim-
ple subalgebras). Adding in this extra, natural hypothesis gives rise to much
better bounds. In the following theorem let h = h(G) denote the Coxeter
number of (the root system Φ of) G. If Φ is reducible, then h is taken as the
maximum over all components.

Theorem B. (i) Let G be a reductive algebraic group and let d be as in The-
orem A. Suppose p > d+1. Then all normalisers NG(h) of p-subalgebras
h are smooth whenever ng(h) is generated by nilpotent elements. More
precisely, the conclusion holds for normalisers generated by nilpotent el-
ements when G is simple of classical type (that is, the root system of G
is of A–D type) and p > h+ 1.

(ii) Let p > 2h−2 for the connected reductive group G. Then the normalisers
NG(h) of all subspaces h of g are smooth whenever ng(h) is generated by
nilpotent elements.

Remarks 1.2. (a). The bounds in Theorem B(i) are tight when G is classical
of type A, B or C: whenever p ≤ h+ 1 the smallest irreducible representation
of the first Witt algebra or its adjoint gives rise to a non-smooth normaliser
which satisfies the hypotheses. Theorem B(i) is also tight for G2, as it contains
a copy of the Witt algebra as a maximal subalgebra when p = 7; more generally,
the conclusion of Theorem B(i) fails for all exceptional algebraic groups when
p = h+ 1 (see [HS16]).
(b). Suppose that k is not algebraically closed, and that G is a connected
reductive algebraic group defined over k with a closed, k-defined subgroup-
scheme H . Since smoothness is a geometric property, we have that NG(H)
is smooth if and only if NGk(Hk) is smooth. Hence Theorems A and B give
sufficient conditions for the smoothness of normalisers over general base fields.

In proving the theorems above we require several auxiliary results which may
be of independent interest. The first is necessary in proving Theorem B(i).

Theorem C. Let g = Lie(G) for G a simply-connected classical algebraic group
over an algebraically closed field k and let p > 2 be a very good prime for G.
Then any maximal non-semisimple subalgebra of g is parabolic.

Remark 1.3. An announcement of a full classification of the maximal non-
semisimple subalgebras of the Lie algebras of classical groups is given in [Ten87].
We provide a straightforward proof of the stated part in §7 below.

The proof of Theorem B(i) also uses a number of results on cohomology of
low-dimensional modules. Such results have something of a history: in [Jan97]
Jantzen proved that a module for a connected reductive algebraic group with
p ≥ dimV is completely reducible. Building on this, Guralnick tackled the case
of finite simple groups in [Gur99]; this time one needs p ≥ dimV + 2 for the
same conclusion. In a different direction, Serre proved in [Ser94] that if two
semisimple modules V1 and V2 for an arbitrary group satisfy dimV1+dimV2 <
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On the Smoothness of Normalisers. . . 5

p + 2 then their tensor product is semisimple. Extending work of Bendel–
Nakano–Pillen, we add analogues of these results for Lie algebras and Frobenius
kernels of reductive algebraic groups tackling the ‘crucial case’ of a question
of Serre [Ser94, Question 1.2] (though see Footnote 3 below). We summarise
our results when G is simple into the following. The extensions to the case
G is semisimple or reductive can be found in §8, where also can be found any
unexplained terminology.

Theorem D. Suppose G is a simple algebraic group and let Gr be its r-th
Frobenius kernel with g its Lie algebra. Let V be a k-vector space with dimV ≤
p.

(a) Suppose V is a Gr-module. Then V is completely reducible unless
dimV = p, and either G is of type A1 or p = 2 and G is of type Cn. In
the exceptional cases, V is known explicitly.

(b) Suppose g = [g, g] and V is a g-module. Then either V is completely
reducible or dimV = p, G is of type A1 and V is known explicitly.

(c) Let p > h. Then H2(g, L(µ)) = 0, for all µ in the lowest alcove CZ, unless
G is of type A1 and µ = (p− 2); or G is of type A2 and µ = (p− 3, 0) or
(0, p− 3).

(d) Suppose V and W are semisimple g-modules with dimV +dimW < p+2.
Then V ⊗W is semisimple and H2(g, V ⊗W ) = 0. 3

We also mention a further tool, used in the proofs of Theorems A and B(i), for
which we need a definition due to Richardson: Suppose that (G′, G) is a pair of
reductive algebraic groups such that G ⊆ G′ is a closed subgroup. We say that
(G′, G) is a reductive pair provided there is a subspace m ⊆ Lie(G′) such that
Lie(G′) decomposes as a G-module into a direct sum Lie(G′) = Lie(G) + m.
Adapting a result from [Her13] we show

Proposition E. Let (G′, G) be a reductive pair and let H ≤ G be a closed
subgroup scheme. Then if NG′(H) is smooth, NG(H) is smooth too.

Acknowledgements
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relying just on a theorem of Strade, together with Theorem C.
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6 Herpel and Stewart

2 Notation and preliminaries

Let k be a field of characteristic p ≥ 0 and let G be an algebraic group defined
over k. Unless otherwise noted, k will assumed to be algebraically closed.
For all aspects to do with the representation theory of a connected reductive
algebraic group G we keep notation compatible with [Jan03]. In particular, R
is the root system of G, and h is the associated Coxeter number.
For a closed subgroup H ≤ G, we consider the scheme-theoretic normaliser
NG(H), respectively centraliser CG(H) of H in G. We define NG(H) to be
subfunctor of G which takes a k-algebraA and returns the subgroup of elements

NG(H)(A) = {g ∈ G(A) : gH(B)g−1 = H(B)}
for all A-algebras B. Similarly, the centraliser is defined via

CG(H)(A) = {g ∈ G(A) : gh = hg for all h ∈ H(B)}.
Since H is closed, NG(H) and CG(H) are closed subgroup schemes of G.
By contrast, for any affine algebraic group H over k, we denote by Hred

the smooth subgroup with k-points Hred(k) = H(k). As k is algebraically
closed, the existence and uniqueness of such a subgroup is explained for ex-
ample in [Mil12, Prop. 5.1] and (as we will use in the sequel) we have that
NG(H)red(k

′) = NG(k′)(H(k′))(k′) (resp. CG(H)red(k
′) = CG(k′)(H(k′))(k′))

by [Mil12, §VII.6].
Let g be a Lie algebra over k. When the characterstic of k is greater than 0, g
is often referred to as a modular Lie algebra, and as such our reference for the
theory is [SF88]. Recall that a Lie algebra g is semisimple if its solvable radical
is zero, and that in characteristic p > 0 this is not enough to ensure that it is
the direct sum of simple Lie algebras.
Sometimes but not all the time, we will have g = Lie(G) for G an algebraic
group, in which cas we refer to g as algebraic; in this case, g will carry the
structure of a restricted Lie algebra. Bear in mind that Lie(G) may not be
semisimple even when G is. Examples of this sort only occur in not-very-good
characteristic; for instance, sl2 = Lie(SL2) in characteristic 2 gives a restricted
structure on the solvable Lie algebra sl2 with 1-dimensional centre.
More generally, all restricted Lie algebras are of the form Lie(H), where H is
an infinitesimal group scheme of height one over k. Under this correspondence,
the restricted subalgebras of g = Lie(G) correspond to height one subgroup
schemes of G. If the centre Z(g) = 0, then a Lie algebra g has at most one
restricted structure. In particular, if two semisimple restricted Lie algebras are
isomorphic as Lie algebras, they are isomorphic as restricted Lie algebras.
An abelian p-subalgebra h of g consisting of semsimple elements is called a
torus of g. Cartan subalgebras of algebraic Lie algebras are always toral and
in fact the Lie algebras of maximal tori of the associated algebraic group. This
follows from [Hum67, Thm. 13.3].
If g is a restricted Lie algebra, a representation V is called restricted provided
it is given by a morphism of restricted Lie algebras g → gl(V ). The following
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On the Smoothness of Normalisers. . . 7

fact follows e.g. from the Kac–Weisfeiler conjecture (see [Pre95, Cor. 3.10]): if
G is a simple algebraic group defined in very good characteristic, and if V is
an irreducible g-module with dimV < p, then V is restricted. In particular,
it is well-known that V is then obtained by differentiating a simple restricted
rational representation of G.
When g is a Lie algebra, Rad(g) is the solvable radical of g and N(g) is the
nilradical of g. If g ⊆ gl(V ) there is also the radical of V -nilpotent elements
RadV (g). When g is restricted, Radp(g) is the p-radical of g, defined to be
the biggest p-nilpotent ideal. Further, g is p-reductive if the radical Radp(g) is
zero. Recall the following properties from [SF88, §2.1]:

Lemma 2.1. (a) Radp(g) is contained in the nilradical N(g) and hence in
the solvable radical of g. In particular, semisimple Lie algebras are p-
reductive.

(b) Radp(g) is the maximal p-nil (that is, consisting of p-nilpotent elements)
ideal of g.

(c) g/Radp(g) is p-reductive.

In particular, by part (b), if g ⊆ gl(V ) is a restricted subalgebra then Radp(g) =
RadV (g). If g ⊆ gl(V ) is a restricted Lie subalgebra and G1 is the height one
subgroup scheme of GL(V ) associated to g, then g is p-reductive if and only if
G1 is reductive in the sense that is has no connected normal nontrivial unipotent
subgroup schemes. For the usual notion of reductivity of smooth algebraic
groups only smooth unipotent subgroups are considered. The relation between
these two concepts is as follows:

Proposition 2.2 ([Vas05]). Let G be a connected reductive algebraic group.
Then G has no non-trivial connected normal unipotent subgroup schemes, ex-
cept if both p = 2 and G contains a direct factor isomorphic to SO2n+1 for
some n ≥ 1.

Since there are a number of possible definitions, let us be clear on the following:
We define a Borel subalgebra (resp. parabolic subalgebra, resp. Levi subalgebra)
of g to be Lie(B) (resp. Lie(P ), resp. Lie(L)), where B (resp. P , resp. L) is a
Borel (resp. parabolic, resp. Levi subgroup of a parabolic) subgroup of G.
By P = LQ we will denote a parabolic subgroup of G with unipotent radical
Q and Levi factor L. We will usually write p = Lie(P ) = l+ q. A fact that we
will use continually during this paper, without proof, is that if H (resp. h) is a
subgroup (resp. subalgebra) of P (resp. p), such that the projection to the Levi
is in a proper parabolic of the Levi, then there is a strictly smaller parabolic
P1 < P (resp. p1 < p) such that H ≤ P1 (resp. h ≤ p1). See [BT65, Prop.
4.4(c)].
We also use the following fact: If t ⊆ gln is a torus, then CGLn(t) is a Levi
subgroup (this follows e.g. from the construction of a torus T ⊆ GLn in [Die52,
Prop. 2] with CGLn(t) = CGLn(T )).
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8 Herpel and Stewart

Let V be an g-module and let λ : V × V → k be a bilinear form on V . We say
g preserves λ if λ(x(v), w) = −λ(v, x(w)) for all x ∈ g, v, w ∈ V .

We recall definitions of the algebraic simple Lie algebras of classical type: those
with root systems of types A–D. Then o(V ) is the set of elements x ∈ gl(V )
preserving the form λ(v, w) = vtw. so(V ) is the subset of traceless matrices
of o(V ). On the other hand when dimV is even, sp(V ) is the set of elements
preserving the form λ(v, w) = vtJw with J = [[0,−In], [In, 0]]. If char k 6= 2
then sp(V ) and so(V ) are simple (see below).

We say sp(V ) is of type Cn with 2n = dimV ; so(V ) is of type Bn when
dimV = 2n + 1, or type Dn when dimV = 2n. One fact that we shall use
often in the sequel is that that for types B–D, parabolic subalgebras are the
stabilisers of totally singular subspaces. (See for example, [Kan79].)

Furthermore recall that if G is simple, then g is simple at least whenever p is
very good. See [Hog82, Cor. 2.7] for a more precise statement. This means
in particular that sl(V ) is simple unless p| dimV , in which case the quotient
psl(V ) = sl(V )/kI is simple; we refer to such algebras as type An classical Lie
algebras, where dimV = n+1. In all cases, we refer to V as the natural module
for the algebra in question.

We make extensive use of the current state of knowledge of cohomology in this
paper, especially in §8. Importantly, recall that the group Ext1A(V,W ) (with
A either an algebraic group or a Lie algebra) corresponds to the equivalence
classes of extensions E of A-modules 0 → W → E → V → 0, and that
H2(A, V ) measures the equivalence classes of central extensions B of V by
A, equivalence classes of exact sequences 0 → V → B → A → 0, where B
is either an algebraic group or a Lie algebra. We remind the reader that for
restricted Lie algebras, two forms of cohomology are available—the ordinary Lie
algebra cohomology, denoted Hi(g, V ) or the restricted Lie algebra cohomology
(where modules respectively morphisms are assumed to be restricted). Since
the latter can always be identified with Hi(A, V ) for A the height one group
scheme associated to g, we shall always use the associated group scheme when
we wish to discuss restricted cohomology.

Finally, we record the following theorem of Strade which is a central tool in
our study of small-dimensional representations. Let char k = p > 0 and let
O1 = k[X ]/Xp be the truncated polynomial algebra. Then the first Witt
algebra W1 is the set of derivations of O1, with basis {Xr∂}0≤r≤p−1, where
∂ acts on O1 by differentiation of polynomials. For p > 2, W1 is simple, and
for p > 3, W1 is not the Lie algebra of any algebraic group. Since there is a
subspace k ≤ O1 fixed byW1, we see thatW1 has a faithful (p−1)-dimensional
representation for p > 2.

Theorem 2.3 ([Str73, Main theorem]). Let g be a semisimple Lie subalgebra of
gl(V ) over an algebraically closed field k of characteristic p > 2 with p > dimV .
Then g is either a direct sum of algebraic Lie algebras or p = dim V + 1 and g
is the p-dimensional Witt algebra W1.
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On the Smoothness of Normalisers. . . 9

3 Smoothness of normalisers of reductive subgroups

Let G be a connected reductive algebraic group and let T be a maximal torus
in G with associated roots R, coroots R∨, characters X(T ) and cocharacters
Y (T ). We say that a prime p is pretty good for G provided it is good for R and
provided that both X(T )/ZR and Y (T )/ZR∨ have no p-torsion. We recall the
main result of [Her13].

Proposition 3.1. Let G be as above, and let p = char(k). Then p is pretty
good for G if and only if all centralisers of closed subgroup schemes in G are
smooth.

Theorem 3.2. Let G be a connected reductive algebraic group. Then the nor-
malisers NG(H) of all (smooth) connected reductive subgroups are smooth if p
is a pretty good prime for G.

Proof. Let H ≤ G be a closed, connected reductive subgroup of G. We have
an exact sequence of group functors

1→ CG(H)→ NG(H)
int−−→ Aut(H).

Here the first map is the natural inclusion, the second map maps x ∈ G to
the automorphism int(x) of H given by conjugation with x, and Aut(H) is the
group functor that associates to each k-algebra S the group of automorphisms
of the group schemeHS . By [DGd70, XXIV, Cor. 1.7], we have that Aut(H)0 =
int(H) is smooth, which implies that int(NG(H)) is smooth. By Proposition
3.1, CG(H) is smooth. Thus the outer terms in the exact sequence of affine
group schemes

1→ CG(H)→ NG(H)→ int(NG(H))→ 1

are smooth, which forces NG(H) to be smooth.

Remark 3.3. The implication in the theorem cannot quite be reversed. For
example if G is SL2, p = 2 is not pretty good, but a connected reductive
subgroup is either trivial, or a torus, whose normaliser is smooth. However, we
give examples of non-smooth normalisers of connected reductive subgroups in
bad characteristics in Examples 11.6 below.

4 On exponentiation and normalising, and the proof of Theorem
B(ii)

Let G be a connected reductive group. We recall the existence of exponential
and logarithm maps for p big enough, see [Ser98, Thm. 3] or [Sei00, Prop. 5.2].
We fix a maximal torus T and a Borel subgroup B = T ⋉ U containing T .
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10 Herpel and Stewart

Theorem 4.1. Assume that p > h (p ≥ h for G simply connected), where h is
the Coxeter number of G. Then there exists a unique isomorphism of varieties
log : Gu → gnilp, whose inverse we denote by exp : gnilp → Gu, with the
following properties:

(i) log ◦σ = dσ ◦ log for all σ ∈ Aut(G);

(ii) the restriction of log to U is an isomorphism of algebraic groups U →
Lie(U), whose tangent map is the identity; here the group law on Lie(U)
is given by the Hausdorff formula;

(iii) log(xα(a)) = aXα for every root α and a ∈ k, where Xα = dxα(1).

The uniqueness implies that for G = GL(V ), p ≥ dim V , exp and log are the
usual truncated series.
Recall (cf. [Ser98]) that for a G-module V , the number n(V ) is defined as
n(V ) = supλ n(λ), where λ ranges over all T -weights of V , and where n(λ) =∑

α∈R+〈λ, α∨〉. For the adjoint module g, one obtains n(g) = 2h− 2.

Proposition 4.2. Let ρ : G → GL(V ) be a rational representation of G.
Suppose that p > h and p > n(V ). Let x ∈ g be a nilpotent element. Then

ρ(expG x) = expGL(dρ(x)).

In particular, if p > 2h− 2, then Ad(expG x) = expGL(ad(x)).

Proof. Consider the homomorphism ϕ : Ga → GL(V ) given by ϕ(t) =
ρ(expG(t.x)). Under our assumptions, it follows from [Ser98, Thm. 5] that
ϕ is a morphism of degree < p, (i.e. the matrix entries of ϕ are polynomials of
degree less than p in t). Moreover, dϕ(1) = dρ(x). By [Ser94, §4], this implies
that dρ(x)p = 0 and that ϕ agrees with the homomorphism t 7→ expGL(t.dρ(x)).
The claim follows.

Lemma 4.3. Let X ∈ gl(V ) be a nilpotent element satisfying Xn = 0 for some
integer n ≤ p. Let l, r ∈ End(gl(V )) be left multiplication with X, respectively
right multiplication with −X. Set W =Wp(l, r) ∈ End(gl(V )), where Wp(x, y)
is the the image of 1

p ((x+ y)p − xp − yp) ∈ Z[x, y] in k[x, y]. Let h be a subset

of gl(V ) normalised (resp. centralised) by X. Suppose that h ⊆ ker(W ). Then
exp(X) ∈ GL(V ) normalises (resp. centralises) h.
In particular, if p ≥ 2n − 1, then W = 0 and so exp(X) normalises (resp.
centralises) every subspace that is normalised (resp. centralised) by X.

Proof. Since the nilpotence degree ofX is less than p, the exponential exp(X) =
1+X +X2/2+ . . . gives a well-defined element of GL(V ). Moreover, for each
Y ∈ h we have the equality

Ad(exp(X))(Y ) = exp(ad(X))(Y ) = Y +ad(X)(Y )+ad(X)2(Y )/2+· · · ∈ gl(V ).
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Indeed, we have ad(X) = l + r, and Ad(exp(X)) = exp(l) exp(r). Now
by [Ser94, (4.1.7)], exp(l) exp(r) = exp(l + r − W ). Since l and r commute
with W , we deduce (l + r −W )m(Y ) = (l + r)m(Y ) for each m ≥ 0. Thus
Ad(exp(X))(Y ) = exp(l + r)(Y ) = exp(ad(X))(Y ), as claimed. Hence exp(X)
is contained in NGL(V )(h) whenever X ∈ ngl(V )(h) and exp(X) ∈ CGL(V )(h)
whenever X ∈ cgl(V )(h).

Moreover, Wp(l, r) =
∑p−1

i=1 cil
irp−i for certain non-zero coefficients ci ∈ k. In

particular, this expression vanishes for p ≥ 2n− 1.

Corollary 4.4. Let p = q+ l ⊆ gl(V ) be a parabolic subalgebra, and suppose
that p ≥ dim V . If X ∈ q normalises a subset h ⊆ p, then so does exp(X).

Proof. By Lemma 4.3, it suffices to show that p ⊆ ker(W ). Let 0 = V0 ⊆ V1 ⊆
· · · ⊆ Vm = V be a flag with the property

p = {Y ∈ gl(V ) | Y Vi ⊆ Vi}
q = {Y ∈ gl(V ) | Y Vi ⊆ Vi−1}.

By assumption, we have p ≥ m, and therefore all products X1 . . .Xp+1 with
all Xi ∈ p and all but one Xi ∈ q vanish on V . In particular lirp−i(Y ) = 0 for
all Y ∈ p and hence W (Y ) = 0.

Lemma 4.5. Suppose g is a subalgebra of gl(V ) generated as a k-Lie algebra
by a set of nilpotent elements {Xi} of nilpotence degree less than p, and let
G = 〈exp(t.Xi)〉 be the closed subgroup of GL(V ) generated by exp(t.Xi) for
each t ∈ k. Then g ≤ Lie(G).

Proof. Since Lie(G) contains the element d/dt exp(t.Xi)|t=0 it contains each
element Xi. Since g is generated by the elements Xi, we are done.

Proof of Theorem B(ii). Let h be a subspace of g and let n = ng(h) be the
Lie-theoretic normaliser of h in g.
Let {x1, . . . , xr} be a set of nilpotent elements generating n. To show that
NG(h) is smooth, it suffices to show that each xi belongs to the Lie algebra of
NG(h)red.
But for a nilpotent generator xi, we may consider the smooth closed subgroup
Mi = 〈exp(t.xi) | t ∈ k〉 of G. By Proposition 4.2, Mi ⊆ NG(h)red and hence
xi ∈ Lie(Mi) ⊆ Lie(NG(h)red), as required.

5 Reductive pairs: Proof of Proposition E

The following definition is due to Richardson [Ric67].

Definition 5.1. Suppose that (G′, G) is a pair of reductive algebraic groups
such that G ⊆ G′ is a closed subgroup. Let g′ = Lie(G), g = Lie(G). We say
that (G′, G) is a reductive pair provided there is a subspace m ⊆ g′ such that
g′ decomposes as a G-module into a direct sum g′ = g⊕m.
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12 Herpel and Stewart

With p sufficiently large, reductive pairs are easy to find.

Lemma 5.2 ( [BHMR11, Thm. 3.1]). Suppose p > 2 dimV − 2 and G is a
connected reductive subgroup of GL(V ). Then (GL(V ), G) is a reductive pair.

We need a compatibility result for normalisers of subgroup schemes of height
one.

Lemma 5.3. Let H ⊆ G be a closed subgroup scheme of height one, with h =
Lie(H). Then NG(H) = NG(h) (scheme-theoretic normalisers).

Proof. We have a commutative diagram

Hom(H,H) −−−−→ Homp−Lie(h, h)y
y

Hom(H,G) −−−−→ Homp−Lie(h, g),

where the horizontal arrows are given by differentiation and are bijective (cf.
[DG70, II, §7, Thm. 3.5]). Now if x ∈ NG(h), the map Ad(x)h in the bottom
right corner may be lifted via the top right corner to a map in Hom(H,H).
The commutativity of the diagram shows that conjugation by x stabilises H ,
and hence x ∈ NG(H). This works for points x with values in any k-algebra,
and hence proves the containment of subgroup schemes NG(h) ⊆ NG(H). The
reverse inclusion is clear.

We show that the smoothness of normalisers descends along reductive pairs.
Let us restate and then prove Propostion E.

Proposition 5.4. Let (G′, G) be a reductive pair and let H ⊆ G be a closed
subgroup scheme. If NG′(H) is smooth, then so is NG(H).
In particular, if h ⊆ g is a restricted subalgebra and if NG′(h) is smooth, then
so is NG(h).

Proof. The last assertion follows from Lemma 5.3.
Let H ⊆ G be a closed subgroup scheme. We follow the proof of [Her13, Lem.
3.6]. Let g′ = g⊕m be a decomposition of G-modules.
By [DG70, II, §5, Lem. 5.7], we have

dimLie(NG′(H)) = dim h+ dim(g′/h)H = dim h+ dim(g/h)H + dimmH

= dimLie(NG(H)) + dimmH ≥ dimNG(H) + dimmH .

On the left hand side, as NG′(H) is smooth by assumption, we have
dimNG′(H) = dimLie(NG′(H)). Thus to show that NG(H) is smooth, it
suffices to show that dimNG′(H)− dimNG(H) ≤ dimmH .
Now as in [Her13, Lem. 3.6], one shows that there is a monomorphism of
quotient schemes NG′(H)/NG(H) →֒ (G′/G)H , and that the tangent space on
the right hand side identifies as Tē(G

′/G)H ∼= mH . The claim follows.
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6 Lifting of normalising tori and the proof of Theorem A

In this section we let G = GL(V ) and h be a subspace of g. We would like to lift
a normaliser ng(h) to a subgroup N normalising h such that Lie(N) = ng(h).
It turns out that the hardest part of this is to find a lift of a maximal torus
normalising h. This is the content of the next lemma.

Lemma 6.1. Let G = GLn with p > 22n and let h ⊆ g be any subspace of
g = Lie(G). Suppose that c ⊆ g is a torus normalising h. Then c = Lie(C) for
a torus C ⊆ NG(h).

Proof. Let T be a diagonal maximal torus of GLn and t = Lie(T ). Since c
consists of semisimple elements, we may assume c ⊆ t.
Since c is restricted, it has a basis defined over Fp of elements Z1, . . . , Zs with
Zi = diag(zi1, . . . , zin) and each zij ∈ Fp. By [Die52, Prop. 2] we may assume
that c is a maximal torus of ng(h), which we do from now on.
Since k is algebraically closed, we may take a decomposition of h into weight
spaces for c. We have h = h0 ⊕

⊕
α hα where h0 is some set of elements

commuting with c, α is a non-trivial linear functional c → k and each hα is a
subspace of gln with [c,X ] = α(c)X for c ∈ c and X ∈ hα.
Let {Xi} be a basis for h with each Xi ∈ h0 or hα for some α as above. Then
c =

⋂
i nt(〈Xi〉). Suppose c = diag(c1, . . . , cn). The condition c ∈ nt(〈Xi〉) puts

a set of conditions on the ci. If only one entry of the matrix Xi is non-zero
or Xi is diagonal, then t normalises Xi, hence the set of conditions is empty.
Otherwise, if (Xi)j,k and (Xi)l,m are non-zero, then c normalising 〈Xi〉 implies
cj − ck = cl − cm. Letting c = (c1, . . . , cn) this condition can be rewritten as
a linear equation rc = 0, where r is an appropriate row vector whose entries
are all 0, except for up to four, where the non-zero entries take the values, up
to signs or permutations, (1,−1), (2,−2), (1,−2, 1) or (1,−1,−1, 1) according
to the values of j, k, l and m. The collection of these, say m relations, across
i and all pairs of non-zero entries in Xi gives an m × n integral matrix R so
that c ∈ c if and only if it satisfies the equation Rc = 0 modulo p. Similarly,
if χ(t) = diag(ta1 , . . . , tan) is a cocharacter with image in T , then one checks
that χ(t) normalises h if the integral equation Ra = 0 where a = (a1, . . . , an).
If the nullity of R is the same modulo p as it is over the integers then for any
c ∈ nt(h), there exists a cocharacter χ of NT (h) with d/dt|t=1(χ(t)) = c and
we are done. But if the nullity of R modulo p differs from the nullity of R over
the integers, then we must have that p|di for di one of the non-zero elementary
divisors of R. Now by the theory of Smith Normal Form, if r ∈ N is taken
maximal so that there exists a non-vanishing r× r minor, then the elementary
divisors of R are all at most the greatest common divisor of all non-zero r × r
minors. Let M be such an r × r minor. We are going to argue by induction
on r that | det(M)| ≤ 22r. Since r ≤ n, the hypothesis will then show that p is
not a prime factor of det(M), as required.
We must have r ≤ n. If there is a row of M containing only elements of
modulus 2, then at most 2 of these are non-zero and 2 is a prime factor of
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detM ; Laplace’s formula implies that the remaining matrix has determinant
at most 2 detM ′ where M ′ is a certain r − 1 × r − 1 minor of M , so that
we are done by induction. If there are no entries of modulus 2, then each row
contains at most 4 entries of modulus 1 and Laplace’s formula then implies that
detM ≤ 4 detM ′ whereM ′ is a certain r−1×r−1 minor ofM of the required
form, so that we are done again by induction. Otherwise there is at least
one row with non-zero entries (1,−2) or (1,−2, 1). By Laplace’s formula and
induction, it is now easy to see that | detM | ≤ 22n−2 + 2.22n−2 + 22n−2 = 22n

and we are done.

We are now in a position to prove Theorem A.

Proof of Theorem A. First consider the case G = GLn. Let h be a subspace of
g and let n = ng(h) be the Lie-theoretic normaliser of h in g.

As before, by definition, n is a restricted subalgebra of g. Hence, applying the
Jordan decomposition for restricted Lie algebras, we see that n is generated
by its nilpotent and semisimple elements. Let {x1, . . . , xr, y1, . . . , ys} be such
a generating set with x1, . . . , xr nilpotent and y1, . . . , ys semisimple. To show
that NG(h) is smooth, it suffices to show that all the elements xi and yj belong
to the Lie algebra of NG(h)red.

For a nilpotent generator xi, of nilpotence degree at most n < p, consider the
smooth closed subgroup Mi = 〈exp(t.xi) | t ∈ k〉 of G. Since p > 2h − 2, we
may apply Proposition 4.2, to obtainMi ⊆ NG(h)red and hence xi ∈ Lie(Mi) ⊆
Lie(NG(h)red), as required.

It remains to consider the semisimple generators yi. Let ti := 〈yi〉p ≤ n be
the torus generated by the p-powers of yi. By hypothesis, p > 22n and so we
may apply Lemma 6.1 to find a torus Ti ≤ NG(h) such that Lie(Ti) = ti. In
particular yi ∈ Lie(NG(h)red). This finishes the proof in the case G = GL(V ).

If G is a reductive algebraic group suppose G → GL(V ) ∼= GLd is a minimal
faithful module for G. Now since p > 22 dimV , we have that normalisers of
all subspaces of GL(V ) are smooth. But now, by Lemma 5.2, (GL(V ), G) is
a reductive pair, so that invoking Proposition 5.4 we obtain that NG(h) is
smooth. This completes the proof.

7 Non-semisimple subalgebras of classical Lie algebras. Proof
of Theorem C

Suppose char k > 2 for this section.

This section provides proofs for some of the claims made in [Ten87]. Here we
tackle the proof of Theorem C.

Proposition 7.1 (see [SF88, §5.8, Exercise 1]). Let g ≤ gl(V ) be a Lie algebra
acting irreducibly on an g-module V such that g preserves a non-zero bilinear
form. Then g is semisimple.
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Proof. Assume otherwise. Then Rad(g) 6= 0 and we can find an abelian ideal
0 6= J ⊳ g. Take x ∈ J . As [xp, y] = ad(x)py ∈ J (1) = 0, xp centralises g and
we have that v 7→ xpv is a g-homomorphism V → V . Since k is algebraically
closed and V is irreducible, Schur’s lemma implies that xpv = α(x)v for some
map α : J → k.
Since λ 6= 0 there are v, w with λ(v, w) = 1. Now α(x) = λ(xpv, w) =
−λ(v, xpw) = −α(x) so α(x) = 0. Thus xpv = 0 for all x ∈ J . Hence J
acts nilpotently on V and so Engel’s theorem gives an element 0 6= v ∈ V an-
nihilated by J . Since V is irreducible, it follows that JV = J(gv) ≤ gJv = 0.
Thus J = 0 and g is semisimple.

Since any subalgebra of a classical simple Lie algebra of type B, C or D pre-
serves the associated (non-degenerate) form we get

Corollary 7.2. If h is a non-semisimple subalgebra of a classical simple Lie
algebra g of type B, C or D then h acts reducibly on the natural module V for
g.

Remark 7.3. If g = g2 (resp. f4, e7, e8) then a subalgebra acting irreducibly
on the self-dual modules V7 (resp. V26, or V25 if p = 3, V56, V248 = e8) is
semisimple. Here Vn refers to the usual irreducible module of dimension n.

A subalgebra is maximal rank if it is proper and contains a Cartan subalgebra
(CSA) of g. (Note that CSAs of simple algebraic Lie algebras are tori.) Call a
subalgebra h of g an R-subalgebra if h is contained in a maximal rank subalgebra
of g.
For the following, notice that if p| dimV then sl(V ) is not simple, though
provided sl(V ) 6= sl2 in characteristic 2, the central quotient psl(V ) is simple.
Now, a subalgebra h of psl(V ) is an R-subalgebra of psl(V ) if and only if its
preimage π−1h under π : sl(V ) → psl(V ) is an R-subalgebra. We say h acts
reducibly on V if π−1h does.

Proposition 7.4. Let g be a simple algebraic Lie algebra of classical type and
let h ≤ g act reducibly on the natural module V for g. Then h is an R-subalgebra
unless g = so(V ) with dimV = 2n with h ≤ so(W ) × so(W ′) stabilising a
decomposition of V into two odd-dimensional, non-degenerate subspaces W and
W ′ of V .

Proof. Let V be the natural module for g and let W ≤ V be a minimal h-
submodule, so that h ≤ Stabg(W ). If g is of type A then Stabg(W ) is Lie(P )
for a (maximal) parabolic P of SL(V ). Hence h is an R-subalgebra of g.
If g is of type B, C or D, then consider U =W ∩W⊥; this is the subspace of
W whose elements v satisfy λ(v, w) = 0 for every w ∈ W . Since M preserves
λ, this is a submodule of W , hence we have either U = 0 or U = W by
minimality of W . If the latter, W is totally singular. Thus StabgW is Lie(P )
for a parabolic subgroup P of the associated algebraic group.
On the other hand, U = 0 implies that W is non-degenerate. Then V =
W ⊕W⊥ is a direct sum of h-modules and we see that StabgW is isomorphic
to
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(i) sp2r × sp2s in case L is of type C, dimW = 2s and 2r + 2s = dimV

(ii) sor × sos in case L is of type B or D, dimW = s and r + s = dim V .

Note that by [Bou05, VII, §2, No. 1, Prop. 2] the dimensions of the CSA of a
direct product is the sum of the dimensions of the CSAs of the factors. In case
(i), the subalgebra described has the (r+ s)-dimensional CSA arising from the
two factors. In case (ii), if dimV = 2n+ 1 is odd then one of r and s is odd.
If r is odd then sor has a CSA of dimension (r − 1)/2, and sos has a CSA of
dimension s/2, so that the two together give a CSA of dimension s/2 + (r −
1)/2 = n. (Similarly if s is odd.) Otherwise dim V = 2n is even. If dimW is
even then StabgW contains a CSA of dimension r/2 + s/2 = n. If dimW is
odd then we are in the exceptional case described in the proposition.

Remark 7.5. In the exceptional case, note that so2r+1× so2s+1 contains a CSA
of dimension r+s, whereas so2n+2 contains a CSA of dimension n+1 = r+s+1.

Corollary 7.6. Let g be of type B, C or D. If h is a maximal non-semisimple
subalgebra of g, then h is Lie(P ) for P a maximal parabolic of G. In particular,
if h is any non-semisimple subalgebra of g, it is an R-subalgebra.

Proof. Assume otherwise. Then h fixes no singular subspace on V . Suppose h
preserves a decomposition V = V1 ⊥ V2 ⊥ · · · ⊥ Vn on V with n as large as
possible, with the Vi all non-degenerate. Then h ≤ g1 = so(V1)× · · · × so(Vn)
or h ≤ g1 = sp(V1)× · · · × sp(Vn). Since h is non-semisimple, the projection h1
of h in so(V1) or sp(V1), say, is non-semisimple. Then Proposition 7.1 shows
that h acts reducibly on V1. Since h stabilises no singular subspace, the proof
of Proposition 7.4 shows that h stabilises a decomposition of V1 into two non-
degenerate subspaces, a contradiction of the maximality of n.

Let h be a restricted Lie algebra, I ≤ h an abelian ideal and V an h-module. Let
λ ∈ I∗. Recall from [SF88, §5.7] that hλ = {x ∈ h|λ([x, y]) = 0 for all y ∈ I}
and V λ = {v ∈ V |x.v = λ(x)v for all x ∈ I}.
Proposition 7.7. Let h be a non-semisimple subalgebra of sl(V ) with V irre-
ducible for h. Then p| dimV .

Proof. Let h be as described and let I be a nonzero abelian ideal of h. If hp
denotes the closure of h under the p-mapping, then by [SF88, 2.1.3(2),(4)], Ip
is an abelian p-ideal of hp. Thus Radhp 6= 0 and hp is non-semisimple. Hence
we may assume from the outset that h = hp is restricted with nonzero abelian
ideal I.
Since h acts irreducibly on V , by [SF88, Corollary 5.7.6(2)] there exist S ∈ h∗,
λ ∈ I∗ such that

V ∼= Indh
hλ
(V λ, S).

If λ is identically 0 on I then V λ is an h-submodule. We cannot have V λ = 0
(or else V = 0) so V λ = V and I acts trivially on V , a contradiction since
I ≤ sl(V ).
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Hence λ(x) 6= 0 for some x ∈ I. Suppose V λ = V . Then as x ∈ sl(V ), we have
trV (x) = dimV · λ(x) = 0 and thus p| dimV and we are done. If dim V λ <

dimV , then by [SF88, Prop. 5.6.2] we have dimV = pdimL/Lλ · dimV λ. Thus
again p| dimV , proving the theorem.

Corollary 7.8. If p ∤ dimV then any non-semisimple subalgebra h of sl(V )
acts reducibly on V . Hence it is contained in Lie(P ) for P a maximal parabolic
of SL(V ). In particular h is an R-subalgebra.

Putting together Corollaries 7.6 and 7.8, this completes the proof of Theorem
C.
As a first application, the following lemma uses Theorem C to show that p-
reductive implies strongly p-reductive. Recall that a restricted Lie algebra is
strongly p-reductive if it is the direct sum of a central torus and a semisimple
ideal.

Lemma 7.9. Let h ⊆ gln be a subalgebra and let p > n. If h is p-reductive, it
is strongly p-reductive.

Proof. Take p = l + q a minimal parabolic subalgebra with h ≤ p. Set hl
to be the image of h under the projection π : p → l. Since p > n, we have
l ∼= gl(W1) × · · · × gl(Ws) ∼= sl(W1) × . . . sl(Ws) × z, where z is a torus. Let
si be the projection of hl to sl(Wi), and let z′ be the projection of hl to z. If
the projection of Rad(hl) to sl(Wi) is non-trivial, then si is not semisimple.
By Theorem C, Wi is not irreducible for si. Thus p is not minimal subject to
containing h, a contradiction, proving that all the si are semisimple. Moreover,
z′ = Z(hl), as the projection of z to each sl(Wi) must vanish. This forces
hl ⊆ s1 × · · · × ss × Z(hl) to be strongly p-reductive. As h is p-reductive, we
have that π is injective on h, and hence h ∼= hl is strongly p-reductive.

8 Complete reducibility and low-degree cohomology for classi-
cal Lie algebras: Proof of Theorem D

Let G be a connected reductive algebraic group with root system R and let
Gr ⊳ G be the rth Frobenius kernel for any r ≥ 1. It is well-known that the
representation theory of G1 and g are very closely related. In this section we re-
call results on the cohomology of small Gr-modules and use a number of results
of Bendel, Nakano and Pillen to prove that small Gr-modules are completely
reducible with essentially one class of exceptions. We do this by examining
Ext1Gr(L(λ), L(µ)) for two simple modules L(λ) and L(µ) of bounded dimen-
sion or weight. While we are at it, we also get information about H2(G1, L(λ)).
In a further subsection, we then go on to use this to prove the analogous
statements for g-modules. One crucial difference we notice is with central ex-
tensions: H2(g, k) tends to be zero, whereas H2(G1, k) is almost always not;
c.f. Corollary 8.2 and Theorem 8.9.
All the notation in this section is as in [Jan03, List of Notations, p. 569]: In
particular, for a fixed maximal torus T ≤ G, we denote by R the corresponding
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root system, by R+ a choice of positive roots with corresponding simple roots
S ⊆ R+, by X(T )+ ⊆ X(T ) the dominant weights inside the character lattice,
by L(λ) the simple G-module of highest weight λ ∈ X(T )+, by H0(λ) the
module induced from λ with socle L(λ), by CZ (resp. C̄Z) the dominant weights
inside the lowest alcove (respectively, in the closure of the lowest alcove). If
G is simply connected, we write ωi ∈ X(T )+ for the fundamental dominant
weight corresponding to αi ∈ S = {α1, . . . , αl}.
Let us recall some results from [McN02] which show the interplay between the
conditions that, relative to p, (i) modules are of small dimension; (ii) their high
weights are small; and (iii) the Coxeter number is small.

Proposition 8.1 ([McN02, Prop. 5.1]). Let G be simple and simply connected,
let L be a simple non-trivial restricted G-module with highest weight λ ∈ X(T )+
and suppose that dimL ≤ p. Then

(i) We have λ ∈ C̄Z.

(ii) We have λ ∈ CZ if and only if dimL < p.

(iii) We have p ≥ h. If moreover dimL < p then p > h.

(iv) If R is not of type A and dimL = p then p > h. If p = h and dimL = p
then R = Ap−1 and λ = ωi with i ∈ {1, p− 1}.

8.1 Cohomology and complete reducibility for small G1-modules

We need values of Hi(G1, H
0(µ)) for µ ∈ C̄Z and i = 1 or 2. Thus H0(µ) =

L(µ).

Proposition 8.2. Let G be simple and simply connected and suppose L = L(µ)
with µ ∈ C̄Z and p ≥ 3. Then:
(i) we have H1(G1, L) = 0 unless G is of type A1, L = L(p − 2) and in that
case H1(G1, L)

[−1] ∼= L(1);
(ii) suppose p > h. Then we have H2(G1, L) = 0 unless: L = k and
H2(G1, k)

[−1] ∼= g∗; or G = SL3, with H2(G1, L(p − 3, 0))[−1] ∼= L(0, 1) and
H2(G1, L(0, p− 3))[−1] ∼= L(1, 0).

Proof. Part (i) is immediate from [BNP02, Corollary 5.4 B(i)]. The A1 result
is well known. Part (ii) requires some argument. If H2(G1, H

0(µ)) 6= 0 then
since p > h we may assume µ ∈ CZ. Now, the values of H2(G1, H

0(µ))[−1] are
known from [BNP07, Theorem 6.2]. It suffices to find those that are non-zero
for which µ ∈ CZ \ {0}. All of these have the form µ = w.0 + pλ for l(w) = 2
and λ ∈ X(T )+. Now, if l(w) = 2, we have −w.0 = α + β for two distinct
roots α, β ∈ R+ (cf. [BNP07, p. 166]). To have w.0 + pλ in the lowest alcove,
one needs 〈w.0 + pλ + ρ, α∨0 〉 < p. Now 〈pλ, α∨0 〉 ≥ p so 〈w.0 + ρ, α∨0 〉 < 0.
Thus m := 〈α + β, α∨0 〉 > h − 1. Now one simply considers the various cases.
If G is simply-laced, then the biggest value of 〈α, α∨0 〉 is 2, when α = α0 and
1 otherwise, thus m > h − 1 implies h ≤ 3. Thus we get G = SL3, and this
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case is calculated in [Ste12, Prop. 2.5]. If G = G2 we have m at most 5, giving
h at most 5, a contradiction. If G is type B, C or F , then m is at most 4, so
G = Sp4, p ≥ 5 and this is calculated in [Ibr12, Prop. 4.1]. One checks that all
µ such that H2(G1, L(µ)) 6= 0 have µ 6∈ CZ.

Remark 8.3. All the values of H2(Gr , H
0(λ))[−1] are known for all λ by [BNP07,

Theorem 6.2] (p ≥ 3) and [Wri11] (p = 2). For example, H2(G1, k)
[−1] ∼= g∗

also when G is of type A1 and p = 2. Even for λ = 0 there are quite a
few exceptional cases when p = 2: see [Wri11, C.1.4]. There are also two
exceptional cases for p = 3, for A2 and G2, see [BNP07, Theorem 6.2].

One can go further in the case of 1-cohomology to include extensions between
simple modules:

Lemma 8.4 ([BNP02, Corollary 5.4 B(i)]). Let G be a simple, simply connected
algebraic group not of type A1. If p > 2 then Ext1Gr(L(λ), L(µ)) = 0 for all
λ, µ ∈ C̄Z.

We will use the above result to show that small Gr-modules are completely
reducible, but we must first slightly soup it up before we use it.

Lemma 8.5. Let G be a simple, simply connected algebraic group not of type
A1 and p > 2.
(i) We have Ext1Gr(L(λ)

[s], L(µ)[t]) = 0 for all λ, µ ∈ C̄Z and s, t ≥ 0.
(ii) For λ, µ ∈ Xr(T ), let λ = λ0 + pλ1 + · · ·+ pr−1λr−1 and µ = µ0 + pµ1 +
· · · + pr−1µr−1 be their p-adic expansions. Suppose we have λi, µi ∈ C̄Z for
each i. Then Ext1Gr(L(λ), L(µ)) = 0.

Proof. (i) Clearly we may assume s, t < r. When r = 1 the result follows from
Lemma 8.4. So assume r > 1. Without loss of generality (dualising if necessary)
we may assume s ≤ t. Suppose s > 0 and consider the following subsequence
of the five-term exact sequence of the LHS spectral sequence applied to Gs ⊳Gr
(see [Jan03, I.6.10]):

0→ Ext1Gr−s(L(λ), L(µ)
[t−s])→ Ext1Gr(L(λ)

[s], L(µ)[t])

→ HomGr−s(L(λ),Ext
1
Gs(k, k)

[−s] ⊗ L(µ)[t−s])→ 0.

Since Ext1Gs(k, k) = 0, we have

Ext1Gr−s(L(λ), L(µ)
[t−s]) ∼= Ext1Gr (L(λ)

[s], L(µ)[t]),

and the left-hand side vanishes by induction, so we may assume s = 0. There
is another exact sequence

0→ Ext1Gr−1
(k,HomG1(L(λ), L(µ)

[t])[−1])→ Ext1Gr (L(λ), L(µ)
[t])

→ HomGr−1(k,Ext
1
G1

(L(λ), L(µ)[t])[−1]) = 0,
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where the last term vanishes by induction. If t = 0 then as λ 6= µ, the first
term of the sequence vanishes and we are done. So we may assume t > 0. Now
we can rewrite the first term as Ext1Gr−1

(k,HomG1(L(λ), k)
[−1]⊗L(µ)[t−1]). If

this expression is non-trivial we have λ = 0 and Ext1Gr−1
(k, L(µ)[t−1]) vanishes

by induction, which completes the proof.
(ii) Suppose i is the first time either λi−1 or µi−1 is non-zero. Without loss of
generality, λi−1 6= 0. Write λ = λi + piλ′ and take a similar expression for µ.
Then there is an exact sequence

0→ Ext1Gr−i(L(λ
′),HomGi(L(λ

i), L(µi))[−i] ⊗ L(µ′))→ Ext1Gr (L(λ), L(µ))

→ HomGr−i(L(λ
′),Ext1Gi(L(λ

i), L(µi))[−i] ⊗ L(µ′)).

We have L(λi) = L(λi−1)[i−1] and L(µi) = L(µi−1)[i−1]. Hence the right-hand
term vanishes by part (i). The left-hand term is non-zero only if λi = µi

and then we get Ext1Gr−i(L(λ
′), L(µ′)) ∼= Ext1Gr(L(λ), L(µ)). Thus the result

follows by induction on r.

We put these results together to arrive at an analogue of Jantzen’s well-known
result [Jan97] that G-modules for which dimV ≤ p are completely reducible.

Proposition 8.6. Let G be a simple, simply connected algebraic group and let
dimV ≤ p be a Gr-module. Then exactly one of the following holds:
(i) V is a semisimple Gr-module;
(ii) G is of type A1, p > 2, r = 1, dim V = p and V is uniserial, with
composition factors L(p− 2− s) and L(s) with 0 ≤ s ≤ p− 2;
(iii) G is of type Cn with n ≥ 1, p = 2 and V is uniserial with two trivial
composition factors.

Proof. Assume V has only trivial composition factors. We have Ext1Gr(k, k) 6= 0

if and only if p = 2 and G is of type Cn, in which case Ext1Gr (k, k)
[−r] ∼= L(ω1);

[Jan03, II.12.2]. This is case (iii).
Otherwise, p > 2 and Ext1Gr(L(λ), L(λ)) = 0 for all λ ∈ Xr(T ) by [Jan03,
II.12.9].
Assume G is not of type A1. By assumption, V has a non-trivial composition
factor with dimV ≤ p. Then p > 2 and the hypotheses of Lemma 8.4 hold.
Since dimV ≤ p, by Proposition 8.1 any Gr-composition factor L(λ) of V has
a p-adic expansion λ = λ0 + · · · + pr−1λr with each λi ∈ C̄Z. If there were
a non-split extension 0 → L(λ) → V → V/L(λ) → 0 then there would be a
non-split extension of L(λ) by L(µ) for L(µ) a composition factor of V , also of
the same form. But by Lemma 8.5(ii) we have Ext1Gr(L(λ), L(µ)) = 0, hence
this is impossible and L(λ) splits off as a direct summand. Induction on the
direct complement completes the proof in this case.
If G is of type A1 then the Gr-extensions of simple modules are well known. If
r > 1 with λ, µ ∈ Xr(T ) then dimExt1Gr (L(λ), L(µ)) = dimExt1G(L(λ), L(µ))
and this must vanish whenever dimL(λ)+dimL(µ) ≤ p. If r = 1, then the only
pairs of G1-linked weights are s and p− 2− s with Ext1G1

(L(s), L(p− 2− s)) ∼=
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L(1)[1] as G-modules. Here we have dimL(s) + dimL(p − s − 2) = p giving
case (ii).

The following two corollaries are immediate, in the first case, the passage from
G being simple to being reductive is trivial (consider the cover of G by the
product of the radical and the simply connected cover of the derived group).

Corollary 8.7. Let G be a connected reductive algebraic group and let V be
a Gr-module with p > dimV . Then V is semisimple.

Corollary 8.8. Let G be connected reductive and Gr ≤ GL(V ) with dimV ≤
p. Then either Gr is completely reducible on V or dim V = p, G is of type A1,
r = 1 and Gr is in a maximal parabolic of GL(V ) acting indecomposably on V
as described in case (ii) of Proposition 8.6.
Moreover, if g is a p-reductive subalgebra of GL(V ) with dim V < p then g acts
semisimply on V .

Proof. If G is not simple, it can be written as HK with H and K non-trivial
mutually centralising connected reductive subgroups with maximal tori S and
T say. The Frobenius kernels H1,K1 ≤ G1 ≤ Gr are also mutually centralising,
so that H1 is in the centraliser of T1. Now the centraliser of T1 is a proper
Levi subgroup of GL(V ), hence restriction of V to Hr has at least one trivial
direct factor, with direct complement W say, dimW < p. Thus by Corollary
8.7, W is completely reducible for Hr and by symmetry, for Kr. Thus W is
completely reducible for KrHr = Gr.
Otherwise, G is simple and Proposition 8.6 gives the result (note that case (iii)
does not occur due to dimension restrictions).
For the last part, Lemma 7.9 implies that g is the direct sum of a semisimple
ideal and a torus, and we may hence assume that g is a semisimple restricted
subalgebra of gl(V ). If g is not irreducible on V , then by Theorem 2.3 there
exists a semisimple group G with g = Lie(G). Now the result follows from the
case G1 above.

8.2 Cohomology and complete reducibility for small g-modules

We now transfer our results to the ordinary Lie algebra cohomology for g.
Recall the exact sequence [Jan03, I.9.19(1)]:

0→ H1(G1, L)→ H1(g, L)→ Homs(g, Lg)

→ H2(G1, L)→ H2(g, L)→ Homs(g,H1(g, L)) (1)

The following theorem is the major result of this section.

Theorem 8.9. Let g = Lie(G) be semisimple. Then:

(a) If p > h with µ ∈ C̄Z then either H2(g, L(µ)) = 0, or one of the following
holds: (i) g contains a factor sl3 and L(µ) contains a tensor factor of
L(p−3, 0) or L(0, p−3) for this sl3; (ii) g contains a factor sl2 and L(µ)
has a tensor factor L(p− 2) for this sl2.
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(b) If p > 2 is very good for G then H2(g, k) = 0.

(c) If p > 2 is very good for G and λ, µ ∈ C̄Z we have Ext1g(L(λ), L(µ)) = 0,
or G contains a factor of type A1, L(λ) and L(µ) are simple mod-
ules for that factor, λ = s < p − 1, µ = p − 2 − s and we have
Ext1g(L(λ), L(µ))

[−1] ∼= L(1).

Proof. We may assume that G is simply connected, since the condition on p
implies that g = g1 × g2 · · · × gs. Now one can reduce to the case that G is
simple using a Künneth formula. To begin with, any simple module L(λ) for
g = g1 × g2 × · · · × gs is a tensor product of simple modules L(λ1) ⊗ · · · ⊗
L(λs) for the factors. Then by the Künneth formula dimExt1g(L(λ), L(µ)) 6= 0

implies that λi = µi for all i 6= j, some 1 ≤ j ≤ s and Ext1g(L(λ), L(µ))
∼=

Ext1gj (L(λj), L(µj)). This means we may assume G to be simple in (c). For

H2(g, L(λ)) to be non-zero one must have all λi = 0 for all i 6= j, k some
1 ≤ j < k ≤ s and then

H2(g, L(λ)) = H2(gj , L(λj))⊗H0(gk, L(λk))⊕H1(gj , L(λj))⊗H1(gk, L(λk))

⊕H0(gj , L(λj))⊗H2(gk, L(λk)).

Now first suppose that both λj and λk are non-trivial. Then only the second
direct summand in H2(g, L(λ)) survives, and by (1) it coincides with the tensor
product of the 1-cohomology groups of the corresponding Frobenius kernels. By
Proposition 8.2, non-vanishing would force λj = p− 2 = λk and gj = gk = sl2
giving one exceptional case.

Next we treat the case λk = 0 and λj non-trivial. Again by (1) and Proposition
8.2, we obtain H2(g, L(λ)) = H2(gj , L(λj)), and we are in the case where G is
simple and L(λ) non-trivial. In case g = sl2, the result follows from [Dzh92].
So suppose g 6= sl2. Setting L = L(µ) in (1) we see that if µ 6= 0 we have
H1(g, L) ∼= H1(G1, L) and the right-hand side is zero by Lemma 8.4. Thus we
also have H2(g, L) ∼= H2(G1, L) and the latter is zero by Proposition 8.2 unless
g = sl3 and the exception is as in the statement of the Theorem, since we have
excluded the A1 case.

Finally, the case λj = λk = 0 reduces by the above to the case G simple, L = k
and the claim that H2(g, k) = 0. Here we have H1(g, k) ∼= (g/[g, g])∗ and this is
zero since p is very good and g is semisimple. We also have H2(G1, k)

[−1] ∼= g∗.
The injective map Homs(g, Lg) → H2(G1, L) is hence an isomorphism, which
forces H2(g, k) = 0 in the sequence (1). This also proves (b).

Now we prove the statement (c) under the assumption that G is simple. We
have an isomorphism Ext1g(L(λ), L(µ))

∼= H1(g, L(µ)⊗L(λ)∗). LetM = L(µ)⊗
L(λ)∗. If λ 6= µ, then applying the exact sequence (1) to M yields H1(g,M) ∼=
H1(G1,M) and the latter is zero by Lemma 8.4 if G is not of type A1 and
well-known if G is of type A1. Hence we may assume λ = µ. The assignation
of L to the sequence (1) is functorial, thus, associated to the G-map k →M ∼=
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Homk(L,L), there is a commutative diagram

0 −−−−→ H1(g, k) = 0 −−−−→ Homs(g, kg) ∼= (g∗)[1]
∼=−−−−→ H2(G1, k)y ∼=

y θ

y

0 −−−−→ H1(g,M) −−−−→ Homs(g,Mg) ∼= (g∗)[1]
ζ−−−−→ H2(G1,M)

,

where the natural isomorphism kg →Mg induces the middle isomorphism and
the top right isomorphism has been discussed already. We want to show that ζ
is injective, since then it would follow that H1(g,M) = 0. To do this it suffices
to show that θ is an injection (g∗)[1] → H2(G1,M) and for this, it suffices
to show that the simple G-module (g∗)[1] does not appear as a submodule of
H1(G1,M/k). Now since λ ∈ C̄Z we have L(λ) ∼= H0(λ) and so by [Jan03,
II.4.21], M has a good filtration. The socle of any module H0(µ) with µ ∈ X+

is simple. Thus the submodule k ≤ M constitutes a section of this good
filtration, with M/k also having a good filtration.
The G-modules H1(G1, H

0(µ)) have been well-studied by Jantzen [Jan91] and
others. In order to have (g∗)[1] a composition factor of H1(G1, H

0(µ)), we
would need g ∼= g∗ ∼= H0(ωα) where µ = pωα − α and α is a simple root
with ω the corresponding fundamental dominant weight; [BNP04, Theorem
3.1(A,B)]. Now for type An, with p 6 |n + 1, we have g = L(2ω1) if n = 1 and
g = L(ω1 + ωn) else; and for type B2, we have g = L(2ω2), ruling these cases
out. For the remaining types, we have

Type Bn,Cn Dn E6 E7 E8 F4 G2

g ∼= L(ωα) for ωα = ω2 ω2 ω2 ω1 ω8 ω1 ω2

〈pωα − α, α∨0 〉 2p 2p 2p− 1 2p− 1 2p− 1 2p 3p

On the other hand, since λ ∈ C̄Z it satisfies 〈λ + ρ, α∨0 〉 ≤ p, i.e. 〈λ, α∨0 〉 ≤
p−h+1. Hence any high weight µ ofM = L⊗L∗ satisfies 〈µ, α∨0 〉 ≤ 2p−2h+2.
Looking at the above table, it is easily seen that this is a contradiction. Thus
(g∗)[1] is not a composition factor of H1(G1,M/k) and the result follows.

Remarks 8.10. (i) When λ 6= µ in the proof of the above proposition, one also
sees that there is an isomorphism Ext2G1

(L(λ), L(µ)) ∼= Ext2g(L(λ), L(µ)) but
we do not use this fact in the sequel.
(ii) The conclusion of the theorem is incorrect if G is reductive but not semisim-
ple. For example, if G is a torus, then g is an abelian Lie algebra, and H1(g, k)
is non-trivial. For instance the two-dimensional non-abelian Lie algebra is a
non-direct extension of k by k. One also has H2(k × k, k) 6= 0 by the Künneth
formula: for example the Heisenberg Lie algebra is a non-split extension of k
by k × k.
(iii) When p = 3 and G = SL3, then H2(G1, k)

[−1] ∼= g∗ ⊕ L(ω1) ⊕ L(ω2),
by [BNP07, Theorem 6.2]. Thus the same argument shows that H2(g, k) ∼=
L(ω1) ⊕ L(ω2). It follows from the Künneth formula that if G is a direct
product of n copies of SL3 then H2(g, k) ∼= [L(ω1)⊕ L(ω2)]

⊕n.
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(iv) In part (a) of the theorem, one can be more specific. If g = sl2 then
[Dzh92] shows that H2(g, L(p− 2)) is isomorphic to L(1)[1] as a G-module. If
g = sl2 × · · · × sl2︸ ︷︷ ︸

n times

×h then one can show moreover that H2(g, L(µ)) is non-zero

only if
L(µ) ∼= L(µ1)⊗ · · · ⊗ L(µn)⊗ L(µn+1)

with each µi ∈ {0, p−2} and µn+1 = 0. Let r be the number of times µi = p−2.
Then, the Künneth formula shows that

dimH2(g, L(µ)) =





0 if r = 0;

2 if r = 1;

4 if r = 2;

0 otherwise.

We use the theorem above to get analogues of Corollary 8.8 for Lie algebra
representations.

Proposition 8.11. Let G be a simple algebraic group with g = [g, g] and let
dimV ≤ p be a g-module. Then exactly one of the following holds:
(i) V is a semisimple g-module;
(ii) G is of type A1, dim V = p and V is uniserial, with composition factors
L(p− 2− s) and L(s).

Proof. The proof is similar to Proposition 8.6. Since dimV ≤ p, any com-
position factor of V is a restricted simple g-module, or V is simple. Since
Ext1g(k, k) = H1(g, k) ∼= (g/[g, g])∗ = 0, if V consists only of trivial compo-
sition factors then V is semisimple. Thus we may assume that g contains a
non-trivial composition factor L. Then either dimL = p and V is simple, or
p > h by Lemma 8.1(iii). By the condition on V , any two distinct composition
factors, L(λ) and L(µ) satisfy λ, µ ∈ CZ by Lemma 8.1(ii). If G is not of type
A1, then Ext1g(L(λ), L(µ)) = 0 by Theorem 8.9 and the exceptional case, where
G = A1, is well known.

As before there is a corollary:

Corollary 8.12. Let G be a semisimple algebraic group and let V be a g-
module with p > dimV . Assume that g = [g, g]. Then V is semisimple.

The next corollary uses a famous result of Serre on the semisimplicity of tensor
products to extend our results a little further. This result will be crucial for
showing the splitting of certain non-semisimple Lie algebras.

Corollary 8.13. Let g be a Lie algebra and V , W two semisimple g-modules
with dimV + dimW < p+ 2. Then V ⊗W is semisimple.
Furthermore, let g = Lie(G) for G a semisimple algebraic group with p > 2 and
p very good. Then H2(g, V ⊗W ) = 0 unless g contains a factor sl2 and V ⊗W
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contains a composition factor of the sl2-module L(p−2). Also H1(g, V⊗W ) = 0,
unless one of V and W is isomorphic to k and we are in one of the exceptional
case of Theorem 8.9.

Proof. For the first statement, we begin with some reductions as in [Ser94]. If
W = 0 or k there is nothing to prove. If W is at least 2-dimensional, then
either p = 2 and V is trivial (so that the result holds), or both dimV and
dimW < p. We may assume that both V and W are simple. Further, we may
replace g by the restricted algebra generated by its image in gl(V ⊕W ). As
V ⊕W is a semisimple module, we may thus assume g is p-reductive. Now
g ⊆ gl(V ) × gl(W ) = sl(V ) × sl(W ) × z, where z is a torus, and where the
projections of g onto the first two factors are irreducible, hence semisimple by
Theorem B. We thus may assume g ⊆ sl(V )× sl(W ) is a semisimple restricted
subalgebra.
By Theorem 2.3, either (i) g has a factorW1, the first Witt algebra and V is the
(p − 1)-dimensional irreducible module for W1; or (ii) g is Lie(G) for a direct
product of simple algebraic groups, and V and W are (the differentials of) p-
restricted modules for G. In case (i), as p > 2, we would haveW ∼= k⊕k forW1

and the result holds. So we may assume that (ii) holds. Now [Ser94, Prop. 7]
implies that V ⊗W is the direct sum of simple modules with restricted high
weights λ satisfying λ ∈ CZ. Since each of these composition factors is simple
also for g, V ⊗W is semisimple with those same composition factors.
For the remaining statements, let h be the image of g in gl(V ⊕W ), so that
g = h ⊕ s with s acting trivially. Let h be the coxeter number of h. Now
if W = k, say, then since p is very good for g we can have p = dim V by
Proposition 8.1 only for p > h, so otherwise dim V < p. And if dimW > 1
then dimV < p also. Now dimV < p also implies by Proposition 8.1 that
p > h. Also a summand L(λ) of V ⊗W has λ ∈ CZ. Now Theorem 8.9 implies
that H1(g, V ⊗W ) = H2(g, V ⊗W ) = 0, unless we are in the exceptional cases
described. However, if g = sl3 then the module L(p − 3, 0) or its dual has
dimension (p − 1)(p − 2)(p− 3)/2 > ((p + 1)/2)2 hence it cannot appear as a
composition factor of V ⊗W .

Remark 8.14. If g = W1 the conclusion of the second part is false, since
H1(g, V ) 6= 0 when V is the irreducible (p− 1)-dimensional module for g.

Proof of Theorem D:. We must just give references for the statements made.
For (a), see Proposition 8.6; for (b), see Proposition 8.11; for (c), see Theorem
8.9; for (d), see Corollary 8.13. This completes the proof of Theorem D.

9 Decomposability: the existence of Levi factors

Let h be a restricted subalgebra of gl(V ) with p > dimV . In this section
we show, in Theorem 9.2, a strong version of the Borel–Tits Theorem in this
context.

Documenta Mathematica 21 (2016) 1–37



26 Herpel and Stewart

Let G be connected reductive. Recall, say from [ABS90] that if p = l + q is
a parabolic subalgebra of g = LieG then q has a central filtration such that
successive quotients have the structure of l-modules. We record a specific case:

Lemma 9.1. In case G = GLn, a parabolic subalgebra p = l+q has the property
that l is a direct product gl(V1)×gl(V2)×· · ·×gl(Vr) and q has a central filtration
with successive factors being modules of the form Vi⊗V ∗j , each factor occurring
exactly once.

Theorem 9.2. Let h be a restricted Lie subalgebra of gl(V ) with dimV < p,
and let r = Radp(h) (= RadV (h)).
Then there is a parabolic subalgebra p = l + q, with r ≤ q and containing a
complement s to r in h, with s ≤ l and h = s + r as a semidirect product.
Furthermore, s acts completely reducibly on V and is the direct sum of a torus
and a semisimple ideal.

Proof. As in the proof of Lemma 7.9 we take a minimal parabolic subgroup
P = LQ so that its Lie algebra p = l+ q contains h and so that the projection
hl := π(h) of h to the Levi subalgebra l is strongly p-reductive and we may
write hl = hs ⊕ z where hs is semisimple and z = Z(hl). We also have r ≤ q,
since hl is p-reductive.
Now by Theorem 2.3, either hs = W1, h = hl, p = l = gl(V ) and we are done;
or hl is isomorphic to a direct product of classical Lie algebras si and z.
We first lift z to h. Let π′ : h→ z be the composition of π with the projection
onto z. By [SF88, Lemma 2.4.4(2)], there is a torus z′ ≤ Z(l) + q so that
h = z′+ker(π′). Now since z′ is a torus, it is linearly reductive, we may replace
h by a conjugate by Q so that z′ ⊆ Z(l). Let us rewrite z = z′ and identify z
with its image in l under π.
Next we construct a complement to r in h. Let π′′ : h→ hs be the composition
of π with the projection onto hs and let h′ ⊆ h be a vector space complement
to ker(π′′). Then r+ h′ ≤ h is a subalgebra, and we have an exact sequence

0→ r→ r+ h′
π′′

→ hs → 0.

We show this sequence is split. By Lemma 9.1, the nilpotent radical q of l
has a filtration q = q1 ⊇ q2 ⊇ · · · ⊇ qm = 0 with each qi/qi+1 having the
structure of an l-module Mi ⊗Ni with Mi and Ni irreducible modules for the
projections of hl to distinct factors of the Levi. Since dimMi + dimNi < p,
we have by Corollary 8.13 that Mi ⊗Ni is a direct sum of irreducible modules
for hs with H2(hs,Mi ⊗ Ni) = 0. By intersecting with r, we get a filtration
r = r1 ⊇ r2 ⊇ · · · ⊇ rm = 0 by hs-modules so that each ri/ri+1 is a submodule
of Mi ⊗ Ni, hence also a semisimple module with H2(hs, ri/ri+1) = 0. By an
obvious induction on the length m of the filtration {ri} we now see that the
sequence

0→ r→ r+ h′ → hs → 0

is split. Thus we may set h′s a complement to r in h′ + r.
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We would like to set s = h′s + z, however this vector space may not be a
subalgebra of g. Write q = cq(z) + [q, z]. (This can be done, for instance
by [SF88, Lemma 2.4.4(1)].) Any element h of h′s can be written as h1+q1+q2
for h1 ∈ l, q1 in cq(z) and q2 ∈ [q, z]. As h is stable under ad z, with z centralising
h1 and q1, we conclude that q2 ∈ h. Thus we have the element h′ = h1+q1 ∈ h.
Thus we may form the subspace h′′s ≤ h with h′′s ≤ l+ cq(z).
Using that h′s ≤ h is a subalgebra, that cq(z) is l = cgl(V )(z)-invariant and that
[q, z] is an ideal in q, one checks that h′′s is indeed a subalgebra,4 with h′′s also
a complement to r in h′s + r. Now we have guaranteed that s = h′′s + z is a
subalgebra of h, a complement to r in h.
Now, by Corollary 8.12, h′′s acts completely reducibly. Also, since z is a torus,
z is linearly reductive on restricted representations, hence also acts completely
reducibly. Thus s is completely reducible on V . In particular, we may replace
l with a Levi subalgebra of p that contains s, which finishes the proof.

10 Proof of Theorem B(i)

Proof. We first prove the statement in the case that G = GL(V ), so we assume
p > dimV + 1. By assumption, h is a restricted subalgebra of g.
Let n = ng(h). By Theorem 9.2 we may decompose both n and h. Let n =
nl + nq ≤ p = l+ q with nl ≤ l and nq ≤ q, with nl = ns + z, z a torus and ns is
by Theorem 2.3 isomorphic to a direct product of classical Lie algebras acting
completely reducibly on V ; also set hq = h ∩ q and hl = π(h) the projection to
l. Since n is generated by nilpotent elements we have z = 0 and hl = hs. Since
the complement to hq in h obtained by Theorem 9.2 is completely reducible on
V and hence conjugate to a subalgebra of l, we may assume that h = hq + hl
is this splitting. Furthermore, hl ≤ nl is an ideal of a direct product of simple
subalgebras, hence is a direct product of some subset of those simples.
Since V has dimension less than p, V |nl

is a restricted module for nl. Hence
there is a connected algebraic group Nl with LieNl

∼= nl, Nl ≤ GL(V ) and
V |Lie(Nl)

∼= V |nl
. Hence, replacing Nl by a conjugate if necessary, we have

Lie(Nl) = nl. Moreover if L is a Levi subgroup of GL(V ) chosen so that
Lie(L) = l then we may produce Nl ≤ L. Clearly Nl normalises any direct
factor of nl, in particular, hl.
Now, since the l-composition factors of q are all of the form W1 ⊗ W2 for
dimW1 + dimW2 < p and W1, W2 irreducible for ns, [Ser94, Prop. 7] implies
that q is a restricted semisimple module for Nl and nl. Since nl normalises
hq = h∩q, this space also appears as anNl-submodule in q, hence Nl normalises
hq.

4The calculation is as follows: if h1 + q1 + q2 and h′1 + q′1 + q′2 are two elements of h′s then

[h1 + q1 + q2, h
′
1 + q′1 + q′2] = [h1, h2]︸ ︷︷ ︸

∈hl

+ [h1, q
′
1] + [q1, h

′
1] + [q1, q

′
1]︸ ︷︷ ︸

∈cq(z)

+x,

where x ∈ [q, z] by the Jacobi identity. But projecting to h′′s one simply deletes q2, q′2 and x
to get the analagous calculation.
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It remains to construct a unipotent algebraic group Nq such that LieNq = nq
withNq normalising h. For this we use Corollary 4.4. LetNq = 〈expx : x ∈ nq〉.
Then Nq is a closed subgroup, which by Corollary 4.4 consists of elements
normalising h. By Lemma 4.5, nq ≤ Lie(Nq).
Let N be the smooth algebraic group given by N = 〈Nl, Nq〉. We have shown
that N normalises h and that n ⊆ LieN . Since also LieN ⊆ n we are done for
the case G = GL(V ).
To prove the remaining part, we appeal to Proposition E again.
Let G be a simple algebraic group with minimal dimensional representation V .
Then since p > dimV , (GL(V ), G) is a reductive pair. Indeed, the assumption
on p guarantees that the trace form associated to V is non-zero, see [Gar09, Fact
4.4]. This implies the reductive pair property (cf. the proof of [Gar09, Prop.
8.1]). The theorem now follows by invoking Proposition E.

11 Examples

In this section we mainly collect, in a number of statements, examples which
demonstrate the tightness of some of our bounds. First let us just point out
that there are some rather general situations in which smooth normalisers can
be found.

Example 11.1 ( [MT09, Theorem B]). Suppose G is a quasi-split reductive
group over a field k of very good characteristic. Then the normaliser N =
NG(C) of the centraliser C = CG(e) of a regular nilpotent element e of g =
Lie(G) is smooth.

Example 11.2 ([HS16, Proof of Lem. 3.1]). Suppose G is reductive over an
algebraically closed field k of very good characteristic and e is a nilpotent
element of g = Lie(G), then the normaliser NG(〈e〉) of the 1-space 〈e〉 of g is
smooth.

We will first give the promised example discussed after the statement of The-
orem A. For this, we will need a lemma.

Lemma 11.3. Let B = TU be a Borel subgroup of a reductive algebraic group
G containing a maximal torus T with unipotent radical U . Suppose NB(h) is
smooth and s ∈ t = Lie(T ) an element normalising a subspace h of u = Lie(U).
Then 〈s〉 = Lie(χ(Gm)) for a cocharacter χ : Gm → NB(h), such that χ(Gm)
is conjugate by an element of CU (s) to a cocharacter with image in T .

Proof. Since NB(h) is smooth, we may, by [Hum67, Thm. 13.3], write any
maximal torus s of nb(h) as Lie(S) for S a maximal torus of NB(h). By [Die52,
Prop. 2], for any semisimple element s ∈ s we may write 〈s〉 = Lie(S1) for
S1 ⊆ S. Defining an appropriate isomorphism Gm → S1, we may even write
s = d

dt

∣∣
t=1

χ(t) for χ a cocharacter of NB(h).
As the maximal tori of B are conjugate by elements of U , we have that S
is conjugate to its projection to T , say via u ∈ U ; in particular, uχ(t)u−1 ∈
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T . Since projection to T is B-equivariant, we have on differentiating, that
d
dt

∣∣
t=1

(uχ(t)u−1) = s, so that usu−1 = s, i.e. that u ∈ CU (s).

Example 11.4. Let n ≥ 4. This example depends on three fixed parameters
λ1, λ2, λ3 together with variables {ai}1≤i≤n, {bi}1≤i≤n−1, c, d, and e, each
taking values in k = F̄p.
Let us define the following matrices:

A :=




0 a1 a2 ∗ ∗ ∗ . . . ∗ ∗ ∗
0 a1 β2 ∗ ∗ . . . ∗ ∗ ∗

0 a2 β3 ∗ . . . ∗ ∗ ∗
0 a3 β4

. . .
...

...
...

0 a4
. . . ∗ ∗ ∗

0
. . . βn−2 c e+ λ1βn−2
. . . an−2 βn−1 (1 + λ1)an−2 + d

0 an−1 bn−1
0 an

0




,

with βi = ai+1 + bi−1 for i = 2, . . . , n− 1,

B :=




0 a1 b1 ∗ . . . ∗
0 a2 b2

. . .
...

0 a3
. . . ∗

0
. . . bn−1
. . . an

0




,

C :=




0 an−3 an−1 + bn−3 c e+ λ2(an−1 + bn−3)
0 an−2 an + bn−2 (1 + λ2)an−2 + d

0 an−1 bn−1
0 an

0



,

D :=




0 an−2 an + bn−2 d+ λ3an−2
0 an−1 bn−1

0 an
0
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Then the reader may check that for each choice of λ1, λ2 and λ3, the following
set defines a subalgebra h of the strictly upper triangular matrices:








A ∗ ∗ ∗
0 B ∗ ∗
0 0 C ∗
0 0 0 D


 : ai ∈ k, bj ∈ k, c, d, e ∈ k




.

Let Fi denote the ith Fibonacci number, so that F0 = F1 = 1 and F2 = 2 and
suppose that r is chosen so that Fr+1 = p is the prime characteristic of k, and
let us suppose that NG(h) is smooth. Since every entry of the superdiagonal
is non-zero for some element in h, it is easy to check that NG(h) ⊆ B. Thus
NG(h) = NB(h) and we may employ Lemma 11.3.
Suppose s = diag(s1, . . . , s2n+12) is an arbitrary element of the diagonal torus
t = Lie(T ). Then one can calculate the dimension of nt(h) by enumerating the
linear conditions amongst the ti necessary to normalise h. For example, setting
all indeterminates in a general matrix of h to be zero, except for a1 = 1 gives a
matrix M , which spans a 1-space 〈M〉 of h. One can see by inspection that s
will normalise h only if it normalises 〈M〉. However, calculating [s,M ], we see
that to normalise 〈M〉 implies the following condition must hold:

s1 − s2 = s2 − s3 = s2n+4 − s2n+5.

Repeating over other 1-spaces leads to a collection of relations which can be
expressed by a system of linear equations Rs = 0 for some matrix R and
the vector s = (s1, . . . , s2n+12). The kernel of R modulo p then determines
the dimension of nt(h). To determine the dimension of NT (h), one searches for
cocharacters χ(t) = diag(tk1 , tk2 , . . . , tk2n+12) which normalise h by conjugation.
This leads to an identical set of relations on the entries of the vector k =
(k1, . . . , k2n+12), so that the equation Rk = 0 must be solved over the integers.
Then the dimension of NT (h) is the nullity of R.
The nullities of R over Z and over Z/p are identical if and only if s can be lifted
to a diagonal cocharacter χ(t) so that d/dt|t=1χ(t) = s. By explicit calculation
of R in our particular case, one sees its elementary divisors are 04, 12n+7, Fr+1.
Thus since p = Fr+1 the nullity of R modulo p is bigger than over Z. Thus
there is a toral element s, which cannot be lifted to a diagonal cocharacter. In
our case, h has an obvious centraliser whose elements are:

diag(s1, . . . , s1︸ ︷︷ ︸
r+2

, s2, . . . , s2︸ ︷︷ ︸
r+1

, s3, . . . , s3︸ ︷︷ ︸
5

, s4, . . . , s4︸ ︷︷ ︸
4

)

which accounts also for the four-dimensional kernel over the integers.
One also checks that the subalgebra h is normalised by the toral element

s :=diag(1, 2, 3, 5, 8, . . . , Fr, Fr+1, Fr+2)

⊕ diag(F2 + 4 = 6, F3 + 4 = 7, . . . , Fr + 4, Fr+1 + 4, Fr+2 + 4 = Fr + 4)

⊕ diag(Fr−2 + 1, Fr−1 + 1, Fr + 1, Fr+1 + 1, Fr+2 + 1)

⊕ diag(Fr−1 + 2, Fr + 2, Fr+1 + 2, Fr+2 + 2),

Documenta Mathematica 21 (2016) 1–37



On the Smoothness of Normalisers. . . 31

where for the direct sum A⊕B of two square matrices A and B we mean the
block diagonal matrix having A and B on the diagonal. Note the congruence
amongst the entries in t, Fr = Fr+2 mod p. Thus on each line, the last
and pen-penultimate entries are the same modulo p. Furthermore, since this
element does not centralise h, it can have no lift to a diagonal cocharacter.
By assumption, NG(h) = NB(h) is smooth. Thus 〈s〉 lifts to the image of
a cocharacter χ′ which, by Lemma 11.3 is conjugate by CU (s) to a diagonal
cocharacer χ. Since by inspection, only five entries of s are the same, s is a
regular toral element of ng(h) and one checks

CU (s) = 〈1 + ter,r+2, 1 + te2r+1,2r+3, 1 + te2r+6,2r+8, 1 + te2r+10,2r+12 : t ∈ k〉.

The action of the second listed element in turn normalises h and the first, third
and fourth simply change the values of λ1, λ2, λ3. Thus if g ∈ CU (s) then one
computes a new relation matrix R′ computing the normaliser nt(h

g) which, by
virtue of being independent of the values of λi, is identical to R. In particular,
〈s〉 still normalises h but there is still no lift to a diagonal cocharacter. This
contradicts the conclusion of Lemma 11.3, hence NG(h) is not smooth.

The next example will show the necessity of the bound in Theorem 3.2. We
first collect some miscellaneous auxiliary results in the following lemma. Recall
that a subgroup H of a connected reductive group G is called G-irreducible if
it is in no proper parabolic subgroup of G.

Lemma 11.5. Suppose G is a connected reductive algebraic group and H is a
(possibly disconnected) closed reductive subgroup of G.
(i) We have NG(H)◦red = H◦CG(H)◦red.
(ii) If H is G-irreducible, then CG(H)◦red = Rad(G), where Rad(G) = Z(G)◦red.
(iii) Suppose H ≤M ≤ G is an intermediate reductive subgroup with Rad(G) ≤
Rad(M) and that H is G-irreducible. Write Z(M)◦ = Rad(M) × µM for an
infinitesimal subgroup scheme µM . Then either µM ≤ Z(H) or NG(H) is
non-smooth.

Proof. (i) and (ii) follow from [Mar03, Lemmas 6.2 and 6.8].
For (iii), clearly µM ≤ Z(M) ≤ NG(H). If NG(H) is smooth, then by parts
(i) and (ii) we have µM ≤ Z(M)◦ ≤ H◦CG(H)◦red = H◦Rad(G). This forces
µM ≤ H◦.

Examples 11.6. Lemma 11.5 can be used to produce reductive subgroupsH of
G with non-smooth normalisers in bad characteristic. We use [Her13, Example
4.1], in which the first author constructs examples of non-smooth centralisers
for each reductive group over a field of characteristic p for which p is not a
very good prime for G. All the subgroups constructed in loc. cit. are maximal
rank reductive subgroups M such that CG(M) = Z(M) is non-smooth, hence
µM 6= 1 in Lemma 11.5(iii) above. In many cases, we may take a further
connected, reductive G-irreducible subgroup H of M such that p is pretty
good for H . Thus its centre is in fact smooth, and being finite, cannot contain
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µM . Thus by Lemma 11.5(iii) the normaliser NG(H) is non-smooth. Let us
list some triples (G, p,M,H) which work for this process. By Vn we denote a
natural module of dimension n for the classical group M ; by M̃1 we mean a
subgroup of type M1 corresponding to short roots.

G p M H
G2 3 A2 A1 →֒M ; V3|H = L(2)
F4 2 A4

1 A1 →֒M ; x 7→ (x, x2, x4, x16)

F4 3 A2Ã2 (A1, A1) →֒M ; (V3, V3)|H = (L(2), L(2))
E8 5 A2

4 A2
1 →֒M ; (V5, V5)|H = (L(4), L(4))

SLp p > 2 SLp A1 →֒M ; Vp|H = L(p− 1).

Remark 11.7. A complete list of conjugacy classes of simple G-irreducible sub-
groups of exceptional groups has been compiled by A. Thomas, see [Tho15]
for the cases of rank at least 2 and [Tho16] for the rank 1 case. For the G2

example one may consult [Ste10, Theorem 1, Corollary 3].

The next example shows the promised tightness of Theorem B(i) as stated in
Remark 1.2(a).

Lemma 11.8. Let G = GL(V ) with dimV ≥ p− 1 ≥ 3 and take any subspace
W ≤ V with dimW = p− 1. Then if W1 ≤ gl(W ) is the first Witt algebra in
its p− 1-dimensional representation we have NG(W1) is not smooth.

Proof. SinceW1 is irreducible onW , the normaliser ngl(V )(W1) = nsl(W )(W1)⊕
z⊕gl(U) for V =W⊕U and z the centre of gl(W ). Moreover asW1 is irreducible
on W , so is n = nsl(W )(W1). By Theorem C, n is semisimple, hence, as W1 is
simple, it must be a direct factor of n, say n =W1 ⊕ h. But now the action of
ad h on W is aW1-module homomorphism, hence is a scalar by Schur’s lemma.
Thus h ≤ z(sl(W )) = 0. It follows that n =W1.
Now NG(W1) sends W to another W1-invariant subspace of the same dimen-
sion, hence NG(W1) ≤ GL(W ) × GL(U). Since W1 is self-normalising, if
NG(W1) were smooth we would have LieNG(W1) = ng(W1) = W1 ⊕ gl(U).
This shows that W1 is algebraic, a contradiction.

We now justify the remark after Theorem B that the bound in Theorem B(i)
is tight for G = Sp2n.

Lemma 11.9. The p-dimensional Witt algebra W1 is a maximal subalgebra of
spp−1. Furthermore, its normaliser in any Spp−1-Levi of Sp2n with 2n ≥ p− 1
is non-smooth.

Proof. Since W1 stabilises the element

X∧Xp−1+
1

2
X2∧Xp−2+

1

3
X3∧Xp−3+· · ·+ 2

p− 1
X(p−1)/2∧X(p+1)/2 ∈

∧2
V

we find that W1 is contained in spp−1, acting irreducibly on the p − 1-
dimensional module. Exponentiating a set of nilpotent generators of the
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Witt algebra as in the proof of Theorem B(ii) gives an irreducible subgroup
W ≤ Spp−1. We claim that we must have equality. From this claim it fol-
lows that W1 is in no proper classical algebraic subalgebra of spp−1, hence, by
Theorem 2.3, is maximal.
To prove the claim, suppose W is a proper subgroup of G = Spp−1. Since
W is irreducible on the p − 1-dimensional module, W is it no parabolic of G.
Thus it is in a connected reductive maximal subgroup M . We must have that
M is simple, or else W1 would be in a parabolic of G. Now since the lowest
dimensional non-trivial representation of W1 is p − 1, it follows that M can
have no lower-dimensional non-trivial representation. Since p > 2, Spp−1 has

no simple maximal rank subgroup. All classical groups of rank lower than p−1
2

have natural modules of smaller dimension than p− 1, so M is of exceptional
type. The lowest dimensional representations of the exceptional types are 6
(p = 2), 7, 25 (p = 3), 26, 27, 56 and 248. The only time one of these is p− 1
is when p = 57 and M = E7. But if p = 57 then p > 2h− 2 for E7, then by
Theorem B(ii) all maximal semisimple subalgebras are algebraic and so W1 is
not a subalgebra of E7. This proves the claim, hence gives the first part of the
lemma.
For the second, with 2n > p − 1, we have W1 ≤ spp−1 ⊕ sp2n−p+1 with W1

sitting in the first factor. Then its normaliser is evidently W1 ⊕ sp2n−p+1,
however this is not algebraic for p > 3, hence the normaliser NG(W1) cannot
be smooth. Thus we have shown that normalisers of all subalgebras of sp2n are
smooth only if p > h+ 1.

If n ≥ p there is a more straightforward example of a (non-restricted) subalge-
bra of gln whose normaliser in GLn is not smooth.

Example 11.10. Let g = gln, take Jp a Jordan block of size p and take the
abelian one-dimensional Lie algebra h = k(Ip + Jp) where Ip is an identity
block of size p. Then one can show with elementary matrix calculations that
the normaliser of NG(h) is non-smooth.

The next example shows that even the normalisers of smooth groups are not
smooth, even in GL(V ), and even when p is arbitrarily large.

Lemma 11.11. Let G = GL(V ) with dimV ≥ 3 and let W be a 3-dimensional
subspace. Let U ≤ GL(W ) be defined as the smooth subgroup whose k-points
are

U(k) =








1 0 t
0 1 tp

0 0 1


 : t ∈ k



 .

Write V =W⊕W ′ for some complement W ′ to W and set H = U⊕GL(W ′) ≤
GL(V ). Then NG(H) is non-smooth.

Proof. From the reductivity of GL(W ′) it follows that NG(H) = NGL(W )(U)⊕
GL(W ′) so it suffices to show that NGL(W )(U) is non-smooth. This is a routine
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calculation. For example, if x is an element of a k-algebra A, with xp = 0 then
one checks that the matrix




1 x 0
0 1 0
0 0 1


 ∈ NGL(W )(U)(A).

Now, the normaliser of U of course normalises Lie(U). Since

Lie(U) = k




0 0 1
0 0 0
0 0 0


 ,

the normaliser of Lie(U) is the product of the centraliser of a certain (nilpo-
tent) element and the image of a cocharacter associated with that element. In
particular, the normaliser of Lie(U) is contained in the upper triangular Borel
subgroup.
Write V for the unipotent radical of that Borel subgroup, so V is 3-dimensional;
a typical element has the form




1 a b
0 1 c
0 0 1


 .

In fact, the condition ap = 0 defines the scheme-theoretic normaliser in V
of U , and the condition a = 0 defines the corresponding smooth subgoup of
V whose k-points form the group-theoretic normaliser of U(k) in V (k). The
lemma follows.

Now we show that normalisers of height two or more subgroup schemes are not
smooth.

Example 11.12. Let G be any connected reductive algebraic group over an
algebraically closed field k of characteristic p > 2 and set F : G→ G to be the
Frobenius endomorphism. Let B = TU be a Borel subgroup of G with T an
F -stable maximal torus, and let U the non-trivial unipotent radical. Let Tr be
the kernel in T of F r and U1 the kernel in U of F . Finally set H = Tr ⋉ U1.
Then NG(H) = T ⋉ U1, hence is not smooth.

The next example shows that if p = dimV , then the normaliser of a smooth
connected solvable non-diagonalisable algebraic subgroup of GL(V ) can even
be irreducible on V , thus a fortiori it is not smooth. This also gives an example
for when p = 2 and dimV = 2 that the normalisers in SL(V ) and GL(V ) of
subalgebras of the respective Lie algebras are not smooth.

Example 11.13. By [Ten87, Lemma 3] the Lie algebraW1 +O1 formed as the
semidirect product of W1 and O1, where O1 acts on itself by multiplication,
is a maximal subalgebra of slp = sl(k[X ]/Xp). We imitate the embedding of
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O1 in glp by a solvable subgroup of GLp. Define the height ht(α) of a root α
to be the sum of the coefficients of the simple roots. Let U be the subgroup
〈∏α∈R−;ht(α)=i xα〉1≤i≤p−1. By construction U is connected and unipotent and
one can show that dimU = p− 1 and that LieH = O1, where H is the smooth
solvable subgroup Z(GLp)U . Now it can be shown that there is a subgroup
scheme W corresponding to W1 in GLp which normalises H and for which
W ⋉H is irreducible. It immediately follows that NG(H) cannot be smooth.

Finally we show that if p ≤ 2n − 1 the normalisers in GLn and SLn of sub-
spaces of their Lie algebras are not all smooth, even when these normalisers
are generated by nilpotent elements, showing that the bound in Theorem B(ii)
cannot be improved for general subspaces.

Lemma 11.14. If p < 2n− 1, normalisers of subspaces of gln (or sln) are not
necessarily smooth.

Proof. Let p = 2n− 3 and let h = sl2 = LieH with H = SL2 over a field k of
characteristic p. Then the action of H on the simple module L((p+1)/2) gives
an (irreducible) embedding H → GLn. Restricting the adjoint representation
of gln on itself to H gives a module

L((p+ 1)/2)⊗ L((p+ 1)/2)∗ ∼= T (p+ 1)⊕M,

where M is a direct sum of irreducibles for H (and h) and T (p+ 1) is a tilting
module, uniserial with successive composition factors L(p−3)|L(p+1)|L(p−3).
Now for the algebraic group H = SL2 we have L(p + 1) ∼= L(1) ⊗ L(1)[1] by
Steinberg’s tensor product formula. Restricting to h, L(p+1) is isomorphic to
L(1)⊕ L(1). Now it is easy to show the restriction map Ext1G(L(p+ 1), L(p−
3))→ Ext1g(L(1), L(p−3))⊕Ext1g(L(1), L(p−3)) is injective. Hence T (p+1)|g
contains a submodule M isomorphic to L(1)/L(p− 3).
Now, the Lie theoretic normaliser of M contains h but the scheme-theoretic
stabiliser does not contain H . It follows that the normaliser of this subspace is
not smooth.
Indeed, as h acts irreducibly on the n-dimensional natural representation
for gln, it is in no parabolic of gln (or sln). However, the set of k-points
NH(M)(k) = NGLn(M)(k) ∩H is in a parabolic of H , hence in a parabolic of
GLn.
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Abstract. Milne’s correcting factor is a numerical invariant playing
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A result of Milne ([9] Theorem 0.1) describes the special values of the zeta
function of a smooth projective variety X over a finite field satisfying the Tate
conjecture. A very natural reformulation of this result was given by Lichten-
baum and Geisser (see [2], [7], [8] and [10]) using Weil-étale cohomology of
motivic complexes. They conjecture that

(1) limt→q−nZ(X, t) · (1− qnt)ρn = ±χ(H∗W (X,Z(n)),∪e) · qχ(X/Fq,OX ,n)

and show that (1) holds whenever the groups Hi
W (X,Z(n)) are finitely gen-

erated. Here H∗W (X,Z(n)) denotes Weil-étale motivic cohomology, e ∈
H1(WFq ,Z) is a fundamental class and χ(H∗W (X,Z(n)), e) is the Euler charac-
teristic of the complex

(2) · · · ∪e−→ Hi
W (X,Z(n)) ∪e−→ Hi+1

W (X,Z(n)) ∪e−→ · · ·
More precisely, the cohomology groups of the complex (2) are finite and
χ(H∗W (X,Z(n)),∪e) is the alternating product of their orders. Finally, Milne’s
correcting factor qχ(X/Fq,O,n) was defined in [9] by the formula

χ(X/Fq,OX , n) =
∑

i≤n,j
(−1)i+j · (n− i) · dimFqH

j(X,ΩiX/Fq ).

The author was supported by ANR-12-BS01-0002 and ANR-12-JS01-0007.
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It is possible to generalize (1) in order to give a conjectural description of
special values of zeta functions of all separated schemes of finite type over Fq
(see [3] Conjecture 1.4), and even of all motivic complexes over Fq (see [11]
Conjecture 1.2). The statement of those more general conjectures is in any
case very similar to formula (1). The present note is motivated by the hope for
a further generalization, which would apply to zeta functions of all algebraic
schemes over Spec(Z). As briefly explained below, the special-value conjecture
for (flat) schemes over Spec(Z) must take a rather different form than formula
(1). Going back to the special case of smooth projective varieties over finite
fields, this leads to a slightly different restatement of formula (1).
Let X be a regular scheme proper over Spec(Z). The "fundamental line"

∆(X/Z, n) := detZRΓW,c(X ,Z(n)) ⊗Z detZRΓdR(X/Z)/Fn

should be a well defined invertible Z-module endowed with a canonical trivial-
ization

R ∼−→ ∆(X/Z, n) ⊗Z R.

involving a fundamental class θ ∈ H1(R,R) = ”H1(WF1 ,R)” analogous
to e ∈ H1(WFq ,Z). Here RΓW,c(X ,Z(n)) denotes Weil-étale cohomology
with compact support. However, there is no natural trivialization R ∼→
detZRΓW,c(X ,Z(n)) ⊗Z R. Consequently, it is not possible to define an Euler
characteristic generalizing χ(H∗W (X,Z(n)),∪e), neither to define a correcting
factor generalizing Milne’s correcting factor: one is forced to consider the fun-
damental line as a whole. Let us go back to the case of smooth projective
varieties X/Fq, which we now see as schemes over Z. Accordingly, we replace
Z(X, t) with ζ(X, s) = Z(X, q−s), the fundamental class e with θ and the
cotangent sheaf Ω1

X/Fq
≃ LX/Fq with the cotangent complex LX/Z. Assuming

that Hi
W (X,Z(n)) is finitely generated for all i, the fundamental line

(3) ∆(X/Z, n) := detZRΓW (X,Z(n)) ⊗Z detZRΓ(X,LΩ
∗
X/Z/F

n)

is well defined and cup-product with θ gives a trivialization

λ : R ∼−→ ∆(X/Z, n)⊗Z R.

Here LΩ∗X/Z/F
n is Illusie’s derived de Rham complex modulo the Hodge filtra-

tion (see [6] VIII.2.1). The aim of this note is to show that the Euler character-
istic of RΓ(X,LΩ∗X/Z/F

n) equals qχ(X/Fq ,OX ,n), hence that Milne’s correcting
factor is naturally part of the fundamental line. We denote by ζ∗(X,n) the
leading coefficient in the Taylor development of ζ(X, s) near s = n.

Theorem. Let X be a smooth proper scheme over Fq and let n ∈ Z be an
integer. Then we have

∏

i∈Z
| Hi(X,LΩ∗X/Z/F

n) |(−1)i = qχ(X/Fq ,OX,n).
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Assume moreover that X is projective and that the groups Hi
W (X,Z(n)) are

finitely generated for all i. Then one has

∆(X/Z, n) = Z · λ
(
log(q)ρn · χ(H∗W (X,Z(n)),∪e)−1 · q−χ(X/Fq ,OX ,n)

)

= Z · λ
(
ζ∗(X,n)−1

)

where ρn := −ords=nζ(X, s) is the order of the pole of ζ(X, s) at s = n.

Before giving the proof, we need to fix some notations. For an object C in the
derived category of abelian groups such that Hi(C) is finitely generated for all
i and Hi(C) = 0 for almost all i, we set

detZ(C) :=
⊗

i∈Z
det

(−1)i
Z Hi(C).

If Hi(C) is moreover finite for all i, then we call the following isomorphism

detZ(C)⊗Z Q ∼→
⊗

i∈Z
det

(−1)i
Q

(
Hi(C) ⊗Z Q

) ∼→
⊗

i∈Z
det

(−1)i
Q (0)

∼→ Q

the canonical Q-trivialization of detZ(C). Let A be a finite abelian group,
which we see as a complex concentrated in degree 0. Then the canonical Q-
trivialization detZ(A) ⊗Z Q ≃ Q identifies detZ(A) with |A|−1 · Z ⊂ Q, where
|A| denotes the order of A.
Given a ring R and an R-module M , we denote by ΓR(M) the universal divided
power R-algebra of M , and by ΓiR(M) its submodule of homogeneous elements
of degree i. We refer to ([1] Appendix A) for the definition of ΓR(M) and
its main properties. There is a canonical map γi : M → ΓiR(M), such that
composition with γi induces a bijection HomR(Γ

i
R(M), N)

∼→ P i(M,N), where
P i(M,N) is the set of "homogeneous polynomial functions of degree i". The
functor ΓiR sends free modules of finite type to free modules of finite type.
Moreover ΓiR commutes with filtered colimits, hence sends flat modules to flat
modules. If M is free of rank one, then so is ΓiR(M). If (T,R) is a ringed topos
and M an R-module, then ΓR(M) is the sheafification of U 7→ ΓR(U)(M(U)).
We also denote by ΛiR the (non-additive) exterior power functor and by LΛiR
its left derived functor (see [5] I.4.2). We often omit the subscript R and simply
write ΓiM , ΛiM and LΛiM .
Let X be a scheme. The notation RΓ(X,−) refers to hypercohomology with
respect to the Zariski topology.

Proof. Since Milne’s correcting factor is insensitive to restriction of scalars (i.e.
qχ(X/Fq ,OX ,n) = pχ(X/Fp,OX ,n)), we may consider X over Fp. We need the
following

Lemma 1. Let E∗,∗∗ = (Ep,qr , dp,qr )p,qr be a cohomological spectral sequence of
abelian groups with abutment H∗. Assume that there exists an index r0 such
that Ep,qr0 is finite for all (p, q) ∈ Z2 and Ep,qr0 = 0 for all but finitely many
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(p, q). Then we have a canonical isomorphism

ι :
⊗

p,q

det
(−1)p+q
Z Ep,qr0

∼−→
⊗

n

det
(−1)n
Z Hn

such that the square of isomorphisms
(⊗

p,q det
(−1)p+q
Z Ep,qr0

)
⊗Q

ι⊗Q //

��

(⊗
n det

(−1)n
Z Hn

)
⊗Q

��
Q Id // Q

commutes, where the vertical maps are the canonical Q-trivializations.

Proof. For any t ≥ r0, consider the bounded cochain complex C∗t of finite
abelian groups:

· · · −→
⊕

p+q=n−1
Ep,qt −→

⊕

p+q=n

Ep,qt
⊕dp,qt−→

⊕

p+q=n+1

Ep,qt −→ · · ·

The fact that the cohomology of C∗t is given by Hn(C∗t ) =
⊕

p+q=nE
p,q
t+1 gives

an isomorphism
⊗

p,q

det
(−1)p+q
Z Ep,qt

∼−→
⊗

p,q

det
(−1)p+q
Z Ep,qt+1

compatible with the canonical Q-trivializations. By assumption, there exists
an index r1 ≥ r0 such that the spectral sequence degenerates at the r1-page, i.e.
E∗,∗r1 = E∗,∗∞ . The induced filtration on each Hn is such that grpHn = Ep,n−p∞ .
We obtain isomorphisms
⊗

p,q

det
(−1)p+q
Z Ep,qr0

∼→
⊗

p,q

det
(−1)p+q
Z Ep,q∞

∼→

∼→
⊗

n

⊗

p

det
(−1)n
Z Ep,n−p∞

∼→
⊗

n

det
(−1)n
Z Hn

compatible with the canonical Q-trivializations. �

Consider the Hodge filtration F ∗ on the derived de Rham complex LΩ∗X/Z. By
([6] VIII.2.1.1.5) we have

gr(LΩ∗X/Z) ≃
⊕

p≥0
LΛpLX/Z[−p].

This gives a (convergent) spectral sequence

Ep,q1 = Hq(X,LΛp<nLX/Z) =⇒ Hp+q(X,LΩ∗X/Z/F
n)

where LΛp<nLX/Z := LΛpLX/Z for p < n and LΛp<nLX/Z := 0 otherwise. The
schemeX is proper and LΛpLX/Z is isomorphic, in the derived category D(OX)
of OX -modules, to a bounded complex of coherent sheaves (see (6) below). It
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follows that Ep,q1 is a finite dimensional Fp-vector space for all (p, q) vanishing
for almost all (p, q). By Lemma 1, this yields isomorphisms

detZRΓ(X,LΩ
∗
X/Z/F

n)
∼−→

⊗

i

det
(−1)i
Z Hi(X,LΩ∗X/Z/F

n)

∼−→
⊗

p<n,q

det
(−1)p+q
Z Hq(X,LΛpLX/Z)

∼−→
⊗

p<n

det
(−1)p
Z RΓ(X,LΛpLX/Z)

which are compatible with the canonical Q-trivializations. The transitivity

triangle (see [5] II.2.1) for the composite map X
f→ Spec(Fp)→ Spec(Z) reads

as follows (using [5] III.3.1.2 and [5] III.3.2.4(iii)):

(4) Lf∗(pZ/p2Z)[1]→ LX/Z → Ω1
X/Fp [0]

ω→ Lf∗(pZ/p2Z)[2].

We set L := Lf∗(pZ/p2Z), a trivial invertible OX -module. By ([5] Théorème
III.2.1.7), the class

ω ∈ Ext2OX (Ω
1
X/Fp ,L) ≃ H

2(X,TX/Fp)

is the obstruction to the existence of a lifting of X over Z/p2Z. If such a lifting
does exist then we have ω = 0, in which case the following lemma is superfluous.
For an object C of D(OX) with bounded cohomology, we set

grτC :=
⊕

i∈Z
Hi(C)[−i].

Lemma 2. We have an isomorphism

detZRΓ(X,LΛ
pLX/Z) ≃ detZRΓ(X,LΛ

p(grτLX/Z))

compatible with the canonical Q-trivializations.

Proof. The map X → Spec(Z) is a local complete intersection, hence the com-
plex LX/Z has perfect amplitude ⊂ [−1, 0] (see [5] III.3.2.6). In other words,
LX/Z is locally isomorphic in D(OX) to a complex of free modules of finite
type concentrated in degrees −1 and 0. By ([4] 2.2.7.1) and ([4] 2.2.8), LX/Z
is globally isomorphic to such a complex, i.e. there exists an isomorphism
LX/Z ≃ [M → N ] in D(OX), where M and N are finitely generated locally
free OX -modules put in degrees −1 and 0 respectively. Consider the exact
sequences

(5) 0→ L→M → F → 0 and 0→ F → N → Ω→ 0

where L := Lf∗(pZ/p2Z) and Ω := Ω1
X/Fp

are finitely generated and locally
free. It follows that F is also finitely generated and locally free. One has an
isomorphism in D(OX)

(6) LΛpLX/Z ≃ [ΓpM → Γp−1M ⊗N → · · · →M ⊗ Λp−1N → ΛpN ]
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where the right hand side sits in degrees [−p, 0] (see [6] VIII.2.1.2 and [5]
I.4.3.2.1). Moreover, in view of (4) we may choose an isomorphism

grτLX/Z ≃ [L 0→ Ω]

in D(OX), the right hand side being concentrated in degrees [−1, 0]. Hence the
complex LΛp(grτLX/Z) ∈ D(OX) is represented by a complex of the form

LΛp(grτLX/Z) ≃ LΛp([L → Ω]) ≃(7)

≃ [ΓpL → Γp−1L ⊗ Ω→ · · · → L ⊗ Λp−1Ω→ ΛpΩ]

where the right hand side sits in degrees [−p, 0]. Lemma 1 and (6) give an
isomorphism

(8) detZRΓ(X,LΛ
pLX/Z) ≃

⊗

0≤q≤p
det

(−1)p−q
Z RΓ(X,Γp−qM ⊗ ΛqN)

compatible with the Q-trivializations. The second exact sequence in (5) endows
ΛqN with a finite decreasing filtration Fil∗ such that griFil(Λ

qN) = ΛiF ⊗
Λq−iΩ. Since Γp−qM is flat, Fil∗ induces a similar filtration on Γp−qM ⊗ΛqN
such that

griFil(Γ
p−qM ⊗ ΛqN) = Γp−qM ⊗ ΛiF ⊗ Λq−iΩ.

This filtration induces an isomorphism

(9) detZRΓ(X,Γ
p−qM ⊗ ΛqN) ≃

⊗

0≤i≤q
detZRΓ(X,Γ

p−qM ⊗ ΛiF ⊗ Λq−iΩ)

compatible with the Q-trivializations. Lemma 1 and (7) give an isomorphism

(10) detZRΓ(X,LΛ
p(grτLX/Z)) ≃

⊗

0≤i≤p
det

(−1)p−i
Z RΓ(X,Γp−iL ⊗ ΛiΩ)

compatible with the Q-trivializations. Moreover, we have an isomorphism (see
[5] I.4.3.1.7)

Γp−iL ≃ [Γp−iM → Γp−i−1M ⊗ F → · · · →M ⊗ Λp−i−1F → Λp−iF ]

where the right hand side sits in degrees [0, p − i]. Since ΛiΩ is flat, we have
an isomorphism between Γp−iL ⊗ ΛiΩ and

[Γp−iM ⊗ ΛiΩ→ Γp−i−1M ⊗ F ⊗ ΛiΩ→ · · ·
· · · →M ⊗ Λp−i−1F ⊗ ΛiΩ→ Λp−iF ⊗ ΛiΩ].

By Lemma 1, we have
(11)

detZRΓ(X,Γ
p−iL ⊗ ΛiΩ) ≃

⊗

0≤j≤p−i
det

(−1)j
Z RΓ(X,Γp−i−jM ⊗ ΛjF ⊗ ΛiΩ).
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Putting (10), (11), (9) and (8) together, we obtain isomorphisms

detZRΓ(X,LΛ
p(grτLX/Z)) ≃

≃
⊗

0≤i≤p
det

(−1)p−i
Z RΓ(X,Γp−iL ⊗ ΛiΩ)

≃
⊗

0≤i≤p


 ⊗

0≤j≤p−i
det

(−1)p−i−j
Z RΓ(X,Γp−i−jM ⊗ ΛjF ⊗ ΛiΩ)




=
⊗

0≤q≤p


 ⊗

0≤i,j ; i+j=q

det
(−1)p−q
Z RΓ(X,Γp−qM ⊗ ΛjF ⊗ ΛiΩ)




≃
⊗

0≤q≤p
det

(−1)p−q
Z RΓ(X,Γp−qM ⊗ ΛqN)

≃ detZRΓ(X,LΛ
pLX/Z)

compatible with the canonical Q-trivializations. �

Recall from (7) that the complex LΛp(grτLX/Z) is isomorphic in D(OX) to a
complex of the form

0→ ΓpL → Γp−1L ⊗ Ω1
X/Fp → · · · → Γ1L ⊗ Ωp−1X/Fp

→ ΩpX/Fp → 0

put in degrees [−p, 0]. An isomorphism of Fp-vector spaces Fp ≃ pZ/p2Z
induces an identification OX ≃ L, and more generally OX ≃ ΓiL for any i ≥ 0.
Hence (LΛp(grτLX/Z))[−p] ∈ D(OX) is represented by a complex of the form

(12) 0→ OX → Ω1
X/Fp → · · · → ΩpX/Fp → 0

sitting in degrees [0, p]. We obtain a spectral sequence

Ei,j1 = Hj(X,Ωi≤pX/Fp
) =⇒ Hi+j(X, (LΛp(grτLX/Z))[−p])

where Ωi≤p := Ωi for i ≤ p and Ωi≤p := 0 for i > p. By Lemma 1 again, we
get an identification

⊗

i≤p,j
det

(−1)i+j
Z Hj(X,ΩiX/Fp)

∼−→ detZRΓ(X, (LΛ
p(grτLX/Z))[−p])

∼−→ det
(−1)p
Z RΓ(X,LΛp(grτLX/Z)).

In summary, we have the following isomorphisms

detZRΓ(X,LΩ
∗
X/Z/F

n)
∼−→

⊗

p<n

det
(−1)p
Z RΓ(X,LΛpLX/Z)(13)

∼−→
⊗

p<n

det
(−1)p
Z RΓ(X,LΛp(grτLX/Z))(14)

∼−→
⊗

p<n


⊗

i≤p,j
det

(−1)i+j
Z Hj(X,ΩiX/Fp)


(15)
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such that the square

(
detZRΓ(X,LΩ

∗
X/Z/F

n)
)
⊗Q //

γ

��


⊗

p<n

⊗

i≤p,j
det

(−1)i+j
Z Hj(X,ΩiX/Fp)


⊗Q

γ′

��
Q Id // Q

commutes, where the top horizontal map is induced by (15), and the verti-
cal isomorphisms are the canonical trivializations. The first assertion of the
theorem follows:

Z ·
(∏

i∈Z
| Hi(X,LΩ∗X/Z/F

n) |(−1)i
)−1

=

= γ
(
detZRΓ(X,LΩ

∗
X/Z/F

n)
)

= γ′


⊗

p<n

⊗

i≤p,j
det

(−1)i+j
Z Hj(X,ΩiX/Fp)




= Z · p−χ(X/Fp,OX ,n).

We now explain why the second assertion of the theorem is a restatement of
([2] Theorem 1.3). We assume that Hi

W (X,Z(n)) is finitely generated for all
i ∈ Z (X and n being fixed). Recall from [2] that this assumption implies the
following: Hi

W (X,Z(n)) is in fact finite for i 6= 2n, 2n+1, the complex (2) has
finite cohomology groups and one has

ρn := −ords=nζ(X, s) = rankZH
2n
W (X,Z(n)).

In particular the complex

(16) · · · ∪e−→ Hi
W (X,Z(n))⊗Q ∪e−→ Hi+1

W (X,Z(n)) ⊗Q ∪e−→ · · ·
is acyclic. This gives a trivialization

β : Q ∼−→
⊗

i

det
(−1)i
Q

(
Hi
W (X,Z(n))⊗Q

) ∼−→

∼−→
(⊗

i

det
(−1)i
Z Hi

W (X,Z(n))

)
⊗Q

such that

Z · β
(
χ(H∗W (X,Z(n)),∪e)−1

)
=
⊗

i

det
(−1)i
Z Hi

W (X,Z(n)).
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The class e ∈ H1(WFq ,Z) = Hom(WFq ,Z) maps the Frobenius Frob ∈ WFq to
1 ∈ Z. We define the map

WFq = Z · Frob −→ R =:WF1

as the map sending Frob to log(q), while θ ∈ H1(WF1 ,R) = Hom(R,R) is the
identity map. It follows that the acyclic complex

· · · ∪θ−→ Hi
W (X,Z(n))⊗ R ∪θ−→ Hi+1

W (X,Z(n))⊗ R ∪θ−→ · · ·
induces a trivialization

α : R ∼−→
⊗

i

det
(−1)i
R

(
Hi
W (X,Z(n))⊗ R

) ∼−→
(⊗

i

det
(−1)i
Z Hi

W (X,Z(n))

)
⊗R

such that

Z · α
(
χ(H∗W (X,Z(n)),∪e)−1 · log(q)ρn

)
=
⊗

i

det
(−1)i
Z Hi

W (X,Z(n)).

The trivialization λ is the product of α with the canonical trivialization

R ∼−→ detZRΓ(X,LΩ
∗
X/Z/F

n)⊗Z R.

Hence we have

Z · λ
(
log(q)ρn · χ(H∗W (X,Z(n)),∪e)−1 · q−χ(X,OX ,n)

)
= ∆(X/Z, n).

Moreover, formula (1) gives

ζ∗(X, s) = ±log(q)−ρn · χ(H∗W (X,Z(n)),∪e) · qχ(X,OX ,n)

hence the result follows from ([2] Theorem 1.3). �

Acknowledgments. I would like to thank Matthias Flach, Stephen Lichten-
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Abstract. We show that the multivariate additive higher Chow
groups of a smooth affine k-scheme Spec (R) essentially of finite type
over a perfect field k of characteristic 6= 2 form a differential graded
module over the big de Rham-Witt complex WmΩ•R. In the univariate
case, we show that additive higher Chow groups of Spec (R) form
a Witt-complex over R. We use these structures to prove an étale
descent for multivariate additive higher Chow groups.
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1. Introduction

The additive higher Chow groups TCHq(X,n;m) emerged originally in [5] in
part as an attempt to understand certain relative higher algebraic K-groups of
schemes in terms of algebraic cycles. Since then, several papers [16], [17], [18],
[19], [26], [27], [28] have studied various aspects of these groups. But lack of
a suitable moving lemma for smooth affine varieties has been a hindrance in
studies of their local behaviors. Its projective sibling was known by [17]. During
the period of stagnation, the subject has evolved into the notion of ‘cycles
with modulus’ CHq(X |D,n) by Binda-Kerz-Saito in [1], [15] associated to pairs
(X,D) of schemes and effective Cartier divisors D, setting a more flexible
ground, while this desired moving lemma for the affine case was obtained by
W. Kai [14] (See Theorem 4.1).
The above developments now propel the authors to continue their program
of realizing the relative K-theory Kn(X × Spec k[t]/(tm+1), (t)) in terms of
additive higher Chow groups. More specifically, one of the aims in the program
considered in this paper is to understand via additive higher Chow groups,
the part of the above relative K-groups which was proven in [2] to give the
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crystalline cohomology. This part turned out to be isomorphic to the de Rham-
Witt complexes as seen in [12]. This article is the first of the authors’ papers
that relate the additive higher Chow groups to the big de Rham-Witt complexes
WmΩ•R of [8] and to the crystalline cohomology theory. This gives a motivic
description of the latter two objects.
While the general notion of cycles with modulus for (X,D) provides a wider
picture, the additive higher Chow groups still have a non-trivial operation
not shared by the general case. One such is an analogue of the Pontryagin
product on homology groups of Lie groups, which turns the additive higher
Chow groups into a differential graded algebra (DGA). This product is induced
by the structure of algebraic groups on A1 andGm and their action onX×Ar =:
X [r] for r ≥ 1.
The usefulness of such a product was already observed in the earliest papers
on additive 0-cycles by Bloch-Esnault [5] and Rülling [28]. This product on
higher dimensional additive higher Chow cycles was given in [19] for smooth
projective varieties. In §5 of this paper, we extend this product structure in
two directions: (1) toward multivariate additive higher Chow groups and (2)
on smooth affine varieties. In doing so, we generalize some of the necessary
tools, such as the following normalization theorem, proven as Theorem 3.2.
Necessary definitions are recalled in §2.

Theorem 1.1. Let X be a smooth scheme which is either quasi-projective or
essentially of finite type over a field k. Let D be an effective Cartier divisor on
X. Then each cycle class in CHq(X |D,n) has a representative, all of whose
codimension 1 faces are trivial.

The above theorem for ordinary higher Chow groups was proven by Bloch and
has been a useful tool in dealing with algebraic cycles. In this paper, we use
the above theorem to construct the following structure of differential graded
algebra and differential graded modules on the multivariate additive higher
Chow groups, where Theorem 1.2 is proven in Theorems 7.1, 7.10, and 7.11,
while Theorem 1.3 is proven in Theorem 6.13.

Theorem 1.2. Let X be a smooth scheme which is either affine essentially of
finite type or projective over a perfect field k of characteristic 6= 2

(1) The additive higher Chow groups {TCHq(X,n;m)}q,n,m∈N has a func-
torial structure of a restricted Witt-complex over k.

(2) If X = Spec (R) is affine, then {TCHq(X,n;m)}q,n,m∈N has a structure
of a restricted Witt-complex over R.

(3) For X as in (2), there is a natural map of restricted Witt-complexes
τRn,m : WmΩn−1R → TCHn(R, n;m).

Theorem 1.3. Let r ≥ 1. For a smooth scheme X which is either affine essen-
tially of finite type or projective over a perfect field k of characteristic 6= 2, the
multivariate additive higher Chow groups {CHq(X [r]|Dm, n)}q,n≥0 with modu-
lus m = (m1, · · · ,mr), where mi ≥ 1, form a differential graded module over
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the DGA {TCHq(X,n; |m| − 1)}q,n≥1, where |m| = ∑r
i=1mi. In particular,

each CHq(X [r]|Dm, n) is a W(|m|−1)(R)-module, when X = Spec (R) is affine.

The above structures on the univariate and multivariate additive higher Chow
groups suggest an expectation that these groups may describe the algebraic
K-theory relative to nilpotent thickenings of the coordinate axes in an affine
space over a smooth scheme. The calculations of such relative K-theory by
Hesselholt in [9] and [10] show that any potential motivic cohomology which
describes the above relative K-theory may have such a structure.
As part of our program of connecting the additive higher Chow groups with the
relative K-theory, we show in [22] that the above map τRn,m is an isomorphism
when X is semi-local in addition, and we show how one deduces crystalline
cohomology from additive higher Chow groups. The results of this paper form
a crucial part in the process.
Recall that the higher Chow groups of Bloch and algebraicK-theory do not sat-
isfy étale descent with integral coefficients. As an application of Theorem 1.3,
we show that the étale descent is actually true for the multivariate additive
higher Chow groups in the following setting:

Theorem 1.4. Let r ≥ 1 and let X be a smooth scheme which is either affine
essentially of finite type or projective over a perfect field k of characteristic 6= 2.
Let G be a finite group of order prime to char(k), acting freely on X with the
quotient f : X → X/G. Then for all q, n ≥ 0 and and m = (m1, · · · ,mr) with
mi ≥ 1 for 1 ≤ i ≤ r, the pull-back map f∗ induces an isomorphism

CHq(X/G[r]|Dm, n)
≃−→ H0(G,CHq(X [r]|Dm, n)).

Note that the quotient X/G exists under the hypothesis on X . Since the
corresponding descent is not yet known for the relative K-theory of nilpotent
thickenings of the coordinate axes in an affine space over a smooth scheme, the
above theorem suggests that this descent could be indeed true for the relative
K-theory.

Conventions. In this paper, k will denote the base field which will be assumed
to be perfect after §4. A k-scheme is a separated scheme of finite type over
k. A k-variety is a reduced k-scheme. The product X × Y means usually
X ×k Y , unless said otherwise. We let Schk be the category of k-schemes,
Smk of smooth k-schemes, and SmAffk of smooth affine k-schemes. A scheme
essentially of finite type is a scheme obtained by localizing at a finite subset
(including ∅) of a finite type k-scheme. For C = Schk,Smk,SmAffk, we let
Cess be the extension of the category C obtained by localizing at a finite subset
(including ∅) of objects in C. We let SmLock be the category of smooth semi-
local k-schemes essentially of finite type over k. So, SmAff ess

k = SmAffk ∪
SmLock for the objects. When we say a semi-local k-scheme, we always mean
one that is essentially of finite type over k. Let SmProjk be the category of
smooth projective k-schemes.
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2. Recollection of basic definitions

For P1 = Projk(k[s0, s1]), we let y = s1/s0 its coordinate. Let� := P1\{1}. For
n ≥ 1, let (y1, · · · , yn) ∈ �n be the coordinates. A face F ⊂ �n means a closed
subscheme defined by the set of equations of the form {yi1 = ǫ1, · · · , yis = ǫs}
for an increasing sequence {ij|1 ≤ j ≤ s} ⊂ {1, · · · , n} and ǫj ∈ {0,∞}. We

allow s = 0, in which case F = �n. Let � := P1. A face of �
n
is the closure

of a face in �n. For 1 ≤ i ≤ n, let F 1
n,i ⊂ �

n
be the closed subscheme given

by {yi = 1}. Let F 1
n :=

∑n
i=1 F

1
n,i, which is the cycle associated to the closed

subscheme �
n \ �n. Let �0 = �

0
:= Spec (k). Let ιn,i,ǫ : �n−1 →֒ �n be the

inclusion (y1, · · · , yn−1) 7→ (y1, · · · , yi−1, ǫ, yi, · · · , yn−1).
2.1. Cycles with modulus. Let X ∈ Schess

k . Recall ([21, §2]) that for ef-
fective Cartier divisors D1 and D2 on X , we say D1 ≤ D2 if D1 + D = D2

for some effective Cartier divisor D on X . A scheme with an effective divisor
(sed) is a pair (X,D), where X ∈ Schess

k and D an effective Cartier divisor. A
morphism f : (Y,E)→ (X,D) of seds is a morphism f : Y → X in Schess

k such
that f∗(D) is defined as a Cartier divisor on Y and f∗(D) ≤ E. In particular,
f−1(D) ⊂ E. If f : Y → X is a morphism of k-schemes, and (X,D) is a sed
such that f−1(D) = ∅, then f : (Y, ∅)→ (X,D) is a morphism of seds.

Definition 2.1 ([1], [15]). Let (X,D) and (Y ,E) be schemes with effective
divisors. Let Y = Y \E. Let V ⊂ X×Y be an integral closed subscheme with
closure V ⊂ X × Y . We say V has modulus D (relative to E) if ν∗V (D × Y ) ≤
ν∗V (X×E) on V

N
, where νV : V

N → V →֒ X×Y is the normalization followed
by the closed immersion.

Recall the following containment lemma from [21, Proposition 2.4] (see also [1,
Lemma 2.1] and [17, Proposition 2.4]):

Proposition 2.2. Let (X,D) and (Y ,E) be schemes with effective divisors
and Y = Y \ E. If V ⊂ X × Y is a closed subscheme with modulus D relative
to E, then any closed subscheme W ⊂ V also has modulus D relative to E.

Definition 2.3 ([1], [15]). Let (X,D) be a scheme with an effective divisor.
For s ∈ Z and n ≥ 0, let zs(X |D,n) be the free abelian group on integral closed
subschemes V ⊂ X×�n of dimension s+n satisfying the following conditions:

(1) (Face condition) for each face F ⊂ �n, V intersects X × F properly.
(2) (Modulus condition) V has modulus D relative to F 1

n on X ×�n.
We usually drop the phrase “relative to F 1

n” for simplicity. A cycle in
zs(X |D,n) is called an admissible cycle with modulus D. One checks that
(n 7→ zs(X |D,n)) is a cubical abelian group. In particular, the groups
zs(X |D,n) form a complex with the boundary map ∂ =

∑n
i=1(−1)i(∂∞i − ∂0i ),

where ∂ǫi = ι∗n,i,ǫ.

Definition 2.4 ([1], [15]). The complex (zs(X |D, •), ∂) is the nonde-
generate complex associated to (n 7→ zs(X |D,n)), i.e., zs(X |D,n) :=
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zs(X |D,n)/zs(X |D,n)degn. The homology CHs(X |D,n) := Hn(zs(X |D, •))
for n ≥ 0 is called higher Chow group of X with modulus D. If X is equidi-
mensional of dimension d, for q ≥ 0, we write CHq(X |D,n) = CHd−q(X |D,n).
Here is a special case from [21]:

Definition 2.5. Let X ∈ Schess
k . For r ≥ 1, let X [r] := X × Ar. When

(t1, · · · , tr) ∈ Ar are the coordinates, and m1, · · · ,mr ≥ 1 are integers, let Dm

be the divisor on X [r] given by the equation {tm1
1 · · · tmrr = 0}. The groups

CHq(X [r]|Dm, n) are calledmultivariate additive higher Chow groups ofX . For
simplicity, we often say “a cycle with modulus m” for “a cycle with modulus
Dm.” For an r-tuple of integers m = (m1, · · · ,mr), we write |m| = ∑r

i=1mi.
We shall say that m ≥ p if mi ≥ p for each i.
When r = 1, we obtain additive higher Chow groups, and as in [19], we often use
the older notations Tzq(X,n+ 1;m− 1) for zq(X [1]|Dm, n) and TCHq(X,n+
1;m − 1) for CHq(X [1]|Dm, n). In such cases, note that the modulus m is
shifted by 1 from the above sense.

Definition 2.6. Let W be a finite set of locally closed subsets of X and
let e : W → Z≥0 be a set function. Let zqW,e(X |D,n) be the subgroup

generated by integral cycles Z ∈ zq(X |D,n) such that for each W ∈ W
and each face F ⊂ �n, we have codimW×F (Z ∩ (W × F )) ≥ q − e(W ).
They form a subcomplex zqW,e(X |D, •) of zq(X |D, •). Modding out by de-

generate cycles, we obtain the subcomplex zqW,e(X |D, •) ⊂ zq(X |D, •). We

write zqW(X |D, •) := zqW,0(X |D, •). For additive higher Chow cycles, we write

TzqW(X,n;m) for zqW[1](X [1]|Dm+1, n− 1), where W [1] = {W [1] | W ∈ W}.
Here are some basic lemmas used in the paper:

Lemma 2.7 ([21, Lemma 2.2]). Let f : Y → X be a dominant map of normal
integral k-schemes. Let D be a Cartier divisor on X such that the generic
points of Supp(D) are contained in f(Y ). Suppose that f∗(D) ≥ 0 on Y . Then
D ≥ 0 on X.

Lemma 2.8 ([21, Lemma 2.9]). Let f : Y → X be a proper morphism of quasi-
projective k-varieties. Let D ⊂ X be an effective Cartier divisor such that
f(Y ) 6⊂ D. Let Z ∈ zq(Y |f∗(D), n) be an irreducible cycle. Let W = f(Z) on
X ×�n. Then W ∈ zs(X |D,n), where s = codimX×�n(W ).

Lemma 2.9. Let X be a k-scheme, and let {Ui}i∈I be an open cover of X.
Let Z ∈ zq(X × �n) and let ZUi be the flat pull-back to Ui × �n. Then
Z ∈ zq(X |D,n) if and only if for each i ∈ I, we have ZUi ∈ zq(Ui|DUi , n),
where DUi is the restriction of D on Ui.

Proof. The direction (⇒) is obvious since flat pull-backs respect admissibility
of cycles with modulus by [21, Proposition 2.12]. For the direction (⇐), we
may assume Z is irreducible. In this case, it is easily checked that the face and
the modulus conditions are both local on the base X . �

2.2. de Rham-Witt complexes.
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2.2.1. Ring of big Witt-vectors. Let R be a commutative ring with unit. We
recall the definition of the ring of big Witt-vectors of R (see [11, §4] or [28,
Appendix A]). A truncation set S ⊂ N is a non-empty subset such that if
s ∈ S and t|s, then t ∈ S. As a set, let WS(R) := RS and define the map
w : WS(R) → RS by sending a = (as)s∈S to w(a) = (w(a)s)s∈S , where

w(a)s :=
∑
t|s ta

s/t
t . When RS on the target of w is given the component-wise

ring structure, it is known that there is a unique functorial ring structure on
WS(R) such that w is a ring homomorphism (see [11, Proposition 1.2]). When
S = {1, · · · ,m}, we write Wm(R) := WS(R).
There is another description. Let W(R) := WN(R). Consider the multiplicative
group (1 + tR[[t]])×, where t is an indeterminate. Then there is a natural
bijection W(R) ≃ (1+tR[[t]])×, where the addition in W(R) corresponds to the
multiplication of formal power series. For a truncation set S, we can describe
WS(R) as the quotient of (1+ tR[[t]])

× by a suitable subgroup IS . See [28, A.7]
for details. In case S = {1, · · · ,m}, we can write Wm(R) = (1+ tR[[t]])×/(1+
tm+1R[[t]])× as an additive group.
For a ∈ R, the Teichmüller lift [a] ∈ WS(R) corresponds to the image of
1 − at ∈ (1 + tR[[t]])×. This yields a multiplicative map [−] : R → WS(R).
The additive identity element of Wm(R) corresponds to the unit polynomial 1
and the multiplicative identity element corresponds to the polynomial 1− t.

2.2.2. de Rham-Witt complex. Let p be an odd prime and R be a Z(p)-algebra.
1

For each truncation set S, there is a differential graded algebra WSΩ
•
R called

the big de Rham-Witt complex over R. This defines a contravariant functor
on the category of truncation sets. This is an initial object in the category of
V -complexes and in the category of Witt-complexes over R. For details, see [8]
and [28, §1]. When S is a finite truncation set, we haveWSΩ

•
R = Ω•WS(R)/Z/N

•
S ,

where N•S is the differential graded ideal given by some generators ([28, Propo-
sition 1.2]). In case S = {1, 2, · · · ,m}, we write WmΩ•R for this object.
Here is another relevant object for this paper from [8, Definition 1.1.1];
a restricted Witt-complex over R is a pro-system of differential graded Z-
algebras ((Em)m∈N,R : Em+1 → Em), with homomorphisms of graded rings
(Fr : Erm+r−1 → Em)m,r∈N called the Frobenius maps, and homomorphisms
of graded groups (Vr : Em → Erm+r−1)m,r∈N called the Verschiebung maps,
satisfying the following relations for all n, r, s ∈ N:

(i) RFr = FrR
r,RrVr = VrR, F1 = V1 = Id, FrFs = Frs, VrVs = Vrs;

(ii) FrVr = r. When (r, s) = 1, FrVs = VsFr on Erm+r−1;
(iii) Vr(Fr(x)y) = xVr(y) for all x ∈ Erm+r−1 and y ∈ Em; (projection

formula)
(iv) FrdVr = d, where d is the differential of the DGAs.

Furthermore, we require that there is a homomorphism of pro-rings (λ :
Wm(R)→ E0

m)m∈N that commutes with Fr and Vr, satisfying

1A definition of Witt-complex over a more general ring R can be found in [11, Defini-
tion 4.1].
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(v) Frdλ([a]) = λ([a]r−1)dλ([a]) for all a ∈ R and r ∈ N.
The pro-system {WmΩ

•
R}m≥1 is the initial object in the category of restricted

Witt-complexes over R (See [28, Proposition 1.15]).

3. Normalization theorem

Let k be any field. The aim of this section is to prove Theorem 3.2. Such
results were known when D = ∅, or when X is replaced by X × A1 with
D = {tm+1 = 0} for t ∈ A1. We generalize it to higher Chow groups with
modulus.

Definition 3.1. Let (X,D) be a scheme with an effective divisor. Let
zqN (X |D,n) be the subgroup of cycles α ∈ zq(X |D,n) such that ∂0i (α) = 0 for
all 1 ≤ i ≤ n and ∂∞i (α) = 0 for 2 ≤ i ≤ n. One checks that ∂∞1 ◦∂∞1 = 0. Writ-
ing ∂∞1 as ∂N , we obtain a subcomplex ι : (zqN (X |D, •), ∂N) →֒ (zq(X |D, •), ∂).
Theorem 3.2. Let X ∈ Smess

k and let D ⊂ X be an effective Cartier divisor.
Then ι : zqN(X |D, •)→ zq(X |D, •) is a quasi-isomorphism. In particular, every
cycle class in CHq(X |D,n) can be represented by a cycle α such that ∂ǫi (α) = 0
for all 1 ≤ i ≤ n and ǫ = 0,∞.

Let Cube be the standard category of cubes (see [24, §1]) so that a cubical
abelian group is a functor Cubeop → (Ab). Recall also from loc.cit. that an
extended cubical abelian is a functor ECubeop → (Ab), where ECube is the
smallest symmetric monoidal subcategory of Sets containing Cube and the
morphism µ : 2→ 1. The essential point of the proof of Theorem 3.2 is

Theorem 3.3. Let X ∈ Smess
k and D ⊂ X be an effective Cartier divisor.

Then (n 7→ zq(X |D;n)) is an extended cubical abelian group.

If Theorem 3.3 holds, then [24, Lemma 1.6] implies Theorem 3.2. We suppose
(X,D) is as in Theorem 3.2 in what follows. The idea is similar to that of [19,
Appendix].
Let q1 : �2 → � be the morphism (y1, y2) 7→ y1 + y2 − y1y2 if y1, y2 6= ∞,
and (y1, y2) 7→ ∞ if y1 or y2 = ∞. Under the identification ψ : � ≃ A1 given
by y 7→ 1/(1− y) (which sends {∞, 0} to {0, 1}), this map q1 is equivalent
to q1,ψ : A2 → A1 given by (y1, y2) 7→ y1y2. For our convenience, we use
this �ψ := (A1, {0, 1}) and cycles on X × �nψ. The boundary operator is

∂ =
∑n
i=1(−1)i(∂0i − ∂1i ), and we replace F 1

n,i by F
∞
n,i = {yi = ∞}. We write

F∞n =
∑n

i=1 F
∞
n,i. We write �ψ = (P1, {0, 1}). The group of admissible cycles is

zqψ(X |D,n). Consider qn,ψ : X×�n+1
ψ → X×�nψ given by (x, y1, · · · , yn+1) 7→

(x, y1, · · · , yn−1, ynyn+1).

Proposition 3.4. For Z ∈ zqψ(X |D,n), we have q∗n,ψ(Z) ∈ zqψ(X |D,n+ 1).

The delicacy of its proof lies in that the product map q1,ψ : A2 → A1 does not
extend to a morphism (P1)2 → P1 of varieties so that checking the modulus
condition becomes nontrivial. We use a correspondence instead. For n ≥ 1, let
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in : Wn →֒ X × �n+1
ψ × �1

ψ be the closed subscheme defined by the equation

u0ynyn+1 = u1, where (y1, · · · , yn+1) ∈ �n+1
ψ and (u0;u1) ∈ �1

ψ are the coordi-

nates. Let y := u1/u0. Its Zariski closureWn →֒ X×�n+1

ψ ×�1

ψ is given by the
equation u0un,1un+1,1 = u1un,0un+1,0, where (u1,0, u1,1), · · · , (un+1,0, un+1,1)

are the homogeneous coordinates of �
n+1

ψ with yi = ui,1/ui,0.

Consider θn : X×�n+1
ψ ×�1

ψ → X×�nψ given by (x, y1, · · · , yn+1, (u0;u1)) 7→
(x, y1, · · · , yn−1, ynyn+1), and let πn := θn|Wn . To extend this πn to a mor-

phism πn onWn, we use the projection θn : X×�n+1

ψ ×�1

ψ → X×�n−1ψ ×�1

ψ,
that drops the coordinates (un,0;un,1) and (un+1,0;un+1,1), and the projection

pn : X ×�n+1
ψ ×�1

ψ → X ×�n+1
ψ , that drops the last coordinate (u0;u1).

Lemma 3.5. (1) Wn ∩ {u0 = 0} = ∅, so that Wn ⊂ X × �n+1
ψ × �1

ψ. (2)

θn|Wn = πn. Thus, we define πn := θn|Wn
, which extends πn. (3) The varieties

Wn and Wn are smooth. (4) Both πn and πn are surjective flat morphisms of
relative dimension 1.

Proof. Its proof is almost identical to that of [19, Lemma A.5]. Part (1) follows
from the defining equation ofWn, and (2) holds by definition. Let ρn := pn|Wn :
Wn → X×�n+1

ψ . SinceX is smooth, using Jacobian criterion we check thatWn

is smooth. Furthermore, ρn is an isomorphism with the obvious inverse. Under
this identification, the morphism πn can also be regarded as the projection
(x, y1, · · · , yn, y) 7→ (x, y1, · · · , yn−1, y) that drops yn. In particular, πn is a
smooth and surjective of relative dimension 1. To check that Wn is smooth,
one can do it locally on each open set where each of un,i, un+1,i, ui is nonzero for

i = 0, 1. In each such open set, the equation for Wn takes the same form as for
Wn, so that it is smooth again by Jacobian criterion. Similarly as for πn, one
sees πn is of relative dimension 1. Since θn is projective and πn is surjective,
the morphism πn is projective and surjective. So, sinceWn is smooth, the map
πn is flat by [7, Exercise III-10.9, p.276]. Thus, we have (3) and (4). �

Lemma 3.6. Let n ≥ 1 and let Z ⊂ X×�nψ be a closed subscheme with modulus

D. Then Z ′ := (in)∗(π∗n(Z)) also has modulus D.

Proof. Let Z and Z
′
be the Zariski closures of Z and Z ′ in X × �nψ and

X ×�n+1

ψ , respectively. By Lemma 3.5 and the projectivity of θn, we see that

θn(Z
′
) = Z. Consider the commutative diagram

(3.1) Z
′N

f

��

g
//

νZ′

++

Wn
� � in //

πn

%%LLLLLLLLLLL X ×�n+1
ψ ×�1

ψ

θn
��

Z
N νZ // X ×�nψ,
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where f is induced by the surjection θn|Z′ : Z
′ → Z, the maps g and νZ

are normalizations of Z
′
and Z composed with the closed immersions, and

νZ′ := in ◦ g. By the definition of θn, we have θ
∗
n(D × �

n

ψ) = D × �n+2

ψ ,

θ
∗
n(F

∞
n,n) = F∞n+2,n+2, while θ

∗
n(F

∞
n,i) = F∞n+2,i for 1 ≤ i ≤ n − 1. By the

defining equation of Wn, we have π∗nF
∞
n,n = i

∗
nF
∞
n+2,n+2 = i

∗
n{u0 = 0} ≤

i
∗
n({un,0 = 0}+ {un+1,0 = 0}) = i

∗
n(F

∞
n+2,n + F∞n+2,n+1).

Thus, ν∗Z′θ
∗
n

∑n
i=1 F

∞
n,i =

∑n−1
i=1 ν

∗
Z′F∞n+2,i + g∗π∗nF

∞
n,n ≤

∑n−1
i=1 ν

∗
Z′F∞n+2,i +

g∗i
∗
n(F

∞
n+2,n+F∞n+2,n+1) =

∑n+1
i=1 ν

∗
Z′F∞n+2,i ≤

∑n+2
i=1 ν

∗
Z′F∞n+2,i. (In case n = 1,

we just ignore the terms with
∑n−1

i=1 in the above.)

That Z has modulus D means ν∗Z(D × �
n

ψ) ≤
∑n

i=1 ν
∗
ZF
∞
n,i. Applying f∗ and

using (3.1), we have ν∗Z′(D×�n+2

ψ ) = ν∗Z′θ
∗
n(D×�

n

ψ) ≤ ν∗Z′θ
∗
n

∑n
i=1 F

∞
n,i, which

is bounded by
∑n+2
i=1 ν

∗
Z′F∞n+2,i as we saw above. This means Z ′ has modulus

D. �

Definition 3.7. For any closed subscheme Z ⊂ X ×�nψ, we define Wn(Z) :=

pn∗in∗π∗n(Z), which is closed in X ×�n+1
ψ .

Lemma 3.8. Let n ≥ 1. If a closed subscheme Z ⊂ X ×�nψ intersects all faces

properly, then Wn(Z) intersects all faces of X ×�n+1
ψ properly.

Proof. OurWn is equal to τ∗τ∗nτ
∗
n+1W

X
n , whereWX

n is that of [23, Lemma 4.1],
and τ, τn, τn+1 are the involutions (x 7→ 1− x) for y, yn, yn+1, respectively. So,
the lemma is a special case of loc.cit. �

Proof of Proposition 3.4. Consider the commutative diagram

Wn

πn

��

ρn=pn|Wn

''NNNNNNNNNNNNN
� � in // X ×�n+1

ψ ×�ψ
pn

��

X ×�nψ X ×�n+1
ψ .

qn,ψ
oo

By Lemma 3.5, ρn is an isomorphism so that ρn∗i∗np
∗
n = Id. Hence, q∗n,ψ(Z) =

ρn∗i∗np
∗
nq
∗
n,ψ(Z) =

† ρn∗π∗n(Z) =
‡ pn∗in∗π∗n(Z) = Wn(Z), where †, ‡ are due to

commutativity. So, we have reduced to showing that Wn(Z) ∈ zqψ(X |D,n+1).

But, by Lemmas 3.6 and 3.8, we have in∗π∗n(Z) ∈ zq+1
ψ (X × P1|D× P1, n+ 1).

Now, for the projection pn, by Lemma 2.8, we have Wn(Z) = pn∗in∗π∗n(Z) ∈
zqψ(X |D,n+ 1). This proves Proposition 3.4. �

Proof of Theorem 3.3. Since we know that (n 7→ zq(X |D;n)) is a cubical
abelian group, every morphism h : r → s in Cube induces a morphism
h : �r → �s which gives a homomorphism h∗ : zq(X |D, s) → zq(X |D, r).
Furthermore, the morphism µ : 2 → 1 induces the morphism q1 : �2 → �1

of varieties, and for each Z ∈ zq(X |D, 1), we have q∗1(Z) ∈ zq(X |D, 2). In-
deed, under the isomorphism ψ : � ≃ A1, y 7→ 1/(1 − y), this is equivalent to
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show that q∗1,ψ sends admissible cycles to admissible cycles, which we know by
Proposition 3.4.
So, it only remains to show the following “stability under products”: if hi : ri →
si, i = 1, 2, are morphisms in ECube such that the corresponding morphisms
hi : �ri → �si induce homomorphisms h∗i : zq(X |D, si) → zq(X |D, ri), for
i = 1, 2 and all q ≥ 0, then h := h1 × h2 : �r1+r2 → �s1+s2 induces a
homomorphism h∗ : zq(X |D, s) → zq(X |D, r) for all q ≥ 0, where r = r1 + r2
and s = s1 + s2.
Since h = h1 × h2 = (Idr1 × h2) ◦ (h1 × Idr2), we reduce to prove it when h
is either Idr1 × h2 or h1 × Idr2 . But the statement obviously holds for these
cases. �

4. On moving lemmas

Let k be any field. In this section, we discuss some of moving lemmas on
algebraic cycles with modulus conditions. By a ‘moving lemma’, we ask whether
the inclusion zqW(Y |D, •) ⊂ zq(Y |D, •) in Definition 2.6 is a quasi-isomorphism.
It is known when Y is smooth quasi-projective and D = 0 (by [4]), and when
Y = X×A1, with X smooth projective, D = X ×{tm+1 = 0}, and W consists
of W ×A1 for finitely many locally closed subsets W ⊂ X (by [17]). Recently,
W. Kai [14] proved it when Y is smooth affine with a suitable condition. Kai’s
cases include the above case of Y = X×A1, where X is this time smooth affine.
His proof applies to more general cases, possibly after Nisnevich sheafifications.
In §4.1, we sketch the argument of Kai in the case of multivariate additive
higher Chow groups of smooth affine k-variety. In §4.2, we generalize the
moving lemma of [17] in the case of pairs (X × S,X ×D) where X is smooth
projective. In §4.3 and 4.4, we discuss the standard pull-back property and its
consequences. In §4.5, we discuss a moving lemma for additive higher Chow
groups of smooth semi-local k-schemes essentially of finite type.

4.1. Kai’s affine method for multivariate additive higher Chow
groups. The moving lemma of W. Kai [14] is the first moving result that
applies to cycle groups with a non-zero modulus over a smooth affine scheme.
Since the work loc. cit. is at present not yet refereed, we give a detailed sketch
the proof of the following special case on multivariate additive higher Chow
groups. But, we emphasize that the most crucial part is due to Kai. Following
Definition 2.5, we write X [r] := X × Ar.

Theorem 4.1 (W. Kai). Let X be a smooth affine variety over any field k.
Let W be a finite set of locally closed subsets of X. Let W [r] := {W [r] | W ∈
W}. Let m = (m1, · · · ,mr) ≥ 1. Then the inclusion zqW[r](X [r]|Dm, •) →֒
zq(X [r]|Dm, •) is a quasi-isomorphism.

First recall some preparatory results:

Lemma 4.2 ([17, Lemma 4.5]). Let f : X → Y be a dominant morphism of
normal varieties. Suppose that Y is integral with the generic point η ∈ Y , and
let Xη be the fiber over η, with the inclusion jη : Xη →֒ X. Let D be a Weil
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divisor on X such that j∗η(D) ≥ 0. Then there exists a non-empty open subset

U ⊂ Y such that j∗U (D) ≥ 0, where jU : f−1(U) →֒ X is the inclusion.

The following generalizes [17, Proposition 4.7]:

Proposition 4.3 (Spreading lemma). Let k ⊂ K be a purely transcendental
extension. Let (X,D) be a smooth quasi-projective k-scheme with an effective
Cartier divisor, and let W be a finite collection of locally closed subsets of X.
Let (XK , DK) and WK be the base changes via Spec (K) → Spec (k). Let
pK/k : XK → Xk be the base change map. Then the pull-back map

p∗K/k :
zq(X |D, •)
zqW(X |D, •) →

zq(XK |DK , •)
zqWK

(XK |DK , •)
is injective on homology.

Proof. It is similar to [17, Proposition 4.7]. We sketch its proof for the reader’s
convenience. If k is finite, then we can use the standard pro-ℓ-extension ar-
gument to reduce the proof to the case when k is infinite, which we assume
from now. We may also assume that tr.degkK < ∞ and furthermore that
tr.degkK = 1, by induction. So, we have K = k(A1

k).
Suppose Z ∈ zq(X |D,n) is a cycle that satisfies ∂Z ∈ zqW(X |D,n − 1),
and ZK = ∂(BK) + VK for some BK ∈ zq(XK |DK , n + 1) and VK ∈
zqWK

(XK |DK , n). Consider the inclusion zq(XK |DK , •) →֒ zq(XK , •). Then

there is a non-empty open U ′ ⊂ A1
k such that BK = BU ′ |η, VK = VU ′ |η,

Z×U ′ = ∂(BU ′)+VU ′ for someBU ′ ∈ zq(X×U ′, n+1), VU ′ ∈ zqW×U ′(X×U ′, n),
where η is the generic point of U ′. Let jη : X × η → X × U ′ be the inclusion,
which is flat.
Since BK , VK satisfy the modulus condition, we have j∗η(X×U ′×F 1

n+1−D×U ′×
�
n+1

) ≥ 0 on B
N

K and similarly for V
N

K . Furthermore, B
N

U ′ → U ′, V
N

U ′ → U ′

are dominant. Thus by Lemma 4.2, there is a non-empty open U ⊂ U ′ such

that j∗U (X × U ′ × F 1
n+1 − D × U ′ × �

n+1
) ≥ 0 on B

N

U and similarly for V
N

U ,
for jU : X × U →֒ X × U ′. This proves that BU and VU have modulus D× U .
Hence, BU ∈ zq(X × U |D × U, n+ 1) and VU ∈ zqW×U(X × U |D × U, n) with
Z × U = ∂(BU ) + VU .
Since k is infinite, the set U(k) →֒ U is dense. We claim the following:
Claim: There is a point u ∈ U(k) such that the pull-backs of BU and VU
under the inclusion iu : X×{u} →֒ X×U are both defined in zq(X,n+1) and
zqW(X,n), respectively.
Its proof requires the following elementary fact:
Lemma: Let Y be any k-scheme. Let B ∈ zq(Y × U) be a cycle. Then there
exists a nonempty open subset U ′′ ⊂ U such that for each u ∈ U ′′(k), the
closed subscheme Y × {u} intersects B properly on Y × U , thus it defines a
cycle i∗u(B) ∈ zq(Y ), where Y is identified with Y × {u}.
Note that for each u ∈ U(k), the subscheme Y × {u} ⊂ Y × U is an effective
divisor, so its proper intersection with B is equivalent to that Y × {u} does
not contain any irreducible component of B. If there exists a point ui ∈ U(k)
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such that Y × {ui} contains an irreducible component Bi of B, then for any
other u ∈ U(k) \ {ui}, we have (Y × {u}) ∩ Bi = ∅. So, for every irreducible
component Bi of B, there exists at most one ui ∈ U(k) such that Y × {ui}
contains Bi. Let S be the union of such points ui, if they exist. There are only
finitely many irreducible components of B, so |S| < ∞. Taking U ′′ := U \ S,
we have Lemma.
We now proveClaim. Let F ⊂ �n+1 be any face, including the case F = �n+1.
Since BU ∈ zq(X×U, n+1), by definition X×U×F and BU intersect properly
on X × U × �n+1, so their intersection gives a cycle BU,F ∈ zq(X × U × F ).
By Lemma with Y = X × F , there exists a nonempty open subset UF ⊂ U
such that BU,F defines a cycle in zq(X × {u} × F ) for every u ∈ UF (k). Let
U1 :=

⋂
F UF , where the intersection is taken over all faces F of �n+1. This is

a nonempty open subset of U . Similarly, let F ⊂ �n be any face, including the
case F = �n. Here, VU ∈ zqW×U (X ×U, n), and repeating the above argument
involving Lemma with Y =W ×F forW ∈ W , we get a nonempty open subset
UW,F ⊂ U such that we have an induced cycle in zq(W × {u} × F ) for every
u ∈ UW,F (k). Let U2 :=

⋂
W,F UW,F , where the intersection is taken over all

pairs (W,F ), with W ∈ W and a face F ⊂ �n. Taking U := U1 ∩ U2, which is
a nonempty open subset of U , we now obtain Claim for every u ∈ U(k).
Finally, for such a point u as in Claim, by the containment lemma (Proposition
2.2), i∗u(BU ) and i

∗
u(VU ) have modulus D. Hence, i∗u(BU ) ∈ zq(X |D,n+1) and

i∗u(VU ) ∈ zqW(X |D,n). This finishes the proof. �

Sketch of the proof of Theorem 4.1. Step 1. We first show it when X = Adk.
Let K = k(Adk) and let η ∈ X be the generic point. To facilitate the proof,
as we did previously in §3, using the automorphism y 7→ 1/(1 − y) of P1 we
replace (�, {∞, 0}) by (A1, {0, 1}), and write � = A1. We use the homogeneous

coordinates (ui,0;ui,1) ∈ �1
= P1, where yi = ui,1/ui,0, then the divisor F 1

n,i in

the modulus condition is replaced by F∞n,i = {yi =∞} and F∞n =
∑n
i=1 F

∞
n,i.

For any g ∈ Ad and an integer s > 0, define φg,s : Adk(g)[r] ×k(g) �1
k(g) →

Adk(g)[r] by φg,s(x, t, y) := (x + y(tm1

1 · · · tmrr )sg, t), where k(g) is the residue

field of g. (N.B. In terms of W. Kai’s homotopy, our g ∈ Ad corresponds to his
v = (g, 0, · · · , 0) ∈ Ad[r] = Ad+r.) For any cycle V ∈ zq(X [r]|Dm, n), define

H∗g,s(V ) := (φg,s×Id�n)∗p∗k(g)/k(V ), where pk(g)/k : Adk(g)[r]×�n → Adk[r]×�n
is the base change.
Using [3, Lemma 1.2], one checks that H∗g,s(V ) preserves the face condition

for V . Moreover, if V ∈ zqW(X [r], n), then so does H∗g,s(V ). When g = η,
another application of [3, Lemma 1.2] shows that H∗g,s(V ) intersects with all
W [r] × F properly, where W ∈ W and a F ⊂ �n is a face. The argument for
proving these face conditions follows the same steps as that of the proof of [17,
Lemma 5.5, Case 2] though the present case is slightly different so that we use
[3, Lemma 1.2] instead of [3, Lemma 1.1] (see [14, Lemma 3.5] for more detail).
On the other hand, we have the following crucial and central assertion due to
W. Kai (cf. [14, Proposition 3.3]):
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Claim: For each irreducible V ∈ zq(Adk[r]|Dm, n), there is s(V ) ∈ Z≥0 such

that for any s > s(V ) and for any g ∈ Ad, the cycle H∗g,s(V ) has modulus Dm.
Once it is proven, call the smallest such integer s(V ), the threshold of V , for
simplicity. Here, instead of translations by g ∈ Ad used in usual higher Chow
groups of Ad (which correspond to s = 0), Kai uses adjusted translations as in
the definition of φg,s, so that near the divisors {ti = 0}, the effect of adjusted
translation is also small, while away from the divisors {ti = 0}, the effect of
adjusted translation gets larger, so that for a sufficiently large s, this imbues
the desired modulus condition into cycles. Note the following elementary fact
(cf. [14, Lemma 3.2]), which amounts to rewriting the definitions: Let A be
a commutative ring with unity, p ⊂ A a prime ideal, ζ ∈ A, and u ∈ A \ p.
Then the element ζ/u of κ(p) is integral over A/p if and only if there is a
homogeneous polynomial E(a, b) ∈ A[a, b], which is monic in the variable a,
with E(ζ, b) ∈ p in A.

For each I ⊂ {1, · · · , n}, consider the open subset UI ⊂ Adk × �
n
given by the

conditions ui,0 6= 0 for i ∈ I and ui,1 6= 0 for i 6∈ I. For i 6∈ I, we let yi =

ui,0/ui,1 = y−1i . Hence, UI = Spec (RI), where RI := k[x, t, {yi}i∈I , {ȳi}i6∈I ],
where x = (x1, · · · , xd) and t = (t1, · · · , tr). On UI , the divisor F∞n used in
the definition of the modulus condition is given by the polynomial

∏
i6∈I yi.

For an irreducible V ∈ zq(Adk[r]|Dm, n), let V be its Zariski closure in Adk[r]×
�
n
. For a given I, the restriction V ∩ (Adk[r] × UI) is given by an ideal of RI ,

say, generated by a finite set of polynomials f Iλ(x, t, {yi}i∈I , {yi}i6∈I) ∈ RI for
λ ∈ ΛI .
By the above fact and the assumption that V has the modulus condition,
there is a polynomial EI(a, b) = EI(x, t, {yi}i∈I , {yi}i6∈I , a, b) ∈ RI [a, b], homo-
geneous in a, b and monic in a, satisfying the condition inside the ring RI :

(4.1) EI(
∏

i6∈I
yi, t

m) ∈
∑

λ∈ΛI
(f Iλ),where t

m = tm1
1 · · · tmrr .

If necessary, by multiplying a power of a to EI , we may assume degEI ≥
degx f

I
λ, where deg is the homogeneous degree of EI in the variables a, b and

degx is the total degree with respect to x. In doing so, we may further assume

that degEI is the same for all subset I ⊂ {1, · · · , n}. For this choice of degrees,
we let s(V ) = degEI . If V is not irreducible, then take the maximum of s(Vi)
over all irreducible components Vi of V to define s(V ). The heart of the proof
is to show that this number satisfies the assertions of Claim, which we do now.
We may assume V is irreducible. For any fixed s > s(V ) and g ∈ Ad, let V ′

be an irreducible component of H∗g,s(V ) and let V
′
be its Zariski closure in

Adκ[r]×�
n+1

, where κ = k(g). We use the coordinates (y, y1, · · · , yn) ∈ �n+1
,

and for the first � = P1, use the homogeneous coordinate (u0;u1) so that

y = u1/u0 and y := u0/u1 = y−1. Let ν : V
′N → V be the normalization.

Note that whether a divisor is effective or not on V
′N

is a Zariski local question

on V
′N

(thus on V
′
), so we may check the modulus condition Zariski locally
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near any point P ∈ V ′. Fix a point P . Let I ⊂ {1, · · · , n} be the set points

i such that P does not map to ∞ ∈ P1
κ of the (i + 1)-th projection V

′ →֒
Adκ[r]× �

n+1 → �κ = P1
κ.

There are two possibilities. In the first case P ∈ Adκ[r]×A1×�n, i.e. P does not
map to∞ ∈ P1 for the first projection to �κ, the morphism pκ/k ◦(φg,s×Idn�) :

Adκ[r]×A1×�n → Adk[r]×�n extends uniquely to Adκ[r]×A1×�n → Adk[r]×�
n
.

Thus, by pulling-back the relation (4.1), we obtain in the ring RI [y],

EI(x+ y(tm)sg, t, {yi}i∈I , {yi}i6∈I ,
∏

i6∈I
yi, t

m) ∈(4.2)

∈
∑

λ∈ΛI
(f Iλ(x+ y(tm)sg, t, {yi}i∈I , {yi}i6∈I)).

Here, the polynomials f Iλ(x+ y(tm)sg, {yi}i∈I , {yi}i6∈I) over λ ∈ ΛI define the
underlying closed subscheme of the Zariski closure of H∗g,s(V ) restricted on the

region Spec (RI [y]). Due to the choice of the degrees of EI and f
I
λ , the relation

(4.2) implies that the rational function
∏
i6∈I yi/t

m is integral using fact. In

particular, V ′ satisfies the modulus condition in a neighborhood of P .
In the remaining case P 6∈ Adκ[r] × A1 × �n, i.e. P does map to ∞ ∈ P1

for the first projection to �κ, we use the affine open chart Spec (RI [y]) where

u1 6= 0. The defining ideal of V
′ ∩ Spec (RI [y]) in the ring RI [y] contains the

polynomials φIλ(x, t, y, {yi}i∈I , {yi}i6∈I) := f Iλ(x+ 1
y (t

m)sg, t, {yi}i∈I , {yi}i6∈I) ·
ydegx(f

I
λ), where λ ∈ ΛI . By expanding the definition of φIλ, we see that it is of

the form

(4.3) φIλ = ydegx(f
I
λ)f Iλ(x, t, {yi}i∈I , {yi}i6∈I) + (tm)sh, h ∈ RI [y].

Express (4.1) as EI(
∏
i6∈I yi, t

m) =
∑
λ∈ΛI bλf

I
λ for some bλ ∈ RI . Let cλ :=

ys(V )−degx(fIλ) · bλ (which is in RI because s(V ) ≥ degx(f
I
λ)). Then from (4.3),

(4.4)
∑

λ∈ΛI
cλφ

I
λ = ys(V ) · EI(

∏

i6∈I
yi, t

m) + (tm)sg,

where (keep in mind that s ≥ s(V )) the right hand side becomes

(y
∏
i6∈I yi)

s(V ) + e1y(y
∏
i6∈I yi)

s(V )−1tm + · · · + (es(v)y
s(V ) + (tm)s−s(V )h) ·

(tm)s(V ), which we write as E′(y
∏
i6∈I yi, t

m) for a polynomial E′(a, b) ∈
RI [y][a, b], homogeneous in a, b and monic in a. Thus (4.4) is

∑
λ∈ΛI cλφ

I
λ =

E′(y
∏
i6∈I yi, t

m), which implies that the rational function y
∏
i6∈I yi/t

m is in-

tegral on V
′ ∩ Spec (RI [y]) using fact. Thus V ′ also satisfies the modulus

condition near P . Combining these two cases, we have now proven Claim.
Now consider the subgroup zqW[r],e(X [r]|Dm, n)

≤s ⊂ zqW[r],e(X [r]|Dm, n) for

s > 0, consisting of cycles V with its threshold s(V ) ≤ s (cf. [14, §3.4]). We
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deduce
zqW[r],e(X [r]|Dm, n)

zqW[r](X [r]|Dm, n)
= lim
→s

zqW[r],e(X [r]|Dm, n)
≤s

zqW[r](X [r]|Dm, n)≤s
.

Then one has the induced map from H∗η,s,

H∗η,s :
zqW[r],e(X [r]|Dm, n)

≤s

zqW[r](X [r]|Dm, n)≤s
→

zqW[r],e(XK [r]|Dm, n+ 1)

zqW[r](XK [r]|Dm, n+ 1)
,

which gives a homotopy between the base change p∗K/k and H∗η,s|y=1. How-

ever, H∗η,s|y=1 is zero on the quotient, while p∗K/k is injective on homology by

Proposition 4.3, after taking s → ∞, so that the map p∗K/k is in fact zero on

homology. This means, the quotient zqW[r],e(X [r]|Dm, n)/z
q
W[r](X [r]|Dm, n) is

acyclic, proving the moving lemma for X = Adk.
Step 2. If X is a general smooth affine k-variety of dimension d, we use
the standard generic linear projection trick. We choose a closed immersion
X →֒ AN for some N ≫ d and run the steps of §6 of [17] (with Pn replaced by
AN everywhere) mutatis mutandis to conclude the proof of the moving lemma
for X from that of affine spaces. We leave the details for the reader. �

4.2. Projective method for multivariate additive higher Chow
groups. The following theorem generalizes the moving lemma for additive
higher Chow groups of smooth projective schemes [17, Theorem 4.1] to a gen-
eral setting which includes the multivariate additive higher Chow groups.

Theorem 4.4. Let (S,D) be a smooth quasi-projective k-variety with an effec-
tive Cartier divisor. Let X be a smooth projective k-variety. Let W be a finite
collection of locally closed subsets of X. We let W × S := {W × S|W ∈
W}. Then the inclusion zqW×S(X × S|X × D, •) →֒ zq(X × S|X × D, •)
is a quasi-isomorphism. In particular, when m = (m1, · · · ,mr) ≥ 1, and
(S,D) = (Ar, Dm), the moving lemma holds for multivariate additive higher
Chow groups of smooth projective varieties over k.

Proof. Most arguments of [17, Theorem 4.1] work with minor changes, so we
sketch the proof.
Step 1. We first prove the theorem when X = Pdk. The algebraic group
SLd+1,k acts on Pd. Let K = k(SLd+1,k). Then there is a K-morphism
φ : �1

K → SLd+1,K such that φ(0) = Id, and φ(∞) = η, where η is the generic
point of SLd+1,k. See [17, Lemma 5.4]. For such φ, consider the composition
Hn of morphisms

Pd × S ×�n+1
K

µφ→ Pd × S ×�n+1
K

pr′K→ Pd × S ×�nK
pK/k→ Pd × S ×�nk ,

where µφ(x, s, y1, · · · , yn+1) = (φ(y1)x, s, y1, · · · , yn+1), pr
′
K is the projection

dropping y1, and pK/k is the base change. We claim that H∗n carries zqW×S(P
d×

S|Pd × D,n) to zqW×S(P
d
K × S|PdK × D,n + 1), i.e., for an irreducible cycle

Z ∈ zqW×S(Pd×S|Pd×S, n), we show that Z ′ := H∗n(Z) ∈ zqW×S(PdK ×S|PdK×
D,n+ 1).
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To do so, we first claim that Z ′ intersects with W × S × FK properly for each
W ∈ W and each face F ⊂ �n+1.
(1) In case F = {0} × F ′ for some face F ′ ⊂ �n, because φ(0) = Id, we have
Z ′ ∩ (W × S × FK) ≃ ZK ∩ (W × S × F ′K). Note that dim(W × S × FK) =
dim(W ×S×F ′K). Hence, codimW×S×FK (Z

′∩ (W ×S×FK)) = dim(W ×S×
FK)−dim(Z ′∩(W×S×FK)) = dim(W×S×F ′K)−dim(ZK∩(W ×S×F ′K)) =
dim(W×S×F ′)−dim(Z∩(W×S×F ′)) = codimW×S×F ′(Z∩(W×S×F ′)) ≥ q,
because Z ∈ zqW×S(Pd × S|Pd ×D,n).
(2) In case F = {∞} × F ′ for some face F ′ ⊂ �n, dim(W × S × FK) =
dim(W×S×F ′K) and Z ′∩(W×S×FK) ≃ η·(ZK)∩(W×S×F ′K), where SLd+1,k

acts on Pd×S×F ′, naturally on Pd and trivially on S×F ′. Let A :=W×S×F ′
and B := Z ∩ (Pd × S × F ′). Thus, codimW×S×FK (Z

′ ∩ (W × S × FK)) =
dim(W×S×FK)−dim(Z ′∩(W×S×FK)) = dim(W×S×F ′K)−dim(η ·(ZK)∩
(W×S×F ′K)) =† dim(AK)−dim(η ·BK∩AK) = codimAK (η ·BK∩AK), where
† holds because Z ∩ A = B ∩ A. By applying [3, Lemma 1.1] to G = SLd+1,k,
and the above A,B on X := Pd × S × F ′, there is a non-empty open subset
U ⊂ G such that for all g ∈ U , the intersection (g ·A) ∩B is proper on X . By
shrinking U , we may assume U is invariant under inverse map, so g = η−1 ∈ U .
Thus, codimAK ((η ·BK)∩AK) ≥ codimXK (η ·BK). Since codimXK (η ·BK) =
codimXKBK and codimXKBK = q, we get codimW×S×FK (Z

′∩(W×S×FK)) =
codimAK ((η ·BK) ∩ AK) ≥ codimXKBK = q.
(3) In case F = � × F ′ for some face F ′ ⊂ �n, the projection Z ′ ∩ (W ×
S × � × F ′K) → �K is flat, being a dominant map to a curve, so dim(Z ′ ∩
(W × S × � × F ′K)) = dim(Z ′ ∩ (W × S × {∞} × F ′K)) + 1. We also have
dim(W × S × � × F ′K) = dim(W × S × {∞} × F ′K) + 1. Hence, we deduce
codimW×S×FK (Z

′ ∩ (W ×S×FK)) = dim(W ×S×�×FK)− dim(Z ′ ∩ (W ×
S ×�× F ′K)) = codimW×S×{∞}×F ′

K
(Z ′ ∩ (W × S × {∞} × F ′K)) ≥† q, where

† follows from case (2). This shows Z ′ intersects all faces properly.
Now we show that Z ′ has modulus Pd × D. We drop all exchange of the
factors, for simplicity. For p : Pd → Spec (k), we take V = p(Z) on S × �n.
Because Z ⊂ p−1(p(Z)) = Pr × V , we have Z ′ = µ∗φ(�

1
K × Z) ⊂ µ∗φ(P

d ×
�1
K × V ) = Pd × �1

K × V := Z1. By Lemma 2.8, V is admissible on S × �n.
So, p∗[V ] = Pd × V is admissible on Pd × S × �n. In particular, Pd × V has
modulus Pd ×D. Hence, Z1 = Pd ×�1

K × V also has modulus PdK ×D. Now,
Z ′ ⊂ Z1 shows that Z ′ has modulus PdK × D by Proposition 2.2. Thus, we
proved Z ′ ∈ zqW×S(PdK × S|PdK ×D,n+ 1).

Going back to the proof, one checks that H∗• : z
q(Pd×S|Pd×D, •)→ zq(PdK ×

S|Pd × D, • + 1) is a chain homotopy satisfying ∂H∗(Z) + H∗∂(Z) = ZK −
η · (ZK), and the same holds for zW×S by a straightforward computation (see
[17, Lemma 5.6]). Furthermore, for each admissible Z, we have η · ZK ∈
zqWK×S(P

d
K × S|PdK × D,n), by the above proof of proper intersection of Z ′

with W × S × FK , where F = {∞} × F ′ for a face F ′ ⊂ �n. Hence, the
base change p∗K/k : zq(Pdk × S|Pdk ×D, •)/zqW×S(Pdk × S|Pdk ×D, •)→ zq(PdK ×
S|PdK × D, •)/zqWK×S(P

d
K × S|PdK × D, •) is homotopic to η · p∗K/k, which is
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zero on the quotient. That is, p∗K/k on the above quotient complex is zero

on homology. However, by the spreading argument (Proposition 4.3), p∗K/k is

injective on homology. (N.B. We used here an elementary fact that k(SLd+1,k)
is purely transcendental over k. To check this fact, first note that by definition
k[SLd+1,k] ≃ k[{Ti,j |1 ≤ i, j ≤ d + 1}]/(det(M) − 1) for the (d + 1, d + 1)-
matrix M = [Tij ] consisting of indeterminates Ti,j for 1 ≤ i, j ≤ d + 1. Here
by Cramer’s rule we can write det(M) − 1 = αTd+1,d+1 − β − 1, where α =
det(Md+1,d+1), β =

∑
1≤j≤d(−1)d+1+j det(Md+1,j) and Mij is the (i, j)-minor

ofM . Here both α and β do not have Td+1,d+1. Hence k[SLd+1,k] ≃ k[{Tij |1 ≤
i, j ≤ d+ 1, (i, j) 6= (d+ 1, d+ 1)}, β+1

α ]. Thus, k(SLd+1,k) ≃ k({Tij|1 ≤ i, j ≤
d + 1, (i, j) 6= (d + 1, d + 1)}), which is purely transcendental over k.) Hence,
the quotient complex zq(Pd × S|Pd ×D, •)/zqW×S(Pd × S|Pd ×D, •) is acyclic,
i.e., the moving lemma holds for (Pd × S,Pd ×D), finishing Step 1.
Step 2. Now let X be a general smooth projective variety of dimension d. In
this case, we choose a closed immersion X →֒ PN for some N ≫ d. We now run
the linear projection argument of [17, §6] again without any extra argument
to deduce the proof of the moving lemma for X from that of the projective
spaces. We leave out the details. �

4.3. Contravariant functoriality. The following contravariant functori-
ality of multivariate additive higher Chow groups is an immediate application
of the moving lemma and the proof is identical to that of [17, Theorem 7.1].

Theorem 4.5. Let f : X → Y be a morphism of k-varieties, with Y smooth
affine or smooth projective. Let r ≥ 1 and m = (m1, · · · ,mr) ≥ 1. Then there
exists a pull-back f∗ : CHq(Y [r]|Dm, n)→ CHq(X [r]|Dm, n).
If g : Y → Z is another morphism with Z smooth affine or smooth projective,
then we have (g ◦ f)∗ = f∗ ◦ g∗.
Remark 4.6. As a special case, when r = 1, we have the pull-back map f∗ :
TCHq(Y, n;m)→ TCHq(X,n;m).

4.4. The presheaf T CH. For the rest of the section, we concentrate on
additive higher Chow groups. Let m ≥ 0. By Theorem 4.5, we see that
T qn,m := TCHq(−, n;m) is a presheaf of abelian groups on the category
SmAffk, but we do not know if it is a presheaf on the categories Smk or
Schk. However, we can exploit Theorem 4.5 further to define a new presheaf
on Smk and Schk. The idea of this detour occurred to the authors while
working on [20]. We do it for somewhat more general circumstances.
Let C be a category and D be a full subcategory. Let F be a presheaf of
abelian groups on D, i.e. F : Dop → (Ab) is a functor to the category of
abelian groups. For each object X ∈ C, let (X ↓ D) be the category whose
objects are the morphisms X → A in C, with A ∈ D, and a morphism from
h1 : X → A to h2 : X → B, with A,B ∈ D, is given by a morphism g : A→ B
in C such that g ◦ h1 = h2. The functor F : Dop → (Ab) induces the functor

(X ↓ D)op → (Ab) given by (X
h→ A) 7→ F (A), also denoted by F .
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Definition 4.7. Suppose that for each X ∈ C, the category (X ↓ D) is cofil-
tered. Then define F(X) := colim

(X↓D)op
F .

In particular, when C = Schk and D = SmAffk, one checks that (X ↓
SmAffk) is cofiltered, and for X ∈ Schk, we define T CHq(X,n;m) :=

colim
(X↓SmAffk)op

T qn,m.

Proposition 4.8. Let C be a category and D be a full subcategory such that for
each X ∈ C, the category (X ↓ D) is cofiltered. Let F be a presheaf of abelian
groups on D and let F be as in Definition 4.7.
Let f : X → Y be a morphism in C. Then for X ∈ C, the association X 7→
F(X) satisfies the following properties:

(1) There is a canonical homomorphism αX : F(X)→ F (X).
(2) If X ∈ D, then αX is an isomorphism, and α : F → F defines an

isomorphism of presheaves on D.
(3) There is a canonical pull-back f∗ : F(Y )→ F(X). If g : Y → Z is an-

other morphism in C, then we have (g◦f)∗ = f∗◦g∗. So, F is a presheaf
of abelian groups on C. In particular, T CHq(−, n;m) is a presheaf
of abelian groups on Schk, which is isomorphic to TCHq(−, n;m) on
SmAffk.

Proof. (1) Let (X
h−→ A) ∈ (X ↓ D)op. By the given assumption, we have

the pull-back h∗ : F (A) → F (X). Regarding F (X) as a constant functor on
(X ↓ D)op, this gives a morphism of functors F → F (X). Taking the colimits
over all h, we obtain F(X)→ F (X), where αX = colimh h

∗.
(2) When X ∈ D, the category (X ↓ D)op has the terminal object IdX : X →
X . Hence, the colimit F(X) is just F (X).
(3) A morphism f : X → Y in C defines a functor f ♯ : (Y ↓ D)op → (X ↓ D)op
given by (Y

h→ A) 7→ (X
f→ Y

h→ A). Thus, taking the colimits of the functors
induced by F , we obtain f∗ : F(Y )→ F(X). For another morphism g : Y → Z,
that (g ◦ f)∗ = f∗ ◦ g∗ can be checked easily using the universal property of the
colimits.
In the special case when C = Schk and D = SmAffk with F = TCHq(−, n;m),
by Theorem 4.5 we know that F is a presheaf on SmAffk. So, the above general
discussion holds. �

Remark 4.9. Since additive higher Chow groups have pull-backs for flat maps
(see [16, Lemma 4.7]), it follows that for X ∈ Smk, α(−) defines a map of
presheaves T CHq(−, n;m)→ TCHq(−, n;m) on the small Zariski site XZar of
X . Proposition 4.8(2) says that this map is an isomorphism for affine open
subsets of X . Thus, this map of presheaves on XZar induces an isomorphism
of their Zariski sheafifications.

4.5. Moving lemma for smooth semi-local schemes. One remaining ob-
jective in Section 4 is to prove the following semi-local variation of Theorem
4.1:
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Theorem 4.10. Let Y ∈ SmLock. Let W be a finite set of locally closed
subsets of Y . Then the inclusion TzqW(Y, •;m) →֒ Tzq(Y, •;m) is a quasi-
isomorphism.

We begin with some basic results related to cycles over semi-local schemes.
Recall that when A is a ring and Σ = {p1, · · · , pN} is a finite subset of Spec (A),
the localization at Σ is the localization A → S−1A, where S =

⋂N
i=1(A \ pi).

For a quasi-projective k-scheme X and a finite subset Σ of (not necessarily
closed) points of X , the localization XΣ is defined by reducing it to the case
when X is affine by the following elementary fact (see [25, Proposition 3.3.36])
that we use often.

Lemma 4.11. Let X be a quasi-projective k-scheme. Given any finite subset
Σ ⊂ X and an open subset U ⊂ X containing Σ, there exists an affine open
subset V ⊂ U containing Σ.

ForX ∈ Schk and a point x ∈ X , the open neighborhoods of x form a cofiltered
category and we have functorial flat pull-back maps (jVU )∗ : Tzq(V, n;m) →
Tzq(U, n;m) for jVU : U →֒ V in this category.

Lemma 4.12. Let X ∈ Schk and let x ∈ X be a scheme point. Let Y =

Spec (OX,x). Then we have colimx∈U Tzq(U, n;m)
≃−→ Tzq(Y, n;m), where the

colimit is taken over all open neighborhoods U of x.

Proof. Replacing x by an affine open neighborhood of x ∈ X , we may assume
that X is affine and write X = Spec (A). Let px ⊂ A be the prime ideal that
corresponds to the point x and let S := A \ px, so that Y = Spec (S−1A). To
facilitate our proof, using the automorphism y 7→ 1/(1 − y) of P1, we identify
� with A1 and take {0, 1} ⊂ A1 as the faces. So, X ×Bn = X ×A1 ×An−1 =
Spec (A[t, y1, · · · , yn−1]).
Let α ∈ Tzq(Y, n;m). We need to find an open subset U ⊂ X containing x such
that the closure of α in U ×A1×An−1 is admissible. For this, we may assume
α is irreducible, i.e., it is a closed irreducible subscheme Z ⊂ Y × A1 × An−1.
Let Z be its Zariski closure in X × A1 × An−1. Let p be the prime ideal of
B := A[t, y1, · · · , yn−1] such that V (p) = Z.
For the proper intersection with faces, let q ⊂ B be the prime ideal (yi1 −
ǫ1, · · · , yis − ǫs), where 1 ≤ i1 < · · · < is ≤ n− 1 and ǫj ∈ {0, 1}. Let P be a
minimal prime of p + q. One checks immediately from the behavior of prime
ideals under localizations that there is a ∈ S such that eitherPB[a−1] = B[a−1]
or ht(PB[a−1]) ≥ q + s. This means, over Uq := Spec (A[a−1]), either the

intersection of ZUq
with V (q) is empty, or has codimension ≥ q + s. Applying

this argument to all faces, we can take U1 :=
⋂

q Uq. Then ZU1 intersects all

faces of U1 × A1 × An−1 properly.

For the modulus condition, let ν : ẐN → Ẑ →֒ X × P1 × (P1)n−1 be the nor-
malization composed with the closed immersion of the further Zariski closure

Ẑ of Z. Let F∞n =
∑n−1

i=1 {yi = ∞} be the divisor at infinity. For an open

set j : U →֒ X , the modulus condition of ZU means (m + 1)[j∗ν∗{t = 0}] ≤
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[j∗ν∗(F∞n )] on ẐNU . Note that there exist only finitely many prime Weil divi-

sors P1, · · · , Pℓ on ẐN such that ordPi(ν
∗(F∞n )− (m+1)ν∗{t = 0}) < 0. Their

images Qi under the normalization map ẐN → Ẑ are still irreducible proper

closed subsets of Ẑ, thus of X × P1 × (P1)n−1. Since Z = ZY has the modulus

condition on Y × Bn by the given assumption, we have (Y × B̂n) ∩ Qi = ∅
for each 1 ≤ i ≤ ℓ. Thus, there is an affine open subset U2 ⊂ X containing x

such that (U2 × B̂n) ∩ Qi = ∅ for each 1 ≤ i ≤ ℓ. Now, by construction, ZU2

on U2 × Bn satisfies the modulus condition. So, taking an affine open subset
U ⊂ U1 ∩ U2 containing x, we have ZU ∈ Tzq(U, n;m). That (ZU )Y = Z is
obvious. �

We can extend this colimit description to semi-local schemes:

Lemma 4.13. Let Y be a semi-local k-scheme obtained by localizing at a finite
set Σ of scheme points of a quasi-projective k-variety X. For a cycle Z on
Y ×Bn, let Z be its Zariski closure in X ×Bn.
Then Z ∈ Tzq(Y, n;m) if and only if there exists an affine open subset U ⊂ X
containing Σ, such that ZU ∈ Tzq(U, n;m), where ZU is the pull-back of Z via
the open immersion U → X.

Proof. The direction (⇐) is obvious by pulling back via the flat morphism
Y →֒ U . For the direction (⇒), by Lemma 4.12, for each x ∈ Σ we have an
affine open neighborhood Ux ⊂ X of x such that ZUx ∈ Tzq(Ux, n;m). Take
W =

⋃
x∈ΣUx. This is an open subset of X containing Σ. By Lemma 2.9, we

have ZW ∈ Tzq(W,n;m). On the other hand, by Lemma 4.11, there exists an
affine open subset U ⊂ W containing Σ. By taking the flat pull-back via the
open immersion U →֒W , we get ZU ∈ Tzq(U, n;m). �

Lemma 4.14. Let Y be a semi-local integral k-scheme obtained by localizing at
a finite set Σ of scheme points of an integral quasi-projective k-scheme X. Let
Z ∈ Tzq(Y, n;m), W ∈ Tzq(Y, n+1;m), and let Z, W be their Zariski closures
in X × Bn and X × Bn+1, respectively. For every open subset U ⊂ X, the
subscript U means the pull-back to U . Then we have the following:

(1) If ∂Z = 0, we can find an affine open subset U ⊂ X containing Σ such
that ZU ∈ Tzq(U, n;m) and ∂ZU = 0.

(2) If Z = ∂W , we can find an affine open subset U ⊂ X containing Σ
such that ZU ∈ Tzq(U, n;m), WU ∈ Tzq(U, n+1;m) and ZU = ∂WU .

Proof. Note that (1) is a special case of (2), so we prove (2) only. Let Z ′ :=
Z − ∂W ∈ zq(X × Bn). If Z ′ is 0 as a cycle, then take U0 = X . If not,
let Z ′1, · · · , Z ′s be the irreducible components of Z ′. Since Z = ∂W , each
component Z ′i has empty intersection with Y ×Bn. So, each π((Z ′i)c) is a non-
empty open subset of X containing Σ, where π : X×Bn → X is the projection,
which is open. Take U0 =

⋂s
i=1 π((Z

′
i)
c).

On the other hand, Lemma 4.13 implies that there exist open sets U1, U2 ⊂ X
containing Σ such that ZU1 ∈ Tzq(U1, n;m) and WU2 ∈ Tzq(U2, n + 1;m).
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Choose an affine open subset U ⊂ U0 ∩ U1 ∩ U2 containing Σ, using Lemma
4.11. Then part (2) holds over U by construction. �

Proof of Theorem 4.10. We show that the chain map TzqW(Y, •;m) →֒
Tzq(Y, •;m) is a quasi-isomorphism. Let X be a smooth affine k-variety with
a finite subset Σ ⊂ X such that Y = Spec (OX,Σ).
For surjectivity on homology, let Z ∈ Tzq(Y, n;m) be such that ∂Z = 0.
Let Z be the Zariski closure of Z in X × Bn. Here, ∂Z may not be zero,
but by Lemma 4.14(1), there exists an affine open subset U ⊂ X containing
Σ such that we have ∂ZU = 0, where ZU is the pull-back of Z to U . Let
WU = {WU |W ∈ W}, where WU is the Zariski closure of W in U . Then
the quasi-isomorphism TzqWU

(U, •;m) →֒ Tzq(U, •;m) of Theorem 4.1 shows

that there are some C ∈ Tzq(U, n + 1;m) and Z ′U ∈ TzqWU
(U, n;m) such that

∂C = ZU − Z ′U . Let ι : Y →֒ U be the inclusion. So, by applying the
flat pull-back ι∗ (which is equivariant with respect to taking faces), we obtain
∂(ι∗C) = Z − ι∗Z ′U , and here ι∗Z ′U ∈ TzqW(Y, n;m), i.e., Z is equivalent to a
member in TzqW(Y, n;m).
For injectivity on homology, let Z ∈ TzqW(Y, n;m) be such that Z = ∂Z ′ for

some Z ′ ∈ Tzq(Y, n+ 1;m). Let Z and Z
′
be the Zariski closures of Z and Z ′

on X×Bn and X×Bn+1, respectively. Then by Lemma 4.14(2), there exists a

nonempty open affine subset U ⊂ X containing Σ such that ZU = ∂Z
′
U . Then

the quasi-isomorphism TzqWU
(U, •;m) →֒ Tzq(U, •;m) of Theorem 4.1 shows

that there exists Z ′′ ∈ TzqWU
(U, n + 1;m) such that ZU = ∂Z ′′. Pulling back

via ι : Y →֒ U then shows Z = ∂(ι∗Z ′′), with ι∗Z ′′ ∈ TzqW(Y, n+ 1;m). �

Using an argument identical to Theorem 4.5 (see [17, Theorem 7.1]), we get:

Corollary 4.15. Let f : Y1 → Y2 be a morphism in Sch
ess
k , where

Y2 ∈ SmLock. Then there is a natural pull-back f∗ : TCHq(Y2, n;m) →
TCHq(Y1, n;m).

5. The Pontryagin product

Let R be a commutative ring and let (A, dA) be a differential graded algebra
over R. Recall that (left) differential graded module M over A is a left A-
module M with a grading M = ⊕n∈ZMn and a differential dM such that
AmMn ⊂ Mm+n, dM (Mn) ⊂ Mn+1 and dM (ax) = dA(a)x + (−1)nadM (x)
for a ∈ An and x ∈ M . A homomorphism of differential graded modules
f :M → N over A is an A-module map which is compatible with gradings and
differentials.
In this section, we show that the multivariate additive higher Chow groups
have a product structure that resembles the Pontryagin product. We construct
a differential operator on these groups in the next section and show that the
product and the differential operator together turn multivariate additive higher
Chow groups groups into a differential graded module over WmΩ•R for suitable
m, when X = Spec (R) is in SmAffess

k . This generalizes the DGA-structure on
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additive higher Chow groups of smooth projective varieties in [19]. The base
field k is perfect in this section.

5.1. Some cycle computations. We generalize some of [19, §3.2.1, 3.2.2,
3.3]. Let (X,D) be a k-scheme with an effective divisor.
Recall that a permutation σ ∈ Sn acts naturally on �n via σ(y1, · · · , yn) :=
(yσ(1), · · · , yσ(n)). This action extends to cycles on X ×�n and X ×�n.
Let n, r ≥ 1 be given. Consider the finite morphism χn,r : X ×�n → X ×�n
given by (x, y1, · · · , yn) 7→ (x, yr1 , y2, · · · , yn). Given an irreducible cycle Z ⊂
X × �n, define Z{r} := (χn,r)∗([Z]) = [k(Z) : k(χn,r(Z))] · [χn,r(Z)]. We
extend it Z-linearly.

Lemma 5.1. If Z is an admissible cycle with modulus D, then so is Z{r}.
Proof. The proof is almost identical to that of [19, Lemma 3.11], except that

the divisor (m + 1){t = 0} there should be replaced by D × �n. We give its
argument for the reader’s convenience.
We may assume Z is irreducible. It is enough to show that χn,r(Z) is admissible
with modulus D. We first check that it satisfies the face condition of Definition
2.3. When n = 1, the proper faces of � are of codimension 1, and for ǫ ∈
{0,∞}, we have ∂ǫ1(χn,r(Z)) = r∂ǫ1(Z). When n ≥ 2, for ǫ ∈ {0,∞}, we have
∂ǫ1(χn,r(Z)) = r∂ǫ1(Z) and ∂ǫi (χn,r(Z)) = χn−1,r(∂ǫi (Z)) if i ≥ 2. For faces
F ⊂ �n of higher codimensions, we consequently have F ·(χn,r(Z)) = r(F ·Z) if
F involves the equations {y1 = ǫ}, and F ·(χn,r(Z)) = χn−c,r(F ·Z), otherwise,
where c is the codimension of F . Since the intersection F · Z is proper, so is
χn−c,r(F · Z) by induction on the codimension of faces. This shows χn,r(Z)
satisfies the face condition.
To show thatW := χn,r(Z) has modulus D, consider the commutative diagram

Z
N νZ //

χNn,r
��

Z

χn,r

��

� � ιZ // X ×�n

χn,r

��

W
N νW // W

� � ιW // X ×�n,

where Z, W are the Zariski closures of Z and W in X×�n and νZ , νW are the
respective normalizations. The morphisms χn,r, χn,r are the natural induced

maps, and χNn,r is induced by the universal property of normalization. Since Z
has modulus D, we have the inequality

(5.1) [ν∗Zι
∗
Z(D ×�

n
)] ≤

n∑

i=1

[ν∗Zι
∗
Z{yi = 1}].

By the definition of χn,r, we have χ∗n,r(D × �
n
) = D × �n, χ∗n,r{y1 = 1} ≥

{y1 = 1}, and χ∗n,r{yi = 1} = {yi = 1} for i ≥ 2. Hence (5.1) implies that

[ν∗Zι
∗
Zχ
∗
n,r(D × �

n
)] ≤ ∑n

i=1[ν
∗
Zι
∗
Zχ
∗
n,r{yi = 1}]. By the commutativity of the

diagram, this implies that χNn,r
∗ (∑n

i=1 ν
∗
W ι
∗
W {yi = 1} − ν∗W ι∗W (D ×�n)

)
≥ 0.
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By Lemma 2.7, this implies
∑n
i=1 ν

∗
W ι
∗
W {yi = 1}− ν∗W ι∗W (D×�n) ≥ 0, which

means W has modulus D. This completes the proof. �

Let n, i ≥ 1. Suppose X is smooth quasi-projective essentially of finite type

over k. Let (x, y1, · · · , yn, y, λ) be the coordinates of X × �n+2
. Consider the

closed subschemes V iX on X×�n+2 given by the equation (1−y)(1−λ) = 1−y1
if i = 1, and (1−y)(1−λ) = (1−y1)(1+y1+ · · ·+yi−11 −λ(1+y1+ · · ·+yi−21 ))
if i ≥ 2.

Let V̂ iX be the Zariski closure of V iX in X × �n+2
. Let π1 : X × �n+2 →

X × �n+1
be the projection that drops y1, and let π′1 := π1|V iX . As in [19,

Lemma 3.12], one sees that π′1 is proper surjective. For an irreducible cycle
Z ⊂ X × �n, define (see [19, Definition 3.13]) γiZ := π′1∗(V

i
X · (Z × �2)) as

an abstract algebraic cycle. One checks that it is also the Zariski closure of
νi(Z × �), where νi : X × �n × � → X × �n+1 is the rational map given by

νi(x, y1, · · · , yn, y) = (x, y2, y3, · · · , yn, y, y−yi1
y−yi−1

1

). We extend the definition of

γiZ Z-linearly.

Lemma 5.2. Let Z ∈ zq(X |D,n). Then γiZ ∈ zq(X |D,n+ 1).

Proof. Once we have Lemma 5.1, the proof of Lemma 5.2 is very similar to

that of [19, Lemma 3.15], except we replace (m+ 1){t = 0} by D ×�n+1
. We

give its argument for the reader’s convenience.
We may assume Z is irreducible. To keep track of n, we write γiZ,n = γiZ . We

first check that it satisfies the face condition of Definition 2.3. Let ǫ ∈ {0,∞}.
Let F ⊂ �n+1 be a face. If F involves the equation {yj = ǫ} for j = n, n+ 1,
then by direction computations, we see that ∂0n(γ

i
Z,n) = σ · Z, ∂0n+1(γ

i
Z,n) =

σ · (Z{i}) for the cyclic permutation σ = (1, 2, · · · , n), and ∂∞n (γiZ,n) = 0,

∂∞n+1(γ
i
Z,n) = σ · (Z{i − 1}). Since Z is admissible with modulus D, so are

Z{i} and Z{i − 1} by Lemma 5.1. In particular, all of σ · Z, σ · (Z{i}), and
σ · (Z{i− 1}) intersect all faces properly. Hence γiZ,n intersects F properly.

In case F does not involve the equations {yj = ǫ} for j = n, n + 1, we prove
it by induction on n ≥ 1. By direction calculations, for j < n, we have
∂ǫj(γ

i
Z,n) = γi∂ǫjZ,n−1 so that the dimension of ∂ij(γ

i
Z,n) is at least one less by

the induction hypothesis. Repeated applications of this argument for all other
defining equations of F then give the result.
It remains to show that γiZ has modulus D. Every irreducible component of
γiZ is of the form W ′ = π′1(Z

′), where Z ′ is an irreducible component of V iX ·
(Z × �2). We prove W ′ has modulus D. Consider the following commutative
diagram

Z
′N

πN1
��

νZ′
// V̂ iX

� � ι //

π′
1

��

π′
1

$$HH
HH

HH
HH

HH X ×�n+2

π1

��

W
′N ν //

W
′ � � ιW ′

// X ×�n+1
,
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where νZ′ is the normalization of the Zariski closure Z
′
of Z ′ in V̂ iX , ν is

the normalization of the Zariski closure W
′
of W ′ in X × �n+1

, and πN1 ,

π′1 are the induced morphisms. We use (x, y1, · · · , yn, y, λ) ∈ X × �n+2
and

(x, y2, · · · , yn, y, λ) ∈ X × �n+1
as the coordinates. From the modulus D

condition of Z, we deduce

(5.2) ν∗Z′ι∗(D ×�n+2
) ≤

n∑

j=1

ν∗Z′ι∗{yj = 1}.

Note that the above does not involve the divisors {y = 1} and {λ = 1}. Since
V iX is an effective divisor on X × �n+2 defined by the equation (1 − y1)(∗) =
(1 − y)(1 − λ) for some polynomial (∗), we have [ν∗Z′ι∗{y1 = 1}] ≤ [ν∗Z′ι∗{y =
1}] + [ν∗Z′ι∗{λ = 1}].
Since the above diagram commutes, from (5.2) we deduce πN1

∗
ν∗ι∗W ′ (D ×

�
n+1

) ≤ πN1
∗ (∑n

j=2 ν
∗ι∗W ′{yj = 1}+ {y = 1}+ {λ = 1}

)
. Hence by Lemma

2.7, we deduce ν∗ι∗W ′ (D×�n+1
) ≤∑n

j=2 ν
∗ι∗W ′{yj = 1}+ {y = 1}+ {λ = 1},

which means W ′ has modulus D. This finishes the proof. �

Lemma 5.3. Let n ≥ 2 and let Z ∈ zq(X |D,n) such that ∂ǫi (Z) = 0 for all
1 ≤ i ≤ n and ǫ ∈ {0,∞}. Let σ ∈ Sn. Then there exists γσZ ∈ zq(X |D,n+ 1)
such that Z = (sgn(σ))(σ · Z) + ∂(γσZ).

Proof. Its proof is almost identical to that of [19, Lemma 3.16], except that
we use Lemma 5.2 instead of [19, Lemma 3.15]. We give its argument for the
reader’s convenience.
First consider the case when σ is the transposition τ = (p, p + 1) for 1 ≤
p ≤ n − 1. We do it for p = 1 only, i.e. τ = (1, 2). Other cases of τ are
similar. Let ξ be the unique permutation such that ξ · (x, y1, · · · , yn+1) =
(x, yn, y1, yn+1, y2, · · · , yn−1). Consider the cycle γτZ := ξ · γ1Z , where γ1Z is as

in Lemma 5.2. Being a permutation of an admissible cycle, so is this cycle γξZ .
Furthermore, by direction calculations, we have ∂∞1 (γτZ) = 0, ∂01(γ

τ
Z) = τ · Z,

∂∞3 (γτZ) = 0 and ∂03(γ
τ
Z) = Z. On the other hand, for ǫ ∈ {0,∞}, ∂ǫ2(γτZ)

is a cycle obtained from γ1∂ǫ2(Z) by a permutation action. So, it is 0 because

∂ǫ2(Z) = 0 by the given assumptions. Similarly for j ≥ 4, we have ∂ǫj(γ
τ
Z) = 0.

Hence ∂(γτZ) = Z + τ · Z, as desired.
Now let σ ∈ Sn be any. By a basic result from group theory, we can express
σ = τrτr−1 · · · τ2τ1, where each τi is a transposition of the form (p, p + 1)
as considered before. Let σ0 := Id and σℓ := τℓτℓ−1 · · · τ1 for 1 ≤ ℓ ≤ r.
For each such ℓ, by the previous case considered, we have (−1)ℓ−1σℓ−1 · Z +
(−1)ℓ−1τℓ · σℓ−1 · Z = ∂((−1)ℓ−1γτℓσℓ−1·Z). Since τℓ · σℓ−1 = σℓ, by taking the

sum of the above equations over all 1 ≤ ℓ ≤ r, after cancellations, we obtain
Z + (−1)r−1σ · Z = ∂(γσZ), where γ

σ
Z :=

∑r
ℓ=1(−1)ℓ−1γτℓσℓ−1·Z . Since (−1)r =

sgn(σ), we obtain the desired result. �
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5.2. Pontryagin product. Let X ∈ Schess
k be an equidimensional scheme.

For m = (m1, · · · ,mr) ≥ 1, let CH(X [r]|Dm) := ⊕q,nCHq(X [r]|Dm, n). For
m ≥ 1, we let TCH(X ;m) = ⊕q,nTCHq(X,n;m) = ⊕q,nCHq(X [1]|Dm+1, n−
1). The objective of §5.2 is to prove the following result which generalizes [19,
§3].
Theorem 5.4. Let k be a perfect field. Let m ≥ 0 and let m = (m1, · · · ,mr) ≥
1. Let X,Y be both either in SmAff ess

k or in SmProjk. Then we have the
following:

(1) TCH(X ;m) is a graded commutative algebra with respect to a product
∧X .

(2) CH(X [r]|Dm) is a graded module over TCH(X ; |m| − 1).
(3) For f : Y → X with d = dimY − dimX, f∗ : CH(X [r]|Dm) →

CH(Y [r]|Dm) and f∗ : CH(Y [r]|Dm) → CH(X [r]|Dm)[−d] (if f is
proper in addition) are morphisms of graded TCH(X ; |m|−1)-modules.

The proof requires a series of results and will be over after Lemma 5.13.

Lemma 5.5. Let X1, X2 ∈ Schess
k . For i = 1, 2 and ri ≥ 1, let Vi be a cycle on

Xi×Ari×�ni with modulus mi = (mi1, · · · ,miri), respectively. Then V1×V2,
regarded as a cycle on X1×X2×Ar1+r2 ×�n1+n2 after a suitable exchange of
factors, has modulus (m1,m2).

Proof. We may assume that V1 and V2 are irreducible. It is enough to show
that each irreducible component W ⊂ V1 × V2 has modulus (m1,m2). Let

ιi : V i →֒ Xi×Ari×�ni be the Zariski closure of Vi, and let νV i : V
N

i → V i be

the normalization for i = 1, 2. Since k is perfect, [16, Lemma 3.1] says that the

morphism ν := νV 1
×νV 2

: V
N

1 ×V
N

2 → V 1×V 2 = V1 × V2 is the normalization.

Hence, the compositeW
N νW→ W

ι→֒ V 1×V 2, whereW is the Zariski closure of

W and νW is the normalization ofW , factors intoW
N ιN→ V

N

1 ×V
N

2
ν→ V 1×V 2,

where ιN is the natural inclusion.
Let (t1, · · · , tr1 , t′1, · · · , t′r2 , y1, · · · , yn1+n2) ∈ Ar1+r2 × �n1+n2

be the coor-

dinates. Consider two divisors D1 :=
∑n1

i=1{yi = 1} − ∑r1
j=1m1j{tj =

0}, D2 :=
∑n1+n2

i=n1+1{yi = 1} − ∑r2
j=1m2j{t′j = 0}. By the modulus con-

ditions satisfied by V1 and V2, we have ((ι1 × 1) ◦ (νV 1
× 1))∗D1 ≥ 0 and

((1 × ι2) ◦ (1 × νV 2
))∗D2 ≥ 0. Thus, we have ν∗(ι1 × ι2)∗(D1 + D2) ≥ 0 on

V
N

1 ×V
N

2 so that (ιN )∗ν∗(ι1×ι2)∗(D1+D2) ≥ 0 onW
N
. Since ι◦νW = ν ◦ιN ,

this is equivalent to ν∗W ι
∗(ι1× ι2)∗(D1+D2) ≥ 0, which showsW has modulus

(m1,m2). �

Definition 5.6. Let r ≥ 1 be an integer and define µ : X1 × A1 × �n1 ×
X2 × Ar ×�n2 → X1 ×X2 × Ar ×�n1+n2 by (x1, t, {yj})× (x2, {ti}, {y′j}) 7→
(x1, x2, {tti}, {yj}, {y′j}).
The map µ is flat, but not proper. But, the following generalization of [19,
Lemma 3.4] gives a way to take a push-forward:
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Proposition 5.7. Let V1 ⊂ X1×A1×�n1 and V2 ⊂ X2×Ar ×�n2 be closed
subschemes with moduli m and m ≥ 1, respectively. Then µ|V1×V2 is finite.

Proof. Since µ is an affine morphism, the proposition is equivalent to show that
µ|V1×V2 is projective.
Set X = X1 ×X2 × �n1+n2 . Let Γ →֒ X1 ×X2 × A1 × Ar × Ar × �n1+n2 =
X × A1 × Ar × Ar denote the graph of the morphism µ and let Γ →֒ X ×
P1 × (P1)r × (P1)r = X × P1 × P2 × P3 be its closure, where P1 = P1 and
P2 = P3 = (P1)r. Let pi be the projection of X ×P1× (P1)r × (P1)r to X ×Pi
for 1 ≤ i ≤ 3. Set Γ

0
= p−13 (X × Ar). Then p3 : Γ

0 → X × Ar is projective.
Using the homogeneous coordinates of P1 × P2 × P3, one checks easily that

Z := Γ
0 \Γ ⊂ E∪(⋃ri=1 Ei) (the union is taken inside X×P1×P2×P3), where

E = X×{∞}×({0})r×Ar and Ei = X×{0}×((P1)i−1×{∞}×(P1)r−i)×Ar .
Let V = V1×V2. Let ΓV be the graph Γ restricted to V and let ΓV be its Zariski

closure in X × P1 × P2 × P3. Since p3 : Γ
0 → X × Ar is projective, so is the

map Γ
0

V := ΓV ∩Γ
0 → X×Ar. So, if we show Γ

0

V ∩Z = ∅, then V ≃ ΓV = Γ
0

V

is projective over X × Ar, which is the assertion of the proposition.

To show Γ
0

V ∩ Z = ∅, consider the projections X × P1 × P2 × P3
p1→ X × P1

π1→
X1×P1×�n1. Since the closure V 1 has modulus m ≥ 1 on X1×P1×�n1, we
have V 1 ∩ (X1 × {0} × �n1) = ∅. In particular, ΓV ∩ Ei →֒ (π1 ◦ p1)−1(V 1 ∩
(X1 × {0} ×�n1)) = ∅ for 1 ≤ i ≤ r.
To show that Γ

0

V ∩ E = ∅, consider the projections X × P1 × P2 × P3
p2→

X × P2
π2→ X2 × P2 × �n2 . Since the closure V 2 has modulus m ≥ 1 on

X2×P2×�n2, we have V 2∩ (X2× ({0})r×�n2) = ∅. In particular, ΓV ∩E →֒
(π2 ◦ p2)−1(V 2 ∩ (X2 × ({0})r ×�n2)) = ∅. This finishes the proof. �

Lemma 5.8. Let X ∈ Schess
k and let V be a cycle on X × A1 × Ar × �n with

modulus (|m|,m), where m = (m1, · · · ,mr) ≥ 1. Suppose µ|V is finite. Then
the closed subscheme µ(V ) on X × Ar ×�n has modulus m.

Proof. This is a straightforward generalization of [19, Proposition 3.8] and is a
simple application of Lemma 2.7. We skip the detail. We only remark that it is
crucial for the proof that the A1-component of the modulus is at least |m|. �

Definition 5.9. For any irreducible closed subscheme V ⊂ X ×A1×Ar×�n
such that µ|V : V → µ(V ) is finite, where µ is as in Definition 5.6, define µ∗(V )
as the push-forward µ∗(V ) = deg(µ|V ) · [µ(V )]. Extend it Z-linearly.
If V1 is a cycle on X1×A1×�n1 and V2 is a cycle on X2×Ar×�n2 such that
µ|V1×V2 is finite, we define the external product V1 ×µ V2 := µ∗(V1 × V2). If
pi = dim Vi, then dim(V1 ×µ V2) = p1 + p2. If X1 ×X2 is equidimensional and
if qi is the codimension of Vi, then V1 ×µ V2 has codimension q1 + q2 − 1.

Lemma 5.10. Let V1 ∈ zq1(X1[1]|Dm, n1) and V2 ∈ zq2(X2[r]|Dm, n2) with
X1, X2 ∈ Schess

k and m,m ≥ 1. Then V1 ×µ V2 intersects all faces of X1 ×
X2 × Ar ×�n1+n2 properly.

Documenta Mathematica 21 (2016) 49–89



On Additive Higher Chow Groups of Affine Schemes 75

Proof. We may assume that V1 and V2 are irreducible. V1×V2 clearly intersects
all faces of X1×X2×A1×Ar×�n1+n2 properly. It follows from Proposition 5.7
that µ|V1×V2 is finite. In this case, the proper intersection property of µ(V1 ×µ
V2) follows exactly like that of the finite push-forwards of Bloch’s higher Chow
cycles. �

Corollary 5.11. Let X1, X2, X3 ∈ Schess
k be equidimensional and let m ≥ 1.

Then there is a product

×µ : zq1(X1[1]|D|m|, n1)⊗ zq2(X2[r]|Dm, n2)→
→ zq1+q2−1((X1 ×X2)[r]|Dm, n1 + n2)

which satisfies the relation ∂(ξ ×µ η) = ∂(ξ) ×µ η + (−1)n1ξ ×µ ∂(η). It
is associative in the sense that (α1 ×µ α2) ×µ β = α1 ×µ (α2 ×µ β) for
αi ∈ zqi(Xi[1]|D|m|, ni) for i = 1, 2 and β ∈ zq3(X3[r]|Dm, n3). In particu-
lar, it induces operations ×µ : CHq1(X1[1]|D|m|, n1) ⊗ CHq2(X2[r]|Dm, n2) →
CHq1+q2−1((X1 ×X2)[r]|Dm, n1 + n2).

Proof. The existence of ×µ on the level of cycle complexes follows from the
combination of Proposition 5.7, Lemma 5.8 and Lemma 5.10. The associativity
follows from that of the Cartesian product × and the product µ : A1×A1 → A1.
By definition, one checks ∂(ξ×η) = ∂(ξ)×η+(−1)n1ξ×∂(η). So, by applying
µ∗, we get the required relation. That ×µ descends to the homology follows. �

Definition 5.12. Let m = (m1, · · · ,mr) ≥ 1 and let X be in SmAff ess
k

or in SmProjk. For cycle classes α1 ∈ CHq1(X [1]|D|m|, n1) and α2 ∈
CHq2(X [r]|Dm, n2), define the internal product α1 ∧X α2 to be ∆∗X(α1 ×µ α2)

via the diagonal pull-back ∆∗X : CHq1+q2−1((X × X)[r]|Dm, n1 + n2) →
CHq1+q2−1(X [r]|Dm, n1 + n2). This map exists by Theorem 4.5 and Corol-
lary 4.15.

Lemma 5.13. ∧X is associative in the sense that (α1 ∧X α2) ∧X β = α1 ∧X
(α2 ∧X β) for α1, α2 ∈ CH(X [1]|D|m|) and β ∈ CH(X [r]|Dm). ∧X is also
graded-commutative on CH(X [1]|D|m|).

Proof. The associativity holds by Corollary 5.11. For the graded-
commutativity, first note by Theorem 3.2 that we can find representatives
α1 and α2 of the given cycle classes whose codimension 1 faces are all triv-
ial. Let σ be the permutation that sends (1, · · · , n1, n1 + 1, · · · , n1 + n2) to
(n1 + 1, · · · , n1 + n2, 1, · · · , n1) so that sgn(σ) = (−1)n1+n2 . It follows from
Lemma 5.3 that α1 ∧X α2 = (−1)n1+n2α2 ∧X α1 + ∂(W ) for some admissible
cycle W , as desired. �

Proof of Theorem 5.4. The proof of (1) and (2) is just a combination
of the above discussion under the observation that TCHq(X,n;m) =
CHq(X [1]|Dm+1, n− 1) for m ≥ 0 and n ≥ 1. To prove (3) for f∗, consider the
commutative diagram
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(5.3) Y [r]×�n

f

��

∆Y // (Y × Y )[r]×�n

f×f
��

(Y × Y )[r + 1]×�n

f×f
��

µY
oo

X [r]×�n ∆X // (X ×X)[r]×�n (X ×X)[r + 1]×�n.µX
oo

There is a finite set W of locally closed subsets of X such that
f∗ : zq1W(X [1]|D|m|, •) → zq1(Y [1]|D|m|, •) and f∗ : zq2W(X [r]|Dm, •) →
zq2(Y [r]|Dm, •) can be defined as taking cycles associated to the inverse images.
Moreover, it is enough to consider the product of cycles in zq1W(X [1]|D|m|, •)
and zq2W(X [r]|Dm, •) by the moving lemmas Theorems 4.1 and 4.4. For irre-
ducible cycles V1 ∈ zq1(X [1]|D|m|, n1) and V2 ∈ zq2(X [r]|Dm, n2), the map
µY is finite when restricted to f∗(V1) × f∗(V2) by Lemma 5.7. In particular,
µY (f

∗(V1)× f∗(V2)) ∈ zq1+q2−1((Y × Y )[r]|Dm, n1 + n2).
Since the right square in the diagram (5.3) is transverse, it follows that
f∗(µX(V2 × V2)) = µY (f

∗(V1) × f∗(V2)) as cycles. The desired commuta-
tivity of the product with f∗ now follows from the commutativity of the left
square in (5.3) and the composition law of Theorem 4.5.
The proof of (3) for f∗ is just the projection formula, whose proof is identical to
the one given in [19, Theorem 3.19] in the case when X1, X2 ∈ SmProjk. �

As applications, we obtain:

Corollary 5.14. Let X be in SmAffess
k or in SmProjk. Then for q, n ≥ 0

and m ≥ 1, the group CHq(X [r]|Dm, n) is a W(|m|−1)(k)-module.

Proof. Applying Theorem 5.4 to X and the structure map X → Spec (k),
it follows that CH(X [r]|Dm) is a graded module over TCH(k; |m| − 1). By

Corollary 5.11, this yields a TCH1(k, 1; |m| − 1)-module structure on each
CHq(X [r]|Dm, n). The corollary now follows from the fact that there is a

ring isomorphism Wm(k)
∼→ TCH1(k, 1;m) for every m ≥ 1 by [28, Corol-

lary 3.7]. �

We can explain the homotopy invariance of the groups CHq(X,n) in terms of
additive higher Chow groups as follows.

Corollary 5.15. For X ∈ Schess
k which is equidimensional and for q, n ≥ 0,

we have CHq(X [1]|D1, n) = 0.

Proof. By Corollary 5.11, we have a map ×µ : CH1(pt[1]|D1, 0) ⊗
CHq(X [1]|D1, n) → CHq(X [1]|D1, n) and it follows from the definition of ×µ
that [1]×µ α = α for every α ∈ CHq(X [1]|D1, n), where [1] ∈ CH1(pt[1]|D1, 0)
is the cycle given by the closed point 1 ∈ A1(k). It therefore suffices to show
that the homology class of 1 is zero. To do so, we may use the identification
(�, {∞, 0}) ≃ (A1, {0, 1}) given by y 7→ 1/(1 − y) again. Then the cycle
C ⊂ A2 given by {(t, y) ∈ A2|ty = 1} is an admissible cycle in z1(pt[1]|D1, 1)
such that ∂1([C]) = [1] and ∂0([C]) = 0. �
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6. The structure of differential graded modules

In this section, we construct a differential operator on the graded module of
§5 of multivariate additive higher Chow groups over the univariate additive
higher Chow groups, generalizing [19, §4]. We assume that k is perfect and
char(k) 6= 2.

6.1. Differential. Let X be a smooth quasi-projective scheme essentially of
finite type over k. Let r ≥ 1 and let m = (m1, · · · ,mr) ≥ 1. Let (Grm)× :=
{(t1, · · · , tr) ∈ Grm | t1 · · · tr 6= 1}. Consider the morphism δn : (Grm)××�n →
Grm ×�n+1, (t1, · · · , tr, y1, · · · , yn) 7→ (t1, · · · , tr, 1

t1···tr , y1, · · · , yn). It induces
δn : X × (Grm)× ×�n → X ×Grm ×�n+1.
Recall a closed subscheme Z ⊂ X×Ar×�n with modulus m does not intersect
the divisor {t1 · · · tr = 0}. So, it is closed in X × Grm × �n. For such Z, we
define Z× := Z|X×(Grm)××�n .

Lemma 6.1. For a closed subscheme Z ⊂ X × Ar × �n with modulus m, the
image δn(Z

×) is closed in X ×Grm ×�n+1.

Proof. It is enough to show that δn : X × (Grm)××�n → X ×Grm×�n+1 is a
closed immersion. It reduces to show that the map (Grm)× → Grm × (P1 \ {1})
given by (t1, · · · , tr) 7→ (t1, · · · , tr, 1/(t1 · · · tr)) is a closed immersion. This is
obvious because the image coincides with the closed subscheme given by the
equation t1 · · · try = 1, where (t1, · · · , tr, y) ∈ Grm×� are the coordinates. �

Definition 6.2 (cf. [19, Definition 4.3]). For a closed subscheme Z ⊂ X ×
Ar×�n with modulus m, we write δn(Z) := δn(Z

×). If Z is a cycle, we define
δn(Z) by extending it Z-linearly. We may often write δ(Z) if no confusion
arises.

Lemma 6.3. Let Z be a cycle on X × Ar × �n with modulus m. Then δn(Z)
is a cycle on X × Ar ×�n+1 with modulus m.

Proof. We may suppose that Z is irreducible. Let V = δn(Z), which is a priori
closed in X×Grm×�n+1. If the closure V ′ of V in X×Ar×�n+1 has modulus
m, then it does not intersect the divisor {t1 · · · tr = 0} of X × Ar × �n+1, so
V = V ′, and V is closed in X ×Ar ×�n+1 with modulus m. So, we reduce to
show that V ′ has modulus m.
Let Z and V be the Zariski closures of Z and V ′ in X × Ar × �n and X ×
Ar × �n+1

, respectively. Observe that δn extends to δn : X × Ar × �n →
X × Ar × �n+1

, which is induced from Ar Γ→ Ar × � Id×σ→ Ar × �, where
Γ is the graph morphism of the composite Ar→A1 →֒ � of the product map
followed by the open inclusion, (t1, · · · , tr) 7→ (t1 · · · tr) 7→ (t1 · · · tr; 1), while
σ : �→ � is the antipodal automorphism (a; b) 7→ (b; a), where (a; b) ∈ � = P1

are the homogeneous coordinates. Since Γ is a closed immersion and Id × σ
is an isomorphism, the morphism δn is projective. Hence, the dominant map
δn|Z× : Z× → V induces δn|Z : Z → V . In particular, we have a commutative
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diagram

(6.1) Z
N

δ̃n
��

νZ // Z

δn|Z
��

� � ιZ // X × Ar ×�n

δn
��

V
N νV // V

� � ιV // X × Ar ×�n+1
,

where ιZ , ιV are the closed immersions, νZ , νV are normalizations, and δ̃n is
given by the universal property of normalization for dominant maps.

By definition, δ
∗
n{tj = 0} = {tj = 0} for 1 ≤ j ≤ r. First con-

sider the case n ≥ 1. Then δ
∗
nF

1
n+1,i = F 1

n,i−1 for 2 ≤ i ≤ n + 1.

Now, δ̃∗nν
∗
V ι
∗
V (
∑n+1

i=1 F
1
n+1,i −

∑r
j=1mj{tj = 0}) ≥ δ̃∗nν

∗
V ι
∗
V (
∑n+1

i=2 F
1
n+1,i −∑r

j=1mj{tj = 0}) =† ν∗Zι
∗
Zδ
∗
n(
∑n+1

i=2 F
1
n+1,i −

∑r
j=1mj{tj = 0}) =

ν∗Zι
∗
Z(
∑n+1

i=2 F
1
n,i−1 −

∑r
j=1mj{tj = 0}) = ν∗Zι

∗
Z(
∑n

i=1 F
1
n,i −

∑r
j=1mj{tj =

0}) ≥‡ 0, where † holds by the commutativity of (6.1) and ‡ holds as Z has

modulus m. Using Lemma 2.7, we can drop δ̃∗n, i.e., V
′ has modulus m.

When n = 0, we have for 1 ≤ j ≤ r, δ̃∗0ν
∗
V ι
∗
V {tj = 0} = ν∗Zι

∗
Zδ
∗
0{tj = 0} =

ν∗Zι
∗
Z{tj = 0}, which is 0 because Z ∩ {tj = 0} = ∅. Hence, δ̃∗0ν

∗
V ι
∗
V (F

1
1,1 −∑r

j=1mj{tj = 0}) = δ̃∗0ν
∗
V ι
∗
V F

1
1,1 ≥ 0. Dropping δ̃∗0 , we get V ′ has modulus

m. �

Proposition 6.4. Let Z ∈ zq(X [r]|Dm, n). Then δ(Z) ∈ zq+1(X [r]|Dm, n+1).
Furthermore, δ and ∂ satisfy the equality δ∂ + ∂δ = 0.

Proof. We may assume that Z is an irreducible cycle. Let ∂ǫn,i be the boundary
given by the face F ǫn,i on X × Ar ×�n, for 1 ≤ i ≤ n and ǫ = 0,∞.
Claim: For ǫ = 0,∞, (i) ∂ǫn+1,1 ◦ δn = 0, (ii) ∂ǫn+1,i ◦ δn = δn−1 ◦ ∂ǫn,i−1 for
2 ≤ i ≤ n+ 1.
For (i), we show that δn(Z) ∩ {y1 = ǫ} = ∅ for ǫ = 0,∞. Since δn(Z) ⊂
V (t1 · · · try1 = 1), we have δn(Z) ∩ {y1 = 0} = ∅. On the other hand, if δn(Z)
intersects {y1 =∞}, then some ti must be zero on Z, i.e., Z intersects {ti = 0}
for some 1 ≤ i ≤ r. However, since Z has modulus m, this can not happen.
Thus, δn(Z) ∩ {y1 =∞} = ∅. This shows (i). For (ii), by the definition of δn,
the diagram

(Grm)× ×�n−1
ιǫi−1

//

δn−1

��

(Grm)
× ×�n

δn

��

Grm ×�n
ιǫi // Grm ×�n+1

is Cartesian. Thus, δn−1((ι∗i−1(Z)) = (ιǫi)
∗(δn(Z)) by [6, Proposition 1.7], i.e.,

(ii) holds. This proves the claim.
By Lemma 6.3, we know δn(Z) has modulus m. Since Z intersects all faces
properly, so does δn(Z) by applying (i) and (ii) of the above claim repeatedly.

For ∂δ+δ∂ = 0, note that ∂δn(Z) =
∑n+1

i=1 (−1)i(∂∞n+1,iδn(Z)−∂0n+1,iδn(Z)) =
†
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∑n+1
i=2 (−1)i(δn−1∂∞n,i−1(Z) − δn−1∂0n,i−1(Z)) = −∑n

i=1(−1)i(δn−1∂∞n,i(Z) −
δn−1∂0n,i−1(Z)) = −δn−1

∑n
i=1(−1)i(∂∞n,i(Z)− ∂0n,i(Z)) = −δn−1 ◦ ∂(Z), where

† holds by the claim. �

Lemma 6.5 and Corollary 6.6 below, which generalize [19, §4.2], have much
simpler proofs than loc.cit.

Lemma 6.5. Let Z ∈ zq(X [r]|Dm, n) be such that ∂ǫi (Z) = 0 for 1 ≤ i ≤ n and
ǫ = 0,∞. Then 2δ2(Z) is the boundary of an admissible cycle with modulus m.

Proof. Note that δ2(Z) is an admissible cycle on X×Ar×�n+2 with modulus
m, by Proposition 6.4. For the transposition τ = (1, 2) on the set {1, · · · , n+2},
we have τ · δ2(Z) = δ2(Z), by the definition of δ. On the other hand, we have
τ · δ2(Z) = −δ2(Z) + ∂(γ) for some admissible cycle γ, by Lemma 5.3. Hence,
we have −δ2(Z) + ∂(γ) = δ2(Z), i.e., 2δ2(Z) = ∂(γ), as desired. �

Corollary 6.6. Let k be a perfect field of characteristic 6= 2 and let X be in
SmAff ess

k or in SmProjk. Let m ≥ 1. Then δ2 = 0 on CHq(X [r]|Dm, n).

Proof. If r = m = 1, by Corollary 5.15, there is nothing to prove. So, suppose
either r ≥ 2 or |m| ≥ 2. But, if r ≥ 2, then we automatically have |m| ≥ 2, so
we just consider the latter case.
Given α ∈ CHq(X [r]|Dm, n), by Theorem 3.2, we can find a representative
Z ∈ zq(X [r]|Dm, n) such that ∂ǫi (Z) = 0 for 1 ≤ i ≤ n and ǫ = 0,∞. Then by
Lemma 6.5, we have 2δ2(α) = 0.
On the other hand, by Corollary 5.14, the group CHq(X [r]|Dm, n) is a
W(|m|−1)(k)-module. As |m| ≥ 2 and char(k) 6= 2, it follows that 2 ∈
(W(|m|−1)(k))

×. In particular, δ2(α) = 0. �

6.2. Leibniz rule. We now discuss the Leibniz rule, generalizing [19, §4.3].
Let X ∈ Schess

k . Let (x, t, t1, · · · , tr, y1, · · · , yn+2) ∈ X × Ar+1 × �n+2 be the
coordinates. Let T ⊂ X × Ar+1 × �n+2 be the closed subscheme defined by
the equation tyn+1 = yn+2(tt1 · · · tryn+1 − 1).

Definition 6.7 (cf. [19, Definition 4.9]). Given a closed subscheme Z ⊂
X × Ar+1 × �n, define CZ := T · (Z × �2) on X × Ar+1 × �n+2. This is
extended Z-linearly to cycles.

Lemma 6.8. Let Z be a cycle on X × Ar+1 × �n with modulus m =
(m1, · · · ,mr+1). Then CZ has modulus m on X × Ar+1 ×�n+2.

Proof. We may assume Z is irreducible. We show that each irreducible com-
ponent V ⊂ CZ has modulus m. Let Z and V be the Zariski closures of Z

and V in X × Ar+1 ×�n and X × Ar+1 ×�n+2
, respectively. The projection

pr : X × Ar+1 × �n+2 → X × Ar+1 × �n that ignores the last two �
2
is pro-

jective, while its restriction to X × Ar+1 ×�n+2 maps V into Z. So, pr maps
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V to Z, giving a commutative diagram

(6.2) V
N νV

//

prN

��

V
� � ιV

//

pr|V
��

X × Ar+1 ×�n+2

pr

��

Z
N νZ

// Z
� � ιZ

// X × Ar+1 ×�n,
where ιV and ιZ are the closed immersions, νV and νZ are normalizations, and
prN is induced by the universal property of normalization for dominant maps.
The modulus condition for V is now easily verified using the pull-back of the

modulus condition for Z on Z
N

and the fact that pr∗{tj = 0} = {tj = 0} for
all j and pr∗F 1

n,i = F 1
n+2,i for all i. �

Corollary 6.9. Let X1, X2 ∈ Schess
k . Let V1 ⊂ X1 × A1 × �n1 and V2 ⊂

X2 × Ar ×�n2 be closed subschemes with moduli |m| and m, respectively with
m ≥ 1.
Under the exchange of factors X1×A1×�n1×X2×Ar×�n2 ≃ X1×X2×Ar+1×
�n, where n = n1 +n2, consider the cycle CV1×V2 on X1×X2×Ar+1×�n+2.
Then µ|CV1×V2

is finite. In particular, µ∗(CV1×V2) as in Definition 5.9 is well-
defined, and has modulus m.

Proof. We set V = V1 × V2. From the definition of µ, the map µ : V × �2 →
X1 ×X2 × Ar ×�n+2 is of the form µ|V × Id�2 . By Proposition 5.7, the map
µ|V is finite, thus so is µ|V × Id�2 : V × �2 → X1 ×X2 × Ar × �n+2. Hence,
its restriction to CV = T · (V × �2) is also finite. The modulus condition for
µ∗(CV ) follows from Lemmas 5.8 and 6.8. �

Definition 6.10 (cf. [19, Definition 4.12]). Let V1 ∈ zq1(X1[1]|D|m|, n1) and
V2 ∈ zq2(X2[r]|Dm, n2) with X1, X2 ∈ Schess

k . Let n = n1 + n2 and define
V1×µ′ V2 be the cycle σ ·µ∗(CV1×V2), where σ = (n+2, n+1, · · · , 1)2 ∈ Sn+2.

Lemma 6.11. Let V1, V2 be as in Definition 6.10. Then V1 ×µ′ V2 ∈
zq1+q2−1((X1 ×X2)[r]|Dm, n1 + n2 + 2).

Proof. By Corollary 6.9, the cycle µ∗(CV1×V2) has modulus m, thus so does
W := V1 ×µ′ V2. It remains to prove that W intersects all faces properly. Let
σn1 = (n1 + 1, n1, · · · , 1) ∈ Sn+1. Then by direct calculations, we have
(6.3)



∂∞1 W = σn1(V1 ×µ δ(V2)), ∂01W = 0, ∂∞2 W = δ(V1 ×µ V2),
∂02W = δ(V1)×µ V2,
∂ǫiW =

{
∂ǫi−2(V1)×µ′ V2, for 3 ≤ i ≤ n1 + 2,
V1 ×µ′ ∂ǫi−n1−2(V2), for n1 + 3 ≤ i ≤ n+ 2,

ǫ ∈ {0,∞}.

Since each Vi is admissible, using (6.3), Lemma 5.10, Proposition 6.4 and in-
duction on the codimension of faces, we deduce that W intersects all faces
properly. �

Proposition 6.12. Let X1, X2 ∈ Smess
k . Let ξ ∈ zq1(X1[1]|D|m|, n1) and

η ∈ zq2(X2[r]|Dm, n2). Let n = n1 + n2 and q = q1 + q2. Suppose that
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all codimension one faces of ξ and η vanish. Then in the group zq−1((X1 ×
X2)[r]|Dm, n+1), the cycle δ(ξ×µ η)−δξ×µ η− (−1)n1ξ×µ δη is the boundary
of an admissible cycle.

Proof. By (6.3), for 3 ≤ i ≤ n1 + 2, we have ∂ǫi (ξ ×µ′ η) = ∂ǫi−2(ξ) ×µ′ η = 0,
while for n1+3 ≤ i ≤ n+2, we have ∂ǫi (ξ×µ′ η) = ξ×µ′ ∂ǫi−n1−2(η) = 0. Hence,

∂(ξ×µ′ η) =
∑n+2

i=1 (−1)i(∂∞i −∂0i )(ξ×µ′ η) = δ(ξ×µη)−{σn1 ·(ξ×µδη)+δξ×µη}
by (6.3) for i = 1, 2. Equivalently,

(6.4) δ(ξ ×µ η)− δξ ×µ η − σn1 · (ξ ×µ δη) = ∂(ξ ×µ′ η).

But, for ξ ×µ δη, notice that

(6.5) ∂ǫi (ξ ×µ δη) =
{
∂ǫi ξ ×µ δη = 0, for 1 ≤ i ≤ n1,
ξ ×µ ∂ǫi−n1

(δη), for n1 + 1 ≤ i ≤ n+ 1,
ǫ ∈ {0,∞}.

We have ∂ǫ1(δη) = 0 when i = n1 + 1 by Claim (i) of Proposition 6.4, and
∂ǫi−n1

(δη) = δ(∂ǫi−n1−1η) = δ(0) = 0 when n1 + 2 ≤ i ≤ n + 1 by Claim
(ii) of Proposition 6.4. Hence, ξ ×µ δη is a cycle with trivial codimension 1
faces, so, by Lemma 5.3, for some admissible cycle γ, we have σn1 · (ξ×µ δη) =
sgn(σn1)(ξ×µ δη)+∂(γ) = (−1)n1ξ×µ δη+∂(γ). Putting this back in (6.4), we
obtain δ(ξ×µ η)− δξ×µ η− (−1)n1ξ×µ δη = ∂(ξ×µ′ η)− ∂(γ), as desired. �

The above discussion summarizes as follows:

Theorem 6.13. Let X be in SmAff ess
k or in SmProjk over a perfect field k

with char(k) 6= 2. Let r ≥ 1 and m = (m1, · · · ,mr) ≥ 1. Then the following
hold:

(1) (CH(X [1]|D|m|),∧X , δ) forms a commutative differential graded
W(|m|−1)Ω•k-algebra.

(2) (CH(X [r]|Dm), δ) forms a differential graded (CH(X [1]|D|m|),∧X , δ)-
module.

In particular, (CH(X [r]|Dm), δ) is a differential graded W(|m|−1)Ω•k-module.

Proof. The commutative differential graded algebra structure on
CH(X [1]|D|m|) and the differential graded module structure on CH(X [r]|Dm)
over CH(X [1]|D|m|) follows by combining Theorem 5.4, Corollary 6.6 and
Proposition 6.12 using Theorem 3.2.
The structure map p : X → Spec (k) turns (CH(X [1]|D|m|),∧X , δ)
into a differential graded algebra over (CH(pt[1]|D|m|),∧pt, δ) via p∗.
Since ⊕n≥0CHn+1(pt[1]|D|m|, n) forms a differential graded sub-algebra of
(CH(pt[1]|D|m|),∧pt, δ). The map of commutative differential graded algebras

W(|m|−1)Ω•k → ⊕n≥0CHn+1(pt[1]|D|m|, n) (see [28]) finishes the proof of the
theorem. �

As a consequence of Theorem 6.13 (use Corollary 5.15 when |m| = 1), we obtain
the following property of multivariate additive higher Chow groups.
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Corollary 6.14. Let r ≥ 1 and m ≥ 1 and let X be in SmAffess
k or in

SmProjk. Then each CHq(X [r]|Dm, n) is a k-vector space provided char(k) =
0.

7. Witt-complex structure on additive higher Chow groups

Let k be a perfect field of characteristic 6= 2. In this section, a smooth affine
k-scheme means an object in SmAffess

k , i.e., an object of either SmAffk or
SmLock.
Rülling proved in [28] that the additive higher Chow groups of 0-cycles over
Spec (k) form a restricted Witt-complex over k. When X is a smooth projective
variety over k, it was proven in [19] that additive higher Chow groups of X
form a restricted Witt-complex over k. Our objective is to prove the stronger
assertion that the additive higher Chow groups of Spec (R) ∈ SmAffess

k have
the structure of a restricted Witt-complex over R.
Since we exclusively use the case r = 1 only, we use the older no-
tations Tzq(X,n;m) and TCHq(X,n;m) instead of zq(X [1]|Dm+1, n − 1)
and CHq(X [1]|Dm+1, n − 1). For X ∈ Schess

k , we let TCH(X ;m) :=

⊕n,qTCHq(X,n;m) and TCHM (X ;m) := ⊕nTCHn(X,n;m). The super-

script M is for Milnor. Let TCH(X) := ⊕mTCH(X ;m) and TCHM (X) :=

⊕mTCHM (X ;m). We similarly define T CH(X ;m), T CHM (X ;m), T CH(X),

and T CHM (X) for X ∈ Schk using Definition 4.7.

7.1. Witt-complex structure over k. In this section, we show that the
additive higher Chow groups for an object of SmAffess

k form a functorial re-
stricted Witt-complex over k. For r ≥ 1, let φr : A1 → A1 be the morphism x 7→
xr, which induces φr : Spec (R)× Bn → Spec (R)× Bn. By [19, §5.1, 5.2], we
have the Frobenius Fr : TCH

q(R, n; rm+r−1)→ TCHq(R, n;m) and the Ver-
schiebung Vr : TCH

q(R, n;m)→ TCHq(R, n; rm+r−1) given by Fr = φr∗ and
Vr = φ∗r . We also have a natural inclusion R : Tzq(R, •;m+1)→ Tzq(R, •;m)
for any m ≥ 1, which induces R : TCHq(R, n;m + 1) → TCHq(R, n;m),
called the restriction. Finally, by Theorem 6.13, there is a differential
δ : Tzq(R, •;m) → Tzq(R, • + 1;m), which induces δ : TCHq(R, n;m) →
TCHq(R, n+ 1;m).

Theorem 7.1. Let X ∈ SmAffess
k and m ≥ 1. Then TCH(X ;m) is a DGA

and TCHM (X ;m) is its sub-DGA. Furthermore, with respect to the operations
δ,R, Fr, Vr in the above together with λ = f∗ : Wm(k) = TCH1(k, 1;m) →
TCH1(X, 1;m) for the structure morphism f : X → Spec (k), TCH(X) is a

restricted Witt-complex over k and TCHM (X) is a restricted sub-Witt-complex
over k. These structures are functorial.

Proof. In [19, Theorem 1.1, Scholium 1.2], it was stated that TCH(X ;m) and

TCHM (X ;m) are DGAs, and that TCH(X) and TCHM (X) are restricted
Witt-complexes over k with respect to the above δ,R, Fr, Vr, provided the
moving lemma holds for X . But this is now shown in Theorems 4.1 and 4.10.
We give a very brief sketch of this structure and its functoriality.
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The functoriality of the restriction operator R recalled above, was stated in
[19, Corollary 5.19], which we easily check here: let f : X → Y be a morphism
in SmAff ess

k and consider the following commutative diagram:

TzqW(Y, •;m+ 1)
f∗

//
� _

��

Tzq(X, •;m+ 1)
� _

��

TzqW(Y, •;m)
f∗

// Tzq(X, •;m),

where W is a finite set of locally closed subsets of Y , and the horizontal maps
are chain maps given by the inverse images as in the proof of Theorem 4.5 and
Corollary 4.15. The diagram and Theorems 4.1 and 4.10 imply that f∗R = Rf∗

because the vertical inclusions induce R by definition.
For each r ≥ 1, the Frobenius Fr and Verschiebung Vr recalled in the above
are functorial as proven in [19, Lemmas 5.4, 5.9], and that Fr is a graded ring
homomorphism is proven in [19, Corollary 5.6].
Finally, the properties (i), (ii), (iii), (iv), (v) in Section 2.2.2, are all proven in
[19, Theorem 5.13], where none requires the projectivity assumption. �

Corollary 7.2. Let m ≥ 1 be an integer. Then T CH(−;m) and

T CHM (−;m) define presheaves of DGAs on Schk, and the pro-systems

T CH(−) and T CHM (−) define presheaves of restricted Witt-complexes over
k on Schk.

Proof. Let X ∈ Schk. By definition, T CH(X ;m) is the colimit over all
(X → A) ∈ (X ↓ SmAffk)

op of TCH(A;m). But the category of DGAs is
closed under filtered colimits (see [13]) so that T CH(X ;m) is a DGA. For each
morphism f : X → Y in Schk, one checks f

∗ : T CH(Y ;m)→ T CH(X ;m) is a
morphism of DGAs. The other assertions follow easily using Theorem 7.1. �

Before we discuss Witt-complexes over R, we state the following behavior of
various operators under finite push-forward maps.

Proposition 7.3. Let f : X → Y be a finite map in SmAff
ess
k . Then for r ≥ 1,

we have: (a) f∗R = Rf∗; (b) f∗δ = δf∗; (c) f∗Fr = Frf∗; (d) f∗Vr = Vrf∗.

Proof. The item (a) is obvious and (b) and (c) follow at once from the fact
that these operators are defined as push-forward under closed immersion and
finite maps and they preserve the faces. For (d), we consider the commutative
diagram

(7.1) X × A1
Id×φr

//

f×Id
��

X × A1

f×Id
��

Y × A1
Id×φr

// Y × A1.

Since this diagram is Cartesian and f as well as φ preserve the faces, we con-
clude from [6, Proposition 1.7] that f∗ ◦ φ∗r = φ∗r ◦ f∗. �
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7.2. Witt-complex structure over R. Let X = Spec (R) ∈ SmAffess
k .

The objective of this section is to strengthen Theorem 7.1 by showing that
TCH(X) is a restricted Witt-complex over R.

Letm ≥ 1 be an integer. We first define a group homomorphism τR : Wm(R)→
TCH1(R, 1;m) for any k-algebraR. Recall that the underlying abelian group of
Wm(R) identifies with the multiplicative group (1+tR[[t]])×/(1+tm+1R[[t]])×.
For each polynomial p(t) ∈ (1 + R[[t]])×, consider the closed subscheme of
Spec (R[t]) given by the ideal (p(t)), and let Γ(p(t)) be its associated cycle.

By definition, Γ(p(t)) ∩ {t = 0} = ∅ so that Γ(p(t)) ∈ Tz1(R, 1;m). We set
Γa,n = Γ(1−atn) for n ≥ 1 and a ∈ R.

Lemma 7.4. Let f(t), g(t) be polynomials in R[t], and let h(t) ∈ R[t] be the
unique polynomial such that (1−tf(t))(1−tg(t)) = 1−th(t). Then Γ(1−th(t)) =
Γ(1−tf(t)) + Γ(1−tg(t)) in Tz1(R, 1;m).

Proof. This is obvious by (1− tf(t))(1 − tg(t)) = 1− th(t). �

Lemma 7.5. For n ≥ m+ 1, we have Γ(1−tnf(t)) ≡ 0 in TCH1(R, 1;m).

Proof. Consider the closed subscheme Γ ⊂ X×A1×� given by y1 = 1−tnf(t).
Let ν : Γ

N → Γ →֒ X×A1×P1 be the normalization of the Zariski closure Γ in
X ×A1×P1. Since f(t)tn = 1− y1 on Γ, we see that nν∗{t = 0} ≤ ν∗{y1 = 1}
on Γ

N
. Since n ≥ m+ 1, this shows that Γ satisfies the modulus m condition.

Since ∂∞1 (Γ) = 0 and ∂01(Γ) = Γ(1−tnf(t)) (which is of codimension 1), the cycle

Γ is an admissible cycle in Tz1(R, 2;m) such that ∂Γ = Γ(1−tnf(t)). This shows
that Γ(1−tnf(t)) ≡ 0 in TCH1(R, 1;m). �

Proposition 7.6. Let R be a k-algebra. Then the map τR : (1 + tR[t]) →
Tz1(R, 1;m) that sends a polynomial 1 − tf(t) to Γ(1−tf(t)), defines a group

homomorphism τR : Wm(R)→ TCH1(R, 1;m).

Proof. Every element p(t) ∈ (1 + tR[[t]])× has a unique expression p(t) =∏
n≥1(1− antn) for an ∈ R. For any such p(t), set p≤m(t) =

∏m
n=1(1 − antn).

We define τR(p(t)) = Γ(p≤m(t)). It follows from Lemmas 7.4 and 7.5 that this
map descends to a group homomorphism from Wm(R). �

Recall from [28, Appendix A] that for each r ≥ 1, we have the Frobenius Fr :
Wrm+r−1(R) → Wm(R) and the Verschiebung Vr : Wm(R) → Wrm+r−1(R).
They are given by Fr(1 − atn) = (1− a rs tns )s, where s = gcd(r, n) and Vr(1−
atn) = 1− atrn. On the other hand, as seen in Section 7.1, we have operations
Fr and Vr on {TCH1(R, 1;m)}m∈N.

Lemma 7.7. Let R be a k-algebra. Then the maps τR : Wm(R) →
TCH1(R, 1;m) of Proposition 7.6 commute with the Fr and Vr operators on
both sides.
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Proof. That τRVr = VrτR, is easy: we have Vr(τR(1−atn)) = Vr(Γa,n) = Γa,rn,
while τR(Vr(1− atn)) = Γ(1−atrn) = Γa,rn.
That τRFr = FrτR, is slightly more involved. Recall that Fr(1 − atn) =
(1−a rs tns )s, where s = gcd(r, n). Write n = n′s and r = r′s, where 1 = (r′, n′).
Hence, we have τRFr(1 − atn) = sΓ

a
r
s ,ns

= sVn
s
(Γ
a
r
s ,1

) = sVn′(Γar′ ,1) =: ♣,
while FrτR(1− atn) = FrΓa,n = FrVn(Γa,1) =: ♥.
First observe that when n = 1, we have s = 1, r = r′, n = n′ = 1, and we have
♥ = Fr(Γa,1) = Γar,1 = ♣, so that τRFr(1− at) = FrτR(1− at), indeed.
For a general n ≥ 1, we have FrVn = Fr′FsVsVn′ = Fr′ ◦ (s · Id) ◦ Vn′ =
sFr′Vn′ =† sVn′Fr′ , where † holds because (r′, n′) = 1. Since Fr′(Γa,1) = Γar′ ,1
(by the first case), we have ♥ = FrVn(Γa,1) = sVn′Fr′(Γa,1) = sVn′(Γar′ ,1) =
♣. This shows τRFr = FrτR. �

Remark 7.8. In the proof of Lemma 7.7, we saw that for s = (r, n),

(7.2) Fr(Γa,n) = sΓ
a
r
s ,ns

, Vr(Γa,n) = Γa,rn.

Proposition 7.9. For X = Spec (R) ∈ SmAff
ess
k , the maps τR : Wm(R) →

TCH1(R, 1;m) form a morphism of pro-rings that commutes with Fr and Vr
for r ≥ 1.

Proof. It is clear from the definition of τR in Proposition 7.6 that it commutes
with R. We saw that τR commutes with Fr and Vr in Lemma 7.7. So, we
only need to show that τR respects the products. By [2, Proposition (1.1)], it
is enough to prove that for a, b ∈ R and u, v ≥ 1,

(7.3) Γa,u ∧ Γb,v = wΓ
a
v
w b

u
w ,uvw

in TCH1(R, 1;m),

where w = gcd(u, v) and ∧ = ∧X is the product structure on the ring
TCH1(R, 1;m) as in Theorem 7.1.
Step 1. First, consider the case when u = v = 1, i.e., we prove Γa,1 ∧ Γb,1 =
Γab,1. Recall that ∧ is defined as the composition ∆∗ ◦ µ∗ ◦ × in

X × A1 ×X × A1 µ→ X ×X × A1 ∆← X × A1.

Under the identification X × X ≃ Spec (R ⊗k R), we have µ∗(Γa,1 × Γb,1) =
Γ(a⊗1)(1⊗b),1, and ∆∗(Γ(a⊗1)(1⊗b),1) = Γab,1, because ∆ is given by the multi-
plication R ⊗k R→ R. This proves (7.3) for Step 1.
For the following remaining two steps, we use the projection formula: x ∧
Vs(y) = Vs(Fs(x) ∧ y), which we can use by Theorem 7.1.
Step 2. Consider the case when v = 1, but u ≥ 1 is any integer. We apply the
projection formula to x = Γb,1 and y = Γa,1 with s = u. Since TCH1(R, 1;m)
is a commutative ring, by the projection formula, we get Vu(Γa,1) ∧ Γb,1 =
Vu(Γa,1 ∧ Fu(Γb,1)). Here, the left hand side is Γa,u ∧ Γb,1 by eqn:FV identity,
while the right hand side is =1 Vu(Γa,1 ∧Γbu,1) =2 Vu(Γabu,1) =

3 Γabu,u, where
=1 and =3 hold by (7.2) and =2 holds by Step 1. This proves (7.3) for Step 2.
Step 3. Finally, let u, v ≥ 1 be any integers. Let w = gcd(u, v). We again
apply the projection formula to x = Vu(Γa,1), y = Γb,1, s = v, so that Vu(Γa,1)∧
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Vv(Γb,1) = Vv(Fv(Vu(Γa,1))∧Γb,1). Its left hand side coincides with that of (7.3)
by (7.2). Its right hand side is =1 Vv(Fv(Γa,u) ∧ Γb,1) =

2 Vv(wΓa
v
w , uw
∧ Γb,1),

where =1 and =2 hold by (7.2). But, Step 2 says that Γ
a
v
w , uw
∧Γb,1 = Γ

a
v
w b

u
w , uw

so that Vv(wΓa
v
w , uw
∧ Γb,1) = wVv(Γa

v
w b

u
w , uw

) =† wΓ
a
v
w b

u
w ,uvw

, where = † holds
by (7.2). This last expression is the right hand side of (7.3). Thus, we obtain
the equality (7.3) and this finishes the proof. �

Theorem 7.10. For Spec (R) ∈ SmAffess
k , TCH(R) is a restricted Witt-

complex over R, and its sub-pro-system TCHM (R) is a restricted sub-Witt-
complex over R.

Proof. As saw in the proof of Theorem 7.1, we already have the restriction R,
the differential δ, the Frobenius Fr and the Verschiebung Vr defined by the same
formulas. Furthermore, by Proposition 7.9, now we have ring homomorphisms
λ = τR : Wm(R) → TCH1(R, 1;m) for m ≥ 1. The properties (i), (ii), (iii),
(iv) in Section 2.2.2 are independent of the choice of the ring, so that what we
checked in Theorem 7.1 still work. To prove the theorem, the only thing left
to be checked is the property (v) that for all a ∈ R and r ≥ 1,

(7.4) FrδτR([a]) = τR([a]
r−1)δτR([a]),

where we have shrunk the product notation ∧ and taken the ring homomor-
phism λ to be τR. To check this, we identify Wm(R) with (1 + tR[[t]])×/(1 +
tm+1R[[t]])×.
If a = 0, then τR([a]) = Γ(1−0·t) = ∅. So, both sides of (7.4) are zero.
If a = 1, then τR([a]) = τR(1 − t) = Γ(1−t). But, in our definition of δ, to
compute it, we should first restrict the cycle Γ(1−t) ⊂ Spec (R) × Gm onto
Spec (R) × (Gm \ {1}), which becomes empty. Hence, δτR([a]) = δΓ(1−t) = 0,
so again both sides of (7.4) are zero.
Let a ∈ R \ {0, 1}. Then τR([a]) = Γ(1−at) ⊂ Spec (R) × A1, and δτR([a]) is
given by the ideal (1 − at, 1 − ty1) in R[t, y1]. Since t is not a zero-divisor in
R[t, y1], we have (1− at, 1− ty1) = (1− at, y1− a) as ideals. Hence, FrδτR([a])
is given by the ideal (1− art, y1 − a) in R[t, y1]. On the other hand,

(7.5)
τR([a]

r−1)δτR([a]) = Γ(1−ar−1t) ∧ Spec
(

R[t,y1]
(1−at,y1−a)

)

= ∆∗
(

(R⊗kR)[t,y1]
(1−(ar−1⊗1)(1⊗a),y1−(1⊗a))

)
=† Spec

(
R[t,y1]

(1−art,y1−a)

)
,

where † holds because ∆ is induced by the product homomorphismR⊗kR→ R.
Hence, both hand sides of (7.4) coincide. This completes the proof. �

Theorem 7.11. For Spec (R) ∈ SmAffess
k and n,m ≥ 1, there is a unique

homomorphism τRn,m : WmΩn−1R → TCHn(R, n;m) that defines a morphism of

restricted Witt-complexes over R, {τR•,m : WmΩ•−1R → TCH•(R, •;m)}m, such
that τR1,m = τR.

Proof. The theorem follows from Theorem 7.10 and [28, Proposition 1.15]. We
have τR1,m = τR because the map λ of §2.2.2 is given by τR in Theorem 7.10. �
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We have shown in Propositions 7.6 and 7.9 that τR is a group homomorphism
for any k-algebra R and is a ring homomorphism if R is smooth. Here, we
provide the following information on τR.

Theorem 7.12. Let R be an integral domain which is an essentially of finite
type k-algebra. Then τR is injective. It is an isomorphism if R is a UFD.

Proof. Let K := Frac(R) and ι : R →֒ K be the inclusion. This induces a
commutative diagram

Wm(R)
Wm(ι)

//

τR

��

Wm(K)

≃τK

��

TCH1(R, 1;m) // TCH1(K, 1;m),

where the bottom map is the flat pull-back via Spec (K) → Spec (R), and τK
is the isomorphism by [28, Corollary 3.7]. Since Wm(ι) is clearly injective (see
[28, Properties A.1.(i)]), it follows that τR is injective, too.
Suppose now R is a UFD and V is an irreducible admissible cycle in
Tz1(R, 1;m). Then we must have (I(V ), t) = R[t], where I(V ) is the ideal
of V . Since R[t] is a UFD, using basic commutative algebra, one checks that
I(V ) = (1− tf(t)) for some non-zero polynomial f(t) ∈ R[t]. In particular, the
map τR is surjective and hence an isomorphism. �

7.3. Étale descent. Finally:

Proof of Theorem 1.4. By Corollary 5.15, we can assume |m| ≥ 2. We set
Y = X/G, λ = |G| and consider the diagram

(7.6) G×X γ
//

p

��

X

f

��

X
f

// Y,

where γ is the action map and p is the projection. Since G acts freely on X ,
this square is Cartesian and f is étale of degree λ. By [6, Proposition 1.7], we
have f∗ ◦ f∗ = p∗ ◦ γ∗ : CHq(X [r]|Dm, n)→ CHq(X [r]|Dm, n).
Since f is G-equivariant with respect to the trivial G-action on Y , we see that
f∗ induces a map f∗ : CHq(Y [r]|Dm, n) → CHq(X [r]|Dm, n)

G. Moreover, it
follows from [21, Theorem 3.12] that f∗ ◦ f∗ is multiplication by λ.
On the other hand, it follows easily from the action map γ that p∗ ◦ γ∗(α) =∑
g∈G

g∗(α). In particular, p∗ ◦ γ∗(α) = λ · α if α ∈ CHq(X [r]|Dm, n)
G.

Since λ ∈ k× and the Teichmüller map is multiplicative with |m| ≥ 2, we
see that λ ∈ (W(|m|−1)(k))×. We conclude from Theorem 5.4(3) and Corol-

lary 5.14 that the composite CHq(Y [r]|Dm, n)
f∗

−→ CHq(X [r]|Dm, n)
G λ−1f∗−−−−→

CHq(Y [r]|Dm, n) yields the desired isomorphism. �
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ABSTRACT. Let X be a separated scheme of finite type over an alge-
braically closed fieldk and letm be a natural number. By an explicit ge-
ometric construction using torsors we construct a pairing between the first
modm Suslin homology and the first modm tame étale cohomology ofX .
We show that the induced homomorphism from the modm Suslin homol-
ogy to the abelianized tame fundamental group ofX modm is surjective.
It is an isomorphism of finite abelian groups if(m, char(k)) = 1, and for
generalm if resolution of singularities holds overk.
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1 INTRODUCTION

Let X be a (possibly singular) separated scheme of finite type overan algebraically
closed fieldk of characteristicp ≥ 0 and letm be a natural number. We construct a
pairing between the first modm algebraic singular homologyHS

1 (X,Z/mZ) and
the first modm tame étale cohomology groupH1

t (X,Z/mZ). For πt,ab1 (X) =
H1
t (X,Q/Z)

∨ we prove the following analogue of Hurewicz’s theorem in algebraic
topology:
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THEOREM 1.1. The induced homomorphism

recX : HS
1 (X,Z/mZ) −→ πt,ab1 (X)/m

is surjective. It is an isomorphism of finite abelian groups if (m, p) = 1, and for
generalm if resolution of singularities holds for schemes of dimension≤ dimX + 1
overk.

For p ∤ m, the groupsHS
1 (X,Z/mZ) andπt,ab1 (X)/m are known to be isomorphic

by the work of Suslin and Voevodsky [SV1]. Theorem 1.1 above provides an ex-
plicit isomorphism which extends to the casep | m (under resolution of singularities).
Moreover, in the last section we show that forp ∤ m our isomorphism coincides with
the one constructed in [SV1].

The motivation for constructing our pairing between the groupsHS
1 (X,Z/mZ) and

H1
t (X,Z/mZ) comes from topology: For a locally contractible Hausdorff spaceX

and a natural numberm, the canonical duality pairing

〈·, ·〉 : Hsing
1 (X,Z/mZ)×H1(X,Z/mZ) −→ Z/mZ,

between singular homology and sheaf cohomology with modm coefficients can be
given explicitly in the following way: representb ∈ H1(X,Z/mZ) by aZ/mZ-
torsorT → X anda ∈ Hsing

1 (X,Z/mZ) by a1-cycleα in the singular complex of
X . Then

〈a, b〉 = Φ−1par ◦ Φtaut ∈ Z/mZ, whereΦtaut ,Φpar : α
∗(T )|0 ∼→ α∗(T )|1

are the isomorphisms between the fibres over0 and1 of the pull-back torsorα∗(T )→
∆1 = [0, 1] given tautologically (0∗α = 1∗α) and by parallel transport (everyZ/mZ-
torsor on[0, 1] is trivial).
For a varietyX , the pairing betweenHS

1 (X,Z/mZ) andH1
t (X,Z/mZ) inducing

the homomorphismrecX of our Main Theorem 1.1 will be constructed in the same
way. However,1-cycles in the algebraic singular complex are not linear combina-
tions of morphisms but finite correspondences from∆1 to X . In order to mimic the
above construction, we thus have to define the pull-back of a torsor along a finite cor-
respondence, which requires the construction of the push-forward torsor along a finite
surjective morphism.
To prove Theorem 1.1, we first consider the case of a smooth curveC. If A is the
Albanese variety ofC, then we have isomorphisms

HS
1 (C,Z/mZ)

δ−→
∼ mH

S
0 (C,Z)

∼= mA(k). (1)

The first isomorphism follows from the coefficient sequence together with the divisi-
bility of HS

1 (C,Z), and the second from the Abel-Jacobi theorem. On the other hand,

Hom(mA(k),Z/mZ)
τ−→
∼

H1
t (C,Z/mZ). (2)
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This follows because the maximal étale subcoveringÃ → A of them-multiplication
mapA m→ A is the quotient ofA by the connected component of the finite group
schememA, and the maximal abelian tame étale covering ofC with Galois group
annihilated bym is C̃ := C ×A Ã. The heart of the proof of Theorem 1.1 for smooth
curves is to show that under the above identifications, our pairing agrees with the
evaluation map.
We then show surjectivity ofrecX for generalX by reducing to the case of smooth
curves. Finally, we use duality theorems to show that both sides ofrecX have the
same order: For thep-primary part, we use resolution of singularities to reduceto
the smooth projective case considered in [Ge3]. For(m, char(k)) = 1, Suslin and
Voevodsky [SV1] construct an isomorphism

αX : H1
et(X,Z/mZ)

∼→ H1
S(X,Z/mZ).

Hence the source and the target ofrecX have the same order and thereforerecX is
an isomorphism. In Section 7 we show thatrecX is dual to the mapαX . Thus, for
char(k) ∤ m, our construction gives an explicit description of the Suslin-Voevodsky
isomorphismαX , which zig-zags through Ext-groups in various categories and is dif-
ficult to understand.

The authors thank Takeshi Saito and Changlong Zhong for discussions during the early
stages of the project. It is a pleasure to thank Johannes Anschütz whose comments
on an earlier version of this paper led to a substantial simplification of the proof of
Theorem 4.1. Finally, we want to thank the referee for his helpful comments.

2 TORSORS AND FINITE CORRESPONDENCES

All occurring schemes in this section are separated schemesof finite type over a
field k. For any abelian groupA and a finite surjective morphismπ : Z → X with Z
integral andX normal, connected, we have transfer maps

π∗ : H
i
et(Z,A)→ Hi

et(X,A)

for all i ≥ 0 (see [MVW], 6.11, 6.21). The groupH1
et(Z,A) classifies isomorphism

classes of étaleA-torsors (i.e., principal homogeneous spaces) over the schemeZ. We
are going to construct a functor

π∗ : PHS(Z,A) −→ PHS(X,A)

from the category of étaleA-torsors onZ to the category of étaleA-torsors onX ,
which induces the transfer mapπ∗ : H1

et(Z,A)→ H1
et(X,A) above on isomorphism

classes.
We recall how to add and subtract torsors. For an abelian groupA andA-torsorsT1,
T2 on a schemeY , define

T1 + T2
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to be the quotient scheme ofT1 ×Y T2 by the action ofA given by(t1, t2) + a =
(t1 + a, t2 − a). It carries the structure of anA-torsor by setting

(t1, t2) + a := (t1 + a, t2) (= (t1, t2 + a)).

The functor

+ : PHS(Y,A)× PHS(Y,A) −→ PHS(Y,A), (T1, T2) 7−→ T1 + T2,

lifts the addition inH1
et(Y,A) to torsors (cf. [Mi], III, Rem. 4.8 (b)). Note that “+”

is associative and commutative up to natural functor isomorphisms. In particular, we
can multiply a torsor by any natural numberm, puttingm · T = T + · · · + T (m
times). IfmA = 0, then we have a natural isomorphism of torsors

m · T ∼−→ Y ×A, (t1, . . . , tm) 7→ (t2 − t1) + · · ·+ (tm − t1) ∈ A, (3)

whereY × A is the trivialA-torsor onY representing the constant sheafA overY .
Hereti − tj denotes the unique elementa ∈ A with ti = tj + a.

Furthermore, given a torsorT , define(−T ) to be the torsor which is isomorphic toT
as a scheme and on whicha ∈ A acts as−a. This yields a functor

(−1) : PHS(Y,A) −→ PHS(Y,A), T 7−→ (−T ),

which lifts multiplication by(−1) fromH1
et(Y,A) to an endofunctor ofPHS(Y,A).

We have a natural isomorphism of torsors

T + (−T ) ∼−→ Y ×A, (t1, t2) 7→ t1 − t2 ∈ A. (4)

Now letπ : Z → X be finite and surjective,Z integral,X normal, connected, and let
T be anA-torsor onZ. For every pointx ∈ X , the base changeZ×XXsh

x is a product
of strictly henselian local schemes. Therefore we find an étale cover(Ui → X)i∈I of
X such thatT trivializes over the pull-back étale cover(π−1(Ui)→ Z)i∈I of Z.
Next choose a pseudo-Galois coveringπ̃ : Z̃ → X dominatingZ → X . Recall
that this means thatk(Z̃)|k(X) is a normal field extension and that the natural map
AutX(Z̃) → Autk(X)(k(Z̃)) is bijective (cf. [SV1], Lemma 5.6). Letπin : Xin →
X be the quotient schemẽZ/G, whereG = AutX(Z̃). ThenXin is the normalization
of X in the maximal purely inseparable subextensionk(X)in/k(X) of k(Z̃)/k(X).
Consider the object

T̃ :=
∑

ϕ∈MorX(Z̃,Z)

ϕ∗(T ) ∈ PHS(Z̃, A),

which is defined up to unique isomorphism. Starting from any trivialization ofT over
(π−1(Ui) → Z)i∈I , we obtain a trivialization of the restriction of̃T to (π̃−1(Ui) →
Z̃)i∈I of the form

T̃ |π̃−1(Ui)
∼= π̃−1(Ui)×A,
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whereG = AutX(Z̃) acts on the right hand side in the canonical way onπ̃−1(Ui)
and trivially onA. Therefore the quotient schemẽT /G is anA-torsor onZ̃/G = Xin

in a natural way. SinceXin → X is a topological isomorphism,̃T /G comes by base
change from a uniqueA-torsorT ′ onX .

DEFINITION 2.1. The push-forwardA-torsorπ∗(T ) onX is defined by

π∗(T ) = [k(Z) : k(X)]in · T ′.

The assignmentT 7→ π∗(T ) defines a functor

π∗ : PHS(Z,A) −→ PHS(X,A).

The functorπ∗ is additive in the sense that it commutes with the functors “+” and
“(−1)” up to a natural functor isomorphism.

Let T ∈ PHS(Z,A) and assume that there exists a sections : Z → T to the
projectionT → Z (soT is trivial ands gives a trivialization). Let againπ : Z → X
be finite and surjective,Z integral,X normal, connected. Then

T̃ :=
∑

ϕ∈MorX (Z̃,Z)

ϕ∗(T ) ∈ PHS(Z̃, A)

has the canonical section
∑
ϕ∈MorX (Z̃,Z) ϕ

∗(s) over Z̃. It descends to a section of

T /G over Z̃/G = Xin. Descending toX and multiplying by[k(Xin) : k(X)], we
obtain a section

π∗(s) : X → π∗(T ).
In other words, we obtain a map

π∗ : Γ(Z, T ) −→ Γ(X, π∗(T ));

hence every trivialization ofT gives a trivialization ofπ∗(T ) in a natural way.

In order to see thatπ∗ induces the transfer mapπ∗ : H1
et(Z,A) → H1

et(X,A) after
passing to isomorphism classes, we formulate the construction of π∗ on the level of
Čech1-cocycles. As explained above, we find an étale cover(Ui → X)i∈I such that
T trivializes over the étale cover(π−1(Ui)→ Z)i∈I of Z. We fix a trivialization and
obtain aČech1-cocycle

a = (aij ∈ Γ(π−1(Ui ×X Uj), A))

over(π−1(Ui)→ Z)i∈I which definesT . As before choose a pseudo-Galois covering
π̃ : Z̃ → X dominatingZ → X . Now for all i, j consider the element

∑

ϕ∈MorX(Z̃,Z)

ϕ∗(aij) ∈ Γ(π̃−1(Ui ×X Uj), A)
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which, by Galois invariance, lies in

Γ(π−1in (Ui ×X Uj), A) = Γ(Ui ×X Uj , A).

TheČech1-cocycle given by

[k(Z) : k(X)]in ·
( ∑

ϕ∈MorX (Z̃,Z)

ϕ∗(aij)
)
∈ Γ(Ui ×X Uj, A).

now defines a trivialization ofπ∗(T ) over(Ui → X)i∈I . Since the transfer map on
étale cohomology is defined oňCech cocycles in exactly this way (see [MVW], 6.11,
6.21), we obtain

LEMMA 2.2. Passing to isomorphism classes, the functorπ∗ : PHS(Z,A) →
PHS(X,A) constructed above induces the transfer homomorphism

π∗ : H
1
et(Z,A)→ H1

et(X,A).

If any finite subset of closed points ofX is contained in an affine open, then symmetric
powers exist, and another description of the push-forward for torsors is the following:
Associated with the finite morphismπ : Z → X of degreed, there is a section
sπ : X → Symd(Z/X) to the natural projectionSymd(Z/X) → X (see ([SV1],
p. 81). We denote the composite ofsπ with pr : Symd(Z/X) → Symd(Z) by Sπ.
Definingf : Z̃ → Symd(Z/X) by repeating each element inMorX(Z̃, Z) exactly
[k(Z) : k(X)]in-times, the diagram

Z̃ Symd(Z/X) Symd(Z)

X

f

π̃

pr

sπ
Sπ

commutes. For anA-torsorT → Z, thed-fold self-productT ×k · · · ×k T is an
Ad-torsor over thed-fold self-product ofZ in a natural way. Taking the quotient by
theAd−1-action

(a1, . . . , ad−1)(t1, . . . , td) = (t1 + a1, t2 − a1 + a2, t3 − a2 + a3, . . . , td − ad−1),
we obtain anA-torsor overZd. Dividing out the by the action of the symmetric group
Sd, we obtain anA-torsor overSymd(Z) and denote it bySymd

A(T ). We obtain
natural isomorphisms inPHS(Z̃, A):

[k(Z) : k(X)]in ·
∑

ϕ∈MorX (Z̃,Z)

ϕ∗(T ) ∼= (pr ◦ f)∗ Symd
A(T )

∼= π̃∗ ◦ (pr ◦ sπ)∗ Symd
A(T ).
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By our construction ofπ∗(T ) we obtain

LEMMA 2.3. We have a natural isomorphism inPHS(X,A):

π∗(T ) ∼= S∗π(Sym
d(T )),

whereSπ = pr ◦ sπ : X → Symd(Z).

Assume now thatX is regular andY arbitrary. The group of finite correspondences
Cor(X,Y ) is defined as the free abelian group on the set of integral subschemesZ ⊂
X×Y which project finitely and surjectively to a connected component ofX . For such
a Z, we definep[Z→X] ∗ : PHS(Z,A) → PHS(X,A) by extending (ifX is not
connected) the push-forward torsor defined above in a trivial way to those connected
components ofX which are not dominated byZ. We consider the functor

[Z]∗ = p[Z→X] ∗ ◦ p∗[Z→Y ] : PHS(Y,A) −→ PHS(X,A).

Using the operations “+” and “(−1)” we extend this construction to arbitrary finite
correspondences.

DEFINITION 2.4. Let X be regular,Y arbitrary andα =
∑
niZi ∈ Cor(X,Y ) a

finite correspondence. Then

α∗ : PHS(Y,A) −→ PHS(X,A)

is defined by setting
α∗(T ) :=

∑
ni[Zi]

∗(T ).

Using the isomorphism (4) above, we immediately obtain

LEMMA 2.5. For α1, α2 ∈ Cor(X,Y ) andT1, T2 ∈ PHS(Y,A), n1, n2 ∈ Z, we
have a natural isomorphism

(α1 + α2)
∗(n1T1 + n2T2) ∼= n1α

∗
1(T1) + n1α

∗
2(T1) + n2α

∗
1(T2) + n2α

∗
2(T2).

If X andY are regular andZ is arbitrary, we have a natural composition law

Cor(X,Y )× Cor(Y, Z) −→ Cor(X,Z), (α, β) 7→ β ◦ α,

(see [MVW], Lecture 1). A straightforward but lengthy computation unfolding the
definitions shows
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PROPOSITION2.6. LetX andY be regular andZ arbitrary. Letα ∈ Cor(X,Y ) and
β ∈ Cor(Y, Z). Then, for anyT ∈ PHS(Z,A), we have a canonical isomorphism

α∗(β∗(T )) ∼= (β ◦ α)∗(T ).

Finally, assume thatmA = 0 for some natural numberm. Then (using the isomor-
phism (3) above), we have for anyα, β ∈ Cor(X,Y ), T ∈ PHS(Y,A), a natural
isomorphism

(α+mβ)∗(T ) ∼= α∗(T ).

Therefore, we have anA-torsor

ᾱ∗(T ) ∈ PHS(X,A)

given up to unique isomorphism for anȳα ∈ Cor(X,Y ) ⊗ Z/mZ. In other words,
we obtain the

LEMMA 2.7. Assume thatmA = 0, and letα, β ∈ Cor(X,Y ) have the same image
in Cor(X,Y )⊗Z/mZ. Then there is a natural isomorphism of functors

α∗ ∼= β∗ : PHS(Y,A)→ PHS(X,A).

For a regular connected curveC we consider the subgroupH1
t (C,A) ⊆ H1

et(C,A)
of tame cohomology classes (corresponding to those continuous homomorphisms
πet
1 (C)→ A which factor through the tame fundamental groupπt1(C̄, C̄ −C), where
C̄ is the unique regular compactification ofC).
For a general schemeX overk we call a cohomology class ina ∈ H1

et(X,A) curve-
tame (or just tame) if for any morphismf : C → X with C a regular curve, we have
f∗(a) ∈ H1

t (C,A). The tame cohomology classes form a subgroup

H1
t (X,A) ⊆ H1

et(X,A).

The groups coincide ifX is proper or ifp = 0 or if p > 0 andA is p-torsion free,
wherep is the characteristic of the base fieldk.

DEFINITION 2.8. We call an étaleA-torsorT onX tameif its isomorphism class lies
in H1

t (X,A) ⊆ H1
et(X,A).

LEMMA 2.9. Let Z be integral,X normal, connected,π : Z → X finite, surjective
andf : Z → Y any morphism. LetT be a tame torsor onY . Thenπ∗(f∗(T )) is a
tame torsor onX .
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Proof. By definition,f∗ preserves curve-tameness. So we may assumeZ = Y , f =
id. Again by the definition of curve-tameness and using Proposition 2.6, we may
reduce to the case thatX is a regular curve. Since étale cohomology commutes with
direct limits of coefficients, we may assume thatA is a finitely generated abelian
group. Furthermore, we may assume thatchar(k) = p > 0 andA = Z/prZ, r ≥ 1.
Let Z̄ be the canonical compactification ofZ, i.e., the unique proper curve overk
which containsZ as a dense open subscheme and such that all points ofZ̄ r Z are
regular points ofZ̄. By the definition of tame coverings of curves,T extends to a
Z/prZ-torsor onZ̄. Hence alsoπ∗(T ) extends to the canonical compactificationX̄
of X and so is tame.

PROPOSITION2.10. Let X̄ be a proper and regular scheme overk and letX ⊂ X̄
be a dense open subscheme. Letp = char(k) > 0. Then for anyr ≥ 1 the natural
inclusion

H1
et(X̄,Z/p

rZ) →֒ H1
et(X,Z/p

rZ)

induces an isomorphism

H1
et(X̄,Z/p

rZ) = H1
t (X̄,Z/p

rZ)
∼−→ H1

t (X,Z/p
rZ) ⊆ H1

et(X,Z/p
rZ).

Proof. LetT0 be any connected component of a tameZ/prZ-torsorT onX . Then the
morphismT0 → X is curve-tame in the sense of [KS], §4, andT0 is the normalization
of X in the abelian field extension ofp-power degreek(T0)/k(X). By [KS], Thm.
5.4. (b),T0 → X is numerically tamely ramified alonḡX rX . This means that the
inertia groups inGal(k(T0)/k(X)) of all pointsx̄ ∈ X̄ rX are of order prime top,
hence trivial. ThereforeT0, and thusT extends toX̄.

COROLLARY 2.11. Let ∆n = Spec(k[T0, . . . , Tn]/
∑
Ti = 1) be then-dimensional

standard simplex overk and letA be an abelian group. Then

H1
t (∆

n, A) ∼= H1
et(k,A).

In particular,H1
t (∆

n, A) = 0 if k is separably closed.

Proof. Since tame cohomology commutes with direct limits of coefficients, and since
H1

et(∆
n,Z) = 0, we may assume thatA ∼= Z/mZ for somem ≥ 1. If p ∤ m, we

obtain:
H1
t (∆

n,Z/mZ) ∼= H1
et(A

n,Z/mZ) ∼= H1
et(k,Z/mZ).

If p = char(k) > 0 andm = pr, r ≥ 1, Proposition 2.10 yields

H1
t (∆

n,Z/prZ) ∼= H1
t (A

n,Z/prZ)
∼← H1

t (P
n,Z/prZ) = H1

et(P
n,Z/prZ).

Finally note thatH1
et(P

n,Z/prZ) ∼= H1
et(k,Z/p

rZ).
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In the following, letk be an algebraically closed field of characteristicp ≥ 0 and let
X be a separated scheme of finite type overk. LetHS

i (X,Z/mZ) denote the mod-m
Suslin homology, i.e., thei-th homology group of the complex

Cor(∆•, X)⊗Z/mZ.

LetA be an abelian group withmA = 0. We are going to construct a pairing

HS
1 (X,Z/mZ)×H1

t (X,A) −→ A

as follows: letT → X be a tameA-torsor representing a class inH1
t (X,A) and let

α ∈ Cor(∆1, X) be a finite correspondence representing a1-cocycle in the mod-m
Suslin complex. Then

α∗(T )
is a torsor over∆1. Sinceα is a cocycle modulom, (0∗ − 1∗)(α) is of the formm · z
for somez ∈ Cor(∆0, X) = Z(X(k)). We therefore obtain a canonical identification

Φtaut : 0
∗(α∗(T )) ∼−→ 1∗(α∗(T ))

of A-torsors over∆0 = Spec(k). Furthermore, by Corollary 2.11, the tame torsor
α∗(T ) on∆1 is trivial, hence a disjoint union of copies of∆1. By parallel transport,
we obtain another identification

Φpar : 0∗(α∗(T )) ∼−→ 1∗(α∗(T )).

Hence there is a uniqueγ(α, T ) ∈ A such that

Φpar = (translation byγ(α, T )) ◦ Φtaut .

PROPOSITION2.12. The elementγ(α, T ) ∈ A only depends on the class ofT in
H1
t (X,A) and on the class ofα in HS

1 (X,Z/mZ). We obtain a bilinear pairing

〈·, ·〉 : HS
1 (X,Z/mZ)×H1

t (X,A) −→ A.

Proof. ReplacingT by another torsor isomorphic toT does not change anything. The
nontrivial statement is that〈α, T 〉 only depends on the class ofα in HS

1 (X,Z/mZ).
Forβ ∈ Cor(∆1, X), we have

〈α+mβ, T 〉 = 〈α, T 〉+m〈β, T 〉 = 〈α, T 〉.

It therefore remains to show that

〈∂∗(Φ), T 〉 = 0,

for all Φ ∈ Cor(∆2, X), where∂i : ∆1 → ∆2, i = 0, 1, 2, are the face maps
and∂∗(Φ) = Φ ◦ ∂0 − Φ ◦ ∂1 + Φ ◦ ∂2. Considering∂ = ∂0 − ∂1 + ∂2 as a
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finite correspondence from∆1 to ∆2, it represents a cocycle in the singular complex
Cor(∆•,∆2). Proposition 2.6 implies that

〈∂∗(Φ), T 〉 = 〈Φ ◦ ∂, T 〉 = 〈∂,Φ∗(T )〉.

By Corollary 2.11, the tame torsorΦ∗(T ) is trivial on ∆2. Hence〈∂,Φ∗(T )〉 =
0.

In the following, we use the notationπt,ab1 (X) := H1
t (X,Q/Z)

∗. If X is connected,
thenπt,ab1 (X) is the abelianized (curve-)tame fundamental group ofX , see [KS], §4.

DEFINITION 2.13. Form ≥ 1 we define

recX : HS
1 (X,Z/mZ) −→ πt,ab1 (X)/m

as the homomorphism induced by the pairing of Proposition 2.12 forA = Z/mZ

combined with the isomorphismH1
t (X,Z/mZ)∗ ∼= πt,ab1 (X)/m.

The statement of the next lemma immediately follows from thedefinition ofrec.

LEMMA 2.14. Let f : X ′ → X be a morphism of separated schemes of finite type
overk. Then the induced diagram

HS
1 (X

′,Z/mZ) πt,ab1 (X ′)/m

HS
1 (X,Z/mZ) πt,ab1 (X)/m

recX′

f∗ f∗

recX

commutes.

3 RIGID ČECH COMPLEXES

We consider étale sheavesF on the categorySch/k of separated schemes of finite
type over a fieldk. By a result of M. Artin,Čech cohomology̌H•(X,F ) and sheaf
cohomologyH•et(X,F ) coincide in degree≤ 1 and in arbitrary degree ifX is quasi-
projective (cf. [Mi], III Thm. 2.17). Comparing thěCech complex for a coveringU
and that for a finer coveringV , the refinement homomorphism

Č•(U , F ) −→ Č•(V , F )
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is canonical only up to chain homotopy and hence only the induced mapȞ•(U , F )
→ Ȟ•(V , F ) is well-defined. We can remedy this problem in the spirit of Friedlander
[Fr], chap.4, by using rigid coverings:
We fix an algebraic closurēk/k. A rigid étale coveringU of X is a family of pointed
separated étale morphisms

(Ux, ux) −→ (X, x), x ∈ X(k̄),

with Ux connected andux ∈ Ux(k̄) mapping tox. For an étale sheafF the rigidČech
complex is defined by

Č•(U , F ) : Čn(U , F ) =
∏

(x0,...,xn)∈X(k̄)n+1

Γ(Ux0 ×X · · · ×X Uxn , F )

with the usual differentials. It is clear what it means for a rigid coveringV to be a
refinement ofU . Because the marked points map to each other, there is exactly one
refinement morphism, hence we obtain a canonical refinement morphism on the level
of complexes

Č•(U , F )→ Č•(V , F ).
The set of rigid coverings is cofiltered (form the fibre product for eachx ∈ X(k̄) and
restrict to the connected components of the marked points).Therefore we can define
the rigidČech complex ofX with values inF as the filtered direct limit

Č•(X,F ) := lim−→U
Č•(U , F ),

whereU runs through all rigid coverings ofX . Note that the rigidČech complex
depends on the structure morphismX → k and not merely on the schemeX .
Forgetting the marking, we can view a rigid covering as a usual covering. Every
covering can be refined by a covering which arises by forgetting the marking of a
rigid covering. Hence the cohomology of the rigidČech complex coincides with the
usualČech cohomology ofX with values inF .

For a morphismf : Y → X and a rigidČech coveringU/X , we obtain a rigid
Čech coveringf∗U/Y by taking base extension toY and restricting to the connected
components of the marked points, and in the limit we obtain a homomorphism

f∗ : Č•(X,F ) −→ Č•(Y, F ).

LEMMA 3.1. If π : Y → X is quasi-finite, then the rigid coverings of the formπ∗U
are cofinal among the rigid coverings ofY .

Proof. This is an immediate consequence of the fact that a quasi-finite and separated
schemeY over the spectrumX of a henselian ring is of the formY = Y0⊔Y1⊔. . .⊔Yr
with Y0 → X not surjective andYi → X finite surjective withYi the spectrum of a
henselian ring,i = 1, . . . , r, cf. [Mi], I, Thm. 4.2.
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LEMMA 3.2. If F is qfh-sheaf onSch/k, then for anyn ≥ 0 the presheaf̌C
n
(−, F )

given by
X 7−→ Čn(X,F )

is aqfh-sheaf. The obvious sequence

0→ F → Č
0
(−, F )→ Č

1
(−, F )→ Č

2
(−, F )→ · · ·

is exact as a sequence of étale (and hence also ofqfh) sheaves.

Proof. We show that eacȟC
n
(−, F ) is a qfh-sheaf. For this, letπ : Y → X be a

qfh-covering, i.e., a quasi-finite universal topological epimorphism. We denote the
projection byΠ : Y ×X Y → X . By Lemma 3.1, we have to show that the sequence

lim−→U
Čn(U , F )→ lim−→U

Čn(π∗U , F )⇒ lim−→U
Čn(Π∗U , F )

is an equalizer, whereU runs through the rigid coverings ofX . Since filtered colimits
commute with finite limits, it suffices to show the exactness for a single, sufficiently
smallU . This, however, follows from the assumption thatF is aqfh-sheaf.

Finally, the exactness of0 → F → Č
0
(−, F ) → Č

1
(−, F ) → · · · as a sequence of

étale sheaves follows by considering stalks.

Beingqfh-sheaves, the sheavesF andČ
n
(−, F ) admit transfer maps, see [SV1], §5.

For later use, we make the relation between the transfers ofF and ofČ
n
(−, F ) ex-

plicit: Let Z be integral,X regular andπ : Z → X finite and surjective. LetF be a
qfh-sheaf onSch/k. Forx ∈ X(k̄) we have

Xsh
x ×X Z =

∐

z∈π−1(x)

Zshz ,

whereπ−1(x) denotes the set of morphismsz : Spec(k̄) → Z with π ◦ z = x.
For sufficiently small étale(Ux, ux) → (X, x), the set of connected components of
Ux ×X Z is in 1-1-correspondence with the setπ−1(x), and to each family of étale
morphisms

(Vz , vz) −→ (Z, z), z ∈ π−1(x),
there is (after possibly makingUx smaller) a unique morphism

Ux ×X Z −→
∐

z∈π−1(x)

Vz,

overZ, which sends the connected component associated withz of Ux ×X Z to Vz ,
and the point(ux, z) to vz.

In this way we obtain, for finitely many points(x0, . . . , xn), n ≥ 0, and for every
family

(Vzi,vzi ) −→ (Z, zi), zi ∈ π−1(xi),
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and sufficiently small chosen

(Uxi , uxi) −→ (X, xi), i = 0, . . . , n,

a homomorphism
∏

(z0,...,zn)

zi∈π−1(xi)

Γ
(
Vz0 ×Z · · · ×Z Vzn , F

)
−→ Γ

(
Ux0 ×X · · · ×X Uxn ×X Z, F

)
.

SinceF is aqfh-sheaf, we can compose this with the transfer map associatedwith the
finite morphism

Ux0 ×X · · · ×X Uxn ×X Z → Ux0 ×X · · · ×X Uxn .

Forming for fixedn the product over all(x0, . . . , xn) ∈ X(k̄)n+1 and passing to the
limit over all rigid coverings, we obtain the transfer homomorphism

π∗ : Č
•(Z, F ) −→ Č•(X,F ).

Passing to cohomology, we obtain the usual transfer on étalecohomology in degree0
and1, and in any degree if the schemes are quasi-projective.

Next we give the pairing

〈·, ·〉 : HS
1 (X,Z/mZ)×H1

t (X,A) −→ A.

constructed in Proposition 2.12 fork algebraically closed and an abelian groupAwith
mA = 0 the following interpretation in terms of the rigiďCech complex:

Let a ∈ HS
1 (X,Z/mZ) andb ∈ H1

t (X,A) be given, and letα ∈ Cork(∆
1, X) and

β ∈ ker(Č1(X,A)
d→ Č2(X,A)) be representing elements. Note that(0∗−1∗)(α) ∈

mCor(∆0, X) by assumption. Consider the diagram

Č0(X,A) Č1(X,A) Č2(X,A)

Č0(∆1, A) Č1(∆1, A) Č2(∆1, A)

A Č0(∆0, A) Č1(∆0, A) Č2(∆0, A)

d d

d d

d d

α∗ α∗ α∗

0∗ − 1∗ 0∗ − 1∗ 0∗ − 1∗

Sinceβ represents a tame torsorT onX , α∗(β) represents the torsorα∗(T ), which
is tame by Lemma 2.9. By Corollary 2.11, there existsγ ∈ Č0(∆1, A) with dγ =
α∗(β). Since

d(0∗ − 1∗)(γ) = (0∗ − 1∗)α∗(β) = 0,
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we conclude that(0∗ − 1∗)(γ) lies in

A = H0(∆0, A) = ker(Č0(∆0, A)
d→ Č1(∆0, A)).

It is easy to verify that the assignment

〈·, ·〉 : (a, b) 7−→ (0∗ − 1∗)(γ) ∈ A

does not depend on the choices made. By the explicit geometric relation between
Čech 1-cocycles and torsors, and since our construction of finite push-forwards of
torsors is compatible with the construction of transfers for qfh-sheaves given in [SV1],
§5, we see that the pairing constructed above coincides withthe one constructed in
Proposition 2.12.
Finally, let

A →֒ I0 → I1 → I2 (5)

be a (partial) injective resolution of the constant sheafA in the category ofZ/mZ-
module sheaves on(Sch/k)qfh. Let φ : (Sch/k)qfh → (Sch/k)et denote the natural
map of sites. Sinceφ∗ is exact,φ∗ sends injective sheaves to injective sheaves. By
[SV1], Thm. 10.2, we haveR0φ∗(A) = A andRiφ∗(A) = 0 for i ≥ 1. Hence (5)
is also a partial resolution ofA by injective, étale sheaves ofZ/mZ-modules. We
choose a quasi-isomorphism

[0→ Č
0
(−, A)→ Č

1
(−, A)→ Č

2
(−, A)] −→ [0→ I0 → I1 → I2]

of truncated complexes ofqfh-sheaves. SincěCech- and étale cohomology agree
in dimension≤ 1, the induced map on global sections is a quasi-isomorphism of
truncated complexes of abelian groups. Hence the pairing ofProposition 2.12 can
also be obtained by the same procedure as above but using the diagram

I0(X) I1(X) I2(X)

I0(∆1) I1(∆1) I2(∆1)

A I0(∆0) I1(∆0) I2(∆0).

d d

d d

d d

α∗ α∗ α∗

0∗ − 1∗ 0∗ − 1∗ 0∗ − 1∗

By [SV1], Theorem 10.7, the same argument applies with a partial injective resolution
of the constant sheafA in the category ofZ/mZ-module sheaves on(Sch/k)h.

4 THE CASE OF SMOOTH CURVES

In this section we prove Theorem 1.1 in the case thatX = C is a smooth curve.
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Let k be an algebraically closed field of characteristicp ≥ 0, and letC be a smooth,
but not necessarily projective, curve overk. Let the semi-abelian varietyA be the
generalized Jacobian ofC with respect to the modulus given by the sum of the points
on the boundary of the regular compactificationC̄ of C (cf. [Se], Ch. 5). The group
A(k) is the subgroup of degree zero elements of the relative Picard groupPic(C̄, C̄r
C). By [SV1], Thm. 3.1 (see [Li], for the caseC = C̄), there is an isomorphism

HS
0 (C,Z)

0 := ker(HS
0 (C,Z)

deg−→ Z) ∼= A(k),

in particular,A(k) is a quotient of the group of zero cycles of degree zero onC.
From the coefficient sequence together with the divisibility of HS

1 (C,Z) (which is
isomorphic tok× if C is proper and zero otherwise), we obtain an isomorphism

HS
1 (C,Z/mZ)

δ−→
∼ mH

S
0 (C,Z)

∼= mA(k). (6)

After fixing a closed pointP0 of C, the morphismC → A, P 7→ P − P0, is univer-
sal for morphisms ofC to semi-abelian varieties, i.e.,A is the generalized Albanese
variety ofC ([Se], V, Th. 2).
Consider them-multiplication mapA m→ A. Its maximal étale subcovering̃A → A
is the quotient ofA by the connected component of the finite group schememA (if
(p,m) = 1, the connected component is trivial). The projectionA → Ã induces an
isomorphismA(k) ∼→ Ã(k) on rational points, and we identifyA(k) andÃ(k) via
this isomorphism. With respect to this identification, the projectionÃ(k) → A(k) is
them-multiplication map onA(k).
By [Se], Ch. IV, C̃ := C ×A Ã is the maximal abelian tame étale covering ofC
with Galois group annihilated bym. BecauseAutA(Ã) ∼= mA(k), we obtain an
isomorphism

Hom(mA(k), A) τ−→
∼

H1
t (C,A) (7)

for any finite abelian groupA with mA = 0.

THEOREM 4.1. For any finite abelian groupA with mA = 0, the diagram

HS
1 (C,Z/mZ) × H1

t (C,A) A

mA(k) × Hom(mA(k), A) A

〈 , 〉

∼

δ ∼ τ
eval

where〈 , 〉 is the pairing from Proposition 2.12 andeval is the evaluation map, com-
mutes. In particular, the upper pairing is perfect and the induced homomorphism
HS

1 (C,Z/mZ)→ πt,ab1 (C)/m is an isomorphism.
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Proof. We have to show thatφ(δ(ζ)) = 〈ζ, τ(φ)〉 for any ζ ∈ HS
1 (C,Z/mZ) and

anyφ ∈ Hom(mA(k), A). By functoriality, it suffices to consider the universal case
A = mA(k), φ = id. In this caseτ(id) is the torsor̃π : C̃ → C.
Let C′ be the regular compactification ofC. By [SV1], Thm. 3.1, δ(ζ) ∈
mH

S
0 (C,Z) = mA(k) is the class[z] of somez ∈ Z0(C) (the group of zero-cycles

onC) such that
mz = γ∗(0)− γ∗(1)

for some finite morphismγ : C′ → P1 with C′ r C ⊂ γ−1(∞). The diagram

C′ r γ−1(∞) C C′

∆1 P1

γ|C′rγ−1(∞)
γ

shows thatγ induces a finite correspondence, sayg, from∆1 to C. The class ofg in
HS

1 (C,Z/mZ) is a pre-image ofδ(ζ) underHS
1 (C,Z/mZ)

∼→ mH
S
0 (C,Z), i.e.,ζ

is represented byg. It therefore suffices to show that

[z] = 〈g, C̃〉.

Let d be the degree ofγ andγ∗(0) =
∑d
i=1 Pi, γ

∗(1) =
∑d

i=1Qi. Each point in
γ∗(0) andγ∗(1) occurs with multiplicity divisible bym, in particulard = mr for
some integerr. After reindexing, we may assume thatPi = Pj andQi = Qj for
i ≡ j mod r, hence

z =

r∑

i=1

Pi −
r∑

i=1

Qi.

On the level of closed points,̃C = C ×A Ã can be identified with the set ofa ∈
Ã(k) = A(k) such thatma = P − P0 for some pointP ∈ C (a projects toP in C,
i.e., π̃(a) = P ). ThemA(k)-principal homogeneous space0∗g∗C̃ can be identified
with the quotient of the set

d∏

i=1

π̃−1(Pi)

by the action ofmA(k)d−1 given by

(β1, . . . , βd−1)(a1, . . . , ad) = (a1 + β1, a2 − β1 + β2, . . . , ad − βd−1).

We fix pointsa1, . . . , ad ∈ C̃ overP1, . . . , Pd subject to the conditionai = aj for
Pi = Pj . Then0∗g∗C̃ is identified with the quotient of the set

(a1 + mA(k))× · · · × (ad + mA(k))
by the action ofmA(k)d−1. Since eachai occurs with multiplicity divisible bym, the
trivialization0∗g∗(C̃)

∼→ mA(k) given by

(a1 + α1, . . . , ad + αd) 7−→ α1 + · · ·+ αd ∈ mA(k)
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does not depend on the choice of theai. We do the same with1∗g∗(C̃) by choosing
bi ∈ C̃ overQi. Then we see that the tautological identificationΦtaut : 0∗g∗(C̃)

∼→
1∗g∗(C̃) is given by

(a1 + α1, . . . , ad + αd) 7−→ (b1 + α1, . . . , bd + αd).

Now consider the morphism

Σ : Symd(C) −→ A, (x1, . . . , xd) 7−→ [
∑

(xi − P0)].

Associated with themA(k)-torsor C̃ over C, we have themA(k)-torsor
Symd

mA(k)(C̃) over Symd(C) (cf. the paragraph preceding Lemma 2.3). The
commutative diagram

Symd
mA(k)(C̃) Ã

Symd(C) A

Σ

Σ

induces a map (hence an isomorphism) ofmA(k)-torsorsSymd
mA(k)(C̃)

∼→ Ã ×A
Symd(C). Consider the morphismSg : ∆1

k → Symd(C) associated with the finite
correspondenceg. Since the generalized Jacobian of∆1

k
∼= A1

k is Spec(k), the com-
posite

∆1
k

Sg−→ Symd(C)
Σ−→ A

is constant with valuea := [
∑d
i=1(Pi − P0)] = [

∑d
i=1(Qi − P0)] ∈ A(k). By

Lemma 2.3, we obtain an isomorphism

g∗(C̃) = S∗g(Sym
d(C̃)) = Σ∗S∗g Ã = ∆1

k × π̃−1(a)

(giving a trivialization after choosing a point iñπ−1(a)). On the fibre over0 it is given
by

(a1 + α1, . . . , ad + αd) 7−→
d∑

i=1

(ai + αi) ∈ π̃−1(a) ⊂ Ã

and similarly on the fibre over1. We conclude thatΦpar ◦ Φ−1taut is translation by

d∑

i=1

(ai − bi) =
r∑

i=1

m(ai − bi) =
r∑

i=1

[Pi −Qi] = [z].

This concludes the proof.

5 THE BLOW-UP SEQUENCES

All schemes in this section are separated schemes of finite type over the spectrum of a
perfect fieldk. A curve on a schemeX is a closed one-dimensional subscheme. The
normalization of a curveC is denoted bỹC.
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Now let

Z ′ X ′

Z X

π

i

be an abstract blow-up square, i.e., a cartesian diagram of schemes such thatπ :
X ′ → X is proper,i : Z → X is a closed embedding andπ induces an isomorphism
(X ′ r Z ′)red

∼→ (X r Z)red.

PROPOSITION5.1. Given an abstract blow-up square and an abelian groupA, assume
thatπ is finite orA is torsion. Then there is a natural exact sequence

0→ H0
et(X,A)→ H0

et(X
′, A)⊕H0

et(Z,A)→ H0
et(Z

′, A)

δ→ H1
t (X,A)→ H1

t (X
′, A)⊕H1

t (Z,A)→ H1
t (Z

′, A).

Proof. We call an abstract blow-up square trivial, ifi is surjective (i.e.,sred is an
isomorphism) or ifπred : X ′red → Xred has a section. Every abstract blow-up square
with X a connected regular curve is trivial.
Now let an arbitrary abstract blow-up square be given. IfA is torsion, the proper base
change theorem implies (cf. [Ge2], 3.2 and 3.6) that we have along exact sequence

· · · → Hi
et(X,A)→ Hi

et(X
′, A)⊕Hi

et(Z,A)→ Hi
et(Z

′, A)→ Hi+1
et (X,A)→ · · ·

If π is finite, the same is true for arbitraryA sinceπ∗ is exact. If the blow-up square is
trivial, this long exact sequence splits into short exact sequences0 → Hi

et(X,A) →
Hi

et(X
′, A)⊕Hi

et(Z,A)→ Hi
et(Z

′, A)→ 0 for all i.

Next we show the exact sequence of the proposition. We omit the coefficientsA
and putH0

t (X) = H0
et(X). We first show, that the image of the boundary mapδ :

H0
et(Z

′) → H1
et(X) has image inH1

t (X), thus showing the existence ofH0
t (Z

′) →
H1
t (X) and, at the same time, the exactness of the sequence atH1

t (X). Let C̃ → X
be the normalization of a curve inX . The base change

Z ′
C̃

X ′
C̃

ZC̃ C̃

π̃

ĩ

of our abstract blow-up square tõC is a trivial abstract blow-up square. Therefore,
for anyα ∈ H0

et(Z
′), the pull-back ofα toH0

et(Z
′
C̃
) lies in the image ofH0

et(X
′
C̃
)⊕

H0
et(ZC̃)→ H0

et(Z
′
C̃
) and has therefore trivial image underδ : H0

et(Z
′
C̃
)→ H1

et(C̃).
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Therefore,δ(α) ∈ H1
et(X) has trivial image inH1

et(C̃) for every curveC ⊂ X , in
particular, it lies inH1

t (X).
It remains to show exactness atH1

t (X
′)⊕H1

t (Z). Letα be in this group with trivial
image inH1

t (Z
′). Then there existsβ ∈ H1

et(X) mapping toα and it remains to show
thatβ lies in the subgroupH1

t (X). But this is clear, because for every curveC ⊂ X

we haveH1
t (C̃) = ker(H1

t (X
′
C̃
)⊕H1

t (ZC̃)→ H1
t (Z

′
C̃
)).

PROPOSITION5.2. Given an abstract blow-up square

Z ′ X ′

Z X

π

i

and an abelian groupA, there is a natural exact sequence of Suslin homology groups

HS
1 (Z

′, A)→ HS
1 (X

′, A)⊕HS
1 (Z,A)→ HS

1 (X,A)

δ→ HS
0 (Z

′, A)→ HS
0 (X

′, A)⊕HS
0 (Z,A)→ HS

0 (X,A)→ 0.

Proof. Consider the exact sequences

C•(Z
′, A) →֒ C•(X

′, A)⊕ C•(Z,A)→ C•(X,A)։ KA
•

and
C•(Z

′) →֒ C•(X
′)⊕ C•(Z)→ C•(X)։ K•,

whereKA
• andK• are defined to make the sequences exact. Since the complexes

C•(−) consist of free abelian groups, in order the show the statement of the proposi-
tion, it suffices to show thatHi(K•) = 0 for i ≤ 2. LetSm/k be the full subcategory
of Sch/k consisting of smooth schemes. ForY ∈ Sch/k we consider the presheaf
c(Y ) on Sm/k given byc(Y )(U) = Cor(U, Y ). Then, by [SV2], Thm. 5.2, 4.7 and
its proof, the sequence

0→ c(Z ′)→ c(X ′)⊕ c(Z) (π∗,i∗)→ c(X)

is exact andF := coker (π∗, i∗) has the property that, for anyU ∈ Sm/k of dimension
≤ 2 and anyx ∈ F (U), there exists a proper birational morphismφ : V → U
with V smooth such thatφ∗(x) = 0. Let F• be the complex of presheaves given by
Fn(U) = F (U ×∆n) with the obvious differentials and let(F•)Nis be the associated
complex of sheaves on(Sm/k)Nis. Then by [SS], Thm. 2.4, the Nisnevich sheaves

Hi((F•)Nis)

vanish fori ≤ 2. Evaluating atU = Spec(k) yields the result.
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Now assume thatk is algebraically closed. Let

rec1,X : HS
1 (X,Z/mZ)→ H1

t (X,Z/mZ)∗

be the reciprocity map constructed in Section 2 and let

rec0,X : HS
0 (X,Z/mZ)→ H0

et(X,Z/mZ)∗

be the homomorphism induced by the pairing

〈·, ·〉 : HS
0 (X,Z/mZ)×H0

et(X,Z/mZ) −→ Z/mZ

defined as follows: Givena ∈ HS
0 (X,Z/mZ) and b ∈ H0

et(X,Z/mZ), we
representa by a correspondenceα ∈ Cor(∆0, X) and put 〈a, b〉 = α∗(b) ∈
H0

et(∆
0,Z/mZ) ∼= Z/mZ. This is well-defined since the homomorphisms0∗, 1∗ :

H0
et(∆

1,Z/mZ)→ H0
et(∆

0,Z/mZ) agree.

LEMMA 5.3. For anym, rec0,X is an isomorphism.

Proof. For connectedX , we have the commutative diagram

HS
0 (X,Z/mZ) H0

et(X,Z/mZ)∗

HS
0 (k,Z/mZ) H0

et(k,Z/mZ)∗.

deg

rec0,X

≀

rec0,k

∼

Hence, for connectedX , it suffices by functoriality to consider the modm degree map.
In particular,rec0,X is surjective for arbitraryX and is an isomorphism ifdimX = 0.
If X is a smooth connected curve, thenHS

0 (X,Z) = Pic(X̄, X̄rX), whereX̄ is the
smooth compactification ofX (cf. [SV1], Thm. 3.1). The subgroupPic0(X̄, X̄ rX)
of degree zero elements is the group ofk-rational points of the Albanese ofX , and
hence divisible. Therefore,rec0,X is an isomorphism for connected, and hence for
all smooth curves. Considering the normalization morphismof an arbitrary scheme
of dimension1 and the exact sequences of Propositions 5.1 and 5.2, the five-lemma
shows thatrec0,X is a isomorphism fordimX ≤ 1.
It remains to show thatrec0,X is injective for arbitraryX . We may assumeX to be
connected. Leta ∈ ker(rec0,X) and letα ∈ Z0(X) be a representing0-cycle. Since
supp(α) is finite, we can find a connected1-dimensional closed subschemeZ ⊂ X
containingsupp(α) (use, e.g., [Mu], II §6 Lemma). Sincerec0,Z is injective anda is
in the image ofHS

0 (Z,Z/mZ)→ HS
0 (X,Z/mZ), we conclude thata = 0.

COROLLARY 5.4. Let k be an algebraically closed field and letX ∈ Sch/k be con-
nected. Then the kernel of the degree map

deg : HS
0 (X,Z) −→ HS

0 (k,Z)
∼= Z
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is divisible.

PROPOSITION5.5. Let k be algebraically closed and let

Z ′ X ′

Z X

i′

π′ π

i

be an abstract blow-up square. Then for any integerm ≥ 1 the diagram

HS
1 (X,Z/mZ) HS

0 (Z
′,Z/mZ)

H1
t (X,Z/mZ)∗ H0

et(Z
′,Z/mZ)∗,

δ

rec1,X

δ∗

rec0,X

commutes. Hereδ is the boundary map of Proposition 5.2 andδ∗ is the dual of the
boundary map of Proposition 5.1.

Proof. We have to show that the diagram

HS
1 (X,Z/mZ) × H1

t (X,Z/mZ) Z/mZ

HS
0 (Z

′,Z/mZ) × H0
et(Z

′,Z/mZ) Z/mZ

〈 , 〉

〈 , 〉

δ δ

commutes. Givena ∈ HS
1 (X,Z/mZ) andb ∈ H0

et(Z
′,Z/mZ), we choose a repre-

senting correspondenceα ∈ C1(X,Z/mZ) = Cor(∆1, X)⊗ Z/mZ in such a way
that it has a pre-imagêα ∈ C1(X

′,Z/mZ)⊕C1(Z,Z/mZ) (see the proof of Propo-
sition 5.2). By definition,δa ∈ HS

0 (Z
′,Z/mZ) is represented by a correspondence

γ ∈ C0(Z
′,Z/mZ) such that the diagram

∆0 ∆1

Z ′ X ′ ∐ Z

0− 1

γ

i′ − π′

α̂
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of correspondences commutes modulom. Next choose an injective resolution
Z/mZ → I• of Z/mZ in the category of sheaves ofZ/mZ-modules on(Sch/k)h
in order to compute the pairings (cf. the end of section 3). Consider the following
diagram

I0(X ′)⊕ I0(Z) I0(Z ′)

I1(X) I1(X ′)⊕ I1(Z) I1(Z ′)

I0(∆1) I1(∆1) I1(∆1) I2(∆1)

I0(∆0) I1(∆0) I1(∆0) I2(∆0)

α̂∗

d

i′∗−π′∗

d

(π∗,i∗)

α∗

i′∗−π′∗

α̂∗

d

0∗−1∗ 0∗−1∗ 0∗−1∗

d

0∗−1∗

d d

By the argument of [MVW] Lemma 12.7, the sequence

0→ F (X)→ F (X ′)⊕ F (Z)→ F (Z ′)

is exact for everyh-sheafF . Therefore the second line in the diagram is exact. The
proper base change theorem implies (cf. [Ge2], 3.2 and 3.6) that

I•(X) −→ I•(X ′)⊕ I•(Z) −→ I•(Z ′)
[1]−→

is an exact triangle inD(Ab). For the exact sequence of complexes

0→ I•(X)→ I•(X ′)⊕ I•(Z)→ I•(Z ′)→ coker• → 0,

this implies that the complexcoker• is exact. Therefore,b ∈ ker(I0(Z ′) → I1(Z ′))
has a pre-imagêβ ∈ I0(X ′)⊕ I0(Z). Then

dβ̂ ∈ ker(I1(X ′)⊕ I1(Z)→ I1(Z ′)),

and there exists a uniqueε ∈ I1(X) with (π∗, i∗)(ε) = dβ̂ representingδb ∈ H1
t (X).

We see that̂α∗(dβ̂) = α∗(ε). It follows that

d(α̂∗(β̂)) = α̂∗(dβ̂) = α∗(ε) ∈ ker(I1(∆1)
0∗−1∗−−−−→ I1(∆0)).

By definition of〈 , 〉, we obtain

〈a, δ(b)〉 = (0∗ − 1∗)α̂∗β̂ ∈ ker(I0(∆0)→ I1(∆0)) = Z/mZ.
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On the other hand,〈δa, b〉 = γ∗(b) ∈ H0
et(∆

0) is represented byγ∗β ∈ I0(∆0) and
the commutative diagram of correspondences above implies

γ∗β = γ∗(i′∗ − π′∗)(β̂) = (0∗ − 1∗)α̂∗β̂.

This finishes the proof.

PROPOSITION 5.6. Let X be a normal, generically smooth, connected scheme of
finite type over a fieldk and letM ⊆ H1

et(X,Z/mZ) be a finite subgroup. Then
there exists a regular curveC overk and a finite morphismφ : C → X such thatM
has trivial intersection with the kernel ofφ∗ : H1

et(X,Z/mZ)→ H1
et(C,Z/mZ).

Proof. For any normal schemeZ and dense open subschemeZ ′ ⊂ Z, the induced
mapH1

et(Z,Z/mZ)→ H1
et(Z

′,Z/mZ) is injective. Hence we may replaceX by an
open subscheme and assume thatX is smooth. LetY → X be the finite abelian étale
covering corresponding to the kernel ofπab

1 (X) ։ M∗. We have to find a regular
curveC and a finite morphismC → X such thatC ×X Y is connected.
Choose a separating transcendence basist1, . . . , td of k(X) over k. This yields a
rational mapX → Pdk. Let t be another indeterminate and letXt (resp.Yt) be the base
change ofX (resp.Y ) to the rational function fieldk(t). Consider the composition
φ : Yt → Xt → Pdk(t). Sincek(t) is Hilbertian [FJ], Thm. 12.10, we can find a

rational pointP ∈ Pdk(t) over whichφ is defined and such thatP has exactly one
pre-imageyt in Yt. The imagext ∈ Xt of yt has exactly one pre-image inYt. Let x
be the image ofxt in X . If trdegkk(x) = 1 putx′ = x, if trdegkk(x) = 0 (i.e.,x is
a closed point inX) choose anyx′ ∈ X with trdegkk(x

′) = 1 such thatx is a regular
point of the closure ofx′. In both cases the normalizationC of the closure ofx′ in X
is a regular curve with the desired property.

6 PROOF OF THE MAIN THEOREM

In this section we prove our main result. We say that “resolution of singularities holds
for schemes of dimension≤ d overk” if the following two conditions are satisfied.

(1) For any integral separated scheme of finite typeX of dimension≤ d overk,
there exists a projective birational morphismY → X with Y smooth overk
which is an isomorphism over the regular locus ofX .

(2) For any integral smooth schemeX of dimension≤ d overk and any birational
proper morphismY → X there exists a tower of morphismsXn → Xn−1 →
· · · → X0 = X , such thatXn → Xn−1 is a blow-up with a smooth center for
i = 1, . . . , n, and such that the composite morphismXn → X factors through
Y → X .

Documenta Mathematica 21 (2016) 91–123



TAME CLASS FIELD THEORY FORSINGULAR VARIETIES . . . 115

THEOREM 6.1 (=THEOREM 1.1). Let k be an algebraically closed field of charac-
teristicp ≥ 0, X a separated scheme of finite type overk andm a natural number.
Then

recX : HS
1 (X,Z/mZ) −→ πt,ab1 (X)/m

is surjective. It is an isomorphism of finite abelian groups if (m, p) = 1, and for
generalm if resolution of singularities holds for schemes of dimension≤ dimX + 1
overk.

The proof will occupy the rest of this section. Following thenotation of Section 5, we
writeH0

t = H0
et and consider the maps

reci,X : HS
i (X,Z/mZ)→ Hi

t(X,Z/mZ)∗

for i = 0, 1 (i.e.,recX = rec1,X ). Given a morphismX ′ → X , we have a commuta-
tive diagram of pairings definingreci for i = 0, 1.

HS
i (X

′,Z/mZ) × Hi
t(X

′,Z/mZ) Z/mZ

HS
i (X,Z/mZ) × Hi

t(X,Z/mZ) Z/mZ.

〈 , 〉

〈 , 〉

φ∗ φ∗

Step 1: rec1,X is surjective for arbitraryX .

We may assume thatX is reduced and proceed by induction ond = dimX . The case
dimX = 0 is trivial. Consider the normalization morphismX ′ → X , which is an
isomorphism outside a closed subschemeZ ⊂ X of dimension≤ d − 1. Using the
exact sequences of Propositions 5.1 and 5.2, which are compatible by Proposition 5.5
and the fact thatrec0,X is an isomorphism by Lemma 5.3, a diagram chase shows that
it suffices to show surjectivity ofrec1,X for normal schemes.
Let X be normal. SinceH1

t (X,Z/mZ) is finite, it suffices to show that the pairing
definingrec1,X has a trivial right kernel. We may assume thatX is connected. Let
b ∈ H1

t (X,Z/mZ) be arbitrary but non-zero. By Proposition 5.6, we find a morphism
φ : C → X with C a smooth curve such thatφ∗(b) ∈ H1

et(C,Z/mZ) is non-zero.
Since the pairing forC is perfect by Theorem 4.1, the pairing forX has a trivial right
kernel.

Step 2: Theorem 6.1 holds if(m, p) = 1.

If (m, p) = 1, HS
1 (X,Z/mZ) andH1

et(X,Z/mZ)∗ are isomorphic finite abelian
groups by [SV1]. In particular, they have the same order. Hence the surjective homo-
morphismrec1,X is an isomorphism.

Step 3: Theorem 6.1 holds for arbitraryX if m = pr and resolution of singularities
holds for schemes of dimension≤ dimX + 1 overk.
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We may assume thatX is reduced. Using resolution of singularities and Chow’s
Lemma, we obtain a morphismX ′ → X with X ′ smooth and quasi-projective, which
is an isomorphism over a dense open subscheme ofX . Using the exact sequences
of Propositions 5.1 and 5.2, Lemma 5.3,Step 1, induction on the dimension and the
five-lemma, it suffices to show the result for smooth, quasi-projective schemes.
LetX be smooth, quasi-projective and letX̄ be a smooth, projective variety containing
X as a dense open subscheme. Then, by [Ge3, §5], we have an isomorphism

H1
et(X̄,Z/p

rZ)∗ ∼= CH0(X̄, 1,Z/p
rZ).

Furthermore, by [SS, Thm. 2.7] (which makes the assumptiondim ≤ 2 but does not
use it in its proof), we have an isomorphism

CH0(X̄, 1,Z/p
rZ) ∼= HS

1 (X̄,Z/p
rZ).

By Proposition 6.2 below, the natural homomorphism

HS
1 (X,Z/p

rZ)→ HS
1 (X̄,Z/p

rZ)

is an isomorphism of finite abelian groups and by Proposition2.10, we have an iso-
morphism

H1
et(X̄,Z/p

rZ)
∼→ H1

t (X,Z/p
rZ).

Hence the finite abelian groupsH1
t (X,Z/p

rZ)∗ andHS
1 (X,Z/p

rZ) are isomorphic,
in particular, they have the same order. Sincerec1,X is surjective, it is an isomorphism.

In order to conclude the proof of Theorem 6.1 it remains to show

PROPOSITION6.2. Let k be a perfect field,X ∈ Sch/k smooth,U ⊂ X a dense
open subscheme andn ≥ 0 an integer. Assume that resolution of singularities holds
for schemes of dimension≤ dimX + n overk. Then for anyr ≥ 1 the natural map

HS
i (U,Z/p

rZ)→ HS
i (X,Z/p

rZ)

is an isomorphism of finite abelian groups fori = 0, . . . , n.

REMARK 6.3. A proof of Proposition 6.2 forn = 1 andk algebraically closed inde-
pendent of the assumption on resolution of singularities would relax the condition in
Theorem 6.1 to:
There exists a smooth, projective schemeX̄ ′ ∈ Sch/k, dense open subschemesU ′ ⊂
X ′ ⊂ X̄ ′, U ⊂ X , and a surjective, proper morphismX ′ → X which induces an
isomorphismU ′red → Ured .
In particular, Theorem 6.1 would hold fordimX ≤ 3 without any assumption on
resolution of singularities [CV].
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Proof of Proposition 6.2.We setR = Z/prZ. By [MVW], Lecture 14, we have

HS
i (X,R) = HomDMeff,−

Nis (k,R)(R[i],M(X,R)).

Let d = dimX . Choose a series of open subschemesU = Xd ⊂ · · ·X1 ⊂ X0 = X
such thatZj := Xj rXj+1 is smooth of dimensionj for j = 0, . . . , d− 1. Using the
exact Gysin triangles [MVW, 15.15]

M(Xj+1, R)→M(Xj , R)→M(Zj, R)(d− j)[2d− 2j]
[1]→M(Xj+1, R)[1]

and induction, it suffices to show that

HomDMeff,−
Nis (k,R)(R[i],M(Zj, R)(s)[2s]) = 0

for j = 0, . . . , d− 1, i = 0, . . . , n+ 1 ands ≥ 1. Using smooth compactifications of
theZj and induction again, it suffices to show

HomDMeff,−
Nis (k,R)(R[i],M(Z,R)(s)[2s]) = 0

for Z connected, smooth, projective,i = 0, . . . , d− dZ + n ands ≥ 1.
By the comparison of higher Chow groups and motivic cohomology [V] and by [GL],
Thm. 8.5, the restriction ofR(s) to the small Nisnevich site of a smooth schemeY is
isomorphic toνsr [−s], whereνsr is the logarithmic de Rham Witt sheaf of Milne and
Illusie. In particular,R(s)|Y is trivial for s > dimY .
For an étalek-schemeZ we obtain

HomDMeff,−
Nis (k,R)(R[i],M(Z,R)(s)[2s]) = H2s−i

Nis (Z,R(s)) = 0

for s ≥ 1 and alli ≥ 0. Now assumedimZ ≥ 1. Using resolution of singularities
for schemes of dimension≤ d+n, the same method as in the proof of [SS], Thm. 2.7
yields isomorphisms

HomDMeff,−
Nis (k,R)(R[i],M(Z,R)) ∼= CHdZ (Z, i, R)

for i = 0, . . . , d−1+n. Applying this toZ×Ps and using the decompositions given
by the projective bundle theorem on both sides implies isomorphisms

HomDMeff,−
Nis (k,R)(R[i],M(Z,R)(s)[2s]) ∼= CHdZ+s(Z, i, R)

for i = 0, . . . , d− 1 + n. By [V], the latter group is isomorphic to

HomDMeff,−
Nis (k,R)(M(Z,R)[2dZ+2s− i], R(dZ+s)) ∼= H2dZ+2s−i

Nis (Z,R(dZ+s)),

which vanishes fors ≥ 1. This finishes the proof.

REMARK 6.4. The assertion of Proposition 6.2 remains true for non-smoothX if U
contains the singular locus ofX (see [Ge4], Prop. 3.3).

Documenta Mathematica 21 (2016) 91–123



118 THOMAS GEISSER ANDALEXANDER SCHMIDT

7 COMPARISON WITH THE ISOMORPHISM OFSUSLIN-VOEVODSKY

THEOREM 7.1. Let k be an algebraically closed field,X ∈ Sch/k andm an integer
prime tochar(k). Then the reciprocity isomorphism

recX : HS
1 (X,Z/mZ) −→ πab

1 (X)/m

is the dual of the isomorphism

αX : H1
et(X,Z/mZ) −→ H1

S(X,Z/mZ)

of [SV1], Cor. 7.8.

The proof will occupy the rest of this section. Leti : Z/mZ →֒ I0 be an injection into
an injective sheaf in the category ofZ/mZ-module sheaves on(Sch/k)qfh and put
J1 = coker(i). Then (see the end of section 3) the pairing betweenHS

1 (X,Z/mZ)
andH1

et(X,Z/mZ) constructed in Proposition 2.12 can be given as follows: For
a ∈ HS

1 (X,Z/mZ) choose a representing correspondenceα ∈ Cor(∆1, X) and for
b ∈ H1

et(X,Z/mZ) a pre-imageβ ∈ J1(X). Consider the diagram

I0(X) J1(X)

I0(∆1) J1(∆1) (8)

Z/mZ I0(∆0) J0(∆0).

α∗ α∗

0∗ − 1∗ 0∗ − 1∗

Thenα∗(β) is the image of some elementγ ∈ I0(∆1) and(0∗ − 1∗)(γ) ∈ Z/mZ =
ker(I0(∆0)→ J1(∆0)) equals〈a, b〉.

For Y ∈ Sch/k let Zqfh
Y be the freeqfh-sheaf generated byY . We setA =

Z[1/char(k)] andLY = Z
qfh
Y ⊗A. For smoothU the homomorphism

Cor(U,X)⊗A→ Homqfh(LU , LX)

is an isomorphism by [SV1], Thm. 6.7. We have

H1
et(X,Z/mZ) = H1

qfh(X,Z/mZ) = Ext1qfh(LX ,Z/mZ)

= coker(Homqfh(LX , I
0)→ Homqfh(LX , J

1)).
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The diagram(8) can be rewritten in terms of Hom-groups as follows:

Homqfh(LX , I
0) Homqfh(LX , J

1)

Homqfh(L∆1 , I0) Homqfh(L∆1 , J1) (9)

Z/mZ Homqfh(L∆0 , I0) Homqfh(L∆0 , J1).

α∗ α∗

0∗ − 1∗ 0∗ − 1∗

We denote the morphismLX → J1 corresponding toβ ∈ J1(X) ∼= Homqfh(LX , J
1)

by the same letterβ. PuttingE := I0 ×J1,β LX , the extension

0 −→ Z/mZ −→ E −→ LX −→ 0

representsb ∈ Ext1qfh(LX ,Z/mZ). Consider the diagram

Homqfh(LX , E) Homqfh(LX , LX)

Homqfh(L∆1 , E) Homqfh(L∆1 , LX) (10)

Z/mZ Homqfh(L∆0 , E) Homqfh(L∆0 , LX).

α∗ α∗

0∗ − 1∗ 0∗ − 1∗

Because diagram (10) maps to diagram (9) viaβ∗ andid ∈ Homqfh(LX , LX) maps
underβ∗ to β ∈ Homqfh(LX , J

1), we can calculate the pairing using diagram (10)
after replacingβ by id. Sinceid maps toα ∈ Homqfh(L∆1 , LX) underα∗, we see,
writing the lower part of diagram (10) in the form

Z/mZ E(∆1) LX(∆
1)

Z/mZ E(∆0) LX(∆
0),

0∗ − 1∗ 0∗ − 1∗0
h

(11)

that

〈a, b〉 = h(α) mod m ∈ ker(E(∆0)/m→ LX(∆0)/m) = Z/mZ,
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whereh is the unique homomorphism making diagram(11) commutative. We con-
sider the complexC•(X) = Cor(∆•, X) ⊗ A = LX(∆•) with the obvious differ-
entials. By the above considerations, the homomorphism induced by the pairing of
Proposition 2.12

H1
et(X,Z/mZ) = H1

qfh(X,Z/mZ) −→

HS
1 (X,Z/mZ)∗ = Ext1A(C•(X),Z/mZ) = HomD(A)(C•(X),Z/mZ[1]),

is given by sending an extension class[Z/mZ →֒ E ։ LX ] to the morphism
C•(X) → Z/mZ[1] in the derived category ofA-modules represented by the mor-
phism

C•(X)→ [0→ E(∆0)→ LX(∆
0)→ 0]

which is given byid : LX(∆
0) → LX(∆0) in degree zero and byh : LX(∆1) →

E(∆0) in degree one.
The same construction works for anyqfh-sheaf ofA-modulesF instead ofLX , i.e.,
settingC•(F ) = F (∆•) and starting from an element

[Z/mZ →֒ E ։ F ] ∈ Ext1qfh(F,Z/mZ),

we get a mapC•(F ) → Z/mZ[1] in the derived category ofA-modules. We thus
constructed a homomorphism

Ext1qfh(F,Z/mZ) −→ Ext1(C•(F ),Z/mZ), (12)

which forF = LX and under the canonical identifications coincides with the map

H1
et(X,Z/mZ) −→ HS

1 (X,Z/mZ)∗

induced by the pairing constructed in Proposition 2.12.

Now we compare the map(12) with the map

αX : Ext1qfh(F,Z/mZ) −→ Ext1A(C•(F ),Z/mZ) (13)

constructed by Suslin-Voevodsky [SV1] (cf. [Ge1] for the case of positive characteris-
tic). LetF∼• be the complex ofqfh-sheaves associated with the complex of presheaves
F•(U) = F (U ×∆•). By [SV1], the inclusionF → F∼• induces an isomorphism

Ext1qfh(F
∼
• ,Z/mZ)

∼−→ Ext1qfh(F,Z/mZ), (14)

and evaluation atSpec(k) induces an isomorphism

Ext1qfh(F
∼
• ,Z/mZ)

∼−→ Ext1A(C•(F ),Z/mZ). (15)

The map(13) of Suslin-Voevodsky is the composite of the inverse of (14) with (15).
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We construct the inverse of (14). Let a class[Z/mZ →֒ E ։ F ] ∈
Ext1qfh(F,Z/mZ) be given. As a morphism in the derived category this class is given
by the homomorphism

0 0 F 0

0 E F 0 .

id

We therefore have to construct a homomorphismF1 −→ E making the diagram

F2 F1 F0 0

0 E F 0

id

commutative. The construction is a sheafified version of whatwe did before. Let
U ∈ Sch/k be arbitrary. Consider the diagram

0 Z/mZ(U) E(U ×∆2) F (U ×∆2) 0

0 Z/mZ(U) E(U ×∆1) F (U ×∆1) 0

0 Z/mZ(U) E(U) F (U) 0 .

δ0 − δ1 + δ2δ0 − δ1 + δ2id

0 0∗ − 1∗0∗ − 1∗

Let α1 ∈ F (U × ∆1) be given. By the smooth base change theorem and since
H1

et(∆
1,Z/mZ) = 0, we can liftα1 to E(U × ∆1) after replacingU by a suffi-

ciently fine étale cover. Applying0∗− 1∗ to this lift, we get an element inE(U). This
gives the homomorphismF1 → E. Now letα2 ∈ F (U × ∆2) be arbitrary. After
replacingU by a sufficiently fine étale cover, we can liftα2 to E(U × ∆2). Since
(0∗−1∗)(δ0− δ1+ δ2) = 0 this shows that(δ0− δ1+ δ2)(α2) maps to zero inE(U).

This describes the inverse isomorphism to (14). Evaluatingat U = Spec(k) gives
back our original construction, hence(12) and(13) are the same maps. This finishes
the proof.
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1 Introduction

1.1

Lifts from two elliptic modular forms to Siegel modular form of half-
integral weight of degree two have been conjectured by Ibukiyama and the
author[H-I 05]. In the present article we will give a partial answer for the
conjecture in [H-I 05] and shall generalize these lifts as lifts from two ellip-
tic modular forms to Siegel modular forms of half-integral weight of any even
degree (Theorem 8.3).
The construction of the lift can be regarded as a half-integral weight ver-
sion of the Miyawaki-Ikeda lift. The Miyawaki-Ikeda lift has been shown by
Ikeda [Ik 06]. In the present article we will give a proof to the fact that con-
structed Siegel modular forms of half-integral weight are eigenforms, if it does
not identically vanish. Moreover, we will compute the L-function of the con-
structed Siegel modular forms of half-integral weight. The key ingredient of
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the proof of the lift in the present article is to introduce a generalized Maass
relation for Siegel modular forms of half-integral weight (Theorem 7.6, 8.2).
Generalized Maass relations are relations among Fourier-Jacobi coefficients of
Siegel modular forms and are regarded as relations among Fourier coefficients.
Theorem 7.6 is a generalization of the Maass relation for generalized Cohen-
Eisenstein series, which is a Siegel modular form of half-integral weight of
general degree. And Theorem 8.2 is a generalization of the Maass relation for
Siegel cusp forms of half-integral weight of odd degree.

1.2

We explain our results more precisely.

We denote by M+
k− 1

2

(Γ
(n)
0 (4)) the generalized plus-space of weight k − 1

2 of

degree n, which is a subspace of Siegel modular forms of half-integral weight
and is a generalization of the Kohnen plus-space (see [Ib 92] or §4.3 for the

definition of generalized plus-space). Let F ∈ M+
k− 1

2

(Γ
(n)
0 (4)) be an eigenform

for any Hecke operators. We put

QF,p(z) =

n∏

i=0

(1− µi,pz)(1− µ−1i,p z),

where complex numbers {µ±i,p} are p-parameters of F introduced in [Zh 84] if

p is an odd prime. If p = 2, then we define {µ±i,2} by using the isomorphism
between generalized plus-space and the space of Jacobi forms of index 1. We
denote the modified Zhuravlev L-function by

L(s, F ) :=
∏

p

QF,p(p
−s+k− 3

2 ).

The Zhuravlev L-function is originally introduced in [Zh 84] without the Euler
2-factor, which is a generalization of the L-function of elliptic modular forms
of half-integral weight introduced in [Sh 73].

We denote by S+
k− 1

2

(Γ
(n)
0 (4)) the space of Siegel cusp forms in M+

k− 1
2

(Γ
(n)
0 (4)).

The following theorem is the main result of this article.

Theorem 8.3. Let k be an even integer and n be an integer greater than 1.

Let h ∈ S+
k−n+ 1

2

(Γ
(1)
0 (4)) and g ∈ S+

k− 1
2

(Γ
(1)
0 (4)) be eigenforms for all Hecke

operators. Then there exists a Fh,g ∈ S+
k− 1

2

(Γ
(2n−2)
0 ). Under the assumption

that Fh,g is not identically zero, then Fh,g is an eigenform with the L-function
which satisfies

L(s,Fh,g) = L(s, g)

2n−3∏

i=1

L(s− i, h).
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By numerical computations of Fourier coefficients of Fh,g we checked that Fh,g
does not identically vanish for some (n, k). (See §9 for the detail).

Remark that the above theorem was first conjectured by Ibukiyama and the
author [H-I 05] in the case of n = 2 not only for even integer k, but also for
odd integer k.

The construction of Fh,g was suggested by T. Ikeda to the author, which is
given by a composition of three maps and an inner product. These three maps
are a Ikeda lift (Duke-Imamoglu-Ibukiyama-Ikeda lift), a map of the Fourier-
Jacobi expansion and an isomorphism between Jacobi forms of index 1 and
Siegel modular forms of half-integral weight. In §8 we will explain the detail of
the construction of Fh,g.
To prove Theorem 8.3 we use a generalized Maass relation for generalized
Cohen-Eisenstein series (Theorem 7.6). Once we obtain Theorem 7.6, it is not
so hard to show Theorem 8.3. The most part of this article is devoted to show
Theorem 7.6. We now explain the generalized Maass relation for generalized
Cohen-Eisenstein series (Theorem 7.6).

Let k be an even integer and H(n+1)

k− 1
2

be the generalized Cohen-Eisenstein series

of degree n+1 of weight k− 1
2 (see §4.4 for the definition of generalized Cohen-

Eisenstein series). The form H(n+1)

k− 1
2

is a Siegel modular form of weight k − 1
2

of degree n+ 1.

For integer m, we denote by e
(n)

k− 1
2 ,m

the m-th Fourier-Jacobi coefficient of

H(n+1)

k− 1
2

:

H(n+1)

k− 1
2

((
τ z
tz ω

))
=

∑

m≥0
m≡0,3 mod 4

e
(n)

k− 1
2 ,m

(τ, z) e2π
√−1mω, (1.1)

where τ ∈ Hn and ω ∈ H1, and where Hn denotes the Siegel upper half space

of degree n. We denote by J
(n)

k− 1
2 ,m

the space of Jacobi forms of degree n of

weight k − 1
2 of index m (cf. §2.6) and denote by J

(n)∗
k− 1

2 ,m
(cf. §4.4) a subspace

of J
(n)

k− 1
2 ,m

. Then, the above form e
(n)

k− 1
2 ,m

belongs to J
(n)∗
k− 1

2 ,m
. Because H(n+1)

k− 1
2

belongs to the generalized plus-space M+
k− 1

2

(Γ
(n+1)
0 (4)), we can show that the

form e
(n)

k− 1
2 ,m

is identically zero unless m ≡ 0, 3 mod 4.

We denote byMk(Γn+2) the space of Siegel modular forms of weight k of degree

n + 2 and denote by J
(n+1)
k,1 the space of Jacobi forms of weight k of index 1

of degree n + 1. We denote by E
(n)
k ∈ Mk(Γn) the Siegel-Eisenstein series of

weight k of degree n (cf. (3.2) in §3) and by E
(n)
k,1 ∈ J

(n)
k,1 the Jacobi-Eisenstein

series of weight k of index 1 of degree n (cf. (3.1) in §3). The form H(n+1)

k− 1
2

is

constructed from E
(n+1)
k,1 . The diagram of the above correspondence is
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E
(n+2)
k ∈Mk(Γn+2)

��

E
(n+1)
k,1 ∈ J (n+1)

k,1
// H(n+1)

k− 1
2

∈M+
k− 1

2

(Γ
(n+1)
0 (4))

��{
e
(n)

k− 1
2 ,m

}
m
∈

⊗

m≡0,3mod 4

J
(n)∗
k− 1

2 ,m
.

In §2.7 (for any odd prime p) and in §4.7 (for p = 2) we will introduce index-shift

maps Ṽα,n−α(p2) (α = 0, ..., n), which are linear maps from J
(n)∗
k− 1

2 ,m
to the space

of holomorphic functions on Hn×C(n,1). If p is odd then Ṽα,n−α(p2) is a linear

map from J
(n)∗
k− 1

2 ,m
to J

(n)

k− 1
2 ,mp

2 . These maps Ṽα,n−α(p2) are generalizations of

the Vl-map in [E-Z 85, p.43] for half-integral weight of general degrees. For any

φ ∈ J (n)

k− 1
2
,m

and for any integer a we define (φ|Ua)(τ, z) := φ(τ, az).

The following theorem is a generalization of the Maass relation for the gener-
alized Cohen-Eisenstein series, where we use the symbol

e
(n)

k− 1
2 ,m
|(Ṽ0,n(p2), Ṽ1,n−1(p2), ..., Ṽn,0(p2))

:= (e
(n)

k− 1
2 ,m
|Ṽ0,n(p2), e(n)k− 1

2 ,m
|Ṽ1,n−1(p2), ..., e(n)k− 1

2 ,m
|Ṽn,0(p2)).

Theorem 7.6. Let e
(n)

k− 1
2 ,m

be the m-th Fourier-Jacobi coefficient of generalized

Cohen-Eisenstein series H
(n+1)

k− 1
2

. (See (1.1)). Then we obtain

e
(n)

k− 1
2 ,m
|(Ṽ0,n(p2), Ṽ1,n−1(p2), ..., Ṽn,0(p2))

= pk(n−1)−
1
2 (n

2+5n−5)
(
e
(n)

k− 1
2 ,
m
p2
|Up2 , e(n)k− 1

2 ,m
|Up, e(n)k− 1

2 ,mp
2

)

×




0 p2k−3

pk−2 pk−2
(
−m
p

)

0 1


Ap2,n+1

(
pk−

n+2
2 − 1

2

)
diag(1, p1/2, · · · , pn/2).

Here Ap2,n+1

(
pk−

n+2
2 − 1

2

)
is a 2 × (n + 1) matrix which is introduced in the

beginning of §7 and the both sides of the above identity are vectors of forms.

For any prime p we regard e
(n)

k− 1
2 ,
m
p2

as zero, if m
p2 is not an integer or m

p2 6≡ 0,

3 mod 4. The symbol
(
∗
p

)
denotes the Legendre symbol for odd prime p, and

(
a
2

)
:= 0, 1,−1 accordingly as a is even, a ≡ ±1 mod 8 or a ≡ ±3 mod 8.
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Theorem 7.6 gives also a relation among Fourier coefficients of Siegel-Eisenstein
series of integral weight. The Fourier coefficients of Ikeda lifts satisfy similar
relations to the ones of the Fourier coefficients of Siegel-Eisenstein series (see
Theorem 8.2 for the detail). We call these relations of Fourier coefficients of
Ikeda lifts also the generalized Maass relations. The generalized Maass relation
among Fourier coefficients of the Ikeda lift I2n(h) of h gives a fact that Fh,g
in Theorem 8.3 is an eigenform for all Hecke operators, since the form Fh,g
is constructed from I2n(h) (and g). Moreover, the eigenvalues of Fh,g are
calculated from the generalized Maass relations of Fourier coefficients of I2n(h).
This is the reason why we need Theorem 7.6 to show Theorem 8.3. For the
detail of the proof of Theorem 8.3 see §8.

1.3 About generalized Cohen-Eisenstein series

We remark that the generalized Cohen-Eisenstein series has been introduced by
Arakawa [Ar 98]. These series are Siegel modular forms of half-integral weight.
The Cohen-Eisenstein series were originally introduced by Cohen [Co 75] as
one variable functions. In the case of degree one, it is known that the Cohen-
Eisenstein series correspond to the Eisenstein series with respect to SL(2,Z) by
the Shimura correspondence. The generalized Cohen-Eisenstein series is defined
from the Jacobi-Eisenstein series of index 1 through the isomorphism between
Jacobi forms of index 1 and Siegel modular forms of half-integral weight.

1.4 About generalized Maass relations

As for generalizations of the Maass relation, Yamazaki [Yk 86, Yk 89] obtained
some relations among Fourier-Jacobi coefficients of Siegel-Eisenstein series of
arbitrary degree of integral weight of integer indices. For our purpose we gen-
eralize some results in [Yk 86, Yk 89] on Fourier-Jacobi coefficients of Siegel-
Eisenstein series of integer indices to indices of half-integral symmetric matrix
of size 2. Here the right-lower part or the left-upper part of these matrices
of the index is 1. We need to introduce index-shift maps on Jacobi forms of
indices of such matrix (cf. §2.7). To calculate the action of index-shift maps on
Fourier-Jacobi coefficients of Siegel-Eisenstein series, we use a relation between
Fourier-Jacobi coefficients of Siegel-Eisenstein series and Jacobi-Eisenstein se-
ries (cf. Proposition 3.3). This relation has been shown by Boecherer [Bo 83,
Satz7]. We also need to show a identity relation between Jacobi forms of in-
tegral weight of 2× 2 matrix index and Jacobi forms of half-integral weight of
integer index (Lemma 4.2). Moreover, we need to show a compatibility between
this identity relation and index-shift maps (cf. Proposition 4.3, 4.4).

Through these relations we can show that the generalized Maass relation of
generalized Cohen-Eisenstein series (Theorem 7.6) are equivalent to relations
among Jacobi-Eisenstein series of integral weight of indices of matrix of size 2
(Proposition 7.4). Finally, to obtain the generalized Maass relation in Theo-
rem 7.6, we need to calculate the action of index-shift maps on Jacobi-Eisenstein
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series of integral weight of indices of matrix of size 2 (cf. §5).

Remark 1.1
In his paper [Ko 02] Kohnen gives a generalization of the Maass relation for
Siegel modular forms of even degree 2n. His result is different from our gen-
eralization, since his result is concerned with the Fourier-Jacobi coefficients
with (2n− 1)× (2n− 1) matrix index. We remark that some characterizations
of the Ikeda lift by using generalized Maass relation in [Ko 02] are obtained
by Kohnen-Kojima [KK 05] and by Yamana [Yn 10]. The characterization of
the Ikeda lift by using the generalized Maass relation in Theorem 8.2 is open
problem.

Remark 1.2
In his paper [Ta 86, §5] Tanigawa has obtained the same identity in Theo-
rem 7.6 for Siegel-Eisenstein series of half-integral weight of degree two with
arbitrary level N which satisfies 4|N . He showed the identity by using the
formula of local densities under the assumption p 6 |N . In our case we treat the
generalized Cohen-Eisenstein series of arbitrary degree, which has essentially
level 1. Hence our result contains the relation also for p = 2. Moreover, our
result is valid for any general degree.

Remark 1.3
To show the generalized Maass relations in Theorem 7.6, 8.2, we treat the
following four things:

1. Fourier-Jacobi expansion of Jacobi forms (cf. §4.1),

2. Fourier-Jacobi expansion of Siegel modular forms of half-integral weight
(cf. §4.2),

3. An isomorphism between Jacobi forms of matrix index of integral weight
and Jacobi forms of integer index of half-integral weight (cf. §4.5)

4. Exchange relations between the Siegel Φ-operator for Jacobi forms and
the index-shift map for Jacobi forms of matrix index or of half-integral
weight (cf. §6). This is an analogue of the result shown by Krieg [Kr 86]
in the case of Siegel modular forms of integral weight.

1.5

This paper is organized as follows: in Sect. 2, the necessary notation and defi-
nitions are reviewed. In Sect. 3, the relation among Fourier-Jacobi coefficients
of the Siegel-Eisenstein series and the Jacobi-Eisenstein series is derived, which
is a modification of the result given by Boecherer [Bo 83] for special cases. In
Sect. 4, a map from a subspace of Jacobi forms of integral weight of matrix
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index to a subspace of Jacobi forms of half-integral weight of integer index is de-
fined. Moreover, the compatibility of this map with index-shift maps is studied.
In Sect. 5, we calculate the action of index-shift maps on the Jacobi-Eisenstein
series. We express these functions as summations of exponential functions with
generalized Gauss sums. In Sect. 6, a commutativity between index-shift maps
on Jacobi forms and Siegel Φ-operators is derived. In Sect. 7, a generalized
Maass relation for generalized Cohen-Eisenstein series (Theorem 7.6) will be
proved, while we will give a generalized Maass relation for Siegel cusp forms of
half-integral weight and the proof of the main result (Theorem 8.3) in Sect. 8.
We shall explain some numerical examples of the non-vanishing of the lift in
Sect. 9.

Acknowledgement. The construction of the lift in this article was suggested by
Professor Tamotsu Ikeda to the author at the Hakuba Autumn Workshop 2001.
The author wishes to express his hearty gratitude to Professor Ikeda for the
suggestion. The author also would like to express his sincere gratitude to Pro-
fessor Tomoyoshi Ibukiyama for continuous encouragement. The author thanks
very much to the referee, whose advice was helpful in improving the original
version of the manuscript. This work was supported by JSPS KAKENHI Grant
Number 23740018 and 80597766.

2 Notation and definitions

R+ : the set of all positive real numbers
R(n,m) : the set of n×m matrices with entries in a commutative ring R
Sym∗n : the set of all half-integral symmetric matrices of size n
Sym+

n : all positive definite matrices in Sym∗n
tB : the transpose of a matrix B
A[B] := tBAB for two matrices A ∈ R(n,n) and B ∈ R(n,m)

1n (resp. 0n) : identity matrix (resp. zero matrix) of size n
tr(S) : the trace of a square matrix S

e(S) := e2π
√−1 tr(S) for a square matrix S

rankp(x) : the rank of matrix x ∈ Z(n,m) over the finite field Z/pZ

diag(a1, ..., an) : the diagonal matrix

(
a1

. . .
an

)
for square matrices a1, ...,

an(
∗
p

)
: the Legendre symbol for odd prime p

(∗
2

)
:= 0, 1,−1 accordingly as a is even, a ≡ ±1 mod 8 or a ≡ ±3 mod 8

Mk− 1
2
(Γ

(n)
0 (4)) : the space of Siegel modular forms of weight k− 1

2 of degree n

M+
k− 1

2

(Γ
(n)
0 (4)) : the plus-space of Mk− 1

2
(Γ

(n)
0 (4)) (cf. [Ib 92]).

Hn : the Siegel upper half space of degree n
δ(S) := 1 or 0 accordingly as the statement S is true or false.
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For any function F and operators T1, T2, ... , Tn we put

F |(T1, T2, ..., Tn) := (F |T1, F |T2, ..., F |Tn).

2.1 Jacobi group

For a positive integer n we define the following groups:

GSp+
n (R) :=

{
g ∈ R(2n,2n) | g

(
0n −1n
1n 0n

)
tg = n(g)

(
0n −1n
1n 0n

)

for some n(g) ∈ R+
}
,

Spn(R) :=
{
g ∈ GSp+

n (R) |n(g) = 1
}
,

Γn := Spn(R) ∩ Z(2n,2n),

Γ(n)
∞ :=

{(
A B
C D

)
∈ Γn

∣∣∣∣ C = 0n

}
,

Γ
(n)
0 (4) :=

{(
A B
C D

)
∈ Γn

∣∣∣∣ C ≡ 0 mod 4

}
.

For a matrix g ∈ GSp+
n (R), the number n(g) in the above definition of GSp+n (R)

is called the similitude of the matrix g.
For positive integers n and r, we define a subgroup GJn,r ⊂ GSp+

n+r(R) by

GJn,r :=








A B
U

C D
V







1n µ
tλ 1r

tµ tλµ+ κ
1n −λ

1r


 ∈ GSp+n+r(R)




,

where the matrices runs over

(
A B
C D

)
∈ GSp+n (R),

(
U 0
0 V

)
∈ GSp+r (R),

λ, µ ∈ R(n,r) and κ = tκ ∈ R(r,r).

We will abbreviate such an element

(
A B
U

C D
V

)( 1n µ
tλ 1r

tµ tλµ+κ
1n −λ

1r

)
as

((
A B
C D

)
×
(
U 0
0 V

)
, [(λ, µ), κ]

)
.

We remark that two matrices (A B
C D ) and ( U 0

0 V ) in the above notation have the
same similitude. We will often write

((
A B
C D

)
, [(λ, µ), κ]

)

instead of writing ((A B
C D )× 12r, [(λ, µ), κ]) for simplicity. We remark that the

element ((A B
C D ) , [(λ, µ), κ]) belongs to Spn+r(R). Similarly, an element

(
1n µ
tλ 1r

tµ tλµ+κ
1n −λ

1r

)(
A B
U

C D
V

)
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will be abbreviated as
(
[(λ, µ), κ],

(
A B
C D

)
×
(
U 0
0 V

))
,

and we will abbreviate it as ([(λ, µ), κ], ( A B
C D )) for the case U = V = 1r .

We set a subgroup ΓJn,r of GJn,r by

ΓJn,r :=
{
(M, [(λ, µ), κ]) ∈ GJn,r

∣∣∣M ∈ Γn, λ, µ ∈ Z(n,r), κ ∈ Z(r,r)
}
.

2.2 Groups ˜GSp+n (R) and G̃Jn,1

We denote by ˜GSp+
n (R) the group which consists of pairs (M,ϕ(τ)), where M

is a matrix M = (A B
C D ) ∈ GSp+

n (R), and where ϕ is any holomorphic function

on Hn such that |ϕ(τ)|2 = det(M)−
1
2 | det(Cτ +D)|. The group operation on

˜GSp+
n (R) is given by (M,ϕ(τ))(M ′, ϕ′(τ)) := (MM ′, ϕ(M ′τ)ϕ′(τ)).

We embed Γ
(n)
0 (4) into the group ˜GSp+n (R) via M → (M, θ(n)(Mτ) θ(n)(τ)−1),

where θ(n)(τ) :=
∑

p∈Z(n,1)

e(τ [p]) is the theta constant. We denote by Γ
(n)
0 (4)∗

the image of Γ
(n)
0 (4) in ˜GSp+

n (R) by this embedding.
We define a Heisenberg group

Hn,1(R) :=
{
(12n, [(λ, µ), κ]) ∈ Spn+1(R) |λ, µ ∈ R(n,1), κ ∈ R

}
.

If there is no confusion, we will write [(λ, µ), κ] for the element (12n, [(λ, µ), κ])
for simplicity.
We define a group

G̃Jn,1 := ˜GSp+n (R)⋉Hn,1(R)

=
{
(M̃, [(λ, µ), κ])

∣∣∣ M̃ ∈ ˜GSp+
n (R), [(λ, µ), κ] ∈ Hn,1(R)

}
.

Here the group operation on G̃Jn,1 is given by

(M̃1, [(λ1, µ1), κ1]) · (M̃2, [(λ2, µ2), κ2]) := (M̃1M̃2, [(λ
′, µ′), κ′])

for (M̃i, [(λi, µi), κi]) ∈ G̃Jn,1 (i = 1, 2), and where [(λ′, µ′), κ′] ∈ Hn,1(R) is the
matrix determined through the identity

(M1 ×
(
n(M1) 0

0 1

)
, [(λ1, µ1), κ1])(M2 ×

(
n(M2) 0

0 1

)
, [(λ2, µ2), κ2])

= (M1M2 ×
(
n(M1)n(M2) 0

0 1

)
, [(λ′, µ′), κ′])

in GJn,1. Here n(Mi) is the similitude of Mi.
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2.3 Action of the Jacobi group

The group GJn,r acts on Hn × C(n,r) by

γ · (τ, z) :=

((
A B
C D

)
· τ , t(Cτ +D)−1(z + τλ + µ)tU

)

for any γ = ((A B
C D )× ( U 0

0 V ) , [(λ, µ), κ]) ∈ GJn,r and for any (τ, z) ∈ Hn×C(n,r).

Here

(
A B
C D

)
· τ := (Aτ +B)(Cτ +D)−1 is the usual transformation.

The group G̃Jn,1 acts on Hn × C(n,1) through the projection G̃Jn,1 → GJn,1. It

means G̃Jn,1 acts on Hn × C(n,1) by

γ̃ · (τ, z) := (M ×
(
n(M) 0

0 1

)
, [(λ, µ), κ]) · (τ, z)

for γ̃ = ((M,ϕ), [(λ, µ), κ]) ∈ G̃Jn,1 and for (τ, z) ∈ Hn × C(n,1). Here n(M) is

the similitude of M ∈ GSp+n (R).

2.4 Factors of automorphy

Let k be an integer and letM∈ Sym+
r . For γ = ((A B

C D )× ( U 0
0 V ) , [(λ, µ), κ]) ∈

GJn,r we define a factor of automorphy

Jk,M (γ, (τ, z))

:= det(V )k det(Cτ +D)k e(V −1MU(((Cτ +D)−1C)[z + τλ+ µ]))

×e(−V −1MU(tλτλ + tzλ+ tλz + tµλ+ tλµ+ κ)).

We define a slash operator |k,M by

(φ|k,Mγ)(τ, z) := Jk,M(γ, (τ, z))−1φ(γ · (τ, z))

for any function φ on Hn × C(n,r) and for any γ ∈ GJn,r. We remark that

Jk,M(γ1γ2, (τ, z)) = Jk,M(γ1, γ2 · (τ, z))Jk,V −1
1 MU1

(γ2, (τ, z)),

φ|k,Mγ1γ2 = (φ|k,Mγ1)|k,V −1
1 MU1

γ2.

for any γi =
(
Mi ×

(
Ui 0
0 Vi

)
, [(λi, µi), κi]

)
∈ GJn,r (i = 1, 2).

Let k and m be integers. We define a slash operator |k− 1
2 ,m

for any function φ

on Hn × C(n,1) by

φ|k− 1
2 ,m

γ̃ := Jk− 1
2 ,m

(γ̃, (τ, z))−1φ(γ̃ · (τ, z))

for any γ̃ = ((M,ϕ), [(λ, µ), κ]) ∈ G̃Jn,1. Here we define a factor of automorphy

Jk− 1
2 ,m

(γ̃, (τ, z)) := ϕ(τ)2k−1e(n(M)m(((Cτ +D)−1C)[z + τλ + µ]))

×e(−n(M)m(tλτλ + tzλ+ tλz + tµλ+ tλµ+ κ)),

Documenta Mathematica 21 (2016) 125–196



Lifting to Siegel Modular Forms . . . 135

where n(M) is the similitude of M . We remark that

Jk− 1
2 ,m

(γ̃1γ̃2, (τ, z)) = Jk− 1
2 ,m

(γ̃1, γ̃2 · (τ, z))Jk− 1
2 ,n(M1)m(γ̃2, (τ, z))

φ|k− 1
2 ,m

γ̃1γ̃2 = (φ|k− 1
2 ,m

γ̃1)|k− 1
2 ,n(M1)mγ̃2

for any γ̃i = ((Mi, ϕi), [(λi, µi), κi]) ∈ G̃Jn,1 (i = 1, 2).

2.5 Jacobi forms of matrix index

We quote the definition of Jacobi form of matrix index from [Zi 89].

Definition 1. For an integer k and for an matrix M ∈ Sym+
r , a C-valued

holomorphic function φ on Hn × C(n,r) is called a Jacobi form of weight k of
index M of degree n, if φ satisfies the following two conditions:

1. the transformation formula φ|k,Mγ = φ for any γ ∈ ΓJn,r,

2. φ has the Fourier expansion: φ(τ, z) =
∑

N∈Sym∗
n,R∈Z(n,r)

4N−RM−1tR≥0

c(N,R)e(Nτ)e(tRz).

We remark that the second condition follows from the Koecher principle
(cf. [Zi 89, Lemma 1.6]) if n > 1. In the condition (2), if φ satisfies c(N,R) = 0
unless 4N −RM−1tR > 0, then φ is called a Jacobi cusp form.

We denote by J
(n)
k,M the C-vector space of Jacobi forms of weight k of indexM

of degree n.

2.6 Jacobi forms of half-integral weight

We set a subgroup ΓJ∗n,1 of G̃Jn,1 by

ΓJ∗n,1 :=
{
(M∗, [(λ, µ), κ]) ∈ G̃Jn,1 |M∗ ∈ Γ

(n)
0 (4)∗, λ, µ ∈ Z(n,1), κ ∈ Z

}

∼= Γ
(n)
0 (4)∗ ⋉Hn,1(Z),

where we put Hn,1(Z) := Hn,1(R)∩Z(2n+2,2n+2). Here the group Γ
(n)
0 (4)∗ was

defined in §2.2.
Definition 2. For an integer k and for an integer m, a holomorphic function
φ on Hn×C(n,1) is called a Jacobi form of weight k− 1

2 of index m, if φ satisfies
the following two conditions:

1. the transformation formula φ|k− 1
2 ,m

γ∗ = φ for any γ∗ ∈ ΓJ∗n,1,

2. φ2|2k−1,2mγ has the Fourier expansion for any γ ∈ ΓJn,1:

(
φ2|2k−1,2mγ

)
(τ, z) =

∑

N∈Sym∗
n,R∈Z(n,1)

4Nm−hRtR≥0

C(N,R) e

(
1

h
Nτ

)
e
(
tRz

)
.
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with a integer h > 0, and where the slash operator |k− 1
2 ,m

was defined in
§2.4.

In the condition (2), for any γ if φ satisfies C(N,R) = 0 unless 4Nm−hRtR >
0, then φ is called a Jacobi cusp form.

We denote by J
(n)

k− 1
2 ,m

the C-vector space of Jacobi forms of weight k − 1
2 of

index m of degree n.

2.7 Index-shift maps of Jacobi forms

In this subsection we introduce two kinds of maps. The both maps shift the
index of Jacobi forms and these are generalizations of the Vl-map in the sense
of Eichler-Zagier [E-Z 85].
We define two groups GSp+n (Z) := GSp+

n (R) ∩ Z(2n,2n) and

˜GSp+n (Z) :=

{
(M,ϕ) ∈ ˜GSp+

n (R)
∣∣∣∣ M ∈ GSp+n (Z)

}
.

First we define index-shift maps for Jacobi forms of integral weight of matrix
index. LetM = ( ∗ ∗∗ 1 ) ∈ Sym+

2 . Let X ∈ GSp+n (Z) be a matrix such that the

similitude of X is n(X) = p2 with a prime p. For any φ ∈ J (n)
k,M we define the

map

φ|V (X)

:=
∑

u,v∈(Z/pZ)(n,1)

∑

M∈Γn\ΓnXΓn

φ|k,M
(
M ×

(
p2 0 0 0
0 p 0 0
0 0 1 0
0 0 0 p

)
, [((0, u), (0, v)), 02]

)
,

where (0, u), (0, v) ∈ (Z/pZ)(n,2) and where 02 is the zero matrix of size 2.

See §2.1 for the symbol of the matrix

(
M ×

(
p2 0 0 0
0 p 0 0
0 0 1 0
0 0 0 p

)
, [((0, u), (0, v)), 02]

)
.

The above summations are finite sums and do not depend on the choice of the
representatives u, v and M . A straightforward calculation shows that φ|V (X)

belongs to J
(n)

k,M[
(
p 0
0 1

)
]
. Namely V (X) is a map:

V (X) : J
(n)
k,M → J

(n)

k,M[
(
p 0
0 1

)
]
.

For the sake of simplicity we set

Vα,n−α(p
2) := V (diag(1α, p1n−α, p

21α, p1n−α))

for any prime p and for any α (0 ≤ α ≤ n).
Next we shall define index-shift maps for Jacobi forms of half-integral weight of
integer index. We assume that p is an odd prime. Let m be a positive integer.
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Let Y = (X,ϕ) ∈ ˜GSp+
n (Z) with n(X) = p2t, where t is a positive integer. For

ψ ∈ J (n)

k− 1
2 ,m

we define

ψ|Ṽ (Y ) := n(X)
n(2k−1)

4 −n(n+1)
2

∑

M̃∈Γ(n)
0 (4)∗\Γ(n)

0 (4)∗Y Γ
(n)
0 (4)∗

ψ|k− 1
2 ,m

(M̃, [(0, 0), 0]),

where the above summation is a finite sum and does not depend on the choice
of the representatives M̃ . A direct computation shows that ψ|Ṽ (Y ) belongs to

J
(n)

k− 1
2 ,mp

2t .

For the sake of simplicity we set

Ṽα,n−α(p
2) := Ṽ ((diag(1α, p1n−α, p

21α, p1n−α), p
α/2))

for any odd prime p and for any α (0 ≤ α ≤ n). As for p = 2, we will introduce

index-shift maps Ṽα,n−α(4) in §4.7, which are maps from a subspace J
(n)∗
k− 1

2 ,m
of

J
(n)

k− 1
2 ,m

to J
(n)

k− 1
2 ,4m

.

2.8 Hecke operators for Siegel modular forms of half-integral
weight

The Hecke theory for Siegel modular forms was first introduced by Shimura
[Sh 73] for degree n = 1 and by Zhuravlev [Zh 83, Zh 84] for degree n > 1. We
quote the definition of Hecke operator from [Zh 83, Zh 84]. Let Y = (X,ϕ) ∈
˜GSp+

n (Z). Let φ ∈Mk− 1
2
(Γ

(n)
0 (4)). We define

φ|T̃ (Y ) := n(X)
n(2k−1)

4 −n(n+1)
2

∑

M̃∈Γ(n)
0 (4)∗\Γ(n)

0 (4)∗Y Γ
(n)
0 (4)∗

φ|k− 1
2
M̃,

where (φ|k− 1
2
M̃)(τ) := ϕ(τ)−2k+1φ(M · τ) for M̃ = (M,ϕ) and n(X) is the

similitude of X . For the sake of simplicity we set

T̃α,n−α(p
2) := T̃ ((diag(1α, p1n−α, p

21α, p1n−α), p
α/2))

for any odd prime p and for any α (0 ≤ α ≤ n).

2.9 L-function of Siegel modular forms of half-integral weight

In this subsection we review the Hecke theory for Siegel modular forms of
half-integral weight which has been introduced by Zhuravlev [Zh 83, Zh 84]
and quote the definition of L-function of a Siegel modular form of half-integral
weight.

Let H̃(m)
p2 be the local Hecke ring generated by double cosets

K(m)
α := Γ

(m)
0 (4)∗(diag(1α, p1m−α, p

21α, p1m−α), p
α/2)Γ

(m)
0 (4)∗ (0 ≤ α ≤ m)
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and K
(m)
0

−1
over C. If p is an odd prime, then it is shown in [Zh 83, Zh 84]

that the local Hecke ring H̃(m)
p2 is commutative and there exists the isomorphism

map

Ψm : H̃(m)
p2 → Rm,

where the symbol Rm denotes Rm := CW2
[
z±0 , z

±
1 , ..., z

±
m

]
, and where the sub-

ring CW2
[
z±0 , z

±
1 , ..., z

±
m

]
of C

[
z±0 , z

±
1 , ..., z

±
m

]
consists of all W2-invariant poly-

nomials. Here W2 is the Weyl group of a symplectic group and the action of
W2 on C

[
z±0 , ..., z

±
m

]
is generated by all permutations of {z1, ..., zm} and by the

maps

σi : z0 → z0zi, zi → z−1i , zj → zj (j 6= i)

for i = 1, ...,m. The isomorphism Ψm is defined as follows: Let

T =
∑

i

aiΓ
(m)
0 (4)∗(Xi, ϕi)

be a decomposition of T ∈ H̃(m)
p2 , where ai ∈ C and (Xi, ϕi) ∈ ˜GSp+

n (Z). We

can assume that Xi is an upper-triangular matrix Xi =
(
pδi tDi

−1
Bi

0 Di

)
with

Di =



di1 ∗ ∗
0

. . . ∗
0 0 dim




and ϕi is a constant function. It is known that |ϕi|−1ϕi is a forth root of unity.
Then Ψm(T ) is given by

Ψm(T ) :=
∑

i

ai

(
ϕi
|ϕi|

)−2k+1

zδi0

m∏

j=1

(p−jzj)
dij

with a fixed integer k. For the explicit decomposition of generators K
(m)
α by

left Γ
(m)
0 (4)∗-cosets, see [Zh 83, Prop.7.1].

We define γj ∈ C[z±1 , ..., z
±
m] (j = 0, ..., 2m) through the identity

2m∑

j=0

γjX
j =

m∏

i=1

{
(1− ziX) (1 − z−1i X)

}
.

Here γj (j = 0, ..., 2m) is a W2-invariant. There exists γ̃i,p ∈ H̃(m)
p2 (i =

0, ..., 2m) which satisfies Ψm(γ̃i,p) = γi ∈ Rm. We remark that γ̃i,p = γ̃2m−i,p
and γ̃0,p = K

(m)
0 .
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For p = 2 we will introduce in §4.3 the Hecke operators T̃α,m−α(4) (α = 0, ...,m)
through the isomorphism between Siegel modular forms of half-integral weight
and Jacobi forms of index 1 (see (4.2) in §4.3). We remark that the Hecke
operators T̃α,m−α(4) (α = 0, ...,m) are defined for the generalized plus-space,

which is a subspace of Mk− 1
2
(Γ

(m)
0 (4)). Through the definition of γ̃i,p for odd

prime p, we define γ̃i,2 in the same formula by using T̃α,m−α(4) (α = 0, ...,m)
as in the case of odd primes. by replacing p by 2.

Let F ∈ M+
k− 1

2

(Γ
(m)
0 (4)) be an eigenform for any Hecke operator T̃α,m−α(p2)

(0 ≤ α ≤ m) and for any prime p. HereM+
k− 1

2

(Γ
(m)
0 (4)) denotes the generalized

plus-space which is a subspace of Mk− 1
2
(Γ

(m)
0 (4)) (see [Ib 92] or §4.3 for the

definition of M+
k− 1

2

(Γ
(m)
0 (4))). We define the Euler p-factor of F by

QF,p(z) : =
2m∑

j=0

λF (γ̃j,p)z
j,

where λF (γ̃j,p) is the eigenvalue of F with respect to γ̃j,p. There exists a set of
complex numbers {µ2

0,p, µ
±
1,p, ...µ

±
m,p} which satisfies

QF,p(z) =

m∏

i=1

{
(1− µi,pz)

(
1− µ−1i,p z

)}

and

µ2
0,pµ1,p · · ·µm,p = pm(2k−1)/2−m(m+1)/2,

since γ2m−j = γj (j = 0, ...,m− 1), QF,p(z
−1) = z−2mQF,p(z) and QF,p(0) =

1 6= 0. Following Zhuravlev [Zh 84] we call the set {µ2
0,p, µ

±
1,p, ..., µ

±
m,p} the

p-parameters of F . The L-function of F is defined by

L(s, F ) :=
∏

p

QF,p(p
−s+k−3/2)−1.

3 Fourier-Jacobi expansion of Siegel-Eisenstein series with ma-
trix index

In this section we assume that k is an even integer.

Let r be a non-negative integer. ForM ∈ Sym+
r and for an even integer k we

define the Jacobi-Eisenstein series of weight k of indexM of degree n by

E
(n)
k,M :=

∑

M∈Γ(n)
∞ \Γn

∑

λ∈Z(n,r)

1|k,M([(λ, 0), 0r],M). (3.1)
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The above sum converges for k > n+ r + 1 (cf. [Zi 89]). The Siegel-Eisenstein

series E
(n)
k of weight k of degree n is defined by

E
(n)
k (Z) :=

∑

( ∗ ∗C D )∈Γ(n)
∞ \Γn

det(CZ +D)−k, (3.2)

where Z ∈ Hn. We denote by e
(n−r)
k,M the M-th Fourier-Jacobi coefficient of

E
(n)
k , it means that

E
(n)
k (( τ z

tz ω )) =
∑

M∈Sym∗
r

e
(n−r)
k,M (τ, z) e(Mω) (3.3)

is a Fourier-Jacobi expansion of the Siegel-Eisenstein series E
(n)
k of weight k

of degree n, where τ ∈ Hn−r, ω ∈ Hr and z ∈ C(n−r,r). The explicit formula
for the Fourier-Jacobi expansion of Siegel-Eisenstein series is given in [Bo 83,
Satz 7] for arbitrary degree.

The purpose of this section is to express the Fourier-Jacobi coefficient e
(n−2)
k,M

for M = ( ∗ ∗∗ 1 ) ∈ Sym+
2 as a summation of Jacobi-Eisenstein series of matrix

index (Proposition 3.3).
We first obtain the following lemma.

Lemma 3.1. For anyM∈ Sym+
r and for any A ∈ GLr(Z) we have

E
(n)
k,M(τ, z) = E

(n)
k,M[A−1](τ, z

tA)

and

e
(n)
k,M(τ, z) = e

(n)
k,M[A−1](τ, z

tA).

Proof. The first identity follows directly from the definition. The transforma-

tion formula E
(n+r)
k

((
1n

A

)(
τ z
tz ω

)(
1n

tA

))
= E

(n+r)
k

((
τ z
tz ω

))

gives the second identity. ⊓⊔

Let m be a positive integer. We denote by D0 the discriminant of Q(
√−m),

and we put f :=
√

m
|D0| . We note that f is a positive integer if −m ≡ 0, 1

mod 4.
We denote by hk− 1

2
(m) the m-th Fourier coefficient of the Cohen-Eisenstein

series of weight k − 1
2 (cf. Cohen [Co 75]). The following formula is known

(cf. [Co 75], [E-Z 85]):

hk− 1
2
(m)

=

{

hk− 1
2
(|D0|)m

k− 3
2
∑

d|f µ(d)
(

D0
d

)

d1−kσ3−2k

(

f
d

)

if −m ≡ 0, 1mod 4,

0 otherwise,
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where we define σa(b) :=
∑

d|b
da and µ is the Möbis function.

We assume −m ≡ 0, 1 mod 4. Let D0 and f be as above. For the sake of
simplicity we define

gk(m) :=
∑

d|f
µ(d)hk− 1

2

(m
d2

)
.

We will use the following lemma for the proof of Proposition 7.5.

Lemma 3.2. Let m be a natural number such that −m ≡ 0, 1 mod 4. Then
for any prime p we have

gk(p
2m) =

(
p2k−3 −

(−m
p

)
pk−2

)
gk(m).

Proof. Let D0, f be as above. By using the formula of hk− 1
2
(m) we obtain

hk− 1
2
(m) = hk− 1

2
(|D0|)|D0|

k− 3
2

∏

q|f

{

σ2k−3(q
lq )−

(

D0

q

)

qk−2σ2k−3(q
lq−1)

}

,

where q runs over all primes which divide f , and where we put lq := ordq(f).

In particular, the function hk− 1
2
(m)(hk− 1

2
(|D0|)|D0|k−

3
2 )−1 is multiplicative as

function of f . Hence, for any prime q, we have

hk− 1
2
(|D0|q2lq )− hk− 1

2
(|D0|q2lq−2)

= hk− 1
2
(|D0|)|D0|k−

3
2

(
q(2k−3)lq −

(
D0

q

)
qk−2+(2k−3)(lq−1)

)
,

Thus

gk(m) = hk− 1
2
(|D0|)|D0|k−

3
2

∑

d|f
µ(d)

hk− 1
2

(
m
d2

)

hk− 1
2
(|D0|)|D0|k− 3

2

= hk− 1
2
(|D0|)|D0|k−

3
2

∏

q|f

hk− 1
2
(|D0|q2lq )− hk− 1

2
(|D0|q2lq−2)

hk− 1
2
(|D0|)|D0|k− 3

2

= hk− 1
2
(|D0|)|D0|k−

3
2

∏

q|f

(
q(2k−3)lq −

(
D0

q

)
qk−2+(2k−3)(lq−1)

)
.

The lemma follows from this identity, since
(
−m
p

)
= 0 if p|f ;

(
−m
p

)
=
(
D0

p

)

if p 6 |f . ⊓⊔

By using the function gk(m), we obtain the following proposition.
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Proposition 3.3. For M =

(
∗ ∗
∗ 1

)
∈ Sym+

2 we put m = det(2M). Let D0,

f be as above, which depend on the integer m. If k > n+ 1, then

e
(n−2)
k,M (τ, z) =

∑

d|f
gk

(m
d2

)
E

(n−2)
k,M[Wd

−1]
(τ, ztWd),

where we chose a matrix Wd ∈ GL2(Q) ∩ Z(2,2) for each d which satisfies

the conditions det(Wd) = d, tWd
−1MWd

−1 ∈ Sym+
2 and tWd

−1MWd
−1 =(

∗ ∗
∗ 1

)
. Remark that the matrix Wd is not uniquely determined, but the above

summation does not depend on the choice of Wd.

Proof. We use the terminology and the Satz 7 in [Bo 83] for this proof. For
M′ ∈ Sym+

n we denote by ak2(M′) the M′-th Fourier coefficient of Siegel-
Eisenstein series of weight k of degree 2. We put

Mn
2 (Z)

∗ :=
{
N ∈ Z(2,2) | det(N) 6= 0 and there exists V = (N ∗∗ ∗ ) ∈ GLn(Z)

}
.

A matrix N ∈ Z(n,2) is called primitive if there exists a matrix V ∈ GLn(Z)
such that V = (N ∗). From [Bo 83, Satz 7] we have

e
(n−2)
k,M (τ, z) =

∑

N1∈Mn
2 (Z)∗/GL2(Z)

N−1
1 MtN1

−1∈Sym+
2

ak2(M[tN1
−1

])
∑

N3∈Z(n−2,2)
(
N1

N3

)
:primitive

f(M, N1, N3; τ, z),

where

f(M, N1, N3; τ, z)

=
∑

(A B
C D )∈Γ(n−2)

∞ \Γn−2

det(Cτ +D)−k

× e
(
M
{
−tz(Cτ +D)−1Cz + tz(Cτ +D)−1N3N

−1
1

+tN1
−1tN3

t(Cτ +D)−1z

+tN1
−1tN3(Aτ +B)(Cτ +D)−1N3N

−1
1

})
.

For any positive integer l such that l2|m, we chose a matrix Wl ∈ Z(2,2)

which satisfies three conditions det(Wl) = l, tWl
−1MWl

−1 ∈ Sym+
2 and

tWl
−1MWl

−1 =

(
∗ ∗
∗ 1

)
. By virtue of these conditions, Wl has the form

Wl =

(
l 0
x 1

)
with some x ∈ Z. The set tWlGL2(Z) is uniquely determined
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for each positive integer l such that l2|m. If N1 = tWl =

(
l x
0 1

)
, then

∑

N3∈Z(n−2,2)
(
N1

N3

)
:primitive

f(M, N1, N3; τ, z) =
∑

a|l
µ(a)

∑

N3∈Z(n−2,2)

f(M, N1, N3 ( a 0
0 1 ) ; τ, z).

Thus

e
(n−2)
k,M (τ, z)

=
∑

l
l2|m

ak2(M[Wl
−1])

∑

a|l
µ(a)

∑

N3∈Z(n−2,2)

f(M, tWl, N3 ( a 0
0 1 ) ; τ, z)

=
∑

l
l2|m

ak2(M[Wl
−1])

∑

a|l
µ(a)

×
∑

N3∈Z(n−2,2)

f(M[Wl
−1 ( a 0

0 1 )], 12, N3; τ, z
tWl ( a 0

0 1 )
−1

).

Therefore

e
(n−2)
k,M (τ, z)

=
∑

l
l2|m

ak2(M[Wl
−1])

∑

a|l
µ(a)E

(n−2)
k,M[W−1

l ( a 1 )]
(τ, ztWl

(
a−1

1

)
)

=
∑

d
d2|m

E
(n−2)
k,M[W−1

d ]
(τ, ztWd)

∑

a
a2| m

d2

µ(a) ak2(M[Wd
−1 ( a−1

1

)
]).

Here we have ak2(M′) = hk− 1
2
(det(2M′)) for anyM′ = ( ∗ ∗∗ 1 ) ∈ Sym+

2 . More-

over, if m 6≡ 0, 3 mod 4, then hk− 1
2
(m) = 0. Hence

e
(n−2)
k,M (τ, z) =

∑

d
d|f

E
(n−2)
k,M[W−1

d ]
(τ, ztWd)

∑

a
a| fd

µ(a)hk− 1
2

( m

a2d2

)
.

Therefore this proposition follows. ⊓⊔

4 Relation between Jacobi forms of half-integral weight of in-
teger index and Jacobi forms of integral weight of matrix in-
dex

In this section we fix a positive definite half-integral symmetric matrix M ∈
Sym+

2 , and we assume that M has the form M =

(
l 1

2r
1
2r 1

)
with integers l

and r.
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The purpose of this section is to give a map ιM which is a linear map from a
subspace of holomorphic functions on Hn×C(n,2) to a subspace of holomorphic
functions on Hn × C(n,1). A restriction of ιM gives a map from a subspace

J
(n)∗
k,M of J

(n)
k,M to a subspace J

(n)∗
k− 1

2 , det(2M)
of J

(n)

k− 1
2 , det(2M)

(cf. Lemma 4.2).

Moreover, we shall show a compatibility between the map ιM and index-shift
maps (cf. Proposition 4.3 and Proposition 4.4). Furthermore, we define index-

shift maps Ṽα,n−α(p2) for J
(n)∗
k− 1

2 , det(2M)
at p = 2 through the map ιM (cf.

§4.7).
By virtue of the map ιM and by the results in this section, we can translate
some relations among Jacobi forms of half-integral weight of integer index to
relations among Jacobi forms of integral weight of matrix index.

4.1 An expansion of Jacobi forms of integer index

In this subsection we consider an expansion of Jacobi forms of integer index

and shall introduce a subspace J
(n)∗
k,M ⊂ J

(n)
k,M.

The symbol J
(n+1)
k,1 denotes the space of Jacobi forms of weight k of index 1 of

degree n+ 1 (cf. §2.5).
Let φ1(τ, z) ∈ J (n+1)

k,1 be a Jacobi form. We regard φ1(τ, z) e(ω) as a holomor-

phic function on Hn+2, where τ ∈ Hn+1, z ∈ C(n+1,1) and ω ∈ H1 such that
( τ z
tz ω ) ∈ Hn+2. We have an expansion

φ1(τ, z)e(w) =
∑

S∈Sym+
2

S=( ∗ ∗∗ 1 )

φS(τ
′, z′)e(Sω′),

where τ ′ ∈ Hn, z
′ ∈ C(n,2) and ω′ ∈ H2 which satisfy ( τ z

tz ω ) =
(
τ ′ z′
tz′ ω′

)
∈ Hn+2.

Because the group ΓJn,2 (cf. § 2.1) is a subgroup of ΓJn+1,1, the form φS belongs

to J
(n)
k,S . We denote this map by FJ1,S , it means that we have a map

FJ1,S : J
(n+1)
k,1 → J

(n)
k,S .

By an abuse of language, we call the map FJ1,S the Fourier-Jacobi expansion
with respect to S.

The C-vector subspace J
(n)∗
k,M of J

(n)
k,M denotes the image of J

(n+1)
k,1 by FJ1,M,

whereM is a half-integral symmetric matrix of size 2.

4.2 Fourier-Jacobi expansion of Siegel modular forms of half-
integral weight

The purpose of this subsection is to show the following lemma.
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Lemma 4.1. Let F (( τ z
tz ω )) =

∑
m∈Z φm(τ, z)e(mω) be a Fourier-Jacobi expan-

sion of F ∈ Mk− 1
2
(Γ

(n+1)
0 (4)), where τ ∈ Hn, ω ∈ H1 and z ∈ C(n,1). Then

φm ∈ J (n)

k− 1
2 ,m

for any natural number m.

Proof. Due to the definition of J
(n)

k− 1
2 ,m

, we only need to show the identity

θ(n+1)(γ · ( τ z
tz ω )) θ

(n+1)(( τ z
tz ω ))

−1 = θ(n)((A B
C D ) · τ) θ(n)(τ)−1

for any γ = ((A B
C D ) , [(λ, µ), κ]) ∈ ΓJn,1 and for any ( τ z

tz ω ) ∈ Hn+1 such that

τ ∈ Hn, ω ∈ H1. Here θ
(n+1) and θ(n) are the theta constants (cf. §2.2).

For any M =
(
A′ B′

C′ D′

)
∈ Γ

(n+1)
0 (4) it is known that

(
θ(n+1)(M · Z) θ(n+1)(Z)−1

)2
= det(C′Z +D′)

( −4
detD′

)
,

where Z ∈ Hn+1. Here
( −4
detD′

)
is the quadratic symbol and it is known the

identity
( −4
detD′

)
= (−1) detD′−1

2 . Hence, for any γ = (( A B
C D ) , [(λ, µ), κ]) ∈ ΓJn,1,

we obtain

(
θ(n+1)(γ · Z) θ(n+1)(Z)−1

)2
= det(Cτ +D)

( −4
detD

)
,

where Z = ( τ z
tz ω ) ∈ Hn+1 with τ ∈ Hn. In particular, the holomorphic function

θ(n+1)(γ·Z)
θ(n+1)(Z)

does not depend on the choice of z ∈ C(n,1) and of ω ∈ H1. We

substitute z = 0 into θ(n+1)(γ·Z)
θ(n+1)(Z)

and a straightforward calculation gives

θ(n+1)(γ · ( τ 0
0 ω ))

θ(n+1)(( τ 0
0 ω ))

=
θ(n)(( A B

C D ) · τ)
θ(n)(τ)

.

Hence we conclude this lemma. ⊓⊔

4.3 The map σ and the Hecke operator T̃α,n−α(p2)

In this subsection we review the isomorphism between the space of Jacobi
forms of index 1 and a subspace of Siegel modular forms of half-integral
weight, which has been shown by Eichler-Zagier[E-Z 85] for degree one and
by Ibukiyama[Ib 92] for general degree.

Let M+
k− 1

2

(Γ
(n)
0 (4)) be the generalized plus-space introduced in [Ib 92, page

112], which is a generalization of the Kohnen plus-space for higher degrees:

M+
k− 1

2

(Γ
(n)
0 (4)) :=



F ∈Mk− 1

2
(Γ

(n)
0 (4))

∣∣∣∣∣∣

the coefficients A(N) = 0 unless
N + (−1)kRtR ∈ 4 Sym∗n

for some R ∈ Z(n,1)



 .
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A form F ∈ Mk− 1
2
(Γ

(n)
0 (4)) is called a Siegel cusp form if F 2 is a Siegel cusp

form of weight 2k− 1. We denote by S+
k− 1

2

(Γ
(n)
0 (4)) the space of all Siegel cusp

forms in M+
k− 1

2

(Γ
(n)
0 (4)).

For any even integer k, the isomorphism between J
(n)
k,1 (the space of Jacobi forms

of weight k of index 1 of degree n) and M+
k− 1

2

(Γ
(n)
0 (4)) is shown in [E-Z 85,

Theorem 5.4] for n = 1 and in [Ib 92, Theorem 1] for n > 1. We call this iso-
morphism the Eichler-Zagier-Ibukiyama correspondence and denote this linear

map by σ which is a bijection from J
(n)
k,1 to M+

k− 1
2

(Γ
(n)
0 (4)) as modules over the

ring of Hecke operators. By the map σ the space S+
k− 1

2

(Γ
(n)
0 (4)) is isomorphic

to the space of Jacobi cusp forms J
(n) cusp
k,1 . The map

σ : J
(n)
k,1 →M+

k− 1
2

(Γ
(n)
0 (4))

is given as follows: if

φ(τ, z) =
∑

N∈Sym∗
n, R∈Z(n,1)

4N−RtR≥0

C(N,R) e(Nτ +Rtz)

is a Jacobi form which belongs to J
(n)
k,1 , then σ(φ) ∈ M+

k− 1
2

(Γ
(n)
0 (4)) is defined

by

σ(φ)(τ) :=
∑

R mod (2Z)(n,1)

R∈Z(n,1)

∑

N∈Sym∗
n

4N−RtR≥0

C(N,R) e((4N −RtR)τ).

For the double coset Γndiag(1α, p1n−α, p21α, p1n−α)Γn and for φ ∈ J (n)
k,1 , the

Hecke operator T Jα,n−α(p
2) is defined by

φ|T Jα,n−α(p2) :=
∑

λ,µ∈(Z/pZ)n

∑

M

φ|k,1
(
M ×

( p 0
0 p

)
, [(λ, µ), 0]

)
.

Here, in the second summation of the RHS, the matrix M runs over all rep-
resentatives of Γn\Γn diag(1α, p1n−α, p21α, p1n−α)Γn. Let T̃α,n−α(p2) be the
Hecke operator introduced in §2.8 for odd prime p, which acts on the space

Mk− 1
2
(Γ

(n)
0 (4)). For any odd prime p the identity

σ(φ)|T̃α,n−α(p2) = pα/2+k(2n+1)−(2n+7)n/2σ(φ|T Jα,n−α(p2)). (4.1)

has been obtained in [Ib 92].

Through the identity (4.1) the Hecke operator T̃α,n−α(4) for M
+
k− 1

2

(Γ
(n)
0 (4)) is

defined. It means that we define

σ(φ)|T̃α,n−α(4) := 2α/2+k(2n+1)−(2n+7)n/2σ(φ|T Jα,n−α(4)). (4.2)

Documenta Mathematica 21 (2016) 125–196



Lifting to Siegel Modular Forms . . . 147

4.4 A generalization of Cohen-Eisenstein series and the subspace
J
(n)∗
k−1/2

In this subsection we will introduce a subspace J
(n)∗
k− 1

2 ,m
⊂ J (n)

k− 1
2 ,m

for any integer

n. Moreover, we will introduce a generalized Cohen-Eisenstein series H(n+1)

k− 1
2

and will consider the Fourier-Jacobi expansion of H(n+1)

k− 1
2

for any integer n.

Let e
(n+1)
k,1 be the first Fourier-Jacobi coefficient of Siegel-Eisenstein series

E
(n+2)
k (see (3.3) in §3 for the definition of e

(n+1)
k,1 ). It is known that e

(n+1)
k,1

coincides with the Jacobi-Eisenstein series E
(n+1)
k,1 of weight k of index 1 of

degree n+ 1 (cf. [Bo 83, Satz 7]. See (3.1) in §3 for the definition of E
(n+1)
k,1 ).

We define the generalized Cohen-Eisenstein series H(n+1)

k− 1
2

of weight k − 1
2 of

degree n+ 1 by

H(n+1)

k− 1
2

:= σ(E
(n+1)
k,1 ).

Because E
(n+1)
k,1 ∈ J (n+1)

k,1 , we have H(n+1)

k− 1
2

∈ M+
k− 1

2

(Γ
(n+1)
0 (4)) for any integer

n.
For any integer m we denote by F̃Jm the linear map from Mk− 1

2
(Γ

(n+1)
0 (4)) to

J
(n)

k− 1
2 ,m

obtained by the Fourier-Jacobi expansion with respect to the index m.

It means that if G ∈Mk− 1
2
(Γ

(n+1)
0 (4)), then G has the expansion

G

((
τ z
tz ω

))
=

∑

m∈Z
φm(τ, z)e(mω)

and we define F̃Jm(G) := φm. We remark φm ∈ J (n)

k− 1
2 ,m

due to Lemma 4.1.

We denote by J
(n)∗
k− 1

2 ,m
the image of M+

k− 1
2

(Γ
(n+1)
0 (4)) by the map F̃Jm.

We denote by e
(n)

k− 1
2 ,m

the m-th Fourier-Jacobi coefficient of the generalized

Cohen-Eisenstein series H(n+1)

k− 1
2

(see (1.1) in §1 for the definition of e
(n)

k− 1
2 ,m

).

We remark e
(n)

k− 1
2 ,m
∈ J (n)∗

k− 1
2 ,m

for any integer n.

4.5 The map ιM

We recallM =
(

l r/2
r/2 1

)
∈ Sym+

2 . In this subsection we shall introduce a map

ιM : H
(n)
M → Hol(Hn × C(n,1) → C),

where H
(n)
M is a subspace of holomorphic functions on Hn × C(n,2), which will

be defined below, and where Hol(Hn × C(n,1) → C) denotes the space of all
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holomorphic functions on Hn×C(n,1). We will show that the restriction of ιM
gives a linear isomorphism between J

(n)∗
k,M and J

(n)∗
k− 1

2 ,m
(cf. Lemma 4.2).

Let ψ be a holomorphic function on Hn × C(n,2). We assume that ψ has a
Fourier expansion

ψ(τ, z) =
∑

N∈Sym∗
n,R∈Z(n,1)

4N−RM−1tR≥0

A(N,R) e(Nτ +t Rz)

for (τ, z) ∈ Hn ×C(n,2), and assume that ψ satisfies the following condition on
the Fourier coefficients: if

(
N 1

2R
1
2

t
R M

)
=

(
N ′ 1

2R
′

1
2

t
R′ M

)[(
1n
tT 12

)]

with some T =
(
0, λ
)
∈ Z(n,2) and some λ ∈ Z(n,1), then A(N,R) = A(N ′, R′).

The symbol H
(n)
M denotes the C-vector space consists of all holomorphic func-

tions which satisfy the above condition.

We remark J
(n)∗
k,M ⊂ J

(n)
k,M ⊂ H

(n)
M for any even integer k.

Now we shall define a map ιM. For ψ(τ ′, z′) =
∑
A(N,R)e(Nτ ′+Rtz′) ∈ H(n)

M
we define a holomorphic function ιM(ψ) on Hn × C(n,1) by

ιM(ψ)(τ, z) :=
∑

M∈Sym∗
n, S∈Z(n,1)

4Mm−StS≥0

C(M,S)e(Mτ + Stz)

for (τ, z) ∈ Hn × C(n,1), where we define C(M,S) := A(N,R) if there exist
matrices N ∈ Sym∗2 and R = (R1, R2) ∈ Z(n,2) (R1, R2 ∈ Z(n,1)) which satisfy

(
M 1

2S
1
2

t
S det(2M)

)
= 4

(
N 1

2R1
1
2

t
R1 l

)
−
(
R2

r

)(
tR2, r

)
,

C(M,S) := 0 otherwise. We remark that the identity

4

(
N 1

2R1
1
2

t
R1 l

)
−
(
R2

r

)(
tR2, r

)
= 4

(
N 1

2R
1
2
tR M

)







1n

0
...
0

0 · · · 0 1
− 1

2
tR2 − 1

2r







holds and remark that the coefficient C(M,S) does not depend on the choice
of the matrices N and R. The proof of these facts are as follows. The first fact
of the identity follows from a straightforward calculation. As for the second
fact, if

4

(
N 1

2R1
1
2

t
R1 l

)
−
(
R2

r

)(
tR2, r

)
= 4

(
N ′ 1

2R
′
1

1
2

t
R′1 l

)
−
(
R′2
r

)(
tR′2, r

)
,
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then 4N − R2
tR2 = 4N ′ − R′2

t
R′2. Hence R2

tR2 ≡ R′2
t
R′2 mod 4. Thus

there exists a matrix λ ∈ Z(n,1) such that R′2 = R2 + 2λ. Therefore, by
straightforward calculation we have

(
N 1

2R
1
2

t
R M

)
=

(
N ′ 1

2R
′

1
2

t
R′ M

)[(
1n 0
tT 12

)]

with T = (0, λ), R = (R1, R2) and R′ = (R′1, R′2). Because ψ belongs to

H
(n)
M , we have A(N,R) = A(N ′, R′). Hence the above definition of C(M,S) is

well-defined.

Lemma 4.2. Let k be an even integer. We put m = det(2M). Then we have
the commutative diagram:

J
(n+1)
k,1

σ−−−−→ M+
k− 1

2

(Γ
(n+1)
0 (4))

FJ1,M

y
yF̃Jm

J
(n)∗
k,M

ιM−−−−→ J
(n)∗
k− 1

2 ,m
,

where two maps FJ1,M and F̃Jm have been introduced in §4.1 and §4.4. More-

over, the restriction of the linear map ιM on J
(n)∗
k,M gives the bijection between

J
(n)∗
k,M and J

(n)∗
k− 1

2 ,m
.

Proof. Let ψ ∈ J (n+1)
k,1 be a Jacobi form. Due to the definition of σ (cf. §4.3)

and ιM, it is not difficult to check the identity ιM (FJ1,M(ψ)) = F̃Jm(σ(ψ)).
Namely, we have the above commutative diagram.

Since the restriction of the map F̃Jm on M+
k− 1

2

(Γ
(n+1)
0 (4)) is surjective, and

since σ is an isomorphism and since ιM (FJ1,M(ψ)) = F̃Jm(σ(ψ)), the restricted

map ιM|J(n)∗
k,M

: J
(n)∗
k,M → J

(n)∗
k− 1

2 ,m
is surjective. The injectivity of the restricted

map ιM|J(n)∗
k,M

follows directly from the definition of the map ιM. ⊓⊔

4.6 Compatibility between index-shift maps and ιM

In this subsection we shall show a compatibility between the map ιM and some
index-shift maps.
For function ψ on Hn × C(n,2) and for L ∈ Z(2,2) we define the function ψ|UL
on Hn × C(n,2) by

(ψ|UL)(τ, z) := ψ(τ, ztL).

It is not difficult to check that if ψ belongs to J
(n)
k,M, then ψ|UL belongs to

J
(n)
k,M[L].
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For function φ on Hn ×C(n,1) and for integer a we define the function φ|Ua on
Hn × C(n,1) by

(φ|Ua)(τ, z) := φ(τ, az).

We have φ|Ua ∈ J (n)

k− 1
2 ,ma

2 if φ ∈ J (n)

k− 1
2 ,m

.

Proposition 4.3. For any ψ ∈ J (n)∗
k,M and for any L = ( ab 1 ) ∈ Z(2,2) we obtain

ιM[L](ψ|UL) = ιM(ψ)|Ua.

In particular, for any prime p we have ιM[( p 1 )]

(
ψ
∣∣∣U( p 1 )

)
= ιM(ψ)|Up.

Proof. We put m = det(2M). Let ψ(τ, z′) =
∑

N∈Sym∗
n, R∈Z(n,2)

4N−RM−1tR≥0

A(N,R)e(Nτ +Rtz′)

be a Fourier expansion of ψ. Let

ιM(ψ)(τ, z) =
∑

M∈Sym∗
n, S∈Z(n,1)

4Mm−StS≥0

C(M,S) e(Mτ + Stz),

ιM[L](ψ|UL)(τ, z) =
∑

M∈Sym∗
n, S∈Z(n,1)

4Mma2−StS≥0

C1(M,S) e(Mτ + Stz)

and

(ιM(ψ)|Ua)(τ, z) =
∑

M∈Sym∗
n, S∈Z(n,1)

4Mma2−StS≥0

C2(M,S) e(Mτ + Stz)

be Fourier expansions. It is enough to show C1(M,S) = C2(M,S).

We have C2(M,S) = C(M,a−1S). Moreover, we obtain C1(M,S) =
A(N,RL−1) with N ∈ Sym∗n and R ∈ Z(n,2) which satisfy

(
M 1

2S
1
2
tS ma2

)
= 4

(
N 1

2R
1
2
tR M[L]

)







1n

0
...
0

0 · · · 0 1
− 1

2
t(R ( 01 )) − 1

2ra− b






.
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For the above matrices N , R, M and S we have
(

M 1
2a
−1S

1
2a
−1tS m

)

= 4

(
N 1

2R
1
2
tR M[L]

)







1n

0
...
0

0 · · · 0 1
− 1

2
t(R ( 01 )) − 1

2ra− b







1n

0
...
0

0 · · · 0 a−1







= 4

(
N 1

2RL
−1

1
2
t(RL−1) M

)







1n

0
...
0

0 · · · 0 1
− 1

2
t(R ( 01 )) − 1

2r







= 4

(
N 1

2RL
−1

1
2
t(RL−1) M

)







1n

0
...
0

0 · · · 0 1
− 1

2
t(RL−1 ( 01 )) − 1

2r






.

Thus C2(M,S) = C(M,a−1S) = A(N,RL−1) = C1(M,S). ⊓⊔

Proposition 4.4. For odd prime p and for 0 ≤ α ≤ n, let Ṽα,n−α(p2) and

Vα,n−α(p2) be index-shift maps defined in §2.7. Then, for any ψ ∈ J (n)∗
k,M we

have

ιM(ψ)|Ṽα,n−α(p2) = pk(2n+1)−n(n+ 7
2 )+

1
2α ιM[( p 1 )]

(ψ|Vα,n−α(p2)).(4.3)

Proof. The proof is similar to the case of Jacobi forms of index 1 (cf. [Ib 92,
Theorem 2]). However, we remark that the maps Ṽα,n−α(p2) and Vα,n−α(p2)
in the present article change the indices of Jacobi forms.
To prove this proposition, we compare the Fourier coefficients of the both sides
of (4.3). Let

ψ(τ, z′) =
∑

N,R

A1(N,R)e(Nτ +Rtz′),

(ψ|Vα,n−α(p2))(τ, z′) =
∑

N,R

A2(N,R)e(Nτ +Rtz′),

(ιM(ψ))(τ, z) =
∑

M,S

C1(M,S)e(Mτ + Stz)

and

(ιM(ψ)|Ṽα,n−α(p2))(τ, z) =
∑

M,S

C2(M,S)e(Mτ + Stz)
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be Fourier expansions, where τ ∈ Hn, z
′ ∈ C(n,2) and z ∈ C(n,1). For the sake

of simplicity we put U =
(
p2

p

)
. Then

ψ|Vα,n−α(p2)
=

∑
(
p2tD

−1
B

0n D

)

∑

λ2,µ2∈(Z/pZ)(n,1)

× ψ|k,M
((

p2tD
−1

B
0n D

)
×
(
U
p2U−1

)
, [((0, λ2), (0, µ2)), 02]

)

=
∑

(
p2tD

−1
B

0n D

)

∑

λ2,µ2∈(Z/pZ)(n,1)

∑

N,R

A(N,R)

× e(Nτ +Rtz)|k,M
((

p2tD
−1

B
0n D

)
×
(
U
p2U−1

)
, [((0, λ2), (0, µ2)), 02]

)
,

where
(
p2tD

−1
B

0n D

)
runs over a set of all representatives of

Γn\Γndiag(1α, p1n−α, p21α, p1n−α)Γn,

and where the slash operator |k,M is defined in §2.4.
We put λ = (0, λ2), µ = (0, µ2) ∈ Z(n,2), then we obtain

e(Nτ +Rtz)|k,M
((

p2tD
−1

B
0n D

)
×
(
U
p2U−1

)
, [(λ, µ), 02]

)

= p−k det(D)−ke(N̂τ + R̂tz +NBD−1 +RU tµD−1),

where

N̂ = p2D−1N tD
−1

+D−1RU tλ+
1

p2
λUMU tλ

and

R̂ = D−1RU +
2

p2
λUMU.

Thus

N =
1

p2
D

((
N̂ − 1

4
R̂2

tR̂2

)
+

1

4
(R̂2 − 2λ2)

t(R̂2 − 2λ2)

)
tD

and

R = D

(
R̂− 2

p2
λUMU

)
U−1,
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where R̂2 = R̂ ( 01 ). Hence, for any N̂ ∈ Sym∗n and for any R̂ ∈ Z(n,2), we have

A2(N̂ , R̂)

= p−k
∑

(
p2tD

−1
B

0n D

)
det(D)−k

∑

λ2∈(Z/pZ)(n,1)

∑

µ2∈(Z/pZ)(n,1)
A1(N,R)

× e(NBD−1 +RU t(0, µ2)D
−1)

= p−k+n
∑

(
p2tD

−1
B

0n D

)
det(D)−k

∑

λ2∈(Z/pZ)(n,1)
A1(N,R) e(NBD

−1),

where N and R are the same symbols as above, which are determined by N̂ , R̂

and λ2, and where
(
p2tD

−1
B

0n D

)
runs over a complete set of representatives of

Γn\Γndiag(1α, p1n−α, p21α, p1n−α)Γn.

On the RHS of the above first identity the matrix D−1RU belongs to Z(n,2),
since R̂ ∈ Z(n,2). We remark that A1(N,R) = 0 unless N ∈ Sym∗n and R ∈
Z(n,2).
Due to the definition of ιM, for N ∈ Sym∗n and R ∈ Z(n,2) we have the identity

A1(N,R) = C1(4N −R ( 01 )
t
(R ( 0

1 )), 4R ( 10 )− 2rR ( 01 )).

Here

4N −R ( 01 )
t(R ( 01 )) =

1

p2
D
(
4N̂ − R̂2

tR̂2

)
tD

and

4R ( 10 )− 2rR ( 0
1 ) =

1

p2
D(4R̂ ( 10 )− 2rpR̂2).

Hence we have

A2(N̂ , R̂) (4.4)

= p−k+n
∑

(
p2tD

−1
B

0n D

)
det(D)−k

×C1

(
1

p2
D
(
4N̂ − R̂2

tR̂2

)
tD,

1

p2
D(4R̂ ( 10 )− 2rpR̂2)

)

×e
(

1

p2

(
N̂ − 1

4
R̂2

tR̂2

)
tDB

)∑

λ2

e

(
1

4p2
(R̂2 − 2λ2)

t(R̂2 − 2λ2)
tDB

)
,

where λ2 runs over a complete set of representatives of (Z/pZ)(n,1) such that

D

(
R̂− 2

p2
(0, λ2)UMU

)
U−1 ∈ Z(n,2).
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Let Sα be a complete set of representative of Γn\Γn
(

1α
p1n−α

p21α
p1n−α

)
Γn.

Now we quote a complete set of representatives Sα from [Zh 84]. We put

δi,j := diag(1i, p1j−i, p
21n−j)

for 0 ≤ i ≤ j ≤ n. We set

Sα :=

{(
p2δi,j

−1 b0
0n δi,j

)(
tu
−1

0n
0n u

) ∣∣∣∣ i, j, b0, u
}
,

where i and j run over all non-negative integers such that j − i − n + α ≥ 0,
and where u runs over a complete set of representatives of (δ−1i,j GLn(Z)δi,j ∩
GLn(Z))\GLn(Z), and b0 runs over all matrices in the set

T :=







0i 0 0
0 a1 pb1
0 tb1 b2



∣∣∣∣∣∣
b1 ∈ (Z/pZ)(j−i,n−j), b2 = tb2 ∈ (Z/p2Z)(n−j,n−j),

a1 = ta1 ∈ (Z/pZ)(j−i,j−i), rankp(a1) = j − i− n+ α



 .

For a matrix g =

(
p2tD

−1
B

0n D

)
=

(
p2δi,j

−1 b0
0n δi,j

)(
tu
−1

0n
0n u

)
∈ Sα with a

matrix b0 =



0i 0 0
0 a1 pb1
0 tb1 b2


 ∈ T, we define ε(g) :=

(
−4
p

)rankp(a1)/2 (det a′1
p

)
,

where a′1 ∈ GLj−i−n+α(Z/pZ) is a matrix such that a1 ≡
(
a′1 0
0 0n−α

)
[v] mod p

with some v ∈ GLj−i(Z). Under the assumption

1

p2
D(4R̂ ( 10 )− 2rpR̂2) ∈ Z(n,1),

the condition D(R̂ − 2p−2(0, λ2)UMU)U−1 ∈ Z(n,2) is equivalent to the con-
dition

u(R̂2 − 2λ2) ∈
(
p1i 0
0 1n−i

)
Z(n,1).

Hence the last summation in (4.4) is

∑

λ2

e

(
1

4p2
(R̂2 − 2λ2)

t(R̂2 − 2λ2)
tDB

)

= pn−j
∑

λ′∈(Z/pZ)(j−i,1)
e

(
1

p
tλ′a1λ

′
)

= pn−i−rankp(a1)
((−4

p

)
p

)rankp(a1)/2(det a′1
p

)

= pn−i−
rankp(a1)

2 ε(g)

= pn+(n−i−j−α)/2ε(g).
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Thus (4.4) is

A2(N̂ , R̂)

= p−k+2n
∑

g

p−k(2n−i−j)+(n−i−j−α)/2ε(g) e
(
p−2

(
4N̂ − R̂2

tR̂2

)
tDB

)

× C1

(
p−2D(4N̂ − R̂2

tR̂2)
tD, p−2D(4R̂ ( 10 )− 2rpR̂2)

)
,

where g =

(
p2tD

−1
B

0n D

)
=

(
p2δi,j

−1 b0
0n δi,j

)(
tu
−1

0n
0n u

)
runs over all ele-

ments in the set Sα.
Now we shall express C2(M,S) as a linear combination of Fourier coefficients

C1(M,S) of ιM (ψ). For Y = (diag(1α, p1n−α, p21α, p1n−α), pα/2) ∈ ˜GSp+
n (Z)

a complete set of representatives of Γ
(n)
0 (4)∗\Γ(n)

0 (4)∗Y Γ
(n)
0 (4)∗ is given by el-

ements

g̃ = (g, ε(g)p(n−i−j)/2) ∈ ˜GSp+n (Z),

where g runs over all elements in the set Sα, and ε(g) is defined as above (cf.
[Zh 84, Lemma 3.2]). Hence

(ιM(ψ)|Ṽα,n−α(p2))(τ, z)
= pn(2k−1)/2−n(n+1)

∑

M,S

∑

g̃

p(−k+1/2)(n−i−j)ε(g)C1(M,S)

× e(M(p2tD
−1
τ +B)D−1 + p2StzD−1)

= pn(2k−1)/2−n(n+1)
∑

M̂,Ŝ

∑

g∈Sα
p(−k+1/2)(n−i−j)ε(g)C1(p

−2DM̂ tD, p−2DŜ)

× e(M̂τ + Ŝtz + p−2M̂ tDB).

Thus

C2(M̂, Ŝ)

=
∑

g

p−n(n+1)+(k−1/2)(i+j)ε(g)C1(p
−2DM̂ tD, p−2DŜ) e(p−2M̂ tDB).

Now we put M̂ = 4N̂ − R̂2
tR̂2 and Ŝ = 4R̂ ( 10 )− 2rpR̂2, then

C2(4N̂ − R̂2
tR̂2, 4R̂ ( 10 )− 2rpR̂2) = p2nk+k−n

2− 7
2n+

1
2αA2(N̂ , R̂).

The proposition follows from this identity. ⊓⊔

4.7 Index-shift maps at p = 2

For p = 2 we define the map

Ṽα,n−α(4) : J
(n)∗
k− 1

2 ,m
→ Hol(Hn × C(n,1) → C)
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through an analogue of the identity (4.3), it means that we define

φ|Ṽα,n−α(4) := 2k(2n+1)−n(n+ 7
2 )+

1
2α ιM[( 2 1 )]

(ψ|Vα,n−α(4))

for any φ ∈ J
(n)∗
k− 1

2 ,m
, and where ψ ∈ J (n)∗

k,M is the Jacobi form which satisfies

ιM(ψ) = φ. Here the map Vα,n−α(4) is defined in §2.7 and the map ιM is
defined in §4.5.

5 Action of index-shift maps on Jacobi-Eisenstein series

In this section we fix a positive definite half-integral symmetric matrix M ∈
Sym+

2 and we assume that the right-lower part of M is 1, it means M =(
∗ ∗
∗ 1

)
.

The purpose of this section is to show that the form E
(n)
k,M|Vα,n−α(p2) is writ-

ten as a linear combination of three forms E
(n)

k,M
[(
p 0
0 1

)], E(n)
k,M|U( p 0

0 1

) and

E
(n)

k,M
[
X−1

(
p 0
0 1

)−1
]|U( p 0

0 1

)
X
(
p 0
0 1

), where E(n)
k,M is the Jacobi-Eisenstein series

of index M (cf. §3), and where Vα,n−α(p2) and U( p 0
0 1

) are index-shift maps

(cf. §2.7 and §4.6). Here X = ( 1 0
x 1 ) is a matrix.

First we will calculate functions Kβ
i,j (cf. Lemma 5.2) which appear in an

expression of E
(n)
k,M|Vα,n−α(p2), and after that, we will expressE

(n)
k,M|Vα,n−α(p2)

as a summation of functions K̃β
i,j (cf. Proposition 5.3).

The calculation in this section is an analogue to the one given in [Yk 89] for the
case of index M = 1. However, we need to modify his calculation for Jacobi-

Eisenstein series E
(n)
k,1 of index 1 to our case for E

(n)
k,M withM = ( ∗ ∗∗ 1 ) ∈ Sym+

2 .
This calculation is not obvious, since we need to calculate the action of the
matrices of type [((0, u2), (0, v2)), 02].

5.1 The function Kβ
i,j

The purpose of this subsection is to introduce a function Kβ
i,j and to express

E
(n)
k,M|Vα,n−α(p2) as a summation over Kβ

i,j . Moreover, we shall calculate Kβ
i,j

explicitly (cf. Lemma 5.2).
We put δi,j := diag(1i, p1j−i, p21n−j). For x = diag(0i, x

′, 0n−i−j) with

x′ = tx′ ∈ Z(j−i,j−i), we set δi,j(x) :=

(
p2δ−1i,j x

0 δi,j

)
and Γ(δi,j(x)) :=

Γn ∩ δi,j(x)−1Γ(n)
∞ δi,j(x).

For x = diag(0i, x
′, 0n−i−j) and for y = diag(0i, y

′, 0n−i−j) with x′ = tx′, y′ =
ty′ ∈ Z(j−i,j−i), following [Yk 89] we say that x and y are equivalent, if there

exists a matrix u ∈ GLn(Z) ∩ δi,jGLn(Z)δ−1i,j which has a form u =
(
u1 ∗ ∗∗ u2 ∗∗ ∗ u3

)
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satisfying x′ ≡ u2 y
′ tu2 mod p, where u2 ∈ Z(j−i,j−i) , u1 ∈ Z(i,i) and u3 ∈

Z(n−j,n−j).
We denote by [x] the equivalence class of x. We quote the following lemma
from [Yk 89].

Lemma 5.1. The double coset Γndiag(1α, p1n−α, p21α, p1n−α)Γn is written as
a disjoint union

Γn

(
1α

p1n−α

p21α
p1n−α

)
Γn =

⋃

i,j
0≤i≤j≤n

⋃

[x]

Γ(n)
∞ δi,j(x)Γn,

where [x] runs over all equivalence classes which satisfy rankp(x) = j − i− n+
α ≥ 0.

Proof. The reader is referred to [Yk 89, Corollary 2.2]. ⊓⊔

We put U :=

(
p2 0
0 p

)
. By the definition of index-shift map Vα,n−α(p2) and of

the Jacobi-Eisenstein series E
(n)
k,M, we have

E
(n)
k,M|Vα,n−α(p2)
=

∑

u,v∈Z(n,1)

∑

M ′∈Γn\Γndiag(1α,p1n−α,p21α,p1n−α)Γn

∑

M∈Γ(n)
∞ \Γn

∑

λ∈Z(n,2)

× 1|k,M([(λ, 0), 02],MM ′ ×
(
U 0
0 p2U−1

)
)|
k,M[

(
p 0
0 1

)
]
[((0, u), (0, v)), 02]

=
∑

u,v∈Z(n,1)

∑

M∈Γ(n)
∞ \Γndiag(1α,p1n−α,p21α,p1n−α)Γn

∑

λ∈Z(n,2)

× 1|k,M([(λ, 0), 02],M ×
(
U 0
0 p2U−1

)
)|
k,M[

(
p 0
0 1

)
]
[((0, u), (0, v)), 02].

Hence, due to Lemma 5.1, we have

E
(n)
k,M|Vα,n−α(p2)
=

∑

u,v∈Z(n,1)

∑

i,j
0≤i≤j≤n

∑

[x]
rankp(x)=j−i−n+α

∑

M∈Γ(n)
∞ \δi,j(x)Γn

∑

λ∈Z(n,2)

× 1|k,M([(λ, 0), 02],M ×
(
U 0
0 p2U−1

)
)|
k,M[

(
p 0
0 1

)
]
[((0, u), (0, v)), 02]

=
∑

u,v∈Z(n,1)

∑

i,j
0≤i≤j≤n

∑

[x]
rankp(x)=j−i−n+α

∑

M∈Γ(δi,j(x))\Γn

∑

λ∈Z(n,2)

× 1|k,M([(λ, 0), 02], δi,j(x)M ×
(
U 0
0 p2U−1

)
)|
k,M[

(
p 0
0 1

)
]
[((0, u), (0, v)), 02].
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For β ≤ j − i we define a function

Kβ
i,j(τ, z)

:= Kβ
i,j,M,p(τ, z)

=
∑

[x]
rankp(x)=β

∑

M∈Γ(δi,j(x))\Γn

×
∑

λ∈Z(n,2)

{
1|k,M([(λ, 0), 02], δi,j(x)M ×

(
U 0
0 p2U−1

)
)
}
(τ, z).

Then we obtain

E
(n)
k,M|Vα,n−α(p2) =

∑

i,j
0≤i≤j≤n

∑

u,v∈Z(n,1)

Kα−i−n+j
i,j |

k,M[
(
p 0
0 1

)
]
[((0, u), (0, v)), 02].

We define

Li,j := Li,j,M,p =

{(
λ1

λ2

λ3

) ∣∣∣∣
λ1 ∈ (pZ)(i,2) , λ2 ∈ Z(j−i,2) , λ3 ∈ (p−1Z)(n−j,2)

2λ2Mtλ3 ∈ Z(j−i,n−j) , λ3Mtλ3 ∈ Z(n−j,n−j)

}
.

Moreover, we define a subgroup Γ(δi,j) of Γ
(n)
∞ by

Γ(δi,j) :=

{(
A B

0n
tA
−1

)
∈ Γ(n)
∞

∣∣∣∣ A ∈ δi,jGLn(Z)δ−1i,j

}
.

Lemma 5.2. Let Kβ
i,j be as above. We obtain

Kβ
i,j(τ, z)

= p−k(2n−i−j+1)+(n−j)(n−i+1)
∑

M∈Γ(δi,j)\Γn

×
∑

λ∈Li,j
1|k,M([(λ, 0), 02],M)(τ, z

(
p 0
0 1

)
)

∑

x=tx∈(Z/pZ)(n,n)

x=diag(0i,x
′,0n−j)

rankp(x
′)=β

e

(
1

p
Mtλxλ

)
,

where x runs over a complete set of representatives of (Z/pZ)(n,n) such that
x = tx, rankp(x) = β and x = diag(0i, x

′, 0n−j) with some x′ ∈ (Z/pZ)(j−i,j−i).

Proof. We proceed as in [Yk 89, Proposition 3.2]. The inside of the last sum-
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mation of the definition of Kβ
i,j(τ, z) is

(
1|k,M([(λ, 0), 02], δi,j(x)M ×

(
U 0
0 p2U−1

)
)
)
(τ, z)

= det(p2U−1)−k det(δi,j)
−k

×
(
e(M(tλ(p2δ−1ij τ + x)δ−1ij λ+ 2tλδ−1ij z

(
p2

p

)
))|
k,M[

(
p 0
0 1

)
]
M

)
(τ, z)

= p−k(2n−i−j+1)

×
((

(1|k,M([(pδ−1i,j λ, 0), 02],

(
1 p−1x
0 1

)
))(τ, z

(
p 0
0 1

)
)

)
|
k,M[

(
p 0
0 1

)
]
M

)
(τ, z)

= p−k(2n−i−j+1)

(
1|k,M([(pδ−1i,j λ, 0), 02],

(
1 p−1x
0 1

)
M)

)
(τ, z

(
p 0
0 1

)
).

Here we used the identity δi,jx = δi,jdiag(0i, x
′, 0n−j) = px. Thus

Kβ
i,j(τ, z) = p−k(2n−i−j+1)

∑

[x]
rankp(x)=β

∑

M∈Γ(δi,j(x))\Γn

×
∑

λ∈Zn
1|k,M

(
[(pδ−1i,j λ, 0), 02],

(
1 p−1x
0 1

)
M

)
(τ, z

(
p 0
0 1

)
).

We put

U :=

{(
1n s
0n 1n

) ∣∣∣∣ s = ts ∈ Z(n,n)

}
.

Then the set

V :=

{(
1n s
0n 1n

) ∣∣∣∣ s=
(

0 0 0
0 0 s2
0 ts2 s3

)
, s2∈(Z/pZ)(j−i,n−j), s3=

ts3∈(Z/pZ)(n−j,n−j)

}

is a complete set of representatives of Γ(δi,j(x))\Γ(δi,j(x))U . Therefore

Kβ
i,j(τ, z)

= p−k(2n−i−j+1)
∑

[x]
rankp(x)=β

∑

M∈(Γ(δi,j(x))U)\Γn

∑

λ∈Z(n,2)

∑
(
1n s
0 1n

)
∈V

× 1|k,M([(pδ−1i,j λ, 0), 02],

(
1n p−1x
0 1n

)(
1n s
0 1n

)
M)(τ, z

(
p 0
0 1

)
)
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Hence

Kβ
i,j(τ, z) = p−k(2n−i−j+1)

∑

[x]
rankp(x)=β

∑

M∈(Γ(δi,j(x))U)\Γn

∑

λ∈Z(n,2)

× 1|k,M([(pδ−1i,j λ, 0), 02],

(
1n p−1x
0 1n

)
M)(τ, z

(
p 0
0 1

)
)

×
∑

(
1n s
0 1n

)
∈V

e
(
p2Mtλδ−1i,j sδ

−1
i,j λ

)
.

The last summation of the RHS of the above identity is

∑
(
1n s
0 1n

)
∈V

e
(
p2Mtλδ−1i,j sδ

−1
i,j λ

)

=

{
p(n−j)(n−i+1) if λ3Mtλ3 ≡ 0 mod p2 and 2λ3Mtλ2 ≡ 0 mod p,

0 otherwise,

where λ =

(
λ1

λ2

λ3

)
∈ Z(n,2) with λ1 ∈ Z(i,2), λ2 ∈ Z(j−i,2) and λ3 ∈ Z(n−j,2).

Thus

Kβ
i,j(τ, z) = p−k(2n−i−j+1)+(n−j)(n−i+1)

∑

[x]
rankp(x)=β

∑

M∈(Γ(δi,j(x))U)\Γn

×
∑

λ∈Li,j
1|k,M([(λ, 0), 02],

(
1n p

−1x
0 1n

)
M)(τ, z

(
p 0
0 1

)
).

Now Γ(δi,j(x))U is a subgroup of Γ(δi,j). For any
(
A B
0n

tA
−1

)
∈ Γ(δi,j) we have

1|k,M([(λ, 0), 02],
(

1n p
−1x

0n 1n

)(
A B
0n

tA−1

)
M)

= 1|k,M([(λ, 0), 02],
(
A B
0n

tA
−1

)(
1n p

−1A−1xtA
−1

0n 1n

)
M)

= 1|k,M([(tAλ, tBλ), 02],
(

1n p
−1A−1xtA

−1

0n 1n

)
M)

= 1|k,M([(tAλ, 0), 02],
(

1n p
−1A−1xtA

−1

0n 1n

)
M),

and tALi,j = Li,j . Moreover, when
(
A B
0n

tA
−1

)
runs over all elements in a

complete set of representatives of Γ(δi,j(x))U\Γ(δi,j), then A−1xtA−1 runs over
all elements in the equivalence class [x] (cf. [Yk 89, proof of Proposition 3.2]).
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Therefore we have

Kβ
i,j(τ, z)

= p−k(2n−i−j+1)+(n−j)(n−i+1)
∑

x=tx∈(Z/pZ)(n,n)

x=diag(0i,x
′,0n−j)

rankp(x
′)=β

∑

M∈Γ(δi,j)\Γn

×
∑

λ∈Li,j
1|k,M([(λ, 0), 02],

(
1n p

−1x
0 1n

)
M)(τ, z

(
p 0
0 1

)
)

= p−k(2n−i−j+1)+(n−j)(n−i+1)
∑

M∈Γ(δi,j)\Γn

×
∑

λ∈Li,j
1|k,M([(λ, 0), 02],M)(τ, z

(
p 0
0 1

)
)

∑

x=tx∈(Z/pZ)(n,n)

x=diag(0i,x
′,0n−j)

rankp(x
′)=β

e

(
1

p
Mtλxλ

)
.

⊓⊔

5.2 The function K̃β
i,j

The purpose of this subsection is to introduce a function K̃β
i,j and to express

E
(n)
k,M|Vα,n−α(p2) as a summation of K̃β

i,j . Moreover, we shall show that K̃β
i,j is

a summation of exponential functions with generalized Gauss sums (cf. Propo-
sition 5.3).
We define

L∗i,j := L∗i,j,M,p

=

{(
λ1

λ2

λ3

)
∈ Li,j

∣∣∣∣ 2λ3M ( 01 ) ∈ Z(n−j,1)
}

=







λ1
λ2
λ3


 ∈ (p−1Z)(n,2)

∣∣∣∣∣∣

λ1
(
p 0
0 1

)−1 ∈ Z(i,2), λ2 ∈ Z(j−i,2)

λ3 ∈ (p−1Z)(n−j,2), 2λ2Mtλ3 ∈ Z(j−i,n−j)

λ3Mtλ3 ∈ Z(n−j,n−j), 2λ3M ( 01 ) ∈ Z(n−j,1)





and define a generalized Gauss sum

Gj−i,lM (λ2) :=
∑

x′=tx′∈(Z/pZ)(j−i,j−i)
rankp(x

′)=j−i−l

e

(
1

p
Mtλ2x

′λ2

)

for λ2 ∈ Z(j−i,2). We define

K̃β
i,j(τ, z) := K̃β

i,j,M,p(τ, z)

=
∑

u,v∈(Z/pZ)(n,1)

(
Kβ
i,j|k,M[

(
p 0
0 1

)
]
[((0, u), (0, v)) , 02]

)
(τ, z).
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Proposition 5.3. Let the notation be as above. Then we obtain
(
E

(n)
k,M|Vα,n−α(p2)

)
(τ, z) =

∑

i,j
0≤i≤j≤n
j−i≥n−α

K̃α−i−n+j
i,j (τ, z),

where

K̃α−i−n+j
i,j (τ, z) = p−k(2n−i−j+1)+(n−j)(n−i+1)+2n−j

×
∑

M∈Γ(δi,j)\Γn

∑

λ=

(
λ1

λ2

λ3

)
∈L∗

i,j

{1|k,M([(λ, 0), 02],M)} (τ, z
(
p 0
0 1

)
)

×
∑

u2∈(Z/pZ)(j−i,1)
Gj−i,n−αM (λ2 + (0, u2)).

Proof. From the definition of K̃β
i,j and Lemma 5.2 we obtain

(5.1)

K̃α−i−n+j
i,j (τ, z)

= p−k(2n−i−j+1)+(n−j)(n−i+1)
∑

M∈Γ(δi,j)\Γn

∑

λ=

(
λ1

λ2

λ3

)
∈Li,j

Gj−i,n−αM (λ2)

×
∑

u,v∈(Z/pZ)(n,1)

(
1|k,M([(λ, 0), 02],M)(τ, z

(
p 0
0 1

)
)
)
|
k,M[

(
p 0
0 1

)
]
[((0, u), (0, v)) , 02],

where λ1 ∈ Z(i,2), λ2 ∈ Z(j−i,2) and λ3 ∈ Z(n−j,2) satisfy

(
λ1

λ2

λ3

)
∈ Li,j , and

where the n× 2 matrix λ =

(
λ1

λ2

λ3

)
runs over the set Li,j .

By a straightforward calculation we have

(1|k,M([(λ, 0), 02],M))(τ, z
(
p 0
0 1

)
)

=

(
1|
k,M[

(
p 0
0 1

)
]
([(λ

(
p 0
0 1

)−1
, 0), 02],M)

)
(τ, z).

Thus the last summation of (5.1) is

∑

u,v∈(Z/pZ)(n,1)

{

1|k,M([(λ, 0), 02],M)(τ, z
(

p 0
0 1

)

)|
k,M[

(
p 0
0 1

)
]
[((0, u), (0, v)) , 02]

}

(τ, z)

=
∑

u,v∈(Z/pZ)(n,1)

×

{

1|
k,M[

(
p 0
0 1

)
]
([(λ

(

p 0
0 1

)−1
, 0), 02],M)|

k,M[
(
p 0
0 1

)
]
[((0, u), (0, v)) , 02]

}

(τ, z)
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=
∑

u′,v′∈(Z/pZ)(n,1)

{

1|
k,M[

(
p 0
0 1

)
]
([(λ

(

p 0
0 1

)−1
+ (0, u′), (0, v′)), 02],M)

}

(τ, z)

=
∑

u′,v′∈(Z/pZ)(n,1)

{

1|k,M([(λ+ (0, u′), (0, v′)), 02],M)
}

(τ, z
(

p 0
0 1

)

)

=
∑

u′∈(Z/pZ)(n,1)

{

1|k,M([(λ+ (0, u′), 0), 02],M)
}

(τ, z
(

p 0
0 1

)

)
∑

v′∈(Z/pZ)(n,1)

e(2Mtλ(0, v′)),

where, in the second identity, we used

(M, [((0, u), (0, v)), 02]) = ([((0, u′), (0, v′)), 02],M)

with
(
u′

v′

)
=
(
D −C
−B A

)
( uv ) for M = (A B

C D ) ∈ Γn. For λ =

(
λ1

λ2

λ3

)
∈ Li,j we now

have

∑

v′∈(Z/pZ)(n,1)
e(2Mtλ(0, v′)) =

{
pn if 2λ3M ( 01 ) ∈ Z(n−j,1),

0 otherwise.

Therefore

K̃α−i−n+j
i,j (τ, z)

= p−k(2n−i−j+1)+(n−j)(n−i+1)+n
∑

M∈Γ(δi,j)\Γn

∑

λ=

(
λ1

λ2

λ3

)
∈Li,j

2λ3M( 01 )∈Z
(n−j,1)

Gj−i,n−αM (λ2)

×
∑

u∈(Z/pZ)(n,1)
{1|k,M([(λ+ (0, u), 0), 02],M)} (τ, z

(
p 0
0 1

)
).

Thus

K̃α−i−n+j
i,j (τ, z)

= p−k(2n−i−j+1)+(n−j)(n−i+1)+n
∑

M∈Γ(δi,j)\Γn

∑

λ=

(
λ1

λ2

λ3

)
∈L∗

i,j

× {1|k,M([(λ, 0), 02],M)} (τ, z
(
p 0
0 1

)
)

× pn−j
∑

u2∈(Z/pZ)(j−i,1)
Gj−i,n−αM (λ2 + (0, u2)),

where L∗i,j is defined as before. ⊓⊔

We put

gp(n, α) :=
α∏

j=1

{
(pn−j+1 − 1)(pj − 1)−1

}

It is not difficult to see gp(n, n− α) = gp(n, α).
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Lemma 5.4. For any λ = (λ1, λ2) ∈ Z(n,2) and for any prime p, we have

∑

u2∈(Z/pZ)(n,1)
Gn,αM (λ + (0, u2))

=





p
1
4 (n−α−1)2+ 1

2 (n−α−1)+α+n
(
−m
p

)

×gp(n− 1, α)

n−α−2∏

j=1
j : odd

(pj − 1)
if n− α ≡ 1 mod 2

and λ1 6≡ 0 mod p,

0
if n− α ≡ 1 mod 2

and λ1 ≡ 0 mod p,

p
1
4 (n−α)2+ 1

2 (n−α)+αgp(n, α)
n−α−1∏

j=1
j : odd

(pj − 1) if n− α ≡ 0 mod 2.

Here m = det(2M) and we regard the product

c∏

j=1
j : odd

(pj − 1) as 1, if c is less

than 1.

Proof. This calculation is similar to the calculation of

∑

x=tx∈(Z/pZ)n
rankpx=n−α

e

(
1

p
mtλ1xλ1

)

for λ1 ∈ Z(n,1) and for m ∈ Z which is in [Yk 89, Lemma 3.1].
If p is an odd prime and if λ1 6≡ 0 mod p, then

∑

u2∈(Z/pZ)(n,1)
Gn,αM (λ+ (0, u2))

=
∑

u2∈(Z/pZ)(n,1)

∑

x′=tx′∈(Z/pZ)(n,n)

rankp(x
′)=n−α

e

(
1

p
M t(λ1, u2)x

′(λ1, u2)

)

By diagonalizing the matrices x′ we have
∑

u2∈(Z/pZ)(n,1)
Gn,αM (λ+ (0, u2))

=
∑

i=0,1

pn−1 |GLn−1(Z/pZ)| |O(xi)|−1

×
∑

u2∈(Z/pZ)(n,1)

∑

η∈(Z/pZ)(n,1)
η 6≡0 mod p

e

(
1

p
M t(η, u2)xi(η, u2)

)
,
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where xi =
(
yi 0
0 0

)
∈ Z(n,n), y0 = 1n−α, y1 =

(
1n−α−1 0

0 γ

)
∈ Z(n−α,n−α) and γ

is an integer such that
(
γ
p

)
= −1. Here O(xi) is the orthogonal group of xi:

O(xi) :=
{
g ∈ GLn(Z/pZ) | gxitg = xi

}
.

If we diagonalize the matrixM asM ≡ tX (m 0
0 1 )X mod p with X = ( 1 0

x 1 ),
then

∑

u2∈(Z/pZ)(n,1)
Gn,αM (λ+ (0, u2))

=
∑

i=0,1

pn−1 |GLn−1(Z/pZ)| |O(xi)|−1

×
∑

u2∈(Z/pZ)(n,1)

∑

η∈(Z/pZ)(n,1)
η 6≡0 mod p

e

(
1

p

(
mηtη + u2

tu2
)
xi

)
.

The rest of the calculation is an analogue to [Yk 89, Lemma 3.1]. For the case
of p = 2 or λ1 ≡ 0 mod p, the calculation is similar. If p = 2, we need to

calculate the case thatM = tX
(
m′ 1

2
1
2 1

)
X , but it is not difficult. We leave the

detail to the reader. ⊓⊔

We set

Sn,αM (0) :=
∑

u2∈(Z/pZ)(n,1)
Gn,αM ((0, u2))

and

Sn,αM (1) :=
∑

u2∈(Z/pZ)(n,1)
Gn,αM

((( 1
0
...
0

)
, u2

))
.

Due to Lemma 5.4, we have that
∑

u2∈(Z/pZ)(n,1)
Gn,αM (λ+ (0, u2)) equals S

n,α
M (0)

or Sn,αM (1), according as λ ∈ Z(n,2)

(
p 0
0 1

)
or λ 6∈ Z(n,2)

(
p 0
0 1

)
.

Proposition 5.5. The form E
(n)
k,M|Vα,n−α(p2) is a linear combination of three

forms E
(n)

k,M
[(
p 0
0 1

)], E(n)
k,M|U( p 0

0 1

) and E
(n)

k,M
[
X−1

(
p 0
0 1

)−1
]|U( p 0

0 1

)
X
(
p 0
0 1

). Here

the index-shift map UL is defined in §4.6, and X = ( 1 0
x 1 ) is a matrix in Z(2,2)

such that M = tX
(
m+1 1
1 1

)
X if p = 2 and det(2M)

4 ≡ 3 mod 4, or M ≡
tX (m 0

0 1 )X mod p otherwise, and where m = det(2M).
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Proof. By virtue of Proposition 5.3 we only need to show that the form
K̃α−i−n+j
i,j (τ, z) is a linear combination of the above three forms.

Because of the conditions λ3Mtλ3 ∈ Z(n−j,n−j) and 2λ3M ( 01 ) ∈ Z(n−j,1) in
the definition of L∗i,j, we obtain

L∗i,j =

{(
λ1

λ2

λ3

)
∈
(
1

p
Z
)(n,2)

∣∣∣∣∣
λ1 ∈ Z(i,2)

(
p 0
0 1

)
, λ2 ∈ Z(j−i,2),

λ3
tX ∈ Z(n−j,2)

(
p−1 0
0 1

)
}

(5.2)

for the case p|f , and

L∗i,j =

{(
λ1

λ2

λ3

)
∈ Z(n,2) |λ1 ∈ Z(i,2)

(
p 0
0 1

)
, λ2 ∈ Z(j−i,2), λ3 ∈ Z(n−j,2)

}
(5.3)

for the case p 6 |f . Here f is a natural number such that D0f
2 = − det(2M)

and D0 is a fundamental discriminant, and where the matrix X is stated in
this proposition.

We now assume p|f . If p is an odd prime, then the matrix X = ( 1 0
x 1 ) ∈ Z(2,2)

satisfies M ≡ tX (m 0
0 1 )X mod p and p2|m. If p = 2, then the matrix X =

( 1 0
x 1 ) ∈ Z(2,2) satisfiesM = tX (m 0

0 1 )X with 4|m, orM = tX
(
m′ 1
1 1

)
X with

4|m′. We remark thatM
[
X−1

(
p 0
0 1

)−1]
is a half-integral symmetric matrix.

We put

L0 :=

{(
λ1

λ2

λ3

)
∈ L∗i,j |λ2 ∈ Z(j−i,2) ( p 0

0 1

)}
,

L1 :=

{(
λ1

λ2

λ3

)
∈ L∗i,j |λ2 6∈ Z(j−i,2) ( p 0

0 1

)}
.

and set

L′i,j :=

{(
λ1

λ2

λ3

) ∣∣∣∣ λ1 ∈ Z(i,2)
(
p2 0
0 1

)
, λ2 ∈ Z(j−i,2) ( p 0

0 1

)
, λ3 ∈ Z(n−j,2)

}
.

By using the identity

{1|k,M([(λ, 0), 02],M)} (τ, z
(
p 0
0 1

)
)

=
{
1
∣∣
k,M[X−1]([(λ

tX, 0), 02],M)
}
(τ, z

(
p 0
0 1

)
tX)

=

{
1

∣∣∣∣∣k,M
[
X−1

(
p 0
0 1

)−1
]([(λtX

(
p 0
0 1

)
, 0), 02],M)

}
(τ, z

(
p 0
0 1

)
tX
(
p 0
0 1

)
) ,
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we have

K̃α−i−n+j
i,j (τ, z)

= p−k(2n−i−j+1)+(n−j)(n−i+1)+2n−j

×
∑

M∈Γ(δi,j)\Γn







Sj−i,n−α
M (0)

∑

λ∈L0

{1|k,M([(λ, 0), 02],M)} (τ, z
(

p 0
0 1

)

)

+ Sj−i,n−α
M (1)

∑

λ∈L1

{1|k,M([(λ, 0), 02],M)} (τ, z
(

p 0
0 1

)

)







= p−k(2n−i−j+1)+(n−j)(n−i+1)+2n−j
∑

M∈Γ(δi,j)\Γn

{

(

Sj−i,n−α
M (0)− Sj−i,n−α

M (1)
)

×
∑

λ∈L0

{

1|
k,M

[
X−1

(
p 0
0 1

)−1
]([(λtX

(

p 0
0 1

)

, 0), 02],M)

}

(τ, z
(

p 0
0 1

) tX
(

p 0
0 1

)

)

+Sj−i,n−α
M (1)

×
∑

λ∈L∗
i,j

{

1|
k,M

[
X−1

(
p 0
0 1

)−1
]([(λtX

(

p 0
0 1

)

, 0), 02],M)

}

(τ, z
(

p 0
0 1

)

tX
(

p 0
0 1

)

)

}

= p−k(2n−i−j+1)+(n−j)(n−i+1)+2n−j
∑

M∈Γ(δi,j)\Γn

{

(

Sj−i,n−α
M (0)− Sj−i,n−α

M (1)
)

×
∑

λ∈L′
j,j

{

1|
k,M

[
X−1

(
p 0
0 1

)−1
]([(λ, 0), 02],M)

}

(τ, z
(

p 0
0 1

)

tX
(

p 0
0 1

)

)

+Sj−i,n−α
M (1)

×
∑

λ∈L′
i,j

{

1|
k,M

[
X−1

(
p 0
0 1

)−1
]([(λ, 0), 02],M)

}

(τ, z
(

p 0
0 1

)

tX
(

p 0
0 1

)

)

}

.

We now calculate the sum

∑

M∈Γ(δi,j)\Γn

∑

λ∈L′
j,j

{
1|
k,M

[
X−1

(
p 0
0 1

)−1
]([(λ, 0), 02],M)

}
(τ, z

(
p 0
0 1

)
tX
(
p 0
0 1

)
).

We set

Hi,j := δi,j GLn(Z) δ−1i,j ∩GLn(Z).

If {Al}l is a complete set of representatives of Hi,j\GLn(Z), then one can

say that the set

{(
Al 0

0 tAl
−1

)}

l

is a complete set of representatives of
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Γ(δi,j)\Γ(n)
∞ . Thus

∑

M∈Γ(δi,j)\Γn

∑

λ∈L′
j,j

{1|k,M([(λ, 0), 02],M)} (τ, z)

=
∑

M∈Γ(n)
∞ \Γn

∑

A∈Hi,j\GLn(Z)

∑

λ∈L′
j,j

{
1|k,M([(λ, 0), 02],

(
A 0
0 tA−1

)
M)
}
(τ, z)

=
∑

M∈Γ(n)
∞ \Γn

∑

A∈Hi,j\GLn(Z)

∑

λ∈L′
j,j

{
1|k,M([(tAλ, 0), 02],M)

}
(τ, z).

If B(λ) is a function on λ ∈ Z(n,2). Then

∑

A∈Hi,j\GLn(Z)

∑

λ∈L′
j,j

B(tAλ)

= [Hj,j : Hi,j ]
∑

A∈Hj,j\GLn(Z)

∑

λ∈L′
j,j

B(tAλ)

= [Hj,j : Hi,j ]


a0

∑

λ∈Z(n,2)

B(λ) + a1
∑

λ∈Z(n,2)

B(λ
(
p 0
0 1

)
) + a2

∑

λ∈Z(n,2)

B(λ
(
p2 0
0 1

)
)




with numbers a0, a1 and a2 under the assumption that the summations con-
verges absolutely. The values a0, a1 and a2 are independent of the choice of
the function B. For the exact values of a0, of a1 and of a2 the reader is referred
to [H 13, Lemma 3.7].
Hence we have

∑

M∈Γ(δi,j)\Γn

∑

λ∈L′
j,j

{

1|
k,M

[
X−1

(
p 0
0 1

)−1
]([(λ, 0), 02],M)

}

(τ, z
(

p 0
0 1

)

tX
(

p 0
0 1

)

)

= [Hj,j : Hi,j ]
∑

M∈Γ
(n)
∞ \Γn

×

(

a0
∑

λ∈Z(n,2)

{

1|
k,M

[
X−1

(
p 0
0 1

)−1
]([(λ, 0), 02],M)

}

(τ, z
(

p 0
0 1

) tX
(

p 0
0 1

)

)

+a1
∑

λ∈Z(n,2)

{

1|
k,M

[
X−1

(
p 0
0 1

)−1
]([(λ

(

p 0
0 1

)

, 0), 02],M)

}

(τ, z
(

p 0
0 1

)

tX
(

p 0
0 1

)

)

+a2
∑

λ∈Z(n,2)

×

{

1|
k,M

[
X−1

(
p 0
0 1

)−1
]([(λ

(

p2 0
0 1

)

, 0), 02],M)

}

(τ, z
(

p 0
0 1

) tX
(

p 0
0 1

)

)

)

= [Hj,j : Hi,j ]
∑

M∈Γ
(n)
∞ \Γn
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×

(

a0
∑

λ∈Z(n,2)

{

1|
k,M

[
X−1

(
p 0
0 1

)−1
]([(λ, 0), 02],M)

}

(τ, z
(

p 0
0 1

)

tX
(

p 0
0 1

)

)

+a1
∑

λ∈Z(n,2)

{1|k,M([(λ, 0), 02],M)} (τ, z
(

p 0
0 1

)

)

+a2
∑

λ∈Z(n,2)

{

1|
k,M

[(
p 0
0 1

)]([(λ, 0), 02],M)

}

(τ, z)

)

= [Hj,j : Hi,j ]

(

a0E
(n)

k,M

[
X−1

(
p 0
0 1

)−1
](τ, z

(

p 0
0 1

)

tX
(

p 0
0 1

)

)

+a1E
(n)
k,M(τ, z

(

p 0
0 1

)

) + a2E
(n)

k,M
[(

p 0
0 1

)](τ, z)

)

.

Similarly, the summation

∑

M∈Γ(δi,j)\Γn

∑

λ∈L′
i,j

{
1|
k,M

[
X−1

(
p 0
0 1

)−1
]([(λ, 0), 02],M)

}
(τ, z

(
p 0
0 1

)
tX
(
p 0
0 1

)
)

is a linear combination of E
(n)

k,M
[
X−1

(
p 0
0 1

)−1
](τ, z

(
p 0
0 1

)
tX
(
p 0
0 1

)
),

E
(n)
k,M(τ, z

(
p 0
0 1

)
) and E

(n)

k,M
[(
p 0
0 1

)](τ, z).

Therefore, if p|f , then the form K̃α−i−n+j
i,j (τ, z) is a linear combination of the

above three forms.
The proof for the case p 6 |f is similar to the case p|f . If p 6 |f , then

K̃α−i−n+j
i,j (τ, z) is a linear combination of two forms E

(n)
k,M(τ, z

(
p 0
0 1

)
) and

E
(n)

k,M
[(
p 0
0 1

)](τ, z). We omit the detail of the calculation here. ⊓⊔

6 Commutativity with the Siegel operators

In [Kr 86] an explicit commutative relation between the generators of Hecke
operators for Siegel modular forms and Siegel Φ-operator has been given. In
this section we shall give a similar relation in the frameworks of Jacobi forms
of matrix index and of Jacobi forms of half-integral weight.

LetM =

(
l r

2
r
2 1

)
be a 2× 2 matrix and put m = det(2M) as before.

For any Jacobi form φ ∈ J (n)
k,M, or φ ∈ J (n)

k− 1
2 ,m

we define the Siegel Φ-operator

Φ(φ)(τ ′, z′) := lim
t→+∞

φ

((
τ ′ 0
0
√
−1t

)
,

(
z′

0

))

for (τ ′, z′) ∈ Hn−1 × C(n−1,2), or for (τ ′, z′) ∈ Hn−1 × C(n−1,1). This Siegel Φ-

operator is a map from J
(n)
k,M to J

(n−1)
k,M , or from J

(n)

k− 1
2 ,m

to J
(n−1)
k− 1

2 ,m
, respectively.
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Proposition 6.1. For any Jacobi form φ ∈ J
(n)
k,M and for any prime p, we

have

Φ(φ|Vα,n−α(p2)) = Φ(φ)|Vα,n−α(p2)∗,

where Vα,n−α(p2)∗ is a map Vα,n−α(p2)∗ : J
(n−1)
k,M → J

(n−1)
k,M

[(
p 0
0 1

)] given by

Vα,n−α(p
2)∗ = pα+2−kVα,n−α−1(p

2)

+p(1 + p2n+1−2k)Vα−1,n−α(p
2)

+(p2n−2α+2 − 1)pα−kVα−2,n−α+1(p
2).

Proof. We shall first show that there exists a linear combination of index-shift
map Vα,n−α(p2)∗ which satisfies Φ(φ|Vα,n−α(p2)) = Φ(φ)|Vα,n−α(p2)∗.
We set U =

(
p2 0
0 p

)
. Let

φ(τ, z) =
∑

N,R

A1(N,R)e(Nτ +Rtz),

(φ|Vα,n−α(p2))(τ, z) =
∑

N̂,R̂

A2(N̂ , R̂)e(N̂τ + R̂tz)

be the Fourier expansions. Let

{(
p2tDj

−1
B(j,l)

0n Dj

)}

(j,l)

be a complete set

of representatives of Γn\Γndiag(1α, p1n−α, p21α, p1n−α)Γn. Then the Fourier
coefficients A2(N̂ , R̂) have been calculated in the proof of Proposition 4.4:

A2(N̂ , R̂) = p−k+n
∑

j

det(Dj)
−k ∑

λ2∈(Z/pZ)(n,1)
A1(N,R)

∑

l

e(NB(j,l)D
−1
j ).(6.1)

Here N and R are determined by

N =
1

p2
Dj

((
N̂ − 1

4
R̂2

tR̂2

)
+

1

4
(R̂2 − 2λ2)

t(R̂2 − 2λ2)

)
tDj , (6.2)

R = Dj

(
R̂− 2

p2
λUMU

)
U−1,

where we put R̂2 = R̂ ( 01 ) and λ = (0 λ2) ∈ Z(n,2).
By the definition of Vα,n−α(p2) there exists {γi}i such that φ|Vα,n−α(p2) =∑

i φ|k,Mγi. We can take γi as a form

γi = γ(j,l,λ2,µ2) =

((

p2tDj
−1

B(j,l)

0n Dj

)

×

(

U 02
02 p2U−1

)

, [((0 λ2), (0 µ2)), 02]

)

,

where B(j,l) =
(
B∗

(j,l) b1
tb3 b2

)
, Dj =

(
D∗
j d

0 dj

)
, λ2 =

(
λ∗

λ3

)
, µ2 =

(
µ∗

µ3

)
with

(
p2tD∗

j
−1

B∗
(j,l)

0n−1 D∗
j

)
∈ GSp+

n−1(Z), λ
∗, µ∗ ∈ Z(n−1,1), and dj , λ3, µ3 ∈ Z. We
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set

γ∗
i := γ∗

(j,l,λ∗,µ∗) =

((

p2tD∗
j
−1

B∗
(j,l)

0n−1 D∗
j

)

×

(

U 02
02 p2U−1

)

, [((0 λ∗), (0 µ∗)), 02]

)

.

By the definition of Siegel Φ-operator we have

Φ

(∑

i

φ|k,Mγi
)
(τ∗, z∗) = Φ(φ|Vα,n−α(p2))(τ∗, z∗)

=
∑

N̂,R̂

A2(N̂ , R̂)e(N̂
∗τ∗ + R̂∗tz∗),

where τ∗ ∈ Hn−1, z∗ ∈ C(n−1,2), N̂ =
(
N̂∗ 0
0 0

)
∈ Sym∗n, N̂

∗ ∈ Sym∗n−1, R̂ =(
R̂∗

0

)
∈ Z(n,2) and R̂∗ ∈ Z(n−1,2).

Hence we need to calculate A2(N̂ , R̂) for N̂ =
(
N̂∗ 0
0 0

)
and R̂ =

(
R̂∗

0

)
∈ Z(n,2).

From the identity (6.1) we need to calculate

∑

j

det(Dj)
−k ∑

λ2∈(Z/pZ)(n,1)
A1(N,R)

∑

l

e(NB(j,l)D
−1
j ). (6.3)

We remark that the value A1(N,R) depends on the choice of N̂ , R̂, Dj and λ3.

Under the conditions N̂ ∈ Sym∗n and R̂ ∈ Z(n,2) and by the identity (6.2) we
can assume dλ3 ∈ pZ, since A1(N,R) = 0 unless N ∈ Sym∗n. It is known that
the value A1(N,R) depends only on 4N −RM−1tR and on R mod 2M. We
now have

4N −RM−1tR =
1

p2
Dj

(
4N̂ − p2R̂U−1M−1U−1tR̂

)
tDj .

We set

R′ = Dj

(
R̂− 2

p
(0 λ2)MU

)
U−1 +

2

p

(
0 0
0 djλ3

)
M

and

N ′ =
1

4p2
Dj

(
4N̂ − p2R̂U−1M−1U−1tR̂

)
tDj +

1

4
R′M−1tR′.

We remark that the last row of R′ is zero, and the last row and the last column
of N ′ are also zero. Because 4N −RM−1tR = 4N ′ − R′M−1tR′ and because
R−R′ ∈ 2Z(n−1,2)M, we have A1(N,R) = A1(N

′, R′). We write N ′ =
(
N ′∗

0

)

with N ′∗ ∈ Sym∗n−1.
We have

R′ = Dj

(
R̂ − 2

p
(0 λ′2)MU

)
U−1,
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where λ′2 =
(
λ∗−D∗−1

j dλ3

0

)
∈ Q(n,1). Now we will show λ∗−D∗−1j dλ3 ∈ Z(n−1,1)

if
∑

l e(NB(j,l)D
−1
j ) 6= 0 in the sum (6.3).

We remark dj = 1, p or p2. Because p2D−1j ∈ Z(n,n) we have p2D∗j
−1dd−1j ∈

Z(n−1,1). If dj = 1, then we can take d = 0 ∈ Z(n−1,1) as a representative. If
dj = p2, then D∗j

−1d ∈ Z(n−1,1). We now assume dj = p. Then pD∗j
−1d ∈

Z(n−1,1). By using the identity tB(j,l)Dj =
tDjB(j,l) we have

e(NB(j,l)D
−1
j )

= e(N ′B(j,l)D
−1
j −

djλ3
2p

R ( 0 ··· 0 0
0 ··· 0 1 )B(j,l)D

−1
j −

djλ3
2p

( 0 0
...
...

0 0
0 1

)
tRB(j,l)D

−1
j

−
d2jλ

2
3

p2
(
0n−1

1

)
B(j,l)D

−1
j )

= e(N ′∗B∗(j,l)D
∗
j
−1) e

(
−djλ3

p2
(R̂∗2 − 2λ∗ −D∗j−1djλ3)tb3

)
e

(
djλ

2
3

p2
b2

)
.

Hence, if dj = p, then
∑

b2 mod p

e

(
djλ

2
3

p2
b2

)
is zero unless λ3 ≡ 0 mod p. Thus,

for any dj ∈ {1, p, p2}, we conclude
∑
l e(NB(j,l)D

−1
j ) = 0 in the sum (6.3)

unless D∗j
−1dλ3 ∈ Z(n−1,1). Hence λ∗ −D∗−1j dλ3 ∈ Z(n−1,1) and λ′2 ∈ Z(n,1), if∑

l e(NB(j,l)D
−1
j ) 6= 0.

Therefore there exists a set of complex numbers {Cγi}i := {Cγi,k,M}i which
satisfies

Φ

(∑

i

φ|k,Mγi
)

=
∑

i

Cγ∗
i
Φ(φ)|k,Mγ∗i .

By a well-known argument we have
∑

iCγ∗
i
γ∗i γ =

∑
iCγ∗

i
γ∗i for any γ ∈ ΓJn−1,2.

Hence there exists an index-shift map Vα,n−α(p2)∗ which satisfies the identity
Φ(φ|Vα,n−α(p2)) = Φ(φ)|Vα,n−α(p2)∗.
For a fixed α (0 ≤ α ≤ n) the index-shift map Vα,n−α(p2)∗ is a linear combina-
tion of Vβ,n−1−β(p2) (β = 0, ..., n− 1). We need to determine these coefficients
of the linear combination. This calculation is similar to the case of Siegel
modular forms [Kr 86, page 325]. We leave the details to the reader.

⊓⊔

Now for integers l (2 ≤ l), β (0 ≤ β ≤ l − 1) and α (0 ≤ α ≤ l), we put

bβ,α := bβ,α,l,p(X) =





(pl+1−α − p−l−1+α)p 1
2 if β = α− 2

(X +X−1)p if β = α− 1

p−l+α+
3
2 if β = α

0 otherwise

Documenta Mathematica 21 (2016) 125–196



Lifting to Siegel Modular Forms . . . 173

and set a matrix

Bl,l+1(X) := (bβ,α)β=0,...,l−1
α=0,...,l

=




b0,0 · · · b0,l
...

. . .
...

bl−1,0 · · · bl−1,l




with entries in C[X + X−1]. For any φ ∈ J
(l)
k,M, due to Proposition 6.1, we

obtain

Φ(φ)|(V0,l(p2)∗, · · · , Vl,0(p2)∗)
= p−k+l+

1
2

(
Φ(φ)|(V0,l−1(p2), · · · , Vl−1,0(p2))

)
Bl,l+1(p

k−l− 1
2 ).

(6.4)

Here Φ(φ)|(V0,l(p2)∗, · · · , Vl,0(p2)∗) denotes the row vector

Φ(φ)|(V0,l(p2)∗, · · · , Vl,0(p2)∗) :=
(
Φ(φ)|V0,l(p2)∗, ...,Φ(φ)|Vl,0(p2)∗

)
.

Let J
(n)∗
k− 1

2 ,m
be the subspace of J

(n)

k− 1
2 ,m

introduced in §4.4.

Corollary 6.2. For any Jacobi form φ ∈ J (n)∗
k− 1

2 ,m
and for any prime p, we

have

Φ(φ|Ṽα,n−α(p2)) = Φ(φ)|Ṽα,n−α(p2)∗,

where Ṽα,n−α(p2)∗ is a map Ṽα,n−α(p2)∗ : J
(n−1)∗
k− 1

2 ,m
→ J

(n−1)
k− 1

2 ,mp
2 given by

Ṽα,n−α(p
2)∗ = pk−n−

1
2

{
p−n+αṼα,n−α−1(p

2)

+(p−k+n+
1
2 + pk−n−

1
2 )Ṽα−1,n−α(p

2)

+(pn+1−α − p−n−1+α)Ṽα−2,n−α+1(p
2)

}
.

Proof. By a straightforward calculation we get the fact that ιM and Φ is com-
mutative. The rest of the proof of this corollary follows from Proposition 6.1
and Proposition 4.4. ⊓⊔

Let H̃(m)
p2 be the local Hecke ring and let Rm be the subring of a polynomial ring

both defined in §2.9. The isomorphism Ψm : H̃(m)
p2
∼= Rm has been obtained

in [Zh 83, Zh 84] (see §2.9).
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Proposition 6.3. Let p be an odd prime. For any m ≥ 2, the image of

generators K
(m)
α of H̃(m)

p2 by Ψm are expressed as a vector

(
Ψm(K

(m)
0 ),Ψm(K

(m)
1 ), · · · ,Ψm(K(m)

m )
)

= p−
3
2 (m−1) z20z1 · · · zm(p−1, z1 + z−11 )

(
1 0

0 p
1
2

)−1

×
{

m∏

l=2

Bl,l+1(zl)

}
diag(1, p

1
2 , ..., p

m
2 ).

(6.5)

Here Bl,l+1(X) is the l × (l + 1)-matrix introduced in above, and where

m∏

l=2

Bl,l+1(zl) = B2,3(z2)B3,4(z3) · · ·Bm,m+1(zm)

is a 2× (m+ 1) matrix with entries in C[z±2 , · · · , z±m]. We remark that

Ψm(K
(m)
0 ) = p−

m(m+1)
2 z20z1 · · · zm.

Proof. Let k be an even integer and let F ∈ Mk− 1
2
(Γ

(m)
0 (4)) be a Siegel mod-

ular form such that ΦS(F ) 6≡ 0. Here ΦS denotes the Siegel Φ-operator for

Siegel modular forms. Let T ∈ H̃(m)
p2 and let fT (z0, ..., zm) := Ψm(T ) ∈ Rm.

Then fT (z0, ...zm−1, pk−m−
1
2 ) ∈ Rm−1 and Ψ−1m−1(fT (z0, ..., zm−1, p

k−m− 1
2 )) ∈

H̃
(m−1)
p2 . It is known by Oh-Koo-Kim [OKK 89, Theorem 5.1] that

ΦS(F |T ) = ΦS(F )|Ψ−1m−1(fT (z0, ..., zm−1, pk−m−
1
2 )). (6.6)

Let φ ∈ J (m)

k− 1
2 ,a

be a Jacobi form with index a ∈ Z such that Φ(φ) 6≡ 0. Here Φ

is the Siegel Φ-operator. If k is large enough, then there exists such φ. Due to
Corollary 6.2 we have

Φ(φ|Ṽα,m−α(p2)) = Φ(φ)|Ṽα,m−α(p2)∗.

Let W : J
(m)

k− 1
2 ,a
→M+

k− 1
2

(Γ
(m)
0 (4)) be the Witt operator which is defined by

W(φ)(τ) := φ(τ, 0)

for any φ(τ, z) ∈ J (m)

k− 1
2 ,a

. By a straightforward calculation, for any φ ∈ J (m)

k− 1
2 ,a

we have

W(φ|Ṽα,m−α(p2)) = W(φ)|T̃α,m−α(p2)

and

W(Φ(φ)) = ΦS(W(φ)).
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We set

T̃α,m−α(p
2)∗ = pk−m−

1
2

{
p−m+αT̃α,m−α−1(p

2)

+(p−k+m+ 1
2 + pk−m−

1
2 )T̃α−1,m−α(p

2)

+(pm+1−α − p−m−1+α)T̃α−2,m−α+1(p
2)

}
.

If we put F = W(φ), then

ΦS(F |T̃α,m−α(p2)) = ΦS(W(φ|Ṽα,m−α(p2)))
= W(Φ(φ|Ṽα,m−α(p2)))
= W(Φ(φ)|Ṽα,m−α(p2)∗)
= ΦS(F )|T̃α,m−α(p2)∗.

Hence if we put T = T̃α,m−α(p2) in (6.6) we have

fT (z0, ..., zm−1, p
k−m− 1

2 ) = pk−m−
1
2

{
p−m+αΨm−1(K

(m−1)
α )

+(p−k+m+ 1
2 + pk−m−

1
2 )Ψm−1(K

(m−1)
α−1 )

+(pm+1−α − p−m−1+α)Ψm−1(K(m−1)
α−2 )

}
.

Since this identity is true for infinitely many k, we have

Ψm(K(m)
α ) = fT (z0, ..., zm−1, zm)

= zm

{
p−m+αΨm−1(K

(m−1)
α )

+(zm + z−1m )Ψm−1(K
(m−1)
α−1 )

+(pm+1−α − p−m−1+α)Ψm−1(K(m−1)
α−2 )

}
.

Hence(
Ψm(K

(m)
0 ),Ψm(K

(m)
1 ), · · · ,Ψm(K(m)

m )
)

= p−3/2 zm
(
Ψm−1(K

(m−1)
0 ),Ψm−1(K

(m−1)
1 ), · · · ,Ψm−1(K(m−1)

m−1 )
)

× diag(1, p
1
2 , ..., p

m−1
2 )−1Bm,m+1(zm) diag(1, p

1
2 , ..., p

m
2 ).

Moreover, we have

Ψ1

(
K

(1)
0

)
= p−1z20z1,

Ψ1

(
K

(1)
1

)
= z20(1 + z21)
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by the definition of Ψ1. This proposition follows from these identities and the
recursion with respect to m. ⊓⊔

7 Maass relation for generalized Cohen-Eisenstein series

We put a 2× (n+ 1)-matrix

Ap2,n+1(X) :=
n∏

l=2

Bl,l+1(p
n+2
2 −lX)

= B2,3(p
n+2
2 −2X)B3,4(p

n+2
2 −3X) · · ·Bn,n+1(p

n+2
2 −nX),

where Bl,l+1(X) is the l × (l + 1)-matrix introduced in §6.

Lemma 7.1. All components of the matrix Ap2,2n−1(X) belong to C[X +X−1].

Proof. We assume p is an odd prime. Let Rm be the symbol introduced in §2.9.
Because Ψ2n−2(K

(2n−2)
α ) belongs to R2n−2 and because of Proposition 6.3 we

have relations Bl,l+1(zl) = Bl,l+1(z
−1
l ) (l = 2, ..., 2n− 2) and

B2,3(z2)B3,4(z3) · · ·B2n−2,2n−1(z2n−2)

= B2,3(z2n−2)B3,4(z2n−3) · · ·B2n−2,2n−1(z2).

Hence

Ap2,2n−1(X) = B2,3(p
n−2X)B3,4(p

n−3X) · · ·B2n−2,2n−1(p
−n+2X)

= B2,3(p
−n+2X−1)B3,4(p

−n+3X−1) · · ·B2n−2,2n−1(p
n−2X−1)

= B2,3(p
n−2X−1)B3,4(p

n−3X−1) · · ·B2n−2,2n−1(p
−n+2X−1)

= Ap2,2n−1(X
−1).

The relation Ap2,2n−1(X) = Ap2,2n−1(X
−1) holds for infinitely many p.

Hence if we regard that the components of the matrix Ap2,2n−1(X) are

Laurent-polynomials of variables X and p1/2, then we obtain Ap2,2n−1(X) =

Ap2,2n−1(X
−1). Hence we have also Ap2,2n−1(X) = Ap2,2n−1(X

−1) for p = 2. ⊓⊔

Let M, m, D0 and f be the symbols used in the previous sections, it means

thatM =

(
∗ ∗
∗ 1

)
is a 2×2 half-integral symmetric-matrix, m = det(2M), D0

is the discriminant of Q(
√−m) and f is a non-negative integer which satisfies

m = D0f
2.
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For any prime p we set



a0,m,p,k
a1,m,p,k
a2,m,p,k


 :=







p−3k+4

0

p−k+1


 if p|f,




0

p−3k+4 + p−2k+2
(
−m
p

)

p−k+1 − p−2k+2
(
−m
p

)


 if p 6 |f.

Lemma 7.2. For the Jacobi-Eisenstein series E
(1)
k,M of weight k of indexM of

degree 1, we have the identity

E
(1)
k,M|(V0,1(p2), V1,0(p2))

=


E(1)

k,M
[
X−1

(
p 0
0 1

)−1
]|U( p 0

0 1

)
X
(
p 0
0 1

), E
(1)
k,M|U( p 0

0 1

), E
(1)

k,M
[(
p 0
0 1

)]




×




0 a0,m,p,k
p−2k+2 a1,m,p,k

0 a2,m,p,k


 ,

where X = ( 1 0
x 1 ) ∈ Z(2,2) is a matrix such that M[X−1

(
p 0
0 1

)−1
] ∈

Sym+
2 . Here, if p 6 |f , there does not exist such matrix X and we regard

E
(1)

k,M
[
X−1

(
p 0
0 1

)−1
] as zero.

Proof. From Proposition 5.3 and due to (5.2), (5.3) in the proof of Proposi-
tion 5.5, we have

E
(1)
k,M|V0,1(p2) = K̃0

0,1

= p−2k+1
∑

M∈Γ(δ0,1)\Γ1

∑

λ2∈L∗
0,1

{1|k,M([(λ2, 0), 0],M)} (τ, z
(
p 0
0 1

)
)

×
∑

u2∈Z/pZ
G1,1
M (λ2 + (0, u2))

= p−2k+2
∑

M∈Γ(1)
∞ \Γ1

∑

λ2∈Z(1,2)

{1|k,M([(λ2, 0), 0],M)} (τ, z
(
p 0
0 1

)
)

= p−2k+2E
(1)
k,M|U( p 0

0 1

).

From Proposition 5.3 we also have

E
(1)
k,M|V1,0(p2) = K̃0

1,1 + K̃1
0,1 + K̃0

0,0.
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Here

K̃0
1,1 = p−k+1

∑

M∈Γ(δ1,1)\Γ1

∑

λ1∈L∗
1,1

{1|k,M([(λ1, 0), 0],M)} (τ, z
(
p 0
0 1

)
)

= p−k+1
∑

M∈Γ(1)
∞ \Γ1

∑

λ1∈pZ×Z
{1|k,M([(λ1, 0), 0],M)} (τ, z

(
p 0
0 1

)
)

= p−k+1
∑

M∈Γ(1)
∞ \Γ1

∑

λ∈Z(1,2)

{1|k,M([(λ ( p 1 ) , 0), 0],M)} (τ, z
(
p 0
0 1

)
)

= p−k+1
∑

M∈Γ(1)
∞ \Γ1

∑

λ∈Z(1,2)

{
1|k,M[( p 1 )]

([(λ, 0), 0],M)
}
(τ, z)

= p−k+1E
(1)

k,M[( p 1 )]
(τ, z).

Now we shall calculate K̃1
0,1. First, due to Lemma 5.4 we have

∑

u2∈Z/pZ
G1,0
M (λ+ (0, u2)) =

{
0 if λ ∈ Z(1,2)

(
p 0
0 1

)
,(

−m
p

)
p if λ 6∈ Z(1,2)

(
p 0
0 1

)

for any λ ∈ Z(1,2). Thus

K̃1
0,1

= p−2k+2
∑

M∈Γ(δ0,1)\Γ1

∑

λ2∈L∗
0,1

{1|k,M([(λ2, 0), 0],M)} (τ, z
(

p 0
0 1

)

)

×
∑

u2∈Z/pZ

G1,0
M (λ2 + (0, u2))

= −p−2k+2

(

−m

p

)

∑

M∈Γ
(1)
∞ \Γ1

∑

λ∈Z(1,2)

{

1|k,M([(λ
(

p 0
0 1

)

, 0), 0],M)
}

(τ, z
(

p 0
0 1

)

)

+p−2k+2

(

−m

p

)

∑

M∈Γ
(1)
∞ \Γ1

∑

λ∈Z(1,2)

{1|k,M([(λ, 0), 0],M)} (τ, z
(

p 0
0 1

)

)

= −p−2k+2

(

−m

p

)

E
(1)

k,M
[(

p 0
0 1

)](τ, z) + p−2k+2

(

−m

p

)

Ek,M(τ, z
(

p 0
0 1

)

)

= −p−2k+2

(

−m

p

)

E
(1)

k,M
[(

p 0
0 1

)] + p−2k+2

(

−m

p

)

Ek,M|U( p 0
0 1

).

We shall calculate K̃0
0,0. Due to (5.2) and due to (5.3) we have

L∗0,0 =

{
Z(1,2)

(
p 0
0 1

)−1 tX−1 if p|f,
Z(1,2) if p 6 |f.
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Thus if p|f , then

K̃0
0,0 = p−3k+4

∑

M∈Γ(δ0,0)\Γ1

∑

λ3∈Z(1,2)
(
p 0
0 1

)−1
tX−1

{1|k,M([(λ3, 0), 0],M)} (τ, z
(

p 0
0 1

)

)

= p−3k+4
∑

M∈Γ
(1)
∞ \Γ1

∑

λ3∈Z(1,2)
(
p 0
0 1

)−1
tX−1

×

{

1|
k,M[X−1( p 1 )

−1
]
([(λ3

tX ( p
1 ) , 0), 0],M)

}

(τ, z ( p
1 )

tX ( p
1 ))

= p−3k+4E
(1)

k,M[X−1( p 1 )
−1

]
(τ, z ( p

1 )
tX ( p

1 )),

and if p 6 |f , then

K̃0
0,0 = p−3k+4

∑

M∈Γ(δ0,0)\Γ1

∑

λ3∈Z(1,2)

{1|k,M([(λ3, 0), 0],M)} (τ, z
(
p 0
0 1

)
)

= p−3k+4E
(1)
k,M(τ, z ( p 1 )).

Hence we obtain the formula for K̃0
0,0.

Because E
(1)
k,M|V1,0(p2) = K̃0

1,1 + K̃1
0,1 + K̃0

0,0, we conclude the lemma. ⊓⊔

Lemma 7.3. The three forms E
(1)

k,M
[
X−1

(
p 0
0 1

)−1
]|U( p 0

0 1

)
X
(
p 0
0 1

), E(1)
k,M|U( p 0

0 1

)

and E
(1)

k,M
[(
p 0
0 1

)] are linearly independent.

Proof. We first assume that M ∈ Sym+
g is a positive-definite half-integral

symmetric matrix of size g. Let

E
(1)
k,M(τ, z) =

∑

n∈Z,R∈Z(1,g)

4n−RM−1tR≥0

Ck,M(n,R) e(nτ +Rtz)

be the Fourier expansion of the Jacobi-Eisenstein series E
(1)
k,M. For any pair

n ∈ Z and R ∈ Z(1,g) which satisfy 4n − RM−1tR > 0, we now show that
Ck,M(n,R) 6= 0. The Fourier coefficients of Jacobi-Eisenstein series of degree 1
of integer index have been calculated in [E-Z 85, pp.17–22]. If 4n−RM−1tR >
0, by an argument similar to [E-Z 85] we have

Ck,M(n,R) =
(−1) k2 πk− g2
2k−2Γ(k − g

2 )

(4n−RM−1tR)k− g2−1
det(M)

1
2

ζ(k − g)−1
∞∑

a=1

Na(Q)

ak−1
,

where Na(Q) :=
∣∣∣
{
λ ∈ (Z/aZ)(1,g) |λMtλ+Rtλ+ n ≡ 0 mod a

}∣∣∣. Hence

we conclude Ck,M(n,R) 6= 0.
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We now assume M =
(
l r

2
r
2 1

)
∈ Sym+

2 . The (n,R)-th Fourier coefficient of

two Jacobi forms E
(1)
k,M|U( p 0

0 1

) and E
(1)

k,M
[(
p 0
0 1

)] are Ck,M(n,R
(
p 0
0 1

)−1
) and

C
k,M

[(
p 0
0 1

)](n,R), respectively. If R 6∈Z(1,2)
(
p 0
0 1

)
, then Ck,M(n,R

(
p 0
0 1

)−1
) =

0 and C
k,M

[(
p 0
0 1

)](n,R) 6= 0. Hence E
(1)
k,M|U( p 0

0 1

) and E
(1)

k,M
[(
p 0
0 1

)] are lin-

early independent. The proof for the linear independence of the three forms of
the lemma is similar. We omitted the detail here. ⊓⊔

Proposition 7.4. We obtain the identity

E
(n)
k,M|

(
V0,n(p

2), · · · , Vn,0(p2)
)

=


E(n)

k,M
[
X−1

(
p 0
0 1

)−1
]|U( p 0

0 1

)
X
(
p 0
0 1

), E(n)
k,M|U( p 0

0 1

), E(n)

k,M
[(
p 0
0 1

)]




×




0 a0,m,p,k
p−2k+2 a1,m,p,k

0 a2,m,p,k


 p(−k+

1
2n+

3
2 )(n−1)Ap2,n+1(p

k− n+2
2 − 1

2 ),

where the 2× (n+ 1)-matrix Ap2,n+1(p
k− n+2

2 − 1
2 ) is introduced in the beginning

of this section.

Proof. Let Φ be the Siegel Φ-operator introduced in §6. From the definition of

Jacobi-Eisenstein series, we have Φ(E
(l)
k,M) = E

(l−1)
k,M .

From the identity (6.4) in §6 and from Lemma 7.2, we obtain

Φn−1(E
(n)
k,M|(V0,n(p

2), ..., Vn,0(p
2)))

=
(

E
(1)
k,M|(V0,1(p

2), V1,0(p
2))
)

(

n
∏

l=2

p−k+l+ 1
2

)

B2,3(p
k− 5

2 ) · · ·Bn,n+1(p
k−n− 1

2 )

= p(−k+ 1
2
)(n−1)+

n(n+1)
2

−1
(

E
(1)
k,M|(V0,1(p

2), V1,0(p
2))
)

Ap
2,n+1(p

k−n+2
2

− 1
2 )

=



E
(1)

k,M

[
X−1

(
p 0
0 1

)−1
]|U( p 0

0 1

)
X
(
p 0
0 1

), E
(1)
k,M|U( p 0

0 1

), E
(1)

k,M
[(

p 0
0 1

)]



 (7.1)

×p(−k+ 1
2
n+ 3

2
)(n−1)





0 a0,m,p,k

p−2k+2 a1,m,p,k

0 a2,m,p,k



Ap
2,n+1(p

k−n+2
2

− 1
2 ).

From Proposition 5.5 there exists a matrix M ∈ C(3,n+1) which satisfies

E
(n)
k,M|(V0,n(p2), ..., Vn,0(p2))

=


E(n)

k,M
[
X−1

(
p 0
0 1

)−1
]|U( p 0

0 1

)
X
(
p 0
0 1

), E(n)
k,M|U( p 0

0 1

), E(n)

k,M
[(
p 0
0 1

)]


M.

(7.2)
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Thus

Φn−1(E(n)
k,M|(V0,n(p2), ..., Vn,0(p2)))

=


E(1)

k,M
[
X−1

(
p 0
0 1

)−1
]|U( p 0

0 1

)
X
(
p 0
0 1

), E(1)
k,M|U( p 0

0 1

), E(1)

k,M
[(
p 0
0 1

)]


M.

From Lemma 7.3 the matrix M is uniquely determined. Therefore, by using
the identity (7.1), we have

M = p(−k+
1
2n+

3
2 )(n−1)




0 a0,m,p,k
p−2k+2 a1,m,p,k

0 a2,m,p,k


Ap2,n+1(p

k−n+2
2 − 1

2 ).

Therefore we conclude that this Proposition follows from the identity (7.2). ⊓⊔

We recall that the form e
(n)
k,M is the M-th Fourier-Jacobi coefficient of Siegel-

Eisenstein series E
(n+2)
k of weight k of degree n+ 2.

Proposition 7.5. We obtain the identity

e
(n)
k,M|(V0,n(p2), ..., Vn,0(p2))

= p(−k+
1
2n+

3
2 )(n−1)

×


e(n)

k,M
[
X−1

(
p 0
0 1

)−1
]|U( p 0

0 1

)
X
(
p 0
0 1

), e(n)k,M|U( p 0
0 1

), e(n)
k,M

[(
p 0
0 1

)]




×




0 p−k+1

p−2k+2 p−2k+2
(
−m
p

)

0 p−3k+4


Ap2,n+1(p

k− n+2
2 − 1

2 ).

Proof. For any φ ∈ J
(n)
k,M and for any L = ( a 0

b 1 ) ∈ Z(2,2), a straightforward
calculation gives the identity

(φ|UL) |Vα,n−α(p2) =
(
φ|Vα,n−α(p2)

)
|U( p 0

0 1

)−1
L
(
p 0
0 1

). (7.3)

We recall from Proposition 3.3 the identity

e
(n)
k,M =

∑

d|f
gk

(m
d2

)
E

(n)

k,M[W−1
d ]

(τ, ztWd)

=
∑

d|f
gk

(m
d2

)
E

(n)

k,M[W−1
d

]
|UWd

where Wd is a matrix such thatM
[
W−1d

]
∈ Sym+

2 . We choose the set of ma-

trices {Wd}d which satisfiesM
[
W−1d

(
p 0
0 1

)−1] ∈ Sym+
2 , if d| fp . In particular,
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we choose Wpd =
(
p 0
0 1

)
Wd for d such that pd|f . By virtue of Lemma 3.1 and

of the identity Wpd =
(
p 0
0 1

)
Wd, we have

E
(n)

k,M[W−1
d

]
|U
Wd

(
p 0
0 1

) = E
(n)

k,M[
(
p 0
0 1

)
W−1
pd ]
|UWpd

. (7.4)

For the sake of simplicity we write

E0(d) = E
(n)

k,M[W−1
pd ]
|U
Wpd

(
p 0
0 1

),

E1(d) = E
(n)

k,M[W−1
d ]
|U
Wd

(
p 0
0 1

),

E2(d) = E
(n)

k,M
[(
p 0
0 1

)
W−1
d

]|UWd
.

(7.5)

We remark E0(d) = E1(pd) and E1(d) = E2(pd) due to the identity (7.4).
From Proposition 7.4 and due to identities (7.3) and (7.5) we get

(
E

(n)

k,M[W−1
d ]
|UWd

)
|
(
V0,n(p

2), · · · , Vn,0(p2)
)

= p(−k+
1
2n+

3
2 )(n−1) (E0(d), E1(d), E2(d))




0 a0, m
d2
,p,k

p−2k+2 a1, m
d2
,p,k

0 a2, m
d2
,p,k




× Ap2,n+1(p
k− n+2

2 − 1
2 ).

Hence from Proposition 3.3 we have

e
(n)
k,M|(V0,n(p2), ..., Vn,0(p2))

=
∑

d|f
gk

(m
d2

)(
E

(n)

k,M[W−1
d ]
|UWd

)
|(V0,n(p2), ..., Vn,0(p2))

= p(−k+
1
2n+

3
2 )(n−1)

∑

d|f
gk

(m
d2

)

× (E0(d), E1(d), E2(d))




0 a0, m
d2
,p,k

p−2k+2 a1, m
d2
,p,k

0 a2, m
d2
,p,k


Ap2,n+1(p

k− n+2
2 − 1

2 ).

On the RHS of the above identity we obtain

∑

d|f
gk

(m
d2

)
(E0(d), E1(d), E2(d))




0
p−2k+2

0




= p−2k+2
∑

d|f
gk

(m
d2

)
E1(d)
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= p−2k+2
∑

d|f
gk

(m
d2

)
E

(n)

k,M[W−1
d ]
|U
Wd

(
p 0
0 1

)

= p−2k+2e
(n)
k,M|U( p 0

0 1

).

By using Lemma 3.2 we now have

∑

d|f

gk
(m

d2

)

(E0(d), E1(d), E2(d))







a0, m
d2

,p,k

a1, m
d2

,p,k

a2, m
d2

,p,k







=
∑

d|f

gk
(m

d2

)

{

δ

(

p|
f

d

)

p−3k+4E0(d)

+

(

p−2k+2

(

−m/d2

p

)

+ δ

(

p 6 |
f

d

)

p−3k+4

)

E1(d)

+

(

p−k+1 − p−2k+2

(

−m/d2

p

))

E2(d)

}

= p−3k+4
∑

d|f
f
d
≡0 (p)

gk
(m

d2

)

E0(d) + p−2k+2

(

−D0

p

)

∑

d|f
f
d
6≡0 (p)

gk
(m

d2

)

E1(d)

+p−3k+4
∑

d|f
f
d
6≡0 (p)

gk
(m

d2

)

E1(d)

+p−3k+4
∑

d|f

gk
(m

d2

)

(

p2k−3 − pk−2

(

−m/d2

p

))

E2(d)

= p−3k+4δ(p|f)
∑

d|
f
p

(

p2k−3 − pk−2

(

−m/(dp)2

p

))

gk

(

m

d2p2

)

E0(d)

+p−2k+2

(

D0

p

)

∑

d|f
f
d
6≡0 (p)

gk
(m

d2

)

E1(d) + p−3k+4
∑

d|f
f
d
6≡0 (p)

gk

(

mp2

(dp)2

)

E2(pd)

+p−3k+4
∑

d|f

gk

(

mp2

d2

)

E2(d)

= p−k+1δ(p|f)
∑

d|
f
p

gk

(

m

d2p2

)

E0(d)− p−2k+2δ(p|f)

(

D0

p

)

×
∑

d|f
f
d
6≡0 (p)

gk
(m

d2

)

E0

(

d

p

)

+p−2k+2

(

D0

p

)

∑

d|f
f
d
6≡0 (p)

gk
(m

d2

)

E1(d) + p−3k+4
∑

d|fp
fp
d

6≡0 (p)

gk

(

mp2

d2

)

E2(d)
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+p−3k+4
∑

d|fp
fp
d

≡0 (p)

gk

(

mp2

d2

)

E2(d)

= p−k+1δ(p|f)
∑

d| f
p

gk

(

m

d2p2

)

E0(d) + p−2k+2

(

D0f
2

p

)

∑

d|f

gk
(m

d2

)

E1(d)

+p−3k+4
∑

d|fp

gk

(

mp2

d2

)

E2(d).

Hence

∑

d|f
gk

(m
d2

)
(E0(d), E1(d), E2(d))



a0, m

d2
,p,k

a1, m
d2
,p,k

a2, m
d2
,p,k




=



∑

d| fp

gk

(
m

d2p2

)
E0(d),

∑

d|f
gk

(m
d2

)
E1(d),

∑

d|fp
gk

(
mp2

d2

)
E2(d)




×




p−k+1

p−2k+2
(
−m
p

)

p−3k+4




=


e(n)

k,M
[
X−1

(
p 0
0 1

)−1
]|U( p 0

0 1

)
X
(
p 0
0 1

), e(n)k,M|U( p 0
0 1

), e(n)
k,M

[(
p 0
0 1

)]




×




p−k+1

p−2k+2
(
−m
p

)

p−3k+4


 .

Therefore

e
(n)
k,M|(V0,n(p2), ..., Vn,0(p2))

= p(−k+
1
2n+

3
2 )(n−1)

∑

d|f
gk

(m
d2

)
(E0(d), E1(d), E2(d))




0 a0, m
d2
,p,k

p−2k+2 a1, m
d2
,p,k

0 a2, m
d2
,p,k




×Ap2,n+1(p
k−n+2

2 − 1
2 )

= p(−k+
1
2n+

3
2 )(n−1)

×


e(n)

k,M
[
X−1

(
p 0
0 1

)−1
]|U( p 0

0 1

)
X
(
p 0
0 1

), e(n)k,M|U( p 0
0 1

), e(n)
k,M

[(
p 0
0 1

)]




×




0 p−k+1

p−2k+2 p−2k+2
(
−m
p

)

0 p−3k+4


Ap2,n+1(p

k−n+2
2 − 1

2 ).
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⊓⊔

Proposition 7.5 is a generalized Maass relation for matrix index of integral-
weight. The generalized Maass relation for integer index of half-integral weight
is as follows.

Theorem 7.6. Let e
(n)

k− 1
2 ,m

be the m-th Fourier-Jacobi coefficient of generalized

Cohen-Eisenstein series H
(n+1)

k− 1
2

. (See (1.1)). Then we obtain

e
(n)

k− 1
2 ,m
|(Ṽ0,n(p2), Ṽ1,n−1(p2), ..., Ṽn,0(p2))

= pk(n−1)−
1
2 (n

2+5n−5)
(
e
(n)

k− 1
2 ,
m
p2
|Up2 , e(n)k− 1

2 ,m
|Up, e(n)k− 1

2 ,mp
2

)

×




0 p2k−3

pk−2 pk−2
(
−m
p

)

0 1


Ap2,n+1

(
pk−

n+2
2 − 1

2

)
diag(1, p1/2, · · · , pn/2).

Here Ap2,n+1

(
pk−

n+2
2 − 1

2

)
is a 2 × (n + 1) matrix which is introduced in the

beginning of §7 and the both side of the above identity are vectors of forms.

Proof. From Lemma 4.2 and from the definitions of e
(n)
k,M and e

(n)

k− 1
2 ,m

, we have

ιM(e
(n)
k,M) = e

(n)

k− 1
2 ,m

.

By using Proposition 4.4 we have

e
(n)

k− 1
2 ,m
|Ṽα,n−α(p2) = ιM(e

(n)
k,M)|Ṽα,n−α(p2)

= pk(2n+1)−n(n+ 7
2 )+

1
2αιM

[(
p 0
0 1

)](e(n)k,M|Vα,n−α(p2))

From Proposition 4.3 we also have identities

e
(n)

k− 1
2 ,
m
p2
|Up2 = ιM

[(
p 0
0 1

)]


e(n)

k,M
[
X−1

(
p 0
0 1

)−1
]|U( p 0

0 1

)
X
(
p 0
0 1

)


 ,

e
(n)

k− 1
2 ,m
|Up = ιM

[(
p 0
0 1

)]
(
e
(n)
k,M|U( p 0

0 1

)
)
,

and

e
(n)

k− 1
2 ,mp

2 = ιM
[(
p 0
0 1

)]
(
e
(n)

k,M
[(
p 0
0 1

)]
)
.

Because the map ιM
[(
p 0
0 1

)] is a linear map, this theorem follows from Propo-

sition 7.5 and from the above identities. ⊓⊔
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8 Maass relation for Siegel cusp forms of half-integral weight
and lifts

In this section we shall prove Theorem 8.3.

We denote by Sk(Γn) ⊂ Mk(Γn), S
+
k− 1

2

(Γ
(n)
0 (4)) ⊂ M+

k− 1
2

(Γ
(n)
0 (4)), J

(n) cusp
k,1 ⊂

J
(n)
k,1 and J

(n)∗ cusp
k− 1

2 ,m
⊂ J (n)∗

k− 1
2 ,m

the spaces of the cusp forms, respectively (cf §4.3,
§4.4, §2.5 and §2.6).
Let k be an even integer and f ∈ S2(k−n)(Γ1) be an eigenform for all Hecke
operators. Let

h(τ) =
∑

N∈Z
N≡0,3 mod 4, N>0

c(N) e(Nτ) ∈ S+
k−n+ 1

2

(Γ
(1)
0 (4))

be a Hecke eigenform which corresponds to f by the Shimura correspondence.
We assume that the Fourier coefficient of f at e2πiz is 1.

Let

I2n(h)(τ) =
∑

T∈Sym+
2n

A(T ) e(Tτ) ∈ Sk(Γ2n)

be the Ikeda lift of h. For T ∈ Sym+
2n the T -th Fourier coefficient A(T ) of

I2n(h) is

A(T ) = c(|DT |) fk−n−
1
2

T

∏

q : prime
q|fT

F̃q(T, αq),

where DT is the fundamental discriminant and fT is the natural number which
satisfy det(2T ) = |DT | f2

T , and where
{
α±q
}
is the set of Satake parameters of

f in the sense of Ikeda [Ik 01], it means that (αq + α−1q )qk−n−1/2 is the q-th

Fourier coefficient of f . Here F̃q(T,X) ∈ C[X +X−1] is a Laurent polynomial.

For the detail of the definition of F̃q(T,X) the reader is referred to [Ik 01, page
642].

Let

I2n(h)

((
τ z
tz ω

))
=

∞∑

a=1

ψa(τ, z) e(aω)

be the Fourier-Jacobi expansion of I2n(h), where τ ∈ H2n−1, ω ∈ H1 and

z ∈ C(2n−1,1). Note that ψa ∈ J (2n−1) cusp
k,a is a Jacobi cusp form of weight k of

index a of degree 2n− 1.

By the Eichler-Zagier-Ibukiyama correspondence (see §4.3) there exists a Siegel

cusp form F ∈ S+
k− 1

2

(Γ
(2n−1)
0 (4)) which corresponds to ψ1 ∈ J (2n−1) cusp

k,1 .

Documenta Mathematica 21 (2016) 125–196



Lifting to Siegel Modular Forms . . . 187

For g ∈ S+
k−1/2(Γ

(1)
0 (4)) we put

Fh,g(τ) :=
1

6

∫

Γ
(1)
0 (4)\H1

F

((
τ 0
0 ω

))
g(ω) Im(ω)k−

5
2 dω

for τ ∈ H2n−2. It is not difficult to show that the form Fh,g belongs to

S+
k− 1

2

(Γ
(2n−2)
0 (4)). The above construction of Fh,g was suggested by T.Ikeda

to the author.
To show properties of Fh,g we consider the Fourier-Jacobi expansion of F . Let

F

((
τ z
tz ω

))
=

∑

m∈Z
m≡0,3 mod 4

φm(τ, z) e(mω)

be the Fourier-Jacobi expansion of F , where τ ∈ H2n−2, ω ∈ H1 and z ∈
C(2n−2,1). Note that φm ∈ J (2n−2)∗ cusp

k− 1
2 ,m

is a Jacobi cusp form of weight k − 1
2

of index m and of degree 2n− 2.
Let

φm(τ, z) =
∑

M∈Sym+
2n−2, S∈Z(2n−2,1)

4Mm−StS>0

Cm(M,S) e(Mτ + Stz)

be the Fourier expansion of φm, where τ ∈ H2n−2 and z ∈ C(2n−2,1). We have
the diagram

I2n(h) ∈ Sk(Γ2n)

1st F-J
��

ψ1 ∈ J
(2n−1) cusp
k,1 E-Z-I

// F ∈ S+

k− 1
2

(Γ
(2n−1)
0 (4))

F-J
��

{φm}m ∈
⊗

m≡0,3mod 4

J
(2n−2)∗ cusp

k− 1
2
,m

h ∈ S+

k−n+ 1
2

(Γ
(1)
0 (4)) //

Ikeda lift

CC�������������������������������
f ∈ S2(k−n)(Γ1).oo

Lemma 8.1. The (M,S)-th Fourier coefficient Cm(M,S) of φm is

Cm(M,S) = c(|DT |) fk−n−
1
2

T

∏

q|fT
F̃q(T, αq),
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where T ∈ Sym+
2n is the matrix which satisfies

T =

(
N 1

2R
1
2
tR 1

)

and N ∈ Sym+
2n−1 and R ∈ Z(2n−1,1) are the matrices which satisfy

4N −RtR =

(
M 1

2S
1
2
tS m

)
.

Proof. The Fourier expansion of ψ1 is

ψ1(τ, z) =
∑

N∈Sym+
2n−1, R∈Z(2n−1,1)

4N−RtR>0

A

((
N 1

2R
1
2
tR 1

))
e(Nτ +Rtz).

And the Fourier expansion of F is

F (τ) =
∑

4N−RtR>0

A

((
N 1

2R
1
2
tR 1

))
e((4N −RtR)τ).

Since φm is the m-th Fourier-Jacobi coefficient of F , the (M,S)-th Fourier
coefficient Cm(M,S) of φm is A(T ), where T is in the statement of this lemma.

⊓⊔

The following theorem is a generalization of the Maass relation for Siegel cusp
forms of half-integral weight.

Theorem 8.2. Let φm be the m-th Fourier-Jacobi coefficient of F as above.
Then we obtain

φm|(Ṽ0,2n−2(p2), Ṽ1,2n−3(p2), ..., Ṽ2n−2,0(p2))

= pk(2n−3)−2n
2−n+ 11

2

(
φ m
p2
|Up2 , φm|Up, φmp2

)



0 p2k−3

pk−2 pk−2
(
−m
p

)

0 1




×Ap2,2n−1(αp) diag(1, p
1
2 , p, ..., pn−1)

for any prime p, where the 2× (n+ 1)-matrix Ap2,2n−1(αp) is introduced in the
beginning of §7.

Proof. Let

(
φm|Ṽα,2n−2−α(p2)

)
(τ, z) =

∑

M∈Sym+
2n−2, S∈Z(2n−2,1)

4Mmp2−StS>0

Cm(α;M,S) e(Mτ + Stz).
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be the Fourier expansion of φm|Ṽα,2n−2−α(p2). We first calculate the Fourier
coefficients Cm(α;M,S). There exist matrices N ∈ Z(2n−1,2n−1) and R ∈
Z(2n−1,1) which satisfy 4N −RtR =

(
M 1

2S
1
2
tS mp2

)
. We put T =

(
N 1

2R
1
2
tR 1

)
.

Due to Proposition 4.4 and due to the definition of Ṽα,2n−2−α(4) in §4.7, we
can take N and R which satisfy

T =

(
N ′ 1

2R
′

1
2
tR′ M

[(
p 0
0 1

)]
)

with matrices N ′ ∈ Z(2n−2,2n−2) and R′ ∈ Z(2n−2,2).
We assume that p is an odd prime. Let

{((
p2tDi

−1
Bi

0 Di

)
, γi p

−n+1 (detDi)
1
2

)}

i

be a complete set of the representatives of Γ
(n)
0 (4)∗\Γ(n)

0 (4)∗Y Γ
(n)
0 (4)∗, where

Y is Y = (diag(1α, p12n−2−α, p21α, p12n−2−α), pα/2) and γi is a root of unity
(see [Zh 83, Prop.7.1] or [Zh 84, Lemma 3.2] for the detail of these repre-
sentatives). Then by a straightforward calculation and from Lemma 8.1 we
obtain

Cm(α;M,S) = pk(2n−3)+2n2− 1
2−4n(n−1)c(|DT |)fk−n−

1
2

T (8.1)

×
∑

i

γi (detDi)
−n e

(
1

p2
N tDiBi

) ∏

q|fT [Qi]

F̃q (T [Qi] , αq) ,

where DT is the fundamental discriminant and fT > 0 is the natural num-
ber which satisfy det(2T ) = |DT |fT 2, and where Qi = diag(p−1tDi, p

−1, 1) ∈
Q(2n,2n). The number c(|DT |) is the |DT |-th Fourier coefficient of h.

By virtue of the definition of Ṽα,2n−2−α(4) the identity (8.1) also holds for
p = 2.

For any prime p the (M,S)-th Fourier coefficients of φ m
p2
|Up2 , φm|Up and φmp2

are C m
p2
(M,p−2S), Cm(M,p−1S) and Cmp2(M,S), respectively. These are

C m

p2
(M,p−2S) = p−2(k−n−

1
2 )c(|DT |)fk−n−

1
2

T

∏

q|fT p−2

F̃q (T0, αq) ,

Cm(M,p−1S) = p−(k−n−
1
2 )c(|DT |)fk−n−

1
2

T

∏

q|fT p−1

F̃q (T1, αq)

and

Cmp2(M,S) = c(|DT |)fk−n−
1
2

T

∏

q|fT
F̃q (T, αq) ,
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respectively, where we put T0 = T

[(
12n−2 0 0

0 p−2 0
0 0 1

)]
and T1 =

T

[(
12n−2 0 0

0 p−1 0
0 0 1

)]
. Note that if p−1S ∈ Z(2n−2,1), then fT is divisible

by p, and if p−2S ∈ Z(2n−2,1), then fT is divisible by p2.

Note that the Fourier coefficients of e
(2n−2)
k− 1

2 ,m
|Ṽα,2n−2−α(p2), e

(2n−2)
k− 1

2 ,
m
p2
|Up2 ,

e
(2n−2)
k− 1

2 ,m
|Up and e

(2n−2)
k− 1

2 ,mp
2 have the same form of the above expressions by sub-

stituting αq = qk−n−
1
2 and by replacing c(|DT |) by c hk−n+ 1

2
(|DT |), where

hk−n+ 1
2
(|DT |) is the |DT |-th Fourier coefficient of the Cohen-Eisenstein series

H(1)

k−n+ 1
2

of weight k − n+ 1
2 , and where c := ck,2n = 2nζ(1 − k)−1∏n

i=1 ζ(1 +

2i− 2k)−1. On the other hand, Theorem 7.6 is valid for infinitely many integer
k. Therefore Theorem 7.6 deduces not only the relation among the Fourier

coefficients of three forms e
(2n−2)
k− 1

2 ,
m
p2
, e

(2n−2)
k− 1

2 ,m
and e

(2n−2)
k− 1

2 ,mp
2 , but also the relation

among the polynomials {F̃q(T,X)}T of X . (cf. [Ik 01, Lemma 10.5 and page
665. line 2]. More precisely, we can conclude that the polynomial

pk(2n−3)+2n2− 1
2−4n(n−1)

∑

i

γi (detDi)
−n e

(
1

p2
N tDiBi

) ∏

q|fT [Qi]

F̃q (T [Qi] , X)

of X coincides with the (α+ 1)-th component of the vector

pk(2n−3)−2n
2−n+ 11

2

×


p−2(k−n− 1

2 )
∏

q|fT p−2

F̃q (T0, X) , p−(k−n−
1
2 )
∏

q|fT p−1

F̃q (T1, X) ,
∏

q|fT
F̃q (T,X)




×




0 p2k−3

pk−2 pk−2
(
−m
p

)

0 1


Ap2,2n−1(X) diag(1, p1/2, ..., p(2n−2)/2).

Therefore Cm(α;M,S) coincides the (α+ 1)-th component of the vector

pk(2n−3)−2n
2−n+ 11

2

(
C m

p2
(M,p−2S), Cm(M,p−1S), Cmp2(M,S)

)

×




0 p2k−3

pk−2 pk−2
(
−m
p

)

0 1


Ap2,2n−1(αp) diag(1, p

1/2, ..., p(2n−2)/2).

Thus we conclude this theorem. ⊓⊔

Let T̃α,2n−2−α(p2) be the Hecke operator introduced in §2.8 and let L(s,F) be
the L-function for a Hecke eigenform F ∈ S+

k− 1
2

(Γ
(m)
0 (4)) introduced in §2.9.
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Theorem 8.3. Let k be an even integer and n be an integer greater than 1.

Let h ∈ S+
k−n+ 1

2

(Γ
(1)
0 (4)) and g ∈ S+

k− 1
2

(Γ
(1)
0 (4)) be eigenforms for all Hecke

operators. Then there exists a Fh,g ∈ S+
k− 1

2

(Γ
(2n−2)
0 ). Under the assumption

that Fh,g is not identically zero, then Fh,g is an eigenform with the L-function
which satisfies

L(s,Fh,g) = L(s, g)

2n−3∏

i=1

L(s− i, h).

Proof. The construction of Fh,g is stated in the above:

Fh,g(τ) =
1

6

∫

Γ
(1)
0 (4)\H1

F

((
τ 0
0 ω

))
g(ω) Im(ω)k−

5
2 dω,

where F ∈ S+
k− 1

2

(Γ
(2n−1)
0 (4)) is constructed from h. By the definition of

Ṽα,2n−2−α(p2) and due to Theorem 8.2 we have

φm(τ, 0)|
(
T̃0,2n−2(p

2), ..., T̃2n−2,0(p
2)
)

=
(
φm|

(
Ṽ0,2n−2(p

2), ..., Ṽ2n−2,0(p
2)
))

(τ, 0)

= pk(2n−3)−2n
2−n+ 11

2

((
φ m
p2
|Up2

)
(τ, 0), (φm|Up) (τ, 0), φmp2(τ, 0)

)

×




0 p2k−3

pk−2 pk−2
(
−m
p

)

0 1


Ap2,2n−1(αp) diag(1, p

1/2, · · · , p(2n−2)/2)

= pk(2n−3)−2n
2−n+ 11

2

(
φ m
p2
(τ, 0), φm(τ, 0), φmp2(τ, 0)

)

×




0 p2k−3

pk−2 pk−2
(
−m
p

)

0 1


Ap2,2n−1(αp) diag(1, p

1/2, · · · , p(2n−2)/2).

We remark

∑

m
m≡0,3 mod 4

(
p2k−3φ m

p2
(τ, 0) + pk−2

(−m
p

)
φm(τ, 0) + φmp2(τ, 0)

)
e(mω)

= F

((
τ 0
0 ω

))
|T̃1,0(p2).

Documenta Mathematica 21 (2016) 125–196



192 S.Hayashida

Thus

F

((
τ 0
0 ω

)) ∣∣∣∣
(
T̃0,2n−2(p

2), ..., T̃2n−2,0(p
2)
)

=
∑

m
m≡0,3 mod 4

{
φm(τ, 0)

∣∣∣∣
(
T̃0,2n−2(p

2), ..., T̃2n−2,0(p
2)
)}

e(mω)

= pk(2n−3)−2n
2−n+ 11

2

∑

m
m≡0,3 mod 4

{(
φ m
p2
(τ, 0), φm(τ, 0), φmp2(τ, 0)

)

×




0 p2k−3

pk−2 pk−2
(
−m
p

)

0 1


 e(mω)

}
Ap2,2n−1(αp) diag(1, p

1/2, · · · , p(2n−2)/2)

= pk(2n−3)−2n
2−n+ 11

2

(
F

((
τ 0
0 ω

)) ∣∣∣∣
ω

(
T̃0,1(p

2), T̃1,0(p
2)
))

×Ap2,2n−1(αp) diag(1, p1/2, · · · , p(2n−2)/2).
Hence

Fh,g|
(
T̃0,2n−2(p

2), ..., T̃2n−2,0(p
2)
)

=

∫

Γ
(1)
0 (4)\H1

(
F

((
τ 0
0 ω

)) ∣∣∣∣
τ

(
T̃0,2n−2(p

2), ..., T̃2n−2,0(p
2)
))

×g(ω) Im(ω)k−
5
2 dω

= pk(2n−3)−2n
2−n+ 11

2

×
∫

Γ
(1)
0 (4)\H1

(
F

((
τ 0
0 ω

))∣∣∣∣
ω

(
T̃0,1(p

2), T̃1,0(p
2)
))

g(ω) Im(ω)k−
5
2 dω

×Ap2,2n−1(αp) diag(1, p1/2, · · · , p(2n−2)/2).

Let b(p) be the eigenvalue of g with respect to T̃1,0(p
2). We remark that b(p)

is a real number. We have

Fh,g|
(
T̃0,2n−2(p

2), ..., T̃2n−2,0(p
2)
)

= pk(2n−3)−2n
2−n+ 11

2 Fh,g(τ)
×
{
(pk−2, b(p))Ap2,2n−1(αp) diag(1, p

1/2, · · · , p(2n−2)/2)
}
.

(8.2)

Therefore Fh,g is an eigenform for any T̃α,2n−2−α(p2).
Let {β±p } be the set of complex numbers which satisfy

1− b(p)z + p2k−3z2 = (1 − βppk−3/2z)(1− β−1p pk−3/2z).

Let {µ2
0,p, µ

±
1,p, ...µ

±
2n−2,p} be the p-parameters ofFh,g (see §2.9 for the definition

of p-parameters). We remark µ2
0,pµ1,p · · ·µ2n−2,p = p2(n−1)(k−n).
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We now assume that p is an odd prime.

Let Ψ2n−2(K
(2n−2)
α ) ∈ R2n−2 be the Laurent polynomial of {zi}i=0,...,2n−2

introduced in §2.9. The explicit formula of Ψ2n−2(K
(2n−2)
α ) was obtained in

Proposition 6.3. The eigenvalue of Fh,g for T̃α,2n−2−α(p2) (α = 0, ..., 2n − 2)

is obtained by substituting zi = µi into Ψ2n−2(K
(2n−2)
α ). We remark that the

eigenvalue of Fh,g for T̃0,2n−2(p2) is p(n−1)(2k−4n+1).
From the identities (8.2) and (6.5), we obtain

p2n
2−6n+5(p−1/2, µ1,p + µ−11,p)

2n−2∏

l=2

Bl,l+1(µl,p)

= p2n
2−6n+5(p−1/2, βp + β−1p )

2n−2∏

l=2

Bl,l+1(p
n−lαp).

(8.3)

Here the components of the vectors in the above identity (8.3) are eigenvalues
of Fh,g for

T̃0,2n−2(p
2)−1T̃α,2n−2−α(p

2) (α = 0, ..., 2n− 2).

If we substitute z1 = βp and zi = pn−iαp (i = 2, ..., 2n− 2) into the Laurent

polynomial (Ψ2n−2(K
(2n−2)
0 ))−1Ψ2n−2(K

(2n−2)
α ), then due to (8.3) this value is

the eigenvalue of Fh,g for T̃0,2n−2(p2)−1T̃α,2n−2−α(p2). Because R2n−2 is gener-

ated by Ψ2n−2(K
(2n−2)
α ) (α = 0, ..., 2n−2) and Ψ2n−2(K

(2n−2)
0 )−1 and because

of the fact that the p-parameters are uniquely determined up to the action of
the Weyl groupW2, we therefore can take the p-parameters

{
µ±1,p, · · · , µ±2n−2,p

}

of Fh,g as {
β±p , p

n−2α±p , p
n−3α±p , · · · , p−n+2α±p

}
.

Hence the Euler p-factor QFh,g,p(z) of Fh,g for odd prime p is

QFh,g,p(z) =

2n−2
∏

i=1

{

(1− µi,pz)
(

1− µ−1
i,pz

)}

= (1− βpz)
(

1− β−1
p z

)

2n−3
∏

i=1

{(

1− αpp
−n+iz

)(

1− α−1
p p−n+iz

)}

.

(8.4)

We now consider the case p = 2. The identity (8.2) is also valid for p = 2.
Because γ̃j,2 is defined in the same formula as in the case of odd primes, we
also obtain the identity (8.4) for p = 2.
Thus we conclude

L(s,Fh,g) =
∏

p

2n−2∏

i=1

{(
1− µi,pp−s+k−

3
2

)(
1− µ−1i,p p−s+k−

3
2

)}−1

= L(s, g)

2n−3∏

i=1

L(s− i, h).

⊓⊔
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9 Examples of non-vanishing

Lemma 9.1. The form Fh,g in Theorem 8.3 is not identically zero, if (n, k) =
(2, 12), (2, 14), (2, 16), (2, 18), (3, 12), (3, 14), (3, 16), (3, 18), (3, 20), (4, 10),
(4, 12), (4, 14), (4, 16), (4, 18), (4, 20), (5, 14), (5, 16), (5, 18), (5, 20), (6, 12),
(6, 14), (6, 16), (6, 18) or (6, 20).

Proof. Let h ∈ S+
k−n+ 1

2

(Γ
(1)
0 (4)), F ∈ S+

k− 1
2

(Γ
(2n−1)
0 (4)) and Fh,g ∈

S+
k− 1

2

(Γ
(2n−2)
0 (4)) be the same symbols in §8. We have

F

((
τ 0
0 ω

))
=

∑

g

1

〈g, g〉Fh,g(τ)g(ω). (9.1)

Here in the summation g runs over a basis of S+
k− 1

2

(Γ
(1)
0 (4)) which consists of

Hecke eigenforms.
On the other hand, we have

F

((
τ 0
0 ω

))
=

∑

M∈Sym+
2n−2, m∈Sym

+
1

K(M,m)e(Nτ)e(mω), (9.2)

where

K(M,m) =
∑

S∈Z(2n−2,1)

4Mm−StS>0

Cm(M,S)

and where Cm(M,S) is the

(
M S
tS m

)
-th Fourier coefficient of F . By using a

computer algebraic system and Katsurada’s formula for Siegel series [Ka 99],
we can compute the explicit values of Fourier coefficients Cm(M,S). Hence we
can also compute some Fourier coefficients K(M,m).
By virtue of the identities (9.1) and (9.2), we obtain

K(M,m) =
∑

g

1

〈g, g〉A(M ;Fh,g)A(m; g),

where A(M ;Fh,g) is the M -th Fourier coefficient of Fh,g and where A(m; g) is
the m-th Fourier coefficient of g. Here Fourier coefficients A(m; g) are calcu-
lated through the structure theorem of Kohnen plus space [Ko 80]. Therefore
we can calculate some Fourier coefficients A(M ;Fh,g).
For example, if (n, k) = (2, 10), then k − 1/2 = 19/2 and k − n+ 1/2 = 17/2.

We have dimS+
19/2(Γ

(1)
0 (4)) = dimS+

17/2(Γ
(1)
0 (4)) = 1. Let g ∈ S+

19/2(Γ
(1)
0 (4))

and h ∈ S+
17/2(Γ

(1)
0 (4)) be Hecke eigenforms such that the Fourier coefficients

satisfy A(3; g) = A(1;h) = 1. We remark that all Fourier coefficients of g
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and h are real numbers. Let K(M,m) be the number defined in (9.2), where

F ∈ S+
19/2(Γ

(3)
0 (4)) is the Siegel modular form constructed from h. Because

dimS+
19/2(Γ

(1)
0 (4)) = 1, we need to check K(M,m) 6= 0 for a pair (M,m) ∈

Sym+
2n−2 × Sym+

1 . We take M =

(
3 1
1 3

)
and m = 3, then

K(M,m)

= C3

(
M,

(
2
2

))
+ C3

(
M,

(
2
−2

))
+ C3

(
M,

(
−2
2

))
+ C3

(
M,

(
−2
−2

))

= −336− 168− 168− 336

6= 0.

Therefore Fh,g 6≡ 0 for (n, k) = (2, 10).
Similarly, by using a computer algebraic system, we can also check Fh,g 6≡ 0
for any h and g for other (n, k) in the lemma. ⊓⊔

References
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Abstract. In this paper we investigate the asymptotic growth of
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1 Introduction

It is well known (see [Gie77]) that once two positive integers x, y are fixed
there exists a quasi-projective coarse moduli space My,x of canonical models
of surfaces of general type with x = χ(S) = χ(OS) and y = K2

S . The number
ι(x, y), resp. γ(x, y), of irreducible, resp. connected, components of My,x is
bounded from above by a function of y. In fact, Catanese proved that the
number ι0(x, y) of components containing regular surfaces, i.e., q(S) = 0, has
an exponential upper bound in K2. More precisely [Cat92, p.592] gives the
following inequality

ι0(x, y) ≤ y77y2 .
This result is not known to be sharp and in recent papers [M97, Ch96, GP14,
LP14] inequalities are proved which tell how close one can get to this bound
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198 Michael Lönne and Matteo Penegini

from below. In particular, in the last two papers the authors considered fam-
ilies of surfaces isogenous to a product in order to construct many irreducible
components of the moduli space of surfaces of general type. The reason why
one works with these surfaces, is the fact that the number of families of these
surfaces can be easily computed using group theoretical and combinatorial
methods.
In our previous work [LP14] we constructed many such families with many
different 2−groups. There, we exploited the fact that the number of 2−groups
with given order grows very fast in function of the order. In this paper we
obtain a significantly better lower bound for ι0(x, y) using only the groups
(Z/2Z)k and again some properties of the moduli space of surfaces isogenous
to a product. Our main result is the following theorem.

Theorem 1.1. Let h = hk,l be number of connected components of the moduli
space of surfaces of general type which contain regular surfaces isogenous to a
product of holomorphic Euler number xk,l = 2l−3(k2+k−4) given by a (Z/2Z)k

action with ramification structure of type (2k(k+1), 24+2l−k+1

).
If k, l are positive integers with l > 2k, then

h ≥ 2
2+ν√xk for k →∞,

where ν is the positive real number such that l = (2 + ν)k. In particular, given
any sequence αi which is positive, increasing and bounded by 1

2 from above, we
obtain increasing sequences xi and yi = 8xi with

ι0(xi, yi) ≥ y
(y
αi
i )

i .

Let us explain now the way in which this paper is organized.
In the next section Preliminaries we recall the definition and the properties of
surfaces isogenous to a higher product and the its associated group theoretical
data. Moreover, we recall a result of Bauer–Catanese [BC] which allows us
to count the number of connected components of the moduli space of surfaces
isogenous to a product with given group and type of ramification structure.
In the last section we give the proof of the Theorem 1.1.

Acknowledgement The first author was supported by the ERC 2013 Ad-
vanced Research Grant - 340258 - TADMICAMT, at the Universität Bayreuth.
The second author acknowledges Riemann Fellowship Program of the Leibniz
Universität Hannover. We thank the anonymous referee for reading very care-
fully the manuscript and for many questions and suggestions that helped us to
improve the paper a lot.

Notation and conventions. We work over the field C of complex numbers.
By surface we mean a projective, non-singular surface S. For such a surface
ωS = OS(KS) denotes the canonical bundle, pg(S) = h0(S, ωS) is the geometric
genus, q(S) = h1(S, ωS) is the irregularity, χ(OS) = χ(S) = 1 − q(S) + pg(S)
is the Euler-Poincaré characteristic and e(S) is the topological Euler number
of S.
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2 Preliminaries

Definition 2.1. A surface S is said to be isogenous to a higher product of
curves if and only if, S is a quotient (C1×C2)/G, where C1 and C2 are curves
of genus at least two, and G is a finite group acting freely on C1 × C2.

Using the same notation as in Definition 2.1, let S be a surface isogenous to a
product, and G◦ := G∩ (Aut(C1)×Aut(C2)). Then G

◦ acts on the two factors
C1, C2 and diagonally on the product C1 × C2. If G◦ acts faithfully on both
curves, we say that S = (C1 × C2)/G is a minimal realization. In [Cat00] it is
also proven that any surface isogenous to a product admits a unique minimal
realization.

Assumptions. In the following we always assume:

1. Any surface S isogenous to a product is given by its unique minimal
realization;

2. G◦ = G, this case is also known as unmixed type, see [Cat00].

Under these assumption we have.

Proposition 2.2. [Cat00] Let S = (C1 × C2)/G be a surface isogenous to a
higher product of curves, then S is a minimal surface of general type with the
following invariants:

χ(S) =
(g(C1)− 1)(g(C2)− 1)

|G| , e(S) = 4χ(S), K2
S = 8χ(S). (1)

The irregularity of these surfaces is computed by

q(S) = g(C1/G) + g(C2/G). (2)

Among the nice features of surfaces isogenous to a product, one is that their
deformation class can be obtained in a purely algebraic way. Let us briefly
recall this in the particular case when S is regular, i.e., q(S) = 0, Ci/G ∼= P1.

Definition 2.3. Let G be a finite group and r ∈ N with r ≥ 2.

• An r−tuple T = (v1, . . . , vr) of elements of G is called a spherical system
of generators of G if 〈v1, . . . , vr〉 = G and v1 · . . . · vr = 1.

• We say that T has an unordered type τ := (m1, . . . ,mr) if the orders of
(v1, . . . , vr) are (m1, . . . ,mr) up to a permutation, namely, if there is a
permutation π ∈ Sr such that

ord(v1) = mπ(1), . . . , ord(vr) = mπ(r).
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• Moreover, two spherical systems T1 = (v1,1, . . . , v1,r1) and T2 =
(v2,1, . . . , v2,r2) are said to be disjoint, if:

Σ(T1)
⋂

Σ(T2) = {1}, (3)

where

Σ(Ti) :=
⋃

g∈G

∞⋃

j=0

ri⋃

k=1

g · vji,k · g−1.

We shall also use the shorthand, for example (24, 32), to indicate the tuple
(2, 2, 2, 2, 3, 3).

Definition 2.4. Let 2 < ri ∈ N for i = 1, 2 and τi = (mi,1, . . . ,mi,ri) be two
sequences of natural numbers such that mk,i ≥ 2. A (spherical-) ramification
structure of type (τ1, τ2) and size (r1, r2) for a finite group G, is a pair (T1, T2)
of disjoint spherical systems of generators of G, whose types are τi, such that:

Z ∋
|G|(−2 +∑ri

l=1(1− 1
mi,l

))

2
+ 1 ≥ 2, for i = 1, 2. (4)

Remark 2.5. Following e.g., the discussion in [LP14, Section 2] we obtain
that the datum of the deformation class of a regular surface S isogenous to a
higher product of curves of unmixed type together with its minimal realization
S = (C1×C2)/G is determined by the datum of a finite group G together with
two disjoint spherical systems of generators T1 and T2 (for more details see also
[BCG06]).

Remark 2.6. Recall that from Riemann Existence Theorem a finite group
G acts as a group of automorphisms of some curve C of genus g such that
C/G ∼= P1 if and only if there exist integers mr ≥ mr−1 ≥ · · · ≥ m1 ≥ 2
such that G has a spherical system of generators of type (m1, . . . ,mr) and the
following Riemann-Hurwitz relation holds:

2g − 2 = |G|(−2 +
r∑

i=1

(1 − 1

mi
)). (5)

Remark 2.7. Note that a group G and a ramification structure determine the
main numerical invariants of the surface S. Indeed, by (1) and (5) we obtain:

4χ(S) = |G| ·
(
−2 +

r1∑

k=1

(1− 1

m1,k
)

)
·
(
−2 +

r2∑

k=1

(1 − 1

m2,k
)

)

=: 4χ(|G|, (τ1, τ2)). (6)

Let S be a surface isogenous to a product of unmixed type with group G and a
pair of two disjoint spherical systems of generators of types (τ1, τ2). By (6) we
have χ(S) = χ(G, (τ1, τ2)), and hence, by (1), K2

S = K2(G, (τ1, τ2)) = 8χ(S).
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Let us fix a group G and a pair of unmixed ramification types (τ1, τ2), and
denote by M(G,(τ1,τ2)) the moduli space of isomorphism classes of surfaces
isogenous to a product admitting these data, by [Cat00, Cat03] the space
M(G,(τ1,τ2)) consists of a finite number of connected components. Indeed, there
is a group theoretical procedure to count these components. In caseG is abelian
it is described in [BC].

Theorem 2.8. [BC, Theorem 1.3] . Let S be a surface isogenous to a higher
product of unmixed type and with q = 0. Then to S we attach its finite group
G (up to isomorphism) and the equivalence classes of an unordered pair of
disjoint spherical systems of generators (T1, T2) of G, under the equivalence
relation generated by:

i. Hurwitz equivalence for T1;

ii. Hurwitz equivalence for T2;

iii. Simultaneous conjugation for T1 and T2, i.e., for φ ∈ Aut(G) we let(
T1 := (v1,1, . . . , v1,r1), T2 := (v2,1, . . . , v2,r2)

)
be equivalent to

(
φ(T1) := (φ(v1,1), . . . , φ(v1,r1)), φ(T2) := (φ(v2,1), . . . , φ(v2,r2))

)
.

Then two surfaces S, S′ are deformation equivalent if and only if the corre-
sponding equivalence classes of pairs of spherical generating systems of G are
the same.

The Hurwitz equivalence is defined precisely in e.g., [P13]. In the cases that
we will treat the Hurwitz equivalence is given only by the braid group action
on Ti defined as follows. Recall the Artin presentation of the Braid group of r1
strands

Br1 := 〈γ1, . . . , γr1−1| γiγj = γjγi for |i− j| ≥ 2, γi+1γiγi+1 = γiγi+1γi〉.

For γi ∈ Br1 then:

γi(T1) = γi(v1, . . . , vr1) = (v1, . . . , vi+1, v
−1
i+1vivi+1, . . . , vr1).

Moreover, notice that, since we deal here with abelian groups only, the braid
group action is indeed only by permutation of the elements on the spherical
system of generators.
Once we fix a finite abelian group G and a pair of types (τ1, τ2) (of size (r1,r2))
of an unmixed ramification structure for G, counting the number of connected
components ofM(G,(τ1,τ2)) is then equivalent to the group theoretical problem
of counting the number of classes of pairs of spherical systems of generators
of G of type (τ1, τ2) under the equivalence relation given by the action of
Br1 ×Br2 ×Aut(G), given by:

(γ1, γ2, φ) · (T1, T2) :=
(
φ(γ1(T1)), φ(γ2(T2))

)
, (7)

where γ1 ∈ Br1 , γ2 ∈ Br1 and φ ∈ Aut(G), see for more details e.g., [P13].
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3 Proof of Theorem 1.1

Let us consider the group G := (Z/2Z)k, with k >> 0 and an integer l. We
want to give to G many classes of ramification structures of size (r1, r2) =
(k(k + 1), 2l−k+1 + 4). Since the elements of G have only order two we will
produce in the end ramification structure of type ((2r1), (2r2)).
Let T1 := (v1, v2, . . . , vk(k+1)) with the following elements vi of G

v1 = (1, 0, 0, . . . , 0)

v2 = (1, 0, 0, . . . , 0)

v3 = (0, 1, 0, . . . , 0)

v4 = (0, 1, 0, . . . , 0)

v5 = (0, 1, 0, . . . , 0)

v6 = (0, 1, 0, . . . , 0)

...

vk(k+1) = (0, 0, . . . , 0, 1)

By construction the product of the elements in T1 is 1G and < T1 >∼= G. Define
the set M := G \ {0, v1, . . . , vk(k+1)}. Since M has #M = 2k − k − 1 elements
we can choose a bijection

ϕ : {n ∈ N|n ≤ 2k − k − 1} −→M.

Let B the set of (2k − k − 1)-tuples (n1, . . . , n#M ) of positive integers of sum
n1 + n2 + · · · + n#M equal to 2l−k + 2. For every element in B we get a
2l−k+1+ 4-tuple T2 of elements of G by the map

(n1, . . . , n2k−k−1) 7→ T2

where

T2 =
(
ϕ(1), . . . , ϕ(1)︸ ︷︷ ︸

2n1

, . . . , ϕ(2k − k − 1), . . . , ϕ(2k − k − 1)︸ ︷︷ ︸
2n

2k−k−1

)
.

By construction again < T2 >∼= G (for k > 2) and the product of the elements
in T2 is 1G. Hence, T2 is a spherical system of generators for G of size 2l−k+1+4.
Since G = Z/2k is abelian with all non-trivial elements of order two, the pair
(T1, T2) is a ramification structure for G of the desired type, for any element
in B.

Now we count how many inequivalent ramification structures of this kind we
have under the action of the group defined in Theorem 2.8 and Equation (7).
First, by construction, the only element in Aut(G), which stabilises T1 is the
identity. Next, accordingly, (T1, T

′
2) and (T1, T

′′
2 ) are equivalent if and only
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if T ′2 and T ′′2 are in the same braid orbit. So finally, by construction, we get
inequivalent pairs associated to different elements of B.
Hence the number of inequivalent such ramification structures is equal to the
number of (2k − k − 1)-tuples in B of positive integers whose sum is 2l−k + 2
= r2/2.
Any element in B corresponds uniquely to the sequence of 2k − k − 1 integers
n1, n1 +n2, . . . , n1 + · · ·+n#M = r2/2. The sequence is strongly increasing by
ni > 0, so the elements in B correspond bijectively to the number of choices of
2k − k− 2 integers ( all but the last integer in the sequence) in the range from
1 to r2/2− 1, cf [F68, Section II.5, p.38]. Hence,

#B =

( r2
2 − 1

2k − k − 2

)
=

(
2l−k + 1

2k − k − 2

)
,

Let ν > 0 be a rational number and let us suppose that l = (ν + 2) · k, then
we exploit Stirling’s approximation of the binomial coefficient - more exactly
a corresponding lower bound. To bound the binomial coefficient

(
m
n

)
we use

the lower bound (m−n)n < m!/(m−n)! and an upper bound on n! related to
Stirling’s formula. In fact, cf. [F68, eqn. (9.6), p.53],

n! = ednnn+
1
2 e−n for dn = lnn!− (n+

1

2
) lnn+ n

and we get an upper bound on replacing dn by d1 = 1 due to the observation
[F68, eqn. (9.9), p.53] that (dn) is decreasing. Thus we obtain

(
2l−k + 1

2k − k − 2

)
>

( 2l−k+1
2k−k−2 − 1)2

k−k−2e2
k−k−2

e
√
(2k − k − 2)

> (2νk)(2
k−k−2) · e2

k−k−2

e
√
(2k − k − 2)

> 2νk(2
k). (8)

Now yk = 8χ(S) = 2|G|(−2 + 1
2r1)(−2 + 1

2r2) by (6) implies yk = 2k · 2l−k ·
(k2 + k − 4) = 2(ν+2)k(k2 + k − 4) according to l = (2 + ν)k. Hence we have

(yk)
1
ν+2 · k

(k2 + k − 4)
1
ν+2

= k2k.

Using this, we obtain for k large enough in the second inequality

h > 2
ν(yk)

1
ν+2 · k

(k2+k−4)
1
ν+2 > 2(y

1
ν+2
k ). (9)

We can bound further for k large enough

2(y
1
ν+2
k ) > 2(y

1
2ν+2
k )

ln yk
ln 2 . (10)

We use the identity xf(x) = ef(x) ln x = 2f(x)
1

ln 2 ln x to get for all α < 1
2

h > y
(yk)

α

k

if k is large enough, depending on α. �
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Resumé. We show that extension groups between two polynomial
functors on free groups are the same in the category of all functors
and in a subcategory of polynomial functors of bounded degree. The
proof relies on functorial properties of the group ring of free groups
and its filtration by powers of the augmentation ideal. We give some
applications, in particular in term of homological dimension.

Résumé. On montre que les groupes d’extensions entre foncteurs po-
lynomiaux sur les groupes libres sont les mêmes dans la catégorie
de tous les foncteurs et dans une sous-catégorie de foncteurs poly-
nomiaux de degré borné. La démonstration repose sur les propriétés
fonctorielles de l’anneau de groupe des groupes libres et de sa filtra-
tion par les puissances de l’idéal d’augmentation. On donne quelques
applications, notamment en termes de dimension homologique.
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Introduction

Ce travail est une contribution à l’étude des groupes d’extensions dans la caté-
gorie des foncteurs des groupes libres (de rang fini) vers les groupes abéliens.
Cette catégorie a d’abord été considérée, du point de vue cohomologique, dans
l’article de Jibladze et du deuxième auteur [9] (§ 5A) sur la cohomologie des
théories algébriques. Les premier et troisième auteurs l’ont également utilisée,
dans [4], pour établir des résultats d’annulation d’homologie stable des groupes
d’automorphismes des groupes libres à coefficients tordus. Récemment, le pre-
mier auteur a montré [2] que l’algèbre homologique dans cette catégorie de
foncteurs gouverne le calcul d’autres groupes d’homologie stable des groupes
d’automorphismes des groupes libres à coefficients tordus. Cette algèbre ho-
mologique s’avère plus facile d’accès que dans les catégories de foncteurs entre
espaces vectoriels sur un corps fini, très étudiées en raison de leurs liens avec la
topologie algébrique ou la K-théorie algébrique (cf. par exemple [6]), notam-
ment parce que le foncteur d’abélianisation possède une résolution projective
explicite simple (déjà utilisée dans [9]). L’article [4] se sert également de façon
cruciale de la structure des sous-catégories de foncteurs polynomiaux dans cette
catégorie de foncteurs.
Dans le présent travail, on montre que les groupes d’extensions entre deux
foncteurs polynomiaux sur les groupes libres sont les mêmes dans la catégorie
de tous les foncteurs ou dans une sous-catégorie de foncteurs polynomiaux de
degré donné. Un résultat similaire vaut pour les foncteurs sur la catégorie Γ
des ensembles finis pointés, comme cela résulte du théorème de type Dold-Kan
établi par le deuxième auteur dans [14]. En revanche, notre résultat contraste
avec la situation, plus délicate, des foncteurs sur une catégorie additive (voir
[13] et [3]). Nous donnons également quelques applications.

Description des résultats Commençons par quelques notations générales.
Soit k un anneau, on note k-Mod la catégorie des k-modules à gauche. Si C
est une petite catégorie, on note F(C; k) la catégorie des foncteurs de C vers
k-Mod (on notera simplement F(C) pour F(C;Z)). Si la catégorie C possède
un objet nul et des coproduits finis, on dispose d’une notion d’effets croisés et
de foncteurs polynomiaux dans F(C; k) (voir la section 1 ci-après pour davan-
tage de détails). L’origine de ces notions remonte à Eilenberg-MacLane ([5],
Chapter II), lorsque C est une catégorie de modules, et se généralise sans dif-
ficulté au cas qu’on vient de mentionner (voir [8], § 2). Pour tout entier d, on
note Fd(C; k) la sous-catégorie pleine de F(C; k) des foncteurs polynomiaux de
degré au plus d.
On note gr la catégorie des groupes libres de rang fini, ou plus exactement le
squelette constitué des groupes Z∗n (l’étoile désignant le produit libre). Comme
signalé plus haut, notre résultat principal est le suivant :

Théorème 1. Soient k un anneau, d ∈ N et F , G des objets de Fd(gr; k).
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L’application linéaire graduée naturelle

Ext∗Fd(gr;k)(F,G)→ Ext∗F(gr;k)(F,G)

qu’induit le foncteur d’inclusion Fd(gr; k)→ F(gr; k) est un isomorphisme.

Pour des catégories sources autres que gr, l’énoncé similaire au théorème précé-
dent n’est généralement pas vrai. Ainsi, rappelons quelques phénomènes connus
sur une petite catégorie additive C. Si l’anneau k contient le corps Q des nombres
rationnels, le foncteur d’inclusion Fd(C; k)→ F(C; k) induit des isomorphismes
entre groupes d’extensions. Ce résultat, qui fait partie du folklore, figure dans
[3] (théorème 1.2). En général, même sous de bonnes hypothèses sur la catégo-
rie additive C, le morphisme canonique ExtiFd(C)(F,G)→ ExtiF(C)(F,G) est un
isomorphisme seulement lorsque d est assez grand par rapport à i et au degré
polynomial de F (ou de G). On renvoie à la remarque 3.12 pour une discussion
plus développée à ce sujet.
La démonstration du théorème 1 est donnée à la section 3. Elle repose sur :

— une propriété d’annulation cohomologique très inspirée d’une propriété
analogue dans les catégories de foncteurs sur une catégorie additive due
au deuxième auteur (voir [11]) ;

— les propriétés de la filtration de l’anneau d’un produit direct de groupes
libres par les puissances de son idéal d’augmentation, qui sont rappelées
dans la section 2.

La dernière section est consacrée aux applications. Tout d’abord, on détermine
la dimension homologique dans les catégories Fd(gr) de foncteurs fondamen-
taux : les puissances tensorielles de l’abélianisation (proposition 4.1) et les
foncteurs de Passi (corollaire 4.3). Pour les premiers, on obtient :

Proposition 1. Soient d ≥ n > 0 des entiers. Le foncteur a⊗n est de dimen-
sion homologique d− n dans la catégorie Fd(gr).
La finitude de ces dimensions constitue un phénomène rare dans les catégories
de foncteurs polynomiaux et illustre la spécificité de Fd(gr).
On montre aussi le résultat suivant (proposition 4.6) :

Proposition 2. Soient d > 0 un entier et k un sous-anneau de Q dans lequel
d! est inversible. La catégorie Fd(gr; k) est de dimension globale d− 1.

Dans la proposition 4.4, on considère le foncteur βd adjoint à droite au foncteur
Fd(gr) → Z[Sd]-Mod F 7→ crd(F )(Z, . . . ,Z). On montre que ce foncteur,
apparemment mystérieux (et en tout cas non explicite), mentionné dans [4],
est exact, et induit donc des isomorphismes entre groupes d’extensions. Plus
explicitement, nous obtenons :

Proposition 3. Pour tout d ∈ N, le foncteur βd : Z[Sd]-Mod → Fd(gr) est
exact. Il induit des isomorphismes naturels

Ext∗F(gr)(βd(M), βd(N)) ≃ Ext∗Fd(gr)(βd(M), βd(N)) ≃ Ext∗Z[Sd](M,N).

Documenta Mathematica 21 (2016) 205–222



208 Aurélien Djament, Teimuraz Pirashvili et Christine Vespa

Là encore, il s’agit d’un phénomène notable dans les catégories de foncteurs
polynomiaux, dont les liens avec les représentations des groupes symétriques
sont bien compris pour ce qui concerne la classification des objets simples,
par exemple, mais généralement mystérieux du point de vue cohomologique
(notamment dans le cas d’une catégorie source additive, comme les groupes
abéliens libres de rang fini).

Remerciements Les deux derniers auteurs souhaitent remercier les orga-
nisateurs du semestre intitulé Grothendieck-Teichmuller Groups, Deformation
and Operads qui a eu lieu à l’Institut Isaac Newton de Cambridge en 2013 et
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reconnaissant envers l’université de Leicester pour lui avoir accordé un congé
pour recherche.

1 Rappels sur les foncteurs polynomiaux

Soient k un anneau et C une petite catégorie. La catégorie F(C; k) est une
catégorie abélienne qui hérite des propriétés de régularité de la catégorie but
k-Mod ; en effet, les suites exactes, sommes, produits, etc. se testent au but.
Si k est commutatif, on dispose d’une structure monoïdale symétrique notée ⊗
sur F(C; k) qui est le produit tensoriel sur k au but.
La catégorie F(C; k) possède suffisamment d’objets projectifs : en effet, le
lemme de Yoneda montre que le foncteur

P Cc := k[C(c,−)]
(où c est un objet de C ; k[−] désigne le foncteur de linéarisation des ensembles
vers k-Mod) représente l’évaluation en c, il est donc projectif (et de type fini),
et les foncteurs P Cc engendrent la catégorie F(C; k).
Si la catégorie C possède un objet nul 0 et des coproduits finis (notés ici +), on
dispose dans F(C; k) d’une notion d’effets croisés et de foncteurs polynomiaux
dans F(C; k) (ce cadre est exactement celui de [8], § 2.3) ; rappelons-en la défi-
nition. Si F est un foncteur de F(C; k), son n-ème effet croisé (cross-effect en
anglais), où n ∈ N, est le foncteur crn(F ) ∈ F(Cn; k) défini par

crn(F )(c1, . . . , cn) = Ker
(
F (c1 + · · ·+ cn)→

n⊕

i=1

F (c1 + · · ·+ ĉi + · · ·+ cn)
)

(le chapeau signifie que le terme correspondant doit être omis ; les applications
sont induites par les morphismes canoniques c1+· · ·+cn → c1+· · ·+ ĉi+· · ·+cn
de C provenant de ce que cette catégorie possède des coproduits finis et un
objet nul). Cet effet croisé définit un foncteur exact crn : F(C; k) → F(Cn; k).
L’exactitude peut se voir à partir des décompositions naturelles

F (c1 + · · ·+ cn) ≃
⊕

1≤i1<···<ik≤n
crk(F )(ci1 , . . . , cik)
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(cf. [8], proposition 2.4, par exemple). Une manière d’établir cette décom-
position consiste à vérifier que crn(F )(c1, . . . , cn) est le facteur direct de
F (c1 + · · · + cn) correspondant à l’idempotent

∑
I⊂{1,...,n}

(−1)Card(I)F (eI), où

eI est l’idempotent de c1 + · · · + cn donné par la projection sur les facteurs
appartenant à I.
On dispose d’un isomorphisme canonique

crn(F )(cσ(1), . . . , cσ(n)) ≃ crn(F )(c1, . . . , cn)

pour toute permutation σ ∈ Sn ; en particulier, le groupe symétrique Sn opère
naturellement sur crn(F )(c, . . . , c).
Comme C possède un objet nul, tout foncteur F de F(C; k) se scinde de manière
unique (à isomorphisme près) et naturelle en la somme directe d’un foncteur
constant et d’un foncteur réduit, c’est-à-dire nul sur l’objet nul ; on note F̄ ce
foncteur réduit. Par ailleurs, comme C possède des coproduits finis, on dispose
d’isomorphismes canoniques P Cc ⊗ P Cd ≃ P Cc+d, lorsque k est commutatif. On
vérifie classiquement que l’on dispose d’isomorphismes canoniques

HomF(C;k)(P̄
C
c1 ⊗ · · · ⊗ P̄ Ccn , F ) ≃ crn(F )(c1, . . . , cn).

Un foncteur F de F(C; k) est dit polynomial de degré au plus n si crn+1(F ) = 0.
Cette condition implique l’annulation de cri(F ) pour tout entier i > n. On
note Fn(C; k) la sous-catégorie pleine de F(C; k) constituée des foncteurs poly-
nomiaux de degré au plus n. C’est une sous-catégorie épaisse de F(C; k) stable
par limites et colimites. Le produit tensoriel de deux foncteurs polynomiaux
est polynomial (on suppose ici k commutatif), avec pour degré la somme des
degrés des foncteurs initiaux. Le lecteur pourra trouver davantage de détails et
de propriétés des foncteurs polynomiaux dans [8], § 2.
Venons-en au cas particulier de la catégorie source gr, qui possède un objet nul
et des coproduits finis (donnés par le produit libre ∗). Pour alléger, on notera
P gr
n pour P gr

Z∗n . On dispose d’isomorphismes canoniques P gr
i ⊗ P gr

j ≃ P gr
i+j et

P gr
n (G) ≃ k[Gn].

On notera simplement P̄ = P̄ gr
1 la partie réduite de P gr

1 . Ainsi, P̄ (G) n’est
autre que l’idéal d’augmentation de la k-algèbre k[G] du groupe libre G. Pour
tous d ∈ N et F ∈ ObF(gr; k), on dispose d’un isomorphisme naturel

HomF(gr;k)(P̄
⊗n, F ) ≃ crn(F )(Z, . . . ,Z).

2 Préliminaires sur les puissances de l’idéal d’augmentation d’un
anneau de groupe

Nous donnons dans cette section plusieurs résultats concernant les puissances
d’un idéal d’augmentation qui nous seront utiles dans la suite. La plupart de
ces propriétés sont classiques. Une référence générale est [10].
Pour tout groupe G, on note I(G) l’idéal d’augmentation de l’anneau de groupe
Z[G] ; pour tout n ∈ N, on note In(G) la n-ème puissance de cet idéal. Pour tout
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n ∈ N, In définit un foncteur de la catégorie Grp des groupes vers la catégorie
Ab. On dispose ainsi d’un anneau gradué gr(Z[G]) :=

⊕
n∈N

(In/In+1)(G) natu-

rel en G. En degré 1, on dispose d’un isomorphisme naturel (I/I2)(G) ≃ Gab
(abélianisation de G). En particulier, le produit induit des morphismes natu-
rels G⊗nab → (In/In+1)(G), qui sont toujours des épimorphismes (et sont des
isomorphismes si G est libre — cf. remarque 2.2 infra).

Lemme 2.1. Si G est un groupe libre, pour tous entiers naturels r et i, on
dispose d’un isomorphisme naturel

Hi(G; Ir(G)) ≃
{

(Ir/Ir+1)(G) si i = 0
0 sinon.

Démonstration. On procède par récurrence sur r. L’assertion est triviale pour
r = 0, on suppose donc r > 0 et le résultat établi pour r − 1. Dans la suite
exacte de Z[G]-modules à gauche

0→ Ir(G)→ Ir−1(G)→ (Ir−1/Ir)(G)→ 0,

l’action de G est triviale sur (Ir−1/Ir)(G), car la flèche de droite s’identifie à la
projection de Ir−1(G) sur ses coïnvariants sous l’action de G — ce qui prouve
déjà le résultat en degré homologique 0. Comme l’homologie de G est sans
torsion sur Z et concentrée en degré 0 et 1, puisque G est libre, on en déduit
que Hi(G; (Ir−1/Ir)(G)) est nul pour i > 1, isomorphe à Gab ⊗ (Ir−1/Ir)(G)
pour i = 1 et à (Ir−1/Ir)(G) pour i = 0. La suite exacte longue d’homologie
associée à la suite exacte courte précédente fournit donc le résultat d’annulation
souhaité en degré homologique strictement positif.

Remarque 2.2. Cette démonstration permet aussi de voir, en regardant la fin
de ladite suite exacte longue, que le morphisme de liaison

Gab ⊗ (Ir−1/Ir)(G) ≃ H1(G; (Ir−1/Ir)(G))→ H0(G; Ir(G)) ≃ (Ir/Ir+1)(G)

est un isomorphisme. Comme ce morphisme s’identifie au produit

(I/I2)(G)⊗ (Ir−1/Ir)(G)→ (Ir/Ir+1)(G),

cela fournit une démonstration de la propriété importante et classique (qui
remonte à Magnus ; voir par exemple [10], chapitre VIII, Theorem 6.2) que
l’anneau gradué gr(Z[G]) est naturellement isomorphe à l’algèbre tensorielle
sur Gab (pour G libre).

Lemme 2.3. Soient G un groupe libre, r et i des entiers naturels. On dispose
d’un isomorphisme naturel

Tor
Z[G]
i (I(G), Ir(G)) ≃

{
Ir+1(G) si i = 0
0 sinon.
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Démonstration. Utilisant la suite exacte longue d’homologie associée à la suite
exacte courte de Z[G]-modules à droite 0 → I(G) → Z[G] → Z → 0, on voit
que Tor

Z[G]
i (I(G), Ir(G)) est isomorphe à Hi+1(G; Ir(G)) lorsque i > 0, et l’on

obtient une suite exacte

0→ H1(G; Ir(G))→ Tor
Z[G]
0 (I(G), Ir(G))→ Ir(G)→ H0(G; Ir(G))→ 0,

de sorte que le lemme 2.1 permet de conclure.

Proposition 2.4. Pour tout r ∈ N, la résolution barre fournit un complexe de
chaînes de foncteurs Grp→ Ab du type

· · · → I⊗(n+1) ⊗ Ir → I⊗n ⊗ Ir → · · · → I⊗2 ⊗ Ir → I ⊗ Ir

dont la restriction aux groupes libres a une homologie isomorphe à Ir+1 en
degré 0 et nulle en degré strictement positif.

Démonstration. D’une manière générale, si A est un anneau augmenté, d’idéal
d’augmentation Ā, M un A-module à droite et N un A-module à gauche, on
dispose d’un complexe de chaînes de groupes abéliens fonctoriel en A, M et N

· · · →M ⊗ Ā⊗n ⊗N →M ⊗ Ā⊗(n−1) ⊗N → · · · →M ⊗ Ā⊗N →M ⊗N
(complexe barre bilatère normalisé) dont l’homologie est naturellement iso-
morphe à TorA∗ (M,N) si A et M sont sans torsion sur Z.
La proposition s’obtient en prenant A = Z[G], M = I(G) et N = Ir(G) et en
appliquant le lemme 2.3.

Nous aurons besoin également d’examiner gr(Z[G]) lorsque G est un produit
direct de groupes libres. Pour cela, on donne quelques propriétés générales
simples sur l’effet du foncteur gr(Z[−]) sur un produit direct de groupes.
On va voir que ce foncteur est exponentiel (i.e. transforme les produits directs
en produits tensoriels) sur les groupes G tels que gr(Z[G]) soit un groupe abé-
lien sans torsion. (On a vu plus haut que les groupes libres possèdent cette
propriété.) Remarquer que, si c’est le cas, alors les groupes abéliens In(G) et
Z[G]/In(G) sont également sans torsion.
Soient G et H deux groupes. Si M et N sont des sous-groupes des groupes
abéliens Z[G] et Z[H ] respectivement, nous noterons M.N l’image de M ⊗N
dans Z[G]⊗Z[H ] ≃ Z[G×H ]. Si M et N sont des idéaux bilatères de Z[G] et
Z[H ] respectivement, alors M.N est un idéal bilatère de Z[G×H ].

Proposition 2.5. Soient G et H deux groupes. Dans Z[G×H ], on a

I(G×H) = I(G).Z[H ] + Z[G].I(H)

et, plus généralement,

Ir(G×H) =
∑

i+j=r

Ii(G).Ij(H)

pour tout r ∈ N.
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Démonstration. La première propriété est immédiate et la deuxième s’en déduit
par récurrence sur r.

Proposition 2.6. Soient G et H deux groupes tels que les groupes abéliens
gr(Z[G]) et gr(Z[H ]) soient sans torsion.

1. Pour tout entier naturel n, on dispose d’un isomorphisme naturel

(In/In+1)(G×H) ≃
⊕

i+j=n

(Ii/Ii+1)(G) ⊗ (Ij/Ij+1)(H).

2. Le groupe abélien gr(Z[G ×H ]) est sans torsion.

3. Pour tous entiers 0 ≤ t ≤ n, on a
( ∑

i+j=n
i<t

Ii(G).Ij(H)
)
∩ (It(G).In−t(H)) = It(G).In−t+1(H)

dans Z[G × H ] ; ce groupe est naturellement isomorphe à It(G) ⊗
In−t+1(H).

Démonstration. La proposition 2.5 procure (sans aucune hypothèse sur G ni
H) un épimorphisme naturel

⊕

i+j=n

(Ii/Ii+1)(G) ⊗ (Ij/Ij+1)(H)։ (In/In+1)(G ×H).

Par ailleurs, grâce à l’hypothèse faite sur G et H , les épimorphismes canoniques
Ii(G)⊗ Ij(H)։ Ii(G).Ij(H) sont des isomorphismes, et l’on a

Ii(G).In−i(H) ∩ Ij(G).In−j(H) = Ij(G).In−i(H)

pour i ≤ j. On en déduit immédiatement la proposition.

3 Démonstration du théorème 1

La classe Tn Soient C une petite catégorie possédant un objet nul et des
coproduits finis. Pour n ∈ N∪{−1}, on note Tn(C) la classe des objets de F(C)
possédant une résolution projective dont les termes sont des sommes directes
de foncteurs du type P̄ Cc1 ⊗ · · · ⊗ P̄ Ccd , où d > n est un entier et c1, . . . , cd sont
des objets de C.
Le cas qui nous intéresse est celui des classes Tn(gr), qui seront simplement
notées Tn par la suite. Toutefois, les propriétés formelles ci-dessous se montrent
de la même façon, immédiate, dans le cas général ; elles sont laissées au lecteur.
Noter que l’on a Tn(C) ⊃ Tn+1(C) pour tout n ∈ N ∪ {−1}, que T0(C) est
constituée des foncteurs réduits et que T−1(C) = F(C).
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Lemme 3.1. Soient n ∈ N ∪ {−1} et 0 → F → G → H → 0 une suite exacte
courte de F(C). Si deux des foncteurs F , G et H appartiennent à Tn(C), alors
il en est de même pour le troisième.
En particulier, si A et B sont deux sous-foncteurs d’un foncteur F de F(C),
A et B appartenant à Tn(C), alors le sous-foncteur A + B de F appartient à
Tn(C) si et seulement s’il en est de même pour A ∩B.
Plus généralement, si on dispose d’une suite exacte longue

· · · → X1 → X0 → F → 0

dans F(C) avec tous les Xi dans Tn(C), alors F appartient à Tn(C).

Proposition 3.2. Si F et G appartiennent à Ti(C) et Tj(C) respectivement et
que l’un de ces foncteurs prend des valeurs sans torsion sur Z, alors F ⊗ G
appartient à Ti+j+1(C).

Corollaire 3.3. Le produit tensoriel de n+1 foncteurs réduits de F(C) dont
au moins n prennent des valeurs sans torsion sur Z appartient à Tn(C).

Remarque 3.4. Ce corollaire est un analogue d’un résultat dû au deuxième
auteur pour les catégories F(A), où A est additive, qui apparaît dans [11], et
qui s’est avéré extrêmement utile en cohomologie des foncteurs.

Les classes Tn(C) nous serviront par l’intermédiaire du résultat suivant.

Proposition 3.5. Soient n ∈ N∪{−1}, F un foncteur de Tn(C) à valeurs sans
torsion sur Z, k un anneau et A un foncteur de Fn(C; k). Alors Ext∗F(C;k)(F ⊗
k,A) = 0.

Démonstration. Comme F est à valeurs sans torsion, F ⊗ k possède une
résolution dont les termes sont des sommes directes de foncteurs du type
P̄ Cc1 ⊗ · · · ⊗ P̄ Ccd ⊗ k, avec d > n.
D’autre part, on dispose d’isomorphismes naturels

HomF(C;k)(P̄
C
c1 ⊗ · · · ⊗ P̄ Ccd ⊗ k,A) ≃

≃ HomF(C)(P̄
C
c1 ⊗ · · · ⊗ P̄ Ccd , O∗A) ≃ crd(A)(c1, . . . , cd)

où O : k-Mod → Ab désigne le foncteur d’oubli, adjoint à droite à − ⊗ k,
de sorte que le foncteur de postcomposition O∗ : F(C; k)→ F(C) est adjoint à
droite à la postcomposition par −⊗k, et où le deuxième isomorphisme provient
de la section 1. Le fait que les foncteurs exacts crd sont nuls sur Fn(C; k) pour
d > n permet de conclure.

Les foncteurs Kd
n Pour tout d ∈ N, le foncteur d’inclusion Fd(gr) →

F(gr) possède un adjoint à gauche qd ; qd(F ) est le plus grand quotient de
F appartenant à Fd(gr). On renvoie à [8], § 2.3 pour plus de détails à ce sujet.
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Notation 3.6. Étant donné deux entiers naturels n et d, on pose

Kd
n = Ker(P gr

n ։ qd(P
gr
n ))

et l’on définit K−1n = P gr
n .

Proposition 3.7. Pour tous n ∈ N, d ∈ N ∪ {−1} et tout objet G de gr, les
sous-groupes Kd

n(G) et Id+1(Gn) de Z[Gn] (auquel s’identifie P gr
n (G)) coïn-

cident.

Démonstration. Notons Jdn le sous-foncteur de P gr
n donné par G 7→ Id+1(Gn) ⊂

Z[Gn] ≃ P gr
n (G). Alors le foncteur P gr

n /Jdn appartient à Fd(gr). Cela résulte de
ce que, pour tout r ∈ N, le foncteur G 7→ (Ir/Ir+1)(Gn) (des groupes vers les
groupes abéliens) est polynomial de degré (au plus) r, puisque c’est un quotient
de G 7→ (Gnab)

⊗r (voir le début de la section 2). On a donc Kd
n ⊂ Jdn.

Montrons l’inclusion inverse. Pour tout foncteur F de F(gr) et tout objet G
de gr, on considère l’application naturelle

κd(F )(G) =
∑

I⊂{0,1,...,d}
(−1)Card(I)F (pI) : F (G

∗(d+1))→ F (G),

où pI ∈ gr(G∗(d+1), G) ≃ End(G)d+1 est le morphisme dont la i-ème compo-
sante est l’identité si i ∈ I et le morphisme trivial sinon. La transformation
naturelle κd(F ) est nulle lorsque F appartient à Fd(gr), car elle se factorise
par l’idempotent de F (G∗(d+1)) dont l’image est par définition l’effet croisé
crd+1(F )(G, . . . , G).
Par conséquent, comme qd(F ) appartient à Fd(gr), la composée

F (G∗(d+1))
κd(F )(G)−−−−−−→ F (G)։ qd(F )(G)

est nulle, de sorte que le noyau de la projection F ։ qd(F ) contient l’image de
κd(F ). En particulier, Kd

n contient l’image de κd(P gr
n ). Si (gij)1≤i≤n,0≤j≤d est

une famille d’éléments d’un groupe libre de rang fini G, on a

κd(P
gr
n )(G)

(
[(gi0 ∗ · · · ∗ gid)1≤i≤n]

)
=

∑

0≤j1<···<jr≤d
(−1)r[(gij1 . . . gijr )1≤i≤n]

qui est égal au produit

a0a1 . . . ad où aj := [(gij)1≤i≤n]− [1] ∈ I(Gn) ⊂ Z[Gn].

Comme Id+1(Gn) est engendré par ces produits, cela montre que Kd
n contient

Jdn, d’où la conclusion.

Remarque 3.8. Dans la démonstration précédente, le noyau de la projection
F ։ qd(F ) est en fait égal à l’image de κd(F ) — cf. [8], définition 3.16 et
proposition 3.17.
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Lemme 3.9. Pour tout d ∈ N ∪ {−1}, le foncteur Kd
1 appartient à Td.

Démonstration. On procède par récurrence sur d. Pour d ≤ 0, c’est clair.
Compte-tenu de la proposition 3.7, la proposition 2.4 peut se traduire par
l’existence de suites exactes

· · · → P̄⊗(n+1) ⊗Kd−1
1 → P̄⊗n ⊗Kd−1

1 → . . .

· · · → P̄⊗2 ⊗Kd−1
1 → P̄ ⊗Kd−1

1 → Kd
1 → 0

dans F(gr). Si Kd−1
1 appartient à Td−1, alors P̄⊗i⊗Kd−1

1 appartient à Td pour
tout entier i ≥ 1, donc Kd

1 aussi (en utilisant le lemme 3.1), d’où le lemme.

Proposition 3.10. Pour tous n ∈ N et d ∈ N∪{−1}, le foncteur Kd
n appartient

à Td.

Démonstration. On montre par récurrence sur n que Kd
n appartient à Td pour

tout d ∈ N ∪ {−1}. Pour n = 0 il n’y a rien à faire ; compte-tenu du lemme
précédent, on peut supposer n > 1 et l’assertion établie pour n− 1.
Dans la suite on conserve les notations de la fin de la section 2 et on fait
sans cesse usage de l’identification canonique P gr

n (G) = Z[Gn] et de la pro-
position 3.7. On rappelle que, par le dernier point de la proposition 2.6, on a
Ki
t .K

j
s ≃ Ki

t ⊗Kj
s .

Étant donné d ∈ N ∪ {−1}, on va montrer que, pour tout t ∈ {1, . . . , d+ 2}, le
foncteur ∑

i+j=d+1

0≤i<t

Ki−1
n−1.K

j−1
1 ⊂ P gr

n

appartient à Td. Cela établira la proposition : en prenant t = d+2 et en utilisant
la proposition 2.5, on en déduit bien que Kd

n appartient à Td.
Pour cela, on effectue une récurrence sur t. Lorsque t = 1, le foncteur considéré
vaut K−1n−1.K

d
1 . Par le lemme 3.9, Kd

1 appartient à Td. On en déduit, par la
proposition 3.2, que K−1n−1.K

d
1 ≃ K−1n−1⊗Kd

1 appartient à Td (Kd
1 étant un sous-

foncteur de P gr
1 , il est à valeurs Z-plates). Supposons que pour t− 1 ≤ d+1 le

foncteur considéré appartienne à Td. On a

∑

i+j=d+1

0≤i<t

Ki−1
n−1.K

j−1
1 = (

∑

i+j=d+1

0≤i<t−1

Ki−1
n−1.K

j−1
1 ) +Kt−2

n−1.K
d−t+1
1 .

Par hypothèse de récurrence, le premier terme à droite de cette égalité appar-
tient à Td. Le foncteur Kt−2

n−1.K
d−t+1
1 ≃ Kt−2

n−1⊗Kd−t+1
1 appartient également à

Td puisque Kd−t+1
1 appartient à Td−t+1 par le lemme 3.9 et Kt−2

n−1 appartient à
Tt−2 par hypothèse de récurrence et en appliquant la proposition 3.2. D’après
le lemme 3.1, pour montrer que

∑
i+j=d+1

0≤i<t

Ki−1
n−1.K

j−1
1 appartient à Td il est donc
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équivalent de montrer que

(
∑

i+j=d+1

0≤i<t−1

Ki−1
n−1.K

j−1
1 ) ∩Kt−2

n−1.K
d−t+1
1

appartient à Td. Par la dernière partie de la proposition 2.6 on obtient que

(
∑

i+j=d+1

0≤i<t−1

Ki−1
n−1.K

j−1
1 ) ∩Kt−2

n−1.K
d−t+1
1 = Kt−2

n−1.K
d−t+2
1 ≃ Kt−2

n−1 ⊗Kd−t+2
1 .

Or Kd−t+2
1 appartient à Td−t+2 d’après le lemme 3.9 et Kt−2

n−1 appartient à Tt−2
par hypothèse de récurrence. On déduit de la proposition 3.2 que Kt−2

n−1.K
d−t+2
1

appartient à Td+1 ⊂ Td. Cela termine la démonstration.

Démonstration du théorème 1. Pour tout n ∈ N, on dispose d’isomorphismes
d’adjonction

HomFd(C;k)(qd(P
gr
n )⊗ k, F ) ≃ HomFd(C)(qd(P

gr
n ), O∗F )

≃ HomF(C)(P
gr
n , O∗F ) ≃ F (Z∗n)

où O∗ désigne la postcomposition par le foncteur d’oubli O : k-Mod → Ab,
de sorte que les foncteurs qd(P gr

n ) ⊗ k forment un ensemble de générateurs
projectifs de Fd(gr; k).
Par conséquent, il suffit de montrer le théorème 1 pour F = qd(P

gr
n ) ⊗ k. La

suite exacte courte
0→ Kd

n → P gr
n → qd(P

gr
n )→ 0

de F(gr) induit une suite exacte courte

0→ Kd
n ⊗ k → P gr

n ⊗ k → qd(P
gr
n )⊗ k → 0

dans F(gr; k) car qd(P gr
n ) prend des valeurs sans Z-torsion. La suite exacte

longue en Ext associée à cette suite exacte courte et le fait que Ext∗F(gr;k)(P
gr
n ⊗

k,G) et Ext∗Fd(gr;k)(qd(P
gr
n ) ⊗ k,G) sont nuls en degré cohomologique stricte-

ment positif montrent que la conclusion du théorème 1 équivaut à la nullité
de Ext∗F(gr;k)(K

d
n ⊗ k,G) lorsque G appartient à Fd(gr; k). Cela découle des

propositions 3.10 et 3.5.

Remarque 3.11. On peut employer les mêmes méthodes pour démontrer un
résultat similaire au théorème 1 pour les groupes de torsion plutôt que les
groupes d’extensions.

Remarque 3.12.
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1. Si C est une petite catégorie additive, il est exceptionnel que l’inclu-
sion de la sous-catégorie de foncteurs polynomiaux Fd(C) dans F(C)
induise des isomorphismes entre tous les groupes d’extensions : dès le
degré cohomologique i = 3, le morphisme canonique ExtiFd(C)(F,G)→
ExtiF(C)(F,G) peut cesser d’être un isomorphisme (même si F et G
sont additifs et que l’on prend la colimite sur d ∈ N). Dans les bons cas
(avec une hypothèse de torsion bornée), ce morphisme est un isomor-
phisme lorsque d est assez grand par rapport à i et au degré de F ou
de G. Ces résultats sont établis par le deuxième auteur dans [13] dans
un cas particulier (F ou G additif et pas de torsion dans les groupes
abéliens de morphismes de C) et par le premier auteur dans [3] dans le
cas général. Comme dans le présent travail, la démonstration de ces ré-
sultats nécessite d’analyser le gradué associé à la filtration de l’anneau
d’un groupe (abélien, cette fois) par les puissances de l’idéal d’augmen-
tation ; il faut toutefois aussi utiliser d’autres ingrédients, issus de la
construction cubique de Mac Lane. Notons d’ailleurs que le cœur de
notre démonstration consiste à montrer que la restriction des foncteurs
Id+1 aux groupes libres appartient à Td ; l’argument central de [13]
(sa proposition 4.3) consiste à montrer une propriété analogue pour la
restriction des foncteurs Id+1 aux groupes abéliens libres, propriété qui
n’est valide qu’en degré cohomologique assez petit (et qui repose sur
un argument d’idéal quasi-régulier).

2. Notons mon (un squelette de) la catégorie des monoïdes libres de rang
fini. Le théorème 1 reste vrai si l’on remplace la catégorie source gr par
mon. Une méthode pour le voir consiste à reprendre les arguments du
présent article et les adapter à la catégorie F(mon). Une autre consiste
à utiliser le résultat dû à Hartl et aux deuxième et troisième auteurs
([8], Corollary 5.38) selon lequel le foncteur de complétion en groupe
α : mon→ gr induit pour chaque d ∈ N une équivalence de catégories
Fd(gr) ≃−→ Fd(mon). Dès lors, il suffit de voir que le foncteur α induit
des isomorphismes entre groupes d’extensions

Ext∗F(gr)(F,G)
≃−→ Ext∗F(mon)(F ◦ α,G ◦ α)

lorsque F et G sont polynomiaux. C’est en fait vrai si l’on suppose
seulement que G est polynomial. Il suffit de le voir lorsque F est un
foncteur projectif P gr

n ; on peut alors utiliser un argument classique
reposant sur le fait que le morphisme canonique d’un monoïde libre
vers sa complétion en groupe induit un isomorphisme en homologie.
Cet argument est donné en détail, dans un contexte abélien analogue,
dans [1], théorème 3.3.
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4 Applications

Notons a : gr → Ab le foncteur d’abélianisation. Ce foncteur joue un rôle
fondamental dans la catégorie F(gr), où les calculs d’algèbre homologique sont
grandement facilités par l’existence d’une résolution projective explicite de a.
Celle-ci est donnée par la résolution barre (dont on tronque le degré nul : on
utilise que l’homologie d’un groupe libre est naturellement isomorphe à son
abélianisation en degré 1 et nulle en degré > 1), qui prend la forme :

· · · → P gr
n+1 → P gr

n → · · · → P gr
2 → P gr

1 → a→ 0. (1)

Cette résolution projective apparaît pour la première fois dans [9] (§ 5.A) ; elle
est également utilisée de façon fondamentale dans [4].
En utilisant la résolution barre normalisée, on obtient une variante de la pré-
cédente résolution, également utile :

· · · → P̄⊗(n+1) → P̄⊗n → · · · → P̄⊗2 → P̄ → a→ 0. (2)

Proposition 4.1. Soient d ≥ n > 0 des entiers. Le foncteur a⊗n est de dimen-
sion homologique d− n dans la catégorie Fd(gr) : on a ExtiFd(gr)(a

⊗n,−) = 0

pour i > d− n, tandis que le foncteur Extd−nFd(gr)(a
⊗n,−) n’est pas nul.

Démonstration. En prenant le produit tensoriel de n copies de la résolution
projective de a dans F(gr) que procure la suite exacte (2) (dont tous les termes
prennent des valeurs Z-libres), on voit que a⊗n possède une résolution projective
qui, en degré i, est une somme directe de copies du foncteur P̄⊗(i+n). Comme
HomF(gr)(P̄

⊗t, F ) ≃ crt(F )(Z, . . . ,Z) est nul lorsque F est polynomial de degré
< t (cf. section 1), on en déduit ExtiF(gr)(a

⊗n, F ) = 0 pour F polynomial de
degré < n+ i.
Comme le foncteur ExtiFd(gr)(a

⊗n,−) est la restriction à Fd(gr) du foncteur
ExtiF(gr)(a

⊗n,−), d’après le théorème 1, on en déduit l’inégalité

hdimFd(gr)(a
⊗n) ≤ d− n.

L’inégalité inverse se déduit de la non-nullité de Extd−nF(gr)(a
⊗n, a⊗d), établie par

le troisième auteur dans [15].

Remarque 4.2. L’analogue « abélien » de la proposition 4.1 n’est pas exact :
notons ab la catégorie des groupes abéliens libres de rang fini. Dans la catégorie
F2(ab), le foncteur d’inclusion est de dimension homologique infinie et possède
une résolution projective 4-périodique, comme on le déduit de la section 6 de
l’article [13].
En revanche, on dispose quand même d’un résultat très similaire à la pro-
position 4.1 en remplaçant la catégorie source gr par une catégorie additive
appropriée. Soient p un nombre premier et F(p) la catégorie des foncteurs
des Fp-espaces vectoriels de dimension finie vers les Fp-espaces vectoriels. Le
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foncteur d’inclusion est de dimension homologique finie 2p[logp(d)] − 2 (où les
crochets désignent la partie entière) dans la sous-catégorie Fd(p) des foncteurs
polynomiaux de degré au plus d. Ce résultat est dû à Franjou et Smith ([7],
§ 4.2).

Les foncteurs qn(P̄ ) (appelés foncteurs de Passi dans [8]) jouent un rôle fonda-
mental dans la catégorie F(gr) (la démonstration du théorème 1 en constitue
une illustration) ; la proposition 4.1 permet facilement d’en calculer la dimen-
sion homologique.

Corollaire 4.3. Soient d ≥ n > 0 des entiers. Le foncteur qn(P̄ ) est de
dimension homologique d− n dans la catégorie Fd(gr).

Démonstration. On dispose de suites exactes courtes

0→ a⊗n → qn(P̄ )→ qn−1(P̄ )→ 0

(cf. la proposition 3.7 et le début de la section 2), d’où des inégalités

hdimFd(gr)(qn−1(P̄ )) ≤ max
(
1 + hdimFd(gr)(a

⊗n), hdimFd(gr)(qn(P̄ ))
)
.

On en déduit l’inégalité hdimFd(gr)(qn(P̄ )) ≤ d−n par récurrence descendante
sur n, en utilisant la proposition 4.1 et le caractère projectif de qd(P̄ ) dans la
catégorie Fd(gr).
L’inégalité inverse provient de ce que ExtiF(gr)(qn(P̄ ), a⊗(n+i)) est non nul (cf.
[15]) et du théorème 1.

Avant de donner la prochaine application du théorème 1, notons que l’action
de Sd sur crd(F )(Z, . . . ,Z) (voir la section 1) fournit, pour tout d ∈ N, un
foncteur crd : Fd(gr)→ Z[Sd]-Mod associant l’effet croisé crd(F )(Z, . . . ,Z) à
F . Ce foncteur possède un adjoint à gauche αd et un adjoint à droite βd. Le
foncteur αd possède une expression explicite simple : αd(M) = a⊗d ⊗

Z[Sd]
M ,

mais il n’est pas exact (pour d ≥ 2). En revanche, le foncteur βd ne semble pas
posséder d’expression simple. Néanmoins, on a :

Proposition 4.4. Pour tout d ∈ N, le foncteur βd : Z[Sd]-Mod→ Fd(gr) est
exact. Il induit des isomorphismes naturels

Ext∗F(gr)(βd(M), βd(N)) ≃ Ext∗Fd(gr)(βd(M), βd(N)) ≃ Ext∗Z[Sd](M,N).

Démonstration. Pour voir que βd est exact, il suffit de vérifier que son adjoint
à gauche crd envoie les générateurs projectifs qd(P gr

n ) de Fd(gr) (où n parcourt
N) sur des Z[Sd]-modules projectifs. Comme crd est exact et tue les foncteurs
de degré strictement inférieur à d, il prend la même valeur sur qd(P gr

n ) et le
noyau Qdn de la projection qd(P

gr
n ) ։ qd−1(P gr

n ). Or on a Qd1 ≃ a⊗d (car le
gradué de l’anneau d’un groupe libre est isomorphe à l’algèbre tensorielle de
son abélianisation — cf. section 2 ; on utilise également la proposition 3.7).
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En général, en utilisant le premier point de la proposition 2.6 (et encore la
proposition 3.7), on obtient :

Qdn ≃
⊕

i1+···+in=d
a⊗i1 ⊗ · · · ⊗ a⊗in ≃

⊕

i1+···+in=d
a⊗d.

Comme crd envoie le foncteur a⊗d sur le Z[Sd]-module Z[Sd], cela démontre
l’exactitude de βd.
L’adjonction entre les foncteurs exacts βd et crd se propage aux groupes d’ex-
tensions :

Ext∗Fd(gr)(F, βd(N)) ≃ Ext∗Z[Sd](crd(F ), N).

Comme la coünité crdβd → Id est un isomorphisme (cf. [4], § 2, par exemple),
en utilisant le théorème 1, on en déduit la dernière assertion de l’énoncé.

Remarque 4.5.

1. En reprenant la démonstration précédente, il est facile de donner une
expression explicite de βd(M)(G) fonctorielle en M , mais pas en G ∈
Obgr.

2. La proposition 4.4 contraste encore avec la situation de F(ab). On y
dispose de même d’un foncteur

Fd(ab)→ Z[Sd]-Mod F 7→ crd(F )(Z, . . . ,Z)

qui possède des adjoints de chaque côté. L’adjoint à gauche est très
similaire au foncteur αd évoqué avant la proposition (il est donné par
M 7→ T d ⊗

Z[Sd]
M ≃ (T d ⊗M)Sd , où T d désigne la d-ème puissance

tensorielle). L’adjoint à droite est analogue à l’adjoint à gauche (il est
donné par M 7→ (T d ⊗M)Sd) ; c’est donc encore un foncteur explicite
mais non exact si d > 1. La référence originelle pour cette question
classique est [12].

La proposition 4.4 montre que les catégories Fd(gr) (resp. Fd(gr;Fp), où p
est un nombre premier) sont de dimension globale infinie dès que d ≥ 2 (resp.
d ≥ p), comme l’algèbre de groupe Z[Sd] (resp. Fp[Sd]).
Notre dernier résultat montre qu’en revanche, les catégories Fd(gr;Q) (ou plus
généralement Fd(gr; k), où k est un sous-anneau de Q où assez d’entiers sont
inversés) sont de dimension globale finie.

Proposition 4.6. Soient d > 0 un entier et k un sous-anneau de Q dans lequel
d! est inversible. La catégorie Fd(gr; k) est de dimension globale d − 1 : on a
ExtiFd(gr;k) = 0 pour i ≥ d, tandis que le foncteur Extd−1Fd(gr;k) n’est pas nul.

Démonstration. On montre d’abord l’inégalité gldimFd(gr; k) ≤ d − 1. Par le
théorème 1, cela équivaut à dire que la restriction à Fd(gr; k)op×Fd(gr; k) du

Documenta Mathematica 21 (2016) 205–222



Cohomologie des foncteurs polynomiaux . . . 221

foncteur ExtiF(gr;k) est nulle pour i ≥ d. Pour cela, on va montrer par récurrence
sur d ∈ N∗ l’assertion suivante :

∀i ≥ n ≥ d ∀F ∈ ObFd(gr; k) ∀G ∈ ObFn(gr; k) Exti(F,G) = 0

(on omet dans la suite l’indice F(gr; k) pour les groupes d’extensions). On
suppose donc le résultat établi pour les entiers strictement inférieurs à d.
Les résultats de structure de la catégorie Fd(gr; k) donnés dans [4] (voir la
section 2 et la démonstration de la proposition 5.3 de cet article) impliquent
que, pour tout foncteur F de Fd(gr; k), il existe une représentation M du
groupe symétrique Sd et un morphisme u : F → a⊗d ⊗

k[Sd]
M dont le noyau

N et le conoyau C appartiennent à Fd−1(gr; k). Pour d = 1, on peut même
supposer que u est un isomorphisme, puisque la partie constante des foncteurs
se scinde. L’hypothèse de récurrence montre que Exti(N,G) et Exti(C,G) sont
nuls pour G dans Fn(gr; k) et i ≥ n ≥ d − 1. Par ailleurs, comme l’anneau
k[Sd] est semi-simple à cause de l’hypothèse faite sur k, le foncteur T :=
a⊗d ⊗

k[Sd]
M est somme directe de facteurs directs de a⊗d. La proposition 4.1

montre donc que Exti(T,G) = 0 pour G dans Fn(gr; k) et i > n− d ≥ 0. On
en déduit Exti(F,G) = 0 pour G dans Fn(gr; k) et i ≥ n ≥ d, ce qui termine
la démonstration de l’inégalité gldimFd(gr; k) ≤ d− 1.
L’inégalité gldimFd(gr; k) ≥ d − 1 se déduit de ce que le groupe abé-
lien Extd−1F(gr)(a, a

⊗d) est non seulement non nul, mais aussi sans torsion (cf.
[15]).

Remarque 4.7. Contrairement à ce qui advient pour la plupart des autres résul-
tats du présent article, dont les analogues sur ab sont plus difficiles à montrer
que sur gr (voir notamment la remarque 4.2), quand ils ne sont pas faux, la si-
tuation est plus simple pour Fd(ab;Q), qui est une catégorie semi-simple pour
tout d ∈ N (et ce résultat classique est aisé à prouver).
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Abstract. We extend the theory of Kisin modules and crystalline
representations to allow more general coefficient fields and lifts of
Frobenius. In particular, for a finite and totally ramified extension
F/Qp, and an arbitrary finite extension K/F , we construct a gen-
eral class of infinite and totally wildly ramified extensions K∞/K so
that the functor V 7→ V |GK∞

is fully-faithfull on the category of F -
crystalline representations V . We also establish a new classification
of F -Barsotti-Tate groups via Kisin modules of height 1 which allows
more general lifts of Frobenius.
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1. Introduction

Let k be a perfect field of characteristic p with ring of Witt vectorsW :=W (k),
writeK0 :=W [1/p] and letK/K0 be a finite and totally ramified extension. We
fix an algebraic closure K of K and set GK := Gal(K/K). The theory of Kisin
modules and its variants, pioneered by Breuil in [Bre98] and later developed by
Kisin [Kis06], provides a powerful set of tools for understanding Galois-stable
Zp-lattices in Qp-valued semistable GK-representations, and has been a key in-
gredient in many recent advances (e.g. [Kis08], [Kis09a], [Kis09b]). Throughout
this theory, the non-Galois “Kummer” extension K∞/K—obtained by adjoin-
ing to K a compatible system of choices {πn}n≥1 of pn-th roots of a uniformizer
π0 in K—plays central role. The theory of Kisin modules closely parallels
Berger’s work [Ber02], in which the cyclotomic extension of K replaces K∞,
and can be thought of as a “K∞-analogue” of the theory of Wach modules
developed by Wach [Wac96], Colmez [Col99] and Berger [Ber04]. Along these

1The second author is partially supported by a Sloan fellowship and NSF grant DMS-
1406926.
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lines, Kisin and Ren [KR09] generalized the theory of Wach modules to al-
low the cyclotomic extension of K to be replaced by an arbitrary Lubin–Tate
extension.

This paper grew out of a desire to better understand the role of K∞ in the
theories of Breuil and Kisin and related work, and is an attempt to realize
Kisin modules and the modules of Wach and Kisin–Ren as “specializations” of
a more general theory. To describe our main results, we first fix some notation.

Let F ⊆ K be a subfield which is finite over Qp with residue field kF of
cardinality q = ps. Choose a power series

f(u) := a1u+ a2u
2 + · · · ∈ OF [[u]]

with f(u) ≡ uq mod mF and a uniformizer π of K with monic minimal poly-
nomial E := E(u) over F0 := K0 · F . We set π0 := π and we choose
π := {πn}n≥1 with πn ∈ K satisfying f(πn) = πn−1 for n ≥ 1. The ex-
tension Kπ :=

⋃
n≥0K(πn) (called a Frobenius iterate extension in [CD15]) is

an infinite and totally wildly ramified extension of K which need not be Galois.
We set Gπ := Gal(K/Kπ).

Define S :=W [[u]] and put SF = OF ⊗W (kF ) S = OF0 [[u]]. We equip SF with
the (unique continuous) Frobenius endomorphism ϕ which acts on W (k) by
the canonical q-power Witt-vector Frobenius, acts as the identity on OF , and
sends u to f(u). A Kisin module of E-height r is a finite free SF -module M
endowed with ϕ-semilinear endomorphism ϕM : M → M whose linearization
1⊗ ϕ : ϕ∗M→M has cokernel killed by Er.

When F = Qp and f(u) = up (which we refer to as the classical situation in
the following), Kisin’s theory [Kis06] attaches to any GK∞-stable Zp-lattice T
in a semistable GK -representation V with Hodge–Tate weights in {0, . . . , r}
a unique Kisin module M of height r satisfying T ≃ TS(M) (see §3.3 for
the definition of TS). Using this association, Kisin proves that the restriction
functor V → V |GK∞

is fully faithful when restricted to the category of crys-
talline representations, and that the category of Barsotti–Tate groups over OK
is anti-equivalent to the category of Kisin modules of height 1.

In this paper, we extend much of the framework of [Kis06] to allow general
F and f(u), though for simplicity we will restrict ourselves to the case that
q = p, or equivalently that F/Qp is totally ramified, and that f(u) is a monic
degree-p polynomial. When we extend our coefficients from Qp to F , we must
further restrict ourselves to studying F -crystalline representations, which are
defined following ([KR09]): Let V be a finite dimensional F -vector space with
continuous F -linear action of GK . If V is crystalline (when viewed as a Qp-
representation) then DdR(V ) is naturally an F ⊗Qp K-module and one has
a decomposition DdR(V ) =

∏
mDdR(V )m, with m running over the maximal

ideals of F ⊗Qp K. We say that V is F -crystalline if the induced filtration on
DdR(V )m is trivial unless m corresponds to the canonical inclusion F ⊂ K.
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Theorem 1.0.1. Let V be an F -crystalline representation with Hodge-Tate
weights in {0, . . . , r} and T ⊂ V a Gπ-stable OF -lattice. Then there exists a
Kisin module M of E-height r satisfying TS(M) ≃ T .
Writing vF for the normalized valuation of K with vF (F ) = Z, apart from the
classical situation f(u) = up of Kisin, the above theorem is also known when
vF (a1) = 1, which corresponds to the Lubin–Tate cases covered by the work
of [KR09]. An important point of our formalism is that M may in general not
be unique for a fixed lattice T : our general construction produces as special
cases the ϕ-modules overSF which occur in the theory of Wach modules and its
generalizations [KR09], so without the additional action of a Lubin–Tate group
Γ, one indeed does not expect these Kisin modules to be uniquely determined;
(cf. Example 3.3.7). This is of course quite different from the classical situation.
Nonetheless, we prove the following version of Kisin’s “full-faithfulness” result.

Writing RepF -cris,r
F (G) for the category of F -crystalline representations with

Hodge-Tate weights in {0, . . . , r} and RepF (Gπ) for the category of F -linear
representations of Gπ , we prove:

Theorem 1.0.2. Assume that ϕn(f(u)/u) is not a power of E for all n ≥ 0
and that vF (a1) > r, where f(u) = a1u + a2u

2 + · · · . Then the restriction

functor RepF -cris,r
F (G) RepF (Gπ) induced by V 7→ V |Gπ is fully faithfull.

Although Beilinson and Tavares Ribeiro [BTR13] have given an almost elemen-
tary proof of Theorem 1.0.2 in the classical situation F = Qp and f(u) = up,
their argument relies crucially on an explicit description of the Galois closure
of K∞/K. For more general F and f , we have no idea what the Galois closure
of Kπ/K looks like, and describing it in any explicit way seems to be rather
difficult in general.

It is natural to ask when two different choices f and f ′ of p-power Frobenius lifts
and corresponding compatible sequences π = {πn}n and π′ = {π′n} in K yield
the same subfield Kπ = Kπ′ of K. We prove that this is rare in the following
precise sense: ifKπ = Kπ′ , then the lowest degree terms of f and f ′ coincide, up
to multiplication by a unit in OF ; see Proposition 3.1.3. It follows that there are
infinitely many distinct Kπ for which Theorem 1.0.2 applies. We also remark
that any Frobenius–iterate extension Kπ as above is an infinite and totally
wildly ramified strictly APF extension in the sense of Wintenberger [Win83].
We therefore think of Theorem 1.0.2 as confirmation of the philosophy that
“crystalline p-adic representations are the p-adic analogue of unramified ℓ-adic
representations2,” since Theorem 1.0.2 is obvious if “crystalline” is replaced
with “unramified” throughout (or equivalently in the special case r = 0). More
generally, given F and r ≥ 0, it is natural to ask for a characterization of
all infinite and totally wildly ramified strictly APF extensions L/K for which

2This philosophy is perhaps best evinced by the p-adic analogue of the good reduction
theorem of Néron–Ogg–Shafarevich, which asserts that an abelian variety A over a p-adic field
K has good reduction if and only if its p-adic Tate module VpA is a crystalline representation

of GK [CI99, Theorem 1].
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restriction of F -crystalline representations of GK with Hodge–Tate weights in
{0, . . . , r} to GL is fully–faithful. We believe that there should be a deep and
rather general phenomenon which deserves further study.

While the condition that vF (a1) > r is really essential in Theorem 1.0.2 (see
Example 4.5.9), we suspect the conclusion is still valid if we remove the as-
sumption that ϕn(f(u)/u) is not a power of E for all n ≥ 0. However, we
have only successfully removed this assumption when r = 1, thus generalizing
Kisin’s classification of Barsotti–Tate groups:

Theorem 1.0.3. Assume vF (a1) > 1. Then the category of Kisin modules of
height 1 is equivalent to the category of F -Barsotti-Tate groups over OK .

Here, an F -Barsotti-Tate group is a Bartotti–Tate group H over OK with the
property that the p-adic Tate module Vp(H) = Qp⊗ZpTp(H) is an F -crystalline
representation. We note that when F = Qp, Theorem 1.0.3 is proved (by
different methods) in [CL14].

Besides providing a natural generalization of Kisin’s work and its variants as
well as a deeper understanding of some of the finer properties of crystalline p-
adic Galois representations, we expect that our theory will have applications to
the study of potentially Barsotti–Tate representations. More precisely, suppose
that T is a finite free OF -linear representation of GK with the property that
T |GK′ is Barsotti-Tate for some finite extension K ′/K. If K ′/K is not tamely
ramified then it is well-known that it is in general difficult to construct “descent
data” for the Kisin module M associated to T |GK′ in order to study T (see the
involved computations in [BCDT01]). However, suppose that we can select
f(u) and π0 such that K ′ ⊆ K(πn) for some n. Then, as in the theory of
Kisin–Ren [KR09] (see also [BB10]), we expect the appropriate descent data
on M to be much easier to construct in this “adapted” situation, and we hope
this idea can be used to study the reduction of T .

Now let us sketch the ideas involved in proving the above theorems and outline
the organization of this paper. For any Zp-algebra A, we set AF := A⊗Zp OF .
In order to connect SF to Galois representations, we must first embed SF as a
Frobenius-stable subring of W (R)F , which we do in §2.1 following [CD15]. In
the following subsection, we collect some useful properties of this embedding
and study some “big rings” inside B+

cris,F . Contrary to the classical situation,
the Galois closure of Kπ appears in general to be rather mysterious. Nonethe-
less, in §2.3 we are able to establish some basic results on the GK-conjugates
of u ∈ SF ⊆ W (R)F which are just barely sufficient for the development of
our theory. Following Fontaine [Fon90], and making use of the main result
of [CD15], in §3 we establish a classification of Gπ-representations via étale
ϕ-modules and Kisin modules. In the end of §3, we apply these considera-
tions to prove that the functor TS is fully faithful under the assumption that
ϕn(f(u)/u) is not a power of E for any n.

The technical heart of this paper is §4. In §4.1, we define F -crystalline represen-
tations and attach to each F -crystalline representation V a filtered ϕ-module
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Dcris,F (V ) (we warn the reader that the filtration of Dcris,F (V ) is slightly dif-
ferent from that of Dcris(V )). Following [Kis06], in §4.2 we then associate to
D = Dcris(V ) a ϕ-module M(D) over O (here we use O for the analogue of
O—the ring of rigid-analytic functions on the open unit disk—in Kisin’s work).
A shortcoming in our situation is that we do not in general know how to define
a reasonable differential operator N∇, even at the level of the ring O. Conse-
quently, ourM(D) only has a Frobenius structure, in contrast to the classical
(and Lubin–Tate) situation in which M(D) is also equipped with a natural
N∇-structure. Without such an N∇-structure, there is no way to follow Kisin’s
(or Berger’s) original strategy to prove that the scalar extension of M(D) to
the Robba ring is pure of slope zero, which is key to showing that there exists
a Kisin module M such that O ⊗SF M ≃ M(D). We bypass this difficulty
by appealing to the fact that M(D) is known to be pure of slope zero in the
classical situation of Kisin as follows: letting a superscript of “c” denote the
data in the classical situation and using the fact that bothM(D) andMc(D)

come from the same D, we prove that B̃α ⊗OM(D) ≃ B̃α ⊗OcMc(D) as ϕ-

modules for a certain period ring B̃α that contains the ring B̃+
rig,F . It turns out

that this isomorphism can be descended to B̃+
rig,F . Since Kedlaya’s theory of

the slope filtration is unaffected by base change from the Robba ring to B̃+
rig,F ,

it follows that M(D) is of pure slope 0 as this is the case for Mc(D) thanks
to [Kis06]. With this crucial fact in established, we are then able to prove
Theorem 1.0.1 along the same lines as [Kis06]. If our modules came equipped
with a natural N∇-structure, the full faithfulness of the functor V 7→ V |Gπ
would follow easily from the full faithfulness of TS. But without such a struc-
ture, we must instead rely heavily on the existence of a unique ϕ-equivariant
section ξ : D(M)→ Oα ⊗ ϕ∗M to the projection ϕ∗M։ ϕ∗M/uϕ∗M, where
D(M) = (ϕ∗M/uϕ∗M)[1/p]. The hypothesis vF (a1) > r of Theorem 1.0.2
guarantees the existence and uniqueness of such a section ξ. With these prepa-
rations, we finally prove Theorem 1.0.2 in §4.5.
In §5, we establish Theorem 1.0.3: the equivalence between the category of
Kisin modules of height 1 and the category of F -Barsotti-Tate groups over OK .
Here we adapt the ideas of [Liu13b] to prove that the functor M 7→ TS(M) is
an equivalence between the category of Kisin module of height 1 and the cate-
gory of GK-stable OF -lattices in F -crystalline representations with Hodge-Tate
weights in {0, 1}. The key difficulty is to extend the Gπ-action on TS(M) to a
GK-action which gives TS(M)[1/p] the structure of an F -crystalline represen-
tation. In the classical situation, this is done using the (unique) monodromy
operator N on S ⊗S ϕ∗M (see §2.2 in [Liu13b]). Here again, we are able to
sidestep the existence of a monodromy operator to construct a (unique) GK-
action on W (R)F ⊗SF M which is compatible with the additional structures
(see Lemma 5.1.1), and this is enough for us to extend the given Gπ-action to
a GK -action on TS(M). As this paper establishes analogues of many of the
results of [Kis06] in our more general context, it is natural ask to what extent
the entire theory of [Kis06] can be developed in this setting. To that end, we
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list several interesting (some quite promising) questions for this program in the
last section.

Acknowledgements: It is pleasure to thank Laurent Berger, Kiran Kedlaya
and Ruochuan Liu for very helpful conversations and correspondence.

Notation. Throughout this paper, we reserve ϕ for the Frobenius operator,
adding appropriate subscripts as needed for clarity: for example, ϕM denotes
the Frobenius map onM. We will always drop these subscripts when there is no
danger of confusion. Let S be a ring endowed with a Frobenius lift ϕS and M
an S-module. We always write ϕ∗M := S⊗ϕS,SM . Note that if ϕM :M →M
is a ϕS-semilinear endomorphism, then 1⊗ϕM : ϕ∗M →M is an S-linear map.
We reserve f(u) = up + ap−1u + · · · + a1u ≡ up mod mF for the polynomial
over OF giving our Frobenius lift ϕ(u) := f(u) as in the introduction. For
any discretely valued subfield E ⊆ K, we write vE for the normalized p-adic
valuation ofK with vE(E) = Z, and for convenience will simply write v := vQp .
If A is a Zp-module, we set AF := A ⊗Zp OF and A[1/p] := A ⊗Zp Qp. For

simplicity, we put G = GK := Gal(K/K) and Gπ := Gal(K/Kπ). We write
Md(S) for the ring of d×d-matrices over S and Id for the d×d-identity matrix.

2. Period rings

In this section, we introduce and study the various “period rings” which will
play a central role in the development of our theory.

As in the introduction, we fix a perfect field k of characteristic p with ring of
Witt vectors W := W (k), as well as a finite and totally ramified extension K
of K0 :=W [1/p]. Let F be a subfield of K, which is finite and totally ramified
over Qp, and put F0 := K0F ⊂ K. Choose uniformizers π of OK and ̟ of OF ,
and let E := E(u) ∈ OF0 [u] be the monic minimal polynomial of π over F0. We
set e := [K : K0], and put e0 := [K : F0] and eF := [F : Qp]. Fix a polynomial
f(u) = up + ap−1up−1 + · · · + a1u ∈ OF [u] satisfying f(u) ≡ up mod ̟, and

recursively choose πn ∈ K with f(πn) = πn−1 for n ≥ 1 where π0 := π. Set
Kπ :=

⋃
n≥0K(πn) and Gπ := Gal(K/Kπ), and recall that for convenience we

write G = GK := Gal(K/K).

Recall that S = W [[u]], and that we equip the scalar extension SF with the
semilinear Frobenius endomorphism ϕ : SF → SF which acts on W as the
unique lift of the p-power Frobenius map on k, acts trivially on OF , and sends u
to f(u). The first step in our classification of F -crystalline GK-representations
by Kisin modules over SF is to realize this ring as a Frobenius stable subring
of W (R)F , which we do in the following subsection.

2.1. SF as a subring of W (R)F . As usual, we put R := lim←−
x→xp

OK/(p),
equipped with its natural coordinate-wise action of G. It is well-known that
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the natural reduction map

lim←−
x→xp

OK/(p)→ lim←−
x→xp

OK/(̟)

is an isomorphism, so {πn mod ̟}n≥0 defines an element π ∈ R. Furthermore,

writing CK for the completion of K, reduction modulo p yields a multiplicative
bijection lim←−x→xp OCK ≃ R, and for any x ∈ R we write (x(n))n≥0 for the

p-power compatible sequence in lim←−x→xp OCK corresponding to x under this

identification. We write [x] ∈ W (R) for the Techmüller lift of x ∈ R, and
denote by θ : W (R) → OCK the unique lift of the projection R ։ OCK/(p)
which sends

∑
n p

n[xn] to
∑

n p
nx(0). By definition, B+

dR is the Ker(θ)-adic

completion of W (R)[1/p], so θ naturally extends to B+
dR. For any subring

B ⊂ B+
dR, we define FiliB := (Kerθ)i ∩B.

There is a canonical section K →֒ B+
dR, so we may view F as a subring of

B+
dR, and in this way we obtain embeddings W (R)F →֒ B+

cris,F →֒ B+
dR. Define

θF := θ|W (R)F . One checks that W (R)F is ̟-adically complete and that every
element ofW (R)F has the form

∑
n≥0[an]̟

n with an ∈ R. The map θF carries
∑

n≥0[an]̟
n to

∑
n≥0 a

(0)
n ̟n ∈ OCK (see Def. 3.8 and Prop. 3.9 of [CD15]).

Lemma 2.1.1. There is a unique set-theoretic section {·}f : R → W (R)F to
the reduction modulo ̟ map which satisfies ϕ({x}f ) = f({x}f) for all x ∈ R.

Proof. This is3 [Col02, Lemme 9.3]. Using the fact that f(u) ≡ up mod ̟, one
checks that the endomorphism f ◦ ϕ−1 of W (R)F is a ̟-adic contraction, so
that for any lift x̃ ∈W (R) of x ∈ R, the limit

{x}f := lim
n→∞

(f ◦ ϕ−1)(n)(x̃)

exists in W (R)F and is the unique fixed point of f ◦ ϕ−1, which uniquely
characterizes it independent of our choice of x̃. �

From Lemma 2.1.1 we obtain a unique continuous embedding ι : SF →֒W (R)F
of OF -algebras with ι(u) := {π}f . Via ι, we henceforth identify SF with a ϕ-
stable OF -subalgebra of W (R)F on which we have ϕ(u) = f(u).

Example 2.1.2 (Cyclotomic case). Let {ζpn}n≥0 be a compatible system of
primitive pn-th roots of unity. LetK = Qp(ζp) with π = ζp−1 and take F = Qp
with f(u) = (u+1)p− 1. Choosing πn = ζpn+1 − 1, we obtain Kπ := Qp(µp∞).
It is obvious that ǫ1 := (ζpn)n≥1 ∈ R. In this case, ι(u) = [ǫ1]− 1 ∈ W (R).

Recall that R has the structure of a valuation ring via vR(x) := v(x(0)), where
v is the normalized p-adic valuation of CK with v(Zp) = Z.

Lemma 2.1.3. We have θF (u) = π and E generates Ker(θF ) = Fil1W (R)F .

3In the version of Colmez’s article available from his website, it is Lemme 8.3.
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Proof. The first assertion is [Col02, Lemme 9.3]. To compute θF ({π}f), we
first choose [π] as our lift of π to W (R), and compute

θF ({π}f ) = θF

(
lim
n→∞

f (n)ϕ(−n)([π])
)
= lim

n→∞
f (n)θF ([π

p−n ]) = lim
n→∞

f (n)(π(n))

But π(n) ≡ πn mod ̟, so

f (n)(π(n)) ≡ f (n)(πn) ≡ π mod ̟n+1,

which gives the claim. Now certainly θF (E(u)) = E(π) = 0, so E = E(u) lies

in Fil1W (R)F . Since E ≡ πe0 mod ̟, we conclude that

vR(E mod ̟) = e0vR(π) = e0v(π) = v(̟),

whence E generates Ker(θF ) = Fil1W (R)F thanks to [Col02, Prop. 8.3]. �

Now let us recall the construction of B+
max and B̃

+
rig from Berger’s paper [Ber02].

Let ξ be a generator of Fil1W (R). By definition,

B+
max :=




∑

n≥0
an
ξn

pn
∈ B+

dR

∣∣∣ an ∈ W (R)[1/p] and lim
n→∞

an = 0



 .

and B̃+
rig :=

⋂
n≥1 ϕ

n(B+
max).

Write u := [π]. The discussion before Proposition 8.14 in [Col02] shows:

Lemma 2.1.4.

B+
max,F =




∑

n≥0
an
En

̟n
∈ B+

dR

∣∣∣ an ∈W (R)F [1/p] and lim
n→∞

an = 0





=




∑

n≥0
an

ue0n

̟n
∈ B+

dR

∣∣∣ an ∈ W (R)F [1/p] and lim
n→∞

an = 0



 .

We can now prove the following result, which will be important in §4.4:

Lemma 2.1.5. Let x ∈ B+
max,F , and suppose that xEr = ϕm(y) holds for some

y ∈ B+
max,F . Then x = ϕm(y′) with y′ ∈ B+

max,F .

Proof. By Lemma 2.1.4, we may write y =
∑

n bn
ue0n

̟n with bn ∈ W (R)F [1/p]
converging to 0. Write E = E(u) = ue0 +̟z with z ∈W (R)F . We then have

ϕm(y) =

∞∑

n=0

ϕm(bn)
ue0p

mn

̟n
=

∞∑

n=0

ϕm(bn)
(E −̟z)pmn

̟n
=

∞∑

n=0

cn
Ep

mn

̟n

with cn ∈ W (R)F [1/p] converging to 0. By Lemma 2.1.3, E is a generator of

Fil1W (R)F , so definining s := 1+max{n | pmn < r}, it follows that
s−1∑
n=0

cn
Ep

mn

̟n
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is divisible by Er inW (R)F [1/p] so we may write
s−1∑
n=0

cn
Ep

mn

̟n = Erx0 for some

x0 ∈W (R)[1/p]. Without loss of generality, replacing x by x− x0, gives

x =

∞∑

n=s

cn
Ep

mn−r

̟n
=

∞∑

n=s

dn−s
Ep

m(n−s)

̟n−s =

∞∑

n=0

dn
Ep

mn

̟n

with dn−s = cn
Ep

ms−r

̟s . Using again the equality E = ue0 + ̟z, we then

obtain x =
∞∑
n=0

en
ue0p

mn

̟n with en ∈W (R)F [1/p] converging to 0. We now have

x = ϕm(y′) for y′ :=
∞∑
n=0

fn
ue0n

̟n with fn = ϕ−m(en). As fn ∈ W (R)F [1/p]

converges to 0, we conclude that y′ ∈ B+
max,F , as desired. �

2.2. Some subrings of B+
cris,F . For a subinterval I ⊂ [0, 1), we write OI

for the subring of F0((u)) consisting of those Laurent series which converge
for those x ∈ CK with |x| ∈ I, and we will simply write O = O[0,1). Let

B̃α := W (R)F [[
Ep

̟ ]][1/p] ⊂ B+
cris,F . We claim that FilnB̃α = EnB̃α. To see

this, set c = ⌈np ⌉ and n = pc− s with 0 ≤ s < p. For any x ∈ FilnB̃α, we write

x =
∞∑
i=0

ai
Epi

̟i with ai ∈ W (R)F [1/p] converging to 0 in W (R)F [1/p]. Since

x ∈ FilnB+
dR,

c−1∑
i=0

ai
Epi

̟i = Enx0 with x0 ∈ W (R)F [1/p]. It suffices to show

that x− x0 = Eny with y ∈ B̃α. Now

y =

∞∑

i≥c
ai
Epi−n

̟i
=

∞∑

i≥c
aiE

s̟−c
(
Ep(i−c)

̟i−c

)
∈ B+

dR.

As ai converges to 0 in W (R)F [1/p], so does aiE
s̟−c, whence y lies in B̃α.

Lemma 2.2.1. There are canonical inclusions of rings O ⊂ B̃+
rig,F ⊂ B̃α.

Proof. We first show that O ⊂ B̃+
rig,F . For any h(u) =

∞∑
n=0

anu
n ∈ O, we have

to show that hm(u) =
∞∑
n=0

ϕ−m(anu
n) is in B+

max,F for all m ≥ 0. Writing

u = u +̟z with u = [π] and z ∈ W (R)F , we have ϕ−m(u) = up
−m

+ ̟z(m)

with z(m) = ϕ−m(z) ∈ W (R)F . Setting a
(m)
n := ϕ−m(an) ∈ F0, we then have

hm(u) = h(u
1
pm +̟z(m)) =

∞∑

k=0

h(k)(u
1
pm )

k!
(̟z(m))k,
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for h(k) the k-th derivative of h̃(X) :=
∞∑
n=0

a
(m)
n Xn. Therefore,

hm(u) =
∞∑

n=0

( ∞∑

k=0

(
k + n

k

)
a
(m)
n+k(̟z

(m))k

)
u
n
pm .

Since h(u) ∈ O[0,1), we have lim
n→∞

|a(m)
n |rn = 0 for any r < 1. It follows that

the inner sum
∞∑
k=0

(
k+n
k

)
a
(m)
n+k(̟z

(m))k converges to bn ∈ W (R)F [1/p]. Since

lim
n→∞

|a(m)
n |rn = 0 for r = |̟ 1

e0p
m | ≥ |̟|, for any ǫ > 0, there exists N so that

|a(m)
n+k̟

n
e0p

m̟k| < ǫ for any n > N and k ≥ 0. This implies that bn̟
n

e0p
m

converges to 0 in W (R)F . We may therefore write

hm(u) =

∞∑

n=0

bnu
n
pm =

∞∑

n=0

bn̟
n

e0p
m
(ue0)

n
e0p

m

̟
n

e0p
m

,

and Lemma 2.1.4 implies that hm(u) ∈ B+
max,F , so O ⊂ B̃+

rig,F as desired.

To show that B̃+
rig,F ⊂ B̃α, we first observe that

(2.2.1) B̃α =W (R)F [[
ue0p

̟
]][1/p] =W (R)F [[

ue0p

̟
]][1/p].

For any x ∈ B̃+
rig,F , we may write x = ϕ(y) with y =

∞∑
n=0

an
ue0n

̟n ∈ B
+
max,F , and

we see that x =
∞∑
n=0

ϕ(an)
ue0pn

̟n indeed lies in B̃α by (2.2.1). �

Finally let us record the following technical lemma: recall that our Frobenius
lift onSF is determined by ϕ(u) := f(u), with f(u) = up+ap−1up−1+· · ·+a1u.
We define Oα := SF [[

ue0p

̟ ]][1/p] ⊂ B̃α.

Lemma 2.2.2. Suppose that ̟r+1|a1 in OF . Then there exists h
(n)
i (u) ∈ OF [u]

such that

f (n)(u) =

n∑

i=0

h
(n)
n−i(u)u

2n−i

̟(r+1)i.

In particular, ϕn(u)/̟rn converges to 0 in Oα.

Proof. We proceed by induction on m = n. When m = 1, we may write

(2.2.2) f(u) = up+ap−1u
p1 + · · ·+a1u = u2h(u)+b0̟

r+1u with b0 ∈ OF .
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Supposing that the assertion holds for m = n and using (2.2.2) we compute

f (n+1)(u) =
n∑

i=0

h
(n)
n−i(f(u))f(u)

2n−i

̟(r+1)i

=

n∑

i=0

h
(n)
n−i(f(u))(u

2h(u) + b0̟
r+1u)2

n−i

̟(r+1)i

=

n∑

i=0

h
(n)
n−i(f(u))




2n−i∑

k=0

(
2n−i

k

)
(u2h(u))2

n−i−k(b0̟
r+1u)k


̟(r+1)i

=
n∑

i=0

2n−i∑

k=0

(
h
(n)
n−i(f(u))

(
2n−i

k

)
h(u)2

n−i−kbk0

)
u2

n+1−i−k̟(r+1)(i+k)

To complete the inductive step, it therefore suffices to show that whenever
i + k ≤ n + 1, we have 2n+1−i − k ≥ 2n+1−i−k. Equivalently, and writing
j := n+ 1− i− k, we must show that 2j+k − k ≥ 2j for all j ≥ 0, which holds
as 2k ≥ k + 1 for all k ≥ 0. �

2.3. The action of G on u. In this subsection, we study the action of G on
the element u ∈W (R)F corresponding to our choice of f -compatible sequence
{πn}n inK and our Frobenius lift determined by f . From the very construction
of the embedding SF →֒ W (R)F in Lemma 2.1.1, the action of Gπ on u is
trivial. However, for arbitrary g ∈ G \ Gπ, in contrast to the classical case,
we know almost nothing about the shape of g(u); cf. the discussion in §3.1.
Fortunately, we are nonetheless able to prove the following facts, which are
sufficient for our applications.

Define

I
[1]
F := {x ∈ W (R)F | ϕn(x) ∈ Fil1W (R)F , ∀n ≥ 0}.

Recall that eF := [F : Qp], and for x ∈ W (R)F write x̄ := x mod ̟ ∈ R.
Thanks to Example 3.3.2, there exists tF ∈ W (R)F satisfying ϕ(tF ) = EtF .

As E ∈ Fil1W (R)F , it is easy to see that ϕ(tF ) ∈ I [1]W (R)F , and since

t̄pF = ue0 t̄F , we have vR(ϕ(tF )) =
p

eF (p−1) .

Lemma 2.3.1. The ideal I
[1]
F is principal. Moreover, x ∈ I [1]F is a generator of

I
[1]
F if and only if vR(x̄) =

p
eF (p−1) .

Proof. When F = Qp, this follows immediately from [Fon94a, Proposition
5.1.3] with r = 1. The general case follows from a slight modification of this

argument, as follows: For y ∈ I
[1]
F , we first claim that vR(ȳ) ≥ p

eF (p−1) . To

see this, we write y =
∞∑
n=0

̟n[yi] with yi ∈ R given by the p-power compatible
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sequence yi = (α
(n)
i )n≥0 for α

(n)
i ∈ OCK . Then

0 = θF (ϕ
m(y)) =

∞∑

n=0

̟n(α
(0)
i )p

m

.

By induction on n and m, it is not difficult to show that

v(α
(0)
i ) ≥ 1

eF
p−i(1 + p−1 · · ·+ p−j)

for all j ≥ 0. In particular, vR(ȳ) = v(α
(0)
0 ) ≥ p

eF (p−1) .

Now pick a x ∈ I [1]F with vR(x̄) =
p

eF (p−1) (take, for example, x = ϕ(tF )). Since

vR(y) ≥ vR(x), we may write y = ax + ̟z with a, z ∈ W (R)F . One checks

that z ∈ I
[1]
F and hence that z ∈ (̟, x). An easy induction argument then

shows that y =
∞∑
n=0

̟nanx, and it follows that I
[1]
F is generated by x. �

It follows at once from Lemma 2.3.1 that ϕ(tF ) is a generator of I
[1]
F . Write I+

for the kernel of the canonical projection ρ :W (R)F →W (k̄)F induced by the
projection R → k̄. Using the very construction of u, one checks that u ∈ I+:
Indeed, writing u = [π] as before, we obviously have u ∈ I+, and it follows from
the proof of Lemma 2.1.1 that u = limn→∞ f (n) ◦ ϕ−n(u) lies in I+ as well.

Lemma 2.3.2. Let g ∈ G be arbitrary. Then g(u) − u lies in I [1]W (R)F .

Moreover, if ̟2|a1 in OF then g(u)−u
ϕ(tF ) lies in I+.

Proof. As before, writing f (n) = f ◦ · · · ◦ f for the n-fold composition of f with
itself, we have θF (ϕ

n(u)) = f (n)(π) ∈ K, from which it follows that g(u) − u
is in I

[1]
F . By Lemma 2.3.1, we conclude that z := g(u)−u

ϕ(tF ) lies in W (R)F . It

remains to show that z ∈ I+ when ̟2|a1. We first observe that

ϕ(z) =
f((g(u))− f(u)

ϕ2(tF )
=

p∑
i=1

ai
(
(g(u))i − ui

)

ϕ(E)ϕ(tF )
.

For each i, we may write (g(u))i−ui = (g(u)−u)hi(g(u), u) = ϕ(tF )zhi(g(u), u)
for some bivariate degree i − 1 homogeneous polynomials hi with coefficients
in W (R)F . We therefore have

(2.3.1) ϕ(E)ϕ(z) =

p∑

i=1

ai (zhi(g(u), u)) .

Reducing modulo I+ and noting that both u and g(u) lie in I+, we conclude
from (2.3.1) that̟ϕ(ρ(z)) = a1ρ(z), where ρ :W (R)F →W (k̄)F is the natural
projection as above. Using the fact that v(ϕ(ρ(z))) = v(ρ(z)), our assumption
that v(a1) > v(̟) then implies that ρ(z) = 0. That is, z ∈ I+ as desired. �
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Example 2.3.3. The following example shows that the condition ̟2|a1 in OF
is genuinely necessary for the conclusion of Lemma 2.3.2 to hold. Recall the
situation of Example 2.1.2, with K = Qp(ζp), π = ζp − 1, f(u) = (u + 1)p − 1
and u = [ǫ1] − 1, where ǫ1 = (ζpn)n≥1 ∈ R. We may choose g ∈ G with

g(ǫ1) = ǫ1+p1 . We then have g(u) − u = [ǫ1]([ǫ1]
p − 1). Now it is well-known

that [ǫ1]
p − 1 is a generator of I

[1]
Qp

(or one can appeal to Lemma 2.3.1). Then

z = (g(u)− u)/ϕ(tF ) is a unit in W (R) and does not lie in I+.

We conclude this discussion with the following lemma, needed in §5.1:

Lemma 2.3.4. The ideal tF I
+ ⊂ W (R)F is stable under the canonical action

of G: that is, g(tF I
+) ⊂ tF I

+ for all g ∈ G.

Proof. It is clear that I+ is G-stable, so it suffices to show that g(tF ) = xtF
for some x ∈ W (R)F . Since ϕ(tF ) is a generator of I [1], which is obviously
G-stable from the definition, we see that g(ϕ(tF )) = yϕ(tF ) with y ∈ W (R)F .
Hence g(tF ) = ϕ−1(y)tF . �

3. Étale ϕ-modules and Kisin modules

In this section, following Fontaine, we establish a classification of Gπ-
representations by étale ϕ-modules and Kisin modules. To do this, we must
first show that Kπ/K is strictly Arithmetically Profinite, or APF, in the sense
of Fontaine–Wintenberger [Win83], so that the theory of norm fields applies.

3.1. Arithmetic of f -iterate extensions. We keep the notation and con-
ventions of §2. Recall that our choice of an f -compatible sequence {πn}n (in
the sense that f(πn) = πn−1 with π0 = π a uniformizer of K) determines an
element π := {πn mod ̟}n of R. It also determines an infinite, totally wildly
ramified extension Kπ := ∪n≥1K(πn) of K, and we write Gπ = Gal(K/Kπ).

Lemma 3.1.1. The extension Kπ/K is strictly APF in the sense of [Win83]; in
particular, the associated norm field EKπ/K is canonically identified with the

subfield k((π)) of Fr(R).

Proof. That Kπ/K is strictly APF follows immediately from [CD15], which
handles a more general situation. In the present setting with f(u) ≡ up mod ̟,
we can give a short proof as follows. As before, let us write

f(u) = a1u+ a2u
2 + · · ·+ ap−1u

p−1 + apu
p,

with ai ∈ ̟OF for 1 ≤ i ≤ p−1 and ap := 1. For each n ≥ 1, set fn := f−πn−1
and put Kn := K(πn−1). We compute the “ramification polynomial”

gn :=
fn(πnu+ πn)

u
=

p−1∑

i=0

biu
i,
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with coefficients bi given by

bi =

p∑

j=i+1

ajπ
j
n

(
j

i+ 1

)
for 0 ≤ i ≤ p− 1.

For ease of notation, put vn := vKn+1 , and denote by en := vn(̟) the ram-
ification index of Kn+1/F and by e := vF (p) the absolute ramification index
of F . Since Kn+1/Kn is totally ramified of degree p, we have en = pne0; in

particular, vn(aj
(
j
i+1

)
πjn) ≡ j mod pn. It follows that vn(bp−1) = p, and for

0 ≤ i ≤ p− 2 we have

vn(bi) = min{ene+ p, envF (aj) + j : i+ 1 ≤ j ≤ p− 1}.
It is easy to see that for n ≥ 1 the lower convex hull of these points is the
straight line with endpoints (0, vn(b0)) and (p− 1, p). In other words, defining

(3.1.1) imin := min
i
{i : ord̟(ai) ≤ e, 1 ≤ i ≤ p}.

the Newton polygon of gn is a single line segment with slope the negative of

(3.1.2) in :=
en (vF (aimin) + ⌊imin/p⌋e) + imin − p

p− 1
.

In particular, for n ≥ 1 the extension Kn+1/Kn is elementary of level in in the
sense of [Win83, 1.3.1]; concretely, this condition means that

(3.1.3) vn(πn − σπn) = in + 1

for every Kn-embedding σ : Kn+1 →֒ K. It follows from this and [Win83, 1.4.2]
thatKπ/K is APF. Now let c(Kπ/K) be the constant defined in [Win83, 1.2.1].
Then by [Win83, §1.4]

c(Kπ/K) = inf
n>0

in
[Kn+1 : K]

,

so from (3.1.1) we deduce

c(Kπ/K) = inf
n>0

en (vF (aimin) + ⌊imin/p⌋e) + imin − p
pn(p− 1)

=
e0
p− 1

(vF (aimin) + ⌊imin/p⌋e)−
p− imin

p(p− 1)

since p − imin ≥ 0, so the above infimum occurs when n = 1. As imin ≥ 1,
the above constant is visibly positive, so by the very definition [Win83, 1.2.1],
Kπ/K is strictly APF.

The canonical embedding of the norm field of Kπ/K into Fr(R) is described
in [Win83, §4.2]; that the image of this embedding coincides with k((π)) is a
consequence of [Win83, 2.2.4, 2.3.1]. �

Remark 3.1.2. Observe that if the coefficient a1 of the linear term of f(u) has
v(a1) ≤ 1, then we have imin = 1 and

c(Kπ/K) =
e0
p− 1

vF (a1)−
1

p
.
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In this situation, vF (a1)—which plays an important role in our theory—is
encoded in the ramification structure of Kπ/K.

It is natural to ask when two given polynomials f and f ′ with corresponding
compatible choices π and π′ give rise to the same iterate extension. Let us write
f(x) = xp + ap−1xp−1 + · · ·+ a1x and f ′(x) = xp + a′p−1x

p−1 + · · ·+ a′1x, with
ai, a

′
i ∈ OF and ai ≡ a′i ≡ 0 mod ̟ for 1 ≤ i < p. Let {πn} (respectively {π′n})

be an f (resp. f ′) compatible sequence of elements in K. Set Kn := K(πn−1)
(resp. K ′n = K(π′n−1)) and let asu

s and a′s′u
s′ be the lowest degree terms of

f(u) and f ′(u) respectively.

Proposition 3.1.3. If Kπ = Kπ′ as subfields of K, then Kn = K ′n for all n ≥ 1
and there exists an invertible power series ξ(x) ∈ OF [[x]] with ξ(x) = µ0x+ · · ·
and µ0 ∈ O×F such that

f(ξ(x)) = ξ(f ′(x)).

In particular, s = s′ and v(as) = v(a′s) are numerical invariants of Kπ = Kπ′ .

Conversely, if f and f ′ are given with s = s′ and v(as) = v(a′s), then we
have as = µ1−s

0 a′s for a unique µ0 ∈ O×F and there is a unique power series
ξ(x) ∈ F [[x]] with ξ(x) ≡ µ0x mod x2 satisfying f(ξ(x)) = ξ(f ′(x)) as formal
power series in F [[x]]. If ξ(x) lies in OF [[x]], then for any choice {π′n}n of
f ′-compatible sequence with π′0 a uniformizer of K, the sequence defined by
πn := ξ(π′n) is f -compatible with π0 = ξ(π′0) a uniformizer of K and Kπ = Kπ′ .
Furthermore, if v(as) = v(a′s) = v(̟), then ξ(x) always lies in OF [[x]].

Proof. Suppose first that Kπ = Kπ′ , and write simply K∞ for this common,

strictly APF extension ofK inK. It follows from the proof of Lemma 3.1.1 that
Kn+1 and K ′n+1 are both the n-th elementary subextension of K∞; i.e. the

fixed field of GbnKGK∞ , where bn is the n-th break in the ramification filtration
GuKGK∞ ; see [Win83, 1.4]. In particular, Kn+1 = K ′n+1 for all n ≥ 0. Now
let W̟(•) be the functor of ̟-Witt vectors; it is the unique functor from
OF -algebras to OF -algebras satisfying

(1) For any OF -algebra A, we have W̟(•) =
∏
n≥0 • =: •N as functors

from OF -algebras to sets.
(2) The ghost map W̟(•)→ •N given by

(a0, a1, a2, . . .) 7→ (a0, a
p
0 +̟a1, a

p2

0 +̟ap1 +̟2a2, . . .)

is a natural transformation of functors from OF -algebras to OF -
algebras.

We remark that W̟(•) exists and depends only on ̟, and is equipped with
a unique natural transformation ϕ : W̟(•) → W̟(•) which on ghost compo-
nents has the effect (a0, a1, . . .) 7→ (a1, a2, . . .); see [CD15, §2].
Define the ring

A+
K∞/K

:= {(xi)i ∈ lim←−
ϕ

W̟(OK̂∞
) : xn ∈W̟(OKn+1) for all n},
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which depends only on F,̟, andK∞/K. The main theorem of [CD15], implies
that A+

K∞/K is a ̟-adically complete and separated OF -algebra equipped with

a Frobenius endomorphism ϕ, which is canonically a Frobenius-stable subring
of W (R)F that is closed under the weak topology on W (R)F . Giving A+

K∞/K

the subspace topology, the proof of [CD15, Prop. 7.13] then shows that the
f (respectively f ′)-compatible sequence π (respectively π′) determine isomor-
phisms of topological OF -algebras

η, η′ : OF [[x]] // A+
K∞/K

characterized by the requirement that the ghost components of (η)n
(resp. (η′)n) are (πn, f(πn), f

(2)(πn), . . .) (resp. (π′n, f
′(π′n), f

′(2)(π′n), . . .));
here we give OF [[x]] the (̟, x)-adic topology. These isomorphisms moreover
satisfy

η(f(x)) = ϕ(η(x)) and η′(f ′(x)) = ϕ(η′(x)).

We therefore obtain a continuous automorphism ξ : OF [[x]]→ OF [[x]] satisfying
(3.1.4) f(ξ(x)) = ξ(f ′(x)).

Since ξ is a continuous automorphism of OF [[x]], we have that ξ preserves the
maximal ideal (̟, x). This implies that ξ(x) ≡ µ0x mod x2 with µ0 ∈ O×F .
Then (3.1.4) forces asµ

s
0x
s = a′s′µ0x

s′ which implies s = s′ and v(as) = v(a′s).

Conversely, suppose given f and f ′ with s = s′ and v(as) = v(a′s) and let
µ0 ∈ O×F be the unique unit with as = µ1−s

0 a′s; note that this exists because

s − 1 < p. We inductively construct degree i polynomials ξi(x) =
∑i

j=1 µjx
j

so that f(ξi(x)) ≡ ξi(f
′(x)) mod xi+s. As µs0as = µ0a

′
s, we may clearly take

ξ1(x) = µ0x. If ξi(x) has been constructed, we write ξi+1(x) = ξi(x)+µi+1x
i+1

and f(ξi(x)) − ξi(f ′(x)) ≡ λxi+s mod xi+s+1 and seek to solve

(3.1.5) f(ξi+1(x)) ≡ ξi+1(f
′(x)) mod xi+s+1.

As f(ξi+1(x)) = f(ξi(x)) +
df
dx(ξi(x))(µi+1x

i+1) + · · · , we see that (3.1.5) is
equivalent to

(3.1.6) λ = µi+1(a1 − a′1
i+1

) if s = 1, and λ = µi+1sasµ
s−1
0 if s > 1

which admits a unique solution µi+1 ∈ F . We set ξ(x) = limi ξi(x) ∈ F [[x]],
which by construction satisfies the desired intertwining relation (3.1.4). If ξ lies
in OF [[x]], it is clear that any f ′-compatible sequence π′n with π′0 a uniformizer
of K yields an f -compatible sequence πn := ξ(π′n) with π0 a uniformizer of
K and Kn := K(πn−1) = K(π′n−1) = K ′n for all n ≥ 1. Finally, since we
have f(x) = f ′(x) ≡ xp mod ̟, it follows that f(ξi(x))− ξi(f ′(x)) ≡ 0 mod ̟,
i.e. λ ≡ 0 mod ̟ in the above construction. When v(as) = v(a′s) = v(̟), it
then follows from (3.1.6) that µi+1 ∈ OF , and ξ(x) ∈ OF [[x]] as claimed. �

As an immediate consequence of Proposition (3.1.3), one sees that there are
infinitely many distinct f -iterate extensions Kπ inside of K.
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3.2. Étale ϕ-modules. Let OE be the p-adic completion of SF [1/u],
equipped with the unique continuous extension of ϕ. Our fixed embedding
SF →֒W (R) determined by f and π uniquely extends to a ϕ-equivariant em-
bedding ι : OE →֒ W (FrR)F , and we identify OE with its image in W (FrR)F .
We note that OE is a complete discrete valuation ring with uniformizer ̟ and
residue field k((π)), which, as a subfield of FrR, coincides with the norm field
of Kπ/K thanks to Lemma 3.1.1. As FrR is algebraically closed, there is a
unique separable closure k((π))sep of k((π)) in FrR, and the maximal unrami-
fied extension (i.e. strict Henselization) OEur of OE with residue field k((π))sep

is uniquely determined up to unique isomorphism. The universal property
of strict Henselization guarantees that ι uniquely extends to an embedding
OEur →֒ W (FrR)F , which moreover realizes OEur as a ϕ-stable subring. We
write OÊur for the p-adic completion of OEur , which is again a ϕ-stable subring
of W (FrR)F . Again using the universal property of strict Henselization, one
sees that each of OE ,OEur and OÊur are Gπ-stable subrings of W (FrR)F , with
Gπ acting trivially on OE . As suggested by the notation, we write E , Eur, and
Êur for the fraction fields of OE ,OEur and OÊur , respectively. Finally, we define
Sur
F :=W (R)F ∩ OÊur .

Lemma 3.2.1. With notation as above:

(1) The natural action of Gπ on OÊur induces an isomorphism of profinite
groups

Gπ := Gal(K/Kπ) ≃ Aut(OÊur/OE) = Gal(Êur/E).

(2) The inclusions OF →֒ (OÊur)ϕ=1 and OE →֒ (OÊur)Gπ are isomor-
phisms.

Proof. By the very construction of OÊur and the fact that the residue field of
OE is identified with the norm field EKπ/K by Lemma 3.1.1, we have an iso-

morphism of topological groups Gal(Esep
Kπ/K

/EKπ/K) ≃ Aut(OÊur/OE) by the

theory of unramified extensions of local fields. On the other hand, the theory of
norm fields [Win83, 3.2.2] provides a natural isomorphism of topological groups
Gπ ≃ Gal(Esep

Kπ/K
/EKπ/K), giving (1).

To prove (2), note that the maps in question are local maps of ̟-adically
separated and complete local rings, so by a standard successive approximation
argument it suffices to prove that these maps are surjective modulo ̟. Now
left-exactness of ϕ-invariants (respectively Gπ-invariants) gives an Fp-linear
(respectively EKπ/K -linear) injection

(OÊur)ϕ=1/(̟) →֒ (Esep
Kπ/K

)ϕ=1 = Fp = OF /(̟),

respectively

(OÊur)Gπ/(̟) →֒ (Esep
Kπ/K

)Gπ = EKπ/K = OE/(̟)
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which must be an isomorphism of vector spaces over Fp (respectively EKπ/K )
as the source is nonzero and the target is 1-dimensional. We conclude that
OF →֒ (OÊur)ϕ=1 (respectively OE →֒ (OÊur)Gπ) is surjective modulo ̟, and
therefore an isomorphism as desired. �

Denote by ModϕOE
(resp. Modϕ,torOE

) the category of pairs (M,ϕM ), where M
is a finite free OE -module (resp. a finite OE -module killed by a power of ̟)
and ϕM : M → M is a ϕ-semilinear and additive map whose linearization
1 ⊗ ϕM : ϕ∗M → M is an isomorphism. In each case, morphisms are ϕ-
equivarant OE -module homomorphisms. Let RepOF (Gπ) (resp. ReptorOF (Gπ))
be the category of finite, free OF -modules (resp. finite OF -modules killed by a
power of ̟) that are equipped with a continuous and OF -linear action of Gπ .

For M in ModϕOE
or in Modϕ,torOE

, we define

V (M) := (OÊur ⊗OE M)ϕ=1,

which is an OF -module with a continuous action of Gπ. For V in RepOF (Gπ)
or in ReptorOF (Gπ), we define

M(V ) = (OÊur ⊗OF V )Gπ ,

which is an OE-module with a ϕ-semilinear endomorphism ϕM := ϕOÊur ⊗ 1.

Theorem 3.2.2. The functors V and M are quasi-inverse equivalences be-
tween the exact tensor categories ModϕOE

(resp. Modϕ,torOE
) and RepOF (Gπ)

(resp. ReptorOF (Gπ)).

Proof. As in the proof of [KR09, Theorem 1.6], the original arguments of
Fontaine [Fon90, A1.2.6] carry over to the present situation. Indeed, by stan-
dard arguments with inverse limits, it is enough to prove the Theorem for
̟-power torsion objects. To do so, one first proves that M is exact, which
by (faithful) flatness of the inclusion OE →֒ OEur amounts to the vanishing
of H1(Gπ, ·) on the category of finite length OEur -modules with a continuous
semilinear Gπ-action. By a standard dévissage, such vanishing is reduced to
the case of modules killed by̟, where it follows from Hilbert’s Theorem 90 and
Lemma 3.2.1. One then checks that for any torsion V , the natural comparison
map M(V )⊗OE OEur → V ⊗OF OEur induced by multiplication in OEur is an
OEur -linear, ϕ, and Gπ-compatible isomorphism by dévissage (using the settled
exactness of M) to the case that V is ̟-torsion, where it again follows from
Hilbert Theorem 90. Passing to submodules on which ϕ acts as the identity
and using Lemma 3.2.1(2) then gives a natural isomorphism V ◦M ≃ id.

In a similar fashion, the exactness of V and the fact that the comparison map

(3.2.1) V (M)⊗OF OEur // M ⊗OE OEur
induced by multiplication in OEur is an isomorphism for general ̟-power tor-
sion modules M follows by dévissage from the the truth of these claims in the
case of M killed by ̟. In this situation, the comparison map (3.2.1) is shown
to be injective by checking that any Fp-linearly independent set of vectors in
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V (M) remains Esep
K∞/K

-linearly independent in E
sep
K∞/K

⊗Fp V (M), which is ac-

complished by a standard argument using the Frobenius endomorphism and
Lemma 3.2.1(2). To check surjectivity is then a matter of showing that both
sides of (3.2.1) have the same E

sep
K∞/K

-dimension, i.e. that the Fp-vector space

V (M) has dimension d := dimEK∞/K
M . Equivalently, we must prove that

V (M) has pd elements. IdentifyingM with EdK∞/K
by a choice of EK∞/K

-basis

and writing (cij) for the resulting matrix of ϕ, one (noncanonically) realizes
V (M) as the set of Esep

K∞/K
-solutions to the system of d-equations xpi =

∑
cijxj

in d-unknowns, which has exactly pd solutions as ϕ is étale, so the matrix (cij)
is invertible. �

In what follows, we will need a contravariant version of Theorem 3.2.2, which
follows from it by a standard duality argument (e.g. [Fon90, §1.2.7]). For any
M ∈ModϕOE

(respectively M ∈Modϕ,torOE
), we define

T (M) := HomOE ,ϕ(M,OÊur), respectively T (M) := HomOE ,ϕ(M, Êur/OÊur),
which is naturally an OF -module with a continuous action of Gπ.

Corollary 3.2.3. The contravariant functor T induces an anti-equivalence
between ModϕOE

(resp. Modϕ,torOE
) and RepOF (Gπ) ( resp. Rep

tor
OF (Gπ)).

3.3. Kisin modules and Representations of finite E-height. For an
integer r ≥ 0, we write ′Modϕ,rSF

for the category of finite-type SF -modules M
equipped with a ϕSF -semilinear endomorphism ϕM : M→M satisfying

• the cokernel of the linearization 1⊗ ϕ : ϕ∗M→M is killed by Er;
• the natural map M→ OE ⊗SF M is injective.

One checks that together these conditions guarantee that the scalar extension
OE ⊗SF M is an object of ModϕOE

when M is torsion free, and an object

of Modϕ,torOE
if M is killed by a power of ̟. Morphisms in ′Modϕ,rSF

are ϕ-
compatible SF -module homomorphisms. By definition, the category of Kisin
modules of E-height r, denoted Modϕ,rSF

, is the full subcategory of ′Modϕ,rSF
consisting of those objects which are finite and free over SF . For any such
Kisin module M ∈Modϕ,rSF

, we define

TS(M) := HomSF ,ϕ(M,Sur
F ),

with Sur
F := W (R)F ∩ OÊur as above Lemma 3.2.1; this is naturally an OF -

module with a linear action of Gπ.

Proposition 3.3.1. Let M ∈ Modϕ,rSF
and write M = OE ⊗SF M for the

corresponding object of ModϕOE
.

(1) There is a canonical OF -linear and Gπ-equivariant isomorphism
TS(M) ≃ T (M). In particular, TS(M) is an object of RepOF (Gπ)
and rankOF (TS(M)) = rankSF (M).

(2) The inclusion Sur
F →֒ W (R)F induces a natural isomorphism of

OF [Gπ ]-modules TS(M) ≃ HomSF ,ϕ(M,W (R)F ).
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Proof. As in the proofs of [Kis06, 2.1.2, 2.1.4] and [KR09, 3.2.1], the Lemma
follows from B1.4.2 and B1.8.3 of [Fon90] (cf. B1.8.6), using [Fon90, A1.2]
and noting that Fontaine’s arguments—which are strictly speaking only for
F = Qp—carry over mutatis mutandis to our more general situation. �

Example 3.3.2. Let M be a Kisin module of rank 1 over SF . Choosing a basis
e of M and identifying M = SF ·e, it follows from Weierstrass preparation that
we must have ϕ(e) = µEme for some µ ∈ S×F . Consider the particular case
that ϕ(e) = Ee, which is a rank-1 Kisin module of E-height 1. Proposition
(3.3.1) then shows that TS(M) gives an OF -valued character of Gπ and that
there exists t ∈ W (R)F satisfying ϕ(t) = Et and t mod ̟ 6= 0 inside R. We
will see in §5 that the character of Gπ furnished by TS(M) can be extended to
a Lubin-Tate character of G if we assume that ̟2|a1 in OF , where a1 is the
linear coefficient of f(x) ∈ OF [x].

Let RepF (Gπ) denote the category of continuous, F -linear representations of
Gπ . An object V of RepF (Gπ) is of E-height r if there exists a Kisin module
M ∈ Modϕ,rSF

with V ≃ TSF (M)[1/p], and V is of finite E-height if there exists

an integer r such that V is of E-height r. As E = E(u) is fixed throughout the
paper, we will simply say that V is of (finite) height r.

For M an arbitrary object of Modϕ,rSF
, we write VS(M) := TS(M)[1/p] for the

associated height-r representation of Gπ. We will need the following general-
ization of [Kis06, Lemma 2.1.15] (or [Liu07, Corollary 2.3.9]):

Proposition 3.3.3. If V ∈ RepF (Gπ) is of height r then for any Gπ-stable OF -
lattice L ⊂ V , there exists N ∈Modϕ,rSF

such that TS(N) ≃ L in RepOF (Gπ).

The proof of Proposition 3.3.3 will make use of the following key lemma:

Lemma 3.3.4. Let M be an object of ′Modϕ,rSF
that is torsion-free. Then the

intersection M′ := M[1/p] ∩ (OE ⊗SF M), taken inside of E ⊗SF M, is an
object in Modϕ,rSF

and there are canonical inclusions M ⊂M′ ⊂ OE ⊗SF M.

Proof. The proof of Lemma 2.3.7 in [Liu07] carries over mutatis mutandis to
the present situation. �

Proof of Proposition 3.3.3. As the proof is a simple adaptation of that of Corol-
lary 2.3.9 in [Liu07], we simply sketch the highlights. Let V ∈ RepF (Gπ) be
of height r, and select M ∈ Modϕ,rSF

with V ≃ VS(M). Put T := TS(M),
which is a Gπ-stable OF -lattice in V , and let L ⊂ V be an arbitrary Gπ-stable
OF -lattice. Put M := OE ⊗SF M and let N ∈ModϕOE

be the object of ModϕOE

corresponding to L via Corollary 3.2.3, so T (N) ≃ L in RepOF (Gπ). Without
loss of generality, we may assume that N ⊂M . Writing f :M →M/N for the
natural projection, it is easy to check that f(M) is an object of ′Modϕ,rSF

. It

then follows from Proposition [Fon90, B 1.3.5] that N′ := ker(f
∣∣
M
) ⊂ N is an

object of ′Modϕ,rSF
. Writing N := N′[1/p] ∩N , we have that N is an object of

Modϕ,rSF
thanks to Lemma 3.3.4, and by construction we have OE ⊗SF N ≃ N ,
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so that TS(N) ≃ L as OF [Gπ]-modules thanks to Proposition 3.3.1 and the
choice of N . �

Proposition 3.3.5. Assume that ϕn(f(u)/u) is not power of E = E(u) for
any n ≥ 0. Then the functor TS : Modϕ,rSF

 RepOF (Gπ) is fully faithful.

Proof. We use an idea of Caruso [Car, Proposition 3.1]. Fix M,M′ ∈ Modϕ,rSF
.

Using Corollary 3.2.3 and Lemma 3.3.1, we easily reduce the proof of Propo-
sition 3.3.5 to that of the following assertion: if f : OE ⊗SF M → OE ⊗SF M′

is a morphism in ModϕOE
then f(M) ⊂ M′. By applying Lemma 3.3.4 to

f(M)+M′, we may further reduce the proof to that of the following statement:
if M ⊂ M′ ⊂ OE ⊗SF M then M = M′. Writing d := rkSF (M) = rkSF (M

′)
and applying ∧d, we may reduce to the case d = 1, and now calculate with
bases. Let e (resp. e′) be an SF -basis of M (resp. M′), and let a ∈ SF

be the unique element with e = ae′. Since OE ⊗SF M = OE ⊗SF M′, by
Weierstrass preparation, we may modify our choices of e and e′ to assume that
a = A(u) = us + cs−1us−1 + · · · + c1u + c0 with ci ∈ ̟OF0 . As in Example

3.3.2, we may suppose that ϕ(e′) = γ′Ene′ and ϕ(e) = γEn
′

e with γ, γ′ ∈ S×F .
Then

γEn
′

A(u)e′ = γEn
′

e = ϕ(e) = ϕ(A(u))ϕ(e′) = ϕ(A(u))γ′Ene′

which necessitates γA(u)En
′

= γ′ϕ(A(u))En. Reducing modulo ̟ and com-
paring u-degrees, we see easily that n′ ≥ n. We therefore have

(3.3.1) γ0A(u)E
n′−n = ϕ(A(u)) for γ0 = γ(γ′)−1 ∈ S×F .

As γ0 is a unit, it follows from (3.3.1) that A(u)En
′−n and ϕ(A(u)) must have

the same roots. Since A(u), ϕ(A(u)) and E are monic polynomials with roots

either 0 or with positive valuation, we conclude that A(u)En
′−n = ϕ(A(u)).

Let us put A(u) = ulA0(u) with A0(0) 6= 0 and m = n′ − n. Then (3.3.1)
simplifies to

(3.3.2) A0(u)E
m = (f(u)/u)lϕ(A0(u)).

We first treat the case l = 0 (so A = A0); we will then reduce the general
case to this one. Put Aϕ(u) := us + ϕ(cs−1)us−1 + · · · + ϕ(c1)u + ϕ(c0).
There is then a bijection between the roots of Aϕ(u) and the roots of A(u)
which preserves valuation. Let x0 be a nonzero root of A(u) which achieves
the maximal valuation. Then A(u)Em = ϕ(A(u)) implies that x0 is root of
ϕ(A(u)) = Aϕ(f(u)). That is f(x0) is a root of Aϕ(u). If f(x0) 6= 0, then since
f(u) ≡ up mod ̟ and x0 has positive valuation, we have v(f(x0)) > v(x0), so
there exists a root of A(u) with valuation strictly greater than v(x0), which
contradicts our choice of x0. We must therefore have that f(x0) = 0 is root of
Aϕ(u), which contradicts our assumption that A(0) 6= 0 (l = 0). We conclude
that A(u) = A0(u) has degree zero, and hence that M = M′ as desired.

Now suppose that l > 0 and let r1 ≥ 0 be the unique integer satisfying
(f(u)/u)l = Er1h1(u) for some unique monic h1 ∈ SF with E ∤ h1(u).
Comparing u-degrees in (3.3.2) gives r1 ≤ m, so h1(u)|A0(u) and we have
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A0(u) = h1(u)A1(u) for a unique monic polynomial A1 and m1 := m− r1 ≥ 0.
Equation (3.3.2) then becomes

A1(u)E
m1 = ϕ(h1(u))ϕ(A1(u)).

Now let r2 ≥ 0 be the unique integer with ϕ(h1(u)) = Er2h2(u) for h2 a monic
polynomial with E ∤ h2(u), and write A1(u) = h2(u)A2(u) with A2 monic and
m2 := m1 − r2 ≥ 0. We then have

A2(u)E
m2 = ϕ(h2(u))ϕ(A2(u)).

We continue in this manner, constructing nonnegative integers rn,mn with
mn+1 := mn − rn and monic An, hn ∈ SF with E ∤ hn, hnErn = ϕ(hn−1) and
An−1 = hnAn satisfying the equation

(3.3.3) An(u)E
mn = ϕ(hn(u))ϕ(An(u)).

So long as hn and An are non-constant, we have degAn < degAn−1, which can
not continue indefinitely. We conclude that there is some n ≥ 1 with either hn
or An constant, which forces hn = 1 or An = 1 by monicity. In the latter case,
(3.3.3) implies that hn+1 = 1, so in any case there is some n > 0 with hn = 1.
By the construction of the hm, we then have

(3.3.4) ϕn−1((f(u)/u)l) =
n∏

m=1,rm 6=0

ϕn−m(Erm).

We claim that in fact there is only one m with rm 6= 0. Indeed, if there exist
m1 > m2 with rmi 6= 0 for i = 1, 2, then writing f0(u) = f(u)/u, we see
that f0(f

(mi)(π)) = 0 for i = 1, 2. Since f(u) = f0(u)u, this implies that
f (m2+1)(π) = 0. Then

0 = f0(f
(m1)(π)) = f0(f

(m1−m2−1)(f (m2+1)(π))) = f0(f
(m1−m2−1)(0)) =f0(0),

which implies that u|f0(u). But this contradicts (3.3.2) because u ∤ A0(u). We
conclude that there is a unique m such that rm 6= 0, and it follows from (3.3.4)
that there exists n ≥ 0 such that ϕn(f(u)/u) is a power of E(u), contradicting
our hypothesis. We must therefore in fact have l = 0, whence M = M′ as we
showed above. �

Remark 3.3.6. The assumption that ϕ(n)(f(u)/u) is not a power of E for any
n ≥ 0 is satisfied in many cases of interest. For example, it is always satisfied
when a1 = 0 (which includes the classical situation f(u) = up), as then f(u)/u
has no constant term while any power of E = E(u) has nonzero constant term.

Example 3.3.7. The hypothesis of Proposition 3.3.5 that ϕ(n)(f(u)/u) is not
a power of E for any n ≥ 0 is necessary, as the following examples show:

(1) Fix r, let 0 ≤ l ≤ r be an integer and suppose that we have
ϕ(n)(f(u)/u) = El. Setting A(u) := f(u) · ϕ(f(u)/u) · · ·ϕn−1(f(u)/u)
if n > 0 and A(u) = u if n = 0, we have AEl = ϕ(A). In particular,
definining M = A(u)SF and M′ := SF , we have M ⊆ M′ and both
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M and M′ are objects of Modϕ,rSF
with height l ≤ r. However, M 6= M′

and it follows that the conclusion of Proposition 3.3.5 does not hold.
(2) Concretely, recall the situation in Example 2.1.2 where K = Qp(ζp),

F = Qp, π = ζp− 1 and ϕ(u) = (u+1)p− 1. In this case, E = ϕ(u)/u,
and the Kisin modules M′ := SF and M := uSF are both of height 1
and are non-isomorphic, but TS(M) ≃ TS(M′).

(3) As a less familiar variant, we can take ϕ(u) = (u − p)p−1u and let
E = ϕ(u) − p. Then ϕ(f(u)/u) = Ep−1, and the construction of (1)
provides a counterexample.

Corollary 3.3.8. Suppose that ϕn(f(u)/u) is not a power of E for any n ≥ 0
and ψ : V ′ → V is a morphism of height-r representations. Then there are
exact sequences

0 //L //M //N //0, and 0 //N //M′ //N′ //0

in Modϕ,rSF
which correspond via VS(·) to the exact sequences in RepF (Gπ):

0 //ψ(V ′) //V //V/ψ(V ′) //0 ,

and

0 //ker(ψ) //V ′
ψ //ψ(V ′) //0.

Proof. We may and do select Gπ-stable OF -lattices T ⊆ V and T ′ ⊆ V ′ with
ψ(T ′) ⊆ T and T/ψ(T ′) torsion-free. Thanks to Proposition 3.3.3, there exist
M and M′ in Modϕ,rSF

with T = TS(M) and T ′ = TS(M
′), and we define

M := OE ⊗SF M and M ′ := OE ⊗SF M′ and write f : M → M ′ for the
unique morphism in ModϕOE

with T (f) = ψ|T ′ . Let N ′ := M ′/f(M) and write
g : M ′ → N ′ for the natural projection. Writing N := f(M) = ker g, we then
have exact sequences in ModϕOE

0 //ker(f) //M
f //N //0

and

0 //N //M ′
g //N ′ //0

which correspond, via T (·), to the exact sequences in RepOF (Gπ)

0 //ψ(T ′) //T //T/ψ(T ′) //0 ,

and

0 //ker(ψ) //T ′
ψ //ψ(T ′) //0.

Since N ′ corresponds to T/ψ(T ′), which is torsion-free, it follows that N ′ is also
torsion free and hence finite and free as anOE -module. DefineN := ker(g)∩M′,
the intersection taken inside of M ′. We claim that N is an object in Modϕ,rSF

.

First note that by [Fon90, B 1.3.5], the fact that M′ has height r implies that
both g(M′) and N have height r, and we need only show that N is free over
SF . To do this, it suffices by Lemma 3.3.4 to prove that N = N[1/p]∩N inside
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E⊗OEN , or equivalently that N[1/p]∩N ⊆ N. For any x ∈ N[1/p]∩N , we have
by the very definition of N that x ∈ M′[1/p] ∩M ′ = M′. As x ∈ N = ker g,
we then have x ∈ ker g ∩M′ = N′ as desired. A similar argument shows that
L := ker(f) ∩M is a Kisin module in Modϕ,rSF

as well.

Again using Lemma 3.3.4, both Ñ := f(M)[1/p]∩N and N′ := g(M′)[1/p]∩N ′
are objects of Modϕ,rSF

. As OE ⊗SF Ñ = N = OE ⊗SF N, it follows from

Proposition 3.3.5 that Ñ = N. We therefore have exact sequences

0 // L[1/p] // M[1/p]
f // N[1/p] // 0,

and

0 // N[1/p] // M′[1/p]
g // N′[1/p] // 0 .

Unfortunately, it need not be true in general that f(M) = N or g(M′) = N′.
To remedy this defect, we modify M and M′ as follows. Using the inclu-
sion N ⊆ M′ and the above exact sequences, we may select an SF [1/p]-basis
e1, . . . , es, es+1, . . . , ed ofM[1/p] with the property that e1, . . . , es is anSF -basis
of L and e′s+1 := f(es+1), . . . , e

′
d := f(ed) is an SF -basis of N. We may further

complete e′s+1, . . . , e
′
d to an SF [1/p]-basis e

′
s+1, . . . , e

′
d, e
′
d+1, . . . , e

′
d′ of M

′ with
the property that e′d+1, . . . , e

′
d′ projects via g to an SF -basis of N′. We then

have matrix equations

ϕ(e1, . . . , ed) = (e1, . . . , ed)

(
A C
0 A′

)

and

ϕ(e′s+1, . . . , e
′
d, e
′
d+1, . . . , e

′
d′) = (e′s+1, . . . , e

′
d, e
′
d+1, . . . , e

′
d′)

(
B D
0 B′

)
,

where the entries of A,A′, B,B′ are in SF , while the entries of C and D
are in SF [1/p]. Let m ≥ 0 be such that pmC and pmD have all entries in
SF . Replacing M by the SF -submodule of M[1/p] generated over SF by
p−me1, . . . , p

−mes, es+1, . . . , ed, and M′ by the SF -submodule of M′[1/p] gen-
erated by (e′s+1, . . . , e

′
d, p

me′d+1, . . . , p
me′d′) does the trick. �

4. Constructing Kisin modules from F -crystalline
representations

In this section, we associate to any F -crystalline representation a Kisin module
in the sense of §3.3 and employ our construction to prove Theorems 1.0.1 and
1.0.2. Throughout, and especially in §4.2, we make free use of many of the
ideas of [Kis06] and [KR09]. To surmount the difficulty that we do not in
general have a natural N∇-structure (see the introduction), we will compare
our modules over the Robba ring to those of Kisin’s classical setting in in §4.4,
which will allow us to descend these modules to the desired Kisin modules.
The proofs of our main results (Theorems 1.0.1 and 1.0.2) occupies §4.5.
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4.1. Generalities on F -crystalline representations. Let V be an F -
linear representation of G = GK or of Gπ. We write V ∨ for the F -linear dual of
V with its natural G or Gπ-action. We warn the reader at the outset that our
notational conventions regarding Fontaine’s functors are dual to the standard
ones; we have chosen to depart from tradition here as it will be more convenient
to deal with the integral theory.

Let V be an object of RepF (G). Then DdR(V ) := (V ∨⊗Qp BdR)
G is naturally

a module over the semilocal ring KF := K ⊗Qp F , so we have a decomposition

DdR(V ) =
∏

m

DdR(V )m

with the product running over all maximal ideals ofKF . We give eachDdR(V )m
the filtration induced from that of DdR(V ), and we denote by m0 the kernel of
the natural map K ⊗Qp F → K coming from the given inclusion F →֒ K and
multiplication. Following [KR09], we define:

Definition 4.1.1. We say that V ∈ RepF (G) is F -crystalline if it is crys-
talline (as a Qp-linear G-representation) and the filtration on DdR(V )m is triv-

ial (FiljDdR(V )m = 0 if j > 0 and Fil0DdR(V )m = DdR(V )m) when m 6= m0.

We write RepF -cris
F (G) for the category of F -crystalline F -representations of G.

We now wish to describe the category of F -crystalline G-representations in
terms of filtered ϕ-modules. To do this, we define:

Definition 4.1.2. Let MFϕF0,K
be the category of triples (D,ϕ,FiljDF0,K)

where D is a finite dimensional F0-vector space, ϕ : D → D is a semilinear
(over the F -linear extension ϕ of the p-power Frobenius map K0 → K0) en-

domorphism whose linearization is an F0-linear isomorphism, and FiljDF0,K is
a separated and exhaustive descending filtration by K-subspaces on the scalar
extension DF0,K := D ⊗F0 K. Morphisms in this category are ϕ-compatible
F0-linear maps D → D′ which are filtration-compatible after applying ⊗F0K.

Let V be an F -crystalline G-representation with F -dimension d. Then

D := Dcris(V ) := (V ∨ ⊗Qp Bcris)
G

is naturally a module over F ⊗Qp K0, equipped with a semilinear (over 1 ⊗ σ
for σ the p-power Frobenius automorphism of K0) Frobenius endomorphism
ϕ : D → D which linearizes to an isomorphism. By our assumption that
K0 ∩ F = Qp, the natural multiplication map F ⊗Qp K0 → FK0 =: F0 is
an isomorphism, so D is an F0-vector space which, as V is crystalline as a
Qp-representation, has K0-dimension d[F : Qp], so must have F0-dimension d.

The natural injective map

D ⊗K0 K = Dcris(V )⊗K0 K →֒ DdR(V ) := (V ∨ ⊗Qp BdR)
G

is necessarily an isomorphism of FK := F ⊗Qp K-modules, so since V is F -
crystalline we have a direct sum decomposition of filtered K-vector spaces
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D ⊗K0 K =
⊕

mDK,m, with DK,m having trivial filtration unless m = m0.
Noting the canonical identification

DK,m0 = D ⊗F0 K =: DF0,K ,

we therefore obtain a filtration on DF0,K . In this way we obtain an object

Dcris,F (V ) := (D,ϕ,FiljDF0,K)

of MFϕF0,K
.

Conversely, if D is any object of MFϕF0,K
, we define

Vcris,F (D) := HomF0,ϕ(D,B
+
cris,F ) ∩ HomK,Fil•(DF0,K , B

+
cris ⊗K0 K)

with the intersection taken inside of HomK(DF0,K , B
+
cris ⊗K0 K), via the map

HomF0,ϕ(D,B
+
cris,F )

� � // HomK(DF0,K , B
+
cris ⊗K0 K)

that sends an F0-linear h : D → B+
cris,F to its linear extension along F0 → K.

Proposition 4.1.3. Let V ∈ RepF -cris
F (G). Then Vcris,F (Dcris,F (V )) ≃ V .

Proof. Set D = Dcris(V ) := (V ∨ ⊗Qp B
+
cris)

G and put DK := K ⊗K0 D. As it
is well-known (e.g. [Fon94b, §5.3.7]) that V ≃ Vcris(D) as F [G]-modules, for

Vcris(D) = HomK0,ϕ(D,B
+
cris) ∩HomK,Fil(DK , B

+
cris ⊗K0 K),

it is enough to prove that Vcris(D) ≃ Vcris,F (D) as F [G]-modules. We will first
construct an F -linear isomorphism

(4.1.1) ι : HomK0(D,B
+
cris)

≃ // HomF0(D,B
+
cris,F ).

Writing DF0 = D ⊗K0 F0, which is an F0 ⊗K0 F0-module, we note that
F0 ≃ F0 ⊗F0 F0 is a subfield of F0 ⊗K0 F0, so we may and do regard
D ≃ D ⊗F0 F0 as an F0-subspace of DF0 . Thus, restricting homomor-
phisms from DF0 to the subspace D gives a natural map of F -vector spaces
ι′ : HomF0(DF0 , B

+
cris,F ) → HomF0(D,B

+
cris,F ). As HomK0(D,B

+
cris) is eas-

ily checked to be an F -subspace of HomF0(DF0 , B
+
cris,F ), restriction of ι′ to

HomK0(D,B
+
cris) then gives the desired map (4.1.1).

To check that (4.1.1) is an isomorphism, we explicitly compute with bases: Let
e1, . . . , ed be an F0-basis of D and β1, . . . , βeF a K0-basis of F0. Any x ∈ D
can then be uniquely expressed as a linear combination x =

∑
ij aijβjei for

some aij ∈ K0, while any y ∈ DF0 admits a unique representation of the
form y =

∑
i,j,l aijlβjei ⊗ βl with aijl ∈ K0. The natural F -linear inclusion

D →֒ DF0 induced by F0 ⊗F0 F0 ⊂ F0 ⊗K0 F0 carries x ∈ D above to

x =
∑

ij

aijβjei ⊗ βj ∈ DF0 .

In particular, if h ∈ HomK0(D,B
+
cris), then h is uniquely determined by the

matrix {cij} with cij := h(βjei) ∈ B+
cris, and it follows from definitions that
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ι(f)(x) =
∑

ij aijcij ⊗ βj as an element of B+
cris ⊗K0 F0. From this explicit

description of ι, one checks easily that ι is indeed an isomorphism.

From the very definition of (4.1.1), one checks that ι induces an isomorphism

HomK0,ϕ(D,B
+
cris) ≃ HomF0,ϕ(D,B

+
cris,F ),

so to complete the proof it remains to show that for any h ∈ HomK0(D,B
+
cris),

the scalar extension h⊗1 : D⊗K0K → B+
cris⊗K0K is compatible with filtrations

if and only if this is true of ι(h)⊗ 1 : D⊗F0 K → B+
cris,F ⊗F0 K. Observe that

the construction of the map (4.1.1) gives the following commutative diagram,

DK

h⊗K01 // B+
cris ⊗K0 K

DF0,K

?�

OO

ι(h)⊗F01 // B+
cris,F ⊗F0 K

(4.1.2)

where we make the identification B+
cris ⊗K0 K = B+

cris,F ⊗F0 K. As V is F -

crystalline, we have FiliDK = FiliDF0,K for i ≥ 1 by definition, and it follows
from this and (4.1.2) that

(h⊗
K0

1)(FiliDK) ⊂ FiliB+
cris⊗

K0

K ⇐⇒ (ι(h)⊗
F0

1)(FiliDF0,K) ⊂ FiliB+
cris,F ⊗

F0

K,

which completes that proof of Vcris,F (D) ≃ Vcris(D) ≃ V as F [G]-modules. �

Let V be an F -linear representation of G. For each field embedding τ : F → K,
we define the set τ-Hodge-Tate weights of V :

HTτ (V ) := {i ∈ Z | (V ⊗F,τ CK(−i))G 6= {0}},
where CK is the p-adic completion ofK. It is easy to see that V is F -crystalline
if and only if V is crystalline and HTτ (V ) = {0} unless τ is the trivial embed-
ding τ0 : F ⊂ K ⊂ K. For the remainder of this paper, we will fix a nonneg-
ative integer r with the property that HTτ0(V ) ⊂ {0, . . . , r}, or equivalently,

Filr+1DF0,K = {0}. We denote by RepF -cris,r
F (G) the category of F -crystalline

representations V of G with HTτ0(V ) ⊂ {0, . . . , r}.

4.2. ϕ-modules over O. Recall that we equip F0((u)) with the Frobenius
endomorphism ϕ : F0((u)) → F0((u)) which acts as the canonical Frobenius on
K0, acts trivially on F , and sends u to f(u). For any sub-interval I ⊂ [0, 1), we
write OI for the subring of F0((u)) consisting of those elements which converge
for all x ∈ K with |x| ∈ I. For ease of notation, we put O = O[0,1) and as before

we setKn = K(πn−1). We denote by Ŝn the completion of Kn+1⊗F0SF at the

maximal ideal (u−πn). Equip Ŝn with its (u−πn)-adic filtration, which extends

to a filtration on the quotient field Fr Ŝn = Ŝn[1/(u− πn)]. Note that for any

n we have natural maps of F0-algebras SF [1/p] →֒ O →֒ Ŝn given by sending
u to u, where the first map has dense image. We will write ϕW : SF → SF for
the OF [[u]]-linear map which acts on W (k) via the canonical lift of Frobenius,
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and by ϕS/W : SF → SF the OF0 -linear map which sends u to f(u). Let
c0 = E(0) ∈ F0 and set

λ :=

∞∏

n=0

ϕn(E(u)/c0) ∈ O.

A ϕ-module over O is a finite free O-module M equipped with a semilinear
endomorphism ϕM : M → M. We say that M is of finite E-height if the
cokernel of the O-linear map 1⊗ ϕM : ϕ∗M→M is killed by Er for some r,
and we write Modϕ,rO for the category of ϕ-modules overO of E-height r. Scalar
extension along the inclusion SF →֒ O gives a functor Modϕ,rSF

→ Modϕ,rO from
height-r Kisin modules to ϕ-modules over O of E-height r.

Now let V ∈ RepF -cris,r
F (G) be any F -crystalline representation of G, and write

D := Dcris,F (V ) for the corresponding filtered ϕ-module. We functorially as-
sociate to D an O-module M(D) as follows: For each nonnegative integer n,
let ιn be the composite map:

(4.2.1) O⊗F0 D
ϕ−n
W ⊗ϕ

−n
D // O⊗F0 D // Ŝn ⊗F0 D = Ŝn ⊗K DF0,K ,

where the second morphism is induced by the canonical inclusion O → Ŝn.
We again write ιn for the canonical extension

ιn : O[1/λ]⊗F0 D −→ Fr Ŝn ⊗K DF0,K ,

and we define

M(D) :=

{
x ∈ O[1/λ] ⊗

F0

D
∣∣∣ ιn(x) ∈ Fil0

(
Fr Ŝn ⊗

K
DF0,K

)
, ∀n ≥ 0

}
.

Proposition 4.2.1. M(D) is a ϕ-module over O of E-height r.

Proof. This is Lemma 1.2.2 in [Kis06] (also see Lemma (2.2.1) in [KR09]) with
the following minor modifications: first note that we only discuss crystalline
representation here, so we do not need the “logarithm element” ℓn which occurs
in Kisin’s classical setting (strictly speaking, we do not know how to construct
ℓn in our general setting). Likewise, we may replace D0 := (O[ℓn]⊗K0 D)N=0

in the proof of [Kis06, 1.2.2] with D0 = O⊗F0 D throughout. In the classical
setting, Kisin showed thatM(D) also has an N∇-structure, which we entirely
ignore here (once again, we do not know how to construct N∇ in general). This
is of no harm, as the proof of Lemma 1.2.2 does not use the N∇-structure of
O in any way. Finally, we note that Lemma 1.1.4 of [Kis06], which plays an
important role in the proof of [Kis06, 1.2.2], is well-known for O-modules in
our more general context.4 �

4Indeed, Kisin’s proof of [Kis06, 1.1.4] relies on §4 of Berger’s paper [Ber02] as well as
results of Lazard [Laz62, §7–8] and Lemma 2.4.1 of [Ked04], while the required facts in
[Ber02] build on Lazard’s work in a natural way. But [Laz62] already deals in the generality
we need, as does Kedlaya [Ked04]. Thus, one checks that all the proofs of the results needed
to establish [Kis06, 1.1.4] (as well as Kisin’s argument itself) carry over mutatis mutandis to
our more general situation.
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As above, let us write D0 := O ⊗F0 D. We record here the following useful
facts, which arise out of (our adaptation of) Kisin’s proof of Proposition 4.2.1:

(1) D0 ⊂M ⊂ λ−rD0.

(2) ι0 induces an isomorphism of Ŝ0-modules

Ŝ0 ⊗
O
M(D) ≃

∑

j≥0
(u− π)−jŜ0 ⊗

K
FiljDF0,K =

∑

j≥0
E−jŜ0 ⊗

K
FiljDF0,K .

Consider now the obvious inclusions D →֒ D0 ⊂M(D). As Frobenius induces
a linear isomorphism ϕ∗D ≃ D, we obtain a linear isomorphism ϕ∗D0 ≃ D0

and hence an injection ξ : D0 → ϕ∗(M(D)). Defining Oα := SF [[
Ep

̟ ]][1/p], one

checks that Oα = SF [[
ue0p

̟ ]][1/p] and that O ⊂ Oα ⊂ O[0,|π|1/p).

Lemma 4.2.2. The map ξα := Oα ⊗O ξ : Oα ⊗F0 D → Oα ⊗O ϕ∗M(D) is an
isomorphism.

Proof. Using the containments D0 ⊂ M(D) ⊂ λ−rD0 and D0 ≃ ϕ∗D0, we see
that D0 ⊂ ϕ∗(M(D)) ⊂ ϕ(λ)−rD0. It is easy to check that ϕ(λ) is a unit in
Oα, and it follows that ξα is an isomorphism. �

For an objectM ∈Modϕ,rO , we define a decreasing filtration on ϕ∗M by:

(4.2.2) Fili(ϕ∗M) := {x ∈ ϕ∗M | (1⊗ ϕ)(x) ∈ EiM}.
On the other hand, using the evident inclusions Oα ⊂ O[0,|π|1/p) ⊂ Ŝ0 we

obtain a canonical injection Oα ⊗F0 D →֒ Ŝ0 ⊗K DF0,K , which allows us to
equip Oα⊗OD0 with the natural subspace filtration, using the tensor product

filtration on Ŝ0 ⊗K DF0,K .

Lemma 4.2.3. The inverse isomorphism

ξ′α : Oα ⊗O ϕ∗M(D)
≃

(ξα)
−1

// Oα ⊗F0 D

of Lemma 4.2.2 is compatible with filtrations and Frobenius.

Proof. Clearly, ξ′α is compatible with Frobenius. To prove that ξ′α is filtration
compatible, we use the two facts recorded after Proposition 4.2.1. As noted

above, ϕ(λ) is a unit in Ŝ0, so the first fact implies that the injective map

ξ : D0 ≃ ϕ∗D0 →֒ ϕ∗M(D) is an isomorphism after tensoring with Ŝ0. Put

D̂0 := Ŝ0 ⊗O D0 and define an auxillary filtration on D̂0 by

F̃il
iD̂0 := D̂0 ∩ Ei(Ŝ0 ⊗OM(D)).

From the very definition (4.2.2), it is clear that 1 ⊗ ξ : D̂0 ≃ Ŝ0 ⊗O ϕ∗M(D)

carries F̃il
iD̂0 isomorphically onto Fili(Ŝ0 ⊗O ϕ∗M(D)). On the other hand,

the second fact above implies that an element d ∈ D̂0 lies in Ei(Ŝ0⊗OM(D))

if and only if ι0(d) ∈ Fili(Ŝ0 ⊗K DF0,K), from which F̃il
iD̂0 = FiliD̂0 follows.

Hence ξ′α is indeed compatible with filtrations. �
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For simplicity, let us put M := M(D). It follows from Lemma 4.2.3 that
the isomorphism ξ′α specializes to give a natural identification of ϕ-modules
D ≃ ϕ∗M/uϕ∗M as well as a natural identification of filtered K-vector spaces
DF0,K ≃ ϕ∗M/Eϕ∗M. Writing ψπ for the composite mapping

ψπ : ϕ∗M։ ϕ∗M/Eϕ∗M≃ DF0,K ,

we therefore obtain:

Corollary 4.2.4. The map ψπ : ϕ∗M(D)→ DF0,K is filtration compatible.

Remark 4.2.5. In the classical situation where F = Qp and f(u) = up, to
any objectM of Modϕ,rO , Kisin functorially associates a filtered ϕ-module via

D(M) := ϕ∗M/uϕ∗M with Fili(D(M)K) := ψπ(Fil
iϕ∗M). That this is

possible rests crucially on the existence of a unique ϕ-equivariant isomorphism

ξα : Oα ⊗F0 D(M) ≃ Oα ⊗O ϕ∗M
reducing modulo u to the given identification D(M) = ϕ∗M/uϕ∗M, which is
Lemma 1.2.6 of [Kis06]. For more general F and f(u) = up+ · · ·+ a1u, we are
only able to construct such a map ξα under the restriction ̟r+1|a1 in OF ; see
Lemma 4.5.6.

To conclude this section, we record the following further consequence of Lemma

4.2.3: Setting B̃α := W (R)[[E
p

̟ ]][1/p] ⊂ B+
cris,F , one checks that the subspace

filtration {FilnB̃α}n coincides with the filtration {EnB̃α}n. As SF ⊂W (R)F ,

we have a canonical inclusionOα ⊂ B̃α, and the map ξα of Lemma 4.2.2 induces
a natural isomorphism

(4.2.3) ξ′
B̃α

: B̃α ⊗O ϕ∗M≃ B̃α ⊗F0 D.

As the inclusion Ŝ0 ⊂ B+
dR is compatible with filtrations, we deduce:

Corollary 4.2.6. The map (4.2.3) is compatible with Frobenius and filtrations.

4.3. The classical setting. For future reference, we now recall the main
results in Kisin’s classical situation, where F = Qp and f(u) = up. In this
subsection only, we fix a choice π := {πn}n of p-power compatible roots of
a fixed uniformizer π = π0 in K, and set K∞ := Kπ and G∞ := Gπ. The
following summarizes the main results in this setting:

Theorem 4.3.1 ([Kis06]). Let V be a Qp-valued crystalline representation of
G with Hodge-Tate weights in {0, . . . , r} and T ⊂ V a G∞-stable Zp-lattice.
Then:

(1) There exists a unique Kisin module M so that TS(M) ≃ T as Zp[G∞]-
modules.

(2) If D = Dcris(V ) is the associated filtered ϕ-module, then one has
M(D) ≃ O⊗S M as ϕ-modules.

Proof. These are the main results of [Kis06] restricted to crystalline represen-
tations. �
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Now let F be an arbitrary extension of Qp contained in K and let V be an
F -crystalline representation and T a G∞-stable OF -lattice in V . Viewing V
as a crystalline Qp-valued representation and T as a G∞-stable Zp-module,
by Theorem 4.3.1 there is a unique (classical) Kisin module M attached to T ,

which is of finite Ẽ-height, for Ẽ := Ẽ(u) the minimal polynomial of π over K0

(we write Ẽ to distinguish this polynomial from our fixed E, which by definition
is the minimal polynomial of π over F0 = FK0). The additional OF -structure
on T is reflected on the classical Kisin module in the following way:

Corollary 4.3.2. The classical Kisin module M is naturally a finite and free
SF -module and as such has E-height r.

Proof. Proposition 3.4 of [GLS14] shows that M is naturally a finite and free

SF -module (see also the proof of [Kis08, Prop. 1.6.4]). Factor Ẽ in OF0 [u] as

Ẽ = E1 · · ·EeF with E1 = E, and for each i write ŜEi for the completion of
the localization of SF at the ideal (Ei). We must prove that the injective map
1 ⊗ ϕ : ϕ∗M → M has cokernel killed by a power of E = E1. To do this, it
suffices to prove that the scalar extension

(4.3.1) ϕ♯i : ŜEi ⊗SF ϕ
∗M

1⊗(1⊗ϕ) // ŜEi ⊗SF M

of 1⊗ϕ along SF → ŜEi is an isomorphism when i > 1. WritingM :=M(D),
we recall that the map ψπ : ϕ∗M→ DK is compatible with filtrations thanks
to Corollary 4.2.4, from which it follows that the map

ψπ
∣∣
ϕ∗M

: ϕ∗M // ϕ∗M/Ẽϕ∗M � � // DK

is also filtration-compatible. As V is F -crystalline, for any i > 1 we have
FiljDK,mi = 0 for all j ≥ 1, where mi is the maximal ideal of F ⊗Qp K

corresponding to Ei, and it follows that Fil1ϕ∗M ⊂ Eiϕ
∗M for all i > 1. We

then claim that for i > 1 the map 1⊗ ϕ : ϕ∗M/Eiϕ
∗M → M/EiM induced

from 1 ⊗ ϕ by reduction modulo Ei is injective. To see this, observe that if
x ∈ ϕ∗M has (1 ⊗ ϕ)(x) = Eim for m ∈ M, then writing y :=

∏
j 6=i Ejx,

we have (1 ⊗ ϕ)(y) = Ẽm so that y ∈ Fil1ϕ∗M by the very definition of the
filtration on ϕ∗M. By what we have seen above, we then have y ∈ Eiϕ∗M, so
since Ei is coprime to

∏
j 6=i Ej , we obtain x ∈ Eiϕ∗M as claimed. Now both

ϕ∗M and M are SF -free of the same rank, so as 1⊗ ϕ is injective, we see that
Qp ⊗Zp 1⊗ ϕ is an isomorphism for i > 1. But this map coincides with the

map ϕ♯i obtained from (4.3.1) by reduction modulo Ei, so it follows that ϕ♯i is
an isomorphism as well, as desired. �

4.4. Comparing constructions. Let us first recall some standard facts
about the Robba ring as in [Kis06]. For finer details of the Robba ring R
and its subring Rb, we refer to §2 (in particular §2.3) of [Ked04], noting that
several different notations are commonly used (in particular, we advise the
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reader that Rb = E† = Γ
k((t))
con [1/p]). The Robba ring is defined as

R := lim
s→1−

O(s,1)

and comes equipped with a Frobenius endomorphism, which is induced by the
canonical maps ϕ : O(s,1) → O(s1/p,1). Writing Ob

(s,1) ⊂ O(s,1) for the subring

of functions which are bounded, we also define the bounded Robba ring:

Rb := lim
s→1−

Ob
(s,1),

which is naturally a Frobenius-stable subring of R. Finally, we put

ORb :=
{∑

n∈Z
anu

n ∈ Rb
∣∣∣ an ∈ OF0 ∀n ∈ Z

}
;

this is a Henselian discrete valuation ring with uniformizer ̟ and residue field
k((u)). One checks that the fraction field of ORb is Rb, justifying our notation;
in particular, Rb is a field. Note that O is canonically a Frobenius-stable
subring of R.
By definition, a ϕ-module over R is a finite free R-module M equipped with
a ϕ-semilinear map ϕM : M → M whose linearization 1 ⊗ ϕ : ϕ∗M → M
is an isomorphism. One checks that E(u) ∈ O is a unit in R, so that scalar
extension along O →֒ R gives a functor from ϕ-modules over O to ϕ-modules
over R. A ϕ-moduleM over R is étale ifM admits a basis with the property
that the corresponding matrix of ϕM lies in GLd(ORb); by a slight abuse of
terminology, we will say that a ϕ-module over O is étale if its scalar extension
to R is. Our main result of this subsection is the following:

Theorem 4.4.1. Let V ∈ RepF -cris,r
F (G) and write D := Dcris,F (V ) for the

corresponding filtered ϕ-module. If M(D) is the ϕ-module over O attached to
D as in §4.2, we have:

(1) M(D) is étale;
(2) There exists a Kisin module M ∈Modϕ,rSF

such that O⊗SFM ≃M(D).

First note that there is a canonical inclusion SF →֒ ORb , so that (2) implies
(1). It follows that the above theorem is true in the classical setting of Kisin
by Theorem 4.3.1. In what follows, we will reduce the general case of Theorem
4.4.1 to the known instance of it in the classical setting. To ease notation,
we will adorn various objects with a superscript of “c” to signify that they
are objects in the classical setting. We likewise abbreviate M :=M(D) and

Mc := Mc(D). We note that Oc
α ⊂ B̃α, as E(uc) is another generator of

Fil1W (R)F so E(uc) = µE(u) for some µ ∈ W (R)×F thanks to Lemma 2.1.3.

By Corollary 4.2.6, the B̃α-linear isomorphism ξ′
B̃α

: B̃α ⊗O ϕ∗M≃ B̃α ⊗F0 D

is Frobenius and filtration compatible. The key point is that the Frobenius and

filtration on B̃α ⊗F0 D are canonical (recall that the filtration on B̃α ⊗F0 D is

induced by the inclusion B̃α ⊗F0 D →֒ B+
dR ⊗K DF0,K) and are independent of
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the choice of ϕ(u) = f(u). We therefore have a natural isomorphism

(4.4.1) ξ̃ : B̃α ⊗O ϕ∗M≃ B̃α ⊗Oc ϕ
∗Mc,

that is Frobenius and filtration compatible.

Lemma 4.4.2. There is a B̃α-linear and Frobenius-compatible isomorphism

η : B̃α ⊗OM≃ B̃α ⊗OcMc.

Proof. Choose an O-basis e1, . . . , ed of M, and let A ∈ Md(O) be the cor-
responding matrix of Frobenius, so (ϕ(e1), . . . , ϕ(ed)) = (e1, . . . , ed)A. We
write ei := 1 ⊗ ei ∈ ϕ∗M for the induced basis of ϕ∗M. Using the defini-
tion of Filiϕ∗M, it is not difficult to see that there is a matrix B ∈ Md(O)
satisfying AB = BA = ErId and with the property that Filrϕ∗M is gen-
erated by (α1, . . . , αd) := (e1, . . . , ed)B. As promised, we denote by eci , A

c,
etc. the objects in the classical setting corresponding to a choice ec1, . . . , e

c
d of

Oc-basis ofMc. Let X ∈ GLd(B̃α) be the matrix determined by the require-

ment ξ̃(e1, . . . , ed) = (ec1, . . . , e
c
d)X. As ξ̃ is compatible with both Frobenius and

filtrations, we find that

ξ̃◦ϕ(e1, . . . , ed) = (ec1, . . . , e
c
d)Xϕ(A) = ϕ◦ ξ̃(e1, . . . , ed) = (ec1 . . . , e

c
d)ϕ(A

c)ϕ(X)

and there exists a matrix Y ∈ GLd(B̃α) with

ξ̃(α1, . . . , αd) = (αc1, . . . , α
c
d)Y.

We conclude that Xϕ(A) = ϕ(Ac)ϕ(X) and XB = BcY . Since B̃α is an

integral domain, the facts that B = E(u)rA−1 and Bc = E(uc)r(Ac)−1 imply
that AcXE(u)r = E(uc)rY A. Due to Lemma 2.1.3, both E(u) and E(uc)

are generators of Fil1W (R)F , so µ := E(uc)/E(u) is a unit in W (R)F . We
therefore have the relation AcX = µrY A. Combining this with the equality
Xϕ(A) = ϕ(Ac)ϕ(X) yields X = ϕ(µrY ), and we deduce Acϕ(µrY ) = µrY A.

Defining a B̃α-linear map

η : B̃α ⊗OM //B̃α ⊗OcMc

by the requirement (η(e1), . . . , η(ed)) = (ec1, . . . , e
c
d)µ

rY , one then checks that
η provides the claimed Frobenius-compatible isomorphism. �

Recall that Lemma 2.2.1 gives inclusions O ⊂ B̃+
rig,F ⊂ B̃α.

Corollary 4.4.3. The isomorphism η of Lemma 4.4.2 descends to a B̃+
rig,F -

linear and Frobenius-compatible isomorphism

ηrig : B̃+
rig,F ⊗OM≃ B̃+

rig,F ⊗OcMc.

Proof. We will use the notation of the proof of Lemma 4.4.2. Let us put

Z := µrY ∈ GLd(B̃α), so that η(e1, . . . , ed) = (e1, . . . , ed)Z, and note that
Acϕ(Z) = ZA as η is compatible with Frobenius. To prove the corollary, it

suffices to show that both Z and Z−1 have entries in B̃+
rig,F . We will show that
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Z ∈ Md(B̃
+
rig,F ); the proof of the corresponding fact for Z−1 is similar and is

left to the reader. By the definition of B̃+
rig,F , it suffices to show that for any m,

there exists Zm ∈Md(B
+
max,F ) with ϕ

m(Zm) = Z, which we prove by induction

on m. The base case m = 0 is obvious, as B̃α ⊂ B+
max,F . Now suppose

that Zm exists, and note that from the equality Acϕ(Z) = ZA we obtain
E(u)rZ = Acϕ(Z)B. We may write Ac = ϕm+1(Am+1) and B = ϕm+1(Bm+1)
thanks to Lemma 2.2.1, and we then have E(u)rZ = ϕm+1(Am+1ZmBm+1).
Finally, Lemma 2.1.5 implies the existence of Zm+1. �

We can now prove Theorem 4.4.1:

Proof of Theorem 4.4.1. We first prove that M is étale, and to do so we will
freely use the results and notation of [Ked04]. By the main theorem of [Ked04],
M is étale if and only if M is pure of slope 0. Hence Mc is pure of slope 0
thanks Theorem 4.3.1 and our remarks immediately following Theorem 4.4.1.
Since the slope filtration of M does not change after tensoring with the ring
Γalg
an,con constructed in [Ked04], it is enough to show that

Γalg
an,con ⊗OM≃ Γalg

an,con ⊗OcMc.

as ϕ-modules over Γalg
an,con, and to do this it is enough thanks to Lemma 4.4.2 to

prove that B̃+
rig,F ⊂ Γalg

an,con. But this follows from Berger’s construction [Ber02,

§2.3] (strictly speaking, [Ber02, §2.3] deals only with the case F = Qp, but see
the last paragraph of [Ber14, §3] for the general case. We also warn the readers

that Berger use B̃
†
rig to denote B̃†rig,F in this paper, while his B̃

†
rig,F means a

different ring from ours), as he proves that B̃+
rig,F ⊂ B†rig,F = B̃

†
rig = Γalg

an,con

(see the table over [Ber08, Prop. 1.1.12] for a helpful comparison of the various
notations used by different authors). It follows thatM is étale.

Now the proof that M := M(D) admits a descent to a Kisin module M is
exactly the same as the proof of Lemma 1.3.13 in [Kis06], so we just sketch
the highlights. As M is étale, there exists a finite free ORb -module N with
Frobenius endomorphism ϕN satisfying

(4.4.2) R⊗O
Rb
N ≃ R⊗OM =:MR

Proposition 6.5 in [Ked04] shows that it is possible to select an R-basis ofMR
whose Rb-span is exactly N [1/p] and whose O-span isM via the identifications
(4.4.2). Define Mb ⊆ M to be the SF [1/p]-span of this basis. The equality
SF [1/p] = Rb ∩ O provides the intrinsic description Mb = M∩ N [1/p]; in
particular, Mb is ϕ-stable and of E-height r. Let M′ := Mb ∩ N and put
M := (ORb ⊗SF M′) ∩M′[1/p] ⊂ N [1/p]. Then M is a finite and ϕ-stable
SF -submodule of N [1/p]. It follows from the structure theorem of finite SF -
modules [Fon90, Proposition 1.2.4] that M is in fact finite and free overSF . To
see that M has E-height r, it suffices to check that det(ϕM) = Esw for some
w ∈ S×F . ButM[1/p] =Mb andMb is of finite E-height, so det(ϕM) = pmEsw
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for some w ∈ S×F ; asM is pure of slope 0 (equivalently, det(ϕM) ∈ O×Rb), we
must in fact have m = 0. �

4.5. Full-faithfulness of restriction. Fix an object V of RepF -cris,r
F (G),

and let M be a Kisin module associated to V via Theorem 4.4.1 (2).

Proposition 4.5.1. There exists a natural OF -linear injection

ι : TSF (M) →֒ V ≃ Vcris,F (D)

that is moreover Gπ-equivariant. In particular, VS(M) ≃ V as F [Gπ]-modules.

Proof. SetM :=M(D). AsM≃ O⊗SF M, we have a natural injection

ι′ : TSF (M) = HomSF ,ϕ(M,Sur
F ) →֒ HomO,ϕ,Fil(ϕ

∗M, B+
cris,F ),

uniquely determined by the requirement that for any h : M → Sur
F , the value

of ι′(h) on any simple tensor s⊗m ∈ O⊗ϕ,SF M ≃ ϕ∗M is given by

ι′(h)(s⊗m) = sϕ(h(m)).

Using the fact that E ∈ Fil1W (R)F , one checks that this really does define a
filtration-compatible O-linear homomorphism ι′(h) : ϕ∗M→ B+

cris,F .

On the other hand, the isomorphism ξα : Oα⊗F0 D
∼−→ Oα⊗Oϕ

∗M of Lemma
4.2.2 induces, thanks to Lemma 4.2.3, a natural injection

HomO,ϕ,Fil(ϕ
∗M, B+

cris,F )
� �h 7→1⊗h // HomOα,ϕ,Fil(Oα ⊗O ϕ∗M, B+

cris,F )

≃ h 7→h◦ξα
��

HomOα,ϕ,Fil(Oα ⊗F0 D,B
+
cris,F )

and we claim that HomOα,ϕ,Fil(Oα⊗F0 D,B
+
cris,F ) = Vcris,F (D). By definition,

Vcris,F (D) = HomF0,ϕ(D,B
+
cris,F ) ∩ HomK,Fil(DF0,K , B

+
dR),

and it is clear that HomOα,ϕ(Oα ⊗F0 D,B
+
cris,F ) = HomF0,ϕ(D,B

+
cris,F ). Since

the injection Oα ⊗O D →֒ Ŝ0 ⊗ DF0,K is compatible with filtrations by the
very construction of the filtration on Oα ⊗F0 D, we conclude that

HomF0(D,B
+
cris,F ) ∩ HomOα,Fil(Oα ⊗F0 D,B

+
cris,F )

≃ HomF0(D,B
+
cris,F ) ∩ HomK,Fil(DF0,K , B

+
dR),

which gives our claim.

We thus obtain a natural injection ι : TSF (M) →֒ Vcris,F (D) which is visibly
compatible with the given Gπ-actions. �

Combining Theorem 4.4.1 and Proposition 3.3.3, we deduce Theorem 1.0.1:

Corollary 4.5.2. Let V be an object of RepF -cris,r
F (G) and T ⊂ V a Gπ-stable

OF -lattice. Then there is a Kisin module M of E-height r with TSF (M) ≃ T .
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Remark 4.5.3. It is an important point that in our general setup, the Kisin
module M may not be unique for a given T , contrary to the classical situation.
Indeed, the “cyclotomic case” of Example 2.1.2 is a prototypical instance of
such non-uniqueness: let T be the trivial character, M = SF the trivial rank-1
Kisin module, and M′ = uSF ⊂M. Since ϕ(u) = E(u)u, one sees that M′ is
also a Kisin module and TSF (M) = TSF (M

′) = T .

We now prove Theorem 1.0.2:

Theorem 4.5.4. Assume that ϕn(f(u)/u) is not a power of E(u) for any n ≥ 0

and that vF (a1) > r. Then the restriction functor RepF -cris,r
F (G)→ RepF (Gπ)

given by V  V
∣∣
Gπ

is fully faithful.

Remark 4.5.5. We suspect that the theorem remains valid if we drop the as-
sumption that ϕn(f(u)/u) is not a power of E for any n ≥ 0. When r = 1, we
will show that this is indeed the case in the next section.

In order to prove Theorem 4.5.4, we prepare several preliminaries. In what
follows, we keep our running notation with f(u) = up + ap−1up−1 + · · ·+ a1u,
and we assume throughout that ̟r+1|a1 in OF .
Let M ∈ Modϕ,rSF

and set M := ϕ∗M/uϕ∗M.

Lemma 4.5.6. There exists a unique ϕ-equivariant isomorphism

ξα : Oα ⊗OF0
M

≃ // Oα ⊗SF ϕ
∗M

whose reduction modulo u is the identity on M .

Proof. The proof is similar to that of Proposition 2.4.1 in [Liu11], and
is motivated by the proof of Lemma 1.2.6 in [Kis06]. Choose an SF -
basis e1, . . . , ed of M and let A ∈ Md(SF ) be the resulting matrix of ϕ;
i.e. (ϕ(e1), . . . , ϕ(ed)) = (e1, . . . , ed)A. Then ei := 1 ⊗ ei forms a basis of
ϕ∗M and we have (ϕ(e1), . . . , ϕ(ed)) = (e1, . . . , ed)ϕ(A). Put A0 := A mod u
and ēi := ei mod u. Then we have (ϕ(ē1), . . . , ϕ(ēd)) = (ē1, . . . , ēd)ϕ(A0). If
the map ξα of the Lemma exists, then writing fi := ξα(ēi) ∈ Oα ⊗SF ϕ

∗M
and denoting by Y ∈ GLd(Oα) the matrix with (f1, . . . , fd) = (e1, . . . , ed)Y ,
we necessarily have Y ≡ Id mod u and

(4.5.1) Y ϕ(A0) = ϕ(A)ϕ(Y ).

Conversely, if (4.5.1) has a solution Y ∈ GLd(Oα) satisfying Y ≡ Id mod u,
then we may define ξα by ξα(ē1, . . . , ēd) = (e1, . . . , ed)Y . Thus, it remains to
solve Equation (4.5.1). Put

(4.5.2) Yn := ϕ(A) · · ·ϕn(A)ϕn(A−10 ) · · ·ϕ(A−10 ).

We claim that the sequence {Yn}n converges to a matrix Y ∈ Md(Oα). To
see this, note that there exists B0 ∈ GLd(Oα) with A0B0 = ̟rId since M has
height r. It follows that AA−10 = Id +

u
̟rZ for Z ∈ Md(SF ). Thus,

Yn = Yn−1 + ϕ(A) · · ·ϕn−1(A)ϕ
n(u)

̟rn
ϕn(Z)ϕn−1(B0) . . . ϕ(B0),
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so to prove our claim it suffices to show that ϕn(u)/̟rn converges to 0 in Oα,
which is the content of Lemma 2.2.2.

To prove that Y is invertible, we compute its determinant. Put d := rankSFM,
and observe that since ∧dM has finite E-height, we have det(A) = γEm for

some γ ∈ S×F . It follows that det(ϕ(A)ϕ(A
−1
0 )) = γ′(ϕ(E)

̟ )m for some γ′ ∈ S×F .
One then checks that ϕ(E)/̟ is a unit in Oα, and hence that det(Y ) is a unit
in Oα so Y is invertible as desired.

Finally, we prove that the solution Y to (4.5.1) that we have constructed is
unique. Suppose that equation (4.5.1) admits two solutions Y , Y ′ satisfying
Y, Y ′ ≡ Id mod u. Then their difference is also a solution Y − Y ′ = uZ for
Z ∈Md(Oα). Equation (4.5.1) then implies that for all n we have

Y − Y ′ = ϕ(A)ϕ(Y )ϕ(A−10 ) = ϕ(A) · · ·ϕn(A)ϕn(Y )ϕn(A−10 ) · · ·ϕ(A−10 )

= ϕ(A) · · ·ϕn(A)ϕ
n(u)

̟rn
ϕn(Z)ϕn(B0) · · ·ϕ(B0)

As ϕn(u)/̟rn converges to 0 in Oα, we conclude that Y = Y ′ as desired. �

For M ∈ Modϕ,rSF
, let us write D(M) = ξα(M [1/p]) ⊂ Oα ⊗SF ϕ

∗M for the

image of M [1/p] under the map of Lemma 4.5.6. If M is a Kisin module
associated to some F -crystalline G-representation V with D := Dcris,F (V )
(i.e. O ⊗SF M ≃ M(D)), then by the very construction of M(D) there is a
natural ϕ-compatible inclusionD ≃ ϕ∗D →֒ ϕ∗M(D) which, thanks to Lemma
4.2.2, becomes an isomorphism after tensoring over O with Oα. Recalling that
Oα ⊗SF M ≃M(D), we therefore have a ϕ-equivariant inclusion

(4.5.3) D � � d 7→1⊗d // Oα ⊗F0 D ≃
4.2.2 // Oα ⊗O ϕ∗M(D) ≃ Oα ⊗SF ϕ

∗M

via which we view D as a ϕ-stable F0-subspace of Oα ⊗SF ϕ
∗M.

Corollary 4.5.7. Let V ∈ RepF -cris,r
F (G). If M ∈ Modϕ,rSF

is a Kisin module

attached to D := Dcris,F (V ), then D(M) = D inside Oα ⊗S ϕ∗M.

Proof. The reduction of (4.5.3) modulo u is the ϕ-compatible isomorphism

D ≃ (Oα ⊗SF ϕ
∗M) mod u ≃M [1/p].

Since the map ξα of Lemma 4.5.6 reduces to the identity modulo u, we conclude
that bothD and D(M) insideOα⊗SF ϕ

∗M are ϕ-equivariant liftings ofM [1/p];
the uniqueness aspect of Lemma 4.5.6 then forces D = D(M) as claimed. �

It follows from Corollary 4.5.7 that the map ξα of Lemma 4.5.6 coincides with
that of Lemma 4.2.2, which justifies our notation.

Recall that VS(M) = TS(M)[1/p] for M ∈ Modϕ,rSF
.

Lemma 4.5.8. Let f : M → M′ be any morphism of height-r Kisin modules,
and let fα be the scalar extension fα : Oα ⊗SF ϕ

∗M → Oα ⊗SF ϕ
∗M′ of ϕ∗f

along SF → Oα. Then fα(D(M)) ⊂ D(M′).
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Proof. Put V = VS(M) and V ′ = VS(M′) and denote by ψ = VS(f) : V ′ → V
the induced map. By Proposition 3.3.3, we can modify M and M′ (inside
M[1/p] and M′[1/p], respectively) so that f may be decomposed by two exact
sequences inside Modϕ,rSF

:

0 //L //M
f //N //0 and 0 //N //M′ //N′ //0 ,

where N = f(M). From the construction of ξα in Lemma 4.5.6 (in particular,
from the explicit construction of Y in (4.5.2)), we obtain the exact sequences

0 // D(L) // D(M)
fα // D(N) // 0

and

0 // D(N) // D(M′) // D(N′) // 0 ,

which shows that fα(D(M)) ⊂ D(M′) as claimed. �

Proof of Theorem 4.5.4. Let V ′, V be two objects of RepF -cris,r
F (G), and set

D = Dcris,F (V ) and D′ = Dcris,F (V
′). Suppose that there exists an F -linear

map h : Vcris,F (D
′) → Vcris,F (D) that is Gπ-equivariant. By Corollary 4.5.2,

there exist Gπ-stable OF -lattices T and T ′ inside Vcris,F (D) and Vcris,F (D
′),

respectively, with h(T ′) ⊆ T , and objects M and M′ of Modϕ,rSF
such that

TS(M) ≃ T and TS(M′) ≃ T ′ via the map ι of Proposition 4.5.1. By Propo-
sition 3.3.5, there exists a map f : M → M′ in Modϕ,rSF

with VSF (f) ≃ h. We
may therefore realize h as the composite

Vcris,F (D
′)

ι−1

∼
// VS(M′)[1/p]

VS(f) // VS(M)[ 1p ]
ι
∼

// Vcris,F (D) ,

where ι is constructed using the isomorphism ξ′α : Oα ⊗SF ϕ
∗M ≃ Oα ⊗ D

of Lemma 4.2.3. Due to Lemma 4.5.8 and Corollary 4.5.7, we know that f
induces a map fα : Oα ⊗SF ϕ

∗M → Oα ⊗SF ϕ
∗M′ carrying D to D′, so for

a ∈ Vcris,F (D
′) ⊂ HomF0,ϕ(D,B

+
cris,F ) we have h(a) = a ◦ f̄ ∈ Vcris,F (D

′) ⊂
HomF0,ϕ(D

′, B+
cris,F ) where we write f̄ : D → D′ for the map fα|D. It follows

at once that h is compatible with the action of G = GK , as desired. �

We note that Theorem 4.5.4 is false if we replace “RepF -cris
F (G)” with

“Rep
Qp-cris
F (G),” as the following example shows:

Example 4.5.9. Consider again the setting of Example 2.1.2, withK = Qp(ζp),
π = ζp − 1 and ϕ(u) = f(u) = (1 + u)p − 1, and Kπ =

⋃
n≥1 Qp(ζpn). Let

F = Qp. Then the assumption of Theorem 4.5.4 is not satisfied as a1 = p,

and the restriction functor Rep
Qp-cris
F (G)→ RepF (G∞) induced by V  V

∣∣
Gπ

is visibly not fully faithful: letting χ denote the p-adic cyclotomic character,
we have χ

∣∣
Gπ

= 1
∣∣
Gπ

, but χ 6≃ 1 as G-representations. On the other hand,

if F = K then we easily check that the assumptions of Theorem 4.5.4 are
satisfied. Of course, there is no contradiction here as χ is not an F -crystalline
representation because HTτ (χ) = 1 for all τ .
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5. F -Barsotti-Tate groups

Recall that by an F -Barsotti–Tate group over OK , we mean a Barsotti–Tate
group over OK whose p-adic Tate module is an F -crystalline representation
of G := GK . In this section, we prove that the category of F -Barsotti–Tate
groups over OK is (anti)equivalent to the category of height-1 Kisin modules:

Theorem 5.0.10. Assume vF (a1) > 1. Then there is an (anti)equivalence of
categories between the category of Kisin modules of height 1 and the category
of F -Barsotti-Tate groups.

Using well-known results of Breuil, Kisin, Raynaud, and Tate, one shows as
in [Liu13b, Theorem 2.2.1] that the p-adic Tate module gives an equivalence
between thet category of F -Barsotti–Tate groups over OK and the category

RepF -cris,1
OF (G) of G-stable OF -lattices inside F -crystalline representations with

Hodge-Tate weights in {0, 1}. Thus, to prove Theorem 5.0.10 we must construct

an (anti)equivalence between Modϕ,1SF
and RepF -cris,1

OF (G). In what follows, we

show that for each M ∈ Modϕ,1SF
the natural Gπ-action on TS(M) can be

functorially extended to to a G-action such that TS(M) ∈ RepF -cris,1
OF (G). This

construction will provide a contravariant functor TS : Modϕ,1SF
→ RepF -cris,1

OF (G)

that we will then prove is an (anti)equivalence.

5.1. A natural G-action on TS(M). Fix a Kisin module M of height 1. In
this subsection, we will construct a natural G-action on TS(M) which extends
the given action of Gπ. The key input to this construction is:

Lemma 5.1.1. There exists a unique W (R)F -semilinear G-action on
W (R)F ⊗SF M that commutes with ϕ and satisfies

(1) If g ∈ Gπ and m ∈M then g(1⊗m) = 1⊗m;
(2) If m ∈M then 1⊗ (g(m)−m) ∈ tF I

+(W (R)F ⊗SF M).

Here, we remind the reader that tF ∈ W (R)F , constructed in Example 3.3.2,
satisfies ϕ(tF ) = EtF and tF 6≡ 0 mod ̟.

Proof. Fix an SF -basis e1, . . . , ed of M and let A be the resulting matrix of
Frobenius, so (ϕ(e1), . . . , ϕ(ed)) = (e1, . . . , ed)A. Supposing that the required
G-action exists, for any g ∈ G we have a matrix Xg ∈ Md(W (R)F ) with
(ge1, . . . , ged) = (e1, . . . , ed)Xg, and the requirement that g and ϕ commute is
equivalent the matrix equation

(5.1.1) Xgg(A) = Aϕ(Xg).

We claim that for each g ∈ G, equation (5.1.1) has a unique solution Xg

satisfying the condition Xg − Id ∈Md(tF I
+). Granting this for a moment, it is

easy to see that the Lemma follows once we check that g 7→ Xg really defines
an action of G, which is equivalent to the cocycle condition Xσσ(Xτ ) = Xστ

for all σ, τ ∈ G. But it is clear that Xσσ(Xτ ) and Xστ are both solutions to
Xστ(A) = Aϕ(X), and the conditionX−Id ∈Md(tF I

+) holds forX = Xστ by
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our claim and for X = XσσXτ thanks to Lemma 2.3.4. Thus, the uniqueness
aspect of our claim gives Xσσ(Xτ ) = Xστ , as desired.

It remains to prove our claim. Let us first dispense with the uniqueness aspect.
Suppose that for some g ∈ G, equation (5.1.1) has two solutions X1, X2 satis-
fying Xi − Id ∈ Md(tF I

+) for i = 1, 2. Then their difference is a solution as
well, and has the form X1−X2 = tFZ for some Z ∈ Md(I

+). Equation (5.1.1)
then takes the shape

(5.1.2) tFZg(A) = Aϕ(tFZ),

and we will show that this forces Z = 0, giving uniqueness. First, writing
Z̄ := Z mod ̟ ∈Md(R), we note that it suffices to prove that Z̄ = 0: indeed, if
Z = ̟Z1 for some Z1 ∈Md(W (R)F ), then Z1 ∈ Md(I

+) is another solution to
(5.1.2), so boot-strapping the argument gives Z ∈ ∩n≥1̟nW (R)F = {0}. Now
since M has height 1, there exists a matrix B ∈Md(SF ) with AB = EId. On
the other hand, we have ϕ(tF ) = EtF as noted above, so it follows from (5.1.2)
that there exists a matrix C ∈ Md(W (R)F ) with Z = Aϕ(Z)C. Reducing
modulo ̟ gives a matrix equation Z̄ = Āϕ(Z̄)C̄ in Md(R). If Z̄ 6= 0, then
there exists an entry z, say, of Z̄ which has minimal valuation. On the other
hand, as Z ∈ Md(I

+), we must have vR(z) > 0. But the minimal possible
valuation of entries in Āϕ(Z̄)C̄ is pvR(z) > vR(z), which is a contradiction.
Thus Z̄ = 0, settling uniqueness.

Finally, let us prove the existence of Xg solving (5.1.1) for each g ∈ G. For
ease of notation, put

Pn := Aϕ(A) · · ·ϕn(A) and Qn := ϕn(g(A−1)) · · ·ϕ(g(A−1))g(A−1)(5.1.3)

and define Xn := PnQn. It suffices to prove the following:

(1) Xn ∈Md(W (R)F ) for all n;
(2) Xn − Id ∈Md(tF I

+) for all n;
(3) Xn converges as n→∞.

For (1) and (2), we argue by induction on n. When n = 0, by definition we
have X0 = P0Q0 = Ag(A−1) = g(g−1(A)A−1). On the other hand, by Lemma
2.3.2, we may write g−1A = A+ ϕ(tF )C for some C ∈Md(I

+), which gives

g−1(A)A−1 = Id + ϕ(tF )CA
−1 = Id + tFCEA

−1 = Id + tFCB

thus proving (1) and (2) in the base case n = 0.

Now suppose we have proved Xn = Id + tFCn with Cn ∈ Md(I
+), and let us

show that Xn+1 satisfies the same equation for some Cn+1 ∈ Md(I
+). Writing

Ag(A−1) = Id + tFC0 with C0 ∈ Md(I
+), we have

Xn+1 = Xn + Pnϕ
n+1(tF )ϕ

n+1(C0)Qn

Now Eg(A−1) ∈ Md(W (R)F ) as g(E) = µgE for some unit µg ∈ W (R)F ,
and we have ϕn+1(tF ) = ϕn(E) · · ·ϕ(E)EtF . We conclude that the matrix

Q̃n := ϕn+1(tF )Qn lies in Md(tFW (R)F ), which gives Xn+1 ∈ Md(W (R)F )
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and Xn+1 − Id ∈ Md(tF I
+) as desired. By construction, we then have

Xn+1 −Xn = Pn · ϕn+1(C0) · Q̃n,

with Pn, Q̃n ∈ Md(W (R)F ) and since ϕn+1(C0) converges to 0 in W (R)F , we
conclude that Xn converges, which gives (3) and completes the proof. �

Corollary 5.1.2. The natural Gπ-action on TS(M) can be functorially ex-
tended to an action of G. In particular, TS extends to a contravariant functor
from Modϕ,1SF

to RepOF (G).

Proof. By Lemma 3.3.1 (2), we have isomorphisms of OF [Gπ]-modules

TS(M) ≃ HomSF ,ϕ(M,W (R)F )

≃ HomW (R)F ,ϕ(W (R)F ⊗SF M,W (R)F ).
(5.1.4)

Thanks to Lemma 5.1.1, we have an action of G onW (R)F⊗SFM that extends
the given action of Gπ , so the final term in (5.1.4) has an action of G given by

(g◦h)(x) = g(h(g−1(x))), ∀g ∈ G, ∀h ∈ HomW (R)F ,ϕ(W (R)F⊗SFM,W (R)F )

and one checks easily that this action extends the given action of Gπ on TS(M).

It remains to prove that TS is a functor. So suppose that h : M→M′ is a map
in Modϕ,1SF

and let us check that the induced map TS(h) : TS(M
′)→ TS(M) is

indeed a map of OF [G]-modules. To do this, using (5.1.4), it suffices to show
that the map

1⊗ h :W (R)F ⊗SF M→W (R)F ⊗SF M′

is G-equivariant, i.e. that (1 ⊗ h) ◦ g = g ◦ (1 ⊗ h) for all g ∈ G. Choose SF -
bases e1, . . . , ed and e′1, . . . , e

′
d′ of M and M′, respectively, and let A and A′ be

the corresponding matrices of Frobenius, so (ϕ(e1), . . . , ϕ(ed)) = (e1, . . . , ed)A
and (ϕ(e′1), . . . , ϕ(e

′
d′)) = (e′1, . . . , e

′
d′)A

′. Letting Z be the d′ × d-matrix with
entries in SF determined by the relation h(e1, . . . , ed) = (e′1, . . . , e

′
d′)Z, we seek

to prove that g ◦ (1⊗h)(e1, . . . , ed) = (1⊗h) ◦ g(e1, . . . , ed), which is equivalent
to the matrix equation

X ′gg(Z) = ZXg,

where Xg (resp. X ′g) is the matrix constructed in the proof of Lemma 5.1.1
giving the action of g on M (resp. M′). By construction, Xg = lim

n→∞
Xn, and

similarly for X ′g, so it suffices to check that X ′ng(Z) = ZXn for all n. From the
very definition of Xn = PnQn and X ′n = P ′nQ

′
n via (5.1.3), this amounts to

P ′nQ
′
ng(Z) = ZAPnQn.(5.1.5)

But as ϕ◦h = h◦ϕ, we have A′ϕ(Z) = ZA, or equivalently, A′−1Z = ϕ(Z)A−1,
and the truth of equation (5.1.5) follows easily from the definition (5.1.3). �
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5.2. An equivalence of categories. In this subsection, we prove Theorem
5.0.10. Let us first recall the setup and some notation. For M ∈ Modϕ,1SF

, put

M := O⊗SF M and define a decreasing filtration on ϕ∗M as in (4.2.2). Since

M has height 1, we have Filiϕ∗M = Ei−1Fil1ϕ∗M for i ≥ 2. Recall that we
set M := ϕ∗M/uϕ∗M and let us put D := D(M) := ξα(M [1/p]), which is
naturally a ϕ-stable F0-subspace of Oα ⊗SF ϕ

∗M via the unique isomorphism
ξα constructed in Lemma 4.5.6. Since ξα : Oα ⊗F0 D → Oα ⊗ ϕ∗M is an
isomorphism, we may identify ϕ∗M/Eϕ∗M with DF0,K = K ⊗F0 D, and
we write ψπ : ϕ∗M → DF0,K for the natural projection. We then define

FiliDF0,K := ψπ(Fil
iϕ∗M), and note that since Fil2ϕ∗M ⊂ Eϕ∗M, we have

Fil2DF0,K = 0. In this way we obtain from M an object D = D(M) of MFϕF0,K
.

Suppose that M′ = SF · e is a rank-1 Kisin module with SF -basis e. Then we
have ϕ(e) = γEme with γ ∈ S×F a unit thanks to Example 3.3.2, and we call
m the minimal height of M′.

Lemma 5.2.1. With notation as above,

(1) The natural injection

Oα ⊗O ϕ∗M ξ′α // Oα ⊗F0 D
� � // Ŝ0 ⊗DF0,K

is compatible with filtrations, where ξ′α = (ξα)
−1.

(2) Suppose M has rank d. Then the minimal height of ∧dM is

dimK0 Fil
1DF0,K .

Proof. Since Filiϕ∗M = Ei−1Fil1ϕ∗M for i ≥ 2, to prove (1) it suffices to check

the given injection is compatible with Fil1. As E is a generator of Fil1Ŝ0, such
compatibility is equivalent to the condition that x ∈ Fil1ϕ∗M if and only if
ψπ(x) ∈ Fil1DF0,K . But this is clear as Eϕ∗M⊂ Fil1ϕ∗M.

We now prove (2). Fix an SF -basis e1, . . . , ed of M and let A ∈ Md(SF ) be
the corresponding matrix of Frobenius. Since M has height 1, there exists a
matrix B ∈ Md(SF ) with AB = EId. Defining ei = 1 ⊗ ei ∈ ϕ∗M, we easily
check that {ei} is an O-basis of ϕ∗M with (α1, . . . , αd) := (e1, . . . , ed)B an
O-basis of Fil1ϕ∗M.

Now the inclusion ϕ∗M/Fil1ϕ∗M ⊂ ϕ∗M/Eϕ∗M = DF0,K realizes

ϕ∗M/Fil1ϕ∗M as a K-subspace of DF0,K , so there exists a basis f1, . . . , fd
of ϕ∗M with the property that f1, . . . fs, Efs+1, . . . , Efd generates Fil1ϕ∗M.
Since Fil1DF0,K = ψπ(Fil

1ϕ∗M) we have dimK Fil1DF0,K = s. On the other

hand, since α1, . . . , αd also generates Fil1ϕ∗M, there exist invertible matrices
X,Y ∈ GLd(O) with

B = XΛY for Λ = diag(1, . . . , 1, E, . . . , E)

the diagonal matrix with s many 1’s and d − s many E’s along the diag-
onal. Thus, detB = Ed−sγ for γ ∈ O× a unit and since AB = EId we
then have det(A) = Esγ−1. It follows that the minimal height of ∧dM is
s = dimK Fil1DF0,K , as desired. �
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Recall that we have defined VS(M) := F ⊗OF TS(M).

Proposition 5.2.2. With notation as above, we have VS(M) ≃ Vcris,F (D(M))
as F [G]-modules. In particular, VS(M) is crystalline with Hodge-Tate weights
in {0, 1}.

Proof. The proof of Proposition 4.5.1 carries over mutatis mutandis to show
that there exists a natural injection of OF [Gπ]-modules

ι : TS(M) →֒ HomO,ϕ,Fil(ϕ
∗M, B+

cris,F ) →֒ HomOα,ϕ,Fil(Oα ⊗O ϕ∗M, B+
cris,F )

≃ HomOα,ϕ,Fil(Oα ⊗F0 D,B
+
cris,F ) ≃ Vcris,F (D),

where instead of using Lemma 4.2.3, we must appeal to Lemma 4.5.6 and
Lemma 5.2.1 (note that a priori we know neither that M(D) ≃ M nor that
D is admissible). Since dimF0(D) = rankSFM and ι is injective, we conclude
that D is admissible. In particular, Vcris,F (D) is crystalline with Hodge-Tate
weights in {0, 1}.
It remains to show that ι is compatible with the given actions of G = GK . By
construction, the G-action on TS(M) is induced from the identification

(5.2.1) TS(M) ≃ HomW (R)F ,ϕ(W (R)F ⊗SF M,W (R)F )

of (5.1.4) with G-action on the right side that of Lemma 5.1.1. Now the right
side of (5.2.1) is clearly naturally isomorphic as an OF [G]-module to

HomW (R)F ,ϕ,Fil(W (R)F ⊗SF ϕ
∗M,W (R)F ),

which is an OF -lattice in HomB+
cris,F ,ϕ,Fil

(B+
cris,F⊗F0D,B

+
cris,F ). Thus, to prove

that ι is G-equivariant, we must show that the G-action on B+
cris,F ⊗SF ϕ

∗M

deduced from Lemma 5.1.1 agrees with the G-action on B+
cris,F ⊗F0 D via the

map

B+
cris,F ⊗F0 D

≃ // B+
cris,F ⊗SF ϕ

∗M

deduced from (4.5.3) (which is an isomorphism thanks to Lemma 4.5.6); here,
G acts trivially on D. Equivalently, we must show that the G-action on
B+

cris,F ⊗SF ϕ
∗M provided by Lemma 5.1.1 restricts to the trivial action on

D(M), viewed as a subspace of this tensor product again via (4.5.3).

As in the proofs of Lemma 4.5.6 and Lemma 5.1.1, let e1, . . . , ed be an SF -basis
of M and put {ei := 1⊗ ei}, which is then an SF -basis of ϕ

∗M. The proof of
Lemma 4.5.6 shows that (f1, . . . , fd) := (e1, . . . , ed)Y is a basis of D(M) for

Y = lim
n→∞

ϕ(A) · · ·ϕn(A)ϕn(A−10 ) · · ·ϕ(A−10 ).

Now for any g ∈ G, by the proof of Lemma 5.1.1 we have the equality
g(e1, . . . , ed) = (e1, . . . , ed)ϕ(Xg) with

ϕ(Xg) = lim
n→∞

ϕ(A) · · ·ϕn(A)ϕn(g(A−1)) · · ·ϕ(g(A−1)).
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Thus, g(f1, . . . , fd) = (e1, . . . , ed)ϕ(Xg)g(Y ) = (e1, . . . , ed) lim
n→∞

ϕ(Xn)g(Yn)

with

ϕ(Xn)g(Yn) =
(
ϕ(A) · · ·ϕn(A)ϕn(g(A−1)) · · ·ϕ(g(A−1))

)

×
(
ϕ(g(A)) · · ·ϕn(g(A))ϕn(g(A−10 )) · · ·ϕ(g(A−10 ))

)

= Yn

In other words, g(f1, . . . , fd) = (f1, . . . , fd), which completes the proof. �

Proof of Theorem 5.0.10. Thanks to Proposition 5.2.2 and Corollary 5.1.2, we

have a contravariant functor TS : Modϕ,1SF
→ RepF -cris,1

OF (G), which it remains
to prove is fully faithful and essentially surjective.

For full-faithfulness, suppose given a map h : TS(M) → TS(M
′) of OF [G]-

modules. Restricting to Gπ gives a map h
∣∣
Gπ

: TS(M)
∣∣
Gπ
→ TSF (M

′)
∣∣
Gπ

,

and by Corollary 3.2.3 we obtain a morphism f : OE ⊗SF M′ → OE ⊗SF M
with TS(f) = h|Gπ . It then suffices to show that f(M′) ⊂M. Arguing as in the
proof of Proposition 3.3.5, it suffices to check that ifM ⊂M′ ⊂ OE⊗SFM then
M = M′. Applying ∧d, we then easily reduce to proving that ∧dM and ∧dM′
have the same minimal height. By our reductions are now in the situation
that TS(M) ≃ TS(M

′) as OF [G]-modules thanks to Corollary 5.1.2, so by
Proposition 5.2.2 we have D(M) ≃ D(M′) as filtered ϕ-modules. In particular,

Fil1D(M)F0,K ≃ Fil1D(M′)F0,K and the minimal heights of ∧dM and ∧dM′
are the same by Lemma 5.2.1 (2). Thus, TS is fully faithful.

We now show that TS is essentially surjective. Fix T ∈ RepF -cris,1
OF (G), put

V := F ⊗OF T and let D := Dcris,F (V ) be the corresponding filtered ϕ-module.

By Corollary 4.5.2, there exists M ∈ Modϕ,1SF
with M(D) ≃ O ⊗SF M and

ι : TS(M)
≃−→ T |Gπ . It suffices to show that ι is compatible with the ac-

tions of G on source and target, with the G-action on the source provided
by Corollary 5.1.2. Using Proposition 5.2.2, we obtain an isomorphism of
F [G]-modules ι′ : VS(M) ≃ Vcris,F (D(M)), which one verifies is compati-
ble with the identification ι. It therefore remains to check that D(M) ≃ D
as filtered ϕ-modules. Thanks to Lemma 4.2.2 and Lemma 4.5.6, we can
identify each of D and D(M) as the image of the unique ϕ-equivariant sec-
tion to projection ϕ∗M(D) ։ ϕ∗M(D)/uϕ∗M(D), which gives D ≃ D(M)

as ϕ-modules. Thus, it remains to prove that FiliDK = FiliD(M)K for all

i > 0, or equivalently that Fil1DF0,K = Fil1D(M)F0,K . Thanks to Corol-
lary 4.2.4, the projection ψπ : ϕ∗M(D) ։ ϕ∗M(D)/Eϕ∗M(D) ≃ DF0,K

is compatible with filtrations, and one checks using the very definition of
Fil1ϕ∗M(D) that x ∈ Fil1ϕ∗M(D) if and only if ψπ(x) ∈ Fil1DF0,K . Thus,

Fil1DF0,K = ψπ(Fil
1ϕ∗M(D)) = Fil1D(M)F0,K , as desired. �

Remark 5.2.3. In the classical situation, let S be the p-adic completion of the
divided-power envelope of the surjection W (k)[[u]] ։ OK sending u to π. If
M is the Kisin module attached to a Barsotti–Tate group H over OK , then
one can show ([Kis06, §2.2.3]) that there is a functorial isomorphism of Breuil

Documenta Mathematica 21 (2016) 223–270



On F -Crystalline Representations 267

modules ϕ∗M⊗S S ≃ D(H)S , where D(H) is the Dieudonné crystal attached
to H , which gives a geometric interpretation of M in terms of the crystalline
cohomology of H . It is natural to ask for such an interpretation in the general
case, for arbitrary F and f(u) as in the introduction of this paper. If F/Qp
is unramified, then this interpretation is provided by [CL14]. However, for F
ramified over Qp, things are more subtle as it is necessary to use the O-divided
powers of Faltings [Fal02]. For general F , A. Henniges has obtained the anal-
ogous relation with the Dieudonné crystal under the restriction vF (a1) = 1
(the so-called Lubin–Tate setting) in his Ph. D thesis. The general case re-
mains open, but we nonetheless conjecture that one has a natural isomorphism
Acris,F ⊗SF ϕ

∗M ≃ D(H)Acris , and expect to be able to prove this conjecture
using the ideas of §6.3.

6. Further Questions

As Theorem 1.0.1 and Theorem 1.0.2 provide the foundations of the theory of

Kisin modules and its variants (e.g. the theory of (ϕ, Ĝ)-modules as in [Liu10]),
it is natural to ask to what extent we can extend these theories to accommodate
general F and f(u). In this section, we list some questions that are natural
next steps to consider in furthering the general theory we have laid out in this
paper.

6.1. The case q = ps. Recall the setup of the introduction: F/Qp is an
arbitrary finite extension with uniformizer ̟ and residue field kF of cardinality
q = ps, and f(u) ∈ OF [[u]] is any power series f(u) = a1u + · · · satisfying
f(u) ≡ uq mod ̟. We allowK to be any finite extension of F with uniformizer
π = π0 and residue field k ⊇ kF , and consider the Frobenius-iterate extension
Kπ formed by adjoing to K a choice of f -compatible system {πn}n in K with
f(πn) = πn−1. Such extensions and their associated norm fields are considered
in [CD15] and [CDL]. In this paper, we have restricted ourselves to q = p, or
what is the same, that F/Qp is totally ramified. Certainly this restriction is
unnecessary, and we are confident that the results of this paper can be adapted
to the general case of arbitrary F with minor modifications. In particular, in
this general case, for any W (k)-algebra A we set AF := A⊗W (kF ) OF , and we
equip SF with the “q-power Frobenius” ϕq which acts on F -trivially, acts on
W (k) via ϕsW (k) and sends u to f(u). We write F0 := K0F and again denote by

E ∈ OF0 [u] the minimal polynomial of π over F0. Then our theory should be
able to be adapted to functorially associate Kisin modules of finite E-height to
OF -lattices in F -crystalline G-representations. We note that such a theory is
already known in the “Lubin–Tate” case that vF (a1) = 1 and K ⊆ F̟ thanks
to the work of Kisin and Ren [KR09], but that there are many details in our
general setup that still need to be checked.

6.2. Semi-stable representations and Breuil theory. In the classical
situation, Theorem 4.4.1 includes semi-stable representations. This fact is one
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of the key inputs for Breuil’s classification of lattices in semistable representa-
tions via strongly divisible lattices over S (see [Liu08]). It is therefore natural to
ask if Theorem 4.4.1 remains valid for semi-stable representations and general
f(u). This appears to be a rather nontrivial question, as the case of semi-stable
representations requires a monodromy operator. But for general F and f , we
do not even know how to define a reasonable monodromy operator over SF

(i.e., one satisfying Nϕ = pϕN as in the classical situation). New ideas are
needed for this direction.

6.3. Comparison between different choices of f(u). For a fixed F -
crystalline representation V of G and a fixed uniformizer π ∈ K, we may select
different f(u). It is then natural to ask for the relationship between the associ-
ated Kisin modules attached to V and f(u), as f varies. Motivated by [Liu13a],
we conjecture that all such Kisin modules become isomorphic after base change
toW (R)F . Note that if true, this result provides a proof of the conjecture men-
tioned in Remark 5.2.3, because we know that Acris,F ⊗SF ϕ

∗M ≃ D(H)(Acris)
in the classical situation. To prove such comparison results, the key point is to
generalize [Liu07, Theorem 3.2.2] to allow general f(u). This is likely relatively
straightforward, as we have recovered many results of [Liu07] in §3 already.

6.4. Torsion theory. A major advantage of the theory of Kisin modules is
that it provides a powerful set of tools for dealing with torsion representations.
It is therefore natural to try and rebuild the torsion theory in our general
situation, and we hope that such a theory will have some striking applications,
for example, to the computation of the reduction of potentially crystalline
representations as discussed in the introduction. One obvious initial goal is to
establish the equivalence between torsion Kisin modules of height 1 and finite
flat group schemes over OK ; this would be achievable quickly once we know
the truth of the conjecture formulated in Remark 5.2.3.
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59–111.

[Fon94b] , Représentations p-adiques semi-stables, Astérisque (1994),
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Abstract. The equivariant with respect to a finite group action
Poincaré series of a collection of r valuations was defined earlier as a
power series in r variables with the coefficients from a modification of
the Burnside ring of the group. Here we show that (modulo simple
exceptions) the equivariant Poincaré series determines the equivariant
topology of the collection of valuations.
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1 Introduction

A definition of the Poincaré series of a multi-index filtration was first given in
[3] (for filtrations defined by collections of valuations). It is a formal power
series in several variables with integer coefficients, i.e., an element of the ring
Z[[t1, . . . , tr]]. In [1] it was shown that, for the filtration defined by the curve
valuations corresponding to the irreducible components of a plane curve singu-
larity, the Poincaré series coincides with the Alexander polynomial in several
variables of the corresponding algebraic link: the intersection of the curve with
a small sphere in C2 centred at the origin. This relation was obtained by a
direct computation of the both sides in the same terms. Up to now there exist
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no conceptual proof of it. The Alexander polynomial in several variables of an
algebraic link (and therefore the Poincaré series of the corresponding collec-
tion of valuations) determines the topological type of the corresponding plane
curve singularity. In [2] the definition of the Poincaré series was reformulated
in terms of an integral with respect to the Euler characteristics (over an infinite
dimensional space).

The desire to understand deeper this relation led to attempts to find an equiv-
ariant version of it (for actions of a finite group G) and thus to define equiv-
ariant versions of the Poincaré series and of the Alexander polynomial. Some
equivariant versions of the monodromy zeta-function (that is of the Alexander
polynomial in one variable) were defined in [9] and [10]. Equivariant versions
of the Poincaré series were defined in [4], [5] and [7].

In some constructions of equivariant analogues of invariants (especially those
related to the Euler characteristic) the role of the ring of integers Z (where
the Euler characteristic takes values) is played by the Burnside ring A(G) of
the group G. Therefore it would be attractive to define equivariant versions
of the Poincaré series as elements of the ring A(G)[[t1, . . . , tr]] (or of a similar
one). The equivariant versions of the monodromy zeta functions defined in [9]
and [10] are formal power series with the coefficients from A(G)⊗Q and A(G)
respectively.

In [4] the equivariant Poincaré series was defined as an element of the ring
R1(G)[[t1, . . . , tr]] of formal power series in t1, . . . , tr with the coefficients from
the subring R1(G) of the ring R(G) of complex representations of the group G
generated by the one-dimensional representations. This Poincaré series turned
out to be useful for some problems: see, e.g., [8], [11]. However, it seems to be
rather “degenerate”, especially for non-abelian groups.

In [5] the G-equivariant Poincaré series PG{νi} of a collection of valuations (or or-

der functions) {νi} was not in fact a series, but an element of the Grothendieck
ring of so called locally finite (G, r)-sets. This Grothendieck ring was rather
big and complicated, the Poincaré series PG{νi} was rather complicated as well
and contained a lot of information about the valuations and the G-action. In
particular, for curve and divisorial valuations on the ring OC2,0 of functions
in two variables the information contained in this Poincaré series was (almost)
sufficient to restore the action of G on C2 and the G-equivariant topology of
the set of valuations: [6].

In [7] the equivariant Poincaré series PG{νi}(t1, . . . , tr) was defined as an element

of the ring Ã(G)[[t1, . . . , tr]] of formal power series in the variables t1, . . . , tr
with the coefficients from a certain modification Ã(G) of the Burnside ring
A(G) of the group G. A simple reduction of this Poincaré series is an element
of the ring A(G)[[t1, . . . , tr]]. Thus it is somewhat close to the (“idealistic”)
model discussed above. However, in order to define the equivariant Poincaré
series of this form, it was necessary to lose quite a lot of information about the
individual valuations from the collection. (It is possible to say that one used
averaging of the information over the group.) Thus it was not clear how much
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information does it keep.
Equivariant topology of germs of plane curves seems to be much more involved
than the usual (non-equivariant) one. For example, it is unclear whether the
equivariant topology of a collection of curves always determines the equiv-
ariant Poincaré series of the collection. Here we discuss to which extent the
G-equivariant Poincaré series from [7] determines the topology of a set of plane
valuations. We show that the G-equivariant Poincaré series of a collection
of divisorial valuations determines the equivariant topology of this collection
(in a natural “weak” sense: see below). We also show that with some minor
exceptions the equivariant Poincaré series of a collection of curve valuations
determines the weak equivariant topology of the collection. (This answer re-
sembles the one from [6]. However reasons for that (and thus the proofs) are
quite different. The version of the equivariant Poincaré series considered in [6]
is apriori a much more fine invariant than that considered here.)
The G-equivariant Poincaré series PG{νi} considered in [5] depends essentially
on the set of valuations defining the filtration. In particular, the substitution
of one of them (say, νi) by its shift a∗νi, a ∈ G, changes the G-equivariant
Poincaré series PG{νi}. The Poincaré series PG{νi}(t) considered in [7] depends
not on the valuations νi themselves, but on their G-orbits. The substitution
of one of them by its shift does not change the G-equivariant Poincaré series
PG{νi}(t). Therefore this series cannot determine the G-topology of a collection

of divisorial and/or of curve valuations on OC2,0 in the form defined in [6]. One
has to modify this notion a little bit.
Assume first that we consider sets of curve valuations. Let {Ci}ri=1 and {C′i}ri=1

be two collections of branches (that is of irreducible plane curve singularities) in
the complex plane (C2, 0) with an action of a finite group G. We shall say that
these collections are weakly G-topological equivalent if there exists a G-invariant
germ of a homeomorphism ψ : (C2, 0)→ (C2, 0) such that for each i = 1, . . . , r
one has ψ(Ci) = aiC

′
i with an element ai ∈ G (i.e if the image of the G-orbit

of the branch Ci coincides with the G-orbit of the branch C′i). To formulate
an analogue of this definition for collections of divisorial valuations, one can
describe a divisorial valuation ν on OC2,0 by a pair of curvettes intersecting the
corresponding divisor (transversally) at different points. The corresponding
pair of curvettes allows to determine the divisor as the last one (and so the
unique one with self-intersection equal to −1) appearing in the minimal em-
bedded resolution of them. Two collections of divisorial valuations {νi}ri=1 and
{ν′i}ri=1 described by the corresponding collections of curvettes {Lij}ri=1,j=1,2

and {L′ij}ri=1,j=1,2 respectively are weakly G-topologically equivalent if there

exists a G-invariant germ of a homeomorphism ψ : (C2, 0)→ (C2, 0) such that
for each i = 1, . . . , r one has ψ(Lij) = aiL

′
ij for j = 1, 2 and an element ai ∈ G.

One has an obvious analogue of Theorem 2.9 from [6]. This means that, for a
fixed representation of the group G on C2, the weak topology of a collection of
curve or/and divisorial valuations on OC2,0 is determined by the G-resolution
graph ΓG of the collection (where not individual branches or/and divisors, but
their orbits are indicated) plus the correspondence between the tails of this
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graph emerging from special points of the first component of the exceptional
divisor with these special points (see below).

2 Equivariant Poincaré series

Let us briefly recall the definition of the G-equivariant Poincaré series
PG{νi}(t1, . . . , tr) of a collection of order functions on the ring OV,0 of germs

of functions on (V, 0) and the equation for it in terms of a G-equivariant reso-
lution of curve or/and divisorial plane valuations which will be used here.

Definition: A finite equipped G-set is a pair X̃ = (X,α) where:

• X is a finite G-set;

• α associates to each point x ∈ X a one-dimensional representation αx of
the isotropy subgroup Gx = {a ∈ G : ax = x} of the point x so that, for
a ∈ G, one has αax(b) = αx(a

−1ba), where b ∈ Gax = aGxa
−1.

Let Ã(G) be the Grothendieck group of finite equipped G-sets. The cartesian

product defines a ring structure on it. The class of an equipped G-set X̃ in the
Grothendieck ring Ã(G) will be denoted by [X̃]. As an abelian group Ã(G) is
freely generated by the classes of the irreducible equipped G-sets [G/H ]α for
all the conjugacy classes [H ] of subgroups of G and for all one-dimensional rep-
resentations α of H (a representative of the conjugacy class [H ] ∈ ConjsubG).

There is a natural homomorphism ρ from the ring Ã(G) to the Burnside rings
A(G) of the group G defined by forgetting the one-dimensional representation

corresponding to the points. The reduction ρ̂ : Ã(G)→ Z is defined by forget-
ting the representations and the G-action. There are natural pre-λ-structure
on a rings A(G) and Ã(G) which give sense for the expressions of the form

(1− t)−[X], [X ] ∈ A(G), and (1− t)−[X̃], [X̃] ∈ Ã(G) respectively: see [7]. Both
ρ and ρ̂ are homomorphisms of pre-λ-rings.
Let (V, 0) be a germ of a complex analytic space with an action of a finite
group G and let OV,0 be the ring of germs of functions on it. Without loss of
generality we assume that the G-action on (V, 0) is faithful. The group G acts
on OV,0 by a∗f(z) = f(a−1z) (z ∈ V , a ∈ G). A valuation ν on the ring OV,0
is a function ν : OV,0 → Z≥0 ∪ {+∞} such that:

1) ν(λf) = ν(f) for λ ∈ C∗;

2) ν(f + g) ≥ min{ν(f), ν(g)};
3) ν(fg) = ν(f) + ν(g).

A function ν : OV,0 → Z≥0 ∪ {+∞} which possesses the properties 1) and 2)
is called an order function.
Let ν1, . . . , νr be a collection of order functions on OV,0. It defines an r-index
filtration on OV,0:

J(v) = {h ∈ OV,0 : ν(h) ≥ v} ,
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where v = (v1, . . . , vr) ∈ Zr≥0, ν(h) = (ν1(h), . . . , νr(h)) and v′ =
(v′1, . . . , v

′
r) ≥ v′′ = (v′′1 , . . . , v

′′
r ) if and only if v′i ≥ v′′i for all i.

Let ωi : OV,0 → Z≥0 ∪ {+∞} be defined by ωi =
∑
a∈G a

∗νi. The functions
ωi are G-invariant (they are not, in general, order functions). For an element
h ∈ POV,0, that is for a function germ considered up to a constant factor, let Gh
be the isotropy subgroup Gh = {a ∈ G : a∗h = αh(a)h} and let Gh ∼= G/Gh be
the orbit of h in POV,0. The correspondence a 7→ αh(a) ∈ C∗ determines a one-

dimensional representation αh of the subgroup Gh. Let X̃h = [G/Gh]αh be the

element of the ring Ã(G) represented by the G-set Gh with the representation

αa∗h associated to the point a∗h ∈ Gh (a ∈ G). The correspondence h 7→ X̃h

defines a function (X̃) on POV,0/G with values in Ã(G). The equivariant
Poincaré series PG{νi}(t) of the collection {νi} is defined by the equation

PG{νi}(t) =
∫

POV,0/G
X̃ht

ω(h)dχ ∈ Ã(G)[[t1, . . . , tr]] , (1)

where t := (t1, . . . , tr), t
ω(h) = t

ω1(h)
1 · . . . · tωr(h)r , t+∞i should be regarded as 0.

The precise meaning of this integral see in [7].

Applying the reduction homomorphism ρ : Ã(G)→ A(G) to the Poincaré series
PG{νi}(t), i.e. to its coefficients, one gets the series ρPG{νi}(t) ∈ A(G)[[t1, . . . , tr]],
i.e. a power series with the coefficients from the (usual) Burnside ring. Ap-

plying the homomorphism ρ̂ : Ã(G) → Z one gets the series ρ̂PG{νi}(t) ∈
Z[[t1, . . . , tr]]. One has

ρ̂PG{νi}(t) = P{a∗νi}(t1, . . . , t1, t2, . . . , t2, . . . , tr, . . . , tr) ,

where P{a∗νi}(•) is the usual (non-equivariant) Poincaré series of the collec-
tion of |G|r order functions {a∗ν1, a∗ν2, . . . , a∗νr|a ∈ G} (each group of equal
variables in P{a∗νi} consists of |G| of them).
Now assume that a finite group G acts linearly on (C2, 0) and let νi, i =
1, . . . , r, be either a curve or a divisorial valuation on OC2,0. We shall write
I0 = {1, 2, . . . , r} = I ′ ⊔ I ′′, where i ∈ I ′ if and only if the corresponding
valuation νi is a curve one. For i ∈ I ′, let (Ci, 0) be the plane curve defining
the valuation νi.
A G-equivariant resolution (or a G-resolution for short) of the collection {νi}
of valuations is a proper complex analytic map π : (X ,D) → (C2, 0) from a
smooth surface X with a G-action such that:

1) π is an isomorphism outside of the origin in C2;

2) π commutes with the G-actions on X and on C2;

3) the total transform π−1(
⋃

i∈I′, a∈G
aCi) of the curve GC = G(

⋃
i∈I′

Ci) is

a normal crossing divisor on X (in particular, the exceptional divisor
D = π−1(0) is a normal crossing divisor as well);
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4) for each branch Ci, i ∈ I ′, its strict transform C̃i is a germ of a smooth
curve transversal to the exceptional divisorD at a smooth point x of it and
is invariant with respect to the isotropy subgroup Gx = {g ∈ G : gx = x}
of the point x;

5) for each i ∈ I ′′, the exceptional divisor D = π−1(0) contains the divisor
defining the divisorial valuation νi.

A G-resolution can be obtained by a G-invariant sequence of blow-ups of points.
The action of the group G on the first component of the exceptional divisor
can either be trivial (this may happen only if G is cyclic) or have fixed points
of (proper) subgroups of G. (If G is abelian, these are the fixed points of G
itself.) These points are called special.

Let
◦
D be the “smooth part” of the exceptional divisor D in the total transform

π−1(GC) of the curve GC, i.e., D itself minus all the intersection points of its
components and all the intersection points with the components of the strict

transform of the curve GC. For x ∈
◦
D, let L̃x be a germ of a smooth curve on

X transversal to
◦
D at the point x and invariant with respect to the isotropy

subgroup Gx of the point x. The image Lx = π(L̃x) ⊂ (C2, 0) is called a
curvette at the point x. Let the curvette Lx be given by an equation hx = 0,
hx ∈ OC2,0. Without loss of generality one can assume that the function germ
hx is Gx-equivariant. Moreover we shall assume that the germs hx associated

to different points x ∈
◦
D are choosen so that hax(a

−1z)/hx(z) is a constant
(depending on a and x).
Let Eσ, σ ∈ Γ, be the set of all irreducible components of the exceptional
divisor D (Γ is a G-set itself). For σ and δ from Γ, let mσδ := νσ(hx), where νσ
is the corresponding divisorial valuation, hx is the germ defining the curvette

at a point x ∈ Eδ∩
◦
D. One can show that the matrix (mσδ) is minus the inverse

matrix to the intersection matrix (Eσ ◦ Eδ) of the irreducible components of
the exceptional divisor D. For i = 1, . . . , r, let mσi := mσδ, where Eδ is the
component of D corresponding to the valuation νi, i.e. either the component
defining the valuation νi if νi is a divisorial valuation (i.e. if i ∈ I ′′), or the
component intersecting the strict transform of the corresponding irreducible
curve Ci if νi is a curve valuation (i.e. if i ∈ I ′). Let mσ := (mσ1, . . . ,mσr) ∈
Zr≥0, Mσi :=

∑
a∈Gm(aσ)i, Mσ := (Mσ1, . . . ,Mσr) =

∑
a∈Gmaσ.

Let D̂ be the quotient
◦
D/G and let p :

◦
D → D̂ be the factorization map. Let

{Ξ} be a stratification of the smooth curve D̂ such that:

1) each stratum Ξ is connected;

2) for each point x̂ ∈ Ξ and for each point x from its pre-image p−1(x̂), the
conjugacy class of the isotropy subgroup Gx of the point x is the same,
i.e., depends only on the stratum Ξ.

The condition 2) is equivalent to say that the factorization map p :
◦
D → D̂ is

a (non-ramified) covering over each stratum Ξ. The condition 1) implies that
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the inverse image in
◦
D of each stratum Ξ lies in the orbit of one component

Eσ of the exceptional divisor. The element Mσ ∈ Zr≥0 depends only on the
stratum Ξ and will be denoted by MΞ.

For a point x ∈
◦
D, let X̃x = [G/Gx]αhx ∈ Ã(G). The equipped G-set X̃x is one

and the same for all points x from the preimage of a stratum Ξ and therefore it
defines an element of Ã(G) which we shall denote by [G/GΞ]αΞ . In [7, Theorem
1] it was shown that

PG{νi}(t) =
∏

Ξ

(
1− tMΞ

)−χ(Ξ)[G/GΞ]αΞ . (2)

3 Topology of plane valuations

Let the complex plane (C2, 0) be endowed by a faithful linear G-action and let
{νi}ri=1 be a collection of divisorial valuations on OC2,0.

Theorem 1 The G-equivariant Poincaré series PG{νi}(t) of the collection {νi}
of divisorial valuations determines the weak G-equivariant topology of this col-
lection.

Proof. One has to use the following “projection formula”. Let I = {i1, . . . , is}
be a subset of the set {1, . . . , r} of the indices numbering the valuations. Then
one has

PG{νi}i∈I (ti1 , . . . , tis) = PG{νi}ri=1
(t1, . . . , tr)|ti=1 for i/∈I ,

i.e. the (G-equivariant) Poincaré series for a subcollection of valuations is
obtained from the one for the whole collection by substituting ti by 1 for all i
numbering the valuations which do not participate in the subcollection. (This
equation is not valid for other types of valuations, say, for curve ones: see
the proof of Theorem 2). The projection formula implies, in particular, that
the G-equivariant Poincaré series PG{νi}(t) of a collection of divisorial valuations

determines the G-equivariant Poincaré series (in one variable) of each individual
valuation from it.

First we shall show that the Poincaré series PG{νi}(t) determines theG-resolution
graph of the collection of valuations. It turns out that the necessary information
about the G-equivariant resolution graph can be restored from the ρ-reduction
ρPGν (t) of the G-equivariant Poincaré series PGν (t) (i.e. the series from A(G)[[t]]
obtained by forgetting the one-dimensional representations associated with the
G-orbits). Therefore we shall start with considering it.

First let us prove the statement for one divisorial valuation. The dual graph
ΓG of the minimal G-equivariant resolution of a divisorial valuation ν looks like
in Fig. 1. This means the following.
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Figure 1: The dual equivariant resolution graph ΓG of the valuation ν.
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Figure 2: The dual resolution graph Γ of the valuation ν.

The standard (non-equivariant, minimal) dual resolution graph Γ of the valu-
ation ν looks like in Fig. 2. The vertices σq, q = 0, 1, . . . , g, are the dead ends
of the graph (g is the number of the Puiseux pairs of a curvette corresponding
to the valuation, σ0 = 1 is the first component of the exceptional divisor), the
vertices τi, q = 1, . . . , g, are the rupture points, the vertex ν corresponds to
the divisorial valuation under consideration. (The vertex ν may coincide with
τg.) The set of vertices of the graph Γ is ordered according to the order of the
birth of the corresponding components of the exceptional divisor. On [σ0, ν]
(the geodesic from σ0 = 1 to ν) this order is the natural one: δ1 < δ2 if and
only if the vertex δ1 lies on [σ0, δ2].
The integers mσq , q = 0, 1, . . . , g, form the minimal set of generators of the

semigroup of values of ν and are traditionally denoted by βq. One also uses

the following notations. eq := gcd(β0, β1, . . . , βq),

Nq :=
eq−1
eq

(
=
mτq

mσq

)
.
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The graph ΓG of the minimal G-equivariant resolution consists of |G| copies of
graph Γ (numbered by the elements of G) glued together. The gluing is defined
by a sequence

G = H0 ⊃ H1 ⊃ H2 ⊃ . . . ⊃ Hk

of subgroups of the group G such that all Hi with i > 0 are abelian and Hk is
the isotropy group of the valuation ν ({a ∈ G : a∗ν = ν}) and by a sequence by
vertices ρ1, . . . , ρk of the graph Γ such that all of them lie on the geodesic from
σ0 to ν, ρ1 < ρ2 < . . . < ρk. (Some of the vertices ρi may coincide with some
of the vertices τj ; the vertex ρ1 may coincide with the initial vertex σ0 = 1.)
The copies of Γ numbered by the elements a1 and a2 from G are glued along
the part preceeding ρℓ (i.e., by identifying all the vertices smaller or equal to
ρℓ) if a1a

−1
2 ∈ Hℓ−1. (In particular the initial vertices σ0 = 1 of all the copies

are identified.) Pay attention that some of the vertices ρi can be inbetween
the vertices τg and ν. For q = 1, 2, . . . , g, let j(q) be defined by the condition
ρj(q) < τq ≤ ρj(q)+1.
For δ ∈ ΓG (or for the corresponding δ ∈ Γ), let Mδ :=

∑
a∈Gmaδ. One can

easily see that all the integers Mδ, δ ∈ Γ, are different. (One has Mδ1 = Mδ2

for δ1 and δ2 from ΓG if and only if there exists a ∈ G such that δ2 = aδ1.)
One has Mτq = NqMσq .
The series ρPGν (t) is given by the equation

ρPGν (t) =

g∏

q=0

(
1− tMσq

)−[G/Hj(q)] ·
g∏

q=1

(
1− tNqMσq

)[G/Hj(q)] ×

×
ℓ∏

j=1

(
1− tMρj

)[G/Hj ]−[G/Hj−1]

·
(
1− tMν

)−[G/Hk]
.

The fact that all the integers Mδ are different implies that the exponents Mσq ,
q = 1, . . . , g, are among those which participate in the decomposition of the
series ρPGν (t) with negative cardinalities of the multiplicities. (The multiplicity
of a binomial (1 − tm)sm , sm ∈ A(G), is sm. Its cardinality is the (virtual)
number of the points of it.) It is possible that the exponents of this sort include
also Mν corresponding to the divisorial valuation itself.
The subgroups H1 ⊃ H2 ⊃ . . . ⊃ Hk are defined by the multiplicities of all
the factors in the decomposition of the series ρPGν (t) into the product of the
binomials.
The vertex σ0 = 1 coincides with ρ1 if and only if the binomial with the
smallest exponent in the decomposition of the series ρPGν (t) has a non-negative
cardinality of the multiplicity. For σq ≤ ρ1 one has Mσq = |G|mσq and Mρ1 =

|G|mρ1 . These equations give all the generators βq of the semigroup of values
with σq ≤ ρ1 and also mρ1 .
For ℓ ≥ 1, let σq(ℓ) be the minimal dead end greater than ρℓ (i.e. there are
the dead ends σq(ℓ), . . . , σq(ℓ+1)−1 inbetween ρℓ and ρℓ+1). Let us consider the
dead ends σq such that ρ1 < σq < ρ2. One has

Mσq(1) = |H1|mσq(1) + (|G| − |H1|)mρ1 = |H1|mσq(1) + (Mρ1 − |H1|mρ1) .
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The smallest multiple of the exponent Mσq(1) in a binomial participating in

the decomposition of the series ρPGν (t) is Mτq(1) = Nq(1)Mσq(1) . Further, for
ρ1 < σq(1) < σq(1)+1 < σq(1)+2 < · · ·σq(2)−1 < ρ2, one has

Mσq(1)+1
= |H1|mσq(1)+1

+ (Mρ1 − |H1|mρ1)Nq(1) ,

Mσq(1)+2
= |H1|mσq(1)+2 + (Mρ1 − |H1|mρ1)Nq(1)Nq(1)+1 ,

. . .

Mρ2 = |H1|mρ2 + (Mρ1 − |H1|mρ1)Nq(1)Nq(1)+1 · . . . ·Nq(2)−1 .

These equations give all the generators βq of the semigroup of values with
σq < ρ2 and also mρ2 .
Assume that we have determined all the exponents mσq for q < q(ℓ) and also
the exponent mρℓ . Let us consider the dead ends σq such that ρℓ < σq < ρℓ+1.
One has

Mσq(ℓ) = |Hℓ|mσq(ℓ) + (Mρℓ − |Hℓ|mρℓ) ,

Mσq(ℓ)+1
= |Hℓ|mσq(ℓ)+1

+ (Mρℓ − |Hℓ|mρℓ)Nq(ℓ) ,

Mσq(ℓ)+2
= |Hℓ|mσq(ℓ)+2

+ (Mρℓ − |Hℓ|mρℓ)Nq(ℓ)Nq(ℓ)+1 ,

. . .

Mρℓ+1
= |Hℓ|mρℓ + (Mρℓ − |Hℓ|mρℓ)Nq(ℓ)Nq(ℓ)+1 · . . . ·Nq(ℓ+1)−1 .

These equations give all the generators mσq of the semigroup of values with
q < q(ℓ+ 1) and also mρℓ+1

.
The described procedure recovers mσq for all q ≤ g. If, in the binomials of
the decomposition of the series ρPGν (t), there are no exponents proportional
to Mσg , one has ν = τg and the resolution graph Γ is determined by the

semigroup 〈β0β1, . . . , βg〉. Otherwise the described above procedure permits
to determine the exponents mρj with ρj ≥ τg and mν . This gives the G-
equivariant resolution graph of one divisorial valuation.

Assume that we have a collection {νi} of divisorial valuations, i = 1, 2, . . . , r. To
restore the equivariant resolution graph ΓG of the collection from the resolution
graphs of each individual valuation νi, one has to determine the separation
point δij between each two valuations νi and νj (for simplicity let us assume
that i = 1, j = 2). Let

ρPGν (t1, t2, 1, . . . , 1) =
∏

(1 − tM1
1 tM2

2 )sM1M2 , (3)

sM1M2 ∈ Z, be the decomposition into the product of the binomials. The
separation point δ12 corresponds to the maximal exponent in the decomposition
(3) with

Mδ1

Mδ2
=
Mσ01

Mσ02
.

This proves that the reduction ρPG{νi}(t) ∈ A(G)[[t1, . . . , tr]] of the G-

equivariant Poincaré series PG{νi}(t) determines the minimal G-resolution graph

of the set {νi} of divisorial valuations.
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Equivariant Poincaré Series and Topology of Valuations 281

In order to prove that one can also determine the weak G-topology of the
collection of valuations, one has to show how is it possible to restore the repre-
sentation of the group G on C2 and the correspondence between (some) tails of
the (minimal) G-resolution graph and the special points on the first component
of the exceptional divisor. For that one should use the non-reduced Poincaré
series PG{νi}(t) ∈ Ã(G)[[t1, . . . , tr]] itself. (If there are no special points on the

first component of the exceptional divisor (this can happen only if G is cyclic),
only the representation of G on C2 has to be determined.) We follow the scheme
described in [6].

Let us consider the case of an abelian group G first. If there are no special
points on the first component E1 of the exceptional divisor, all points of E1

are fixed with respect to the group G, the group G is cyclic and the repre-
sentation is a scalar one. This (one dimensional) representation is dual to the
representation of the group G on the one-dimensional space generated by any
linear function. The case when there are no more components in D, i.e. if
the resolution is achieved by the first blow-up, is trivial. Otherwise let us con-
sider a maximal component Eσ among those components Eτ of the exceptional
divisor for which Gτ = G and the corresponding curvette is smooth. (The
last condition can be easily detected from the resolution graph.) The smooth

part
•
Eσ of this component contains a special point x with Gx = G (or all the

points of
•
Eσ are such that Gx = G). The point(s) from

•
Eσ with Gx = G

bring(s) into the decomposition of the Poincaré series PG{νi}(t) a factor of the

form (1− tM )−[G/G]α . The (G-equivariant) curvette L at the described special
point of the divisor is smooth. Therefore the representation of G on the one-
dimensional space generated by a G-equivariant equation of L coincides with
the representation on the space generated by a linear function. Let us take
all factors of the form (1 − tM )−[G/G]α in the decomposition of the Poincaré
series PG{vi}. For each of them, the exponent M determines the corresponding
component of the exceptional divisor and therefore the topological type of the
corresponding curvettes. The factor which corresponds to a component with
a smooth curvette gives us the representation α on the space generated by a
linear function.

Now assume that there are two special points on the first component of the
resolution. Without loss of generality we can assume that they correspond to
the coordinate axis {x = 0} and {y = 0}. The representation of the group G
on C2 is defined by its action on the linear functions x and y. For each of them
this action can be recovered from a factor of the form described above just in
the same way. Moreover, a factor, which determines the action of the group G
on the function x, corresponds to a component of the exceptional divisor from
the tail emerging from the point {x = 0}.
Now let G be an arbitrary (not necessarily abelian) group. For an element
g ∈ G consider the action of the cyclic group 〈g〉 generated by g on C2. One
can see that the G-equivariant Poincaré series PG{vi}(t) determines the 〈g〉-
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Poincaré series P
〈g〉
{vi}(t) just like in [5, Proposition 2]. This implies that the

G-equivariant Poincaré series determines the representation of the subgroup
〈g〉. (Another way is to repeat the arguments above adjusting them to the
subgroup 〈g〉.) Therefore the G-Poincaré series PG{vi}(t) determines the value

of the character of the G-representation on C2 for each element g ∈ G and thus
the representation itself. Special points of the G-action on the first component
E1 of the exceptional divisor correspond to some abelian subgroupsH of G. For
each such subgroup H there are two special points corresponding to different
one-dimensional representations of H . Again the construction above for an
abelian group permits to identify tails of the dual resolution graph with these
two points. �

Let {Ci}, i = 1, . . . , r, be a collection of irreducible curve singularities in (C2, 0)
such that it does not contain curves from the same G-orbit and it does not
contain a smooth curve invariant with respect to a non-trivial element of G
whose action on C2 is not a scalar one. Let {νi} be the corresponding collection
of valuations. Let Gi ⊂ G be the isotropy group of the branch Ci, 1 ≤ i ≤ r.

Theorem 2 The G-equivariant Poincaré series PG{νi}(t) of the collection {νi}
determines the weak G-equivariant topology of the collection {νi} of curve val-
uations.

Proof. The minimal resolution graph Γ of the plane curve singularity C =
r⋃
i=1

Ci is essentially the same as the graph of the divisorial valuations defined

by the set of irreducible components {Eαi} of the exceptional divisor such that
the strict transform of Ci intersects the component Eαi . Instead of the mark
used for the divisor Eαi (like in Figures 1 and 2 for one valuation) one puts an
arrow corresponding to Ci connected to the vertex αi. Notice that there can be
several arrows connected to the same vertex, i.e. αi = αj for different branches
Ci, Cj . In the case of one branch the graph looks like the one in Figure 2 but
the vertex marked by ν coincides with τg and there is an arrow connected with
τg. The number g is equal to the number of Puiseux pairs of the curve and
mσi = β̄i, 0 ≤ i ≤ g, are the elements of the minimal set of generators of the
semigroup of the branch. (In particular they determine the minimal resolution
graph of the curve.)

r
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r r
ρ
��✒

❅❅❘

Ci

aCi

(b) ΓG

r r
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��✒
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Figure 3: The graphs Γ, ΓG and Γ enlarged.
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The same rules apply for the graph ΓG. However ΓG corresponds to the em-
bedded resolution of the union of all the orbits of the branches of C. So, it
is possible that, in order to achieve the minimal equivariant resolution (i.e. in
order to separate all the conjugates of each one of the branches Ci), one has to
add some additional blow-ups starting at the point αi. Note that in this case
some of the vertices ρ (see the notations in the proof of Theorem 1 and Figures
1 and 2) do not appear in Γ. In order to preserve the scheme and the notations
from the proof of the case of divisorial valuations it is better to enlarge Γ in
such a way that the new one (also denoted by Γ) is the minimal one in which
all the vertices ρ are present (see Figure 3). Note that aEαi = Eaαi for a ∈ G,
so in this way the (new) resolution graph Γ is just the quotient of ΓG by the
obvious action of G on ΓG.
As in the case of divisorial valuations, for each δ ∈ ΓG let hδ = 0, hδ ∈ OC2,0,
be the equation of a curvette at the component Eδ, mδi be the value νi(hδ),
Mδi =

∑
a∈Gm(aδ)i =

∑
a∈G(a

∗νi)(hδ) and Mδ = (Mδ1, . . . ,Mδr) ∈ Zr≥0. All

the Mσ, σ ∈ Γ, are different and for σ, τ ∈ ΓG Mσ = Mτ if and only if
Eτ = aEσ for some a ∈ G. Let Gi ⊂ G be the isotropy group of the branch
Ci, 1 ≤ i ≤ r.
For i, j ∈ {1, . . . , r}, mαij is just the intersection multiplicity between Ci and
Cj and

Mαij =
∑

a∈G
m(aαi)j =

∑

a∈G
(a∗νj)(hαi) = (Ci,

⋃

a∈G
aCj) = (Cj ,

⋃

a∈G
aCi) =Mαji .

In contrast with the case of divisorial valuations the projection formula is dif-
ferent from the one for divisorial valuations formulated at the beginning of the
proof of Theorem 1. Instead of it one has the following one: For i0 ∈ {1, . . . , r}
one has

PG{νi}(t)|ti0=1
= (1 − tMαi0 )

[G/Gi0 ]αi0
|ti0=1

PG{νi}i6=i0 (t1, . . . , ti0−1, ti0+1, . . . , tr) . (4)

(This can be easily deduced from (2).) Using (4) repeatedly one also has:

PG{νi}(t)|ti=1,i6=i0
=
∏

i6=i0
(1− tMαii0

i0
)[G/Gi]αiPGνi0 (ti0) . (5)

Equations (4) and (5) imply that in order to describe inductively the minimal

G-resolution graph ΓG one has to detect the binomial (1−tMαi0 ) corresponding
to some i0 from the G-equivariant Poincaré series and also the intersection
multiplicities of Ci0 with the other branches of C. As in the divisorial case,
the necessary information about the G-equivariant resolution graph can be
restored from the ρ-reduction ρPG{νi}(t) of the Poincaré series P

G
{νi}(t) to the ring

A(G)[[t1, . . . , tr]]. From the factorization given in (2) one can write ρPG{νi}(t) =∏
σ∈Γ(1−tMσ)sσ , where sσ ∈ A(G). Note that the multiplicity sσ may be equal

to zero, i.e. the binomial factor corresponding to σ may be absent.
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The determination of the G-equivariant resolution graph from the series ρPGν (t)
for one branch almost repeats the one described for one divisorial valuation,
e.g. the semigroup is the same as the one of the divisorial valuation defined
by the component Eτg of the exceptional divisor. So, let us assume r > 1 and
let us fix j, k ∈ {1, . . . , r}. The separation point s(αj , αk) ∈ ΓG of αj and αk
is defined by the condition [1, αj ] ∩ [1, αk] = [1, s(αj , αk)]. Here [1, σ] is the
geodesic in the dual graph ΓG joining the first vertex 1 with the vertex σ. Now,
let us define the separation vertex s(αj , k) of Cj and GCk as the maximun of
s(αj , aαk) for a ∈ G. Note that, if a ∈ G then s(aαj , k) = as(αj , k) ∈ ΓG so
s(j, k) = s(αj , k) is a well defined vertex of the graph Γ. We refer to it as the
separation vertex of Ci and Cj in Γ.
The ratio Mσj/Mσk is constant for σ in [1, s(j, k)] and is a strictly increasing
function for σ ∈ [s(i, j), αj] ⊂ Γ as well as in the geodesic [as(j, k), aαj ] ⊂ ΓG

for a ∈ G. Notice that for σ /∈ ⋃a∈G ([1, aαj ] ∪ [1, aαk]) the ratio Mσj/Mσk is
equal to Mσ′j/Mσ′k where σ′ is the vertex such that

[1, σ′] = max
a∈G
{([1, aαj ] ∪ [1, aαk]) ∩ [1, σ]} .

Let σ ∈ Γ be such that the exponent Mσ is a maximal one among the set of
exponents M τ appearing in the factorization

ρPG{νi}(t) =
∏

τ∈Γ , sτ 6=0

(1− tMτ )sτ . (6)

(Here we use the partial orderM = (M1, . . . ,Mr) ≤M ′ = (M ′1, . . . ,M
′
r) if and

only if Mi ≤ M ′i for all i = 1, . . . , r.) Note that in this case the corresponding
factor has positive cardinality and there exists an index j ∈ {1, . . . , r} such
that αj = σ.
Let A ⊂ {1, . . . , r} be the set of indices j such that Mσj/Mσk ≥ Mτj/Mτk for
all k ∈ {1, . . . , r} and all τ ∈ ΓG such that the binomial (1 − tMτ ) appears in
(6), i.e. sτ 6= 0. From the comments above it is clear that all indices j such
that αj = σ belong to A, however A could contain some other indices ℓ such
that αℓ 6= σ.
Let us assume that there exists ℓ ∈ A such that αℓ 6= σ. The behaviour of
the ratios Mτℓ/Mτk along [1, αℓ] described above implies that σ ∈ [1, αℓ]. By
definition of the set A, for any τ ∈ [σ, αℓ], τ 6= σ, the binomial (1− tMτ ) does

not appear in (6), i.e. sτ = 0, in particular χ(
◦
Eτ ) = 0. As a consequence,

αℓ < σ and αℓ is the end point σg on the dual graph of Cj (here j ∈ A such
that αj = σ). In this case one has Mσℓ < Mσj and one can distinguish ℓ by
this condition. Note that if such an ℓ ∈ A exists then it is unique.
Let i0 ∈ A be such that Mσi0 ≥ Mσj for all j ∈ A. Then αi0 = σ and the

factor (1− tMαi0 )[G/Gi0 ] appears in the factorization (6). Thus, the projection
formula permits to recover the G-equivariant resolution graph by induction.
As in Theorem 1 one has to show that the Poincaré series PG{νi}(t) determines

the representation of G on C2, and the correspondence between “tails” of the
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resolution graph. The proof in this case does not differ from the one made in
Theorem 1 for divisorial valuations since the collection {Ci} does not contains
smooth curves invariant with respect to a non-trivial element of G whose action
is not a scalar one. �
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Abstract. We study various generalisations of rationally connected
varieties, allowing the connecting curves to be of higher genus. The
main focus will be on free curves f : C → X with large unobstructed
deformation space as originally defined by Kollár, but we also give
definitions and basic properties of varieties X covered by a family of
curves of a fixed genus g so that through any two general points of
X there passes the image of a curve in the family. We prove that the
existence of a free curve of genus g ≥ 1 implies the variety is rationally
connected in characteristic zero and initiate a study of the problem
in positive characteristic.

2010 Mathematics Subject Classification: 14M20, 14M22, 14H10.

1. Introduction

Let k be an algebraically closed field. A smooth projective rationally connected
variety, originally defined in [Cam92] and [KMM92], is a variety such that
through every two general points there passes the image of a rational curve. In
characteristic zero this is equivalent to the notion of a separably rationally con-
nected variety, given by the existence of a rational curve f : P1 → X such that
f∗TX is ample. In characteristic p, however, one has to distinguish between
these two notions. Deformations of a morphism f : P1 → X are controlled
by the sheaf f∗TX , hence studying positivity conditions of this bundle is in-
timately tied to deformation theory and the existence of many rational curves
on X . Rationally connected varieties have especially nice properties and an
introduction to the theory is contained in [Kol96] and [Deb01]. Note in partic-
ular the important theorem of Graber-Harris-Starr [GHS03] (and de Jong-Starr
[dJS03] in positive characteristic) which we will make repeated use of through-
out this paper, which says that a separably rationally connected fibration over
a curve admits a section. An equivalent statement in characteristic zero is that
the maximal rationally connected (MRC) quotient R(X) is not uniruled (see
[Kol96, IV.5.6.3]), although this can fail in positive characteristic.
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In this paper we study various ways in which a variety can be connected by
higher genus curves. After an introductory section with auxiliary results on
vector bundles on curves and Frobenius, we consider first varieties which admit
a morphism from a family of curves of fixed arithmetic genus g whose prod-
uct with itself dominates the product of the variety with itself and call these
varieties “genus g connected”, generalising the notion of there being a ratio-
nal curve through two general points. We also consider C-connected varieties,
where there exists a family C×U → X of a single smooth genus g curve C such
that C × C × U → X ×X is dominant. Mori’s Bend and Break result allows
us to produce rational curves going through a fixed point given a higher genus
curve which has large enough deformation space. For example, in Proposition
3.6 as an easy corollary, we show that over any characteristic, if for any two
general points of a smooth projective variety X with dimX ≥ 3 there passes
the image of a morphism from a fixed curve C of genus g, then X is uniruled.
This fails for surfaces, where an example is provided.

A stronger condition than the aforementioned is the existence of a morphism
from a curve which deforms a lot without obstructions, as discussed for separa-
bly rationally connected varieties above. Namely, for f : C → X a morphism to
a varietyX where C is of any genus g, Kollár [Kol96] defines f to be free if f∗TX

is globally generated as a vector bundle on C and also H1(C, f∗TX) = 0. In
the case of genus g = 0 one must distinguish between free and very free curves.
Geometrically, the former implies that f : P1 → X deforms so that its image
covers all points in X (hence X is uniruled) whereas the latter that it can do
so even fixing a point x ∈ X (X rationally connected). If g ≥ 1, however,
after defining an r-free curve to be one which deforms keeping any r points
fixed, we show that the notions of the existence of a free (0-free) and very free
(1-free) curve coincide and in fact are equivalent with the existence of a curve
f : C → X such that f∗TX is ample.

Theorem. (see 5.5) Let X be a smooth projective variety and C a smooth
projective curve of genus g ≥ 1 over an algebraically closed field k. Then for
any r ≥ 0, there exists an f : C → X which is r-free if and only if there exists
a morphism f ′ : C → X such that f ′∗TX is ample.

Work of Bogomolov-McQuillan (see [BM01], [KSCT07]) on foliations which re-
strict to an ample bundle on a smooth curve sitting inside a complex variety X
shows that the leaves of such a foliation are not only algebraic but in fact have
rationally connected closures. From the above, one deduces this result in the
case of the foliation F = TX , complementing the currently known connections
between existence of curves with large deformation space and rationally con-
nected varieties (cf. the uniruledness criterion of Miyaoka [Miy87]). Our proof
emphasises the use of free curves and C-connected varieties, in particular with
a view towards similar results in positive characteristic.
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Theorem. (see 5.2) Let X be a smooth projective variety over an algebraically
closed field of characteristic zero and let f : C → X be a smooth projective curve
of genus g ≥ 1 such that f∗TX is globally generated and H1(C, f∗TX) = 0.
Then X is rationally connected.

In the sixth section we study the particular case of elliptically connected vari-
eties (i.e. genus one connected varieties) where, even allowing a covering family
of genus 1 curves to vary in moduli, one can prove the following theorem.

Theorem. (Theorem 6.2) Let X be a smooth projective variety over an alge-
braically closed field of characteristic zero. Then the following two statements
are equivalent

(1) There exists C → U a flat projective family of irreducible genus 1 curves
with a map C → X such that C ×U C → X ×X is dominant.

(2) X is either rationally connected or a rationally connected fibration over
a curve of genus one.

In positive characteristic, at this point we have not been able to prove that
the existence of a higher genus free curve implies the existence of a very free
rational curve (which would mean that X is separably rationally connected).
We work however in this direction, establishing this result in dimensions two
(with a short discussion about dimension three) and furthermore by studying
algebraic implications of the existence of a free higher genus curve, such as the
vanishing of pluricanonical forms and triviality of the Albanese variety. In the
final section we give an example of a threefold in characteristic p whose MRC
quotient is rationally connected and which has infinite fundamental group.

The study of rational curves on varieties is an important and active area of
research, and shedding light on the existence of rational curves coming from
the deformation theory of higher genus curves is a theme explored in a variety
of sources, for example the minimal model program or [BDPP13]. Aside from
the unresolved difficulties arising in positive characteristic, the author expects
uniruledness and rational connected results of the type presented in this article
to be of use in moduli theory.

acknowledgements. The contents of this paper are from the author’s thesis
under the supervision of Victor Flynn, whom I would like to thank for his
continuous encouragement. I am indebted to Damiano Testa for the many
hours spent helping with the material of this paper and to Johan de Jong not
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support of EPSRC grant number EP/F060661/1 at the University of Oxford.
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2. Ample vector bundles and Frobenius

We begin with some results concerning positivity of vector bundles on curves.
Recall that a locally free sheaf E on a scheme X is called ample if OP(E )(1) has
this property. Equivalent definitions involving global generation of F ⊗Sn(E )
for F a coherent sheaf and n large enough, and also cohomological vanishing
criteria can be found in [Har66]. Ampleness on curves can be checked using
various criteria such as the following.

Lemma 2.1. Let C be a smooth projective curve of genus g ≥ 2 over an alge-
braically closed field of characteristic zero and E a locally free sheaf on C such
that H1(C, E ) = 0. It follows that E is ample.

Proof. From [Har71, Theorem 2.4], it suffices to show that every non-trivial
quotient locally free sheaf of E has positive degree. Let E → E ′ → 0 be a
quotient. From the long exact sequence in cohomology we see that H1(C, E ′)
is also 0. From the Riemann-Roch formula deg E ′ = h0(C, E ′) + (rkE ′)(g − 1)
and since g ≥ 2 we deduce that deg E ′ > 0. �

Note that Hartshorne’s ampleness criterion only works in characteristic zero.
More generally, over any characteristic if we further assume that our locally
free sheaf is globally generated then the same result holds so long as the genus
is at least one.

Proposition 2.2. Let C be a smooth projective curve of genus g ≥ 1 over an
algebraically closed field k and E a globally generated locally free sheaf on C
such that H1(C, E ) = 0. Then E is ample.

Proof. Since E is globally generated, there exists a positive integer n such
that O

⊕n
C → E → 0 is exact. This gives (see [Har77, ex. II.3.12]) a closed

immersion of the respective projective bundles P(E ) →֒ Pn−1C . By projecting
onto the first factor we have the following diagram

P(E ) �
� i //

π

%%KKKKKKKKKK
Pn−1 × C

pr2

��

pr1 // Pn−1

C

and from [Har77, II.5.12] we have pr∗1 OPn−1(1) = OPn−1
C

(1). Also, since i is
a closed immersion it follows that i∗OPn−1

C
(1) = OPn−1

C
(1)|P(E ) = OP(E )(1)

which concludes that i∗ pr∗1 OPn−1(1) = OP(E )(1). To show that E is an ample
locally free sheaf on C it is enough to show that this invertible sheaf is ample.
Since we know that OPn−1(1) is ample though, it is sufficient to show that
i ◦ pr1 is a finite morphism. Since it is projective, we need only show that it
is quasi-finite. Hence assuming that the fibre of i ◦ pr1 over a general point
p ∈ Pn−1 is not finite, it must be the whole of C. We now embed this fibre
j : C → P(E ) as a section to π and pull back the surjection π∗E → OP(E )(1)
via j, obtaining j∗OP(E )(1) as a quotient of j∗π∗E = E (see [Har77, II.7.12]).
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However pr1 ◦i ◦ j : C → Pn−1 is a constant map so j∗OP(E )(1) = OC . Taking
cohomology of the corresponding short exact sequence given by this quotient,
we obtain a contradiction since H1(C, E ) = 0 whereas H1(C,OC) is not trivial
for g ≥ 1. �

In Proposition 2.4 below we will prove that given an ample bundle on a curve
in positive characteristic, then after pulling back by Frobenius, we can make
this bundle be globally generated and have vanishing first cohomology.

Lemma 2.3. Let C be a smooth projective curve over an algebraically closed
field k, d ≥ 0 an integer and E a locally free sheaf on C. If H1(C, E (−D)) = 0
for all effective divisors D of fixed degree d then for d′ < d it follows that
H1(C, E (−D′)) = 0 and E (−D′) is globally generated for all effective divisors
D′ of degree d′.

Proof. The first result follows from the short exact sequence

0→ E (−D′ −R)→ E (−D′)→ E (−D′)|R → 0

where R is an effective divisor of degree d − d′. For the second, let p ∈ C.
From the first part we have H1(C, E (−D′− p)) = 0 since D′+ p is an effective
divisor of degree d′ + 1 ≤ d so the following sequence is exact

0→ H0(C, E (−D′ − p))→ H0(C, E (−D′))→ E (−D′)⊗ k(p)→ 0.

Hence E (−D′) is globally generated at p and the result follows. �

A partial converse to Proposition 2.2 in characteristic p is given in [KSCT07,
Proposition 9], using Q-twisted vector bundles as in [Laz04, II.6.4]. We prove
the following different version of this result.

Proposition 2.4. Let C be a smooth projective curve of genus g over an
algebraically closed field k of characteristic p and let E be an ample locally
free sheaf on C. Let B ⊂ C be a closed subscheme of length b and ideal sheaf
IB. Then there exists a positive integer n such that H1(C(n), F ∗nE ⊗IB) = 0
and F ∗nE ⊗ IB is globally generated on C(n) where Fn : C(n) → C the n-fold
composition of the k-linear Frobenius morphism.

Proof. We proceed by induction. First, assume we can write E as an extension

0→M → E → Q → 0

where M is an ample line bundle. If Q is not torsion free, consider the sat-
uration of M in E instead and take Q as that quotient. Since E is ample,
so is its quotient Q. Note also that the rank of Q is one less than that of E

and that if we can prove the result for Q then we will have it for E too by
considering cohomology of the appropriate exact sequences. We thus reduce
to the case of E = L an invertible sheaf of positive degree (since it is am-
ple). An invertible sheaf L pulls back under the n-fold composition of the
linear Frobenius morphism to an invertible sheaf F ∗nL of degree pn degL .
To show that H1(C(n), F ∗nL ⊗ IB) = 0, it is equivalent by Serre duality to
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show that HomC(n)(F ∗nL ,OC(n)(B) ⊗ ωC(n)) = 0. Since the invertible sheaf
OC(n)(B)⊗ ωC(n) has degree b+ 2g − 2 and by picking n large enough, we can
ensure pn degL > b+ 2g − 2 from which we obtain H1(C(n), F ∗nL ⊗IB) = 0
and hence H1(C(n), F ∗nE ⊗IB) = 0 for a locally free sheaf of any rank.

To show that F ∗nE⊗IB is globally generated, pick a point q ∈ C. Then IB⊗Iq

has length b + 1 and from the discussion above H1(C(n), F ∗nE ⊗ IB ⊗ Iq)
vanishes when pn degL > b+ 1+ 2g − 2 so we can just pick n large enough to
fit this condition. Now, by taking the long exact sequence in cohomology of

0→ F ∗nE ⊗IB ⊗Iq → F ∗nE ⊗IB → (F ∗nE ⊗IB)⊗ k(q)→ 0

we conclude that F ∗nE ⊗IB is globally generated.

That E can not be written as an extension of M an ample line bundle and a
quotient locally free sheaf Q is equivalent to H0(C, E ⊗M−1) = 0. However
there exists a positive integer m and an ample line bundle MC(m) on C(m) for
which H0(C(m), (F ∗mE )⊗M

−1
C(m)) 6= 0 and we proceed as before with the sheaf

(F ∗mE ). �

3. Definition of curve connectedness: Covering families

We now define various ways in which a variety can be covered by curves, gen-
eralising the notion of a rationally connected varieties (see [Kol96, IV]).

Definition 3.1. We say that a variety X over a field k is connected by genus
g ≥ 0 curves (resp. chain connected by genus g curves) if there exists a proper
flat morphism C → Y , for a variety Y , whose geometric fibres are irreducible
genus g curves (resp. connected genus g curves) such that there is a morphism
u : C → X making the induced morphism u(2) : C ×Y C → X ×k X dominant.

We say X is separably (chain) connected by genus g curves if u(2) is smooth
at the generic point. Note that the notion of separability is redundant in
characteristic zero due to generic smoothness. A genus zero connected variety
is rationally connected. A variety which is connected by genus one curves will
be called (with a slight abuse of notation) elliptically connected. The relevant
moduli spaces which we will be considering are the following. Let π : C → S be
a flat projective curve over an irreducible scheme S and let B ⊂ C be a closed
subscheme that is flat and finite over S. Let p : X → S be a smooth quasi-
projective scheme and g : B → X an S-morphism. The space (see [Kol96,
II.1.5] and [Mor79]) HomS(C, X, g) parametrises S-morphisms from C to X
keeping the points given by g fixed. Restricting to the case where S is the
spectrum of an algebraically closed field k we fix some notation of the following
evaluation morphisms to be used in later sections

F : C ×Hom(C,X, g) → X

φ(p, f) : H0(C, f∗TX ⊗IB) → f∗TX ⊗ k(p)
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and similarly the double evaluation morphisms F (2) and φ(2)(p, q, f) as in
[Kol96, II.3.3]. Secondly we consider the relative moduli space of genus g
degree d stable curves with base point t : P → X , denoted by Mg(X/S, d, t)
as in [AK03] (originally [FP97]). By Bertini, we can always find a genus g such
that a projective X is genus g connected, the minimal such g however is an
interesting invariant of the variety. Finding higher genus covering families is
an easy operation.

Lemma 3.2. Let X be a genus g (chain) connected smooth projective variety
over an algebraically closed field k. Then if g′ ≥ 2g − 1, X is also genus g′

(chain) connected.

Proof. Let C/Y → X be a family making X a genus g (chain) connected
variety. From [AK03, Theorem 50] we have a projective algebraic space
Y ′ =M′g(C/Y, d) of finite type over Y parametrising stable families of degree
d curves of genus g′ over C → Y . The condition g′ ≥ 2g − 1 coming from the
Riemann-Hurwitz formula ensures that this moduli space is non-empty. From
[ACG11, 12.9.2] there exists a normal scheme Z finite and surjective over Y ′

and a flat and proper family X → Z of stable genus g curves of degree d.
Restricting to a suitable open subset W ⊂ Z parametrising irreducible curves
we compose the family X|W →W with the evaluation morphism to X and the
result follows. �

An example of an elliptically connected variety over a non-algebraically closed
field is given after the proof of Theorem 6.2. A much stronger condition is the
existence of a family of curves which is constant in moduli.

Definition 3.3. We say that a variety X over a field k is C-connected for a
curve C if there exists a variety Y and a map u : C × Y → X such that the
induced map u(2) : C ×C × Y → X ×X is dominant. If u(2) is also smooth at
the generic point, then we say that X is separably C-connected.

Projective space is C-connected for every smooth projective curve C whereas
an example of a C-connected variety which is not rationally connected is C×Pn
where g(C) ≥ 1. To see this let (c1, x1), (c2, x2) be any two points in C × Pn

and let f : C → Pn a morphism which sends ci 7→ xi. Considering the graph
of f in C ×Pn we have found a curve isomorphic to C which goes through our
two points. Using parts (3) and (4) from Lemma 3.4 below, the result follows.
More generally, examples can also be constructed from Proposition 3.5 below.
The following are mostly straight forward generalisations of various results in
[Kol96, IV.3].

Lemma 3.4. The following statements hold for a variety X over a field k and
C a smooth projective curve.

(1) If X is genus g connected and X 99K Y a dominant rational map to a
proper variety Y , then Y is also genus g connected. The same holds if
X is C-connected.
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(2) A variety X is C-connected if and only if there is a variety W , closed
in Hom(C,X) such that u(2) : C × C ×W → X ×X is dominant.

(3) If X is defined over a field k and K/k is an extension of fields, then
XK := X ×k K is C-connected if and only if Xk is.

(4) A variety X over an uncountable algebraically closed field is C-
connected if and only if for all very general x1, x2 ∈ X there exists
a morphism C → X which passes through x1, x2.

(5) A variety X over an uncountable algebraically closed field is genus g
connected if and only if for all very general x1, x2 ∈ X there exists a
smooth irreducible genus g curve containing them.

(6) Being rationally or elliptically connected is closed under connected finite
étale covers of varieties.

Proof. To prove (1), let u : C/M → X be a family making X genus g
connected and denote by u′ : C/M 99K Y the composition. Restricting u′ to
the generic fibre Ck(M) we have a rational map φ : Ck(M) 99K Y . Since Y is
proper, by the valuative criterion of properness we can extend φ to a morphism
φ : Ck(M) → Y . By spreading out to an open subset M ′ ⊆M (see [DG67, IV3

8.10.5] for properness and 11.2.6 for flatness of the family) we obtain a family
C|M ′ →M ′ which makes Y also genus g connected.

Since being C-connected or connected by genus g curves is a birational prop-
erty, we may assume by compactifying that X is projective. For (2), consider
Hom(C,X) = ∪Ri the decomposition into irreducible components. One direc-
tion of the statement is obvious, whereas for the other let C×W →W be a fam-
ily which makes X a C-connected variety. If ui : C×Ri → X is the evaluation
morphism, then for some i there is a morphism h : W → Ri such that h(w) =
[Cw → X ] for general w ∈W . This implies that u(2)i : C ×C ×Ri → X ×X is
also dominant. For one direction of (3), pullback by SpecK → Spec k. For the
other, if XK is CK -connected then from (2) there is a positive integer d such
that the evaluation morphism evdK : CK×CK×Homd(CK , XK)→ XK×XK is
dominant. Because of the universal property of the Hom-scheme, we have that
Hom(C,X)×kK = Hom(CK , XK) and (evd)K = evdK so evd is also dominant.

If through every two very general points there passes the image of C under some
morphism, then the map u(2) : C×C×Hom(C,X)→ X×X is dominant. Since
Hom(C,X) has at most countably many irreducible components the restriction
of u(2) to at least one of the components Ri must be dominant, which proves
(4). Similarly for (5) working instead with the Kontsevich moduli of curves
Mg,1(X) → Mg,0(X) the result follows. For (6), the proof for rationally
connected varieties is contained in [Deb01, 4.4.(5)]. Let C → U be a family
which makes X elliptically connected and let X ′ → X be a connected finite
étale cover. Consider the pullback diagram and C′ → U ′ → U the Stein
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factorisation

C′ = C ×X X ′

xxrrrrrrrrrrr
//

��

X ′

��

U ′

&&MMMMMMMMMMMM C

��

// X

U.

After possibly restricting U ′ to the open subset of curves in C′ which are
irreducible, the family C′ → U ′ makes X ′ elliptically connected. �

Proposition 3.5. Let X be a smooth projective variety over an algebraically
closed field k and f : X → C a flat morphism to a smooth projective curve
whose geometric generic fibre is separably rationally connected. Then X is
C-connected.

Proof. From [dJS03], there is a section σ : C → X to f . Now from [KMM92,
Theorem 2.13] we can find a section to f passing through any two points in
different smooth fibres over C, hence we can find a copy of C passing through
two general points. The result now follows from Lemma 3.4 parts (4) and (5)
above after possibly passing to an uncountable extension K/k. �

We now come to the main theme of this paper, which is that varieties covered by
higher genus curves in a strong sense are also covered by rational curves. This
is illustrated in the following proposition, and continues in the next sections.

Proposition 3.6. Let X be a C-connected variety of dimension at least 3 over
an algebraically closed field k. Then X is uniruled.

Proof. We may assume X is projective. Let u : C × Y → X be a family such
that u(2) : C×C×Y → X×X is dominant. We have dimY +2 ≥ 2 dimX and
so if dimX ≥ 3 we obtain dimY ≥ 4. Now, pick general points x ∈ X, c ∈ C
and denote by Z ⊂ Y the locus of curves uz : Cz → X such that x = uz(c)
for all z ∈ Z. We have that dimZ ≥ dimY − (dimX − 1) − 1 and so for
dimX ≥ 3, dimZ ≥ 1. Since any two general points in X can be connected by
the image of a Cy, it follows that Z does not get contracted to a point when
mapped to Hom(C,X ; c 7→ x). From Bend and Break (see [Deb01, Prop. 3.1])
we obtain a rational curve through x and hence through every general point.
After possibly an extension to an uncountable algebraically closed field this
implies that X is uniruled (see [Deb01, Remark 4.2(5)]). �

If C has genus one, the above result is also proved in Section 6, even allowing
the curve C to vary in moduli and with the dimension of X assumed greater
or equal to two. On the other hand, a C-connected surface does not have to be
uniruled when C has genus at least two. Consider C ⊂ A a curve in an abelian
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surface such that C contains the identity 0 of A and the genus of C is at least
two. Consider the map φ : C × C → X sending (p, q) to p− q. If the image is
one dimensional, it has to be isomorphic to C since it has to be irreducible and
contains the image of C × {0}. On the other hand, the image will be closed
under the group operation, hence would have to be abelian itself, which is a
contradiction. Hence φ is surjective, and we obtain that for any x ∈ A, there is
a (p, q) 7→ x, hence a morphism C ∼= C×{q} → X passing through x and 0 (for
(q, q)). Take any two points x, y ∈ A, and consider the image of a morphism
from C through 0 and the point x− y that we just constructed. Translate this
curve by y and obtain an image of C through x, y.

Denoting by X 99K R(X) the maximal rationally chain connected (MRC) fi-
bration, we let R0(X) = X , Ri(X) = R(Ri−1X) and obtain a tower of MRC
fibrations

X 99K R1(X) 99K · · · 99K Rn(X).

This tower eventually stabilises, and if Ri(X) is uniruled then dimRi+1(X) <
dimRi(X). In characteristic zero, we in fact have R(X) = . . . = Rn(X) (see
discussion below). In positive characteristic it can be that the tower has length
greater than one - see the example given in the last section of this paper.

Proposition 3.7. Let X be a normal and proper C-connected variety over
an algebraically closed field where C is a smooth projective curve. Then the
tower X 99K R1(X) 99K · · · 99K Rn(X) of MRC quotients terminates in either
a point, a curve or a surface.

Proof. Let C × Y → X be a family which makes X a C-connected variety.
From Lemma 3.4 part (1) it follows that Ri(X) are also C-connected. From
Proposition 3.6 we obtain that Ri(X) is uniruled if dimRi(X) ≥ 3. This
implies that Ri+1(X) must have dimension strictly less than Ri(X) and so the
result follows. �

Note that if k is algebraically closed of characteristic zero then we know from
[GHS03] that the MRC quotient R(X) is not uniruled, so if X is C-connected of
dimension at least three, R(X) must be a surface, curve or point, in which case
X is respectively a rationally connected fibration over a surface or curve, or a
point (and so X is rationally connected). From Proposition 3.5 the converse
holds too for a fibration over a curve.

Remark 3.8. As observed in [Occ06, Remark 4], if the MRC quotient of
a smooth complex projective variety X is a curve, then the MRC fibration
extends to the whole variety and coincides with the Albanese map.

4. Definition of curve connectedness: Free morphisms

In this section we define ways in which a morphism from a curve C to a variety
X can deform enough to give a large family of morphisms from C so as to
cover X . A notion studied extensively by Hartshorne [Har70] is that of a (local
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complete intersection) subvariety Y in a smooth projective variety X such that
the normal bundle NY/X is ample. Hartshorne proved in [Har70, III.4] that for
some g ≥ 0 there exists a curve C ⊂ X of genus g such that NC/X is ample.
Alternatively, Ottem [Ott12] defines an ample closed subscheme Y ⊂ X of
codimension r to be one where the exceptional divisor O(E) of the blowup
BlY X of X along Y is an (r− 1)-ample line bundle in the sense that for every
coherent sheaf F there is an integer m0 > 0 such that Hi(X,F ⊗O(E)m) = 0
for all m > m0 and i > r− 1. One can then prove that if Y is a local complete
intersection subscheme of X which is ample, then the normal bundle NY/X is
an ample bundle. We impose the following stronger positivity condition.

Definition 4.1. ([Kol96, II.3.1]) Let C be a smooth proper curve and X a
smooth variety over a field k. Let f : C → X a morphism and B ⊂ C a closed
subscheme with ideal sheaf IB and g = f |B. The morphism f is called free
over g if it is non-constant and one of the following two equivalent conditions
is satisfied:

(1) for every p ∈ C we have H1(C, f∗TX ⊗IB(−p)) = 0 or,
(2) H1(C, f∗TX⊗IB) = 0 and f∗TX⊗IB is generated by global sections.

Note that there is also a relative version of the above definition discussed in
[KSCT07].

Definition 4.2. We say that a curve f : C → X is r-free if for all effective
divisors D of degree r ≥ 0, H1(C, f∗TX ⊗OC(−D)) = 0 and f∗TX ⊗OC(−D)
is generated by global sections. A 0-free curve is called free whereas a 1-free
curve is called very free.

The condition of r-freeness makes formal the notion that the curve C deforms in
X while keeping any general r points fixed. The following follows immediately
from Lemma 2.3.

Lemma 4.3. If f : C → X is an r-free curve then f is r′-free for all r′ ≤ r.
In the case of C = P1, f∗TX = ⊕ni=1OP1(ai) with a1 ≤ . . . ≤ an so it follows
that f : P1 → X is r-free if and only if a1 ≥ r.
Remark 4.4. We should remark at this point that there do not exist complete
intersection curves of large enough degree which are free on a general smooth
hypersurface. For example, let X be a degree d smooth hypersurface in Pn.
Assume d ≤ n since otherwise X will be of general type or Calabi-Yau and will
not have any free curves. Let Yi be n− 2 suitably general hypersurfaces in Pn

all of degree e and let C = X ∩n−2i=1 Yi be the resulting curve. The degree of C
is den−2 and the normal bundle is

NC/X = ⊕n−2i=1 OPn(Yi)|C = ⊕n−2i=1 OPn(e)|C .
By adjunction, we compute

degTC = − degωC = −d(−n− 1 + d+

n−2∑

i=1

e).
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Even setting e = 1 to make degTC as large as possible, and taking into account
that degNC/X = e(n− 2), we see that degTX |C = degTC + degNC/X is not
going to be positive for large values of d and n. Positivity of the degree of TX |C
would be necessary for any ampleness conditions. See [Gou14] for a discussion
on separable rational connectedness of Fano complete intersections.

A result of Kollár ([Kol96, II.1.8]) implies that if the dimension of X is at least
3, a general deformation of a 2-free morphism is an embedding into X . We will
see (Theorem 5.5) that if the genus of C is at least one, this holds for any free
morphism too. From [Kol96, II.3.2], if a family of curves mapping to a variety
has a member which is free over g, then the locus of all such curves in this
family is open.

Lemma 4.5. Let X be a smooth variety over an algebraically closed field k,
D ⊂ X a divisor and f : C → X a free morphism. If p ∈ C then there exists a
deformation f ′ : C → X with f ′(p) /∈ D.

Proof. By semicontinuity let U ⊂ Hom(C,X) be a connected open neigh-
bourhood of [f ] such that H1(C, f∗t TX) = 0 for all [ft] ∈ U . From [Mor79] it
follows that the dimension of U is h0(C, f∗TX). Denote by Ip the ideal sheaf
on C of the closed subscheme with unique point p. Since f is free, we have
H1(C, f∗t TX ⊗ Ip) = 0 for all [ft] ∈ U and so by fixing a point x ∈ X such
that p 7→ x, we have

dim(Hom(C,X ; p 7→ x) ∩ U) = h0(C, f∗TX ⊗Ip)

= h0(C, f∗TX)− dimX

= dimU − dimX.

Next, denote by

V = {[ft] ∈ U | ft(p) ∈ D} =
⋃

x∈D
{[ft] ∈ U | ft(p) = x}

the subspace of all morphisms in U which send p to a point in the divisor D.
It follows that

codim(V, U) ≥ dimU − dimV

= h0(C, f∗TX)− (h0(C, f∗TX)− dimX + dimX − 1) = 1

and hence there exists an [f ′] ∈ U \ V such that f ′(p) /∈ D. �

Proposition 4.6. Let X be a smooth variety over an algebraically closed field
k and f : C → X a smooth projective curve which is free over B ⊂ C a
closed subscheme with ideal sheaf IB. Let g : X 99K Y be a generically smooth
dominant rational map to a smooth proper variety Y . Then it follows that
f ′ := g ◦ f : C 99K Y can be deformed to a morphism free over B.

Proof. Deform f : C → X so that it misses the codimension 2 exceptional
locus of g (from [Kol96, II.3.7]) so we can assume that the composition g ◦ f :
C 99K Y is in fact a non-constant morphism. Starting with the standard exact
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sequence of tangent bundles on X and applying f∗ and tensoring with IB we
obtain

0→ f∗TX/Y ⊗IB → f∗TX ⊗IB → (g ◦ f)∗TY ⊗IB.(4.1)

From [Liu02, Ex. 6.2.10] this is exact on the right and we conclude. �

In the case of higher genus curves there exist genus g connected varieties which
do not have a free or very free curve for all g ≥ 1, for example consider E × P1

where E is an elliptic curve. As pointed out after Definition 3.3, E × P1 is
E-connected yet it is not possible that there exists a morphism f : C → E×P1

from a curve C such that f∗TE×P1 is ample since this bundle is isomorphic to
OC ⊕ OC(2) which has a non-ample quotient OC . One can however prove the
following proposition.

Proposition 4.7. Let X be a smooth variety over an algebraically closed field
and f : C → X a very free morphism for some smooth projective curve C.
Then X is separably C-connected.

Proof. Let [f ] ∈ Y ⊂ Hom(C,X) be an open and smooth neighbourhood
with cycle map u : C × Y → X . We first show that the evaluation map

φ(2)(p, q, f) : H0(C, f∗TX)→ f∗TX ⊗ k(p)⊕ f∗TX ⊗ k(q)
is surjective for p 6= q general points in C. Consider the following exact se-
quences of sheaves

0→ f∗TX(−p− q)→ f∗TX → (f∗TX ⊗ k(p))⊕ (f∗TX ⊗ k(q))→ 0

0→ f∗TX(−p− q)→ f∗TX(−p)→ f∗TX(−p)⊗ k(q)→ 0

and note that by taking the long exact sequence in cohomology of
the first, to show that φ(2)(p, q, f) is surjective, we need to show that
H1(C, f∗TX(−p − q)) = 0. Since f is very free we have from the
second sequence that H0(C, f∗TX(−p)) → f∗TX(−p) ⊗ k(q) is surjec-
tive and also that H1(C, f∗TX(−p)) = 0 from which it follows that
H1(C, f∗TX(−p − q)) = 0. Since φ(2)(p, q, f) is surjective, it follows from
[Kol96, II.3.5] that u(2) : C × C × Y → X × X is smooth at (p, q, [f ]). We
conclude that X is separably C-connected and thus also separably connected
by genus g curves. �

Remark 4.8. It follows that in the setting above that a very free curve (or in
fact even a C such that X is C-connected) has the property that it intersects
non-trivially all but a finite number of divisors. This follows from the fact
that we can cover an open subset by images of C, whose complement will be a
proper closed subset of X and so contains a finite number of divisors.

5. Proving uniruledness and rational connectedness

In this section we prove that the existence of a free curve of genus g ≥ 1 is
equivalent to the existence of an r-free curve of genus g for all r ≥ 1, and that in
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characteristic zero this is also equivalent to the existence of a very free rational
curve. This is in stark contrast to rational curves, where uniruled varieties
(possessing free rational curves) are not always rationally connected (possessing
very free rational curves). We begin by noting that there is another type of
positive curve one can consider for a smooth projective variety X , namely
f : C → X such that f∗TX is ample. Note that such a curve automatically has
NC/X ample. Such curves have traditionally been studied in terms of foliations
(cf. Theorem 5.3). We will also prove that the existence of a curve such that
f∗TX is ample is in fact equivalent to the existence of a free curve of the same
genus.

Proposition 5.1. Let X be a smooth projective variety over an algebraically
closed field k and f : C → X a morphism from a smooth projective curve of
genus g such that f∗TX ample. Then X is uniruled.

Proof. The proof follows the usual Mori argument so we present only a sketch
(cf. Theorem 5.3). Note that if X is a curve, then since a bundle is ample if and
only if its pullback under a finite morphism is ample, we obtain that X = P1.
In characteristic zero, after spreading out over a finitely generated extension
SpecS of SpecZ, one can reduce to any closed prime and consider the equiva-
lent set-up in positive characteristic. After pulling back by Frobenius, Lemma
2.4 implies that there is a morphism f

(n)
p : Cp → Xp such that (f

(n)
p )∗TXp is

very free (or r-free even), where fp : Cp → Xp the reduction of f : C → X .
Bend and Break now produces a rational curve passing through a general
point, of bounded degree independent of p (see [Deb01, Prop. 3.5]). These are
points in fibres over SpecS of a finite type relative moduli Homd

S(P
1
S ,X/S, s),

for s : SpecS → X a section specifying the general point the rational curve
goes through. Hence by Chevalley’s Theorem the generic fibre over SpecS
is also non-empty, and there is a rational curve through a general point of X . �

Theorem 5.2. Let X be a smooth projective variety over an algebraically closed
field k and f : C → X a morphism from a smooth projective curve of genus g
such that f∗TX is ample.

(1) If the characteristic p of k is zero, then X is rationally connected.
(2) If p > 0 then the tower of MRC fibrations terminates with a point.

Proof. From 5.1, we conclude that X is uniruled, regardless of the charac-
teristic. Denote by π : X → R(X) the MRC fibration (R(X) is defined up
to birational transformation so we may assume π is a morphism). In charac-
teristic zero, the composition g : C → X → R(X) again has g∗TR(X) ample,
since from the proof of 4.6 the quotient of an ample bundle is ample. So by
the Graber-Harris-Starr Theorem, since R(X) is uniruled by Proposition 5.1,
it must be a point. In positive characteristic, it may not be the case that the
composition g : X → R(X) is generically smooth, in which case g∗TR(X) might
not be ample. From Lemma 2.4 however there is a morphism h : C′ → X such
that h∗TX is very free (here C′ is a Frobenius pullback of C so has the same
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genus). From 4.7, X is separably C′-connected, and so by 3.7 we do obtain
that the tower of MRC quotients X → R(X) → · · ·Rn(X) ends in a point,
curve or surface. If π : X → T where T := Rn(X) is a smooth projective
curve, then by Lemma 4.5, for a point p ∈ C′, we can deform h so that the
image of p misses the inverse image under π of π(h(p)). Hence Hom(C′, T )
is at least one dimensional and from de Franchis’ Theorem [ACG11, 8.27] it
follows that T has genus zero or one. One excludes the case where C′, T both
of genus one, by using the fact that there are only countably many isogenies
between two elliptic curves. Also, T cannot be rational since we have assumed
the tower is maximal. If now Rn(X) = S is a smooth projective surface, we
may assume by pulling back by Frobenius from 2.4 and deforming, that there
is an at least one dimensional family of morphisms sending a fixed point on
C to a fixed point on S. Hence by Bend and Break [Deb01, Prop. 3.1] the
surface would have to be uniruled and we are reduced to the case of a point
again. �

Assuming ampleness and regularity of a foliation on a smooth curve in charac-
teristic zero, results of this type have been demonstrated in the work of various
people, starting with Miyaoka’s uniruledness criterion [Miy87, Theorem 8.5].
A short summary of recent results follows.

Theorem 5.3. ([BM01, Theorem 0.1], [KSCT07, Theorem 1]) Let X be a
normal complex projective variety and C ⊂ X a complete curve in the smooth
locus of X. Assume that F ⊂ TX is a foliation regular along C and such that
F |C is ample. If x ∈ C is any point, the leaf through x is algebraic and if
x ∈ C is general then the closure of the leaf is also rationally connected.

Using [BDPP13, Corollary 0.3], Peternell proved a weaker version of Mumford’s
conjecture on numerical characterisation of rationally connected varieties from
which one can deduce the following theorem.

Theorem 5.4. ([Pet06, 5.4, 5.5]) Let X/C be a projective manifold and C ⊂ X
a possibly singular curve. If TX |C is ample then X is rationally connected. If
TX |C is nef and −KX .C > 0 then X is uniruled.

The precise relation between r-free morphisms and morphisms f : C → X such
that f∗TX is ample is given in the following.

Theorem 5.5. Let X be a smooth projective variety over an algebraically closed
field k and r ≥ 0 any integer. Then there exists a morphism f : C → X from
a smooth projective genus g ≥ 1 curve C such that f∗TX is ample if and only
if there is an r-free morphism h : C′ → X from a genus g smooth projective
curve C′.

Proof. Assuming the existence of h, we obtain from Lemma 2.3 that h is
also free, and so by Proposition 2.2, h∗TX is ample. If f∗TX is ample, one
needs to separate between characteristic p > 0 or equal to zero. In the former
case, as in the proof of 5.1 we get h : C′ → X (here again C′ is a Frobenius

Documenta Mathematica 21 (2016) 287–308



302 Frank Gounelas

pullback of C so of genus g) which is r-free. When the characteristic is zero,
X will be rationally connected from 5.2. The idea now is to attach many very
free rational curves to C, apply standard smoothing of combs techniques and
prove that the resulting general smooth deformations of the comb will be r-free
genus g curves (cf [Kol96, II.7.10]). This proceeds as follows. Assemble a comb
D = C ∪ ∪mi=1Ci with m rational teeth that are (r + 1)-free like in [Kol96,
II.7]. For m large enough, D is smoothable to a flat proper family Y → T
where the general fibre is isomorphic to C, the central fibre is a subcomb of
D with a large number of teeth depending on C ⊂ X and m, and there is a
morphism F : Y → X which extends D → X . To show that the general nearby
fibre ft : Yt → X is r-free, it suffices to show that H1(Yt, f

∗
t TX(−∑r

i=0 pi))
for p0, p1, . . . , pr any points on Yt ⊂ X (see Definition 4.1). Pick sections
s0, s1, . . . , sr : T → Y with si(t) = pi. Let E = F ∗TX(−∑r

i=1 si(T )). By
Riemann-Roch, for m large enough, we have that H1(C,M ⊗ E|C) = 0 for all
line bundles M of degree larger than m, and also that E|Ci is ample since Ci
is (r + 1)-free. Now apply [Kol96, II.7.10.1] for m large enough. �

Using any of Theorems 5.3, 5.4 or 5.2, a smooth projective variety X over
an algebraically closed field of characteristic zero with a free genus g curve
f : C → X such that g ≥ 1 is automatically rationally connected.

Remark 5.6. At this point we cannot prove that in positive characteristic,
assuming that we have a free curve f : C → X of genus g ≥ 1 implies that
X is separably rationally connected or even rationally chain connected. It is
tempting to hope that both statements are true though. Jason Starr informs
us that his maximal free rational quotient (MFRC) [Sta06] gives a generically
(on the source) smooth morphism X → Rf (X) over any algebraically closed
field k, so if X contained a free rational curve f : P1 → X , then dimRf (X) <
dimX . Hence, if f : C → X a free curve of genus g ≥ 1 implied that we
have a free rational curve P1 → X (we do not know how to show this), taking
successive MFRC quotients and using Proposition 4.6 would reduce the tower
of MFRC quotients to a point. This does not mean that X will necessarily be
rationally connected, but since there is a free rational curve on X , it will at
least be separably uniruled. Even though Bend and Break arguments give us
the existence of many rational curves, the author does not know any general
techniques to construct free rational curves in positive characteristic. See the
last two sections for results in this direction.

6. Elliptically connected varieties

In this section we will study more carefully the case of genus one. Denoting
RC and EC to mean rationally and elliptically connected (genus one connected)
respectively, we have the following inclusions of sets of varieties

{rational} ( {unirational} ⊆ {RC} ( {EC} ( {uniruled}.
It is an open problem whether there exists a non-unirational rationally con-
nected variety but it is widely expected these do exist. The following result
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is in the spirit of 3.6. The following proof was suggested by the anonymous
referee.

Proposition 6.1. Let X be an elliptically connected smooth projective variety
of dimX ≥ 2 over an algebraically closed field k. Then X is uniruled.

Proof. Like in 3.6, for C → U a family of genus one curves mapping to X such
that C ×U C → X ×X is dominant, there is an at least one dimensional locus
Z ⊂ U parametrising curves which pass through a (general) point x ∈ X . In
fact, after fixing a general hyperplane H , we obtain a morphism Z →M1,2(X)
where for z ∈ Z, the two marked points are the point pz ∈ Cz sent to x, and
a point qz ∈ Cz which is sent to H . Denote also by C → Z the restriction of
the family from U . Consider now a compactification and the induced rational
map to X

C
π

��

f
//___ X

Z

and let µ : Z →M1,2(X) be the moduli map. Since M1,2 contains no proper
subvarieties which do not get contracted when mapped to M1, either the
image of µ meets the boundary, which implies that there is a rational curve
through x, or µ is a contraction to a point. In the latter case, we thus have
that the family π is isotrivial, so after passing to a finite flat cover Z

′
of Z we

obtain C × Z′ → Z
′
, with f ′ : C × Z ′ 99K X the induced morphism. From

the construction, we also obtain a point p ∈ C (mapped to each pz under the
map C × Z ′ → C) such that f ′ contracts {p} × Z ′ to x. If f ′ were defined
everywhere, Mumford’s Rigidity Theorem would imply that all fibres {s} ×Z ′
are contracted, which contradicts the fact that images of our initial family
dominate H . Hence f ′ is not defined everywhere and like in Bend and Break,
we obtain a rational curve through x. �

Theorem 6.2. Let X be a smooth projective variety over an algebraically closed
field k of characteristic zero. Then X is elliptically connected if and only if it is
rationally connected or a rationally connected fibration over an elliptic curve.

Proof. Consider the MRC fibration π : X 99K R(X) where R(X) is elliptically
connected as π is dominant. Since R(X) is elliptically connected and not unir-
uled, it follows from Proposition 6.1 that it must be either of dimension 0 and
thus X is rationally connected, or of dimension 1 and so an elliptic curve E by
Riemann-Hurwitz. By Remark 3.8, the MRC fibration coincides with the map
to the Albanese and so fibres of X → E′ are rationally connected. Conversely,
we have seen that a rationally connected variety is elliptically connected in
Lemma 3.2. If on the other hand X is a rationally connected fibration over

Documenta Mathematica 21 (2016) 287–308



304 Frank Gounelas

an elliptic curve E then from Proposition 3.5 we know that it is E-connected. �

If k is of positive characteristic, using the same methods as in Lemma 3.7 we
deduce that for an elliptically connected variety, the tower of MRC fibrations
terminates with a point or a curve.

Remark 6.3. Note that Bjorn Poonen [Poo10] has constructed non-trivial
examples over an arbitrary field, of elliptically connected threefolds which are
not rationally connected. These are Châtelet surface fibrations over an elliptic
curve.

7. Towards a positive characteristic analogue

From Remark 5.6 and the work preceding it, we would like to demonstrate
that the existence of a free higher genus curve implies the existence of a free
rational curve in positive characteristic, something which holds in characteristic
zero from Theorem 5.2. In this section we make the first steps in this direction.
If f : C → X is a very free morphism from a smooth projective curve of genus
g ≥ 2 to a smooth projective variety X , then KX .C = − deg f∗TX < 0 from
the ampleness of f∗TX . In fact, a Riemann-Roch calculation gives a better
bound of KX .C ≤ −n(g − 1) where n = dimX .

Proposition 7.1. Let X be a smooth projective surface over an algebraically
closed field k with f : C → X a free morphism from a smooth projective curve
C of genus g > 0 or a very free morphism of genus zero. It follows that X is
separably rationally connected.

Proof. If C is of genus zero then X is separably rationally connected by
definition. From the discussion above we have that KX is not nef. Also,
any surface Y which is birational to X admits a morphism C → Y from 4.6,
which is again free, so KY is also not nef. From the classification of surfaces
this means that X is either rational or ruled. If ruled, X would admit a
birational morphism to P1 × C. The free morphism f : C → X would give
a free morphism C → P1×C which would mean C is P1 and X was rational. �

Remark 7.2. Some remarks about the case of dimension three, where the
minimal model program is incomplete in positive characteristic. From the main
theorem in [Kol91], assuming X is smooth and that it admits a free morphism
from a curve, we can contract extremal rays in the cone of curves in arbitrary
characteristic, to obtain a Fano fibration over a curve, surface or point. In
the case where there exists a conic fibration X → S where S is a smooth
surface, Kollár proves that if the characteristic of k is not 2 then the general
fibre is smooth. From Proposition 4.6 it follows that the composition morphism
C → S is free and so from the above proposition for the case of surfaces, S
is a rational surface. Hence X is a conic bundle over a rational surface hence
separably rationally connected. If X → Y a Fano fibration over a curve, to
the author’s knowledge, it is not known whether the fibres of the del Pezzo
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surface fibration over Y obtained in this way must be smooth. Assuming for
the time being that they were, they would be separably rationally connected
and from the deformation theory argument in Theorem 5.2 and de Franchis’
Theorem [ACG11, 8.27], Y would be P1. From the de Jong-Starr Theorem we
would obtain sections P1 → X from which we could assemble combs with very
free teeth to be smoothed to very free rational curves in X , showing that X is
separably rationally connected. Finally, even though it is open whether Fano
threefolds are separably rationally connected (this result is not true in higher
dimensions however), Shepherd-Barron [SB97] proved that Fano threefolds of
Picard rank one are liftable to characteristic zero, hence admitting a very free
morphism implies they are separably rationally connected.

The following result is well known in the case of P1 (see [Deb01, 4.18]) and
easily extends to higher genus.

Proposition 7.3. Let f : C → X be a very free morphism from a smooth
projective curve C to a smooth projective variety X over an algebraically closed
field k. Then for all positive integers m, ℓ

H0(X, (ΩℓX)⊗m) = 0.

Proof. Since f : C → X is very free, from Proposition 4.7 there is a variety
U such that C × U → X makes X separably C-connected. Being very free is
an open property ([Kol96, II.3.2]) so we can assume that the general morphism
fu : Cu → X for u ∈ U is very free and also an immersion from [Kol96, II.1.8],
and so f∗uTX is ample from Proposition 2.2 (and by definition of a very free
curve in the genus zero case). We conclude that for a general point x ∈ X
there is a morphism fu : Cu → X such that f∗uTX is ample and whose image
passes through x. Hence since f∗uΩ

1
X is negative, any section of (ΩℓX)⊗m must

vanish on the image f(Cu) hence on a dense open subset of X , and so on X .
�

Corollary 7.4. Let f : C → X as above. Then the Albanese variety AlbX
is trivial.

Proof. Note that we have that dimAlbX ≤ dimH1(X,OX) = h0,1.
In characteristic zero Hodge duality gives that h1,0 = h0,1 but more
generally over any algebraically closed field we have (see [Igu55]) that
dimAlbX ≤ h1,0 = h0(X,Ω1

X). The result follows from Proposition 7.3. �

The above also follows from the result in [Gou14], which says that in the above
situation H1(X,OX) = 0. See ibid. for a discussion around the vanishing of
Hi(X,OX) for separably rationally connected varieties in positive characteris-
tic. Note also that if X is C-connected, since any map C → AlbX must factor
through the Jacobian, and there are only countably many homomorphisms be-
tween abelian varieties, one concludes that the image of X in AlbX is either a
point or a curve.
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8. An example in positive characteristic

Let X be the Fermat quintic surface x50 + x51 + x52 + x53 = 0 in P3 over an
algebraically closed field of characteristic p. In [Shi74] it is proven that if p 6= 5
and p is not congruent to 1 modulo 5, then X is a unirational general type
surface and if we quotient by the action of the group G of 5-th roots of unity
xi 7→ ζixi, then we obtain a Godeaux surface which is again unirational but
has algebraic fundamental group πet

1 (X/G, y) ∼= Z/5Z. Note that in charac-
teristic zero, the notions of rationally chain connected, rationally connected,
freely rationally connected (see [She10]) and separably rationally connected all
coincide and it is known that each variety in this class is simply connected. In
positive characteristic however these notions are in decreasing generality and
can differ. A rationally chain connected variety always has finite fundamental
group (see [CL03]) whereas a freely rationally connected variety is simply con-
nected (see [She10]). Note that Shioda’s example above gives a unirational and
hence rationally connected variety over a characteristic p algebraically closed
field which is not simply connected.

We show there is a smooth projective variety in characteristic p which has
infinite étale fundamental group but after a finite number of MRC quotients
we terminate with a point. Let C be a smooth 5 to 1 cover of P1, with defining
affine equation of the form y5 = f(x) where f is a general polynomial of high
degree. We have an action of G = Z/5Z on C which we can extend to the
product X × C of the above Fermat quintic X with C. Projecting from the
quotient onto the second factor we have a morphism (X×C)/G→ P1 where we
have identified C/G with P1. The general fibre of this morphism is isomorphic
to X . We have a short exact sequence

1→ πet
1 (X, x)× πet

1 (C, c)→ πet
1 ((X × C)/G, z)→ G→ 1.

Hence we have constructed an example of a smooth projective variety over an
algebraically closed field of characteristic p whose fundamental group is infinite
yet whose tower of MRC quotients terminates with a point.
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Abstract. Semigroup C*-algebras for right-angled Artin monoids
were introduced and studied by Crisp and Laca. In the paper at
hand, we are able to present the complete answer to their question of
when such C*-algebras are isomorphic. The answer to this question
is presented both in terms of properties of the graph defining the
Artin monoids as well as in terms of classification by K-theory, and
is obtained using recent results from classification of non-simple C*-
algebras. Moreover, we are able to answer another natural question:
Which of these semigroup C*-algebras for right-angled Artin monoids
are isomorphic to graph algebras? We give a complete answer, and
note the consequence that many of the C*-algebras under study are
semiprojective.
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ondary: 20F36, 20M05, 46L35.

1 Introduction

Semigroup C*-algebras for right-angled Artin monoids were introduced and
studied by Crisp and Laca in [CL02] and [CL07]. In [CL07], the authors ask
how to classify these semigroup C*-algebras up to *-isomorphism. We now
present the complete answer to their question.
The Artin monoids studied here are given by countable, symmetric and antire-
flexive graphs Γ = (V,E) as

A+
Γ := 〈{σv: v ∈ V } |σvσw = σwσv if (v, w) ∈ E〉+ .
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The corresponding right-angled Artin groups, defined by the same generators
and relations, are special cases of Artin groups, which form an important class
of examples of groups. We refer the reader to [CL02, CL07] and the references
therein for more details.
Semigroup C*-algebras of left cancellative semigroups, generated by the left
regular representation of the semigroup, have been studied for a long time.
Recently, there has been a renewed interest in this topic (see [Li12, Li13] and the
references therein). By [CL02], the semigroup C*-algebras C∗(A+

Γ ) attached to
right-angled Artin monoids are given as the universal C*-algebras for

〈
{sv: v ∈ V }

∣∣∣∣
[sv, sw] = [sv, s

∗
w] = 0 if (v, w) ∈ E

s∗vsw = δv,w if (v, w) 6∈ E

〉

We answer the question of when two graphs Γ,Λ produce C*-algebras that
are isomorphic. Although we emphasize that our results cover the full range
of such graphs, it is instructive to state our main results in the case of finite
graphs. This is a specialization of the combination of Theorems 4.2 and 5.2.

Theorem 1.1 Let Γ and Λ be finite undirected graphs with no loops. The
following are equivalent

1. C∗(A+
Γ )
∼= C∗(A+

Λ )

2. (a) t(Γ) = t(Λ)

(b) Nk(Γ) +N−k(Γ) = Nk(Λ) +N−k(Λ) for all k ∈ Z

(c) N0(Γ) > 0 or

∑

k>0

N−k(Γ) ≡
∑

k>0

N−k(Λ) mod 2

3. [FK+(C
∗(A+

Γ )), [1C∗(A+
Γ )]]
∼= [FK+(C

∗(A+
Λ )), [1C∗(A+

Λ )]]

In this result, the invariant mentioned in (3) is the standard ordered filtered
K-theory – implicitly containing the primitive ideal space – which has been
conjectured in [ERR10] to be a complete invariant for a large and important
class of C*-algebras. This conjecture is still open, but has been confirmed in
a multitude of situations partially overlapping with the case at hand. But the
main strength of our result is in fact that the ad hoc invariant of (2) is extremely
easy to compute for Γ and Λ. Indeed, as we shall detail below, the numbers t(Γ)
and Nk(Γ) are obtained by dividing Γ into co-irreducible components and then
counting how many of these are singletons, yielding t(Γ), and counting how
many of the remaining co-irreducible components have Euler characteristic k,
yielding Nk(Γ). In Figure 1 this process has been completed for all 34 graphs
with five vertices, and we conclude that they define 18 different C*-algebras.
When the number of vertices increase, it is possible for two graphs to have dif-
ferent sets of invariants, yet define the same C*-algebra. For instance, defining
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N−4=1 N−3=1 N−2=1 N−2=1 N−2=1 N−1=1 N−1=1

N−1=1 N−1=1 N−1=1 N−1=1 N−1=1 N0=1 N0=1

N0=1 N0=1 N0=1 N0=1 N0=1 N1=1 N1=1

N−3=1 N−2=1 N−2=1 N−1=2 N−1=1 N−1=1 N−1=1

t=1 N−1=1 t=1 t=1 t=1 t=1

N0=1 N−2=1 N−1=2 N−1=1 N−1=1 t=5

t=1 t=2 t=1 t=2 t=3

Figure 1: Invariants for all graphs with 5 vertices. Any quantity not mentioned
equals zero.
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a graph Γ′ with 10 vertices having its co-irreducible components chosen among
those given in Figure 1 so that

N−1(Γ
′) = 2

and Λ′ similarly defined so that

N1(Λ
′) = 2,

then C∗(A+
Γ′ ) and C∗(A+

Λ′) will be isomorphic. Similarly, we may define Γ′′

and Λ′′ with 15 vertices each so that

N−1(Γ
′′) = 1, N0(Γ

′′) = 1, N1(Γ
′′) = 1

N−1(Λ
′′) = 2, N0(Λ

′′) = 1

obtaining that C∗(A+
Γ′′ ) ∼= C∗(A+

Λ′′ ).
In the general case of possibly infinite graphs, an additional quantity o(Γ) must
be introduced to count those co-irreducible components which have an infinite
number of vertices, and to address the possibility of having an infinite number
of co-irreducible components, but the necessary condition replacing (2) in this
general case is not much more complicated than the one given above.
We note that the C*-algebras associated via semigroups to undirected and
loop-free graphs are not always graph C*-algebras in the usual sense, not only
because graph C*-algebras are defined using directed graphs. We provide a
complete description of when C∗(A+

Γ ) is in fact a graph C*-algebra, and note
that there is a rather complicated relation between Γ and the GΓ when in fact
C∗(A+

Γ )
∼= C∗(GΓ). In this case, GΓ is not unique.

Our results have surprising consequences for the issue of stable relations (cf.
[Lor97]) among sets of isometries of separable Hilbert spaces, subject to commu-
tativity or orthogonality relations as given by the graph Γ, or, which is nearly
the same, for the issue of semiprojectivity (cf. [Bla85]) of the C*-algebras
C∗(A+

Γ ). Indeed, it is easy to see by spectral theory that C∗(A+
Γ ) is semipro-

jective when Γ is a finite graph with no edges, corresponding to a family of
isometries having orthogonal range projections. Similarly, it follows e.g. from
considering the celebrated Voiculescu matrices ([Voi83],[EL91]) that when Γ is a
complete graph with more than one vertex, C∗(A+

Γ ) cannot have this property.
It is a question attracting a lot of attention (see e.g. [Bla04]) to what extent
it is possible to obtain stable relations for commuting sets of stable relations,
or to what extent tensor products of semiprojective C*-algebras can them-
selves be semiprojective. In fact, it was only established recently ([End15])
that O3 ⊗O3 is semiprojective, as a consequence of Enders’ sweeping solution
to the semiprojectivity problem for Kirchberg algebras. In our setting, because
we have found that many settings in which some isometries are required to
be orthogonal, and others to commute, give the same C*-algebras as the ones
where all are required to be orthogonal, we immediately see that many such
settings — for instance the first 12 listed in Figure 1 — provide for stable
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relations. Involving the notion of graph algebras as outlined above, we will
show in Theorem 6.9 semiprojectivity and nonsemiprojectivity for many of the
C*-algebras under study, and it follows from our results that exactly those
C*-algebras arising from the graphs in Figure 1 in the non-shaded entries are
semiprojective. We have not been able to resolve the issue completely as En-
ders’ methods do not apply directly, the first open case having six vertices and
two co-irreducible components each with Euler characteristic −2.
All authors acknowledge support by the Danish National Research Foundation
through the Centre for Symmetry and Deformation (DNRF92), and thank the
Department of Mathematical Sciences at the University of Copenhagen, where
the initial phases of this work were carried out, for providing excellent facilities.
The first named author gratefully acknowledges support from the VILLUM
Foundation, and the third named author gratefully acknowledges support from
the Simons Foundation (#279369 to Efren Ruiz).

2 Preliminaries

2.1 Semigroup C*-algebras for right-angled Artin monoids

Let Γ be a countable graph. Γ = (V,E) is given by a countable set of vertices
V and a set of edges E. We only consider unoriented edges, and given two
vertices, there is at most one edge joining these two vertices. In other words,
we can think of E as a symmetric subset of V × V not containing elements of
the diagonal.
Given such a graph Γ = (V,E), the right-angled Artin group AΓ is defined as
follows:

AΓ := 〈{σv: v ∈ V } |σvσw = σwσv if (v, w) ∈ E〉 .
Similarly, the right-angled Artin monoid A+

Γ is defined as follows:

A+
Γ := 〈{σv: v ∈ V } |σvσw = σwσv if (v, w) ∈ E〉+ .

It turns out that the canonical semigroup homomorphismA+
Γ → AΓ is injective,

see [Par02]. Moreover, it is shown in [CL02] that A+
Γ ⊆ AΓ is quasi-lattice

ordered. This means that for every g in AΓ, either (gA+
Γ ) ∩ A+

Γ = ∅ or there
exists p ∈ A+

Γ with (gA+
Γ ) ∩ A+

Γ = pA+
Γ .

The (left) reduced semigroup C*-algebra of A+
Γ is given by

C∗λ(A
+
Γ ) = C∗ 〈{Sv: v ∈ V }〉 ⊆ L(ℓ2(A+

Γ )),

where Svex = eσvx with {ex} the canonical orthonormal basis. The full semi-
group C*-algebra of A+

Γ is defined as

C∗(A+
Γ ) = C∗univ

〈
{sv: v ∈ V }

∣∣∣∣
[sv, sw] = [sv, s

∗
w] = 0 if (v, w) ∈ E

s∗vsw = δv,w if (v, w) 6∈ E

〉

The canonical homomorphism C∗(A+
Γ ) → C∗λ(A

+
Γ ) is an isomorphism by

[CL02]. Hence we do not distinguish between reduced and full versions and
simply write C∗(A+

Γ ) for the semigroup C*-algebra of A+
Γ .
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2.2 Co-irreducible components

The graph Γ is called co-reducible if there exist non-empty subsets V1 and V2
of V with V = V1 ⊔ V2 such that V1 × V2 ⊆ E. Γ is called co-irreducible if Γ
is not co-reducible. In general, we can always decompose Γ into co-irreducible
components. This means that there exist co-irreducible graphs Γi = (Vi, Ei)
such that A+

Γ
∼=
⊕

iA
+
Γi

(and also AΓ
∼=
⊕

iAΓi). As explained in [CL07],
these co-irreducible components are found by looking at the opposite graph of
Γ. For the semigroup C*-algebra, we get C∗(A+

Γ )
∼=
⊗

i C
∗(A+

Γi
). Note that

if there are (necessarily countably) infinitely many co-irreducible components,
the tensor product is defined as an inductive limit of finite tensor products with
respect to the canonical unital embeddings as tensor factors.
It is shown in [CL07] that for a co-irreducible graph Γ = (V,E) with 1 < |V | <
∞, C∗(A+

Γ ) has a unique non-trivial ideal isomorphic to the compact opera-
tors. It is easy to see the compact operators in the description of C∗(A+

Γ ) as a
concrete C*-algebra on ℓ2(A+

Γ ): We just have to observe that 1 −∨v∈V SvS∗v
is the orthogonal projection onto the one-dimensional subspace of ℓ2(A+

Γ ) cor-
responding to the identity element of A+

Γ . This projection then generates the
ideal of compact operators. The corresponding quotient C∗Q(A

+
Γ ) is a (unital)

Kirchberg algebra satisfying the UCT. However, if our co-irreducible graph has
infinitely many vertices, then C∗(A+

Γ ) itself is a (unital) Kirchberg algebra sat-
isfying the UCT. That we obtain UCT Kirchberg algebras follows also from
[Li13, Corollary 7.23]. The case where Γ consists of only one vertex is easy
to understand; in that case, C∗(A+

Γ ) is canonically isomorphic to the Toeplitz
algebra T .

2.3 Primitive ideal space

We can now describe the primitive ideal space of C∗(A+
Γ ) for arbitrary Γ.

Let Γi = (Vi, Ei) be the co-irreducible components of Γ. Then by [Bla77,
Theorem 4.9], we have an identification

Prim (C∗(A+
Γ ))
∼=
∏

i

Prim (C∗(A+
Γi
)).

Under this identification, an element (Ii) of the space on the right hand side
corresponds to the primitive ideal I of C∗(A+

Γ ) which is generated by {⊗j Jij}i,
where Jij = C∗(A+

Γj
) if j 6= i and Jii = Ii. Since each of the Γi is co-irreducible,

the primitive ideal space Prim (C∗(A+
Γi
)) is easy to describe because of the

results summarized above:

• If Γi just consists of one point, then Prim (C∗(A+
Γi
)) is homeomorphic to

the primitive ideal space of the Toeplitz algebra. This means that as a
set, Prim (C∗(A+

Γi
)) is the disjoint union of a point and a circle, and the

non-empty open sets are given by unions of the point and open subsets
in the usual topology of the circle.
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• If Γi has more than one, but finitely many vertices, Prim (C∗(A+
Γi
)) con-

sists of two points, one of which is closed (the corresponding primitive
ideal is the ideal of compact operators) and the other one is dense.

• If Γi has infinitely many vertices, then Prim (C∗(A+
Γi
)) consists of only

one point.

2.4 K-theory

K-theory for C∗(A+
Γ ) and the quotients C∗Q(A

+
Γ ) has been computed in [Iva10]

in an ad hoc way, and can also be computed using [CEL13]. Let us explain the
computation via the latter route. First of all, we need the Euler characteristic
of a graph Γ. We view Γ as a simplicial complex by defining for every n =
0, 1, 2, . . . the set of n-simplices by

Kn := {{v0, . . . , vn} ⊆ V : (vi, vj) ∈ E for all i, j ∈ {0, . . . , n} , i 6= j} .

Then we set for a graph Γ with finitely many vertices χ(Γ) := 1 −∑∞
n=0(−1)n|Kn|.

Remark 2.1 It is easy to see that there are co-irreducible graphs attaining any
integer as its Euler characteristic. Indeed, letting Γ−m denote the graph with
m+ 1 vertices and no edges, we clearly have

χ(Γ−m) = −m.

Systematically generating positive characteristics is harder; one option is to let
Γn2−1 denote the graph with 2n+2 vertices obtained by deleting one edge from
the complete bipartite graph Kn+1,n+1 and note that

χ(Γn2−1) = n2 − 1

To obtain positive characteristics in {(n− 1)2, . . . , n2− 1} one may simply add
a suitable number of isolated vertices to Γn2−1.

Now, by [CEL13, Theorem 5.2], we know that we always have K∗(C∗(A
+
Γ ))
∼=

K∗(C), and K0(C
∗(A+

Γ ))
∼= Z is generated by the class of the unit [1]. Here we

use that right-angled Artin groups satisfy the Baum-Connes conjecture with
coefficients because these groups have the Haagerup property (see [NR97], and
also [AD]). To compute K-theory for the quotient C∗Q(A

+
Γ ) in the case that Γ

has (more than one and) finitely many vertices, we consider the short exact
sequence 0→ K → C∗(A+

Γ )→ C∗Q(A
+
Γ )→ 0 and its six term exact sequence in

K-theory:

K0(K) // K0(C
∗(A+

Γ ))
// K0(C

∗
Q(A

+
Γ ))

��

K1(C
∗
Q(A

+
Γ ))

OO

K1(C
∗(A+

Γ ))
oo K1(K)oo

(1)
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Since both K1(K) and K1(C
∗(A+

Γ )) vanish, all we have to do is to compute
the homomorphism K0(K) ∼= Z→ Z ∼= K0(C

∗(A+
Γ )). K0(K) ∼= Z is generated

by the class of any minimal projection. So we can take e = 1 − ∨v∈V SvS∗v .
It is easy to see that in K0, [e] ∈ K0(K) is sent to χ(Γ)[1] ∈ K0(C

∗(A+
Γ )).

Therefore, by exactness of (1), we conclude that K0(C
∗
Q(A

+
Γ ))
∼= Z/|χ(Γ)|Z

and

K1(C
∗
Q(A

+
Γ ))
∼=
{
{0} if χ(Γ) 6= 0

Z if χ(Γ) = 0
.

3 Extension algebras

We now discuss the C*-algebras associated to co-irreducible graphs and see
how they are all isomorphic to either the Toeplitz algebra, the Cuntz algebra
O∞, or an extension algebra as specified below.

Theorem 3.1 Consider the following properties for a unital C*-algebra A:

(1) A contains K as an ideal, and A/K is a Kirchberg algebra satisfying the
UCT,

(2) K0(A) = Z with [1A] = 1.

For each k ∈ Z\{0} there is a unique C*-algebra satisfying (1), (2) and

(3) The six-term exact sequence for K and A is given by

Z
k

// Z // Z/kZ

��

0

OO

0oo 0oo

There is also a unique C*-algebra satisfying (1), (2) and

(3’) The six-term exact sequence for K and A is given by

Z
0

// Z Z

��

Z 0oo 0oo

Proof: Note that K is an essential ideal of A (i.e., every nonzero ideal of A has a
nontrivial intersection with K) since A is unital and A/K is simple. Uniqueness
follows from [ERR, Corollary 4.22]. For existence, we note that when Γ is a
finite and co-irreducible graph with |Γ| > 1 and χ(Γ) = k, all properties are
met as noted in Section 2. ✷

When specifying the mapK0(K)→ K0(A) above we let the unit of the leftmost
copy of Z denote the class of a minimal projection of Z.
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Definition 3.2 The unique C*-algebras satisfying (1),(2) and (3) are denoted

E
sgn(k)
|k|+1 . The unique C*-algebra satisfying (1),(2) and (3’) is denoted E0

1 . The

quotient E0
1/K is denoted O1.

Our notation has been chosen to fit the notation Ekn for the extension algebras
of On studied in [FL07]. With our name O1 for the appropriately chosen
Kirchberg algebra, we have

0 // K ι
// Ekn

π
// On // 0

for any k ∈ {−1, 0, 1} and n ∈ N, provided k = 0 precisely when n = 1.

Lemma 3.3 Ekn
∼= Ek

′

n′ only when n = n′ and k = k′. Ekn ⊗ K ∼= Ek
′

n′ ⊗ K
precisely when n = n′.

Proof: Since the six-term exact sequences are as specified in (3) or (3’) of
Theorem 3.1, stable isomorphism can only occur if n = n′, and hence we only
need to check that for n > 0, we have E1

n 6∼= E−1n , yet E1
n ⊗K ∼= E−1n ⊗K.

We note that the only two options for an isomorphism among the six-term
exact sequences in this case are given as

Z
n

//

±1
��

Z //

∓1
��

Z/nZ

��

Z −n
// Z // Z/nZ

and that we must choose +1 as the left most isomorphism to preserve the
positive cone of K0(K). Thus, an isomorphism is ruled out as it would fail to
send the class of the unit of E1

n to the unit of E−1n , but an isomorphism after
stabilization is guaranteed by, e.g., [ERR09]. ✷

The following result follows directly from § 2.2, § 2.4 and Theorem 3.1.

Theorem 3.4 When Γ is a co-irreducible graph, C∗(A+
Γ ) is one of the C*-

algebras T , Ekn,O∞ according to

1. If |Γ| = 1, C∗(A+
Γ )
∼= T

2. If 1 < |Γ| <∞, C∗(A+
Γ )
∼= E

sgnχ(Γ)
1+|χ(Γ)|

3. If |Γ| =∞, C∗(A+
Γ )
∼= O∞

We note that by the information already noted on the ideal structures in com-
bination with Lemma 3.3, the C*-algebras appearing are not mutually isomor-
phic, and hence we have a complete classification by the cardinality of Γ and
the Euler characteristic in the co-irreducible case.
In preparation for the general case we now study isomorphisms between various
tensor products amongst the relevant extension algebras and some of their
quotients. For this, we will need:
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Theorem 3.5 Let Ai, i = 1, 2, be unital C*-algebras whose proper ideals are
precisely given by (0), Ii, Ji and Ii ⊕ Ji. We assume that Ii and Ji are UCT
Kirchberg algebras, and the quotients Ai/(Ii ⊕ Ji) are also UCT Kirchberg al-
gebras.
Let αI : K∗(I1) ∼= K∗(I2), αJ : K∗(J1) ∼= K∗(J2), αI⊕J : K∗(I1 ⊕ J1) ∼=
K∗(I2 ⊕ J2), β : K∗(A1) ∼= K∗(A2), γI : K∗(A/I1) ∼= K∗(A/I2), γJ :
K∗(A/J1) ∼= K∗(A/J2), and γI⊕J : K∗(A1/(I1 ⊕ J1)) ∼= K∗(A2/(I2 ⊕ J2)) be
isomorphisms, with β preserving the K0-classes of the units and αI⊕J = αI⊕αJ
(under the canonical isomorphism K∗(Ii ⊕ Ji) ∼= K∗(Ii)⊕K∗(Ji)).
Furthermore, we assume that these isomorphism are compatible with the K-
theoretic six term exact sequences attached to

0→ Ii → Ai → Ai/Ii → 0, 0→ Ji → Ai → Ai/Ji → 0,

0→ Ii ⊕ Ji → Ai → Ai/(Ii ⊕ Ji)→ 0, 0→ Ji → Ai/Ii → Ai/(Ii ⊕ Ji)→ 0

and
0→ Ii → Ai/Ji → Ai/(Ii ⊕ Ji)→ 0.

Then there exists an isomorphism ϕ : A1
∼= A2 which induces αI , αJ , αI⊕J ,

β, γI , γJ and γI⊕J in K-theory.

Proof: Combine [Kir00, Folgerung 4.3] and [BK, Theorem 1.3] with [RR07,
Theorem 2.1] or [ERR, Theorem 3.3]. ✷

Lemma 3.6 For every n ≥ 2, we have O∞ ⊗ E+1
n
∼= O∞ ⊗ E−1n .

Proof: Both O∞⊗E+1
n and O∞⊗E−1n are unital C*-algebras with unique ideal

isomorphic to O∞ ⊗K and corresponding quotient isomorphic to O∞ ⊗On ∼=
On. The K-theoretic six term exact sequences for 0→ O∞⊗K → O∞⊗E+1

n →
On → 0 and 0→ O∞ ⊗K → O∞ ⊗ E−1n → On → 0 look as follows:

Z // Z // Z/(n− 1)Z

��

0

OO

0oo 0oo

where Z ∼= K0(O∞ ⊗K) is generated by [1⊗ e] for a minimal projection e ∈ K
and the unit 1 of O∞, and Z ∼= K0(O∞⊗E±1n ) is generated by the class of the
unit. The only difference is that for E+1

n , the homomorphism Z→ Z is given by
z[1⊗ e] 7→ (n− 1)z[1], whereas for E−1n , the homomorphism Z→ Z is given by
z[1⊗e] 7→ −(n−1)z[1] (for z ∈ Z). We now apply [RR07, Theorem 2.2] to Ii =
O∞⊗K, A1 = O∞⊗E+1

n , A2 = O∞⊗E−1n , Qi = On and the homomorphisms
α = −idK0(O∞⊗K), β : K0(O∞ ⊗ E+1

n ) → K0(O∞ ⊗ E−1n ), z[1] 7→ z[1] (for
z ∈ Z), γ = idK0(On). It is then obvious that all the assumptions in [RR07] are
satisfied, and we conclude that O∞ ⊗ E+1

n
∼= O∞ ⊗ E−1n . ✷

Now recall that we have introduced the extension algebra E0
1 in Theorem 3.1.

The C*-algebra E0
1 ⊗ E+1

n (n ≥ 2) contains the ideal K ⊗ K ∼= K, and we
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denote the corresponding quotient by Q+. Obviously, the primitive ideals of
Q+ are given by K ⊗ On, O1 ⊗ K and K ⊗ On ⊕ O1 ⊗ K. From the six term
exact sequence in K-theory for 0 → K → E0

1 ⊗ E+1
n → Q+ → 0, we obtain

K0(Q
+) ∼= Z ∼= K1(Q

+), where K0(Q
+) is generated by [1Q+ ]. All this also

holds for the quotient Q− of E0
1 ⊗ E−1n by the ideal K ⊗K ∼= K.

Lemma 3.7 Q+ and Q− are isomorphic. Moreover, there exists an automor-
phism of Q+ which induces idZ on K0 and −idZ on K1.

Proof: The first statement is an application of Theorem 3.5 to A1 = Q+,
A2 = Q−, I1 = K ⊗ On ⊳ Q+, J1 = O1 ⊗ K ⊳ Q+, I2 = K ⊗ On ⊳ Q−,
J2 = O1 ⊗K ⊳ Q−. Namely, it is straightforward to check that it is possible
to choose αI , αJ , αI⊕J , β, γI , γJ , and γI⊕J with all the desired properties in
Theorem 3.5.
The second statement follows in a similar way by applying Theorem 3.5 to
A1 = A2 = Q+, I1 = I2 = K ⊗On ⊳ Q+, J1 = J2 = O1 ⊗K ⊳ Q+. ✷

Lemma 3.8 For every n ≥ 2, we have E0
1 ⊗ E+1

n
∼= E0

1 ⊗ E−1n .

Proof: By the previous lemma, we can identify Q+ and Q− (we use the same
notation as in the previous lemma) so that we can view E0

1⊗E+1
n and E0

1⊗E−1n
as extensions of Q+:

0→ K → E0
1 ⊗ E+1

n → Q+ → 0 (2)

0→ K → E0
1 ⊗ E−1n → Q+ → 0. (3)

Again by the previous lemma, we can choose the identificationQ+ ∼= Q− in such
a way that for a fixed choice of isomorphisms K1(Q

+) ∼= Z, K0(K) ∼= Z, the
index maps for both extensions (2) and (3) coincide. Now [BD96, Theorem 2]
implies that (2) and (3) give the same class in Exts(Q

+). The reason is that
Ext(K0(Q

+), [1Q+ ]) is the trivial group asK0(Q
+) ∼= Z and [1Q+ ] is a generator

of K0(Q
+) ∼= Z. So the short exact sequence in [BD96, Theorem 2] tells us

that two extensions of Q+ by K give the same class in Exts(Q
+) if their index

maps coincide. But this is the case for (2) and (3) by construction. Hence
E0

1 ⊗ E+1
n
∼= E0

1 ⊗ E−1n by [JT91, § 3.2]. ✷

For m,n ≥ 2, the C*-algebra E+1
m ⊗E−1n contains the ideal K⊗K ∼= K, and we

denote the corresponding quotient by Q+−. Obviously, the primitive ideals of
Q+− are given by K⊗On, Om ⊗K and K⊗On ⊕Om⊗K. From the six term
exact sequence in K-theory for 0 → K → E+1

m ⊗ E−1n → Q+− → 0, we obtain
K0(Q

+−) ∼= Z/(m − 1)(n − 1)Z, with the class of the unit being a generator,
and K1(Q

+−) ∼= {0}. All this also holds for the quotient Q−+ of E−1m ⊗ E+1
n

by the ideal K ⊗K ∼= K.

Lemma 3.9 Q+− and Q−+ are isomorphic.

Proof: As Lemma 3.7, this is an application of Theorem 3.5 to A1 = Q+−,
A2 = Q−+, I1 = K ⊗On ⊳ Q+−, J1 = Om ⊗K ⊳ Q+−, I2 = K ⊗On ⊳ Q−+,
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J2 = Om⊗K ⊳ Q−+. Namely, it is straightforward to check that it is possible
to choose αI , αJ , αI⊕J , β, γI , γJ , and γI⊕J with all the desired properties in
Theorem 3.5. ✷

Lemma 3.10 We have E+1
m ⊗ E−1n ∼= E−1m ⊗ E+1

n .

Proof: By the previous lemma, we can identify Q+− and Q−+ (using the
same notation as in the previous lemma) so that we can view E+1

m ⊗ E−1n and
E−1m ⊗ E+1

n as extensions of Q+−:

0→ K → E+1
m ⊗ E−1n → Q+− → 0 (4)

0→ K → E−1m ⊗ E+1
n → Q+− → 0. (5)

Since Hom(K1(Q
+−),Z) = {0}, [BD96, Theorem 2] yields

Ext((K0(Q
+−), [1]),Z) ∼= Exts(Q

+−). Hence (2) and (3) give the same
class in Exts(Q

+−). The reason is that the exact sequences in K0 for (4)
and (5) clearly give rise to the same class in Ext((K0(Q

+−), [1]),Z). Hence
E+1
m ⊗ E−1n ∼= E−1m ⊗ E+1

n by [JT91, § 3.2]. ✷

In an entirely analogous way, we get

Lemma 3.11 For all m,n ≥ 2, we have E+1
m ⊗ E+1

n
∼= E−1m ⊗ E−1n .

4 Classification of semigroup C*-algebras

We are now ready to address the general classification problem for C*-algebras
of the form C∗(A+

Γ ). We begin with notation:

Definition 4.1 Let Γ be a graph with co-irreducible components Γi = (Vi, Ei).
We set

t(Γ) = # {Γi: |Vi| = 1}
o(Γ) = # {Γi: |Vi| =∞} ,

and for every n ∈ Z

Nn(Γ) = # {Γi: 1 < |Vi| <∞, χ(Γi) = n} .

Theorem 4.2 Let Γ and Λ be two graphs. The semigroup C*-algebras C∗(A+
Γ )

and C∗(A+
Λ ) of the Artin monoids for Γ and Λ are stably isomorphic if and only

if the following conditions hold:

(i) t(Γ) = t(Λ);

(ii) N−n(Γ) +Nn(Γ) = N−n(Λ) +Nn(Λ) for any n ∈ Z;

(iii)
∑
n∈ZNn(Γ) =∞ or min(o(Γ), 1) = min(o(Λ), 1).

They are isomorphic if and only if further
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(iv) If
∑

n∈ZNn(Γ) <∞, o(Γ) = 0 and N0(Γ) = 0, then

∞∑

n=1

N−n(Γ) ≡
∞∑

n=1

N−n(Λ) mod 2

holds.

Remark 4.3 Note that when (ii) holds, all the conditions in (iii) are symmetric
in Γ and Λ. Similarly, when (ii) and (iii) hold, so are the conditions in (iv).

For the proof of Theorem 4.2, we need some preparation. Given a graph
Γ with co-irreducible components Γi = (Vi, Ei), let Γ′ be the graph we get
from Γ by removing all the co-irreducible components Γi with |Vi| = 1 and
the corresponding edges. We then have a canonical isomorphism C∗(A+

Γ′) ∼=⊗
{Γi: |Vi|>1} C

∗(A+
Γi
).

Lemma 4.4 There is a primitive ideal I ′ of C∗(A+
Γ ) such that

Prim (C∗(A+
Γ )/I

′) does not continuously surject onto Prim (T ) and which
is minimal among all the primitive ideals having this property, and we have

C∗(A+
Γ )/I

′ ∼= C∗(A+
Γ′ ).

Proof: Let I be a primitive ideal of C∗(A+
Γ ). As seen in Section 2, we know that

I is generated by
{⊗

j Jij

}
i
, where Jij = C∗(A+

Γj
) for i 6= j and Jii = Ii for

primitive ideals Ii of C
∗(A+

Γi
). It follows that C∗(A+

Γ )/I
∼=
⊗

i C
∗(A+

Γi
)/Ii, and

hence Prim (C∗(A+
Γ )/I)

∼=
∏
i Prim (C∗(A+

Γi
)/Ii). We now claim that there ex-

ists a continuous surjection Prim (C∗(A+
Γ )/I)։ PrimT if and only if there ex-

ists a co-irreducible component Γi of Γ with |Vi| = 1 and Ii = (0). The direction
“⇐” is obvious. For “⇒”, assume that for every co-irreducible component Γi
of Γ with |Vi| = 1, Ii is a maximal ideal of C∗(A+

Γi
) such that C∗(A+

Γi
)/Ii ∼= C.

Then Prim (C∗(A+
Γ )/I)

∼=
∏
kXk where Xk = {xk, yk} and the open subsets of

Xk are given by ∅, {xk} and Xk. This means that {xk} = Xk and {yk} = {yk}.
Furthermore, we know that Prim (T ) = {•} ⊔ T, where {•} = Prim (T ). Let
f :
∏
kXk → Prim (T ) be a continuous map. We want to show that f cannot

be surjective. Let y = (yk)k and f(y) = z. For arbitrary x ∈∏kXk, we always

have y ∈ {x}. As f−1({f(x)}) is closed and contains x, it must also contain
y. Hence z = f(y) lies in {f(x)}. This implies that f(x) = z or f(x) = •.
But this holds for every x in

∏
kXk. Hence the image of f contains at most 2

points, and thus f cannot be surjective. This shows our claim.
Therefore, a primitive ideal I ′ of C∗(A+

Γ ) such that Prim (C∗(A+
Γ )/I

′) does
not continuously surject onto Prim (T ) and which is minimal among all the

primitive ideals with this property is generated by
{⊗

j Jij

}
i
, where for a co-

irreducible component Γi with |Vi| = 1, Jii = Ii is a maximal ideal of C∗(A+
Γi
)

with C∗(A+
Γi
)/Ii ∼= C, and for a co-irreducible component Γi with |Vi| > 1,

Jii = (0). We conclude that C∗(A+
Γ )/I

′ ∼= C∗(A+
Γ′). ✷
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Lemma 4.5 Let Γ and Λ be two graphs.

(1) If C∗(A+
Γ ) and C

∗(A+
Λ ) are isomorphic, then t(Γ) = t(Λ) and C∗(A+

Γ′) ∼=
C∗(A+

Λ′ ).

(2) If C∗(A+
Γ ) ⊗ K and C∗(A+

Λ) ⊗ K are isomorphic, then t(Γ) = t(Λ) and
C∗(A+

Γ′)⊗K ∼= C∗(A+
Λ′)⊗K.

Proof: We first prove (1). Since an isomorphism C∗(A+
Γ )
∼= C∗(A+

Λ ) sends the
primitive ideal I to a primitive ideal of C∗(A+

Λ ) with the analogous property, we
conclude that every isomorphism C∗(A+

Γ )
∼= C∗(A+

Λ) induces an isomorphism
C∗(A+

Γ′) ∼= C∗(A+
Λ′ ). To prove that t(Γ) = t(Λ), we observe that the primitive

ideals of C∗(A+
Γ ) which are contained in I are in one-to-one correspondence with

the subsets of {Γi: |Vi| = 1}. Again, as an isomorphism C∗(A+
Γ )
∼= C∗(A+

Λ )
sends the primitive ideal I to a primitive ideal of C∗(A+

Λ) with the analogous
property, we conclude that the power sets of {Γi: |Vi| = 1} and {Λj : |Wj | = 1}
have the same cardinality. Hence also {Γi: |Vi| = 1} and {Λj : |Wj | = 1} must
have the same cardinality (which is either finite or countably infinite). This
proves (1).
(2) is proved in a similar way as (1) using the observation that every primitive
ideal of B ⊗K is of the form I ⊗K, where I is a primitive ideal of B. ✷

Lemma 4.6 Let Ai, i = 1, 2, . . . , be a countably infinite family of properly
infinite unital C*-algebras. Then A =

⊗∞
i=1 Ai is purely infinite.

Proof: We have to show that every non-zero positive element a of A is properly
infinite. By [KR02, Lemma 3.3], it suffices to find for every ε > 0 a properly
infinite, positive element b ∈ A with ‖a− b‖ < ε and b - a. Since A =⊗∞

i=1 Ai, there exists a (sufficiently large) natural number n and a positive
element x ∈⊗n

i=1Ai with ‖a− x⊗ 1‖ < ε
2 . By [KR02, Lemma 2.2], we have

that b := (x− ε
2 )+ ⊗ 1 = (x⊗ 1− ε

2 )+ satisfies b - a. Also, we have ‖b− a‖ ≤
‖b− x⊗ 1‖+ ‖x⊗ 1− a‖ < ε. So it suffices to show that b is properly infinite.
By construction, b is of the form c⊗ 1 for some positive element c ∈⊗n

i=1 Ai.
Since the unit 1 ∈ An+1 is properly infinite, we can find isometries s and t in
An+1 with ss

∗ ⊥ tt∗. So b = c⊗1 = (c1/2⊗s)∗(c1/2⊗s) ≈ (c1/2⊗s)(c1/2⊗s)∗ =
c ⊗ ss∗. Similarly, b ≈ c ⊗ tt∗. But since (c ⊗ ss∗)(c ⊗ tt∗) = 0, we conclude
that b⊕ b ≈ (c⊗ ss∗)⊕ (c⊗ tt∗) ≈ c⊗ (ss∗ + tt∗) ≤ c⊗ 1 = b. ✷

Lemma 4.7 Let Γ be a graph with (countably) infinitely many co-irreducible
components Γi = (Vi, Ei), i = 1, 2, . . . . Assume that 1 < |Vi| < ∞ for all i.
Then C∗(A+

Γ ) is strongly purely infinite, i.e., C∗(A+
Γ )
∼= C∗(A+

Γ )⊗O∞.

Proof: By [CL07, Theorem 8.3], we know that C∗(A+
Γ ) has the ideal property

(the definition can be found in [PR07, Remark 2.1]). Moreover, we know that
C∗(A+

Γ )
∼=
⊗∞

i=1 C
∗(A+

Γi
), and each of the C∗(A+

Γi
) is a properly infinite unital

C*-algebra. Hence by the previous lemma, we know that C∗(A+
Γ ) is purely

infinite. Therefore, [PR07, Proposition 2.14] tells us that C∗(A+
Γ ) is strongly
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purely infinite. And finally, if C∗(A+
Γ ) is strongly purely infinite, then [KR02,

Theorem 9.1] implies that C∗(A+
Γ )
∼= C∗(A+

Γ )⊗O∞ because C∗(A+
Γ ) is nuclear

and unital. ✷

Finally, we are ready for the proof of Theorem 4.2. Proof:[Proof of Theorem 4.2]
Let us first of all show that if C∗(A+

Γ )⊗K ∼= C∗(A+
Λ)⊗K holds, then conditions

(i), (ii) and (iii) must be satisfied. By Lemma 4.5 condition (i) holds and that
C∗(A+

Γ′)⊗K ∼= C∗(A+
Λ′ )⊗K. Hence we may assume that all the co-irreducible

components of Γ and Λ have more than one vertex.
To prove (ii), we observe that the minimal non-zero primitive ideals of C∗(A+

Γ )
are of the form Ii = ⊗jJij , where Jij = C∗(A+

Γj
) if j 6= i, and Jii = K⊳C∗(A+

Γi
)

(Γi consists of only finitely many vertices). For the corresponding quo-
tient, we get C∗(A+

Γ )/Ii
∼=
⊗

j Qij , where Qij = C∗(A+
Γj
) if j 6= i, and

Qii = C∗(A+
Γi
)/K. Since K0(C

∗(A+
Γi
)/K) ∼= Z/|χ(Γi)|Z, it follows that

K0(C
∗(A+

Γ )/Ii)
∼= Z/|χ(Γi)|Z. Hence, we have shown that N0(Γ) is the number

of minimal non-zero primitive ideals I ⊗ K of C∗(A+
Γ ) ⊗ K with the property

that K0(C
∗(A+

Γ )/I)
∼= Z, and that for every n = 1, 2, . . . , N−n(Γ) + Nn(Γ) is

the number of minimal non-zero primitive ideals I⊗K of C∗(A+
Γ )⊗K with the

property that K0(C
∗(A+

Γ )/I)
∼= Z/nZ. Since these descriptions are invariant

under stable isomorphisms of C*-algebras, we conclude that (ii) must hold.
Let us now prove (iii) under the assumption of stable isomorphism. If∑
Nn(Γ) = ∞ we are done, so suppose the contrary and note that in this

case, C∗(A+
Γ ) is strongly purely infinite if and only if o(Γ) > 0. The direction

“⇒” is clear, since o(Γ) > 0 implies that C∗(A+
Γ ) has O∞ as a tensor factor.

To prove “⇐”, we observe that if o(Γ) = 0, then C∗(A+
Γ ) contains the algebra

of compact operators as an ideal, hence cannot be strongly purely infinite. As
a consequence, C∗(A+

Γ ) ⊗ K ∼= C∗(A+
Λ ) ⊗ K implies that either both o(Γ) > 0

and o(Λ) > 0, or o(Γ) = o(Λ) = 0, as desired.
Finally, we assume that C∗(A+

Γ )
∼= C∗(A+

Λ ) and that
∑
Nn(Γ) < ∞, that

N0(Γ) = 0 and that o(Γ) = 0. The algebra K of compact operators
sits inside C∗(A+

Γ ) as the (unique) minimal non-zero ideal. The inclusion
K →֒ C∗(A+

Γ ) sends in K-theory the K0-class of a minimal projection to
(
∏
i χ(Γi)) · [1], where (

∏
i χ(Γi)) is the product over all co-irreducible com-

ponents of Γ (there are only finitely many by assumption) of the Euler char-
acteristics. As N0(Γ) = 0, (

∏
i χ(Γi)) is a non-zero number, and it is positive

if and only if
∑∞
n=1N−n(Γ) ≡ 0 mod 2. Since C∗(A+

Γ )
∼= C∗(A+

Λ ), we must
have

∑∞
n=1N−n(Γ) ≡

∑∞
n=1N−n(Λ) mod 2. Therefore, all in all, condition

(iv) follows when the C*-algebras are isomorphic.
In the opposite direction, we know from Sections 2 and 3 that

C∗(A+
Γ )
∼= T ⊗t(Γ) ⊗O⊗o(Γ)∞ ⊗

∞⊗

n=0

⊗

{i: |χ(Γi)|=n}
E

sgn(χ(Γi))
1+n

and

C∗(A+
Λ )
∼= T ⊗t(Λ) ⊗O⊗o(Λ)

∞ ⊗
∞⊗

n=0

⊗

{i: |χ(Λi)|=n}
E

sgn(χ(Λi))
1+n
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We note from the outset that whenever o(Γ) > 0 or N0(Γ) > 0 then by re-
peated application of either Lemma 3.6 or Lemma 3.8 we may simplify these
expressions to

C∗(A+
Γ )
∼= T ⊗t(Γ) ⊗O⊗o(Γ)∞ ⊗ (E0

1)
⊗N0(Γ) ⊗

∞⊗

n=1

(E+1
1+n)

⊗(N−n(Γ)+Nn(Γ)). (6)

Assume that (i), (ii) and (iii) hold. We begin by noting that in the case∑
Nn(Γ) < ∞ if either o(Γ) > 0 or N0(Γ) > 0, we also have either o(Λ) > 0

or N0(Λ) > 0, and we get C∗(A+
Γ )
∼= C∗(A+

Λ ) by reducing to the form given in
(6) and applying (i) and (ii).

When
∑
Nn(Γ) = ∞ then we have by (ii) and Lemma 4.7 that both C∗(A+

Γ )
and C∗(A+

Λ ) are strongly purely infinite, and hence we have

C∗(A+
Γ )

∼= T ⊗t(Γ) ⊗O∞ ⊗ (E0
1)
⊗N0(Γ) ⊗

∞⊗

n=1

(E+1
1+n)

⊗(N−n(Γ)+Nn(Γ))

= T ⊗t(Λ) ⊗O∞ ⊗ (E0
1)
⊗N0(Λ) ⊗

∞⊗

n=1

(E+1
1+n)

⊗(N−n(Λ)+Nn(Λ))

∼= C∗(A+
Λ ),

since Lemma 3.6 may be applied as above.

It remains to treat the case that o(Γ) = N0(Γ) = 0 and
∑
Nn(Γ) <∞. Again,

by (ii) and (iii), we must have o(Λ) = N0(Λ) = 0 and
∑
Nn(Λ) < ∞ as well,

and we get

C∗(A+
Γ )⊗K ∼= T ⊗t(Γ) ⊗

∞⊗

n=1

(E+1
1+n)

⊗(N−n(Γ)+Nn(Γ)) ⊗K

= T ⊗t(Λ) ⊗
∞⊗

n=1

(E+1
1+n)

⊗(N−n(Λ)+Nn(Λ)) ⊗K

∼= C∗(A+
Λ )⊗K

this time appealing to the second half of Lemma 3.3.

Assuming further (iv), we now aim for exact isomorphism, noting that we have
already established it when o(Γ) > 0, N0(Γ) > 0 or

∑
Nn(Γ) =∞. We hence

assume that o(Γ) = N0(Γ) = 0 and note that also o(Λ) = N0(Λ) = 0
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Consider first the case where both
∑∞
n=1N−n(Γ) and

∑∞
n=1N−n(Λ) are even.

We have

C∗(A+
Γ )

∼= T ⊗t(Γ) ⊗
∞⊗

n=1

(E+1
1+n)

⊗Nn(Γ) ⊗
∞⊗

n=1

(E−11+n)
⊗N−n(Γ)

∼= T ⊗t(Γ) ⊗
∞⊗

n=1

(E+1
1+n)

⊗Nn(Γ) ⊗
∞⊗

n=1

(E+1
1+n)

⊗N−n(Γ)

∼= T ⊗t(Λ) ⊗
∞⊗

n=1

(E+1
1+n)

⊗(N−n(Γ)+Nn(Γ))

= T ⊗t(Λ) ⊗
∞⊗

n=1

(E+1
1+n)

⊗(N−n(Λ)+Nn(Λ)) ∼= C∗(A+
Λ)

by Lemma 3.11. Now assume both
∑∞

n=1N−n(Γ) and
∑∞

n=1N−n(Λ) are odd.
If there exists χ < 0 such that there are co-irreducible components Γk and Λl
with χ(Γk) = χ = χ(Λl), then we deduce from the previous case that

C∗(A+
Γ )

∼=


 ⊗

Γi 6=Γk

C∗(A+
Γi
)


 ⊗ C∗(A+

Γk
)

∼=


 ⊗

Γi 6=Γk

C∗(A+
Γi
)


 ⊗ E−11+|χ|

∼=


 ⊗

Λj 6=Λl

C∗(A+
Λj
)


⊗ C∗(A+

Λl
) ∼= C∗(A+

Λ ).

If there exists no such χ, then by (ii) there must be χ < 0, ψ < 0 and co-
irreducible components Γk− , Γk+ , Λl− , Λl+ with χ(Γk−) = χ, χ(Λl+) = −χ,
χ(Γk+) = −ψ and χ(Λl−) = ψ. Hence

C∗(A+
Γ )

∼=


 ⊗

Γi 6=Γk+ ,Γk−

C∗(A+
Γi
)


 ⊗ C∗(A+

Γk+
)⊗ C∗(A+

Γk−
)

∼=


 ⊗

Γi 6=Γk+ ,Γk−

E
sgn(χ(Γi))
1+|χ(Γi)|


⊗ E+1

1+|ψ| ⊗ E−11+|χ|

∼=


 ⊗

Γi 6=Γk+ ,Γk−

E
sgn(χ(Γi))
1+|χ(Γi)|


⊗ E−11+|ψ| ⊗ E+1

1+|χ|

∼=


 ⊗

Γi 6=Γk+ ,Γk−

C∗(A+
Γi
)


 ⊗ C∗(A+

Λl−
)⊗ C∗(A+

Λl+
) ∼= C∗(A+

Λ ).
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In the third step, we used Lemma 3.10, and in the fourth step, we used our
argument in the previous case. ✷

5 The isomorphism problem from the perspective of classification
of non-simple C*-algebras

We give an interpretation of Theorem 4.2 from the point of view of classifying
non-simple C*-algebras.
We let O(Prim(A)) denote the set of open subsets in Prim(A), and I(A) the
lattice of ideals.
A lattice map ψA : O(Prim(A)) → I(A) given by ψA(U) =

⋂
ρ/∈U ρ is then a

lattice isomorphism which preserves arbitrary suprema and finite infima. We
denote ψA(U) by A[U ]. For every C*-algebra A, we denote the pair

(
Prim(A), {K+

six(A/A[U ];A[V ]/A[U ])}V,U∈O(Prim(A))
U⊆V

)

by F(A), where K+
six(B, J) denotes the standard six-term exact sequence asso-

ciated to an ideal J of a C*-algebraB, considering eachK0-group as an ordered
group.
An isomorphism from F(A) to F(B) thus consists of a homeomorphism

φ : Prim(A)→ Prim(B)

and isomorphisms

αU,V : K∗(A[V ]/A[U ])→ K∗(B[φ(V )]/B[φ(U)])

for each U, V ∈ O(Prim(A)) with U ⊆ V , such that (αU,V , αX,U , αX,V ) is an
isomorphism from K+

six(A/A[U ];A[V ]/A[U ]) to

K+
six(B/B[φ(U)];B[φ(V )]/B[φ(U)])

in the sense that it makes all squares commute and is an order isomorphism on
all even parts of the K-theory.
If A and B are unital, we write (F(A), [1A]) ∼= (F(B), [1B ]) if F(A) ∼= F(B) in
such a way that the isomorphism αX,∅ sends [1A] in K0(A) to [1B] in K0(B).
Note that if φ : Prim(A)→ Prim(B) is a homeomorphism, there exists a lattice
isomorphism from I(A) to I(B) given by I 7→ ψB(φ(ψ

−1
A (I))). Hence, if A and

B are separable and φ : Prim(A)→ Prim(B) is a homeomorphism, then for all
U ∈ O(Prim(A)), we have that A[U ] is a primitive ideal of A if and only if
B[φ(U)] is a primitive ideal of B (because primitive ideals are precisely given
by prime ideals for separable C*-algebras).
The following easy observation is left to the reader.

Lemma 5.1 Let A and B be separable C*-algebras. Let U ∈ O(Prim(A)).
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(1) If F(A) ∼= F(B) via a homeomorphism φ : Prim(A)→ Prim(B), then

F(A/A[U ]) ∼= F(B/B[φ(U)]).

(2) If A and B are unital C*-algebras and (F(A), [1A]) ∼= (F(B), [1B]) via a
homeomorphism φ : Prim(A)→ Prim(B), then

(
F(A/A[U ]), [1A/A[U ]]

) ∼=
(
F(B/B[φ(U)]), [1B/B[φ(U)]]

)
.

Theorem 5.2 Let Γ and Λ be two (countable) graphs, and let Γi = (Vi, Ei)
be the co-irreducible components of Γ, Λj = (Wj , Fj) the co-irreducible compo-
nents of Λ. Then C∗(A+

Γ )
∼= C∗(A+

Λ) if and only if (F(C∗(A+
Γ )), [1C∗(A+

Γ )])
∼=

(F(C∗(A+
Λ )), [1C∗(A+

Λ )]).

Proof: The direction “⇒” is obvious. To prove “⇐”, we show that

(F(C∗(A+
Γ )), [1C∗(A+

Γ )])
∼= (F(C∗(A+

Λ)), [1C∗(A+
Λ )])

implies (i), (ii), (iii) and (iv) from Theorem 4.2, using the notations from
Lemma 4.5. The first step is to prove that (F(C∗(A+

Γ )), [1C∗(A+
Γ )])

∼=
(F(C∗(A+

Λ )), [1C∗(A+
Λ )]) implies t(Γ) = t(Λ) and (F(C∗(A+

Γ′)), [1C∗(A+

Γ′ )
]) ∼=

(F(C∗(A+
Λ′ )), [1C∗(A+

Λ′)
]). t(Γ) = t(Λ) follows by Lemma 4.4, because we only

use the primitive ideal space and the lattice structure of the set of ideals in
this proof. To see that (F(C∗(A+

Γ′)), [1C∗(A+

Γ′ )
]) ∼= (F(C∗(A+

Λ′ )), [1C∗(A+

Λ′)
]),

let I ′ be a primitive ideal of C∗(A+
Γ ) stipulated in Lemma 4.4, and let

U be an open set of Prim (C∗(A+
Γ )) such that C∗(A+

Γ )[U ] = I ′. Then
C∗(A+

Λ)[φ(U)] is an ideal with the analogous property. In the proof of
Lemma 4.5, we have seen that C∗(A+

Γ )/C
∗(A+

Γ )[U ] ∼= C∗(A+
Γ′). Similarly, we

have C∗(A+
Λ )/C

∗(A+
Λ )[U ] ∼= C∗(A+

Λ′ ). Therefore, (2) from the previous lemma
tells us that (F(C∗(A+

Γ′)), [1C∗(A+

Γ′ )
]) ∼= (F(C∗(A+

Λ′)), [1C∗(A+

Λ′)
]), as desired.

In particular, this implies (i), and we may assume as in the proof of Theorem 4.2
that all the co-irreducible components of Γ and Λ have more than one vertex.
Then (ii) follows in exactly the same way as in the proof of Theorem 4.2 because
we only use primitive ideal spaces, lattice structures of sets of ideals and K0 in
this proof. All this can be extracted from the invariant F. Let us prove (iii).
As we have seen in the proof of Theorem 4.2, o(Γ) = 0 implies that K is an
ideal of C∗(A+

Γ ), whereas o(Γ) > 0 implies that C∗(A+
Γ ) (and hence also every

non-zero ideal) is strongly purely infinite. These two cases can be distinguished
by the order on K0. Therefore, we see as in the proof of Theorem 4.2 that if
(F(C∗(A+

Γ )), [1C∗(A+
Γ )])

∼= (F(C∗(A+
Λ )), [1C∗(A+

Λ )]), then either o(Γ) > 0 and

o(Λ) > 0 or o(Γ) = 0 and o(Λ) = 0. The proof of (iv) then follows the proof of
Theorem 4.2, where we only use lattice structures of sets of ideals, K0 and the
K0-classes of the units. All this can be extracted from the invariant F together
with the position of the K0-class of the unit. ✷
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6 Graph algebras and the semiprojectivity question

Apart from semigroup C*-algebras we discussed above, there is another - more
traditional - way of constructing a C*-algebra out of a directed graph, possibly
allowing for loops. Now we would like to discuss the overlap of these two con-
structions. In other words, we are interested in the question: Which semigroup
C*-algebras for right-angled Artin monoids are isomorphic to graph algebras?
We can provide a complete answer to this question.

6.1 Extensions of C*-algebras

We first establish some facts about absorbing extensions and the C*-algebras
associated to these extensions. To each injective Busby map τ : A → Q(B),
where Q(B) =M(B)/B with M(B) the multiplier algebra of B, associate as
usual the extension

e : 0 // B
� � // E

ψ
//

��

A //

τ

��

0

0 // B
� � //M(B)

π
// Q(B) // 0

with E = π−1(τ(A)) and ψ(x) = τ−1(π(x)). Note that ψ is a homomorphism
since τ is injective.
We call τ (and e) unital if A is unital and τ is a unital homomorphism, or,
equivalently, if E is a unital C*-algebra. If τ = π ◦ α for some homomorphism
α : A→M(B), then τ is called a trivial extension. If A is unital and τ = π ◦α
for some unital homomorphism α : A→M(B), then τ is called strongly unital.
Not all unital trivial extensions are strongly unital.
Assume that B is stable. The sum τ ⊕ τ ′ of two extensions τ, τ ′ : A→ Q(B) is
defined as follows. Since B is stable, there exist isometries s1, s2 ∈ M(B) with
1M(B) = s1s

∗
1 + s2s

∗
2. Set

(τ ⊕ τ ′)(a) = π(s1)τ(a)π(s
∗
1) + π(s2)τ

′(a)π(s∗2)

for all a ∈ A.
Two extensions τ, τ ′ : A→ Q(B) are said to be unitarily equivalent, denoted by
τ ∼u τ ′, if there exists a unitary u ∈ M(B) such that π(u)τ(a)π(u)∗ = τ ′(a) for
all a ∈ A. Then two extensions τ1, τ2 : A → Q(B) define the same element in
Ext(A,B) if there exists a unitary u ∈ M(B) and there exist trivial extensions
τ ′1, τ

′
2 : A→ Q(B) such that τ1⊕τ ′1 ∼u τ2⊕τ ′2. If τ1 and τ2 are unital extensions,

then τ ′1 and τ ′2 can be chosen to be unital extensions (see [Ror97, Section 5]).

For a C*-algebra C, we let C̃ be the unitization of C (adding a new unit if C

is a unital C*-algebra) and let ιC : C → C̃ be the embedding of C into C̃ as an
ideal.
Recall that an ideal I of a C*-algebra A is an essential ideal if every nonzero
ideal of A has a nontrivial intersection with I. An extension 0 → I

ι→ A →
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B → 0 is essential if ι(I) is an essential ideal of A. It is a well-known fact that
an extension 0 → I → A → B → 0 is an essential extension if and only if the
Busby invariant of the extension is injective. We now prove in the following
proposition that every essential extension 0→ B → E → A→ 0 with A a non-
unital, separable, nuclear C*-algebra and B a C*-algebra that is isomorphic to
either K or a nuclear, purely infinite simple C*-algebra is absorbing.

Before proving the proposition, we show that any absorbing extension must be
an essential extension. Hence, the assumption that the extension is essential is
necessary. Note that if τ or τ ′ is injective, then the sum τ⊕τ ′ is injective. Since
B is stable, there exists a unital embedding from O2 toM(B) which induces a
unital embedding from O2 to Q(B). Nuclearity of A gives us an embedding of A
into O2, thus the composition gives a trivial essential extension τ0 : A→ Q(B).
Therefore, an absorbing extension τ is an essential extension since τ is unitarily
equivalent to τ ⊕ τ0.

Proposition 6.1 Let A be a non-unital, separable, nuclear C*-algebra and let
B be a separable C*-algebra that is isomorphic to either K or a nuclear, purely
infinite simple C*-algebra. If τ : A→ Q(B) is an essential extension, then for
every trivial extension τ0 : A→ Q(B) we have that τ ∼u τ ⊕ τ0. Consequently,
if ei : 0 → B → Ei → A → 0 is an essential extension for i = 1, 2 and
[τe1 ] = [τe2 ] in Ext(A,B), then E1

∼= E2.

Proof: Let α0 : A → M(B) be a homomorphism with τ0 = π ◦ α0. Extend τ

and α0 to the unitization of Ã, and denote these extensions by τ̃ : Ã → Q(B)

and α̃0 : Ã→M(B) respectively.

We claim that τ̃ is injective. Let y ∈ ker (τ̃ ). Then τ(yx) = τ̃ (y)τ̃ (ιA(x)) = 0
and τ(xy) = τ̃(ιA(x))τ̃ (y) = 0 for all x ∈ A. Since τ is injective, we have that

yx = xy = 0 for all x ∈ A. Since A is non-unital, A is an essential ideal of Ã.
Hence, y = 0. Thus, proving our claim.

Set E = π−1(τ̃ (Ã)) ⊆ M(B). Since τ̃ is injective, we may define a surjective

homomorphism ψ : E → Ã by ψ(x) = τ̃−1(π(x)). Define η : E → M(B) by
η(x) = α̃0 ◦ ψ(x). Then η is a unital homomorphism such that η(E ∩ B) =
{0}. Let s1 and s2 be isometries such that 1M(B) = s1s

∗
1 + s2s

∗
2. By [Arv77,

Corollary 2] and [Kir, Proposition 7], there exists a unitary u ∈ M(B) such
that u(s1xs

∗
1 + s2η(x)s

∗
2)u
∗ − x ∈ B for all x ∈ E.

We claim u implements a unitary equivalence between τ and τ ⊕τ0. Let a ∈ A.
Choose x ∈ E such that π(x) = (τ̃ ◦ ιA)(a). Note that

π ◦ η(x) = π ◦ α̃0 ◦ ψ(x) = (π ◦ α̃0)(τ̃
−1(π(x))) = (π ◦ α̃0 ◦ ιA)(a).
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Then

π(u) (τ(a) ⊕ τ0(a)) π(u)∗
= π(u) (π(s1)τ̃ (ιA(a))π(s

∗
1) + π(s2)(π ◦ α̃0 ◦ ιA)(a)π(s2)∗)π(u)∗

= π(u(s1xs
∗
1 + s2η(x)s

∗
2)u
∗)

= π(x)

= (τ̃ ◦ ιA)(a)
= τ(a).

Hence, τ ⊕ τ0 ∼u τ , proving the first part of the proposition.
Suppose ei : 0 → B → Ei → A → 0 is an essential extension for i = 1, 2 and
[τe1 ] = [τe2 ] in Ext(A,B). By the discussion before the proposition, there exist
trivial extensions τ ′1, τ

′
2 : A → Q(B) such that τe1 ⊕ τ ′1 ∼u τe2 ⊕ τ ′2. By the

first part of the proposition, we have that τe1 ∼u τe1 ⊕ τ ′1 and τe2 ⊕ τ ′2 ∼u τ ′e2 .
Therefore, τe1 ∼u τe2 . By [JT91, § 3.2], E1

∼= E2. ✷

6.2 Corners of graph algebras

We also need some results involving corners of graph algebras. The general
case will be worked out in [AGR]. For the convenience of the reader, we will
prove the case that will suit our purposes (see Proposition 6.2).
Recall that if E = (E0, E1, r, s) is a graph, the C*-algebra C∗(E) associated
to E is the universal C*-algebra generated by {pv : v ∈ E0} ⊔ {se : e ∈ E1}
subject to the relations

(i) pvpw = δv,wpv for all v, w ∈ E0;

(ii) s∗esf = δe,fpr(e) for all e, f ∈ E1;

(iii) ses
∗
e ≤ ps(e) for all e ∈ E1; and

(iv) pv =
∑
e∈s−1(v) ses

∗
e for all v ∈ E0 with 0 < |s−1(v)| <∞.

A loop in E is a path α = e1 · · · en with s(e1) = s(en) and we say that s(e1)
is the base point of α. A simple loop in E is a loop α = e1 · · · en such that
s(ei) 6= s(ej) for i 6= j. We say that E satisfies Condition (K) if every vertex
is either the base point of at least two simple loops or is not the base point
of a loop. It is well-known that if A is a Cuntz-Krieger algebra, then A is
isomorphic to C∗(E), where E is a finite graph with no sinks. If, in addition,
A is purely infinite, then E will also satisfy Condition (K).

Proposition 6.2 Let E be a graph with finitely many vertices. Suppose there
exists a vertex w in E such that

(i) {w} is a hereditary and saturated subset of E0;

(ii) |{e ∈ E1 : s(e) = w}| is either equal to 0 or ∞;
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(iii) for every v ∈ E0 \ {w}, there are finitely many edges from v to w and
there exists at least one v ∈ E0 \ {w} such that there exists an edge from
v to w; and

(iv) every vertex v ∈ E0 \ {w} emits finitely many edges and is the base point
of at least two loops of length one.

Then for every full projection p ∈ C∗(E)⊗ K, we have that p(C∗(E) ⊗K)p is
isomorphic to a graph algebra. Consequently, if A is a unital C*-algebra such
that A⊗K ∼= C∗(E)⊗K, then A is isomorphic to a graph algebra.

Proof: Let {eij} be a system of matrix units for K. Throughout the proof, if

p is a projection in C∗(E) and n ∈ N, then set np =

n︷ ︸︸ ︷
p⊕ · · · ⊕ p in C∗(E)⊗K.

Let {pv, se : v ∈ E0, e ∈ E1} be a Cuntz-Krieger E-family generating C∗(E).
Since the only vertex in E that is a singular vertex, i.e., emits no edges or
infinitely many edges, is w, by [HL+14, Theorem 3.4 and Corollary 3.5],

p ∼
(⊕

v∈S
nvpv

)
⊕ n1

(
pw −

∑

e∈T1

ses
∗
e

)
⊕ · · · ⊕ nk

(
pw −

∑

e∈Tk
ses
∗
e

)
, (7)

where nv > 0 for all v ∈ S, ni ≥ 0 for all i, S ⊆ E0\{w}, and Ti is a finite (pos-
sibly empty) subset of s−1(w) for all i. Arguing as in [AR15, Lemma 4.6], we
have that the projection on the right hand side of (7) is Murray-von Neumann
equivalent to

q =
⊕

v∈E0

mvpv

where mv > 0 for all v ∈ E0. We use the fact that if S is a finite subset of
s−1(w), then

|S|pw ⊕
(
pw −

∑

e∈S
ses
∗
e

)
∼
(∑

e∈S
ses
∗
e

)
⊕
(
pw −

∑

e∈S
ses
∗
e

)
∼ pw

and the fact that if v0 ∈ E0 \ {w} with s−1(v0) ∩ r−1(w) 6= ∅, then for any
n, we have that pv0 ∼ npw ⊕ pv0 ⊕

(⊕
v∈E0 m′vpv

)
for m′v ≥ 0. Now, arguing

as in [AR15, Proposition 4.7], we have that q(C∗(E) ⊗ K)q is isomorphic to a
graph algebra. Since p ∼ q, we have that p(C∗(E) ⊗ K)p ∼= q(C∗(E) ⊗ K)q.
Therefore, p(C∗(E)⊗K)p is isomorphic to a graph algebra.

For the last part of the proposition note that A ∼= p(C∗(E) ⊗ K)p, where p is
the projection given by the image of 1A ⊗ e11 under some isomorphism from
A⊗K to C∗(E)⊗K. Since 1A ⊗ e11 is full in A⊗K, we have that p is full in
C∗(E)⊗K. ✷
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6.3 Semigroup C*-algebras and graph algebras

We now determine when a C*-algebra associated to an Artin monoid is isomor-
phic to a graph algebra. To do this, we need to determine when an extension
of two graph algebras is isomorphic to a graph algebra. In spite of substantial
effort the extension problem for graph algebras has not be completely resolved
even for the single non-trivial ideal case. Moreover, the results in the literature
are not sufficient for our purposes. The following ad hoc result will give us
what we need.

Lemma 6.3 For each i, let Ai be a separable, nuclear C*-algebra with an es-
sential ideal Ii such that Ii is isomorphic to either K or a purely infinite
simple C*-algebra with trivial K1 group, Ai/Ii satisfies the Universal Coef-
ficient Theorem, and K1(Ai/Ii) = {0} or K0(Ai/Ii) is a free group (possibly
K0(Ai/Ii) = {0}). Suppose there exist isomorphisms β : I1 ⊗ K → I2 ⊗ K,
α : (A1/I1) ⊗ K → (A2/I2) ⊗ K, and η∗ : K∗(A1 ⊗ K) → K∗(A2 ⊗ K) such
that (K∗(β), η∗,K∗(α)) : Ksix(A1 ⊗ K; I ⊗ K) → Ksix(A2 ⊗ K; I2 ⊗ K) is an
isomorphism. Then A1 ⊗K ∼= A2 ⊗K.

Proof: Let e1 : 0→ I2⊗K → B1 → (A1/I1)⊗K → 0 be the extension obtained
by pushing forward the extension 0 → I1 ⊗ K → A1 ⊗ K → (A1/I1) ⊗ K → 0
via the isomorphism β and let e2 : 0 → I2 ⊗ K → B2 → (A1/I1) ⊗ K → 0
be the extension obtained by pulling back the extension 0 → I2 ⊗ K →
A2 ⊗ K → (A2/I2) ⊗ K → 0 via the isomorphism α. Note that there
exist isomorphisms φ1 : A1 ⊗ K → B1 and φ2 : B2 → A2 ⊗ K such that
(K∗(β),K∗(φ1),K∗(id(A1/I1)⊗K)) : Ksix(A1 ⊗ K; I1 ⊗ K) → Ksix(B1; I2 ⊗ K)
and (K∗(idI2⊗K),K∗(φ2),K∗(α)) : Ksix(B2; I2⊗K)→ Ksix(A2⊗K; I2⊗K) are
isomorphisms. Then (K∗(idI2⊗K),K∗(φ

−1
2 ) ◦ η∗ ◦K∗(φ−11 ),K∗(id(A1/I1)⊗K)) is

an isomorphism from Ksix(B1; I2 ⊗K) to Ksix(B2; I2 ⊗K).
We claim that [τe1 ] = [τe2 ] in Ext((A1/I1)⊗K, I2⊗K). Since A1/I1 satisfies the
Universal Coefficient Theorem, we may identify Ext((A1/I1)⊗K, I2 ⊗K) with
KK1((A1/I1)⊗K, I2⊗K). Note that Ext1Z(K1((A1/I1)⊗K),K1(I2⊗K)) = {0}
since K1(I2) = {0}. Suppose K1(A1/I1) = {0}. Then K1(τei) = {0}.
Since K1(I2) = {0}, we have that K0(τei ) = {0}. Hence, K∗(τei) = {0}.
By the Universal Coefficient Theorem, [τei ] can be identified with the ele-
ment in Ext1Z(K0((A1/I1) ⊗ K),K0(I2 ⊗ K)) given by Ksix(Bi; I2 ⊗ K). Since
(K∗(idI2⊗K),K∗(φ

−1
2 ) ◦ η∗ ◦K∗(φ−11 ),K∗(id(A1/I1)⊗K)) is an isomorphism from

Ksix(B1; I2 ⊗ K) to Ksix(B2; I2 ⊗ K) we have that Ksix(B1; I2 ⊗ K) and
Ksix(B2; I2⊗K) induce the same element in Ext1Z(K0((A1/I1)⊗K),K0(I2⊗K)).
Hence, [τe1 ] = [τe2 ] in Ext((A1/I1) ⊗ K, I2 ⊗ K). Suppose K0(A1/I1)
is a free group (possibly the zero group). By the Universal Coefficient,
[τei ] is completely determined by K∗(τei). Since (K∗(idI2⊗K),K∗(φ

−1
2 ) ◦

η∗ ◦ K∗(φ−11 ),K∗(id(A1/I1)⊗K)) is an isomorphism from Ksix(B1; I2 ⊗ K) to
Ksix(B2; I2 ⊗ K), we have that K∗(τe1) = K∗(τe2 ). Hence, [τe1 ] = [τe2 ] in
Ext((A1/I1)⊗K, I2 ⊗K).
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In both cases, we have shown that [τe1 ] = [τe2 ] in Ext((A1/I1) ⊗ K, I2 ⊗ K),
proving our claim. By Proposition 6.1, we have that B1

∼= B2. Therefore,
A1 ⊗K ∼= A2 ⊗K. ✷

Lemma 6.4 Let A be a unital, separable, nuclear C*-algebra with an essential
ideal I such that I ∼= K or I ∼= O∞ ⊗ K and A/I is isomorphic to a purely
infinite Cuntz-Krieger algebra. If K1(A/I) = {0} or K0(A/I) is a free group
(possibly K0(A/I) = {0}), then A is isomorphic to a graph algebra.

Proof: By [ABK14, Theorem 4.4] and [Res06, Proposition 8.3], there exists
a finite graph F such that each vertex of F is the base point of at least two
loop of length one and there exists an isomorphism φ : C∗(F )⊗K → A/I ⊗K.
Let ψ : C∗(G) ⊗ K → I be an isomorphism such that K∗(ψ) = id, where G
is the graph {v} with one vertex and no edges if I ∼= K and G is the graph
with one vertex {v} with infinitely many edges when I ∼= O∞⊗K. By [EKTW,
Lemma 5.2(r1) and Proposition 5.5], there exists a graph E with the properties
that

(1) E0 = G0 ⊔ F 0,

(2) E1 is the union of G1 and F 1 together with a finite nonzero number of
edges from each w ∈ F 0 to v, and

(3) there exist an isomorphism α∗ : K∗(C∗(E)) → K∗(A) with the prop-
erty that (K∗(ψ), α∗,K∗(φ)) is an isomorphism from Ksix(C

∗(E); I{v})
to Ksix(A; I).

Note that I{v}⊗K is an essential ideal of C∗(E)⊗K and there exist an isomor-
phism α∗ : K∗(C∗(E) ⊗ K)→ K∗(A ⊗K) such that (K∗(ψ ⊗ idK), α∗,K∗(φ ⊗
idK)) is an isomorphism from Ksix(C

∗(E)⊗K; I{v}⊗K) to Ksix(A⊗K; I ⊗K).
Also, note that I ∼= I{v} = K or I ∼= I{v} ∼= O∞ ⊗ K . By Lemma 6.3,
A⊗K ∼= C∗(E)⊗K. Therefore, A is isomorphic to a graph algebra by Propo-
sition 6.2. ✷

Lemma 6.5 For each m ∈ N, for each n ≥ 0, the smallest nonzero ideal I of
E±1m ⊗

⊗n
k=1 E

rk
2 is isomorphic to K and (E±1m ⊗⊗n

k=1 E
rk
2 )/I is isomorphic

to a Cuntz-Krieger algebra with vanishing K1-group.
Consequently, E±1m ⊗

⊗n
k=1 E

rk
2 and E±1m ⊗

⊗n
k=1E

rk
2 ⊗O∞ are isomorphic to

graph algebras.

Proof: Note that for each m ∈ N, by [EKTW, Theorem 7.2], E+1
m , E−1m ,

E+1
m ⊗O∞, andE−1m ⊗O∞ are graph algebras with E±1m /K and (E±1m ⊗O∞)/(K⊗
O∞) ∼= (E±1m /K)⊗O∞ are isomorphic to purely infinite Cuntz-Krieger algebras.
Therefore, we may assume that n ≥ 1.
For notational convenience, set A = E±1m ⊗

⊗n
k=1 E

rk
2 . Note that I =

⊗n+1
k=1 K.

Let J = K⊗⊗n
k=1 E

rk
2 . Then J is a primitive ideal and A/J ∼= Om⊗

⊗n
k=1E

rk
2 .

We will show that J/I is stably isomorphic to an O2-absorbing Cuntz-Krieger
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algebra, A/J is isomorphic to a Cuntz-Krieger algebra with vanishing boundary
maps, and the boundary maps in K-theory induced by the extension 0 →
J/I → A/I → A/J → 0 are zero.
We will first prove that J/I is O2-absorbing. Note that it is enough
to show that (

⊗n
k=1 E

rk
2 ) / (

⊗n
k=1K) is O2-absorbing since J/I ∼= K ⊗

(
⊗n

k=1E
rk
2 ) / (

⊗n
k=1K). Since E±2 /K ∼= O2 which is O2-absorbing by [KP00,

Theorem 3.8], we have that (
⊗n

k=1 E
rk
2 ) / (

⊗n
k=1K) is O2-absorbing for n = 1.

Suppose (
⊗m

k=1 E
rk
2 ) / (

⊗m
k=1K) is O2-absorbing for 1 ≤ m < n. Consider the

extension

0→ (Er12 ⊗
⊗n

k=2K) / (
⊗n

k=1K)→
→ (

⊗n
k=1E

rk
2 ) / (

⊗n
k=1K)→ (

⊗n
k=1 E

rk
2 ) / (Er12 ⊗

⊗n
k=2K)→ 0

Now, (Er12 ⊗
⊗n

k=2K)/(⊗nk=1K) ∼= (Er12 /K)⊗
⊗n

k=2K ∼= O2⊗
⊗n

k=2K which is
O2-absorbing by [KP00, Theorem 3.8]. Since (

⊗n
k=1E

rk
2 )/(Er12 ⊗

⊗n
k=2K) ∼=

Er12 ⊗ ((
⊗n

k=2 E
rk
2 ) / (

⊗n
k=2K)) and because of the inductive hypothesis, we

have that (⊗nk=1E
rk
2 )/(Er12 ⊗

⊗n
k=2K) is O2-absorbing. Hence, by [KP00, The-

orem 3.8] and [TW07, Corollary 4.3], (
⊗n

k=1 E
rk
2 ) / (

⊗n
k=1K) is O2-absorbing.

This proves our claim.
Since J/I is O2-absorbing and J/I has finitely many ideals, by [Kir00], J/I is
stably isomorphic to a Cuntz-Krieger algebra with vanishing boundary maps.
This is because for any finite T0-space X , there exists an O2-absorbing Cuntz-
Krieger algebra with primitive ideal space X . We also note that the boundary
maps in K-theory induced by the extension 0 → J/I → A/I → A/J → 0 are
zero since K∗(J/I) = {0}.
We now show that A/J is isomorphic to a Cuntz-Krieger algebra with vanishing
boundary maps. Recall that A/J ∼= Om ⊗

⊗n
k=1E

rk
2 . Hence, every simple

sub-quotient of A/J is isomorphic to Om ⊗ (I2/I1) where I1, I2 are ideals of⊗n
k=1 E

rk
2 with I1 ⊆ I2 and I2/I1 simple. Note that if I1, I2 are ideals of⊗n

k=1 E
rk
2 with I1 ⊆ I2 and I2/I1 simple, then I2/I1 ∼=

⊗n
k=1Bk where Bk is

a simple sub-quotient of Erk2 . Hence, every simple sub-quotient of
⊗n

k=1E
rk
2

is either isomorphic to
⊗n

k=1K or is O2-absorbing. Hence, every simple sub-
quotient of Om⊗

⊗n
k=1 E

rk
2 is either stably isomorphic to Om or O2. So every

simple sub-quotient of A/J is stably isomorphic to a Cuntz-Krieger algebra.
Consider the extension e : 0→ Om⊗I1 → Om⊗I2 → Om⊗ (I2/I1)→ 0 with
I2/I1 simple. If I1 = {0} and I2 =

⊗n
k=1K, then Om⊗I1 = {0} which implies

that e has vanishing boundary maps. If I2/I1 is O2-absorbing, then K∗(Om⊗
(I2/I1)) = {0} which also implies that e has vanishing boundary maps. By
[Ben14, Corollary 3.6], we have that A/J ∼= Om ⊗

⊗n
k=1 E

rk
2 has vanishing

boundary maps. Therefore, by [Ben14, Corollary 8.2], A/J is isomorphic to a
Cuntz-Krieger algebra with vanishing boundary maps. This finishes the proof
of the above claim.
The above claim shows that all the assumptions in [Ben14, Proposition 3.7,
Proposition 3.10, and Corollary 8.4] are satisfied. Thus, A/I is isomorphic to
a purely infinite Cuntz-Krieger algebra.
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We now show that K1((E
±1
m ⊗ ⊗n

k=1E
rk
2 )/I) ∼= {0}. Since 0 → J/I →

A/I → A/J → 0 has vanishing boundary maps and the fact that J/I is O2-
absorbing, we have that the surjective map A/I → A/J induces an injective
map K1(A/I) → K1(A/J). Since every simple sub-quotient of A/J is stably
isomorphic to Om or O2 and since A/J has finitely many ideals, one can show
that K1(A/J) = {0}. Therefore, K1(A/I) = {0}.
Lemma 6.4 implies that E±1m ⊗⊗n

k=1 E
rk
mk and E±1m ⊗⊗n

k=1 E
rk
mk ⊗ O∞ are

isomorphic to graph algebras. ✷

Lemma 6.6 Let m1,m2, . . .mn ∈ N. Then

(1)
⊗n

k=1 E
±1
mk is stably isomorphic to unital graph algebra if and only if

whenever there exists an i such that mi ∈ {1}⊔Z≥3, we have that mj = 2
for all j 6= i.

(2)
⊗n

k=1 E
±1
mk ⊗O∞ is stably isomorphic to unital graph algebra if and only

if whenever there exists an i such that mi ∈ {1} ⊔ Z≥3, we have that
mj = 2 for all j 6= i.

Proof: We prove (1). (2) is proved in a similar way.
Suppose whenever there exists an i such that mi ∈ {1} ⊔ Z≥3, we have that
mj = 2 for all j 6= i. By Lemma 6.5,

⊗n
k=1 E

±1
mk is isomorphic to a graph

algebra. So, also stably isomorphic to a unital graph algebra.
Suppose

⊗n
k=1 E

±1
mk

is stably isomorphic to graph algebra. Note that E±1m ⊗K ∼=
E+1
m ⊗K for any m. Therefore, it is enough to prove the case

⊗n
k=1E

+1
mk . Note

that
⊗n

k=1 E
+1
mk

has finitely many ideals. Since
⊗n

k=1 E
+1
mk

is stably isomor-
phic to a unital graph algebra C∗(E), we have that C∗(E) has finitely many
ideals. Therefore, every sub-quotient of C∗(E) is stably isomorphic to a unital
graph algebra with finitely many ideals. Consequently, every sub-quotient of⊗n

k=1 E
+1
mk is stably isomorphic to a unital graph algebra with finitely many

ideals.
Suppose there exists i and j such that mi,mj ∈ {1} ⊔ Z≥3. Let I =

⊗n
k=1 Ik

be the ideal of
⊗n

k=1 E
+1
mk where Ik = K if k /∈ {i, j}, Ii = E+1

mi , and Ij = E+1
mj .

From the above observation we must have that every sub-quotient of I is stably
isomorphic to a unital graph algebra with finitely many ideals. Note that I is
stably isomorphic to E+1

mi ⊗E+1
mj and E+1

mi ⊗E+1
mj has a quotient isomorphic to

Omi ⊗Omj . Therefore, Omi ⊗Omj is stably isomorphic to a graph algebra.
Let K ⊗ K be the smallest non-zero ideal of E+1

mi ⊗ E+1
mj . By the Künneth

formula, K0(E
+1
mi ⊗ E+1

mj )
∼= Z and K1(E

+1
mi ⊗ E+1

mj ) = {0}, and hence the

extension 0 → K ⊗ K → E+1
mi ⊗ E+1

mj → (E+1
mi ⊗ E+1

mj )/(K ⊗ K) → 0 induces a
six-term exact sequence in K-theory of the form

Z // Z // K0((E
+1
mi ⊗ E+1

mj )/(K ⊗K))

��

K1((E
+1
mi ⊗ E+1

mj )/(K ⊗K))

OO

0oo 0.oo
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In particular, K0((E
+1
mi ⊗ E+1

mj )/(K ⊗ K)) and K1((E
+1
mi ⊗ E+1

mj )/(K ⊗ K)) are
cyclic groups.
Since (E+1

mi⊗E+1
mj )/(K⊗K) is stably isomorphic to a graph algebra with finitely

many ideals, (E+1
mi ⊗E+1

mj )/(K⊗K) has real rank zero. Therefore, the quotient

of (E+1
mi ⊗ E+1

mj )/(K ⊗K) by the ideal (K ⊗ E+1
mj + E+1

mi ⊗K)/(K ⊗K) induces
the following six-term exact sequence

K0(Omi)⊕K0(Omj ) // K0((E
+1
mi ⊗ E+1

mj )/(K ⊗K)) // K0(Omi ⊗Omj )

0

��

K1(Omi ⊗Omj )

OO

K1((E
+1
mi ⊗ E+1

mj )/(K ⊗K))oo K1(Omi)⊕K1(Omj ).oo

(8)

Using the Künneth formula, we get

K0(Omi ⊗Omj ) = K1(Omi ⊗Omj ) =





Zgcd(mi−1,mj−1) if mi,mj ≥ 3

K1(Omi)⊕K0(Omi) if mj = 1

K1(Omj )⊕K0(Omj ) if mi = 1.

Since Omi ⊗ Omj is stably isomorphic to a unital graph algebra, gcd(mi −
1,mj − 1) = 1 if mi,mj ≥ 3 and mi = 1 if and only if mj = 1.
Suppose mi,mj ≥ 3. The exactness of Diagram (8) implies that K0((E

+1
mi ⊗

E+1
mj )/(K ⊗ K)) ∼= K0(Omi) ⊕ K0(Omj ) ∼= Zmi−1 ⊕ Zmj−1 which contradicts

the fact that K0(E
+1
mi ⊗ E+1

mj )/(K ⊗K)) is a cyclic group.
Suppose mi = 1. Then mj = 1. Then by the exactness of Diagram (8),
K1((E

+1
mi⊗E+1

mj )/(K⊗K)) has a sub-group isomorphic toK1(Omi)⊕K1(Omj ) ∼=
Z⊕Z. This can not happen since K1((E

+1
mi ⊗E+1

mj )/(K⊗K)) is a cyclic group.
✷

Let the notation be as in Definition 4.1.

Theorem 6.7 Let Γ be a countable graph. Then C∗(A+
Γ ) is isomorphic to a

graph algebra if and only if one of the following holds

1. t(Γ) = 1, o(Γ) = 0 and Nk(Γ) = 0 for all k

2. t(Γ) = 0, N−1(Γ) +N1(Γ) <∞ and
∑

|k|6=1

Nk(Γ) ≤ 1

Proof: Suppose there exists an isomorphism ψ : C∗(A+
Γ ) → C∗(E) for some

countable directed graph E. Since C∗(A+
Γ ) is unital, C∗(E) is unital. Let

Γi = (Vi, Ei) be the co-irreducible components of Γ. To prove (1), let I be the
ideal of C∗(A+

Γ ) generated by {⊗j Jij}i where Jij = C∗(A+
Γj
) if j 6= i and

Jii =

{
K if 1 < |Vi| <∞
0 otherwise.
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Then C∗(A+
Γ )/I

∼=
⊗

iC
∗(A+

Γi
)/Jii where C

∗(A+
Γi
)/Jii is a Kirchberg algebra

if |Vi| ≥ 2 and C∗(A+
Γi
)/Jii ∼= T otherwise. In particular,

Prim(C∗(A+
Γ )/I)

∼=
{∏t(Γ)

k=1 Prim(T ) if there exists i with |Vi| = 1

{•} otherwise.

Note that I is generated by projections. Therefore, ψ(I) is generated by pro-
jections and hence is a gauge-invariant ideal of C∗(E). Hence, by [BPRS00,
Corollary 3.5 and Theorem 3.6], C∗(E)/ψ(I) is isomorphic to a graph algebra.
Since C∗(A+

Γ )/I
∼= C∗(E)/ψ(I), we have that C∗(A+

Γ )/I is isomorphic to a
unital graph algebra. Note that C∗(A+

Γ )/I is O∞-absorbing (if there exists i

such that |Vi| ≥ 2) or C∗(A+
Γ )/I

∼=
⊗t(Γ)

k=1 T .
Suppose C∗(A+

Γ )/I is O∞-absorbing. Since any unital O∞-absorbing graph
algebra has a finite primitive ideal space, we must have that t(Γ) = 0. Sup-

pose C∗(A+
Γ )/I is not O∞-absorbing. Then C∗(A+

Γ )/I
∼=
⊗t(Γ)

k=1 T . Let J be
the ideal generated by {⊗j Jij}i where Jij = T if j 6= i and Jii = K, then
J is an ideal generated by projections such that

(⊗t(Γ)
k=1 T

)
/J ∼= C(Tt(Γ)).

Since C∗(A+
Γ )/I is isomorphic to a graph algebra and every ideal generated by

projections in a graph algebra is gauge invariant, by [BPRS00, Corollary 3.5
and Theorem 3.6] every quotient of C∗(A+

Γ )/I by an ideal generated by pro-

jections is isomorphic to a graph algebra. Hence, C(Tt(Γ)) ∼=
(⊗t(Γ)

k=1 T
)
/J

is isomorphic to a unital graph algebra. Since the only unital commutative
graph algebra is isomorphic to finite direct sums of C and T, we must have
that t(Γ) = 1.

In both cases, we have shown that t(Γ) ≤ 1. Suppose o(Γ) 6= 0 or Nk(Γ) 6= 0
for some k, then there exists an i such that C∗(A+

Γi
)/Jii is a Kirchberg alge-

bra. Hence, by [KP00, Theorem 3.15] and [TW07, Corollary 3.4] C∗(A+
Γ )/I

∼=⊗
i C
∗(A+

Γi
)/Jii is an O∞-absorbing C*-algebra. Since every unital graph al-

gebra that is O∞-absorbing must have finitely many ideals and since

Prim(C∗(A+
Γ )/I)

∼=
{∏t(Γ)

k=1 Prim(T ) if there exists i with |Vi| = 1

{•} otherwise,

we have that t(Γ) = 0. Hence, we only get a graph algebra in the case t(Γ) = 1
when all other data vanish.

Suppose t(Γ) = 0. Note that 1 < |Vi| for all i. Thus, C∗(A+
Γi
) is a unital

properly infinite C*-algebra, and Prim(C∗(A+
Γi
)) = {xi, yi} with open sets

{∅, {xi}, {xi, yi}} when |Vi| <∞ and Prim(C∗(A+
Γi
)) ∼= {•} when |Vi| =∞.

We claim that | {k: Nk(Γ) 6= 0} | < ∞ and Nk(Γ) < ∞ for all k. Suppose
first | {k: Nk(Γ) 6= 0} | = ∞ or Nk(Γ) = ∞ for some k. Then C∗(A+

Γ )
∼=⊗∞

i=1 C
∗(A+

Γi
) and C∗(A+

Γ ) has infinitely many ideals. By Lemma 4.7 , C∗(A+
Γ )

is O∞-absorbing. Again, using the fact that a unital graph algebra that is
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O∞-absorbing has finitely many ideals, we have a contradiction. Therefore,
| {k: Nk(Γ) 6= 0} | <∞ and Nk(Γ) <∞ for all k, proving the claims in (2).
Note that

C∗(A+
Γ )
∼= (E0

1)
⊗N0(Γ) ⊗

∞⊗

n=1

(E−11+n)
⊗N−n(Γ) ⊗

∞⊗

n=1

(E+1
1+n)

⊗Nn(Γ) ⊗ (O∞)⊗o(Γ)

By Lemma 6.6, (1) and (2) hold.
In the other direction, we have in the case (1) that C∗(A+

Γ )
∼= T which is

isomorphic to a graph algebra. And in case (2) we have that either

C∗(A+
Γ )
∼= (E−12 )⊗N−1(Γ) ⊗ (E+1

2 )⊗N1(Γ) ⊗ (O∞)⊗o(Γ),

C∗(A+
Γ )
∼= E+1

m ⊗ (E−12 )⊗N−1(Γ) ⊗ (E+1
2 )⊗N1(Γ) ⊗ (O∞)⊗o(Γ)

for some m 6= 2, or

C∗(A+
Γ )
∼= E−1m ⊗ (E−12 )⊗N−1(Γ) ⊗ (E+1

2 )⊗N1(Γ) ⊗ (O∞)⊗o(Γ).

for some m 6= 2. If o(Γ) ≥ 1, then by [KP00, Theorem 3.15], (O∞)⊗o(Γ) ∼= O∞.
Hence, by Lemma 6.5, C∗(A+

Γ ) is isomorphic to a graph algebra. ✷

Remark 6.8 The relation between a (undirected, loop-free) graph Γ and a di-
rected graph GΓ with C∗(A+

Γ )
∼= C∗(GΓ) is somewhat opaque, although the

proof given above in principle is constructive. In Figure 2 we present eight
graphs presenting the C*-algebras given by five-vertex graphs of Figure 1 in the
unshaded regions.

We conclude by establishing semiprojectivity and non-semiprojectivity of
C∗(A+

Γ ) in a number of cases, covering for instance all graphs with 5 or fewer
vertices. We note, however, that this theorem does not contain a full answer to
the question of which of the C*-algebras under study are semiprojective. The
most basic open case has N−2 = 2 and may be represented by a graph with 6
vertices.

Theorem 6.9

1. When t(Γ) > 1, C∗(A+
Γ ) is not semiprojective.

2. When t(Γ) = 1, C∗(A+
Γ ) is semiprojective if and only if

o(Γ) =
∑

k

Nk(Γ) = 0.

3. When t(Γ) = 0, C∗(A+
Γ ) is semiprojective when N−1(Γ) + N1(Γ) < ∞

and ∑

|k|6=1

Nk(Γ) ≤ 1
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Figure 2: Graphs representing cases from Figure 1
.
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Proof: We first note that by [End13, Corollary 4.4.16], a C*-algebra of the
form A ⊗ T with A unital, nuclear, infinite-dimensional and in the UCT-class
can never be semiprojective. This proves (1) and (2) since T itself is trivially
semiprojective.
For (3), we first apply Theorem 6.7 to see that C∗(A+

Γ ) in this case is a unital
graph algebra. We have seen that when o(Γ) > 0, C∗(A+

Γ ) is strongly purely
infinite, and when o(Γ) = 0, there is a minimal ideal K in C∗(A+

Γ ) so that
C∗(A+

Γ )/K is strongly purely infinite. In either case, [EK] applies to guarantee
that the C*-algebra is semiprojective. ✷
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1 Introduction

Let G∗ be a general linear group over a non-Archimedean local field of charac-
teristic 0, and G be an inner form of G∗. In this paper, we refine the results
of the rectifying characters in the context of the essentially tame Jacquet-
Langlands correspondence [BH11] by proving that each rectifying character
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admits a factorization into a product of characters called ζ-data, defined sim-
ilarly to χ-data in [LS87], which are significant in describing the essentially
tame local Langlands correspondence for G.
We know from [BH11] that the rectifying characters are quadratic characters
that measure the difference between two correspondences for essentially tame
supercuspidal representations of G and G∗: the representation theoretic one by
matching the maximal simple types of the two groups, and the functorial one
from the Jacquet-Langlands correspondence. On the representation theoretic
side, the maximal simple types of G can be constructed using certain char-
acters of its elliptic maximal tori, while on the functorial side, the Langlands
parameters for G can be functorially lifted from the parameters of the same
collection of characters.
Combining these results with our result on rectifying characters, we show that
the essentially tame local Langlands correspondence for G can be described
completely by admissible embeddings, defined in [LS87], of the L-groups of el-
liptic maximal tori into the L-group of G, generalizing an analogous description
proved by the author [Tam] in the split case (when G = G∗).

1.1 Background

Let F be a non-Archimedean local field, G∗ be the group GLn defined over F ,
and G be an inner form of G∗ defined over F . The set of F -points G(F ) of G
is therefore isomorphic to GLm(D) as a group, where D is a central division
algebra over F of dimension d2 and m = n/d.
Let A2

m(D) (resp. A2
n(F )) be the discrete series of G(F ) (resp. G

∗(F )), i.e., the
set of equivalence classes of irreducible admissible representations that are es-
sentially square integrable mod-center. The Jacquet-Langlands correspondence
asserts a bijection

JL : A2
n(F )→ A2

m(D)

determined by a character relation (see (3.5)) between a representation in
A2
n(F ) and its image in A2

m(D). The existence of this bijection is known,
starting from the case n = 2 [JL70], when G(F ) is the multiplicative group
of the quaternion algebra over F . For arbitrary n, when G(F ) is the multi-
plicative group of a division algebra, the existence is proved by [Rog83]. The
general situations are treated by [DKV84] in the characteristic zero case and
by [Bad02], [BHL10] in the positive characteristic case.
Bushnell and Henniart describe in [BH11, (2.1)] the image of JL when it is
restricted to the subset A0

n(F ) of supercuspidal representations. The image
is the subset of representations in A2

m(D), each of whose parametric degree is
equal to n. We do not need the full definition of the parametric degree of a
representation, so we only refer to [BH11, Section 2.7] for details. We only
need to know that

• the parametric degree of a representation in A2
m(D) is a positive integer

divisor of n,
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• a representation in A2
m(D) is supercuspidal if its parametric degree is n;

the converse is true in the split case (when G = G∗) but not in general,
and

• the parametric degree is preserved under JL.

Furthermore, we can describe the image of JL of each representation π ∈
A0
n(F ) when π is essentially tame, a notion we will explain in Section 3.2.

More precisely, if we let Aet
m(D) (resp. Aet

n (F )) be the set of essentially tame
representations in A2

m(D) (resp. A2
n(F )) whose parametric degree is n, then

we can describe completely the essentially tame Jacquet-Langlands correspon-
dence:

JL : Aet
n (F )→ Aet

m(D),

as in [BH11, Theorem A].
To explain the theorem and describe JL completely, we require the notion of
admissible characters from [How77]. In Section 3.1, we define the set Pn(F )
of (equivalence classes of) admissible pairs (E/F, ξ) ∈ Pn(F ), where E/F is a
tamely ramified extension of degree n and ξ is a character of E× admissible
over F . This set bijectively parametrizes both Aet

n (F ) and Aet
m(D) explicitly

[BH11], using the theory of simple types of G(F ) developed in [BF85], [Gra07],
[Séc04], [Séc05a], [Séc05b], [SS08], [BSS12] which generalizes the corresponding
theory in the split case [BK93], [BH96] and the division algebra case [Zin92],
[Bro96].
If we denote by

FΠ : Pn(F )→ Aet
n (F ), (E/F, ξ) 7→ FΠξ (1.1)

and

DΠ : Pn(F )→ Aet
m(D), (E/F, ξ) 7→ DΠξ (1.2)

the above bijections, then Bushnell and Henniart proved in [BH11] that the
composition

ν : Pn(F )
FΠ−−→ Aet

n (F )
JL−−→ Aet

m(D) DΠ−1

−−−−→ Pn(F )

maps an admissible pair (E/F, ξ) ∈ Pn(F ) to another pair of the form (E/F, ξ ·
Dνξ), where Dνξ is a tamely ramified character Dνξ of E

× depending on ξ. We
borrow the terminology from [BH10] and call the character Dνξ the rectifier of
ξ for the essentially tame Jacquet-Langlands correspondence.

1.2 Main results

The main result of this paper is to relate the rectifier Dνξ with a special set of
characters, called ζ-data in this paper, introduced in the theory of endoscopy
of Langlands and Shelstad [LS87]. The significance of ζ-data will be explained
in the next section, together with a brief summary of the previous results of
the author [Tam].
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To describe the main result, we first assume that char(F ) = 0 (see Remark
1.3 about this assumption). Let T be the F -torus such that T (F ) = E×. We
regard T as a maximal torus embedded in G. In contrast to the split case,
we have to carefully choose the embedding T → G relative to an hereditary
oF -order in G(F ) associated to ξ. This will be explained in Section 2.5. Given
this embedding, let Φ = Φ(G, T ) be the root system, which is invariant under
the action of the absolute Galois group ΓF of F if we view Φ as a subset of the
character group of T . For each root λ ∈ Φ, we denote by Eλ the fixed field of
the stabilizer of λ in ΓF , so that Eλ is a field extension of a ΓF -conjugate of
E. We recall from [LS87, Corollary 2.5.B] that ζ-data is a set of characters

{ζλ} = {ζλ}λ∈ΓF \Φ,

where each ζλ is a character of E×λ satisfying the conditions in loc. cit. (and
will be recalled in Section 5.1). Here λ ranges over a suitable subset of roots
in Φ, denoted by ΓF \Φ for the moment, representing the ΓF -orbits of Φ and
such that Eλ is a field extension of E (but not just its conjugate).
The following theorem restates the main result, Theorem 5.5, in a simpler way.

Theorem 1.1. Given a character ξ of E× admissible over F .

(i) There exists a set of ζ-data {ζλ,ξ}λ∈ΓF \Φ such that

Dνξ =
∏

λ∈ΓF \Φ
ζλ,ξ|E× .

(ii) The values of each ζλ,ξ can be expressed in terms of certain invariants,
called t-factors in this paper, of the corresponding component in the com-
plete symmetric decomposition of the finite symplectic modules associated
to ξ (see the notations and definitions in Sections 4.2 and 3.7).

We explain statement (ii) of the above theorem. The finite symplectic modules
appear in the respective constructions of the extended maximal simple types
inducing FΠξ and DΠξ in (1.1) and (1.2) (see [BH11, (2.5.4)], or the summary
in Section 3.5). Each of these modules admits an orthogonal decomposition,
called a complete symmetric decomposition in this paper (Proposition 4.4),
whose components are parametrized by the same set ΓF \Φ parameterizing the
factors in (i) of the Theorem. The t-factors are, roughly speaking, defined by
the symplectic signs attached to these components.
When proving Theorem 1.1, we pick a choice of characters {ζλ,ξ}λ∈ΓF \Φ, where
each character ζλ,ξ has values in terms of the t-factors of the corresponding com-
ponent, the one indexed by λ. We then show that these characters constitute a
set of ζ-data. Moreover, using the multiplicativity of t-factors, the product of
these ζ-data, when restricted to E×, is equal to the rectifier Dνξ, whose values
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are given in the First and Second Comparison Theorems of [BH11]. Hence our
result refines the one in loc. cit..
While the finite symplectic modules and their decompositions are also stud-
ied by the author in the split case [Tam], there are extra conditions on the
components of these modules in the general case. These conditions come from
the extra ramifications of the related compact subgroups in constructing the
extended maximal simple types. The degrees of these ramifications depend on
the residue degree f(E/F ) and, with other conditions similar to those in the
split case, determine whether each component is trivial or not. This new phe-
nomenon will be fully studied in Section 4. In particular, when E/F is totally
ramified and ξ is fixed, the finite symplectic modules are isomorphic to each
other for all inner forms of G∗, a fact already known in [BH11, Proposition
5.6].

1.3 Relation with the previous results

The significance of the factorization of Dνξ in Theorem 1.1(i) comes from [Tam],
which proves an analogous factorization of the rectifier Fµξ for the essentially
tame local Langlands correspondence [BH05a].
We first recall from loc. cit. that the rectifier Fµξ measures the difference
between the “näıve correspondence” and the essentially tame Langlands corre-
spondence for G∗; more precisely, the Langlands parameter of FΠξ defined in
(1.1) is the induced representation

IndWF

WE
(ξ · Fµξ) (1.3)

of the Weil group WF of F , where ξ · Fµξ is regarded as a character of WE by
class field theory [Tat79]. In [Tam, Theorem 1.1], the author proved that the
rectifier Fµξ admits a factorization

Fµξ =
∏

λ∈ΓF \Φ
χλ,ξ|E× ,

where {χλ,ξ}λ∈ΓF \Φ is a set of χ-data, consisting of characters of E×λ satisfying
the conditions similar to those of ζ-data (see Section 5.1).
With a collection of χ-data, we follow [LS87, Section 2.6] to construct an ad-
missible embedding

I{χλ,ξ} :
LT → LG

of the L-group LT of the maximal torus T into the L-group LG of G∗. (For
convenience, we call LT an L-torus in this paper.) Let ξ̃ : WF → LT be an
L-homomorphism whose class is the parameter of the character ξ of E× =
T (F ) under the local Langlands correspondence of the torus T , i.e., the Artin
reciprocity for E× [Tat79]. In a previous result of the author [Tam, Corollary
1.2], the Langlands parameter (1.3) of FΠξ is isomorphic to the composition

I{χλ,ξ} ◦ ξ̃ :WF → LT → LG
natural proj.−−−−−−−−→ GLn(C)
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as a representation ofWF . In other words, the essentially tame local Langlands
correspondence for G∗ can be described by admissible embeddings of L-tori.
A set of ζ-data is the ‘difference’ of two sets of χ-data, in the sense that, given
a set {χλ} of χ-data, we have

{χ′λ} is another set of χ-data ⇔ {χλ(χ′λ)−1} is a set of ζ-data.

If we define the local Langlands correspondence for G as the composition of
the local Langlands correspondence for G∗ and the Jacquet-Langlands corre-
spondence JL, then we can express the Langlands parameter of DΠξ using an
admissible embedding of L-tori, as follows.

Corollary 1.2. Let {χλ,ξ} and {ζλ,ξ} be respectively the χ-data and the ζ-
data associated to an admissible character ξ. The Langlands parameter

IndWF

WE
(ξ · Fµξ · Dνξ)

of DΠξ is isomorphic to

I{χλ,ξ ·ζλ,ξ} ◦ ξ̃ :WF → LT → LG
natural proj.−−−−−−−−→ GLn(C)

as a representation of WF .

Hence analogously we can describe the essentially tame local Langlands corre-
spondence for G by admissible embeddings of L-tori.
As a consequence, we show in Proposition 5.7 that the factorization of Dνξ in
Theorem 1.1(i) is functorial, in the following sense. Let K/F be an interme-
diate extension of E/F , so that if the pair (E/F, ξ) is admissible over F , then
(E/K, ξ) is admissible over K by definition. We denote the centralizer of K×

in G(F ) by GLmK (DK), where DK is a K-division algebra and mK a positive
integer. If {ζλ,ξ} is the set of ζ-data associated to ξ, then the partial product

∏

λ∈ΓF \Φ, λ|K× 6=1

ζλ,ξ|E× .

(a product similar to Theorem 1.1.(i), with factors ranging over the characters
being non-trivial on K×) is the rectifier DKνξ of ξ over K.

Remark 1.3. We would like to remark on the condition of the characteristic
char(F ) = 0, as we also did in [Tam, Remark 1.3]. The readers should be
aware that the works of [JL70], [DKV84], [Bad02], [BH11] make the Jacquet-
Langlands correspondence valid for local fields of arbitrary characteristic. In
our paper, we apply the condition char(F ) = 0 only because we refer to the
theory of endoscopy from [LS87], [KS99]. However, we do not actually need
this condition for the part of the theory that we allude to, which is about
the admissible embeddings of L-tori. In [Tam, Section 6] (or rather [LS87,
Section 2.5]), we see that these kind of embeddings can be defined without
any condition of char(F ). Therefore, the condition char(F ) = 0 in this paper
should be treated as a mild condition.
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1.4 Notations

Throughout the paper, F denotes a non-Archimedean local field of character-
istic 0. Its ring of integers is oF with the maximal ideal pF . The residue
field kF = oF /pF has q elements and is of characteristic p. We denote by
vF : F× → Z the discrete valuation on F . We denote by ΓF the absolute
Galois group of F , and by WF the Weil group of F .
The multiplicative group F× decomposes into a product of subgroups

〈̟F 〉 × µF × U1
F .

They are namely the group generated by a prime element ̟F , the group µF of
roots of unity of order prime to p, and the 1-unit group U1

F := 1+ pF . We will
identify µF with k×F in the natural way. We then write UF = U0

F := µF × U1
F

and U iF := 1+ piF for each positive integer i. Let µn be the group of nth roots
of unity in the algebraic closure F̄ of F , and zn be a choice of primitive nth
root in µn.
The F -level of a character ξ of F× is the smallest integer a ≥ −1 such that
ξ|Ua+1

F
is trivial. A character ξ of F× is called unramified if ξ|UF is trivial, or

equivalently, if its F -level is −1. It is called tamely ramified if ξ|U1
F
is trivial,

or equivalently, if its F -level is 0.
Given a field extension E/F , we denote its ramification index by e = e(E/F )
and its residue degree by f = f(E/F ). We also denote by trE/F and norm
NE/F the trace and norm respectively.
We fix an additive character ψF of F of level 0, which means that ψF is trivial
on pF but is non-trivial on oF . Hence ψF |oF induces a non-trivial character of
kF . We write ψE = ψF ◦ trE/F .
Suppose that A is a central simple algebra over F . We denote the reduced
trace by trdA/F and the reduced norm by NrdA/F .
Given a set X , we denote its cardinality by #X . If H is a group and X is a
H-set, then we denote the action of h ∈ H on x ∈ X by x 7→ hx. The set of
H-orbits is denoted by H\X . If π is a representation of H (over a given field),
we denote its equivalence class by (H, π).

2 Some basic setups

2.1 Root system

Given a field extension E/F of degree n, we let T be the induced torus
ResE/FGm. We embed T into G as an elliptic maximal torus, and denote
the image still by T . The choice of this embedding will be specific in Section
2.5, but at this moment this choice is irrelevant. Let Φ = Φ(G, T ) be the root
system of T in G. Following [Tam, Section 3.1], we can denote each root in
Φ by [ gh ] where g = gΓE and h = hΓE are distinct cosets in ΓF /ΓE . (We
use the same notation g for an element in ΓF and its ΓE-cosets, for notation
convenience.) The ΓF -action on Φ is given by x · [ gh ] = [ xgxh ] . For each root
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λ ∈ Φ, we denote by [λ] its ΓF -orbit WFλ. Each ΓF -orbit contains a root of
the form

[
1
g

]
for some non-trivial coset g ∈ ΓF /ΓE .

For each root λ ∈ Φ, we denote the stabilizers {g ∈ ΓF |gλ = λ} and {g ∈
ΓF |gλ = ±λ} by Γλ and Γ±λ respectively and their fixed fields by Eλ and E±λ
respectively. We call a root λ symmetric if [Eλ : E±λ] = 2, and asymmetric
otherwise. Equivalently, λ is symmetric if and only if λ and −λ are in the same
ΓF -orbit. Note that the symmetry of Φ is preserved by the ΓF -action. Let

(i) ΓF \Φsym be the set of ΓF -orbits of symmetric roots,

(ii) ΓF \Φasym be the set of ΓF -orbits of asymmetric roots, and

(iii) ΓF \Φasym/± be the set of equivalence classes of asymmetric ΓF -orbits by
identifying [λ] and [−λ].

We denote by (ΓE\ΓF /ΓE)′ the collection of non-trivial double cosets, and by
[g] the double coset ΓEgΓE . We can deduce the following proposition easily.

Proposition 2.1. The map

ΓF \Φ→ (ΓE\ΓF /ΓE)′, [λ] =WF

[
1
g

]
7→ [g],

is a bijection between the set ΓF \Φ of ΓF -orbits of the root system Φ and the
set (ΓE\ΓF/ΓE)′ of non-trivial double cosets.

We can therefore call g ∈ ΓF symmetric if [g] = [g−1], and asymmetric oth-
erwise, so that the bijection in Proposition 2.1 preserves symmetries on both
sides. Let

(i) (ΓE\ΓF /ΓE)sym be the set of symmetric non-trivial double cosets,

(ii) (ΓE\ΓF /ΓE)asym be the set of asymmetric non-trivial double cosets, and

(iii) (ΓE\ΓF /ΓE)asym/± be the set of equivalence classes of (ΓE\ΓF /ΓE)asym
by identifying [g] with [g−1].

We choose subsets Dsym and Dasym/± of representatives in ΓF /ΓE of
(ΓE\ΓF /ΓE)sym and (ΓE\ΓF /ΓE)asym/± respectively, and write

Dasym = Dasym/± ⊔ {g−1|g ∈ Dasym/±}.

We also choose subsets Rsym and Rasym/± of representatives in Φ of orbits
in ΓF \Φsym and ΓF \Φasym/± respectively such that every root λ ∈ R± :=

Rsym ⊔ Rasym/± is of the form
[
1
g

]
for some g ∈ D± := Dsym ⊔ Dasym/±, and

write
Rasym = Rasym/± ⊔ (−Rasym/±).

Hence Rsym, Rasym, and Rasym/± correspond bijectively to Dsym,Dasym, and
Dasym/± respectively by the identification in Proposition 2.1. Denote Eg := Eλ
and E±g := E±λ. Notice that Eg = E(gE), composite field of E and gE.
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2.2 Galois groups

Let E/F be a field extension of degree n. In most of the paper, we assume
that E/F is tamely ramified, which means that p is coprime to e. By [Lan94,
II.§5], we can choose ̟E and ̟F such that

̟e
E = zE/F̟F , for some zE/F ∈ µE . (2.1)

Choose in F̄× a primitive eth root of unity ze and an eth root zE/F,e of zE/F .
(We do not require that zaE/F,e = ze, if a is the multiplicative order of zE/F .)

Denote L = E[ze, zE/F,e] and l = [L : E]. With the choices of ̟F and ̟E as
in (2.1), we define the following F -automorphisms on L.

(i) φ : z 7→ zq, for all z ∈ µL, and φ : ̟E 7→ zφ̟E .

(ii) σ : z 7→ z, for all z ∈ µL, and σ : ̟E 7→ ze̟E .

Here zφ lies in µE satisfying (zφ̟E)
e = zqE/F̟F . More generally, we write

φi̟E = zφi̟E where zφi = z1+q+···+q
i−1

φ is an eth root of zq
i−1
E/F .

Therefore, ΓL/F = 〈σ〉 ⋊ 〈φ〉 with relation φ ◦ σ ◦ φ−1 = σq. Suppose that

ΓL/E = 〈σcφf 〉 for some integer c satisfying the condition:

e divides c

(
qfl − 1

qf − 1

)
.

We can choose
{σiφj |i = 0, . . . , e− 1, j = 0, . . . , f − 1}

as coset representatives for the quotient ΓE/F = ΓF /ΓE. Moreover, elements
in a fixed double coset are of the form [σiφj ] with a fixed j mod f .

Proposition 2.2 ([Tam, Proposition 3.3]). The double coset [g] = [σiφj ] is
symmetric only if j = 0 or, when f is even, j = f/2.

We call those symmetric [σi] ramified and those symmetric [σiφf/2] unramified,
and denote by (ΓE\ΓF /ΓE)sym−ram and (ΓE\ΓF/ΓE)sym−unram respectively
the collections of symmetric ramified and symmetric unramified double cosets.
We provide several useful results concerning the parity of certain subsets in
ΓE\ΓF /ΓE.

Proposition 2.3 ([Tam, Propositions 3.4 and 3.5]). (i) If [g] is symmetric
unramified, then the degree [Eg : E] is odd.

(ii) The parity of #(ΓE\ΓF /ΓE)sym−unram is equal to that of e(f − 1).

Lemma 2.4. Suppose that f is even. The following are equivalent.

(i) There exists σiφf/2 ∈ WF [̟E ] for some i.
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(ii) zφf/2 is an eth root of unity.

(iii) zE/F ∈ K+, where K+/F is unramified of degree f/2.

(iv) f̟ := [E : F [̟E]] is even.

Proof. (i) is equivalent to (ii) since σiφf/2̟E = ziezφf/2̟E . To show that (iii)

implies (ii), we recall that zφf/2 is an eth root of zq
f/2−1
E/F . If zE/F ∈ K+, then

zq
f/2−1
E/F = 1 and zφf/2 is an eth root of unity. The converse is similar. To show

the equivalence of (iii) and (iv), we notice that f(F [̟E]/F ) = f(F [zE/F ]/F ) =
f/f̟. Hence that F [zE/F ] ⊆ K+ is equivalent to that f̟ is even.

Lemma 2.5. Suppose that g = σiφf/2 satisfies the conditions in Lemma 2.4.

(i) The double coset [σiφf/2] is automatically symmetric.

(ii) The set (ΓE\ΓF [̟E ]/ΓE)sym−unram = (ΓE\ΓF/ΓE)sym−unram ∩
(ΓE\ΓF [̟E]/ΓE) contains a single element [σiφf/2].

Proof. For (i), we consider the actions of σiφf/2 and its inverse (σiφf/2)−1

on E. We certainly have σiφf/2̟E = (σiφf/2)−1

̟E = ̟E by definition. We

also have σiφf/2z = (σiφf/2)−1

z = zq
f/2

for all z ∈ µE. Therefore σiφf/2ΓE =
(σiφf/2)−1ΓE and in particular [σiφf/2] = [(σiφf/2)−1]. For (ii), we know
by Lemma 2.4.(ii) that the double coset is the one containing σiφf/2 where
zφf/2 = z−ie .

Proposition 2.6. When f is even, the parity of the cardinality of
(ΓE\ΓF /ΓE)sym−unram − ΓF [̟E ] is equal to e + f̟ − 1.

Proof. Recall

(i) by Lemma 2.4 that there exists σiφf/2 ∈WF [̟E ] if and only if f̟ is even,
and

(ii) by Proposition 2.3 that the parity of the number of symmetric [σiφf/2] is
the same as that of e.

By combining these facts, we have the assertion.

2.3 Division algebra

Let D be a division algebra over F of dimension n2. Denote its unique maximal
order by oD and the maximal ideal of oD by pD. Suppose that the Hasse-
invariant of D is h = h(D), so that gcd(n, h) = 1. By [Rei03, (14.5) Theorem],
we can choose a primitive (qn − 1)th root z of unity in D and a uniformizer
̟D such that

̟n
D = ̟F and ̟Dz̟

−1
D = zq

h

. (2.2)
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We write Kn = F [z] and µD = 〈z〉, then Kn is a maximal unramified extension
(of degree n) in D, and µD is a group of roots of unity of order qn − 1, both
defined up to conjugacy by D×. Therefore, the conjugation of ̟D acts on Kn

as the hth power of the Frobenius automorphism, i.e.,

̟Du̟
−1
D = φhu for all u ∈ Kn.

We write U iD := 1 + piD for all positive integer i. The multiplicative subgroup
D× hence decomposes into a semi-direct product

(〈̟D〉⋉ µD)⋉ U1
D.

Let E/F be a tamely ramified field extension of degree n, and let K be the
maximal unramified sub-extension in E/F . We assume that K ⊆ Kn and
that the uniformizers ̟E and ̟F satisfy ̟e

E = zE/F̟F as in (2.1) for some
zE/F ∈ µE . If we define zD/E ∈ µD = µKn to be a solution of

NKn/K(zD/E) = zE/F , (2.3)

then we may take ̟E = ̟f
DzD/E and this defines an embedding of E into D

over F . Note that from (2.2)

z̟i
Dz
−1 = z1−q

hi

̟i
D (2.4)

for all z ∈ µE = µK and all i ∈ Z.

2.4 Hereditary orders in central simple algebra

If G is an F -inner form of G∗ = GLn, then G(F ) = A×, where A be a central
simple algebra over F . By Wedderburn Theorem [Rei03, (7.4)Theorem], A is
isomorphic to Matm(D), where D is a division algebra of F -dimension d2 and
md = n. Therefore, G(F ) ∼= GLm(D). Any field extension of degree n can be
embedded into A as a maximal subfield in A, and any two such embeddings
are conjugate under G(F ).
Let A be an oF -hereditary order in A, PA be its Jacobson radical, and KA be
the G(F )-normalizer of A×. If A is principal, in the sense that there exists
̟A ∈ KA such that ̟AA = A̟A = PA, then the valuation vA : KA → Z is

defined by xA = Ax = P
vA(x)
A for all x ∈ KA. We also write UA = U0

A = A×,

U iA = 1 +Pi
A for each positive integer i, UxA = U

⌈x⌉
A for all x ∈ R≥0, and

Ux+A =
⋃

x∈R≥0, y>x

UyA.

Suppose that E0 is a subfield in A and A is E0-pure, i.e., E0
× ⊆ KA, then we

define the ramification index e(A/oE0) to be the integer e satisfying vA|E0
× =

evE0 . We therefore have
piE0

Pj
A = Pie+j

A
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and
piE0
∩Pj

A = p
max{i,j/e}
E0

for all i, j ∈ Z.
In the split case G = G∗, i.e., when A = A∗ = Matn(F ), we denote the
hereditary order A by A∗.

2.5 Embedding conditions

Suppose we fix an F -embedding E0 →֒ A, let E0 and A be as in the previous
section, and write A0 the centralizer of E0 in A. We can restrict the embedding
to E×0 →֒ G(F ), and denote the centralizer by A×0 = ZG(F )(E

×
0 ). Under the

above setup, there are many choices of A among its ZG(F )(E
×
0 )-conjugacy class.

In this paper, we assume the conditions (i)-(iii) below, all adopted from [BH11],
to fix a unique A.

(i) [BH11, Section 3.2] If E/E0 is an unramified extension in A0 such that
[E : F ] = n, then we require that A is E-pure, i.e., E× ⊆ KA.

Let A0 be the centralizer of E0 in A, i.e., A0 = A ∩ A0, which is a hereditary
oE0-order in A0, with Jacobson radical PA0 = PA ∩A0.

(ii) [BH11, (2.3.1)(2)] There exists a fixed integer e(A/A0) ≥ 1 such that

Pk
A ∩ A0 = P

k/e(A/A0)
A0

for every k ∈ Z. (2.5)

We say that A is the canonical continuation of A0 in A. Under (ii), we have
moreover KA ∩A0 = KA0 .

(iii) [BH11, (2.3.2)] A0 is a maximal hereditary oE0-order in A0, i.e.,
e(A0/oE0) = 1.

Under these conditions, A is the unique E0-pure hereditary order in A such that
A ∩ A0 = A0. Moreover, A is maximal among all E0-pure hereditary orders in
A, and both A and A0 are principal (by [BH11, the remark after (2.3.2)]).
By [Zin99, 0. Theorem], if the oD-period of A is denoted by r = r(A) =
e(A/oD), i.e. ̟DA = Pr

A, then we have an isomorphism

A/PA
∼= Mats(kD)

r, (2.6)

where s = s(A) = f/e(A/oE). Once A (and hence D) is fixed, the integers r
and s depend only on E; indeed s = s(E/F ) = gcd(f,m) and r = r(E/F ) =
e/ gcd(d, e) = m/s.
If K is an intermediate subfield in E/F , we write fK = f(E/K) and eK =
e(E/K). By [Zin99, 1. Prop.] the centralizer AK = ZA(K) is isomorphic to
Matmk(DK), where DK is a division algebra over K of degree d2K , with

dK =
d

gcd(d, n(K/F ))
and mK = gcd(m,n(E/K)).
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Let AK be the centralizer of K in A. It is routine to check that (E0K,AK) is
a canonical continuation of AE0K and is also E-pure, i.e., (i)-(iii) are satisfied
when we change our base field from F to K. We therefore have an isomorphism

AK/PAK
∼= MatsK (kDK )

rK , (2.7)

where rK = eK/ gcd(dK , eK) and sK = gcd(fK ,mK).

2.6 Characters

Let NrdA/F : A× → F× be the reduced norm of G(F ) = A×. By [Rei03,
(33.4)Theorem] and [NM43, Satz 2], NrdA/F is surjective and its kernel is
the commutator subgroup of G(F ). Therefore, any character of G(F ) factors
through NrdA/F .
We define the A-level of a character ξ of A× as the smallest integer a ≥ −1
such that ξ|Ua+1

A
is trivial. This is analogous to the F -level of a character of

F× defined in Section 1.4.

Proposition 2.7. If the F -level of a character ξ of F× is r, then the A-level
of the character ξ ◦NrdA/F is r · e(A/oF ).

Proof. It suffices to show that

NrdA/F (U
r·e(A/oF )
A ) = U rF for all r ∈ R≥0.

This follows from [BF85, (2.8.3)].

3 The essentially tame Jacquet-Langlands correspondence

3.1 Admissible characters

We recall the definition of admissible characters in [How77], [Moy86]. Given a
tamely ramified finite extension E/F , let ξ be a character of E×. We call a
pair (E/F, ξ) admissible over F if ξ is an admissible character over F , i.e., for
every intermediate subfield K between E/F ,

(i) if ξ factors through the norm NE/K , then E = K;

(ii) if ξ|U1
E
factors through NE/K then E/K is unramified.

Two admissible pairs (E/F, ξ) and (E′/F, ξ′) are called F -equivalent if there is
g ∈ ΓF such that gE = E′ and gξ = ξ′. Let Pn(F ) be the set of F -equivalence
classes of the admissible pair (E/F, ξ), with each class in Pn(F ) still denoted
by (E/F, ξ) for convenience.
Every admissible character ξ admits a factorization (see [How77, Corollary of
Lemma 11] or [Moy86, Lemma 2.2.4])

ξ = ξ−1(ξ0 ◦NE/E0
) · · · (ξt ◦NE/Et)(ξt+1 ◦NE/F ), (3.1)
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where, in the notations above, the decreasing sequence of fields

E = E−1 ⊇ E0 ) E1 ) · · · ) Et ) Et+1 = F.

and the increasing E-levels a−1 = 0 < a0 < a1 < · · · < at ≤ at+1 of the
characters ξk ◦ NE/Ek , k = 0, . . . , t + 1, are uniquely determined. We call the
E-levels ak the jumps of ξ and call the collection {Ek, ak|k = 0, . . . , t} the
jump data of ξ. By convention, when E0 = E, we replace (ξ0 ◦NE/E0

)ξ−1 by
ξ0 and assume that ξ−1 is trivial; otherwise, ξ−1 is tamely ramified and E/E0

is unramified [Moy86, Defnition 2.2.3]. There are certain generic conditions
imposed on the jump data of the character by its admissibility, but we do
not need them fully in this paper. We refer the interested reader to [Moy86,
Definition 2.2.3] and [BH10, Section 8.2] for these conditions (and when E/F
is totally ramified, see also [BH05b, Section 1]), and only use one of their
consequences in (3.11).
We fix a (non-canonical) choice of ξ−1 in the factorization (3.1) as follows. We
fix a choice of the wild component ξw of ξ to be the product

(ξ0 ◦NE/E0
) · · · (ξt ◦NE/Et)(ξt+1 ◦NE/F )

which satisfies

ξw(̟F ) = 1 and ξw has a p-power order (3.2)

(see [BH11, Lemma 1 of Section 4.3]), and define the tame component of ξ to
be ξ−1 = ξξ−1w . We write

Ξ = Ξ(ξ) = ξ0(ξ1 ◦NE0/E1
) · · · (ξt+1 ◦NE0/F ), (3.3)

such that ξw = Ξ ◦NE/E0
.

Suppose that E0/F is a tamely ramified extension of degree dividing n and
E/E0 is unramified. Let Ξ be a character of U1

E0
. Following [BH05a, Section

1.3], we call (E0/F,Ξ) an admissible 1-pair over F if Ξ does not factor through
any norm NE0/K with F ⊆ K ( E0. We denote by P 1

n(F ) the set of F -
equivalence classes of these pairs. Therefore, the map

Pn(F )→ P 1
n(F ), (E/F, ξ) 7→ (E0/F,Ξ(ξ)|U1

E0
),

is well-defined and surjective. Notice that we can define the jump-data of a
1-pair, such that the jump-data of an admissible pair is the same as that of its
associated 1-pair.

3.2 The correspondences

Let G∗ be GLn defined over F , and G be an inner form of G∗ whose F -point is
isomorphic to GLm(D) for some central F -division algebra D of dimension d2

and n = md. Let A2
n(F ) (resp. A2

m(D)) be the collection of equivalence classes
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of irreducible smooth representations of G∗(F ) (resp. G(F )) which are essen-
tially square-integrable modulo center. The Jacquet-Langlands correspondence
is a canonical bijection

JL : A2
n(F )→ A2

m(D) (3.4)

between the two collections determined by a character relation between π ∈
A2
n(F ) and its image JL(π) ∈ A2

m(D): for every pair of semi-simple elliptic
regular elements (g, g∗), where g ∈ G(F ) and g∗ ∈ G∗(F ), with the same
reduced characteristic polynomial, we have [BH11, Section 1.4]

(−1)n−mΘπ(g∗) = ΘJL(π)(g), (3.5)

where Θπ (resp. ΘJL(π)) is the character of π (resp. JL(π)).
For each representation π ∈ A2

m(D), let

(i) f(π) be the number of unramified characters χ of F× that χ ⊗ π ∼= π
(here χ is regarded as a representation of G(F ) by composing with the
reduced norm map Nrd : G(F )→ F×), and

(ii) δ(π) be the parametric degree of π (we do not require its full definition,
so we only refer to [BH11, Section 2.7] for details).

It is known that δ(π) is a positive integer and is a multiple of f(π). Moreover,
π is supercuspidal if δ(π) = n, while the converse is only true in the split case
(when G = G∗).
Recall that we denote by A0

n(F ) the set of supercuspidal representations of
G∗(F ). The correspondence (3.4) restricts to a bijection

JL : A0
n(F )→ {π ∈ A2

m(D)|δ(π) = n}.

We call π essentially tame if p does not divide δ(π)/f(π). Let Aet
m(D) be the

set of isomorphism classes of irreducible representations in A2
m(D) which are

essentially tame and satisfy δ(π) = n. Therefore Aet
n (F ) is the same collection

defined in [BH05a]. Since the Jacquet-Langlands correspondence in (3.4) pre-
serves the invariants δ(π) and f(π), we have the following theorem [BH11, 2.8.
Corollary 2].

Theorem 3.1 (Essentially tame Jacquet-Langlands correspondence). The re-
striction of the Jacquet-Langlands correspondence induces a bijection

JL : Aet
n (F )→ Aet

m(D).

This bijection preserves the central characters on both sides.

Bushnell and Henniart described this bijection explicitly in a way parallel to
[BH05a], [BH05b], [BH10]. We recall the results briefly as follows. On the one
hand, we have the bijection

FΠ : Pn(F )→ Aet
n (F ), (E/F, ξ) 7→ FΠξ, (3.6)
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generalizing the construction of Howe [How77]. On the other hand, there is an
analogous bijection

DΠ : Pn(F )→ Aet
m(D), (E/F, ξ) 7→ DΠξ, (3.7)

using the constructions in [Séc04], [Séc05a], [Séc05b], [SS08]. In fact, what is
constructed in [BH11] is the inverse of (3.7), using the method called ‘attached-
pairs’, since the construction parallel to (3.6) exhibits some ‘novel technical
difficulties’ as mentioned in [BH11, Introduction 4.]. In the split case, the
attached-pair method yields the inverse of (3.6) (see 4.4 of [BH11]).
The composition of the bijection in (3.6), the correspondence in Theorem 3.1,
and the inverse of (3.7),

Dν : Pn(F )
FΠ−−→ Aet

n (F )
JL−−→ Aet

m(D) DΠ−1

−−−−→ Pn(F ), (3.8)

determines a tamely ramified quadratic character Dνξ of E
× for each admissible

character ξ of E×, depending only on the wild part of ξ, such that for each
admissible pair (E/F, ξ), the pair (E/F,Dνξ · ξ) is also admissible and

Dν(E/F, ξ) = (E/F,Dνξ · ξ). (3.9)

We call this character Dνξ the rectifier of ξ (for the Jacquet-Langlands corre-
spondence). Using the First and Second Comparison Theorems of [BH11], we
can compute the values of Dνξ. To express these values, we need the knowledge
of certain invariants of finite symplectic modules, which will be described in
Section 3.8. Finally, with the expression of Dνξ, we see that we can describe
the correspondence in Theorem 3.1 explicitly, using (3.6), (3.7), and (3.8).

3.3 Some subgroups

We recall certain subgroups of G(F ). Suppose that the jump data {Ek, ak|k =
0, . . . , t} are defined by the factorization (3.1) of an admissible pair (E/F, ξ),
or equivalently, of its associated 1-pair (E0/F,Ξ). We require that (E0,A)
satisfy the conditions in Section 2.5. We write Ak the centralizer of Ek in A
and Ak = Ak ∩ A. We can then define PAk , UAk , U

x
Ak

, and Ux+Ak
for x ∈ R≥0

analogously as in Section 2.4. Following [Gra07, Definition 4.1], we construct
the pro-p subgroups

H1(Ξ,A) = U1
A0
U

(a0e(A1/oE)/2)+
A1

· · ·U (at−1e(At/oE)/2)+
At

U
(ate(A/oE)/2)+
A and

J1(Ξ,A) = U1
A0
U
a0e(A1/oE)/2
A1

· · ·Uat−1e(At/oE)/2
At

U
ate(A/oE)/2
A .

(3.10)

We also construct the subgroups

J(Ξ,A) = UA0U
a0e(A1/oE)/2
A1

· · ·Uat−1e(At/oE)/2
At

U
ate(A/oE)/2
A and

J(Ξ,A) = E×J(Ξ,A) = E×0 J(Ξ,A).
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We abbreviate these groups by H1, J1, J and J if the admissible character
ξ is fixed. Notice that H1, J1, J are compact subgroups of G(F ) and J is a
compact-mod-center subgroup of G(F ).
In [Séc04, Section 3.1], these subgroups are defined based on a simple stratum
[A,−vA(β), 0, β], where β is a suitable element in E0, depending on Ξ and such
that

−vA(β) = the E-level of Ξ ◦NE/E0
.

The group H1(Ξ,A) is denoted by H1(β,A) in loc. cit. (and similarly for
the other subgroups). This construction is an obvious generalization of [BK93,
Section 3.1] (see also [BH11, Section 2.5] and the Comment therewithin).

3.4 Simple characters

Given an admissible 1-pair (E0/F,Ξ) and a finite unramified extension E/E0,
we define H1(Ξ,A) as in (3.10). Using the idea of [Moy86, Section 3.2] (see
also [Séc04, Definitions 3.22, 3.45, Proposition 3.47]), we attach to (E0/F,Ξ)
a simple character (H1(Ξ,A), θΞ,E) as follows. Suppose that Ξ admits a fac-
torization of the form (3.3), with each ξk ◦ NE0/Ek , where k = 0, . . . , t + 1, a
character of U1

E0
. The generic conditions on the factorization imply that for

each ξk there is ck ∈ Ek ∩ p−akE such that Ek+1[ck] = Ek and

ξk ◦NE/Ek(1 + x) = ψF (trE/F (ckx)) for all x ∈ p
(ak/2)+
E . (3.11)

Note that the element ck can be chosen mod p
−ak/2
E . We denote the character

on the right side of (3.11) by ψck .
We define a character θΞ,E of the subgroup H1(Ξ,A) in (3.10) by the follow-
ing inductive procedure. We first define a character θt+1 on the subgroup

U
(ate(At+1/oE)/2)+
At+1

(note that indeed Et+1 = F and At+1 = A) by

ξt+1 ◦NrdA/F on U
(ate(At+1/oE)/2)+
At+1

.

Inductively, suppose θk+1 is defined, we construct θk on the subgroup

U
(ak−1e(Ak/oE)/2)+
Ak

U
(ake(Ak+1/oE)/2)+
Ak+1

· · ·U (ate(A/oE)/2)+
A

by

(ξk ◦NrdAk/Ek) · · · (ξt+1 ◦NrdA/F ) on U (ak−1e(Ak/oE)/2)+
Ak

and

(ψck ◦ trdAk/Ek)θk+1 on U
(ake(Ak+1/oE)/2)+
Ak+1

· · ·U (ate(A/oE)/2)+
A .

(3.12)

On the intersection U
(ake(Ak/oE)/2)+
Ak

, we have

θk+1 = (ξk+1 ◦NrdAk+1/Ek+1
) · · · (ξt+1 ◦NrdA/F )

and
ψck ◦ trdAk/Ek = ξk ◦NrdAk/Ek .
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By Proposition 2.7 and (3.11), the two characters in (3.12) agree on the inter-
section, and so θk is defined. Finally, we define θΞ,E = θ0 on H1(Ξ,A). By
construction, this character θΞ,E is normalized by KA0 , hence it is a simple
character by [Gra07, 5.3 Definition.(i)].
To get back our character Ξ from θΞ,E , just notice that θΞ,E |U1

E
factors through

NE/E0
, hence there is a unique character Ξ of U1

E0
such that Ξ ◦ NE/E0

=
θΞ,E |U1

E
.

3.5 Local constructions of attached pairs

We briefly summarize the construction in [BH11, Sec. 4] of the bijection DΠ in
(3.7). We will distinguish between the ‘level-zero’ case and the ‘positive-level’
case (we refer to [BH11, Sections 2.4 and 2.6] the definition of these cases ).
As we remarked in the Introduction, it is indeed the inverse of DΠ that we are
going to describe.
In the level-zero case, the construction is similar to the one in the split case.
Each level zero π ∈ Aet

m(D) contains a representation (GLm(oD), λ), called a
maximal simple type of level zero, inflated from an irreducible cuspidal rep-
resentation (GLm(kD), λ̄). This representation λ̄ corresponds, via Green’s
parametrization [Gre55], to a kE/kF -regular character ξ̄ of k×E , where E/F
is the unramified extension of degree n. We define the character ξ of E× such
that ξ|o×

E
is the inflation of ξ̄ and ξ|F× is the central character of π. By [BH11,

4.2. Proposition], the attached pair (E/F, ξ) is admissible and the correspon-
dence

Aet
m(D)level−0 → Pn(F )level−0 , π 7→ (E/F, ξ), (3.13)

is bijective. We can show that π = cInd
G(F )
J Λ, where the condition δ(π) = n

implies that J = F×GLm(oD), and (J,Λ) is defined by the conditions

Λ|GLm(oD) = λ and Λ|F× is a multiple of ξ|F× . (3.14)

The representation (J,Λ) is called an extended maximal simple type of level
zero.
In the positive level case, we first recall the construction of a extended maximal
simple type in general. Suppose we have a simple character (H1, θ). For
example, we can construct a simple character θ = θΞ,E as in Section 3.4 using
an admissible pair (E/F, ξ). We notice that the commutator subgroup [J1, J1]
lies in H1 [BK93, (3.1.15)]. By [Séc04, Théorème 3.52], the above simple
character θ induces an non-degenerate alternating bilinear form

hθ(x, y) = θ([1 + x, 1 + y]), for all 1 + x, 1 + y ∈ J1, (3.15)

on the Fp-vector space
AVξ := J1/H1.

The classical theory of Heisenberg representation implies that there is a unique
representation η̄ of J1/ ker θ containing the character θ of H1/ ker θ as a central
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character. We then define η as the inflation of η̄ to J1. By [Séc05a, Théorème
2.28], there exists a unique irreducible representation (J, κ), which is called a
β-extension (or wide extension in [BH11]) of η and satisfies certain conditions
on its intertwining in G(F ) (see [BH11, (2.5.5)]). We now choose a maximal
simple type (GLm0(oD0), σ) of A×0 = ZG(F )(E

×
0 ) of level zero and inflate it

to a representation (J, σ), since we know that J = GLm0(oD0)J
1. We obtain

a maximal simple type (J, λ), where λ = κ ⊗ σ. By [Séc05b, Théorème 5.2],
there exists an irreducible representation Λ of J = E0

×J1 (by the condition
δ(π) = n), extending λ and whose compact-induction to G(F ) is irreducible
and supercuspidal. The representation (J,Λ) is called an extended maximal
simple type. By [BH11, Lemma 2 of Section 4.3], we can fix a unique extended
type containing (J, λ) and satisfying the (non-canonical) conditions:

̟F ∈ kerΛ and detΛ has a p-power order.

Following [BH11, Section 3 and 4], we have to approach indirectly to describe
the inverse of DΠ. Suppose that we are given a representation π ∈ Aet

m(D)
of positive level. By [SS08, Théorème 5.21], it contains an extended maximal
simple type (J,Λ) of the above form, such that Λ|H1 is a multiple of a simple
character (H1, θ). There is a unique character ξw of E×, depending on θ|U1

A0
,

satisfying the conditions in (3.2). In particular, we have

θ|U1
A0

= Ξ ◦NrdA0/E0
, such that ξw|U1

E
= Ξ ◦NE/E0

.

By the discussion of the previous paragraph, we can attach to ξw an extended
maximal simple type (J,Λw) such that Λ ∼= Λ−1⊗Λw for a uniquely determined
extended maximal simple type (J,Λ−1) of level zero. Attached to (J,Λ−1) is
a level zero character ξ−1 of E× admissible over E0, as mentioned in the level
zero case. Finally, by [BH11, 4.3. Proposition], the attached pair (E/F, ξ),
where ξ = ξ−1ξw , is admissible and independent of the various choices above.
We call (E/F, ξ) a pair attached to π.
The technical part is to show that the attaching map

Aet
m(D)→ Pn(F ), π 7→ (E/F, ξ)

is well-defined and injective. This is done in the Parametrization Theorem of
[BH11, Section 6]. The composition (3.8) is then injective (since the maps

FΠ and JL are known to be bijective) and preserves the restriction of each
character to the subgroup F×U1

E , which is of finite index of E×. Therefore,
the map in (3.8) and hence DΠ in (3.7), is bijective.

3.6 Finite symplectic modules

Since the group J normalizes the subgroups H1, J1, and the simple character
θ of H1, it acts on the finite quotient AVξ := J1/H1. This quotient is denoted
by A∗Vξ in the split case A = A∗, which is studied in [BH10] and [Tam]. Notice
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that the quotient is clearly a finite dimensional Fp-vector space. The action of
J induces a symplectic FpJ-module structure on this space with respect to the
non-degenerate alternating form hθ in (3.15). We have a decomposition of

AVξ = AVξ,0 ⊕ · · · ⊕ AVξ,t, (3.16)

into FpJ-submodules, where

AVξ,k =
U
ake(Ak+1/oE)/2
Ak+1

U
ake(Ak/oE)/2
Ak

U
(ake(Ak+1/oE)/2)+
Ak+1

=
P
ake(Ak+1/oE)/2
Ak+1

P
ake(Ak/oE)/2
Ak

+P
(ake(Ak+1/oE)/2)+
Ak+1

(3.17)

for k = 0, . . . , t. In this paper, We call this decomposition the coarse de-
composition of AVξ. By [Séc04, Proposition 3.9], the decomposition (3.16) is
orthogonal.

In the sequel, we will be interested in the adjoint action of E× on AVξ restricted
from that of J, which factors through the finite group ΨE/F := E×/F×(E× ∩
J1).

The following Proposition appears in [BH11, Proposition 5.6]. We re-interpret
its proof here.

Proposition 3.2. If E/F is totally ramified, then AVξ
∼= A∗Vξ.

Proof. From the proofs of Propositions 4.1 and 4.2 (which are purely algebra
and do not require the knowledge of this section), we see that the totally
ramified condition implies that

Pj
A∗
k
/Pj+1

A∗
k

∼= Pj
Ak
/Pj+1

Ak
∼= Ind

ΨE/Ek
1 kF (3.18)

as a kFΨE/Ek -module, for all j ∈ Z and k = 1, . . . , t + 1. Moreover, we know
that in the split case the index e(A∗k/oE) (appearing in the powers in (3.17),
when A = A∗) is always 1, and in general each e(Ak/oE) (again appearing in
(3.17)) divides f(E/Ek) (remember that f(E/Ek)/e(Ak/oE) is the integer sEk
appearing in (2.7), when K = Ek), which is equal to 1 in the totally ramified
case. Hence from the expression in (3.17) and using (3.18), we see that both

AVξ,k and A∗Vξ,k are isomorphic to

P
ak/2
Ak+1

P
ak/2
Ak

+P
(ak/2)+
Ak+1

.

Hence their sums AVξ and A∗Vξ are also isomorphic.
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3.7 Invariants of finite symplectic modules

Let Γ be a finite cyclic group whose order is not divisible by p. We call a
finite FpΓ-module V symplectic if there is a non-degenerate alternating form
h : V × V → Fp which is Γ-invariant, in the sense that

h(γv1,
γv2) = h(v1, v2), for all γ ∈ Γ, v1, v2 ∈ V.

The simple module Vλ corresponding to a character λ ∈ Hom(Γ, F̄×p ) is the
field Fp[λ(Γ)] generated over Fp by the image λ(Γ), with Γ-action

γv = λ(γ)v, for all γ ∈ Γ, v ∈ Vλ.

Its Fp-linear dual V ∗λ = Hom(Vλ,Fp) is isomorphic to Vλ−1 by the map

Vλ−1 → V ∗λ , v 7→ (w 7→ trFp[λ(Γ)]/Fp(wv)),

such that the canonical pairing 〈·, ·〉 : Vλ × Vλ−1 → Fp is Γ-invariant.
We recall some basic facts from [BF83, (8.2.3)] and [BH10, Sec. 3, Prop. 4].

Proposition 3.3. (i) An indecomposable symplectic FpΓ-module is isomor-
phic to either one of the following two kinds,

(a) a hyperbolic module of the form Vλ = Vλ ⊕ Vλ−1 such that either
λ2 = 1 or Vλ ≇ Vλ−1 , with the alternating form

hVλ
((v1, v

∗
1), (v2, v

∗
2)) = 〈v1, v∗2〉 − 〈v2, v∗1〉 ,

for all (v1, v
∗
1), (v2, v

∗
2) ∈ Vλ;

(b) an anisotropic module of the form Vλ with λ2 6= 1 and Vλ ∼= Vλ−1 .
In this case, [Fp[λ(Γ)] : Fp] is even and the alternating form hVλ

is
defined, up to Γ-isometry, by

(v1, v2) 7→ trFp[λ(Γ)]/Fp(αv1v̄2), for all v1, v2 ∈ Vλ,

where v 7→ v̄ is the Fp-automorphism of Fp[λ(Γ)] of order 2 and
α ∈ Fp[λ(Γ)]× satisfies ᾱ = −α.

(ii) If Vλ is anisotropic and Fp[λ(Γ)]± denotes the subfield of Fp[λ(Γ)]
such that Fp[λ(Γ)]/Fp[λ(Γ)]± is quadratic, then λ(Γ) is a subgroup of
ker(NFp[λ(Γ)]/Fp[λ(Γ)]±)

(iii) The Γ-isometry class of a symplectic FpΓ-module (V,h) is determined by
the underlying FpΓ-module V .

Part (iii) is particularly useful because, when we talk about invariants of Γ-
isometry classes of symplectic FpΓ-modules, we do not have to write down the
alternating forms explicitly.
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Given a finite symplectic FpΓ-module V, we attach a sign t0Γ(V) ∈ {±1} and
a quadratic character t1Γ(V) of Γ. We also set

tΓ(V) = t0Γ(V)t1Γ(V)(γ),

where γ is any generator of Γ. We call these t-factors of V.
We recall from [BH10, Section 3] the definition the t-factors.

(i) If Γ acts on V trivially, then

t0Γ(V) = 1 and t1Γ(V) ≡ 1.

(ii) Let V be an indecomposable symplectic FpΓ-module.

(a) If V = Vλ ⊕Vλ−1 is hyperbolic, then

t0Γ(V) = 1 and t1Γ(V) = sgnλ(Γ)(Vλ).

Here sgnλ(Γ)(Vλ) : Γ → {±1} is the character whose image γ 7→
sgnλ(γ)(Vλ) is the signature of the multiplication by λ(γ) as a per-
mutation of the set Vλ.

(b) If V = Vλ is anisotropic, then

t0Γ(V) = −1 and

t1Γ(V)(γ) =

(
γ

ker(NFp[λ(Γ)]/Fp[λ(Γ)]±)

)
for any γ ∈ Γ.

Here
( ·
·
)
is the symbol defined as follows: for every finite cyclic group

H ,
( x
H

)
=

{
1 if x ∈ H2,

−1 otherwise.

(iii) If V decomposes into an orthogonal sum V1⊥ · · ·⊥Vt of indecomposable
symplectic FpΓ-modules, then

tiΓ(V) = tiΓ(V1) · · · tiΓ(Vt) for i = 0, 1.

Notice that when p = 2, the order of Γ is odd. In this case, t1Γ(V) is always
trivial, because all signature characters and symbols

( ·
·
)
are trivial.

3.8 Values of rectifiers

Given a tamely ramified extension E/F and an F -admissible character ξ of
E×, let Dνξ be the rectifier of ξ defined in (3.9). To describe the values of Dνξ,
we need to impose a condition on ̟E defined in (2.1):

̟E ∈ E0, (3.19)
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where E0 be the first field appearing in the factorization (3.1) of ξ. This con-
dition is the same as in the Second Comparison Theorem of [BH11, Section
7], where we further require that ̟r

E ∈ F for some integer r coprime to p. In-
deed, from the assumption in (2.1) this extra requirement is automatic in our
situation. Under (3.19), the roots of unity zE/F , zφi (defined in Section 2.2),
and others related to ̟E in later sections all depend on the first field E0 in
the jump data of ξ.
The values of the rectifier Dνξ depends on the t-factors

t1
µ
(AVξ), t

1
µ
(A∗Vξ), t〈̟〉(AVξ) and t〈̟〉(A∗Vξ),

where µ = µE/F and 〈̟〉 = 〈̟〉E/F abbreviate the following subgroups of

ΨE/F = E×/F×U1
E ,

µ := µE/µF and

〈̟〉 := the subgroup generated by the image of ̟E.
(3.20)

By the First and Second Comparison Theorems of [BH11], the rectifier Dνξ has
values

Dνξ|µE = t1
µ
(AVξ)t

1
µ
(A∗Vξ) and

Dνξ(̟E) = (−1)n−m+f̟−m̟ t〈̟〉(AVξ)t〈̟〉(A∗Vξ),
(3.21)

where f̟ := [E : F [̟E ]] = f(E/F [̟E]) and m̟ = gcd(m, f̟).
In the case when E/F is totally ramified, Proposition 3.2 implies that

Dνξ is unramified and Dνξ(̟E) = (−1)n−m,

as stated in [BH11, 5.3.Theorem].

4 Finite symplectic modules

4.1 Standard modules of central simple algebra

Let A be the hereditary E-pure order in A, as discussed in Sections 2.4 and 2.5.
The isomorphism (2.6) implies thatPj

A/P
j+1
A
∼= Mats(kD)

r for all j ∈ Z, where
s = gcd(f,m) and r = e/ gcd(d, e). We denote this quotient by (Mats(kD)

r)j
when we want to emphases the index j. Notice that as kFΨE/F -modules, all
(Mats(kD)

r)j , for j ranges over all Z, are isomorphic to each other.
When A = A∗ and j = 0, we know that UA∗ := A∗/PA∗ ∼= Matn(kF ) admits a
root-space decomposition

UA∗ ∼= U0

⊕

[λ]∈ΓF \Φ
U[λ],

where U0
∼= oE/pE on which ΨE/F acts trivially, and U[λ] is the kF -subspace

on which ΨE/F acts by the character λ. Note that the equivalence class of the
kFΨE/F -module U[λ] depends only on the ΓF -orbit of λ.
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For future computation, we rewrite the above decomposition as

UA∗ ∼=
⊕

[g]∈ΓE\ΓF /ΓE
U[g] (4.1)

using the identification in Proposition 2.1. Here U[g]
∼= kE(gE) as a kF -vector

space for each [g] ∈ ΓE\ΓF/ΓE , and the ΨE/F -action on each v ∈ U[g] is given
as follows: if [g] = [σiφj ], then

zv = (zq
j−1)−1v for all z ∈ µE and ̟Ev = (ziezφj)

−1v, (4.2)

where ze and zφj are defined in Section 2.2.
For general inner form G, we first consider a simple case when A is a division
algebra D. We write (kD)j := Pj

D/P
j+1
D for each j ∈ Z.

Proposition 4.1. For each j ∈ Z, the kFΨE/F -module (kD)j is isomorphic
to ⊕

[σiφhj ]∈ΓE\ΓF /ΓE
U[σiφhj ]. (4.3)

Proof. Recall that, if we denote by K the maximal unramified extension in D
(of degree n over F ), then

Pi
D = · · · ⊕ pK̟

i
D ⊕ oK̟

i+1
D ⊕ · · · .

Hence we can use x̟i
D, with x ∈ µK ∪ {0}, as a representative in Pi

D of an
element in (kD)j . We regard (kD)j as a kE-vector space of dimension e such

that z ∈ µE acts on each piece (kE)j by the character
[

1
φhj

]
(z) = z1−q

hj

as in

(2.4). Therefore, a Frobenius reciprocity argument (which is still valid when p
does not divide #ΨE/F ) implies that

(kD)j ∼= Ind
ΨE/F
µE/µF

(kE)j ;

more precisely, the action of ̟E has eigenvalues (ziezφhj )
−1, i = 0, . . . , e −

1, where we recall that zφhj is an eth root of zq
hj−1
E/F . Hence we have the

decomposition (4.3) with the ΨE/F -action on each component U[σiφhj ] as in
(4.2) for each fixed j.

For the general A, if we write (Mats(kD)
r)j′ := Pj′

A/P
j′+1
A for each j′ ∈ Z,

then we have the following result.

Proposition 4.2. For each j′ ∈ Z, we have a decomposition

(Mats(kD)
r)j′ ∼=

⊕

[σiφj ]∈ΓE\ΓF /ΓE
j≡hj′ mod f/s

U[σiφj ].

as a ΨE/F -module. (Recall that f/s = d/ gcd(d, e) = e(A/oE).)
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Proof. Denote by ED = E ∩D the maximal subfield contained in both E and
D, then [kED : kF ] = f/s and [kD : kED ] = gcd(d, e) = e/r. By Proposition
4.1, we know that z ∈ µED acts on (Mats(kD)

r)j′ as a sum of (kED )hj′ , i.e.,

z acts by the character
[

1

φ̄hj
′

]
(z) = z1−q

hj′

, where φ̄ is the image of φ under

the natural projection

ΓkE/kF → ΓkED/kF
. (4.4)

(Note that the arguments above concerning Proposition 4.1 still valid even
though ED may not be a maximal subfield of D.) We now consider the kED -
embeddings (where all choices are conjugate to each other)

kED −→ kE −→ Mats(kED ) −→ Mats(kD),

Notice that kE is a maximal subfield of Mats(kED ). By the “twisted group
ring decomposition”, we know that z ∈ µE acts on Mats(kED ) as a sum of
((kE)hj′ )

s, i.e., z acts on each of the s summands of kE by the character[
1
φj

]
(z) = z1−q

j

, for φj ranges over the s pre-images of φ̄hj
′

under the natural

projection (4.4). We denote this µE-module by Mats(kED )j′ . Finally, since
the relative degree of (Mats(kD))

r over Mats(kED ) is e = [ΨE/F : µE/µF ],
a Frobenius reciprocity argument (which is still valid when p does not divide
#ΨE/F ) implies that

(Mats(kD)
r)j′ ∼= Ind

ΨE/F
µE/µF

Mats(kED )j′ ;

Therefore, we have obtained the desired decomposition and proved the propo-
sition.
The following Corollary is a direct consequence of Proposition 4.2.

Corollary 4.3. The graded algebra

UA :=

f/s−1⊕

j′=0

(Mats(kD)
r)j′ ,

is isomorphic to UA∗ as a ΨE/F -module.

We provide some notations for later use. We write

Usym :=
⊕

[g]∈(ΓE\ΓF /ΓE)sym

U[g]

and also Usym−ram and Usym−unram analogously. Given intermediate extensions
F ⊆ K ⊆ L ⊆ E, we write

UK/L :=
⊕

[g]∈ΓE\(ΓL−ΓK)/ΓE

U[g]
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We also define the symmetric module associated to U[g] (or U[g−1]) by

U[g] :=

{
U[g] ⊕ U[g−1] if [g] is asymmetric,

U[g] if [g] is symmetric,
(4.5)

and call
UA
∼= U0

⊕

[g]∈(ΓE\ΓF /ΓE)sym⊔(ΓE\ΓF /ΓE)asym/±

U[g] (4.6)

the complete symmetric decomposition of UA. If V is a submodule of UA, we
also use the same convention to denote its submodules, for example, VK/L =
UK/L ∩V and V[g] = U[g] ∩V, and also call

V ∼= (U0 ∩V)
⊕

[g]∈(ΓE\ΓF /ΓE)sym⊔(ΓE\ΓF /ΓE)asym/±

V[g]

the complete symmetric decomposition of V

4.2 Complete decomposition of finite symplectic modules

We are interested in the adjoint action of E× on AVξ restricted from that of J,
which factors through the finite groupE×/F×(E×∩J1) ∼= ΨE/F . We also know
that this action preserves the symplectic structure hθ (3.15) on AVξ. Hence

AVξ is moreover a finite symplectic FpΓ-module for each cyclic subgroup Γ of
ΨE/F . We denote the U[g]-isotypic component in AVξ by AVξ,[g], and obtain
the decompositions

AVξ =
⊕

[g]∈(ΓE\ΓF /ΓE)′

AVξ,[g] =
⊕

[g]∈(ΓE\ΓF /ΓE)sym⊔(ΓE\ΓF /ΓE)asym/±

AVξ,[g]

(4.7)
inherited from (4.1) and (4.6) respectively. These decomposition are finer than
the one in (3.16). Indeed, it is easy to see that

AVξ,k := AVξ,Ek/Ek+1
=

⊕

[g]∈ΓE\(ΓEk+1
−ΓEk )/ΓE

AVξ,[g]

for k = 0, . . . , t.

Proposition 4.4. The complete symmetric decomposition of AVξ is orthogonal
with respect to the alternating form hθ.

Proof. Since we know that the ΨE/F -components of AVξ consist of those in
the standard module UA, which is isomorphic to the standard one UA∗ in the
split case, the proof of the assertion is just analogous to the one in the split
case [Tam, (5.10)], based on the argument of [BF83, (8.2.3),(8.2.4)].

We would like to describe the isotypic component appearing in the complete de-
composition (4.7) of AVξ. We first write e(A/Ak+1) := e(A/oE)/e(Ak+1/oE).
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Proposition 4.5. The quotient Pj
A ∩ Ak+1/P

j+
A ∩ Ak+1 is non-trivial if and

only if j ∈ e(A/Ak+1)Z.

Proof. Since Pj
A ∩ Ak+1 = P

j/e(A/Ak+1)
Ak+1

for all j ∈ Z, the assertion follows
directly.

We now specify j = jk = e(A/oE)ak/2 for some integer ak, and soPjk
A ∩Ak+1 =

P
ake(Ak+1/oE)/2
Ak+1

, such that the index on the right side is the one appearing in

the group J1 (3.10). The condition in Proposition 4.5 is satisfied if and only if
ak is even or e(Ak+1/oE) is even, in which case

AVξ,k
∼=

P
ake(Ak+1/oE)/2
Ak+1

P
ake(Ak+1/oE)/2+
Ak+1

+P
ake(Ak/oE)/2
Ak

∼=
{
Matsk+1

(kDk+1
)rk+1/Matsk(kDk )

rk when ake(Ak/oE)/2 ∈ Z,
Matsk+1

(kDk+1
)rk+1 otherwise,

where rk and sk are the invariants of Ak analogous to r and s of A.
To summarize, AVξ,k is isomorphic to

0 when ak is odd and e(Ak+1/oE) is odd,

Matsk+1
(kDk+1

)rk+1

when ak is odd, e(Ak/oE) is odd, and e(Ak+1/oE) is even,

Matsk+1
(kDk+1

)rk+1/Matsk(kDk )
rk

when ak is even or e(Ak/oE) is even.

The action of ΨE/F on Pjk
A ∩ Ak+1 is given by σiφjh ∈ ΓEk+1

, where j has
image hjk in the natural projection Z/fZ→ Z/e(A/oE)Z. Therefore, directly
from the description of AVξ,k above, we have the following decompositions.

Proposition 4.6. The complete decomposition of the component AVξ,k is
given as follows.

(i) When ak is odd and e(Ak+1/oE) is odd, then AVξ,k is trivial.

(ii) When ak is odd, e(Ak/oE) is odd, and e(Ak+1/oE) is even, then

AVξ,k
∼=

⊕

[g]=[σiφj]∈ΓE\ΓEk+1
/ΓE

j≡hjk mod e(A/oE)

U[g].

(iii) When ak is even or e(Ak/oE) is even, then

AVξ,k
∼=

⊕

[g]=[σiφj ]∈ΓE\(ΓEk+1
−ΓEk )/ΓE

j≡hjk mod e(A/oE)

U[g].
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4.3 Some properties of parities of jumps

Let R be the index when f(E/ER) is odd and f(E/ER+1) is even.

Lemma 4.7. We have (ΓER+1/ΓE)sym−unram = ((ΓER+1−ΓER)/ΓE)sym−unram.

Proof. Recall Proposition 2.2 that every symmetric unramified [g] are of the
form [σiφf/2], so there is no coset of the form σiφf/2 belonging to ΓER .

Let Q be the index when e(AQ/oE) is odd and e(AQ+1/oE) is even.

Lemma 4.8. Suppose that f is even. We always have R ≤ Q. If moreover m
is odd, then Q = R.

Proof. We know that e(Ak/oE) divides f(E/Ek), so that if Q < R, then the
even number e(AQ+1/oE) divides f(E/EQ+1), which divides the odd number
f(E/ER). This is a contradiction. Hence R ≤ Q. When R � Q, then

e(AR+1/oE) is odd and f(E/ER+1) is even. (4.8)

Since

e(AR+1/oE) = fER+1/sER+1 =
f(E/ER+1)

gcd(f(E/ER+1), gcd(m,n(E/ER+1)))
, (4.9)

the statement (4.8) is equivalent to saying that

the 2-powers of the numerator and

the denominator on the right side of (4.9) are equal.
(4.10)

This power is greater than 0. Hence (4.10) is equivalent to that

(the 2-power of m) ≥ (the 2-power of f(E/ER+1))  0. (4.11)

If m is odd, then (4.11) is a contradiction.

4.4 Symmetric submodules

We write AVξ,sym = AVξ ∩ Usym and AVξ,sym−ram and AVξ,sym−unram analo-
gously.

4.4.1 Case when f is odd

From Proposition 3.2, we always have

AVξ,sym = AVξ,sym−ram ∼= A∗Vξ,sym−ram = A∗Vξ,sym. (4.12)
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4.4.2 Case when f is even

Notice that the natural projection Z/fZ→ Z/e(A/oE)Z maps

f/2 7→
{
0 if e(A/oE) divides f/2,

e(A/oE)/2 6= 0 otherwise
(4.13)

The condition that e(A/oE) divides f/2 is equivalent to that s is even. When f
is even, then s = gcd(f,m) is even if and only if m is even. We hence separate
the cases according to the parity of m.

4.4.3 Case when both f and m are even

In this case, f/2 is mapped to 0 by Z/fZ → Z/e(A/oE)Z. We separate the
cases according to the parity of the jump ak. When ak is odd, neither 0 or f/2
is mapped to hjk 6= 0 ∈ Z/e(A/oE)Z, and so AVξ,k is trivial. When ak is even,
both 0 and f/2 are mapped to hjk = 0 by (4.13), and so AVξ,k,sym

∼= Uk,sym.
We also recall that

A∗Vξ,k
∼=
{
0 if ak is odd,

Uk,sym if ak is even.

Whatever the parity of ak is, we always have AVξ,sym
∼= A∗Vξ,sym.

4.4.4 Case when f is even and m is odd

In this case, notice that e(A/oE) must be even, and

jk = e(A/oE)ak/2 ≡
{
0

e(A/oE)/2
mod e(A/oE)

{
if ak is even,

if ak is odd.

Therefore,

AVξ,k,sym =

{
AVξ,k,sym−ram if ak is even,

AVξ,k,sym−unram if ak is odd.

Using Proposition 4.6, we find that when ak is even,

AVξ,k,sym = UEk/Ek+1,sym−ram =
⊕

[σi]∈(ΓE\(ΓER+1
−ΓER )/ΓE)sym

U[σi],

Here the index R is defined in Section 4.3. When ak is odd, AVξ,k,sym is trivial
when k < R, and is isomorphic to

UE/ER+1,sym−unram =
⊕

[σiφf/2]∈(ΓE\ΓER/ΓE)sym

U[σiφf/2]
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when k = R, and to

UEk/Ek+1,sym−unram =
⊕

[σiφf/2]∈(ΓE\(ΓEk+1
−ΓEk )/ΓE)sym

U[σiφf/2]

when k > R.
We observe that, whether ak is odd or even, the symmetric unramified part of

AVξ and A∗Vξ are complementary, in the sense that

AVξ,k,sym−unram ⊕ A∗Vξ,k,sym−unram = UEk/Ek+1,sym−unram

for all k = 0, . . . , t
We summarize the above in the following.

Proposition 4.9. We always have AVξ,sym−ram ∼= A∗Vξ,sym−ram and

(i) when f is odd, or when both f and m are even, then AVξ,sym−unram ∼=
A∗Vξ,sym−unram;

(ii) when f is even and m is odd, then AVξ,sym−unram ⊕ A∗Vξ,sym−unram =
Usym−unram.

4.5 t-factors of isotypic components

We recall the values of the t-factors tiΓ(V), i = 0, 1, when Γ is one of the cyclic
subgroups µ and 〈̟〉 of ΨE/F defined in (3.20), and V is a symmetric module
U[g] defined in (4.5). The following Proposition describes all tiΓ(U[g]) except

when [g] = [σe/2].

Proposition 4.10 ([Tam, Proposition 4.9]). (i) If [g] = [σiφj ] is asymmet-
ric, then

t0
µ
(U[g]) = 1, t1

µ
(U[g]) : z 7→ sgnzqi−1(U[g]),

t0〈̟〉(U[g]) = 1, and t1〈̟〉(U[g])(̟E) = sgnziezφj (U[g]).

(ii) If [g] = [σi] is symmetric and not equal to [1] or [σe/2], then

t0
µ
(U[g]) = 1, t1

µ
(U[g]) ≡ 1,

t0〈̟〉(U[g]) = −1, and t1〈̟〉(U[g]) : ̟E 7→
(

zie
ker(NFp[zie]/Fp[z

i
e]±

)

)
.

(iii) If [g] = [σiφf/2] is symmetric, then

t0
µ
(U[g]) = −1, t1

µ
(U[g]) is quadratic,

and
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(I) if ziezφf/2 = 1, then t0〈̟〉(U[g]) = 1 and t1〈̟〉(U[g]) ≡ 1;

(II) if ziezφf/2 = −1, then t0〈̟〉(U[g]) = 1 and t1〈̟〉(U[g])(̟E) =

(−1) 1
2 (q

f/2−1);

(III) if ziezφf/2 6= ±1, then t0〈̟〉(U[g]) = −1 and

t1〈̟〉(U[g]) : ̟E 7→
(

ziezφf/2

ker(NFp[ziezφf/2 ]/Fp[z
i
ezφf/2 ]±

)

)
.

In the exceptional case, when [g] = [σe/2], we have µEg = µE . To unify
notation, we define

t1
µ
(U[σe/2]) : µE → {±1}, x 7→

(
x

µE

)
. (4.14)

The Fp〈̟〉-module structure of U[σe/2] does not concern us (see the explanation
after Formula (5.5)).
The following properties concerning symmetric double cosets are useful when
computing the above t-factors.

Proposition 4.11. Suppose that [g] is symmetric.

(i) If [g] is ramified (resp. unramified), then [U[g] : kE ] is even (resp. odd).

(ii) Let Fp[
[
1
g

]
(̟E)] be the field extension of Fp generated by the image of[

1
g

]
(̟E) in k̄×F . If [g] 6= [σe/2], then the degree [U[g] : Fp[

[
1
g

]
(̟E)]] is

odd.

Proof. The first statement for ramified [g] is a simple calculation, and that for
unramified [g] is a consequence of Proposition 2.3. The second statement is
proved in [Tam, Lemma 4.8].
We would like to extend our definition of the t-factors ti

µ
(U[g]), with i = 0, 1,

from µ to µg = µEg/µF . We define

t0
µg

(U[g]) := t0
µ
(U[g])

and for all z ∈ µg,

t1
µg

(U[g]) : z 7→





sgn[ 1
g

]
(z)

(U[g]) if [g] is asymmetric,


[

1

σiφ
f[U[g]:kE ]/2

]
(z)

kerNkEg
/kE±g


 if [g] is symmetric.

Proposition 4.12. The restriction t1
µg

(U[g]) to µ is t1
µ
(U[g]) .
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Proof. For asymmetric [g], the result is immediate by definition. For symmet-

ric ramified [g], the restriction of the root
[

1

σiφ
f[U[g]:kE ]

]
to µ = µE/µF is

trivial, so the assertion is again true. When [g] is symmetric unramified, we

have to show that the restriction of

(
·

kerNkEg
/kE±g

)
to µ is

(
·

kerNkE/kE±

)
, or

equivalently, to show that the index of the subgroup kerNkE/kE±
∼= µqf/2+1 of

kerNkE/kE±
∼= µ

q
f[U[g] :kE ]/2

+1
is odd, which follows from Proposition 4.11.

5 Zeta-data

5.1 Admissible embeddings of L-tori

As mentioned in Section 1.3, to understand ζ-data, it is better to first under-
stand χ-data, which is motivated by constructing admissible embeddings of
L-tori [LS87, Section 2.6].

We take T to be an elliptic torus of G isomorphic to ResE/FGm. Its dual torus

T̂ is IndE/F (C×), which is isomorphic to (C×)n as a group. It is equipped with
the induced action of the Weil group WF , which factors through the action of
the Galois group ΓF . We define the L-torus LT := T̂ ⋊WF as the L-group of
T .
We assume that the dual torus T̂ is embedded into the L-group LG = Ĝ×WF

of G, where Ĝ = GLn(C), with image T . For convenience, we simply denote
the image of t ∈ T̂ by the embedding T̂ → T ⊂ Ĝ also by t ∈ T . This
embedding should be defined using the chosen splittings of G and Ĝ. As we
do not need the full detail of the definition of this embedding, we only refer to
[LS87, Section 2.5] for details (or, when (G, T ) = (GLn,ResE/FGm), see [Tam,
Section 6.1]). All we need to know is that we can always assume that the image
T is the diagonal subgroup of Ĝ.
With the embedding T̂ → T chosen, an admissible embedding from LT to LG
is a morphism of groups I : LT → LG of the form

I(t⋊ w) = tI(1⋊ w) for all t⋊ w ∈ LT.

Note that an admissible embedding maps WF into NĜ(T ), i.e., the factor
I(1 ⋊ w) above lies in NĜ(T ). Two admissible embeddings I1, I2 are called
Int(T )-equivalent if there is t ∈ T such that

I1(w) = tI2(w)t
−1 for all w ∈ WF .

By [LS87, Section 2.6], admissible embeddings exist, and the collection of these
embeddings can be described as follows.

Proposition 5.1. The set of admissible embeddings from LT to LG is a
Z1(WF , T̂ )-torsor, and the set of the Int(T )-equivalence classes of these em-
beddings is an H1(WF , T̂ )-torsor.
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The idea in [LS87, Section 2.5] of constructing an admissible embedding is to
choose a set of characters

{χλ}λ∈Φ, where χλ : E×λ → C×,

called χ-data, such that the following conditions hold.

Definition 5.2. (i) For each λ ∈ Φ, we have χ−λ = χ−1λ and χwλ = wχλ
for all w ∈ WF .

(ii) If λ is symmetric, then χ|E×
±λ

equals the quadratic character δEλ/E±λ

attached to the extension Eλ/E±λ.

Remember that, in Section 2.1, we choose a subset R± = Rsym⊔Rasym/± of Φ
representing the orbits WF \Φsym and WF \Φasym/±. Hence, by condition (i),
the set of χ-data depends completely on the subset {χλ}λ∈R± . We still call
such a subset a set of χ-data. Moreover, using Artin reciprocity [Tat79], we
may regard each χλ as a character of the Weil group WEλ .
Following the recipe in [LS87, Section 2.5], we can define an admissible embed-
ding

I{χλ} :
LT → LG

depending on a given set of χ-data. In our present situation, we can describe
the admissible embedding I{χλ} in Proposition 5.3 below. We first recall the
Langlands correspondence for the torus T = ResE/FGm, which is a bijection

Hom(T (F ),C×)→ H1(WF , T̂ ). (5.1)

Given a character ξ of T (F ) = E×, we denote by ξ̃ a 1-cocycle in Z1(WF , T̂ )
whose class is the image of ξ under (5.1). Given χ-data {χλ}λ∈R± , we define

µ := µ{χλ} =
∏

λ∈R
Res

E×
λ

E×χλ,

where R = R±⊔(−Rasym/±) is a subset representing ΓF \Φ. It is easy to check
that the product of the restricted characters is independent of representatives
in R, so we usually write

µ =
∏

[λ]∈ΓF \Φ
Res

E×
λ

E×χλ.

Proposition 5.3 ([Tam, Proposition 6.5]). For every character ξ of E×, the
composition

I{χλ} ◦ ξ̃ :WF → LT → LG
proj−−→ GLn(C)

is isomorphic to IndE/F (ξ · µ{χλ}) as a representation of WF .
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We now define a analogous set of characters

{ζλ}λ∈Φ, where ζλ : E×λ → C×,

called ζ-data, such that the following conditions hold.

Definition 5.4. (i) For each λ ∈ Φ, we have ζ−λ = ζ−1λ and ζwλ = wζλ for
all w ∈ WF .

(ii) If λ is symmetric, then ζ|E×
±λ

is trivial.

We can view a set of ζ-data as the difference of two sets of χ-data. Motivated
from Propositions 5.1 and 5.3, the product character

ν := ν{ζλ} =
∏

[λ]∈ΓF \Φ
Res

E×
λ

E×ζλ.

can be viewed as measuring the difference of two admissible embeddings.
Recall that, similar to choosing R±, we can also choose D± = Dsym ⊔Dasym/±
to be a subset of ΓF /ΓE consisting of representatives of (ΓE\ΓF/ΓE)sym and
(ΓE\ΓF /ΓE)asym/± respectively, and obtain a bijection from Proposition 2.1,

R± = Rsym

⊔
Rasym/± → D± = Dsym

⊔
Dasym/±, λ =

[
1
g

]
7→ g.

We usually denote by Eg and E±g the fields Eλ and E±λ respectively, if g ∈ D±
corresponds to λ ∈ R±. We also denote by ζg the character ζλ, and write

ν := ν{ζg} =
∏

[g]∈(WE\WF /WE)′

Res
E×
g

E×ζg.

5.2 Symmetric unramified zeta-data

We choose a specific ζ-data ζg for each [g] = [σiφf/2] ∈
(WE\WF/WE)sym−unram, base on the results from the χ-datum χg.
Notice that, since Eg/E±g is quadratic unramified, the norm group
NEg/E±g

(E×g ) has a decomposition

µE±g
×
〈
ziezφf/2̟

2
E

〉
× U1

E±g

and we take a root of unity z0 ∈ µEg such that

z0̟E ∈ E×±g −NEg/E±g
(E×g ).

We only consider tamely ramified χ-data and ζ-data, i.e., we require that

χg|U1
Eg
≡ 1 and ζg|U1

Eg
≡ 1.
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Therefore, the Definition 5.2.(ii) of χ-data is explicitly (see [Tam, (7.6)])

χg(µE±g) = 1, χg(z
i
ezφf/2̟

2
E) = 1, and χg(z0̟E) = −1. (5.2)

Hence, given a χ-datum χg, we can obtain a ζ-datum ζg easily by requiring

ζg|µEg = χg|µEg and ζg(̟E) = −χg(̟E).

In [Tam, Section 7.4], in the cases whenVξ,[g]
∼= U[g] is non-trivial, we construct

a χ-datum

χg|µEg = t1
µg

(U[g]) and χg(̟E) =

{
−t〈̟〉(U[g]) if σ

iφf/2̟E = ̟E ,

t〈̟〉(U[g]) otherwise.

In other words, the character χg satisfies the conditions in (5.2). Hence the
character

ζg|µEg = t1
µg

(U[g]) and ζg(̟E) =

{
t〈̟〉(U[g]) if σ

iφf/2̟E = ̟E ,

−t〈̟〉(U[g]) otherwise

is a ζ-datum. This ζ-datum will be used in the next section.

5.3 Zeta-data associated to admissible characters

Given an admissible character ξ of E× over F , we first assign, for each [g] ∈
(WE\WF/WE)asym/±, the values of the ζ-data to

ζg,ξ|µEg = sgn
µEg

(AV[g])sgnµEg (A∗V[g]) = t1
µg

(AVξ,[g])t
1
µg

(A∗Vξ,[g]).

In this way, the product of the characters

ζg,ξζg−1,ξ = ζg,ξ

(
ζgg,ξ

)−1
= ζg,ξ ◦

[
1
g

]

has values
(
ζg,ξ ◦

[
1
g

])
|µE (z) = sgn

µE
(AVξ,[g])(

[
1
g

]
(z))sgn

µE
(A∗Vξ,[g])(

[
1
g

]
(z))

= t1
µ
(AVξ,[g])t

1
µ
(A∗Vξ,[g])

and
(
ζg,ξ ◦

[
1
g

])
(̟E) = ζg,ξ|µE

([
1
g

]
(̟E)

)

= sgn[ 1
g

]
(̟E)

(AVξ,[g])sgn[ 1
g

]
(̟E)

(A∗Vξ,[g])

= t1〈̟〉(AVξ,[g])(̟E)t
1
〈̟〉(A∗Vξ,[g])(̟E)

= t〈̟〉(AVξ,[g])t〈̟〉(A∗Vξ,[g]).

(5.3)
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We then assign, for each [g] ∈ (WE\WF/WE)asym/±, arbitrary values to
ζg,ξ(̟E) and ζg−1,ξ(̟E), as long as the product satisfies (5.3). (This phe-
nomenon is comparable to [LS87, Lemma 3.3.A], as explained in [Tam, Remark
7.2].) It is routine to check that each ζg,ξ is a ζ-datum. Indeed, this checking
is exactly the same as that in the χ-data case (see [Tam, Section 7.2]), since
Definition 5.2.(i) is the same as that of χ-data.
We then assign values to the ζ-data for each [g] ∈ (WE\WF /WE)sym case by
case.

5.3.1 Case when f is odd

Recall from (4.12) that

tiΓ(AVξ,sym) = tiΓ(A∗Vξ,sym), for i = 0, 1 and Γ = µ, 〈̟〉. (5.4)

We assign the ζ-data to the following values. If e is odd (so that m is odd since
m divides e), we assign all ζg,ξ to be trivial. If e is even, then we just take all
ζg,ξ, [g] 6= [σe/2], to be trivial and

ζσe/2,ξ|µE ≡ 1 and ζσe/2,ξ(̟E) = (−1)m.

To show that ζσe/2,ξ is a ζ-datum, notice that since NE/E
±σe/2

(̟E) =

−̟E
±σe/2

= −̟2
E, and since

ζσe/2,ξ(̟E)
2 = ζσe/2,ξ(−1)ζσe/2,ξ(−̟2

E) = (1)(1) = 1,

we can assign χσe/2,ξ(̟E) to either 1 or −1 to obtain a ζ-datum. By (5.4), we
can rewrite our assigned ζ-data as

ζg,ξ|µE = t1
µ
(AVξ,[g])t

1
µ
(A∗Vξ,[g])

ζg,ξ(̟E) =

{
t〈̟〉(AVξ,[g])t〈̟〉(A∗Vξ,[g]) if g 6= σe/2,

(−1)mt〈̟〉(AVξ,[g])t〈̟〉(A∗Vξ,[g]) if g = σe/2.

(5.5)

Note that t〈̟〉(AVξ,[σe/2]) is not defined (see the paragraph containing Formula
(4.14)). In fact, we just take

t〈̟〉(AVξ,[σe/2]) = t〈̟〉(A∗Vξ,[σe/2]) = 1,

since AVξ,[σe/2]
∼= A∗Vξ,[σe/2] by Proposition 3.2, and it is shown in [Tam,

Proposition 5.3] that A∗Vξ,[σe/2] is always trivial.
The product of ζ-data is equal to

∏

[g]∈(WE\WF /WE)′

ζg,ξ(̟E) ≡ 1

and
∏

[g]∈(WE\WF /WE)′

ζg,ξ(̟E) =

{
(−1)m if e is even,

1 if e is odd,
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which is rewritten as

∏

[g]∈(WE\WF /WE)′

ζg,ξ|µE ≡ t1µ(AVξ)t
1
µ
(A∗Vξ)

and

∏

[g]∈(WE\WF /WE)′

ζg,ξ(̟E) =

{
(−1)mt〈̟〉(AVξ)t〈̟〉(A∗Vξ) if e is even,

t〈̟〉(AVξ)t〈̟〉(A∗Vξ) if e is odd.

The product is equal to the rectifier given in (3.21),

Dνξ|µE ≡ 1 and Dνξ(̟E) = (−1)m(d−1) = (−1)e−m,

when E/F is totally ramified.

5.3.2 Case when f is even

Let K be the maximal unramified extension of E/F . If we define DKνξ to
be the ramified part of Dνξ, which is also the rectifier corresponding to the
admissible pair (E/K, ξ), then we have

DKνξ =
∏

[g]∈(WE\WK/WE)′

ζg,ξ|E× ,

as when f is odd, and in particular

DKνξ(̟E) = (−1)e−mK ,

where mK = gcd(e,m). Therefore, our plan is to distribute the sign

(−1)e−mK (−1)n−m+f̟−m̟ =

{
1 if m is even,

(−1)e+f̟+1 if m is odd,
(5.6)

to each ζg,ξ(̟E), where [g] is symmetric unramified, multiplying the product of
t-factors t〈̟〉(AVξ,[g])t〈̟〉(A∗Vξ,[g]). As before, we separate the cases according
to the parity of m.
When m is even, recall from Proposition 4.9 that we have either

both AVξ,k,sym and A∗Vξ,k,sym are trivial,

or
both AVξ,k,sym and A∗Vξ,k,sym are isomorphic to Uk,sym.

We assign the trivial ζ-data for all [g] ∈ (WE\WF/WE)sym−unram, so that

ζg,ξ|µE = t1
µ
(AVξ,[g])t

1
µ
(A∗Vξ,[g]) and ζg,ξ(̟E) = t〈̟〉(AVξ,[g])t〈̟〉(A∗Vξ,[g]).
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The product of ζg,ξ(̟E) is trivial, or we can write

∏

[g]∈(WE\WF /WE)′

ζg,ξ|µE = t1
µ
(AVξ)t

1
µ
(A∗Vξ)

and
∏

[g]∈(WE\WF /WE)′

ζg,ξ(̟E) = t〈̟〉(AVξ)t〈̟〉(A∗Vξ).

Note that in the second product, the sign without t-factors is equal to (5.6),
which is just 1.
When m is odd, we have

AVξ,sym−unram ⊕ A∗Vξ,sym−unram = Usym−unram.

We then assign the ζ-data to be

ζg,ξ|µE = t1
µ
(AVξ,[g])t

1
µ
(A∗Vξ,[g]) = t1

µ
(U[g])

and ζg,ξ(̟E) = −t〈̟〉(AVξ,[g])t〈̟〉(A∗Vξ,[g]) = −t〈̟〉(V[g]).

for all symmetric unramified [g] except the one which stabilizes ̟E , in which
we assign

ζg,ξ|µE = t1
µ
(AVξ,[g])t

1
µ
(A∗Vξ,[g]) = t1

µ
(U[g])

and ζg,ξ(̟E) = t〈̟〉(AVξ,[g])t〈̟〉(A∗Vξ,[g]) = t〈̟〉(V[g]).

In Section 5.2, we checked that the above characters give rise to ζ-data. The
product of ζ is hence

∏

[g]∈(WE\WF /WE)′

ζg,ξ|µE = t1
µ
(AVξ)t

1
µ
(A∗Vξ)

and
∏

[g]∈(WE\WF /WE)′

ζg,ξ(̟E) = (−1)e+f̟+1t〈̟〉(AVξ)t〈̟〉(A∗Vξ),

by Proposition 2.6. Again in the second product, the sign without t-factors is
equal to (5.6).

5.4 The main theorem

To summarize, we verified the following theorem.

Theorem 5.5. Let ξ be an admissible character of E× over F .

(i) Let AVξ (resp. A∗Vξ) be the finite symplectic module defined by ξ when
G(F ) = GLm(D) (resp. when G∗(F ) = GLn(F )). The following condi-
tions define a collection of ζ-data {ζg,ξ}g∈Dasym/±⊔Dsym.

(a) All ζg,ξ are tamely ramified.
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(b) If g ∈ Dasym/±, then

ζg,ξ|µEg = t1
µg

(AVξ,[g])t
1
µg

(A∗Vξ,[g])

and

ζg,ξ(̟E) can be any value satisfying

ζg,ξ(̟E)ζg−1,ξ(̟E) = t〈̟〉(AVξ,[g])t〈̟〉(A∗Vξ,[g]).

(c) If g ∈ Dsym, then

ζg,ξ|µEg = t1
µg

(AVξ,[g])t
1
µg

(A∗Vξ,[g])

and
ζg,ξ(̟E) = ǫgt〈̟〉(AVξ,[g])t〈̟〉(A∗Vξ,[g]),

where ǫg is equal to 1 if g ∈ (Dsym−ram − {σe/2}) ∪ WF [̟E ] and is

equal to (−1)m if g ∈ (Dsym−unram −WF [̟E ]) ∪ {σe/2}.

(ii) Let Dνξ be the rectifier of ξ and {ζg,ξ}g∈D± be the ζ-data in (i), then

Dνξ =
∏

[g]∈(WE\WF /WE)′

ζg,ξ|E× .

Remark 5.6. As long as the F -dimension of the division algebraD is fixed, the
rectifier Dνξ is independent of the Hasse-invariant h = h(D) of D, as stated in
[BH11, Theorem C]. This is because the modules AVξ, whereA = Matn(D) and
D ranges over all division algebra with same F -dimension, are all isomorphic
to each other. Similarly, the ζ-data {ζg,ξ} are independent of h(D).

5.5 Functorial property

Let K be an intermediate subfield in E/F , and write

nK = n(E/K) = fKeK = f(E/K)e(E/K) and mK = gcd(m,nK).

Similar to Section 3.2, we have the Jacquet-Langlands correspondence

JLK : Aet
nK (K)→ Aet

mK (DK),

between essentially tame supercuspidal representations of G(F )K =
GLmK (DK) and its split inner form G∗(F )K = GLnK (K). We can parametrize
both collections by the admissible pairs in PnK (K), and obtain the rectifier
map

DKν : PnK (K) KΠ−−→ Aet
nK (K)

JLK−−−→ Aet
mK (DK)

DK
Π−1

−−−−−→ PnK (K),
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such that

DKν(E/K, ξ) = (E/F, ξ · DKνξ).
for a tamely ramified character DKνξ of E× for each pair (E/K, ξ) ∈ PnK (K).
With the embedding condition for (E0K,AK) as discussed in Section 2.5, we
define the subgroups (see also [BH11, 3.2 Proposition])

H1
K = H1(Ξ,A) ∩G(F )K and J1

K = J1(Ξ,A) ∩G(F )K

Each subgroup above admits a similar factorization as in (3.10). We then
obtain

AKVξ = J1
K/H

1
K = AVξ ∩ UE/K

and similarly for A∗
K
Vξ.

Denote ΨE/K = E×/K×U1
E , and view AKVξ and A∗

K
Vξ as kKΨE/K-

submodules of UE/K . Denote the subgroups of ΨE/K by

µE/K = µE/µK and

〈̟〉E/K = the subgroup generated by the image of ̟E .

Using the results in Section 3.8, with the base field changed from F to K, the
values of DKνξ is given by

DKνξ|µE = t1
µE/K

(AKVξ)t
1
µE/K

(A∗
K
Vξ)

and DKνξ(̟E) = (−1)nK−mK+f̟,K−m̟,K t〈̟〉E/K (AKVξ)t〈̟〉E/K (A∗
K
Vξ)

for a prime element ̟E ∈ E0K (see the beginning of Section 3.8). Here

f̟,K = f(E/K[̟E]) and

m̟,K = gcd(mK , f̟,K) = gcd(m,nK , f(E/K[̟E])).

Now suppose that (E/F, ξ) ∈ Pn(F ). By the definition of admissibility, we
can regard ξ as an admissible character over K and form the pair (E/K, ξ) ∈
PnK (K).

Proposition 5.7. In this situation, we have

DKνξ =
∏

[g]∈(WE\WK/WE)′

ζg,ξ|E× .

Proof. Notice that if V is a kFΨE/F -submodule of UE/K , we have

t1
µE/K

(V) = t1
µE/F

(V) and t〈̟〉E/K (V) = t〈̟〉E/F (V),

where µE/F and 〈̟〉E/F are just µ and 〈̟〉 respectively considered in (3.20).
Hence we have

DKνξ|µE =
∏

[g]∈(WE\WK/WE)′

ζg,ξ|µE .
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It remains to consider the values of both characters at ̟E . Notice that the left
side has value

(−1)nK−mK+f̟,K−m̟,K t〈̟〉E/K (AKVξ)t〈̟〉E/K (A∗
K
Vξ),

while the right side has value

(a sign) ·
∏

[g]∈(WE\WK/WE)′

t〈̟〉(AKVξ,[g])t〈̟〉(A∗
K
Vξ,[g]).

The t-factors on both sides are clearly equal. We will recall, by Theorem 5.5,
the values of the sign on the right side in different cases and show that, in each
case, this sign is equal to the one on the left side.

We first consider when fK is odd, which can be reduced to the case when E/K
is totally ramified. We further separate into cases.

• When e is odd, or when e is even and eK is odd, then mK is also odd.
The sign on the left is (−1)eK−mK = 1, while that on the right is also 1
since σe/2 /∈ WK .

• When eK is even, the sign on the left is (−1)eK−mK = (−1)m since
mK ≡ m mod 2, while that on the right is (−1)m since σe/2 ∈ WK .

We then consider then fK is even. Let L be the maximal unramified extension
of E/K. We recall, after disregarding the symmetric ramified component (as
we did at the beginning of Sub-section 5.3.2), the sign on the left is equal to
(see (5.6))

(−1)eK−mL(−1)nK−mK+f̟,K−m̟,K =

{
1 if mK is even,

(−1)eK+f̟,K+1 if mK is odd.

Recall from Proposition 2.6 that the number eK+f̟,K+1 is just the cardinality
of

(ΓE\ΓK/ΓE)sym−unram − ΓK[̟E ].

Hence by Theorem 5.5, the sign on the right side is

(−1)m(eK+f̟,K+1).

By knowing that mK ≡ m mod 2, the sign above is equal to the one on the
left side.
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Abstract. We consider the continuity property in Lebesgue spaces
Lp(Rm) of the wave operatorsW± of scattering theory for Schrödinger

operators H = −∆ + V on Rm, |V (x)| ≤ C〈x〉−δ for some δ > 2
when H is of exceptional type, i.e. N = {u ∈ 〈x〉sL2(Rm) : (1 +
(−∆)−1V )u = 0} 6= {0} for some 1/2 < s < δ − 1/2. It has recently
been proved by Goldberg and Green for m ≥ 5 thatW± are in general
bounded in Lp(Rm) for 1 ≤ p < m/2, for 1 ≤ p < m if all φ ∈ N
satisfy

∫
Rm V φdx = 0 and, for 1 ≤ p < ∞ if

∫
Rm xiV φdx = 0, i =

1, . . . ,m in addition. We make the results for p > m/2 more precise
and prove in particular that these conditions are also necessary for
the stated properties of W±. We also prove that, for m = 3, W±
are bounded in Lp(R3) for 1 < p < 3 and that the same holds for
1 < p < ∞ if and only if all φ ∈ N satisfy

∫
R3 V φdx = 0 and∫

R3 xiV φdx = 0, i = 1, 2, 3, simultaneously.

2010 Mathematics Subject Classification: 35P25, 81U05, 47A40.

1 Introduction

Let H0 = −∆ be the free Schrödinger operator on the Hilbert space H =
L2(Rm) with domain D(H0) = {u ∈ H : − ∆u ∈ H} and H = H0 + V ,
V being the multiplication operator with the real measurable function V (x)
which satisfies

|V (x)| ≤ C〈x〉−δ for some δ > 2, 〈x〉 = (1 + |x|2) 1
2 . (1.1)

Then, H is selfadjoint in H with a core C∞0 (Rm) and it satisfies the following
properties (see e.g. [18, 19, 21, 22, 23]):

1Supported by JSPS grant in aid for scientific research No. 22340029
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(i) The spectrum σ(H) of H consists of the absolutely continuous (AC for
short) part [0,∞) and a finite number of non-positive eigenvalues of finite
multiplicities.

We write Hac(H) for the AC spectral subspace of H for H , Hac for the part of
H in Hac(H) and Pac(H) for the orthogonal projection onto Hac(H).

(ii) Wave operators W± = limt→±∞ eitHe−itH0 defined by strong limits exist
and are complete, viz. ImageW± = Hac(H). They are unitary from H
onto Hac(H) and intertwine Hac and H0. Hence, for Borel functions f ,

f(H)Pac(H) =W±f(H0)W
∗
±. (1.2)

If follows that various mapping properties of f(H)Pac may be deduced from
those of f(H0) if the corresponding ones of W± are known. In particular, if
W± ∈ B(Lp(Rm)) for 1 ≤ p1 ≤ p ≤ p2 < ∞, then W ∗± ∈ B(Lq(Rm)) for
q2 ≤ q ≤ q1, 1/pj + 1/qj = 1, j = 1, 2, and

‖f(H)Pac(H)‖B(Lq,Lp) ≤ Cpq‖f(H0)‖B(Lq,Lp), (1.3)

for these p and q with Cpq which are independent of f . We define the Fourier
and the conjugate Fourier transforms Fu(ξ) and F∗u(ξ) respectively by

Fu(ξ) =
∫

Rm
e−ixξu(x)dx and F∗u(ξ) = 1

(2π)m

∫

Rm
eixξu(x)dx.

We also write û(ξ) for Fu(ξ).
The intertwining property (1.2) may be made more precise. Wave operators
W± are transplantations ([24]) of the complete set of (generalized) eigenfunc-
tions {eixξ : ξ ∈ Rm} of −∆ by those of out-going and in-coming scattering
eigenfunctions {ϕ±(x, ξ) : ξ ∈ Rm} of H = −∆+ V ([19]):

W±u(x) = F∗±Fu(x) =
1

(2π)d

∫

Rd
ϕ±(x, ξ)û(ξ)dξ,

where F± and F∗± are the generalized Fourier transforms associated with
{ϕ±(x, ξ) : ξ ∈ Rm} and the conjugate ones defined respectively by

F±u(ξ) =
∫

Rd
ϕ±(x, ξ)u(x)dx, F∗±u(ξ) =

1

(2π)m

∫

Rd
ϕ±(x, ξ)u(x)dx.

They satisfy F∗±F±u = u for u ∈ Hac(H) and, F±F∗±u = u for u ∈ L2(Rm).
We define F (D) ≡ F∗MFF and F (D±) ≡ F∗±MFF± for Borel functions F on
Rm where MF is the multiplication with F (ξ). Then,

F (D±) =W±F (D)W ∗±u, u ∈ Hac(H)

and W± transplant estimates for F (D) in Lp-spaces to F (D±).
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In this paper we are interested in the problem whether or not W± are bounded
in Lp(Rm). This will almost automatically imply the same property in Sobolev
spaces W k,p(Rm) = {u ∈ Lp(Rm) : ∂αu ∈ Lp(Rm)} for integers 0 ≤ k ≤ 2 (see
Section 7 of [8]).
There is now a large literature on this problem ([3, 4, 6, 8, 27, 31, 15, 16, 29, 33])
and it is well known that the answer depends on the spectral properties of H
at 0, the bottom of the AC spectrum of H . We define

E = {u ∈ H2(Rm) : (−∆+ V )u = 0}, (1.4)

the eigenspace of H with eigenvalue 0 and, for 1/2 < s < δ − 1/2,

N = {u ∈ 〈x〉sL2(Rm) : (1 + (−∆)−1V )u = 0} = 0. (1.5)

Functions φ in N satisfy −∆φ + V φ = 0 for x ∈ Rm. The space N is finite
dimensional, independent of 1/2 < s < δ − 1/2, E ⊂ N and, if m ≥ 5, E = N
([14]). The operator H is said be of generic type if N = {0} and of exceptional
type otherwise. When H is of generic type, we have rather satisfactory results
(though there is much space for improving conditions on V ) and it has been
proved that W± are bounded in Lp(Rm) for all 1 ≤ p ≤ ∞ if m ≥ 3 and, for
all 1 < p < ∞ if m = 1 and m = 2 under various smoothness and decay at
infinity assumptions on V (see [4] for the best result when m = 3); but they
are in general not bounded in L1(R1) or L∞(R1) when m = 1 ([27]).
When H is of exceptional type, it is long known that the same results hold
when m = 1 (see [27, 3, 6]). For higher dimensions m ≥ 3, it is first shown
([33, 8]) that W± are bounded in Lp(Rm) for 3/2 < p < 3 if m = 3 and for
m
m−2 < p < m

2 if m ≥ 5, which is subsequently extended to 1 < p < 3 for m = 3
and 1 < p < m/2 for m ≥ 5 ([34]). Then, recently, Goldberg and Green ([10])
have substantially improved these results by proving the following theorem for
m ≥ 5. In what follows in this paper, we assume m ≥ 3 and V satisfies the
following assumption. The constant m∗ is defined by

m∗ = (m− 1)/(m− 2).

Assumption 1.1. V is a real valued measurable function such that

(1) F(〈x〉2σV ) ∈ Lm∗ for some σ > 1/m∗.

(2) |V (x)| ≤ C〈x〉−δ for some δ >

{
m+ 4, if 3 ≤ m ≤ 7,
m+ 3, if m ≥ 8

and C > 0.

The condition (1) requires certain smoothness on V .
We write 〈u, v〉 =

∫
Rm u(x)v(x)dx and define subspaces E1 ⊂ E0 ⊂ N respec-

tively by

E0 = {φ ∈ N : 〈V, φ〉 = 0}, E1 = {φ ∈ E0 : 〈xV, φ〉 = 0}, (1.6)

where 〈xV, φ〉 = 0 means 〈xiV, φ〉 = 0 for all 1 ≤ i ≤ m. We have dimN/E0 ≤
1, E0 = E if m = 3 and N = E if m ≥ 5.
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Theorem 1.2 (Goldberg-Green). Suppose that V satisfies Assumption 1.1 and
that H is of exceptional type. Then, if m ≥ 5, W± are bounded in Lp(Rm) for
1 ≤ p < m/2. They are bounded in Lp(Rm) also for 1 ≤ p < m if N = E0 and
for 1 ≤ p <∞ if N = E1.
In this paper, we show following theorems which in particular prove the cor-
responding result for m = 3 and that the conditions N = E0 and N = E1 of
Theorem 1.2 are also necessary for the stated properties of W± respectively.
We write P , P0 and P1 for the orthogonal projections onto E , E0 and E1 re-
spectively. Because (−∆)−1V is a real operator, we may take the bases of N ,
E0 and E1 which consist of real functions and P , P0 and P1 are real operators:
For the conjugation (Cu)(x) = u(x),

C−1PC = P, C−1P0C = P, C−1P1C = P1. (1.7)

We state results for m = 3, m = 5 and m ≥ 6 separately.

Theorem 1.3. Let m = 3. Suppose that V satisfies Assumption 1.1 and that
H is of exceptional type. Then:

(1) W± are bounded in Lp(R3) for 1 < p < 3.

(2) For 3 < p <∞, there exists a constant C such that

‖(W± ± aϕ⊗ |D|−1V ϕ+ P )u‖Lp ≤ C‖u‖Lp , (1.8)

where ϕ is the real function defined by (3.13) (the canonical resonance),
a = 4πi|〈V, ϕ〉|−2 and P may be replaced by P ⊖ P1.

(3) If W± are bounded in Lp(R3) for some 3 < p <∞, then N = E1. In this
case they are bounded in Lp(R3) for all 1 < p <∞.

Theorem 1.4. Let m = 5. Suppose that V satisfies Assumption 1.1 and that
H is of exceptional type. Then:

(1) W± are bounded in Lp(R5) for 1 < p < 5/2.

(2) For 5/2 < p < 5, there exists a constant C such that
∥∥∥∥
(
W± ± a0(|D|−1V ϕ)⊗ ϕ+

P

2

)
u

∥∥∥∥
Lp
≤ C‖u‖Lp, (1.9)

where ϕ = PV , V being considered as a function, a0 = i/(24π2) and
P may be replaced by P ⊖ P0. If W± are bounded in Lp(R5) for some
5
2 < p < 5, then N = E0. In this case they are bounded in Lp(R5) for all
1 < p < 5.

(3) By virtue of (1) and (2), the condition E = E0 is necessary for W± to be
bounded in Lp(R5) for some p > 5. Suppose E = E0. Then,

‖(W± + P )u‖Lp ≤ C‖u‖Lp (1.10)
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for a constant C, where P = P0 may be replaced by P0 ⊖ P1. If W± are
bounded in Lp(R5) for some p > m, then N = E1. In this case they are
bounded in Lp(R5) for all 1 < p <∞.

Theorem 1.5. Let m ≥ 6. Suppose that V satisfies Assumption 1.1 and that
H is of exceptional type. Then:

(1) W± are bounded in Lp(Rm) for 1 < p < m/2.

(2) For m
2 < p < m, there exists a constant C > 0 such that

‖(W± +DmP )u‖Lp ≤ Cp‖u‖Lp, (1.11)

where P may be replaced by P ⊖ P0 and

Dm =





Γ
(
m−2
2

)
√
πΓ
(
m−1
2

) , m is odd, (1.12)

2mΓ
(
m
2

)
√
πΓ
(
m−1
2

)
∫ ∞

1

(x2 + 1)−(m−1)dx, m is even. (1.13)

If W± are bounded in Lp(Rm) for some m/2 < p < m then, E = E0. In
this case they are bounded in Lp(Rm) for all 1 < p < m

(3) Suppose E = E0. Let m < p <∞. Then, for a constant Cp,

‖(W± + P )u‖ ≤ Cp‖u‖Lp, (1.14)

where P may be replaced by P0 ⊖ P1. If W± are bounded in Lp(Rm) for
some p > m, then E = E1. In this case they are bounded in Lp(Rm) for
all 1 < p <∞.

Remark 1.6. (1) The integral in (1.13) may be computed explicitly:

∫ ∞

1

(x2 + 1)−(m−1)dx =
Γ
(
m− 3

2

)

4Γ(m− 1)


√π −

m−2∑

j=1

Γ(j)2−j+1

Γ
(
j + 1

2

)


 . (1.15)

(2) There are examples of V such that E1 = E0 ( N , E1 ( E0 = N and
E1 ( E0 ( N (see Example 8.4 of [13]).
(3) Murata’s result (Theorem 1.2 of [20]) also implies that, if N 6= 0, W± are
not in general bounded in Lp(Rm) for p > 3 if m = 3 and for p > m

2 if m ≥ 5.

The rest of the paper is devoted to the proof of Theorems. In spite that sub-
stantial part of Theorems 1.4 and 1.5 overlaps with Theorem 1.2 and that they
miss critically important L1-boundedness, we present the proof of Theorems
which is very different from the one by Goldberg and Green ([10]). Our proof
heavily uses harmonic analysis machinery, which produces sharper results for
larger p’s, however, at the same time, prevents us from reaching end points
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p = 1 and p = ∞. We prove the theorems only for W− since conjugation
changes the direction of time, viz. C−1e−itHC = eitH , and

W+ = C−1W−C. (1.16)

We use the following notation and conventions: The ℓ-th derivative of f(x),
x ∈ R is denoted by f (ℓ)(x). Σ = Sm−1 = {x : x21 + · · ·+ x2m = 1} is the unit
sphere in Rm and ωm−1 = 2π

m
2 /Γ

(
m
2

)
is its area. The coupling and the inner

product are anti-linear with respect to the first component,

(u, v) = 〈u, v〉 =
∫

Rn
u(x)v(x)dx,

in accordance with the interchangeable notaion for the rank 1 operator

|u〉〈v| = u⊗ v : φ 7→ u〈v, φ〉.

This notation is used also when v is in a certain function space and u in its
dual space.

f ≤| · | g means |f | ≤ |g|.
For Banach spacesX and Y , B(X,Y ) is the Banach space of bounded operators
from X to Y and B(X) = B(X,X); B∞(X,Y ) and B∞(X) are spaces of
compact operators; and the dual space B(X,C) of X is denoted by X∗. The
identity operators in various Banach spaces are indistinguishably denoted by
1. For 1 ≤ p ≤ ∞, ‖u‖p = ‖u‖Lp is the norm of Lp(Rm) and p′ is its dual
exponent, 1/p + 1/p′ = 1. When p = 2, we often omit p and write ‖u‖ for
‖u‖2. We interchangeably write Lpw(R

m) or Lp,∞(Rm) for weak-Lp spaces and
‖u‖p,w or ‖u‖p,∞ for their norms. For s ∈ R,

L2
s = 〈x〉−sL2 = L2(Rm, 〈x〉2sdx), Hs(Rm) = FL2

s(R
m)

are the weighted L2 spaces and Sobolev spaces. The space of rapidly decreasing
functions is denoted by S(Rm).
We denote the resolvents of H and H0 respectively by

R(z) = (H − z)−1, R0(z) = (H0 − z)−1.

We parameterize z ∈ C\ [0,∞) as z = λ2 by λ ∈ C+, the open upper half plane
of C, so that the positive and the negative parts of the boundary {λ : ± λ ∈
(0,∞)} are mapped onto the upper and the lower edges of the positive half line
{z ∈ C : z > 0}. We define

G(λ) = R(λ2), G0(λ) = R0(λ
2), λ ∈ C+.

These are B(H)-valued meromorphic functions of λ ∈ C+ and the limiting
absorption principle [19] (LAP for short) asserts that, when considered as
B(〈x〉−sL2, 〈x〉tL2)-valued functions for s, t > 1

2 and s + t > 2, G0(λ) has
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Hölder continuous extensions to its closure C
+

= {z : ℑz ≥ 0}. The same is
true also for G(λ), but, if H is of exceptional type, it has singularities at λ = 0.

In what follows z
1
2 is the branch of square root of z cut along the negative real

axis such that z
1
2 > 0 when z > 0.

The plan of the paper is as follows: In section 2, we record some results most
of which are well known and which we use in the sequel. They include:

• Formulas for the integral kernel of G0(λ) as exponential-polynomials in
odd dimensions or their superpositions in even dimensions.

• Representation of 〈ψ|(G0(λ) − G0(−λ))u〉 as the linear combination of
Fourier transforms of rj+1M(r, ψ ∗ ǔ), M(r, f) being the average of f
over the sphere of radius r centered at the origin.

• The Muckenhaupt weighted inequality and examples of Ap-weights.

In section 3, we recall and improve results of [33] and [8] on the behavior as
λ→ 0 of (1 +G0(λ)V )−1 and reduce the problem to the Lp-boundedness of

Zsu = − 1

πi

∫ ∞

0

G0(λ)V S(λ)(G0(λ)−G0(−λ))uλF (λ)dλ (1.17)

where S(λ) is the singular part of the expansion of (1 + G0(λ)V )−1 at λ = 0
and F ∈ C∞0 (R) is such that F (λ) = 1 near λ = 0.
We prove Theorem 1.3 in Section 4, Theorem 1.4 for odd dimensions m ≥ 5 in
Section 5 and for even dimensions in Section 6. We explain the basic strategy
of the proof at the end of §4.1 after most of basic ideas appears in the simplest
form.
Acknowledgment The part of this work was carried out while the author
was visiting Aalborg and Aarhus universities in summers of 2014 and 2015
respectively. He would like to express his sincere gratitude to both institutions
for the hospitality, to Arne Jensen, Jacob Schach Møller and Erik Skibsted
in particular. He thanks Professors Goldberg and Green for sending us their
manuscript [10] before posting on the arXiv-math, Shin Nakano for computing
the recursion formula for (1.15) and Fumihiko Nakano for bringing [12] to his
attention.

2 Preliminaries

In this section we record some well known results which we use in what follows.

2.1 Integral kernel of the free resolvent

For m ≥ 2, resolvent G0(λ) for ℑλ ≥ 0 is the convolution with

G0(λ, x) =
eiλ|x|

2(2π)
m−1

2 Γ
(
m−1
2

)
|x|m−2

∫ ∞

0

e−tt
m−3

2

(
t

2
− iλ|x|

)m−3
2

dt (2.1)
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([28]). When m ≥ 3 is odd, it is an exponential polynomial like function.

Lemma 2.1. Let m ≥ 3 be odd. Then:

G0(λ, x) =

(m−3)/2∑

j=0

Cj
(λ|x|)jeiλ|x|
|x|m−2 with Cj =

(−i)j(m− 3− j)!
2m−1−jπ

m−1
2 j!(m−32 − j)!

.

(2.2)
The constant C0 may also be written as C0 = (m− 2)−1ω−1m−1 and

iC0 + C1 = 0, when m ≥ 5. (2.3)

If m is even, the structure of G0(λ, x) is more complex and this makes the
analysis harder. For partly circumventing the difficulty we express G0(λ, x) as
a superposition of exponential-polynomial like functions of the form (2.2). This
will allow a part of the proof for even dimensions to go in parallel with the odd
dimensional cases. We set

ν =
m− 2

2
.

Define operators T
(a)
j , j = 0, . . . , ν for superposing over parameter a > 0 by

T
(a)
j [f(x, a)] = Cm,jωm−1

∫ ∞

0

(1 + a)−(2ν−j+
1
2 )f(x, a)

da√
a
, (2.4)

Cm,jωm−1 = (−2i)j Γ
(
2ν − j + 1

2

)

(m− 2)!
√
π

(
ν
j

)
. (2.5)

The factor ωm−1 is added for shorting some formulas below (see (2.18)).

Lemma 2.2. If m ≥ 4 is even, then we have

G0(λ, x) =
ν∑

j=0

ω−1m−1T
(a)
j

[
eiλ|x|(1+2a) (λ|x|)j

|x|m−2
]
. (2.6)

Proof. Let Cm∗ = 2m−1π
m−1

2 Γ
(
m−1
2

)
. In the formula (2.1):

G0(λ, x) =
eiλ|x|

Cm∗|x|m−2
∫ ∞

0

e−tt
m−3

2 (t− 2iλ|x|)
m−3

2 dt, (2.7)

write (t−2iλ|x|)m−3
2 = (t−2iλ|x|)ν(t−2iλ|x|)− 1

2 , expand (t−2iλ|x|)ν via the
binomial formula and use the identity

z−
1
2 =

1√
π

∫ ∞

0

e−az a−
1
2 da, ℜ z > 0 (2.8)

for (t− 2iλ|x|)− 1
2 . The right hand side of (2.7) becomes

ν∑

j=0

(−2i)j√
πCm∗

(
ν
j

)∫∫

R2
+

e−(1+a)tt2ν−j
(
eiλ|x|(1+2a) (λ|x|)j

|x|m−2
)
dt√
t

da√
a
.

The integral converges absolutely ifm ≥ 4 and we obtain (2.6) after performing
the integral with respect to t.
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2.2 Spectral measure of H0

. The spectral measure of H0 = −∆ is AC and Stone’s theorem implies that
the spectral projection E0(dµ) is given for µ = λ2, λ > 0 by

E0(dµ) =
1

2πi
(R0(µ+ i0)−R0(µ− i0))dµ =

1

iπ
(G0(λ) −G0(−λ))λdλ.

Lemma 2.3. Let m ≥ 3 and u, v ∈ (L1 ∩ L2)(Rm). Then, both sides of the
following equation can be continuously extended to λ = 0 and

λ−1〈v, (G0(λ) −G0(−λ))u〉 = 〈|D|−1v, (G0(λ)−G0(−λ))u〉, λ ≥ 0. (2.9)

For bounded continuous functions f on R we have for λ ≥ 0,

f(λ)〈v, (G0(λ)u −G0(−λ))u〉 = 〈v, (G0(λ)u −G0(−λ))f(|D|)u〉. (2.10)

Proof. For u, v ∈ (L1 ∩ L2)(Rm) we have

〈v, (G0(λ) −G0(−λ))u〉 =
λm−2i

2(2π)m−1

∫

Σ

v̂(λω)û(λω)dω, (2.11)

where Σ = Sm−1. It follows, since ̂|D|−1v(λω) = λ−1v̂(λω), λ > 0, that

〈|D|−1v, (G0(λ) −G0(−λ))u〉 =
λm−3i

2(2π)m−1

∫

Σ

v̂(λω)û(λω)dω. (2.12)

The right side extends to a continuous function of λ ≥ 0 when m ≥ 3 and (2.9)
follows by comparing (2.11) and (2.12). Eqn. (2.10) likewise follows.

We define the spherical average of a function f on Rm by

M(r, f) =
1

ωm−1

∫

Σ

f(rω)dω, for all r ∈ R. (2.13)

We often write Mf (r) = M(r, f). We have Mf(−r) = Mf(r) and Hölder’s
inequality implies

(
1

ωm−1

∫ ∞

0

|Mf (r)|prm−1dr
)1/p

≤ ‖f‖p, 1 ≤ p ≤ ∞. (2.14)

For an even function M(r) of r ∈ R, define M̃(ρ) by

M̃(ρ) =

∫ ∞

ρ

rM(r)dr

(
= −

∫ ρ

−∞
rM(r)dr

)
. (2.15)

Lemma 2.4. Suppose M(r) =M(−r) and 〈r〉2M(r) is integrable. Then,
∫

R
e−irλrM(r)dr =

λ

i

∫

R
e−irλM̃(r)dr,

∫

R
M̃(r)dr =

∫

R
r2M(r)dr. (2.16)

Proof. Since rM(r) = −M̃(r)′, integration by parts gives the first equation.
We differentiate both sides of the first and set λ = 0. The second follows.

We denote ǔ(x) = u(−x), x ∈ Rm. (The sign ǔ will be reserved for this purpose
and will not be used to denote the conjugate Fourier transform.)
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Representation formula for odd dimensions.

Lemma 2.5. Let m ≥ 3 be odd and u, ψ ∈ C∞0 (Rm). Define cj = ωm−1Cj,
1 ≤ j ≤ m−3

2 , where Cj are the constants in (2.2). Then, for λ > 0 we have

〈ψ, (G0(λ)−G0(−λ))u〉 =
m−3

2∑

j=0

cj(−1)j+1λj
∫

R
e−iλrr1+jMψ∗ǔ(r)dr. (2.17)

Proof. We compute 〈ψ,G0(λ)u〉 by using the integral kernel (2.2) of G0(λ).
Change the order of integration and use polar coordinates. Then,

〈ψ,G0(λ)u〉 =
m−3

2∑

j=0

Cj

∫

Rm
ψ(x)

(∫

Rm

λjeiλ|y|u(x− y)
|y|m−2−j dy

)
dx

=

m−3
2∑

j=0

Cj

∫

Rm

λjeiλ|y|(ψ ∗ ǔ)(y)
|y|m−2−j dy =

m−3
2∑

j=0

cj

∫ ∞

0

λjeiλrr1+jMψ∗ǔ(r)dr.

Since Mψ∗ǔ(r) is even, change of variable r by −r yields

−〈ψ,G0(−λ)u〉 =
m−3

2∑

j=0

cj

∫ 0

−∞
λjeiλrr1+jMψ∗ǔ(r)dr.

Add both sides of last two equations and change r by −r.

Representation formula for even dimensions. If m is even, we have
the analogue of (2.17). For a function M(r) on R and a > 0, define

Ma(r) =M((1 + 2a)−1r).

Lemma 2.6. Let m ≥ 2. Let u, ψ ∈ C∞0 (Rm). Then

〈ψ, (G0(λ)−G0(−λ))u〉 =
ν∑

j=0

(−1)j+1T
(a)
j

[
λjF(rj+1Ma

ψ∗ǔ)(λ)

(1 + 2a)j+2

]
, (2.18)

For j = 0, −T (a)
0

[F(rMa
ψ∗ǔ)(λ)

(1 + 2a)2

]
= iT

(a)
0



λ(FM̃a

ψ∗ǔ)(λ)

(1 + 2a)2


 . (2.19)

Proof. Define Bj(λ, r, a) = eiλr(1+2a)(λr)jr−(m−2) and

Bj(λ, a)u(x) =

∫

Rm
Bj(λ, |y|, a)u(x− y)dy, j = 0, . . . , ν.

Then, (2.6) and change of the order of integrations imply

〈ψ, (G0(λ) −G0(−λ))u〉 =
ν∑

j=0

T
(a)
j

ωm−1
[〈ψ, (Bj(λ, a)−Bj(−λ, a))u〉] . (2.20)
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We have, as in odd dimensions, that for u ∈ S(Rm) and ψ ∈ L1(Rm)

〈ψ,Bj(λ, a)u〉 =
∫

Rm

(∫

Rm
ψ(x)Bj(λ, |y|, a)u(x− y)dy

)
dx

=

∫

Rm
Bj(λ, |y|, a)(ψ ∗ ǔ)(y)dy = ωm−1

∫ ∞

0

ei(1+2a)λr(λr)jrMψ∗ǔ(r)dr.

Replacing λ to −λ and changing the variable r to −r, we have

−〈ψ,Bj(−λ, a)u〉 = ωm−1

∫ 0

−∞
ei(1+2a)λr(λr)jrMψ∗ǔ(r)dr,

where we used that Mψ∗ǔ(−r) =Mψ∗ǔ(r). Adding these two yields

〈ψ, (Bj(λ, a) −Bj(−λ, a))u〉 = ωm−1

∫

R
ei(1+2a)λr(λr)jrMψ∗ǔ(r)dr. (2.21)

Change r to −r in the right of (2.21), plug the result with (2.20) and, at the
end, change the variable r to −r/(1 + 2a). Then, (2.21) becomes

(−1)j+1ωm−1
(1 + 2a)j+2

∫

R
e−iλrλjrj+1Ma

ψ∗ǔ(r)dr =
(−1)j+1ωm−1λj

(1 + 2a)j+2
F(rj+1Ma

ψ∗ǔ)(λ)

and (2.18) follows. If we use the first of (2.16), the right of the last equation
for j = 0 becomes

iλ(FM̃a
ψ∗ǔ)(λ)

(1 + 2a)2
ωm−1

and we obtain (2.19).

2.3 Some results from harmonic analysis.

The following lemma on weighted inequality (cf. [11], Chapter 9) plays crucial
role in this paper. We let 1 < p <∞ in this subsection.

Lemma 2.7. The weight function |r|a is an Ap weight on R if and only if

−1 < a < p − 1. The Hilbert transform H̃ and the Hardy-Littlewood maximal
operator M are bounded in Lp(R, w(r)dr) for Ap weights w(r).

Modifying the Hilbert transform H̃, we define

Hu(ρ) = (1 + H̃)u(ρ)
2

=
1

2π

∫ ∞

0

eirρû(r)dr. (2.22)

We shall repeatedly use following Ap weights on R1 to the operatorMH:

|r|m−1−p(m−1), |r|m−1−2p, |r|m−1−p and |r|m−1, (2.23)

Documenta Mathematica 21 (2016) 391–443



402 K. Yajima

respectively for 1 < p < m
m−1 ,

m
3 < p < m

2 ,
m
2 < p < m and m < p.

For a function F (x) on Rm, we say G(|x|) ∈ L1(Rm) is a radially decreasing
integrable majorant (RDIM for short) of F if G(r) > 0 is decreasing and
|F (x)| ≤ G(|x|) for a.e. x ∈ Rm. The following lemma is well known (see e.g.
[26], p.57).

Lemma 2.8. (1) A rapidly decreasing function F ∈ S(Rm) has a RDIM.

(2) If F has a RDIM. then there is a constant C > 0 such that

|(F ∗ u)(t)| ≤ C(Mu)(t), t ∈ R. (2.24)

Lemma 2.9. For u and F ∈ L1(R) such that û, F̂ ∈ L1(R) we have

1

2π

∫ ∞

0

eiλρF (λ)û(λ)dλ = (F∗F ∗ Hu)(ρ). (2.25)

Proof. Let Θ(λ) =

{
1, for λ > 0
0, for λ ≤ 0

. Then, the left side of (2.25) equals

1

2π

∫

R
eiλρF (λ)Θ(λ)û(λ)dλ =

1

2π

∫

R

(∫

R
eiλ(ρ−ξ)F∗F (ξ)dξ

)
Θ(λ)û(λ)dλ

=

∫

R
F∗F (ξ)F∗{Θ(λ)û(λ)}(ρ− ξ)dξ = (F∗F ∗ Hu)(ρ)

as desired.

3 Reduction to the low energy analysis

We write W− = W in the sequel. When u ∈ 〈x〉−sL2, s > 1/2, Wu may be
expressed via the boundary values of resolvents (e.g. [19]):

Wu = u− lim
ε↓0,N↑∞

1

πi

∫ N

ε

G(λ)V (G0(λ)−G0(−λ))uλdλ (3.1)

= u− 1

πi

∫ ∞

0

G(λ)V (G0(λ)−G0(−λ))uλdλ (3.2)

Here the right of (3.1) is the Riemann integral of an 〈x〉tL2-valued continuous
function where t > 1/2 is such that s + t > 2, the result belongs to L2(Rm)
and the limit exists in L2(Rm), which we symbolically write as (3.2).
We decompose W into the high and the low energy parts

W =W> +W< ≡WΨ(H0) +WΦ(H0), (3.3)

by using cut off functions Φ ∈ C∞0 (R) and Ψ ∈ C∞(R) such that

Φ(λ2) + Ψ(λ2) ≡ 1, Φ(λ2) = 1 near λ = 0 and Φ(λ2) = 0 for |λ| > λ0
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for a small constant λ0 > 0. We have proven in previous papers [33, 8] that,
under Assumption 1.1, W> is bounded in Lp(Rm) for all 1 ≤ p ≤ ∞ if m ≥ 3
and we only need to study W< = Φ(H0) + Z where

Z = − 1

πi

∫ ∞

0

G(λ)V (G0(λ)−G0(−λ))λΦ(H0)dλ. (3.4)

Evidently Φ(H0) ∈ B(Lp(Rm)) for all 1 ≤ p ≤ ∞ and we have only to study
the operator Z defined by (3.4). Since δ > 2, the LAP (cf. Lemma 2.2 of [33])
implies that G0(λ)V is a Hölder continuous function of λ ∈ R with values in
B∞(L−s) for any 1

2 < s < δ− 1
2 and, the absence of positive eigenvalues ([17])

implies that 1 + G0(λ)V is invertible for λ > 0 (cf. [1]). It follows from the
resolvent equation G(λ) = G0(λ)−G0(λ)V G(λ) that G(λ)V may be expressed
in terms of G0(λ)V :

G(λ)V = G0(λ)V (1 +G0(λ)V )−1 for λ 6= 0 (3.5)

and it is locally Hölder continuous for λ ∈ R \ {0} with values in B∞(L2
−s).

Thus, we have the expression of Z in terms of the free resolvent G0(λ):

Zu = − 1

πi

∫ ∞

0

G0(λ)V (1 +G0(λ)V )−1(G0(λ) −G0(−λ))λF (λ)udλ, (3.6)

where F (λ) = Φ(λ2). If H is of generic type, KerL2
−s
(1 +G0(0)V ) = N = {0}

for any 1
2 < s < δ − 1

2 and 1 + G0(λ)V is invertible for λ in a neighborhood
λ = 0 and both sides of (3.5) become Hölder continuous. We then have shown
in [33, 8] that Z is bounded in Lp(Rm) for all 1 ≤ p ≤ ∞ under Assumption
1.1.

3.1 Low energy behavior of (1 +G0(λ)V )−1.

If H is of exceptional type, (1 + G0(λ)V )−1 becomes singular at λ = 0 and
we describe its singularities here. Before doing so we recall some properties of
functions in N . Recall ([25]) that for 0 < s < m :

|D|−su(x) = F∗(|ξ|−sû)(x) = Γ
(
m−s
2

)

2sπ
m
2 Γ
(
s
2

)
∫

Rm

u(y)

|x− y|m−s dy. (3.7)

When s = 1 and s = 2, the constants in front of the integral respectively equal
to π−1ω−1m−2 and C0 = (m− 2)−1ω−1m−1 of (2.2).

Lemma 3.1. (1) Functions φ in N satisfy 〈x〉−sφ ∈ H2(Rm) ∩ C1(Rm) for
any s > 1/2 and ∇φ is Hölder continuous. They satisfy the following
asymptotic expansion as |x| → ∞:

φ(x) = − C0

|x|m−2
∫

Rm
(V φ)(y)dy

− 1

ωm−1

m∑

j=1

xj
|x|m

∫

Rm
yj(V φ)(y)dy +O(|x|−m). (3.8)
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(2) For φ ∈ N \ E0, φ ⊗ φ 6∈ B(Lp(Rm)) for any 1 ≤ p ≤ ∞ if m = 3 or
m = 4 and, if m ≥ 5, φ ⊗ φ ∈ B(Lp(Rm)) if and only if m

m−2 < p < m
2 .

If φ ∈ E0 \ E1, then φ⊗ φ ∈ B(Lp(Rm)) if and only if m
m−1 < p < m for

any m ≥ 3 and, if φ ∈ E1, then φ⊗ φ ∈ B(Lp(Rm)) for all 1 < p <∞.

(3) If 〈x〉2u ∈ L1(Rm), |D|−1u(x) has the following expansion as |x| → ∞:

∫
Rm udx

πωm−2|x|m−1
+

m∑

j=1

(m− 1)xj
πωm−2|x|m+1

∫

Rm
xjudx+O(|x|−m−1). (3.9)

Proof. (1) The smoothness property of φ is well known (see e.g. Corollary 2.6
of [2]). We have from (3.7) that

φ(x) = −C0

∫

Rm

V (y)φ(y)

|x− y|m−2 dy. (3.10)

Taylor’s formula implies that

∣∣∣∣
1

|x− y|m−2 −
1

|x|m−2 −
(m− 2)x · y
|x|m−1

∣∣∣∣ ≤ C
〈y〉2
〈x〉m , |x− y| ≥ 1

and (3.8) follows. Statement (2) follows from (3.8). We omit the proof of (3)
which is similar to that of (3.9).

3.1.1 Odd dimensional cases

The structure of singularities depends onm. For odd dimensionsm ≥ 3 we have
the following results (see, e.g. Theorem 2.12 of [33]). We state it separately
for m = 3 and m ≥ 5. In the following Theorems 3.2 and 3.3 for odd m ≥ 3
and Theorem 3.4 for even m ≥ 6, we will indiscriminately write E(λ) for the
operator valued function of λ defined near λ = 0 which, when inserted in (3.6)
for (1+G0(λ)V )−1, produces the operator which is bounded in Lp(Rm) for all
1 ≤ p ≤ ∞.

The case m = 3. By virtue of (3.8), we have for φ ∈ N that

φ(x) =
L(φ)

|x| +O(|x|−2) as |x| → ∞, L(φ) =
−1
4π

∫

R3

V (x)φ(x)dx. (3.11)

Thus, E = {φ ∈ N \ {0} : L(φ) = 0}(= E0) and, as N ∋ φ 7→ L(φ) ∈ C is
continuous, dimN/E ≤ 1. Any ϕ ∈ N \ E is called threshold resonance of H .
We say that H is of exceptional type of the first kind if E = {0}, the second
if E = N and the third kind if {0} ( E ( N . We let D0, D1, . . . be integral
operators defined by

Dju(x) =
1

4πj!

∫

R3

|x− y|j−1u(y)dy, j = 0, 1, . . . .
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so that we have the formal Taylor expansion

G0(λ)u(x) =
1

4π

∫

R3

eiλ|x−y|

|x− y| u(y)dy =
∞∑

j=1

(iλ)jDju.

If H is of exceptional type of the third kind, −(V φ, φ) defines inner product
on N and there is a unique real ψ ∈ N such that

−(V ψ, φ) = 0, ∀φ ∈ E , −(V ψ, ψ) = 1 and L(ψ) > 0. (3.12)

We define the canonical resonance by

ϕ = ψ + PV D2V ψ ∈ N . (3.13)

If H is of exceptional type of the first kind, then dimN = 1 and there is a
unique ϕ ∈ N such that −(V ϕ, ϕ) = 1 and L(ϕ) > 0 and we call this the
canonical resonance. We have the following result for m = 3 (see e.g. [33]).

Theorem 3.2. Let m = 3 and let V satisfy |V (x)| ≤ C〈x〉−δ for some δ > 3.
Suppose that H is of exceptional type of the third kind and let ϕ be the canonical
resonance and a = 4πi|〈V, ϕ〉|−2. Then:

(I +G0(λ)V )−1 =
PV

λ2
+ i

PV D3V PV

λ
− a

λ
|ϕ〉〈ϕ|V + E(λ). (3.14)

If H is of exceptional type of the first or the second kind, (3.14) holds with
P = 0 or ϕ = 0 respectively.

The case m ≥ 5. If m ≥ 5, (3.8) implies N = E .

Theorem 3.3. Let m ≥ 5 be odd and |V (x)| ≤ C〈x〉−δ for some δ > m + 3.
Suppose H is of exceptional type. Then:

(1) If m = 5 then, with ϕ = PV , V being considered as a function,

(I +G0(λ)V )−1 =
PV

λ2
− a0

λ
|ϕ〉〈ϕ|V + E(λ), a0 =

i

24π2
. (3.15)

(2) If m ≥ 7 then

(I +G0(λ)V )−1 =
PV

λ2
+ E(λ). (3.16)

Define S(λ) = (I +G0(λ)V )−1 − E(λ) and

Zs =
i

π

∫ ∞

0

G0(λ)V S(λ)(G0(λ)−G0(−λ))F (λ)λdλ. (3.17)

Then, it follows from Theorems 3.2 and 3.3 that Z − Zs ∈ B(Lp(Rm)) for all
1 ≤ p ≤ ∞ and we have only to study Zs in what follows.
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3.2 Even dimensional case

When m is even, singular terms of (1 + G0(λ)V )−1 may contain logarithmic
factors. The following is the improvement of Proposition 3.6 of [8]. We let
dim E = d and {φ1, . . . , φd} be the real orthonormal basis of E . For making the
expression simpler, we state the theorem for V (1 +G0(λ)V )−1.

Theorem 3.4. Let m ≥ 6 be even. Suppose |V (x)| ≤ C〈x〉−δ for δ > m+ 4 if
m = 6 and for δ > m + 3 if m ≥ 8. Let ϕ = PV with V being considered as
a function. Then, we have the following statements for ℑλ ≥ 0 and logλ such
that logλ ∈ R for λ > 0:

(1) If m = 6 then, we have that

V (1 +G0(λ)V )−1 =
V PV

λ2
+

ω5

(2π)6
logλ(V ϕ⊗ V ϕ)

+

(
ω5‖ϕ‖
(2π)6

)2

λ2 log2 λ(V ϕ⊗ V ϕ) + λ2 logλF2 + V E(λ), (3.18)

where F2 is an operator of rank at most 8 such that

F2 =

8∑

a,b=1

ϕa ⊗ ψb, ϕa, ψb ∈ (L1 ∩ L∞)(R6). (3.19)

(2) If m ≥ 8, then we have with a constant cm that

V (1 +G0(λ)V )−1 =
V PV

λ2
+ cm(V ϕ⊗ V ϕ)λm−6 logλ+ V E(λ). (3.20)

(3) If m ≥ 12, then cm(V ϕ ⊗ V ϕ)λm−6 logλ of (3.20) may be included in
V E(λ).

Proof. We prove (1) only, using the notation of the proof of subsection 3.2.1 of
[8]. A slightly more careful look at the argument there shows that, in spite of
Eqn.(3.5) of [8], V (1 +G0(λ)V )−1 is actually given by

V PV

λ2
+ V D01 logλ+ V D21λ

2 logλ+ V D22λ
2 log2 λ+ V E(λ). (3.21)

Here, with Fjk = Fjk(0), Fjk(λ) being defined by (3.16) of [8], and A(0) =
(2π)−6ωm−1(1 ⊗ 1), V D01 and V D22 are rank 1 operators given by

V D01 = V PV F01PV = V PV A(0)V PV =
ωm−1
(2π)6

(V ϕ⊗ V ϕ), (3.22)

V D22 = V (PV F01)
2PV = V (PV A(0)V P )2V =

ω2
m−1

(2π)12
‖ϕ‖2(V ϕ⊗ V ϕ),
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where we have used PV Q = PV and V QP = V P and,

V D21 = V PV (F21 + F00PV F01 + F01PV F00)PV (3.23)

− V X(0)QD2V PV F01PV − V X(0)QA(0)V PV (3.24)

− V PV F01PV QD2V QX(0)− PV QA(0)V QX(0). (3.25)

It is obvious that the first line (3.23) is of rank at most 4 and of the form∑
αjk(V φj ⊗V φk); four other operators are of rank one and of the form f ⊗ g

with f ∈ (L1 ∩ L∞)(R6). We check this for V X(0)QD2V PV F01PV as a
prototype. We have D2 = D2

0 and D0V ϕ = −ϕ. Thus, (3.22) implies

V X(0)QD2V PV F01PV = −(2π)−6ωm−1(V X(0)QD0ϕ)⊗ (V ϕ).

Here D0ϕ ∈ C2(R6) and satisfies D0ϕ≤| · | C〈x〉−2 by virtue of Lemma 3.1.
Hence, a fortiori D0ϕ ∈ C0(R6), the Banach space of continuous functions
which converge to 0 as |x| → ∞. It is obvious that X ≡ QC0(R6) ⊂ C0(R6)
and X(0) = N−1(0) = [Q(1 + D0V )Q]−1 is an isomorphism of X . This is
because T = QD0V Q is compact both in X = QC0(R6) and Y = QL2

−δ+2(R
6),

X ∩ Y is dense in Y and KerY(1 + T ) = {0} (see e.g. Lemma 2. 11 of [9]).

Thus, V X(0)QD0ϕ(x)≤| · | C〈x〉−δ.

It follows from Theorem 3.4 that Zu = Zsu+Zlogu modulo the operator which
is bounded in Lp for all 1 ≤ p ≤ ∞ and we need study

Zse =
i

π

∫ ∞

0

G0(λ)V PV (G0(λ)−G0(−λ))F (λ)λ−1dλ, (3.26)

Zlog =
∑

j,k

i

π

∫ ∞

0

G0(λ)λ
2j(logλ)kDjk(G0(λ)−G0(−λ))F (λ)λdλ, (3.27)

for even m ≥ 6, where the sum and Djk are as in Theorem 3.4.

4 Proof of Theorem 1.3

The proof of Theorem 1.3 for m = 3 is the simplest and is the prototype for
other dimensions and, most of the basic ideas already appear here.

4.1 The case of exceptional type of the first kind

We begin with the case that H is of exceptional type of the first kind and, we
let ϕ be the canonical resonance, a = 4πi|〈V, ϕ〉|−2 6= 0 and

ψ(x) = |D|−1(V ϕ)(x) = 1

2π2

∫
V (y)ϕ(y)

|x− y|2 dy. (4.1)

The following lemma proves Theorem 1.3 when H is of exceptional type of the
first kind.
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Lemma 4.1. (1) For 1 < p < 3, there exists a constant Cp such that

‖Zsu‖p ≤ Cp‖u‖p, u ∈ C∞0 (R3). (4.2)

(2) For 3 < p <∞, there exists a constant Cp such that

‖(Zs + aϕ⊗ ψ)u‖p ≤ Cp‖u‖p, u ∈ C∞0 (R3). (4.3)

(3) For p ≥ 3, Zs is unbounded in Lp(R3).

Proof. Recall c0 = C0ω2 = 1. We have S(λ) = − a
λ |ϕ〉〈ϕ|V and

Zsu = − ia
π

∫ ∞

0

G0(λ)V ϕ〉〈V ϕ|(G0(λ)−G0(−λ))u〉F (λ)dλ. (4.4)

Defining M(r) = M(r, (V ϕ) ∗ ǔ), we substitute (2.2) and (2.17) respectively
for G0(λ) and 〈V ϕ|(G0(λ) −G0(−λ))u〉. Then,

Zsu =
ai

π

∫ ∞

0

(∫

R3

eiλ|x−y|V (y)ϕ(y)

4π|x− y| dy

)(∫

R
e−iλrrM(r)dr

)
F (λ)dλ.

If we change the order of integrations,

Zsu =
ai

2π

∫

R3

K0(|x− y|)V (y)ϕ(y)

|x− y| dy, (4.5)

K0(ρ) =
1

2π

∫ ∞

0

eiλρF (λ)

(∫

R
e−irλrM(r)dr

)
dλ. (4.6)

Since F∗F ∈ S(R), it follows by virtue of Lemmas 2.8 and 2.9 that

K0(ρ) = {(F∗F ) ∗ H(rM(r))}(ρ)≤| · |CMH(rM)(ρ). (4.7)

Function K0(ρ) may also be expressed as

K0(ρ) =
i

2πρ

∫ ∞

0

eiλρ
(
F (λ)

∫

R
e−irλrM(r)dr

)′
dλ. (4.8)

and, after integration by parts, we see that K0(ρ) satisfies also

K0(ρ)≤| · |Cρ−1(MH(r2M)(ρ) +MH(rM)(ρ)). (4.9)

The boundary term does not appear in (4.8) since
∫
R rM(r)dr = 0.

(1a) Let 3/2 < p < 3. By virtue of Young’s inequality

‖Zsu‖p ≤
|a|(4π)1/p

2π
‖V ϕ‖1

(∫ ∞

0

∣∣∣∣
K0(ρ)

ρ

∣∣∣∣
p

ρ2dρ

)1/p

. (4.10)
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We estimate K0(ρ) by (4.7) and use that ρ2−p is an Ap weight on R. Lemma
2.7 and Young’s inequality imply

(∫ ∞

0

∣∣∣∣
K0(ρ)

ρ

∣∣∣∣
p

ρ2dρ

)1/p

≤ C
(∫ ∞

0

|MH(rM)(ρ)|pρ2−pdρ
)1/p

≤ Cp
(∫ ∞

0

M(r)pr2dr

)1/p

≤ Cp‖V ϕ ∗ u‖p ≤ Cp‖V ϕ‖1‖u‖p. (4.11)

and ‖Zsu‖p ≤ Cp‖V ϕ‖21‖u‖p.
(1b) For 1 < p < 3

2 , we use estimate (4.9) and that ρ2−2p is an Ap weight on R
and obtain that

(∫ ∞

0

∣∣∣∣
K0(ρ)

ρ

∣∣∣∣
p

ρ2dρ

) 1
p

≤
(∫ ∞

0

|(MH(r2M) +MH(rM))(ρ)|pρ2−2pdρ
) 1
p

≤ C
(∫ ∞

0

|M(r)|pmax(r2, r2−p)dr

) 1
p

≤ C(‖V ϕ‖1 + ‖V ϕ‖p′)‖u‖p, (4.12)

where we estimated the integral over 0 ≤ r ≤ 1 by using that

sup |M(r)| ≤ ‖V ϕ ∗ u‖∞ ≤ ‖V ϕ‖p′‖u‖p. (4.13)

Thus, we have ‖Zsu‖p ≤ C(‖V ϕ‖1 + ‖V ϕ‖p′)‖V ϕ‖1‖u‖p for 1 < p < 3/2.
Combining (1a) and (1b), we obtain (4.2) for 1 < p < 3 by interpolation([5]).

(2) Let p > 3. Writing
∫
R re

−irλM(r)dr = i
(∫

R e
−irλM(r)dr

)′
in (4.6), we

apply integration by parts and obtain yet another expression of K0(ρ):

K0(ρ) =
−i
2π

∫

R
M(r)dr − i

2π

∫ ∞

0

(
eiλρF (λ)

)′(∫

R
e−irλM(r)dr

)
dλ. (4.14)

Denote the second term by K̃0(ρ). By virtue of Lemmas 2.8 and 2.9,

K̃0(ρ)≤| · | C(ρ+ 1)MH(M)(ρ). (4.15)

Substituting (4.14) forK0(ρ) in (4.5), we obtain Zsu = Zbu+Ziu, where Zb and
Zi are operators produced by −i2π

∫
RM(r)dr and K̃0(ρ), respectively. Because

1

π

∫

R
M(r)dr =

1

2π2

∫

R3

(∫

R3

(V ϕ)(x + y)

|x|2 dx

)
u(y)dy = 〈ψ, u〉 (4.16)

by the definition (4.1), we have by using (3.10) for m = 3 that

Zbu(x) =
a

4π2

∫

R
M(r)dr ·

∫

R3

V (y)ϕ(y)

|x− y| dy = −a|ϕ〉〈ψ|u〉. (4.17)

We splite the integral as

Ziu(x) =
ai

2π

(∫

|y|≤1
+

∫

|y|>1

)
K̃0(|y|)(V ϕ)(x− y)

|y| dy = I1(x)+I2(x). (4.18)
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For estimating I2 we use (4.15) for ρ ≥ 1: |K̃0(ρ)| ≤ CρMH(M)(ρ). Since
ρ2 is an Ap-weight on R for p > 3, we have by using Young’s and Hölder’s
inequalities and Lemma 2.7 that

‖I2‖p ≤ C‖V ϕ‖1
(∫ ∞

0

|MH(M)(ρ)|pρ2dρ
) 1
p

≤ C‖V ϕ‖1
(∫ ∞

0

|M(r)|pr2dr
) 1
p

≤ C‖V ϕ‖21‖u‖p. (4.19)

Hölder’s inequality implies, with p′ = p/p− 1, that

|I1(x)| ≤ C
(∫

|y|≤1

∣∣∣∣
(V ϕ)(x − y)

|y|

∣∣∣∣
p′

dy

)1/p′ (∫ 1

0

|K̃0(ρ)|pρ2dρ
)1/p

.

Since K̃0(ρ)≤| · | CMH(M)(ρ) for 0 < ρ < 1 by virtue of (4.15) and since ρ2 is
an Ap-weight, we obtain as in (4.19) that

(∫ 1

0

|K̃0(ρ)|pρ2dρ
)1/p

≤ C
(∫ ∞

0

|MH(M)(ρ)|pρ2dρ
)1/p

≤ C‖u‖p. (4.20)

It follows by virtue of Minkowski’s inequality that

‖I1‖p ≤ C‖u‖p

∥∥∥∥∥∥

(∫

|y|≤1

∣∣∣∣
(V ϕ)(x− y)

|y|

∣∣∣∣
p′

dy

)1/p′
∥∥∥∥∥∥
p

≤ C‖u‖p‖V ϕ‖p (4.21)

because 1 < p′ < 3/2 < 3 < p <∞. Thus,
∥∥∥∥∥

∫

R3

K̃0(|x − y|)V (y)ϕ(y)

|x− y| dy

∥∥∥∥∥
p

≤ C(‖V ϕ‖p + ‖V ϕ‖1)‖u‖p.

With (4.17) this proves (4.3).
(3) Since

∫
R3 V ϕdx 6= 0, Lemma 3.1 implies that ϕ 6∈ Lp(R3) for 1 ≤ p ≤ 3 and

that ψ ∈ Lp(R3)∗ if and only if p > 3. Hence, ϕ⊗ψ is unbounded in Lp(R3) for
any 1 ≤ p ≤ ∞. Thus, statement (2) implies that Zs is unbounded in Lp(R3)
for p ≥ 3. This completes the proof of the lemma.

We review here the basic strategy of this subsection as it will be repeatedly
employed in the following (sub)sections. We express Zsu as the convolution
(4.5) of V ϕ and K0(ρ) of (4.6). By applying integration by parts if necessary
we represent and estimate K0(ρ) as in (4.7), (4.9) or (4.15) by using MH.
These estimates are used for proving

(∫ ∞

0

|K0(ρ)|p ρ2−pdρ
) 1
p

(
= ω

− 1
p

2

∥∥∥∥
K0(|x|)
|x|

∥∥∥∥
p

)
≤ C‖u‖p (4.22)
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via the weighted inequality for 3
2 < p < 3, 1 < p < 3

2 and p > 3 respectively.
Desired estimates are then obtained by combining (4.22) and Young’s inequal-
ity. However, the boundary term appears in the integration by parts for large
values of p > 3 which obstructs the Lp-boundedness. We represent the ob-
struction explicitly in terms of functions of N and show that Lp-boundedness
depends on the properties of functions in N . Suitable modifications, improve-
ments and additional arguments will be of course necessary in what follows.

4.2 The cases of the second and third kinds

Let H be of exceptional type of the second kind. Then,

S(λ) =
PV

λ2
+ i

PV D3V PV

λ
, (4.23)

where D3 is the integral operator with kernel |x − y|2/4π. We take the real
orthonormal basis {φ1, . . . , φn} of E and define ajk = π−1〈φj |V D3V |φk〉 ∈ R.
We have 〈V, φj〉 = 0, 1 ≤ j ≤ n. Substituting (4.23) for S(λ) in (3.17), we have

Zsu = Zs0u+ Zs1u =

n∑

j,k=1

Zs0,jku+

n∑

j=1

Zs1,j, (4.24)

Zs0,jku = iajk

∫ ∞

0

G0(λ)V φj〉〈V φk|(G0(λ)−G0(−λ))u〉F (λ)dλ, (4.25)

Zs1,ju =
i

π

∫ ∞

0

G0(λ)V φj〉〈V φj |(G0(λ)−G0(−λ))u〉F (λ)
dλ

λ
. (4.26)

Lemma 4.2. For any 1 < p <∞, there exists a constant Cp such that

‖Zs0u‖p ≤ Cp‖u‖p, u ∈ C∞0 (R3). (4.27)

Proof. The operator Zs0,jk is equal to Zs of (4.4) with two ϕ ∈ N ’s being
replaced by φj and φk ∈ E and a by −πajk. Thus, the proof of Lemma 4.1
implies that Zs0,jk ∈ B(Lp(R3)) for 1 < p < 3 and that

Zs0,jk − πajkφj ⊗ |D|−1(V φk) ∈ B(Lp(R3)), p > 3. (4.28)

Here φj⊗|D|−1(V φk) is bounded in Lp(R3) for p > 3 because φj ∈ Lp(R3) and
|D|−1(V φk) ∈ (Lp(R3))∗ by virtue of (3.8) and (3.9). Thus Zs0,jk ∈ B(Lp(R3))
for 3 < p and, hence, for 1 < p < ∞ by interpolation. This proves the
lemma.

Lemma 4.3. (1) Let 1 < p < 3. Then, for a constant Cp, we have

‖Zs1u‖p ≤ Cp‖u‖p, u ∈ C∞0 (R3). (4.29)

(2) Let 3 < p <∞. Then, for a constant Cp, we have

‖(Zs1 + P )u‖p ≤ C‖u‖p, u ∈ C∞0 (R3). (4.30)

In (4.30) P may be replaced by P ⊖ P1 by virtue of Lemma 3.1.
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(3) The operator Zs1 is bounded in Lp(R3) for some p > 3 if and only if
E = E1. In this case Zs1 is bounded in Lp(R3) for all 1 < p <∞.

Proof. Define ψj(x) = |D|−1(V φj)(x), j = 1, . . . , n. Then Lemma 2.3 implies

Zs1,ju =
i

π

∫ ∞

0

G0(λ)|V φj〉〈ψj |(G0(λ)−G0(−λ))u〉F (λ)dλ (4.31)

which can be obtained from Zsu of (4.4) by replacing a by −1, the first V ϕ
by V φj and the second by ψj . Thus, it may be expressed by using K0,j(ρ) of
(4.6) with M(r) being replaced by Mj(r) =M(r, ψj ∗ ǔ):

Zs1,ju =
1

2πi

∫

R3

K0,j(|x − y|)V (y)φj(y)

|x− y| dy. (4.32)

(1) The argument of (1a) in the proof of Lemma 4.1 implies

‖Zs1,ju‖p ≤ C‖V φj‖1‖ψj ∗ u‖p, 3/2 < p < 3 (4.33)

(see (4.11)) and the one of (1b) does

‖Zs1,ju‖p ≤ C‖V φj‖1(‖ψj ∗ u‖p + ‖ψj ∗ u‖∞), 1 < p < 3/2 (4.34)

(see (4.12)). Since
∫
V φjdx = 0, (3.9) implies that ψj = |D|−1φj ∈ Lq(R3) for

all 1 < q ≤ ∞ and that the convolution operator with ψj(x) is bounded in Lp

for any 1 < p < ∞ via Calderón-Zygmund theory (see e.g. [26], pp. 30-36).
Thus, ‖ψj ∗ u‖p ≤ C‖u‖p, ‖ψj ∗ u‖∞ ≤ ‖ψj‖p′‖u‖p and Zs1,j is bounded in
Lp(R3) for all 1 < p < 3, j = 1, . . . , n. Statement (1) follows.
(2) Integration by parts as in (4.14) by using the identity

∫
R e
−irλrMj(r)dr =

i
(∫

R e
−irλMj(r)dr

)′
implies that K0,j(ρ) may be written as

− i

2π

∫

R
Mj(r)dr −

i

2π

∫ ∞

0

(
eiλρF (λ)

)′(∫

R
e−irλMj(r)dr

)
dλ, (4.35)

which we insert into (4.32). Since |D|−1ψj = (−∆)−1(V φj) = −φj , (4.16) with
ψj ∈ E in place of V ϕ produces −〈φj |u〉. It follows that the boundary term of
(4.35) produces

−1
4π

∫

R3

V (y)φj(y)

|x− y| dy · 1
π

∫

R
Mj(r)dr = −|φj〉〈φj |u〉 (4.36)

as in (4.17). Denote by K̃0j(ρ) and Z̃s1,j the second term of (4.35) and the

operator it produces via (4.32). They can respectively be obtained from K̃0(ρ)
of (4.14) and Zi of (4.18) by replacing M(r) and K̃0(ρ) by Mj(r) and K̃0,j(ρ).
Thus, the argument of step (2) of the proof of Lemma 4.1, (4.19) and (4.21) in
particular, implies that

‖Z̃s1,ju‖p ≤ C(‖V φj‖p + ‖V φj‖1)‖ψj ∗ u‖p, 3 < p <∞. (4.37)
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The Calderón-Zygmund theory with (3.9) once more implies
∥∥∥Z̃s1,ju

∥∥∥
p
≤

C‖u‖p. Since φ ⊗ φ ∈ B(Lp) for all 1 < p < ∞ if φ ∈ E1 by virtue of
(3.8), this together with (4.36) proves statement (2).

(3) It is obvious from (1) and (2) that Zs1 ∈ B(Lp(R3)) for all 1 < p < ∞ if
E = E1. Suppose then that Zs1 ∈ B(Lp(R3)) for some p > 3 then P ⊖ P1 must
be bounded in Lp(R3) by virtue of (2). Take the orthonormal basis {φ1, . . . , φd}
of E ⊖ E1 and {ρ1, . . . , ρd} ⊂ C∞0 (R3) such that {(ρj , φk)} becomes the unit
matrix. Then, (P ⊖ P1)ρj = φj , j = 1, . . . , n and, if P ⊖ P1 is bounded in
Lp(R3) for some p ≥ 3, there must exist a constant C > 0 such that

|(u, φj)| = |((P ⊖ P1)u, ρj)| ≤ Cj‖u‖p, for all u ∈ C∞0 (R3).

Then, φj has to be in Lp
′

(R3) for p′ ≤ 3/2 for all j = 1, . . . , n. This implies
φj = 0 by virtue of (3.8). Thus, E = E1 must hold. This completes the
proof.

Lemma 4.2 and Lemma 4.3 prove Theorem 1.3 when H is of exceptional type
of the second kind. The following lemma completes the proof of Theorem 1.3.

Lemma 4.4. Suppose that H is of exceptional type of the third kind. Then:

(1) W is bounded in Lp(R3) for all 1 < p < 3.

(2) W + aϕ⊗ (|D|−1V ϕ) + P is bounded in Lp(R3) for all p > 3.

(3) W is unbounded in Lp(R3) for any p > 3 and p = 1.

Proof. The combination of Lemmas 4.1, 4.2 and 4.3 proves statements (1) and
(2). Suppose that W is bounded in Lp(R3) for some 3 < p < ∞. Then, so is
a(ϕ⊗ (|D|−1V ϕ)) +P . Let ψ ∈ N be the function which defines the canonical
resonance ϕ by (3.13) and which satisfies (3.12). Then,

(V ψ, a(ϕ⊗ (|D|−1V ϕ))u+ Pu) = −a(|D|−1V ϕ, u), u ∈ C∞0 (R3)

and this must be extended to a bounded functional of u ∈ Lp(R3). Hence,
|D|−1V ϕ ∈ Lq(R3) for q = (p − 1)/p < 3/2. This contradicts (3.8) because∫
R3 V (x)ϕ(x)dx 6= 0 and (3) is proved.

5 Proof of Theorems 1.4 and 1.5 for odd m

If m ≥ 5, then N = E and we let {φ1, . . . , φd} be the real orthonormal basis of
E . Theorem 3.3 implies that, with a0 = i/(24π2),

S(λ) =

{
λ−2PV − a0λ−1(ϕ⊗ V ϕ), if m = 5,
λ−2PV, if m ≥ 7.

(5.1)
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Note that ϕ 6= 0 if and only if E1 6= E . We substitute (5.1) for S(λ) in (3.17) and
apply (2.2) and (2.17) as previously. Let Cj , ck, 1 ≤ j, k ≤ m−3

2 respectively
be constants of (2.2) and (2.17). Then, we have

Zsu = Zs0u+ Zs1u, (5.2)

where Zs0 = 0 for m ≥ 7 and, for m = 5, with M(r) =M(r, V ϕ ∗ ǔ)

Zs0u = −2ia0
∑

j,k=0,1

(−1)j+1CkcjZ
jk
s0u, (5.3)

Zjks0u(x) =

∫

R5

V ϕ(y)

|x− y|3−kK
(j,k)
0 (|x− y|)dy, (5.4)

K
(j,k)
0 (ρ) =

1

2π

∫ ∞

0

eiλρλj+k
(∫

R
e−iλrrj+1M(r)dr

)
F (λ)dλ, (5.5)

and Zs1u is defined for all m ≥ 5 by

Zs1u =

d∑

l=1

Zs1(φl)u (5.6)

where, for φ ∈ E , with M(r) =M(r, V φ ∗ ǔ),

Zs1(φ)u = 2i

m−3
2∑

j,k=0

(−1)j+1CkcjZ
jk
s1 (φ), (5.7)

Zjks1 (φ)u(x) =

∫

Rm

V φ(y)

|x− y|m−2−kK
(j,k)(|x − y|)dy, (5.8)

K(j,k)(ρ) =
1

2π

∫ ∞

0

eiλρλj+k−1
(∫

R
e−iλrrj+1M(r)dr

)
F (λ)dλ. (5.9)

Note that Zjks0u andK
(j,k)
0 (ρ) are obtained from Zjks1u andK(j,k)(ρ) by changing

φ by ϕ and λj+k−1 by λj+k in (5.9).
We shall prove the last statements of (2) and (3) of Theorems 1.4 and 1.5 only
for Zs1(φ) since the proof of Lemma 4.3 (3) can easily be adapted for proving
the same statements for Zs0.

5.1 Estimate of Zs0 for m = 5

We begin by proving the following lemma for Zs0, assuming ϕ 6= 0.

Lemma 5.1. (1) Zs0 is bounded in Lp(R5) for 1 < p < 5.

(2) Zs0 + a0|ϕ〉〈|D|−1(V ϕ)| is bounded in Lp(R5) for 5/2 < p <∞.

(3) Zs0 is not bounded in Lp(R5) if p ≥ 5.
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Proof. For ϕ = PV , we have
∫
R5 V ϕdx = ‖ϕ‖2 > 0 and, by virtue of

(3.8) and (3.9), ϕ ⊗ |D|−1(V ϕ) ∈ B(Lp(R5)) if and only if 5/3 < p < 5.
Hence, statement (3) follows (2). Using that eiρλ = (iρ)−(k+1)∂k+1

λ eiρλ and∫
R λ

j+1e−iλrM(r)dr = ij
(∫

R e
−iλrM(r)dr

)(j)
, we apply integration by parts

to (5.5) and write K
(j,k)
0 (ρ) in two ways

K
(j,k)
0 (ρ) =

ik+1

2πρk+1

∫ ∞

0

eiρλ
(
λj+kF (λ)

∫

R
e−iλrrj+1M(r)dr

)(k+1)

dλ

(5.10)

=
(−i)j
2π

∫ ∞

0

(
eiλρλj+kF (λ)

)(j) (∫

R
e−iλrrM(r)dr

)
dλ. (5.11)

Note that boundary terms do not appear in (5.10) since
∫
R rM(r)dr = 0 and,

if k = 1, we may apply further integration by parts to (5.11) without having
boundary term and

K
(j,k)
0 (ρ) =

(−i)j+1

2π

∫ ∞

0

(
eiλρλj+kF (λ)

)(j+1)
(∫

R
e−iλrM(r)dr

)
dλ. (5.12)

We then apply Lemmas 2.8 and 2.9 to the right sides and obtain the following
estimates for j, k = 0, 1:

K
(j,k)
0 (ρ)≤| · |





Cρ−(k+1)
k+1∑

l=0

MH(rj+l+1M)(ρ), (5.13)

C(1 + ρj+k)MH(r1−kM)(ρ). (5.14)

(a) Let 1 < p < 5/4. Since |r|−4(p−1) is an Ap weight on R and 3p− 4 > −1,
we have by using (5.13) and (4.13) that, for any j, k = 0, 1,

∥∥∥∥∥
K

(j,k)
0 (|y|)
|y|3−k

∥∥∥∥∥
p

≤ C
k+1∑

l=0

(∫ ∞

0

|MH(rj+l+1M)(ρ)|p
ρ4(p−1)

dρ

)1/p

≤ C
(∫ 1

0

|M(r)|pdr
r3p−4

+

∫ ∞

1

|M(r)|pr4dr
) 1
p

≤ C(‖V ϕ‖p′ + ‖V ϕ‖1)‖u‖p.
(5.15)

Young’s inequality then implies ‖Zjks0u‖p ≤ C‖V ϕ‖1(‖V ϕ‖p′ + ‖V ϕ‖1)‖u‖p.
(b) We next show that ‖Zj1s0u‖p ≤ C‖u‖p for p > 5 and j = 0, 1. Interpolating
this with the result of (a), we then have the same for all 1 < p <∞. We split
the integral as in (4.18) and repeat the argument after it:

|Zj10su(x)| ≤ C
(∫

|y|≤1
+

∫

|y|>1

)
|V ϕ(x − y)|
|y|2 |K(j,1)

0 (|y|)|dy = I1(x) + I2(x).

Documenta Mathematica 21 (2016) 391–443



416 K. Yajima

For ρ ≥ 1, we have K
(j,1)
0 (ρ)≤| · | Cρ2MH(M(r))(ρ) by virtue of (5.14) and

since r4 is Ap weight on R if p > 5. It follows that

‖I2‖p ≤ C‖V ϕ‖1
∥∥∥∥∥
K

(j,1)
0

|x|2

∥∥∥∥∥
Lp(|x|≥1)

≤ C‖V ϕ‖1
(∫ ∞

0

|MH(M)(ρ)|pρ4dρ
) 1
p

≤ C‖V ϕ‖1
(∫ ∞

0

|M(r)|pr4dr
)1/p

≤ C‖V ϕ‖21‖u‖p. (5.16)

Hölder’s inequality and (5.14) for 0 ≤ ρ ≤ 1, K
(j,1)
0 (ρ)≤| · |CMH(M)(ρ), imply

|I1(x)| ≤ C
(∫

|y|≤1

∣∣∣∣
|V ϕ(x − y)|
|y|2

∣∣∣∣
p′

dy

) 1
p′ (∫ 1

0

|MH(M(r))(ρ)|pρ4dρ
) 1
p

.

Since p′ ≤ 5
4 if p > 5, Minkowski’s inequality and (5.16) imply

‖I1‖p ≤ C‖V ϕ‖1‖V ϕ‖p‖u‖p. (5.17)

(c) We finally prove −2ia0C0(c1Z
10
s0 − c0Z00

s0 )+ a0|ϕ〉〈|D|−1(V ϕ)| ∈ B(Lp(R5))
for p > 5/2. This will complete the proof of the lemma because this and
(b) imply statement (2) by virtue of (5.3); since |ϕ〉〈|D|−1(V ϕ)| is bounded
in Lp(R5) for 5/3 < p < 5 as remarked previously, this also implies
−2ia0C0(c1Z

10
s0−c0Z00

s0 ) ∈ B(Lp(R5)) for 5/3 < p < 5 and, hence, for 1 < p < 5
by virtue of result (a) and interpolation. Then, (b) yields statement (1). If
k = 0, further integration by parts to (5.11) produces boundary term:

K
(j,0)
0 (ρ) =

(−i)j+1

2π
j!

∫

R
M(r)dr

+
(−i)j+1

2π

∫ ∞

0

(
eiλρλjF (λ)

)(j+1)
(∫

R
e−iλrM(r)dr

)
dλ. (5.18)

The second integral, which we denote by K̃
(j,0)
0 (ρ), satisfies

K̃
(j,0)
0 (ρ)≤| · |C(1 + ρj+1)MH(M)(ρ) ≤ C(1 + ρj+2)MH(M)(ρ) (5.19)

and we estimate the operator Z̃j0 obtained by replacing K
(j,0)
0 (ρ) by K̃

(j,0)
0 (ρ)

in (5.4) by repeating the argument of step (b): Split Z̃j0u(x) as in step (b)
and obtain ‖I2‖p ≤ C‖u‖p for 5/2 < p < 5 (resp. p > 5) by using the
first (resp. second) estimate of (5.19) and that r4−p (resp. r4) is an Ap-
weight on R. Likewise we obtain ‖I1‖p ≤ C‖u‖p for 5/2 < p < 5 (resp.
p > 5) by first applying Hölder’s inequality by considering the integrand as

(|V ϕ(x− y)|/|y|2) · (|K̃(j,0)
0 (|y|)|/|y|) (resp. |V ϕ(x− y)|/|y|3 · |K̃(j,0)

0 (|y|)|) and
then using Minkowski’s inequality. Thus, we have for j = 0, 1 that

‖Z̃j0u‖p ≤ C‖u‖p, 5/2 < p <∞. (5.20)
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The contribution of boundary terms of (5.18) to c0K
(00)
0 − c1K(10)

0 is given by
virtue of (2.3) and (3.9) by

(c1 − ic0) ×
1

2π

∫

R
M(r)dr =

c0
πi

∫

R
M(r)dr = −4π2C0i〈|D|−1(V ϕ), u〉

and this contributes to 2a0iC0(c0Z
00
s0 − c1Z10

s0 )u(x) by

8π2a0C
2
0

∫

R5

V ϕ(y)

|x− y|3 dy · (〈|D|
−1(V ϕ), u〉) = −a0ϕ(x)〈|D|−1(V ϕ), u〉,

where we used 8π2C0 = 1 when m = 5. This proves the lemma.

5.2 Estimates of Zs1 for m ≥ 5.

We next study Zs1u for all m ≥ 7. By virtue of (5.6) and (5.7) and the remark

at the beginning of section 5, it suffices to study Zjk1s (φ)u defined by (5.8) for

φ ∈ E . For simplifying notation, we often omit φ from Zjk1s (φ). Define

M∗(r) =M(r, |D|−1(V φ) ∗ ǔ). (5.21)

Then, by virtue of (2.9), K(j,k)(ρ) may also be expressed as

K(j,k)(ρ) =
1

2π

∫ ∞

0

eiλρλj+kF (λ)

(∫

R
e−iλrrj+1M∗(r)dr

)
dλ (5.22)

which has the larger factor λk+j than λk+j−1 of (5.9). We omit the proof of
the following lemma which is essentially the same as that of (5.13, 5.14)

Lemma 5.2. K(j,k)(ρ) satisfies the following estimates:

K(j,k)(ρ)≤| · |





Cρ−k−1
k+1∑

l=0

MH(rj+1+lM)(ρ), j ≥ 2. (5.23)

C(1 + ρj−1)MH(r2M)(ρ), j ≥ 1. (5.24)

C(1 + ρj)MH(rM)(ρ), k + j ≥ 1. (5.25)

C(1 + ρj+1)MH(M)(ρ), k ≥ 2. (5.26)

C(1 + ρj)MH(rM∗)(ρ), k ≥ 0. (5.27)

Lemma 5.3. Suppose m ≥ 5 and φ ∈ E. Then:

(1) If j ≥ 2, Zjk1s (φ), k = 0, . . . , m−32 , are bounded in Lp(Rm) for 1 < p < m
2 .

(2) For k ≥ 2, Zjk1s (φ), j = 0, . . . , m−32 , are bounded in Lp(Rm) for m
3 < p.

(3) For all j and k, Zjk1s (φ) is bounded in Lp(Rm) for m
3 < p < m

2 .
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If both j, k ≥ 2, Zjk1s (φ) is bounded in Lp(Rm) for all 1 < p <∞.

Proof. (a) We first prove (1) for 1 < p < m
m−1 . General case follows from this

and (3) by interpolation. We use (5.23) and that r−(m−1)(p−1) is an Ap weight
on R for 1 < p < m

m−1 . Then, estimating as in (5.15), we obtain

‖Zjks1u‖p ≤ C‖V φ‖1
(∫ ∞

0

|M(r)|prm−1dr +
∫ 1

0

|M(r)|p
r(m−4)p

rm−1dr

)1/p

≤ C‖V φ‖1(‖V φ‖1 + ‖V φ‖p′)‖u‖p. (5.28)

(b) We next prove (2) for p > m. General case then follows from this and (3)
by interpolation. We split the integral as in (4.18):

Zjks1u(x)≤| · |
(∫

|y|≤1
+

∫

|y|≥1

)
|V φ(x− y)|
|y|m−2−k |K

(j,k)(|y|)|dy = I1(x) + I2(x).

Using (5.26) for ρ ≥ 1 and that rm−1 is Ap weight on R if p > m, we obtain

‖I2‖p ≤ C‖V φ‖1
(∫ ∞

1

|MH(M)(ρ)|pρm−1dρ
) 1
p

≤ C‖V φ‖21‖u‖p. (5.29)

Hölder’s inequality and (5.26) for 0 ≤ ρ ≤ 1 imply that

|I1(x)| ≤
(∫

|y|≤1

∣∣∣∣
V φ(x− y)|
|y|m−2−k

∣∣∣∣
p′

dy

)1/p′ (∫ 1

0

|MH(M)(ρ)|pρm−1dρ
)1/p

.

(5.30)
Then, Minkowski’s inequality and the estimate as in (5.29) yield

‖I1‖p ≤ C‖V φ‖1‖u‖p
(∫

|x|<1

‖V φ‖p′p dx
|x|(m−2−k)p′

)1/p′

≤ C‖V φ‖1‖V φ‖p‖u‖p

because p′ ≤ m
m−1 if p > m and |y|−(m−2−k)p′ is integrable over |y| ≤ 1. Thus,

statement (2) for p > m follows.
(c) We prove statement (3) by modifying the argument in step (b). Let m

3 <

p < m
2 . Then, r

m−1−2p is an Ap weight on R. We split the integral of Zjks1u(x)
as in step (b).
(i) Let j ≥ 1. Estimate (5.24) for ρ ≥ 1 and Lemma 2.7 yield

‖I2‖p ≤ C‖V φ‖1
(∫ ∞

0

|MH(r2M)(ρ)|pρm−1−2pdρ
) 1
p

≤ C‖V φ‖21‖u‖p.
(5.31)

Estimate (5.24) for ρ ≤ 1 and Hölder’s inequality imply

|I1(x)| ≤
(∫

|y|≤1

∣∣∣∣
|V φ(x− y)|
|y|m−4−k

∣∣∣∣
p′

dy

) 1
p′ (∫ 1

0

|MH(r2M)(ρ)|pρm−1−2pdρ
) 1
p

.
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Minkowski’s inequality and the second estimate of (5.31) imply ‖I1‖p ≤
C‖V φ‖p‖V φ‖1‖u‖p as previously and, hence, ‖Zjks1u‖p ≤ C‖u‖p.
(b) Let j = 0. Express K(0,k)(ρ) by using M̃(r) of (2.15) and estimate as

K(0,k)(ρ) =
1

2iπ

∫ ∞

0

eiλρλk
(∫

R
e−iλrM̃(r)dr

)
F (λ)dλ≤| · | CMH(M̃)(ρ).

(5.32)
Since ρ−(m−2−k) ≤ ρ−2 for ρ ≥ 1, Young’s inequality, Lemma 2.7 and Hardy’s
inequality yield

‖I2‖p ≤ C‖V φ‖1
(∫ ∞

0

|M̃(r)|prm−1−2pdr
)1/p

≤ C‖V φ‖1
(∫ ∞

0

|M(r)|prm−1dr
)1/p

≤ C‖V φ‖1‖V φ‖p‖u‖p. (5.33)

Hölder’s inequality and (5.32) imply

|I1(x)| ≤
(∫

|y|≤1

∣∣∣∣
|V φ(x − y)|
|y|m−4−k

∣∣∣∣
p′

dy

)1/p′ (∫ 1

0

|MH(M̃)(ρ)|pρm−1−2pdρ
)1/p

Estimate the second factor by (5.33) and use Minkowski’s equality. This yields
‖I1‖p ≤ C‖V φ‖p‖V φ‖1‖u‖p. The last statement follows from (1) and (2) by
interpolation.

Lemma 5.4. Let m ≥ 5 and φ ∈ E. Then:

(1) For 1 < p < m
2 , ‖(c0Z

(0,k)
s1 − c1Z(1,k)

s1 )u‖p ≤ C‖u‖p for all 0 ≤ k ≤ m−3
2 .

(2) The operator Zs1(φ) is bounded in Lp(Rm) for 1 < p < m
2 .

Proof. It suffices to prove the estimate of (1) for 1 < p < m
m−1 since that for

1 < p < m
2 follows from this and Lemma 5.3 (3) by interpolation and since

statement (2) follows from this and statement (1) of Lemma 5.3. Using the
identity eiλρ = (iρ)−k−1∂k+1

λ eiλρ, we apply integration by parts k+ 1 times to
the integral of (5.32) and use the identity (2.16). We obtain

K(0,k)(ρ) =
ik

2πρk+1

(
k!

∫

R
r2M(r)dr

+

k+1∑

l=0

(
k + 1
l

)∫ ∞

0

eiλρ(λkF )(k+1−l)
∫

R
e−iλr(−ir)lM̃drdλ

)
. (5.34)

Integration by parts k + 1 times to K(1,k)(ρ) of (5.9) likewise yields

K(1,k)(ρ) =
ik

2πiρk+1

(
−k!

∫

R
r2M(r)dr

−
k+1∑

l=0

(
k + 1
l

)∫ ∞

0

eiλρ(λkF )(k+1−l)
∫

R
e−iλr(−ir)lr2Mdrdλ

)
. (5.35)
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Since c0 − ic1 = 0, the boundary terms of (5.34) and (5.35) cancel out and

c0K
(0,k)(ρ)− c1K(1,k)(ρ)

ρm−2−k
≤| · |

C

ρm−1

k+1∑

l=0

(MH(rlM̃)(ρ) +MH(rl+2M)(ρ)).

For 1 < p < m
m−1 , ρ

−(m−1)(p−1) is an Ap-weight on R. It follows by Young’s

inequality, Lemma 2.7 and Hardy’s inequality that ‖(c0Z(0,k) − c1Z(1,k))u‖p is
bounded by C‖V φ‖1 times

k+1∑

l=0

(∫ ∞

0

(|M̃(r)|prpl + |M(r)|prp(l+2))rm−1−p(m−1)dr

)1/p

(5.36)

≤ C
(∫ 1

0

|M(r)|p
rp(m−3)

rm−1dr +
∫ ∞

0

|M(r)|prm−1dr
)1/p

(5.37)

≤ C(‖V φ‖p′ + ‖V φ‖p)‖u‖p. (5.38)

Here we used k + 3 ≤ m − 1 for m ≥ 5 in the first step and p(m− 1) < m in
the last. This proves the estimate of (1) for 1 < p < m

m−1 .

Lemma 5.1 and the second statement of Lemma 5.4 prove statement (1) of
Theorems 1.4 and 1.5 for odd m. The following lemma (and Lemma 5.1 for
the case m = 5) proves statement (2) of these theorems for odd m.

Lemma 5.5. Let m ≥ 5, φ ∈ E and m
2 < p < m. Then, for a constant C > 0,

∥∥∥∥∥Zs1(φ)u +
Γ
(
m−2
2

)
√
πΓ
(
m−1
2

) 〈u, φ〉φ
∥∥∥∥∥
p

≤ C‖u‖p. (5.39)

If Zs1(φ) ∈ B(Lp) for some m
2 < p < m, then φ ∈ E0 and Zs1(φ) ∈ B(Lp) for

all 1 < p < m.

Proof. Let j + k ≥ 1. Since m− 2− (k + j) ≥ 1, we have from (5.25) that

K(j,k)(ρ)

ρm−2−k
≤| · |C

(
1

ρm−2−k
+

1

ρ

)
MH(rM)(ρ).

Using that rm−1−p is Ap weight and (m−2)p′ < m form/2 < p < m, we repeat
the argument of the step (b) or (c) of the proof of Lemma 5.3 and obtain

‖Zjks1u‖p ≤ C‖u‖p, j + k ≥ 1. (5.40)

It remains to consider −2iC0c0Z
00
s1 , see (5.7). We apply integration by parts

to the right of (5.22) with j = k = 0:

K(0,0)(ρ) =
i

2π

∫ ∞

0

eiλρF (λ)∂λ

(∫

R
e−iλrM∗(r)dr

)
dλ

=
−i
2π

∫

R
M∗(r)dr −

i

2π

∫ ∞

0

(eiλρF (λ))′
(∫

R
e−iλrM∗(r)dr

)
dλ. (5.41)
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We denote the second integral of (5.41) by K
(0,0)
∗ (ρ) and, by Z00

∗ the operator

produced by substituting K
(0,0)
∗ (ρ) for K(0,0)(ρ) in (5.8). We have |K(0,0)

∗ (ρ)| ≤
C(1 + ρ)MH(M∗)(ρ). Decompose

Z00
∗ u(x)≤| · |

(∫

|y|≤1
+

∫

|y|≥1

)
|(V φ)(x − y)| |K

(0,0)
∗ (|y|)|
|y|m−2 dy = I1(x) + I2(x)

as previously. For estimating ‖I2‖p, define 1/q = 1/p−1/m and apply Young’s
inequality, Hölder’s inequality, Lemma 2.7 noticing that q > m and rm−1 is
Aq weight and, Hardy-Littlewood-Soblev inequality recalling that |D|−1(V φ) ∗
(x)≤| · | C〈x〉1−m. We obtain

‖I2‖p ≤ C‖V φ‖1
(∫ ∞

0

|MH(M∗)(ρ)|qρm−1dρ
)1/q ∥∥∥∥

1

|y|m−3
∥∥∥∥
Lm(|y|>1)

≤ C‖V φ‖1‖|D|−1(V φ) ∗ ǔ‖q ≤ C‖V φ‖1‖|D|−1(V φ)‖ m
m−1

,w‖u‖p. (5.42)

For I1(x), Hölder’s inequality implies

|I1(x)| ≤ C
(∫

|y|≤1

∣∣∣∣
(V φ)(x − y)
|y|m−2

∣∣∣∣
q′

dy

)1/q′ (∫

|y|≤1
|MH(M∗)(|y|)|qdy

)1/q

.

The second factor on the right is bounded by C‖|D|−1(V φ)‖ m
m−1 ,w

‖u‖p as in

(5.42) and q′ < m
m−1 <

m
2 < p. It follows by Minkowski’s inequality that

‖I1‖p ≤ C‖V φ‖p‖u‖p
(∫

|y|≤1

dy

|y|(m−2)q′
)1/q′

≤ C‖V φ‖p‖u‖p.

Thus, we have ‖Z00
∗ u‖p ≤ C‖u‖p for m2 < p < m. The boundary term of (5.41)

is, by virtue of (3.7) and that c0 = (m− 2)−1, equal to

−i
2π

∫

R
M∗(r)dr =

−i
πωm−1

∫

Rm

(∫

Rm

|D|−1(V φ)(y)
|x− y|m−1 dy

)
u(x)dx

=
−iΓ

(
m
2

)
√
πΓ
(
m−1
2

)
∫

Rm
|D|−2(V φ)(x)u(x)dx =

iΓ
(
m
2

)
√
πΓ
(
m−1
2

) 〈φ, u〉. (5.43)

Inserting this into the right of (5.8) for j = k = 0, we see the contribution of
the boundary term to Zs1(φ)u is given by

2c0C0Γ
(
m
2

)
√
πΓ
(
m−1
2

)
∫

Rm

V φ(y)

|x− y|m−2dy〈φ, u〉 = −
Γ
(
m−2
2

)
√
πΓ
(
m−1
2

) |φ〉〈φ, u〉.

This proves the first statement. If Zs1 ∈ B(Lp) for some m
2 < p < m, (5.39)

implies φ ⊗ φ ∈ B(Lp) for this p. Then, (3.8) implies that φ must satisfy
〈φ, V 〉 = 0 and φ ⊗ φ ∈ B(Lp) for all m

m−1 < p < m. Then, Zs1 ∈ B(Lp) must
be satisfied for all m2 < p < m and, hence, for all 1 < p < m by Lemma 5.4
and interpolation.
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We finally study Z1s(φ) in Lp(Rm) for p > m. If Z1s(φ) ∈ B(Lp(Rm)) for
some p > m, then Lemma 5.5 implies φ ∈ E0. Thus, assume φ ∈ E0 in the
following lemma. The following lemma proves statements (3) of Theorem 1.4
and Theorem 1.5 for odd m ≥ 7.

Lemma 5.6. Let m ≥ 5 be odd, p > m and φ ∈ E0. Then:

(1) For a constant Cp > 0, ‖Zs1(φ)u + |φ〉〈φ|)u‖p ≤ C‖u‖p.

(2) If Z1s(φ) is bounded in Lp(Rm) for some p > m, then φ ∈ E1. In this
case Z1s is bounded in Lp(Rm) for all 1 < p <∞.

Proof. Considering that
∫
R r

j+1e−iλrM∗(r)dr = ij+1
(∫

R e
−iλrM∗(r)dr

)(j+1)
,

we apply integration by parts to (5.22). Then, for k ≥ 1, we have

K(j,k)(ρ) =
(−i)j+1

2π

∫ ∞

0

(
eiλρλj+kF (λ)

)(j+1)
(∫

R
e−iλrM∗(r)dr

)
dλ (5.44)

and, if k = 0, additional boundary term which is given by virtue of (5.43) by

(−i)j+1j!

2π

∫

R
M∗(r)dr =

i(−i)jj!Γ
(
m
2

)
√
πΓ
(
m−1
2

) 〈φ, u〉, j = 0, . . . ,
m− 3

2
. (5.45)

Denote the right of (5.44) by K̃(j,0)(ρ) when k = 0. Then,

K(j,k)(ρ)

ρm−2−k
≤| · |C

(
1 +

1

ρm−2

)
MH(M∗)(ρ), 0 ≤ j, k ≤ m− 3

2
(5.46)

and the same for K̃(j,0)(ρ). We split Zjks1u as previously:

Zjks1u(x) =

(∫

|x−y|≤1
+

∫

|x−y|>1

)
V φ(y)K(j,k)(|x − y|)
|x− y|m−2−k dy = I1(x) + I2(x).

We estimate I2(x) by using (5.46) for ρ ≥ 1, that ρm−1 is Ap weight for p > m,
(3.8) for φ ∈ E0 and the Calderón-Zygmund theory. This yields

‖I2‖p ≤ ‖V φ‖1
(∫ ∞

1

|MH(M∗)(ρ)|pρm−1dρ
)1/p

≤ ‖V φ‖1‖|D|−1(V φ) ∗ u‖p ≤ C‖V φ‖1‖u‖p. (5.47)

Hölder’s inequality and (5.46) for ρ ≤ 1 imply

|I1(x)| ≤ C
(∫

|y|≤1

∣∣∣∣
(V φ)(x − y)
|y|m−2

∣∣∣∣
p′

dy

)1/p′ (∫

|y|≤1
|MH(M∗)(|y|)|pdy

)1/p

.
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The second factor on the right is bounded by C‖u‖p as in (5.47). Since p′ <
m
m−1 < m < p, it follows by Minkowski’s inequality that

‖I1‖p ≤ C‖V φ‖p‖u‖p
(∫

|y|≤1

dy

|y|(m−2)p′
)1/p′

≤ C‖V φ‖p‖u‖p.

Thus, Zjks1 ∈ B(Lp(Rm)) for p > m if k ≥ 1 and the same for the operator Z̃j0s1
produced by K̃(j,0)(ρ). The contribution of boundary terms (5.45) to Zs1(φ) is
given by using the constants Cj of (2.2) by

2i

m−3
2∑

j=0

C0Cj(−1)j+1ωm−1

(∫

Rd

(V φ)(y)

|x− y|m−2 dy
)
i(−i)jj!Γ

(
m
2

)
√
πΓ
(
m−1
2

) 〈φ, u〉

= −D̃m|φ〉〈φ, u〉, D̃m =

m−3
2∑

j=0

(m− 3− j)!
2m−3−j

(
m−3
2

)
!
(
m−3
2 − j

)
!
. (5.48)

The constant D̃m can be elementarily computed and with n = m−3
2

D̃m =
n∑

k=0

1

22n−k

(
2n− k
n− k

)
=

n∑

k=0

1

2n+k

(
n+ k
k

)
= 1.

(see also page 167 of [12].) This proves statement (1). We omit the proof of
(2) which is similar to the corresponding statement of Lemma 5.5.

Since Zs1u =
∑n

i=1 Zs1(φj) for the orthonormal basis of E , the combination of
lemmas in this section proves Theorems 1.4 and 1.5 for odd m.

6 Proof of Theorem 1.5 for even m ≥ 6

For proving Theorem 1.5 for even dimensions m ≥ 6 we need study Zs and
Zlog of (3.26) and (3.27). Since Zlog may be studied in a way similar to but
simpler than that for Zs, we shall be mostly concentrated on Zs and only briefly
comment on Zlog at the end of the section. As in odd dimensions we take the
real orthonormal basis {φ1, . . . , φd} of E and define, for φ ∈ E ,

Zs(φ)u =
i

π

∫ ∞

0

G0(λ)|V φ〉〈φV |(G0(λ) −G0(−λ))F (λ)λ−1dλ. (6.1)

Then, we have

Zsu =

d∑

j=1

Zs(φj)u

and we study Zs(φ) for φ ∈ E . In this section we choose and fix a φ ∈ E
arbitrarily and write M(r) =M(r, V φ ∗ ǔ).
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We wish to apply the argument for odd dimensions also to even dimensions as
much as possible and, we express Zs(φ) as a superposition of operators which
are of the same form as those studied in odd dimensions except scaling. We
set ν = (m− 2)/2. Define for a > 0

Ma(r) =M(r/(1 + 2a)) (6.2)

and, for j, k = 0, . . . , ν and a, b > 0,

Qa,bjk (ρ) =
(−1)j+1

2π(1 + 2a)j+2

∫ ∞

0

λj+k−1eiλ(1+2b)ρF(rj+1Ma)(λ)F (λ)dλ. (6.3)

As in (5.22), we may express Qa,bjk (ρ) by using M∗(r) and increase the factor

λj+k−1 of (6.3) to λj+k:

Qa,bjk (ρ) =
(−1)j+1

2π(1 + 2a)j+2

∫ ∞

0

λj+keiλ(1+2b)ρF(rj+1Ma
∗ )(λ)F (λ)dλ. (6.4)

When j = 0, we also use M̃(r) of (2.15) to express Qa,b0k (ρ) as follows:

Qa,b0k (ρ) =
i

2π(1 + 2a)2

∫ ∞

0

λkeiλ(1+2b)ρF(M̃a)(λ)F (λ)dλ. (6.5)

Lemma 6.1. Let Qa,bjk (ρ) be defined by (6.3), (6.4) or (6.5). Then,

Zs(φ)u(x) =
2i

ωm−1

ν∑

j,k=0

T
(a)
j T

(b)
k

[∫

Rm

(V φ)(x − y)Qa,bjk (|y|)
|y|m−2−k dy

]
. (6.6)

Proof. We apply (2.18) for 〈V φ, (G0(λ) − G0(−λ))u〉 and (2.6) for G0(λ) in
(6.1). We see that Zs(φ)u(x) is the integral with respect to λ ∈ (0,∞) of

i

π

ν∑

j,k=0

T
(a)
j T

(b)
k

[
(−1)j+1λj+k−1

(1 + 2a)j+2ωm−1

(
eiλ(1+2b)|y|

|y|m−2−k ∗ V φ
)
F(rj+1Ma)(λ)

]
F (λ).

Integrating with respect to λ first yields (6.6).

We define, for 0 ≤ j, k ≤ ν and a, b > 0, that

Zjk(φ)u(x) =
2i

ωm−1
T

(a)
j T

(b)
k

[
Zjka,b(φ)u(x)

]
, (6.7)

Zjka,b(φ)u(x) =

∫

Rm

(V φ)(x − y)Qa,bjk (|y|)
|y|m−2−k dy. (6.8)

Lemma 6.1 implies Zs(φ)u =
∑
Zjk(φ)u. In what follows we often write Zjku

and Zjka,b respectively for Zjk(φ)u and Zjka,b(φ).
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6.1 Estimate of ‖Zjku‖p for (j, k) 6= (ν, ν).

We estimate Zjk for the case (j, k) 6= (ν, ν) first, postponing the case (j, k) =
(ν, ν) to the next subsection. As we shall see, the argument used for odd
dimensions applies to Zjk if (j, k) 6= (ν, ν) modulo superpositions and scalings.

Lemma 6.2. With suitable constants C > 0, followings are majorants of Qa,bjk (ρ)
for 0 ≤ k, j ≤ ν which satisfy the attached conditions respectively:

(1) C
{MH(rj+1Ma)}((1 + 2b)ρ)

(1 + 2a)j+2
, if j + k ≥ 1. (6.9)

(2) C
MH(M̃a)((1 + 2b)ρ)

(1 + 2a)2
, if j = 0. (6.10)

(3) C
k+1∑

l=0

MH(rj+l+1Ma)((1 + 2b)ρ)

(1 + 2a)j+2(1 + 2b)k+1ρk+1
, if 2 ≤ j ≤ ν. (6.11)

(4) C
MH(r2Ma)((1 + 2b)ρ)

(1 + 2a)j+2
{(1 + 2b)j−1ρj−1 + 1}, if 1 ≤ j. (6.12)

(5) C
MH(rMa)((1 + 2b)ρ)

(1 + 2a)j+2
{(2b+ 1)jρj + 1}, for all j, k. (6.13)

Proof. Define Φjk(λ) = λj+k−1F (λ). If j + k ≥ 1, Φjk ∈ C∞0 (R) and Lemma

2.9 implies Qa,bjk (ρ) = (−1)j+1(1 + 2a)−(j+2){(FΦjk) ∗H(rj+1Ma)}((1 + 2b)ρ).
Then, (6.9) follows by applying (2.24). Likewise we have (6.10) from (6.5). If
j ≥ 2, we apply integration by parts k+1 times to (6.3) using that eiλ(1+2b)ρ =
(i(1 + 2b)ρ)−(k+1)∂k+1

λ eiλ(1+2b)ρ then, without boundary terms,

Qa,bjk (ρ) =

k+1∑

l=0

(−1)j+1

2π(1 + 2a)j+2

(
1

−i(1 + 2b)ρ

)k+1(
k + 1
l

)

×
∫ ∞

0

eiλ(1+2b)ρΦjk(λ)
(k+1−l)F((−i)lrj+l+1Ma)(λ)dλ (6.14)

and (6.11) follows as previously. If j ≥ 1, we may apply integration by parts
to (6.3) by using that F(rj+1Ma)(λ) = ij−1{F(r2Ma)(λ)}(j−1). Then

Qa,bjk (ρ) = ij−1
∫ ∞

0

(
λj+k−1F (λ)eiλ(1+2b)ρ

)(j−1) F(r2Ma)(λ)

2π(1 + 2a)j+2
dλ (6.15)

and (6.12) follows. Apply another integration by parts in (6.15). No boundary
term appears as F(rMa)(0) = 0, and we obtain (6.13).

6.1.1 Estimate for 1 < p < m
m−1

Define for 0 ≤ σ ≤ m− 1 and 1 < p < m
m−1 :

Na,b
σ (u) =

(∫ ∞

0

|MH(rσMa)((1 + 2b)ρ)|pρm−1−p(m−1)dρ
)1/p

. (6.16)
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Lemma 6.3. For any m
1+σ ≤ q ≤ ∞, we have

Na,b
σ ≤ C (1 + 2b)m−1−

m
p

(1 + 2a)m−1−
m
p −σ

(‖V φ‖1 + ‖V φ‖q)‖u‖p. (6.17)

Proof. Change variable ρ by (1 + 2b)−1ρ first. Since ρm−1−p(m−1) is an Ap-
weight,

Na,b
σ = (1 + 2b)m−1−

m
p

(∫ ∞

0

|MH(rσMa)(ρ)|pρm−1−p(m−1)dρ
)1/p

≤ C (1 + 2b)m−1−
m
p

(1 + 2a)m−1−
m
p −σ

(∫ ∞

0

|M(r)|prm−1−p(m−1−σ)dr
)1/p

. (6.18)

Denote by I the integral on (6.18). Let κ = m − 1 − σ. If κ = 0, then
I ≤ C‖V φ ∗ u‖p ≤ C‖V φ‖1‖u‖p and (6.17) follows. Let 0 < κ ≤ m− 1. Split
I into integral over 0 < r < 1 and r > 1 and use rm−1−pκ ≤ rm−1 for r ≥ 1.
Then, we have I ≤ C(‖|x|−κ(V φ ∗ u)(x)‖Lp(|x|<1) + ‖V φ‖1‖u‖p). Take κ′ such
that κ < κ′ < m and apply Hölder’s and Young’s inequalities for the integral

over |x| ≤ 1. We obtain with q = m
m−κ′ ∈

[
m

1+σ ,∞
]
that

I ≤ C(‖|x|−κ‖
L
m
κ′ (|x|≤1)‖V φ‖q + ‖V φ‖1)‖u‖p. (6.19)

This completes the proof.

Lemma 6.4. Suppose 1 < p < m
m−1 . Then, for 2 ≤ j ≤ ν and 0 ≤ k ≤ ν such

that (j, k) 6= (ν, ν),

‖Zjku‖p ≤ C‖u‖p, u ∈ C∞0 (Rm). (6.20)

Proof. Minkowski’s and Young’s inequality imply

‖Zjku‖p ≤ 2ω−1m−1‖V φ‖1 · T
(a)
j T

(b)
k

[∥∥∥|x|2+k−mQa,bjk
∥∥∥
p

]
. (6.21)

We apply (6.11) to estimate Qa,bjk (|x|). Then, since σ ≡ j + l + 1 ≤ m − 1 for
(j, k) 6= (ν, ν), Lemma 6.3 implies

∥∥∥|x|2+k−mQa,bjk
∥∥∥
p
≤ C(1 + 2a)

m
p −(m−k−1)(1 + 2b)m−2−

m
p −k‖u‖p. (6.22)

We plug this to (6.21) and use m− k − 1 ≥ j + 2. Then,

‖Zjku‖p ≤ CmjkT (a)
j T

(b)
k [(1 + 2a)

m
p −(j+2)(1 + 2b)m−2−

m
p −k]‖u‖p

≤ C‖u‖p
(∫ ∞

0

(1 + 2a)
m
p −(j+2)

(1 + a)(2ν−j+
1
2 )

da√
a

)(∫ ∞

0

(1 + 2b)m−2−
m
p −k

(1 + b)(2ν−k+
1
2 )

db√
b

)
.

Counting powers show that the integrals are finite and the lemma follows.
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As in odd dimensions we use the cancellation in

Z0ku+ Z1ku

=
2i

ωm−1

∫

Rm

(V φ)(x − y)
|y|m−2−k T

(b)
k (T

(a)
0 Qa,b0k (|y|) + T

(a)
1 Qa,b1k (|y|))dy (6.23)

and obtain the following lemma.

Lemma 6.5. For 1 < p < m
m−1 , there exists a constant C > 0 such that

‖(Z(0,k) + Z(1,k))u‖p ≤ C‖u‖p, k = 0, . . . , ν. (6.24)

Proof. We apply integration by parts k + 1 times to (6.5) and (6.3) as in the
proof of (6.11). This produces

Qa,b0k (ρ) =
−ikk!(FM̃a)(0)ωm−1

2π(1 + 2a)2(1 + 2b)k+1ρk+1
− ikωm−1

2π

k+1∑

l=0

Ck+1,lQ
a,b
0k,l(ρ), (6.25)

Qa,b1k (ρ) =
ik+1k!F(r2Ma)(0)ωm−1

2π(1 + 2a)3(1 + 2b)k+1ρk+1
+
ik+1ωm−1

2π

k+1∑

l=0

Ck+1,lQ
a,b
1k,l(ρ),

(6.26)

where Qa,b0k,l(ρ) and Q
a,b
1k,l(ρ) are given and estimated as follows:

Qa,b0k,l(ρ) =

∫ ∞

0

eiλ(1+2b)ρ(λkF (λ))(k+1−l)(F((−ir)lM̃a)(λ))

(1 + 2a)2(1 + 2b)k+1ρk+1
dλ

≤| · | C
MH(rlM̃a)((1 + 2b)ρ))

(1 + 2a)2(1 + 2b)k+1ρk+1
, (6.27)

Qa,b1k,l(ρ) = (−i)l
∫ ∞

0

eiλ(1+2b)ρ(λkF (λ))(k+1−l)F(r2+lMa)(λ))

(1 + 2a)3(1 + 2b)k+1ρk+1
dλ

≤| · | C
MH(r2+lMa)((1 + 2b)ρ)

(1 + 2a)3(1 + 2b)k+1ρk+1
. (6.28)

Eqn.(2.16) shows F(M̃a)(0) = F(r2Ma)(0) = (1 + 2a)3
∫∞
0 r2M(r)dr and

T
(a)
1 [i] = T

(a)
0 [(1 + 2a)] = (m− 3)−1

It follows that the sum of the superposition via T
(a)
0 of the boundary term of

(6.25) and that via T
(a)
1 of (6.26) vanishes:

ikk!

(1 + 2b)k+1ρk+1

(∫ ∞

0

r2M(r)dr

)
(T

(a)
1 [i]− T (a)

0 [(1 + 2a)]) = 0. (6.29)

For 1 < p < m
m−1 , ρ

m−1−p(m−1) is an Ap weight on R and we have the identity:

M̃a(r) =

∫ ∞

r

sMa(s)ds = (1 + 2a)2M̃((1 + 2a)−1r). (6.30)
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Then, Lemma 2.7, (6.30), change of variable and Hardy’s inequality imply

∥∥∥∥∥
Qa,b0k,l(|x|)
|x|m−k−2

∥∥∥∥∥
p

≤ C(1 + 2b)m−1−
m
p

(1 + 2a)2(1 + 2b)k+1

(∫ ∞

0

|rlM̃a(r)|prm−1−p(m−1)dr
)1/p

≤ C(1 + 2a)
m
p −(m−1−l)

(1 + 2b)
m
p −(m−k−2)

(∫ ∞

0

|M(r)|prm−1−p(m−3−l)dr
)1/p

. (6.31)

The integral is similar to the integral which appeared in (6.18) and we remark
m− 3− l ≥ 0 for m ≥ 6. Thus, applying (6.19) with σ = l + 2, we obtain

(6.31) ≤ C(1 + 2a)
m
p −(m−k−2)

(1 + 2b)
m
p −(m−k−2)

(‖V φ‖1 + ‖V φ‖m3 )‖u‖p, 0 ≤ l ≤ k + 1. (6.32)

Counting the powers of a and b, we thus have from (6.32) that

T
(a)
0 T

(b)
k

[∥∥∥|x|2+k−mQa,b0k,l

∥∥∥
p

]
≤ C‖u‖p. 0 ≤ l ≤ k + 1. (6.33)

Entirely similarly, starting from (6.28), we obtain

∥∥∥∥∥
Qa,b1k,l(|x|)
|x|m−k−2

∥∥∥∥∥
p

≤ C(1 + 2b)m−1−
m
p

(1 + 2a)3(1 + 2b)k+1

(∫ ∞

0

|r2+lMa(r)|prm−1−p(m−1)dr
)1/p

≤ C(1 + 2a)
m
p −(m−k−1)

(1 + 2b)
m
p −(m−k−2)

(‖V φ‖1 + ‖V φ‖m3 )‖u‖p, 0 ≤ l ≤ k + 1. (6.34)

The extra decaying factor (1 + 2a)−1 of (6.34) compared to (6.32) cancels the

extra increasing factor (1 + a) of T
(a)
1 compared to T

(a)
0 and we have

T
(a)
1 T

(b)
k

[∥∥∥|x|k+2−mQa,b0k,l(|x|)
∥∥∥
p

]
≤ C‖u‖p, 0 ≤ l ≤ k + 1. (6.35)

In view of (6.23), (6.25), (6.26) and (6.29), (6.33) and (6.35) with the help of
Young’s and Minkowski’s inequalities imply the lemma.

6.1.2 Estimate for m
3 < p < m

2

The following lemma together with Lemma 6.4 and Lemma 6.5 will prove that∑
(j,k) 6=(ν,ν) Z

jk is bounded in Lp(Rm) for 1 < p < m
2 .

Lemma 6.6. Let m
3 < p < m

2 . Then, for (j, k) 6= (ν, ν),

‖Zjku‖p ≤ Cp‖u‖p (6.36)

for a constant Cp > 0 independent of u ∈ C∞0 (Rm).
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Proof. Except the superposition the proof is virtually the repetition of that of
statement (2) of Lemma 5.3.

(1) Let j ≥ 1 first. Since ρm−1−2p is Ap weight for m
3 < p < m

2 , we have

(∫ ∞

0

|{MH(r2Ma)}(ρ)|pρm−1−2pdρ
) 1
p

≤ C(1 + 2a)
m
p ‖V φ‖1‖u‖p. (6.37)

Splitting the integral of (6.8) we define

Za,bjk u(x) =

(∫

|y|< 1
1+2b

+

∫

|y|> 1
1+2b

)
(V φ)(x − y)Qa,bjk (|y|)

|y|m−2−k dy = I1(x) + I2(x).

(6.38)
For I1(x), we estimate |y|−(m−k−2) ≤ |y|−(m−2) for |y| ≤ 1 and apply Hölder’s
inequality. Then

‖I1‖p ≤
∥∥∥∥∥

∫

|y|≤ 1
2b+1

|(V φ)(x − y)|p′dy
|y|p′(m−4)

∥∥∥∥∥

1/p′

p/p′

(∫

|y|≤ 1
2b+1

∣∣∣∣∣
Qa,bjk (|y|)
|y|2

∣∣∣∣∣

p

dy

)1/p

Minkowski’s inequality implies that the first factor on the right is bounded by
C‖V φ‖p(1 + 2b)

m−4−m
p′ and m

p′ − (m− 4) > 1. For the second factor, we apply

(6.12) for (1 + 2b)ρ < 1 and then (6.37). We obtain

‖I1‖p ≤ C(1 + 2a)
m
p −j−2(1 + 2b)1−

m
p ‖V φ‖1‖V φ‖p‖u‖p. (6.39)

By Young’s inequality ‖I2‖p ≤ C‖V φ‖1‖|x|2+k−mQa,bjk (|x|)‖Lp((1+2b)|x|>1). For
the second factor, we use (6.12) for (1 + 2b)ρ ≥ 1 and, after changing the
variables ρ→ (1 + 2b)−1ρ, we estimate ρ−(m−2−k−(j−1)) ≤ ρ−2 for ρ ≥ 1 (here
we used (j, k) 6= (ν, ν)) and apply (6.37) once more. Then,

‖I2‖p ≤ C‖V φ‖1
(1 + 2b)m−2−k−

m
p

(1 + 2a)j+2

(∫ ∞

1

|{MH(r2Ma)}(ρ)|pρm−1−2pdρ
) 1
p

≤ C(1 + 2a)
m
p −j−2(1 + 2b)m−2−k−

m
p ‖V φ‖21‖u‖p. (6.40)

Since m − 2 − k ≥ 1 and (1 + 2a)
m
p −j−2(1 + 2b)m−2−k−

m
p is summable by

T
(a)
j T

(b)
k , (6.39) and (6.40) imply

‖Zjku‖p ≤ C‖V φ‖1(‖V φ‖1 + ‖V φ‖p)‖u‖p. (6.41)

(2) When j = 0, we apply the argument in the proof in (1) for estimating Qa,b0k

but by using (6.10) in stead of (6.12). Then, by the help of (6.30) and Hardy’s
inequality, it leads to estimates (6.39) and (6.40) and, hence, to the desired
(6.36) for Z0k. This completes the proof of the lemma.
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6.1.3 Estimate for m/2 < p < m and for p > m.

We now estimate Zjk, (j, k) 6= (ν, ν), in Lp(Rm) for m
2 < p < m and for p > m.

As in odd dimensions, Z00 will not in general be bounded in Lp(Rm) when
m
2 < p < m and likewise for all Z0k, k = 0, . . . , m−22 when p > m. Elementary
computations using

z−k =
1

Γ(k)

∫ ∞

0

e−zttk−1dt, ℜz > 0, k > 0

and the formula (2.5) for Cm,jωm−1 we obtain the following lemma.

Lemma 6.7.

(1) We have T
(a)
j [1] = (m− 3− j)!/(m− 2)!.

(2) For k ≥ 1 and j = 0, · · · , ν, T (a)
j [(1 + 2a)−k] is given by

(−i)j2m−1Γ(2ν − j + k)

(m− 2)!Γ(k)

(
ν
j

)
.

∫ ∞

1

(x2 − 1)k−1

(x2 + 1)2ν−j+k
dx (6.42)

Lemma 6.8. Let m
2 < p < m and φ ∈ E. Then:

(1) If (j, k) 6= (0, 0) or (j, k) 6= (ν, ν), Zjk is bounded in Lp(Rm):

‖Zjku‖p ≤ C‖u‖p, u ∈ C∞0 (Rm) (6.43)

(2) There exists a constant C > 0 such that for u ∈ C∞0 (Rm), we have
∥∥Z00u+Dm|φ〉〈φ, u〉

∥∥
p
≤ C‖u‖p, (6.44)

Dm =
2mΓ

(
m
2

)
√
πΓ
(
m−1
2

)
∫ ∞

1

(1 + x2)m−1dx. (6.45)

If Z00(φ) is bounded in Lp(Rm) for some m
2 < p < m then φ ∈ E0. In

this case Z00(φ) is bounded in Lp(Rm) for all m2 < p < m.

Proof. (1) Split Zjka,bu(x) as in (6.38) and apply the argument thereafter to
I1(x) and I2(x) by using the estimate (6.13). Since m − 2 − (k + j) ≥ 1 and
ρm−1−p is an Ap weight for m

2 < p < m, we have, as in (6.40),

‖I2‖p ≤ C
(1 + 2b)m−2−k−

m
p

(1 + 2a)j+2−mp
‖V φ‖21‖u‖p. (6.46)

For dealing with I1(x), we estimate |y|−(m−2−k) ≤ |y|m−2 for |y| ≤ 1 as
previously but now decompose |y|−(m−2) = |y|−(m−3) · |y|−1, remarking that
(m− 3)p′ < m and p/p′ > 1. Then, we obtain as in (6.39) that

‖I1‖p ≤
(1 + 2a)

m
p −j−2

(1 + 2b)
m
p
‖V φ‖1‖V φ‖p‖u‖p. (6.47)
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Summing up (6.46) and (6.47) by T
(a)
j T

(b)
k , we obtain (6.43).

(2) Let j = k = 0. We apply integration by parts to (6.4).

Qa,b00 (ρ) =
−i

2π(1 + 2a)2

∫ ∞

0

eiλ(1+2b)ρF(Ma
∗ )
′(λ)F (λ)dλ

=
i

2π

∫

R

Ma
∗ (r)

(1 + 2a)2
dr +

i

(1 + 2a)2

∫ ∞

0

(F (λ)eiλ(1+2b)ρ)′F(Ma
∗ )(λ)dλ. (6.48)

Denote the second term on (6.48) by Q̃ab00(ρ) and by Z̃00 the operator produced
by inserting Q̃ab00(ρ) for Q

ab
00(ρ) in (6.7). We have

Q̃a,b00 (ρ)≤| · | C
MH(Ma

∗ )((1 + 2b)ρ)

(1 + 2a)2
(1 + (1 + 2b)ρ). (6.49)

Let m
2 < p < m. We split as in (6.38) and estimate I2 first:

Z̃00u(x) =

(∫

|y|< 1
1+2b

+

∫

|y|≥ 1
1+2b

)
(V φ)(x − y)Q̃a,b00 (|y|)

|y|m−2 dy = I1(x) + I2(x).

We obtain

‖I2‖p ≤ C‖V φ‖1
(1 + 2b)m−2−

m
p

(1 + 2a)2

∥∥∥∥
MH(Ma

∗ )(|y|)
|y|m−3

∥∥∥∥
Lp(|y|>1)

≤ C‖V φ‖1
(1 + 2b)m−2−

m
p

(1 + 2a)2

∥∥∥∥
1

|y|m−3
∥∥∥∥
Lm(|y|>1)

(∫ ∞

0

|Ma
∗ (r)|qrm−1dr

) 1
q

≤ C ‖V φ‖1(1 + 2b)m−2−
m
p

(1 + 2a)2−
m
q

‖|D|−1(V φ)‖ m
m−1

,∞‖u‖p, (6.50)

where we used Young’s inequality, (6.49) for (1 + 2b)ρ ≥ 1 and the change
of variable (1 + 2b)ρ to ρ in the first step, Hölder’s inequality considering
p−1 = m−1 + q−1 and that 1 is an Aq weight q = mp/(m − p) > m in the
second and finally weak-Young’s inequality. For I1, we apply Hölder’s and
Minkowski’s inequalities and (6.50) and obtain

‖I1‖p ≤ C

∥∥∥∥∥∥

(∫

|y|≤ 1
1+2b

∣∣∣∣
(V φ)(x − y)
|y|m−2

∣∣∣∣
q′

dy

) 1
q′

∥∥∥∥∥∥
p

× (1 + 2b)−
m
p (1 + 2a)−2

(∫

|y|≤1
|MH(Ma

∗ )(|y|)|qdy
)1/q

≤ C(1 + 2b)−
m
p (1 + 2a)

m
p −2‖V φ‖p‖|D|−1(V φ)‖ m

m−1
,∞‖u‖p. (6.51)

Summing (6.50) and (6.51) by T
(a)
0 T

(b)
0 , we obtain ‖Z̃(0,0)u‖p ≤ C‖u‖p.
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By virtue of (3.10) and (5.43), the contribution to Z00u of the boundary term
of (6.48) is given by

2i

ωm−1
T

(a)
0 T

(b)
0

[∫

Rm

(V φ)(y)dy

|x− y|m−2 ·
i

2π

∫

R

M∗(r)
(1 + 2a)

dr

]

= − 2

C0ωm−1
T

(a)
0 [(1 + 2a)−1]T (b)

0 [1]
Γ
(
m
2

)
√
πΓ
(
m−1
2

) 〈φ, u〉φ. (6.52)

By using Lemma 6.7 and C0ωm−1 = (m − 2)−1. we can simplify (6.52) to
−Dm〈φ, u〉φ with Dm given by (6.45) and (6.44) follows. The last statement
follows as in the odd dimensional case, see the remark after Lemma 5.5.

Finally in this section we study Zjk(φ)u for (j, k) 6= (ν, ν) in Lp(Rm) when
p > m, assuming φ ∈ E0 by the same reason as in odd dimensions. We define

Dm,j = 2m
(
ν
j

)
Γ
(
m
2

)
√
πΓ
(
m−1
2

)
∫ ∞

1

(x2 − 1)j

(x2 + 1)m−1
dx, j = 0, . . . , ν. (6.53)

Lemma 6.9. Let m ≥ 6 be even and p > m. Suppose that φ ∈ E0. Then:

(1) For (j, k) such that k 6= 0 and (j, k) 6= (ν, ν), Zjk is bounded in Lp(Rm).

(2) There exists a constant C > 0 such that

‖Zj0u+Dj,m〈φ, u〉φ‖p ≤ C‖u‖p, j = 0, . . . , ν. (6.54)

(3) If Zj0(φ) is bounded in Lp(Rm) for some 0 ≤ j ≤ ν and some m <
p < ∞, then φ ∈ E1. In this case, Zj0(φ) is bounded in Lp(Rm) for all
1 < p <∞ and 0 ≤ j ≤ ν.

Proof. We apply integration by parts j + 1 times to (6.4):

Qa,bjk (ρ) =

∫ ∞

0

(−i)j+1λj+kF (λ)eiλ(1+2b)ρ∂j+1
λ {F(Ma

∗ )(λ)}
2π(1 + 2a)j+2

dλ. (6.55)

(1) If k ≥ 1, then no boundary terms appear and we have

Qa,bjk (ρ)≤| · |
CMH(Ma

∗ )((1 + 2b)ρ)

(1 + 2a)j+2
{(1 + 2b)j+1ρj+1 + 1}. (6.56)

Observing thatm−2−(k+j+1) ≥ 0 for (j, k) 6= (ν, ν), that rm−1 is Ap weight
on R for p > m and that (m − 2− k)p′ < m, we apply the argument used for
proving (6.50) and (6.51) in the proof of the previous lemma and obtain

‖Zjka,bu‖p ≤
C‖V φ‖1(1 + 2b)m−2−k−

m
p

(1 + 2a)j+2−mp
‖|D|−1(V φ) ∗ u‖p

+
C(1 + 2b)−

m
p ‖V φ‖p

(1 + 2a)j+2−mp

(∫

|y|< 1
1+2b

dy

|y|(m−2−k)p′
) 1
p′

‖|D|−1(V φ) ∗ u‖p. (6.57)
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Since
∫
(V φ)(x)dx = 0, ‖|D|−1(V φ)∗u‖p ≤ C‖u‖p for any 1 < p <∞ by virtue

of (3.9) and the Calderón-Zygmund theory. It follows that

‖Zjku‖p ≤ T (a)
j T

(b)
k ‖Z

jk
a,bu‖p ≤ C‖u‖p

for k ≥ 1 and (j, k) 6= (ν, ν) and statement (1) is proved.
(2) If k = 0, then, j+1 times integration by parts in (6.55) produces the integral
and boundary terms. The integral is bounded by (6.56) and the repetition of the
argument in step (1) implies that its contribution to Zj0 is the operator which
is bounded in Lp(Rm) for all p > m. The boundary term may be expressed as
follows by using (5.43) once more,

ij+1j!

2π(1 + 2a)j+1

∫

R
M∗(r)dr =

−ij+1j!

(1 + 2a)j+1

Γ
(
m
2

)

Γ
(
m−1
2

)√
π
〈φ, u〉, (6.58)

and its contribution Zj0u may be computed as follows:

2i

ωm−1
T

(a)
j T

(b)
0

[∫

Rm

(V φ)(y)dy

|x− y|m−2
(
− ij+1j!

(1 + 2a)j+1

)]
Γ
(
m
2

)

Γ
(
m−1
2

)√
π
〈φ, u〉

= 2ij+2j!T
(a)
j [(1 + 2a)−(j+1)]

Γ
(
m
2

)

Γ
(
m−1
2

)√
π
〈φ, u〉φ = −Dm,j〈φ, u〉φ.

where we used C0ωm−1 = T
(b)
0 [1] = (m − 2)−1 and (6.42) with k = j + 1 for

T
(a)
j [(1+2a)−(j+1)]. This proves statement (2). We omit the proof of statement

(3) which is similar to the corresponding part of the previous lemma.

Lemma 6.10. Define D̃m =
∑ν
j=0Dm,j. Then, D̃m = 1.

Proof. Use binomial formula for (6.53). We have

D̃m = 2m
Γ
(
m
2

)

Γ
(
m−1
2

)√
π

∫ ∞

1

xm−2

(x2 + 1)m−1
dx

Change of variable x → x−1 shows that the integral is equal to the same
integral over the interval 0 < x < 1. It follows after making the change of
variable x2 = t that the integral is equal to

1

4

∫ ∞

0

tν−
1
2

(t+ 1)m−1
dt =

Γ
(
m−1
2

)2

22Γ(m− 1)
.

Thus, D̃m = 2m−2Γ
(
m
2

)
Γ
(
m−1
2

)
Γ(m− 1)−1π−

1
2 = 1.

In the next two sections we prove that Zνν and Zlog are bounded in Lp(Rm)
for all 1 < p <∞. These will complete the proof of Theorem 1.5.
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6.2 Estimate of ‖Zννu‖p for 1 < p <∞

In this section we prove

‖Zννu‖p ≤ C‖u‖p, 1 < p <∞. (6.59)

The method of previous subsection does not apply for proving this and we
exploit more direct method. By virtue of interpolation, it suffices to prove
(6.59) for arbitrarily small p > 1 and large p > m.

6.2.1 The case for 1 < p < 2(m−1)
m+1

We first show (6.59) for 1 < p < 2(m−1)
m+1 . After changing the variable r to

(1 + 2a)r in (6.3), we write Qa,bνν (ρ)/ρ
ν in the form

(−1)ν+1

2πρν

∫ ∞

0

ei(1+2b)ρλλm−3F (λ)

(∫

R
e−i(1+2a)rλrν+1M(r)dr

)
dλ. (6.60)

Integration by parts implies that (6.60) is equal to

i(−1)ν+1

2π(1 + 2b)ρν+1

∫ ∞

0

ei(1+2b)ρλ(λm−3F (λ))′
(∫

R
e−i(1+2a)rλrν+1M(r)dr

)
dλ

+
(−1)ν+1(1 + 2a)

2π(1 + 2b)ρν+1

∫ ∞

0

ei(1+2b)ρλλm−3F (λ)

(∫

R
e−i(1+2a)rλrν+2Mdr

)
dλ.

The first line becomes i(1 + 2b)−1Qa,bν(ν−1)(ρ)/ρ
m−2−(ν−1) if we replace (m −

3)F (λ) + λF ′(λ) by F (λ) and the former function can play the same role as
the latter does in the argument of previous sections and, ν − 1 ≥ 1 if m ≥ 6.
Thus, if we substutute it for Qa,bνν (ρ)/ρ

ν in (6.8) for (j, k) = (ν, ν) and, then the
resulting function for Zννa,b(φ)u(x) in (6.7), it produces the operator which has

the same Lp property as Zν(ν−1) which is bounded in Lp(Rm) for 1 < p <∞.
Hence, we need study only the operator produced by the second line. Once
again we substitute it for Qa,bνν (ρ)/ρ

ν in (6.8) and the result for Zννa,b(φ)u(x) in
(6.7). We denote the functiotn thus obtain by Zννu(x), abusing notation. We
want to show that this Zννu(x) satisfies (6.59) for 1 < p < m

m−1 . Integrating
with respect to a, b first via Fubini’s theorem shows

Zννu(x) =
2i

ωm−1

∫

Rm
(V φ)(x − y)Xν(|y|)dy, (6.61)

Xν(ρ) =
2iC2

m,νωm−1
ρν+1

∫ ∞

0

{
eiλρλm−3

(∫ ∞

0

(1 + 2b)−1e2iλρb

(1 + b)ν+
1
2

db√
b

)

×
∫

R
e−iλr

(∫ ∞

0

(1 + 2a)e−2iaλr

(1 + a)ν+
1
2

da√
a

)
rν+2M(r)dr

}
F (λ)dλ. (6.62)
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Let χ±(r) = 1 for ±r > 0 and χ±(r) = 0 for ±r ≤ 0. Define, for t > 0,

g±(t) =
∫ ∞

0

(
1 +

a

t

)(
1 +

a

2t

)−ν− 1
2

e±ia
da√
a
, (6.63)

h±(t) =
∫ ∞

0

(
1 +

b

t

)−1(
1 +

b

2t

)−ν− 1
2

e±ib
db√
b

(6.64)

and, with C = iC2
m,νωm−1, write Xν(ρ) as follows:

Xν(ρ) =
C

ρν+
3
2

∫

R
(L+(ρ, r) + L−(ρ, r))r

ν+2|r|− 1
2M(r)dr, (6.65)

L±(ρ, r) = χ±(r)
∫ ∞

0

eiλ(ρ−r)λm−4h+(λρ)g∓(±rλ)F (λ)dλ. (6.66)

Lemma 6.11. Suppose that f is C∞ on [0,∞) and satisfies |f (j)(c)| ≤
Cjc
−(j+1) for c ≥ 1, j = 0, 1, . . . . Define

ℓ±(t) =
∫ ∞

0

e±icf(c/t)
dc√
c
.

Then, ℓ±(t) is C∞ for t > 0 and satisfies the following properties.

(1) ℓ±(1/t) can be exteded to a C∞ function on [0, 1], hence, limt→∞ ℓ±(t) =

α± exists and for t ≥ 1, |ℓ(j)± (t)| ≤ Cjt−j−1, j = 1, 2, . . . .

(2) For 0 < t < 1, |tjℓ(j)± (t)| ≤ Cj
√
t ≤ Cj , j = 0, 1, . . . .

Proof. We prove the lemma for ℓ+(t) only and omit the +-sign. It is evident
that ℓ(t) is C∞ for t > 0. Splitting the interval, we define

ℓ(t) =

(∫ 1

0

+

∫ ∞

1

)
f
(c
t

)
eic

dc√
c
≡ ℓ1(t) + ℓ2(t).

It is obvious that ℓ1(1/t) is of C
∞[0, 1]. To see the same for ℓ2(1/t), we perform

integration by parts n times for t > 0:

inℓ2(1/t) = Bn(t) + (−1)n
∫ ∞

1

∂nc

(
f(ct)√
c

)
eicdc. (6.67)

The boundary term Bn(t) is a polynomial of order n and Leibniz’ formula im-

plies ∂nc

(
f(ct)√
c

)
=
∑n

j=0 Cnjf
(j)(ct)(ct)jc−

1
2−n. Since ∂ky (f

(j)(y)yj) is bounded

for any j, k = 0, 1, . . . and

∂kt




n∑

j=0

Cnjf
(j)(ct)(ct)jc−

1
2−n


 =

n∑

j=0

Cnj ∂
k
y (f

(j)(y)yj)
∣∣∣
y=ct

c−
1
2−n+k,

Documenta Mathematica 21 (2016) 391–443



436 K. Yajima

the integral of (6.67) is a function of class Cn−1([0, 1]). Since n is arbitray, this
proves (1). For proving (2), after changing the variable we decompose:

ℓ(t) =
√
t

(∫ 1

0

+

∫ ∞

1

)
f(c)eict

dc√
c
≡
√
t(ℓ̃1(t) + ℓ̃2(t))

We obseve that
√
t satisfies the property (2) and that, if α(t) satisfies (2) and

|tjβ(j)(t)| ≤ Cj , then so does γ(t) = α(t)β(t). Hence,
√
tℓ̃1(t) satisfies (2)

because ℓ̃1(t) is entire. To prove the same for
√
t(ℓ̃2(t), it suffices to show that

|(tnℓ̃2(t))(n)| ≤ Cn for 0 < t < 1, n = 0, 1, 2, . . . . By integration by parts we
have

(it)nℓ̃2(t) =

∫ ∞

1

(∂nc e
itc)f(c)

dc√
c

=

n−1∑

j=0

(−1)j+1∂jc

(
f(c)√
c

)
∂n−j−1c (eitc)

∣∣
c=1

+

∫ ∞

1

eitc(f(c)c−
1
2 )(n)dc.

The boundary term is a polynomial of t and the integral is n times continuously
differentiable and a fortiori (tnℓ̃2(t))

(n) ≤ C for 0 < t < 1.

We define L±,σ(ρ, r) for an integer σ ≥ 0 and functions g± and h by

L±,σ(ρ, r) = χ±(r)
∫ ∞

0

eiλ(ρ−r)λσh+(λρ)g∓(±rλ)F (λ)dλ (6.68)

so that we have L±(ρ, r) = L±,m−4(ρ, r) (see (6.66)).

Lemma 6.12. Suppose that g±(t) and h+(t) are C∞ functions of t > 0 and
they satisfy following properties replacing f :

(a) The limit limt→∞ f(t) exists.

(b) |tjf (j)(t)| ≤ Cj
{
t−1, 1 < t, j = 1, 2, . . . ,√
t, 0 < t < 1, j = 0, 1, . . . .

.

Then, L±,σ is C∞ with respect to ρ > 0 and r > 0 and, for a constant C > 0,

|L±,σ(ρ, r)| ≤ C〈ρ− r〉−(σ+1) (6.69)

Proof. We prove the lemma for L+,σ. The proof for L−,σ is similar. It is
obvious that L+,σ(ρ, r) is smooth and is bounded for ρ, r > 0 and, it suffices
to prove (6.69) for |ρ− r| ≥ 1. We apply integration by parts σ + 1 times to

L+,σ(ρ, r) =
(−i)σ+1

(ρ− r)σ+1

∫ ∞

0

(
∂σ+1
λ eiλ(ρ−r)

)
λσh+(λρ)g−(rλ)F (λ)dλ.

By Leibniz’ rule, derivatives (λσh+(λρ)g−(rλ)F (λ))(κ) are linear combinations
over indices (β, γ, δ) such that κ− σ ≤ β + γ + δ ≤ κ of

λσ−κ+δ(λρ)βh(β)(λρ)(rλ)γg(γ)− (rλ)F (δ)(λ) (6.70)
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and they converge to 0 as λ→ 0 if κ ≤ σ. It follows that (ρ−r)σ+1L+,σ(ρ, r) is
the linear combination over the same set of (β, γ, δ) as above but with κ = σ+1
of

Iβγδ(ρ, r) =

∫ ∞

0

ei(ρ−r)λλδ−1(λρ)βh(β)(λρ)(rλ)γg(γ)− (rλ)F (δ)(λ)dλ.

It suffices to show that Iβγδ(ρ, r) is bounded. If δ 6= 0, F (δ)(λ) = 0 outside
0 < c0 < λ < c1 < ∞ and it is clear that Iβγδ(ρ, r)≤| · | C. Thus, we assume
δ = 0 in what follows. We may also assume 0 < r < ρ < ∞ by symmetry.
We split the interval of integration as (0,∞) = (0, 1/ρ) ∪ [1/ρ, 1/r] ∪ (1/r,∞)
and denote integrals over these intervals by I1, I2 and I3 in this order so that
Iβγδ(ρ, r) = I1 + I2 + I3.
(1) If 0 < λ < 1/ρ then 0 < rλ < ρλ < 1 and (ρλ)βh(β)(ρλ)≤| · | C

√
ρλ and

(rλ)γg
(γ)
− (rλ)≤| · | C

√
rλ. It follows that

I1≤| · | C
∫ 1/ρ

0

√
ρrdλ = C

√
r

ρ
≤ C (6.71)

(2) If 1/ρ ≤ λ ≤ 1/r, we have 0 < rλ ≤ 1 ≤ ρλ and we estimate as

(ρλ)βh(β)(ρλ)≤| · | C and (rλ)γg
(γ)
− (rλ)≤| · | C

√
rλ. It follows that

I2≤| · | C
∫ 1/r

1/ρ

λ−
1
2
√
rdλ = 2C

√
r

(
1√
r
− 1√

ρ

)
≤ 2C. (6.72)

(3) Finally if 1 < rλ < ρλ, then we likewise estimate

(λρ)βh(β)(λρ)(rλ)γg
(γ)
− (rλ)≤| · | C





(rλ)−1, if β = 0, γ 6= 0
(ρλ)−1, if β 6= 0, γ = 0,
(ρλ)−1(rλ)−1, if β, γ 6= 0.

The right hand side is bounded by Cr−1λ−1 and

I3≤| · | C
∫ ∞

1/r

λ−2r−1dλ = C.

This completes the proof.

Proposition 6.13. Let m ≥ 6 and φ ∈ E. For 1 ≤ p ≤ 2(m−1)
m+1 , we have

‖Zννu‖p ≤ Cp‖u‖p. (6.73)

Proof. We recall (6.61). Lemma 6.12 implies L±(ρ, r)≤| · |C〈ρ − r〉−(m−3). It
follows by Young’s inequality and (6.65) that

‖Zννu‖p ≤ C‖V φ‖1
(∫ ∞

0

(∫

R

ρ
m−1
p −

m+1
2 |rm+1

2 M(r)|
〈ρ− r〉m−3 dr

)p
dρ

) 1
p

. (6.74)
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Define κ = m−1
p − m+1

2 , then κ ≥ 0 for 1 ≤ p ≤ 2(m−1)
m+1 and m− 3− κ ≥ 3

2 for
any 1 ≤ p <∞ if m ≥ 6. Thus, we may estimate

ρκ〈ρ− r〉−(m−3) ≤ C
{
〈ρ− r〉− 3

2 if |r| ≤ 1

〈ρ− r〉− 3
2 |rκ| if |r| ≥ 1

and Young’s inequality implies

‖Zννu‖p ≤ C‖V φ‖1
(∫ 1

0

|rm+1
2 M(r)|pdr +

∫ ∞

1

|rm−1
p M(r)|pdr

) 1
p

,

which is bounded by C(‖V φ∗u‖∞+‖V φ∗u‖p) ≤ (‖V φ‖p′ +‖V φ‖1)‖u‖p. This
completes the proof of the proposition.

6.2.2 The case 2(m−1)
m−3 ≤ p <∞

Lemma 6.14. Let m ≥ 6 and φ ∈ E. Then, Zνν(φ) is bounded in Lp(Rm) for

any 2(m−1)
m−3 ≤ p <∞.

Proof. we apply integration by parts to (6.60) by using the identity that∫
R e
−i(1+2a)rλrν+1M(r)dr = i(1 + 2a)−1∂λ

(∫
R e
−i(1+2a)rλrνM(r)dr

)′
. We see

that ρ−νQa,bνν (ρ) is equal to

(−1)ν+1

2πρν(i(1 + 2a))

∫ ∞

0

ei(1+2b)ρλ(λm−3F (λ))′
(∫

R
e−i(1+2a)rλrνM(r)dr

)
dλ

+
(−1)ν+1(1 + 2b)

2πρν−1(1 + 2a)

∫ ∞

0

ei(1+2b)ρλλm−3F (λ)

(∫

R
e−i(1+2a)rλrνM(r)dr

)
dλ

The argument similar to the one at the beginning of the proof of Proposition
6.13 shows that the operator produced by the first line has the same Lp property
as Z(ν−1)ν and, hence, is bounded in Lp(Rm) for any 1 < p < ∞. Thus, we
need consider the operator produced by the second line, which we substitute
for Qa,bνν (ρ)/ρ

ν in (6.8) and the resulting function for Zννa,b(φ)u(x) in (6.7). The
result is given by (6.61) where Xν(ρ) is replaced by

X̃ν(ρ) =
C

ρν−1

∫ ∞

0

{
eiλρλm−3

(∫ ∞

0

(1 + 2b)e2iλρb

(1 + b)ν+
1
2

db√
b

)

×
∫

R
e−iλr

(∫ ∞

0

(1 + 2a)−1e−2iaλr

(1 + a)ν+
1
2

da√
a

)
rνM(r)dr

}
F (λ)dλ, (6.75)

which can be simplified into the form (6.65), (6.66) with the roles of g and

h being replaced and the factors ρ−(ν+
3
2 ) and rν+2|r|− 1

2 being replaced by

ρ−(ν−
1
2 ) and rν |r|− 1

2 respectively. Then, Lemmas 6.11 and 6.12 imply

Xν(ρ)≤| · |
C

ρν−
1
2

∫

R
〈ρ− r〉3−m|r|ν |r|− 1

2M(r)dr.
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We estimate ‖Xν(|y|)‖Lp(|y|≥1) for p ≥ 2(m−1)
m−3 and ‖Xν(|y|)‖L1(|y|<1). Let

κ = m−1
p − ν + 1

2 . If p ≥
2(m−1)
m−3 , then κ ≤ 0 and m− 3+ κ ≥ 3

2 for m ≥ 6 and
for ρ ≥ 1

ρκ〈ρ− r〉3−m|r|ν− 1
2 ≤ C〈ρ− r〉− 3

2 〈r〉κ|r|ν− 1
2 ≤ C〈ρ− r〉− 3

2 |r|m−1
p .

It follows by Young’s inequality that for any 2 ≤ p <∞,

‖Xν(|y|)‖Lp(|y|≥1) ≤ C
(∫ ∞

0

∣∣∣∣
∫

R
〈ρ− r〉− 3

2 |r|m−1
p M(r)dr

∣∣∣∣
p

dρ

) 1
p

≤ C
(∫ ∞

0

|M(r)|prm−1dr
) 1
p

≤ C‖V φ‖1‖u‖p. (6.76)

When ρ ≤ 1, we have ρm−1−ν+
3
2 ≤ 1 and 〈ρ− r〉3−m ≤ C〈r〉3−m. Hence,

‖Xν(|y|)‖L1(|y|<1) ≤ C
∫

R
〈r〉3−m|r|ν− 1

2 |M(r)|dr ≤ C‖M‖∞ ≤ C‖V φ‖p′‖u‖p.

We therefore obtain by using Young’s inequality again after splitting the inte-
gral corresponding to (6.61) into the ones over |y| < 1 and |y| ≥ 1 that

‖Zννu‖p ≤ C(‖V φ‖21 + ‖V φ‖p‖V φ‖p′)‖u‖p.

This completes the proof.

6.3 Estimate of ‖Zlogu‖p
In this section we study Zlog and prove the following lemma. The combination
of the lemma with results of the previous subsections proves Theorem 1.5 for
even dimensions m ≥ 6, the formal proof of which will be omitted.

Lemma 6.15. (1) If m = 6, then Zlog is bounded in Lp(Rm) for all 1 < p <
m. If E = E0, then so is Zlog for all 1 < p <∞.

(2) If m ≥ 8, then Zlog is bounded in Lp(Rm) for all 1 < p <∞.

Proof. We prove the lemma for m = 6 only. The proof for m ≥ 8 is similar and
easier. Out of three operators on the right of (3.27) for m = 6, we first study

Z1,log =

∫ ∞

0

G0(λ)(V ϕ⊗ V ϕ)λ log λ(G0(λ)−G0(−λ))F (λ)dλ, (6.77)

where we have ignored the constant ωm−1/π(2π)m which is not important.
Since Z1,log = 0, if E = E0, it suffices to prove (1) for 1 < p < m

m−1 and
m
2 < p < m. By using (2.6) and (2.18) as previously, we express Z1,log as the
sum over 0 ≤ j, k ≤ ν of

Zjk1,logu(x) = CjkT
(a)
j T

(b)
k

[∫

Rm

(V φ)(x − y)Qa,bjk,log(|y|)
|y|m−2−k dy

]
, (6.78)
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where Qa,bjk,log(ρ) are defined by (6.3) or (6.5) (for the case j = 0) by replacing

λj+k−1 or λk respectively by λj+k+1 logλ or λk+2 logλ. We prove

‖Zjk1,logu‖p ≤ C‖u‖p (6.79)

separately for (j, k) 6= (ν, ν) and (j, k) = (ν, ν) by repeating the argument in
corresponding subsections.

Let (j, k) 6= (ν, ν). We first observe that, if j ≥ 1, Fourier inverse transforms
of the derivatives upto the order k + 1 of λj+k+1(log λ)F have the RDIM

F∗(λj+k+1(log λ)F )(l))(ρ)≤| · | C(1 + ρ)−2〈log(1 + ρ)〉, 0 ≤ l ≤ k + 1

and estimates corresponding to (6.11) and (6.27) are satisfied by Qa,bjk,log(ρ) re-
spectively for 1 ≤ j ≤ ν and for j = 0 (without producing the boundary term).

Then, the argument in §6.1.1 goes through for Zjk1,log and produces estimate
(6.79) for 1 < p < m

m−1 . By the same reason the estimate corresponding (6.13)

for m/2 < p < m is satisfied by Qa,bjk,log(ρ) for all j, k and we likewise have
(6.79) for m/2 < p < m by using the argument of the first part of proof of
Lemma 6.8. It is then obvious that the same holds for Z2,log which is obtained
from Z1,log by replacing λ log λ by λ3(log λ) and, that the operator

Z
(a,b)
3,log =

∫ ∞

0

G0(λ)(ϕa ⊗ ψb)λ3(log λ)2(G0(λ)−G0(−λ))F (λ)dλ. (6.80)

produced by λ2 logλF2 of (3.18) satisfies (6.79) for all 1 < p < m.

We next prove (6.79) when (j, k) = (ν, ν). It suffices prove it for 1 < p < p0
for some p0 > 1 and p ≥ p1 for some p1 > 2. The argument at the beginnings
of §6.2.1 and §6.2.2 shows that respectively for 1 < p < p0 and p ≥ p1, we have
only to estimate operators obtained by replacing Qa,bjk,log(ρ) by

1 + 2a

(1 + 2b)ρν+1

∫ ∞

0

ei(1+2b)ρλλm−1 logλF (λ)

(∫

R
e−i(1+2a)rλrν+2Mdr

)
dλ

and

1 + 2b

(1 + 2a)ρν−1

∫ ∞

0

ei(1+2b)ρλλm−1 logλF (λ)

(∫

R
e−i(1+2a)rλrν+2Mdr

)
dλ

in (6.78). We then repeat the argument of §6.2. We have λm−2 logλ in place
of λm−4 in (6.66). If we change λσ by λσ+2 logλ in the definition (6.68) of
L̃±(ρ, r), then (6.69) is satisfied with faster decaying factor 〈ρ − r〉−(σ+2) in
place of 〈ρ − r〉−(σ+1). Thus, ‖Zννlogu‖p is bounded C‖V φ‖1 times (6.74) with

〈ρ−r〉−(m−2) in place of 〈ρ−r〉−(m−3) and this proves the lemma for 1 < p < p0.
The proof for p ≥ p1 is similar and we omit further details.
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Abstract. It is well known that, fixed an even, unimodular, positive
definite quadratic form, one can construct a modular form in each
genus; this form is called the theta series associated to the quadratic
form. Varying the quadratic form, one obtains the ring of stable
modular forms. We show that the differences of theta series associated
to specific pairs of quadratic forms vanish on the locus of hyperelliptic
Jacobians in each genus. In our examples, the quadratic forms have
rank 24, 32 and 48. The proof relies on a geometric result about the
boundary of the Satake compactification of the hyperelliptic locus. We
also study the monoid formed by the moduli space of all principally
polarised abelian varieties, the operation being the product of abelian
varieties. We use this construction to show that the ideal of stable
modular forms vanishing on the hyperelliptic locus in each genus is
generated by differences of theta series.

2010 Mathematics Subject Classification: 14H42 , 32G20
Keywords and Phrases: Schottky problem, Satake compactification,
theta series

1. Introduction

The hyperelliptic Schottky problem is to characterise the locus of Jacobians
of hyperelliptic curves inside the moduli space of principally polarised abelian
varieties. A classical approach is to look for modular forms vanishing along the
hyperelliptic locus; in other words, one looks for the equations of the hyperel-
liptic locus inside the moduli space of principally polarised abelian varieties.
A special kind of modular forms are the theta constants; these were used by
Mumford to give a solution to the hyperelliptic Schottky problem, as reviewed
in Theorem 4.4.
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In this paper, we deal with stable modular forms. One nice feature of these
forms is that they relate the theory of moduli spaces with the theory of qua-
dratic forms.
To start with, let us explain what we mean by stable modular forms. Let Ag
be the moduli space of principally polarised abelian g-fold defined over the field
of complex numbers. We consider the Satake compactification ASg of Ag. This
comes with a stratification

ASg = Ag ⊔ Ag−1 · · · A1 ⊔ A0

In particular, we have a closed embedding

ιg : ASg−1 →֒ ASg
The collection of the moduli spaces ASg and these maps form a direct system
of varieties; we can thus consider the ind-scheme

A∞ := lim
g
ASg

The basic definitions about ind-schemes are recalled in Section 2
Stable modular forms are naturally defined on A∞. A stable modular form
F is a collection of modular forms (Fg)g≥0: each Fg is modular form on ASg
and ι∗gFg = Fg−1. We will recall the theory in Section 3, in particular see
Definition 3.3. A classical and surprising fact is that we can construct a stable
modular form out of an even, unimodular, positive definite quadratic form Q.
This stable modular form is called theta series associated to Q, and is denoted
by ΘQ; see Definition 3.6. In particular, for any g, ΘQ,g is a modular form
on ASg . In [Fre77], Freitag showed that all stable modular forms are linear
combinations of theta series.
In this set up, we can consider the ideal of stable modular forms vanishing on
the locus Hypg of hyperelliptic Jacobians in every genus. Let us formalise this
with definition.

Definition 1.1 (Stable Equation). A stable equation for the hyperelliptic locus
is a stable modular form (Fg)g≥0 such that Fg vanishes along the hyperelliptic
locus Hypg for every g.

Our first result is the following:

Theorem 1.2 (= Theorem 4.2). The ideal of stable equations of the hyperel-
liptic locus is generated by differences of theta series

ΘP −ΘQ

where P and Q are even, unimodular, positive definite quadratic forms of the
same rank.

A key ingredient in the proof of this results is a natural monoidal structure that
one can put on A∞. Given two principally polarised abelian varieties, their
product is still a principally polarised abelian variety but of higher dimension.
This defines an operation

m : A∞ ×A∞ → A∞
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The pull-back m∗ gives to the ring of stable modular forms the structure of a
co-commutative co-algebra. Because of this, we can run the general machinery
explained in Section 2 to prove Theorem 1.2.
So far, the ideal of stable equations for the hyperelliptic locus could be trivial.
Indeed, this is the case for the moduli space of curves: in [CSB14], it is shown
that the ideal of stable modular form vanishing on the Jacobian locus in any
genus is trivial. In other words, given a non-zero stable modular form F , there
exists a g such that Fg does not vanish on the moduli space of genus g curves.
In [SB13], it is similarly shown that the ideal of stable equation for the n-gonal
locus, with n ≥ 3, is trivial. However, as we are going to see, the ideal of stable
equations for the locus of Jacobians of hyperelliptic curves is far from being
trivial.
The first stable equation for the hyperelliptic locus was discovered by C. Poor
([Poo96]): it is the difference of the theta series associated to the quadratic
forms D+

16 and E8 ⊕ E8; this modular form is also called the called Schottky
form. To construct new stable equations, we need to know more about the
geometry of the Satake compactification. The Satake compactification HypSg
of Hypg will be defined in Section 4. We denote by Aindg the moduli space of
indecomposable principally polarised abelian g-fold.

Theorem 1.3 (= Theorem 4.3; Transversality). The intersection of the Stake
compactification HypSg+1 and Aindg inside ASg+1 is scheme theoretically equal to
Hypg.

The statement was well-known at the level of sets; we call it a transversality
result because it states that the scheme structure of the intersection is the re-
duced one. The analogue result does not hold for the moduli of curves [CSB14,
Theorem 1.1] and for the moduli of n-gonal curves [SB13], with n ≥ 3. In those
cases, the failure of the transversality implies that there are no stable equations;
in the hyperelliptic case, this transversality result is key in the construction of
stable equations.
Combining Theorem 1.3 and Criterion 5.2 we can prove the following

Theorem 1.4 (= Corollary 5.7 and Theorem 6.1). The difference of theta
series

ΘP −ΘQ

is a stable equation for the hyperelliptic locus when one of the following hold:

(1) rk(P ) = rk(Q) = 24 and the two quadratic forms have same number of
vectors of norm 2;

(2) rk(P ) = rk(Q) = 32 and the two quadratic forms do not have any
vector of norm 2;

(3) rk(P ) = rk(Q) = 48 and the two quadratic forms do not have any
vector of norm 2 or 4;

Each item of Corollary 1.4 concerns a finite positive number of pairs of qua-
dratic forms. In [Kin03], it is shown that there are more than ten millions of
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quadratic forms meeting the hypothesis of the second item. In the first item,
the "slope" of the quadratic form, i.e. the ratio between the rank and the
norm of the shortest non-zero vector, is strictly bigger than the slope of the
hyperelliptic locus; because of this, in the proof we need to use some non-trivial
arithmetic properties of the quadratic forms: namely we use Theorem 6.2 via
Corollary 6.3.

We think that the ideal of stable equations defines scheme theoretically the
hyperelliptic locus inside the moduli space of indecomposable principally po-
larised abelian varieties in any genus. This, in particular, would imply that
there are infinitely many pairs of quadratic forms which give stable equations
for the hyperelliptic locus. In order to give a characterisation of these pairs, we
think one should relate theta series to partition functions, as partially suggested
in [GV09], [GKV10] and [Mat15].
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2. Ind-varieties and commutative Monoids

In this section, we recall some general definitions and results about ind-varieties
and monoid. A reference about ind-variety is [Kum02, Chapter IV]. An ind-
varietyX is a collection (Xn)n≥0 of algebraic varieties and a collection of closed
embeddings

ιn : Xn−1 →֒ Xn

We write
X = lim

n
Xn

This limit exists in the category of locally ringed spaces; however, we prefer to
enlarge the category of schemes including all direct systems. This means that
for us an ind-variety is a direct system of algebraic varieties.
A line bundle L on X is the data of a line bundle Ln on each Xn such that
ι∗nLn = Ln−1. A section s of L is a collection of sections (sn)n≥0 such that sn
is a section of Ln on Xn and the restriction of sn to Xn−1 is sn−1. We assume
that the vector space H0(X,Lk) is finite dimensional for every k. The ring of
sections of L is thus defined as a projective limit in the category of graded rings

R(X,L) := lim←−R(Xn, Ln) .
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We do not have to worry about the topology of this ring because of graded
pieces H0(X,Lk) are finite dimensional. In other words, elements on R(X,L)
are not formal power series.

Remark 2.1 (Ampleness on ind-varieties). The concept of ampleness for a line
bundle L on an ind-variety X is subtle and, to the best of our knowledge, there
is not a standard definition. A first definition could be that there exists a k
such that Lkn is very ample on Xn for every n. Remark that k does not depend
on n. If H0(X,Lk) is finite dimensional for every k but the dimension of Xn

tends to infinity when n grows, L can not be ample. A weaker definition is
to ask that for every n there exists a k = k(n) such that Lkn is very ample on
Xn. The example that we will study in this paper is ample just in the sense
of the second definition. This second definition does not imply the classical
consequences of ampleness: for instance, in this generality, it is not even clear
that an ample line bundle is effective.

An ind-monoid is an ind-variety M with an associative multiplication and an
identity element 1M . A multiplication m is a family of maps

mg,h : Mg ×Mh →Mg+h

compatible with the restrictions. M is commutative if the multiplication is.

Definition 2.2 (Split monoid). Let M be a commutative ind-monoid and L a
line bundle on M . We say that M is split with respect to L if the following two
conditions hold:

(1) For every g and h

m∗g,hLg+h ∼= pr∗1Lg ⊗ pr∗2Lh =: Lg ⊠ Lh

where pri are the projections;
(2) for every k, the vector space H0(M,Lk) is finite dimensional and

spanned by characters, where a section χ of L is a character if

m∗g,hχg+h = χg ⊠ χh ∀ g, h .
In the language of Hopf algebras, condition (1) means that the pull-back m∗

is a co-commutative co-multiplication for R(M,L). The definition of character
makes sense only if condition (1) holds. With a slight abuse of notations,
we will speak about characters of M rather than characters of the co-algebra
R(M,L), and we will write χ(αβ) = χ(α)χ(β) instead of m∗g,hχg+h(α × β) =
χg(α)⊠ χh(β).

Lemma 2.3. Let M be a commutative monoid, suppose it is split with respect
to a line bundle L, then, any set of characters is linearly independent.

Proof. This proof is standard. We argue by contradiction. Take n minimal
such that there exist n linearly dependent characters χ1, . . . , χn. We can write

χn =

n−1∑

i=1

λiχi λi ∈ C .
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Pick α ∈M such that χ1(α) 6= χn(α). For any β ∈M we have
n−1∑

i=1

λiχi(α)χi(β) = χn(α)χn(β) = χn(α)

(
n−1∑

i=1

λiχi(β)

)

Since β is arbitrary we get
n−1∑

i=i

λi(χi(α)− χn(α))χi = 0 .

The coefficient χ1(α) − χn(α) is non-zero, so we have written a non-trivial
linear relation among fewer than n characters. This contradicts the minimality
of n. �

Proposition 2.4. Let M be a commutative ind-monoid and N a submonoid.
Suppose that M is split with respect to a line bundle L. Then the ideal IN in
R(M,L) of sections vanishing on N is generated by differences of characters

χi − χj
Proof. Take s in IN . We can assume that s is homogeneous and write it as a
linear combination

s = λ1χ1 + · · ·+ λnχn

where χi are characters and λi are constants. Restricting χi to N some of them
might become equal. Up to relabelling the χi, we can fix integers 0 = m0 <
m1 < · · · < mk = n and distinct characters θ1, . . . , θk of N such that

χi |N= θj ⇐⇒ mj−1 < i ≤ mj

For j = 1, . . . , k, let us define

µj :=

mj∑

i=mj−1+1

λi .

By hypothesis we know that

0 = s |N =
k∑

j=1

µjθj .

By Lemma 2.3 we have µj = 0 for every j, so

s = s−
k∑

j=1

µjχmj =

k∑

j=1

mj∑

i=mj−1+1

λi(χi − χmj )

The differences χi − χmj vanish on N for mj−1 < i ≤ mj , so we have just
expressed s as linear combination of differences of characters vanishing on N .

�

The previous argument actually shows that every element of the ideal can be
written as a linear combination of differences of characters. These results are
special cases of a more general theory of Milnor and Moore. They have many
applications in the study of moduli spaces, e.g. [GHT14].
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3. Satake compactification, modular forms and theta series

We recall some facts about modular forms and the Satake compactification of
Ag. General references about modular forms are [BvdGHZ08] and [Mum07].
The Satake compactification was first defined in [Sat56]; a comprehensive ref-
erence is [Fre83].
The line bundle Lg of weight one modular forms on Ag is defined as the deter-
minant of the Hodge bundle; it is ample and it generates the rational Picard
group.

Definition 3.1 (Siegel modular form). A weight k and degree g Siegel modular
form is a section of Lkg on Ag.
The universal cover of Ag is the Siegel upper half space Hg; the symplectic
group Sp(2g,Z) acts on Hg and

Ag = Hg/Sp(2g,Z)
The line bundle Lg is trivial when it s pulled back to Hg; therefore a modular
form can be also defined as a holomorphic function on Hg which transforms
appropriately under the action of Sp(2g,Z).
The Satake compactificationASg is a normal projective variety defined as follows

ASg := Proj(
⊕

n≥0
H0(Ag, Lng ))

This is the compactification "seen" by modular forms. The line bundle Lg
extends naturally to ASg because it is the O(1) of this Proj. For the same
reason, all modular forms extend to ASg
Definition 3.2 (The Siegel operator). The Siegel operator Φ is a map of graded
rings

Φ:
⊕

n≥0
H0(Ag, Lng )→

⊕

n≥0
H0(Ag−1, Lng−1)

defined as
Φ(F )(τ) := lim

t→+∞
F (τ ⊕ it) ,

where τ is an element of Hg−1 and t ∈ R. Here, we are thinking at F as a
holomorphic function on Hg.
Clearly, there is some work to do to show that Φ(F ) is a well defined element
of H0(Ag−1, Lng ); the interested reader cal look at [Fre83].
The Siegel operator is surjective for n even and larger than 2g ([Fre83] page 64);
this means that the Siegel operator defines a closed embedding of ιg : ASg−1 →֒
ASg . One can check that the image of ASg−1 is the boundary ∂ASg of ASg , so we
obtain a stratification

ASg = Ag ⊔ASg−1 = Ag ⊔ Ag−1 · · · A1 ⊔A0 .

By construction, the pull-back ι∗gLg is isomorphic to Lg−1, and the pull-back
ι∗g : H

0(Ag, Lng )→ H0(Ag−1, Lng−1) is the Siegel operator. Again, a reference is
[Fre83].
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The system of varieties ASg together with the closed embeddings ιg induced by
the Siegel operators forms a direct system, so we can define the ind-variety

A∞ := lim
g
ASg

We follow the notations of Section 2. The line bundles Lg define a line bundle

L∞ := lim
g
Lg

on A∞. This line bundle is called the line bundle of weight one stable stable
modular forms.

Definition 3.3 (Stable modular forms). A weight k stable modular form F is
a section of Lk∞. More concretely, it is a collection

F = (Fg)g≥0

where Fg is a modular form of weight k on Ag and

Φ(Fg+1) = Fg

Recall that each line bundle Lg is ample on Ag; however, the same assertion is
problematic for L∞, as explained in Remark 2.1.
We now define a structure of commutative monoid on A∞. Given two princi-
pally polarised abelian varieties of dimension respectively g and h, their product
is still a principally polarised abelian variety of dimension g + h. This gives a
commutative operation

m : A∞ ×A∞ → A∞
([X ], [Y ]) 7→ [X × Y ]

The identity element is A0.

Lemma 3.4. On A∞ ×A∞, we have

m∗L∞ = L∞ ⊠ L∞ .

Proof. For every pair of integers g and h one looks at the morphism

m : Ag ×Ah → Ag+h
The fibre of the Hodge bundle Eg at a point [X ] of Ag is the tangent space at
the identity of X . This implies that m∗Eg+h is Eg ⊠Eh. The statement on Lg
follows by taking the determinant. �

We have the following useful formal consequence

Proposition 3.5. The pull-back m∗ defines a co-commutative co-
multiplication on the algebra of stable modular forms R(A∞, L∞).

The ring of stable modular form, so far, could be trivial. However, there is a
classical and surprising way to produce plenty of stable modular forms out of
quadratic forms. Let us go trough all definitions. A quadratic form is a pair
(Λ, Q), where Λ is a finitely generated free group and Q is a Z-valued bilinear
form on Λ. The rank of the quadratic form is defined as the rank of Λ. The
elements of Λ are called vectors, and the norm of a vector v is Q(v, v). We
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always assume Q to be even (i.e. Q(v, v) is even for every v), unimodular (i.e.
detQ = 1) and positive definite. Often, we will denote a quadratic form just
by Q.

Definition 3.6 (Theta series). Let (Λ, Q) be an even unimodular positive def-
inite quadratic form and g a positive integer, the associated theta series is

ΘQ,g(τ) :=
∑

x1,...,xg∈Λ
exp(πi

∑

i,j

Q(xi, xj)τij)

where τ belongs to Hg.
This is a weight 1

2 rk(Λ) and degree g modular form. By explicit computation,
one sees that the Siegel operator 3.2 acts as follows

Φ(ΘQ,g+1) = ΘQ,g ,

so the collection of all theta series

ΘQ := (ΘQ,g)g≥0

is a stable modular form. Given X ∈ Ag and Y ∈ Ah, we have the factorisation
property

ΘQ,g+h([X × Y ]) = ΘQ,g(X)ΘQ,h(Y ) ,

which means that the theta series are characters for the monoid A∞.

Example 3.7 (Quadratic forms and theta constants). In some cases, theta
series can be written in term of theta constants, let us give some examples
following [Igu81]. Let E8 be the quadratic form associate to the Dynkin diagram
E8. Using a similar definition, for every integer k one can define the Witt
quadratic forms W8k. The quadratic form W8k has rank 8k, it is equal to E8

for k = 1 and to D+
16 for k = 2. Up to a constant, we have the following

expansion

ΘW8k,g(τ) =
∑

ǫ even

θ[ǫ]8k(τ) ,

where the sum runs over all the even theta characteristics. In particular, the
well-known Schottky form can be written as

ΘD+
16
−ΘE8⊕E8 = 2−g

∑

ǫ even

θ[ǫ]16(τ) − 2−2g(
∑

ǫ even

θ[ǫ]8(τ))2

In general, a theta series will not have such a simple expression in term of
theta constants. In [SM89, Section 3], there is a systematic analysis of the
theta series which can be expanded in this way; the results of that paper relies
upon [Mum07, Theorem 6.3].

The ring of stable modular forms is described by the following result of Freitag:

Theorem 3.8 (Theorem 2.5 of [Fre77]). The ring of stable modular forms
R(A∞, L∞) is the polynomial ring in the theta series associated to irreducible
quadratic forms.
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Freitag’s main contribution was to show that H0(A∞, Lk∞) is spanned by theta
series for every k. There are finitely many quadratic forms of a given rank, so
we already learn that H0(A∞, Lk∞) is finite dimensional. This result, together
with Lemma 3.4 and the fact that theta series are characters, means that A∞
equipped with the line bundle L∞ is a split monoid in the sense of Definition
2.2. Freitag’s claim about the polynomial structure now follows easily from
Proposition 2.4.

4. Satake compactification of the hyperelliptic locus

In this section we define the Satake compactification of the hyperelliptic locus
and we prove Theorems 1.2 and 1.3. Consider the Jacobian morphism

j : Hypg → Ag
mapping a curve to its Jacobian.

Definition 4.1 (Satake compactification). The Satake compactification HypSg
of the hyperelliptic locus Hypg is the scheme-theoretic closure of j(Hypg) inside
ASg .

A degeneration of a hyperelliptic Jacobian is still the Jacobian of a hyperelliptic
curve ([Hoy63]), so we have a stratification

HypSg =
⊔

∑
gi≤g

Hypg1 × · · · ×Hypgk

Equivalently, the Satake compactification is the image of the Deligne-Mumford
compactification of Hypg under the morphism which maps a curve to the Ja-
cobian of its normalisation.
In particular, HypSg+1 contains HypSg as a scheme, so we can define the com-
mutative ind-monoid

Hyp∞ := lim
g
HypSg

Using the monoid structure we can show the following

Theorem 4.2. The ideal of stable modular forms vanishing on Hyp∞ is gen-
erated by differences of theta series

ΘP −ΘQ

where P and Q are even, unimodular, positive definite quadratic forms of the
same rank.

Proof. We know that Hyp∞ is a commutative sub-monoid of A∞ and A∞
satisfies the hypotheses of Definition 2.2. The theta series are the characters
of co-algebra R(A∞, L∞), so the result is a direct consequence of Proposition
2.4. �

So far, the ideal studied in the theorem could be trivial. A key tool to show that
a modular form is a stable equation for the hyperelliptic locus is the following
geometric result. Let Aindg be the moduli space of indecomposable principally
polarised abelian g-fold.
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Theorem 4.3 (Transversality). Inside ASg+1 , the intersection of HypSg+1 and
Aindg is scheme theoretically equal to Hypg.

The statement was well-known at the level of sets (cf [Hoy63] or [ACG11,
Lemma 11.6.14]); we call it a transversality result because it states that the
scheme structure of the intersection is the reduced one.

Proof. We work with level structure (4, 8), and we denote by ASg (4, 8) the
Satake compactification of the moduli space Ag(4, 8) of principally polarised
abelian g-fold with level structure (4, 8). This amounts to take a finite Galois
cover of ASg . Now, ASg+1(4, 8) has several boundary components, all isomor-
phic to ASg (4, 8). We will fix one of them, let us call it V . The hyperelliptic
locus HypSg+1(4, 8) breaks into several irreducible components (cf. [Tsu91]);
an irreducible component is identified by the choice of a fundamental system
m of theta characteristic, we will fix such an m and denote by Y = Ym the
corresponding irreducible component. Since the cover is Galois, locally the
intersection of HypSg+1 and Ag is isomorphic to the intersection of Y and V .
Because of this, it is enough to show that the scheme-theoretic intersection of
V ind and Y is reduced. We need to work at level (4, 8) to apply the following
result, which is due set-theoretically to Mumford and scheme theoretically to
Salvati Manni.

Theorem 4.4 ([SM03]). Fix a fundamental system of theta characteristic m =
(m1, . . . ,m2g+1), and let b be the sum of the odd mi. Then, the corresponding
irreducible component Y = Ym of Hypg(4, 8) is scheme theoretically defined by
the vanishing of the theta constants θm+b such that m = mi1 + · · · +mik for
k < g and k ≡ g, g+1, and the non-vanishing of the remaining theta constants.

In the statement, the non-vanishing of the remaining theta constants is needed
to rule out the loci of decomposable abelian varieties; our statement is about
Jacobians of smooth curves, so we are already working outside these loci. Let m
be a g+1 dimensional system of fundamental theta characteristic, e.g. the one
defined in equation 7 of [SM03]. Let Y = Ym be the corresponding irreducible
component of HypSg+1(4, 8). Let Ig+1(Ym) be the ideal of modular forms gen-
erated by the theta constants vanishing along Ym. Because of Salvati Manni’s
result, this ideal defines scheme-theoretically Ym. By direct computation one
sees that

Φ(θ

[
ǫ 0
ǫ′ δ

]
) = θ

[
ǫ
ǫ′

]

for δ equal either to 0 or 1. In the previous formula, Φ is the Siegel operator,
i.e. the restriction operator from ASg+1(4, 8) to one of the boundary component,
say to V . Because of the theorem quoted above, this means that, scheme the-
oretically, the intersection of Ym and V ∼= Ag(4, 8)S away from decomposable
abelian varieties is isomorphic to Yn; where n is the g dimensional system of
fundamental theta characteristic defined in equation 7 of [SM03]. �
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We now complete the description of the tangent space of HypSg+1 along Hypg.
Let C be a smooth genus g hyperelliptic curve and X its Jacobian. To start
with, let us describe the normal bundle exact sequence of Ag in ASg+1 at X .
This sequence reads

0→ TXAg → TXASg+1 → H0(X, 2Θ)∨ → 0

We will need the following explicit description of the action of these derivations.
Let Fg+1 be a modular form on Ag+1 and Fg its restriction to Ag. For any
element T in the Siegel upper half space Hg+1 write

T =

(
τ z
tz t

)
,

with t inH1 and τ inHg. Let q := exp(2πit); then the Fourier-Jacobi expansion
of Fg+1 is

(1) Fg+1(T ) = Fg(τ) +
∑

n≥1
fn(τ, z)q

n

where fn is a section of H0(Xτ , 2nΘ), Xτ is the principally polarised abelian
variety defined by τ , and z is a system of co-ordinates on Xτ . A derivation
D ∈ TXAg acts as D(Fg+1) = D(Fg); a derivation in D ∈ H0(X, 2Θ)∨ acts as
D(Fg+1) = D(f1).
The normal bundle exact sequence for Hypg in HypSg+1 at C is a subsequence
of the normal bundle exact sequence of Ag in ASg+1 at X . To describe it, we
need to introduce the following morphism

(2)
Ψ : C

f−→ C × C δ−→ X
p 7→ (p, ι(p))

(a, b) 7→ AJ(a)−AJ(b)
where ι is the hyperelliptic involution and AJ is the Abel-Jacobi map.

Lemma 4.5. The pull-back Ψ∗2Θ is isomorphic to 2(KC +W ), where W is the
divisor of Weierstrass points on C.

Proof. The pull-back δ∗2Θ is KC ⊠KC(2∆), where ∆ is the diagonal; this is
well-known, e.g. [Wel86, Equation 4.4]. Now, we pull-back KC ⊠KC(2∆) via
f . The pull-back of ∆ is W ; the pull-back of KC ⊠KC is KC + ι∗KC = 2KC .

�

Theorem 4.6. Keep notation as above, the normal bundle exact sequence for
Hypg in Hypg+1 at C is

0→ TCHypg → TCHyp
S
g+1 → PC → 0

where PC is the image of the map

Ψ∗ : H0(X, 2Θ)→ H0(C, 2(KC +W )) .

In other words, the normal tangent cone at C is the cone over (Ψ(C), 2Θ).
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Proof. There are two things we have to prove, first

TCHyp
S
g+1 ∩ TCAg = TCHypg ;

but this is equivalent to Theorem 4.3.
To describe the co-kernel of the inclusion

TCHypg →֒ TCHyp
S
g+1

we need to know that, after blowing up ASg in ASg+1, the proper transform of
HypSg+1 meets the Kummer variety of X in Ψ(C). This is proved in [Nam73,
Theorem 6], just remark that to obtain a generic irreducible nodal hyperelliptic
curve we need to glue two points conjugated under the hyperelliptic involution.

�

In [Cod14, Lemma 3.6], it is shown that Ψ∗ is not surjective and PC has rank
2g; however, we do not need this result here.

Remark 4.7 (Failure of Theorem 4.3 at the locus of decomposable abelian
varieties). For the sake of completeness, let us sketch a proof of the failure of
Theorem 4.3 at the locus of decomposable abelian varieties. This result is not
needed in this paper, but we think that the study of this intersection is interest-
ing on its own. Pick two integers such that g1+g2 = g; fix a hyperelliptic curve
C of genus g1 and a hyperelliptic curve D of genus g2. Call ι the hyperelliptic
involution. The point (C,D) in HypSg+1 represents all the hyperelliptic curves
of the form C ⊔D/(p ∼ q, ι(p) ∼ ι(q)), where p is a point varying in C and q
is varying in D. Recall that we have an identification

Sym2(H0(C,KC)
∨ ⊕H0(D,KD)

∨) = T(J(C)×J(D))Ag
Arguing as in [CSB14], we can show that the tangent space of HypSg+1 at (C,D)
contains the image of the map

ψ : C/ι×D/ι → P Sym2(H0(C,KC)
∨ ⊕H0(D,KD)

∨)
(p, q) 7→ ωi(p)ψj(q) + ωj(p)ψi(q)

where ωi are a basis of H0(C,KC) and ψi are a basis of H0(D,KD). This is
the same tangent direction we get when we consider an appropriate smoothing
of the genus g nodal curve C ⊔D/p ∼ q; this smoothing is not hyperelliptic, so
the intersection of T(C,D)Hyp

S
g+1 with T(J(C)×J(D))Ag is strictly bigger than

T(C,D)Hyp
S
g .

5. Projective invariants of hyperelliptic curves

In this section, we review the theory of projective invariants, and we use it to
show that certain modular forms vanish on the hyperelliptic locus.
To start with, let us introduce the auxiliary space Bg. This is the moduli space
of 2g + 2 points on P1, up to permutation and projectivity. The points are
counted with multiplicity, points are not allowed to have multiplicity bigger that
g + 1. This space is classically constructed as a GIT quotient; it is irreducible,
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it has an open dense subset B◦g where the 2g + 2 points are all distinct, and a
boundary D where at least two points coincide.
Let C be a smooth genus g hyperelliptic curve, fix a two to one map π : C → P1.
This morphism is unique up to projective transformations of P1, it ramifies at
2g+2 points. A point p is called a Weierstrass point if it is a ramification point
for π.

Definition 5.1 (Projective invariants). The projective invariants of C are the
image of the Weierstrass points under π, considered up to permutations and
projective automorphisms of P1.

Equivalently, the projective invariants of C are the points of the branch divisor
of π, considered up to projectivity. The projective invariants of a smooth
hyperelliptic curve C are naturally a point of B◦g , so we have a morphism

fg : Hypg → B◦g
One can reconstruct a hyperelliptic curve out of its projective invariants, and
given 2g + 2 points on P1 there is a hyperelliptic curve with that projective
invariants; this means that fg is an isomorphism.
This construction has been extensively used to study the moduli space Hypg;
references are [Igu67], [AL02] and [Pas11, Chapter 2].
As an aside, let us recall that the Thomæ’s formula permits to write the cross-
ratios of the projective invariants in term of second order theta functions eval-
uated at the period matrix of C.
Following [AL02], the map fg extends to an isomorphism

fg : Hypg ⊔ η∗0 → B◦g ⊔D∗

where η∗0 parametrises irreducible singular hyperelliptic curves with just one
node, i.e. curves of the form C/p ∼ ι(p), and D∗ parametrises 2g + 2 points
on P1 such that exactly 2 points coincide. The image of a curve in η∗0 is a
set of 2g + 2 points of the form {p1, . . . , p2g, p, p}, where {p1, . . . , p2g} are the
projective invariants of the normalisation and the glued points are the pre-
images of p under π.
Always following [AL02], we can extend fg further to a morphism

fg : Hypg → Bg
which contracts the boundary divisors of the Deligne-Mumford compactifica-
tion different from the closure of η∗0 to high co-dimension loci.
We need some more information about Bg, again references are [Igu67], [AL02]
and [Pas11, Chapter 2]. From the GIT point of view, the moduli space Bg
can be constructed as the Proj of the ring S(2, 2g + 2), which is the ring of
co-invariant of binary forms of degree 2g+2. This ring is formally constructed
as follows: let Z be the cartesian product of 2g+2 copies of P1, on this variety
we have a diagonal action of SL(2,C) and an action of the symmetric group;
this action linearise to an action on the line bundle M := O(1, . . . , 1), the
ring S(2, 2g + 2) is the ring of invariant element of R(Z,M). More concretely,
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S(2, 2g + 2) is the ring of symmetric functions in 2g + 2 variables, which are
co-invariant under the natural action of SL(2,C). The discriminant ∆ is an
element of S(2, 2g + 2) of degree 4g + 2, it cuts out the boundary divisor D.
We now consider also the Jacobian morphism

j : Hypg → HypSg →֒ Ag
Take the composition

j ◦ f−1g : Bg 99K Ag
Under this map, D∗ dominates Hypg−1; explicitly, the set {p1, . . . , p2g, p, p}
is mapped to the Jacobian of the smooth hyperelliptic curve defined by the
projective invariants {p1, . . . , p2g}. Taking the pull-back we obtain a morphism
of graded ring

ρ : R(Ag, Lg)→ S(2, 2g + 2)

whose kernel is exactly the ideal of modular forms vanishing on the hyperelliptic
locus. This map is sometime called Igusa morphism of projective invariants, it
was introduced in [Igu67], where Igusa proved that its degree is 1

2g
1. Using

this construction we can prove the following criterion.

Criterion 5.2 (Weissauer - unpublished). Let Fg be a weight n and degree
g modular form. Restrict it to HypSg and say it vanishes along Hypg−1 with
multiplicity at least k. If

n

k
< 8 +

4

g
then Fg vanishes on Hypg.

Proof. Suppose Fg vanishes with multiplicity at least k onHypg−1. This means
that (j ◦ f−1g )∗Fg vanishes with multiplicity at least k on D. In other words,
∆k divides ρ(Fg). The degree of the discriminant in S(2, 2g + 2) is 4g + 2, the
degree of ρ(Fg) is 1

2gn. Since, by hypothesis,

k(4g + 2) >
1

2
gn

we obtain that ρ(Fg) is equal to zero, so the claim. �

Remark 5.3 (Relation with Theorem 4.6). To show that Fg vanishes along
Hypg−1 with multiplicity at least 2 one needs to know the tangent space of
HypSg along Hypg−1; in the applications, especially in Theorem 6.1, we will
use the description given in Theorem 4.6.

Remark 5.4 (Other versions of Criterion 5.2). A weaker version of Criterion 5.2
can be found in [Poo96]. An alternative proof is in [Pas11]. In [SM00], Salvati
Manni attributed this criterion to Weissauer, in an unpublished preprint, and
showed that the inequality is sharp. This Criterion is also related to the slope
of the hyperelliptic locus, in the sense of slope of the cone of effective divisors
(cf. [CH88]).

1If g is odd, all non-trivial modular forms have odd degree, so the factor 1
2

should not

worry the reader.
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Combining Theorem 1.3 and Criterion 5.2 we can find a first group of stable
equations for the hyperelliptic locus. We will need the following basic invariant
of a quadratic form (Q,Λ)

µ(Q) := min{Q(v, v) | v ∈ Λ; v 6= 0} = min{n | Rn(Λ) 6= ∅} ,
where Rn(Λ) is the set of vectors of Λ of norm 2n.

Theorem 5.5. Let (Q,Λ) and (P,Γ) be two even positive definite unimodular
quadratic forms of rank N and let µ := min{µ(Q), µ(P )}. If

N

µ
≤ 8 ,

then
F := ΘQ −ΘP

is a stable equation for the hyperelliptic locus. In other words, Fg vanishes on
Hypg for every g.

Proof. The proof is by induction on g. The difference of two theta series van-
ishes on A0. Suppose the statement true for g, we want to apply Criterion 5.2
to Fg+1. Call k := 1

2µ, we need to prove that Fg+1 vanishes at the boundary
component Hypg with multiplicity at least k.
We first compute the multiplicity along tangent direction parallel to the bound-
ary, namely along TCHypSg+1∩TCAg, where C is a smooth genus g hyperelliptic
curve. This intersection is, by Theorem 1.3, equal to TCHypg. By induction,
Fg vanishes along Hypg, so Fg+1 is annihilated by the derivations contained in
TCHyp

S
g+1 ∩ TCAg.

Let us now look at the normal direction to Ag; we will use the Fourier-Jacobi
expansion introduced in the equation (1). Writing out the Fourier-Jacobi ex-
pansion of Fg+1, the hypothesis on µ implies that the first k terms vanish. This
means that Fg+1 vanishes with order at least k along the normal direction to Ag
in ASg+1; in particular, we obtain that it vanishes along Hypg with multiplicity
at least k and we can apply Criterion 5.2. �

The hypotheses of Theorem 5.5 are quite restrictive; let us describe the cases
where the Theorem can be applied.

Proposition 5.6. Let (Q,Λ) be an even, positive definite, unimodular qua-
dratic form, then

rk(Q)

µ(Q)
≤ 8

if and only if the pair (rk(Q), µ(Q)) is equal to one of the following pairs: (8, 2),
(16, 2), (32, 4) or (48, 6).

Proof. Given any even unimodular quadratic form (Q,Λ), there is an upper
bound

µ(Q) ≤ 2⌊ rk(Q)

24
⌋+ 2
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where “⌊ ⌋” is the round down (see [CS99, Section 7.7 Corollary 21] ). This
bound, combined with the fact that the rank is divisible by 8, gives the Propo-
sition.

�

Let us call the type of quadratic form the pair (rk(Q), µ(Q)). There is just one
quadratic form of type (8, 2) and one of type (24, 4), so we do not get any stable
equation in these cases. The rank 16 case was considered by Poor in [Poo96]:
there are two quadratic forms of type (16, 2), so one gets one equation. In
[Kin03, Corollary 5], using a generalization of the mass formula, it is shown
that there exist at least ten millions of quadratic forms of rank 32 and µ = 4
; however, just 15 of them are known explicitly. The situation for quadratic
forms of type (48, 6) is not clear: believably, there exist many of them, see
[Kin03, Page 15], but there is not any lower bound and just 3 of them are
known explicitly. (King adopts a slightly different notation: every quadratic
form is tacitly assumed to be positive definite.) To summarise, Theorem 5.5
can be applied to the following cases

Corollary 5.7. If P and Q are two even, unimodular, positive definite qua-
dratic forms meeting one of the following two hypotheses:

(1) rk(P ) = rk(Q) = 32 and µ(P ) = µ(Q) = 4; that is, the quadratic forms
do not have any vector of norm 2;

(2) rk(P ) = rk(Q) = 48 and µ(P ) = µ(Q) = 6; that is, the quadratic forms
do not have any vector of norm 2 and 4;

then, the difference
ΘP −ΘQ

is a stable equation for the hyperelliptic locus.

6. Niemeier quadratic forms

Niemeier quadratic forms are rank 24 quadratic forms. In this section we prove
the following:

Theorem 6.1. Let (P,Γ) and (Q,Λ) be two rank 24 quadratic forms with the
same number of vectors of norm 2, then the difference

ΘP −ΘQ

is a stable equation for the hyperelliptic locus.

Vectors of norm 2 are usually called roots. This result concerns the following
5 pairs of quadratic forms

quadratic forms A4
5D4 , D6

4 A2
9D6 , D4

6 A11D7E6, E4
6

# roots 72 120 144

A17E7 , D10E
2
7 E8D16, E3

8

216 360
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where a quadratic form of rank 24 is labelled by its root system (see e.g. [Ebe13,
Section 3] for more details). The pair E3

8 , D16E8 corresponds to the modular
form ΘE8(ΘE8⊕E8 − ΘD+

16
), so its behaviour was well-understood. The others

cases can not be expressed as a product of lower weight stable modular forms
and they are not covered by previous results.
This result is surprising because the slope of these quadratic forms, i.e. the
ratio between the rank and the norm of the shortest vector, is strictly bigger
than 8, so they were not expected to vanish on the hyperelliptic locus in every
genus. Before proving our theorem we need two preliminary results.

6.1. A formula for sections of 2Θ. Let s be a section of 2Θ on the Jaco-
bian of a curve C with period matrix τ . For every couple of points a and b of
C the following classical formula holds:

(3) s(τ, a− b) = E(a, b)2[s(τ, 0)ω(a, b) +
∑

i,j

∂2s

∂zi∂zj
(τ, 0)ωi(a)ωj(b)]

where E is the Prime form, {ωi} is the basis of the holomorphic differentials
on C corresponding to the basis { ∂

∂zi
} of the tangent space at the origin of the

Jacobian, ω(a, b) is the fundamental normalised bi-differential, and everything
is trivialised with respect to a choice of local co-ordinates za and zb. This
formula is well known, see e.g. [MV10, Appendix A].

6.2. The “heat equation” for Niemeier quadratic forms. The classifi-
cation of rank 24 quadratic forms is due to Niemeier, but it has been simplified
by Venkov proving and using the following identity

Theorem 6.2 (Venkov, cf. [Ebe13] Section 3). Let (Λ, Q) be a rank 24 qua-
dratic form, then

r2(Λ)Q(v, w) = 8
∑

y∈R2(Λ)

Q(y, w)Q(y, v) ∀ v, w ∈ Λ

where r2(Λ) is the number of roots and R2(Λ) is the set of roots.

The proof relies upon the theory of degree 1 modular forms with harmonic
coefficients. Let us draw a consequence of this result about the Fourier-Jacobi
expansion of theta series (cf. equation (1)).

Corollary 6.3 (Heat equation). The first Fourier-Jacobi coefficient f1 of a
theta series associated to a rank 24 quadratic form Λ satisfies the following
“heat equation”

r2(Λ)πi
∂f1
∂τij

(τ, 0) = 3(1 + δij)
∂2f1
∂zi∂zj

(τ, 0) ,

where r2(Λ) is the number of roots of Λ.
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Proof. By explicit computation, we can write out the first Fourier-Jacobi coef-
ficient of a theta series:

f1(τ, z) =
∑

x1,...,xg∈Λ

∑

y∈R2(Λ)

exp(πi
∑

i,j

Q(xi, xj)τij + 2πi
∑

i

Q(y, xi)zi) .

Fix two indexes i and j, by explicit computation we have

∂2f1
∂zi∂zj

(τ, 0) = (2πi)2
∑

x1,...,xg∈Λ

∑

y∈R2(Λ)

Q(y, xi)Q(y, xj) exp(πi
∑

i,j

Q(xi, xj)τij) ,

On the other hand

(1 + δij)
∂f1
∂τij

(τ, 0) = 2πi
∑

x1,...,xg∈Λ
Q(xi, xj) exp(πi

∑

i,j

Q(xi, xj)τij) ,

the coefficient (1 + δij) is because the variables on Hg are τij with i ≤ j, so
when we compute the derivative with respect to τij we need to derive both τij
and τji. Applying Theorem 6.2 we obtain the result. �

This formula is also discussed in [MV10, page 16]. This result is generalised
to higher order Fourier-Jacobi coefficients and higher rank quadratic forms in
[Cod14, Theorem 10.3].

6.3. Proof of Theorem 6.1. We want to show that Fg = ΘP,g − ΘQ,g is
zero on Hypg for every g; we argue by induction on g. The case g = 0 is
easy. To prove the inductive step we use Criterion 5.2: we need to show that
Fg+1 vanishes along Hypg with multiplicity at least 2. As in Theorem 5.5, the
derivative along directions tangent to Ag vanishes because of Theorem 1.3 and
the inductive hypothesis.
The normal direction is quite different: now the first Fourier-Jacobi coefficient
is not trivial, so there is some work to do. Because of Theorem 4.6, it is enough
to check that f1 vanishes when restricted to points of the form (τ, p − ι(p)),
where τ is the period matrix of a smooth hyperelliptic curve C, p is a point of
C and ι is the hyperelliptic involution.
To show this we argue as follows. First remark that

f1(τ, 0) = Fg(τ) = 0

Then we apply the formula (3), trivialising everything with respect to co-
ordinates zp and ι∗zp and recalling that

ω

dzp
(p) =

ω

ι∗dzp
(ι(p))

we get

f1(τ, p− ι(p)) = E(p, ι(p))2
∑

i,j

∂2f1
∂zi∂zj

(τ, 0)ωi(p)ωj(p)
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Now the heat equation 6.3 and the hypothesis on the number of roots come
into the game: since r2(Λ) = r2(Γ) =: r, we have

6
∑

i,j

∂2f1
∂zi∂zj

(τ, 0)ωi(p)ωj(p) = rπi
∑

i≥j

∂Fg
∂τij

(τ)ωi(p)ωj(p) = (rπi)dFg(τ)(p)

Let us explain the last equality: the fibre of the cotangent bundle of Ag
at Jac(C) is isomorphic to Sym2H0(C,KC), so dFg(τ) is a quadric in
PH0(C,KC)

∨ and we can evaluate it on the image of p under the canonical
map.
The co-normal bundle of Hypg in Mg is given by the −1 eigenspace
of H0(C, 2KC); the image of the co-differential m : Sym2H0(C,KC) →
H0(C, 2KC) is the +1 eigenspace; we conclude that the quadric in the co-
normal bundle of Hypg in Ag vanishes along the canonical image of C. Since
Fg vanishes along Hypg, dFg is a quadric containing the canonical image of
C; in other words, it has to vanish when evaluated at any point p of C. This
concludes the proof of Theorem 6.1.

6.4. Other results about Niemeir quadratic forms. With similar tools,
we can prove other results about the behaviour of these modular forms on the
moduli space of curves and abelian varieties.

Theorem 6.4 ([Cod14] Corollary 11.2). Let P and Q be two even positive
definite unimodular quadratic forms of rank 24 with the same number of roots,
then the stable modular form

F := ΘP −ΘQ

is zero on Mg for g ≤ 4, and it cuts a divisor of slope 12 on M5.

Theorem 6.5 ([Cod14] Theorem 11.3). The following degree 5 modular forms
are non-trivial cusp forms

Θ(D16E8)−Θ(E3
8 )−

21504

24
(Θ(A4

5D5)−Θ(D6
4))

Θ(D16E8)−Θ(E3
8 )−

21504

216
(Θ(A2

9D6)−Θ(D4
6))

Θ(D16E8)−Θ(E3
8 )−

21504

480
(Θ(A11D7E6)−Θ(E4

6))

Θ(D16E8)−Θ(E3
8 )−

21504

−2520(Θ(A17E7)−Θ(D10E
2
7))

where, for typographical reasons, we write Θ(Q) rather than ΘQ,5.
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Abstract. We prove that every irreducible, admissible represen-
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Introduction

The uniqueness and existence of appropriate models for irreducible, admissible
representations of a linear reductive group over a local field has long played
an important role in local and global representation theory. Best known are
perhaps the Whittaker models for general linear groups, which are instrumental
in proving multiplicity one theorems and the analytic properties of automorphic
L-functions. Generic representations, i.e., those admitting a Whittaker model,
have an important place in the representation theory of GSp(4) as well, the
group under consideration in this paper; see [16] for an early example of their
use. For GSp(4) they play a less comprehensive role, however, since there are
many important non-generic automorphic representations, for example those
generated by holomorphic Siegel modular forms.
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The use of Bessel models, or equivalently Bessel functionals, as a substitute for
the often missing Whittaker models for GSp(4) has been pioneered by Novod-
vorsky and Piatetski-Shapiro. Similar to the generic case, Bessel models consist
of functions on the group with a simple transformation property under a cer-
tain subgroup; see below for precise definitions. The papers [17] and [15] are
concerned with the uniqueness of Bessel functionals in the case of trivial central
character; the first paper treats the case of so-called special Bessel functionals.
For the use of Bessel models in the study of analytic properties and special
values of L-functions for non-generic representations, see [19], [36], [6], [21].
In this paper, we further investigate the existence and uniqueness of Bessel
functionals for irreducible, admissible representations of GSp(4, F ), where F is
a non-archimedean local field of characteristic zero. To explain our results, we
have to introduce some notation. Let F be a non-archimedean local field of
characteristic zero, and let ψ be a non-trivial character of F . Let GSp(4, F ) be
the subgroup of g in GL(4, F ) satisfying tgJg = λ(g)J for some scalar λ(g) in
F×, where

J =

[
1

1
−1

−1

]
.

The Siegel parabolic subgroup P of GSp(4, F ) is the subgroup consisting of all
matrices whose lower left 2 × 2 block is zero. Let N be the unipotent radical
of P . The characters θ of N are in one-to-one correspondence with symmetric
2× 2 matrices S over F via the formula

θ([ 1 X1 ]) = ψ(tr(S[ 1
1 ]X)).

We say that θ is non-degenerate if the matrix S is invertible, and we say that
θ is split if disc(S) = 1; here disc(S) is the class of − det(S) in F×/F×2. For
a fixed S, we define

T = [ 1
1 ]{g ∈ GL(2, F ) : tgSg = det(g)S}[ 1

1 ]. (1)

We embed T into GSp(4, F ) via the map

t 7→
[
t
det(t)t′

]
,

where for a 2×2-matrix g we write g′ = [ 1
1 ] tg−1 [ 1

1 ]. The group T normalizes
N , so that we can define the semidirect product D = TN . This will be referred
to as the Bessel subgroup corresponding to S. For t in T and n in N , we have
θ(tnt−1) = θ(n). Thus, if Λ is a character of T , we can define a character Λ⊗ θ
of D by (Λ ⊗ θ)(tn) = Λ(t)θ(n). Whenever we regard C as a one-dimensional
representation of D via this character, we denote it by CΛ⊗θ. Let (π, V ) be an
irreducible, admissible representation of GSp(4, F ). A non-zero element of the
space HomD(π,CΛ⊗θ) is called a (Λ, θ)-Bessel functional for π. We say that
π admits a (Λ, θ)-Bessel functional if HomD(π,CΛ⊗θ) is non-zero, and that π
admits a unique (Λ, θ)-Bessel functional if HomD(π,CΛ⊗θ) is one-dimensional.
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In this paper we prove three main results about irreducible, admissible repre-
sentations π of GSp(4, F ):
• If π is not one-dimensional, we prove that π admits some (Λ, θ)-Bessel
functional; see Theorem 6.1.4.

• If θ is split, we determine the set of Λ for which π admits a (Λ, θ)-
Bessel functional, and prove that such functionals are unique; see
Proposition 3.4.2, Theorem 6.1.4, Theorem 6.2.2 and Theorem 6.3.2.

• If π is non-supercuspidal, or is in an L-packet with a non-super-
cuspidal representation, we determine the set of (Λ, θ) for which π
admits a (Λ, θ)-Bessel functional, and prove that such functionals are
unique; see Theorem 6.2.2 and Theorem 6.3.2.

We point out that all our results hold independently of the residual character-
istic of F .
To investigate (Λ, θ)-Bessel functionals for (π, V ) we use the P3-module VZJ ,
the GJ -module VZJ ,ψ, and the twisted Jacquet module VN,θ. Here,

P3 = GL(3, F ) ∩
[ ∗ ∗ ∗
∗ ∗ ∗

1

]
, ZJ = GSp(4, F ) ∩

[
1 ∗
1
1
1

]
,

and GJ = GSp(4, F ) ∩
[
1 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

1

]
.

The P3-module VZJ was computed for all π with trivial central character in
[28]; in this paper, we note that these results extend to the general case. The
GJ -module VZJ ,ψ is closely related to representations of the metaplectic group

S̃L(2, F ). The twisted Jacquet module VN,θ is especially relevant for non-
supercuspidal representations. Indeed, we completely calculate twisted Jacquet
modules of representations parabolically induced from the Klingen or Siegel
parabolic subgroups. These methods suffice to treat most representations; for
the few remaining families of representations we use theta lifts. As a by-product
of our investigations we obtain a characterization of non-generic representa-
tions. Namely, the following conditions are equivalent: π is non-generic; the
twisted Jacquet module VN,θ is finite-dimensional for all non-degenerate θ; the
twisted Jacquet module VN,θ is finite-dimensional for all split θ; the GJ -module
VZJ ,ψ is of finite length. See Theorem 7.1.4.
If an irreducible, admissible representation π admits a (Λ, θ)-Bessel functional,
then π has an associated Bessel model. For unramified π admitting a (Λ, θ)-
Bessel functional, the works [36] and [4] contain explicit formulas for the spher-
ical vector in such a Bessel model. Other explicit formulas in certain cases of
Iwahori-spherical representations appear in [32], [20] and [22]. We note that
these works show that all the values of a certain vector in the given Bessel
model can be expressed in terms of data depending only on the representation
and Λ and θ; in this situation it follows that the Bessel functional is unique.
As far as we know, a detailed proof of uniqueness of Bessel functionals in all
cases has not yet appeared in the literature.
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In the case of odd residual characteristic, and when π appears in a generic
L-packet, the main local theorem of [23] gives an ε-factor criterion for the
existence of a (Λ, θ)-Bessel functional. There is some overlap between the
methods of [23] and the present work. However, the goal of this work is to give
a complete and ready account of Bessel functionals for all non-supercuspidal
representations. We hope these results will be useful for applications where
such specific knowledge is needed.

1 Some definitions

Throughout this work let F be a non-archimedean local field of characteristic
zero. Let F̄ be a fixed algebraic closure of F . We fix a non-trivial character
ψ : F → C×. The symbol o denotes the ring of integers of F , and p is the
maximal ideal of o. We let ̟ be a fixed generator of p. We denote by | · | the
normalized absolute value on F , and by ν its restriction to F×. The Hilbert
symbol of F will be denoted by (·, ·)F . If Λ is a character of a group, we denote
by CΛ the space of the one-dimensional representation whose action is given by
Λ. If x =

[
a b
c d

]
is a 2× 2 matrix, then we set x∗ =

[
d −b
−c a

]
. If X is an l-space,

as in 1.1 of [3], and V is a complex vector space, then S(X,V ) is the space of
locally constant functions X → V with compact support. Let G be an l-group,
as in [3], and let H be a closed subgroup. If ρ is a smooth representation of H ,
we define the compactly induced representation (unnormalized) c-IndGH(ρ) as
in 2.22 of [3]. If (π, V ) is a smooth representation of G, and if θ is a character
of H , we define the twisted Jacquet module VH,θ as the quotient V/V (H, θ),
where V (H, θ) is the span of all vectors π(h)v − θ(h)v for all h in H and v in
V .

1.1 Groups

Let

GSp(4, F ) = {g ∈ GL(4, F ) : tgJg = λ(g)J, λ(g) ∈ F×}, J =

[
1

1
−1

−1

]
.

The scalar λ(g) is called the multiplier or similitude factor of the matrix g. The
Siegel parabolic subgroup P of GSp(4, F ) consists of all matrices whose lower
left 2 × 2 block is zero. For a matrix A ∈ GL(2, F ) set A′ = [ 1

1 ] tA−1[ 1
1 ].

Then the Levi decomposition of P is P =MN , where

M = {
[
A
λA′

]
: A ∈ GL(2, F ), λ ∈ F×}, (2)

and

N = {
[ 1 y z

1 x y
1

1

]
: x, y, z ∈ F}. (3)

Let Q be the Klingen parabolic subgroup, i.e.,

Q = GSp(4, F ) ∩
[ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗

]
. (4)
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The Levi decomposition for Q is Q =MQNQ, where

MQ = {
[
t
A
t−1 det(A)

]
: A ∈ GL(2, F ), t ∈ F×}, (5)

and NQ is the Heisenberg group

NQ = {
[ 1 x y z

1 y
1 −x

1

]
: x, y, z ∈ F}. (6)

The subgroup of Q consisting of all elements with t = 1 and det(A) = 1 is called

the Jacobi group and is denoted by GJ . The center of GJ is ZJ =

[
1 ∗
1
1
1

]
.

The standard Borel subgroup of GSp(4, F ) consists of all upper triangular
matrices in GSp(4, F ). We let

U = GSp(4, F ) ∩
[
1 ∗ ∗ ∗
1 ∗ ∗
1 ∗
1

]

be its unipotent radical. The following elements of GSp(4, F ) represent gener-
ators for the eight-element Weyl group,

s1 =

[
1

1
1

1

]
and s2 =

[
1

1
−1

1

]
. (7)

1.2 Representations

For a smooth representation π of GSp(4, F ) or GL(2, F ), we denote by π∨ its
smooth contragredient.
For c1, c2 in F×, let ψc1,c2 be the character of U defined by

ψc1,c2(

[
1 x ∗ ∗
1 y ∗

1 −x
1

]
) = ψ(c1x+ c2y). (8)

An irreducible, admissible representation (π, V ) of GSp(4, F ) is called generic
if the space HomU (V, ψc1,c2) is non-zero. This definition is independent of the
choice of c1, c2. It is known by [30] that, if non-zero, the space HomU (V, ψc1,c2)
is one-dimensional. Hence, π can be realized in a unique way as a space of
functions W : GSp(4, F )→ C with the transformation property

W (ug) = ψc1,c2(u)W (g), u ∈ U, g ∈ GSp(4, F ),

on which π acts by right translations. We denote this model of π by
W(π, ψc1,c2), and call it the Whittaker model of π with respect to c1, c2.
We will employ the notation of [35] for parabolically induced representations
of GSp(4, F ) (all parabolic induction is normalized). For details we refer to the
summary given in Sect. 2.2 of [28]. Let χ1, χ2 and σ be characters of F×. Then
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χ1×χ2⋊σ denotes the representation of GSp(4, F ) parabolically induced from
the character of the Borel subgroup which is trivial on U and is given by

diag(a, b, cb−1, ca−1) 7−→ χ1(a)χ2(b)σ(c), a, b, c ∈ F×,

on diagonal elements. Let σ be a character of F× and π be an admissible
representation of GL(2, F ). Then π⋊σ denotes the representation of GSp(4, F )
parabolically induced from the representation

[
A ∗
cA′

]
7−→ σ(c)π(A), A ∈ GL(2, F ), c ∈ F×, (9)

of the Siegel parabolic subgroup P . Let χ be a character of F× and π an
admissible representation of GSp(2, F ) ∼= GL(2, F ). Then χ ⋊ π denotes the
representation of GSp(4, F ) parabolically induced from the representation

[
t ∗ ∗
g ∗
det(g)t−1

]
7−→ χ(t)π(g), t ∈ F×, g ∈ GL(2, F ), (10)

of the Klingen parabolic subgroup Q.
For a character ξ of F× and a representation (π, V ) of GSp(4, F ), the twist
ξπ is the representation of GSp(4, F ) on the same space V given by (ξπ)(g) =
ξ(λ(g))π(g) for g in GSp(4, F ), where λ is the multiplier homomorphism defined
above. A similar definition applies to representations π of GL(2, F ); in this case,
the multiplier is replaced by the determinant. The behavior of parabolically
induced representations under twisting is as follows,

ξ(χ1 × χ2 ⋊ σ) = χ1 × χ2 ⋊ ξσ,

ξ(π ⋊ σ) = π ⋊ ξσ,

ξ(χ⋊ π) = χ⋊ ξπ.

The irreducible constituents of all parabolically induced representations of
GSp(4, F ) have been determined in [35]. The following table, which is es-
sentially a reproduction of Table A.1 of [28], provides a summary of these
irreducible constituents. In the table, χ, χ1, χ2, ξ and σ stand for characters
of F×; the symbol ν denotes the normalized absolute value; π stands for an
irreducible, admissible, supercuspidal representation of GL(2, F ), and ωπ de-
notes the central character of π. The trivial character of F× is denoted by
1F× , the trivial representation of GL(2, F ) by 1GL(2) or 1GSp(2), depending on
the context, the trivial representation of GSp(4, F ) by 1GSp(4), the Steinberg
representation of GL(2, F ) by StGL(2) or StGSp(2), depending on the context,
and the Steinberg representation of GSp(4, F ) by StGSp(4). The names of the
representations given in the “representation” column are taken from [35]. The
“tempered” column indicates the condition on the inducing data under which
a representation is tempered. The “L2” column indicates which representa-
tions are square integrable after an appropriate twist. Finally, the “g” column
indicates which representations are generic.
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constituents of representation tempered L2 g

I χ1 × χ2 ⋊ σ (irreducible) χi, σ unitary •

II ν1/2χ× ν−1/2χ⋊ σ a χStGL(2) ⋊ σ χ, σ unitary •

(χ2 6= ν±1, χ 6= ν±3/2) b χ1GL(2) ⋊ σ

III χ× ν ⋊ ν−1/2σ a χ⋊ σStGSp(2) χ, σ unitary •

(χ /∈ {1, ν±2}) b χ⋊ σ1GSp(2)

IV ν2 × ν ⋊ ν−3/2σ a σStGSp(4) σ unitary • •

b L(ν2, ν−1σStGSp(2))

c L(ν3/2StGL(2), ν
−3/2σ)

d σ1GSp(4)

V νξ × ξ ⋊ ν−1/2σ a δ([ξ, νξ], ν−1/2σ) σ unitary • •

(ξ2 = 1, ξ 6= 1) b L(ν1/2ξStGL(2), ν
−1/2σ)

c L(ν1/2ξStGL(2), ξν
−1/2σ)

d L(νξ, ξ ⋊ ν−1/2σ)

VI ν × 1F× ⋊ ν−1/2σ a τ (S, ν−1/2σ) σ unitary •

b τ (T, ν−1/2σ) σ unitary

c L(ν1/2StGL(2), ν
−1/2σ)

d L(ν, 1F× ⋊ ν−1/2σ)

VII χ⋊ π (irreducible) χ, π unitary •

VIII 1F× ⋊ π a τ (S, π) π unitary •

b τ (T, π) π unitary

IX νξ ⋊ ν−1/2π a δ(νξ, ν−1/2π) π unitary • •

(ξ 6= 1, ξπ = π) b L(νξ, ν−1/2π)

X π ⋊ σ (irreducible) π, σ unitary •

XI ν1/2π ⋊ ν−1/2σ a δ(ν1/2π, ν−1/2σ) π, σ unitary • •

(ωπ = 1) b L(ν1/2π, ν−1/2σ)

Va∗ (supercuspidal) δ∗([ξ, νξ], ν−1/2σ) σ unitary •

XIa∗ (supercuspidal) δ∗(ν1/2π, ν−1/2σ) π, σ unitary •
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In addition to all irreducible, admissible, non-supercuspidal representations,
the table also includes two classes of supercuspidal representations denoted by
Va∗ and XIa∗. The reason that these supercuspidal representations are in-
cluded in the table is that they are in L-packets with some non-supercuspidal
representations. Namely, the Va representation δ([ξ, νξ], ν−1/2σ) and the Va∗

representation δ∗([ξ, νξ], ν−1/2σ) form an L-packet, and the XIa representa-
tion δ(ν1/2π, ν−1/2σ) and the XIa∗ representation δ∗(ν1/2π, ν−1/2σ) form an
L-packet; see the paper [8]. Incidentally, the other non-singleton L-packets
involving non-supercuspidal representations are the two-element packets
{τ(S, ν−1/2σ), τ(T, ν−1/2σ)} (type VIa and VIb), as well as {τ(S, π), τ(T, π)}
(type VIIIa and VIIIb).

2 Generalities on Bessel functionals

In this section we gather some definitions, notation, and basic results about
Bessel functionals.

2.1 Quadratic extensions

Let D ∈ F×. If D /∈ F×2, then let ∆ =
√
D be a square root of D in F̄ ,

and L = F (∆). If D ∈ F×2, then let
√
D be a square root of D in F×,

L = F × F , and ∆ = (−
√
D,
√
D) ∈ L. In both cases L is a two-dimensional

F -algebra containing F , L = F +F∆, and ∆2 = D. We will abuse terminology
slightly, and refer to L as the quadratic extension associated to D. We define
a map γ : L → L called Galois conjugation by γ(x + y∆) = x − y∆. Then
γ(xy) = γ(x)γ(y) and γ(x + y) = γ(x) + γ(y) for x, y ∈ L, and the fixed
points of γ are the elements of F . The group Gal(L/F ) of F -automorphisms
α : L → L is {1, γ}. We define norm and trace functions NL/F : L → F and
TL/F : L→ F by NL/F (x) = xγ(x) and TL/F (x) = x+ γ(x) for x ∈ L. We let
χL/F be the quadratic character associated to L/F , so that χL/F (x) = (x,D)F
for x ∈ F×.

2.2 2× 2 symmetric matrices

Let a, b, c ∈ F and set

S =
[
a b/2
b/2 c

]
. (11)

Let D = b2/4 − ac = − det(S). Assume that D 6= 0. The discriminant
disc(S) of S is the class in F×/F×2 determined by D. It is known that there
exists g ∈ GL(2, F ) such that tgSg is of the form [ a1 a2 ] and that (a1, a2)F is
independent of the choice of g such that tgSg is diagonal; we define the Hasse
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invariant ε(S) ∈ {±1} by ε(S) = (a1, a2)F . In fact, one has:

S g tgSg disc(S) ε(S)

a 6= 0, c 6= 0
[

1 −b
2a
1

] [

a

c− b2

4a

]

( b
2

4
− ac)F×2 (a, b2

4
− ac)F = (c, b2

4
− ac)F

a 6= 0, c = 0
[

1 −b
2a
1

] [

a

− b2

4a

]

F×2 1

a = 0, c 6= 0
[

1
1 − b

2c

] [

c

− b2

4c

]

F×2 1

a = 0, c = 0
[

1 1
1 −1

] [

b
−b

]

F×2 1

If disc(S) = F×2, then we say that S is split. If S is split, then for any λ ∈ F×
there exists g ∈ GL(2, F ) such that tgSg =

[
λ

λ

]
.

2.3 Another F -algebra

Let S be as in (11) with disc(S) 6= 0. Set D = b2/4− ac. We define

A = AS = {
[
x−yb/2 −ya
yc x+yb/2

]
: x, y ∈ F}. (12)

Then, with respect to matrix addition and multiplication, A is a two-
dimensional F -algebra naturally containing F . One can verify that

A = [ 1
1 ]{g ∈ M2(F ) :

tgSg = det(g)S}[ 1
1 ]. (13)

We define T = TS = A×. Let L be the quadratic extension associated to D;
we also say that L is the quadratic extension associated to S. We define an
isomorphism of F -algebras,

A
∼−→ L,

[
x−yb/2 −ya
yc x+yb/2

]
7−→ x+ y∆. (14)

The restriction of this isomorphism to T is an isomorphism T
∼−→ L×, and

we identify characters of T and characters of L× via this isomorphism. The
automorphism of A corresponding to the automorphism γ of L will also be
denoted by γ. It has the effect of replacing y by −y in the matrix (12). We
have det(t) = NL/F (t) for t ∈ A, where we identify elements of A and L via
(14).

2.3.1 Lemma. Let T be as above, and assume that L is a field. Let B2 be the
group of upper triangular matrices in GL(2, F ). Then TB2 = GL(2, F ).

Proof. This can easily be verified using the explicit form of the matrices in T
and the assumption D /∈ F×2.

Documenta Mathematica 21 (2016) 467–553



Some Results on Bessel Functionals for GSp(4) 477

2.4 Bessel functionals

Let a, b and c be in F . Define S as in (11), and define a character θ = θa,b,c = θS
of N by

θ(

[ 1 y z
1 x y
1

1

]
) = ψ(ax+ by + cz) = ψ(tr(S[ 1

1 ][ y zx y ])) (15)

for x, y, z ∈ F . Every character of N is of this form for uniquely determined
a, b, c in F , or, alternatively, for a uniquely determined symmetric 2× 2 matrix
S. We say that θ is non-degenerate if det(S) 6= 0. Given S with det(S) 6= 0,
let A be as in (12), and let T = A×. We embed T into GSp(4, F ) via the map
defined by

t 7−→
[
t
det(t)t′

]
, t ∈ T. (16)

The image of T in GSp(4, F ) will also be denoted by T ; the usage should be
clear from the context. For t ∈ T we have λ(t) = det(t) = NL/F (t). It is easily
verified that

θ(tnt−1) = θ(n) for n ∈ N and t ∈ T .
We refer to the semidirect product

D = TN (17)

as the Bessel subgroup defined by character θ (or, the matrix S). Given a
character Λ of T (identified with a character of L× as explained above), we can
define a character Λ⊗ θ of D by

(Λ⊗ θ)(tn) = Λ(t)θ(n) for n ∈ N and t ∈ T .
Every character of D whose restriction to N coincides with θ is of this form for
an appropriate Λ.
Now let (π, V ) be an admissible representation of GSp(4, F ). Let θ be a non-
degenerate character of N , and let Λ be a character of the associated group
T . We say that π admits a (Λ, θ)-Bessel functional if HomD(V,CΛ⊗θ) 6= 0.
A non-zero element β of HomD(V,CΛ⊗θ) is called a (Λ, θ)-Bessel functional
for π. If such a β exists, then π admits a model consisting of functions B :
GSp(4, F )→ C with the Bessel transformation property

B(tng) = Λ(t)θ(n)B(g) for t ∈ T , n ∈ N and g ∈ GSp(4, F ),

by associating to each v in V the function Bv that is defined by Bv(g) =
β(π(g)v) for g ∈ GSp(4, F ). We note that if π admits a central character ωπ
and a (Λ, θ)-Bessel functional, then Λ|F× = ωπ. For a character σ of F×, it is
easy to verify that

HomD(π,CΛ⊗θ) = HomD(σπ,C(σ◦NL/F )Λ⊗θ). (18)

If π is irreducible, then, using that π∨ ∼= ω−1π π (Proposition 2.3 of [37]), one
can also verify that

HomD(π,CΛ⊗θ) ∼= HomD(π
∨,C(Λ◦γ)−1⊗θ). (19)
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The twisted Jacquet module of V with respect toN and θ is the quotient VN,θ =
V/V (N, θ), where V (N, θ) is the subspace spanned by all vectors π(n)v−θ(n)v
for v in V and n in N . This Jacquet module carries an action of T induced by
the representation π. Evidently, there is a natural isomorphism

HomD(V,CΛ⊗θ) ∼= HomT (VN,θ,CΛ). (20)

Hence, when calculating the possible Bessel functionals on a representation
(π, V ), a first step often consists in calculating the Jacquet modules VN,θ. We
will use this method to calculate the possible Bessel functionals for most of the
non-supercuspidal, irreducible, admissible representations of GSp(4, F ). The
few representations that are inaccessible with this method will be treated using
the theta correspondence.
In this paper we do not assume that (Λ, θ)-Bessel functionals are unique up to
scalars. See Sect. 6.3 for some remarks on uniqueness.
Finally, instead of GSp(4, F ) as defined in this paper, in the literature it is
common to work with the group G′ of g ∈ GL(4, F ) such that tg

[
12

−12
]
g =

λ(g)
[

12
−12

]
for some λ(g) ∈ F×. For the convenience of the reader, we will

explain how to translate statements about Bessel functionals from this paper
into statements using G′. The groups GSp(4, F ) and G′ are isomorphic via
the map i : GSp(4, F ) −→ G′ defined by i(g) = LgL for g ∈ GSp(4, F ), where

L =

[
1

1
1
1

]
. We note that tL = L = L−1, L2 = 1, and the inverse of i is

given by i−1(g′) = Lg′L for g′ ∈ G′. If H is a subgroup of GSp(4, F ), then we
define H ′ = i(H), and refer to H ′ as the subgroup of G′ corresponding to H .
For example, the subgroup N ′ of G′ corresponding to N is

N ′ = {
[ 1 x y

1 y z
1

1

]
: x, y, z ∈ F}.

If π is a smooth representation of a subgroup H of GSp(4, F ) on a complex
vector space V , then we define the representation π′ of H ′ on V corresponding

to π by the formula π′(g′) = π(i−1(g′)) for g′ ∈ H ′. Now let S =
[
a b/2
b/2 c

]
be

as above, with det(S) 6= 0. The character θ′ = θ′S of N ′ corresponding to the
character θS of N is given by the formula

θ′(

[ 1 x y
1 y z
1

1

]
) = ψ(ax+ by + cz) = ψ(tr(S [ x yy z ]))

for x, y, z ∈ F . The subgroup T ′ = T ′S of G′ corresponding to T = TS is

T ′ = {
[
t
det(t)·tt−1

]
: t ∈ GL(2, F ) : ttSt = det(t)S}.

More explicitly, the group of t ∈ GL(2, F ) such that ttSt = det(t)S consists of
the matrices

t =
[
x+yb/2 yc
−ya x−yb/2

]
(21)
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where x, y ∈ F , x2−y2(b2/4−ac) 6= 0, with b2/4−ac = − det(S), as usual. With

L as above, there is an isomorphism T ′
∼−→ L× given by

[
t
det(t)·tt−1

]
7→ x+y∆

for t as in (21). Suppose that Λ is a character of L×; identify Λ with a character
of T as explained above. The corresponding character Λ′ of T ′ is given by the
formula

Λ′(
[
t
det(t)·tt−1

]
) = Λ(x+ y∆)

for t as in (21). Finally, suppose that (π, V ) is an admissible representation
of GSp(4, F ), and let π′ be the representation of G′ on V corresponding to π.
There is an equality

HomD′(V,CΛ′⊗θ′) = HomD(V,CΛ⊗θ),

withD′ = T ′N ′. The non-zero elements of HomD′(V,CΛ′⊗θ′) are called (Λ′, θ′)-
Bessel functionals for π′, and the last equality asserts that the set of (Λ′, θ′)-
Bessel functionals for π′ is the same as the set of (Λ, θ)-Bessel functionals for
π.

2.5 Action on Bessel functionals

There is an action of M , defined in (2), on the set of Bessel functionals. Let
(π, V ) be an irreducible, admissible representation of GSp(4, F ), and let β :
V → C be a (Λ, θ)-Bessel functional for π. Let a, b, c ∈ F be such that (15)
holds. Let m ∈M , with m =

[ g
λg′
]
, where λ ∈ F× and g ∈ GL(2, F ). Define

m · β : V → C by (m · β)(v) = β(π(m−1)v) for v ∈ V . Calculations show that
m · β is a (Λ′, θ′)-Bessel functional with θ′ defined by

θ′(

[ 1 y z
1 x y
1

1

]
) = ψ(a′x+ b′y + c′z) = ψ(tr(S′[ 1

1 ][ y zx y ])), x, y, z ∈ F,

where

S′ =
[
a′ b′/2

b′/2 c′

]
= λ thSh with h = [ 1

1 ]g−1[ 1
1 ].

Since disc(S′) = disc(S), the quadratic extension L′ associated to S′ is the
same as the quadratic extension L associated to S. There is an isomorphism
of F -algebras

A′ = AS′
∼−→ A = AS , a 7→ g−1ag.

Let T ′ = A′×. Finally, Λ′ : T ′ → C× is given by Λ′(t′) = Λ(g−1t′g) for t′ ∈ T ′.
For example, assume that β′ is a split Bessel functional, i.e., a Bessel functional
for which the discriminant of the associated symmetric matrix S′ is the class
F×2. By Sect. 2.2 there exists m as above such that β′ = m · β, where the
symmetric matrix S associated to the (Λ, θ)-Bessel functional β is

S =
[

1/2
1/2

]
, (22)
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and

θ(

[ 1 y z
1 x y

1
1

]
) = ψ(y). (23)

In this case

T = TS = {
[
a
b
a
b

]
: a, b ∈ F×}. (24)

Sometimes when working with split Bessel functionals it is more convenient to
work with the conjugate group

Nalt = s−12 Ns2 =

[
1 ∗ ∗
1
∗ 1 ∗

1

]
(25)

and the conjugate character

θalt(

[ 1 −y z
1
x 1 y

1

]
) = ψ(y). (26)

In this case the stabilizer of θalt is

Talt = {
[
a
a
b
b

]
: a, b ∈ F×}. (27)

2.6 Galois conjugation of Bessel functionals

The action of M can be used to define the Galois conjugate of a Bessel func-
tional. Let S be as in (11), and let A = AS and T = TS . Define

hγ =





[
1 b/a
−1

]
if a 6= 0,

[
1
−b/c −1

]
if a = 0 and c 6= 0,

[ 1
1 ] if a = c = 0.

(28)

Then hγ ∈ GL(2, F ), h2γ = 1, S = thγShγ and det(hγ) = −1. Set

gγ = [ 1
1 ]h−1γ [ 1

1 ] = [ 1
1 ]hγ [ 1

1 ] ∈ GL(2, F ), mγ =
[
gγ

g′γ

]
∈M.

We have gγTg
−1
γ = T , and the diagrams

A
∼−−−−→ L

conjugation by gγ

y
yγ

A
∼−−−−→ L

T
∼−−−−→ L×

conjugation by gγ

y
yγ

T
∼−−−−→ L×

commute. Let (π, V ) be an irreducible, admissible representation of GSp(4, F ),
and let β be a (Λ, θ)-Bessel functional for π. We refer to mγ · β as the Galois
conjugate of β. We note that mγ · β is a (Λ ◦ γ, θ)-Bessel functional for π.
Hence,

HomD(π,CΛ⊗θ) ∼= HomD(π,C(Λ◦γ)⊗θ). (29)
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In combination with (19), we get

HomD(π,CΛ⊗θ) ∼= HomD(π
∨,CΛ−1⊗θ). (30)

2.7 Waldspurger functionals

Our analysis of Bessel functionals will often involve a similar type of functional
on representations of GL(2, F ). Let θ and S be as in (15), and let T ∼= L× be
the associated subgroup of GL(2, F ). Let Λ be a character of T . Let (π, V )
be an irreducible, admissible representation of GL(2, F ). A (Λ, θ)-Waldspurger
functional on π is a non-zero linear map β : V → C such that

β(π(g)v) = Λ(g)β(v) for all v ∈ V and g ∈ T.
For trivial Λ, such functionals were the subject of Proposition 9 of [39] and
Proposition 8 of [40]. For general Λ see [38], [34] and Lemme 8 of [40].
The (Λ, θ)-Waldspurger functionals are the non-zero elements of the space
HomT (π,CΛ), and it is known that this space is at most one-dimensional.
An obvious necessary condition for HomT (π,CΛ) 6= 0 is that Λ

∣∣
F× equals ωπ,

the central character of π. By Sect. 2.6, Galois conjugation on T is given by
conjugation by an element of GL(2, F ). Hence,

HomT (π,CΛ) ∼= HomT (π,CΛ◦γ). (31)

Using π∨ ∼= ω−1π π, one verifies that

HomT (π,CΛ) ∼= HomT (π
∨,C(Λ◦γ)−1). (32)

In combination with (31), we also have

HomT (π,CΛ) ∼= HomT (π
∨,CΛ−1). (33)

Let πJL denote the Jacquet-Langlands lifting of π in the case that π is a discrete
series representation, and 0 otherwise. Then, by the discussion on p. 1297 of
[38],

dimHomT (π,CΛ) + dimHomT (π
JL,CΛ) = 1. (34)

It is easy to see that, for any character σ of F×,

HomT (π,CΛ) = HomT (σπ,C(σ◦NL/F )Λ). (35)

For Λ such that Λ
∣∣
F× = σ2, it is known that

dim(HomT (σStGL(2),CΛ)) =

{
0 if L is a field and Λ = σ ◦NL/F ,
1 otherwise;

(36)
see Proposition 1.7 and Theorem 2.4 of [38]. As in the case of Bessel function-
als, we call a Waldspurger functional split if the discriminant of the associated
matrix S lies in F×2. By Lemme 8 of [40], an irreducible, admissible, infinite-
dimensional representation of GL(2, F ) admits a split (Λ, θ)-Waldspurger func-
tional with respect to any character Λ of T that satisfies Λ

∣∣
F× = ωπ (this can

also be proved in a way analogous to the proof of Proposition 3.4.2 below,
utilizing the standard zeta integrals for GL(2)).
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3 Split Bessel functionals

Irreducible, admissible, generic representations of GSp(4, F ) admit a theory of
zeta integrals, and every zeta integral gives rise to a split Bessel functional. As a
consequence, generic representations admit all possible split Bessel functionals;
see Proposition 3.4.2 below for a precise formulation.
To put the theory of zeta integrals on a solid foundation, we will use P3-theory.
The group P3, defined below, plays a role in the representation theory of GSp(4)
similar to the “mirabolic” subgroup in the theory for GL(n). Some of what
follows is a generalization of Sects. 2.5 and 2.6 of [28], where P3-theory was
developed under the assumption of trivial central character. The general case
requires only minimal modifications.
While every generic representation admits split Bessel functionals, we will see
that the converse is not true. P3-theory can also be used to identify the non-
generic representations that admit a split Bessel functional. This is explained
in Sect. 3.5 below.

3.1 The group P3 and its representations

Let P3 be the subgroup of GL(3, F ) defined as the intersection

P3 = GL(3, F ) ∩
[ ∗ ∗ ∗
∗ ∗ ∗

1

]
.

We recall some facts about this group, following [3]. Let

U3 = P3 ∩
[
1 ∗ ∗
1 ∗
1

]
, N3 = P3 ∩

[
1 ∗
1 ∗
1

]
.

We define characters Θ and Θ′ of U3 by

Θ(
[
1 u12 ∗

1 u23
1

]
) = ψ(u12 + u23), Θ′(

[
1 u12 ∗

1 u23
1

]
) = ψ(u23).

If (π, V ) is a smooth representation of P3, we may consider the twisted Jacquet
modules

VU3,Θ = V/V (U3,Θ), VU3,Θ′ = V/V (U3,Θ
′)

where V (U3,Θ) (resp. V (U3,Θ
′)) is spanned by all elements of the form π(u)v−

Θ(u)v (resp. π(u)v−Θ′(u)v) for v in V and u in U3. Note that VU3,Θ′ carries an

action of the subgroup
[ ∗

1
1

]
∼= F× of P3. We may also consider the Jacquet

module VN3 = V/V (N3), where V (N3) is the space spanned by all vectors of
the form π(u)v − v for v in V and u in N3. Note that VN3 carries an action of

the subgroup
[ ∗ ∗
∗ ∗

1

]
∼= GL(2, F ) of P3.

Next we define three classes of smooth representations of P3, associated with
the groups GL(0), GL(1) and GL(2). Let

τP3

GL(0)(1) := c-IndP3

U3
(Θ), (37)
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where c-Ind denotes compact induction. Then τP3

GL(0)(1) is a smooth, irreducible

representation of P3. Next, let χ be a smooth representation of GL(1, F ) ∼= F×.

Define a representation χ⊗Θ′ of the subgroup
[ ∗ ∗ ∗

1 ∗
1

]
of P3 by

(χ⊗Θ′)(
[ a ∗ ∗

1 y
1

]
) = χ(a)ψ(y).

Then

τP3

GL(1)(χ) := c-IndP3[ ∗ ∗ ∗
1 ∗
1

](χ⊗Θ′)

is a smooth representation of P3. It is irreducible if and only if χ is one-
dimensional. Finally, let ρ be a smooth representation of GL(2, F ). We define
the representation τP3

GL(2)(ρ) of P3 to have the same space as ρ, and action given

by

τP3

GL(2)(ρ)(
[
a b ∗
c d ∗

1

]
) = ρ(

[
a b
c d

]
). (38)

Evidently, τP3

GL(2)(ρ) is irreducible if and only if ρ is irreducible.

3.1.1 Proposition. Let notations be as above.

i) Every irreducible, smooth representation of P3 is isomorphic to exactly
one of

τP3

GL(0)(1), τP3

GL(1)(χ), τP3

GL(2)(ρ),

where χ is a character of F× and ρ is an irreducible, admissible repre-
sentation of GL(2, F ). Moreover, the equivalence classes of χ and ρ are
uniquely determined.

ii) Let (π, V ) be a smooth representation of P3 of finite length. Then there
exists a chain of P3 subspaces

0 ⊂ V2 ⊂ V1 ⊂ V0 = V

with the following properties,

V2 ∼= dim(VU3,Θ) · τP3

GL(0)(1),

V1/V2 ∼= τP3

GL(1)(VU3,Θ′),

V0/V1 ∼= τP3

GL(2)(VN3).

Proof. See 5.1 – 5.15 of [3].
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3.2 P3-theory for arbitrary central character

It is easy to verify that any element of the Klingen parabolic subgroup Q can
be written in a unique way as

[
ad−bc

a b
c d

1

] [ 1 −y x z
1 x

1 y
1

] [
u
u
u
u

]
(39)

with
[
a b
c d

]
∈ GL(2, F ), x, y, z ∈ F , and u ∈ F×. Let ZJ be the center of the

Jacobi group, consisting of all elements of GSp(4) of the form
[
1 ∗
1
1
1

]
. (40)

Evidently, ZJ is a normal subgroup of Q with ZJ ∼= F . Let (π, V ) be a smooth
representation of GSp(4, F ). Let V (ZJ ) be the span of all vectors v − π(z)v,
where v runs through V and z runs through ZJ . Then V (ZJ) is preserved by
the action of Q. Hence Q acts on the quotient VZJ := V/V (ZJ ). Let Q̄ be the
subgroup of Q consisting of all elements of the form (39) with u = 1, i.e.,

Q̄ = GSp(4) ∩
[ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

1

]
.

The map

i(

[
ad−bc

a b
c d

1

] [ 1 −y x z
1 x

1 y
1

]
) =

[
a b
c d

1

] [
1 x
1 y
1

]
(41)

establishes an isomorphism Q̄/ZJ ∼= P3.
Recall the character ψc1,c2 of U defined in (8). Note that U maps onto U3

under the map (41), and that the diagrams

U
i //

ψ−1,1   A
AA

AA
AA

A U3

Θ

��
C×

U
i //

ψ−1,0   A
AA

AA
AA

A U3

Θ′

��
C×

are commutative. The radical NQ (see (6)) maps onto N3 under the map (41).
The following theorem is exactly like Theorem 2.5.3 of [28], except that the
hypothesis of trivial central character is removed.

3.2.1 Theorem. Let (π, V ) be an irreducible, admissible representation of
GSp(4, F ). The quotient VZJ = V/V (ZJ) is a smooth representation of Q̄/ZJ ,
and hence, via the map (41), defines a smooth representation of P3. As a
representation of P3, VZJ has finite length. Hence, VZJ has a finite filtration
by P3 subspaces such that the successive quotients are irreducible and of the
form τP3

GL(0)(1), τ
P3

GL(1)(χ) or τP3

GL(2)(ρ) for some character χ of F×, or some

irreducible, admissible representation ρ of GL(2, F ). Moreover, the following
statements hold:
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i) There exists a chain of P3 subspaces

0 ⊂ V2 ⊂ V1 ⊂ V0 = VZJ

such that

V2 ∼= dimHomU (V, ψ−1,1) · τP3

GL(0)(1),

V1/V2 ∼= τP3

GL(1)(VU,ψ−1,0),

V0/V1 ∼= τP3

GL(2)(VNQ).

Here, the vector space VU,ψ−1,0 admits a smooth action of GL(1, F ) ∼= F×

induced by the operators

π(

[
a
a

1
1

]
), a ∈ F×,

and VNQ admits a smooth action of GL(2, F ) induced by the operators

π(
[
det g

g
1

]
), g ∈ GL(2, F ).

ii) The representation π is generic if and only if V2 6= 0, and if π is generic,
then V2 ∼= τP3

GL(0)(1).

iii) We have V2 = VZJ if and only if π is supercuspidal. If π is supercuspidal
and generic, then VZJ = V2 ∼= τP3

GL(0)(1) is non-zero and irreducible. If π

is supercuspidal and non-generic, then VZJ = V2 = 0.

Proof. This is an application of Proposition 3.1.1. See Theorem 2.5.3 of [28]
for the details of the proof.

Given an irreducible, admissible representation (π, V ) of GSp(4, F ), one can
calculate the semisimplifications of the quotients V0/V1 and V1/V2 in the P3-
filtration from the Jacquet modules of π with respect to the Siegel and Klingen
parabolic subgroups. The results are exactly the same as in Appendix A.4 of
[28] (where it was assumed that π has trivial central character).
Note that there is a typo in Table A.5 of [28]: The entry for Vd in the
“s.s.(V0/V1)” column should be τP3

GL(2)(ν(ν
−1/2σ × ν−1/2ξσ)).

3.3 Generic representations and zeta integrals

Let π be an irreducible, admissible, generic representation of GSp(4, F ). Recall
from Sect. 1.2 thatW(π, ψc1,c2) denotes the Whittaker model of π with respect
to the character ψc1,c2 of U . For W in W(π, ψc1,c2) and s ∈ C, we define the
zeta integral Z(s,W ) by

Z(s,W ) =

∫

F×

∫

F

W (

[
a
a
x 1

1

]
)|a|s−3/2 dx d×a. (42)
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It was proved in Proposition 2.6.3 of [28] that there exists a real number s0,
independent of W , such that Z(s,W ) converges for ℜ(s) > s0 to an element of
C(q−s). In particular, all zeta integrals have meromorphic continuation to all
of C. Let I(π) be the C-vector subspace of C(q−s) spanned by all Z(s,W ) for
W in W(π, ψc1,c2). It is easy to see that I(π) is independent of the choice of ψ
and c1, c2 in F×.

3.3.1 Proposition. Let π be a generic, irreducible, admissible representation
of GSp(4, F ). Then I(π) is a non-zero C[q−s, qs]-module containing C, and
there exists R(X) ∈ C[X ] such that R(q−s)I(π) ⊂ C[q−s, qs], so that I(π) is
a fractional ideal of the principal ideal domain C[q−s, qs] whose quotient field
is C(q−s). The fractional ideal I(π) admits a generator of the form 1/Q(q−s)
with Q(0) = 1, where Q(X) ∈ C[X ].

Proof. The proof is almost word for word the same as that of Proposition 2.6.4
of [28]. The only difference is that, in the calculation starting at the bottom of
p. 79 of [28], the element q is taken from Q̄ instead of Q.

The quotient 1/Q(q−s) in this proposition is called the L-factor of π, and
denoted by L(s, π). If π is supercuspidal, then L(s, π) = 1. The L-factors for
all irreducible, admissible, generic, non-supercuspidal representations are listed
in Table A.8 of [28]. By definition,

Z(s,W )

L(s, π)
∈ C[qs, q−s] (43)

for all W in W(π, ψc1,c2).

3.4 Generic representations admit split Bessel functionals

In this section we will prove that an irreducible, admissible, generic representa-
tion of GSp(4, F ) admits split Bessel functionals with respect to all characters
Λ of T . This is a characteristic feature of generic representations, which will
follow from Proposition 3.5.1 in the next section.

3.4.1 Lemma. Let (π, V ) be an irreducible, admissible, generic representation
of GSp(4, F ). Let σ be a unitary character of F×, and let s ∈ C be arbitrary.
Then there exists a non-zero functional fs,σ : V → C with the following
properties.

i) For all x, y, z ∈ F and v ∈ V ,

fs,σ(π(

[ 1 y z
1 x y

1
1

]
)v) = ψ(y)fs,σ(v). (44)
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ii) For all a ∈ F× and v ∈ V ,

fs,σ(π(

[
a

1
a

1

]
)v) = σ(a)−1|a|−s+1/2fs,σ(v). (45)

Proof. We may assume that V = W(π, ψc1,c2) with c1 = 1. Let s0 ∈ R be
such that Z(s,W ) is absolutely convergent for ℜ(s) > s0. Then the integral

Zσ(s,W ) =

∫

F×

∫

F

W (

[
a
a
x 1

1

]
)|a|s−3/2σ(a) dx d×a (46)

is also absolutely convergent for ℜ(s) > s0, since σ is unitary. Note that these
are the zeta integrals for the twisted representation σπ. Therefore, by (43), the
quotient Zσ(s,W )/L(s, σπ) is in C[q−s, qs] for all W ∈ W(π, ψc1,c2). We may
therefore define, for any complex s,

fs,σ(W ) =
Zσ(s, π(s2)W )

L(s, σπ)
, (47)

where s2 is as in (7). Straightforward calculations using the definition (46)
show that (44) and (45) are satisfied for ℜ(s) > s0. Since both sides depend
holomorphically on s, these identities hold on all of C.

3.4.2 Proposition. Let (π, V ) be an irreducible, admissible and generic rep-
resentation of GSp(4, F ). Let ωπ be the central character of π. Then π admits a
split (Λ, θ)-Bessel functional with respect to any character Λ of T that satisfies
Λ
∣∣
F× = ωπ.

Proof. Let θ be as in (23) with T as in (24). Let s ∈ C and σ be a unitary
character of F× such that

Λ(

[
a

1
a

1

]
) = σ(a)−1|a|−s+1/2 for all a ∈ F×.

Let fs,σ be as in Lemma 3.4.1. By (45),

fs,σ(π(

[
a

1
a

1

]
)v) = Λ(a)fs,σ(v) for all a ∈ F×. (48)

Since Λ
∣∣
F× = ωπ we have in fact fs,σ(π(t)v) = Λ(t)fs,σ(v) for all t ∈ T . Hence

fs,σ is a Bessel functional as desired.
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3.5 Split Bessel functionals for non-generic representations

The converse of Proposition 3.4.2 is not true: There exist irreducible, admissi-
ble, non-generic representations of GSp(4, F ) which admit split Bessel function-
als. This follows from the following proposition. In fact, using this result and
the P3-filtrations listed in Table A.6 of [28], one can precisely identify which
non-generic representations admit split Bessel functionals. Other than in the
generic case, the possible characters Λ of T are restricted to a finite number.

3.5.1 Proposition. Let (π, V ) be an irreducible, admissible and non-generic
representation of GSp(4, F ). Let the semisimplification of the quotient V1 =
V1/V2 in the P3-filtration of π be given by

∑n
i=1 τ

P3

GL(1)(χi) with characters χi

of F×.

i) π admits a split Bessel functional if and only if the quotient V1 in the
P3-filtration of π is non-zero.

ii) Let β be a non-zero (Λ, θ)-Bessel functional, with θ as in (23), and a
character Λ of the group T explicitly given in (24). Then there exists an
i for which

Λ(

[
a

1
a

1

]
) = |a|−1χi(a) for all a ∈ F×. (49)

iii) If V1 is non-zero, then there exists an i such that π admits a split (Λ, θ)-
Bessel functional with respect to a character Λ of T satisfying (49).

iv) The space of split (Λ, θ)-Bessel functionals is zero or one-dimensional.

v) The representation π does not admit any split Bessel functionals if and
only if π is of type IVd, Vd, VIb, VIIIb, IXb, or is supercuspidal.

Proof. Let Nalt be as in (25) and θalt be as in (26). We use the fact that any
(Λ, θalt)-Bessel functional factors through the twisted Jacquet module VNalt,θalt .
To calculate this Jacquet module, we use the P3-filtration of Theorem 3.2.1.
Since π is non-generic, the P3-filtration simplifies to

0 ⊂ V1 ⊂ V0 = VZJ ,

with V1 of type τ
P3

GL(1) and V0/V1 of type τ
P3

GL(2). Taking further twisted Jacquet

modules and observing Lemma 2.5.6 of [28], it follows that

VNalt,θalt = (V1)[ 1
∗ 1 ∗

1

]
,ψ
, where ψ(

[
1
x 1 y

1

]
) = ψ(y).

By Lemma 2.5.5 of [28], after suitable renaming,

0 = Jn ⊂ . . . ⊂ J1 ⊂ J0 = (V1)[ 1
∗ 1 ∗

1

]
,ψ
,
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where Ji/Ji+1 is one-dimensional, and diag(a, 1, 1) acts on Ji/Ji+1 by
|a|−1χi(a). Table A.6 of [28] shows that all the χi are pairwise distinct. This
proves i), ii), iii) and iv).
v) If π is one of the representations mentioned in v), then V1/V2 = 0 by
Theorem 3.2.1 (in the supercuspidal case), or by Table A.6 in [28] (in the non-
supercuspidal case). By part i), π does not admit a split Bessel functional. For
any representation not mentioned in v), the quotient V1/V2 is non-zero, so that
a split Bessel functional exists by iii).

4 Theta correspondences

Let S be as in (11), and let θ = θS be as in (15). Let (π, V ) be an irreducible,
admissible representation of GSp(4, F ), and let (σ,W ) be an irreducible, ad-
missible representation of GO(X), where X is an even-dimensional, symmetric,
bilinear space. Let ω be the Weil representation of the group R, consisting of
the pairs (g, h) ∈ GSp(4, F )×GO(X) with the same similitude factors, on the
Schwartz space S(X2). Assume that the pair (π, σ) occurs in the theta corre-
spondence defined by ω, i.e., HomR(ω, π ⊗ σ) 6= 0. It is a theme in the theory
of the theta correspondence to relate the twisted Jacquet module VN,θ of π to
invariant functionals on σ; a necessary condition for the non-vanishing of VN,θ
is that X represents S. See for example the remarks in Sect. 6 of [26].
Applications to (Λ, θS)-Bessel functionals also require the involvement of T .
The idea is roughly as follows. The group T is contained in M . Moreover,
ω(m,h) for (m,h) in R ∩ (M × GO(X)) is given by an action of such pairs
on X2. The study of this action leads to the definition of certain compatible
embeddings of T into GO(X). Using these embeddings allows us to show
that if π has a (Λ, θ)-Bessel functional, then σ admits a non-zero functional
transforming according to Λ−1.
After setting up notations and studying the embeddings of T mentioned above,
we obtain the main result of this section, Theorem 4.4.6. Section 4.7 contains
the applications to Bessel functionals.

4.1 The spaces

In this section we will consider non-degenerate symmetric bilinear spaces
(X, 〈·, ·〉) over F such that

dimX = 2, or dimX = 4 and disc(X) = 1. (50)

We begin by recalling the constructions of the isomorphism classes of these
spaces, and the characterization of their similitude groups. Let m ∈ F×,
A = A[ 1

−m
] and T = A× be as in Sect. 2.3, so that

A = {
[ x −y
−ym x

]
: x, y ∈ F}, T = A× = {

[ x −y
−ym x

]
: x, y ∈ F, x2− y2m 6= 0}.

(51)
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Let λ ∈ F×. Define a non-degenerate two-dimensional symmetric bilinear space
(Xm,λ, 〈·, ·〉m,λ) by

Xm,λ = A[ 1
−m

], 〈x1, x2〉m,λ = λ tr(x1x
∗
2)/2, x1, x2 ∈ Xm,λ. (52)

Here, ∗ is the canonical involution of 2×2 matrices, given by
[
a b
c d

]∗
=
[
d −b
−c a

]
.

Define a homomorphism ρ : T → GSO(Xm,λ) by ρ(t)x = tx for x ∈ Xm,λ. We
also recall the Galois conjugation map γ : A→ A from Sect. 2.3; it is given by
γ(x) = x∗ for x ∈ A. The map γ can be regarded as an F linear endomorphism

γ : Xm,λ −→ Xm,λ, (53)

and as such is contained in O(Xm,λ) but not in SO(Xm,λ).

4.1.1 Lemma. If (Xm,λ, 〈·, ·〉m,λ) is as in (52), then disc(Xm,λ) = mF×2,
ε(Xm,λ) = (λ,m), and the homomorphism ρ is an isomorphism, so that

ρ : T
∼−→ GSO(Xm,λ). (54)

The image ρ(T ) and the map γ generate GO(Xm,λ). If (Xm,λ, 〈·, ·〉m,λ) and
(Xm′,λ′ , 〈·, ·〉m′,λ′) are as in (52), then (Xm,λ, 〈·, ·〉m,λ) ∼= (Xm′,λ′ , 〈·, ·〉m′,λ′) if
and only if mF×2 = m′F×2 and (λ,m)F = (λ′,m′)F . Every two-dimensional,
non-degenerate symmetric bilinear space over F is isomorphic (Xm,λ, 〈·, ·〉m,λ)
for some m and λ.

Proof. Letm,λ ∈ F×. In Xm,λ let x1 = [ 1 1 ] and x2 = [ 1
m ]. Then x1, x2 is a

basis for Xm,λ, and in this basis the matrix for Xm,λ is λ
[
1
−m
]
. Calculations

using this matrix show that disc(Xm,λ) = mF×2 and ε(Xm,λ) = (λ,m)F . The
map ρ is clearly injective. To see that ρ is surjective, let h ∈ GSO(Xm,λ).
Write h in the ordered basis x1, x2 so that h =

[
h1 h2

h3 h4

]
. By the definition

of GSO(Xm,λ), we have thλ
[
1
−m
]
h = det(h)λ

[
1
−m
]
. By the definition

of T , this implies that t = [ 1
1 ]h [ 1

1 ] ∈ T . Hence, h =
[
h1 h3m
h3 h1

]
for some

h1, h3 ∈ F . Calculations now show that ρ(t)x1 = h(x1) and ρ(t)x2 = h(x2),
so that ρ(t) = h. This proves the first assertion. The second assertion follows
from the fact that two non-degenerate symmetric bilinear spaces over F with
the same finite dimension are isomorphic if and only if they have the same
discriminant and Hasse invariant. For the final assertion, let (X, 〈·, ·〉) be a
two-dimensional, non-degenerate symmetric bilinear space over F . There exists
a basis for X with respect to which the matrix for X is of the form [ α1

α2 ] for
some α1, α2 ∈ F×. Then disc(X) = −α1α2F

×2 and ε(X) = (α1, α2)F . An
argument shows that there exists λ ∈ F× such that (λ, disc(X))F = ε(X). We
now have (X, 〈·, ·〉) ∼= (Xm,λ, 〈·, ·〉m,λ) with m = disc(X) because both spaces
have the same discriminant and Hasse invariant.

Next, define a four-dimensional non-degenerate symmetric bilinear space over
F by setting

XM2 = M2(F ), 〈x1, x2〉M2 = tr(x1x
∗
2)/2, x1, x2 ∈ XM2 . (55)
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Here, ∗ is the canonical involution of 2×2 matrices, given by
[
a b
c d

]∗
=
[
d −b
−c a

]
.

Define ρ : GL(2, F )×GL(2, F )→ GSO(XM2) by ρ(g1, g2)x = g1xg
∗
2 for g1, g2 ∈

GL(2, F ) and x ∈ XM2 . The map ∗ : XM2 → XM2 is contained in O(XM2) but
not in SO(XM2).
Finally, let H be the division quaternion algebra over F . Let 1, i, j, k be a
quaternion algebra basis for H , i.e.,

H = F + Fi+ Fj + Fk, i2 ∈ F×, j2 ∈ F×, k = ij, ij = −ji. (56)

Let ∗ be the canonical involution on H so that (a + b · i + c · j + d · k)∗ =
a − b · i − c · j − d · k, and define the norm and trace functions N,T : H → F
by N(x) = xx∗ and T(x) = x+ x∗ for x ∈ H . Define another four-dimensional
non-degenerate symmetric bilinear space over F by setting

XH = H, 〈x1, x2〉H = T(x1x
∗
2)/2, x1, x2 ∈ XH . (57)

Define ρ : H× ×H× → GSO(XH) by ρ(h1, h2)x = h1xh
∗
2 for h1, h2 ∈ H× and

x ∈ XH . The map ∗ : XH → XH is contained in O(XH) but not in SO(XH).

4.1.2 Lemma. The symmetric bilinear space (XM2 , 〈·, ·〉M2) is non-degenerate,
has dimension four, discriminant disc(XM2) = 1, and Hasse invariant ε(XM2) =
(−1,−1)F . The (XH , 〈·, ·〉H) symmetric bilinear space is non-degenerate, has
dimension four, discriminant disc(XH) = 1, and Hasse invariant ε(XH) =
−(−1,−1)F . The sequences

1 −→ F× −→ GL(2, F )×GL(2, F )
ρ−→ GSO(XM2) −→ 1, (58)

1 −→ F× −→ H× ×H× ρ−→ GSO(XH) −→ 1 (59)

are exact; here, the second maps send a to (a, a−1) for a ∈ F×. The image
ρ(GL(2, F ) × GL(2, F )) and the map ∗ generate GO(XM2), and the image
ρ(H× ×H×) and the map ∗ generate GO(XH). Every four-dimensional, non-
degenerate symmetric linear space over F of discriminant 1 is isomorphic to
(XM2 , 〈·, ·〉M2) or (XH , 〈·, ·〉H).

Proof. See, for example, Sect. 2 of [27].

4.2 Embeddings

Suppose that (X, 〈·, ·〉) satisfies (50). We define an action of the group
GL(2, F )×GO(X) on the set X2 by

(g, h) · (x1, x2) = (hx1, hx2)g
−1 = (g′1hx1 + g′3hx2, g

′
2hx1 + g′4hx2) (60)

for (x1, x2) ∈ X2, h ∈ GO(X) and g ∈ GL(2, F ) with g−1 =
[
g′1 g

′
2

g′3 g
′
4

]
. For S as

in (11) with det(S) 6= 0, we define

Ω = ΩS = ΩS,(X,〈·,·〉) = {(x1, x2) ∈ X2 :
[
〈x1,x1〉 〈x1,x2〉
〈x1,x2〉 〈x2,x2〉

]
= S}. (61)
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We say that (X, 〈·, ·〉) represents S if the set Ω is non-empty.

4.2.1 Lemma. Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over
F satisfying (50), and let S be as in (11) with det(S) 6= 0. The subgroup

B = BS = {(g, h) ∈ GL(2, F )×GO(X) : tgSg = det(g)S and det(g) = λ(h)}
(62)

maps Ω = ΩS to itself under the action of GL(2, F )×GO(X) on X2.

Proof. Let (g, h) ∈ B, and let g = [ g1 g2g3 g4 ]. To start, we note that the assump-
tion tgSg = det(g)S is equivalent to tg−1Sg−1 = det(g)−1S, which is in turn
equivalent to

ag24 − bg3g4 + cg23 = det(g)a,

−ag4g2 + b(g1g4 + g2g3)/2− cg3g1 = det(g)b/2,

ag22 − bg2g1 + cg21 = det(g)c.

Let (x1, x2) ∈ Ω and set (y1, y2) = (g, h1(t)) · (x1, x2). By the definition of the
action and Ω, and using det(g) = λ(h), we have

〈y1, y1〉 = det(g)−1
(
g24〈x1, x1〉 − 2g3g4〈x1, x2〉+ g23〈x2, x2〉

)

= det(g)−1
(
g24a− g3g4b+ g23c

)

= a.

Similarly, 〈y1, y2〉 = b/2 and 〈y2, y2〉 = c. It follows that (y1, y2) =
(g, h1(t))(x1, x2) ∈ Ω.

Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over F satisfying
(50), and let S be as in (11) with det(S) 6= 0. Assume that Ω is non-empty,
and let T = TS , as in Sect. 2.3. The goal of this section is to define, for each
z ∈ Ω, a set

E(z) = E(X,〈·,·〉),S(z) (63)

of embeddings τ : T → GSO(X) such that:

τ(t) = t for t ∈ F× ⊂ T ; (64)

λ(τ(t)) = det(t) for t ∈ T , so that (t, τ(t)) ∈ B for t ∈ T ; (65)

([ 1
1 ] t [ 1

1 ] , τ(t)) · z = z for t ∈ T . (66)

We begin by noting some properties of Ω. The set Ω is closed in X2. The
subgroup O(X) ∼= 1 × O(X) ⊂ B ⊂ GL(2, F ) × GO(X) preserves Ω, i.e., if
h ∈ O(X) and (x1, x2) ∈ Ω, then (hx1, hx2) ∈ Ω. Since det(S) 6= 0, the group
O(X) acts transitively on Ω. If dimX = 4, then SO(X) acts transitively on Ω.
If dimX = 2, then the action of SO(X) on Ω has two orbits.
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4.2.2 Lemma. Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over
F satisfying (50), and let S be as in (11) with det(S) 6= 0. Assume that
dimX = 2 and Ω is non-empty. Let z = (z1, z2) ∈ Ω. For

t = [ 1
1 ]g[ 1

1 ] = [ 1
1 ][ g1 g2g3 g4 ][

1
1 ] ∈ T

let τz(t) : X → X be the linear map that has g as matrix in the ordered basis
z1, z2 for X , so that

τz(t)(z1) = g1z1 + g3z2,

τz(t)(z2) = g2z1 + g4z2.

i) For t ∈ T , the map τz(t) is contained in GSO(X) and λ(τz(t)) = det(t).

ii) If z′ lies in the SO(X) orbit of z, and t ∈ T , then τz(t) = τz′(t).

iii) The map sending t to τz(t) defines an isomorphism τz : T
∼−→ GSO(X).

iv) Let h0 ∈ O(X) with det(h0) = −1. Let z′ ∈ Ω not be in the SO(X) orbit
of z. Then τz′(t) = h0τz(t)h

−1
0 for t ∈ T .

v) Let t ∈ T . The element ([ 1
1 ] t [ 1

1 ] , τz(t)) ∈ B acts by the identity on
the SO(X) orbit of z, and maps the other SO(X) orbit of Ω to itself.

Proof. i) A computation verifies that τz(t) ∈ GO(X), with similitude factor
λ(τz(t)) = det(g) = det(t), and the equality det(τz(t)) = λ(τz(t)) implies that
τz(t) ∈ GSO(X) by the definition of GSO(X).
ii) Suppose that z′ = (z′1, z

′
2) lies in the SO(X) orbit of z, and let c ∈ SO(X) be

such that c(z1) = z′1 and c(z2) = z′2. Then τz′(t) = cτz(t)c
−1. But the group

GSO(X) is abelian, so that τz′(t) = cτz(t)c
−1 = τz(t).

iii) Calculations prove that τz : T → GSO(X) is an isomorphism.
iv) Let z′′ = h0(z). A calculation shows that τz′′ (t) = h0τz(t)h

−1
0 for t ∈ T .

By, ii), τz′′(t) = τz′(t) for t ∈ T .
v) Write g = [ 1

1 ] t [ 1
1 ], so that tgSg = det(g)S. Let g = [ g1 g2g3 g4 ]. By the

definition of τz(t), we have

(g, τz(t)) · z = (det(g)−1g4(g1z1 + g3z2)− det(g)−1g3(g2z1 + g4z2),

det(g)−1(−g2)(g1z1 + g3z2) + det(g)−1g1(g2z1 + g4z2))

= z.

By ii), it follows that (g, τz(t)) acts by the identity on all of the SO(X) orbit
of z. Next, let z′ ∈ Ω with z′ /∈ SO(X)z. Assume that (g, τz(t)) · z′ ∈ SO(X)z;
we will obtain a contradiction. Since (g, τz(t)) · z′ ∈ SO(X)z and since we have
already proved that (g, τz(t)) acts by the identity on SO(X)z, we have:

(g, τz(t)) ·
(
(g, τz(t)) · z′

)
= (g, τz(t)) · z′

(g, τz(t)) · z′ = z′.
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This is a contradiction since z′ /∈ SO(X)z and (g, τz(t)) · z′ ∈ SO(X)z.

Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over F satisfying
(50), and let S be as in (11) with det(S) 6= 0. Assume that dimX = 2 and Ω
is non-empty. For z ∈ Ω, we define

E(z) = E(X,〈·,·〉),S(z) = {τz}, (67)

with τz as defined in Lemma 4.2.2. It is evident from Lemma 4.2.2 that the
element of E(z) has the properties (64), (65), and (66).

4.2.3 Lemma. Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over
F satisfying (50), and let S be as in (11) with det(S) 6= 0. Assume that
dimX = 2. Let λ, λ′ ∈ F×, and set Ω = ΩλS and Ω′ = Ωλ′S . Assume that Ω
and Ω′ are non-empty. Then

⋃

z∈Ω
E(z) =

⋃

z′∈Ω′

E(z′). (68)

Proof. Let Ω1 and Ω2 be the two SO(X) orbits of the action of SO(X) on Ω
so that Ω = Ω1 ⊔ Ω2, and analogously define and write Ω′ = Ω′1 ⊔ Ω′2. Let z =
(z1, z2) ∈ Ω1 and z′ = (z′1, z

′
2) ∈ Ω′1. Define a linear map h : X → X by setting

h(z1) = z′1 and h(z2) = z′2. We have 〈h(x), h(y)〉 = (λ′/λ)〈x, y〉 for x, y ∈ X ,
so that h ∈ GO(X). Assume that h /∈ GSO(X). Let z′′ = (z′′1 , z

′′
2 ) ∈ Ω′2, and

let h′ : X → X be the linear map defined by h′(z′1) = z′′1 and h′(z′2) = z′′2 .
Then h′ ∈ O(X) with det(h′) = −1, so that h′h ∈ GSO(X) and (h′h)(z1) = z′′1
and (h′h)(z2) = z′′2 . Therefore, by renumbering if necessary, we may assume
that h ∈ GSO(X). Next, a calculation shows that hτz(t)h

−1 = τz′(t) for t ∈ T .
Since GSO(X) is abelian, this means that τz = τz′ . The claim (68) follows now
from ii) and iv) of Lemma 4.2.2.

4.2.4 Lemma. Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over
F satisfying (50), and let S be as in (11) with det(S) 6= 0. Assume that
dimX = 4 and Ω is non-empty. Let z = (z1, z2) ∈ Ω, and set U = Fz1 + Fz2,
so that X = U ⊕ U⊥ with dimU = dimU⊥ = 2. There exists λ ∈ F× such
that (U⊥, 〈·, ·〉) represents λS.

Proof. Let M4,1(F ) be the F vector space of 4× 1 matrices with entries from
F . Let D = − det(S). Let λ ∈ F×, and define a four-dimensional symmetric
bilinear space Xλ by letting Xλ = M4,1(F ) with symmetric bilinear form b
given by b(x, y) = txMy, where

M =
[
S
λS

]
.

Evidently, disc(Xλ) = 1, and the Hasse invariant of Xλ is ε(Xλ) =
(−1,−1)F (−λ,D)F . Now assume that X is isotropic. Then the Hasse in-
variant of X is (−1,−1)F . It follows that if λ = −1, then ε(Xλ) = ε(X), so
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that Xλ
∼= X . By the Witt cancellation theorem, (U⊥, 〈·, ·〉) represents λS.

Next, assume that X is anisotropic, so that ε(X) = −(−1,−1)F . By hypoth-
esis, (X, 〈·, ·〉) represents S; since X is anisotropic, this implies that D /∈ F×2.
Since, D /∈ F×2, there exists λ ∈ F× such that −1 = (−λ,D)F . It follows that
ε(Xλ) = ε(X), so that Xλ

∼= X ; again the Witt cancellation theorem implies
that (U⊥, 〈·, ·〉) represents λS.

Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over F satisfying
(50), and let S be as in (11) with det(S) 6= 0. Assume that dimX = 4, Ω = ΩS
is non-empty, and let T = TS, as in Sect. 2.3. Let z = (z1, z2) ∈ Ω, and as in
Lemma 4.2.4, let U = Fz1+Fz2, so that X = U⊕U⊥ with dimU = dimU⊥ =
2. By Lemma 4.2.4 there exists λ ∈ F× such that (U⊥, 〈·, ·〉) represents λS.
Let τz : T → GSO(U) be the isomorphism from Lemma 4.2.2 that is associated
to z. Also, let τz′ , τz′′ : T → GSO(U⊥) be the isomorphisms from Lemma 4.2.2,
where z′ and z′′ are representatives for the two SO(U⊥) orbits of SO(U⊥) acting
on ΩλS,(U⊥,〈·,·〉); by Lemma 4.2.3, {τz′ , τz′′} does not depend on the choice of
λ. We now define

E(z) = E(X,〈·,·〉),S(z) = {τ1, τ2}, (69)

where τ1, τ2 : T → GSO(X) are defined by

τ1(t) =
[
τz(t)

τz′(t)

]
, τ2(t) =

[
τz(t)

τz′′(t)

]

with respect to the decomposition Z = U ⊕ U⊥, for t ∈ T . For t ∈ T , the
similitude factor of τi(t) is det(t). It is evident that the elements of E(z) satisfy
(64), (65), and (66).

4.2.5 Lemma. Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over
F satisfying (50), and let S be as in (11) with det(S) 6= 0. Assume that Ω = ΩS
is non-empty, and let A = AS and T = TS, as in Sect. 2.3. If dimX = 4, assume
that A is a field. Let z ∈ Ω and τ ∈ E(z). Let C be a compact, open subset
of Ω containing z. There exists a compact, open subset C0 of Ω such that
z ∈ C0 ⊂ C and ([ 1

1 ] t [ 1
1 ] , τ(t)) · C0 = C0 for t ∈ T .

Proof. Assume dimX = 2. Let C0 be the intersection of C with the SO(X)
orbit of z in Ω. Then C0 is a compact, open subset of Ω because the SO(X)
orbit of z in Ω is closed and open in Ω, and C is compact and open. We
have ([ 1

1 ] t [ 1
1 ] , τ(t)) · C0 = C0 for t ∈ T by v) of Lemma 4.2.2. Assume

dimX = 4. The group of pairs ([ 1
1 ] t [ 1

1 ] , τ(t)) for t ∈ T acts on X2 and
can be regarded as a subgroup of GL(X2). The group T contains F×, and
the pairs with t ∈ F× act by the identity on X2. The assumption that A is a
field implies that T/F× is compact, and hence the image K in GL(X2) of this
group of pairs is compact. There exists a lattice L of X2 such that k · L = L
for k ∈ K. Also, by (66) we have that k · z = z for k ∈ K. Let n be sufficiently
large so that (z +̟nL)∩Ω ⊂ C. Then C0 = (z +̟nL)∩Ω is the desired set.
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4.3 Example embeddings

In this section we provide explicit formulas for the embeddings of the previous
section.

4.3.1 Lemma. Let S be as in (11). Let m,λ ∈ F×, and define (Xm,λ, 〈·, ·〉m,λ)
as in (52). The set Ω = ΩS is non-empty if and only if disc(S) = mF×2 and
ε(S) = (λ,m)F . Assume that the set Ω is non-empty. Set D = b2/4 − ac so
that disc(S) = DF×2, and define ∆ and the quadratic extension L = F + F∆
of F (which need not be a field) associated to D as in Sect. 2.1. Similarly,
define ∆m with respect to m; the quadratic extension associated m is also L
and L = F + F∆m. The set of compositions

L×
∼−→ TS

τ−→ GSO(Xm,λ)

for z ∈ Ω and τ ∈ E(z) is the same as the set consisting of the two compositions

L×
∼−→ T[ 1

−m
] ∼−→ GSO(Xm,λ), L×

γ−→ L×
∼−→ T[ 1

−m
] ∼−→ GSO(Xm,λ).

Here, the maps L× → T[ 1
−m

] are as in (14), and the isomorphism ρ of

T[ 1
−m

] with GSO(Xm,λ) is as in (54).

Proof. By definition, Ω is non-empty if and only if there exist x1, x2 ∈ Xm,λ

such that S =
[
〈x1,x1〉 〈x1,x2〉
〈x1,x2〉 〈x2,x2〉

]
. Since Xm,λ is two-dimensional, this means

that Ω is non-empty if and only if (Xm,λ, 〈·, ·〉m,λ) is equivalent to the sym-
metric bilinear space over F defined by S. From Lemma 4.1.1, we have
disc(Xm,λ) = mF×2 and ε(Xm,λ) = (λ,m)F . Since a finite-dimensional non-
degenerate symmetric bilinear space over F is determined by its dimension,
discriminant and Hasse invariant, it follows that Ω is non-empty if and only if
disc(S) = mF×2 and ε(S) = (λ,m)F .
Assume that Ω is non-empty, so that disc(S) = mF×2 and ε(S) = (λ,m)F .
Let e ∈ F× be such that ∆ = e∆m; then b2/4 − ac = D = e2m. Assume first
that a 6= 0. By Sect. 2.2, ε(S) = (a,m)F . Therefore, (a,m)F = (λ,m)F . It
follows that there exist g, h ∈ F× such that g2 −mh2 = λ−1a. Set

z1 =
[

g h
−h(−m) g

]
, z2 = a−1

[
ehm+gb/2 eg+hb/2

−(eg+hb/2)(−m) ehm+gb/2

]
.

Then z1, z2 ∈ Xm,λ, and a calculation shows that
[
〈z1,z1〉m,λ 〈z1,z2〉m,λ
〈z1,z2〉m,λ 〈z2,z2〉m,λ

]
= S.

It follows that z = (z1, z2) ∈ Ω. Let u ∈ L×. Write u = x + y∆ for some

x, y ∈ F×. By (14), u corresponds to t =
[
x−yb/2 −ya
yc x+yb/2

]
∈ TS. Using the

definition of τz(t), we find that

τz(t)(z1) =
[

gx−ehym hx−egy
−(hx−egy)(−m) gx−ehym

]
, (70)
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τz(t)(z2) =
1

2a

[
(2ehm+bg)x−(behm+2e2mg)y (2eg+bh)x−(beg+2e2mh)y

−((2eg+bh)x−(beg+2e2mh)y)(−m) (2ehm+bg)x−(behm+2e2mg)y

]
.

(71)

On the other hand, we also have that u = x + ye∆m, and u corresponds to

the element t′ =
[

x −ye
(ye)(−m) x

]
in T[ 1

−m
]. Moreover, calculations show that

ρ(t′)(z1) = t′ · z1 and ρ(t′)(z2) = t′ · z2 are as in (70) and (71), respectively,
proving that the two compositions

L×
∼−→ TS

τz−→ GSO(Xm,λ), L×
∼−→ T[ 1

−m
] ρ−→ GSO(Xm,λ)

are the same map. Next, let z′ = (γ(z1), γ(z2)). Then z
′ ∈ Ω, and calculations

as above show that the two compositions

L×
∼−→ TS

τz′−→ GSO(Xm,λ), L×
γ−→ L×

∼−→ T[ 1
−m

] ρ−→ GSO(Xm,λ)

are the same. This completes the proof in this case since z and z′ are rep-
resentatives for the two SO(Xm,λ) orbits of Ω, and by ii) of Lemma 4.2.2,
∪w∈ΩE(w) = {τz, τz′}. Now assume that a = 0. Set

z1 = λ−1
[

b/2 −e
e(−m) b/2

]
, z2 =

[
(cλ−1+1)/2 −eb−1(cλ−1−1)

eb−1(cλ−1−1)(−m) (cλ−1+1)/2

]
.

Again, a calculation shows that z = (z1, z2) ∈ Ω. Let u ∈ L× with u = x+ y∆

for some x, y ∈ F×. Then u corresponds to t =
[
x−yb/2
yc x+yb/2

]
∈ TS, and

u corresponds to t′ =
[

x −ye
ye(−m) x

]
∈ T[ 1

−m
]. Computations show that

τz(t)(z1) = ρ(t′)(z1) and τz(t)(z2) = ρ(t′)(z2), proving that the compositions

L×
∼−→ TS

τz′−→ GSO(Xm,λ), L×
∼−→ T[ 1

−m
] ρ−→ GSO(Xm,λ)

are the same. As in the previous case, if z′ = (γ(z1), γ(z2)), then z
′ ∈ Ω, and

the two compositions

L×
∼−→ TS

τz′−→ GSO(Xm,λ), L×
γ−→ L×

∼−→ T[ 1
−m

] ρ−→ GSO(Xm,λ)

are the same. As above, this completes the proof.

Let c ∈ F×, and set

S = [ 1 c ] . (72)

Let (XM2 , 〈·, ·〉M2) be as in (55). Let A = AS and T = TS be as in Sect. 2.3.
We embed A in M2(F ) via the inclusion map. Set

z1 = [ 1 1 ] , z2 =
[

1
−c

]
, z′1 =

[
1
−1
]
, z′2 = [ 1

c ] .
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The vectors z1, z2, z
′
1, z
′
2 form an orthogonal ordered basis for XM2 , and in this

basis the matrix for XM2 is [
S
−S
]
.

As in Lemma 4.2.4, set U = Fz1 + Fz2. Then U⊥ = Fz′1 + Fz′2, and the λ of
Lemma 4.2.4 is −1. Calculations show that the set E(z) = EXM2

(z) of (69) is

EXM2
(z) = {τ1, τ2}, τ1(t) = ρ(t, 1), τ2(t) = ρ(1, γ(t)), t ∈ T×. (73)

Finally, let S be as in (72) with −c /∈ F×2, and let (XH , 〈·, ·〉H) be as in (57).
Let A = AS and T = TS be as in Sect. 2.3. Let L be the quadratic extension
associated to −c as in Sect. 2.1; L is a field. Let e be a representative for
the non-trivial coset of F×/NL/F (L×), so that (e,−c)F = −1. We realize the
division quaternion algebra H over F as

H = F + Fi+ Fj + Fk, i2 = −c, j2 = e, k = ij, ij = −ji. (74)

We embed A into H via the map defined by

[
x −y
cy x

]
7→ x− yi

for x, y ∈ F . Let
z1 = 1, z2 = i, z′1 = j, z′2 = k. (75)

The vectors z1, z2, z
′
1, z
′
2 form an orthogonal ordered basis for XH , and in this

basis the matrix for XH is [
S
−eS

]
.

As in Lemma 4.2.4, set U = Fz1 + Fz2. Then U⊥ = Fz′1 + Fz′2, and the λ
of Lemma 4.2.4 is −e. Calculations again show that the set E(z) = EXH (z) of
(69) is

EXH (z) = {τ1, τ2}, τ1(t) = ρ(t, 1), τ2(t) = ρ(1, γ(t)), t ∈ T×. (76)

To close this subsection, we note that (XH , 〈·, ·〉H) does not represent S if S is
as in (72) but −c ∈ F×2. To see this, assume that −c ∈ F×2 and (XH , 〈·, ·〉H)
represents S; we will obtain a contradiction. Write −c = t2 for some t ∈ F×.
Since XH represents S, there exist x1, x2 ∈ H such that 〈x1, x1〉H = N(x1) = 1,
〈x2, x2〉H = N(x2) = c = −t2 and 〈x1, x2〉H = T(x1x

∗
2)/2 = 0. A calculation

shows that N(tx1 + x2) = 0. Since H is a division algebra, this means that
tx1 = −x2. Hence, t2 = N(tx1) = 〈tx1, tx1〉H = 〈tx1,−x2〉H = −t〈x1, x2〉H =
0, a contradiction.

4.4 Theta correspondences and Bessel functionals

In this section we make the connection between Bessel functionals for GSp(4, F )
and equivariant functionals on representations of GO(X). The main result is
Theorem 4.4.6 below.
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Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over F satisfying
(50). We define the subgroup GSp(4, F )+ of GSp(4, F ) by

GSp(4, F )+ = {g ∈ GSp(4, F ) : λ(g) ∈ λ(GO(X))}. (77)

The following lemma follows from (54) and the exact sequences (58) and (59),
which facilitate the computation of λ(GSO(X)). Note that N(H×) = F×.

4.4.1 Lemma. Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over
F satisfying (50). Then

[GSp(4, F ) : GSp(4, F )+] =

{
1 if dimX = 4, or dimX = 2 and disc(X) = 1,

2 if dimX = 2 and disc(X) 6= 1.

(78)

4.4.2 Lemma. Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over
F satisfying (50), and let S be as in (11) with det(S) 6= 0. Let Ω = ΩS be as in
(61), and assume that Ω is non-empty. Let T = TS be as in Sect. 2.3. Embed
T as a subgroup of GSp(4, F ), as in (16). Then T is contained in GSp(4, F )+.

Proof. By (78) we may assume that dimX = 2 and disc(X) 6= 1. Since
Ω is non-empty and dimX = 2, we make take S to be the matrix of the
symmetric bilinear form 〈·, ·〉 on X . By definition, GO(X) is then the set of
h ∈ GL(2, F ) such that thSh = λ(h)S for some λ(h) ∈ F×. From (13), we have
that thSh = det(h)S for h = [ 1

1 ] t [ 1
1 ] with t ∈ T . It follows that det(T ) is

contained in λ(GO(X)). This implies that T is contained in GSp(4, F )+.

Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over F satisfying
(50). Define

R = {(g, h) ∈ GSp(4, F )×GO(X) : λ(g) = λ(h)}.
We consider the Weil representation ω of R on the space S(X2) defined with
respect to ψ2, where ψ2(x) = ψ(2x) for x ∈ F . If ϕ ∈ S(X2), g ∈ GL(2, F )
and h ∈ GO(X) with det(g) = λ(h), and x1, x2 ∈ X , then

(

ω(

[

1 y z
1 x y

1
1

]

, 1)ϕ
)

(x1, x2) = ψ(〈x1, x1〉x+ 2〈x1, x2〉y + 〈x2, x2〉z)ϕ(x1, x2), (79)

(

ω(
[ g

det(g)g′
]

, h)ϕ
)

(x1, x2) = (det(g),disc(X))Fϕ(([ 1
1 ] g [ 1

1 ] , h)−1 · (x1, x2)).

(80)

For these formulas, see Sect. 1 of [27]; note that the additive character we are
using is ψ2. Also, in (80) we are using the action of GL(2, F )×GO(X) defined
in (60).
We will also use the Weil representation ω1 of

R1 = {(g, h) ∈ GL(2, F )×GO(X) : det(g) = λ(h)}
on S(X) defined with respect to ψ2. For formulas, again see Sect. 1 of [27].
The two Weil representations ω and ω1 are related as follows.
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4.4.3 Lemma. The map

T : S(X)⊗ S(X) −→ S(X2), (81)

determined by the formula

T (ϕ1 ⊗ ϕ2)(x1, x2) = ϕ1(x1)ϕ2(x2) (82)

for ϕ1 and ϕ2 in S(X) and x1 and x2 in X , is a well-defined complex linear
isomorphism such that

T ◦ (ω1

( [
a2 b2
c2 d2

]
, h)⊗ ω1(

[
a1 b1
c1 d1

]
, h)
)

= ω(

[
a1 b1

a2 b2
c2 d2

c1 d1

]
, h) ◦ T (83)

for g1 =
[
a1 b1
c1 d1

]
and g2 =

[
a2 b2
c2 d2

]
in GL(2, F ) and h in GO(X) such that

det(g1) = det(g2) = λ(h).

This lemma can be verified by a direct calculation using standard generators
for SL(2, F ).
Let θ = θS be the character of N defined in (15) with respect to a matrix S
as in (11). Let S(X2)(N, θ) be the subspace of S(X2) spanned by all vectors
ω(n)ϕ − θ(n)ϕ, where n runs through N and ϕ runs through S(X2), and set
S(X2)N,θ = S(X2)/S(X2)(N, θ).

4.4.4 Lemma. (Rallis) Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear
space over F satisfying (50), and let S be as in (11) with det(S) 6= 0. If
(X, 〈·, ·〉) does not represent S, then the twisted Jacquet module S(X2)N,θ is
zero. Assume that (X, 〈·, ·〉) represents S. The map S(X2)→ S(Ω) defined by
ϕ 7→ ϕ|Ω induces an isomorphism

S(X2)N,θ
∼−→ S(Ω).

Equivalently, S(X2)(N, θ) is the space of ϕ ∈ S(X2) such that ϕ|Ω = 0.

Proof. See Lemma 2.3 of [13].

Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over F satisfying
(50), and let S be as in (11) with det(S) 6= 0. Let Ω = ΩS be as in (61), and
assume that Ω is non-empty. In Lemma 4.2.1 we noted that the subgroup B of
GL(2, F )×GO(X) acts on Ω. By identifying O(X) with 1×O(X) ⊂ GL(2, F )×
GO(X), we obtain an action of O(X) on Ω: this is given by h · (x1, x2) =
(hx1, hx2), where h ∈ O(X) and (x1, x2) ∈ Ω. This action is transitive. We
obtain an action of O(X) on S(Ω) by defining (h · ϕ)(x) = ϕ(h−1 · x) for
h ∈ O(X), ϕ ∈ S(Ω) and x ∈ Ω. This action is used in the next lemma.
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4.4.5 Lemma. Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over
F satisfying (50), and let S be as in (11) with det(S) 6= 0. Let Ω = ΩS be
as in (61), and assume that Ω is non-empty. Let (σ0,W0) be an admissible
representation of O(X), and let M ′ : S(Ω) → W0 be a non-zero O(X) map.
Let z ∈ Ω. There exists a compact, open subset C of Ω containing z such that
if C0 is a compact, open subset of Ω such that z ∈ C0 ⊂ C, then M ′(fC0) 6= 0.
Here, fC0 is the characteristic function of C0.

Proof. Let H be the subgroup of h ∈ O(X) such that hz = z. By 1.6 of
[3], the map H\O(X)

∼−→ Ω defined by Hh 7→ h−1z is a homeomorphism, so

that the map S(Ω) ∼−→ c-Ind
O(X)
H 1H that sends ϕ to the function f such that

f(h) = ϕ(h−1z) for h ∈ O(X) is an O(X) isomorphism. Via this isomorphism,

we may regard M ′ as defined on c-Ind
O(X)
H 1H , and it will suffice to prove that

that there exists a compact, open neighborhood C of the identity in O(X)
such that if C0 is a compact, open neighborhood of the identity in O(X) with
C0 ⊂ C, then M ′(fHC0) 6= 0, where fHC0 is the characteristic function of
HC0. Since σ0 is admissible, by 2.15 of [3] we have (σ1)

∨ ∼= σ0 where σ1 = σ∨0 .
Let W1 be the space of σ1. We may regard M ′ as a non-zero element of

HomO(X)(c-Ind
O(X)
H 1H , σ

∨
1 ). Now H and O(X) are unimodular since both are

orthogonal groups (H is isomorphic to O(U⊥), where U = Fz1+Fz2). By 2.29
of [3], there exists an element λ of HomH(σ1, 1H) such that M ′ is given by

M ′(f)(v) =
∫

H\O(X)

f(h)λ(σ1(h)v) dh

for f ∈ c-Ind
O(X)
H 1H and v ∈ W1. Since M ′ is non-zero, there exists v ∈ W1

such that λ(v) 6= 0. Let C be a compact, open neighborhood of 1 in O(X) such
that σ1(h)v = v for h ∈ C. Let C0 be a compact, open neighborhood of 1 in
O(X) such that C0 ⊂ C. Then

M ′(fHC0)(v) =

∫

H\O(X)

fHC0(h)λ(σ1(h)v) dh

=

∫

H\HC0

λ(σ1(h)v) dh

= vol(H\HC0)λ(v),

which is non-zero.

In the following theorem we mention the set E(z) of embeddings of T into
GSO(X); see (63), (67) and (69).

4.4.6 Theorem. Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space
over F satisfying (50), and let S be as in (11) with det(S) 6= 0. Let A = AS ,
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T = TS , and L = LS be as in Sect. 2.3. If dimX = 4, assume that A is a field.
Let (π, V ) be an irreducible, admissible representation of GSp(4, F )+, and let
(σ,W ) be an irreducible, admissible representation of GO(X). Assume that
there is a non-zero R map M : S(X2) → π ⊗ σ. Let θ = θS and let Λ be a
character of T .

i) IfHomN (π,Cθ) 6= 0, then Ω = ΩS is non-empty andD = TN is contained
in GSp(4, F )+.

ii) Assume that HomN (π,Cθ) 6= 0 so that Ω = ΩS is non-empty, and D =
TN ⊂ GSp(4, F )+ by i). Assume further that HomD(π,CΛ⊗θ) 6= 0. Let
z ∈ Ω, and τ ∈ E(z). There exists a non-zero vector w ∈ W such that

σ(τ(t))w = Λ−1(t)w

for t ∈ T .

Proof. i) The assumptions HomR(S(X2), V ⊗W ) 6= 0 and HomN (V,Cθ) 6= 0
imply that HomN(S(X2),Cθ) 6= 0. This means that S(X2)N,θ 6= 0; by Lemma
4.4.4, we obtain Ω 6= ∅. Lemma 4.4.2 now also yields that D ⊂ GSp(4, F )+.
ii) Let β be a non-zero element of HomD(π,CΛ⊗θ). We first claim that the
composition M ′

S(X2)
M−→ V ⊗W β⊗id−→ CΛ⊗θ ⊗W

is non-zero. Let ϕ ∈ S(X2) be such that M(ϕ) 6= 0, and write

M(ϕ) =

t∑

ℓ=1

vℓ ⊗ wℓ

where v1, . . . , vt ∈ V and w1, . . . , wt ∈ W . We may assume that the vectors
w1, . . . , wt are linearly independent and that v1 6= 0. Since β is non-zero and
V is an irreducible representation of GSp(4, F )+, it follows that there exists
g ∈ GSp(4, F )+ such that β(π(g)v1) 6= 0. Let h ∈ GO(X) be such that
λ(h) = λ(g). Then (g, h) ∈ R. Since M is an R-map, we have

M(ω(g, h)ϕ) =
t∑

ℓ=1

π(g)vℓ ⊗ σ(h)wℓ.

Applying β ⊗ id to this equation, we get

M ′(ω(g, h)ϕ) =
t∑

ℓ=1

β(π(g)vℓ)⊗ σ(h)wℓ

in CΛ⊗θ ⊗W . Since the vectors σ(h)w1, . . . , σ(h)wt are also linearly indepen-
dent, and since β(π(g)v1) is non-zero, it follows that the vector M ′(ω(g, h)ϕ)
is non-zero; this proves M ′ 6= 0.
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Next, the map M ′ induces a non-zero map S(X2)N,θ → CΛ⊗θ ⊗ W , which
we also denote by M ′. Lemma 4.4.4 implies that the restriction map yields
an isomorphism S(X2)N,θ

∼−→ S(Ω). Composing, we thus obtain a non-zero
map S(Ω) → CΛ⊗θ ⊗ W , which we again denote by M ′. Let z ∈ Ω and
τ ∈ E(z). By Lemma 4.2.1, the elements ([ 1

1 ] t [ 1
1 ] , τ(t)) for t ∈ T act

on Ω. We can regard these elements as acting on S(Ω) via the definition(
([ 1

1 ] t [ 1
1 ] , τ(t))·ϕ

)
(x) = ϕ(([ 1

1 ] t [ 1
1 ] , τ(t))−1 ·x) for ϕ ∈ S(Ω) and x ∈ Ω.

Moreover, by the definition of M ′ and (80), we have

M ′(([ 1
1 ] t [ 1

1 ] , τ(t)) · ϕ) = (det(t), disc(X))FΛ(t)σ(τ(t))M
′(ϕ) (84)

for t ∈ T and ϕ ∈ S(Ω). Let C be the compact, open subset from Lemma 4.4.5
with respect to M ′ and z; note that the restriction of σ to O(X) is admissi-
ble. By Lemma 4.2.5 there exists a compact, open subset C0 of C containing
z such that ([ 1

1 ] t [ 1
1 ] , τ(t)) · C0 = C0 for t ∈ T . Let ϕ = fC0 . Then

([ 1
1 ] t [ 1

1 ] , τ(t)) · ϕ = ϕ for t ∈ T , and by Lemma 4.4.5, we have M ′(ϕ) 6=
0. From (84) we have σ(τ(t))M ′(ϕ) = (det(t), disc(X))FΛ(t)

−1M ′(ϕ) =
χL/F (NL/F (t))Λ(t)

−1M ′(ϕ) = Λ(t)−1M ′(ϕ) for t ∈ T . Since M ′(ϕ) 6= 0,
this proves ii).

Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over F satisfying
(50), and let S be as in (11) with det(S) 6= 0. If ΩS is non-empty and z =
(z1, z2) ∈ ΩS , then we let O(X)z be the subgroup of h ∈ O(X) such that
h(z1) = z1 and h(z2) = z2.

4.4.7 Proposition. Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear
space over F satisfying (50), and assume that dimX = 4. Let S be as in
(11) with det(S) 6= 0. Assume that ΩS is non-empty, and let z be in ΩS . Let
Π and σ be irreducible, admissible, supercuspidal representations of GSp(4, F )
and GO(X), respectively. If HomR(ω,Π ⊗ σ) 6= 0, then

dimΠN,θS = dimHomO(X)z (σ,C1). (85)

Proof. Assume that HomR(ω,Π ⊗ σ) 6= 0. By Proposition 3.3 of [27] the
restriction of σ to O(X) is multiplicity-free. By Lemma 4.2 of [24] we have
Π |Sp(4,F ) = Π1 ⊕ · · · ⊕ Πt, where Π1, . . . , Πt are mutually non-isomorphic,
irreducible, admissible representations of Sp(4, F ), σ|O(X) = σ1 ⊕ · · · ⊕ σt,
where σ1, . . . , σt are mutually non-isomorphic, irreducible, admissible repre-
sentations of O(X), with HomSp(4,F )×O(X)(ω,Πi ⊗ σi) 6= 0 for i ∈ {1, . . . , t}.
Let i ∈ {1, . . . , t}; to prove the proposition, it will suffice to prove that
(Πi)N,θS

∼= HomO(X)z(σi,C1) as complex vector spaces. By Lemma 6.1 of
[26], we have Θ(σi)N,θS

∼= HomO(X)z(σ
∨
i ,C1) as complex vector spaces. By

1) a) of the theorem on p. 69 of [14], the representation Θ(σi) of Sp(4, F )
is irreducible. By Theorem 2.1 of [12] we have Πi

∼= Θ(σi). Therefore,
(Πi)N,θS

∼= HomO(X)z(σ
∨
i ,C1). By the first theorem on p. 91 of [14], σ∨i ∼= σi.

The proposition follows.
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4.5 Representations of GO(X)

Let m,λ ∈ F×. By Lemma 4.1.1, the group GSO(Xm,λ) is abelian. It follows
that the irreducible, admissible representations of GSO(Xm,λ) are characters.
To describe the representations of GO(Xm,λ), let µ : GSO(Xm,λ) → C× be
a character. We recall that the map γ from (53) is a representative for the
non-trivial coset of GSO(Xm,λ) in GO(Xm,λ). Define µγ : GSO(Xm,λ) → C×

by µγ(x) = µ(γxγ−1). If µγ 6= µ, then the representation ind
GO(Xm,λ)

GSO(Xm,λ)
µ is

irreducible, and we define

µ+ = ind
GO(Xm,λ)

GSO(Xm,λ)
µ.

Assume that µ = µγ . Then the induced representation ind
GO(Xm,λ)

GSO(Xm,λ)
µ is re-

ducible, and is the direct sum of the two extensions of µ to GO(Xm,λ). We let
µ+ be the extension of µ to GO(Xm,λ) such that µ+(γ) = 1 and let µ− be the
extension of µ to GO(Xm,λ) such that µ−(γ) = −1. Every irreducible, admis-
sible representation of GO(Xm,λ) is of the form µ+ or µ− for some character
µ of GSO(Xm,λ). We will sometimes identify characters of GSO(Xm,λ) with
characters of T[ 1

−m
], via (54), and in turn identify characters of T[ 1

−m
]

with characters of L×, via (14). Here L is associated to m, as in Sect. 2.1, so
that L = F (

√
m) if m /∈ F×2, and L = F × F if m ∈ F×2.

Next, let (X, 〈·, ·〉) be either (XM2 , 〈·, ·〉M2) or (XH , 〈·, ·〉H), as in (55) or (57).
If X = XM2 , set G = GL(2, F ), and if X = XH , set G = H×. Let h0
be the element of GO(X) that maps x to x∗; then h0 represents the non-
trivial coset of GSO(X) in GO(X). Let π1 and π2 be irreducible, admissible
representations of G with the same central character. Via the exact sequences
(58) and (59), the representations (π1, V1) and (π2, V2) define an irreducible,
admissible representation π1⊗π2 of GSO(X) which has space V1⊗V2 and action
given by the formula (π1 ⊗ π2)(ρ(g1, g2)) = π1(g1) ⊗ π2(g2) for g1, g2 ∈ G. If
π1 and π2 are not isomorphic, then π1 ⊗ π2 induces irreducibly to GO(X); we
denote this induced representation by (π1 ⊗ π2)+. Assume that π1 and π2 are
isomorphic. In this case the representation π1⊗ π2 does not induce irreducibly
to GO(X), but instead has two extensions σ1 and σ2 to representations of
GO(X). Moreover, the space of linear forms on π1⊗π2 that are invariant under
the subgroup of GSO(X) of elements ρ(g, g∗−1) for g ∈ G is one-dimensional.
Let λ be a non-zero functional in this space. Then λ ◦ σi(h0) is another such
functional, so that λ◦σi(h0) = εiλ with {ε1, ε2} = {1,−1}. The representation
σi for which εi = 1 is denoted by (π1 ⊗ π2)+, and the representation σj for
which εj = −1 is denoted by (π1 ⊗ π2)−. See [26] for details.

4.5.1 Proposition. Let H be as in (56) and let XH be as in (57). Let S
be as in (72) with −c /∈ F×2; we may assume that i2 = −c, as in (74). Let
z = (z1, z2) be as in (75), so that z ∈ ΩS . Set L = F (

√−c). We have

dimHomO(XH)z (σ0,C1) = 1
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for the following families of irreducible, admissible representations σ0 of
GO(XH):

i) σ0 = (σ1H× ⊗ σχL/F )+;

ii) σ0 = (σ1H× ⊗ σπJL)+.

Here, σ is a character of F×, and π is a supercuspidal, irreducible,
admissible representation of GL(2, F ) with trivial central character with
HomL×(πJL,C1) 6= 0.

Proof. We begin by describing O(XH)z. Define g1 : XH → XH by

g1(1) = 1, g1(i) = i, g1(j) = j, g1(k) = −k.

Evidently, g1 ∈ O(XH)z, moreover, det(g1) = −1. It follows that O(XH)z =
(SO(XH) ∩ O(XH)z) ⊔ (SO(XH) ∩ O(XH)z)g1. Using that z1 = 1, z2 = i,
and the fact that every element of SO(XH) is of the form ρ(h1, h2) for some
h1, h2 ∈ H×, a calculation shows that SO(XH) ∩ O(XH)z is {ρ(h∗−1, h) : h ∈
(F + Fi)× = L×}.
i) Since σ0|O(XH ) = (1H× ⊗ χL/F )+, we may assume that σ = 1. A model for
σ0 is C⊕ C, with action defined by

σ0(ρ(h1, h2))(w1 ⊕ w2) = χL/F (N(h2))w1 ⊕ χL/F (N(h1))w2,

σ0(∗)(w1 ⊕ w2) = w2 ⊕ w1

for w1, w2 ∈ C and h1, h2 ∈ H×; here, ∗ is the canonical involution of H ,
regarded as an element of O(XH) with determinant −1. Using that g1 =
∗ ◦ ρ(k∗−1, k), we find that the restriction of σ0 to O(XH)z is given by

σ0(ρ(h
∗−1, h))(w1 ⊕ w2) = w1 ⊕ w2,

σ0(g1)(w1 ⊕ w2) = χL/F (N(k))(w2 ⊕ w1)

for w1, w2 ∈ C and h ∈ (F + Fi)× = L×. Therefore, σ0|O(XH )z is the direct
sum of the trivial character O(XH)z , and the non-trivial character of O(XH)z
that is trivial on SO(XH) ∩ O(XH)z and sends g1 to −1. This implies that
HomO(XH )z(σ0,C1) is one-dimensional.
ii) Again, we may assume that σ = 1. Let V be the space of πJL. As a model
for σ0 we take V ⊕ V with action of GO(XH) defined by

σ0(ρ(h1, h2))(v1 ⊕ v2) = πJL(h2)v1 ⊗ πJL(h1)v2,

σ0(∗)(v1 ⊕ v2) = v2 ⊕ v1

for h1, h2 ∈ H× and v1, v2 ∈ V . By hypothesis, HomL×(πJL,C1) 6= 0. This
space is one-dimensional; see Sect. 2.7. We have kLk−1 = L; in fact, conjuga-
tion by k on L is the non-trivial element of Gal(L/F ). Since HomL×(πJL,C1)
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is one-dimensional, there exists ε ∈ {±1} such that λ ◦ πJL(k) = ελ for
λ ∈ HomL×(πJL,C1). Define a map

HomL×(πJL,C1) −→ HomO(XH)z (σ0,C1)

by sending λ to Λ, where Λ is defined by Λ(v1 ⊕ v2) = λ(v1) + ελ(v2) for
v1, v2 ∈ V . A computation using the fact that g1 = ∗ ◦ ρ(k∗−1, k) shows that
this map is well defined. It is straightforward to verify that this map is injective
and surjective, so that

HomL×(πJL,C1) ∼= HomO(XH)z (σ0,C1).

Hence, HomO(XH )z(σ0,C1) is one-dimensional.

4.6 GO(X) and GSp(4, F )

In this section we will gather together some information about the theta
correspondence between GO(X) and GSp(4) when X is as in (50). When
dim(X) = 4, we recall in Theorem 4.6.3 some results from [7] and [8]. When
dim(X) = 2, we calculate two theta lifts, producing representations of type Vd
and IXb, in Proposition 4.6.2. This calculation uses P3-theory. We include this
material because, to the best of our knowledge, such a computation is absent
from the literature.

We let RQ be the group of elements of R of the form (

[ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗

]
, ∗). Let ZJ be

the group defined in (40).

4.6.1 Lemma. Let (X, 〈·, ·〉) be an even-dimensional symmetric bilinear space
satisfying (50); assume additionally that X is anisotropic. There is an isomor-
phism of complex vector spaces

T1 : S(X2)ZJ
∼−→ S(X) (86)

that is given by
T1
(
ϕ+ S(X2)(ZJ )

)
(x) = ϕ(x, 0)

for ϕ in S(X2) and x in X . The subgroup RQ of R acts on the quotient
S(X2)ZJ . Transferring this action to S(X) via T1, the formulas for the resulting
action are

(

[ t
a b
c d

λ(h)t−1

]

, h) · ϕ = |λ(h)|− dim(X)/4 (t,disc(X))F |t|dim(X)/2 ω1([ a b
c d ] , h)ϕ,

(87)

(

[ 1 x y z
1 y

1 −x
1

]

, 1) · ϕ = ϕ (88)

for ϕ in S(X), x, y and z in F , t in F×, and g =
[
a b
c d

]
in GL(2, F ) and h in

GO(X) with λ(h) = det(g).
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Proof. We first claim that

S(X2)(ZJ) = {ϕ ∈ S(X2) : ϕ(X × 0) = 0}. (89)

Let ϕ be in S(X2)(ZJ). By the lemma in 2.33 of [3] there exists a positive
integer n so that ∫

p−n

ω(

[
1 b
1
1
1

]
, 1)ϕdb = 0. (90)

Evaluating at (x, 0) and using (79) shows that ϕ(X × 0) = 0. Conversely,
assume that ϕ is contained in the right hand side of (89). For any integer k let

Lk = {x ∈ X : 〈x, x〉 ∈ pk}. (91)

It is known that Lk is a lattice, i.e., it is a compact and open o submodule of
X ; see the proof of Theorem 91:1 of [18]. Any lattice is free of rank dimX as
an o module. Since ϕ(X × 0) = 0, there exists a positive integer n such that
ϕ(X ×Ln) = 0. We claim that (90) holds. Let x1 and x2 be in X . Evaluating
(90) at (x1, x2) gives

( ∫

p−n

ψ(b〈x2, x2〉) db
)
ϕ(x1, x2).

This is zero if x2 is in Ln because ϕ(X × Ln) = 0. Assume that x2 is not in
Ln. By the definition of Ln, we have 〈x2, x2〉 /∈ pn. This implies that

∫

p−n

ψ(b〈x2, x2〉) db = 0,

proving our claim. This completes the proof of (89).
Using (89), it is easy to verify that the map T1 is an isomorphism of vector
spaces. Equation (87) follows from Lemma 4.4.3, and equation (88) follows
from (79) and (80).

4.6.2 Proposition. Let m ∈ F×, and let (Xm,1, 〈·, ·〉m,1) be as (52). Assume
that m /∈ F×2, so that Xm,1 is anisotropic. Let E = F (

√
m), and identify char-

acters of GSO(Xm,1) and characters of E× via (14) and (54). Let χE/F be the
quadratic character associated to E. Let Π be an irreducible, admissible rep-
resentation of GSp(4, F ), and let σ be an irreducible, admissible representation
of GO(Xm,1).

i) Assume that σ = µ+ with µ = µ ◦ γ, so that µ = α ◦ NE/F for a
character α of F×. Then HomR(ω,Π

∨ ⊗ σ) 6= 0 if and only if Π =
L(νχE/F , χE/F ⋊ ν−1/2α) (type Vd).
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ii) Assume that σ = µ+ = ind
GO(Xm,1)

GSO(Xm,1)
(µ) with µ 6= µ ◦ γ. Then

HomR(ω,Π
∨ ⊗ σ) 6= 0 if and only if Π = L(νχE/F , ν

−1/2π(µ)) (type
IXb). Here, π(µ) is the supercuspidal, irreducible, admissible representa-
tion of GL(2, F ) associated to µ.

Proof. Let (σ,W ) be as in i) or ii). In the case of i), set π(µ) = α × αχE/F .
Then HomR1(ω1, π(µ)

∨⊗σ) 6= 0, and π(µ) is the unique irreducible, admissible
representation of GL(2, F ) with this property, by Theorem 4.6 of [11].
Let (Π ′, V ) be an irreducible, admissible representation of GSp(4, F ) such that
HomR(ω,Π

′ ⊗ σ) 6= 0. Let T be a non-zero element of this space. The non-
vanishing of T implies that the central characters of Π ′ and σ satisfy

ωΠ′ = ω−1σ = (µ|F×)−1. (92)

We first claim that V is non-supercuspidal. By reasoning as in [9], there exist
λ1, . . . , λt in F

× and an irreducible Sp(4, F ) subspace V0 of V such that

V = V1 ⊕ · · · ⊕ Vt,

where

V1 = π(

[ 1
1
λ1

λ1

]
)V0 , . . . , Vt = π(

[ 1
1
λt

λt

]
)V0. (93)

Similarly, there exist irreducible O(X) subspaces W1, . . . ,Wr of W such that

W =W1 ⊕ · · · ⊕Wr .

There exists an i and a j such that HomSp(4,F )×O(X)(ω, Vi⊗Wj) 6= 0. As in the
proof of Lemma 4.2 of [24], there is an irreducible constituent U1 of π(µ)∨ such
that HomO(X)(ω1, U1 ⊗Wj) 6= 0. By Theorem 4.4 of [25], the representation
Vi is non-supercuspidal, so that V is non-supercuspidal.
Since V is non-supercuspidal, we have VZJ 6= 0 by Tables A.5 and A.6
of [28] (see the comment after Theorem 3.2.1). We claim next that
HomRQ(S(X2)ZJ , VZJ ⊗W ) 6= 0. It follows from (93) that (Vi)ZJ 6= 0. Let
pi : V → Vi and qj : W → Wj be the projections. These maps are Sp(4, F )
and O(X) maps, respectively. The composition

S(X2)
T−→ V ⊗W pi⊗qj−→ Vi ⊗Wj −→ (Vi)ZJ ⊗Wj

is non-zero and surjective; note that Vi⊗Wj is irreducible. The commutativity
of the diagram

S(X2)
T−−−−→ V ⊗W pi⊗qj−−−−→ Vi ⊗Wjy

y

VZJ ⊗W
pi⊗qj−−−−→ (Vi)ZJ ⊗Wj
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implies our claim that HomRQ(S(X2)ZJ , VZJ ⊗W ) 6= 0.
Let RQ̄ be the subgroup of RQ consisting of the elements of the form

(

[ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

1

]
, ∗). Let RP3 be the subgroup of P3 × GO(X) consisting of the ele-

ments of the form (
[
a b x
c d y

1

]
, h), ad−bc = λ(h). There is a homomorphism from

RQ̄ to RP3 given by

(

[ ∗ ∗ ∗ ∗
a b x
c d y

1

]
, h) 7→ (

[
a b x
c d y

1

]
, h)

for
[
a b
c d

]
in GL(2, F ), x and y in F , and h in GO(X) with ad− bc = λ(h). We

consider ZJ a subgroup of RQ̄ via z 7→ (z, 1). The above homomorphism then

induces an isomorphism RQ̄/Z
J ∼= RP3 .

We restrict the RQ modules S(X2)ZJ and VZJ ⊗W to RQ̄. The subgroup ZJ

of RQ̄ acts trivially, so that these spaces may be viewed as RP3 modules.
Let χ be a character of F×. We assert that

HomRP3
(S(X2)ZJ , τ

P3

GL(0)(1)⊗ σ) = 0, (94)

HomRP3
(S(X2)ZJ , τ

P3

GL(1)(χ)⊗ σ) = 0. (95)

Let τ be τP3

GL(0)(1) or τP3

GL(1)(χ). Assume that (94) or (95) is non-zero; we

will obtain a contradiction. Let S be a non-zero element of (94) or (95).
Since S is non-zero, there exists ϕ in S(X2)ZJ such that S(ϕ) is non-zero.
Write S(ϕ) =

∑t
i=1 fi ⊗ wi for some f1, . . . , ft in the standard space of τ and

w1, . . . , wt in W . The elements f1, . . . , ft are functions from P3 to C such that

fi(
[
1 x
1 y
1

]
p) = ψ(y)fi(p)

for x and y in F , p in P3, and i = 1, . . . , t. We may assume that the vectors
w1, . . . , wt are linearly independent, and that there exists p in P3 such that
f1(p) is non-zero. Using the transformation properties of S and f1, we may

assume that p =
[
a

1
1

]
. Let λ : σ → C be a linear functional such that

λ(w1) = 1 and λ(w2) = · · · = λ(wt) = 0, and let e : τ → C be the linear
functional that sends f to f(p). The composition (e⊗ λ) ◦ S is non-zero on ϕ.
On the other hand, using (88), for y in F we have

(
(e ⊗ λ) ◦ S

)
((
[
1
1 y
1

]
, 1)ϕ) = (e⊗ λ)

(
(
[
1
1 y
1

]
, 1) · S(ϕ)

)
,

(
(e ⊗ λ) ◦ S

)
(ϕ) = (e⊗ λ)

(
(
[
1
1 y
1

]
, 1) ·

t∑

i=1

fi ⊗ wi
)

=

t∑

i=1

fi(p
[
1
1 y
1

]
)λ(wi)

= ψ(y)f1(p),
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(
(e ⊗ λ) ◦ S

)
(ϕ) = ψ(y)

(
(e ⊗ λ) ◦ S

)
(ϕ).

This is a contradiction since
(
(e ⊗ λ) ◦ S

)
(ϕ) is non-zero, and there exist y in

F such that ψ(y) 6= 1. This concludes the proof of (94) and (95).

It follows from (94), (95) and the non-vanishing of HomRP3
(S(X2)ZJ , VZJ⊗W )

that there exists an irreducible, admissible representation ρ of GL(2, F )
that occurs in the P3 filtration of VZJ (see Theorem 3.2.1) such that
HomRP3

(S(X2)ZJ , τ
P3

GL(2)(ρ) ⊗ W ) 6= 0. It follows from (87) that

HomR1(ω1, ν
−1/2χE/F ρ ⊗ σ) 6= 0. By the uniqueness stated in the first

paragraph of this proof, it follows that

ρ = ν1/2χE/F π(µ)
∨. (96)

As a consequence, ωρ = ν(µ|F×)−1χE/F . Together with (92), it follows that

ωΠ′ = χE/F ν
−1ωρ. (97)

Going through Table A.5 of [28], we see that only the Π ′ = Π∨ with Π as
asserted in i) and ii) satisfy both (96) and (97). (Observe the remark made
after Theorem 3.2.1.)

Conversely, assume thatΠ is as in i) or ii). Since HomR1(ω1, π(µ)
∨⊗σ) 6= 0, we

have HomO(X)(S(X2), σ) 6= 0 by, for example, Remarque b) on p. 67 of [14].
Arguing as in Theorem 4.4 of [24], there exists some irreducible, admissible
representation Π ′ of GSp(4, F ) such that HomR(ω,Π

′ ⊗ σ) 6= 0. By what we
proved above, Π ′ = Π∨. This concludes the proof.

4.6.3 Theorem. ([7],[8]) Let (X, 〈·, ·〉) be either (XM2 , 〈·, ·〉M2) or
(XH , 〈·, ·〉H), as in (55) or (57). If X = XM2 , set G = GL(2, F ), and if
X = XH , set G = H×. Let Π be an irreducible, admissible representation of
GSp(4, F ), and let π1 and π2 be irreducible, admissible representations of G
with the same central character. We have

HomR(ω,Π
∨ ⊗ (π1 ⊗ π2)+) 6= 0
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for Π , π1 and π2 as in the following table:

type of Π Π π1 π2

I χ1 × χ2 ⋊ σ σχ1χ2 × σ σχ1 × σχ2

II a χStGL(2) ⋊ σ σχ2 × σ σχStGL(2)

b χ1GL(2) ⋊ σ σχ2 × σ σχ1GL(2)

III b χ⋊ σ1GSp(2) σχν1/2 × σν−1/2 σχν−1/2 × σν1/2

IV c L(ν3/2StGL(2), ν
−3/2σ) σν3/2 × σν−3/2 σStGL(2)

d σ1GSp(4) σν3/2 × σν−3/2 σ1GL(2)

V a δ([ξ, νξ], ν−1/2σ) σStGL(2) σξStGL(2)

a∗ δ∗([ξ, νξ], ν−1/2σ) σ1H× σξ1H×

b L(ν1/2ξStGL(2), ν
−1/2σ) σ1GL(2) σξStGL(2)

d L(νξ ⋊ ν−1/2σ) σ1GL(2) σξ1GL(2)

VI a τ(S, ν−1/2σ) σStGL(2) σStGL(2)

b τ(T, ν−1/2σ) σ1H× σ1H×

c L(ν1/2StGL(2), ν
−1/2σ) σ1GL(2) σStGL(2)

d L(ν, 1F× ⋊ ν−1/2σ) σ1GL(2) σ1GL(2)

VIII a τ(S, π) π π

b τ(T, π) πJL πJL

X π ⋊ σ σωπ × σ π

XI a δ(ν1/2π, ν−1/2σ) σStGL(2) σπ

a∗ δ∗(ν1/2π, ν−1/2σ) σ1H× σπJL

b L(ν1/2π, ν−1/2σ) σ1GL(2) σπ

The notation πJL in the table denotes the Jacquet-Langlands lifting of the
supercuspidal representation π of GL(2, F ) to a representation of H×. See
Sect. 4.5 for the definitions of the + representation.

4.7 Applications

We now apply Theorem 4.4.6 along with knowledge of the theta correspon-
dences of the previous section to obtain results about Bessel functionals.

4.7.1 Corollary. Let (X, 〈·, ·〉) be either (XM2 , 〈·, ·〉M2) or (XH , 〈·, ·〉H), as
in (55) or (57). If X = XM2 , set G = GL(2, F ), and if X = XH , set G = H×.
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Let Π be an irreducible, admissible representation of GSp(4, F ), and let π1
and π2 be irreducible, admissible representations of G with the same central
character. Assume that

HomR(ω,Π
∨ ⊗ (π1 ⊗ π2)+) 6= 0

and that Π has a non-split (Λ, θ)-Bessel functional with θ = θS . Then

HomT (π1,CΛ) 6= 0 and HomT (π2,CΛ) 6= 0

where T = TS .

Proof. The assumption that the Bessel functional is non-split means that
A = AS is a field. By Sect. 2.2 and Sect. 2.5 we may assume that S has
the diagonal form (72). By (19), the contragredient Π∨ has a ((Λ ◦ γ)−1, θ)-
Bessel functional. The assertion follows now from Theorem 4.4.6, the explicit
embeddings in (73) and (76), and the relation (31).

4.7.2 Corollary. Let (Π,V ) be an irreducible, admissible representation of
GSp(4, F ). If Π is one of the representations in the following table, then
Π admits a non-zero (Λ, θ)-Bessel functional β if and only if the quadratic
extension L associated to β, and Λ, regarded as a character of L×, are as
specified in the table.

type of Π Π L Λ

Va∗ δ∗([χE/F , νχE/F ], ν
−1/2α) E α ◦ NE/F

Vd L(νχE/F , χE/F ⋊ ν−1/2α) E α ◦ NE/F

IXb L(νχE/F , ν
−1/2π(µ)) E µ and the Galois conjugate of µ

Proof. First we consider the Va∗ case. Let Π = δ∗([χE/F , νχE/F ], ν−1/2α).
By Theorem 4.6.3,

HomR(ω,Π
∨ ⊗ (α1H× ⊗ αχE/F 1H×)+) 6= 0.

First, assume that Π admits a non-zero (Λ, θ)-Bessel functional, and let L be
the quadratic extension associated to this Bessel functional; we will prove that
E = L and that Λ = α◦NE/F . By v) of Proposition 3.5.1, this Bessel functional
is non-split. It follows from Corollary 4.7.1 that

α(NL/F (t)) = Λ(t) and (χE/Fα)(NL/F (t)) = Λ(t)

for t in T = L×. It follows that E = L, and that Λ = α ◦NE/F .
Finally, we prove that Va∗ admits a Bessel functional as specified in the state-
ment of the corollary. By Theorem 6.1.4 below, Va∗ admits some non-zero
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Bessel functional. The previous paragraph proves that this Bessel functional
must be as described in the statement of the corollary.

The arguments for the cases Vd and IXb are similar; we will only consider
the case of type IXb. Let Π = L(νχE/F , ν

−1/2π(µ)), where E is a quadratic
extension of F , χE/F is the quadratic character associated to E/F , µ is a
character of E× that is not Galois invariant, and π(µ) is the supercuspidal,
irreducible, admissible representation of GL(2, F ) associated to µ.

First, assume that Π admits a non-zero (Λ, θ)-Bessel functional, and let L be
the quadratic extension associated to this Bessel functional; we will prove that
E = L, and that Λ is µ or the Galois conjugate of µ. Let S define θ, as in
(15). By (19), Π∨ admits a non-zero ((Λ ◦ γ)−1, θ) Bessel functional β. Write
E = F (

√
m) for some m ∈ F×. By Proposition 4.6.2 we have HomR(ω,Π

∨ ⊗
µ+) 6= 0 with µ+ as in this proposition. The involved symmetric bilinear space
is (Xm,1, 〈·, ·〉m,1). Let GSp(4, F )+ be defined with respect to (Xm,1, 〈·, ·〉m,1)
as in (77). By Lemma 4.4.1 the index of GSp(4, F )+ in GSp(4, F ) is two.
By Lemma 2.1 of [9], the restriction of Π∨ to GSp(4, F )+ is irreducible or
the direct sum of two non-isomorphic irreducible, admissible representations
of GSp(4, F )+; the non-vanishing of HomR(ω,Π

∨ ⊗ µ+) and Lemma 4.1 of
[27] (with m = 2 and n = 2) imply that V ∨ = V1 ⊕ V2 with V1 and V2
irreducible GSp(4, F )+ subspaces of V . Moreover, for each i ∈ {1, 2}, there
exists λi ∈ F× such that Π(

[
1
λi

]
)V1 = Vi. Since HomR(ω, V

∨ ⊗ µ+) is non-
zero, we may assume, after possibly renumbering, that HomR(ω, V1 ⊗ µ+) is
non-zero. There exists i ∈ {1, 2} such that the restriction of β to Vi is non-zero.

Let β′ =
[
1
λ−1
i

]
·β. From Sect. 2.5 it follows that β′ is a ((Λ ◦ γ)−1, θ′) Bessel

functional on Π∨ with θ′ defined by S′ = λ−1i S; also, the restriction of β′ to V1
is non-zero. We will now apply Theorem 4.4.6, with S′ and V1 playing the roles
of S and π, respectively. By i) of this theorem we have that ΩS′ is non-empty;
since S and S′ have the same discriminant, Lemma 4.3.1 implies that L = E.
Let z ∈ ΩS′ and τ ∈ E(z). By ii) of Theorem 4.4.6, there exists a non-zero
vector w in the space of µ+ such that µ+(τ(t))w = (Λ ◦ γ)(t)w for t ∈ TS′ .
By Lemma 4.3.1 again, this implies that µ+(ρ(x))w = Λ(x)w for x ∈ L×, or
µ+(ρ(γ(x)))w = Λ(x)w for x ∈ L×. Since w 6= 0, the definition of µ+ now
implies that Λ = µ or µ ◦ γ, as desired.
Finally, we prove that Π admits Bessel functionals as specified in the statement
of the corollary. By Theorem 6.1.4 below, Π admits some non-zero Bessel
functional. The previous paragraph proves that this Bessel functional must
be as described in the statement of the corollary, and (29) implies that the Π
admits both of the asserted Bessel functionals.

The following result will imply uniqueness of Bessel functionals for representa-
tions of type Va∗ and XIa∗.

4.7.3 Corollary. Let σ be a character of F×. Let c ∈ F× with −c /∈ F×2.
Let S be as in (72) and set L = F (

√−c).
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i) If ξ = χL/F , then dim δ∗([ξ, νξ], ν−1/2σ)N,θS = 1.

ii) If π is an irreducible, admissible, supercuspidal representation ofGL(2, F )
with trivial central character such that HomL×(πJL,C1) 6= 0, then
dim δ∗(ν1/2π, ν−1/2σ)N,θS = 1.

Proof. This follows from Proposition 4.4.7, Theorem 4.6.3, and Proposition
4.5.1; note that Π∨|N ∼= Π |N for irreducible, admissible representations Π of
GSp(4, F ) because Π∨ ∼= ω−1Π Π .

5 Twisted Jacquet modules of induced representations

Let (π, V ) be an irreducible, admissible representation of GSp(4, F ). In view
of the isomorphism (20), understanding the possible Bessel functionals of π is
equivalent to understanding the twisted Jacquet modules VN,θ as T -modules. In
this section, we will calculate the twisted Jacquet modules for representations
induced from the Siegel and Klingen parabolic subgroup. This information
will be used to determine the possible Bessel functionals for many of the non-
supercuspidal representations of GSp(4, F ); see Sect. 6.2.
The results of this section are similar to Proposition 2.1 and 2.3 of [23]. How-
ever, we prefer to redo the arguments, as those in [23] contain some inaccuracies.

5.1 Two useful lemmas

For a positive integer n let S(Fn) be the Schwartz space of Fn, meaning the
space of locally constant, compactly supported functions Fn → C. As before,
ψ is our fixed non-trivial character of F .
Let V be a complex vector space. Let S(F, V ) be the space of compactly sup-
ported, locally constant functions from F to V . There is a canonical isomor-
phism S(F, V ) ∼= S(F )⊗ V . The functional on S(F ) given by f 7→

∫
F f(x) dx

gives rise to a linear map S(F ) ⊗ V → V , and hence to a linear map
S(F, V )→ V . We write this map as an integral

f 7−→
∫

F

f(x) dx.

The following lemma will be frequently used when we calculate Jacquet modules
in the subsequent sections.

5.1.1 Lemma. Let ρ denote the action of F on S(F, V ) by translation, i.e.,
(ρ(x)f)(y) = f(x + y). Let ρ′ be the action of F on S(F, V ) given by
(ρ′(x)f)(y) = ψ(xy)f(y).

i) The map f 7→
∫
F f(x) dx induces an isomorphism

S(F, V )/〈f − ρ(x)f : x ∈ F 〉 ∼= V.
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ii) The map f 7→
∫
F
ψ(−x)f(x) dx induces an isomorphism

S(F, V )/〈ψ(x)f − ρ(x)f : x ∈ F 〉 ∼= V.

iii) The map f 7→ f(0) induces an isomorphism

S(F, V )/〈f − ρ′(x)f : x ∈ F 〉 ∼= V.

Proof. By the Proposition in 1.18 of [3], every translation-invariant functional
on S(F ) is a multiple of the Haar measure f 7→

∫
F
f(x) dx. This proves i) in

the case where V = C. The general case follows from this case by tensoring
the exact sequence

0 −→ 〈f − ρ(x)f : x ∈ F, f ∈ S(F )〉 −→ S(F ) −→ C −→ 0

by V . Under the isomorphism S(F )⊗V ∼= S(F, V ), the space 〈f −ρ(x)f : x ∈
F, f ∈ S(F )〉 ⊗ V maps onto 〈f − ρ(x)f : x ∈ F, f ∈ S(F, V )〉.
To prove ii), observe that there is an isomorphism

S(F, V )/〈f − ρ(x)f : x ∈ F, f ∈ S(F, V )〉
−→ S(F, V )/〈ψ(x)f − ρ(x)f : x ∈ F, f ∈ S(F, V )〉

induced by the map f 7→ f ′, where f ′(x) = ψ(x)f(x). Hence ii) follows from

i). Finally, iii) also follows from i), since the Fourier transform f 7→ f̂ , where

f̂(y) =

∫

F

ψ(−uy)f(u) du,

intertwines the actions ρ and ρ′ of F on S(F, V ).

5.1.2 Lemma. Let G be an l-group, as in [3], and let H1 and H2 be closed sub-
groups of G. Assume that G = H1H2, and that for every compact subset K of
G, there exists a compact subset K2 of H2 such that K ⊂ H1K2. Let (ρ, V ) be
a smooth representation of H1. The map r : c-IndGH1

ρ→ c-IndH2

H1∩H2
(ρ|H1∩H2)

defined by restriction of functions is a well-defined isomorphism of representa-
tions of H2.

Proof. This follows from straightforward verifications.

5.2 Siegel induced representations

Let π be an admissible representation of GL(2, F ), let σ be a character of F×,
and let π⋊σ be as defined in Sect. 1.2; see (9). In this section we will calculate
the twisted Jacquet modules (π ⋊ σ)N,θ for any non-degenerate character θ of
N as a module of T . Lemma 5.2.2 below corrects an inaccuracy in Proposition
2.1 of [23]. Namely, Proposition 2.1 of [23] does not include ii) of our lemma.
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5.2.1 Lemma. Let σ be a character of F×, and π an admissible representation
of GL(2, F ). Let I be the standard space of the Siegel induced representation
π ⋊ σ. There is a filtration of P -modules

I3 = 0 ⊂ I2 ⊂ I1 ⊂ I0 = I.

with the quotients given as follows.

i) I0/I1 = σ0, where

σ0(
[
A ∗
cA′

]
) = σ(c) |c−1 det(A)|3/2 π(A)

for A in GL(2, F ) and c in F×.

ii) I1/I2 = c-IndP[ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗

]σ1, where

σ1(

[
t ∗ y ∗
a ∗
d ∗
adt−1

]
) = σ(ad) |a−1t|3/2 π(

[
t y
d

]
)

for y in F and a, d, t in F×.

iii) I2/I3 = c-IndP[ ∗ ∗
∗ ∗
∗ ∗
∗ ∗

]σ2, where

σ2(
[
A
cA′

]
) = σ(c) |c det(A)−1|3/2 π(cA′)

for A in GL(2, F ) and c in F×.

Proof. This follows by going through the procedure of Sections 6.2 and 6.3 of
[5].

5.2.2 Lemma. Let σ be a character of F×, and let (π, V ) be an admissible
representation of GL(2, F ). We assume that π admits a central character ωπ.
Let I be the standard space of the Siegel induced representation π ⋊ σ. Let θ
be the character of N defined in (15). Assume that θ is non-degenerate. Let L
be the quadratic extension associated to S as in Sect. 2.3.

i) Assume that L is a field. Then IN,θ ∼= V with the action of T given
by σωππ

′. Here, π′ is the representation of GL(2, F ) on V given by
π′(g) = π(g′). In particular, if π is irreducible, then the action of T is
given by σπ.

ii) Assume that L is not a field; we may arrange that S =
[

1/2
1/2

]
. Then

there is a filtration
0 ⊂ J2 ⊂ J1 = IN,θ,

with vector space isomorphisms:
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• J1/J2 ∼= V[ 1 ∗1 ],ψ
⊕ V[ 1 ∗1 ],ψ,

• J2 ∼= V .

The action of T = TS is given as follows,

diag(a, b, a, b)(v1 ⊕ v2) =
∣∣∣a
b

∣∣∣
1/2

σ(ab)ωπ(a)v1 ⊕
∣∣∣a
b

∣∣∣
−1/2

σ(ab)ωπ(b)v2,

diag(a, b, a, b)v = σ(ab)π([ a b ])v,

for a, b ∈ F×, v1 ⊕ v2 ∈ J1/J2 ∼= V[ 1 ∗1 ],ψ
⊕ V[ 1 ∗1 ],ψ

, and v ∈ J2. In

particular, if π is one-dimensional, then IN,θ ∼= V , with the action of T
given by diag(a, b, a, b)v = σ(ab)π([ a b ])v.

Proof. We may assume that b = 0. Since det(S) 6= 0 we have a 6= 0 and
c 6= 0. We use the notation of Lemma 5.2.1. We calculate the twisted Jacquet
modules (Ii/Ii+1)N,θ for i ∈ {0, 1, 2}. Since the action of N on I0/I1 is trivial
and θ is non-trivial, we have (I0/I1)N,θ = 0.

We consider the quotient I1/I2 = c-IndPHσ1, where

H =

[ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗

]
,

and with σ1 as in ii) of Lemma 5.2.1. We first show that for each function f in
the standard model of this representation, the function f◦ : F → V , given by

f◦(w) = f(

[
1
1 w

1
1

]
),

has compact support. Let K be a compact subset of P such that the support
of f is contained in HK. If

[
1
1 w

1
1

]
=

[
t ∗ y ∗
a ∗
d ∗
adt−1

] [ k1 k2 x1 x2

k3 k4 x3 x4

k5 k6
k7 k8

]
,

with the rightmost matrix being in K, then calculations show that k3 = k7 = 0
and w = k−14 x3. Since k

−1
4 and x3 vary in bounded subsets, w is confined to a

compact subset of F . This proves our assertion that f◦ has compact support.
Next, for each function f in the standard model of c-IndPHσ1, consider the
function f̃ : F 2 → V given by

f̃(u,w) = f(

[
1
u 1 w

1
−u 1

]
)

for u,w in F . LetW be the space of all such functions f̃ . Since the map f 7→ f̃
is injective, we get a vector space isomorphism c-IndPHσ1

∼= W . In this new
model, the action of N is given by

(

[ 1 y z
1 x y
1

1

]
f̃)(u,w) = π(

[
1 y+uz

1

]
)f̃(u,w + x+ 2uy + u2z) (98)
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for x, y, z, u, w in F .
We claim that W contains S(F 2, V ). Since W is translation invariant, it is
enough to prove that W contains the function

fN,v(u,w) =

{
v if u,w ∈ pN ,

0 if u /∈ pN or w /∈ pN ,

for any v in V and any positive integer N . Again by translation invariance, we
may assume that N is large enough so that

σ1(h)v = v for h ∈ H ∩ ΓN , (99)

where

ΓN =




1+pN pN pN pN

pN 1+pN pN pN

1+pN pN

pN 1+pN


 ∩ P. (100)

Define f : P → V by

f(g) =

{
σ1(h)v if g = hk with h ∈ H, k ∈ ΓN ,

0 g /∈ HΓN .

Then, by (99), f is a well-defined element of c-IndQHσ1. It is easy to verify that

f̃ = fN,v. This proves our claim that W contains S(F 2, V ).
Now consider the map

W −→ S(F, V ), f̃ 7−→
(
w 7→ f(

[
1
1 w

1
1

]
s1)
)
, (101)

where s1 is defined in (7). This map is well-defined, since the function on
the right is (s1f)

◦, which we showed above has compact support. Similar
considerations as above show that the map (101) is surjective.
We claim that the kernel of (101) is S(F 2, V ). First suppose that f̃ lies in the
kernel; we have to show that f̃ has compact support. Choose N large enough
so that f is right invariant under ΓN . Then, for u not in p−N and w in F ,

f̃(u,w) = f(

[
1
u 1 w

1
−u 1

]
)

= f(

[
1
1 w

1
1

][
1 u−1

1
1 −u−1

1

][
−u−1

u
u−1

−u

]
s1

[
1 u−1

1
1 −u−1

1

]
)

= f(

[
1 u−1

1
1 −u−1

1

][
1 −u−1w u−2w
1 w −u−1w

1
1

][
−u−1

u
u−1

−u

]
s1)

= π(
[
1 −u−1w

1

]
)f(

[
1
1 w

1
1

] [−u−1

u
u−1

−u

]
s1)
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= π(
[
1 w2u−1

1

]
)f(

[
1 −w

1
1 w

1

] [ 1
−u−1

−u
1

]
s2)

= π(
[
1 −u−1w

1

]
)f(

[
−u−1

u
u−1

−u

][
1
1 u−2w

1
1

]
s1)

= |u|−3π(
[
−u−1 −u−2w

u−1

]
)f(

[
1
1 u−2w

1
1

]
s1).

This last expression is zero by assumption. For fixed u in p−N , the function
f̃(u, ·) has compact support; this follows because each f◦ has compact support.
Combining these facts shows that f̃ has compact support. Conversely, assume
f̃ is in S(F 2, V ). Then we can find a large enoughN such that if u has valuation
−N , the function f̃(u, ·) is zero. Looking at the above calculation, we see that,
for fixed such u,

f(

[
1
1 u−2w

1
1

]
s1) = 0

for all w in F . This shows that f̃ is in the kernel of the map (101), completing
the proof of our claim about this kernel. We now have an exact sequence

0 −→ S(F 2, V ) −→W −→ S(F, V ) −→ 0. (102)

Note that the space S(F 2, V ) is invariant under the action (98) of N . A
calculation shows that the action of N on S(F, V ) is given by

(

[ 1 y z
1 x y

1
1

]
f)(w) = π(

[
1 y
1

]
)f(w + z) (103)

for x, y, z, w in F and f in S(F, V ). Since the action of x is trivial and a 6= 0,
it follows that S(F, V )N,θ = 0. Hence, by (102), we have WN,θ

∼= S(F 2, V )N,θ.
We will compute the Jacquet module S(F 2, V )N,θ in stages. The action of N

on S(F 2, V ) is given by (98). By ii) of Lemma 5.1.1, the map f̃ 7→ f ′, where
f ′ : F → V is given by

f ′(u) =
∫

F

ψa(−u)f̃(u,w) dw,

defines a vector space isomorphism

W[ 1
1 ∗
1
1

]
,ψa

∼−→ S(F, V ).

The transfer of the action of the remaining group

[
1 ∗ ∗
1 ∗
1
1

]
to S(F, V ) is given

by

(

[ 1 y z
1 y
1

1

]
f)(u) = ψ(a(2uy + u2z))π(

[
1 y+uz

1

]
)f(u)
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for u, y, z ∈ F and f ∈ S(F, V ). The subspace S(F×, V ) of elements f of
S(F, V ) such that f(0) = 0 is preserved under this action, so that we have an
exact sequence

0 −→ S(F×, V ) −→ S(F, V ) −→ S(F, V )/S(F×, V ) −→ 0 (104)

of representations of the group

[
1 ∗ ∗
1 ∗
1
1

]
. There is an isomorphism of vector

spaces S(F, V )/S(F×, V )
∼−→ V that sends f to f(0). The transfer of the

action of the group

[
1 ∗ ∗
1 ∗
1
1

]
to V is given by

[ 1 y z
1 y
1

1

]
v = π(

[
1 y
1

]
)v (105)

for y, z ∈ F and v ∈ V . The non-vanishing of c and (105) imply that

(S(F, V )/S(F×, V ))[ 1 ∗
1
1
1

]
,ψc

= 0.

Therefore, (
S(F, V )/S(F×, V )

)
[ 1 ∗ ∗

1 ∗
1
1

]
,θ

= 0.

Next, we define a vector space isomorphism of S(F×, V ) with itself and then
transfer the action. For f in S(F×, V ), set f̃(u) = π([ u 1 ])f(u) for u in F×.
The map defined by f 7→ f̃ is an automorphism of vector spaces. The transfer

of the action of

[
1 ∗ ∗
1 ∗
1
1

]
is given by

(

[ 1 y z
1 y
1
1

]
f)(u) = ψ(a(2uy + u2z))π(

[
1 uy+u2z

1

]
)f(u)

for f ∈ S(F×, V ), y, z ∈ F , and u ∈ F×. Now define a linear map

p : S(F×, V ) −→ S(F×, V[ 1 ∗1 ],ψ−2a)

by composing the elements of S(F×, V ) with the natural projection from V to
V[ 1 ∗1 ],ψ

−2a = V/V ([ 1 ∗1 ] , ψ
−2a). The map p is surjective. Let f be in S(F×, V ).

Since f has compact support and is locally constant, we see that f is in the
kernel of p if and only if

there exists l > 0 such that

∫

p−l

ψ(2ay)π(
[
1 y
1

]
)f(u) dy = 0 for all u ∈ F×.

(106)
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Also, f is in S(F×, V )(

[
1 ∗
1 ∗
1
1

]
) if and only if

there exists k > 0 such that

∫

p−k

ψ(2auy)π(
[
1 uy

1

]
)f(u) dy = 0 for all u ∈ F×.

(107)
Since f is locally constant and compactly supported the conditions (106) and
(107) are equivalent. It follows that p induces an isomorphism of vector spaces:

S(F×, V )[ 1 ∗
1 ∗
1
1

]
,ψb

= S(F×, V )[ 1 ∗
1 ∗
1
1

] ∼−→ S(F×, V[ 1 ∗1 ],ψ−2a).

Transferring the action of

[
1 ∗
1
1
1

]
on the first space to the last space results

in the formula
[
1 z
1
1
1

]
f(u) = ψ(au2z)π(

[
1 u2z

1

]
)f(u) = ψ(−au2z)f(u), z ∈ F, u ∈ F×,

for f in S(F×, V[ 1 ∗1 ],ψ−2a).

Assume that L is a field; we will prove that

S(F×, V[ 1 ∗1 ],ψ−2a)[ 1 ∗
1
1
1

]
,ψc

= 0. (108)

Let f be in S(F×, V[ 1 ∗1 ],ψ−2a). Since the support of f is compact, and since

there exists no u in F× such that c+ au2 = 0 as D = b2/4 − ac = −ac is not
in F×2, there exists a positive integer l such that

∫

p−l

ψ(−(c+ au2)z) dz = 0 (109)

for u in the support of f . Hence, for u in F×,

(

∫

p−l

ψ(−cz)
[
1 z
1
1
1

]
f dz)(u) =

( ∫

p−l

ψ(−(c+ au2)z) dz
)
f(u) = 0. (110)

This proves (108), and completes the argument that (I1/I2)N,θ = 0 in the case
L is a field.
Now assume that L is not a field. We may further assume that a = 1 and
c = −1 while retaining b = 0. The group T = T[ a b/2

b/2 c

] = T[ 1
−1
] consists of

the elements

t =

[ x y
y x

x −y
−y x

]
(111)
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with x, y ∈ F such that x2 6= y2. Define

S(F×, V[ 1 ∗1 ],ψ−2a) −→ V[ 1 ∗1 ],ψ
−2a ⊕ V[ 1 ∗1 ],ψ−2a (112)

by f 7→ f(1)⊕ f(−1). We assert that the kernel of this linear map is

S(F×, V[ 1 ∗1 ],ψ−2a)(

[
1 ∗
1
1
1

]
, ψc).

Evidently, this subspace is contained in the kernel. Conversely, let f ∈
S(F×, V[ 1 ∗1 ],ψ−2a) be such that f(1) = f(−1) = 0. Then there exists a positive

integer l such that (109) holds for u in the support of f , implying that (110)
holds. This proves our assertion. The map (112) is clearly surjective, so that
we obtain an isomorphism

S(F×, V[ 1 ∗1 ],ψ−2a)[ 1 ∗
1
1
1

]
,ψc

∼−→ V[ 1 ∗1 ],ψ
−2a ⊕ V[ 1 ∗1 ],ψ−2a .

We now have an isomorphism (I1/I2)N,θ
∼−→ V[ 1 ∗1 ],ψ−2a ⊕ V[ 1 ∗1 ],ψ−2a . A

calculation shows that the transfer of the action of T to V[ 1 ∗1 ],ψ
−2a⊕V[ 1 ∗1 ],ψ−2a

is given by

t(v1 ⊕ v2) =
∣∣∣x− y
x+ y

∣∣∣
1/2

σ
(
(x− y)(x+ y)

)
ωπ(x− y)v1⊕

⊕
∣∣∣x− y
x+ y

∣∣∣
−1/2

σ
(
(x− y)(x+ y)

)
ωπ(x+ y)v2

for t as in (111) and v1, v2 ∈ V[ 1 ∗1 ],ψ
−2a . Finally, the result stated in ii) is

written with respect to S =
[

1/2
1/2

]
. To change to this choice note that the

map
C : (I1/I2)N,θ[ a b/2

b/2 c

] −→ (I1/I2)N,θ[ 1/2
1/2

]

defined by v 7→
[ g

g′
]
v, where g =

[−1 1
1 1

]
, is a well-defined isomorphism; recall

that a = 1, b = 0, c = −1. Moreover, C(tv) = t′C(v) for t as in (111) and

t′ =

[
x−y

x+y
x−y

x+y

]
∈ T[ 1/2

1/2

].

It follows that the group T[ 1/2
1/2

] acts on the isomorphic vector spaces

(I1/I2)N,θ[ 1/2
1/2

] ∼= V[ 1 ∗1 ],ψ
−2a ⊕ V[ 1 ∗1 ],ψ−2a

∼= V[ 1 ∗1 ],ψ
⊕ V[ 1 ∗1 ],ψ

via the formula in ii).
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Next, we consider the quotient I2/I3 = c-IndPM (σ2) from iii) of Lemma 5.2.1.
By Lemma 5.1.2, restriction of functions in the standard model of this repre-
sentation to N gives an N -isomorphism c-IndPM (σ2) ∼= S(N, V ). An application
of i) and ii) of Lemma 5.1.1 shows that S(N, V )N,θ ∼= V via the map defined
by

f 7−→
∫

N

θ(n)−1f(n) dn.

Transferring the action of T we find that t ∈ T acts by σ2(t) on V . If t =[
g
det(g)g′

]
as in (16), then

σ2(t) = σ(det(g))ωπ(det(g))π(g
′).

This concludes the proof.

In case of a one-dimensional representation of M , it follows from this lemma
that

(χ1GL(2) ⋊ σ)N,θ = C(σχ)◦NL/F (113)

as T -modules. In case L is a field and π is irreducible, it follows from Lemma
5.2.2 that

HomT ((π ⋊ σ)N,θ,CΛ) = HomT (σπ,CΛ). (114)

Hence, in view of (20), the space of (Λ, θ)-Bessel functionals on π ⋊ σ is iso-
morphic to the space of (Λ, θ)-Waldspurger functionals on σπ.

5.3 Klingen induced representations

Let π be an admissible representation of GL(2, F ), let χ be a character of F×,
and let χ⋊π be as defined in Sect. 1.2; see (10). In this section we will calculate
the twisted Jacquet modules (χ⋊ π)N,θ for any non-degenerate character θ of
N as a module of T . In the split case our results make several corrections to
Proposition 2.3 and Proposition 2.4 of [23].

5.3.1 Lemma. Let χ be a character of F× and π an admissible representation
of GL(2, F ). Let I be the space of the Klingen induced representation χ ⋊ π.
There is a filtration of P -modules

I2 = 0 ⊂ I1 ⊂ I0 = I.

with the quotients given as follows.

i) I0/I1 = c-IndPBσ0, where

σ0(

[ t ∗ ∗ ∗
a b ∗
d ∗
adt−1

]
) = χ(t) |t|2 |ad|−1 π(

[
a b
d

]
)

for b in F and a, d, t in F×.
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ii) I1/I2 = c-IndP[ ∗ ∗ ∗
∗
∗ ∗
∗

]σ1, where

σ1(

[
t ∗ x
a
d ∗
adt−1

]
) = χ(d) |a−1d|π(

[
t x
adt−1

]
)

for x in F and a, d, t in F×.

Proof. This follows by going through the procedure of Sections 6.2 and 6.3 of
[5].

5.3.2 Lemma. Let χ be a character of F×, and let (π, V ) be an admissible
representation of GL(2, F ). We assume that π has a central character ωπ. Let
I be the standard space of the Klingen induced representation χ ⋊ π. Let
N be the unipotent radical of the Siegel parabolic subgroup, and let θ be
the character of N defined in (15). We assume that the associated quadratic
extension L is a field. Then, as T -modules,

IN,θ ∼=
⊕

Λ|F×=χωπ

d · Λ, where d = dimHom[ 1 ∗1 ]
(π, ψ).

In particular, IN,θ = 0 if π is one-dimensional.

Proof. We will first prove that (I0/I1)N,θ = 0, where the notations are as
in Lemma 5.3.1. We may assume that the element b appearing in the matrix
S in (15) is zero. For f in the standard space of the induced representation
I0/I1 = c-IndPBσ0, let

f̃(u) = f(

[
1
u 1

1
−u 1

]
), u ∈ F.

Let W be the space of all functions F → C of the form f̃ , where f runs
through c-IndPBσ0. Since the map f 7→ f̃ is injective, we obtain a vector space
isomorphism c-IndPBσ0

∼=W . The identity

[
1
u 1

1
−u 1

]
=

[
1 u−1

1
1 −u−1

1

][
−u−1

u
u−1

−u

]
s1

[
1 u−1

1
1 −u−1

1

]
,

where s1 is as in (7), shows that f̃ satisfies

f̃(u) = χ(−u−1)|u|−2π([ u u−1 ])f(s1) for |u| ≫ 0. (115)

The spaceW consists of locally constant functions. Furthermore,W is invariant
under translations, i.e., if f ′ ∈ W , then the function u 7→ f ′(u + x) is also in
W , for any x in F .

Documenta Mathematica 21 (2016) 467–553



Some Results on Bessel Functionals for GSp(4) 525

We claim that W contains S(F, V ). Since W is translation invariant, it is
enough to prove that W contains the function

fN,v(u) =

{
v if u ∈ pN ,

0 if u /∈ pN ,

for any v in V and any positive integer N . Again by translation invariance, we
may assume that N is large enough so that

σ0(b)v = v for b ∈ B ∩ ΓN , (116)

where ΓN is as in (100). Define f : P → V by

f(g) =

{
σ0(b)v if g = bk with b ∈ B, k ∈ ΓN ,

0 g /∈ BΓN .

Then, by (116), f is a well-defined element of c-IndPBσ0. It is easy to verify
that f̃ = fN,v. This proves our claim that W contains S(F, V ).

We define a linear map W → V by sending f̃ to the vector f(s1) in (115).
Then the kernel of this map is S(F, V ). We claim that the map is surjective.
To see this, let v be in V . Again choose N large enough so that (116) holds.
Then the function f : P → V given by

f(g) =

{
σ0(b)v if g = bs1k with b ∈ B, k ∈ ΓN ,

0 g /∈ Bs1ΓN .

is a well-defined element of c-IndPBσ0 with f(s1) = v. This proves our claim
that the map W → V is surjective. We therefore get an exact sequence

0 −→ S(F, V ) −→W −→ V −→ 0. (117)

The transfer of the action of N to W is given by

(

[ 1 y z
1 x y
1

1

]
f̃)(u) = π(

[
1 x+2uy+u2z

1

]
)f̃(u)

for all x, y, z, u in F . Evidently, the subspace S(F, V ) is invariant under N .
Moreover, the action of N on V is given by

[ 1 y z
1 x y

1
1

]
v = π([ 1 z1 ])v (118)

for all x, y, z in F and v in V .
To prove that (I0/I1)N,θ = 0, it suffices to show that S(F, V )N,θ = 0 and
VN,θ = 0. Since the element a in the matrix S is non-zero, it follows from (118)
that VN,θ = 0.
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To prove that S(F, V )N,θ = 0, we define a map p from S(F, V ) to

S(F, V[ 1 ∗1 ],ψa) = S(F, V/V ([ 1 ∗1 ], ψ
a))

by sending f to f composed with the projection from V to V/V ([ 1 ∗1 ], ψ
a).

This map is surjective. It is easy to see that p induces an isomorphism

S(F, V )[ 1
1 ∗
1
1

]
,ψa

∼= S(F, V[ 1 ∗1 ],ψa).

For the space on the right we have the action

(

[ 1 y z
1 y
1

1

]
f)(u) = π(

[
1 2uy+u2z

1

]
)f(u), u ∈ F.

By iii) of Lemma 5.1.1, the map f 7→ f(0) induces an isomorphism

S(F, V[ 1 ∗1 ],ψa)
[ 1 ∗

1 ∗
1
1

] ∼= V[ 1 ∗1 ],ψ
a .

For the space on the right we have the action

[
1 z
1
1
1

]
v = v. Taking a twisted

Jacquet module with respect to the character ψc gives zero, since c 6= 0. This
concludes our proof that (I0/I1)N,θ = 0.
Next let σ1 be as in ii) of Lemma 5.3.1. Let

H1 =

[ ∗ ∗ ∗
∗
∗ ∗
∗

]

and H2 = TN . By Lemma 2.3.1, we have P = H1H2. To verify the hypotheses
of Lemma 5.1.2, let K be a compact subset of P . Write P = MN and let
p : P → N be the resulting projection map. Since p is continuous, the set p(K)
is compact. There exists a compact subset KT of T such that T = F×KT .
Then M ⊂ H1KT by Lemma 2.3.1. Therefore K ⊂ H1K2 with K2 = KT p(K).
By Lemma 5.1.2, restriction of functions gives a TN isomorphism

c-IndP[ ∗ ∗ ∗
∗
∗ ∗
∗

]σ1 ∼= c-IndTNF×ZJ (σ1
∣∣
F×ZJ

).

Note that F× acts via the character χωπ on this module. Since T is compact
modulo F×, the Jacquet module (c-IndTNF×ZJ (σ1

∣∣
F×ZJ

))N,θ is a direct sum over
characters of T . Let Λ be a character of T . It is easy to verify that

HomT

(
(c-IndTNF×ZJ (σ1

∣∣
F×ZJ

))N,θ,Λ
)
= HomTN

(
c-IndTNF×ZJ (σ1

∣∣
F×ZJ

),Λ ⊗ θ
)
.

By Frobenius reciprocity, the space on the right is isomorphic to

HomF×ZJ
(
σ1
∣∣
F×ZJ

, (Λ⊗ θ)
∣∣
F×ZJ

)
. (119)
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This space is zero unless the restriction of Λ to F× equals χωπ. Assume this
is the case. Then (119) is equal to

Hom[ 1 ∗1 ]
(π, ψc) ∼= Hom[ 1 ∗1 ]

(π, ψ).

This concludes the proof.

5.3.3 Lemma. Let χ be a character of F× and π an admissible representation
of GL(2, F ). Let I be the space of the Klingen induced representation χ ⋊ π.
There is a filtration of Q-modules

I3 = 0 ⊂ I2 ⊂ I1 ⊂ I0 = I.

with the quotients given as follows.

i) I0/I1 = σ0, where

σ0(

[ t ∗ ∗ ∗
a b ∗
c d ∗

(ad−bc)t−1

]
) = χ(t) |t2(ad− bc)−1|π(

[
a b
c d

]
)

for
[
a b
c d

]
in GL(2, F ) and t in F×.

ii) I1/I2 = c-IndQ[ ∗ ∗ ∗
∗ ∗ ∗
∗
∗

]σ1, where

σ1(

[ t ∗ x
a b ∗
d
adt−1

]
) = χ(a) |ad−1|π(

[
t x
adt−1

]
)

for b, x in F and a, d, t in F×.

iii) I2/I3 = I2 = c-IndQ[ ∗
∗ ∗
∗ ∗
∗

]σ2, where

σ2(

[ t
a b
c d

(ad−bc)t−1

]
) = χ(t−1(ad− bc)) |t−2(ad− bc)|π(

[
a b
c d

]
)

for
[
a b
c d

]
in GL(2, F ) and t in F×.

Proof. This follows by going through the procedure of Sections 6.2 and 6.3 of
[5].

5.3.4 Lemma. Let χ be a character of F×, and let (π, V ) be an admissible
representation of GL(2, F ). Let I be the standard space of the Klingen induced
representation χ ⋊ π. Let N be the unipotent radical of the Siegel parabolic
subgroup, and let θ be the character of N defined in (23) (i.e., we consider the
split case). Then there is a filtration

0 ⊂ J3 ⊂ J2 ⊂ J1 = IN,θ,

with the quotients given as follows.
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• J1/J2 ∼= V

• J2/J3 ∼= V[ 1∗ 1 ]
.

• J3 ∼= S(F×, V[ 1∗ 1 ],ψ
).

The action of the stabilizer of θ is given as follows,

diag(a, b, a, b)v = χ(a)π([ a b ])v for v ∈ J1/J2,
diag(a, b, a, b)v = χ(b)π([ a b ])v for v ∈ J2/J3,

(diag(a, b, a, b)f)(u) = χ(b)π([ a a ])f(a
−1bu) for f ∈ J3, u ∈ F×,

for all a and b in F×. In particular, we have the following special cases.

i) Assume that π = σ1GL(2). Then the twisted Jacquet module IN,θ =
I/〈θ(n)v − ρ(n)v : n ∈ N, v ∈ I〉 is two-dimensional. More precisely,
there is a filtration

0 ⊂ J2 ⊂ J1 = IN,θ,

where J2 and J1/J2 are both one-dimensional, and the action of the
stabilizer of θ is given as follows,

diag(a, b, a, b)v = χ(a)σ(ab)v for v ∈ J1/J2,
diag(a, b, a, b)v = χ(b)σ(ab)v for v ∈ J2,

for all a and b in F×.

ii) Assume that π is infinite-dimensional and irreducible. Then there is a
filtration

0 ⊂ J3 ⊂ J2 ⊂ J1 = IN,θ,

with the quotients given as follows.

• J1/J2 ∼= V

• J2/J3 ∼= V[ 1∗ 1 ]
. Hence, J2/J3 is 2-dimensional if π is a principal

series representation, 1-dimensional if π is a twist of the Steinberg
representation, and 0 if π is supercuspidal.

• J3 ∼= S(F×).

The action of the stabilizer of θ is given as follows,

diag(a, b, a, b)v = χ(a)π([ a b ])v for v ∈ J1/J2,
diag(a, b, a, b)v = χ(b)π([ a b ])v for v ∈ J2/J3,

(diag(a, b, a, b)f)(u) = χ(b)ωπ(a)f(a
−1bu) for f ∈ J3, u ∈ F×,

for all a and b in F×.
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Proof. It will be easier to work with the conjugate subgroup Nalt and the
character θalt of Nalt defined in (26). For the top quotient from i) of Lemma
5.3.3 we have

(I0/I1)Nalt,θalt = 0,

since the subgroup

[
1 ∗
1
1 ∗
1

]
acts trivially on I0/I1, but θalt is not trivial on this

subgroup. We consider the quotient I1/I2 = c-IndQHσ1, where H =

[ ∗ ∗ ∗
∗ ∗ ∗
∗
∗

]
,

and with σ1 as in ii) of Lemma 5.3.3. We first show that for each function f in
the standard model of this representation, the function f◦ : F → V , given by

f◦(w) = f(

[
1 −w

1
1 w

1

]
),

has compact support. Let K be a compact subset of Q such that the support
of f is contained in HK. If

[
1 −w

1
1 w

1

]
=

[ t ∗ x
a b ∗
d
adt−1

] [ k0 x1 x2 x3

k1 k2 x4

k3 k4 x5

k5

]
,

with the rightmost matrix being in K, then calculations show that k3 = 0 and
w = k−14 x5. Since k−14 and x5 vary in bounded subsets, w is confined to a
compact subset of F . This proves our assertion that f◦ has compact support.
Next, for each function f in the standard model of c-IndQHσ1, consider the

function f̃ : F 2 → V given by

f̃(u,w) = f(

[
1 −w

1
u 1 w

1

]
).

Let W be the space of all such functions f̃ . Since the map f 7→ f̃ is injective,
we get a vector space isomorphism c-IndQHσ1

∼= W . Evidently, in this new
model, the action of Nalt is given by

(

[ 1 −y z
1
x 1 y

1

]
f̃)(u,w) = f̃(u+ x,w + y). (120)

We claim that W contains S(F 2, V ). Since W is translation invariant, it is
enough to prove that W contains the function

fN,v(u,w) =

{
v if u,w ∈ pN ,

0 if u /∈ pN or w /∈ pN ,

for any v in V and any positive integer N . Again by translation invariance, we
may assume that N is large enough so that

σ1(h)v = v for h ∈ H ∩ ΓN , (121)
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where

ΓN =




1+pN pN pN pN

1+pN pN pN

pN 1+pN pN

1+pN


 ∩Q. (122)

Define f : Q→ V by

f(g) =

{
σ1(h)v if g = hk with h ∈ H, k ∈ ΓN ,

0 g /∈ HΓN .

Then, by (121), f is a well-defined element of c-IndQHσ1. It is easy to verify

that f̃ = fN,v. This proves our claim that W contains S(F 2, V ).
Now consider the map

W −→ S(F, V ), f̃ 7−→
(
w 7→ f(

[
1 −w

1
1 w

1

]
s2)
)
, (123)

where s2 is defined in (7). This map is well-defined, since the function on
the right is (s2f)

◦, which we showed above has compact support. Similar
considerations as above show that the map (123) is surjective.
We claim that the kernel of (123) is S(F 2, V ). First suppose that f̃ lies in the
kernel; we have to show that f̃ has compact support. Choose N large enough
so that f is right invariant under ΓN . Then, for u not in p−N and w in F ,

f̃(u,w) = f(

[
1 −w

1
u 1 w

1

]
)

= f(

[
1 −w

1
1 w

1

] [
1
1 u−1

1
1

] [ 1
−u−1

−u
1

]
s2

[
1
1 u−1

1
1

]
)

= f(

[
1 −wu−1 w2u−1

1 u−1 −wu−1

1
1

] [
1 −w

1
1 w

1

] [ 1
−u−1

−u
1

]
s2)

= π(
[
1 w2u−1

1

]
)f(

[
1 −w

1
1 w

1

] [ 1
−u−1

−u
1

]
s2)

= χ(−u−1)|u|−2π(
[
1 w2u−1

1

]
)f(

[
1 wu−1

1
1 −wu−1

1

]
s2).

This last expression is zero by assumption. For fixed u in p−N , the function
f̃(u, ·) has compact support; this follows because each f◦ has compact support.
Combining these facts shows that f̃ has compact support. Conversely, assume
f̃ is in S(F 2, V ). Then we can find a large enoughN such that if u has valuation
−N , the function f̃(u, ·) is zero. Looking at the above calculation, we see that,
for fixed such u,

f(

[
1 wu−1

1
1 −wu−1

1

]
s2) = 0
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for all w in F . This shows that f̃ is in the kernel of the map (123), completing
the proof of our claim about this kernel. We now have an exact sequence

0 −→ S(F 2, V ) −→W −→ S(F, V ) −→ 0. (124)

Note that the space S(F 2, V ) is invariant under the action (120) of Nalt. A
calculation shows that the action of Nalt on S(F, V ) is given by

(

[ 1 −y z
1
x 1 y

1

]
f)(w) = π(

[
1 z−2wy−w2x

1

]
)f(w) (125)

for x, y, z, w in F and f in S(F, V ).
We claim that S(F, V )Nalt,θalt = 0. To prove this, we calculate this Jacquet
module in stages. We define a map p from S(F, V ) to

S(F, V[ 1 ∗1 ]) = S(F, V/V ([ 1 ∗1 ]))

by sending f to f composed with the natural projection from V to V/V ([ 1 ∗1 ]).

This map is surjective and has kernel S(F, V )(

[
1 ∗
1
1
1

]
). Hence, we obtain an

isomorphism
S(F, V )[ 1 ∗

1
1
1

] ∼= S(F, V[ 1 ∗1 ]).

The action of the group

[
1 ∗
1
∗ 1 ∗

1

]
on these spaces is trivial. Since θalt is not

trivial on this group, this proves our claim that S(F, V )Nalt,θalt = 0.
By (124), we now have WNalt,θalt

∼= S(F 2, V )Nalt,θalt . The action of Nalt on
S(F 2, V ) is given by (120). Since S(F 2, V ) = S(F ) ⊗ S(F )⊗ V , Lemma 5.1.1
implies that the map

f 7−→
∫

F

∫

F

f(u,w)ψ(−w) du dw

induces an isomorphism S(F 2, V )Nalt,θalt
∼= V . Moreover, a calculation shows

that diag(a, a, b, b) acts on S(F 2, V )Nalt,θalt
∼= V by χ(a)π([ a b ]).

Finally, we consider the bottom quotient I2/I3 = c-IndQ[ ∗
∗ ∗
∗ ∗
∗

]σ2 with σ2 as

in iii) of Lemma 5.3.3. If we associate with a function f in the standard model
of this induced representation the function

f̃(u, v, w) = f(

[
1 −v u w

1 u
1 v

1

]
),

then, by Lemma 5.1.2, we obtain an isomorphism I2/I3 ∼= S(F 3, V ). A calcu-
lation shows that the action of Nalt on S(F 3, V ) is given by

(

[ 1 −y z
1
x 1 y

1

]
f)(u, v, w) = π([ 1x 1 ])f(u, v + y − ux,w + z + uy) (126)
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for x, y, z, u, v, w in F and f in S(F 3, V ). This time we take Jacquet modules
step by step, starting with the z-variable. Lemma 5.1.1 shows that the map

f 7−→
(
(u, v) 7→

∫

F

f(u, v, w) dw

)

induces an isomorphism S(F 3, V )[ 1 ∗
1
1
1

] ∼= S(F 2, V ). On S(F 2, V ) we have

the action

(

[ 1 −y
1
x 1 y

1

]
f)(u, v) = π([ 1x 1 ])f(u, v + y − ux)

for x, y, u, v in F and f in S(F 2, V ). Part ii) of Lemma 5.1.1 shows that the
map

f 7−→
(
u 7→

∫

F

f(u, v)ψ(−v) dv
)

induces an isomorphism S(F 2, V )[ 1 ∗
1
1 ∗
1

]
,ψ

∼= S(F, V ). A calculation shows

that on S(F, V ) we have the actions

(

[
1
1
x 1

1

]
f)(u) = ψ(−ux)π([ 1x 1 ])f(u) (127)

for x, u in F , and

(

[
a
a
b
b

]
f)(u) = χ(b)π([ a b ])f(a

−1bu) (128)

for u in F and a, b in F×. The subspace S(F×, V ) consisting of functions that
vanish at zero is invariant under these actions. We consider the exact sequence

0 −→ S(F×, V ) −→ S(F, V ) −→ S(F, V )/S(F×, V ) −→ 0.

The quotient S(F, V )/S(F×, V ) is isomorphic to V via the map f 7→ f(0). The
actions of the above subgroups on V are given by

[
1
1
x 1

1

]
v = π([ 1x 1 ])v (129)

and [
a
a
b
b

]
v = χ(b)π([ a b ])v. (130)

Taking Jacquet modules on the above sequence gives

0 −→ S(F×, V )[ 1
1
∗ 1

1

] −→ S(F, V )[ 1
1
∗ 1

1

]
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−→
(
S(F, V )/S(F×, V )

)
[ 1

1
∗ 1

1

] −→ 0.

In view of (129), the Jacquet module on the right is isomorphic to V[ 1∗ 1 ]
. The

action of the diagonal subgroup on V[ 1∗ 1 ]
is given by the same formula as in

(130).
We consider the map from S(F×, V ) to itself given by f 7→

(
u 7→ π([ 1 u ])f(u)

)
.

This map is an isomorphism of vector spaces. The actions (127) and (128) turn
into

(

[
1
1
x 1

1

]
f)(u) = ψ(−ux)π([ 1

ux 1 ])f(u) (131)

and

(

[
a
a
b
b

]
f)(u) = χ(b)π([ a a ])f(a

−1bu). (132)

We define a map p from S(F×, V ) to

S(F×, V[ 1∗ 1 ],ψ
) = S(F×, V/V ([ 1∗ 1 ], ψ))

by sending f to f composed with the projection from V to V/V ([ 1∗ 1 ], ψ). This
map is surjective. The kernel of p consists of all f in S(F×, V ) for which there
exists a positive integer l such that

∫

p−l

ψ(−x)π([ 1x 1 ])f(u) dx = 0 for all u ∈ F×. (133)

Let W be the space of f in S(F×, V ) for which there exists a positive integer
k such that ∫

p−k

[
1
1
x 1

1

]
f dx = 0, (134)

so that S(F×, V )/W = S(F×, V )[ 1
1
∗ 1

1

]. Let f be in W . The condition

(134) means that
∫

p−k

ψ(−ux)π([ 1
ux 1 ])f(u) dx = 0 for all u ∈ F×. (135)

Since f has compact support in F×, the conditions (133) and (135) are equiv-
alent. It follows that

S(F×, V )[ 1
1
∗ 1

1

] ∼= S(F×, V[ 1∗ 1 ],ψ
).

The diagonal subgroup acts on S(F×, V[ 1∗ 1 ],ψ
) by the same formula as in (132).
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6 The main results

Having assembled all the required tools, we are now ready to prove the three
main results of this paper mentioned in the introduction.

6.1 Existence of Bessel functionals

In this section we prove that every irreducible, admissible representation (π, V )
of GSp(4, F ) which is not a twist of the trivial representation admits a Bessel
functional. The proof uses the P3-module VZJ and the GJ -module VZJ ,ψ. The
first module is closely related to the theory of zeta integrals. The second module
VZJ ,ψ is the quotient of V by the vector subspace generated by the elements of

the form π(

[
1 z
1
1
1

]
)v − ψ(z)v for v ∈ V and z ∈ F . Evidently, VZJ ,ψ is a GJ

module. This module is closely related to the theory of representations of the
metaplectic group S̃L(2, F ).

6.1.1 Lemma. Let (π, V ) be a smooth representation of N . Then there exists
a character θ of N such that VN,θ 6= 0.

Proof. This follows immediately from Lemma 1.6 of [29].

Let S̃L(2, F ) be the metaplectic group, defined as in Sect. 1 of [29]. Let m be

in F×. We will use the Weil representation πmW of S̃L(2, F ) on S(F ) associated
to the quadratic form q(x) = x2 and ψm. This is as defined on pp. 3-4 of [39]
and p. 223 of [41]. The only explicit property of πm

W
we will use is

(πm
W
([ 1 b1 ], 1)f)(x) = ψ(mbx2)f(x), (136)

for b in F and f in S(F ). We define an action of NQ, introduced in (6), on the
Schwartz space S(F ) by

πm
S
(

[
1 λ µ κ

1 µ
1 −λ

1

]
f)(x) = ψm(κ+ (2x+ λ)µ)f(x + λ) (137)

for f in S(F ). This representation of NQ is called the Schrödinger representa-
tion.
Given a smooth, genuine representation (τ,W ) of S̃L(2, F ), we define a repre-
sentation τJ of GJ on the space W ⊗ S(F ) by the formulas

τJ (

[
1
a b
c d

1

]
)(v ⊗ f) = τ(

[
a b
c d

]
, 1)v ⊗ πm

W
(
[
a b
c d

]
, 1)f, (138)

τJ (

[
1 λ µ κ

1 µ
1 −λ

1

]
)(v ⊗ f) = v ⊗ πm

S
(

[
1 λ µ κ

1 µ
1 −λ

1

]
)f. (139)
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Computations show that τJ is a smooth representation of GJ . Moreover, the
map that sends τ to τJ is a bijection between the set of equivalence classes
of smooth, genuine representations of S̃L(2, F ), and smooth representations of
GJ with central character ψm. The proof of this fact is based on the Stone-von
Neumann Theorem; see Theorem 2.6.2 of [2]. Under this bijection, irreducible
τ correspond to irreducible τJ .

6.1.2 Lemma. Let m be in F×. Let (τJ ,W J) be a non-zero, irreducible,
smooth representation of GJ with central character ψm. Then dimW J

N,θa,0,m
≤

1 for all a in F× and dimW J
N,θa,0,m

= 1 for some a in F×. This dimension

depends only on the class of a in F×/F×2.

Proof. By the above discussion, there exists an irreducible, genuine, admissible
representation τ of S̃L(2, F ) such that τJ ∼= τ ⊗ πmSW . Using (136), (137) and
iii) of Lemma 5.1.1, an easy calculation shows that

W J[ 1 ∗ ∗
1 ∗ ∗
1
1

]
,θa,0,m

∼=W[ 1 ∗1 ],ψ
a .

By Lemme 2 on p. 226 of [41], the space on the right is at most one-dimensional,
and is one-dimensional for some a in F×. Moreover, the dimension depends
only on the class of a in F×/F×2.

6.1.3 Proposition. Let (π, V ) be an irreducible, admissible representation of
GSp(4, F ). Then the following statements are equivalent.

i) π is not a twist of the trivial representation.

ii) There exists a non-trivial character θ of N such that VN,θ 6= 0.

iii) There exists a non-degenerate character θ of N such that VN,θ 6= 0.

Proof. i) ⇒ ii) Assume that VN,θ = 0 for all non-trivial θ. By Lemma
6.1.1, it follows that VN,1 6= 0. In particular, the P3-module VZJ is non-zero.
By using Theorem 3.2.1 and inspecting tables A.5 and A.6 in [28], one can
see that VZJ contains an irreducible subquotient τ of the form τP3

GL(0)(1), or

τP3

GL(1)(χ) for a character χ of F×, or τP3

GL(2)(ρ) for an irreducible, admissible,

infinite-dimensional representation ρ of GL(2, F ); it is here that we use the
hypothesis that π is not one-dimensional. For a, b in F we define a character

of the subgroup
[
1 ∗ ∗
1
1

]
of P3 by

θa,b(
[
1 x y

1
1

]
) = ψ(ax+ by). (140)
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By Lemma 2.5.4 or Lemma 2.5.5 of [28], or the infinite-dimensionality of ρ if
τ = τP3

GL(2)(ρ),

τ[ 1 ∗ ∗
1
1

]
,θa,b
6= 0

for some (a, b) 6= (0, 0). This implies that VN,θa,b,0 6= 0, contradicting our
assumption.
ii) ⇒ iii) The hypothesis implies that VZJ ,ψm is non-zero for some m in F×.
We observe that VZJ ,ψm is a smooth GJ representation. By Lemma 2.6 of
[3], there exists an irreducible subquotient (τJ ,W J) of this GJ module. By
Lemma 6.1.2, we have dimW J

N,θa,0,m
= 1 for some a in F×. This implies that

VN,θa,0,m 6= 0.
iii) ⇒ i) is obvious.

6.1.4 Theorem. Let (π, V ) be an irreducible, admissible representation of
GSp(4, F ). Assume that π is not one-dimensional. Then π admits a (Λ, θ)-
Bessel functional for some non-degenerate character θ of N and some character
Λ of T . If π is non-generic and supercuspidal, then every Bessel functional for
π is non-split.

Proof. By Proposition 6.1.3, there exists a non-degenerate θ such that VN,θ 6=
0. Assume that θ is non-split. Then, since the center F× of GSp(4, F ) acts by
a character on VN,θ and T/F× is compact, VN,θ decomposes as a direct sum
over characters of T . It follows that a (Λ, θ)-Bessel functional exists for some
character Λ of T .
Now assume that θ is split. We may assume that S is the matrix in (22). Let
V0, V1, V2 be the modules appearing in the P3-filtration, as in Theorem 3.2.1.
Since VN,θ 6= 0, we must have

(V0/V1)[ 1 ∗ ∗
1
1

]
,θ0,1
6= 0, (V1/V2)[ 1 ∗ ∗

1
1

]
,θ0,1
6= 0, or (V2)[ 1 ∗ ∗

1
1

]
,θ0,1
6= 0,

where we use the notation (140). It is immediate from (38) that the first
space is zero. If the second space is non-zero, then π admits a split Bessel
functional by iii) of Proposition 3.5.1. If the third space is non-zero, then π
is generic by Theorem 3.2.1, and hence, by Proposition 3.4.2, admits a split
Bessel functional.
For the last statement, assume that π is non-generic and supercuspidal. Then
VZJ = 0 by Theorem 3.2.1. Hence, VN,θ = 0 for any split θ. It follows that all
Bessel functionals for π are non-split.

6.2 The table of Bessel functionals

In this section, given a non-supercuspidal representation π, or a π that is in
an L-packet with a non-supercuspidal representation, we determine the set of
(Λ, θ) for which π admits a (Λ, θ)-Bessel functional.
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6.2.1 Lemma. Let θ be as in (15), and let T be the corresponding torus. As-
sume that the associated quadratic extension L is a field. Let V1, V2, V3 and
W be smooth representations of T . Assume that these four representations
all have the same central character. Assume further that there is an exact
sequence of T -modules

0 −→ V1 −→ V2 −→ V3 −→ 0.

Then the sequence of T -modules

0 −→ HomT (V3,W ) −→ HomT (V2,W ) −→ HomT (V1,W ) −→ 0

is exact.

Proof. It is easy to see that the sequence

0 −→ HomT (V3,W ) −→ HomT (V2,W ) −→ HomT (V1,W )

is exact. We will prove the surjectivity of the last map. Let f be in
HomT (V1,W ). We extend f to a linear map f1 from V2 to W . We define
another linear map f2 from V2 to W by

f2(v) =

∫

T/F×

t−1 · f1(t · v) dt.

This is well-defined by the condition on the central characters, the compactness
of T/F×, and the smoothness hypothesis. Evidently, f2 is in HomT (V2,W ) and
maps to a multiple of f .

6.2.2 Theorem. The following table shows the Bessel functionals admitted
by the irreducible, admissible, non-supercuspidal representations of GSp(4, F ).
The column “L↔ ξ” indicates that the field L is the quadratic extension of F
corresponding to the non-trivial, quadratic character ξ of F×; this is only rel-
evant for representations in groups V and IX. The pairs of characters (χ1, χ2)
in the “L = F × F” column for types IIIb and IVc refer to the characters of
T = {diag(a, b, a, b) : a, b ∈ F×} given by diag(a, b, a, b) 7→ χ1(a)χ2(b). In
representations of group IX, the symbol µ denotes a non-Galois-invariant char-
acter of L×, where L is the quadratic extension corresponding to ξ. The Galois
conjugate of µ is denoted by µ′. The irreducible, admissible, supercuspidal
representation of GL(2, F ) corresponding to µ is denoted by π(µ). Finally, the
symbol N in the table stands for the norm map NL/F . In the split case, the
character σ ◦ N is the same as (σ, σ). In the table, the phrase “all Λ” means
all characters Λ of T whose restriction to F× is the central character of the
representation of GSp(4, F ).
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representation (Λ, θ)-Bessel functional exists exactly for . . .

L = F × F L/F a field extension

L↔ ξ L 6↔ ξ

I χ1 × χ2 ⋊ σ (irred.) all Λ all Λ

II a χStGL(2) ⋊ σ all Λ Λ 6= (χσ) ◦N

b χ1GL(2) ⋊ σ Λ = (χσ) ◦N Λ = (χσ) ◦N

III a χ⋊ σStGSp(2) all Λ all Λ

b χ⋊ σ1GSp(2) Λ ∈ {(χσ, σ), (σ, χσ)} —

IV a σStGSp(4) all Λ Λ 6= σ ◦N

b L(ν2, ν−1σStGSp(2)) Λ = σ ◦N Λ = σ ◦N

c L(ν3/2StGL(2), ν
−3/2σ) Λ = (ν±1σ, ν∓1σ) —

d σ1GSp(4) — —

V a δ([ξ, νξ], ν−1/2σ) all Λ Λ 6= σ ◦ N σ ◦ N 6= Λ 6= (ξσ) ◦N

b L(ν1/2ξStGL(2), ν
−1/2σ) Λ = σ ◦N — Λ = σ ◦N

c L(ν1/2ξStGL(2), ξν
−1/2σ) Λ = (ξσ) ◦ N — Λ = (ξσ) ◦ N

d L(νξ, ξ ⋊ ν−1/2σ) — Λ = σ ◦ N —

VI a τ (S, ν−1/2σ) all Λ Λ 6= σ ◦N

b τ (T, ν−1/2σ) — Λ = σ ◦N

c L(ν1/2StGL(2), ν
−1/2σ) Λ = σ ◦N —

d L(ν, 1F× ⋊ ν−1/2σ) Λ = σ ◦N —

VII χ⋊ π all Λ all Λ

VIII a τ (S, π) all Λ HomT (π,CΛ) 6= 0

b τ (T, π) — HomT (π,CΛ) = 0

IX a δ(νξ, ν−1/2π(µ)) all Λ µ 6= Λ 6= µ′ all Λ

b L(νξ, ν−1/2π(µ)) — Λ = µ or Λ = µ′ —

X π ⋊ σ all Λ HomT (σπ,CΛ) 6= 0

XI a δ(ν1/2π, ν−1/2σ) all Λ Λ 6= σ ◦N and HomT (σπ,CΛ) 6= 0

b L(ν1/2π, ν−1/2σ) Λ = σ ◦N Λ = σ ◦ N and HomT (π,C1) 6= 0

Va∗ δ∗([ξ, νξ], ν−1/2σ) — Λ = σ ◦ N —

XIa∗ δ∗(ν1/2π, ν−1/2σ) — Λ = σ ◦ N and HomT (π
JL,C1) 6= 0
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Proof. We will go through all representations in the table and explain how

the statements follow from our preparatory sections.
I: This follows from Proposition 3.4.2 and Lemma 5.3.2.
IIa: In the split case this follows from Proposition 3.4.2. In the non-split case
it follows from Lemma 5.2.2 together with (36).
IIb: This follows from Lemma 5.2.2; see (113).
IIIa: This follows from Proposition 3.4.2 and Lemma 5.3.2.
IIIb: It follows from Lemma 5.3.2 that IIIb type representations have no non-
split Bessel functionals. The split case follows from either Proposition 3.5.1
or i) of Lemma 5.3.4. Note that the characters (χσ, σ) and (σ, χσ) are Galois
conjugates of each other.
IVd: It is easy to see that the twisted Jacquet modules of the trivial represen-
tation are zero.
IVb: By (2.9) of [28] there is a short exact sequence

0 −→ IVb −→ ν3/21GL(2) ⋊ ν−3/2σ −→ σ1GSp(4) −→ 0.

Taking twisted Jacquet modules and observing (113), we get

(IVb)N,θ ∼= (ν3/21GL(2) ⋊ ν−3/2σ)N,θ = Cσ◦NL/F

as T -modules.
IVc: By (2.9) of [28] there is a short exact sequence

0 −→ IVc −→ ν2 ⋊ ν−1σ1GSp(2) −→ σ1GSp(4) −→ 0.

Taking twisted Jacquet modules gives

(IVc)N,θ ∼= (ν2 ⋊ ν−1σ1GSp(2))N,θ.

Hence IVc admits the same Bessel functionals as the full induced representation
ν2 ⋊ ν−1σ1GSp(2). By Lemma 5.3.2, any such Bessel functional is necessarily
split. Assume that θ is as in (23). Then, using Lemma 5.3.4, it follows that
IVc admits the (Λ, θ)-Bessel functional for

Λ(

[
a
b
a
b

]
) = ν(ab−1)σ(ab), (141)

which we write as (νσ, ν−1σ). By (29), IVc also admits a (Λ, θ)-Bessel func-
tional for Λ = (ν−1σ, νσ). Again by Lemma 5.3.4, IVc does not admit a
(Λ, θ)-Bessel functional for any other Λ.
IVa: In the split case this follows from Proposition 3.4.2. Assume θ is non-split.
By (2.9) of [28], there is an exact sequence

0 −→ σStGSp(4) −→ ν2 ⋊ ν−1σStGSp(2) −→ IVb −→ 0.

Taking Jacquet modules, we get

0 −→ (σStGSp(4))N,θ −→ (ν2 ⋊ ν−1σStGSp(2))N,θ −→ (IVb)N,θ −→ 0.
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Keeping in mind Lemma 6.2.1, the result now follows from Lemma 5.3.2 and
the result for IVb.
Vd: This was proved in Corollary 4.7.2.
Vb and Vc: Let ξ be a non-trivial quadratic character of F×. By (2.10) of [28],
there are exact sequences

0 −→ Vb −→ ν1/2ξ1GL(2) ⋊ ξν−1/2σ −→ Vd −→ 0

and
0 −→ Vc −→ ν1/2ξ1GL(2) ⋊ ν−1/2σ −→ Vd −→ 0.

Taking Jacquet modules and observing (113), we get

0 −→ (Vb)N,θ −→ Cσ◦NL/F −→ (Vd)N,θ −→ 0 (142)

and
0 −→ (Vc)N,θ −→ C(ξσ)◦NL/F −→ (Vd)N,θ −→ 0. (143)

Hence the results for Vb and Vc follow from the result for Vd.
Va: In the split case this follows from Proposition 3.4.2. Assume θ is non-split.
Assume first that ξ corresponds to the quadratic extension L/F . As we just
saw, (Vb)N,θ = 0 in this case. By (2.10) of [28], there is an exact sequence

0 −→ Va −→ ν1/2ξStGL(2) ⋊ ν−1/2σ −→ Vb −→ 0.

Taking Jacquet modules, it follows that

(Va)N,θ = (ν1/2ξStGL(2) ⋊ ν−1/2σ)N,θ.

By Lemma 5.2.2, the space of (Λ, θ)-Bessel functionals on the representation Va
is isomorphic to HomT (σξStGL(2),CΛ). Using (36), it follows that Va admits a
(Λ, θ)-Bessel functional if and only if Λ 6= (σξ) ◦NL/F = σ ◦NL/F .
Now assume that ξ does not correspond to the quadratic extension L/F . Then,
by what we already proved for Vb, we have an exact sequence

0 −→ (Va)N,θ −→ (ν1/2ξStGL(2) ⋊ ν−1/2σ)N,θ −→ Cσ◦NL/F −→ 0. (144)

Using Lemma 6.2.1, it follows that the possible characters Λ for Va are those
of (ν1/2ξStGL(2)⋊ ν−1/2σ)N,θ with the exception of σ ◦NL/F . By Lemma 5.2.2
and (36), these are all characters other than σ ◦NL/F and (ξσ) ◦NL/F .
VIc and VId: By (2.11) of [28], there is an exact sequence

0 −→ VIc −→ 1F× ⋊ σ1GSp(2) −→ VId −→ 0.

It follows from Lemma 5.3.2 that VIc and VId have no non-split Bessel func-
tionals. The split case follows from Proposition 3.5.1.
VIa: In the split case this follows from Proposition 3.4.2. Assume that θ is
non-split. By (2.11) of [28], there is an exact sequence

0 −→ VIa −→ ν1/2StGL(2) ⋊ ν−1/2σ −→ VIc −→ 0. (145)
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Taking Jacquet modules and observing the result for VIc, we get (VIa)N,θ =
(ν1/2StGL(2) ⋊ ν−1/2σ)N,θ. Hence the result follows from Lemma 5.2.2 and
(36).
VIb: By (2.11) of [28], there is an exact sequence

0 −→ (VIb)N,θ −→ (ν1/21GL(2) ⋊ ν−1/2σ)N,θ −→ (VId)N,θ −→ 0. (146)

By (113), the middle term equals Cσ◦NL/F . One-dimensionality implies that
the sequence splits, so that

HomT (Cσ◦NL/F ,CΛ) = HomD(VIb,CΛ⊗θ)⊕HomD(VId,CΛ⊗θ) (147)

(D is the Bessel subgroup defined in (17)). Hence the VIb case follows from
the known result for VId.
VII: This follows from Proposition 3.4.2 and Lemma 5.3.2.
VIIIa and VIIIb: In the split case this follows from Proposition 3.4.2 and v) of
Proposition 3.5.1. Assume that θ is non-split. Since we are in a unitarizable
situation, the sequence

0 −→ VIIIa −→ 1F× ⋊ π −→ VIIIb −→ 0

splits. It follows that

HomD(1F× ⋊ π,CΛ⊗θ) = HomD(VIIIa,CΛ⊗θ)⊕HomD(VIIIb,CΛ⊗θ). (148)

By Lemma 5.3.2, the space on the left is one-dimensional for any Λ. Therefore
the Bessel functionals of VIIIb are complementary to those of VIIIa.
Assume that VIIIa admits a (Λ, θ)-Bessel functional. Then, by Corollary 4.7.1
and Theorem 4.6.3, we have HomT (π,CΛ) 6= 0. Conversely, assume that
HomT (π,CΛ) 6= 0 and assume that VIIIa does not admit a (Λ, θ)-Bessel func-
tional; we will obtain a contradiction. By (148), we have HomD(VIIIb,CΛ⊗θ) 6=
0. By Corollary 4.7.1 and Theorem 4.6.3, we have HomT (π

JL,CΛ) 6= 0. This
contradicts (34).
The result for VIIIb now follows from (148).
IXb: This was proved in Corollary 4.7.2.
IXa: In the split case this follows from Proposition 3.4.2. Assume that θ is
non-split. We have an exact sequence

0 −→ IXa −→ νξ ⋊ ν−1/2π −→ IXb −→ 0.

By Lemma 5.3.2, the space HomD(νξ ⋊ ν−1/2π,CΛ⊗θ) is one-dimensional, for
any character Λ of L× satisfying the central character condition. It follows that
the possible Bessel functionals of IXa are complementary to those of IXb.
X: In the split case this follows from Proposition 3.4.2. In the non-split case it
follows from Lemma 5.2.2.
XIa and XIb: In the split case this follows from Proposition 3.4.2 and Proposi-
tion 3.5.1; note that the V1/V2 quotient of XIb equals τP3

GL(1)(νσ) by Table A.6

of [28]. Assume that L/F is not split, and consider the exact sequence

0 −→ (XIa)N,θ −→ (ν1/2π ⋊ ν−1/2σ)N,θ −→ (XIb)N,θ −→ 0. (149)
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It follows from Lemma 6.2.1 that

HomD(ν
1/2π ⋊ ν−1/2σ,CΛ⊗θ) = HomD(XIa,CΛ⊗θ)⊕HomD(XIb,CΛ⊗θ).

(150)
Observe here that, by Lemma 5.2.2, the left side equals HomT (σπ,CΛ), which
is at most one-dimensional.
Assume that the representation XIa admits a (Λ, θ)-Bessel functional. Then
Λ 6= σ ◦ NL/F and HomT (σπ,CΛ) 6= 0 by Corollary 4.7.1 and Theorem 4.6.3.
Conversely, assume that Λ 6= σ ◦ NL/F and HomT (σπ,CΛ) 6= 0. Assume also
that XIa does not admit a (Λ, θ)-Bessel functional; we will obtain a contradic-
tion. By the one-dimensionality of the space on the left hand side of (150),
we have HomD(XIb,CΛ⊗θ) 6= 0. By Corollary 4.7.1 and Theorem 4.6.3, we
conclude Λ = σ ◦NL/F , contradicting our assumption.
Assume that the representation XIb admits a (Λ, θ)-Bessel functional. Then
Λ = σ ◦ NL/F and HomT (π,C1) 6= 0 by Corollary 4.7.1 and Theorem 4.6.3.
Conversely, assume that Λ = σ◦NL/F and HomT (π,C1) 6= 0. Assume also that
XIb does not admit a (Λ, θ)-Bessel functional; we will obtain a contradiction.
By our assumption, the space on the left hand side of (150) is one-dimensional.
Hence HomD(XIa,CΛ⊗θ) 6= 0. By what we have already proven, this implies
Λ 6= σ ◦NL/F , a contradiction.
Va∗: This was proved in Corollary 4.7.2.
XIa∗: By Proposition 3.5.1, the representation XIa∗ has no split Bessel func-
tionals. Assume that θ is non-split. By Corollary 4.7.1 and Theorem 4.6.3, if
XIa∗ admits a (Λ, θ)-Bessel functional, then Λ = σ◦N and HomT (π

JL,C1) 6= 0.
Conversely, assume that Λ = σ◦N and HomT (π

JL,C1) 6= 0. By Corollary 4.7.3,
the twisted Jacquet module δ∗(ν1/2π, ν−1/2σ)N,θ is one-dimensional. There-
fore, XIa∗ does admit a (Λ′, θ)-Bessel functional for some Λ′. By what we
already proved, Λ′ = Λ.
This concludes the proof.

6.3 Some cases of uniqueness

Let (π, V ) be an irreducible, admissible representation of GSp(4, F ). Using the
notations from Sect. 2.4, consider (Λ, θ)-Bessel functionals for π. We say that
such functionals are unique if the dimension of the space HomD(V,CΛ⊗θ) is at
most 1. In this section we will prove the uniqueness of split Bessel functionals
for all representations, and the uniqueness of non-split Bessel functionals for
all non-supercuspidal representations.
As far as we know, a complete proof that Bessel functionals are unique for
all (Λ, θ) and all representations π has not yet appeared in the literature. In
[17] it is proved that (1, θ)-Bessel functionals are unique if π has trivial central
character. The main ingredient for this proof is Theorem 1’ of [10]. In [15]
it is proved that (Λ, θ)-Bessel functionals are unique if π has trivial central
character. The proof is based on a generalization of Theorem 1’ of [10]. In
[31] it is stated, without proof, that (Λ, θ)-Bessel functionals are unique if π
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is supercuspidal and has trivial central character. In [23] it is remarked that
the uniqueness of (Λ, θ)-Bessel functionals in the general case can be proven by
extending the arguments of [17] and [15], though a proof of this is not given in
[23].

6.3.1 Lemma. Let σ1 be a character of F×, and let (π1, V1) be an irreducible,
admissible representation of GL(2, F ). Let the matrix S be as in (22), and θ
be as in (24). The resulting group T is then given by (24). Let (π, V ) be an
irreducible, admissible representation of GSp(4, F ). Assume there is an exact
sequence

π1 ⋊ σ1 −→ π −→ 0. (151)

Let Λ be a character of T . If Λ is not equal to one of the characters Λ1 or Λ2,
given by

Λ1(diag(a, b, a, b)) = ν1/2(a)ν−1/2(b)σ1(ab)ωπ1(a), (152)

Λ2(diag(a, b, a, b)) = ν−1/2(a)ν1/2(b)σ1(ab)ωπ1(b), (153)

then (Λ, θ)-Bessel functionals are unique.

Proof. Since π is a quotient of π1 ⋊ σ1, it suffices to prove that HomD(π1 ⋊
σ1,CΛ⊗θ) is at most one-dimensional. Any element β of this space factors
through the Jacquet module (π1 ⋊ σ1)N,θ. These Jacquet modules were cal-
culated in Lemma 5.2.2 ii). Using the notation of this lemma, the assumption
about Λ implies that restriction of β to J2 establishes an injection

HomD(π1 ⋊ σ1,CΛ⊗θ) −→ Hom[ ∗ ∗ ]
(σ1π1,CΛ).

The space on the right is at most one-dimensional; see Sect. 5.2. This proves
our statement.

6.3.2 Theorem. Let (π, V ) be an irreducible, admissible representation of
GSp(4, F ).

i) Split Bessel functionals for π are unique.

ii) Non-split Bessel functionals for π are unique, if π is not supercuspidal,
or if π is of type Va∗ or XIa∗.

Proof. i) By Proposition 3.5.1, we may assume that π is generic. Let the
matrix S be as in (22), and θ be as in (23). The resulting group T is then given
by (24). Let Λ be a character of T . We use the fact that any (Λ, θ)-Bessel
functional β on V factors through the P3-module VZJ .
Assume that π is supercuspidal. Then, by Theorem 3.2.1, the associated P3-
module VZJ equals τP3

GL(0)(1). Therefore, the space of (Λ, θ)-Bessel functionals
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on V equals the space of linear functionals considered in Lemma 2.5.4 of [28].
By this lemma, this space is one-dimensional.
Now assume that π is non-supercuspidal. As in the proof of Proposition 3.5.1,
we write the semisimplification of the quotient V1/V2 in the P3-filtration as∑n

i=1 τ
P3

GL(1)(χi) with characters χi of F
×. Let C(π) be the set of characters

χi. Proposition 2.5.7 of [28] states that if the character a 7→ Λ(diag(a, 1, a, 1)) is
not contained in the set ν−1C(π), then the set of (Λ, θ)-Bessel functionals is at
most one-dimensional (note that the arguments in the proof of this proposition
do not require the hypothesis of trivial central character). The table below lists
the sets ν−1C(π) for all generic non-supercuspidal representations. This table
implies that (Λ, θ)-Bessel functionals for types VII, VIIIa and IXa are unique.
Assume that π is not one these types. Then there exists a sequence as in
(151) for some irreducible, admissible representation π1 of GL(2, F ) and some
character σ1 of F×. These π1 and σ1 are listed in the table below. Let Λ1, Λ2

be the characters defined in (152) and (153). Note that, since Λ1 and Λ2 are
Galois conjugate, we have

dimHomD(π,CΛ1⊗θ) = dimHomD(π,CΛ2⊗θ) (154)

by (29). By Lemma 6.3.1, it suffices to prove that these spaces are one-
dimensional. Define characters λ1, λ2 of F× by

λ1(a) = Λ1(diag(a, 1, a, 1)) = ν1/2(a)σ1(a)ωπ1(a),

λ2(a) = Λ2(diag(a, 1, a, 1)) = ν−1/2(a)σ1(a).

The set {λ1, λ2} is listed in the table below for each representation. By the
previous paragraph, the spaces (154) are one-dimensional if {λ1, λ2} is not a
subset of ν−1C(π). This can easily be verified using the table below.

π π1 σ1 {λ1, λ2} ν−1C(π)

I χ1 × χ2 σ {ν1/2χ1χ2σ, ν
−1/2σ} {ν1/2χ1χ2σ, ν

1/2χ1σ,

ν1/2χ2σ, ν
1/2σ}

IIa χStGL(2) σ {ν1/2χ2σ, ν−1/2σ} {ν1/2χ2σ, ν1/2σ, νχσ}

IIIa χ−1 × ν−1 ν1/2χσ {σ, χσ} {νχσ, νσ}

IVa ν−3/2StGL(2) ν3/2σ {ν−1σ, νσ} {ν2σ}

Va ν−1/2ξStGL(2) ν1/2ξσ {ξσ} {νσ, νξσ}

VIa ν−1/2StGL(2) ν1/2σ {σ} {νσ}

VII — — — ∅

VIIIa — — — ∅

IXa — — — ∅

X π σ {ν1/2ωπσ, ν
−1/2σ} {ν1/2ωπσ, ν

1/2σ}

XIa ν−1/2π ν1/2σ {σ} {νσ}
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ii) Assume first that π is not supercuspidal. Then there exist an irreducible,
admissible representation π1 of GL(2, F ) and a character σ of F× such that π
is either a quotient of π1 ⋊ σ, or a quotient of σ ⋊ π1. The assertion of ii) now
follows from i) of Lemma 5.2.2 and Lemma 5.3.2.

Now assume that π = δ∗([ξ, νξ], ν−1/2σ) is of type Va∗. Suppose that
HomD(π,CΛ⊗θ) is non-zero for some θ and Λ, with L being a field. By our
main result Theorem 6.2.2, the quadratic extension L is the field correspond-
ing to ξ and Λ = σ ◦ NL/F . By Corollary 4.7.3, the Jacquet module πN,θ is
one-dimensional. This implies that HomD(π,CΛ⊗θ) is one-dimensional.

Finally, assume that π = δ∗(ν1/2π, ν−1/2σ) is of type XIa∗. Suppose that
HomD(π,CΛ⊗θ) is non-zero for some θ and Λ, with L being a field. By our
main result Theorem 6.2.2, we have Λ = σ ◦ NL/F and HomT (π

JL,C1) 6= 0.
By Corollary 4.7.3, the Jacquet module πN,θ is one-dimensional. This implies
that HomD(π,CΛ⊗θ) is one-dimensional.

7 Some applications

We present two applications that result from the methods used in this paper.
The first application is a characterization of irreducible, admissible, non-generic
representations of GSp(4, F ) in terms of their twisted Jacquet modules and
their Fourier-Jacobi quotient. The second application concerns the existence
of certain vectors with good invariance properties.

7.1 Characterizations of non-generic representations

As before, we fix a non-trivial character ψ of F .

7.1.1 Lemma. Let (π, V ) be a non-generic, supercuspidal, irreducible, admis-
sible representation of GSp(4, F ). Then dimVN,θ < ∞ for all non-degenerate
θ.

Proof. If θ is split, then VN,θ = 0 by Theorem 3.2.1. Assume that θ is not
split. Let θ = θS with S as in (11). We may assume that dimVN,θ 6= 0. Let
X be as in (57). By Theorem 5.6 of [8], there exists an irreducible, admissible
representation σ of GO(X) such that HomR(ω, π ⊗ σ) 6= 0; here, ω is the
Weil representation defined in Sect. 4.4. By i) of Theorem 4.4.6, the set ΩS is
non-empty. By Proposition 4.4.7, the dimension of VN,θ is finite.

Let W be a smooth representation of N . We will consider the dimensions of
the complex vector spacesWN,θa,b,c . Fix representatives a1, . . . , at for F

×/F×2.
We define

d(W ) =
t∑

i=1

dimWN,θai,0,1
.
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If 0 =W0 ⊂W1 ⊂W2 ⊂ · · · ⊂Wk =W is a chain of N subspaces, then

d(W ) =
k∑

j=1

d(Wj/Wj−1). (155)

If one of the spaces WN,θai,0,1
is infinite-dimensional, then this equality still

holds in the sense that both sides are infinite.

7.1.2 Lemma. Let W J be a non-zero, irreducible, smooth representation of
GJ admitting ψ as a central character. Then 1 ≤ d(W J) ≤ #F×/F×2.

Proof. This follows immediately from Lemma 6.1.2.

7.1.3 Lemma. Let (τJ ,W J) be a smooth representation of GJ . Then W J has
finite length if and only if d(W J ) is finite. If it has finite length, then

length(W J) ≤ d(W J ) ≤ length(W J) ·#F×/F×2.

Proof. Assume that W J has finite length. Let

0 =W0 ⊂W1 ⊂W2 ⊂ · · · ⊂Wk =W J

be a chain of GJ spaces such that Wj/Wj−1 is not zero and irreducible. By
(155), we have

d(W J ) =
k∑

j=1

d(Wj/Wj−1).

By Lemma 7.1.2, 1 ≤ d(Wj/Wj−1) ≤ #F×/F×2 for j = 1, . . . , k. It follows
that d(W J ) is finite, and that the asserted inequalities hold.

If W J has infinite length, a similar argument shows that d(W ) is infinite.

7.1.4 Theorem. Let (π, V ) be an irreducible, admissible representation of
GSp(4, F ). The following statements are equivalent.

i) π is not generic.

ii) dimVN,θ <∞ for all split θ.

iii) dimVN,θ <∞ for all non-degenerate θ.

iv) The GJ -representation VZJ ,ψ has finite length.
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Proof. i) ⇒ iii) Assume that π is not generic. Let θ be a non-degenerate
character of N . Assume first that θ is split. Then VN,θ can be calculated from
the P3-filtration of π. As in the proof of Proposition 3.5.1 we see that VN,θ is
finite-dimensional.
Now assume that θ is not split. If π is supercuspidal, then dimVN,θ < ∞ by
Lemma 7.1.1. Assume that π is not supercuspidal. Then the table of Bessel
functionals shows that π admits (Λ, θ)-Bessel functionals only for finitely many
Λ. Since every Λ can occur in VN,θ at most once by the uniqueness of Bessel
functionals (Theorem 6.3.2), this implies that VN,θ is finite-dimensional.
iii) ⇒ ii) is trivial.
ii) ⇒ i) Assume that π is generic. Then the subspace V2 of the P3-module VZJ
from Theorem 3.2.1 is non-zero. In fact, this subspace is isomorphic to the
representation τP3

GL(0)(1) defined in (37). By Lemma 2.5.4 of [28], the space

(V2)[ 1 ∗ ∗
1
1

]
,θ0,1

,

where θa,b is defined in (140), is infinite-dimensional. This implies that VN,θ0,1,0
is infinite-dimensional, contradicting the hypothesis in ii).
iii)⇔ iv) Let W J = VZJ ,ψ. Then W

J
N,θa,0,1

= VN,θa,0,1 for any a in F×, so that

d(W J ) = d(V ). Lemma 7.1.3 therefore implies that iii) and iv) are equivalent.

For more thoughts on VZJ ,ψ, see [1]. Theorem 7.1.4 answers one of the questions
mentioned at the end of this paper.

7.2 Invariant vectors

Let (π, V ) be an irreducible, admissible representation of GSp(4, F ). In this
section we will prove the existence of a vector v in V such that diag(1, 1, c, c)v =
v for all units c in the ring of integers o of F . This result was motivated by a
question of Abhishek Saha; see [33].
Our main tool will be the GJ -module VZJ ,ψ for a smooth representation (π, V )
of GSp(4, F ). Throughout this section we will make a convenient assumption
about the character ψ of F , namely that ψ has conductor o. By definition, this
means that ψ is trivial on o, but not on p−1, where p is the maximal ideal of
o. We normalize the Haar measure on F such that o has volume 1. Let q be
the cardinality of the residue class field o/p.
In this section, we will abbreviate

d(c) =

[
1
1
c
c

]
, z(x) =

[
1 x
1
1
1

]

for c in F× and x in F .

7.2.1 Lemma. Let (π, V ) be a smooth representation of GSp(4, F ). Let p :
V → VZJ ,ψ be the projection map, and let w in VZJ ,ψ be non-zero. Then there
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exists a positive integer m and a non-zero vector v in V with the following
properties.

i) p(v) = w.

ii) π(z(x))v = ψ(x)v for all x ∈ p−m.

iii) π(d(c))v = v for all c ∈ 1 + pm.

Proof. Let v0 in V be such that p(v0) = w. Let m be a positive integer such
that π(d(c))v0 = v0 for all c ∈ 1 + pm. Set v = q−m

∫
p−m

ψ(−x)π(z(x))v0 dx.

Then p(v) = w. In particular, v is not zero. Evidently, v has property ii).
Moreover, for c in 1 + pm,

π(d(c))(v) = q−m
∫

p−m

ψ(−x)π(z(xc−1)d(c))v0 dx

= q−m
∫

p−m

ψ(−xc)π(z(x))v0 dx

= q−m
∫

p−m

ψ(−x)π(z(x))v0 dx

= v.

This concludes the proof.

7.2.2 Lemma. Let (π, V ) be a smooth representation of GSp(4, F ). Let p :
V → VZJ ,ψ be the projection map. Let m be a positive integer. Assume that
v in V is such that π(z(x))v = ψ(x)v for all x ∈ p−m. If c is in o× but not in
1 + pm, then p(π(d(c))v) = 0.

Proof. Let w = π(d(c))v. To show that p(w) = 0 it is enough to show that

∫

p−m

ψ(−x)π(z(x))w dx = 0

because p(
∫
p−m ψ(−x)π(z(x))w dx) =

∫
p−m ψ(−x)ψ(x)p(w) dx = qmp(w). In-

deed,
∫

p−m

ψ(−x)π(z(x))w dx =

∫

p−m

ψ(−x)π(z(x)d(c))v dx

= π(d(c))

∫

p−m

ψ(−x)π(z(xc))v dx
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= π(d(c))

∫

p−m

ψ(−x)ψ(xc)v dx

=
( ∫

p−m

ψ(x(c − 1)) dx
)
π(d(c))v

= 0,

since c /∈ 1 + pm and ψ has conductor o.

7.2.3 Proposition. Let (π, V ) be a smooth representation of GSp(4, F ). Let
p : V → VZJ ,ψ be the projection map. Let w be in VZJ ,ψ. Then there exists a
unique vector v in V with the following properties.

i) p(v) = w.

ii) π(z(x))v = v for all x ∈ o.

iii)
∫

p−1

π(z(x))v dx = 0.

iv) π(d(c))v = v for all c ∈ o×.

Proof. For the existence part we may assume that w is non-zero. Let the posi-
tive integer m and v in V be as in Lemma 7.2.1. Define v1 = qm

∫
o×

π(d(c))v dc.

Then, by Lemma 7.2.2,

p(v1) = qm
∫

o×

p(π(d(c))v) dc

= qm
∫

1+pm

p(π(d(c))v) dc

= qm
∫

1+pm

p(v) dc

= w.

Evidently, v1 has property iv). To see properties ii) and iii), let x be in p−1.
By ii) of Lemma 7.2.1,

π(z(x))v1 = qm
∫

o×

π(d(c)z(xc))v dc = qm
∫

o×

ψ(xc)π(d(c))v dc.

It follows that v1 has property ii). Integrating over x in p−1 shows that v1 has
property iii) as well.
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To prove that v1 is unique, let V1 be the subspace of V consisting of vectors v
satisfying properties ii), iii) and iv). We will prove that the restriction of p to
V1 is injective (so that p induces an isomorphism V1 ∼= VZJ ,ψ). Let v be in V1
and assume that p(v) = 0. Then there exists a positive integer m such that

∫

p−m

ψ(−x)π(z(x))v dx = 0.

Applying d(c) to this equation, where c is in o×, leads to

∫

p−m

ψ(−cx)π(z(x))v dx = 0.

Integrating over c in o×, we obtain

q−1
∫

p−1

π(z(x))v dx =

∫

o

π(z(x))v dx.

Using properties ii) and iii) it follows that v = 0. This concludes the proof.

7.2.4 Corollary. Let (π, V ) be an irreducible, admissible representation of
GSp(4, F ) that is not a twist of the trivial representation. Then there exists a
vector v in V that is invariant under all elements d(c) with c in o×.

Proof. By Proposition 7.2.3, it is enough to show that VZJ ,ψ is non-zero. By
Proposition 6.1.3, there exists a non-trivial character θ ofN such that VN,θ 6= 0.
We may assume that θ is of the form (15) with c = 1. The assertion follows.
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Abstract. In this paper, we present a unifying approach to the gen-
eral theory of abelian Stark conjectures. To do so we define natural
notions of ‘zeta element’, of ‘Weil-étale cohomology complexes’ and
of ‘integral Selmer groups’ for the multiplicative group Gm over finite
abelian extensions of number fields. We then conjecture a precise con-
nection between zeta elements and Weil-étale cohomology complexes,
we show this conjecture is equivalent to a special case of the equi-
variant Tamagawa number conjecture and we give an unconditional
proof of the analogous statement for global function fields. We also
show that the conjecture entails much detailed information about the
arithmetic properties of generalized Stark elements including a new
family of integral congruence relations between Rubin-Stark elements
(that refines recent conjectures of Mazur and Rubin and of the third
author) and explicit formulas in terms of these elements for the higher
Fitting ideals of the integral Selmer groups of Gm, thereby obtaining a
clear and very general approach to the theory of abelian Stark conjec-
tures. As first applications of this approach, we derive, amongst other
things, a proof of (a refinement of) a conjecture of Darmon concerning
cyclotomic units, a proof of (a refinement of) Gross’s ‘Conjecture for
Tori’ in the case that the base field is Q, explicit conjectural formulas
for both annihilating elements and, in certain cases, the higher Fit-
ting ideals (and hence explicit structures) of ideal class groups and a
strong refinement of many previous results concerning abelian Stark
conjectures.
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1. Introduction

The study of the special values of zeta functions and, more generally, of L-
functions is a central theme in number theory that has a long tradition stretch-
ing back to Dirichlet and Kummer in the nineteenth century. In particular,
much work has been done concerning the arithmetic properties of the special
values of L-functions and their incarnations in appropriate arithmetic coho-
mology groups, or ‘zeta elements’ as they are commonly known.
The aim of our project is to systematically study the fine arithmetic prop-
erties of such zeta elements and thereby to obtain both generalizations and
refinements of a wide range of well-known results and conjectures in the area.
In this first article we shall concentrate, for primarily pedagogical reasons, on
the classical and very concrete case of the L-functions that are attached to the
multiplicative group Gm over a finite abelian extension K/k of global fields. In
subsequent articles we will then investigate the key Iwasawa-theoretic aspects
of our approach (see [9]) and also explain how the conjectures and results
presented here naturally extend both to the case of Galois extensions that are
not abelian and to the case of the zeta elements that are associated (in general
conjecturally) to a wide class of motives over number fields.
The main results of the present article are given below as Theorems 1.1, 1.5
and 1.10. In the rest of this introduction we state these results and also discuss
a selection of interesting consequences.
To do this we fix a finite abelian extension of global fields K/k with Galois
group G = Gal(K/k).
We then fix a finite non-empty set of places S of k containing both the set
Sram(K/k) of places which ramify in K/k and the set S∞(k) of archimedean
places (if any).
Lastly we fix an auxiliary finite non-empty set of places T of k which is disjoint
from S and such that the group O×K,S,T of S-units of K that are endowed with

a trivialization at each place of K above a place in T is Z-torsion-free (for the
precise definition of O×K,S,T , see §1.7).

1.1. The leading term conjecture and Rubin-Stark elements. As a
first step we shall define a canonical ‘T -modified Weil-étale cohomology’ com-
plex for Gm and then formulate (as Conjecture 3.6) a precise ‘leading term
conjecture’ LTC(K/k) for the extension K/k. This conjecture predicts that
the canonical zeta element zK/k,S,T interpolating the leading terms at s = 0 of
the (S-truncated T -modified) L-functions Lk,S,T (χ, s) generates the determi-
nant module over G of the T -modified Weil-étale cohomology complex for Gm
over K.
The main result of the first author in [5] implies that LTC(K/k) is valid if k is
a global function field.
In the number field case our formulation of LTC(K/k) is motivated by the
‘Tamagawa Number Conjecture’ formulated by Bloch and Kato in [1] and by
the ‘generalized Iwasawa main conjecture’ studied by Kato in [24] and [25]. In
particular, we shall show that for extensions K/k of number fields LTC(K/k)
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is equivalent to the relevant special case of the ‘equivariant Tamagawa number
conjecture’ formulated in the article [7] of Flach and the first author. Taken
in conjunction with previous work of several authors, this fact implies that
LTC(K/k) is also unconditionally valid for several important families of number
fields.
We assume now that S contains a subset V = {v1, . . . , vr} of places which split
completely in K. In this context, one can use the values at s = 0 of the r-th
derivatives of S-truncated T -modified L-functions to define a canonical element

ǫVK/k,S,T

in the exterior power module
∧r

Z[G]O×K,S,T ⊗ R (for the precise definition see

§5.1).
As a natural generalization of a classical conjecture of Stark (dealing with the
case r = 1) Rubin conjectured in [45] that the elements ǫVK/k,S,T should always

satisfy certain precise integrality conditions (for more details see Remark 1.6).
As is now common in the literature, in the sequel we shall refer to ǫVK/k,S,T
as the ‘Rubin-Stark element’ (relative to the given data) and to the central
conjecture of Rubin in [45] as the ‘Rubin-Stark Conjecture’.
In some very special cases ǫVK/k,S,T can be explicitly computed and the Rubin-

Stark Conjecture verified. For example, this is the case if r = 0 (so V = ∅)
when ǫVK/k,S,T can be described in terms of Stickelberger elements and if k = Q
and V = {∞} when ǫVK/k,S,T can be described in terms of cyclotomic units.

As a key step in our approach we show that in all cases the validity of LTC(K/k)
implies that ǫVK/k,S,T can be computed as ‘the canonical projection’ of the zeta

element zK/k,S,T .
This precise result is stated as Theorem 5.14 and its proof will also incidentally
show that LTC(K/k) implies the validity of the Rubin-Stark conjecture for
K/k. The latter implication was in fact already observed by the first author in
[3] (and the techniques developed in loc. cit. have since been used by several
other authors) but we would like to point out that the proof presented here is
very much simpler than that given in [3] and is therefore much more amenable
to subsequent generalization.

1.2. Refined class number formulas for Gm. The first consequence of
Theorem 5.14 that we record here concerns a refined version of a conjecture
that was recently formulated independently by Mazur and Rubin in [37] (where
it is referred to as a ‘refined class number formula for Gm’) and by the third
author in [46].
To discuss this we fix an intermediate field L of K/k and a subset V ′ =
{v1, . . . , vr′} of S which contains V and is such that every place in V ′ splits
completely in L.
In this context it is known that the elements ǫVK/k,S,T naturally constitute an

Euler system of rank r and the elements ǫV
′

L/k,S,T an Euler system of rank r′. If

r < r′, then the image of ǫVK/k,S,T under the map induced by the field theoretic
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norm K× → L× vanishes. However, in this case Mazur and Rubin (see [37,
Conj. 5.2]) and the third author (see [46, Conj. 3]) independently observed that
the reciprocity maps of local class field theory lead to an important conjectural
relationship between the elements ǫVK/k,S,T and ǫV

′

L/k,S,T .

We shall here formulate an interesting refinement MRS(K/L/k, S, T ) of the
central conjectures of [37] and [46] (see Conjecture 5.4 and the discussion of
Remark 5.7) and we shall then prove the following result.

Theorem 1.1. LTC(K/k) implies the validity of MRS(K/L/k, S, T ).

This result is both a generalization and strengthening of the main result
of the third author in [46, Th. 3.22] and provides strong evidence for
MRS(K/L/k, S, T ).
As already remarked earlier, if k is a global function field, then the validity of
LTC(K/k) is a consequence of the main result of [5]. In addition, if k = Q,
then the validity of LTC(K/k) follows from the work of Greither and the first
author in [8] and of Flach in [14].
Theorem 1.1 therefore has the following consequence.

Corollary 1.2. MRS(K/L/k, S, T ) is valid if k = Q or if k is a global func-
tion field.

This result is of particular interest since it verifies the conjectures of Mazur
and Rubin [37] and of the third author [46] even in cases for which one has
r > 1.
In a sequel [9] to this article we will also prove a partial converse to Theorem
1.1 and show that this converse can be used to derive significant new evidence
in support of the conjecture LTC(K/k) (for more details see §1.6 below).
Next we recall that in [12] Darmon used the theory of cyclotomic units to
formulate a refined version of the class number formula for the class groups of
real quadratic fields. We further recall that Mazur and Rubin in [36], and later
the third author in [46], have proved the validity of the central conjecture of
[12] but only after inverting the prime 2.
We shall formulate in §6 a natural refinement of Darmon’s conjecture. By using
Corollary 1.2 we shall then give a full proof of our refined version of Darmon’s
conjecture, thereby obtaining the following result (for a precise version of which
see Theorem 6.1).

Corollary 1.3. A natural refinement of Darmon’s conjecture in [12] is valid.

Let now K/k be an abelian extension as above and choose intermediate fields

L and L̃ with [L : k] = 2, L ∩ L̃ = k and K = LL̃. In this context Gross has
formulated in [21] a ‘conjecture for tori’ regarding the value of the canonical
Stickelberger element associated to K/k modulo a certain ideal constructed
from class numbers and a canonical integral regulator map. This conjecture
has been widely studied in the literature, perhaps most notably by Hayward
in [22] and by Greither and Kučera in [16, 17].
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We shall formulate (as Conjecture 6.3) a natural refinement of Gross’s conjec-
ture for tori and we shall then prove (in Theorem 6.5) that the validity of this
refinement is a consequence of MRS(K/L/k, S, T ).
As a consequence of Corollary 1.2 we shall therefore obtain the following result.

Corollary 1.4. A natural refinement of Gross’s conjecture for tori is valid if
k = Q or if k is a global function field.

This result is a significant improvement of the main results of Greither and
Kučera in [16, 17]. In particular, whilst the latter articles only study the

case that k = Q, L is an imaginary quadratic field, and L̃/Q is an abelian
extension satisfying several technical conditions (see Remark 6.6), Corollary
1.4 now proves Gross’s conjecture completely in the case k = Q and with no

assumption on either L or L̃.

1.3. Selmer groups and their higher Fitting ideals. In order to state
our second main result, we introduce two new Galois modules which are each
finitely generated abelian groups and will play a key role in the arithmetic
theory of zeta elements.
The first of these is a canonical ‘(Σ-truncated T -modified) integral dual Selmer
group’ SΣ,T (Gm/K) for the multiplicative group over K for each finite non-
empty set of places Σ of K that contains S∞(K) and each finite set of places
T of K that is disjoint from Σ.
If Σ = S∞(K) and T is empty, then SΣ,T (Gm/K) is simply defined to be the
cokernel of the map

∏

w

Z −→ HomZ(K
×,Z), (xw)w 7→ (a 7→

∑

w

ordw(a)xw),

where in the product and sum w runs over all finite places of K, and in this
case constitutes a canonical integral structure on the Pontryagin dual of the
Bloch-Kato Selmer group H1

f (K,Q/Z(1)) (see Remark 2.3(i)).

In general, the group SΣ,T (Gm/K) is defined to be a natural analogue for Gm of
the ‘integral Selmer group’ that was introduced for abelian varieties by Mazur
and Tate in [38] and, in particular, lies in a canonical exact sequence of G-
modules of the form
(1)

0 −→ HomZ(Cl
T
Σ(K),Q/Z) −→ SΣ,T (Gm/K) −→ HomZ(O×K,Σ,T ,Z) −→ 0

where ClTΣ(K) is the ray class group of OK,Σ modulo the product of all places
of K above T (see §1.7).
This Selmer group is also philosophically related to the theory of Weil-étale
cohomology that is conjectured to exist by Lichtenbaum in [34], and in this
direction we show that in all cases there is a natural identification

SΣ,T (Gm/K) = H2
c,T ((OK,Σ)W ,Z)

where the right hand group denotes the cohomology in degree two of a canoni-
cal ‘T -modified compactly supported Weil-étale cohomology complex’ that we
introduce in §2.2.
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The second module StrΣ,T (Gm/K) that we introduce is a canonical ‘transpose’

(in the sense of Jannsen’s homotopy theory of modules [23]) for SΣ,T (Gm/K).
In terms of the complexes introduced in §2.2 this module can be described as
a certain ‘T -modified Weil-étale cohomology group’ of Gm

StrΣ,T (Gm/K) = H1
T ((OK,Σ)W ,Gm)

and can also be shown to lie in a canonical exact sequence of G-modules of the
form

(2) 0 −→ ClTΣ(K) −→ StrΣ,T (Gm/K) −→ XK,Σ −→ 0.

Here XK,Σ denotes the subgroup of the free abelian group on the set ΣK of
places of K above Σ comprising elements whose coefficients sum to zero.
We can now state our second main result.
In this result we write FittrG(M) for the r-th Fitting ideal of a finitely generated
G-module M , though the usual notation is Fittr,Z[G](M), in order to make the

notation consistent with the exterior power
∧r

Z[G]M . Note that we will review

the definition of higher Fitting ideals in §7.1 and also introduce there for each
finitely generated G-module M and each pair of non-negative integers r and i
a natural notion of ‘higher relative Fitting ideal’

Fitt
(r,i)
G (M) = Fitt

(r,i)
G (M,Mtors).

We write x 7→ x# for the C-linear involution of C[G] which inverts elements of
G.

Theorem 1.5. Let K/k, S, T, V and r be as above, and assume that LTC(K/k)
is valid. Then all of the following claims are also valid.

(i) One has

FittrG(SS,T (Gm/K)) = {Φ(ǫVK/k,S,T )# : Φ ∈
r∧

Z[G]

HomZ[G](O×K,S,T ,Z[G])}.

(ii) Let Pk(K) be the set of all places which split completely in K. Fix a
non-negative integer i and set

Vi = {V ′ ⊂ Pk(K) : |V ′| = i and V ′ ∩ (S ∪ T ) = ∅}.
Then one has

Fitt
(r,i)
G (StrS,T (Gm/K))

= {Φ(ǫV ∪V ′

K/k,S∪V ′,T ) : V
′ ∈ Vi and Φ ∈

r+i∧

Z[G]

HomZ[G](O×K,S∪V ′,T ,Z[G])}.

In particular, if i = 0, then one has

FittrG(StrS,T (Gm/K)) = {Φ(ǫVK/k,S,T ) : Φ ∈
r∧

Z[G]

HomZ[G](O×K,S,T ,Z[G])}.
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Remark 1.6. In terms of the notation of Theorem 1.5, the Rubin-
Stark Conjecture asserts that Φ(ǫVK/k,S,T ) belongs to Z[G] for every Φ in∧r

Z[G]HomZ[G](O×K,S,T ,Z[G]). The property described in Theorem 1.5 is

deeper in that it shows the ideal generated by Φ(ǫVK/k,S,T ) as Φ runs over∧r
Z[G]HomZ[G](O×K,S,T ,Z[G]) should encode significant arithmetic information

relating to integral Selmer groups. (See also Remark 5.13 in this regard.)

1.4. Galois structures of ideal class groups. In this subsection, in
order to better understand the content of Theorem 1.5, we discuss several
interesting consequences concerning the explicit Galois structure of ideal class
groups.
To do this we fix an odd prime p and suppose that K/k is any finite abelian
extension of global fields. We write L for the (unique) intermediate field of
K/k such that K/L is a p-extension and [L : k] is prime to p. Then the group
Gal(K/k) decomposes as a direct product Gal(L/k)×Gal(K/L) and we fix a

non-trivial faithful character χ of Gal(L/k). We set ClT (K) := ClT∅ (K) and
define its ‘(p, χ)-component’ by setting

AT (K)χ := (ClT (K)⊗ Zp)⊗Zp[Gal(L/k)] Oχ.
Here we write Oχ for the module Zp[im(χ)] upon which Gal(L/k) acts via χ so
that AT (K)χ has an induced action of the group ring RχK := Oχ[Gal(K/L)].
Then in Theorem 8.1 we shall derive the following results about the structure
of AT (K)χ from the final assertion of Theorem 1.5(ii).
In this result we write ‘χ(v) 6= 1’ to mean that the decomposition group of v
in Gal(L/k) is non-trivial.

Corollary 1.7. Let V be the set of archimedean places of k that split com-
pletely in K and set r := |V |. Assume that any ramifying place v of k in K
satisfies χ(v) 6= 1. Assume also that the equality of LTC(K/k) is valid after
applying the functor −⊗Zp[Gal(L/k)] Oχ.
Then for any non-negative integer i one has an equality

FittiRχK
(AT (K)χ) = {Φ(ǫV ∪V

′,χ
K/k,S∪V ′,T ) : V

′ ∈ Vi and Φ ∈
r+i∧

RχK

Hχ}

where we set S := S∞(k) ∪ Sram(K/k) and Hχ := HomRχK
((O×K,S∪V ′,T ⊗

Zp)χ, R
χ
K).

We remark that Corollary 1.7 specializes to give refinements of several results
in the literature.
For example, if k = Q and K is equal to the maximal totally real subfield
Q(ζm)+ of Q(ζm) where ζm is a fixed choice of primitive m-th root of unity for
some natural number m, then LTC(K/k) is known to be valid and so Corollary
1.7 gives an explicit description of the higher Fitting ideals of ideal class groups
in terms of cyclotomic units (which are the relevant Rubin-Stark elements in
this case). In particular, if m = pn for any non-negative integer n, then the
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necessary condition on χ is satisfied for all non-trivial χ and Corollary 1.7 gives
a strong refinement of Ohshita’s theorem in [41] for the field K = Q(ζpn)

+.
The result is also stronger than that of Mazur and Rubin in [35, Th. 4.5.9] since
the latter describes structures over a discrete valuation ring whilst Corollary
1.7 describes structures over the group ring RχK .
In addition, if K is a CM extension of a totally real field k, then Corollary 1.7
constitutes a generalization of the main results of the second author in both
[28] and [30]. To explain this we suppose that K/k is a CM-extension and that
χ is an odd character. Then classical Stickelberger elements can be used to
define for each non-negative integer i a ‘higher Stickelberger ideal’

Θi(K/k) ⊆ Zp[Gal(K/k)]

(for details see §8.3). By taking T to be empty we can consider the (p, χ)-
component of the usual ideal class group

A(K)χ := (ClT (K)⊗ Zp)⊗Zp[Gal(L/k)] Oχ.
Then, by using both Theorem 1.1 and Corollary 1.7 we shall derive the following
result as a consequence of the more general Theorem 8.6.
In this result we write ω for the Teichmüller character giving the Galois action
on the group of p-th roots of unity.

Corollary 1.8. Let K be a CM-field, k totally real, and χ an odd character
with χ 6= ω. We assume that any ramifying place v of k in K satisfies χ(v) 6= 1
and that LTC(F/k) is valid for certain extensions F of K (see Theorem 8.6
for the precise conditions on F ).
Then for any non-negative integer i one has an equality

FittiRχK
(A(K)χ) = Θi(K/k)χ.

In the notation of Corollary 1.8 suppose that K is the n-th layer of the cyclo-
tomic Zp-extension of L for some non-negative integer n and that every place
p above p satisfies χ(p) 6= 1. Then the conditions on χ(v) and LTC(F/k)
that are stated in Corollary 1.8 are automatically satisfied and so Corollary 1.8
generalizes the main results of the second author in [30].
To get a better feeling for Corollary 1.8, consider the simple case that [K : k] is
prime to p. In this case K = L, the ring Zp[Gal(K/k)] is semi-local and A(K)χ

is a module over the discrete valuation ring Oχ = RχK . Then the conclusion in
Corollary 1.8 in the case i = 0 implies that

(3) |A(K)χ| = |Oχ/Lk(χ−1, 0)|
where Lk(χ

−1, s) is the usual Artin L-function. If every place p above p sat-
isfies χ(p) 6= 1, then this equality is known to be a consequence of the main
conjecture for totally real fields proved by Wiles [54]. However, without any
such restriction on the values χ(p), the equality (3) is as yet unproved.
In addition, in this case the result of Corollary 1.8 is much stronger than (3)
in that it shows the explicit structure of A(K)χ as a Galois module to be
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completely determined (conjecturally at least) by Stickelberger elements by
using the obvious (non-canonical) isomorphism of Oχ-modules

A(K)χ ≃
⊕

i≥1
FittiOχ(A(K)χ)/Fitti−1Oχ (A(K)χ) =

⊕

i≥1
Θi(K/k)χ/Θi−1(K/k)χ.

Next we note that the proof of Corollary 1.8 also combines with the result of
Theorem 1.16 below to give the following result (which does not itself assume
the validity of LTC(K/k)).
This result will be proved in Corollaries 8.4 and 8.8. In it we write µp∞(k(ζp))
for the p-torsion subgroup of k(ζp)

×.

Corollary 1.9. Assume that K/k is a CM-extension, that the degree [K : k]
is prime to p, and that χ is an odd character of G such that there is at most
one p-adic place p of k with χ(p) = 1. Assume also that the p-adic µ-invariant
of K∞/K vanishes.
Then one has both an equality

|A(K)χ| =
{
|Oχ/Lk(χ−1, 0)| if χ 6= ω,
|Oχ/(|µp∞(k(ζp))| · Lk(χ−1, 0))| if χ = ω

and a (non-canonical) isomorphism of Oχ-modules

A(K)χ ≃
⊕

i≥1
Θi(K/k)χ/Θi−1(K/k)χ.

This result is a generalization of the main theorem of the second author in [28]
where it is assumed that χ(p) 6= 1 for all p-adic places p. It also generalizes the
main result of Rubin in [44] which deals only with the special case K = Q(µp)
and k = Q.
To end this subsection we note Remark 1.13 below explains why Theorem 1.5(ii)
also generalizes and refines the main result of Cornacchia and Greither in [10].

1.5. Annihilators and Fitting ideals of class groups for small Σ.
In this subsection we discuss further connections between Rubin-Stark elements
and the structure of class groups of the form ClTΣ(K) for ‘small’ sets Σ which
do not follow from Theorem 1.5. In particular, we do not assume here that Σ
contains Sram(K/k).
To do this we denote the annihilator ideal of a G-module M by AnnG(M).

Theorem 1.10. Assume LTC(K/k) is valid.
Fix Φ in

∧r
Z[G]HomZ[G](O×K,S,T ,Z[G]) and any place v in S \ V .

Then one has

Φ(ǫVK/k,S,T ) ∈ AnnG(Cl
T
V ∪{v}(K))

and, if G is cyclic, also

Φ(ǫVK/k,S,T ) ∈ Fitt0G(Cl
T
V ∪{v}(K)).
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Remark 1.11. The first assertion of Theorem 1.10 provides a common re-
finement and wide-ranging generalization (to L-series of arbitrary order of
vanishing) of several well-known conjectures and results in the literature. To

discuss this we write ClT (K) for the full ray class group modulo T (namely,

ClT (K) = ClT∅ (K), see §1.7).
(i) We first assume that r = 0 (so V is empty) and that k is a number field.
Then, without loss of generality (for our purposes), we can assume that k is to-

tally real and K is a CM field. In this case ǫ∅K/k,S,T is the Stickelberger element

θK/k,S,T (0) of the extension K/k (see §3.1). We take v to be an archimedean

place in S. Then ClT{v}(K) = ClT (K) and so the first assertion of Theorem

1.10 shows that LTC(K/k) implies the classical Brumer-Stark Conjecture,

θK/k,S,T (0) · ClT (K) = 0.

(ii) We next consider the case that K is totally real and take V to be S∞(k)
so that r = |V | = [k : Q]. In this case Corollary 1.10 implies that for any
non-archimedean place v in S, any element σv of the decomposition subgroup

Gv of v in G and any element Φ of
∧[k:Q]

Z[G] HomZ[G](O×K,S,T ,Z[G]), one has

(4) (1− σv) · Φ(ǫS∞

K/k,S,T ) ∈ AnnG(Cl
T (K)).

To make this containment even more explicit we further specialize to the case
that k = Q and that K is equal to Q(ζm)+ for some natural number m. We
recall that LTC(K/k) has been verified in this case. We take S to be the set
comprising the (unique) archimedean place∞ and all prime divisors of m, and
V to be S∞ = {∞} (so r = 1). For a set T which contains an odd prime, we set
δT :=

∏
v∈T (1−NvFr−1v ), where Frv ∈ G denotes the Frobenius automorphism

at a place of K above v. In this case, we have

ǫ
{∞}
K/k,S,T = ǫm,T := (1− ζm)δT ∈ O×K,S,T

(see, for example, [50, p.79] or [42, §4.2]) and so (4) implies that for any σv ∈ Gv
and any Φ ∈ HomZ[G](O×K,S,T ,Z[G]) one has

(1− σv) · Φ(ǫm,T ) ∈ AnnG(Cl
T (K)).

Now the group G is generated by the decomposition subgroups Gv of each
prime divisor v of m, and so for any σ ∈ G one has an equality σ − 1 =
Σv|mxv for suitable elements xv of the ideal I(Gv) of Z[G] that is generated

by {σv − 1 : σv ∈ Gv}. Hence, since ǫσ−1m,T belongs to O×K one finds that for

any ϕ ∈ HomZ[G](O×K ,Z[G]) one has ϕ(ǫσ−1m,T ) = Σv|mxvϕ̃(ǫm,T ) where ϕ̃ is any

lift of ϕ to HomZ[G](O×K,S,T ,Z[G]). Therefore, for any ϕ in HomZ[G](O×K ,Z[G])
and any σ in G, one has

(5) ϕ(ǫσ−1m,T ) ∈ AnnG(Cl
T (K)).

This containment is actually finer than the annihilation result proved by Rubin
in [43, Th. 2.2 and the following Remark] since it deals with the group ClT (K)
rather than Cl(K).
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Remark 1.12. We next consider the case that K/k is a cyclic CM-extension
and V is empty. As remarked above, in this case the Rubin-Stark element
ǫ∅K/k,S,T coincides with the Stickelberger element θK/k,S,T (0).

The second assertion of Theorem 1.10 therefore combines with the argument
in Remark 1.11(i) to show that LTC(K/k) implies a containment

θK/k,S,T (0) ∈ Fitt0G(Cl
T (K)).

This is a strong refinement of the Brumer-Stark conjecture. To see this note
that ClT (K) is equal to the ideal class group Cl(K) of K when T is empty.
The above containment thus combines with [50, Chap. IV, Lem. 1.1] to imply
that if G is cyclic, then one has

θK/k,S(0) · AnnG(µ(K)) ⊂ Fitt0G(Cl(K))

where µ(K) denotes the group of roots of unity in K. It is known that this
inclusion is not in general valid without the hypothesis that G is cyclic (see
[18]). The possibility of such an explicit refinement of Brumer’s Conjecture
was discussed by the second author in [29] and [31]. In fact, in the terminology
of [29], the above argument shows that both properties (SB) and (DSB) follow
from LTC(K/k) whenever G is cyclic. For further results in the case that G is
cyclic see Corollary 7.10.

Remark 1.13. Following the discussion of Remark 1.11(ii) we can also now
consider Theorem 1.5 further in the case that k = Q, K = Q(ζpn)

+ for an odd
prime p and natural number n and S = {∞, p}.
In this case the G-module XK,S is free of rank one and so the exact sequence
(2) combines with the final assertion of Theorem 1.5(ii) (with r = 1) to give
equalities

Fitt0G(Cl
T
S (K)) = Fitt1G(StrS,T (Gm/K))

= {Φ(ǫpn,T ) | Φ ∈ HomG(O×K,S,T ,Z[G])}
= Fitt0G(O×K,S,T/(Z[G] · ǫpn,T ))

where the last equality follows from the fact that G is cyclic.
Since (in this case) ClS(K) = Cl(K) a standard argument shows that the above
displayed equality implies Fitt0G(Cl(K)) = Fitt0G(O×K/CK) with CK denoting

the group Z[G] · {1 − ζpn , ζpn} ∩ O×K of cyclotomic units of K, and this is the
main result of Cornacchia and Greither in [10]. Our results therefore constitute
an extension of the main result in [10] for K = Q(ζpn)

+.

For any finite group Γ and any Γ-module M we write M∨ for its Pontryagin
dual HomZ(M,Q/Z), endowed with the natural contragredient action of Γ.
In §7.5 we show that the proof of Theorem 1.10 also implies the following result.
In this result we fix an odd prime p and set ClT (K)∨p := ClT (K)∨ ⊗ Zp.

Corollary 1.14. Let K/k be any finite abelian CM-extension and p any odd
prime. If LTC(K/k) is valid, then one has a containment

θK/k,S,T (0)
# ∈ Fitt0Zp[G](Cl

T (K)∨p ).
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Remark 1.15.
(i) In [19] Greither and Popescu prove the validity of the displayed containment
in Corollary 1.14 under the hypotheses that S contains all p-adic places of k (so
that the Stickelberger element θK/k,S,T (0) is in general ‘imprimitive’) and that
the p-adic µ-invariant of K vanishes. In [9, §3.5] we give a new proof of their
result by using the natural Selmer modules for Gm defined in §2 below in place
of the Galois modules ‘related to 1-motives’ that are explicitly constructed for
this purpose in [19]. In addition, by combining Corollary 1.14 with the result of
Theorem 1.16 below we can also now prove the containment in Corollary 1.14,
both unconditionally and without the assumption that S contains all p-adic
places, for important families of examples. For more details see [9, §3.5 and
§5].
(ii) For any odd prime p the group Cl(K)∨p := Cl(K)∨ ⊗ Zp is not a quotient

of ClT (K)∨p and so Corollary 1.14 does not imply that θK/k,S,T (0) belongs to

Fitt0Zp[G](Cl(K)∨p ).
(iii) For any odd prime p write Cl(K)∨,−p for the submodule of Cl(K) ⊗ Zp
upon which complex conjugation acts as multiplication by −1. Then, under
a certain technical hypothesis on µ(K), the main result of Greither in [15]
shows that LTC(K/k) also implies an explicit description of the Fitting ideal
Fitt0Zp[G](Cl(K)∨,−p ) in terms of suitably normalized Stickelberger elements. By
replacing the role of ‘Tate sequences for small S’ in the argument of Greither
by the ‘T -modified Weil-étale cohomology’ complexes that we introduce in §2.2
one can in fact prove the same sort of result without any hypothesis on µ(K).

1.6. New verifications of the leading term conjecture. In a sequel
[9] to this article we investigate the natural Iwasawa-theoretic aspects of our
general approach.
In particular, we show in [9, Th. 5.2] that, without any restriction to CM
extensions (or to the ‘minus parts’ of conjectures), under the assumed validity
of a natural main conjecture of higher rank Iwasawa theory, the validity of
the p-part of MRS(L/K/k, S, T ) for all finite abelian extensions L/k implies
the validity of the p-part of LTC(K/k). Such a result provides an important
partial converse to Theorem 1.1 and can also be used to derive new evidence
in support of LTC(K/k).
For example, in [9, Th. 4.9] we show that, in all relevant cases, the validity
of MRS(K/L/k, S, T ) is implied by a well-known leading term formula for p-
adic L-series that has been conjectured by Gross (the ‘Gross-Stark conjecture’
[20]). By combining this observation with significant recent work of Darmon,
Dasgupta and Pollack and of Ventullo concerning the Gross-Stark conjecture
we are then able to give (in [9, Cor. 5.8]) the following new evidence in support
of the conjectures LTC(K/k) and MRS(K/L/k, S, T ).

Theorem 1.16. Assume that k is a totally real field, that K is an abelian CM
extension of k (with maximal totally real subfield K+) and that p is an odd
prime. If the p-adic Iwasawa µ-invariant of K vanishes and at most one p-
adic place of k splits in K/K+, then for any finite subextension K ′/K of the
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cyclotomic Zp-extension of K the minus parts of the p-parts of both LTC(K ′/k)
and MRS(K ′/K/k, S, T ) are valid.

For examples of explicit families of extensions K/k that satisfy all of the hy-
potheses of Theorem 1.16 with respect to any given odd prime p see [9, Exam-
ples 5.9].

1.7. Notation. In this final subsection of the Introduction we collect together
some important notation which will be used in the article.
For an abelian group G, a Z[G]-module is simply called a G-module. Tensor
products, Hom, exterior powers, and determinant modules over Z[G] are de-
noted by ⊗G, HomG,

∧
G, and detG, respectively. We use similar notation for

Ext-groups, Fitting ideals, etc. The augmentation ideal of Z[G] is denoted by
I(G). For any G-module M and any subgroup H ⊂ G, we denote MH for the
submodule of M comprising elements fixed by H . The norm element of H is
denoted by NH , namely,

NH =
∑

σ∈H
σ ∈ Z[G].

Let E denote either Q, R or C. For an abelian group A, we denote E ⊗Z A
by EA. The maximal Z-torsion subgroup of A is denoted by Ators. We write
A/Ators by Atf . The Pontryagin dual HomZ(A,Q/Z) of A is denoted by A∨ for
discrete A.
Fix an algebraic closure Q of Q. For a positive integer n, we denote by µn the

group of n-th roots of unity in Q
×
.

Let k be a global field. The set of all infinite places of k is denoted by S∞(k)
or simply by S∞ when k is clear from the context. (If k is a function field,
then S∞(k) is empty.) Consider a finite Galois extension K/k, and denote its
Galois group by G. The set of all places of k which ramify in K is denoted
by Sram(K/k) or simply by Sram when K/k is clear from the context. For any
non-empty finite set S of places of k, we denote by SK the set of places of K
lying above places in S. The ring of S-integers of K is defined by

OK,S
:= {a ∈ K : ordw(a) ≥ 0 for all finite places w of K not contained in SK},

where ordw denotes the normalized additive valuation at w. The unit group of
OK,S is called the S-unit group of K. Let T be a finite set of finite places of
k, which is disjoint from S. The (S, T )-unit group of K is defined by

O×K,S,T := {a ∈ O×K,S : a ≡ 1 (mod w) for all w ∈ TK}.
The ideal class group of OK,S is denoted by ClS(K). This is called the S-class

group ofK. The (S, T )-class group ofK, which we denote by ClTS (K), is defined
to be the ray class group of OK,S modulo

∏
w∈TK w (namely, the quotient of the

group of fractional ideals whose supports are coprime to all places above S ∪T
by the subgroup of principal ideals with a generator congruent to 1 modulo all
places in TK). When S ⊂ S∞, we omit S and write ClT (K) for ClTS (K). When
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S ⊂ S∞ and T = ∅, we write Cl(K) which is the class group of the integer ring
OK .
We denote by XK,S the augmentation kernel of the divisor group YK,S :=⊕

w∈SK Zw. If S contains S∞(k), then the Dirichlet regulator map

λK,S : RO×K,S −→ RXK,S ,

defined by λK,S(a) := −
∑
w∈SK log |a|ww, is an isomorphism.

For a place w of K, the decomposition subgroup of w in G is denoted by Gw. If
w is finite, the residue field of w is denoted by κ(w). The cardinality of κ(w) is
denoted by Nw. If the place v of k lying under w is unramified in K, then the
Frobenius automorphism at w is denoted by Frw ∈ Gw. When G is abelian,
then Gw and Frw depend only on v, so in this case we often denote them by
Gv and Frv respectively. The C-linear involution C[G] → C[G] induced by
σ 7→ σ−1 with σ ∈ G is denoted by x 7→ x#.
A complex of G-modules is said to be ‘perfect’ if it is quasi-isomorphic to a
bounded complex of finitely generated projective G-modules.
We denote by D(Z[G]) the derived category of G-modules, and by Dp(Z[G])
the full subcategory of D(Z[G]) consisting of perfect complexes.

2. Canonical Selmer groups and complexes for Gm

In this section, we give a definition of ‘integral dual Selmer groups for Gm’, as
analogues of Mazur-Tate’s ‘integral Selmer groups’ defined for abelian varieties
in [38]. We shall also review the construction of certain natural arithmetic
complexes, which are used for the formulation of the leading term conjecture.

2.1. Integral dual Selmer groups. Let K/k be a finite Galois extension
of global fields with Galois group G. Let S be a non-empty finite set of places
which contains S∞(k). Let T be a finite set of places of k which is disjoint from
S.

Definition 2.1. We define the ‘(S-relative T -trivialized) integral dual Selmer
group for Gm’ by setting

SS,T (Gm/K) := coker(
∏

w/∈SK∪TK
Z −→ HomZ(K

×
T ,Z)),

where K×T is the subgroup of K× defined by

K×T := {a ∈ K× : ordw(a− 1) > 0 for all w ∈ TK},
and the homomorphism on the right hand side is defined by

(xw)w 7→ (a 7→
∑

w/∈SK∪TK
ordw(a)xw).

When T is empty, we omit the subscript T from this notation.

By the following proposition we see that our integral dual Selmer groups are
actually like usual dual Selmer groups (see also Remark 2.3 below).
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Proposition 2.2. There is a canonical exact sequence

0 −→ ClTS (K)∨ −→ SS,T (Gm/K) −→ HomZ(O×K,S,T ,Z) −→ 0

of the form (1) in §1.

Proof. Consider the commutative diagram

0 //
∏
w/∈SK∪TK Z //

��

∏
w/∈SK∪TK Q //

��

∏
w/∈SK∪TK Q/Z //

��

0

0 // HomZ(K
×
T ,Z) // HomZ(K

×
T ,Q) // (K×T )

∨,

where each row is the natural exact sequence, and each vertical arrow is given
by (xw)w 7→ (a 7→∑

w/∈SK∪TK ordw(a)xw). Using the exact sequence

0 −→ O×K,S,T −→ K×T

⊕
ordw−→

⊕

w/∈SK∪TK
Z −→ ClTS (K) −→ 0

and applying the snake lemma to the above commutative diagram, we obtain
the exact sequence

0 −→ ClTS (K)∨ −→ SS,T (Gm/K) −→ HomZ(O×K,S,T ,Q) −→ (O×K,S,T )∨.

Since the kernel of the last map is HomZ(O×K,S,T ,Z), we obtain the desired
conclusion. �

Remark 2.3.
(i) The Bloch-Kato Selmer group H1

f (K,Q/Z(1)) is defined to be the kernel of
the diagonal map

K× ⊗Q/Z −→
⊕

w

K×w /O×Kw ⊗Q/Z

where w runs over all finite places, and so lies in a canonical exact sequence

0 −→ O×K ⊗Q/Z −→ H1
f (K,Q/Z(1)) −→ Cl(K) −→ 0.

Its Pontryagin dual H1
f (K,Q/Z(1))

∨ is a finitely generated Ẑ-module and our

integral dual Selmer group SS∞(Gm/K) provides a canonical finitely generated

Z-structure on H1
f (K,Q/Z(1))

∨.
(ii) In general, the exact sequence (1) also means that SS,T (Gm/K) is a natural
analogue (relative to S and T ) for Gm over K of the ‘integral Selmer group’
that is defined for abelian varieties by Mazur and Tate in [38, p.720].

In the next subsection we shall give a natural cohomological interpretation of
the group SS,T (Gm/K) (see Proposition 2.4(iii)) and also show that it has a
canonical ‘transpose’ (see Definition 2.6).
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2.2. ‘Weil-étale cohomology’ complexes. In the following, we construct
two canonical complexes ofG-modules, and use them to show that there exists a
canonical transpose of the module SS,T (Gm/K). The motivation for our choice
of notation (and terminology) for these complexes is explained in Remark 2.5
below.
We fix data K/k,G, S, T as in the previous subsection. We also write F×TK for

the direct sum
⊕

w∈TK κ(w)
× of the multiplicative groups of the residue fields

of all places in TK .

Proposition 2.4. There exist canonical complexes of G-modules
RΓc((OK,S)W ,Z) and RΓc,T ((OK,S)W ,Z) which satisfy all of the following
conditions.

(i) There exists a canonical commutative diagram of exact triangles in
D(Z[G])

(6)

HomZ(O×K,S ,Q)[−3] θ−→ RΓc(OK,S ,Z) −→ RΓc((OK,S)W ,Z) −→y
∥∥∥

y

(HomZ(O×K,S ,Q)⊕ (F×TK )
∨)[−3] θ′−→ RΓc(OK,S ,Z) −→ RΓc,T ((OK,S)W ,Z) −→y

y

(F×TK )
∨[−3] (F×TK )

∨[−2]
y

yθ′′

in which the first column is induced by the obvious exact sequence

0 −→ HomZ(O×K,S ,Q) −→ HomZ(O×K,S ,Q)⊕ (F×TK )
∨ −→ (F×TK )

∨ −→ 0

and H2(θ′′) is the Pontryagin dual of the natural injective homomor-
phism

H3(RΓc((OK,S)W ,Z))∨ = O×K,tors −→ F×TK .

(ii) If S′ is a set of places of k which contains S and is disjoint from T ,
then there is a canonical exact triangle in D(Z[G])

RΓc,T ((OK,S′)W ,Z) −→ RΓc,T ((OK,S)W ,Z) −→
⊕

w∈S′
K\SK

RΓ((κ(w))W ,Z),

where RΓ((κ(w))W ,Z) is the complex of Gw-modules which lies in the
exact triangle

Q[−2] −→ RΓ(κ(w),Z) −→ RΓ((κ(w))W ,Z) −→,
where the H2 of the first arrow is the natural map

Q −→ Q/Z = H2(κ(w),Z).
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(iii) The complex RΓc,T ((OK,S)W ,Z) is acyclic outside degrees one, two and
three, and there are canonical isomorphisms

Hi(RΓc,T ((OK,S)W ,Z)) ≃





YK,S/∆S(Z) if i = 1,

SS,T (Gm/K) if i = 2,

(K×T,tors)
∨ if i = 3,

where ∆S is the natural diagonal map.
(iv) If S contains Sram(K/k), then RΓc((OK,S)W ,Z) and

RΓc,T ((OK,S)W ,Z) are both perfect complexes of G-modules.

Proof. In this argument we use the fact that morphisms in D(Z[G]) between
bounded above complexesK•1 andK•2 can be computed by means of the spectral
sequence

(7) Ep,q2 =
∏

a∈Z
ExtpG(H

a(K•1 ), H
q+a(K•2 ))⇒ Hp+q(RHomG(K

•
1 ,K

•
2 ))

constructed by Verdier in [53, III, 4.6.10].
Set C• = C•S := RΓc(OK,S ,Z) and W := HomZ(O×K,S ,Q) for simplicity. Then
we recall first that C• is acyclic outside degrees one, two and three, that there
are canonical isomorphisms

(8) Hi(C•) ∼=





YK,S/∆S(Z) if i = 1,

ClS(K)∨ if i = 2,

(O×K,S)∨ if i = 3,

where ∆S is the map that occurs in the statement of claim (iii) and that,
when S contains Sram(K/k), C

• is isomorphic to a bounded complex of
cohomologically-trivial G-modules.
It is not difficult to see that the groups ExtiG(W,H

3−i(C•)) vanish for all
i > 0, and so the spectral sequence (7) implies that the ‘passage to cohomology’
homomorphism

H0(RHomG(W [−3], C•)) = HomD(Z[G])(W [−3], C•) −→ HomG(W, (O×K,S)∨)
is bijective. We may therefore define θ to be the unique morphism in D(Z[G])
for which H3(θ) is equal to the natural map

W = HomZ(O×K,S ,Q) −→ HomZ(O×K,S ,Q/Z) = (O×K,S)∨

and then take C•W := RΓc((OK,S)W ,Z) to be any complex which lies in an
exact triangle of the form that occurs in the upper row of (6). An analysis
of the long exact cohomology sequence of this triangle then shows that C•W
is acyclic outside degrees one, two and three, that H1(C•W) = H1(C•), that
H2(C•W )tors = H2(C•), that H2(C•W)tf = HomZ(O×K,S ,Z) and that H3(C•W ) =

(O×K,tors)∨. In particular, when S contains Sram(K/k), since each of these

groups is finitely generated and both of the complexes W [−3] and C• are
represented by bounded complexes of cohomologically-trivial G-modules, this
implies that C•W is perfect.
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To define the morphism θ′ we first choose a finite set S′′ of places of k which
is disjoint from S ∪ T and such that ClS′(K) vanishes for S′ := S ∪ S′′. Note
that (8) with S replaced by S′ implies C•S′ is acyclic outside degrees one and
three. We also note that, since each place in T is unramified in K/k, there is
also an exact sequence of G-modules

(9) 0 −→
⊕

v∈T
Z[G]

(1−NvFrw)v−→
⊕

v∈T
Z[G] −→ (F×TK )

∨ −→ 0

where w is any choice of place of K above v. This sequence shows both
that (F×TK )

∨[−3] is a perfect complex of G-modules and also that the func-

tor ExtiG((F
×
TK

)∨,−) vanishes for all i > 1. In particular, the spectral sequence
(7) implies that in this case the passage to cohomology homomorphism

HomD(Z[G])((F
×
TK

)∨[−3], C•S′) −→ HomG((F×TK )
∨, (O×K,S′)

∨)

is bijective. We may therefore define θ′ to be the morphism which restricts on
W [−3] to give θ and on (F×TK )

∨[−3] to give the composite morphism

(F×TK )
∨[−3] θ′1−→ RΓc(OK,S′ ,Z)

θ′2−→ RΓc(OK,S ,Z)
where θ′1 is the unique morphism for which H3(θ′1) is the Pontryagin dual of
the natural map O×K,S′ → F×TK and θ′2 occurs in the canonical exact triangle

(10) RΓc(OK,S′ ,Z)
θ′2−→ RΓc(OK,S ,Z) −→

⊕

w∈S′′
K

RΓ(κ(w),Z) −→

constructed by Milne in [39, Chap. II, Prop. 2.3 (d)].
We now take C•W,T := RΓc,T ((OK,S)W ,Z) to be any complex which lies in an

exact triangle of the form that occurs in the second row of (6) and then, just
as above, an analysis of this triangle shows that C•W,T is a perfect complex of

G-modules when S contains Sram(K/k). Note also that since for this choice
of θ′ the upper left hand square of (6) commutes the diagram can then be
completed to give the right hand vertical exact triangle. The claim (ii) follows
easily from the above constructions.
It only remains to prove claim (iii). It is easy to see that the groups
Hi(RΓc,T ((OK,S)W ,Z)) for i = 1 and 3 are as described in claim (iii), so we
need only prove that there is a natural isomorphism

H2(RΓc,T ((OK,S)W ,Z)) ≃ SS,T (Gm/K).

To do this we first apply claim (ii) for a set S′ that is large enough to ensure

that ClTS′(K) vanishes. Since in this case

H2(RΓc,T ((OK,S′ )W ,Z)) = HomZ(O×K,S′,T ,Z),

we obtain in this way a canonical isomorphism

(11) H2(RΓc,T ((OK,S)W ,Z)) ≃ coker(
⊕

w∈S′
K\SK

Z −→ HomZ(O×K,S′,T ,Z)).
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Consider next the commutative diagram

0 //
∏
w/∈S′

K∪TK Z //
∏
w/∈SK∪TK Z //

��

⊕
w∈S′

K\SK Z //

��

0

0 //
∏
w/∈S′

K∪TK Z // HomZ(K
×
T ,Z) // HomZ(O×K,S′,T ,Z) // 0

with exact rows, where the first exact row is the obvious one, the second is the
dual of the exact sequence

0 −→ O×K,S′,T −→ K×T

⊕
ordw−→

⊕

w/∈S′
K∪TK

Z −→ 0,

and the vertical arrows are given by (xw)w 7→ (a 7→∑
w ordw(a)xw). From this

we have the canonical isomorphism

SS,T (Gm/K) ≃ coker(
⊕

w∈S′
K\SK

Z −→ HomZ(O×K,S′,T ,Z)).(12)

From (11) and (12) our claim follows. �

Given the constructions in Proposition 2.4, in each degree i we set

Hi
c,T ((OK,S)W ,Z) := Hi(RΓc,T ((OK,S)W ,Z)).

We also define a complex

RΓT ((OK,S)W ,Gm) := RHomZ(RΓc,T ((OK,S)W ,Z),Z)[−2].
We endow this complex with the natural contragredient action of G and then
in each degree i set

Hi
T ((OK,S)W ,Gm) := Hi(RΓT ((OK,S)W ,Gm)).

Remark 2.5. Our notation for the above cohomology groups and complexes
is motivated by the following facts.
(i) Assume that k is a function field. Write Ck for the corresponding smooth
projective curve, Ck,W ét for the Weil-étale site on Ck that is defined by Licht-
enbaum in [33, §2] and j for the open immersion Spec(Ok,S) −→ Ck. Then the
groupHi

c ((OK,S)W ,Z) defined above is canonically isomorphic to the Weil-étale
cohomology group Hi(Ck,W ét, j!Z).
(ii) Assume that k is a number field. In this case there has as yet been no
construction of a ‘Weil-étale topology’ for YS := Spec(OK,S) with all of the

properties that are conjectured by Lichtenbaum in [34]. However, if YS is
a compactification of YS and φ is the natural inclusion YS ⊂ YS , then the
approach of [4] can be used to show that, should such a topology exist with
all of the expected properties, then the groups Hi

c ((OK,S)W ,Z) defined above

would be canonically isomorphic to the group Hi
c(YS ,Z) := Hi(YS , φ!Z) that

is discussed in [34].
(iii) The definition of RΓT ((OK,S)W ,Gm) as the (shifted) linear dual of the
complex RΓc,T ((OK,S)W ,Z) is motivated by [4, Rem. 3.8] and hence by the
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duality theorem in Weil-étale cohomology for curves over finite fields that is
proved by Lichtenbaum in [33].

An analysis of the complex RΓc,T ((OK,S)W ,Z) as in the proof of Lemma 2.8
below then leads us to give the following definition. In this definition we use
the notion of ‘transpose’ in the sense of Jannsen’s homotopy theory of modules
[23].

Definition 2.6. The ‘transpose’ of SS,T (Gm/K) is the group

StrS,T (Gm/K) := H1
T ((OK,S)W ,Gm) = H−1(RHomZ(RΓc,T ((OK,S)W ,Z),Z)).

When T is empty, we omit the subscript T from this notation.

Remark 2.7. By using the spectral sequence

Ep,q2 = ExtpZ(H
−q
c,T ((OK,S)W ,Z),Z)⇒ Hp+q+2

T ((OK,S)W ,Gm),

which is obtained from (7), one can check that RΓT ((OK,S)W ,Gm) is acyclic
outside degrees zero and one, that there is a canonical isomorphism

H0
T ((OK,S)W ,Gm) ≃ O×K,S,T ,

and that there is a canonical exact sequence

0 −→ ClTS (K) −→ StrS,T (Gm/K) −→ XK,S −→ 0

of the form (2) in §1.
In the sequel we shall say that a G-module M has a ‘locally-quadratic presen-
tation’ if it lies in an exact sequence of finitely generated G-modules of the
form

P → P ′ →M → 0

in which P and P ′ are projective and the Q[G]-modules QP and QP ′ are
isomorphic.

Lemma 2.8. Assume that G is abelian, that S contains S∞(k) ∪ Sram(K/k),
and that O×K,S,T is Z-torsion-free. Then each of the groups SS,T (Gm/K) and

StrS,T (Gm/K) have locally-quadratic presentations, and for each non-negative
integer i one has an equality

FittiG(StrS,T (Gm/K)) = FittiG(SS,T (Gm/K))#.

Proof. Set

C• := RΓc,T ((OK,S)W ,Z)
and

C•,∗ := RHomZ(RΓc,T ((OK,S)W ,Z),Z).
From Proposition 2.4 we also know that C• is a perfect complex of G-modules
that is acyclic outside degree one and two and Z-torsion-free in degree one.
This implies, by a standard argument, that C• can be represented by a complex

P
δ−→ P ′ of G-modules, where P and P ′ are finitely generated and projective
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and the first term is placed in degree one, and hence that there is a tautological
exact sequence of G-modules

(13) 0 −→ H1(C•) −→ P
δ−→ P ′ −→ H2(C•) −→ 0.

The descriptions in Proposition 2.4(iii) imply that the linear dual of the Dirich-
let regulator map λK,S induces an isomorphism of R[G]-modules

(14) λ∗K,S : RH1(C•) ∼= RH2(C•).

Taken in conjunction with the sequence (13) this isomorphism implies that
the Q[G]-modules QP and QP ′ are isomorphic and hence that SS,T (Gm/K) =

H2(C•) has a locally-quadratic presentation, as claimed.

The complex C•,∗[−2] is represented by HomZ(P
′,Z) δ∗→ HomZ(P,Z) where

the linear duals are endowed with contragredient action of G, the first term
is placed in degree zero and δ∗ is the map induced by δ. There is therefore a
tautological exact sequence
(15)

0 −→ H0(C•,∗[−2]) −→ HomZ(P
′,Z) δ∗

−→ HomZ(P,Z) −→ H1(C•,∗[−2]) −→ 0,

and, since the above observations imply that HomZ(P
′,Z) and HomZ(P,Z) are

projective G-modules that span isomorphic Q[G]-spaces, this sequence implies
that the module StrS,T (Gm/K) = H1(C•,∗[−2]) has a locally-quadratic presen-
tation.
It now only remains to prove the final claim and it is enough to prove this after
completion at each prime p. We shall denote for any abelian group A the p-
completion A⊗Zp of A by Ap. By Swan’s Theorem (cf. [11, (32.1)]) one knows
that for each prime p the Zp[G]-modules Pp and P

′
p are both free of rank, d say,

that is independent of p. In particular, after fixing bases of Pp and P
′
p the homo-

morphism Pp
δ→ P ′p corresponds to a matrixAδ,p in Md(Zp[G]) and the sequence

(13) implies that the ideal FittiG(H
2(C•))p is generated over Zp[G] by the de-

terminants of all (d− i)× (d− i) minors of Aδ,p. The corresponding dual bases
induce identifications of both HomZ(P

′,Z)p and HomZ(P,Z)p with Zp[G]⊕d,

with respect to which the homomorphism HomZ(P
′,Z)p

δ∗→ HomZ(P,Z)p is

represented by the matrix Atr,#
δ,p that is obtained by applying the involution

# to each entry of the transpose of Aδ,p. The exact sequence (15) therefore

implies that FittiG(H
1(C•,∗[−2]))p is generated over Zp[G] by the determinants

of all (d− i)× (d− i) minors of Atr,#
δ,p . Hence one has an equality

FittiG(H
2(C•))p = FittiG(H

1(C•,∗[−2]))#p ,
as required. �

2.3. Tate sequences. In this subsection we review the construction of Tate’s
exact sequence, which is used in the formulation of the leading term conjecture
in the next section. Let K/k,G, S be as in the previous subsection. We assume
that Sram(K/k) ⊂ S. We assume only in this subsection that S is large enough
so that ClS(K) vanishes.
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In this setting, Tate constructed a ‘fundamental class’ τK/k,S ∈
Ext2G(XK,S ,O×K,S) using the class field theory [49]. This class τK/k,S
has the following property: if we regard τK/k,S as an element of

H2(G,HomZ(XK,S ,O×K,S)) via the canonical isomorphism

Ext2G(XK,S ,O×K,S) ≃ Ext2G(Z,HomZ(XK,S ,O×K,S))
= H2(G,HomZ(XK,S ,O×K,S)),

then, for every integer i, the map between Tate cohomology groups

Ĥi(G,XK,S)
∼−→ Ĥi+2(G,O×K,S)

that is defined by taking cup product with τK/k,S is bijective.
The Yoneda extension class of τK/k,S is therefore represented by an exact se-
quence of the following sort:

0 −→ O×K,S −→ A −→ B −→ XK,S −→ 0,(16)

where A and B are finitely generated cohomologically-trivial G-modules (see
[50, Chap. II, Th. 5.1]). We call this sequence a ‘Tate sequence’ for K/k.

Proposition 2.9. The complex RΓ((OK,S)W ,Gm) defines an element of

Ext2G(StrS (Gm/K),O×K,S).
This element is equal to Tate’s fundamental class τK/k,S .

Proof. The first assertion follows directly from the discussion of Remark 2.7.
The assumed vanishing of ClS(K) combines with the exact sequence (2) to
imply that StrS (Gm/K) = XK,S . Given this, the second claim is proved by the
first author in [4, Prop. 3.5(f)] �

3. Zeta elements and the leading term conjecture

In this section, we suppose that K/k is a finite abelian extension of global fields
with Galois group G.
We fix a finite non-empty set of places S of k which contains both S∞(k) and
Sram(K/k) and an auxiliary finite set of places T of k that is disjoint from S.

3.1. L-functions. We recall the definition of (abelian) L-functions of global

fields. For any linear character χ ∈ Ĝ := Hom(G,C×), we define the S-
truncated T -modified L-function for K/k and χ by setting

Lk,S,T (χ, s) :=
∏

v∈T
(1− χ(Frv)Nv1−s)

∏

v/∈S
(1− χ(Frv)Nv−s)−1.

This is a complex function defined on Re(s) > 1 and is well-known to have a
meromorphic continuation on C and to be holomorphic at s = 0. We denote
by rχ,S the order of vanishing of Lk,S,T (χ, s) at s = 0 (this clearly does not
depend on T ). We denote the leading coefficient of the Taylor expansion of
Lk,S,T (χ, s) at s = 0 by

L∗k,S,T (χ, 0) := lim
s→0

s−rχ,SLk,S,T (χ, s).
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We then define the S-truncated T -modified equivariant L-function for K/k by
setting

θK/k,S,T (s) :=
∑

χ∈Ĝ

Lk,S,T (χ
−1, s)eχ,

where eχ := 1
|G|
∑

σ∈G χ(σ)σ
−1, and we define its leading term to be

θ∗K/k,S,T (0) :=
∑

χ∈Ĝ

L∗k,S,T (χ
−1, 0)eχ.

It is then easy to see that θ∗K/k,S,T (0) belongs to R[G]×.
When T = ∅, we simply denote Lk,S,∅(χ, s), θK/k,S,∅(s), etc., by Lk,S(χ, s),
θK/k,S(s), etc., respectively, and refer to them as the S-truncated L-function
for K/k, S-truncated equivariant L-function for K/k, etc., respectively.

3.2. The leading term lattice. In this section we recall the explicit formu-
lation of a conjectural description of the lattice θ∗K/k,S,T (0)·Z[G] which involves

Tate sequences. In particular, up until Remark 3.3, we always assume (without
further explicit comment) that S is large enough to ensure the group ClS(K)
vanishes.
At the outset we also note that, as observed by Knudsen and Mumford in
[27], to avoid certain technical difficulties regarding signs, determinant mod-
ules must be regarded as graded invertible modules. Nevertheless, for simplic-
ity of notation, in the following we have preferred to omit explicit reference to
the grading of any graded invertible modules. Thus, for a finitely generated
projective G-module P , we have abbreviated the graded invertible G-module
(detG(P ), rkG(P )) to detG(P ), where rkG(P ) is the rank of P . Since the nota-
tion detG(P ) explicitly indicates P , which in turn determines rkG(P ), we feel
that this abbreviation should not cause difficulties.
We shall also use the following general notation. Suppose that we have a perfect
complex C• of G-modules, which is concentrated in degree i and i+1 with some
integer i, and an isomorphism λ : RHi(C•)

∼→ RHi+1(C•). Then we define an
isomorphism

ϑλ : RdetG(C•)
∼−→ R[G]

as follows:

RdetG(C•)
∼−→

⊗

j∈Z
det

(−1)j
R[G] (RC

j)

∼−→
⊗

j∈Z
det

(−1)j
R[G] (RH

j(C•))

= det
(−1)i
R[G] (RH

i(C•))⊗R[G] det
(−1)i+1

R[G] (RHi+1(C•))

∼−→ det
(−1)i
R[G] (RH

i+1(C•))⊗R[G] det
(−1)i+1

R[G] (RHi+1(C•))
∼−→ R[G],
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where the fourth isomorphism is induced by λ(−1)
i

.
Let A and B be the G-modules which appear in the Tate sequence (16). Since
we have the regulator isomorphism

λK,S : RO×K,S
∼−→ RXK,S ,

the above construction for C• = (A→ B), where A is placed in degree 0, gives
the isomorphism

ϑλK,S : RdetG(A)⊗R[G] Rdet
−1
G (B)

∼−→ R[G].

We study the following conjecture.

Conjecture 3.1. In R[G] one has

ϑλK,S (detG(A)⊗G det−1G (B)) = θ∗K/k,S(0) · Z[G].
Remark 3.2. This conjecture coincides with the conjecture C(K/k) stated in
[3, §6.3]. The observations made in [3, Rem. 6.2] therefore imply that Conjec-
ture 3.1 is equivalent in the number field case to the ‘equivariant Tamagawa
number conjecture’ [7, Conj. 4 (iv)] for the pair (h0(SpecK),Z[G]), that the
validity of Conjecture 3.1 is independent of S and of the choice of Tate sequence
and that its validity for the extension K/k implies its validity for all extensions
F/E with k ⊆ E ⊆ F ⊆ K.

Remark 3.3. Conjecture 3.1 is known to be valid in each of the following cases:

(i) K is an abelian extension of Q (by Greither and the first author [8]
and Flach [14]),

(ii) k is a global function field (by the first author [5]),
(iii) [K : k] ≤ 2 (by Kim [26, §2.4, Rem. i)]).

In the following result we do not assume that the group ClS(K) vanishes and we
interpret the validity of Conjecture 3.1 in terms of the ‘Weil-étale cohomology’
complexes RΓc,T ((OK,S)W ,Z) and RΓT ((OK,S)W ,Gm) defined in §2.2.
We note at the outset that RΓc,T ((OK,S)W ,Z) (resp. RΓT ((OK,S)W ,Gm)) is
represented by a complex which is concentrated in degrees one and two (resp.
zero and one), and so we can define the isomorphism

ϑλ∗
K,S

: RdetG(RΓc,T ((OK,S)W ,Z)) ∼−→ R[G]

(resp. ϑλK,S : RdetG(RΓT ((OK,S)W ,Gm)) ∼−→ R[G]).

Proposition 3.4. Let S be any finite non-empty set of places of k containing
both S∞(k) and Sram(K/k) and let T be any finite set of places of k that is
disjoint from S. Then the following conditions on K/k are equivalent.

(i) Conjecture 3.1 is valid.
(ii) In R[G] one has an equality

ϑλ∗
K,S

(detG(RΓc,T ((OK,S)W ,Z))) = θ∗K/k,S,T (0)
−1# · Z[G].

(iii) In R[G] one has an equality

ϑλK,S (detG(RΓT ((OK,S)W ,Gm))) = θ∗K/k,S,T (0) · Z[G].
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Proof. For any finitely generated projective G-module P of (constant) rank d
there is a natural identification

d∧

G

HomZ(P,Z) ∼=
d∧

G

HomG(P,Z[G])# ∼= HomG(

d∧

G

P,Z[G])#,

where G acts on HomZ(P,Z) contragrediently and on HomG(P,Z[G]) via right
multiplication. The equivalence of the equalities in claims (ii) and (iii) is
therefore a consequence of the fact that for any element ∆ of the mutliplica-
tive group of invertible Z[G]-lattices in R[G] the evaluation pairing identifies
HomG(∆,Z[G])# with the image under the involution # of the inverse lattice
∆−1.
To relate the equalities in claims (ii) and (iii) to Conjecture 3.1 we note first
that the third column of (6) implies that

ϑλ∗
K,S

(detG(RΓc,T ((OK,S)W ,Z)))
= detG((F×TK )

∨[−2]) · ϑλ∗
K,S

(detG(RΓc((OK,S)W ,Z))),

whilst the resolution (9) implies that

detG((F×TK )
∨[−2]) = (

∏

v∈T
(1 −NvFrw))

−1 · Z[G]

= (θ∗K/k,S,T (0)/θ
∗
K/k,S(0))

−1# · Z[G].

The equality in claim (ii) is therefore equivalent to an equality

(17) ϑλ∗
K,S

(detG(RΓc((OK,S)W ,Z))) = θ∗K/k,S(0)
−1# · Z[G].

We now choose an auxiliary set of places S′′ as in the proof of Proposition 2.4
and set S′ := S ∪ S′′. By Chebotarev density theorem we can even assume
that all places in S′′ split completely in K/k and, for simplicity, this is what we
shall do. Then, in this case, the exact triangle (10) combines with the upper
triangle in (6) to give an exact triangle in D(Z[G]) of the form
(18)

YK,S′′ [−1]⊕ YK,S′′ [−2] α−→ RΓc((OK,S′)W ,Z)
β−→ RΓc((OK,S)W ,Z) −→ .

After identifying the cohomology groups of the second and the third occurring
complexes by using Proposition 2.4(iii) the long exact cohomology sequence of
this triangle induces (after scaler extension) the sequence

0 −→ QYK,S′′ −→ QYK,S′/∆S′(Q) −→ QYK,S/∆S(Q)

0−→ QYK,S′′

ord∗
S′′−→ HomZ(O×K,S′ ,Q)

πS′′−−→ HomZ(O×K,S ,Q) −→ 0.

Here ord∗S′′ is induced by the linear dual of the map O×K,S′ → YK,S′′ induced

by taking valuations at each place in S′′K and πS′′ by the linear dual of the
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inclusion O×K,S ⊆ O×K,S′ and all other maps are obvious. This sequence implies
that there is an exact commutative diagram

0 −→ RYK,S′′
H1(α)−−−−→ RH1

c ((OK,S′ )W ,Z)
H1(β)−−−−→ RH1

c ((OK,S)W ,Z) −→ 0

ηS′′

y λ∗
K,S′

y λ∗
K,S

y

0 −→ RYK,S′′
H2(α)−−−−→ RH2

c ((OK,S′ )W ,Z)
H2(β)−−−−→ RH2

c ((OK,S)W ,Z) −→ 0

where ηS′′ sends each sum
∑
v∈S′′

∑
w|v xww to

∑
v∈S′′

∑
w|v log(Nv)xww.

This diagram combines with the triangle (18) to imply that

ϑλ∗
K,S′

(detG(RΓc((OK,S′)W ,Z)))

= detR[G](ηS′′)−1ϑλ∗
K,S

(detG(RΓc((OK,S)W ,Z)))

=
( ∏

v∈S′′

log(Nv)
)−1

ϑλ∗
K,S

(detG(RΓc((OK,S)W ,Z))).

Since θ∗K/k,S′(0) =
(∏

v∈S′′ log(Nv)
)
θ∗K/k,S(0) this equality shows that (after

changing S if necessary) we may assume that ClS(K) vanishes when verifying
(17). Given this, the proposition follows from Proposition 2.9. �

3.3. Zeta elements. We now use the above results to reinterpret Conjecture
3.1 in terms of the existence of a canonical ‘zeta element’. This interpretation
will then play a key role in the proofs of Theorem 5.12, 5.16 and 7.5 given
below.
The following definition of zeta element is in the same spirit as that used by
Kato in [24] and [25].

Definition 3.5. The ‘zeta element’ zK/k,S,T of Gm relative to the data K/k, S
and T is the unique element of

RdetG(RΓT ((OK,S)W ,Gm)) ∼= detR[G](RO×K,S)⊗R[G] det
−1
R[G](RXK,S)

which satisfies ϑλK,S (zK/k,S,T ) = θ∗K/k,S,T (0).

The following ‘leading term conjecture’ is then our main object of study.

Conjecture 3.6 (LTC(K/k)). In RdetG(RΓT ((OK,S)W ,Gm)) one has an
equality

Z[G] · zK/k,S,T = detG(RΓT ((OK,S)W ,Gm)).
Given the definition of zK/k,S,T , Proposition 3.4 implies immediately that this
conjecture is equivalent to Conjecture 3.1 and hence is independent of the
choices of S and T .

4. Preliminaries concerning exterior powers

In this section, we recall certain useful constructions concerning exterior powers
and also prove algebraic results that are to be used in later sections.
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4.1. Exterior powers. Let G be a finite abelian group. For a G-module M
and f ∈ HomG(M,Z[G]), there is a G-homomorphism

r∧

G

M −→
r−1∧

G

M

for all r ∈ Z≥1, defined by

m1 ∧ · · · ∧mr 7→
r∑

i=1

(−1)i−1f(mi)m1 ∧ · · · ∧mi−1 ∧mi+1 ∧ · · · ∧mr.

This morphism is also denoted by f .
This construction gives a homomorphism

s∧

G

HomG(M,Z[G]) −→ HomG(

r∧

G

M,

r−s∧

G

M)(19)

for all r, s ∈ Z≥0 such that r ≥ s, defined by

f1 ∧ · · · ∧ fs 7→ (m 7→ fs ◦ · · · ◦ f1(m)).

By using this homomorphism we often regard an element of
∧s
GHomG(M,Z[G])

as an element of HomG(
∧r
GM,

∧r−s
G M).

For a G-algebra Q and a homomorphism f in HomG(M,Q), there is a G-
homomorphism

r∧

G

M −→ (

r−1∧

G

M)⊗G Q

defined by

m1 ∧ · · · ∧mr 7→
r∑

i=1

(−1)i−1m1 ∧ · · · ∧mi−1 ∧mi+1 ∧ · · · ∧mr ⊗ f(mi).

By the same method as the construction of (19), we have a homomorphism

s∧

G

HomG(M,Q) −→ HomG(

r∧

G

M, (

r−s∧

G

M)⊗G Q).(20)

In the sequel we will find an explicit description of this homomorphism to be
useful. This description is well-known and given by the following proposition,
the proof of which we omit.

Proposition 4.1. Let m1, . . . ,mr ∈ M and f1, . . . , fs ∈ HomG(M,Q). Then
we have

(f1 ∧ · · · ∧ fs)(m1 ∧ · · · ∧mr)

=
∑

σ∈Sr,s
sgn(σ)mσ(s+1) ∧ · · · ∧mσ(r) ⊗ det(fi(mσ(j)))1≤i,j≤s,

where

Sr,s := {σ ∈ Sr : σ(1) < · · · < σ(s) and σ(s+ 1) < · · · < σ(r)}.
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In particular, if r = s, then we have

(f1 ∧ · · · ∧ fr)(m1 ∧ · · · ∧mr) = det(fi(mj))1≤i,j≤r .

We will also find the technical observations that are contained in the next two
results to be very useful.

Lemma 4.2. Let E be a field and A an n-dimensional E-vector space. If we
have an E-linear map

Ψ : A −→ E⊕m,

where Ψ =
⊕m

i=1 ψi with ψ1, . . . , ψm ∈ HomE(A,E) (m ≤ n), then we have

im(
∧

1≤i≤m
ψi :

n∧

E

A −→
n−m∧

E

A) =

{∧n−m
E ker(Ψ), if Ψ is surjective,

0, if Ψ is not surjective.

Proof. Suppose first that Ψ is surjective. Then there exists a subspace B ⊂ A
such that A = ker(Ψ) ⊕ B and Ψ maps B isomorphically onto E⊕m. We see
that

∧
1≤i≤m ψi induces an isomorphism

m∧

E

B
∼−→ E.

Hence we have an isomorphism

∧

1≤i≤m
ψi :

n∧

E

A =

n−m∧

E

ker(Ψ)⊗E
m∧

E

B
∼−→

n−m∧

E

ker(Ψ).

In particular, we have

im(
∧

1≤i≤m
ψi :

n∧

E

A −→
n−m∧

E

A) =
n−m∧

E

ker(Ψ).

Next, suppose that Ψ is not surjective. Then ψ1, . . . , ψm ∈ HomE(A,E) are
linearly dependent. In fact, since each ψi is contained in HomE(A/ ker(Ψ), E),
we have

dimE(〈ψ1, . . . , ψm〉) ≤ dimE(A/ ker(Ψ)) = dimE(im(Ψ)),

so dimE(〈ψ1, . . . , ψm〉) < m if dimE(im(Ψ)) < m. This shows that the element∧
1≤i≤m ψi vanishes, as required. �

Using the same notation as in Lemma 4.2, we now consider an endomorphism
ψ ∈ EndE(A). We write rψ for the dimension over E of ker(ψ) and consider
the composite isomorphism

Fψ :

n∧

E

A⊗E
n∧

E

HomE(A,E) ≃ detE(A)⊗E det−1E (A)

∼−→ detE(ker(ψ)) ⊗E det−1E (coker(ψ))

≃
rψ∧

E

ker(ψ)⊗E
rψ∧

E

HomE(coker(ψ), E),
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where the second isomorphism is induced by the tautological exact sequence

0 −→ ker(ψ) −→ A
ψ−→ A −→ coker(ψ) −→ 0.

Then the proof of Lemma 4.2 leads directly to the following useful description
of this isomorphism Fψ .

Lemma 4.3. With E,A and ψ as above, we fix an E-basis {b1, . . . , bn} of A so
that im(ψ) = 〈brψ+1, . . . , bn〉 and write {b∗1, . . . , b∗n} for the corresponding dual
basis of HomE(A,E). For each index i we also set ψi := b∗i ◦ ψ.
Then for every a in

∧n
E A the element (

∧
rψ<i≤n ψi)(a) belongs to

∧rψ
E ker(ψ)

and one has

Fψ(a⊗ (b∗1 ∧ · · · ∧ b∗n)) = (−1)rψ(n−rψ)(
∧

rψ<i≤n
ψi)(a) ⊗ (b∗1 ∧ · · · ∧ b∗rψ).

Here, on the right hand side of the equation, we use the equality im(ψ) =
〈brψ+1, . . . , bn〉 to regard b∗i for each i with 1 ≤ i ≤ rψ as an element of
HomE(coker(ψ), E).

4.2. Rubin lattices. The following definition is due to Rubin [45, §1.2]. We
adopt the notation in [46] for the lattice. Note in particular that the notation
‘
⋂
’ does not refer to an intersection.

Definition 4.4. For a finitely generated G-module M and a non-negative
integer r we define the ‘r-th Rubin lattice’ by setting

r⋂

G

M = {m ∈ Q
r∧

G

M : Φ(m) ∈ Z[G] for all Φ ∈
r∧

G

HomG(M,Z[G])}.

In particular, one has
⋂0
GM = Z[G].

Remark 4.5. We define the homomorphism ι :
∧r
GHomG(M,Z[G]) →

HomG(
∧r
GM,Z[G]) by sending each element ϕ1 ∧ · · · ∧ ϕr to ϕr ◦ · · · ◦ ϕ1

(see (19)). Then it is not difficult to see that the map
r⋂

G

M
∼−→ HomG(im(ι),Z[G]); m 7→ (Φ 7→ Φ(m))

is an isomorphism (see [45, §1.2]).
By this remark, one obtains the following result.

Proposition 4.6. Let P be a finitely generated projective G-module. Then we
have

r⋂

G

P =
r∧

G

P

for all non-negative integers r.

Lemma 4.7. Let M be a G-module. Suppose that there is a finitely generated
projective G-module P and an injection j : M →֒ P whose cokernel is Z-
torsion-free.
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(i) The map

HomG(P,Z[G]) −→ HomG(M,Z[G])

induced by j is surjective.
(ii) If we regard M as a submodule of P via j, then we have

r⋂

G

M = (Q
r∧

G

M) ∩
r∧

G

P.

Proof. The assertion (i) follows from [45, Prop. 1.1 (ii)]. Note that

r∧

G

HomG(P,Z[G]) −→
r∧

G

HomG(M,Z[G])

is also surjective. This induces a surjection

im(ιP ) −→ im(ιM ),

where ιP and ιM denote the maps defined in Remark 4.5 for P and M , respec-
tively. Hence, taking the dual, we have an injection

r⋂

G

M ≃ HomG(im(ιM ),Z[G]) −→ HomG(im(ιP ),Z[G]) ≃
r⋂

G

P.

Since P is projective, we have
⋂r
G P =

∧r
G P by Proposition 4.6. Hence we

have
r⋂

G

M ⊂
r∧

G

P.

Next, we show the reverse inclusion ‘⊃’. To do this we fix a in (Q
∧r
GM)∩∧rG P

and Φ in
∧r
GHomG(M,Z[G]). By (i), we can take a lift Φ̃ ∈ ∧rGHomG(P,Z[G])

of Φ. Since a ∈ ∧rG P , we have

Φ(a) = Φ̃(a) ∈ Z[G].

This shows that a belongs to
⋂r
GM , as required. �

Remark 4.8. The proof of Lemma 4.7 shows that the cokernel of the injection

r⋂

G

M −→
r∧

G

P

is Z-torsion-free. This implies that for any abelian group A, the map

(

r⋂

G

M)⊗Z A −→ (

r∧

G

P )⊗Z A

is injective.
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4.3. Homomorphisms between Rubin lattices. In the sequel we fix a sub-
group H of G and an ideal J of Z[H ]. Recall that we denote the augmentation
ideal of Z[H ] by I(H). Put JH := J/I(H)J . We also put J := JZ[G], and
JH := J /I(H)J .
Proposition 4.9. We have a natural isomorphism of G/H-modules

JH ≃ Z[G/H ]⊗Z JH .

Proof. Define a homomorphism

Z[G/H ]⊗Z JH −→ JH
by τ ⊗ a 7→ τ̃ a, where τ ∈ G/H , a ∈ J , and τ̃ ∈ G is a lift of τ . One can easily
check that this homomorphism is well-defined, and bijective. �

Definition 4.10. Let M be a G-module. For ϕ ∈ HomG(M,Z[G]), we define
ϕH ∈ HomG/H(MH ,Z[G/H ]) by

MH ϕ−→ Z[G]H ≃ Z[G/H ],

where the last isomorphism is given by NH =
∑

σ∈H σ 7→ 1. Let r be

a non-negative integer. For Φ ∈ ∧r
GHomG(M,Z[G]), we define ΦH ∈∧r

G/H HomG/H(MH ,Z[G/H ]) to be the image of Φ under the map

ϕ1 ∧ · · · ∧ ϕr 7→ ϕH1 ∧ · · · ∧ ϕHr .
For convention, if r = 0, then we define ΦH ∈ Z[G/H ] to be the image of
Φ ∈ Z[G] under the natural map : Z[G] −→ Z[G/H ].

Proposition 4.11. Let M be a G-module and r ∈ Z≥0. For any m ∈ Q
∧r
GM

and Φ ∈ ∧rGHomG(M,Z[G]), we have

Φ(m) = ΦH(NrH m) in Q[G/H ],

where NrH denote the map Q
∧r
GM → Q

∧r
G/HM

H induced by NH :M →MH .

Proof. This follows directly from the definition of ΦH . �

We consider the canonical map

ν :

r⋂

G/H

MH −→
r⋂

G

M

which is defined as follows. Let

ι :

r∧

G

HomG(M,Z[G]) −→ HomG(

r∧

G

M,Z[G])

and

ιH :

r∧

G/H

HomG/H(M
H ,Z[G/H ]) −→ HomG/H(

r∧

G/H

MH ,Z[G/H ])

Documenta Mathematica 21 (2016) 555–626



On Zeta Elements for Gm 587

be the homomorphisms defined in Remark 4.5. The map

im(ι) −→ im(ιH); ι(Φ) 7→ ιH(ΦH)

induces a map

α : HomG(im(ιH),Z[G]) −→ HomG(im(ι),Z[G]) ≃
r⋂

G

M.

Note that we have a canonical isomorphism

β : HomG(im(ιH),Z[G]) ∼−→ HomG/H(im(ιH),Z[G/H ]) ≃
r⋂

G/H

MH ; ϕ 7→ ϕH .

We define a map ν by

ν := α ◦ β−1 :

r⋂

G/H

MH −→
r⋂

G

M.

Proposition 4.12. LetM be a finitely generated G-module which is Z-torsion-
free. For any r ∈ Z≥0, the map ν :

⋂r
G/HM

H → ⋂r
GM is injective. Further-

more, the maps

(

r⋂

G/H

MH)⊗Z JH −→ (

r⋂

G

M)⊗Z JH −→ (

r⋂

G

M)⊗Z Z[H ]/I(H)J

are both injective, where the first map is induced by ν, and the second by inclu-
sion JH →֒ Z[H ]/I(H)J .

Proof. The proof is the same as [46, Lem. 2.11], so we omit it. �

Remark 4.13. The inclusion MH ⊂M induces a map

ξ :

r⋂

G/H

MH −→
r⋂

G

M.

We note that this map does not coincide with the above map ν if r > 1. Indeed,
one can check that im(ξ) ⊂ |H |max{0,r−1}⋂r

GM (see [37, Lem. 4.8]), and

ν = |H |−max{0,r−1}ξ.

Remark 4.14. Let P be a finitely generated projective G-module. Then, any
element of PH is written as NH a with some a ∈ P , since P is cohomolog-
ically trivial. One can check that, if r > 0 (resp. r = 0), then the map
ν :
∧r
G/H P

H → ∧r
G P constructed above coincides with the map

NH a1 ∧ · · · ∧ NH ar 7→ NH a1 ∧ · · · ∧ ar
(resp. Z[G/H ] ≃ Z[G]H →֒ Z[G]).

In particular, we know that im(ν) = NH
∧r
G P .
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Proposition 4.15. LetM be a finitely generated G-module which is Z-torsion-
free, and r ∈ Z≥0. Then the map

(
r⋂

G/H

MH)⊗Z JH −→ HomG(
r∧

G

HomG(M,Z[G]),JH ); α 7→ (Φ 7→ ΦH(α))

is injective. (We regard ΦH(α) ∈ Z[G/H ]⊗Z JH as an element of JH via the
isomorphism JH ≃ Z[G/H ]⊗Z JH in Proposition 4.9.)

Proof. The proof is the same as [46, Th. 2.12]. �

4.4. Congruences between exterior powers. The following definition is
originally due to Darmon [12], and used in [46, Def. 2.13] and [37, Def. 5.1].

Definition 4.16. Let M be a G-module. For m ∈M , define

NH(m) =
∑

σ∈H
σm⊗ σ−1 ∈M ⊗Z Z[H ]/I(H)J.

The following proposition is an improvement of the result of the third author
in [46, Prop. 2.15].

Proposition 4.17. Let P be a finitely generated projective G-module, r ∈ Z≥0,
and

ν : (

r∧

G/H

PH)⊗Z JH −→ (

r∧

G

P )⊗Z Z[H ]/I(H)J

be the injection in Proposition 4.12. For an element a ∈ ∧rG P , the following
are equivalent.

(i) a ∈ J ·∧rG P ,
(ii) NH(a) ∈ im(ν),
(iii) Φ(a) ∈ J for every Φ ∈ ∧rGHomG(P,Z[G]).

Furthermore, if the above equivalent conditions are satisfied, then for every
Φ ∈ ∧rGHomG(P,Z[G]) we have

Φ(a) = ΦH(ν−1(NH(a))) in JH ,
where we regard ΦH(ν−1(NH(a))) ∈ Z[G/H ] ⊗Z JH as an element of JH via
the isomorphism JH ≃ Z[G/H ]⊗Z JH in Proposition 4.9.

Proof. By Swan’s Theorem (see [11, (32.1)]), for every prime p, Pp is a free
Zp[G]-module of rank, d say, independent of p. Considering locally, we may
assume that P is a free G-module of rank d. We may assume r ≤ d. Clearly,
(i) implies (iii). We shall show that (iii) implies (ii). Suppose Φ(a) ∈ J for all
Φ ∈ ∧rGHomG(P,Z[G]). Fix a basis {b1, . . . , bd} of P . Write

a =
∑

µ∈Sd,r
xµbµ(1) ∧ · · · ∧ bµ(r),

with some xµ ∈ Z[G]. For each µ, by Proposition 4.1, we have

xµ = (b∗µ(1) ∧ · · · ∧ b∗µ(r))(a) ∈ J ,
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where b∗i ∈ HomG(P,Z[G]) is the dual basis of bi. For each τ ∈ G/H , fix a lift
τ̃ ∈ G. Note that we have a direct sum decomposition

J =
⊕

τ∈G/H
Jτ̃ .

Therefore, we can write each xµ as follows:

xµ =
∑

τ∈G/H
yτµτ̃ ,

where yτµ ∈ J . Hence we have

NH(a) =
∑

σ∈H

∑

µ∈Sd,r

∑

τ∈G/H
σyτµτ̃ bµ(1) ∧ · · · ∧ bµ(r) ⊗ σ−1

=
∑

σ∈H

∑

µ∈Sd,r

∑

τ∈G/H
στ̃bµ(1) ∧ · · · ∧ bµ(r) ⊗ σ−1yτµ

=
∑

µ∈Sd,r

∑

τ∈G/H
NH τ̃ bµ(1) ∧ · · · ∧ bµ(r) ⊗ yτµ

∈ NH

r∧

G

P ⊗Z JH = im(ν)

(see Remark 4.14). This shows (ii). We also see by Remark 4.14 that

ν−1(NH(a)) =
∑

µ∈Sd,r

∑

τ∈G/H
τ NH bµ(1)∧· · ·∧NH bµ(r)⊗yτµ ∈ (

r∧

G/H

PH)⊗ZJH .

Hence, by Proposition 4.11, we have

Φ(a) = ΦH(ν−1(NH(a))) in JH

for all Φ ∈ ∧rGHomG(P,Z[G]).
Finally, we show that (ii) implies (i). Suppose NH(a) ∈ im(ν) = (NH

∧r
G P )⊗Z

JH . As before, we write

a =
∑

µ∈Sd,r

∑

τ∈G/H
yτµτ̃ bµ(1) ∧ · · · ∧ bµ(r)

with yτµ ∈ Z[H ]. We have

NH(a) =
∑

σ∈H

∑

µ∈Sd,r

∑

τ∈G/H
στ̃bµ(1) ∧ · · · ∧ bµ(r) ⊗ σ−1yτµ ∈ (NH

r∧

G

P )⊗Z JH .

Since (
∧r
G P ) ⊗Z Z[H ]/I(H)J ≃ ⊕

σ,µ,τ Z[H ]/I(H)J as abelian groups, we

must have yτµ ∈ J . This shows that a ∈ J ·
∧r
G P . �
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5. Congruences for Rubin-Stark elements

For a finite abelian extension K/k, and an intermediate field L, a conjecture
which describes a congruence relation between two Rubin-Stark elements for
K/k and L/k was formulated by the third author in [46, Conj. 3]. Mazur
and Rubin also formulated in [37, Conj. 5.2] essentially the same conjecture.
In this section, we formulate a refined version (see Conjecture 5.4) of these
conjectures. We also recall a conjecture formulated by the first author, which
was studied in [22], [3], [16], [17], [48], and [46] (see Conjecture 5.9). In [46, Th.
3.15], the third author proved a link between Conjecture 5.4 and Conjecture
5.9. We now improve the argument given there to show that Conjecture 5.4
and Conjecture 5.9 are in fact equivalent (see Theorem 5.10). Finally we prove
that the natural equivariant leading term conjecture (Conjecture 3.6) implies
both Conjecture 5.4 and Conjecture 5.9 (see Theorem 5.16).

5.1. The Rubin-Stark conjecture. In this subsection, we recall the for-
mulation of the Rubin-Stark conjecture [45, Conj. B′].
Let K/k,G, S, T be as in §3, namely, K/k is a finite abelian extension of global
fields, G is its Galois group, S is a non-empty finite set of places of k such that
S∞(k) ∪ Sram(K/k) ⊂ S, and T is a finite set of places of k which is disjoint
from S. In this section, we assume that O×K,S,T is Z-torsion-free.
Following Rubin [45, Hyp. 2.1] we assume that S satisfies the following hy-
pothesis with respect to some chosen integer r with 0 ≤ r < |S|: there exists a
subset V ⊂ S of order r such that each place in V splits completely in K/k.

Recall that for any χ ∈ Ĝ we denote by rχ,S the order of vanishing of
Lk,S,T (χ, s) at s = 0. We know by [50, Chap. I, Prop. 3.4] that

rχ,S = dimC(eχCXK,S) =

{
|{v ∈ S : χ(Gv) = 1}| if χ 6= 1,

|S| − 1 if χ = 1.
(21)

Therefore, the existence of V ensures that r ≤ rχ,S for every χ and hence the
function s−rLk,S,T (χ, s) is holomorphic at s = 0. We define the ‘r-th order
Stickelberger element’ by

θ
(r)
K/k,S,T := lim

s→0

∑

χ∈Ĝ

s−rLk,S,T (χ
−1, s)eχ ∈ R[G].

Note that the 0-th order Stickelberger element θ
(0)
K/k,S,T (= θK/k,S,T (0)) is the

usual Stickelberger element.
Recall that we have the regulator isomorphism

λK,S : RO×K,S,T
∼−→ RXK,S

defined by

λK,S(a) = −
∑

w∈SK
log|a|ww.
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This map λK,S induces the isomorphism

r∧

R[G]

RO×K,S,T
∼−→

r∧

R[G]

RXK,S ,

which we also denote by λK,S . For each place v ∈ S, fix a place w of K lying
above v. Take any v0 ∈ S\V , and define the ‘(r-th order) Rubin-Stark element’

ǫVK/k,S,T ∈
r∧

R[G]

RO×K,S,T = R
r∧

G

O×K,S,T .

by

(22) λK,S(ǫ
V
K/k,S,T ) = θ

(r)
K/k,S,T

∧

v∈V
(w − w0),

where
∧
v∈V (w − w0) is arranged by some chosen order of the elements in V .

One can show that the Rubin-Stark element ǫVK/k,S,T does not depend on the

choice of v0 ∈ S \ V .
We consider the Rubin lattice

r⋂

G

O×K,S,T ⊂ Q
r∧

G

O×K,S,T

(see Definition 4.4). The Rubin-Stark conjecture claims

Conjecture 5.1 (The Rubin-Stark conjecture for (K/k, S, T, V )). One has

ǫVK/k,S,T ∈
r⋂

G

O×K,S,T .

Remark 5.2. One can check that the above Rubin-Stark conjecture is equiv-
alent to [45, Conj. B′] for the data (K/k, S, T, V ), and that our Rubin-Stark
element ǫVK/k,S,T coincides with the unique element predicted by [45, Conj. B′].
This shows, in particular, that the validity of the conjecture does not depend
on the choice of the places lying above v ∈ S or on the ordering of the elements
in V .

Remark 5.3. The Rubin-Stark conjecture for (K/k, S, T, V ) is known to be
true in the following cases:

(i) r = 0. In this case ǫ∅K/k,S,T = θ
(0)
K/k,S,T = θK/k,S,T (0) ∈ R[G] so the

Rubin-Stark conjecture claims only that θK/k,S,T (0) ∈ Z[G] which is a
celebrated result of Deligne-Ribet, Cassou-Noguès, and Barsky.

(ii) [K : k] ≤ 2. This is due to Rubin [45, Cor. 3.2 and Th. 3.5].
(iii) K is an abelian extension over Q. This is due to the first author [3,

Th. A].
(iv) k is a global function field. This is due to the first author [3, Th. A].
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5.2. Conventions for Rubin-Stark elements. The notation ǫVK/k,S,T has

some ambiguities, since ǫVK/k,S,T depends on the choice of the places lying

above v ∈ S, and on the choice of the order of the elements in V . To avoid this
ambiguity, we use the following convention: when we consider the Rubin-Stark
element ǫVK/k,S,T , we always fix a place w of K lying above each v ∈ S, and
label the elements of S as

S = {v0, v1, . . . , vn}
so that V = {v1, . . . , vr}, and thus we fix the order of the elements in V .
So, under this convention, the Rubin-Stark element ǫVK/k,S,T is the element

characterized by

λK,S(ǫ
V
K/k,S,T ) = θ

(r)
K/k,S,T

∧

1≤i≤r
(wi − w0).

5.3. Conjectures on Rubin-Stark elements. In this subsection, we give
a refinement of the conjecture formulated by the third author [46, Conj. 3],
and Mazur and Rubin [37, Conj. 5.2]. Let K/k,G, S, T be as before, and we
assume that, for a non-negative integer r, there exists a subset V ⊂ S of order
r such that each place in V splits completely in K. We fix a subgroup H of G
for which, for some integer r′ with r′ ≥ r, there exists a subset V ′ ⊂ S of order
r′, which contains V , and satisfies that each place in V ′ splits completely in
the field L := KH .
Following the convention in §5.2, we fix, for each place v ∈ S, a place w
of K lying above v, and label the elements of S as S = {v0, . . . , vn} so that
V = {v1, . . . , vr} and V ′ = {v1, . . . , vr′}. We consider the Rubin-Stark elements

ǫVK/k,S,T and ǫV
′

L/k,S,T characterized by

λK,S(ǫ
V
K/k,S,T ) = θ

(r)
K/k,S,T

∧

1≤i≤r
(wi − w0)

and

λL,S(ǫ
V ′

L/k,S,T ) = θ
(r′)
L/k,S,T

∧

1≤i≤r′
(wi − w0)

respectively, where we denote the place of L lying under w also by w.
For each integer i with 1 ≤ i ≤ n we write Gi for the decomposition group of
vi in G. For any subgroup U ⊂ G, recall that the augmentation ideal of Z[U ]
is denoted by I(U). Put Ii := I(Gi)Z[G] and IH := I(H)Z[G]. We define

Reci : O×L,S,T −→ (Ii)H = Ii/IHIi
by

Reci(a) =
∑

τ∈G/H
τ−1(recwi(τa) − 1).

Here, recwi is the reciprocity map L×wi → Gi at wi. Note that τ
−1(recwi(τa)−1)

is well-defined for τ ∈ G/H in (Ii)H .
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We put W := V ′ \ V = {vr+1, . . . , vr′}. We define an ideal JW of Z[H ] by

JW :=

{
(
∏
r<i≤r′ I(Gi))Z[H ], if W 6= ∅,

Z[H ], if W = ∅,
and put (JW )H := JW /I(H)JW . We also define an ideal JW of Z[G] by

JW :=

{∏
r<i≤r′ Ii, if W 6= ∅,

Z[G], if W = ∅,
and put (JW )H := JW /IHJW . Note that JW = JWZ[G]. By Proposition 4.9,
we have a natural isomorphism of G/H-modules Z[G/H ]⊗Z (JW )H ≃ (JW )H .
We consider the graded G/H-algebra

QW :=
⊕

a1,...,ar′−r∈Z≥0

(Ia1r+1 · · · I
ar′−r
r′ )H ,

where
(Ia1r+1 · · · I

ar′−r
r′ )H := Ia1r+1 · · · I

ar′−r
r′ /IHIa1r+1 · · · I

ar′−r
r′ ,

and we define the 0-th power of any ideal of Z[G] to be Z[G].
For any integer i with r < i ≤ r′ we regard Reci as an element of
HomG/H(O×L,S,T ,QW ) via the natural embedding (Ii)H →֒ QW . Then by

the same method as in [46, Prop. 2.7] (or [37, Cor. 2.1]), one shows that∧
r<i≤r′ Reci ∈

∧r′−r
G/H HomG/H(O×L,S,T ,QW ) induces the map

(23)

r′⋂

G/H

O×L,S,T −→ (

r⋂

G/H

O×L,S,T )⊗G/H (JW )H ≃ (

r⋂

G/H

O×L,S,T )⊗Z (JW )H ,

which we denote by RecW .
Following Definition 4.16, we define

NH :

r⋂

G

O×K,S,T −→ (

r⋂

G

O×K,S,T )⊗Z Z[H ]/I(H)JW

by NH(a) =
∑
σ∈H σa⊗ σ−1.

Note that since (O×K,S,T )H = O×L,S,T , there is a natural injective homomorphism

ν : (
r⋂

G/H

O×L,S,T )⊗Z (JW )H −→ (
r⋂

G

O×K,S,T )⊗Z Z[H ]/I(H)JW

by Proposition 4.12.

To state the following conjecture we assume the validity of the Rubin-Stark
conjecture (Conjecture 5.1) for both (K/k, S, T, V ) and (L/k, S, T, V ′).

Conjecture 5.4 (MRS(K/L/k, S, T, V, V ′)). The element NH(ǫVK/k,S,T ) be-

longs to im(ν), and satisfies

NH(ǫVK/k,S,T ) = (−1)r(r′−r) · ν(RecW (ǫV
′

L/k,S,T )).
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Remark 5.5. In this article we write ‘MRS(K/L/k, S, T ) is valid’ to mean that
the statement of Conjecture 5.4 is valid for all possible choices of V and V ′.

Remark 5.6. In §6 we show that Conjecture 5.4 constitutes a natural re-
finement and generalization of both a conjecture of Darmon from [12] and of
several conjectures of Gross from [21]. In addition, in a subsequent article [9]
we will show that the validity of Conjecture 5.4 also implies the ‘Gross-Stark
conjecture’ formulated by Gross in [20] and a refinement of the main result of
Solomon in [47] concerning the ‘wild Euler system’ that he constructs in loc.
cit.

Remark 5.7. One has I(Gi)Z[H ] ⊂ I(H), so JW ⊆ I(H)e where e := r′− r ≥
0. Thus there is a natural homomorphism

(

r⋂

G

O×K,S,T )⊗Z (JW )H −→ (

r⋂

G

O×K,S,T )⊗Z I(H)e/I(H)e+1.

Conjecture 5.4 is therefore a strengthening of the central conjecture of the third
author in [46, Conj. 3] and of the conjecture formulated by Mazur and Rubin
in [37, Conj. 5.2], both of which claim only that the given equality is valid
after projection to the group (

⋂r
GO×K,S,T )⊗Z I(H)e/I(H)e+1. This refinement

is in the same spirit as Tate’s strengthening in [51] of the ‘refined class number
formula’ formulated by Gross in [21].

Remark 5.8. Note that, when r = 0, following [46, Def. 2.13] NH would be
defined to be the natural map Z[G] → Z[G]/IHJW , but this does not make
any change because of the observation of Mazur and Rubin in [37, Lem. 5.6
(iv)]. Note also that, by Remark 4.13, the map jL/K in [37, Lem. 4.9] (where

our K/L is denoted by L/K) is essentially the same as our homomorphism ν.
Finally we note that Mazur and Rubin do not use the fact that jL/K is injective,
so the formulation of [46, Conj. 3] is slightly stronger than the conjecture [37,
Conj. 5.2].

We next state a refinement of a conjecture that was formulated by the first
author in [3] (the original version of which has been studied in many subsequent
articles of different authors including [22], [16], [17], [48], and [46]).

Conjecture 5.9. (B(K/L/k, S, T, V, V ′)). For every

Φ ∈
r∧

G

HomG(O×K,S,T ,Z[G]),

we have

Φ(ǫVK/k,S,T ) ∈ JW
and an equality

Φ(ǫVK/k,S,T ) = (−1)r(r′−r)ΦH(RecW (ǫV
′

L/k,S,T )) in (JW )H .
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In this article we improve an argument of the third author in [46] to prove the
following result.

Theorem 5.10. The conjectures

MRS(K/L/k, S, T, V, V ′) and B(K/L/k, S, T, V, V ′)

are equivalent.

The proof of this result will be given in §5.5.

5.4. An explicit resolution. As a preliminary step, we choose a useful
representative of the complex

D•K,S,T := RΓT ((OK,S)W ,Gm) ∈ Dp(Z[G]).

To do this we follow the method used in [3, §7].
Let d be a sufficiently large integer, and F be a free G-module of rank d with
basis b = {bi}1≤i≤d. We define a surjection

π : F −→ StrS,T (Gm/K)(= H1(D•K,S,T ))

as follows. Recall that S = {v0, . . . , vn}. Let F≤n be a free Z[G]-module
generated by {bi}1≤i≤n. First, choose a homomorphism

π1 : F≤n −→ StrS,T (Gm/K)

such that the composition map

F≤n
π1−→ StrS,T (Gm/K) −→ XK,S

sends bi to wi − w0. (Such a homomorphism exists since F≤n is free.) Next,
let A denote the kernel of the composition map

StrS,T (Gm/K) −→ XK,S −→ YK,S\{v0},

where the last map sends the places above v0 to 0. Since d is sufficiently large,
we can choose a surjection

π2 : F>n −→ A,

where F>n is the free Z[G]-module generated by {bi}n<i≤d. Define

π := π1 ⊕ π2 : F = F≤n ⊕ F>n −→ StrS,T (Gm/K).

One can easily show that π is surjective.
D•K,S,T defines a Yoneda extension class in Ext2G(StrS,T (Gm/K),O×K,S,T ). Since
D•K,S,T is perfect, this class is represented by an exact sequence of the following
form:

0 −→ O×K,S,T −→ P
ψ−→ F

π−→ StrS,T (Gm/K) −→ 0,(24)

where π is the above map and P is a cohomologically-trivial G-module. Since
O×K,S,T is Z-torsion-free, it follows that P is also Z-torsion-free. Hence, P is
projective. Note that the complex

P
ψ−→ F,
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where P is placed in degree 0, is quasi-isomorphic to D•K,S,T . Hence we have
an isomorphism

detG(D
•
K,S,T ) ≃ detG(P )⊗G det−1G (F ).(25)

For each 1 ≤ i ≤ d, we define

ψi := b∗i ◦ ψ ∈ HomG(P,Z[G]),

where b∗i ∈ HomG(F,Z[G]) is the dual basis of bi ∈ F .

5.5. The equivalence of Conjectures 5.4 and 5.9. In this subsection,
we prove Theorem 5.10.

Proof of Theorem 5.10. We regard O×K,S,T ⊂ P by the exact sequence (24).

Note that, since P/O×K,S,T ≃ im(ψ) ⊂ F is Z-torsion-free, we can apply Lemma

4.7 and Remark 4.8 for M = O×K,S,T . If NH(ǫVK/k,S,T ) ∈ im(ν), then we have

Φ(ǫVK/k,S,T ) = ΦH(ν−1(NH(ǫVK/k,S,T ))) in (JW )H(26)

for every Φ ∈ ∧rGHomG(O×K,S,T ,Z[G]), by Proposition 4.17. Hence Conjecture
5.4 implies Conjecture 5.9.
Conversely, suppose that Conjecture 5.9 is valid. Then we have Φ(ǫVK/k,S,T ) ∈
JW for every Φ ∈ ∧rGHomG(O×K,S,T ,Z[G]), so again we use Proposition 4.17
to deduce that

NH(ǫVK/k,S,T ) ∈ im


ν : (

r∧

G/H

PH)⊗Z (JW )H → (
r∧

G

P )⊗Z Z[H ]/I(H)JW


 ,

and that the equality (26) holds for every Φ ∈ ∧rGHomG(P,Z[G]). By Propo-
sition 4.15, we see that the equality

ν−1(NH(ǫVK/k,S,T )) = (−1)r(r′−r)RecW (ǫV
′

L/k,S,T )

holds in (
∧r
G/H P

H)⊗Z (JW )H . Since the natural map

(

r⋂

G/H

O×L,S,T )⊗Z (JW )H −→ (

r∧

G/H

PH)⊗Z (JW )H

is injective by Remark 4.8, we see that the above equality holds in
(
⋂r
G/H O×L,S,T )⊗Z (JW )H . Thus Conjecture 5.9 implies Conjecture 5.4. �

Remark 5.11. Although in the proof of Theorem 5.10 we used the exact se-
quence (24) to verify the existence of a finitely generated projective G-module
P and an injection O×K,S,T →֒ P whose cokernel is Z-torsion-free, the referee

pointed out that it is unnecessary to use (24) at this point. Indeed, choosing
a projective module P ′ and a surjection f : P ′ → HomZ(O×K,S,T ,Z), we have

an embedding O×K,S,T →֒ P := HomZ(P
′,Z) by dualizing f , whose cokernel is

Z-torsion-free.
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5.6. The leading term conjecture implies the Rubin-Stark conjec-
ture. The following result was first proved by the first author in [3, Cor. 4.1]
but the proof given here is very much simpler than that given in loc. cit.

Theorem 5.12. LTC(K/k) implies the Rubin-Stark conjecture for both
(K/k, S, T, V ) and (L/k, S, T, V ′).

Proof. Assume that LTC(K/k) is valid so the zeta element zK/k,S,T is a Z[G]-
basis of detG(D

•
K,S,T ). In this case one also knows that P must be free of rank

d and we define zb ∈
∧d
G P to be the element corresponding to the zeta element

zK/k,S,T ∈ detG(D
•
K,S,T ) via the isomorphism

d∧

G

P
∼−→

d∧

G

P ⊗
d∧

G

HomG(F,Z[G]) ≃ detG(D
•
K,S,T ),

where the first isomorphism is defined by

a 7→ a⊗
∧

1≤i≤d
b∗i ,

and the second isomorphism is given by (25).
Then Theorem 5.12 follows immediately from the next theorem (see also Corol-
lary 5.15 below for (L/k, S, T, V ′)). �

Remark 5.13. In [52] Vallières closely follows the proof of [3, Cor. 4.1] to show
that Conjecture 3.1 (and hence also LTC(K/k) by virtue of Proposition 3.4)
implies the extension of the Rubin-Stark Conjecture formulated by Emmons
and Popescu in [13]. The arguments used here can be used to show that
LTC(K/k) implies a refinement of the main result of Vallières, and hence also
of the conjecture of Emmons and Popescu, that is in the spirit of Theorem 1.5.
This result is to be explained in forthcoming work of Livingstone-Boomla.

The following theorem was essentially obtained in [3] by the first author. This
theorem describes the Rubin-Stark element in terms of the zeta elements. It is
a key to prove Theorem 5.12, and also plays important roles in the proofs of
Theorem 5.16 and Theorem 7.5 given below.

Theorem 5.14. Assume that LTC(K/k) holds. Then, regarding O×K,S,T as a
submodule of P , one has

(
∧

r<i≤d
ψi)(zb) ∈

r⋂

G

O×K,S,T (⊂
r∧

G

P )

(see Lemma 4.7 (ii)) and also

(−1)r(d−r)(
∧

r<i≤d
ψi)(zb) = ǫVK/k,S,T .

Proof. Take any χ ∈ Ĝ. Recall from (21) that

rχ,S = dimC(eχCXK,S) = dimC(eχCO×K,S,T )
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(the last equality follows from CO×K,S,T ≃ CXK,S). Consider the map

Ψ :=
⊕

r<i≤d
ψi : eχCP −→ eχC[G]⊕(d−r).

This map is surjective if and only if rχ,S = r. Indeed, if rχ,S = r, then
{eχ(wi − w0)}1≤i≤r is a C-basis of eχCXK,S , so eχC im(ψ) = eχC ker(π) =⊕

r<i≤d eχC[G]bi. In this case, Ψ is surjective. If rχ,S > r, then

dimC(eχC im(ψ)) = d− rχ,S < d− r, so Ψ is not surjective. Applying Lemma
4.2, we have

eχ(
∧

r<i≤d
ψi)(zb)

{
∈ eχC

∧r
GO×K,S,T , if rχ,S = r,

= 0, if rχ,S > r.

From this and Lemma 4.7 (ii), we have

(
∧

r<i≤d
ψi)(zb) ∈ (Q

r∧

G

O×K,S,T ) ∩
r∧

G

P =
r⋂

G

O×K,S,T .

By Lemma 4.3 and the definition of zb, we have

λK,S((−1)r(d−r)(
∧

r<i≤d
ψi)(zb)) = θ

(r)
K/k,S,T

∧

1≤i≤r
(wi − w0).

By the characterization of the Rubin-Stark element, we have

(−1)r(d−r)(
∧

r<i≤d
ψi)(zb) = ǫVK/k,S,T .

This completes the proof. �

By the same argument as above, one obtains the following result.

Corollary 5.15. Assume that LTC(K/k) holds. Then we have an equality

(−1)r′(d−r′)(
∧

r′<i≤d
ψHi )(NdH zb) = ǫV

′

L/k,S,T

in
⋂r′
G/H O×L,S,T .

5.7. The leading term conjecture implies Conjecture 5.4. In this
subsection we prove the following result.

Theorem 5.16. LTC(K/k) implies MRS(K/L/k, S, T, V, V ′).

By Remark 3.3, this directly implies the following result.

Corollary 5.17. MRS(K/L/k, S, T, V, V ′) is valid if K is an abelian exten-
sion over Q or if k is a function field.

Remark 5.18. Theorem 5.16 is an improvement of the main result in [46, Th.
3.22] by the third author, which asserts that under some hypotheses LTC(K/k)
implies most of Conjecture 5.4. In [3, Th. 3.1], the first author proved that
LTC(K/k) implies most of Conjecture 5.9. Since we know by Theorem 5.10
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that Conjecture 5.4 and Conjecture 5.9 are equivalent, Theorem 5.16 is also an
improvement of [3, Th. 3.1].

Remark 5.19. In [46, §4], by using a weak version of Corollary 5.17, the third
author gave another proof of the ‘except 2-part’ of Darmon’s conjecture on
cyclotomic units [12], which was first proved by Mazur and Rubin in [36] via
Kolyvagin systems. In §6, we shall use Corollary 5.17 to give a full proof of
a refined version of Darmon’s conjecture, and also give a new evidence for
Gross’s conjecture on tori [21], which was studied by Hayward [22], Greither
and Kučera [16], [17].

We prove Theorem 5.16 after proving some lemmas. The following lemma is a
restatement of [3, Lem. 7.4].

Lemma 5.20. If 1 ≤ i ≤ n, then we have an inclusion

im(ψi) ⊂ Ii.
In particular, ψi = 0 for 1 ≤ i ≤ r.
Proof. Take any a ∈ P . Write

ψ(a) =

d∑

j=1

xjbj

with some xj ∈ Z[G]. For each i with 1 ≤ i ≤ n, we show that xi ∈ Ii, or
equivalently, NGixi = 0. Noting that FGi is a free G/Gi-module with basis
{NGibj}1≤j≤d, it is sufficient to show that

d∑

j=1

NGixjbj ∈ 〈NGibj : 1 ≤ j ≤ d, j 6= i〉G/Gi .

The left hand side is equal to ψ(NGia). By the exact sequence (24), this is
contained in ker(π|FGi ). Note that we have a natural isomorphism

NGiXK,S ≃ XKGi ,S.

Since vi splits completely in KGi, the G/Gi-submodule of NGiXK,S generated
by NGi(wi − w0) is isomorphic to Z[G/Gi]. This shows that

ker(π|FGi ) ⊂ 〈NGibj : 1 ≤ j ≤ d, j 6= i〉G/Gi .
�

For each integer i with r < i ≤ r′, we define a map

R̃eci : P
H −→ (Ii)H

as follows. For a ∈ PH , take ã ∈ P such that NH ã = a (this is possible since
P is cohomologically-trivial). Define

R̃eci(a) := ψi(ã) mod IHIi ∈ (Ii)H .
(Note that im(ψi) ⊂ Ii by Lemma 5.20.) One can easily check that this is
well-defined.
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Lemma 5.21. On O×L,S,T , which we regard as a submodule of PH , R̃eci coin-

cides with the map Reci. In particular, by the construction of (20), we can
extend the map

RecW :

r′⋂

G/H

O×L,S,T −→ (

r⋂

G/H

O×L,S,T )⊗Z (JW )H

to

R̃ecW :=
∧

r<i≤r′
R̃eci :

r′∧

G/H

PH → (

r∧

G/H

PH)⊗G/H (JW )H ≃ (

r∧

G/H

PH)⊗Z(JW )H .

Proof. The proof is essentially the same as [3, Prop. 10.1] and [2, Lem. 8]. For
a ∈ O×L,S,T , take ã ∈ P such that NH ã = a in PH . For each τ ∈ G/H , fix a

lift τ̃ ∈ G. Regard F as the free H-module with basis {τ̃ bi}i,τ . It is sufficient
to show that

(τ̃ bi)
∗ ◦ ψ(ã) = recτ̃wi(a)− 1 = recwi(τ

−1a)− 1,(27)

for every r < i ≤ r′, where (τ̃ bi)
∗ ∈ HomH(F,Z[H ]) is the dual basis of F as a

free H-module. Indeed, using

R̃eci(a) = ψi(ã) =
∑

τ∈G/H
τ̃((τ̃ bi)

∗ ◦ ψ(ã)),

we know from (27) that

R̃eci(a) =
∑

τ∈G/H
τ̃(recwi(τ

−1a)− 1) = Reci(a).

We shall show (27). For simplicity, set w := τ̃wi and b := τ̃ bi. We denote the
decomposition group of w by Gw(= Gi). As in the proof of Proposition 2.4,
one can show that there is a unique morphism

θw : Q[−2] −→ RΓ(Kw,Gm)

in D(Z[Gw ]) such that H2(θw) is equal to the natural map

Q −→ Q/Z ≃ H2(Kw,Gm),

where the last isomorphism is the invariant map in the local class field theory.
We define the complex RΓ((Kw)W ,Gm) by

RΓ((Kw)W ,Gm) := Cone(θw)

for the local field Kw. We have natural identifications H0((Kw)W ,Gm) = K×w
and H1((Kw)W ,Gm) = Z. The complex RΓ((Kw)W ,Gm) defines a Yoneda ex-
tension class τw in Ext2Gw(Z,K

×
w ), and [6, Prop. 3.5(a)] shows that τw coincides

with the local fundamental class in H2(Gw,K
×
w ). The class τw is represented

by a 2-extension of the form

0 −→ K×w −→ Pw
ψw−→ Z[Gw] −→ Z −→ 0,
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where Pw is a cohomologically trivial Gw-module. Define

ρw : L×w −→ I(Gw)/I(Gw)
2

by ρ(x) := ψw(x̃), where x̃ ∈ Pw is taken so that NGw x̃ = x (note that ψw(x̃)
is well-defined in I(Gw)/I(Gw)

2). Then, the existence of a natural localization
morphism

D•K,S,T = RΓT ((OK,S)W ,Gm) −→ Z[H ]⊗L
Z[Gw] RΓ((Kw)W ,Gm)

and our choice of a representative of D•K,S,T implies

b∗ ◦ ψ(ã) = ρw(a) in I(Gw)/I(H)I(Gw).

Hence, (27) is reduced to the equality

ρw = recw − 1.

Consider the map

(28) I(Gw)/I(Gw)
2 = Ĥ−1(Gw , I(Gw)) ≃ Ĥ−2(Gw,Z) ∼−→ Ĥ0(Gw,K

×
w ),

where the first isomorphism is the connecting homomorphism with respect to
the short exact sequence

0 −→ I(Gw) −→ Z[Gw ] −→ Z −→ 0,

and the last is given by the cup product with τw. The map (28) is the inverse
of recw−1 by definition. One can also check that (28) coincides with the δ-map
of the snake lemma applied to the diagram

(K×w )Gw //

NGw

��

(Pw)Gw
ψw//

NGw
��

I(Gw)/I(Gw)
2 //

0

��

0

0 // L×w // PGww
ψw // I(Gw)Gw ,

i.e. the inverse of ρw. Thus we have ρw = recw − 1, which completes the
proof. �

Note that, by Lemma 5.20,
∧
r<i≤d ψi defines a map

d∧

G

P −→ JW
r∧

G

P.

Let ν be the injection

ν : (

r∧

G/H

PH)⊗Z (JW )H −→ (

r∧

G

P )⊗Z Z[H ]/I(H)JW

in Proposition 4.12. By Proposition 4.17, we have

NH(JW
r∧

G

P ) ⊂ im(ν),
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so we can define a map

ν−1 ◦ NH : JW
r∧

G

P −→ (

r∧

G/H

PH)⊗Z (JW )H .

Lemma 5.22. We have the following commutative diagram:

∧d
G P

NdH
��

// JW
∧r
G P

ν−1◦NH
��∧d

G/H P
H // (

∧r
G/H P

H)⊗Z (JW )H ,

where the top arrow is (−1)r(d−r)∧r<i≤d ψi, and the bottom arrow is the com-

position of (−1)r(r′−r)R̃ecW and (−1)r′(d−r′)∧r′<i≤d ψHi .

Proof. We can prove this lemma by explicit computations, using Proposition
4.1, Proposition 4.11, and Remark 4.14. �

Proof of Theorem 5.16. By Remark 4.8 we may compute in (
∧r
G/H P

H) ⊗Z

(JW )H . Using Corollary 5.15, Lemma 5.21, Lemma 5.22, and Theorem 5.14 in
this order, we compute

(−1)r(r′−r)RecW (ǫV
′

L/k,S,T )

= (−1)r(r′−r)R̃ecW ((−1)r′(d−r′)(
∧

r′<i≤d
ψHi )(NdH zb))

= (−1)r(d−r)ν−1(NH((
∧

r<i≤d
ψi)(zb)))

= ν−1(NH(ǫVK/k,S,T )).

This completes the proof of Theorem 5.16. �

6. Conjectures of Darmon and of Gross

In this section we use Corollary 5.17 to prove a refined version of the conjecture
formulated by Darmon in [12] and to obtain important new evidence for a
refined version of the ‘conjecture for tori’ formulated by Gross in [21].

6.1. Darmon’s Conjecture. We formulate a slightly modified and refined
version of Damon’s conjecture ([12],[36]).
Let L be a real quadratic field. Let f be the conductor of L. Let χ be the
Dirichlet character defined by

χ : (Z/fZ)× = Gal(Q(µf )/Q) −→ Gal(L/Q) ≃ {±1},
where the first map is the restriction map. Fix a square-free positive integer
n which is coprime to f , and let K be the maximal real subfield of L(µn).
Set G := Gal(K/Q) and H := Gal(K/L). Put n± :=

∏
ℓ|n,χ(ℓ)=±1 ℓ, and
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ν± := |{ℓ|n±}| (in this section, ℓ always denotes a prime number). We fix an
embedding Q →֒ C. Define a cyclotomic unit by

βn := NL(µn)/K(
∏

σ∈Gal(Q(µnf )/Q(µn))

σ(1 − ζnf )χ(σ)) ∈ K×,

where ζnf = e
2πi
nf . Let τ be the generator of G/H = Gal(L/Q). Write n+ =

ℓ1 · · · ℓν+ . Note that (1−τ)OL[1/n]× is a free abelian group of rank ν++1 (see

[36, Lem. 3.2 (ii)]). Take u0, . . . , uν+ ∈ OL[1/n]× so that {u1−τ0 , . . . , u1−τν+ } is
a basis of (1− τ)OL[1/n]× and that det(log |u1−τi |λj )0≤i,j≤ν+ > 0, where each
λj (1 ≤ j ≤ ν+) is a (fixed) place of L lying above ℓj, and λ0 is the infinite

place of L determined by the embedding Q →֒ C fixed above. Define

Rn := (
∧

1≤i≤ν+
(recλi − 1))(u1−τ0 ∧ · · · ∧ u1−τν+ ) ∈ L× ⊗Z (Jn+)H ,

where

Jn+ :=

{
(
∏i=ν+
i=1 I(Gℓi), if ν+ 6= 0,

Z[H ], if ν+ = 0,

where Gℓi is the decomposition group of ℓi in G (note that since ℓi splits in L,
we have Gℓi ⊂ H), and (Jn+)H := Jn+/I(H)Jn+ . We set hn := |Pic(OL[ 1n ])|.
For any element a ∈ K×, following Definition 4.16 we define

NH(a) :=
∑

σ∈H
σa⊗ σ−1 ∈ K× ⊗Z Z[H ]/I(H)Jn+ .

Note that, since K×/L× is Z-torsion-free, the natural map

(L×/{±1})⊗Z (Jn+)H −→ (K×/{±1})⊗Z Z[H ]I(H)Jn+

is injective.
Our refined Darmon’s conjecture is formulated as follows.

Theorem 6.1. One has

NH(βn) = −2ν−hnRn in (L×/{±1})⊗Z (Jn+)H .

Remark 6.2. Let In be the augmentation ideal of Z[Gal(L(µn)/L)]. Note that
there is a natural isomorphism

Iν+n /Iν++1
n ⊗Z Z[

1

2
]
∼−→ I(H)ν+/I(H)ν++1 ⊗Z Z[

1

2
].

It is not difficult to see that the following statement is equivalent to [36, Th.
3.9]:

NH(βn) = −2ν−hnRn in (L×/{±1})⊗Z I(H)ν+/I(H)ν++1 ⊗Z Z[
1

2
]

(see [46, Lem. 4.7]). Since there is a natural map (Jn+)H −→
I(H)ν+/I(H)ν++1, Theorem 6.1 refines [36, Th. 3.9]. Note also that, in the
original statement of Darmon’s conjecture, the cyclotomic unit is defined by

αn :=
∏

σ∈Gal(Q(µnf )/Q(µn))

σ(1− ζnf )χ(σ),
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whereas our cyclotomic unit is βn = NL(µn)/K(αn). Since cyclotomic units, as
Stark elements, lie in real fields, it is natural to consider βn. Thus, modifying
the original statement of Darmon’s conjecture in the ‘2-part’, we obtained
Theorem 6.1, which does not exclude the ‘2-part’.

Proof of Theorem 6.1. We show that Darmon’s conjecture is a consequence of
Conjecture 5.4, and use Corollary 5.17 to prove it. We fit notation in this
section into that in §5. Set S := {∞} ∪ {ℓ|nf}. Take a prime v0 of Q, which
divides f . We denote by w1 the infinite place of K (and also L) which corre-
sponds to the fixed embedding Q →֒ C. For 2 ≤ i ≤ ν++1, set wi := λi−1. Let
T be a finite set of primes that is disjoint from S and satisfying that O×K,S,T
is Z-torsion-free. (In the sequel, we refer such a set of primes as ‘T ’.) Since
K and L are abelian over Q, the Rubin-Stark conjecture for K/Q and L/Q
holds (see Remark 5.3 (iii)). Set V := {∞} and V ′ := {∞, ℓ1, . . . , ℓν+}. We

denote ǫK,T = ǫVK/Q,S,T ∈ O×K,S,T and ǫL,T = ǫV
′

L/Q,S,T ∈
⋂ν++1
G/H O×L,S,T for the

Rubin-Stark elements, characterized by

λK,S(ǫK,T ) = θ
(1)
K/Q,S,T (w1 − w0),

λL,S(ǫL,T ) = θ
(ν++1)

L/Q,S,T

∧

1≤i≤ν++1

(wi − w0).

We take T , a finite family of ‘T ’, such that
∑

T∈T

aT δT = 2

for some aT ∈ Z[G], where δT :=
∏
ℓ∈T (1 − ℓFr−1ℓ ) (see [50, Chap. IV, Lem.

1.1]). By [46, Lem. 4.6], we have

(1− τ)
∑

T∈T

aT ǫK,T = βn in K×/{±1},

(where τ ∈ Gal(L/Q) is regarded as an element of Gal(K/Q(µn)
+)) and

(1− τ)
∑

T∈T

aT ǫL,T = (−1)ν++12ν−hn(1 − τ)u0 ∧ · · · ∧ uν+ in Q
ν++1∧

G/H

O×L,S .

As in §5.3, for 1 < i ≤ ν+ + 1 we denote by Reci the homomorphism

Reci : O×L,S,T −→ (Jn+)H = Jn+Z[G]/IHJn+Z[G]

defined by

Reci(a) = recλi−1(a)− 1 + τ(recλi−1(τa) − 1).
∧

1<i≤ν++1 Reci induces a homomorphism

ν++1⋂

G/H

O×L,S,T −→ (

1⋂

G/H

O×L,S,T )⊗Z (Jn+)H = O×L,S,T ⊗Z (Jn+)H ,
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which we denote by Recn+ . We compute

(1 − τ)
∑

T∈T

aTRecn+(ǫL,T )

=
∑

T∈T

Recn+(aT (1− τ)ǫL,T )

=
∑

T∈T

(
∧

1≤i≤ν+
(recλi − 1))((1 − τ)ν++1aT ǫL,T )

= (
∧

1≤i≤ν+
(recλi − 1))((−1)ν++12ν−hnu

1−τ
0 ∧ · · · ∧ u1−τν+ )

= (−1)ν++12ν−hnRn.

By Corollary 5.17, we have

NH(ǫK,T ) = (−1)ν+Recn+(ǫL,T )

(note that the map ν in Conjecture 5.4 is the natural inclusion map in this
case.) Hence, we have

NH(βn) = (1− τ)
∑

T∈T

aTNH(ǫK,T )

= (−1)ν+(1− τ)
∑

T∈T

aTRecn+(ǫL,T )

= −2ν−hnRn,
as required. �

6.2. Gross’s conjecture for tori. In this section we use Corollary 5.17 to
obtain some new evidence in support of the ‘conjecture for tori’ formulated by
Gross in [21].
We review the formulation of Gross’s conjecture for tori. We follow [22, Conj.

7.4]. Let k be a global field, and L/k be a quadratic extension. Let L̃/k

be a finite abelian extension, which is disjoint to L, and set K := LL̃. Set

G := Gal(K/k), and H := Gal(K/L) = Gal(L̃/k). Let τ be the generator of
G/H = Gal(L/k). Let S be a non-empty finite set of places of k such that
S∞(k) ∪ Sram(K/k) ⊂ S. Let T be a finite set of places of k that is disjoint
from S and satisfies that O×K,S,T is Z-torsion-free. Let v1, . . . , vr′ be all places

in S which split in L. We assume r′ < |S|. Then, by [45, Lem. 3.4 (i)], we see

that hk,S,T := |ClTS (k)| divides hL,S,T := |ClTS (L)|. Take u1, . . . , ur′ ∈ O×L,S,T
such that {u1−τ1 , . . . , u1−τr′ } is a basis of (1 − τ)O×L,S,T , which is isomorphic to

Z⊕r
′

, and det(− log |u1−τi |wj )1≤i,j≤r′ > 0, where wj is a (fixed) place of L lying
above vj . Put W := {v1, . . . , vr′}. As in §5.3, we define

JW :=

{
(
∏

0<i≤r′ I(Gi))Z[H ], if W 6= ∅,
Z[H ], if W = ∅,
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where Gi ⊂ H denotes the decomposition group of vi, and I(Gi) is the aug-
mentation ideal of Z[Gi]. Set

RS,T := det(recwj (u
1−τ
i )− 1)1≤i,j≤r′ ∈ (JW )H .

Let χ be the non-trivial character of G/H . The map

Z[G] = Z[H ×G/H ] −→ Z[H ]

induced by χ is also denoted by χ.
Gross’s tori conjecture is formulated as follows.

Conjecture 6.3.

χ(θK/k,S,T (0)) = 2|S|−1−r
′ hL,S,T
hk,S,T

RS,T in (JW )H .

Remark 6.4. The statement that the equality of Conjecture 6.3 holds in
Z[H ]/I(H)r

′+1 is equivalent to [22, Conj. 7.4] (if we neglect the sign). In-
deed, we see that

RS,T = ((O×L,S,T )− : (1 − τ)O×L,S,T )R−H ,

where R−H is the ‘minus-unit regulator’ defined in [22, §7.2] (where our H

is denoted by G). Since there is a natural map (JW )H → Z[H ]/I(H)r
′+1,

Conjecture 6.3 refines [22, Conj. 7.4].

Theorem 6.5. Conjecture 5.4 implies Conjecture 6.3. In particular, Conjec-
ture 6.3 is valid if K is an abelian extension over Q or k is a global function
field.

Proof. First, note that the Rubin-Stark conjecture for (K/k, S, T, ∅) and
(L/k, S, T,W ) is true by Remark 5.3 (i) and (ii), respectively. By Conjecture
5.4, we have

θK/k,S,T (0) = RecW (ǫWL/k,S,T ) in (JW )H(= Z[G/H ]⊗Z (JW )H).

(Note that ν−1(NH(θK/k,S,T (0))) = θK/k,S,T (0) in (JW )H by [37, Lem. 5.6
(iv)].) Note that χ ◦ Reci = recwi((1− τ)(·)) − 1. So we have

χ(RecW (ǫWL/k,S,T )) = (
∧

1≤i≤r′
(recwi − 1))((1− τ)r′ǫWL/k,S,T ).

We know by the proof of [45, Th. 3.5] that

(1 − τ)r′ǫWL/k,S,T = 2|S|−1−r
′ hL,S,T
hk,S,T

u1−τ1 ∧ · · · ∧ u1−τr′ .
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Hence we have

χ(θK/k,S,T (0)) = χ(RecW (ǫWL/k,S,T ))

= (
∧

1≤i≤r′
(recwi − 1))((1 − τ)r′ǫWL/k,S,T )

= 2|S|−1−r
′ hL,S,T
hk,S,T

(
∧

1≤i≤r′
(recwi − 1))(u1−τ1 ∧ · · · ∧ u1−τr′ )

= 2|S|−1−r
′ hL,S,T
hk,S,T

RS,T ,

as required.
Having now proved the first claim, the second claim follows directly from Corol-
lary 5.17. �

Remark 6.6. The strongest previous evidence in favour of the conjecture for
tori is that obtained by Greither and Kučera in [16, 17], in which it is referred
to as the ‘Minus Conjecture’ and studied in a slightly weaker form in order to
remove any occurence of the auxiliary set T . More precisely, by using rather
different methods they were able to prove that this conjecture was valid in the
case that k = Q, K = FK+ where F is imaginary quadratic of conductor f
and class number hF and K+/Q is tamely ramified, abelian of exponent equal
to an odd prime ℓ and ramified at precisely s primes {pi}1≤i≤s each of which
splits in F/Q; further, any of the following conditions are satisfied

• s = 1 and ℓ ∤ f [16, Th. 8.8], or
• s = 2, ℓ ∤ fhF and either K+/Q is cyclic or p1 is congruent to an ℓ-th

power modulo p2 [16, Th. 8.9], or
• ℓ ≥ 3(s+ 1) and ℓ ∤ hF [17, Th. 3.7].

It is straightforward to show that the conjecture for tori implies their ‘Minus
conjecture’, using [50, Chap. IV, Lem. 1.1] to eliminate the dependence on ‘T ’
(just as in the proof of Theorem 6.1). The validity of the ‘Minus conjecture’ in
the case k = Q is thus also a consequence of Theorem 6.5.

7. Higher Fitting ideals of Selmer groups

In this section, we introduce a natural notion of ‘higher relative Fitting ideals’
in §7.1, and then study the higher Fitting ideals of the transposed Selmer group
StrS,T (Gm/K). In this way we prove Theorems 1.5 and 1.10 and Corollary 1.14.

7.1. Relative Fitting ideals. In this subsection, we recall the definition of
Fitting ideals and also introduce a natural notion of ‘higher relative Fitting
ideals’.
Suppose that R is a noetherian ring and M is a finitely generated R-module.
Take an exact sequence

R⊕m
f→ R⊕n →M → 0,
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and denote by Af the matrix with n rows and m columns corresponding to f .

Then for i ∈ Z≥0 the i-th Fitting ideal of M , denoted by FittiR(M), is defined
to be the ideal generated by all (n− i)× (n− i) minors of Af if 0 ≤ i < n and
R if i ≥ n. In this situation we call Af a relation matrix of M . These ideals do
not depend on the choice of the above exact sequence (see [40, Chap. 3]). The
usual notation is Fitti,R(M), but we use the above notation which is consistent

with the exterior power
∧i
RM . If we can take a presentation

R⊕m
f→ R⊕n →M → 0

of M with m = n, then we say M has a quadratic presentation.
We now fix a submodule N of M , and non-negative integers a and b. We write
ν for the minimal number of generators of N .
If b > ν, then we simply set

Fitt
(a,b)
R (M,N) := FittaR(M/N).

However, if b ≤ ν then we consider a relation matrix for M of the form

A =

(
A1 A2

0 A3

)

where A1 is a relation matrix of N . We suppose that A1 is a matrix with
n1 rows and m1 columns and A3 is a matrix with n2 rows and m2 columns.
We remove b rows from among the first row to the n1-th row of A to get a
matrix A′, and remove a rows from A′ to get A′′. We denote by F (A′′) the
ideal generated by all c × c minors of A′′ where c = n1 + n2 − a − b if c > 0
and F (A′′) = R otherwise. We consider all such A′′ obtained from A and then
define the relative Fitting ideal by setting

Fitt
(a,b)
R (M,N) :=

∑

A′′

F (A′′).

By the standard method using the elementary operations of matrices (see the
proof of [40, p.86, Th. 1]), one can show that this sum does not depend on the
choice of relation matrix A.
The following result gives an alternative characterization of this ideal.

Lemma 7.1. Let X be an R-submodule ofM that is generated by (a+b) elements
x1, . . . , xa+b such that the elements x1, . . . , xb belong to N . Let X be the set of
such R-submodules of M . Then we have

Fitt
(a,b)
R (M,N) =

∑

X∈X
Fitt0R(M/X).

Proof. If b > ν, both sides equal FittaR(M/N), so we may assume b ≤ ν. Let
e1, . . . , en be the generators of M corresponding to the above matrix A where
n = n1 + n2. Suppose that A′′ is obtained from A by removing (a + b) rows,
from the i1-th row to the ia+b-th row with 1 ≤ i1, . . . , ib ≤ n1. Let X be a
submodule of M generated by ei1 , . . . , eia+b . Then by definitions X ∈ X and
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F (A′′) = Fitt0R(M/X). This shows that the left hand side of the equation in
Lemma 7.1 is in the right hand side.
On the other hand, suppose thatX is in X and x1, . . . , xa+b are generators ofX .
Regarding e1, . . . , en1 , x1, . . . , xb, en1+1, . . . , en, xb+1, . . . , xa+b as generators of
M , we have a relation matrix of M of the form

B =




A1 B1 A2 B2

0 Ib 0 0
0 0 A3 B3

0 0 0 Ia




where Ia, Ib are the identity matrices of degree a, b, respectively. Then

C =

(
A1 B1 A2 B2

0 0 A3 B3

)

is a relation matrix of M/X . Since C is obtained from B by removing (a+ b)
rows in the way of obtaining A′′ from A, it follows from the definition of the

relative Fitting ideal that Fitt0R(M/X) ⊂ Fitt
(a,b)
R (M,N). This shows the other

inclusion. �

In the next result we record some useful properties of higher relative Fitting
ideals.

Lemma 7.2.

(i) Fitt
(a,b)
R (M,N) ⊂ Fitta+bR (M).

(ii) Fitt
(a,0)
R (M,N) = FittaR(M).

(iii) Suppose that there exists an exact sequence 0→M ′ →M → R⊕r → 0
of R-modules and that N ⊂M ′. Then one has

Fitt
(a,b)
R (M,N) =

{
Fitt

(a−r,b)
R (M ′, N), if a ≥ r,

0, otherwise.

(iv) Assume that M/N has a quadratic presentation. Then one has

Fitt
(0,b)
R (M,N) = FittbR(N) Fitt0R(M/N).

Proof. Claims (i), (ii) and (iii) follow directly from the definition of the higher
relative Fitting ideal. To prove claim (iv), we consider a relation matrix

A =

(
A1 A2

0 A3

)

as above, where A1 is a matrix with n1 rows and A3 is a square matrix of n2

rows. Put n = n1 + n2. Then a matrix A′′ obtained from A as above is of the
form

A′′ =

(
A′′1 A′′2
0 A3

)
.

This is a matrix with (n− b) rows and so a nonzero (n− b)× (n− b) minor of
A′′ must be det(A3) times a (n1 − b)× (n1 − b) minor of A′′1 . This implies the
required conclusion. �

Documenta Mathematica 21 (2016) 555–626



610 David Burns, Masato Kurihara, and Takamichi Sano

7.2. Statement of the conjecture. Let K/k,G, S, T, V be as in §5.1. For
the element ǫVK/k,S,T , the Rubin-Stark conjecture asserts that Φ(ǫVK/k,S,T ) be-

longs to Z[G] for every Φ in
∧r
GHomG(O×K,S,T ,Z[G]).

We next formulate a much stronger conjecture which describes the arithmetic
significance of the ideal generated by the elements Φ(ǫVK/k,S,T ) when Φ runs

over
∧r
GHomG(O×K,S,T ,Z[G]).

Conjecture 7.3. One has an equality

FittrG(SS,T (Gm/K)) = {Φ(ǫVK/k,S,T )# : Φ ∈
r∧

G

HomG(O×K,S,T ,Z[G])},

or equivalently (by Lemma 2.8),

FittrG(StrS,T (Gm/K)) = {Φ(ǫVK/k,S,T ) : Φ ∈
r∧

G

HomG(O×K,S,T ,Z[G])}.

The following result shows that this conjecture refines the first half of the
statement of Conjecture 5.9.

Proposition 7.4. For a finite set Σ of places, we put JΣ =
∏
v∈Σ I(Gv)Z[G].

Assume Conjecture 7.3 is valid. Then, for every Φ ∈ ∧rGHomG(O×K,S,T ,Z[G])
and v ∈ S \ V , one has

Φ(ǫVK/k,S,T ) ∈ JS\(V ∪{v}).

Proof. It is sufficient to show that FittrG(StrS,T (Gm/K)) ⊂ JS\(V ∪{v}). Since
there is a canonical surjective homomorphism

StrS,T (Gm/K) −→ XK,S ≃ Z[G]⊕r ⊕XK,S\V ,

we have

FittrG(StrS,T (Gm/K)) ⊂ FittrG(XK,S) = Fitt0G(XK,S\V ).

The existence of the surjective homomorphism XK,S\V → YK,S\(V ∪{v}) implies

that Fitt0G(XK,S\V ) ⊂ Fitt0G(YK,S\(V ∪{v})) = JS\(V ∪{v}). This completes the
proof. �

7.3. The leading term conjecture implies Conjecture 7.3. The fol-
lowing result combines with Lemma 2.8 to imply the statement of Theorem
1.5(i).

Theorem 7.5. LTC(K/k) implies Conjecture 7.3. In particular, Conjecture
7.3 is valid if either K is an abelian extension over Q or k is a function field
or [K : k] ≤ 2.

Proof. The second claim is a consequence of Remark 3.3.
To prove the first claim we assume the validity of LTC(K/k). Then the module
P that occurs in the exact sequence (24) is free of rank d, as we noted before.
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Hence we may assume P = F . Let zb ∈
∧d
G F be as in §5.6. By LTC(K/k), zb

is a G-basis of
∧d
G F . Write zb as

zb = x
∧

1≤i≤d
bi

with some x ∈ Z[G]×. By Theorem 5.14 and Proposition 4.1, we have

ǫVK/k,S,T = ±x
∑

σ∈Sd,r
sgn(σ) det(ψi(bσ(j)))r<i,j≤dbσ(1) ∧ · · · ∧ bσ(r).

Take Φ ∈ ∧rGHomG(O×K,S,T ,Z[G]). Since F/O×K,S,T ≃ im(ψ) ⊂ F is Z-torsion-
free, we know by Lemma 4.7(ii) that the map

HomG(F,Z[G]) −→ HomG(O×K,S,T ,Z[G])

induced by the inclusion O×K,S,T ⊂ F is surjective. Hence, we can take a lift Φ̃

of Φ to
∧r
GHomG(F,Z[G]). We have

Φ(ǫVK/k,S,T ) = ±x
∑

σ∈Sd,r
sgn(σ) det(ψi(bσ(j)))r<i,j≤dΦ̃(bσ(1) ∧ · · · ∧ bσ(r))

∈ 〈det(ψi(bσ(j)))r<i,j≤d : σ ∈ Sd,r〉G.
We consider the matrix A corresponding to the presentation

F → F → StrS,T (Gm/K)→ 0

which comes from the exact sequence (24). By Lemma 5.20, ψi = 0 for 1 ≤
i ≤ r. If we write elements in F as column vectors, this implies that the i-th
row of A is zero for all i such that 1 ≤ i ≤ r. Hence we have

FittrG(StrS,T (Gm/K)) = 〈det(ψi(bσ(j)))r<i,j≤d : σ ∈ Sd,r〉G.
Therefore, we get an inclusion

{Φ(ǫVK/k,S,T ) : Φ ∈
r∧

G

HomG(O×K,S,T ,Z[G])} ⊂ FittrG(StrS,T (Gm/K)).

We obtain the reverse inclusion from

(b∗σ(1) ∧ · · · ∧ b∗σ(r))(ǫVK/k,S,T ) = ±xdet(ψi(bσ(j)))r<i,j≤d
and the fact that x is a unit in Z[G]. �

7.4. The proof of Theorem 1.10. For any G-module M we write M∗ for
the linear dual HomZ(M,Z) endowed with the natural contragredient action of
G. We also set V ′ := V ∪ {v}.
We start with a useful technical observation.

Lemma 7.6. For each integer i with 1 ≤ i ≤ r let ϕi be an element of (O×K,S,T )∗.
Then for any given integer N there is a subset {ϕ′i : 1 ≤ i ≤ r} of (O×K,S,T )∗
which satisfies the following properties.

(i) For each i one has ϕ′i ≡ ϕi modulo N · (O×K,S,T )∗.
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(ii) The image in (O×K,V ′,T )
∗ of the submodule of (O×K,S,T )∗ that is gener-

ated by the set {ϕ′i : 1 ≤ i ≤ r} is free of rank r.

Proof. Our choice of V implies that we may choose a free G-submodule F of
(O×K,V ′,T )

∗ of rank r. We then choose a subset {fi : 1 ≤ i ≤ r} of (O×K,S,T )∗
which the natural surjection ρ : (O×K,S,T )∗ → (O×K,V ′,T )

∗ sends to a basis of
F . For any integer m we set ϕi,m := ϕi +mNfi and note it suffices to show
that for any sufficiently large m the elements {ρ(ϕi,m) : 1 ≤ i ≤ r} are linearly
independent over Q[G].
Consider the composite homomorphism of G-modules F → Q(O×K,V ′,T )

∗ →
QF where the first arrow sends each ρ(fi) to ρ(ϕi,m) and the second is in-

duced by a choice of Q[G]-equivariant section to the projection Q(O×K,V ′,T )
∗ →

Q((O×K,V ′,T )
∗/F). Then, with respect to the basis {ρ(fi) : 1 ≤ i ≤ r}, this

linear map is represented by a matrix of the form A +mNIr for a matrix A
in Mr(Q[G]) that is independent of m. In particular, if m is large enough to
ensure that −mN is not an eigenvalue of eχA for any χ, then the composite ho-
momorphism is injective and so the elements {ρ(ϕi,m) : 1 ≤ i ≤ r} are linearly
independent over Q[G], as required. �

For each integer i with 1 ≤ i ≤ r let ϕi be an element of (O×K,S,T )∗. Then,

for any non-zero integer N which belongs to Fitt0G(Cl(K)) we choose homo-
morphisms ϕ′i as in Lemma 7.6. Then the congruences in Lemma 7.6(i) imply
that

(
∧

1≤i≤r
ϕi)(ǫ

V
K/k,S,T ) ≡ (

∧

1≤i≤r
ϕ′i)(ǫ

V
K/k,S,T ) modulo N · Z[G].

Given this, Lemma 7.6(ii) implies that Theorem 1.10 is true provided that it
is true for all Φ of the form

∧
1≤i≤rϕi where the images in (O×K,V ′,T )

∗ of the
homomorphisms ϕi span a free module of rank r.
We shall therefore assume in the sequel that Φ is of this form.
For each index i we now choose a lift ϕ̃i of ϕi to SS,T (Gm/K) and then write
EΦ for the G-module that is generated by the set {ϕ̃i : 1 ≤ i ≤ r}.
Proposition 7.7. If LTC(K/k) is valid, then for every Φ as above one has

Φ(ǫVK/k,S,T )
# ∈ Fitt0G(SS,T (Gm/K)/EΦ).

Proof. We use the existence of an exact triangle in Dp(Z[G]) of the form

(29) Z[G]⊕r,• θ−→ RΓc,T ((OK,S)W ,Z) θ′−→ C• → Z[G]⊕r,•[1].

Here Z[G]⊕r,• denotes the complex Z[G]⊕r[−1]⊕Z[G]⊕r[−2] and, after choos-
ing an ordering {vi : 1 ≤ i ≤ r} of the places in V , the morphism θ is uniquely
specified by the condition that H1(θ) sends each element bi of the canonical ba-
sis {bi : 1 ≤ i ≤ r} of Z[G]⊕r to w∗i in (YK,V )

∗ ⊂ (XK,S)
∗ = H1

c,T ((OK,S)W ,Z)
and H2(θ) sends each bi to ϕ̃i in SS,T (Gm/K).
Note that the long exact cohomology sequence of this triangle implies C• is
acyclic outside degrees one and two and identifies H1(C•) and H2(C•) with
(XK,S\V )∗ and SS,T (Gm/K)/EΦ, respectively.
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In particular, if we now write er for the idempotent of Q[G] obtained as∑
rχ,S=r

eχ, then the space erQHi(C•) vanishes for both i = 1 and i = 2.

We may therefore choose a commutative diagram of R[G]-modules
(30)

0 −−−−→ R[G]⊕r
H1(θ)−−−−→ RH1

c,T ((OK,S)W ,Z)
H1(θ′)−−−−→ RH1(C•) −−−−→ 0

λ1

y λ2

y λ3

y

0 −−−−→ R[G]⊕r
H2(θ)−−−−→ RH2

c,T ((OK,S)W ,Z)
H2(θ′)−−−−→ RH2(C•) −−−−→ 0

such that erλ2 = erλ
∗
K,S .

This diagram combines with the triangle (29) to imply that there is an equality
of lattices

ϑλ2(detG(RΓc,T ((OK,S)W ,Z)))−1 = det(λ1) · ϑλ3(detG(C
•))−1.(31)

We now assume that the conjecture LTC(K/k) is valid. Then Proposition
3.4 implies that detG(RΓc,T ((OK,S)W ,Z))−1 is a free rank one Z[G]-module
and further that if we choose any basis ξ for this module, then both erξ and

erθ
∗
K/k,S,T (0)

# = θ
(r),#
K/k,S,T are bases of the erZ[G]-module

erϑλ2(detG(RΓc,T ((OK,S)W ,Z)))−1 = erϑλ∗
K,S

(detG(RΓc,T ((OK,S)W ,Z)))−1.

Bass’s Theorem (cf. [32, Chap. 7, (20.9)]) implies that for each prime p the
projection map Z(p)[G]

× → erZ(p)[G]
× is surjective. The above equality thus

implies that the Z(p)[G]-module ϑλ2(detG(RΓc,T ((OK,S)W ,Z)))−1 ⊗Z Z(p) has

a basis ξp for which one has erξp = erθ
∗
K/k,S,T (0)

# = θ
(r),#
K/k,S,T . For each prime

p the equality (31) therefore implies that

erϑλ3(detG(C
•))−1 ⊗Z Z(p)(32)

= det(λ1)
−1erϑλ2(detG(RΓc,T ((OK,S)W ,Z)))−1 ⊗Z Z(p)

=Z(p)[G] · erdet(λ1)−1θ(r),#K/k,S,T .

Now the commutativity of (30) implies that erdet(λ1) is equal to the de-
terminant of the matrix which represents erλ

∗
K,S with respect to the bases

{erw∗i : 1 ≤ i ≤ r} and {erϕi : 1 ≤ i ≤ r} and hence that

er
∧

1≤i≤r
λ∗K,S(w

∗
i ) = erdet(λ1)Φ.

Since the element ǫVK/k,S,T is defined via the equality

θ
(r)
K/k,S,T

∧

1≤i≤r
λ−1K,S(wi − w) = ǫVK/k,S,T ,
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one therefore has

Φ(ǫVK/k,S,T )
#

= (erdet(λ1))
−1 ∧

1≤i≤r
λ∗K,S(w

∗
i )(θ

(r),#
K/k,S,T (

∧

1≤i≤r
λ−1K,S(wi − w)))(33)

= (erdet(λ1))
−1θ(r),#K/k,S,T

∈ erϑλ3(detG(C
•))−1 ⊗Z Z(p)

where the last containment follows from (32).
Now by the same reasoning as used in the proof of Lemma 2.8, we know that the

p-localized complex Z(p)⊗C• is represented by a complex P
δ−→ P , where P is a

finitely generated free Z(p)[G]-module and the first term is placed in degree one.

In particular, since for any character χ of G the space eχCH1(C•) = eχC ker(δ)
does not vanish if eχer = 0, one has

erϑλ3(detG(C
•))−1(p) = Z(p)[G]erdet(δ)(34)

= Z(p)[G]det(δ)

⊂ Fitt0Z(p)[G]((H
2
c,T ((OK,S)W ,Z)/EΦ)⊗Z Z(p))

= Fitt0G(H
2
c,T ((OK,S)W ,Z)/EΦ)⊗Z Z(p).

The inclusion here follows from the tautological exact sequence

P
δ−→ P −→ H2(Z(p) ⊗ C•) −→ 0

and the identification H2(Z(p) ⊗ C•) = (H2
c,T ((OK,S)W ,Z)/EΦ)⊗Z Z(p).

The claimed result now follows from (33) and (34). �

Now we proceed to the proof of Theorem 1.10. The existence of a surjec-
tive homomorphism of G-modules f : SS,T (Gm/K) → SV ′∪S∞,T (Gm/K) (see
Proposition 2.4(ii)) combines with Proposition 7.7 to imply that

(35) Φ(ǫVK/k,S,T )
# ∈ Fitt0G(SV ′∪S∞,T (Gm/K)/f(EΦ)).

This implies the first assertion of Theorem 1.10 since the natural map
ClTV ′(K)∨ → SV ′∪S∞,T (Gm/K) induces an injection

ClTV ′(K)∨ → SV ′∪S∞,T (Gm/K)/f(EΦ).

In addition, if G is cyclic, then the latter injection combines with (35) to imply
that

Φ(ǫVK/k,S,T ) ∈ Fitt0G(Cl
T
V ′(K)∨)# = Fitt0G(Cl

T
V ′(K)),

as claimed by the second assertion of Theorem 1.10.
This completes the proof of Theorem 1.10.
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7.5. The proof of Corollary 1.14. Let K/k be a CM-extension, S =
S∞(k), and p an odd prime. For a Zp[G]-module M , we denote by M− the
submodule on which the complex conjugation acts as −1.
Then, since complex conjugation acts trivially on HomZ(O×K,S,T ,Z) ⊗ Zp, the
exact sequence

0 −→ ClT (K)∨ −→ SS,T (Gm/K) −→ HomZ(O×K,S,T ,Z) −→ 0,

implies that in this case there is an equality

((ClT (K)⊗ Zp)∨)− = (SS,T (Gm/K)⊗ Zp)−.

In addition, in this case the containment of Proposition 7.7 applies with V
empty (so r = 0 and EΦ vanishes) to imply that

θK/k,S,T (0)
# ∈ Fitt0G(SS,T (Gm/K)),

and hence one has

θK/k,S,T (0)
# ∈ Fitt0Zp[G](((Cl

T (K)⊗ Zp)∨)−).

Since θK/k,S,T (0) lies in the minus component of Zp[G], this is in turn equivalent
to the required containment

θK/k,S,T (0)
# ∈ Fitt0Zp[G]((Cl

T (K)⊗ Zp)∨).

This completes the proof of Corollary 1.14.

7.6. The higher relative Fitting ideals of the dual Selmer group.
We write Mtors for the Z-torsion submodule of a G-module M and abbreviate

the higher relative Fitting ideal Fitt
(a,b)
Z[G] (M,Mtors) to Fitt

(a,b)
G (M).

In this subsection, we study the ideals Fitt
(r,i)
G (StrS,T (Gm/K)) and, in partic-

ular, prove Theorem 1.5(ii). We note that the exact sequence (2) identifies

StrS,T (Gm/K)tors with the group ClTS (K).

For each non-negative integer i we define the set Vi as in Theorem 1.5(ii).

Conjecture 7.8. For each non-negative integer i one has an equality

Fitt
(r,i)
G (StrS,T (Gm/K))

= {Φ(ǫV ∪V ′

K/k,S∪V ′,T ) : V
′ ∈ Vi and Φ ∈

r+i∧

G

HomG(O×K,S∪V ′,T ,Z[G])}.

The following result is a generalization of Theorem 7.5 in §7.3.
Theorem 7.9. If LTC(K/k) is valid, then so is Conjecture 7.8.

Proof. We consider the composition of the two canonical homomorphisms

StrS,T (Gm/K)→ XK,S → YK,V ,

and denote its kernel by StrS,T (Gm/K)′. By Lemma 7.2 (iii), we have

(36) Fitt
(r,i)
G (StrS,T (Gm/K)) = Fitt

(0,i)
G (StrS,T (Gm/K)′).
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We also note that the sequence (2) gives rise to an exact sequence of G-modules

(37) 0 −→ ClTS (K) −→ StrS,T (Gm/K)′ −→ XK,S\V −→ 0.

For V ′ ∈ Vi, we denote by StrS∪V ′,T (Gm/K)′ the kernel of the natural composi-
tion

StrS∪V ′,T (Gm/K)→ XK,S∪V ′ → YK,V ∪V ′

so that the following sequence is exact

0 −→ ClTS∪V ′(K) −→ StrS∪V ′,T (Gm/K)′ −→ XK,S\V −→ 0.

Let XV ′ be the subgroup of ClTS (K) generated by the classes of places of K

above V ′ in ClTS (K). Since ClTS (K)/XV ′ = ClTS∪V ′(K), there is an isomorphism
StrS,T (Gm/K)′/XV ′ ≃ StrS∪V ′,T (Gm/K)′. By Chebotarev density theorem and
Lemma 7.1, we obtain

Fitt
(0,i)
G (StrS,T (Gm/K)′) =

∑

V ′∈V′
i

Fitt0G(StrS∪V ′,T (Gm/K)′)

=
∑

V ′∈V′
i

Fittr+iG (StrS∪V ′,T (Gm/K))(38)

where we used Lemma 7.2 (iii) again to get the last equality.
Now Theorem 7.9 follows from (36), (38) and Theorem 7.5. �

Corollary 7.10. We assume that LTC(K/k) is valid and that the group G =
Gal(K/k) is cyclic. Then for each non-negative integer i one has an equality

FittiG(Cl
T
S (K)) Fitt0G(XK,S\V )

= {Φ(ǫV ∪V ′

K/k,S∪V ′,T ) : V
′ ∈ Vi and Φ ∈

r+i∧

G

HomG(O×K,S∪V ′,T ,Z[G])}.

Proof. Since G is cyclic, the G-module XK,S\V has a quadratic presentation.
We may therefore apply Lemma 7.2(iv) to the exact sequence (37) to obtain
an equality

FittiG(Cl
T
S (K)) Fitt0G(XK,S\V ) = Fitt

(0,i)
G (StrS,T (Gm/K)′).

Given this equality, the claimed result follows from Theorem 7.9 and the equal-
ity (36). �

An application of Theorem 7.9 to character components of ideal class groups
will be given in §8.

8. Higher Fitting ideals of character components of class groups

In this section, as an application of Theorem 7.9, we study the higher Fitting
ideals of character components of class groups.
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8.1. General abelian extensions. We suppose that K/k is a finite abelian
extension as in §7. We take and fix an odd prime p in this section. We put
ATS (K) = ClTS (K)⊗ Zp, AT (K) = ClT (K)⊗ Zp, and A(K) = Cl(K)⊗ Zp.
We take a character χ of G = Gal(K/k). Throughout this section, we assume
that the order of χ is prime to p.
We decompose G = ∆K × ΓK where |∆K | is prime to p and ΓK is a p-group.
By our assumption χ is regarded as a character of ∆K . For any Zp[∆K ]-module
M , we define the χ-component Mχ by setting

Mχ :=M ⊗Zp[∆K ] Oχ
where Oχ = Zp[im(χ)] on which ∆K acts via χ. This is an exact functor from
the category of Zp[G]-modules to that of Oχ[ΓK ]-modules.
Let kχ be the subfield of K corresponding to the kernel of χ, namely, χ induces
a faithful character of Gal(kχ/k). Put K(∆) := KΓK , then kχ ⊂ K(∆). We
also put ∆K,χ := Gal(K(∆)/kχ) which is a subgroup of ∆K . We consider

K(χ) := K∆K,χ , then Gal(K(χ)/kχ) = ΓK . We consider ATS (K)χ which we
regard as an Oχ[ΓK ]-module. By the standard norm argument, we know the
natural map ATS (K(χ))χ → ATS (K)χ is bijective, so when we consider the χ-
component ATS (K)χ, we may assume that χ is a faithful character of ∆K by
replacing K with K(χ). In the following, we assume this. We write χ(v) 6= 1
if the decomposition group of ∆K at v is non-trivial.

We denote the χ-component of ǫVK/k,S,T by ǫV,χK/k,S,T ∈ ((
⋂r
GO×K,S,T ) ⊗ Zp)χ.

Let Vi be the set as in Theorem 1.5(ii) for i ≥ 0.
Finally we assume that the following condition is satisfied

(∗) any ramifying place v of k in K does not split completely in K(∆).

Theorem 8.1. Let V be the set of the archimedean places of k that split com-
pletely in K and set r := |V |. We assume that χ 6= 1 is a faithful character
of ∆K , and consider the χ-component of the class group AT (K)χ which is an
Oχ[ΓK ]-module. We assume that the χ-component of LTC(K/k) is valid and
that the condition (∗) is satisfied.
Then for any non-negative integer i one has an equality

FittiOχ[ΓK ](A
T (K)χ) = {Φ(ǫV ∪V

′,χ
K/k,S∪V ′,T ) : V

′ ∈ Vi and Φ ∈
r+i∧

Oχ[ΓK ]

Hχ}

where S = S∞(k) ∪ Sram(K/k) and Hχ = HomOχ[ΓK ]((O×K,S∪V ′,T ⊗
Zp)χ,Oχ[ΓK ]).

Proof. Since v ∈ Sram(K/k) does not split completely inK(∆), one has χ(v) 6= 1
and hence (YK,Sram ⊗ Zp)χ = 0.
As χ 6= 1, we therefore also have (XK,Sram⊗Zp)χ = (YK,Sram⊗Zp)χ = 0. Hence
(XK,S ⊗ Zp)χ = (YK,S∞ ⊗ Zp)χ is isomorphic to Oχ[ΓK ]⊕r. This implies that

Fitt
(r,i)
Oχ[ΓK ]((StrS,T (Gm/K)⊗ Zp)χ), ATS (K)χ) = FittiOχ[ΓK ](A

T
S (K)χ)

and so the claim follows from Theorem 7.9. �
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In the case K = kχ, the condition (∗) is automatically satisfied. We denote the
group AT (kχ)

χ by (AT )χ, which is determined only by χ.

Corollary 8.2. Let χ be a non-trivial linear character of k of order prime to
p, and V the set of the archimedean places of k that split completely in kχ and
set r := |V |. We assume the χ-component of LTC(kχ/k) to be valid. Then for
any non-negative integer i one has an equality

FittiOχ((A
T )χ) = {Φ(ǫV ∪V

′,χ
kχ/k,S∪V ′,T ) : V

′ ∈ Vi and Φ ∈
r+i∧

Oχ
Hχ}

where S = S∞(k) ∪ Sram(kχ/k) and Hχ = HomOχ((O×kχ,S∪V ′,T ⊗ Zp)χ,Oχ).

8.2. The order of character components in CM abelian extensions.
In this subsection, we assume that k is totally real, K is a CM-field, and χ is
an odd character. In this case, we can compute the right hand side of Theorem
8.1 more explicitly. First of all, note that r = 0 in this case.
We first consider the case K = kχ and i = 0. When S = S∞(k) ∪ Sram(kχ/k),
we denote the L-function Lk,S,T (χ

−1, s) by LTk (χ
−1, s). When T is empty, we

denote LTk (χ
−1, s) by Lk(χ−1, s). In this case, we know

ǫ∅,χkχ/k,S,T = θkχ/k,S,T (0)
χ = LTk (χ

−1, 0)

(see §5.3). Therefore, Corollary 8.2 with i = 0 implies

Corollary 8.3. Let k be totally real, and χ a one dimensional odd character
of k of order prime to p. We assume the χ-component of LTC(kχ/k) to be
valid.

(i) One has |(AT )χ| = |Oχ/LTk (χ−1, 0)|.
(ii) Let Cl(kχ) be the ideal class group of kχ, A(kχ) = Cl(kχ) ⊗ Zp, and

Aχ = A(kχ)
χ. We denote by ω the Teichmüller character giving the

Galois action on µp, the group of p-th roots of unity, and by µp∞(k(µp))
the group of roots of unity of p-power order in k(µp). Then one has

|Aχ| =
{
|Oχ/Lk(χ−1, 0)| if χ 6= ω,
|Oχ/(|µp∞(k(µp))|Lk(χ−1, 0))| if χ = ω.

Proof. Claim (i) is an immediate consequence of Corollary 8.2 and a remark
before this corollary. We shall now prove claim (ii).
When χ 6= ω, we take a finite place v such that v is prime to p and Nv 6≡
χ(Frv) (mod p). We put T = {v}. Then (AT )χ = Aχ and ordpL

T
k (χ

−1, 0) =
ordpLk(χ

−1, 0). Therefore, claim (i) implies the equality in claim (ii).
When χ = ω, using Chebotarev density theorem we take a finite place v such
that v splits completely in kχ = kω = k(µp) and ordp|µp∞(kχ)| = ordp(Nv−1).
We take T = {v}, then we also have (AT )χ = Aχ from the exact sequence

µp∞(kχ) −→ (
⊕

w|v
κ(w)× ⊗ Zp)χ −→ (AT )χ −→ Aχ −→ 0
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where w runs over all places of kχ above v. Therefore, claim (ii) follows from
claim (i) in this case, too. �

By combining the argument of Corollary 8.3 with the result of Theorem 1.16
one also directly obtains the following result.

Corollary 8.4. Assume that at most one p-adic place p of k satisfies χ(p) = 1.
Then the same conclusion as Corollary 8.3 holds.

Remark 8.5. We note that the formula on Aχ in Corollary 8.3 has not yet
been proved in general even in such a semi-simple case (namely the case that
the order of χ is prime to p). If no p-adic place p satisfies χ(p) = 1, this is an
immediate consequence of the main conjecture proved by Wiles [54]. Corollary
8.4 shows that this holds even if the set {p : p-adic place of k with χ(p) = 1}
has cardinality one.

8.3. The structure of the class group of a CM field. Now we con-
sider a general CM-field K over a totally real number field k (in particular, we
do not assume that K = kχ).
We assume the condition (∗) stated just prior to Theorem 8.1.
We fix a strictly positive integer N . Suppose that v is a place of k such that v
is prime to p, v splits completely in K and there is a cyclic extension F (v)/k
of degree pN , which is unramified outside v and in which v is totally ramified.
(Note that F (v) is not unique.) We denote by S(K) the set of such places v
and recall that S(K) is infinite (see [30, Lem. 3.1]).
Suppose now that V = {v1, . . . , vt} is a subset of S(K) consisting of t dis-
tinct places. We take a cyclic extension F (vj)/k as above, and put F =
F (v1) · · ·F (vt) the compositum of fields F (vj). In particular, F is totally real.
We denote by Ft,N the set of all fields F constructed in this way. When t = 0,
we define F0,N = {k}.
We set

H := Gal(KF/K) ∼= Gal(F/k) ∼=
t∏

j=1

Gal(F (vj)/k),

where the first (restriction) isomorphism is due to the fact that K ∩F = k and
the second to the fact that each extension F (vj)/k is totally ramified at vj and
unramified at all other places.
We fix a generator σj of Gal(F (vj)/k) and set Sj := σj − 1 ∈ Z[Gal(KF/k)].
Noting that Gal(KF/k) = G × H where G = Gal(K/k), for each element x
of Z[Gal(KF/k)] = Z[G][H ] we write x =

∑
xn1,...,ntS

n1
1 · · ·Sntt where each

xn1,...,nt belongs to Z[G]. We then define a map

ϕV : Z[Gal(KF/k)]→ Z/pN [G]

by sending x to x1,...,1 modulo pN and we note that this map is a well-defined
homomorphism of G-modules.
We consider θKF/k,S∪V,T (0) ∈ Z[Gal(KF/k)]. We define ΘiN,S,T (K/k) to be

the ideal of Z/pN [G] generated by all ϕV (θKF/k,S∪V,T (0)) ∈ Z/pN [G] where F
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runs over Ft,N such that t ≤ i. We note that we can compute θKF/k,S∪V,T (0),
and hence also ϕV (θKF/k,S∪V,T (0)), numerically. Taking F = k, we know that

θK/k,S,T (0) mod pN is in ΘiN,S,T (K/k) for any i ≥ 0.

We set FN :=
⋃
t≥0 Ft,N .

For any abelian extension M/k, if S = S∞(k)∪Sram(M/k) and T is the empty
set, we write θM/k(0) for θM/k,S,T (0).
We take a character χ of ∆K such that χ 6= ω, at first. We take S = S∞(k) ∪
Sram(K/k) and T = ∅. In this case, we know that the χ-component θKF/k(0)

χ

is integral, namely is in Oχ[ΓK × H ]. We simply denote the χ-component
ΘiN,S,∅(K/k)

χ by ΘiN(K/k)
χ (⊂ Oχ[ΓK ]). This ideal ΘiN(K/k)

χ coincides

with the higher Stickelberger ideal Θ
(δ,N),χ
i,K defined in [30, §8.1].

When χ = ω, we assume that K = k(µpm) for some m ≥ 1. By using the
Chebotarev density theorem we can choose a place v which satisfies all of the
following conditions

(i) v splits completely in k(µp)/k,
(ii) each place above v of k(µp) is inert in K/k(µp), and
(iii) each place w of K above v satisfies ordp|µp∞(K)| = ordp(Nw − 1).

We set T := {v}. We consider the ω-component ΘiN,S,{v}(K/k)
ω, which we

denoted by ΘiN,{v}(K/k)
ω

Theorem 8.6. Let K/k be a finite abelian extension, K a CM-field, and k
totally real. Suppose that χ is an odd faithful character of ∆K , and consider
the χ-component of the class group A(K)χ which is an Oχ[ΓK ]-module. We
assume the condition (∗) stated just prior to Theorem 8.1 and the validity of
the χ-component of LTC(FK/k) for every field F in FN .

(i) Suppose that χ 6= ω. For any integer i ≥ 0, we have

FittiOχ[ΓK ]/pN (A(K)χ ⊗ Z/pN ) = ΘiN(K/k)
χ.

(ii) We assume that K = k(µpm) for some m ≥ 1. For χ = ω, using a
place v as above, we have

FittiOω[ΓK ]/pN (A(K)ω ⊗ Z/pN ) = ΘiN,{v}(K/k)
ω

for any i ≥ 0.

Proof. We first prove claim (i). Since the image of θKF/k(0) in Z[G] is a

multiple of θK/k(0), Θ0
N (K/k)χ is a principal ideal generated by θK/k(0)

χ.
Therefore, this theorem for i = 0 follows from Theorem 8.1.
Now suppose that i > 0. For a place v ∈ S(K), we take a place w of K above
v. Put H(v) = Gal(F (v)K/K) = Gal(F (v)/k) ≃ Z/pN . We take a generator
σv of H(v) and fix it. We define φv by

φv : K×
Recv−→ (I(H(v))Z[Gal(F (v)K/k)]/I(H(v))2Z[Gal(F (v)K/k)])

= Z[G]⊗Z I(H(v))/I(H(v))2 ≃ Z/pN [G]
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Here, the last isomorphism is defined by σv − 1 7→ 1, and Recv is defined by

Recv(a) =
∑

τ∈G
τ−1(recw(τa) − 1)

as in §5.3 by using the reciprocity map recw : K×w → H(v) at w. Taking the
χ-component of φv, we obtain

φv : (K× ⊗ Z/pN )χ −→ Oχ[ΓK ]/pN ,

which we also denote by φv.
We take S = S∞(k) ∪ Sram(K/k), T = ∅, and V = {v1, . . . , vi} ∈ Vi. Suppose
that Φ = ϕ1 ∧ · · · ∧ ϕi where

ϕj ∈ Hχ = HomOχ[ΓK ]((O×K,S∪V ⊗ Zp)χ,Oχ[ΓK ]/pN)

for j = 1, . . . , i. We take a place wj of K above vj for j such that 1 ≤ j ≤ i.
We denote by [wj ] the class of wj in A(K)χ.
By [30, Lem. 10.1], for each integer j = 1,...,i we can choose a place v′j ∈ S(K)
that satisfies all of the following conditions;

(a) [w′j ] = [wj ] in A(K)χ where w′j is a place of K above v′j ,
(b) ϕj(x) = φv′j (x) for any x ∈ (O×K,S∪V ⊗ Z/pN )χ,

Here, we used the fact that the natural map (O×K,S∪V ⊗ Z/pN )χ → (K× ⊗
Z/pN )χ is injective.
Set V ′ = {v′1, . . . , v′i}. By property (b), we have

Φ(ǫV,χK/k,S∪V,∅) = (φv′1 ∧ · · · ∧ φv′i)(ǫ
V,χ
K/k,S∪V,∅).

By property (a), there exists an xj in O×K,S∪V ∪V ′ whose prime decomposition

is (xj) = wj(w
′
j)
−1 for any j such that 1 ≤ j ≤ i. Put Vi−1 = {v1, ..., vi−1}

and V ′i = {v1, ..., vi−1, v′i}. Then
ǫV,χK/k,S∪V,∅ = ǫ

V ′
i ,χ

K/k,S∪V ′
i ,∅

+ ǫ
Vi−1,χ
K/k,S∪Vi−1,∅ ∧ xi

and by using this kind of equation recursively, one deduces that ǫV,χK/k,S∪V,∅ −
ǫV

′,χ
K/k,S∪V ′,∅ is a sum of elements of the form ǫW,χK/k,S∪W,∅ ∧ bj with |W | = i− 1.

Now, by induction on i, we know Ψ(ǫW,χK/k,S∪W,∅) is in Θi−1N (K/k)χ for any Ψ in

HomOχ[ΓK ]((O×K,S∪W ⊗ Zp)χ,Oχ[ΓK ]/pN ). Therefore we have

(φv′1 ∧· · ·∧φv′i)(ǫ
V,χ
K/k,S∪V,∅) ≡ (φv′1 ∧· · ·∧φv′i )(ǫ

V ′,χ
K/k,S∪V ′,∅) (mod Θi−1N (K/k)χ).

Set F = F (v′1) · · ·F (v′i) and H = Gal(FK/K) = Gal(F/k). Then as in §5.3 we

can define RecV ′(ǫV
′,χ

K/k,S∪V ′,∅) ∈ Z[G]⊗(JV ′)H . Let ϕV ′ : Z[G×H ]→ Z/pN [G]
be the homomorphism defined before Theorem 8.6 by using the generators σv′i
we fixed. This ϕV ′ induces a homomorphism

Z[G×H ]/I(H)i+1Z[G×H ] = Z[G]⊗ Z[H ]/I(H)i+1 → Z/pN [G]

and we also denote the composite homomorphism

Z[G] ⊗ (JV ′)H → Z[G] ⊗ Z[H ]/I(H)i+1 ϕV ′→ Z/pN [G]
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by ϕV ′ .
Then by the definitions of these homomorphisms, we have

(φv′1 ∧ · · · ∧ φv′i)(ǫ
V ′,χ
K/k,S∪V ′,∅) = ϕV ′(RecV ′(ǫV

′,χ
K/k,S∪V ′,∅)).

By Conjecture 5.4 which is a theorem under our assumptions (Theorem 5.16),
we get

ϕV ′(RecV ′(ǫV
′,χ

K/k,S∪V ′,∅)) = ϕV ′(θKF/k(0)
χ).

Combining the above equations, we get

Φ(ǫV,χK/k,S∪V,∅) ≡ ϕV ′(θKF/k(0)
χ) (mod Θi−1N (K/k)χ).

Since ϕV ′(θKF/k(0)
χ), Θi−1N (K/k)χ are in ΘiN(K/k)

χ, we get Φ(ǫV,χK/k,S∪V,∅) ∈
ΘiN (K/k)χ. It follows from Theorem 8.1 that the left hand side of the equation
in Theorem 8.6 (i) is in the right hand side.
On the other hand, suppose that F is in Ft,N with t ≤ i, and that V =
{v1, . . . , vt} is the set of ramifying place in F/k. As above, by Theorem 5.16
we have

ϕV (θKF/k(0)
χ) = ϕV (RecV (ǫ

V,χ
K/k,S∪V,∅)) = (φv1 ∧ · · · ∧ φvt)(ǫV,χK/k,S∪V,∅).

Therefore, by Theorem 8.1 we have

ϕV (θKF/k(0)
χ) ∈ FitttOχ[ΓK ]/pN (A(K)χ ⊗ Z/pN ).

Since FitttOχ[ΓK ]/pN (A(K)χ ⊗ Z/pN) ⊂ FittiOχ[ΓK ]/pN (A(K)χ ⊗ Z/pN ), we get

ϕV (θKF/k(0)
χ) ∈ FittiOχ[ΓK ]/pN (A(K)χ ⊗ Z/pN ).

Thus, the right hand side of the equation in Theorem 8.6 (i) is in the left hand
side.
We can prove claim (ii) by the same method. The condition on v is used to
show the injectivity of the natural homomorphism (O×K,S∪V,T ⊗ Z/pN )ω →
(K× ⊗ Z/pN )ω with T = {v}. �

Corollary 8.7. Let K/k and χ be as in Theorem 8.6. We assume the condi-
tion (∗) stated just prior to Theorem 8.1 and that there is at most one place p
of k above p such that χ(p) = 1. Then the same conclusion as in Theorem 8.6
holds.

Proof. It suffices to note that, under the stated conditions, Theorem 1.16 im-
plies that the χ-component of LTC(FK/k) is valid. �

To give an example of Corollary 8.7 we suppose that K is the m-th layer of
the cyclotomic Zp-extension of K(∆) for some strictly positive integer m, and
assume that χ(p) 6= 1 for any p | p.
Then this assumption implies that the condition (∗) is satisfied and so all of the
assumptions in Corollary 8.7 are satisfied. Therefore, by taking the projective
limit of the conclusion, Corollary 8.7 implies the result of the second author in
[30, Th. 2.1].
In this sense, Corollary 8.7 is a natural generalization of the main result in [30].
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To state our final result we now set

Θi(K/k)χ = lim
←−N

ΘiN(K/k)
χ ⊆ Oχ[ΓK ].

Then Theorem 8.6 implies that FittiOχ[Γ](A(K)χ) = Θi(K/k)χ.

Let kχ be the field corresponding to the kernel of χ as in Corollary 8.3. We
denote Θi(kχ/k)

χ by Θi,χ, which is an ideal of Oχ. For χ = ω, we denote
lim
←−N

ΘiN,{v}(kχ/k)
ω by Θi,ω.

Then Corollary 8.7 implies the following result, which is a generalization of the
main result of the second author in [28].

Corollary 8.8. Set Aχ := (Cl(kχ) ⊗ Zp)χ as in Corollary 8.3. Assume that
there is at most one p-adic place p of k such that χ(p) = 1 and that the p-adic
Iwasawa µ-invariant of K vanishes.
Then there is an isomorphism of Oχ-modules of the form Aχ ≃⊕

i≥1 Θ
i,χ/Θi−1,χ.
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Abstract. By the collective name of lattice counting we refer to a
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1 Introduction

1.1 Lattice counting

Let us recall from Duke, Rudnick and Sarnak [10] the setup of lattice counting
on a homogeneous space Z = G/H . Here G is an algebraic real reductive group
and H < G an algebraic subgroup such that Z carries an invariant measure.
Further we are given a lattice Γ < G such that its trace ΓH := Γ ∩H in H is
a lattice in H .
Attached to invariant measures dh and dg on H and G we obtain an invariant
measure d(gH) on Z via Weil-integration:

∫

Z

( ∫

H

f(gh)dh
)
d(gH) =

∫

G

f(g) dg (f ∈ Cc(G)) .

1Supported by ERC Advanced Investigators Grant HARG 268105
2Partially supported by ISF 1138/10 and ERC 291612
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Likewise the measures dg and dh give invariant measures d(gΓ) and d(hΓH) on
Y := G/Γ and YH := H/ΓH . We pin down the measures dg and dh and hence
d(gH) by the request that Y and YH have volume one.
Further we are given a family B of “balls” BR ⊂ Z depending on a parameter
R ≥ 0. At this point we are rather imprecise about the structure of these balls
and content us with the property that they constitute an exhausting family of
compact sets as R→∞.
Let z0 = H ∈ Z be the standard base point. The lattice counting problem for
B consists of the determination of the asymptotic behavior of the density of
Γ · z0 in balls BR ⊂ Z, as the radius R → ∞. By main term counting for B
we understand the statement that the asymptotic density is 1. More precisely,
with

NR(Γ, Z) := #{γ ∈ Γ/ΓH | γ · z0 ∈ BR}
and |BR| := volZ(BR) we say that main term counting holds if

NR(Γ, Z) ∼ |BR| (R→∞). (1.1)

1.2 Relevant previous works

The main term counting was established in [10] for symmetric spaces G/H
and certain families of balls, for lattices with YH compact. Furthermore, the
main term counting in the case where YH is non-compact was proven using
a hypothesis on regularization of periods of Eisenstein series, whose proof re-
mains unpublished. In subsequent work Eskin and McMullen [11] removed
the obstruction that YH is compact and presented an ergodic approach. Later
Eskin, Mozes and Shah [12] refined the ergodic methods and discovered that
main term counting holds for a wider class of reductive spaces: For reductive
algebraic groups G,H defined over Q and arithmetic lattices Γ < G(Q) it is
enough to request that the identity component ofH is not contained in a proper
parabolic subgroup of G which is defined over Q and that the balls BR satisfy
a certain condition of non-focusing.
In these works the balls BR are constructed as follows. All spaces considered
are affine in the sense that there exists a G-equivariant embedding of Z into
the representation module V of a rational representation of G. For any such
embedding and any norm on the vector space V, one then obtains a family of
balls BR on Z by intersection with the metric balls in V . For symmetric spaces
all families of balls produced this way are suitable for the lattice counting,
but in general one needs to assume non-focusing in addition. In particular
all maximal reductive subgroups satisfy all the conditions and hence fulfill the
main term counting.

1.3 Real spherical spaces

In this paper we investigate the lattice counting for a real spherical space Z, that
is, it is requested that the action of a minimal parabolic subgroups P < G on
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Z admits an open orbit. In addition we assume that H is reductive and remark
that with our standing assumption that Z is unimodular this is automatically
satisfied for a spherical space when the Lie algebra h of H is self-normalizing
(see [17], Cor. 9.10).
Our approach is based on spectral theory and is a natural continuation to
[10]. We consider a particular type of balls which are intrinsically defined by
the geometry of Z (and thus not related to a particular representation V as
before).

1.3.1 Factorization of spherical spaces

In the spectral approach it is of relevance to get a control over intermediate
subgroups H < H⋆ < G which arise in the following way: Given a unitary rep-
resentation (π,H) one looks at the smooth vectors H∞ and its continuous dual
H−∞, the distribution vectors. The space (H−∞)H of H-invariant distribution
vectors is of fundamental importance. For all pairs (v, η) ∈ H∞× (H−∞)H one
obtains a smooth function on Z, a generalized matrix-coefficient, via

mv,η(z) = η(g−1 · v) (z = gH ∈ Z) . (1.2)

The functions (1.2) are the building blocks for the harmonic analysis on Z.
The stabilizer Hη in G of η ∈ (H−∞)H is a closed subgroup which contains H ,
but in general it can be larger than H even if π is non-trivial.
Let us call Z⋆ = G/H⋆ a factorization of Z if H < H⋆ and Z⋆ is unimodular.
For a general real spherical space Z the homogeneous spaces Zη = G/Hη

can happen to be non-unimodular (see [19] for H the Iwasawa N -subgroup).
However there is a large subclass of real spherical spaces which behave well
under factorization. Let us call a factorization co-compact if H⋆/H is compact
and basic if (up to connected components) H⋆ is of the form HI := HI for
a normal subgroup I ⊳ G. Finally we call a factorization weakly basic if it is
obtained by a composition of a basic and a co-compact factorization.

1.3.2 Wavefront spherical spaces

A real spherical space is called wavefront if the attached compression cone is
a quotient of a closed Weyl-chamber. The relevant definitions will be recalled
in Section 3. Many real spherical spaces are wavefront: all symmetric spaces
and all Gross-Prasad type spaces G ×H/H (see (3.2) - (3.4)) are wavefront.3

The terminology wavefront originates from [24] because wavefront real spherical
spaces satisfy the “wavefront lemma” of Eskin-McMullen (see [11], [18]) which
is fundamental in the approach of [11] to lattice counting.
On the geometric side wavefront real spherical spaces enjoy the following prop-
erty from [19]: All Zη are unimodular and the factorizations of the type Zη are
precisely the weakly basic factorizations of Z.

3Also, if Z is complex, then of the 78 cases in the list of [4], the non-wavefront cases are
(11), (24), (25), (27), (39-50), (60), (61)
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On the spectral level wavefront real spherical spaces are distinguished by the
following integrability property, also from [19]: The generalized matrix coeffi-
cients mv,η of (1.2) belong to Lp(Zη) for some 1 ≤ p < ∞ only depending on
π and η.

1.3.3 Main term counting

In the theorem below we assume that Z is a wavefront real spherical space
of reductive type. For simplicity we also assume that all compact normal
subgroups of G are finite.
Using soft techniques from harmonic analysis and a general property of decay
from [21], our first result (see Section 5) is:

Theorem A. Let Z = G/H be as above, and assume that Y = G/Γ is com-
pact. Then main term counting (1.1) holds.

Since wavefront real spherical spaces satisfy the wavefront lemma by [18], Sec-
tion 6, this theorem could also be derived with the ergodic method of [11]. In
the current context the main point is thus the proof by harmonic analysis.
To remove the assumption that Y is compact and to obtain error term bounds
for the lattice counting problem we need to apply more sophisticated tools
from harmonic analysis. This will be discussed in the next paragraph with
some extra assumptions on G/H .

1.4 Error Terms

The problem of determining the error term in counting problems is notoriously
difficult and in many cases relies on deep arithmetic information. Sometimes,
like in the Gauss circle problem, some error term is easy to establish but getting
an optimal error term is a very difficult problem.
We restrict ourselves to the cases where the cycle H/ΓH is compact.4 To
simplify the exposition here we assume in addition that Γ < G is irreducible,
i.e. there do not exist non-trivial normal subgroups G1, G2 of G and lattices
Γi < Gi such that Γ1Γ2 has finite index in Γ.
The error we study is measure theoretic in nature, and will be denoted here
as err(R,Γ). Thus, err(R,Γ) measures the deviation of two measures on Y =
Γ\G, the counting measure arising from lattice points in a ball of radius R,
and the invariant measure dµY on Y . More precisely, with 1R denoting the
characteristic function of BR we consider the densities

FΓ
R(gΓ) :=

∑
γ∈Γ/ΓH 1R(gγH)

|BR|
.

Then,
err(R,Γ) = ||FΓ

R − dµY ||1,
4After a theory for regularization of H-periods of Eisenstein series is developed, one can

drop this assumption.
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where || · ||1 denotes the total variation of the signed measure. Notice that

|FΓ
R(eΓ) − 1| = |NR(Γ,Z)−|BR||

|BR| is essentially the error term for the pointwise

count (1.1).
Our results on the error term err(R,Γ) allows us to deduce results toward the
error term in the smooth counting problem, a classical problem that studies
the quantity

errpt,α(R,Γ) = |BR||FΓ
α,R(eΓ)− 1|

where α ∈ C∞c (G) is a positive smooth function of compact support (with
integral one) and FΓ

α,R = α∗FΓ
R. See Remark 7.2 for the comparison of err(R,Γ)

with errpt,α(R,Γ).
To formulate our result we introduce the exponent pH(Γ) (see (6.2)), which
measures the worst Lp-behavior of any generalized matrix coefficient associated
with a spherical unitary representation π, which is H-distinguished and occurs
in the automorphic spectrum of L2(Γ\G). We first state our result for the
non-symmetric case of triple product spaces, which is Theorem 8.2 from the
body of the paper.

Theorem B. Let Z = G3
0/ diag(G0) for G0 = SOe(1, n) and assume that

H/ΓH is compact. For all p > pH(Γ) there exists a C = C(p) > 0 such that

err(R,Γ) ≤ C|BR|−
1

(6n+3)p

for all R ≥ 1. (In particular, main term counting holds in this case). Further-
more, in regards to smooth counting, for any α ∈ C∞c (G) and for all p > pH(Γ)
there exists a C = C(p, α) > 0 such that

errpt,α(R,Γ) ≤ C|BR|1−
1

(6n+3)p

for all R ≥ 1.

To the best of our knowledge this is the first error term obtained for a non-
symmetric space. The crux of the proof is locally uniform comparison between
Lp and L∞ norms of generalized matrix coefficients mv,η which is achieved by
applying the model of [3] and [9] for the triple product functional η in spherical
principal series.
It is possible to obtain error term bounds under a certain technical hypothesis
introduced in Section 6 and refered to as Hypothesis A. This hypothesis in
turn is implied by a conjecture on the analytic structure of families of Harish-
Chandra modules which we explain in Section 9.1. The conjecture and hence
the hypothesis appear to be true for symmetric spaces but requires quite a
technical tour de force. In general, the techniques currently available do not
allow for an elegant and efficient solution. Under this hypothesis we show that:

Theorem C. Let Z be wavefront real spherical space for which Hypothesis A
is valid. Assume also

• G is semisimple with no compact factors
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• Γ is arithmetic and irreducible

• ΓH = H ∩ Γ is co-compact in H .

• p > pH(Γ)

• k > rank(G/K)+1
2 dim(G/K) + 1

Then, there exists a constant C = C(p, k) > 0 such that

err(R,Γ) ≤ C|BR|−
1

(2k+1)p

for all R ≥ 1. Moreover, if Y = Γ\G is compact one can replace the third
condition by k > dim(G/K) + 1.

The existence of a non-quantitative error term for symmetric spaces was estab-
lished in [1] and improved in [14].
We note that in case of the hyperbolic plane our error term is still far from the
quality of the bound of A. Selberg. This is because we only use a weak version
of the trace formula, namely Weyl’s law, and use simple soft Sobolev bounds
between eigenfunctions on Y .

2 Reductive homogeneous spaces

In this section we review a few facts on reductive homogeneous spaces: the
Mostow decomposition, the associated geometric balls and their factorizations.
We use the convention that real Lie groups are denoted by upper case Latin
letters, e.g A,B,C, and their Lie algebras by the corresponding lower case
German letter a, b, c.
Throughout this paper G will denote an algebraic real reductive group and
H < G is an algebraic subgroup. We form the homogeneous space Z = G/H
and write z0 = H for the standard base point.
Furthermore, unless otherwise mentioned we assume that H is reductive in G,
that is, the adjoint representation of H on g is completely reducible. In this
case we say that G/H is of reductive type.
Let us fix a maximal compact subgroup K < G for which we assume that the
associated Cartan involution θ leaves H invariant (see the references to [21],
Lemma 2.1). Attached to θ is the infinitesimal Cartan decomposition g = k+ s
where s = k⊥ is the orthogonal complement with respect to a non-degenerate
invariant bilinear form κ on g which is positive definite on s (if g is semi-simple,
then we can take for κ the Cartan-Killing form). Further we set q := h⊥.

2.1 Mostow decomposition

We recall Mostow’s polar decomposition:

K ×H∩K q ∩ s→ Z, [k,X ] 7→ k exp(X) · z0 (2.1)
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which is a homeomorphism. With that we define

‖k exp(X) · z0‖Z = ‖X‖ := κ(X,X)
1
2

for k ∈ K and X ∈ q ∩ s.

2.2 Geometric balls

The problem of lattice counting in Z leads to a question of exhibiting natural
exhausting families of compact subsets. We use balls which are intrinsically
defined by the geometry of Z.
We define the intrinsic ball of radius R > 0 on Z by

BR := {z ∈ Z | ‖z‖Z < R} .
Write BGR for the intrinsic ball of Z = G, that is, if g = k exp(X) with k ∈ K
and X ∈ s, then we put ‖g‖G = ‖X‖ and define BGR accordingly.
Our first interest is the growth of the volume |BR| for R → ∞. We have the
following upper bound.

Lemma 2.1. There exists a constant c > 0 such that:

|BR+r| ≤ ecr|BR|
for all R ≥ 1, r ≥ 0.

Proof. Recall the integral formula
∫

Z

f(z) dz =

∫

K

∫

q∩s
f(k exp(X).z0)δ(X) dX dk, (2.2)

for f ∈ Cc(Z), where δ(Y ) is the Jacobian at (k, Y ) of the map (2.1). It is
independent of k because dz is invariant. Then

|BR| =
∫

X∈q∩s,‖X‖<R
δ(X) dX .

Hence it suffices to prove that there exists c > 0 such that
∫ R+r

0

δ(tX)tl−1 dt ≤ ecr
∫ R

0

δ(tX)tl−1 dt

for all X ∈ q ∩ s with ‖X‖ = 1. Here l = dim q ∩ s. Equivalently, the function

R 7→ e−cR
∫ R

0

δ(tX)tl−1 dt

is decreasing, or by differentiation,

δ(RX)Rl−1 ≤ c
∫ R

0

δ(tX)tl−1 dt

for all R. The latter inequality is established in [12, Lemma A.3] with c inde-
pendent of X .

Documenta Mathematica 21 (2016) 627–660
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Further we are interested how the volume behaves under distortion by elements
from G.

Lemma 2.2. For all r, R > 0 one has BGr BR ⊂ BR+r.

To prove the lemma we first record that:

Lemma 2.3. Let z = gH ∈ Z. Then ‖z‖Z = infh∈H ‖gh‖G.

Proof. It suffices to prove that ‖ exp(X)h‖G ≥ ‖X‖ for X ∈ q ∩ s, h ∈ H , and
by Cartan decomposition of H , we may assume h = exp(T ) with T ∈ h ∩ s.
Thus we have reduced to the statement that

‖ exp(X) exp(T )‖G ≥ ‖ exp(X)‖G

for X ⊥ T in s. In order to see this, we note that for each g ∈ G the norm ‖g‖G
is the length of the geodesic in K\G which joins the origin x0 to x0g. More
generally the geodesic between x0g1 and x0g2 has length ‖g2g−11 ‖G. Hence c =
‖ exp(X) exp(T )‖G is the distance from A = x0 exp(−T ) to B = x0 exp(X). As
X ⊥ T the points A and B form a right triangle with C = x0. The hypotenuse
has length c and the leg CB has length a = ‖ exp(X)‖. As the sectional
curvatures are non-positive we have a2 + b2 ≤ c2. In particular a ≤ c.

In particular, it follows that

‖gz‖Z ≤ ‖z‖Z + ‖g‖G (z ∈ Z, g ∈ G) (2.3)

and Lemma 2.2 follows.

Remark 2.4. Observe that the norm ‖ · ‖G on G depends on the chosen Cartan
decomposition θ. However, by applying (2.3) with Z = G one sees that the
norm obtained with a conjugate θ′ of θ will satisfy

‖g‖′G ≤ ‖g‖G + c, ‖g‖G ≤ ‖g‖′G + c′ (2.4)

for all g ∈ G with some constants c, c′ ≥ 0.

For the definition of ‖ · ‖Z we assumed that θ leaves H invariant. If instead we
use the identity in Lemma 2.3 as the definition of ‖ · ‖Z then this assumption
can be avoided. In any case, it follows that the norms on Z obtained from
two different Cartan involutions will satisfy similar inequalities as (2.4). The
corresponding families of balls are then also compatible,

BR ⊂ B′R+c, B′R ⊂ BR+c′ ,

for all R > 0.

Documenta Mathematica 21 (2016) 627–660



Lattice Counting on Real Spherical Spaces 635

2.3 Factorization

By a (reductive) factorization of Z = G/H we understand a homogeneous space
Z⋆ = G/H⋆ with H⋆ an algebraic subgroup of G such that

• H⋆ is reductive.

• H ⊂ H⋆.

A factorization is called compact if Z⋆ is compact, and co-compact if the fiber
space F := H⋆/H is compact. It is called proper if dimH < dimH⋆ < dimG.

Lemma 2.5. Let Z = G/H → Z⋆ = G/H⋆ be a factorization. Then the
following assertions are equivalent:

1. Z → Z⋆ is co-compact.

2. There exist a compact subgroup K⋆ < H⋆ such that K⋆H = H⋆.

3. There exists a compact subalgebra k⋆ < h⋆ such that h⋆ = k⋆ + h and
exp(k⋆) < H⋆ compact.

Proof. First (1) implies (2) by the Mostow decomposition of the reductive
homogeneous space H⋆/H . Clearly (2) implies (3) as the multiplication map
K⋆ × H → H⋆ needs to be submersive by Sard’s theorem. Finally, for (3)
implies (1) we observe that H⋆/H has finitely many components and exp(k⋆)H
is compact and open in there.

Let F → Z → Z⋆ be a factorization of Z. We write B⋆R and BFR for the intrinsic
balls in Z⋆ and F , respectively.
Lemma 2.6. We have B⋆R = BRH

⋆/H⋆ and BFR = BR ∩ F .
Proof. Follows from Lemma 2.3.

For a compactly supported bounded measurable function φ on Z we define the
fiberwise integral

φF (gH⋆) :=

∫

H⋆/H

φ(gh⋆) d(h⋆H)

and recall the integration formula
∫

Z

φ(gH) d(gH) =

∫

Z⋆
φF (gH⋆) d(gH⋆) (2.5)

under appropriate normalization of measures. Consider the characteristic func-
tion 1R of BR and note that its fiber average 1FR is supported in the compact
ball B⋆R. We say that the family of balls (BR)R>0 factorizes well to Z

⋆ provided
for all compact subsets Q ⊂ G

lim
R→∞

supg∈Q 1FR(gH
⋆)

|BR|
= 0 . (2.6)
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Observe that for all compact subsets Q there exists an R0 = R0(Q) > 0 such
that

sup
g∈Q

1FR(gH
⋆) ≤ |BFR+R0

|

by Lemma 2.2. Thus the balls BR factorize well provided

lim
R→∞

|BFR+R0
|

|BR|
= 0 . (2.7)

for all R0 > 0.

Remark 2.7. The condition that the balls BR factorize well is closely related
to the non-focusing condition (Definition 1.14 in [12]). Thus, in the case of
semi-simple connected H , the non-focusing condition of the intrinsic balls is
implied by the condition that they factorize well to all factorizations.

2.4 Basic factorizations

There is a special class of factorizations with which we are dealing with in the
sequel. ¿From now on we assume that g is semi-simple and write

g = g1 ⊕ . . .⊕ gm

for the decomposition into simple ideals. For a reductive subalgebra h < g and
a subset I ⊂ {1, . . . ,m} we define the reductive subalgebra

hI := h+ gI = h+
⊕

i∈I
gi . (2.8)

We say that the factorization is basic provided that h∗ = hI for some I. Finally
we call a factorization weakly basic if it is built from consecutive basic and co-
compact factorizations, that is, there exists a sequence

h⋆ = hk ⊃ · · · ⊃ h0 = h (2.9)

of reductive subalgebras such that for each i we have hi = (hi−1)I for some I
or hi/hi−1 is compact. The following lemma shows that in fact it suffices with
k ≤ 2.

Lemma 2.8. Let Z → Z⋆ be a weakly basic factorization. Then there exists
an intermediate factorization Z → Zb → Z⋆ such that Z → Zb is basic and
Zb → Z⋆ co-compact.

Proof. Let a sequence (2.9) of factorizations which are consecutively basic or
compact be given. We first observe that two consecutive basic factorizations
make up for a single basic factorization, and likewise two consecutive compact
factorizations yield a single compact factorization by Lemma 2.5. Hence it
suffices to prove that we can modify a string

hi+2 ⊃ hi+1 ⊃ hi
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with hi+2/hi+1 basic and hi+1/hi compact to

hi+2 ⊃ hi+1
b ⊃ hi

with hi+2/hi+1
b compact and hi+1

b /hi basic.
We have hi+2 = hi+1 + gI for some I, and by Lemma 2.5 that hi+1 = hi +
c with c compact. Then hi+1

b := hi + gI is a reductive subalgebra and a
basic factorization of hi. Furthermore hi+2 = hi+1

b + c. This establishes the
lemma

3 Wavefront real spherical spaces

We assume that Z is real spherical, i.e. a minimal parabolic subgroup P < G
has an open orbit on Z. It is no loss of generality to assume that PH ⊂ G is
open, or equivalently that g = h+ p.
If L is a real algebraic group, then we write Ln for the normal subgroup of L
which is generated by all unipotent element. In case L is reductive we observe
that ln is the sum of all non-compact simple ideals of l.
According to [20] there is a unique parabolic subgroupQ ⊃ P with the following
two properties:

• QH = PH .

• There is a Levi decomposition Q = LU with Ln ⊂ Q ∩H ⊂ L.

Following [20] we call Q a Z-adapted parabolic subgroup.
Having fixed L we let L = KLALNL be an Iwasawa decomposition of L. We
choose an Iwasawa decomposition G = KAN which inflates the one of L,
i.e. KL < K,AL = A and NL < N . Further we may assume that N is the
unipotent radical of the minimal parabolic P .

Remark 3.1. It should be noted that the assumption on the Cartan decom-
position θ, which was demanded in Section 2.2, may be overruled by the above
requirement to K. However, it follows from Remark 2.4 that the balls BR can
still be defined, and that the difference does not disturb the lattice counting
on Z.

Set AH := A ∩H and put AZ = A/AH . We recall that dimAZ is an invariant
of the real spherical space, called the real rank (see [20]).
In [18], Section 6, we defined the notion of wavefront for a real spherical space,
which we quickly recall. Attached to Z is a geometric invariant, the so-called
compression cone which is a closed and convex subcone a−Z of aZ . It is defined
as follows. Write Σu for the space of a-weights of the a-module u and let u
denote the corresponding sum of root spaces for −Σu. According to [20] there
exists a linear map

T : ⊕α∈Σu
g−α = u → l⊥H ⊕ u ⊂ ⊕β∈{0}∪Σu

gβ (3.1)

Documenta Mathematica 21 (2016) 627–660
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such that h = l∩h+{X+T (X) | X ∈ u}. Here l⊥H denotes the orthocomplement
of l ∩ h in l. For each pair α, β we denote by

Tα,β : g−α → gβ

the map obtained from T by restriction to g−α and projection to gβ . Then
T =

∑
α,β Tα,β and by definition

a−Z = {X ∈ a | (α+ β)(X) ≥ 0, ∀α, β with Tα,β 6= 0}.

It follows from (3.1) that α + β vanishes on aH if Tα,β 6= 0. Hence a−Z ⊂ aZ .
If one denotes by a− ⊂ a the closure of the negative Weyl chamber, then
a− + aH ⊂ a−Z and by definition Z is wavefront if

a− + aH = a−Z .

Let us mention that many real spherical spaces are wavefront; for example all
symmetric spaces and all Gross-Prasad type spaces Z = G×H/H with (G,H)
one of the following

(GLn+1(C),GLn(C)), (GLn+1(R),GLn(R)), (3.2)

(GLn+1(H),GLn(H)), (U(p+ 1, q),U(p, q)), (3.3)

(SO(n+ 1,C), SO(n,C)), (SO(p+ 1, q), SO(p, q)) . (3.4)

We recall from [18] the polar decomposition for real spherical spaces

Z = ΩA−ZF · z0 (3.5)

where

• Ω is a compact set of the type F ′K with F ′ ⊂ G a finite set.

• F ⊂ G is a finite set with the property that F · z0 = T · z0 ∩ Z where
T = exp(ia) and the intersection is taken in ZC = GC/HC.

3.1 Volume growth

Define ρQ ∈ a∗ by ρQ(X) = 1
2 tr(aduX), X ∈ a. It follows from the unimodu-

larity of Z and the local structure theorem that ρQ|aH = 0, i.e. ρQ ∈ a∗Z = a⊥H .

Lemma 3.2. Let Z = G/H be a wavefront real spherical space. Then

|BR| ≍ sup
X∈a

‖X‖≤R

e2ρQ(X) = sup
X∈a

−
Z

‖X‖≤R

e−2ρQ(X) . (3.6)

Here the expression f(R) ≍ g(R) signifies that the ratio f(R)
g(R) remains bounded

below and above as R tends to infinity.
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Proof. First note that the equality in (3.6) is immediate from the wavefront
assumption.
Let us first show the lower bound, i.e. there exists a C > 0 such that for all
R > 0 one has

|BR| ≥ C sup
X∈a

‖X‖≤R

e2ρQ(X) .

For that we recall the volume bound from [19], Prop. 4.2: for all compact
subsets B ⊂ G with non-empty interior there exists a constant C > 0 such that
volZ(Ba · z0) ≥ Ca2ρQ for all a ∈ A−Z . Together with the polar decomposition
(3.5) this gives us the lower bound.
As for the upper bound let

a−R := {X ∈ a− | ‖X‖ ≤ R} .

Observe that BR ⊂ B′R := KA−RK · z0. In the sequel it is convenient to realize
AZ as a subgroup of A (and not as quotient): we identify AZ with A⊥H ⊂ A.
The upper bound will follow if we can show that

|B′R| ≤ C sup
X∈a

‖X‖≤R

e2ρQ(X) (R > 0) .

for some constant C > 0. This in turn will follow from the argument for the
upper bound in the proof of Prop. 4.2 in [19]: in this proof we considered for
a ∈ A−Z the map

Φa : K × ΩA × Ξ→ G, (k, b,X) 7→ kb exp(Ad(a)X)

where ΩA ⊂ A is a compact neighborhood of 1 and Ξ ⊂ h is a compact neigh-
borhood of 0. It was shown that the Jacobian of Φa, that is

√
det(dΦadΦta), is

bounded by Ca−2ρQ . Now this bounds holds as well for the right K-distorted
map

Ψa : K × ΩA ×K × Ξ→ G, (k, b, k′, X) 7→ kb exp(Ad(ak′)X) .

The reason for that comes from an inspection of the proof; all what is needed is
the following fact: let d := dim h and consider the action of Ad(a) on V =

∧d
g.

Then for a ∈ A− we have

a−2ρ ≥ sup
v∈V,
‖v‖=1

〈Ad(a)v, v〉 .

We deduce an upper bound

volZ(KΩAaK · z0) ≤ Ca−2ρ . (3.7)

We need to improve that bound from ρ to ρQ on the right hand side of (3.7).
For that let WL be the Weyl group of the reductive pair (l, a). Note that ρQ =
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1
|WL|

∑
w∈WL

w · ρ. Further, the local structure theorem implies that Ln ⊂ H

and hence WL can be realized as a subgroup of WH∩K := NH∩K(a)/ZH∩K(a).
We choose ΩA to be invariant under NH∩K(a) and observe that a ∈ AZ is fixed
under WH∩K . Thus using the NH∩K(a)-symmetry in the a-variable we refine
(3.7) to

volZ(KΩAaK · z0) ≤ Ca−2ρQ .
The desired bound then follows.

Corollary 3.3. Let Z = G/H be a wavefront real spherical space of reductive
type. Let Z → Z⋆ be a basic factorization such that Z⋆ is not compact. Then
the geometric balls BR factorize well to Z⋆.

Proof. As Z → Z⋆ is basic we may assume (ignoring connected components)
that H⋆ = GIH for some I. Note that F = H⋆/H ≃ GI/GI ∩ H is real
spherical.
LetQ be the Z-adapted parabolic subgroup attached to P . Let PI = P∩GI and
GI ⊃ QI ⊃ PI be the F -adapted parabolic above PI and note thatQI = Q∩GI .
With Lemma 3.2 we then get

|BFR | ≍ sup
X∈aI

‖X‖≤R

e2ρQI (X) ,

which we are going to compare with (3.6).
Let uI be the Lie algebra of the unipotent radical of QI . Note that uI ⊂ u
and that this inclusion is strict since G/H⋆ is not compact. The corollary now
follows from (2.7).

3.2 Property I

We briefly recall some results from [19].
Let (π,Hπ) be a unitary irreducible representation of G. We denote by H∞π the
G-Fréchet module of smooth vectors and by H−∞π its strong dual. One calls
H−∞π the G-module of distribution vectors; it is a DNF-space with continuous
G-action.
Let η ∈ (H−∞π )H be an H-fixed element and Hη < G the stabilizer of η. Note
that H < Hη and set Zη := G/Hη. With regard to η and v ∈ H∞ we form the
generalized matrix-coefficient

mv,η(gH) := η(π(g−1)v) (g ∈ G)

which is a smooth function on Zη.
We recall the following facts from [19] Thm. 7.6 and Prop. 7.7:

Proposition 3.4. Let Z be a wavefront real spherical space of reductive type.
Then the following assertions hold:

1. Every generalized matrix coefficient mv,η as above is bounded.

Documenta Mathematica 21 (2016) 627–660



Lattice Counting on Real Spherical Spaces 641

2. Let H < H⋆ < G be a closed subgroup such that Z⋆ is unimodular. Then
Z⋆ is a weakly basic factorization.

3. Let (π,H) be a unitary irreducible representation of G and let η ∈
(H−∞π )H . Then:

(a) Z → Zη is a weakly basic factorization.

(b) Zη is unimodular and there exists 1 ≤ p < ∞ such that mv,η ∈
Lp(Zη) for all v ∈ H∞π .

The property of Z = G/H that (3b) is valid for all π and η as above is denoted
Property (I) in [19]. Note that (1) and (3b) together imply mv,η ∈ Lq(Zη) for
q > p. Assuming Property (I) we can then make the following notation.

Definition 3.5. Given π as above, define pH(π) as the smallest index ≥ 1
such that all K-finite generalized matrix coefficients mv,η with η ∈ (H−∞π )H

belong to Lp(Zη) for any p > pH(π).

Notice that mv,η belongs to Lp(Zη) for all K-finite vectors v once that this is
the case for some non-trivial such vector v, see [19] Lemma 7.2. For example,
this could be the trivial K-type, if it exists in π.
It follows from finite dimensionality of (H−∞π )H (see [23]) that pH(π) < ∞.
We say that π is H-tempered if pH(π) = 2.
The representation π is said to be H-distinguished if (H−∞π )H 6= {0}. Note
that if π is not H-distinguished then pH(π) = 1.

4 Lattice point counting: setup

Let G/H be a real algebraic homogeneous space. We further assume that we
are given a lattice (a discrete subgroup with finite covolume) Γ ⊂ G, such that
ΓH := Γ∩H is a lattice in H . We normalize Haar measures on G and H such
that:

• vol(G/Γ) = 1.

• vol(H/ΓH) = 1.

Our concern is with the double fibration

G/ΓH

yyrrrrrrrrrr

%%KKKKKKKKKK

Z := G/H Y := G/Γ

Fibre-wise integration yields transfer maps from functions on Z to functions
on Y and vice versa. In more precision,

L∞(Y )→ L∞(Z), φ 7→ φH ; φH(gH) :=

∫

H/ΓH

φ(ghΓ) d(hΓH) (4.1)
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and we record that this map is contractive, i.e

‖φH‖∞ ≤ ‖φ‖∞ (φ ∈ L∞(Y )) . (4.2)

Likewise we have

L1(Z)→ L1(Y ), f 7→ fΓ; fΓ(gΓ) :=
∑

γ∈Γ/ΓH
f(gγH) , (4.3)

which is contractive, i.e

‖fΓ‖1 ≤ ‖f‖1 (f ∈ L1(Z)) . (4.4)

Unfolding with respect to the double fibration yields, in view of our normaliza-
tion of measures, the following adjointness relation:

〈fΓ, φ〉L2(Y ) = 〈f, φH〉L2(Z) (4.5)

for all φ ∈ L∞(Y ) and f ∈ L1(Z). Let us note that (4.5) applied to |f | and
φ = 1Y readily yields (4.4).
We write 1R ∈ L1(Z) for the characteristic function of BR and deduce from
the definitions and (4.5):

• 1Γ
R(eΓ) = NR(Γ, Z) := #{γ ∈ Γ/ΓH | γ · z0 ∈ BR}.

• ‖1Γ
R‖L1(G/Γ) = |BR|.

4.1 Weak asymptotics

In the above setup, G/H need not be of reductive type, but we shall assume
this again from now on. For spaces with property (I) and Y compact we prove
analytically in the following section that

NR(Γ, Z) ∼ |BR| (R→∞) . (MT)

For that we will use the following result of [21]:

Theorem 4.1. Let Z = G/H be of reductive type. The smooth vectors for the
regular representation of G on Lp(Z) vanish at infinity, for all 1 ≤ p <∞.

With notation from (4.3) we set

FΓ
R :=

1

|BR|
1Γ
R.

We shall concentrate on verifying the following limit of weak type:

〈FΓ
R , φ〉L2(Y ) →

∫

Y

φ̄ dµY (R→∞), (∀φ ∈ C0(Y )) . (wMT)

Here C0 indicates functions vanishing at infinity.

Lemma 4.2. (wMT) ⇒ (MT).

Proof. As in [10] Lemma 2.3 this is deduced from Lemma 2.1 and Lemma
2.2.
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5 Main term counting

In this section we will establish main term counting under the mandate of
property (I) and Y being compact. Let us call a family of balls (BR)R>0 well
factorizable if it factorizes well to all proper factorizations of type Z → Zη.

5.1 Main theorem on counting

Theorem 5.1. Let G be semi-simple and H a closed reductive subgroup. Sup-
pose that Y is compact and Z admits (I). If (BR)R>0 is well factorizable, then
(wMT) and (MT) hold.

Remark 5.2. In case Z = G/H is real spherical and wavefront, then Z has (I)
by Proposition 3.4. If we assume in addition that G has no compact factors
and that all proper factorizations are basic, then the family of geometric balls is
well factorizable by Corollary 3.3. In particular, Theorem A of the introduction
then follows from the above.

The proof is based on the following proposition. For a function space F(Y )
consisting of integrable functions on Y we denote by F(Y )van the subspace of
functions with vanishing integral over Y .

Proposition 5.3. Let Z = G/H be of reductive type. Assume that there exists
a dense subspace A(Y ) ⊂ Cb(Y )Kvan such that

φH ∈ C0(Z) for all φ ∈ A(Y ) . (5.1)

Then (wMT) holds true.

Proof. We will establish (wMT) for φ ∈ Cb(Y ). As

Cb(Y ) = Cb(Y )van ⊕ C1Y ,

and (wMT) is trivial for φ a constant, it suffices to establish

〈FΓ
R , φ〉L2(Y ) → 0 (φ ∈ Cb(Y )van) . (5.2)

We will show (5.2) is valid for φ ∈ A(Y ). By density, as FΓ
R is K-invariant and

belongs to L1(Y ), this will finish the proof.
Let φ ∈ A(Y ) and let ǫ > 0. By the unfolding identity (4.5) we have

〈FΓ
R , φ〉L2(Y ) =

1

|BR|
〈1R, φH〉L2(Z). (5.3)

Using (5.1) we choose Kǫ ⊂ Z compact such that |φH(z)| < ǫ outside of Kǫ.
Then

1

|BR|
〈1R, φH〉L2(Z) =

∫

Kǫ

+

∫

Z−Kǫ

1R(z)

|BR|
φH(z) dµZ(z) .

By (4.2), the first term is bounded by |Kǫ|||φ||∞|BR| , which is ≤ ǫ for R sufficiently

large. As the second term is bounded by ǫ for all R, we obtain (5.2). Hence
(wMT) holds.

Documenta Mathematica 21 (2016) 627–660
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Remark 5.4. It is possible to replace (5.1) by a weaker requirement: Suppose
that an algebraic sum

A(Y ) =
∑

j∈J
A(Y )j (5.4)

is given together with a factorization Z⋆j = G/H⋆
j for each j ∈ J . Suppose that

the balls BR all factorize well to Z⋆j , j ∈ J . Suppose further that φH factorizes
to a function

φH
⋆
j ∈ C0(Z

⋆
j ) (5.5)

for all φ ∈ A(Y )j and all j ∈ J . Then the conclusion in Proposition 5.3 is still
valid. In fact, using (2.5) the last part of the proof modifies to:

1

|BR|
〈1R, φH〉L2(Z) =

1

|BR|
〈1FR , φH

⋆
j 〉L2(Z⋆j )

=

=

∫

K⋆
ǫ

+

∫

Z⋆j−K⋆
ǫ

1FR(z)
|BR|

φH
⋆
j (z) dµZ⋆j (z)

for φ ∈ A(Y )j . As ‖1FR‖L1(Z⋆j )
= |BR|, the second term is bounded by ǫ for all

R. As the balls factorize well to Z⋆j we get the first term as small as we wish
with (2.6).

5.2 The space A(Y )

We now construct a specific subspace A(Y ) ⊂ Cb(Y )Kvan and verify condition
(5.5).

Denote by Ĝs ⊂ Ĝ the K-spherical unitary dual.
As Y is compact, the abstract Plancherel-theorem implies:

L2(G/Γ)K ≃
⊕

π∈Ĝs

(H−∞π )Γ.

If we denote the Fourier transform by f 7→ f∧ then the corresponding inversion
formula is given by

f =
∑

π

avπ,f∧(π). (5.6)

Here avπ,f∧(π) denotes a matrix coefficient for Y with vπ ∈ Hπ normalized
K-fixed and f∧(π) ∈ (H−∞π )Γ, and the sum in (5.6) is required to include
multiplicities. The matrix coefficients for Y are defined as in (1.2), that is

av,ν(y) = ν(g−1 · v) (y = gH ∈ Y ) . (5.7)

for v ∈ Hπ and ν ∈ (H−∞π )Γ.
Note that L2(Y ) = L2(Y )van ⊕ C · 1Y . We define A(Y ) ⊂ L2(Y )Kvan to be the
dense subspace of functions with finite Fourier support, that is,

A(Y ) = span{av,ν | π ∈ Ĝs non-trivial, v ∈ HKπ , ν ∈ (H−∞π )Γ}.
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Then A(Y ) ⊂ L2(Y )K,∞van is dense and since C∞(Y ) and L2(Y )∞ are topologi-
cally isomorphic, it follows that A(Y ) is dense in C(Y )Kvan as required.
The following lemma together with Remark 5.4 immediately implies Theorem
5.1.

Lemma 5.5. Assume that Y is compact and Z has (I), and define A(Y ) as
above. Then there exists a decomposition of A(Y ) satisfying (5.4)-(5.5).

Proof. The map φ 7→ φH from (4.1) corresponds on the spectral side to a map
(H−∞π )Γ → (H−∞π )H , which can be constructed as follows.

As H/ΓH is compact, we can define for each π ∈ Ĝs

Λπ : (H−∞π )Γ → (H−∞π )H , Λπ(ν) =

∫

H/ΓH

ν ◦ π(h−1) d(hΓH) (5.8)

by H−∞π -valued integration: the defining integral is understood as integration
over a compact fundamental domain F ⊂ H with respect to the Haar measure
on H ; as the integrand is continuous and H−∞π is a complete locally convex
space, the integral converges in H−∞π . It follows from (5.8) that (av,ν)

H =
mv,Λπ(ν) for all v ∈ H∞π and ν ∈ (H−∞π )Γ.
Let J denote the set of all factorizations Z⋆ → Z, including also Z⋆ = Z which
we give the index j0 ∈ J . For j ∈ J we define A(Y )j ⊂ A(Y ) accordingly to
be spanned by the matrix coefficients av,ν for which HΛπ(ν) = H⋆

j . Then (5.4)
holds.
Let φ ∈ A(Y )j0 , then it follows from (5.6) that

φH =
∑

π 6=1

mvπ ,Λπ(φ∧(π)) . (5.9)

Note that Hη = H for each distribution vector η = Λπ(φ
∧(π)) in this sum, by

the definition of A(Y )j0 . As Z has property (I) the summand mvπ,Λπ(φ∧(π)) is
contained in Lp(G/H) for p > pH(π), and by [19], Lemma 7.2, this containment
is then valid for all K-finite generalized matrix coefficients mv,Λπ(φ∧(π)) of π.
Thus mvπ,Λπ(φ∧(π)) generates a Harish-Chandra module inside Lp(G/H). As
mvπ,Λπ(φ∧(π)) is K-finite, we conclude that it is a smooth vector. Hence φH ∈
Lp(G/H)∞, and in view of Theorem 4.1 we obtain (5.1).
The proof of (5.5) for φ ∈ A(Y )j for general j ∈ J is obtained by the same
reasoning, where one replaces H by H⋆

j in (5.8) and (5.9).

This concludes the proof of Theorem 5.1.

6 Lp-bounds for generalized matrix coefficients

¿From here on we assume that Z = G/H is wavefront and real spherical. Recall
that we assumed that G is semi-simple and that we wrote g = g1 ⊕ . . . ⊕ gm
for the decomposition of g into simple factors. It is no big loss of generality to
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assume that G = G1 × . . .×Gm splits accordingly. We will assume that from
now on.
Further we request that the lattice Γ < G is irreducible, that is, the projection
of Γ to any normal subgroup J ( G is dense in J .
Let π be an irreducible unitary representation of G. Then π = π1 ⊗ . . . ⊗ πm
with πj and irreducible unitary representation of Gj . We start with a simple
observation.

Lemma 6.1. Let (π,H) be an irreducible unitary representation of G and 0 6=
ν ∈ (H−∞)Γ. If one constituent πj of π is trivial, then π is trivial.

Proof. The element ν gives rise to a G-equivariant injection

H∞ →֒ C∞(Y ), v 7→ (gΓ 7→ ν(π(g−1)v)) . (6.1)

Say πj is trivial and let J :=
∏m

i=1
i6=j

Gi. Let ΓJ be the projection of Γ to J .

Then (6.1) gives rise to a J-equivariant injection H∞ →֒ C∞(J/ΓJ). As ΓJ is
dense in J , the assertion follows.

We assume from now on that the cycle H/ΓH ⊂ Y is compact. This technical
condition ensures that the vector valued average map (5.8) converges.

Lemma 6.2. Let (π,H) be a non-trivial irreducible unitary representation of G.
Let ν ∈ (H−∞π )Γ such that η := Λπ(ν) ∈ (H−∞π )H is non-zero. Then Hη/H is
compact.

Proof. Recall from Proposition 3.4 that Z → Zη is weakly basic, and from
Lemma 2.8 that then there exists H ⊂ Hb ⊂ Hη such that Hη/Hb is compact
and Z → Zb is basic. Hence hb = hI for some I. As π is irreducible it
infinitesimally embeds into C∞(Zη) and hence also to C∞(Zb) on which Gi
acts trivially for i ∈ I. It follows that πi is trivial for i ∈ I. Hence Lemma 6.1
implies I = ∅ and thus hb = h.

In the sequel we use the Plancherel theorem (see [15])

L2(G/Γ)K ≃
∫ ⊕

Ĝs

Vπ,Γ dµ(π) ,

where Vπ,Γ ⊂ (H−∞π )Γ is a finite dimensional subspace and of constant dimen-
sion on each connected component in the continuous spectrum (parametrization
by Eisenstein series), and where the Plancherel measure µ has support

ĜΓ,s := supp(µ) ⊂ Ĝs .

Given an irreducible lattice Γ ⊂ G we define (cf. Definition 3.5)

pH(Γ) := sup{pH(π) : π ∈ ĜΓ,s} (6.2)

and record the following.
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Lemma 6.3. Assume that G = G1 × . . . × Gm with all gi simple and non-
compact. Then pH(Γ) <∞.

Proof. For a unitary representation (π,H) and vectors v, w ∈ H we form the
matrix coefficient πv,w(g) := 〈π(g)v, w〉. We first claim that there exists a

p < ∞ (in general depending on Γ) such that for all non-trivial π ∈ ĜΓ,s one
has πv,w ∈ Lp(G) for all K-finite vectors v, w. In case G has property (T) this
follows (independently of Γ) from [7]. The remaining cases contain at least one
factor Gi of SOe(n, 1) or SU(n, 1) (up to covering) and have no compact factors
by assumption. They are treated in [6].
The claim can be interpreted geometrically via the leading exponent ΛV ∈ a∗

which is attached to the Harish-Chandra module of H (see [19], Section 6).
The lemma now follows from Prop. 4.2 and Thm. 6.3 in [19] (see the proof of
Thm. 7.6 in [19] how these two facts combine to result in integrability).

Let 1 ≤ p <∞. Let us say that a subset Λ ⊂ Ĝs is Lp-bounded provided that
mv,η ∈ Lp(Zη) for all π ∈ Λ and v ∈ H∞π , η ∈ (H−∞π )H . By definition we thus

have that ĜΓ,s is Lp-bounded for p > pH(Γ).
In this section we work under the following:

Hypothesis A: For every 1 ≤ p < ∞ and every Lp-bounded subset Λ ⊂ Ĝs
there exists a compact subset Ω ⊂ G and constants c, C > 0 such that the
following assertions hold for all π ∈ Λ, η ∈ (H−∞π )H and v ∈ HKπ :

‖mv,η‖Lp(Zη) ≤ C‖mv,η‖∞ , (A1)

‖mv,η‖∞ ≤ c‖mv,η‖∞,Ωη (A2)

where Ωη = ΩHη/Hη. Here ‖ · ‖∞,ω denotes the supremum norm taken on the
subset ω.

In the sequel we are only interested in the following choice of subset Λ ⊂ Ĝs,
namely

Λ := {π ∈ ĜΓ,s | Λπ(ν) 6= 0 for some ν ∈ Vπ,Γ} . (6.3)

An immediate consequence of Hypothesis A is:

Lemma 6.4. Assume that p > pH(Γ). Then there is a C > 0 such that for all

π ∈ ĜΓ,s, v ∈ HKπ , ν ∈ (H−∞π )Γ and η := Λπ(ν) ∈ (H−∞π )H one has

‖φHπ ‖Lp(Zη) ≤ C‖φπ‖∞

where φπ(gΓ) := ν(π(g−1)v).

Proof. Recall from (4.2), that integration is a bounded operator from L∞(Y )→
L∞(Z). Hence the assertion follows from (A1).
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Recall the Cartan-Killing form κ on g = k+ s and choose a basis X1, . . . , Xl of
k and X ′1, . . . , X

′
s of s such that κ(Xi, Xj) = −δij and κ(X ′i, X

′
j) = δij . With

that data we form the standard Casimir element

C := −
l∑

j=1

X2
j +

s∑

j=1

(X ′j)
2 ∈ U(g) .

Set ∆K :=
∑l

j=1 X2
j ∈ U(k) and obtain the commonly used Laplace element

∆ = C + 2∆K ∈ U(g) (6.4)

which acts on Y = G/Γ from the left.
Let d ∈ N. For 1 ≤ p ≤ ∞, it follows from [2], Section 3, that Sobolev norms
on Lp(Y )∞ ⊂ C∞(Y ) can be defined by

||f ||2p,2d =
d∑

j=0

||∆jf ||2p .

Basic spectral theory allows one to define ‖ · ‖p,d more generally for any d ≥ 0.
Let us define

s := dim s = dimG/K = dimΓ\G/K
and

r := dim a = rankR(G/K) ,

where a ⊂ s is maximal abelian.
We denote by Cb(Y ) the space of continuous bounded functions on Y and by
Cb(Y )van the subspace with vanishing integral.

Proposition 6.5. Assume that

1. Z is a wavefront real spherical space,

2. G = G1 × . . .×Gm with all gi simple and non-compact.

3. Γ < G is irreducible and YH is compact,

4. Hypothesis A is valid.

Let p > pH(Γ). Then the map

AvH : C∞b (Y )Kvan → Lp(Z)K ; AvH(φ) = φH

is continuous. More precisely, for all

1. k > s+ 1 if Y is compact.

2. k > r+1
2 s+ 1 if Y is non-compact and Γ is arithmetic
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there exists a constant C = C(p, k) > 0 such that

‖φH‖Lp(Z) ≤ C‖φ‖∞,k (φ ∈ C∞b (Y )Kvan)

Proof. For all π ∈ Ĝ the operator dπ(C) acts as a scalar λπ and we set

|π| := |λπ | ≥ 0 .

Let φ ∈ C∞b (Y )Kvan and write φ = φd +φc for its decomposition in discrete and
continuous Plancherel parts. We assume first that φ = φd.
In case Y is compact we have Weyl’s law: There is a constant cY > 0 such that

∑

|π|≤R
m(π) ∼ cY Rs/2 (R→∞) .

Here m(π) = dimVπ,Γ. We conclude that

∑

π

m(π)(1 + |π|)−k <∞ (6.5)

for all k > s/2 + 1. In case Y is non-compact, we let Ĝµ,d be the the discrete
support of the Plancherel measure. Then assuming Γ is arithmetic, the upper
bound in [16] reads:

∑

π∈Ĝµ,d
|π|≤R

m(π) ≤ cYRrs/2 (R > 0) .

For k > rs/2 + 1 we obtain (6.5) as before.
Let p > pH(Γ). As φ is in the discrete spectrum we decompose it as φ =

∑
π φπ

and obtain by Lemmas 6.2 and 6.4

‖φH‖p ≤
∑

π

‖φHπ ‖p ≤ C
∑

π

‖φπ‖∞ .

The last sum we estimate as follows:
∑

π

‖φπ‖∞ =
∑

π

(1 + |π|)−k/2(1 + |π|)k/2‖φπ‖∞

≤ C
∑

π

(1 + |π|)−k/2‖φπ‖∞,k

with C > 0 a constant depending only on k (we allow universal positive con-
stants to change from line to line). Applying the Cauchy-Schwartz inequality
combined with (6.5) we obtain

‖φH‖p ≤ C
(∑

π

‖φπ‖2∞,k
) 1

2
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with C > 0. With Hypothesis (A2) we get the further improvement:

‖φH‖p ≤ C
(∑

π

‖φπ‖2Ω,∞,k
) 1

2

where the Sobolev norm is taken only over the compact set Ω.
To finish the proof we apply the Sobolev lemma on K\G. Here Sobolev norms
are defined by the central operator C, whose action agrees with the left action of
∆. It follows that ‖f‖∞,Ω ≤ C‖f‖2,k1,Ω with k1 >

s
2 for K-invariant functions

f on G. This gives

‖φH‖p ≤ C(
∑

π

||φπ ||2Ω,2,k+k1)
1
2 = C||φ||Ω,2,k+k1 ≤ C||φ||∞,k+k1

which proves the proposition for the discrete spectrum.
If φ = φc belongs to the continuous spectrum, where multiplicities are bounded
(see [15]), the proof is simpler. Let µc be the restriction of the Plancherel
measure to the continuous spectrum. As this is just Euclidean measure on
r-dimensional space we have

∫

Ĝs

(1 + |π|)−k dµc(π) <∞ (6.6)

if k > r/2. We assume for simplicity in what follows that m(π) = 1 for almost
all π ∈ suppµc. As supπ∈suppµc m(π) < ∞ the proof is easily adapted to the
general case.
Let

φ =

∫

Ĝs

φπ dµc(π).

As ‖φH‖∞ ≤ ‖φ‖∞ we conclude with Lemma 6.4, (6.6) and Fubini’s theorem
that

φH =

∫

Ĝs

φHπ dµc(π)

and, by the similar chain of inequalities as in the discrete case

‖φH‖p ≤ C‖φ‖∞,k+k1
with k > r

2 and k1 >
s
2 . This concludes the proof.

7 Error term estimates

Recall 1R, the characteristic function of BR. The first error term for the lattice
counting problem can be expressed by

err(R,Γ) := sup
φ∈Cb(Y )

‖φ‖∞≤1

|
〈

1Γ
R

|BR|
− 1Y , φ

〉
| (R > 0),
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and our goal is to give an upper bound for err(R,Γ) as a function of R.
According to the decomposition Cb(Y ) = Cb(Y )van⊕C1Y we decompose func-
tions as φ = φo + φ1 and obtain

err(R,Γ) = sup
φ∈Cb(Y )

‖φ‖∞≤1

|〈1Γ
R, φo〉|
|BR|

= sup
φ∈Cb(Y )

‖φ‖∞≤1

|〈1R, φHo 〉|
|BR|

.

Further, from ‖φo‖∞ ≤ 2‖φ‖∞ we obtain that err(R,Γ) ≤ 2 err1(R,Γ) with

err1(R,Γ) := sup
φ∈Cb(Y )van

‖φ‖∞≤1

|〈1Γ
R, φ〉|
|BR|

= sup
φ∈Cb(Y )van

‖φ‖∞≤1

|〈1R, φH〉|
|BR|

.

7.1 Smooth versus non-smooth counting

Like in the classical Gauss circle problem one obtains much better estimates
for the remainder term if one uses a smooth cutoff. Let α ∈ C∞c (G) be a
non-negative test function with normalized integral. Set 1R,α := α ∗ 1R and
define

errα(R,Γ) := sup
φ∈Cb(Y )Ko
‖φ‖∞≤1

|〈1Γ
R,α, φ〉|
|BR|

= sup
φ∈Cb(Y )Ko
‖φ‖∞≤1

|〈1R,α, φH〉|
|BR|

.

Lemma 7.1. Let k > s + 1 if Y is compact and k > r+1
2 s + 1 otherwise. Let

p > pH(Γ) and q be such that 1
p + 1

q = 1. Then there exists C > 0 such that

errα(R,Γ) ≤ C‖α‖1,k|BR|−
1
p (7.1)

for all R ≥ 1 and all α ∈ C∞c (G).

Proof. First note that

〈1R,α, φH〉 = 〈1R,α, (−1+∆)k/2(−1+∆)−k/2φH〉 .

With ψ = (−1+∆)−k/2φ we have ‖ψ‖∞,k ≤ C‖φ‖∞ for some C > 0. We thus
obtain

errα(R,Γ) ≤ C sup
ψ∈Cb(Y )Ko
‖ψ‖∞,k≤1

|〈1R,α, (−1+∆)k/2ψH〉|
|BR|

≤ C

|BR|
sup

ψ∈Cb(Y )Ko
‖ψ‖∞,k≤1

|〈1R,α, (−1+∆)k/2ψH〉|

Moving (−1 + ∆)k/2 to the other side we get with Hölder’s inequality and
Proposition 6.5 that

errα(R,Γ) ≤
C

|BR|
‖(−1+∆)k/2α ∗ 1R||q .
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Finally,
‖(−1+∆)k/2α ∗ 1R‖q ≤ C‖α‖1,k‖1R‖q

and with ‖1R‖q = |BR|
1
q , the lemma follows.

Remark 7.2. In the literature results are sometimes stated not with respect to
err(R,Γ) but the pointwise error term errpt(R,Γ) = |1Γ

R(1) − |BR||. Likewise
we define errpt,α(R,Γ). Let BY be a compact neighborhood of 1Γ ∈ Y and
note that

errpt,α(R,Γ) ≤ |BR| sup
φ∈L1(BY )

‖φ‖1≤1

|〈
1Γ
R,α

|BR|
− 1Y , φ〉| (R > 0).

The Sobolev estimate ‖φ‖∞ ≤ C‖φ‖1,k, for K-invariant functions φ on BY and
with k = dimY/K the Sobolev shift, then relates these error terms:

errpt,α(R,Γ) ≤ |BR| sup
φ∈C∞

b
(Y )

‖φ‖∞,−k≤1

|〈 1Γ
R

|BR|
− 1Y , φ〉| .

We then obtain

errpt,α(R,Γ) ≤ C|BR|1−
1
p (R > 0)

in view of (7.1).

We return to the error bound in Lemma 7.1 and would like to compare
err1(R,Γ) with errα(R,Γ). For that we note (by the triangle inequality) that

| err1(R,Γ)− errα(R,Γ)| ≤ sup
φ∈Cb(Y )Ko
‖φ‖∞≤1

|〈1Γ
R,α − 1Γ

R, φ〉|
|BR|

.

Suppose that suppα ⊂ BGǫ for some ǫ > 0. Then Lemma 2.2 implies that 1R,α
is supported in BR+ǫ, and hence

|〈1Γ
R,α − 1Γ

R, φ〉| ≤ ‖1Γ
R,α − 1Γ

R‖1
≤ ‖1R,α − 1R‖1
≤ |BR+ǫ|

1
2 ‖1R,α − 1R‖2

≤ |BR+ǫ|
1
2 |BR+ǫ\BR|

1
2 .

With Lemma 2.1 we get

|BR+ǫ\BR| ≤ Cǫ|BR| (R ≥ 1, ǫ < 1) .

Thus we obtain that

| err1(R,Γ)− errα(R,Γ)| ≤ Cǫ
1
2 .
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Combining this with the estimate in Lemma 7.1 we arrive at the existence of
C > 0 such that

err1(R,Γ) ≤ C(ǫ−k|BR|−
1
p + ǫ

1
2 )

for all R ≥ 1 and all 0 < ǫ < 1. The minimum of the function ǫ 7→ ǫ−kc+ ǫ1/2

is attained at ǫ = (2kc)
2

2k+1 and thus we get:

Theorem 7.3. Under the assumptions of Proposition 6.5 the first error term
err(R,Γ) for the lattice counting problem on Z = G/H can be estimated as
follows: for all p > pH(Γ) and k > s + 1 for Y compact, resp. k > r+1

2 s + 1
otherwise, there exists a constant C = C(p, k) > 0 such that

err(R,Γ) ≤ C|BR|−
1

(2k+1)p

for all R ≥ 1.

Remark 7.4. The point where we lose essential information is in the estimate
(6.5) where we used Weyl’s law. In the moment pointwise multiplicity bounds
are available the estimate would improve. To compare the results with Selberg
on the hyperbolic disc, let us assume that pH(Γ) = 2. Then with r = 1 and

s = 2 our bound is err(R,Γ) ≤ Cǫ|BR|−
1
14+ǫ while Selberg showed err(R,Γ) ≤

Cǫ|BR|− 1
3+ǫ.

8 Triple spaces

In this section we verify our Hypothesis A for triple space Z = G/H where
G = G′ ×G′ ×G′, H = diag(G′) and G′ = SOe(1, n) for some n ≥ 2. Observe
that SOe(1, 2) ∼= PSl(2,R). We take K ′ := SO(n,R) < G′ as a maximal
compact subgroup and set K := K ′×K ′×K ′. Further we set s := s′× s′× s′.
A maximal abelian subspace a ⊂ s is then of the form

a = a′1 × a′2 × a′3

with a′i ⊂ s′ one dimensional subspaces. We recall the following result from [8].

Proposition 8.1. For the triple space the following assertion hold true:

1. G = KAH if and only if dim(a′1 + a′2 + a′3) = 2.

2. Suppose that all a′i are pairwise distinct. Then one has PH is open for
all minimal parabolics P with Langlands-decomposition P = MPAPNP
and AP = A.

We say that the choice of A is generic if all a′i are distinct and dim(a′1+a′2+a′3) =
2.
The invariant measure dz on Z can then be estimated as

∫

Z

f(z) dz ≤
∫

K

∫

A

f(ka · z0)J(a) da dk (f ∈ Cc(Z), f ≥ 0)
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with

J(a) = sup
w∈W

a2wρ (8.1)

by Lemma 3.2. Note that in this case the Weyl group W is just {±1}3.

8.1 Proof of the Hypothesis A

We first note that for all π ∈ Ĝs the space of H-invariants

(H−∞π )H = CI .

is one-dimensional, see [5], Thm. 3.1.
Write π = π1⊗π2⊗π3 with each factor a K ′-spherical unitary irreducible rep-
resentation of G′. If we assume that π 6= 1 has non-trivial H-fixed distribution
vectors, then at least two of the factors πi are non-trivial.
Let vi be normalizedK ′-fixed vectors of πi and set v = v1⊗v2⊗v3. Since Z is a
multiplicity one space, the functional I ∈ (H−∞π )H is unique up to scalars. Our
concern is to obtain uniform Lp-bounds for the generalized matrix coefficients
fπ := mv,I :

fπ(g1, g2, g3) := I(π1(g1)
−1v1 ⊗ π2(g2)−1v2 ⊗ π3(g3)−1v3) ,

when π belongs to the set Λ of (6.3).
We decompose Λ = Λ0 ∪ Λ1 ∪ {1} with Λ0 ⊂ Λ the set of π ∈ Λ with all πi
non-trivial, and Λ1 the set of π’s with exactly one πi to be trivial.
Consider first the case where π ∈ Λ1, i.e. one πi is trivial, say π3. Then
π2 = π∗1 . We identify Z ≃ G′ ×G′ via (g, h) 7→ (1, g, h)H and obtain

fπ(g, h) = 〈π1(g)v1, v1〉 ,

a spherical function. Note that Zη ≃ G′ and Hypothesis A follows from
standard properties about K ′-spherical functions on G′. To be more spe-
cific let G′ = N ′A′K ′ be an Iwasawa-decomposition with middle-projection
a : G′ → A′, then

fπ(g, h) = ϕλ1(g) :=

∫

K′

a(k′g)λ1−ρ′ dk′ .

We use Harish-Chandra’s estimates |ϕν(a)| ≤ aνϕ0(a) and ϕ0(a) ≤ Ca−ρ(1 +
| log a|)d for a ∈ A′ in positive chamber. The condition of π ∈ Λ1 implies that
ρ−Reλ1 > 0 is bounded away from zero and Hypothesis A follows in this case.
Suppose now that π ∈ Λ0, i.e. all πi are non-trivial.
For a simplified exposition we assume that n = 2, i.e. G′ = PSl(2,R), and
comment at the end for the general case. Then πi = πλi are principal series
for some λi ∈ iR+ ∪ [0, 1) with H∞πi = C∞(S1) in the compact realization. Set
λ = (λ1, λ2, λ3) and set π = πλ.
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In order to analyze fπ we use G = KAH and thus assume that g = a =
(a1, a2, a3) ∈ A. We work in the compact model of Hπi = L2(S1) and use the
explicit model for I in [3]: for h1, h2, h3 smooth functions on the circle one has

I(h1 ⊗ h2 ⊗ h3) =
1

(2π)3

∫ 2π

0

∫ 2π

0

∫ 2π

0

h1(θ1)h2(θ2)h3(θ3)·

· K(θ1, θ2, θ3) dθ1dθ2dθ3 ,

where

K(θ1, θ2, θ3) = | sin(θ2 − θ3)|(α−1)/2| sin(θ1 − θ3)|(β−1)/2| sin(θ1 − θ2)|(γ−1)/2 .

In this formula one has α = λ1−λ2−λ3, β = −λ1+λ2−λ3 and γ = −λ1−λ2+λ3
where λi ∈ iR ∪ (−1, 1) are the standard representation parameters of πi.
According to to [5], Cor. 2.1, the kernel K is absolutely integrable.
Set

A′ :=
{
at :=

(
t 0
0 1

t

)
| t > 0

}
< G′

Then A′i = kφiA
′k−1φi with φi ∈ [0, 2π] and

kφ =

(
cosφ − sinφ
sinφ cosφ

)
.

Set at,i = kφiatk
−1
φi

.
Returning to our analysis of fπ we now take hi(ti, θi) = [π1(ati,i)vi](θi) and
remark that

hi(ti, θi) =
1

(t2i + sin2(θi − φi)( 1
t2i
− t2i ))

1
2 (1+λi)

.

Let us set |π| := πRe λ1 ⊗ πReλ2 ⊗ πReλ3 . Our formulas then show

|fπ(a)| ≤ f|π|(a) (a ∈ A) . (8.2)

Let ci := 1−|Reλi| for i = 1, 2, 3. The fundamental estimate in [22], Thm. 3.2,
then yields a constant d, independent of π, and a constant C = C(π) > 0 such
that for a = (at1,1, at2,2, at3,3) one has

|fπ(a)| ≤ C
(1 + | log t1|+ | log t2|+ | log t3|)d

[cosh log t1]c1 · [cosh log t2]c2 · [cosh log t3]c3
. (8.3)

In view of (8.2) the constant C(π) can be assumed to depend only on the dis-
tance of Reλi to the trivial representation. Looking at the integral representa-
tion of fπ with the kernel K we deduce a lower bound without the logarithmic
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factor, i.e. the bound is essentially sharp. Hence (8.1) together with the fact
that all fπ for π ∈ Λ0 are in Lp(Z) for some p <∞ implies that

inf
π∈Λ0

ci(π) > 0 . (8.4)

We now claim
sup
π∈Λ0

‖fπ‖p <∞ , (8.5)

and
sup
π∈Λ0

‖fπ‖∞ <∞ . (8.6)

For 0 < ǫ < 1 set Λǫ,R = [0, 1 − ǫ] × [0, 1 − ǫ] × [0, 1 − ǫ] and Λǫ := ia∗ + Λǫ.
It follows from (8.4) that there exists an ǫ > 0 such that Λ0 ⊂ Λǫ. We
prove the stronger inequalities with Λ0 replaced by Λǫ. In view of (8.2)
and (8.3) we may replace by Λǫ by Λǫ,R. Let Eǫ be the eight element
set of extreme points of Λǫ,R. For fixed a = at and θ = (θ1, θ2, θ3) we
let Fλ(a, θ) = K(θ)h1(t1, θ1)h2(t2, θ2)h3(t3, θ3) and note that the assignment
Λǫ,R → R+, λ 7→ Fλ(a, θ) is convex. Therefore we get for all λ ∈ Λǫ that

fλ(a) ≤
∑

µ∈Eǫ
fµ(a) .

In view of (8.3) the inequalities (8.5) and (8.6) then follow.
On the other hand for g = 1 = (1,1,1), the value fπ(1) is obtained by applying
I to the constant function 1 = 1⊗1⊗1. This value has been computed explicitly
by Bernstein and Reznikov in [3] as

Γ((α + 1)/4)Γ((β + 1)/4)Γ((γ + 1)/4)Γ((δ + 1)/4)

Γ((1 − λ1)/2)Γ((1− λ2)/2)Γ((1− λ3)/2)
where α, β, γ are as before and δ = −λ1 − λ2 − λ3. Stirling approximation,

|Γ(σ + it)| = const.e−
π
2 |t||t|σ− 1

2

(
1 +O(|t|−1)

)

as |t| → ∞ and σ is bounded, yields a lower bound for fπ(1):

inf
π∈Λ0

|fπ(1)| > 0 . (8.7)

As ‖fπ‖∞ ≥ |fπ(1)| the assertion (A1) of Hypothesis A is readily obtained
from (8.5) and (8.7). Likewise (A2) with Ω = {1} follows from (8.6) and (8.7).
In general for G′ = SOe(1, n) one needs to compute the Bernstein-Reznikov
integral. This was accomplished in [9].

Theorem 8.2. Let Z = G′ × G′ × G′/ diag(G′) for G′ = SOe(1, n) and as-
sume that H/ΓH is compact. Then the first error term err(R,Γ) for the lattice
counting problem on Z = G/H can be estimated as follows: for all p > pH(Γ)
there exists a C = C(p) > 0 such that

err(R,Γ) ≤ C|BR|−
1

(6n+3)p

for all R ≥ 1.
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8.2 Cubic lattices

Here we let G0 = SOe(1, 2) with the quadratic Q form defining G0 having
integer coefficients and anisotropic over Q, for example

Q(x0, x1, x2) = 2x20 − 3x21 − x22 .

Then, according to Borel, Γ0 = G0(Z) is a uniform lattice in G0.

Next let k be a cubic Galois extension of Q. Note that k is totally real. An
example of k is the splitting field of the polynomial f(x) = x3+x2−2x−1. Let
σ be a generator of the Galois group of k|Q. Let Ok be the ring of algebraic
integers of k. We define Γ < G = G3

0 to be the image of G0(Ok) under the
embedding

G0(Ok) ∋ γ 7→ (γ, γσ, γσ
2

) ∈ G .

Then Γ < G is a uniform irreducible lattice with trace H ∩ Γ ≃ Γ0 a uniform
lattice in H ≃ G0.

9 Outlook

We discuss some topics of harmonic analysis on reductive homogeneous spaces
which are currently open and would have immediate applications to lattice
counting.

9.1 A conjecture which implies Hypothesis A

Hypothesis A falls in the context of a more general conjecture about the growth
behavior of families of Harish-Chandra modules.

We let Z = G/H be a real spherical space. Denote by A−Z ⊂ AZ the
compression cone of Z (see Section 3) and recall that wavefront means that
A−AH/AH = A−Z which, however, we do not assume for the moment.

We use V to denote Harish-Chandra modules for the pair (g,K) and V∞ for
their unique moderate growth smooth Fréchet globalizations. These V∞ are
global objects in the sense that they are G-modules whereas V is defined in
algebraic terms. We write V −∞ for the strong dual of V∞. We say that V is
H-distinguished provided that the space ofH-invariants (V −∞)H is non-trivial.

It is no big loss of generality to assume that A−Z is a sharp cone, as the edge
of this cone is in the normalizer of H and in particular acts on the finite
dimensional space of H-invariants.

As A−Z is pointed it is a fundamental domain for the little Weyl group and
as such a simplicial cone (see [17], Section 9). If a−Z = logA−Z , then we write
ω1, . . . , ωr for a set of generators (spherical co-roots) of a−Z .
Set Q := θ(Q) where θ is the Cartan involution determined by the choice of
K. Note that V/qV is a finite dimensional Q module, in particular a finite
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dimensional AZ-module. Let Λ1, . . . ,ΛN ∈ a∗Z be the aZ,C-weight spectrum.
Then we define the H-spherical exponent ΛV ∈ a∗Z of V by

ΛV (ωi) := max
1≤j≤N

ReΛj(ωi) .

Further attached to V is a “logarithmic” exponent d ∈ N. Having this data we
recall the main bound from [22]

|mv,η(a · z0)| / aΛV (1 + ‖ log a‖)dV (a ∈ A−Z ) .

Conjecture 9.1. Fix a K-type τ , a constant C > 0, and a compact subset
Ω ⊂ G. Then there exists a compact set ΩA ⊂ A−Z such that for all Harish-
Chandra modules V with ‖ΛV ‖ ≤ C, all v ∈ V [τ ] and all η ∈ (V −∞)H one
has

max
a∈A

−
Z

g∈Ω

|mv,η(ga · z0)|a−ΛV (1 + ‖ log a‖)−dV =

max
a∈ΩA
g∈Ω

|mv,η(ga · z0)|a−ΛV (1 + ‖ log a‖)−dV .

It is easily seen that this conjecture implies Hypothesis A if all the generalized
matrix coefficients mv,η are bounded, as for example it is the case when Z is
wavefront (see Proposition 3.4(1)).

Remark 9.2. It might well be that a slightly stronger conjecture is true. For
that we recall that a Harish-Chandra module V has a unique minimal globaliza-
tion, the analytic model V ω. The space V ω is an increasing union of subspaces
Vǫ for ǫ → 0. The parameter ǫ parametrizes left G-invariant neigborhoods
Ξǫ ⊂ GC of 1 which decrease with ǫ → 0. Further Vǫ consists of those vectors
v ∈ V ω for which the orbit map G→ V ω, g 7→ g · v extends to a holomorphic
map on Ξǫ. For fixed ǫ, C > 0 the strengthened conjecture would be that there
exists a compact subset ΩA such that for all Harish-Chandra modules V with
‖ΛV ‖ ≤ C and all v ∈ Vǫ one has

max
a∈A−

Z

|mv,η(a · z0)|a−ΛV (1 + ‖ log a‖)−dV =

max
a∈ΩA

|mv,η(a · z0)|a−ΛV (1 + ‖ log a‖)−dV .

Note that the compact set Ω is no longer needed, as Ω · Vǫ ⊂ Vǫ′ .

9.2 Spectral geometry of Zη

In the general context of a reductive real spherical space it may be possible
to establish both main term counting and the error term bound, with the
arguments presented here for wavefront spaces, provided the following two key
questions allow affirmative answers.
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In what follows Z = G/H is a real reductive spherical space and V denotes an
irreducible Harish-Chandra module and η ∈ (V −∞)H .

Question A: Is Hη reductive?

Question B: If for v ∈ V the generalized matrix coefficient mv,η is bounded,
then there exists a 1 ≤ p <∞ such that mv,η ∈ Lp(Zη).

In this context we note that issues related to the well-factorization of the intrin-
sic balls in affine spherical spaces can possibly be resolved with similar methods
to those applied here, using volume estimates as described in Theorem 7.17 of
[13].

Acknowledgement. We are grateful to an anonymous referee for valuable
comments that improved the presentation in the present version of the paper.
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[21] B. Krötz, E. Sayag and H. Schlichtkrull, Vanishing at infinity on homo-
geneous spaces of reductive type, arXiv: 1211.2781. Compositio Math., to
appear.

[22] —, Decay of matrix coefficients on reductive homogeneous space of spher-
ical type, Math. Z. 278 (2014), 229–249.
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0. Introduction

Let X be a smooth complex surface: a rational equivalence class of 0-cycles on
X is decomposable if it is the intersection of two divisor classes. Let DCH0(X) ⊂
CH0(X) be the subgroup generated by decomposable 0-cycles. Beaville and
Voisin [1] proved that if X is a K3 surface then DCH0(X) ∼= Z. What can be
said of the group DCH0(X) in general? An irregular surface X with non-zero

map
∧2

H0(Ω1
X)→ H0(Ω2

X) provides an example with group of decomposable
0-cycles that is not finitely generated, even after tensorization with Q. Let us
assume that X is a regular surface: then DCH0(X) is finitely generated because
CH1(X) is finitely generated, and we may ask for its rank. Blowing up regular
surfaces with non-zero geometric genus at (r− 1) very general points, one gets
examples of regular surfaces with DCH0(X) of rank at least r (see Example
1.3 b) of [2]). What about a less artificial class of surfaces, such as (smooth)
surfaces in P3? If the rank of DCH0(X) is to be larger than 1 then the rank
of CH1(X) must be larger than 1, but the latter condition is not sufficient,
for example curves on X whose canonical line-bundle is a (fractional) power of
the hyperplane bundle do not increase the rank of DCH0(X), see Subsection
1.2. The papers [13, 4] provide examples of smooth surfaces in P3 with Picard
group of large rank and generated by lines: it follows that the group spanned

1Partially supported by PRIN 2013, the Giorgio and Elena Petronio Fellowship Fund, the
Giorgio and Elena Petronio Fellowship Fund II, the Fund for Mathematics of the IAS
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by decomposable 0-cycles of such surfaces has rank 1. On the other hand Lie
Fu proved that there exist degree-8 surfaces X ⊂ P3 such that DCH0(X) has
rank at least 2, see 1.4 of [6]. In the present paper we will prove the result
below.

Theorem 0.1. There exist smooth surfaces X ⊂ P3 of degree d such that the
rank of DCH0(X) is at least ⌊d−13 ⌋.
In particular the rank of the group of decomposable 0-cycles of a smooth surface
in P3 can be arbitrarily large.
Let us explain the main ideas that go into the proof of Theorem 0.1. Let
C = C1 ∪ . . . ∪ Cn be the disjoint union of smooth irreducible curves Cj ⊂ P3.
Suppose that d ≫ 0, and that the curves Cj are not rationally canonical,
i.e. there exists e ∈ Z such that K⊗mCj

∼= OCj (e) only for m = 0; we prove that

for a very general smooth X ∈ |IC(d)|, the classes c1(OX(1))2, C1 ·C1, . . . , Cn ·
Cn in CH0(X) are linearly independent. We argue as follows. Assume that they
are not linearly independent for X very general; then there exists a non-zero
(a, r1, . . . , rn) ∈ Zn+1 such that

(0.1) ac1(OX(1))2 + r1c1(OX(C1))
2 + . . .+ rnc1(OX(Cn))

2 = 0

for all smooth X ∈ |IC(d)|. Now let π : W → P3 be the blow up of C, let
E be the exceptional divisor of π, and Ej be the component of E mapping
to Cj . Let Λ(d) := |π∗OP3(d)(−E)|, and let S ⊂ W × Λ(d) be the universal
surface parametrized by Λ(d). We let pW : S → W and pΛ(d) : S → Λ(d) be
the projection maps. There is a natural identification Λ(d) = |IC(d)|, and the
generic S ∈ Λ(d) is isomorphic to the corresponding X ∈ |IC(d)|. Since (0.1)
holds for all smooth X , an application of the spreading principle shows that
the class

(0.2) p∗W (aπ∗c1(O
3
P(1))

2+r1c1(OW (E1))
2+ . . .+rnc1(OW (En))

2) ∈ CH2(S )

is vertical, i.e. is represented by a linear combination of codimension-2 subvari-
eties Γi ⊂ S such that

(0.3) dim pΛ(d)(Γi) < dimΓi.

We prove that if the class in (0.2) is vertical, then 0 = a = r1 = . . . = rn. The
key result that one needs is a Noether-Lefschetz Theorem for surfaces belonging
to an integral codimension-1 closed subset A ∈ Λ(d). More precisely one needs
to prove that the following hold:

(1) If the generic S ∈ A is isomorphic to π(S) ⊂ P3, i.e. S contains no
fiber of π : W → P3 over C, then CH1(S) is generated (over Q) by
π∗c1(OP3(1))|S , c1(OS(E1)), . . . , c1(OS(En)).

(2) If the generic S ∈ A contains a fiber R of π : W → P3 overC, necessarily
unique by genericity of S, then CH1(S) is generated (over Q) by the
classes listed in Item (1), together with c1(OS(R)).

The reason why such a Noether-Lefschetz Theorem is needed is the following.
Let Γi ⊂ S be a codimension-2 subvariety such that (0.3) holds, and assume
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that the generic fiber of Γi → pΛ(d)(Γi) has dimension 1; then A := pΛ(d)(Γi)
is an integral closed codimension-1 subset of Λ(d), and the restriction of Γi to
the surface St parametrized by t ∈ A is a divisor on St. Thus we are lead to
prove the above Noether-Lefschetz result. There is a substantial literature on
Noether-Lefschetz, but we have not found a result taylor made for our needs.
A criterion of K. Joshi [9] is very efficient in disposing of “most” choices of a
codimension-1 closed subset A ∈ Λ(d). We deal with the remaining cases by
appealing to the Griffiths-Harris approach to Noether-Lefschetz [8], as further
developed by Lopez [12] and Brevik-Nollet [5].
The paper is organized as follows. In Section 1 we consider a smooth 3-
fold V with trivial Chow groups, an ample divisor H on V and surfaces in
the linear system |IC(H)|, where C = C1 ∪ . . . ∪ Cn is the disjoint union
of a fixed collection of smooth irreducible curves Ci ⊂ V . We prove that if
the curves Ci are not rationally canonical, and a suitable Noether-Lefschetz
Theorem holds, then the classes of C2

1 , . . . , C
2
n on a very general X ∈ |IC(H)|

are linearly independent, and they span a subgroup intersecting trivially the
image of CH2(V ) → CH2(X). In Section 2 we prove the required Noether-
Lefschetz Theorem for V = P3

C. In Section 3 we prove Theorem 0.1 by
combining the main results of Section 1 and Section 2.

Conventions and notation: We work over C. Points are closed points.
Let X be a variety: “If x is a generic point of X , then...” is shorthand for
“There exists an open dense U ⊂ X such that if x ∈ U then...”. Similarly
the expression “If x is a very general point of X , then...” is shorthand for
“There exists a countable collection of closed nowhere dense Yi ∈ X such that
if x ∈ (X \⋃i Yi) then...”.
From now on we will denote by CH(X) the group of rational equivalence classes
of cycles with rational coefficients. Thus if Z1, Z2 are cycles on X then Z1 ≡ Z2

means that for some non-zero integer ℓ the cycles ℓZ1, ℓZ2 are integral and
rationally equivalent. If Z is a cycle on X we will often use the same symbol
(i.e. Z) for the rational equivalence class represented by Z.

Acknowledgements: It is a pleasure to thank Angelo Lopez for useful ex-
changes on Noether-Lefschetz results.

1. The family of surfaces containing given curves

1.1. Threefolds with trivial Chow groups. Throughout the paper V is
an integral smooth projective threefold.

Hypothesis 1.1. The cycle class map cl : CH(V ) −→ H(V ;Q) is an isomorph-
ism.

The archetypal such V is P3. A larger class of examples is given by 3-folds with
an algebraic cellular decomposition (see Ex. 1.9.1 of [7]), and conjecturally the
above assumption is equivalent to vanishing of Hp,q(V ) for p 6= q. An integral
smooth projective threefold has trivial Chow group if Hypothesis 1.1 holds.
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Claim 1.2. Let V be as above, in particular it has trivial Chow group. The
natural map

(1.1) S2 CH1(V ) −→ CH2(V )

is surjective.

Proof. The natural map S2H2(V ;Q) → H4(V ;Q) is surjective by Hard Lefs-
cehtz. The claim follows because of Hypothesis 1.1. �

1.2. Standard relations. Let V be an integral smooth projective 3-fold
with trivial Chow group. Let X ⊂ V be a closed surface, and i : X →֒ V be
the inclusion map. Let Rs(X) ⊂ CHs(X) be the image of the restriction map

(1.2)
CHs(V ) −→ CHs(X)

ξ 7→ i∗ξ

Notice that R2(X) ⊂ DCH0(X) by Claim 1.2. Suppose that C ⊂ X is an
integral smooth curve. We will assume that C · C makes sense in CH0(X), for
example that will be the case if X is Q-factorial. We will list elements of the
kernel of the map

(1.3)
R2(X)⊕R1(X)⊕R0(X) −→ DCH0(X)

(α, β, γ) 7→ α+ C · β + γ · C · C
Let j : C →֒ V be the inclusion map. By Cor. 8.1.1 of [7] the following relation
holds in CH0(X):

(1.4) i∗(j∗[C]) = C · c1(NX/V ) = C · i∗OV (X).

Thus

(1.5) αC − C · i∗OV (X) = 0,

where αC := i∗(j∗C) ∈ R2(X). Equation (1.5) is the first standard relation.
Now suppose that there exists ξ ∈ CH1(V ) such that

(1.6) c1(KC) = ξ|C .
(Recall that Chow groups are with Q-coefficients, thus (1.6) means that there
exists an integer n > 0 such that K⊗nC is the pull-back of a line-bundle on V .)
By adjunction for X ⊂ V and for C ⊂ X ,

(1.7) C · C + C · (i∗KV + i∗OX(X)) ≡ C · i∗ξ.
Thus there exists βC ∈ R1(X) such that

(1.8) βC · C − C · C = 0.

The above is the second standard relation (it holds assuming (1.6)).

Example 1.3. Let V = P3, let X ⊂ P3 be a smooth surface of degree d, and let
C ⊂ X be a smooth curve. The subgroup of CH0(X) spanned by intersections
of linear combinations of H := c1(OX(1)) and C has rank at most 2. In
fact the first standard relation reads dC · H = (degC)H · H . Suppose that
c1(KC) = mC · H , where m ∈ Q. With this hypothesis, the second standard
relation reads C · C = (m+ 4− d)C ·H , and hence C · C,C ·H,H ·H span a
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rank-1 subgroup. In particular a curve of genus 0 or 1 does not add anything
to the rank of DCH0(X).

1.3. Surfaces containing disjoint curves. Let V be a smooth projective
3-fold with trivial Chow group and C1, . . . , Cn ⊂ V be pairwise disjoint integral
smooth projective curves. Let C := C1∪. . .∪Cn and let π : W → V be the blow-
up of C. Let E be the exceptional divisor of π, and let Ej , for j ∈ {1, . . . , n},
be the irreducible component of E mapping to Cj . Let H be an ample divisor
on V . For j ∈ {1, . . . , n} we let
(1.9)
Σj := {S ∈ |π∗H − E| | π(S) is singular at some point of Cj}, Σ := ∪nj=1Σj .

Let S ∈ |π∗H − E|, and let X := π(S). Then S ∈ Σj if and only if S
contains one (at least) of the fibers of Ej → Cj , or, equivalently, the map
S → X given by restriction of π is not an isomorphism over Cj . We will
always assume that (π∗H −E) is very ample on W ; with this hypothesis Σj is
irreducible of codimension 1, or empty (compute the codimension of the loci of
S ∈ |π∗(H) − E| which contain one or two fixed fibers of Ek → Ck). Suppose
that H is sufficiently ample: then, in addition, if S ∈ Σk is generic the surface
X = π(S) is smooth except for one ODP (ordinary double point) belonging to
Ck, and the set of reducible S ∈ |π∗H−E| is of large codimension in |π∗H−E|.
We will assume that both of these facts hold (but we do not assume that H is
“sufficiently ample”, because we want to prove effective results).

Hypothesis 1.4. Let C1, . . . , Cn ⊂ V and H be as above, in particular H is
ample on V , and (π∗H − E) is very ample on W . Suppose that

(1) for j ∈ {1, . . . , n}, and S ∈ Σj generic, the surface π(S) is smooth
except for one ODP (ordinary double point) belonging to Cj, and

(2) the set of reducible S ∈ |π∗H−E| has codimension at least 3 in |π∗H−
E|.

Assume that Hypothesis 1.4 holds, and let S ∈ Σj be generic. Then there is
a unique singular point of π(S), call it x, and the line π−1(x) is contained in
S.

Hypothesis 1.5. Let C1, . . . , Cn ⊂ V and H be as above. Suppose that Hy-
pothesis 1.4 holds, and that in addition the following hold:

(1) If A ⊂ |π∗H −E| is an integral closed codimension-1 subset, not equal
to one of Σ1, . . . ,Σn, and S ∈ A is very general, the restriction map
CH1(W )→ CH1(S) is surjective.

(2) For j ∈ {1, . . . , n}, S ∈ Σj very general, and x the unique singular

point of π(S) (an ODP belonging to Cj, by Hypothesis 1.4), CH1(S)

is generated by the image of the restriction map CH1(W ) → CH1(S)
together with the class of π−1(x).

Remark 1.6. Let V = P3, and fix C1, . . . , Cn ⊂ P3. Let d ≫ 0, and H ∈
|OP3(d)|. If S ∈ Σj is generic, then π

−1(x) does not belong to the image of the

restriction map CH1(W )→ CH1(S).
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In the present section we will prove the following result.

Proposition 1.7. Let C1, . . . , Cn ⊂ V and H be as above, and assume
that Hypothesis 1.5 holds. Suppose also that for j ∈ {1, . . . , n} there does
not exist ξ ∈ CH1(V ) such that c1(KCj) = ξ|Cj . (Recall that Chow groups
are with coefficients in Q.) Then for very general smooth X ∈ |IC(H)| the
following hold:

(1) The map CH2(V )→ CH0(X) is injective.
(2) Let {ζ1, . . . , ζm} be a basis of CH1(V ) (as Q-vector space). Suppose

that for very general smooth X ∈ |IC(H)|
0 = P (ζ1|X, . . . , ζm|X) + r1C

2
1 + . . .+ rnC

2
n,

where P ∈ Q[x1, . . . , xm]2 is a homogeneous quadratic polynomial.
Then 0 = P (ζ1, . . . , ζm) = r1 = . . . = rn.

The proof of Proposition 1.7 will be given in Subsection 1.7. Throughout
the present section we let V , C, W , E and H be as above.

1.4. The universal surface. Assume that Hypothesis 1.4 holds. Let

Λ := |π∗(H)− E|(1.10)

S := {(x, S) ∈W × Λ | x ∈ S}.(1.11)

Let pW : S →W and pΛ : S → Λ be the forgetful maps. Thus we have

(1.12) S

pW

~~||
||

||
|| pΛ

  A
AA

AA
AA

V W
πoo Λ

Let N := dimΛ. Since (π∗(H)− E) is very ample it is globally generated and
hence the map pW is a PN−1-fibration. It follows that S is smooth and

(1.13) dimS = (N + 2).

Definition 1.8. Let Vertq(S /Λ) ⊂ CHq(S ) be the subspace spanned by
rational equivalence classes of codimension-q integral closed subsets Z ⊂ S

such that the dimension of pΛ(Z) is strictly smaller than the dimension of Z.

The result below is an instance of the spreading principle.

Claim 1.9. Keep notation and assumptions as above, in particular Hypo-
thesis 1.4 holds. Let Q ∈ Q[x1, . . . , xm, y1, . . . , yn]2 be a homogeneous poly-
nomial of degree 2 and let ζ1, . . . , ζm ∈ CH1(V ). Then

(1.14) Q(ζ1|X , . . . , ζm|X , c1(OX(C1)), . . . , c1(OX(Cn))) = 0

for all smooth X ∈ |IC(H)| if and only if

(1.15) p∗WQ(π∗ζ1, . . . , π
∗ζm, E1, . . . , En) ∈ Vert2(S /Λ).
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Proof. Suppose that (1.14) holds for all smooth X ∈ |IC(H)|. Let S ∈ Λ be
generic, X := π(S). Then X is smooth and the restriction of π to S defines an

isomorphism ϕ : S
∼−→ X , thus by our assumption

p∗WQ(π∗ζ1, . . . , π
∗ζm, E1, . . . , En)|S = 0.

Since S is generic in Λ it follows (see [3, 14]) that there exists an open dense
subset U ⊂ Λ such that

(1.16) p∗WQ(π∗ζ1, . . . , π
∗ζm, E1, . . . , En)|p−1

Λ U
= 0.

(We recall that Chow groups are with rational coefficients, if we consider integer
coefficients then (1.16) holds only up to torsion.) Let B := (Λ \ U ). By the
localization exact sequence

CHN (p−1Λ B) −→ CHN (S ) −→ CHN (p−1Λ U ) −→ 0

p∗WQ(π∗ζ1, . . . , π∗ζm, E1, . . . , En) is represented by an N -cycle supported on

p−1Λ B, and hence (1.15) holds because dimB < N . Next, suppose that (1.15)
holds. Then, by definition, the left-hand side of (1.15) is represented by
an N -cycle whose support is mapped by pΛ to a proper closed subset B ⊂
Λ. Thus there exists an open dense U ⊂ Λ such that the restriction of
p∗WQ(π∗ζ1, . . . , π∗ζm, E1, . . . , En) to p−1Λ U vanishes, e.g. U = Λ \ B. By
shrinking U we may assume that for S ∈ U the surface X := π(S) is smooth.
Let S ∈ U : then 0 = p∗WQ(π∗ζ1, . . . , π∗ζm, E1, . . . , En)|S , and since X ∼= S it
follows that (1.14) holds for X = π(S). On the other hand the locus of smooth
X ∈ |IC(H)| such that (1.14) holds is a countable union of closed subsets
of Λsm (the open dense subset of Λ parametrizing smooth surfaces); since it
contains an open dense subset of Λsm it is equal to Λsm. �

1.5. The Chow groups of S and W . Assume that Hypothesis 1.4 holds.
Let ξ ∈ CH1(S ) be the pull-back of the hyperplane class on Λ via the map pΛ
of (1.12). Since pW is the projectivization of a rank-N vector-bundle onW and
ξ restricts to the hyperplane class on each fiber of pW the Chow ring CH(S ) is
the Q-algebra generated by p∗W CH(W ) and ξ, with ideal of relations generated
by a single relation in codimension N . We have N ≥ 3 because(π∗H − E) is
very ample by Hypothesis 1.4; thus

(1.17)
Q⊕ CH1(W )⊕ CH2(W )

∼−→ CH2(S )
(a0, a1, a2) 7→ a0ξ

2 + p∗W (a1) · ξ + p∗W (a2)

is an isomorphism. The Chow groups CHq(W ) are computed by first describ-
ing CHq(Ej) for j ∈ {1, . . . , n}, and then considering the localization exact
sequence

⊕

j

CHq(Ej) −→ CHq(W ) −→ CHq(W \ (E1 ∪ . . . ∪ En)) −→ 0.

One gets an isomorphism

(1.18)
CH1(V )⊕Qn ∼−→ CH1(W )
(a, t1, . . . , tn) 7→ π∗a+

∑n
j=1 tjEj
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and an exact sequence

(1.19) 0 −→ CH2(W )hom −→ CH2(W )
cl−→ H4(W ;Q) −→ 0

where CH2(W )hom is described as follows. Let ρj : Ej → Cj be the restriction
of the blow-up map π, and σj : Ej →֒ W be the inclusion map; then we have
an Abel-Jacobi isomorphism

(1.20)
AJ : CH2(W )hom

∼−→ ⊕n
j=1 CH0(Cj)hom

α 7→ (ρ1,∗(σ∗1α), . . . , ρn,∗(σ
∗
nα)

Let AJj be the j-th component of the map AJ .

Lemma 1.10. Assume that Hypothesis 1.4 holds. Let

ω := π∗α+

n∑

j=1

Ej · π∗βj +
n∑

j=1

γjEj · Ej ,

where α ∈ CH2(V ), βj ∈ CH1(V ), and γj ∈ Q for j ∈ {1, . . . , n}. Then the
following hold:

(1) The cohomology class of ω vanishes if and only if

(1.21) α =

n∑

j=1

γjCj ,

and for all j ∈ {1, . . . , n}
(1.22) deg(βj · Cj) = −γj deg(NCj/V ).

(2) Suppose that (1.21) and (1.22) hold. Then for j ∈ {1, . . . , n}
(1.23) AJj(ω) = −γjc1(NCj/V )− c1(βj |Cj ).

Proof. Since the cohomology class map cl : CH1(V )→ H2(V ;Q) is a surjection
(by hypothesis), also the cohomology class map cl : CH1(W ) → H2(W ;Q)
is surjective. By Poincarè duality it follows that cl(ω) = 0 if and only if
deg(ω · ξ) = 0 for all ξ ∈ CH1(W ). By (1.18) we must test ξ = π∗ζ with
ζ ∈ CH1(V ) and ξ = Ei for i ∈ {1, . . . , n}. We have

(1.24) deg(ω · π∗ζ) = deg




α−

n∑

j=1

γjCj


 · ζ


 .

Since the cycle map CH2(V ) → H4(V ;Q) is an isomorphism, it follows that
deg(ω · π∗ζ) = 0 for all ζ ∈ CH1(V ) if and only if (1.21) holds. Next, we test
ξ = Ei. In CH0(Ci)

(1.25) ρi,∗c1(OEi(Ei))
2 = −c1(NCi/V ),

and hence

(1.26) deg(ω · Ei) = − deg(βi · Ci)− γi deg(NCi/V ).

This proves Item (1). Item (2) follows from Equation (1.25). �
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Remark 1.11. By Lemma 1.10 the kernel of the map
(1.27)

CH2(V )⊕

n
⊕

k=1

CH1(V )⊕

n
⊕

k=1

Q −→ CH2(W )

(α, β1, . . . βn, γ1, . . . , γn) 7→ π∗α+
∑n

j=1Ej · π
∗βj +

∑n
j=1 γjEj · Ej

is generated over Q by the classes Ej · π∗β, where β ∈ CH1(V ) and β|Cj = 0,
together with the classes

(1.28) π∗[Cj ] + Ej · π∗β + Ej · Ej ,
where β ∈ CH1(V ), deg(β · Cj) = − deg(NCj/V ), and

(1.29) − c1(NCj/V )− c1(β|Cj ) = 0.

Next notice that (1.29) holds if and only if c1(KCj) is equal to the restriction

of a class in CH1(V ) i.e. (1.6) holds. Assume that this is the case, and that
X ∈ |IC(H)| is a surface smooth at all points of Cj . Let S ∈ |π∗H − E| be
the strict transform of S. Then S is isomorphic to X over Cj , and restricting
to S the equation π∗[Cj ] + Ej · π∗β + Ej · Ej = 0 we get the second standard
relation (1.8).

1.6. A vertical cycle on S . According to Claim 1.9, for every
codimension-2 relation that holds between OX(C1), . . . ,OX(Cn) and restric-
tions to X of divisors on V , where X is an arbitrary smooth member of ∈
|IC(H)|, there is a polynomial in classes of π∗ CH1(V ) and the classes of the ex-
ceptional divisors of π which is “responsible” for the relation, i.e. when we pull-
it back to S it is a vertical class. We have shown that π∗[Cj ]+Ej ·π∗β+Ej ·Ej is
the class responsible for the second standard relation (1.8), see Remark 1.11,
and in fact this class vanishes. In the present subsection we will write out a
cycle responsible for the first standard relation (1.5), this time the pull-back
to CH2(S ) is a non-zero vertical class. We record for later use the following
formulae:

σj,∗ρ
∗
jc1(NCj/V ) = π∗Cj + Ej · Ej ,(1.30)

pW,∗(ξ
N ) = (π∗H − E).(1.31)

The first formula follows from the “Key formula” for π∗Cj , see Prop. 6.7 of [7].
The second formula is immediate (recall that N = dimΛ). Let j ∈ {1, . . . , n}.
By Hypothesis 1.4 there exists an open dense U ⊂ Σj such that, if S ∈ U ,
then S · Ej = Lx + Z, where x ∈ Cj is the unique singular point of π(S),
Lx := π−1(x), and Z is the residual divisor (whose support does not contain
Lx). It follows that

(1.32) Ej ∩ p−1Λ (U) = Vj + Zj ,

where, for every S ∈ U , the restrictions to Ej ∩ S of Vj, Zj are equal to Lx
and Z, respectively. We let

(1.33) Θj := V j .
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Thus pΛ(Θj) = Σj , and the generic fiber of Θj → Σj is a projective line.
By Hypothesis 1.4 Θj is of pure codimension 2 in S (or empty), and hence

(1.34) Θj ∈ Vert2(S /Λ).

The result below will be instrumental in writing out the class of Θj in CH2(S )
according to Decomposition (1.17).

Proposition 1.12. Let j ∈ {1, . . . , n}. Then

(1.35) pW,∗(Θj · ξN−1) = 2Ej · π∗H − Ej ·Ej − π∗Cj .
Proof. Let α, β ∈ H0(W,π∗(H)−E) be generic. Then div(α|Ej ) and div(β|Ej )
are smooth divisors intersecting transversely at points p1, . . . , ps. Let qi :=
π(pi) for i ∈ {1, . . . , s}. Let R = P(〈α, β〉) ⊂ Λ; thus p−1Λ R represents ξN−1.
Given pi, there exists [λi, µi] ∈ P1 such that div(λiα + µiβ) contains π

−1(qi),
and hence [λiα + µiβ] ∈ R ∩ Σj . Conversely, every point of R ∩ Σj is of this
type. The line R intersects transversely Σj because it is generic, and hence

(1.36) pW,∗(Θj · ξN−1) = σj,∗ρ
∗
j (q1 + . . .+ qs).

Thus in order to compute pW,∗(Θj · ξN−1) we must determine the class of the
0-cycle q1+ . . .+qs. Let φ : Cj×R→ Cj and ψ : Cj×R→ R be the projections
and F the rank-2 vector-bundle on Cj ×R defined by

F := φ∗(N ∨
Cj/V

⊗ OCj (H))⊗ ψ∗OR(1).
The composition of the natural maps
(1.37)

〈α, β〉 →֒ H0(W,π∗H−E) −→ H0(Ej ,OEj (π
∗H−E)) −→ H0(Cj ,N

∨
Cj/V

⊗OCj (H))

defines a section τ ∈ H0(F ) whose zero-locus consists of points p′1, . . . , p
′
s such

that π(p′i) = qi. Now, the zero-locus of τ represents c2(F ), and hence

pW,∗(Θj · ξN−1) = σj,∗(ρ
∗
j (φ∗c2(F )))

by (1.36). The formula

c2(F ) = φ∗(2c1(OC(H))− c1(NC/P3)) · ψ∗c1(OR(1)).
gives

(1.38) pW,∗(Θj · ξN−1) = 2Ej · π∗H − σj,∗
(
ρ∗j c1(NCj/V ))

)
.

Then (1.35) follows from the above equality together with (1.30). �

Corollary 1.13. Let j ∈ {1, . . . , n}. Then

(1.39) Θj = ξ · p∗WEj + p∗W (Ej · π∗H − π∗Cj).
Proof. By (1.17) there exist βh ∈ CHh(W ) for h = 0, 1, 2 such that

Θj = ξ2 · p∗Wβ0 + ξ · p∗Wβ1 + p∗Wβ2.

Restricting pW to Θj we get a PN−2-fibration Θj → Ej : it follows that β0 = 0
and β1 = Ej . By (1.31)
(1.40)
pW,∗(Θj · ξN−1) = pW,∗(ξ

N · p∗WEj + ξN−1 · p∗Wβ2) = (Ej · π∗H −Ej ·Ej + β2).
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On the other hand pW,∗(Θj · ξN−1) is equal to the right-hand side of (1.35):
equating that expression and the right-hand side of (1.40) we get β2 = (Ej ·
π∗H − π∗Cj). �

Corollary 1.14. Let j ∈ {1, . . . , n}. Then p∗W (Ej · π∗H − π∗Cj) ∈
Vert2(S /Λ).

Proof. By Corollary 1.13 we have

p∗W (Ej · π∗H − π∗Cj) = Θj − ξ · p∗WEj .
Now Θj ∈ Vert2(S /Λ) (see (1.34)) and ξ · p∗WEj ∈ Vert2(S /Λ) because it is
supported on the inverse image of a hyperplane via pΛ; thus p

∗
W (Ej · π∗H −

π∗Cj) ∈ Vert2(S /Λ). �

By Claim 1.9 the relation p∗W (Ej ·π∗H−π∗Cj) ∈ Vert2(S /Λ) gives a relation
in CH(X) for an arbitrary smooth X ∈ |IC(H)|. In fact it gives the first
standard relation (1.5).

1.7. Proof of the main result of the section.

Lemma 1.15. Assume that Hypothesis 1.5 holds. Then the projection
CH2(S ) → CH2(W ) determined by (1.17) maps Vert2(S /Λ) to the subspace
spanned by

(1.41) (E1 · π∗H − π∗C1), . . . , (Ej · π∗H − π∗Cj), . . . , (En · π∗H − π∗Cn).
Proof. Let Z ⊂ S be an irreducible closed codimension-2 subset of S such
that

(1.42) dim pΛ(Z) < dimZ = N.

Since the fibers of pΛ are surfaces,

(1.43) dim pΛ(Z) =

{
N − 2, or

N − 1.

Suppose that dim pΛ(Z) = N − 2. We claim that

(1.44) Z = p−1Λ (pΛ(Z)).

Since Z ⊂ p−1Λ (pΛ(Z)), it will suffice to prove that p−1Λ (pΛ(Z)) is irreducible of

dimension N . First we notice that every irreducible component of p−1Λ (pΛ(Z))
has dimension at least N . In fact, letting ι : pΛ(Z) →֒ Λ be the inclusion and
∆Λ ⊂ Λ × Λ the diagonal, p−1Λ (pΛ(Z)) is identified with (ι, pΛ)

−1∆Λ, and the
claim follows because ∆Λ is a l.c.i. of codimensionN . Since every fiber of pΛ has
dimension 2, it follows that every irreducible component of p−1Λ (pΛ(Z)) domin-
ates pΛ(Z). On the other hand, since cod(pΛ(Z),Λ) = 2, there exists an open
dense U ⊂ pΛ(Z) such that p−1Λ (t) is irreducible for all t ∈ U by Hypothesis

1.4, and hence p−1Λ (U) is irreducible of dimension N . It follows that there

is a single irreducible component of p−1Λ (pΛ(Z)) dominating pΛ(Z), and hence

p−1Λ (pΛ(Z)) is irreducible (of dimension N). We have proved (1.44). Since Λ is
a projective space, pΛ([Z]) is a multiple of c1(OΛ(1))

2. It follows that the class
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of Z is a multiple of ξ2 and hence the projection CH2(S )→ CH2(W ) maps it
to 0. Now assume that dim pΛ(Z) = N − 1. Let Y := pΛ(Z). For t ∈ Λ, we let
St := p−1Λ (t). We distinguish between the two cases:

(1) pΛ(Z) /∈ {Σ1, . . . ,Σn}.
(2) There exists j ∈ {1, . . . , n} such that pΛ(Z) = Σj.

Suppose that (1) holds. Let Y sm ⊂ Y be the subset of smooth points. If
t ∈ Y sm, we may intersect the cycles Z and St in p−1Λ (Y ) (because St is a

l.c.i.), and the resulting cycle class Z ·St belongs to CH1(St). By Hypothesis
1.5 there exists Γ ∈ CH1(W ) such that Γ|St = Z · St for t ∈ Y sm. It follows
that there exists an open dense U ⊂ Y sm such that

Γ|p−1
Λ (U) ≡ Z|p−1

Λ (U).

(Recall that Chow groups are with Q-coefficients.) By the localization se-
quence applied to p−1Λ (U) ⊂ p−1Λ (Y ), it follows that there exists a cycle

Ξ ∈ CHN (p−1Λ (Y \ U)) such that

[Z] = Ξ + p∗W (Γ) · p∗Λ([Y ]).

Here, by abuse of notation, we mean cycle classes in CHN (S ): thus [Z] and
Ξ are actually the push-forwards of the corresponding classes in CHN (p−1Λ (Y ))

and CHN (p−1Λ (Y \ U)) via the obvious closed embeddings. By (1.44) Ξ is

represented by a linear combination of varieties p−1Λ (Bi), where B1, . . . , Bm are
the irreducible components of Y \ U ; it follows that Ξ = aξ2 for some a ∈ Q.
On the other hand [Y ] ∈ CH1(Λ) = Qc1(OΛ(1)), and hence p∗W (Γ) · p∗Λ([Y ]) =

bp∗W (Γ)ξ for some b ∈ Q. It follows that the projection CH2(S ) → CH2(W )
maps Z to 0. Lastly suppose that Item (2) holds. Arguing as above, one
shows that there exist Γ ∈ CH1(W ), an open dense U ⊂ Y , a cycle Ξ ∈
CHN (p−1Λ (Y \ U)), and a ∈ Q such that

[Z] = Ξ + p∗W (Γ) · p∗Λ([Y ]) + aΘj .

By Corollary 1.13 the projection CH2(S ) → CH2(W ) maps [Z] to a(Ej ·
π∗H − π∗Cj). This proves that Vert2(S /Λ) is mapped into the subspace
spanned by the elements of (1.41). Since [Θj ] is a vertical class and is mapped
to (Ej · π∗H − π∗Cj), we have proved the lemma. �

Proof of Proposition 1.7. Let P ∈ Q[x1, . . . , xm] be homogeneous of degree
2 and r1, . . . , rn ∈ Q. The set of smooth X ∈ |IC(H)| such that

(1.45) 0 = P (ζ1|X, . . . , ζm|X) + r1C
2
1 + . . .+ rnC

2
n

is a countable union of closed subsets of the open dense subset of |IC(H)|
parametrizing smooth surfaces. It follows that if the proposition is false then
there exist P and r1, . . . , rn, not all zero, such that (1.45) holds for all smooth
X ∈ |IC(H)|. Now we argue by contradiction. By Claim 1.9

(1.46) p∗W (P (π∗ζ1, . . . , π
∗ζm) +

n∑

j=1

rjE
2
j ) ∈ Vert2(S /Λ).
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By Lemma 1.15 it follows that there exist rationals s1, . . . , sn such that

P (π∗ζ1, . . . , π
∗ζm) +

n∑

j=1

rjE
2
j =

n∑

j=1

sj(Ej · π∗H − π∗Cj),

i.e.,

(1.47) 0 = π∗(P (ζ1, . . . , ζm) +

n∑

j=1

sjCj)−
n∑

j=1

sjEj · π∗H +

n∑

j=1

rjE
2
j .

Let ω be the right hand side of (1.47); then the homology class of ω van-
ishes, and also the Abel-Jacobi image AJ(ω), notation as in (1.20). Item (2)
of Lemma 1.10, together with our hypothesis that there does not exist
ξ ∈ CH1(V ) such that c1(KCj ) = ξ|Cj , gives rj = 0 for j ∈ {1, . . . , n}.
By (1.21)

(1.48) P (ζ1, . . . , ζm) +

n∑

j=1

sjCj = 0,

and hence
∑n

j=1 sjEj · π∗H = 0. Thus

(1.49) 0 = Ei ·




n∑

j=1

sjEj · π∗H


 = −si deg(Ci ·H).

for i ∈ {1, . . . , n}. By hypothesis H is ample, and hence si = 0 follows
from (1.49). Thus P (ζ1, . . . , ζm) = 0 by (1.48). �

2. Noether-Lefschetz loci for linear systems of surfaces in P3

with base-locus

2.1. The main result. In the present section we let V = P3. Thus
C1, . . . , Cn ⊂ P3, and π : W → P3. We let Λ(d) := |π∗OP3(d)(−E)|. For
j ∈ {1, . . . , n} let Σj(d) ⊂ Λ(d) be the subset Σj considered in Section 1;
thus Σj(d) parametrizes surfaces S ∈ Λ(d) such that π(S) is singular at some
point of Cj . Let Σ(d) := Σ1(d) ∪ . . . ∪ Σn(d). We denote the tangent sheaf of
a smooth variety X by TX . Below is the main result of the present section.

Theorem 2.1. Suppose that d ≥ 5, and that the following hold:

(1) π∗OP3(d− 3)(−E) is very ample.
(2) H1(C, TC(d− 4)) = 0.
(3) The sheaf IC is (d− 2)-regular.
(4) The curves C1, . . . , Cn are not planar.

Then Hypothesis 1.5 holds for H ∈ |OP3(d)|.
Recall that Hypothesis 1.5 states that Hypothesis 1.4 holds, and that
Items (1) and (2) (our Noether-Lefschetz hypotheses) of Hypothesis 1.5 hold.
The proof that Hypothesis 1.4 holds is elementary, and will be given in Sub-
section 2.2. We will prove that Items (1) and (2) of Hypothesis 1.5 hold
by applying Joshi’s main criterion (Prop. 3.1 of [9]), and the main idea in
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Griffiths-Harris’ proof of the classical Noether-Lefschetz Theorem [8], as fur-
ther developed by Lopez [12] and Brevik-Nollet [5]. The proof will be outlined
in Subsection 2.3, details are in the remaining subsections.

Remark 2.2. Choose disjoint integral smooth curves C1, . . . , Cn ⊂ P3 such
that for each j ∈ {1, . . . , n} there does not exist r ∈ Q such that c1(KCj) =
rc1(OCj (1)). Let d ≫ 0. Then the hypotheses of Theorem 2.1 are satisfied,
and hence by Proposition 1.7 the following holds: if X ∈ |IC(d)| is very
general, then the 0-cycle classes c1(OX(1))2, c1(OX(C1))

2, . . . , c1(OX(Cn))
2 are

linearly independent. Thus the group of decomposable 0-cycles of X has rank
at least n + 1. The proof of Theorem 0.1 is achieved by making the above
argument effective, see Section 3.

2.2. Dimension counts. We will prove that, if the hypotheses of Theorem
2.1 are satisfied, then Hypothesis 1.4 holds for H ∈ |OP3(d)|. First, H is
ample on P3, and π∗(H)−E is very ample onW because it is the tensor product
of the line-bundle π∗OP3(d − 3)(−E), which is very ample by hypothesis, and
the base-point free line-bundle π∗OP3(3). Let ∆(r) ⊂ Λ(r) be the closed subset
parametrizing singular surfaces.

Proposition 2.3. Suppose that π∗OP3(r − 1)(−E) is very ample. Then the
following hold:

(1) Let x ∈ C. The linear system |I 2
x (r)| ∩ |IC(r)| has base locus equal to

C, and codimension 2 in |IC(r)|. If X is generic in |I 2
x (r)| ∩ |IC(r)|

then it has an ODP at x and no other singularity.
(2) Given x ∈W \E there exists S ∈ ∆(r) which has an ODP at x and is

smooth away from x.
(3) The closed subset ∆(r) is irreducible of codimension 1 in Λ(r), and the

generic S ∈ ∆(r) has a unique singular point, which is an ODP.
(4) Let j ∈ {1, . . . , n}. If S is a generic element of Σj(r), then π(S) has a

unique singular point x, which is an ODP (notice that S is smooth).

Proof. Let q ∈ P3 \ C. Since π∗OP3(r − 1)(−E) is very ample there exists
X ∈ |IC(r− 1)| such that q /∈ X . Let P ⊂ P3 be a plane containing x but not
q: then X+P ∈ |I 2

x (r)|∩|IC (r)| does not pass through q, and this proves that
|I 2

x (r)| ∩ |IC(r)| has base locus equal to C. Since π∗OP3(r − 1)(−E) is very
ample there exist F,G ∈ H0(P3,IC(r − 1)) and q1, . . . , qm ∈ (C \ {x}) such
that V (F ), V (G) are smooth and transverse at each point of C \ {q1, . . . , qm}.
Let P ⊂ P3 be a plane not passing through x: the pencil in |IC(r)| spanned
by V (F ) + P and V (G) + P does not intersect |I 2

x (r)| ∩ |IC(r)|, and hence
|I 2

x (r)| ∩ |IC(r)| has codimension at least 2 in |IC(r)|. The codimension is
equal to 2 because imposing on X ∈ |IC(r)| that it be singular at x ∈ C
is equivalent to 2 linear equations being satisfied. In order to show that the
singularities of a generic element of |I 2

x (r)|∩|IC (r)| are as claimed we consider
the embedding

(2.1)
P(H0(P3,Ix(1))⊕H0(P3,Ix(1))) −→ Σj(r)

[A,B] 7→ V (AF +BG)
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where F,G are as above. The image is a sublinear system of |I 2
x (r)| ∩ |IC(r)|

whose base locus is C, hence the generic V (A ·F +B ·G) is smooth away from
C by Bertini’s Theorem. A local computation shows that the projectivized
tangent cone of V (AF + BG) at x is a smooth conic for generic A,B. Lastly
let q ∈ C \ {x}. The set of [A,B] such that V (AF + BG) is singular at q
has codimension 2 if q /∈ {q1, . . . , qm}, codimension 1 if q ∈ {q1, . . . , qm}: it
follows that for generic [A,B] the surface V (AF +BG) is smooth at all points
of C \{x}. This proves Item (1). The remaining items are proved similarly. �

Remark 2.4. Let x ∈ C. The proof of Proposition 2.3 shows that the
projectivized tangent cone at x of the generic X ∈ |I 2

x (r)| ∩ |IC(r)| is the
generic conic in P(TxP3) containing the point P(TxC).

Proposition 2.5. Suppose that π∗OP3(r)(−E) is very ample and that
π∗OP3(r − 3)(−E) is base point free. Then the locus of non-integral surfaces
S ∈ |Λ(r)| has codimension at least 4.

Proof. Let Dec(r) ⊂ Λ(r) be the (closed) subset of non-integral surfaces, and
Dec(r)1, . . . ,Dec(r)m be its irreducible components. Let j ∈ {1, . . . ,m}; we
will prove that the locus of non-integral surfaces S ∈ Dec(r)j has codimension
at least 4. Suppose first that the generic S ∈ Dec(r)j contains one (at least) of
the components of E, say Ek. Since π

∗OP3(r)(−E) is very ample, and Ek is a
P1-bundle, the image of the restriction map

H0(W,π∗OP3(r)(−E))→ H0(Ek, π
∗
OP3(r)(−E)|Ek )

has dimension at least 4, and hence the locus of S ∈ |π∗OP3(r)(−E)| which
contain Ek has codimension at least 4.
Next, suppose that the generic S ∈ Dec(r)j does not contain any of the com-
ponents of E. Let Dec(r)′j ⊂ |IC(r)| be the image of Dec(r)j under the natural

isomorphism Λ(r)
∼→ |IC(r)|. Let X ∈ Dec(r)′j be generic; we claim that

(2.2) dim(singX \ C) ≥ 1.

In fact X = π(S), where S ∈ Dec(r)j is generic, and since S is non-integral we
may write S = S1 + S2 where S1, S2 are effective non-zero divisors on W (we
will identify effective divisors and pure codimension-1 subschemes of W and
P3). Thus X = X1 +X2, where Xi := π(Si). Since X1, X2 are effective non-
zero divisors on P3 (non-zero because neither S1 nor S2 contains a component
of E), their intersection has dimension at least 1. Now X1∩X2 ⊂ singX , hence
in order to prove (2.2) it suffices to show that X1 ∩X2 is not contained in C.
Suppose that X1 ∩X2 is contained in C; then, since it has dimension at least
1, there exists k ∈ {1, . . . , n} such that X1 ∩X2 contains Ck, and this implies
that S contains Ek, contradicting our assumption. We have proved (2.2).
Next, let p 6= q ∈ (P3 \ C), and let Ωp,q(r) ⊂ |IC(r)| be the subset of divisors
X which are singular at p, q, with degenerate quadratic terms. If X ∈ Dec(r)′j ,
then by (2.2) there exists a couple of distinct p, q ∈ (X \ C) such that X is
singular at p and q, with degenerate quadratic terms (in fact the set of such
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couples is infinite). Thus, if Item (2) holds, then

(2.3) Dec(r)′j ⊂
⋃

p6=q∈(P3\C)

Ωp,q(r).

Hence it suffices to prove that the codimension of Ωp,q in |IC(r)| is 10 (as
expected) for each p 6= q ∈ (P3 \ C). Let Y ∈ |IC(r − 3)| be a surface not
containing p nor q (it exists because π∗OP3(r− 3)(−E) is base point free), and
consider the subset

PY := {Y + Z | Z ∈ |OP3(3)|}.
An explicit computation shows that the codimension of the set of Z ∈ |OP3(3)|
singular at p, q, with degenerate quadratic terms, has codimension 10: it follows
that Ωp,q(r) ∩ PY has codimension 10, and hence Ωp,q(r) has codimension 10
in |IC(r)|. �

Proposition 2.3 and Proposition 2.5 prove that, if the hypotheses of The-
orem 2.1 are satisfied, then Hypothesis 1.4 holds for H ∈ |OP3(d)|.

2.3. Outline of the proof that the Noether-Lefschetz hypothesis
holds. Let A be an integral closed codimension-1 subset of Λ(d). Let A∨ ⊂
Λ(d)∨ be the projective dual of A, i.e. the closure of the locus of projective
tangent hyperplanes TSA for S a point in the smooth locus Asm of A. Since
π∗OP3(d)(−E) is very ample we have the natural embedding W →֒ Λ(d)∨, and
hence it makes sense to distinguish between the following two cases:

(I) A∨ is not contained in W .
(II) A∨ is contained in W .

Thus (I) holds if and only if, for the generic S ∈ Asm, the projective tangent
hyperplane TSA is a base point free linear subsystem of Λ(d). On the other
hand, examples of codimension-1 subsets of Λ(d) for which (II) holds are given
by ∆(d) and by Σj(d) for j ∈ {1, . . . , n}. In fact ∆(d)∨ =W and Σj(d)

∨ = Ej .
The last equality holds because S ∈ Λ(d) belongs to Σj(d) if and only if it is
tangent to Ej , thus Σj(d) = E∨j , and hence Σj(d)

∨ = Ej by projective duality.

Let NL(Λ(d)\∆(d)) be the Noether-Lefschetz locus, i.e. the set of those smooth
surfaces S ∈ Λ(d) such that the restriction map Pic(W )Q → Pic(S)Q is not
surjective. As is well-known NL(Λ(d) \ ∆(d)) is a countable union of closed
subsets of Λ(d) \ ∆(d). In Subsection 2.5 we will apply Joshi’s criterion
(Proposition 3.1 of [9]) in order to prove the following result.

Proposition 2.6. Suppose that d ≥ 5 and that the following hold:

(1) π∗OP3(d)(−E) is ample.
(2) H1(C, TC(d− 4)) = 0.
(3) The sheaf IC (on P3) is (d− 2)-regular.

Let A ⊂ Λ(d) be an integral closed subset of codimension 1, and suppose that
there exists S ∈ (A\∆(d)) such that A is smooth at S, and the projective tangent
space TSA is a base-point free linear subsystem of Λ(d). Then A \∆(d) does
not belong to the Noether-Lefschetz locus NL(Λ(d) \∆(d)).
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The above result deals with codimension-1 subsets A ⊂ Λ(d) for which (I)
above holds. Thus, in order to finish the proof of Theorem 2.1, it remains to
deal with those A such that (II) above holds.

Definition 2.7. Given p ∈ W and F ⊂ TpW a vector subspace, we let

(2.4) Λp,F (d) := {S ∈ |Ip ⊗ π∗OP3(d)(−E)| : F ⊂ TpS}.
Let Γ(d) := |IC(d)|. We have a tautological identification Λ(d)

∼−→ Γ(d):
we let Γp,F (d) ⊂ Γ(d) be the image of Λp,F (d), and for j ∈ {1, . . . , n} we let
Πj(d) ⊂ Γ(d) be the image of Σj(d).

Notice that Λp,F (d) and Γp,F (d) are linear subsystems of Λ(d) and Γ(d) respect-
ively. In Subsection 2.6 we will prove the result below by applying an idea
of Griffiths-Harris [8] as further developed by Lopez [12] and Brevik-Nollet [5].

Proposition 2.8. Suppose that the following hold:

(1) d ≥ 4 and π∗OP3(d− 3)(−E) is very ample.
(2) None of the curves C1, . . . , Cn is planar.

Let X be a very general element

(a) of Γp,F (d), where either p /∈ E, or else p ∈ E and

(2.5) Tp(π
−1(π(p))) 6⊂ F ( TpE,

(b) or of Πj(d) for some j ∈ {1, . . . , n}.
Then the Chow group CH1(X)Q is generated by c1(OX(1)) and the classes of
C1, . . . , Cn.

Granting Proposition 2.8, let us prove that the statement of Theorem 2.1
holds for A such that A∨ is contained in W . We will distinguish between the
following two cases:

(IIa) A 6∈ {Σ1(d), . . . ,Σn(d)}.
(IIb) A ∈ {Σ1(d), . . . ,Σn(d)}.

Suppose that (IIa) holds. By projective duality A is the closure of

(2.6)
⋃

p∈(A∨)sm

Λp,TpA∨

Let p ∈ (A∨)sm be generic. We claim that Item (a) of Proposition 2.8 hold
for p and F = TpA

∨. In fact if A∨ 6⊂ E then p /∈ E by genericity. If A∨ ⊂ E
then A∨ is contained in Ej for a certain j ∈ {1, . . . , n}. We claim that A∨

is a proper subset of Ej , and it is not equal to a fiber of the restriction of
π to Ej . In fact, if A∨ = Ej , then A = E∨j = Σj(d), and that contradicts

the assumption that(IIa) holds. Now suppose that A∨ = π−1(q) for a certain
q ∈ Cj . Let S ∈ A be generic. Since A is the closure of (2.6), S is tangent
to π−1(q), and hence contains π−1(q) because S has degree 1 on every fiber
of Ej → Cj . It follows that S is tangent to Ej , and hence A ⊂ E∨j = Σj(d),
contradicting the hypothesis that (IIa) holds.
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Thus Item (a) of Proposition 2.8 hold for p ∈ (A∨)sm generic and F = TpA
∨,

and hence if S ∈ Λp,TpA∨(d) is very general, then CH1(X)Q is generated by
c1(OX(1)) and the classes of C1, . . . , Cn.
On the other hand, since A 6⊂ Σ(d), S intersects transversely E, and hence the

restriction of π to S is an isomorphism S
∼−→ X . It follows that CH1(S)Q is

equal to the image of CH1(W )Q → CH1(S)Q. This proves that there exists

S ∈ A such that CH1(S)Q is equal to the image of CH1(W )Q → CH1(S)Q.
Actually our argument proves that there exists such an S which is smooth
if A 6= ∆(d), and that if A = ∆(d) there exists such an S whose singular
set consists of a single ODP. If the former holds, then we are done because
NL(A \∆(d)) is a countable union of closed subsets of A \∆(d), and we have
shown that the complement is non-empty. If the latter holds, let ∆(d)0 ⊂ ∆(d)
be the open dense subset parametrizing surfaces with an ODP and no other
singular point, then the set of S ∈ ∆(d)0 such that CH1(W )→ CH1(S) is not
surjective is a countable union of closed subsets of ∆(d)0 (take a simultaneous
resolution), and we are done because we have shown that the complement is
non empty.
Lastly suppose that (IIb) holds, i.e. A = Σj(d) for a certain j ∈ {1, . . . , n}.
By Proposition 2.3 there exists an open dense subset Σj(d)

0 ⊂ Σj(d) with the
following property. If S ∈ Σj(d)

0 and X = π(S), then X has a unique singular
point, call it x (obviously x ∈ Cj), which is an ordinary node, and the restriction
of π to S is the blow-up of X with center x (in particular S is smooth). Now
suppose that S ∈ Σj(d)

0 is very general. Then by Proposition 2.8 the Chow

group CH1(S)Q is generated by the image of CH1(W )Q → CH1(S)Q and the

class of π−1(x). Now notice that the set of S ∈ Σj(d)
0 such that CH1(S) is

not generated by the image of CH1(W )Q together with π−1(x) is a countable
union of closed subsets of Σj(d)

0; since the complement is not empty, we are
done. �
Summing up: we have shown that in order to prove Theorem 2.1 it suffices
to prove Proposition 2.6 and Proposition 2.8. The proofs are in the
following subsections.

2.4. Infinitesimal Noether-Lefschetz results. We will recall a key res-
ult of K. Joshi. Let U ⊂ H0(W,π∗OP3(d)(−E)) be a subspace and σ ∈ U
be non-zero. We let S := V (σ), and we assume that S is smooth. Let
mσ,U ⊂ OP(U),[σ] be the maximal ideal and Tσ,U := Spec(OP(U),[σ]/m

2
σ) be

the first-order infinitesimal neighborhood of [σ] in P(U). We let Sσ,U → T
σ,U

be the restriction of the family SΛ → Λ to Tσ,U . The Infinitesimal Noether
Lefschetz (INL) Theorem is valid at (U, σ) (see Section 2 of [9]) if the group of
line-bundles on Sσ,U is equal to the image of the composition

(2.7) Pic(W ) −→ Pic(W ×C Tσ,U ) −→ Pic(Sσ,U ).

Let A ⊂ Λ(d) be an integral closed subset. Let [σ] be a smooth point of A, and
suppose that S = V (σ) is smooth. Let P(U) be the projective tangent space
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to A at [σ]. If the INL Theorem holds for (U, σ) then A\∆(d) does not belong
to the Noether-Lefschetz locus NL(Λ(d) \∆(d)).
Joshi [9] gave a cohomological condition which suffices for the validity of the INL
Theorem. Suppose that U ⊂ H0(W,π∗OP3(d)(−E)) generates π∗OP3(d)(−E);
we let M(U) be the locally-free sheaf on W fitting into the exact sequence

(2.8) 0 −→M(U) −→ U ⊗ OW −→ π∗OP3(d)(−E) −→ 0.

Proposition 2.9 (K. Joshi, Prop. 3.1 of [9]). Let U ⊂ H0(W,π∗OP3(d)(−E))
be a subspace which generates π∗OP3(d)(−E). Let 0 6= σ ∈ U . Suppose that
S = V (σ) is smooth, and that

(a) H1(W,Ω2
W ⊗ π∗OP3(d)(−E)) = 0.

(b) H1(W,M(U)⊗KW ⊗ π∗OP3(d)(−E)) = 0.

Then the INL Theorem holds at (U, σ).

2.5. The generic tangent space is a base-point free linear system.
We will prove Proposition 2.6 by applying Proposition 2.9.

Lemma 2.10. Suppose that

(2.9) 0 = H1(P3,IC ⊗ TP3(d− 4)) = H1(C, TC(d− 4)).

Then H1(W,Ω2
W ⊗ π∗OP3(d)(−E)) = 0.

Proof. Since Ω2
W
∼= TW ⊗KW it is equivalent to prove that

(2.10) 0 = H1(W,TW ⊗KW ⊗ π∗OP3(d)(−E)) = H1(W,TW ⊗ π∗OP3(d− 4)).

Let ρ : E → C be the restriction of π. Restricting the differential of π to E,
one gets an exact sequence

(2.11) 0 −→ OW (E)|E −→ ρ∗NC/P3 −→ ξ −→ 0

of sheaves on E, where ξ is an invertible sheaf. Let ι : E →֒W be the inclusion
map. The differential of π gives the exact sequence

(2.12) 0 −→ TW⊗π∗OP3(d−4) −→ π∗TP3(d−4) −→ ι∗(ξ⊗ρ∗OC(d−4)) −→ 0.

Below is a piece of the associated long exact sequence of cohomology:

H0(W,π∗TP3(d− 4))→ H0(W, ι∗(ξ ⊗ ρ∗OC(d− 4)))→
→ H1(W,TW ⊗ π∗OP3(d− 4))→ H1(W,π∗TP3(d− 4)).

(2.13)

We claim that H1(W,π∗TP3(d − 4)) = 0. In fact the spectral sequence associ-
ated to π and abutting to the cohomology Hq(W,π∗TP3(d− 4)) gives an exact
sequence

0→ H1(P3, π∗π
∗TP3(d− 4))→ H1(W,π∗TP3(d− 4))→

→ H0(P3, R1π∗π
∗TP3(d− 4))→ 0.

(2.14)

Now π∗π∗TP3(d − 4) ∼= TP3(d − 4) and hence H1(P3, π∗π∗TP3(d − 4)) =
0. Moreover R1π∗π∗TP3(d − 4) = 0 because R1π∗OW = 0, and hence
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H1(W,π∗TP3(d − 4)) = 0. By (2.13), in order to complete the proof it suf-
fices to show that the map

(2.15) H0(W,π∗TP3(d− 4))→ H0(W, ι∗(ξ ⊗ ρ∗OC(d− 4)))

is surjective. The long exact cohomology sequence associated to (2.11) gives
an isomorphism

H0(C,NC/P3(d− 4))
∼−→ H0(W, ι∗(ξ ⊗ ρ∗OC(d− 4))),

and moreover the map of (2.15) is identified with the composition

(2.16) H0(P3, TP3(d− 4))
α−→ H0(C, TP3(d− 4)|C) β−→ H0(C,NC/P3(d− 4)).

The map α is surjective by the first vanishing in (2.9), while β is surjective by
the second vanishing in (2.9). �

Let U ⊂ H0(P3,IC(d)) be a subspace which generates IC(d); we let M(U) be
the sheaf on P3 fitting into the exact sequence

(2.17) 0 −→M(U) −→ U ⊗ OP3 −→ IC(d) −→ 0.

The curve C is a local complete intersection because C is smooth, and hence
M(U) is locally-free.

Lemma 2.11. Suppose that the hypotheses of Lemma 2.10 hold and that in
addition the sheaf IC is d-regular. Let U ⊂ H0(P3,IC(d)) be a subspace
which generates IC(d), and let c be its codimension. Then

∧pM(U) is (p+c)-
regular.

Proof. LetM :=M(H0(IC(d))). Then M is 1-regular: in fact H1(P3,M) = 0
because the exact sequence induced by (2.17) on H0 is exact by definition, and
Hi(P3,M(1− i)) = 0 for i ≥ 2 because IC is d-regular. It follows that

∧p
M is

p-regular (Corollary 1.8.10 of [11]). Then, arguing as in the proof of the Lemma
on p. 371 of [10] (see also Example 1.8.15 of [11]) one gets that

∧p
M(U) is

(p+ c)-regular. �

Proof of Proposition 2.6. By hypothesis there exists a smooth point [σ] of
(A \ ∆(d)), such that the projective tangent space TSA is a base-point free
codimension-1 linear subsystem of Λ. We have TSA = P(U), where U ⊂
H0(π∗OP3(d)(−E)) is a codimension-1 subspace which generates OP3(d)(−E).
We will prove that the INL Theorem holds for (U, σ), and Proposition 2.6
will follow. By Joshi’s Proposition 2.9 it suffices to prove that the following
hold:

(a) H1(W,Ω2
W ⊗ π∗OP3(d)(−E)) = 0.

(b) H1(W,M(U)⊗KW ⊗ π∗OP3(d)(−E)) = 0.

We start by noting that, since TP3 is −1-regular, and by hypothesis IC is
(d− 2) regular, the sheaf IC ⊗TP3 is (d− 3)-regular, see Proposition 1.8.9 and
Remark 1.8.11 of [11]. Thus the hypotheses of Lemma 2.10 are satisfied, and
hence Item (a) holds. Let us prove that Item (b) holds. Tensoring (2.8) by
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KW ⊗ π∗OP3(d)(−E) ∼= π∗OP3(d − 4) and taking cohomology we get an exact
sequence

(2.18)
0→H0(W,M(U)⊗π∗

O
P3 (d−4))→U⊗H0(W,π∗

O
P3 (d−4))

α→H0(W,π∗
O

P3 (2d−4)(−E))→

→H1(W,M(U)⊗π∗
O

P3(d−4))→U⊗H1(W,KW⊗π∗
O

P3 (d)(−E)).

Now H1(W,KW ⊗ π∗OP3(d)(−E)) = 0 because by hypothesis π∗OP3(d)(−E)
is ample. Thus it suffices to prove that the map α is surjective. We have an
identification H0(W,π∗OP3(d)(−E)) = H0(P3,IC(d)), and hence U is identi-
fied with a codimension-1 subspace of H0(P3,IC(d)) that we will denote by
the same symbol. Clearly it suffices to prove that the natural map

(2.19) U ⊗H0(P3,OP3(d− 4)) −→ H0(P3,IC(2d− 4))

is surjective. Tensorize Exact Sequence (2.17) by OP3(d − 4) and take the
associated long exact sequence of cohomology: then (2.19) appears in that
exact sequence, and hence it suffices to prove that H1(P3,M(U)(d − 4)) = 0.
By Lemma 2.11 the sheaf M(U) is 2-regular, and by hypothesis d ≥ 5: the
required vanishing follows. �

2.6. All tangent spaces at smooth points are linear systems with
a base-point. We will prove Proposition 2.8. We start with an elementary
result.

Lemma 2.12. Assume that π∗OP3(r − 3)(−E) is very ample. Let p ∈ W and
F ⊂ TpW be a subspace such that one of the following holds:

(1) p /∈ E and F 6= TpW ,
(2) p /∈ E and F = TpW ,
(3) p ∈ E, and Tp(π

−1(π(p))) 6⊂ F ( TpE.

Let X ∈ Γp,F (r) (see Definition 2.7) be generic. Then X is smooth if
Item (1) or (3) holds, while X has an ODP at q = π(p) and is smooth elsewhere
if Item (2) holds.

Proof. Suppose first that (1) or (2) holds, i.e. p /∈ E, and let q := π(p). The
linear system Γp,F (r) has base locus C∪{q}. In fact, let z ∈ (P3\C \{q}); then
there exists Y ∈ |IC(r−2)| not containing z because π∗OP3(r−2)(−E) is very
ample, and a quadric Q ∈ Γp,F (2) not containing z. Thus Y +Q is an element
of Γp,F (r) which does not contain z. Hence the generic X ∈ Γp,F (r) is smooth
away from C ∪ {q} by Bertini. Considering Y +Q ∈ Γp,F (r) as above we also
get that the behaviour in q of the generic element of Γp,F (r) is as claimed. It
remains to prove that the generic X ∈ Γp,F (r) is smooth at every point of C,
i.e. that Γp,F (r) is not a subset of Σ(r). The proof that Γp,F (r) has base locus
C ∪ {q} proves also that

(2.20) dimΓp,F (r) = dim |IC(r)| − dimF − 1.
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Thus in order to prove that Γp,F (r) is not a subset of Σ(r), it suffices to prove
that for x ∈ C

(2.21) dim |I 2
x (r)| ∩ Γp,F (r) ≤ dim |IC(r)| − dimF − 3.

By Item (1) of Proposition 2.3, dim |I 2
x (r)| ∩ |IC(r)| = dim |IC(r)| − 2,

and hence (2.21) is equivalent to

(2.22) cod(|I 2
x (r)| ∩ Γp,F (r), |I 2

x (r)| ∩ |IC(r)|) = dimF + 1.

We must check that imposing to X ∈ |I 2
x (r)| ∩ |IC(r)| that it contains q

and that dπ(p)(F ) ⊂ TqX , gives dimF + 1 linearly independent conditions.
By Item (1) of Proposition 2.3, there exists Y ∈ |I 2

x (r − 2)| ∩ |IC(r − 2)|
not containing q. Consider the linear subsystem A ⊂ |I 2

x (r)| ∩ |IC(r)| whose
elements are Y + Q, where Q ∈ |OP3(2)|; imposing to X ∈ A that it contains
q and that dπ(p)(F ) ⊂ TqX , gives dimF + 1 linearly independent conditions,
and hence (2.22) follows. This finishes the proof that if (1) or (2) holds, then
the conclusion of the lemma holds.
Now suppose that (3) holds. Suppose that F = {0}, and let S ∈ Λp,F (r) =
|Ip⊗π∗OP3(r)(−E)| be generic. Then S is smooth at p because π∗OP3(r)(−E)
is very ample, and by Bertini’s Theorem it is smooth away from p as well. In
order to prove that X = π(S) is smooth we must check that S does not contain
any of the lines Lx := π−1(x) for x ∈ C. Since π∗OP3(r)(−E) is very ample,
(2.23)

cod(|ILx⊗π∗
O

P3 (r)(−E)|∩|Ip⊗π∗
O

P3 (r)(−E)|, |Ip⊗π∗
O

P3(r)(−E)|)=




1 if x = q,

2 if x 6= q.

It follows that a generic S ∈ |Ip ⊗ π∗OP3(r)(−E)| does not contain any Lx.
We are left to deal with the case of a 1-dimensional F ⊂ TpE transverse to
Tp(π

−1(q)). Let Z ⊂ W be the 0-dimensional scheme of length 2 supported
at p, with tangent space F ; thus Z ⊂ E. We must prove that a generic
S ∈ |IZ ⊗ π∗OP3(r)(−E)| is smooth and contains no line Lx where x ∈ C.
We claim that the (reduced) base-locus of |IZ ⊗ π∗OP3(r)(−E)| is p. In fact
no z ∈ (Lq \ {p}) is in the base-locus of |IZ ⊗ π∗OP3(r)(−E)| because Lq is
a line and there exists S ∈ |IZ ⊗ π∗OP3(r)(−E)| which is not tangent to Lq
at p. Moreover no z ∈ (W \ Lq) is in the base-locus of |IZ ⊗ π∗OP3(r)(−E)|
because of the following argument. There exist T ∈ |Ip ⊗ π∗OP3(r − 1)(−E)|
not containing z, and a plane P ⊂ P3 containing q and not containing π(z);
then (T +P ) ∈ |IZ ⊗π∗OP3(r)(−E)| does not contain z. This proves that the
(reduced) base-locus of |IZ ⊗ π∗OP3(r)(−E)| is p; it follows that the generic
S ∈ |IZ ⊗ π∗OP3(r)(−E)| is smooth.
We finish by showing that (2.23) holds with Ip replaced by IZ . The case
x = q is immediate. If x ∈ C \ {q} we get the result by considering elements
(T +P ) ∈ |IZ ⊗ π∗OP3(r)(−E)| where P is a fixed plane containing q and not
containing x, and T ∈ |Ip ⊗ π∗OP3(r − 1)(−E)|. �
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Remark 2.13. The proof of Lemma 2.12 shows that, if Item (2) holds, the
projectivized tangent cone at q of the generic X ∈ Γp,F (r) is the generic conic
in P(TqP3).

Proof of Proposition 2.8. Let r ∈ {d−1, d}. Suppose that p ∈W , F ⊂ TpW ,
and either p /∈ E, or else p ∈ E and (2.5) holds. By Lemma 2.12 there exists an
open dense subset Up,F (r) ⊂ Γp,F (r) such that for X ∈ Up,F (r) the following
holds:

(1) X is smooth if p /∈ E and F 6= TpW , or p ∈ E.
(2) X has an ODP at q = π(p), and is smooth elsewhere, if p /∈ E and

F = TpW .

Similary, let j ∈ {1, . . . , n}, and q ∈ Cj . By Proposition 2.3 there exists
an open dense subset Uq,j(r) ⊂ |I 2

q (r)| ∩ Σj(r) such that every X ∈ Uq,j(r)
has an ODP at q and is smooth elsewhere. It will suffice to prove that if X
is a very general element of Up,F (r) or of Uq,j(r), then CH1(X)Q is generated
by c1(OX(1)) and the classes of C1, . . . , Cn. Notice that if X is an element
of Up,F (r) or of Uq,j(r), then X is Q-factorial. More precisely: if D is a
Weil divisor on X then 2D is a Cartier divisor. Let NL(Up,F (d)) ⊂ Up,F (d)
be the subset of X such that Pic(X) ⊗ Q is not generated by OX(1) and
OX(2C1), . . . ,OX(2Cn), and define similarly NL(Uq,j(d)) ⊂ Uq,j(d). Then
NL(Up,F (d)) is a countable union of closed subsets of Up,F (d) (there exists a
simultaneous resolution if the surfaces in Up,F (d) are not smooth), and similarly
for NL(Uq,j(d)). Hence it suffices to prove that Up,F (d) \ NL(Up,F )(d) and
Uq,j(d) \NL(Uq,j(d)) are not empty.
Let Y be an element of Up,F (d − 1) or of Uq,j(d − 1), and let X be a generic
element of Up,F (d) or of Uq,j(d). Since π

∗OP3(d)(−E) is very ample and X is
generic, the intersection of X and Y is reduced, and there exists an integral
curve C0 ⊂ P3 such that its irreducible decomposition is

(2.24) X ∩ Y = C0 ∪ C1 ∪ . . . ∪ Cn.
Now let P ⊂ P3 be a generic plane, in particular transverse to C0∪C1∪. . .∪Cn.
Let X = V (f), Y = V (g) and P = V (l). Let

(2.25) Z := V (g · l + tf) ⊂ P3 × A1.

The projection Z → A1 is a family of degree-d surfaces, with central fiber
Y + P . The 3-fold Z is singular. First Z is singular at the points (x, 0) such
that x ∈ X ∩ Y ∩ P , and it has an ODP at each of these points because P is
transverse to C0 ∪ C1 ∪ . . . ∪ Cn. Moreover

(I) Z has no other singularities if we are dealing with Up,F (d) and F 6=
TpW ,

(II) Z is also singular at {q} × A1 if we are dealing with Up,F (d) and
F = TpW , or if we are dealing with Uq,j(d).

We desingularize Z as follows. The ODP’s are eliminated by a small resolution
(we follow p. 35 of [8], and choose a specific small resolution among the many
possible ones), while to desingularize {q} × A1 we blow-up that curve: let
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Ẑ → Z be the birational morphism. Then Ẑ is smooth (if p /∈ E and

F = TpW , or if we are dealing with Uq,k(d), then Ẑ is smooth over {q} × A1

by Remark 2.4 and Remark 2.13).

The composition of Ẑ → Z and the projection Z → A1 is a flat family of

surfaces ϕ : Ẑ → A1. The central fiber Ẑ0 := ϕ−1(0) has normal crossings, it

is the union of Y and the blow-up P̃ of P at the points of X ∩Y ∩P , the curve
Y ∩ P being glued to its strict transform in P̃ . There will be an open dense

B ⊂ A1 containing 0 such that Ẑt := ϕ−1(t) is smooth for t ∈ B \ {0}, and it
is isomorphic to Zt := V (g · l + tf) in Case (I), while it is the blow-up of Zt
at q (an ODP) in Case (II). We replace Ẑ by ϕ−1(B) but we do not give it a
new name.
One proves that if P is very general, then the following hold:

(I′) In Case (I), if t is very general in B \{0}, then Pic(Ẑt)⊗Q is generated

by the classes of OẐt
(1), OẐt

(C1), . . . ,OẐt(Cn). (Notice that Ẑt = Zt
because we are in case (I).)

(II′) In Case (II), if t is very general in B \ {0}, letting µt : Ẑt → Zt be the

blow-up of q and Rt ⊂ Ẑt the exceptional curve, the group Pic(Ẑt)⊗Q
is generated by the classes of µ∗tOZt(1), µ

∗
tOZt(2C1), . . . , µ

∗
tOZt(2Cn)

and OẐt
(Rt).

One does this by controlling the Picard group of the degenerate fiber Ẑ0. As
proved in [8, 12, 5] it suffices to show that the following hold:

(a) Let V ⊂ |OP3(1)| be the open subset of planes intersecting transversely
C0 ∪ . . . ∪ Cn, let I ⊂ (C0 ∪ . . . ∪ Cn) × V be the incidence subset
and ρ : I → V be the natural finite map: then the mododromy of ρ
acts on a fiber (D0, . . . , Dn, P ) as the product of the symmetric groups
SdegC0 × . . .×SdegCn .

(b) Let j ∈ {0, . . . , n}, let P ⊂ P3 be a very general plane, and let a, b ∈
Cj ∩ P be distinct points; then the divisor class a− b on the (smooth)
curve Y ∩ P is not torsion.

Now Item (a) is Proposition II.2.6 of [12]. It remains to prove that (b) holds.
To this end we will show that C0 is not planar and we will control the set of
planes P such that P ∩ Y is reducible (see the proof of Item (b) of Lemma 3.4
of [5]).

Claim 2.14. The curve C0 (see (2.24)) is not planar.

Proof. By hypothesis π∗OP3(d − 3)(−E) is very ample, in particular it has a
non-zero section, and hence there exists a non-zero τ ∈ H0(P3,IC(d − 3)).
Multiplying τ by sections of OP3(3) we get that that h0(P3,IC(d)) ≥ 20. Now
assume that C0 is planar. Recall that C = C1 ∪ . . . ∪ Cn, and let

H0(P3,IC(d))
α−→ H0(Y,OY (d))

be the restriction map. Since (C + C0) ∈ |OY (d)|, the image of α is equal
to H0(Y,OY (C0)), and hence has dimension at most 4 because C0 is planar.
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The kernel of α has dimension 4 because Y has degree (d− 1). It follows that
h0(P3,IC(d)) ≤ 8, contradicting the inequality h0(P3,IC(d)) ≥ 20. �

Thus none of the curves C0, C1, . . . , Cn is planar.

Lemma 2.15. Let Y ⊂ P3 be a surface which is either smooth or has ODP’s.
The set of planes P such that P ∩Y is reducible is the union of a finite set and
the collection of pencils through lines of Y .

Proof. Suppose the contrary. Then there exists a 1-dimensional family of planes
P such that P · Y = C1 + C2 with C1, C2 divisors which intersect properly,
suppC1 is irreducible, and degCi > 1. Next, we distinguish between the two
cases:

(1) The generic P does not contain any singular point of Y .
(2) The generic P contains a single point a ∈ sing Y , or two points a, b ∈

sing Y .

Assume that (1) holds. Let mi := degCi for i = 1, 2. Then

(2.26) m1m2 = (C1 ·C2)P = (C1 ·C2)Y = (C1 · (P −C1))Y = m1− (C1 ·C1)Y

where (C1 · C2)P is the intersection number of C1, C2 in the plane P , and
(C1 · C2)Y is the intersection number of C1, C2 in the surface Y (this makes
sense because Y has ODP singularities, and hence is Q-Cartier). The first
equality of (2.26) holds by Bèzout, the second equality is proved by a local
computation of the multiplicity of intersection at each point of C1 ∩ C2 (one
needs the hypothesis that Y is smooth at each such point). Thus (2.26) gives
(C1 · C1)Y = m1(1 − m2) < 0, and this contradicts the hypothesis that C1

moves in Y . If (2) holds one argues similarly. We go through the computations

in the case that P contains two singular points. Let P̃3 → P3 be the blow up

of {a, b}, and Ỹ , P̃ ⊂ P̃3 be the strict transforms of Y and P respectively. By

hypothesis Y has an ODP at each of its singular points and hence Ỹ is smooth,

and of course P̃ is smooth. Let C̃i be the strict transform of Ci in P̃3. Let
ri := multa Ci, si := multb Ci. Then the equality

(2.27) (C̃1 · C̃2)P̃ = (C̃1 · C̃2)Ỹ

gives

(2.28) (C̃1 · C̃2)Ỹ = −(m1m2 −m1 − r1r2 − s1s2 + r1 + s1).

Now ri + si ≤ mi for i = 1, 2, because otherwise the line 〈a, b〉 would be
contained in Y ∩ Ci, and hence we would be considering curves residual to a
line in Y , against the hypothesis. Since ri+ si ≤ mi for i = 1, 2 the right-hand
side of (2.28) is strictly negative, and this is a contradiction. �

Now we prove that Item (b) holds. Let j ∈ {0, . . . , n}. Let a, b ∈ Cj be
generic, in particular they are smooth points of Y . By Lemma 2.15 every

plane containing a, b intersects Y in an irreducible curve. Let Ŷ → Y be the
blow-up of the base-locus of the pencil of plane sections of Y containing a, b.

Then Ŷ has at most An-singularities, and hence is Q-factorial. Let E,F be
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the exceptional sets over a and b respectively, both have strictly negative self-

intersection. Let i > 0 be such that iE and iF are Cartier. Let ϕ : Ŷ → P1

be the regular map defined by the pencil of plane sections of Y containing a, b;
for s ∈ P1 we let Ds := ϕ−1(s). It suffices to prove that, given r > 0, the set
of s ∈ P1 such that OŶ (riE − riF )|Ds is trivial is finite. Assume the contrary:
then, since every plane containing a, b intersects Y in an irreducible curve,

there exists ℓ ∈ Q such that riE − riF ≡ ϕ∗(ℓp) in Pic(Ŷ )Q, where p ∈ P1

(see the proof of Item (b) of Lemma 3.4 of [5]). It follows that the degrees of
OŶ (riE − riF ) on E and F are both equal to ℓ, and that is absurd because
they have opposite signs. �

3. Proof of the main result

We will prove Theorem 0.1. Let Q ⊂ P3 be a smooth quadric and choose an
isomorphism ϕ : Q

∼−→ P1 × P1: we let OQ(a, b) := ϕ∗(OP1(a)⊠ OP1(b)).

Proposition 3.1. A curve in |OQ(2, 3)| is 3-regular.

Proof. Let D ∈ |OQ(2, 3)|. Considering the exact sequence 0→ ID → OP3 →
OD → 0 we see right away that if i = 2, 3, then Hi(P3,ID(3 − i)) = 0. In
order to prove that H1(P3,ID(2)) = 0 we must show that H0(P3,OP3(2)) →
H0(D,OD(2)) is surjective. The map H0(P3,OP3(2)) → H0(Q,OQ(2, 2)) is
surjective, hence it suffices to prove that H0(Q,OQ(2, 2)) → H0(C,OD(2)) is
surjective. We have an exact sequence

0 −→ OQ(0,−1) −→ OQ(2, 2) −→ OD(2) −→ 0,

and since H1(Q,OQ(0,−1)) = 0 the map H0(Q,OQ(2, 2))→ H0(D,OD(2)) is
indeed surjective. �

Proof of Theorem 0.1. If d ≤ 6 there is nothing to prove, hence we may
assume that d ≥ 7. Let n := ⌊d−43 ⌋. Choose disjoint smooth curves C1, . . . , Cn
such that each Cj is a (2, 3)-curve on a smooth quadric, and let C := C1 ∪
. . .∪Cn. We may assume that for j ∈ {1, . . . , n} the degree-0 class in CH0(Cj)
given by 5c1(KCj )− 2c1(OCj (1)) is not zero. Let us show that the hypotheses

of Theorem 2.1 are satisfied. Let j ∈ {1, . . . , n}. We let πj : Wj → P3 be the
blow-up of Cj , and Fj ⊂Wj be the exceptional divisor. Then π

∗
jOP3(3)(−Fj) is

globally generated, and π∗jOP3(4)(−Fj) is very ample: since d−3 ≥ 3(n−1)+4 it

follows that π∗OP3(d−3)(−E) is very ample. Let j ∈ {1, . . . , n}: since d ≥ 7 the
cohomology groupH1(Cj , TCj(d−4)) vanishes, and henceH1(C, TC(d−4)) = 0.
By Proposition 3.1 and Example 1.8.32 of [11] the curve C is 3n-regular, and
since 3n ≤ (d−4) the curve C is (d−2)-regular. Lastly, by construction no curve
Cj is planar. We have shown that the hypotheses of Theorem 2.1 are satisfied,
and henceHypothesis 1.5 holds forH ∈ |OP3(d)|. LetX ∈ |IC(d)| be smooth
and very generic: since for j ∈ {1, . . . , n} the class 5c1(KCj )−2c1(OCj (1)) is not
zero, the decomposable classes H2, C2

1 , . . . , , C
2
n on X are linearly independent

by Proposition 1.7. Thus DCH0(X) has rank at least n+ 1 = ⌊d−13 ⌋. �
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Introduction

Let F be a number field (with adele ring AF ), and p a prime number. Let
π =

⊗
v πv be an automorphic representation of GL2(AF ). Attached to π is

the complex L-function L(s, π), s ∈ C, of Jacquet-Langlands [JL70]. Under
certain conditions on π, we can also define a p-adic L-function Lp(s, π) of π,
with s ∈ Zp. It is related to L(s, π) by the interpolation property: For every
character χ : Gp → C∗ of finite order we have

Lp(0, π ⊗ χ) = τ(χ)
∏

p|p
e(πp, χp) · L(12 , π ⊗ χ),

where e(πp, χp) is a certain Euler factor (see theorem 4.12 for its definition)
and τ(χ) is the Gauss sum of χ.
Lp(s, π) was defined by Haran [Har87] in the case where π has trivial central
character and πp is an ordinary spherical principal series representation for
all p|p. For a totally real field F , Spieß [Sp14] has given a new construction
of Lp(s, π) that also allows for πp to be a special (Steinberg) representation
for some p|p. In this article, we generalize Spieß’ construction of Lp(s, π) to
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automorphic representations π of GL2 over any number field, with arbitrary
central character, and show that Lp has the conjectured number of exceptional
zeros at the central point. We assume that π is ordinary at all primes p|p (cf.
definition 2.3), that πv is discrete of weight 2 at all real infinite places v, and
is the principal series representation σ(| · |1/2, | · |−1/2) at the complex places.
We define a p-adic measure µπ, which heuristically is the image under the global
reciprocity map of a product of certain local distributions µπp

on F ∗p attached
to πp for p|p and a Whittaker function times the Haar measure on the group
of p-ideles Ip =

∏′
v∤p F

∗
v .

Then we can define the p-adic L-function of π as an integral with respect to µπ
over the Galois group Gp of the maximal abelian extension that is unramified
outside p and ∞; it is naturally a t-variable function, where t is the Zp-rank of
Gp:

Lp(s, π) := Lp(s1, . . . , st, π) :=

∫

Gp

t∏

i=1

expp(siℓi(γ))µπ(dγ)

for s1, . . . , st ∈ Zp, where the ℓi are Zp-valued homomorphisms corresponding
to the t independent Zp-extensions of F (cf. section 4.7 for their definition).
For a modular elliptic curve E over F corresponding to π (i.e. the local L-
factors of the Hasse-Weil L-function L(E, s) and of the automorphic L-function
L(s− 1

2 , π) coincide at all places v of F ), our construction allows us to define
the p-adic L-function of E as Lp(E, s) := Lp(s, π). The condition that π be
ordinary at all p|p means that E must have good ordinary or multiplicative
reduction at all places p|p of F .
The exceptional zero conjecture (formulated by Mazur, Tate and Teitelbaum
[MTT86] for F = Q, and by Hida [Hi09] for totally real F ) states that

ords=0 Lp(E, s) ≥ n, (1)

where n is the number of p|p at which E has split multiplicative reduction,

and gives an explicit formula for the value of the n-th derivative L
(n)
p (E, 0) as

a multiple of certain L-invariants times L(E, 1). The conjecture was proved
in the case F = Q by Greenberg and Stevens [GS93] and independently by
Kato, Kurihara and Tsuji, and for totally real fields F by Spieß [Sp14]. In this
article, we prove (1) for all number fields F .

The structure of this article is as follows: In chapter 2, we describe the local
distributions µπp

on F ∗p ; they are the image of a Whittaker functional under a
map δ on the dual of πp. For constructing δ, we describe πp in terms of what
we call the “Bruhat-Tits graph” of F 2

p : the directed graph whose vertices (resp.
edges) are the lattices of F 2

p (resp. inclusions between lattices). Roughly speak-
ing, it is a covering of the (directed) Bruhat-Tits tree of GL2(Fp) with fibres
∼= Z. When πp is the Steinberg representation, µp can actually be extended to
all of Fp.
In chapter 3, we attach a p-adic distribution µφ to any map φ(U, xp) of an open
compact subset U ⊆ F ∗p :=

∏
p|p F

∗
p and an idele xp ∈ Ip (satisfying certain
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conditions). Integrating φ over all the infinite places, we get a cohomology
class κφ ∈ Hd(F ∗′,Df (C)) (where d = r + s − 1 is the rank of the group of
units of F , F ∗′ ∼= F ∗/µF is a maximal torsion-free subgroup of F ∗, and Df (C)
is a space of distributions on the finite ideles of F ). We show that µφ can be
described solely in terms of κφ, and µφ is a (vector-valued) p-adic measure if
κφ is “integral”, i.e. if it lies in the image of Hd(F ∗′,Df (R)), for a Dedekind
ring R consisting of “p-adic integers”.
In chapter 4, we define a map φπ by

φπ(U, x
p) :=

∑

ζ∈F∗

µπp(ζU)W p

(
ζxp 0
0 1

)

(U ⊆ F ∗p compact open, xp ∈ Ip). φπ satisfies the conditions of chapter 3, and
we show that κπ := κφπ is integral by “lifting” the map φπ 7→ κπ to a function
mapping an automorphic form to a cohomology class in Hd(GL2(F )

+,Af ),
for a certain space of functions Af . (Here GL2(F )

+ is the subgroup of M ∈
GL2(F ) with totally positive determinant.) For this, we associate to each
automorphic form ϕ a harmonic form ωϕ on a generalized upper-half space
H∞, which we can integrate between any two cusps in P1(F ).
Then we can define the p-adic L-function Lp(s, π) := Lp(s, κπ) as above,
with µπ := µφπ . By a result of Harder [Ha87], Hd(GL2(F )

+,Af )π is one-
dimensional, which implies that Lp(s, π) has values in a one-dimensional
Cp-vector space. Finally, we formulate an exceptional zero conjecture (conjec-
ture 4.15) for all number fields F , and show that Lp(s, π) satisfies (1).
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1 Preliminaries

Let X be a totally disconnected locally compact topological space, R a topo-
logical Hausdorff ring. We denote by C(X , R) the ring of continuous maps
X → R, and let Cc(X , R) ⊆ C(X , R) be the subring of compactly supported
maps. When R has the discrete topology, we also write C0(X , R) := C(X , R),
C0
c (X , R) := Cc(X , R).

We denote by Co(X ) the set of all compact open subsets of X , and for an R-
module M we denote by Dist(X ,M) the R-module of M -valued distributions
on X , i.e. the set of maps µ : Co(X )→M such that µ(

⋃n
i=1 Ui) =

∑n
i=1 µ(Ui)

for any pairwise disjoint sets Ui ∈ Co(X ).
For an open set H ⊆ X , we let 1H ∈ C(X , R) be the R-valued indicator
function of H on X .
Throughout this paper, we fix a prime p and embeddings ι∞ : Q →֒C, ιp :
Q →֒Cp. Let O denote the valuation ring of Q with respect to the p-adic
valuation induced by ιp.
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We writeG := GL2 throughout the article, and let B denote the Borel subgroup
of upper triangular matrices, T the maximal torus (consisting of all diagonal
matrices), and Z the center of G.

For a number field F , we let G(F )+ ⊆ G(F ) and B(F )+ ⊆ B(F ) denote
the corresponding subgroups of matrices with totally positive determinant, i.e.
σ(det(g)) is positive for each real embedding σ : F →֒R. (If F is totally com-
plex, this is an empty condition, so we have G(F )+ = G(F ), B(F )+ = B(F )
in this case.) Similarly, we define G(R)+ and G(C)+ = G(C).

1.1 p-adic measures

Definition 1.1. Let X be a compact totally disconnected topological space.
For a distribution µ : Co(X )→ C, consider the extension of µ to the Cp-linear
map C0(X ,Cp) → Cp ⊗Q C, f 7→

∫
fdµ. If its image is a finitely-generated

Cp-vector space, µ is called a p-adic measure.

We denote the space of p-adic measures on X by Distb(X ,C) ⊆ Dist(X ,C). It is
easily seen that µ is a p-adic measure if and only if the image of µ, considered as
a map C0(X ,Z)→ C, is contained in a finitely generated O-module. A p-adic
measure can be integrated against any continuous function f ∈ C(X ,Cp).

2 Local results

For this chapter, let F be a finite extension of Qp, OF its ring of integers, ̟ its
uniformizer and p = (̟) the maximal ideal. Let q be the cardinality of OF /p,
and set U := U (0) := O×F , U (n) := 1 + pn ⊆ U for n ≥ 1.

We fix an additive character ψ : F → Q
∗
with kerψ ⊇ OF and p−1 6⊆ kerψ. 1

We let | · | be the absolute value on F ∗ (normalized by |̟| = q−1), ord = ord̟
the additive valuation, and dx the Haar measure on F normalized by

∫
OF dx =

1. We define a (Haar) measure on F ∗ by d×x := q
q−1

dx
|x| (so

∫
O×
F
d×x = 1).

2.1 Gauss sums

Recall that the conductor of a character χ : F ∗ → C∗ is by definition the
largest ideal pn, n ≥ 0, such that kerχ ⊇ U (n), and that χ is unramified if its
conductor is p0 = OF .

Definition 2.1. Let χ : F ∗ → C∗ be a quasi-character with conductor pf .
The Gauss sum of χ (with respect to ψ) is defined by

τ(χ) := [U : U (f)]

∫

̟−fU

ψ(x)χ(x)d×x.

1Note that there is in general no ψ such that ker(ψ) = OF , since p−1/OF has more than
p points of order p if F |Qp has inertia index > 1.
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For a locally constant function g : F ∗ → C, we define

∫

F∗

g(x)dx := lim
n→∞

∫

x∈F∗,−n≤ord(x)≤n
g(x)dx,

whenever that limit exists.

Lemma 2.2. Let χ : F ∗ → C∗ be a quasi-character with conductor pf . For
f = 0, assume |χ(̟)| < q. Then we have

∫

F∗

χ(x)ψ(x)dx =

{
1−χ(̟)−1

1−χ(̟)q−1 if f = 0

τ(χ) if f > 0.

(Cf. [Sp14], lemma 3.4.)

2.2 Tamely ramified representations of GL2(F )

For an ideal a ⊂ OF , letK0(a) ⊆ G(OF ) be the subgroup of matrices congruent
to an upper triangular matrix modulo a.
Let π : GL2(F ) → GL(V ) be an irreducible admissible infinite-dimensional
representation on a C-vector space V , with central quasicharacter χ. It is well-
known (e.g [Ge75], Thm. 4.24) that there exists a maximal ideal c(π) = c ⊂ OF ,
the conductor of π, such that the space V K0(c),χ = {v ∈ V |π(g)v = χ(a)v ∀g =(
a b
c d

)
∈ K0(c)} is non-zero (and in fact one-dimensional). A representation π

is called tamely ramified if its conductor divides p.
If π is tamely ramified, then π is the spherical resp. special representation
π(χ1, χ2) (in the notation of [Ge75] or [Sp14]):
If the conductor is OF , π is (by definition) spherical and thus a principal series
representation π(χ1, χ2) for two unramified quasi-characters χ1 and χ2 with
χ1χ

−1
2 6= | · |±1 ([Bu98], Thm. 4.6.4).

If the conductor is p, then π = π(χ1, χ2) with χ1χ
−1
2 = | · |±1.

For α ∈ C∗, we define a character χα : F ∗ → C∗ by χα(x) := αord(x).
So let now π = π(χ1, χ2) be a tamely ramified irreducible admissible infinite-
dimensional representation of GL2(F ); in the special case, we assume χ1 and
χ2 to be ordered such that χ1 = | · |χ2.
Set αi := χi(̟)

√
q ∈ C∗ for i = 1, 2. (We also write π = πα1,α2 sometimes.)

Set a := α1 + α2, ν := α1α2/q. Define a distribution µα1,ν := µα1/ν :=
ψ(x)χα1/ν(x)dx on F ∗.
For later use, we will need the following condition on the αi:

Definition 2.3. Let π = πα1,α2 be tamely ramified. π is called ordinary if a

and ν both lie in O∗ (i.e. they are p-adic units in Q). Equivalently, this means

that either α1 ∈ O∗ and α2 ∈ qO∗, or vice versa.

Proposition 2.4. Let χ : F ∗ → C∗ be a quasi-character with conductor pf ; for
f = 0, assume |χ(̟)| < |α2|. Then the integral

∫
F∗ χ(x)µα1/ν(dx) converges
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and we have
∫

F∗

χ(x)µα1/ν(dx) = e(α1, α2, χ)τ(χ)L(
1
2 , π ⊗ χ),

where

e(α1, α2, χ) =





(1−α1χ(̟)q−1)(1−α2χ(̟)−1q−1)(1−α2χ(̟)q−1)

(1−χ(̟)α−1
2

)
, f = 0 and π spherical,

(1−α1χ(̟)q−1)(1−α2χ(̟)−1q−1)

(1−χ(̟)α−1
2

)
, f = 0 and π special,

(

α1
ν

)−f
=
(

α2
q

)f
, f > 0,

and where we assume the right-hand side to be continuously extended to the
potential removable singularities at χ(̟) = q/α1 or = q/α2.

Proof. This follows immediately from lemma 2.2 and the definition of the
(Jacquet-Langlands) L-function.

2.3 The Bruhat-Tits graph

Let Ṽ denote the set of lattices (i.e. submodules isomorphic to O2
F ) in F 2,

and let Ẽ be the set of all inclusion maps between two lattices; for such a map
e : v1 →֒ v2 in Ẽ , we define o(e) := v1, t(e) := v2. Then the pair T̃ := (Ṽ , Ẽ) is
naturally a directed graph, connected, with no directed cycles (specifically, Ẽ
induces a partial ordering on Ṽ). For each v ∈ Ṽ , there are exactly q+1 edges
beginning (resp. ending) in v, each.

Recall that the Bruhat-Tits tree T = (V , ~E) of G(F ) is the directed graph
whose vertices are homothety classes of lattices of F 2 (i.e. V = Ṽ/ ∼, where
v ∼ ̟iv for all i ∈ Z), and the directed edges e ∈ ~E are homothety classes of

inclusions of lattices. We can define maps o, t : ~E → V analogously. For each
edge e ∈ ~E , there is an opposite edge e′ ∈ ~E with o(e′) = t(e), t(e′) = o(e); and
the undirected graph underlying T is simply connected. We have a natural
“projection map” π : T̃ → T , mapping each lattice and each homomorphism
to its homothety class. Choosing a (set-theoretic) section s : V → Ṽ , we get a

bijection V × Z
∼=−→ Ṽ via (v, i) 7→ ̟is(v).

The group G(F ) operates on Ṽ via its standard action on F 2, i.e. gv = {gx|x ∈
v} for g ∈ G(F ), and on Ẽ by mapping e : v1 → v2 to the inclusion map
ge : gv1 → gv2. The stabilizer of the standard vertex v0 := O2

F is G(OF ).
For a directed edge e ∈ ~E of the Bruhat-Tits tree T , we define U(e) to be the
set of ends of e (cf. [Se80]/[Sp14]); it is a compact open subset of P1(F ), and
we have gU(e) = U(ge) for all g ∈ G(F ).
For n ∈ Z, we set vn := OF ⊕ pn ∈ Ṽ , and denote by en the edge from vn+1 to
vn; the “decreasing” sequence (π(e−n))n∈Z is the geodesic from ∞ to 0. (The
geodesic from 0 to ∞ traverses the π(vn) in the natural order of n ∈ Z.) We
have U(π(en)) = p−n for each n.
On T , we have the height function h : V → Z (cf. [BL95]) defined as follows:
The geodesic ray from v ∈ V to ∞ must contain some π(vn) (n ∈ Z), since
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it has non-empty intersection with A := {π(vn)|n ∈ Z}; we define h(v) :=
n − d(v, π(vn)) for any such vn. This is easily seen to be well-defined, and
satisfies h(π(vn)) = n for all n ∈ Z. We have the following lemma:

Lemma 2.5. (a) For all e ∈ E, we have

h(t(e)) =

{
h(o(e)) + 1 if ∞ ∈ U(e),

h(o(e))− 1 otherwise.

(b) For a ∈ F ∗, b ∈ F , v ∈ V we have

h

((
a b
0 1

)
v

)
= h(v)− ord̟(a).

(Cf. [Sp14], lemma 3.6)

Let R be a ring, M an R-module. We let C(Ṽ ,M) be the R-module of maps
φ : Ṽ → M , and C(Ẽ ,M) the R-module of maps Ẽ → M . Both are G(F )-
modules via (gφ)(v) := φ(g−1v), (gc)(e) := c(g−1e).
We let Cc(Ṽ ,M) ⊆ C(Ṽ ,M) and Cc(Ẽ ,M) ⊆ C(Ẽ ,M) be the (G(F )-stable)
submodules of maps with compact support, i.e. maps that are zero outside a
finite set. We get pairings

〈- , -〉 : Cc(Ṽ , R)× C(Ṽ ,M)→M, 〈φ1, φ2〉 :=
∑

v∈Ṽ
φ1(v)φ2(v) (2)

and

〈- , -〉 : Cc(Ẽ , R)× C(Ẽ ,M)→M, 〈c1, c2〉 :=
∑

e∈Ẽ
c1(v)c2(v). (3)

We define Hecke operators T,N : C(Ṽ,M)→ C(Ṽ ,M) by

Tφ(v) =
∑

t(e)=v

φ(o(e)) and Nφ := ̟φ (i.e. Nφ(v) = φ(̟−1v))

for all v ∈ Ṽ . These restrict to operators on Cc(Ṽ , R), which we sometimes
denote by Tc and Nc for emphasis. With respect to (2), Tc is adjoint to TN ,
and Nc is adjoint to its inverse operator N−1 : Cc(Ṽ , R)→ Cc(Ṽ , R).

T and N obviously commute, and we have the following Hecke structure the-
orem on compactly supported functions on Ṽ (an analogue of [BL95], Thm.
10):

Theorem 2.6. Cc(Ṽ , R) is a free R[T,N±1]-module (where R[T,N±1] is the
ring of Laurent polynomials in N over the polynomial ring R[T ], with N and
T commuting).
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Proof. Fix a vertex v0 ∈ Ṽ . For each n ≥ 0, let Cn be the set of vertices v ∈ Ṽ
such that there is a directed path of length n from v0 to v in Ṽ , and such that
d(π(v0), π(v)) = n in the Bruhat-Tits tree T . So C0 = {v0}, and Cn is a lift of
the ”circle of radius n around v0” in T , in the parlance of [BL95].
One easily sees that

⋃∞
n=0 Cn is a complete set of representatives for the projec-

tion map π : Ṽ → V ; specifically, for n > 1 and a given v ∈ Cn−1, Cn contains
exactly q elements adjacent to v in Ṽ; and we can write Ṽ as a disjoint union⋃
j∈Z

⋃∞
n=0N

j(Cn).
We further define V0 := {v0} and choose subsets Vn ⊆ Cn as follows: We let
V1 be any subset of cardinality q. For n > 1, we choose q − 1 out of the q
elements of Cn adjacent to v′, for every v′ ∈ Cn−1, and let Vn be the union of
these elements for all v′ ∈ Cn−1. Finally, we set

Hn,j := {φ ∈ Cc(Ṽ , R)| Supp(φ) ⊆
n⋃

i=0

N j(Ci)} for each n ≥ 0, j ∈ Z,

Hn :=
⋃
j∈ZHn,j, and H−1 := H−1,j := {0}. (For ease of notation, we identify

v ∈ Ṽ with its indicator function 1{v} ∈ Cc(Ṽ , R) in this proof.)

Define T ′ : Cc(Ṽ , R)→ Cc(Ṽ , R) by

T ′(φ)(v) :=
∑

t(e)=(v),

o(e)∈Nj (Cn)

φ(o(e)) for each v ∈ N j(Cn−1), j ∈ Z;

T ′ can be seen as the ”restriction to one layer”
⋃∞
n=0N

j(Cn) of T . We have
T ′(v) ≡ T (v) mod Hn−1 for each v ∈ Hn, since the ”missing summand” of T ′

lies in Hn−1.
We claim that for each n ≥ 0, the set Xn,j :=

⋃n
i=0N

jT n−i(Vi) is an R-basis
for Hn,j/Hn−1,j. By the above congruence, we can replace T by T ′ in the
definition of Xn,j.
The claim is clear for n = 0. So let n ≥ 1, and assume the claim to be true
for all n′ ≤ n. For each v ∈ Cn−1, the q points in Cn adjacent to v are
generated by the q − 1 of these points lying in Vn, plus T

′v (which just sums
up these q points). By induction hypothesis, v is generated by Xn−1,0, and
thus (taking the union over all v), Cn is generated by T ′(Xn−1,0)∪ Vn = Xn,0.
Since the cardinality of Xn,0 equals the R-rank of Hn,0/Hn−1,0 (both are equal
to (q + 1)qn−1), Xn,0 is in fact an R-basis.
Analoguously, we see that Hn,j/Hn−1,j has N j(Xn,0) = Xn,j as a basis, for
each j ∈ Z.
From the claim, it follows that

⋃
j∈ZXn,j is an R-basis of Hn/Hn−1 for each

n, and that V :=
⋃∞
n=0 Vn is an R[T,N±1]-basis of Cc(Ṽ , R).

For a ∈ R and ν ∈ R∗ , we let B̃a,ν(F,R) be the ”common cokernel” of T − a
and N−ν in Cc(Ṽ , R), namely B̃a,ν(F,R) := Cc(Ṽ , R)/(Im(T−a)+Im(N−ν));
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dually, we define B̃a,ν(F,M) := ker(T − a) ∩ ker(N − ν) ⊆ C(Ṽ ,M).

For a lattice v ∈ Ṽ , we define a valuation ordv on F as follows: For w ∈ F 2,
the set {x ∈ F |xw ∈ v} is some fractional ideal ̟mOF ⊆ F (m ∈ Z); we set
ordv(w) := m. This map can also be given explicitly as follows: Let λ1, λ2 be
a basis of v. We can write any w ∈ F 2 as w = x1λ1 + x2λ2; then we have
ordv(w) = min{ord̟(x1), ord̟(x2)}. This gives a ”valuation” map on F 2, as
one easily checks. We restrict it to F ∼= F × {0} →֒F 2 to get a valuation ordv
on F , and consider especially the value at e1 := (1, 0).

Lemma 2.7. Let α, ν ∈ R∗, and put a := α + qν/α. Define a map ̺ = ̺α,ν :

Ṽ → R by ̺(v) := αh(π(v))ν− ordv(e1). Then ̺ ∈ B̃a,ν(F,R).

Proof. One easily sees that
(
v 7→ ν− ordv(e1)

)
∈ ker(N − ν). It remains to show

that ̺ ∈ ker(T − a):
We have the Iwasawa decomposition G(F ) = B(F )G(OF ) =
{( ∗ ∗0 1 )}Z(F )G(OF ); thus every vertex in Ṽ can be written as ̟iv with
v = ( a b0 1 ) v0, with i ∈ Z, a ∈ F ∗, b ∈ F .
Now the lattice v = ( a b0 1 ) v0 is generated by the vectors λ1 = ( a0 ) and λ2 =
( b1 ) ∈ O2

F , so e1 = a−1λ1 and thus ordv(e1) = ord̟(a
−1) = − ord̟(a). The

q + 1 neighbouring vertices v′ for which there exists an e ∈ Ẽ with o(e) =
v′, t(e) = v are given by Niv, i ∈ {∞} ∪ OF /p, with N∞ := ( 1 0

0 ̟ ), and
Ni := (̟ i

0 1 ) where i ∈ OF runs through a complete set of representatives
mod ̟. By lemma 2.5, h(π(N∞v)) = h(π(v))+1 and h(π(Niv)) = h(π(v))−1
for i 6= ∞. By considering the basis {Niλ1, Niλ2} of Niv for each Ni, we see
that ordN∞v(e1) = ordv(e1) and ordNiv(e1) = ordv(e1)− 1 for i 6=∞. Thus we
have

(T̺)(v) =
∑

t(e)=v

αh(π(o(e)))ν− ordo(e)(e1)

= αh(π(v))+1ν− ordv e1 + q · αh(π(v))−1ν1−ordv(e1)
= (α + qα−1ν)αh(π(v))ν− ordv e1 = a̺(v),

and also (T̺)(̟iv) = (TN−i̺)(v) = N−i(a̺)(v) = a̺(̟iv) for a general
̟iv ∈ Ṽ, which shows that ̺ ∈ ker(T − a).

If a2 6= ν(q + 1)2 (the “spherical case”), we put Ba,ν(F,R) := B̃a,ν(F,R) and

Ba,ν(F,M) := B̃a,ν(F,M).

In the “special case” a2 = ν(q + 1)2, we need to assume that the polynomial
X2 − aνX + qν−1 ∈ R[X ] has a zero α′ ∈ R. Then the map ̺ := ̺α′,ν ∈
C(Ṽ , R) defined as above lies in B̃aν,ν−1

(F,R) = ker(TN − a) ∩ ker(N−1 − ν)
by Lemma 2.7, since aν = α′+ qν−1/α′. In other words, the kernel of the map
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〈·, ̺〉 : Cc(Ṽ , R)→ R contains Im(T − a) + Im(N − ν); and we define

Ba,ν(F,R) := ker (〈·, ̺〉) / (Im(T − a) + Im(N − ν))

to be the quotient; evidently, it is an R-submodule of codimension 1 of
B̃a,ν(F,R). Dually, T−a and N−ν both map the submodule ̺M = {̺ ·m,m ∈
M} of C(Ṽ ,M) to zero and thus induce endomorphisms on C(Ṽ ,M)/̺M ; we
define Ba,ν(F,M) to be the intersection of their kernels.
In the special case, since ν = α2, Lemma 2.7 states that ̺(gv0) =

χα(ad)̺(v0) = χα(det g)̺(v0) for all g =

(
a b
0 d

)
∈ B(F ), and thus for

all g ∈ G(F ) by the Iwasawa decomposition, since G(OF ) fixes v0 and lies
in the kernel of χα ◦ det. By the multiplicity of det, we have (g−1̺)(v) =
̺(gv) = χα(det g)̺(v) for all g ∈ G(F ), v ∈ Ṽ. So φ ∈ ker〈·, ̺〉 implies
〈gφ, ̺〉 = 〈φ, g−1̺〉 = χα(det g)〈φ, ̺〉 = 0, i.e. ker〈·, ̺〉 and thus Ba,ν(F,R) are
G(F )-modules.
By the adjointness properties of the Hecke operators T and N , we have pairings
coker(Tc − a) × ker(TN − a) → M and coker(Nc − ν) × ker(N−1 − ν) → M ,
which ”combine” to give a pairing

〈- , -〉 : Ba,ν(F,R)× Baν,ν
−1

(F,M)→M

(since ker(TN − a) ∩ ker(N−1 − ν) = ker(T − aν) ∩ ker(N − ν−1)), and a

corresponding isomorphism Baν,ν−1

(F,M)
∼=−→ Hom(Ba,ν(F,R),M).

Definition 2.8. LetG be a totally disconnected locally compact group,H ⊆ G
an open subgroup. For a smooth R[H ]-module M , we define the (compactly)
induced G-representation of M , denoted IndGHM , to be the space of maps
f : G → M such that f(hg) = f(g) for all g ∈ G, h ∈ H , and such that f has
compact support modulo H . We let G act on IndGHM via g · f(x) := f(xg).
(We can also write IndGHM = R[G]⊗R[H] M , cf. [Br82], III.5.)

We further define CoindGHM := HomR[H](R[G],M). Finally, for an R[G]-
module N , we write resGH N for its underlying R[H ]-module (“restriction”).

By Theorem 2.6, Tc − a (as well as Nc − ν) is injective, and the induced map

Nc − ν : coker(Tc − a) = Cc(Ṽ , R)/ Im(Tc − a)→ coker(Tc − a)

(of R[T,N±1]/(T − a) = R[N±1]-modules) is also injective. Now since G(F )
acts transitively on Ṽ , with the stabilizer of v0 := O2

F being K := G(OF ), we
have an isomorphism Cc(Ṽ, R) ∼= Ind

G(F )
K R. Thus we have exact sequences

0→ Ind
G(F )
K R

T−a−−−→ Ind
G(F )
K R −→ coker(Tc − a) −→ 0 (4)

and (for a, ν in the spherical case)

0→ coker(Tc − a) N−ν−−−→ coker(Tc − a)→ Ba,ν(F,R)→ 0, (5)

with all entries being free R-modules. Applying HomR(·,M) to them, we get:
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Lemma 2.9. We have exact sequences of R-modules

0→ ker(TN − a)→ Coind
G(F )
K M

T−a−−−→ Coind
G(F )
K M → 0

and, if Ba,ν(F,M) is spherical (i.e. a2 6= ν(q + 1)2),

0→ Baν,ν−1

(F,M)→ ker(TN − a) N−ν−−−→ ker(TN − a)→ 0.

For the special case, we have to work a bit more to get similar exact sequences:
By [Sp14], eq. (22), for the representation St−(F,R) := B−(q+1),1(F,R) (i.e.
ν = 1, α = −1) with trivial central character, we have an exact sequence of
G-modules

0→ IndGKZ R→ IndGK′Z R→ St−(F,R)→ 0, (6)

where K ′ = 〈W 〉K0(p) is the subgroup of KZ generated by W := ( 0 1
̟ 0 ) and

the subgroup K0(p) ⊆ K of matrices that are upper-triangular modulo p.
(Since W 2 ∈ Z, K0(p)Z is a subgroup of K ′ of order 2.) Now aany special
representation (π, V ) can be written as π = χ ⊗ St− for some character χ =
χZ (cf. the proof of lemma 2.12 below), and is obviously G-isomorphic to
the representation π ⊗ (χ ◦ det) acting on the space V ⊗R R(χ ◦ det), where
R(χ ◦det) is the ring R with G-module structure given via gr = χ(det(g))r for
g ∈ G, r ∈ R. Tensoring (6) with R(χ ◦ det) over R gives an exact sequence of
G-modules

0→ IndGKZ χ→ IndGK′Z χ→ V → 0. (7)

It is easily seen that R(χ ◦ det) fits into another exact sequence of G-modules

0→ IndGH R
(̟ 0
0 1 )−χ(̟) id
−−−−−−−−−−→ IndGH R

ψ−→ R(χ ◦ det)→ 0,

where H := {g ∈ G| det g ∈ O×F } is a normal subgroup containing K,

(̟ 0
0 1 ) (f)(g) := f((̟ 0

0 1 )
−1
g) for f ∈ IndGH R = {f : G → R|f(Hg) = f(g)

for all g ∈ G}, g ∈ G, is the natural operation of G, and where ψ is the
G-equivariant map defined by 1U 7→ 1.
Now since H ⊆ G is a normal subgroup, we have IndGH R

∼= R[G/H ] as G-
modules (in fact G/H ∼= Z as an abstract group). Let X ⊆ G be a subgroup
such that the natural inclusion X/(X∩H) →֒G/H has finite cokernel; let giH ,
i = 1, . . . n be a set of representatives of that cokernel. Then we have a (non-
canonical) X-isomorphism

⊕n
i=0 Ind

X
X∩H → IndGH R defined via (1(X∩H)x)i 7→

1Hxgi for each i = 1, . . . , n (cf. [Br82], III (5.4)).

Using this isomorphism and the “tensor identity” IndGHM ⊗ N ∼= IndGH(M ⊗
resGH N) for any groups H ⊆ G, H-module M and G-module N ([Br82] III.5,
Ex. 2), we have

IndGKZ R⊗R IndGH R
∼= IndGKZ(res

G
KZ(Ind

G
H R))

= IndGKZ((Ind
KZ
KZ∩H R)

2)

= (IndGKZ(Ind
KZ
K R))2 = (IndGK R)

2

Documenta Mathematica 21 (2016) 689–734



p-adic L-Functions of Automorphic Forms 701

(since KZ/KZ ∩H →֒G/H has index 2), and similarly

IndGK′Z R⊗R IndGH R
∼= (IndGK′ R)2.

Thus, we can resolve the first and second term of (7) into exact sequences

0→ (IndGK R)
2 → (IndGK R)

2 → IndGKZ χ→ 0,

0→ (IndGK′ R)2 → (IndGK′ R)2 → IndG〈W 〉K0(p)Z χ→ 0.

Dualizing (7) and these by taking Hom(·,M) for an R-module M , we get a

“resolution” of Baν,ν−1

(F,M) in terms of coinduced modules:

Lemma 2.10. We have exact sequences

0→Baν,ν−1

(F,M)→ CoindGK′ZM(χ)→ CoindGKZM(χ)→ 0,

0→CoindGKZM(χ)→ (CoindGK R)
2 → (CoindGK R)

2 → 0,

0→CoindGK′ZM(χ)→ (CoindGK′ R)2 → (CoindGK′ R)2 → 0

for all special Ba,ν(F,R) (i.e. a2 = ν(q + 1)2), where χ = χZ is the central
character.

It is easily seen that the above arguments could be modified to get a similar set
of exact sequences in the spherical case as well (replacing K ′ by K everywhere),
in addition to that given in lemma 2.9; but we will not need this.

2.4 Distributions on the Bruhat-Tits graph

For ̺ ∈ C(Ṽ , R) we define R-linear maps

δ̺̃ : C(Ẽ ,M)→ C(Ṽ ,M), δ̺̃(c)(v) :=
∑

v=t(e)

̺(o(e))c(e)−
∑

v=o(e)

̺(t(e))c(e),

δ̺̃ : C(Ṽ ,M)→ C(Ẽ ,M), δ̺̃(φ)(e) := ̺(o(e))φ(t(e)) − ̺(t(e))φ(o(e)).
One easily checks that these are adjoint with respect to the pairings (2) and
(3), i.e. we have 〈δ̺̃(c), φ〉 = 〈c, δ̺̃(φ)〉 for all c ∈ Cc(Ẽ , R), φ ∈ C(Ṽ ,M). We

denote the maps corresponding to ̺ ≡ 1 by δ := δ̃1, δ
∗ := δ̃1.

For each ̺, the map δ̺̃ fits into an exact sequence

Cc(Ẽ , R)
δ̺̃−→ Cc(Ṽ , R)

〈·,̺〉−−−→ R→ 0

but it is not injective in general: e.g. for ̺ ≡ 1, the map Ẽ → R symbolized by

·
1

��

−1 // ·
−1
��· 1 // ·
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(and zero outside the square) lies in ker δ.
The restriction δ∗|Cc(Ṽ,R) to compactly supported maps is injective since T̃ has
no directed circles, and we have a surjective map

coker
(
δ∗ : Cc(Ṽ , R)→ Cc(Ẽ , R)

)
→ C0(P1(F ), R)/R, c 7→

∑

e∈Ẽ

c(e)1U(π(e))

(which corresponds to an isomorphism of the similar map on the Bruhat-Tits
tree T ). Its kernel is generated by the functions 1{e} − 1{e′} for e, e′ ∈ Ẽ with
π(e) = π(e′).
For ̺1, ̺2 ∈ C(Ṽ , R) and φ ∈ C(Ṽ ,M) it is easily checked that

(
δ̺̃1 ◦ δ̺̃2

)
(φ) = (T + TN)(̺1 · ̺2) · φ− ̺2 · (T + TN)(̺1 · φ).

For a′ ∈ R and ̺ ∈ ker(T + TN − a′) , applying this equality for ̺1 = ̺ and
̺2 = 1 shows that δ̺̃ maps Im δ∗ into Im(T + TN − a′), so we get an R-linear
map

δ̺̃ : coker
(
δ∗ : Cc(Ṽ , R)→ Cc(Ẽ , R)

)
→ coker(Tc + TcNc − a′).

Let now again α, ν ∈ R∗, and a := α+ qν/α. We let ̺ := ̺α,ν ∈ B̃a,ν(F,R) as
defined in lemma 2.7, and write δ̃α,ν := δ̺̃. Since δ̃α,ν maps 1{e} − 1{̟e} into
Im(R − ν), it induces a map

δ̃α,ν : C0(P1(F ), R)/R→ Ba,ν(F,R)
(same name by abuse of notation) via the commutative diagram

coker δ∗
δ̃α,ν //

��

coker(Tc + TcNc − a′)

mod (N−ν)
��

C0(P1(F ), R)/R
δ̃α,ν // Ba,ν(F,R)

with a′ := a(1 + ν), since ̺ ∈ Ba,ν(F,R) ⊆ ker(T + TN − a′).
Lemma 2.11. We have ̺ (gv) = χα(d/a

′)χν(a′)̺(v), and thus

δ̃α,ν(gf) = χα(d/a
′)χν(a

′)gδ̃α,ν(f),

for all v ∈ Ṽ, f ∈ C0(P1(F ), R)/R and g =

(
a′ b
0 d

)
∈ B(F ).

Proof. (a) Using lemma 2.5(b) and the fact that ordgv(e1) = − ord̟(a
′) +

ordv(e1), we have

̺

((
a′ b
0 d

)
v

)
= αh(v)−ord̟(a′/d)νord̟(a′)−ordv(e1) = χα(d/a

′)χν(a
′)̺(v)
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for all v ∈ Ṽ . For f and g as in the assertion, we thus have

δ̃α,ν(gf)(v) =
∑

v=t(e)

̺(o(e))f(g−1e)−
∑

v=o(e)

̺(t(e))f(g−1e)

=
∑

g−1v=t(e)

̺(o(ge))f(e)−
∑

g−1v=o(e)

̺(t(ge))f(e)

= χα(d/a
′)χν(a

′)̺(v)

( ∑

g−1v=t(e)

̺(o(e))f(e)−
∑

g−1v=o(e)

̺(t(e))f(e)

)

= χα(d/a
′)χν(a

′)gδ̃α,ν(f)(v).

We define a function δα,ν : Cc(F
∗, R) → Ba,ν(F,R) as follows: For

f ∈ Cc(F
∗, R), we let ψ0(f) ∈ Cc(P1(F ), R) be the extension of x 7→

χα(x)χν (x)
−1f(x) by zero to P1(F ). We set δα,ν := δ̃α,ν ◦ ψ0. If α = ν,

we can define δα,ν on all functions in Cc(F,R).
We let F ∗ operate on Cc(F,R) by (tf)(x) := f(t−1x); this induces an action of
the group T 1(F ) := {( t 0

0 1 ) |t ∈ F ∗}, which we identify with F ∗ in the obvious
way. With respect to it, we have

ψ0(tf)(x) = χα(t)χν(t)
−1tψ0(f)(x)

and
δ̃α,ν(tf) = χ−1α (t)χν(t)tδ̃α,ν(f),

so δα,ν is T 1(F )-equivariant.
For an R-module M , we define an F ∗-action on Dist(F ∗,M) by

∫
fd(tµ) :=

t
∫
(t−1f)dµ. Let H ⊆ G(F ) be a subgroup, and M an R[H ]-module. We

define an H-action on Baν,ν−1

(F,M) by requiring 〈φ, hλ〉 = h · 〈h−1φ, λ〉 for all
φ ∈ Ba,ν(F,M), λ ∈ Baν,ν−1

(F,M), h ∈ H . With respect to these two actions,
we get a T 1(F ) ∩H-equivariant mapping

δα,ν : Baν,ν−1

(F,M)→ Dist(F ∗,M), δα,ν(λ) := 〈δα,ν(·), λ〉

dual to δα,ν .

2.5 Local distributions

Now consider the case R = C. Let χ1, χ2 : F ∗ → C∗ be two unramified
characters. We consider (χ1, χ2) as a character on the torus T (F ) of GL2(F ),
which induces a character χ on B(F ) by

χ

(
t1 u
0 t2

)
:= χ1(t1)χ2(t2).

Put αi := χi(̟)
√
q ∈ C∗ for i = 1, 2. Set ν := χ1(̟)χ2(̟) = α1α2q

−1 ∈ C∗,
and a := α1 + α2 = αi + qν/αi for either i. When a and ν are given by the αi
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like this, we will often write Bα1,α2(F,R) := Ba,ν(F,R) and Bα1,α2(F,M) :=

Baν,ν−1

(F,M) (!) for its dual. In the special case a2 = ν(q + 1)2, we assume
the χi to be sorted such that χ1 = | · |χ2.
Let B(χ1, χ2) denote the space of continuous maps φ : G(F )→ C such that

φ

((
t1 u
0 t2

)
g

)
= χα1(t1)χα2(t2)|t1|φ(g) (8)

for all t1, t2 ∈ F ∗, u ∈ F , g ∈ G(F ). G(F ) operates canonically on B(χ1, χ2) by
right translation (cf. [Bu98], Ch. 4.5). If χ1χ

−1
2 6= | · |±1, B(χ1, χ2) is a model

of the spherical representation π(χ1, χ2); if χ1χ
−1
2 = | · |±1, the special repre-

sentation π(χ1, χ2) can be given as an irreducible subquotient of codimension
1 of B(χ1, χ2).

2

Lemma 2.12. We have a G-equivariant isomorphism B̃a,ν(F,C) ∼= B(χ1, χ2).
It induces an isomorphism Ba,ν(F,C) ∼= π(χ1, χ2) both for spherical and special
representations.

Proof. We choose a “central” unramified character χZ : F ∗ → C satisfying
χ2
Z(̟) = ν; then we have χ1 = χZχ0

−1, χ2 = χZχ0 for some unramified char-
acter χ0. We set a′ :=

√
q
(
χ0(̟)−1 + χ0(̟)

)
, which satisfies a = χZ(̟)a′.

For a representation (π, V ) of G(F ), by [Bu98], Ex. 4.5.9, we can define another
representation χZ ⊗ π on V via

(g, v) 7→ χZ(det(g))π(g)v for all g ∈ G(F ), v ∈ V,

and with this definition we have B(χ1, χ2) ∼= χZ⊗B(χ−10 , χ0). Since B(χ−10 , χ0)
has trivial central character, [BL95], Thm. 20 (as quoted in [Sp14]) states that

B(χ−10 , χ0) ∼= Ba′,1(F,C) ∼= Ind
G(F )
KZ R/ Im(T − a′).

Define a G-linear map φ : IndGK R→ χZ ⊗ IndGKZ R by 1K 7→ (χZ ◦ det) · 1KZ .
Since 1K (resp. (χZ ◦ det) · 1KZ) generates IndGK R (resp. χZ ⊗ IndGKZ R) as a
C[G]-module, φ is well-defined and surjective.
φ maps N1K = (̟ 0

0 ̟ ) 1K to

(̟ 0
0 ̟ ) ((χZ ◦ det) · 1KZ) = χZ(̟)2 · ((χZ ◦ det) · 1KZ) = ν · φ(1K).

Thus Im(N − ν) ⊆ kerφ, and in fact the two are equal, since the preimage of
the space of functions of support in a coset KZg (g ∈ G(F )) under φ is exactly
the space generated by the 1Kzg, z ∈ Z(F ) = Z(OF ){(̟ 0

0 ̟ )}Z.
Furthermore, φ maps T 1K =

∑
i∈OF /(̟)∪{∞}Ni1K (with the Ni as in Lemma

2.7) to
∑

i

χZ(det(Ni)) · ((χZ ◦ det) ·Ni1KZ) = χZ(̟) · (χZ ◦ det)T 1KZ

(since det(Ni) = ̟ for all i),and thus Im(T − a) is mapped to Im
(
χZ(̟)T −

a
)
= Im

(
χZ(̟)(T − a′)

)
= Im(T − a′).

2Note that [Bu98] denotes this special representation by σ(χ1, χ2), not by π(χ1, χ2).
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Putting everything together, we thus have G-isomorphisms

Cc(Ṽ ,C)/
(
Im(T − a) + Im(N − ν)

) ∼= IndGK R/
(
Im(T − a) + Im(N − ν)

)

∼= χZ ⊗
(
IndGKZ R/ Im(T − a′)

)

∼= χZ ⊗ B(χ−10 , χ0) ∼= B(χ1, χ2).

Thus, Ba,ν(F,C) is isomorphic to the spherical principal series representation
π(χ1, χ2) for a

2 6= ν(q + 1)2.
In the special case, Ba,ν(F,C) is a G-invariant subspace of B̃a,ν(F,C) of codi-
mension 1, so it must be mapped under the isomorphism to the unique G-
invariant subspace of B(χ1, χ2) of codimension 1 (in fact, the unique infinite-
dimensional irreducible G-invariant subspace, by [Bu98], Thm. 4.5.1), which is
the special representation π(χ1, χ2).

By [Bu98], section 4.4, there exists thus for all pairs a, ν a Whittaker functional
λ on Ba,ν(F,C), i.e. a nontrivial linear map λ : Ba,ν(F,C) → C such that
λ (( 1 x0 1 )φ) = ψ(x)λ(φ). It is unique up to scalar multiples.
From it, we furthermore get a Whittaker model Wa,ν of Ba,ν(F,C):

Wa,ν := {Wξ : GL2(F )→ C | ξ ∈ Ba,ν(F,C)},

where Wξ(g) := λ(g · ξ) for all g ∈ GL2(F ). (see e.g. [Bu98], Ch. 3, eq. (5.6).)
Now write α := α1 for short. Recall the distribution µα,ν = ψ(x)χα/ν (x)dx ∈
Dist(F ∗,C). For α = ν, it extends to a distribution on F . We have the
following generalization of [Sp14], Prop. 3.10:

Proposition 2.13. (a) There exists a unique Whittaker functional λ = λa,ν
on Ba,ν(F,C) such that δα,ν(λ) = µα,ν .
(b) For every f ∈ Cc(F ∗,C), there exists W =Wf ∈ Wa,ν such that

∫

F∗

(af)(x)µα,ν(dx) =Wf

(
a 0
0 1

)
.

If α = ν, then for every f ∈ Cc(F,C), there exists Wf ∈ Wa,ν such that

∫

F

(af)(x)µα,ν(dx) =Wf

(
a 0
0 1

)
.

(c) Let H ⊆ U = O×F be an open subgroup, and write WH := W1H . For every
f ∈ C0

c (F
∗,C)H we have

∫

F∗

f(x)µα,ν(dx) = [U : H ]

∫

F∗

f(x)WH

(
x 0
0 1

)
d×x.

Proof. (a) By [Sp14], we have a Whittaker functional of the Steinberg repre-
sentation given by the composite

St(F,C) := C0(P1(F ),C)/C
∼=−→ Cc(F,C)

Λ−→ C, (9)
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where the first map is the F -equivariant isomorphism

C0(P1(F ),C)/C→ Cc(F,C), φ 7→ f(x) := φ(x) − φ(∞),

(with F acting on Cc(F,C) by (x · f)(y) := f(y − x), and on C0(P1(F ),C)/C
by xφ := ( 1 x0 1 )φ), and the second is

Λ : Cc(F,C)→ C, f 7→
∫

F

f(x)ψ(x)dx.

Let now λ : Ba,ν(F,C)→ C be a Whittaker functional of Ba,ν(F,C). By lemma
2.11, for u = ( 1 x0 1 ) ∈ B(F ),

(λ ◦ δ̃α,ν)(uφ) = λ(uδ̃α,ν(φ)) = ψ(x)λ(δ̃α,ν (φ)),

so λ ◦ δ̃α,ν is a Whittaker functional if it is not zero.

To describe the image of δ̃α,ν , consider the commutative diagram

Cc(Ẽ , R)
δ̃α,ν //

(10)

��

Cc(Ṽ , R)
φ 7→φ·̺
��

Cc(Ẽ , R)
δ // Cc(Ṽ , R)

〈·,1〉 // R // 0

where the vertical maps are defined by

Cc(Ẽ , R)→ Cc(Ẽ , R), c 7→
(
e 7→ c(e)̺(o(e))̺(t(e))

)
(10)

resp. by mapping φ to v 7→ φ(v)̺(v); both are obviously isomorphisms.
Since the lower row is exact, we have Im δ = ker〈·, 1〉 =: C0

c (Ṽ , R) and thus
Im δ̃α,ν = ̺−1 · C0

c (Ṽ, R).
Since λ 6= 0 and Ba,ν(F,C) is generated by (the equivalence classes of) the 1{v},

v ∈ Ṽ, there exists a v ∈ Ṽ such that λ(1{v}) 6= 0. Let φ be this 1{v}, and let
u = ( 1 x

0 1 ) ∈ B(F ) such that x /∈ kerψ. Then

̺ · (uφ− φ) = ̺ · (1{u−1v} − 1{v}) = ̺(v)(1{u−1v} − 1{v}) ∈ C0
c (Ṽ , R)

by lemma 2.11, so 0 6= uφ−φ ∈ Im δ̃α,ν , but λ(uφ−φ) = ψ(x)λ(φ)−λ(φ) 6= 0.

So λ ◦ δ̃α,ν 6= 0 is indeed a Whittaker functional. By replacing λ by a scalar

multiple, we can assume λ ◦ δ̃α,ν = (9).

Considering λ as an element of Baν,ν−1

(F,C) ∼= Hom(Ba,ν(F,C),C), we have

δα,ν(λ)(f) = 〈δα,ν(f), λ〉
= Λ(χαχ

−1
ν f)

=

∫

F∗

χα(x)χ
−1
ν (x)f(x)ψ(x)dx

= µα,ν(f).

(b), (c) follow from (a) as in [Sp14].
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2.6 Semi-local theory

We can generalize many of the previous constructions to the semi-local case,
considering all primes p|p at once.
So let F1, . . . , Fm be finite extensions of Qp, and for each i, let qi be the number
of elements of the residue field of Fi. We put F := F1 × · · · × Fm.
Let R again be a ring, and ai ∈ R, νi ∈ R∗ for each i ∈ {1, . . . ,m}. Put
a := (a1, . . . , am), ν := (ν1, . . . , νm). We define Ba,ν(F ,R) as the tensor prod-
uct

Ba,ν(F ,R) :=
m⊗

i=1

Bai,νi(Fi, R).

For an R-module M , we define Baν,ν−1

(F ,M) := HomR(Ba,ν(F ,R),M); let

〈·, ·〉 : Ba,ν(F ,R)× Baν,ν
−1

(F ,M)→M (11)

denote the evaluation pairing.
We have an obvious isomorphism

m⊗

i=1

C0
c (F

∗
i , R)→ C0

c (F
∗, R),

⊗

i

fi 7→
(
(xi)i=1,...,m 7→

m∏

i=1

fi(xi)

)
. (12)

Now when we have αi,1, αi,2 ∈ R∗ such that ai = αi,1 + αi,2 and νi =
αi,1αi,2q

−1
i , we can define the T 1(F )-equivariant map

δα1,2
:= δα1,ν : C0

c (F ,R)→ Ba,ν(F ,R)

as the inverse of (12) composed with
⊗m

i=1 δαi,1,νi .
Again, we will often write Bα1,α2(F,R) := Baν,ν−1(F,R) and Bα1,α2(F,M) :=

Baν,ν−1

(F,M).
If H ⊆ G(F ) is a subgroup, and M an R[H ]-module, we define an H-action

on Baν,ν−1

(F,M) by requiring 〈φ, hλ〉 = h · 〈h−1φ, λ〉 for all φ ∈ Ba,ν(F,M),

λ ∈ Baν,ν−1

(F,M), h ∈ H , and get a T 1(F ) ∩H-equivariant mapping

δα1,α2 : Baν,ν−1

(F,M)→ Dist(F ∗,M), δα1,α2(λ) := 〈δα1,α2(·), λ〉.
Finally, we have a homomorphism

m⊗

i=1

Baiνi,ν−1
i (Fi, R)

∼=−→
m⊗

i=1

HomR(Baiνi,ν−1
i

(Fi, R), R)

→ Hom(Ba1,ν1(F1, R),Hom(Ba2,ν2(F2, R),Hom(. . . , R))...)
∼=−→ Baν,ν−1

(F,R).

(13)

where the second map is given by ⊗ifi 7→ (x1 7→ (x2 7→ (. . . 7→∏
i fi(xi))...),

and the last map by iterating the adjunction formula of the tensor product.
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3 Cohomology classes and global measures

3.1 Definitions

From now on, let F denote a number field, with ring of integers OF . For each
finite prime v, let Uv := O∗v. Let A = AF denote the ring of adeles of F , and
I = IF the group of ideles of F . For a finite subset S of the set of places of
F , we denote by AS := {x ∈ AF |xv = 0 ∀v ∈ S} the S-adeles and by IS

the S-ideles, and put FS :=
∏
v∈S Fv, US :=

∏
v∈S Uv, U

S :=
∏
v/∈S Uv (if S

contains all infinite places of F ), and similarly for other global groups.
For ℓ a prime number or ∞, we write Sℓ for the set of places of F above ℓ, and
abbreviate the above notations to Aℓ := ASℓ , Ap,∞ := ASp∪S∞ , and similarly
write Ip, I∞, Fp, F∞, U∞, Up, U

p,∞, I∞ etc.
Let F have r real embeddings and s pairs of complex embeddings. Set d :=
r + s − 1. Let {σ0, . . . , σr−1, σr , . . . , σd} be a set of representatives of these
embeddings (i.e. for i ≥ r, choose one from each pair of complex embeddings),
and denote by∞0, . . . ,∞d the corresponding archimedian primes of F . We let
S0
∞ := {∞1, . . . ,∞d} ⊆ S∞.

For each place v, let dxv denote the associated self-dual Haar measure on
Fv, and dx :=

∏
v dxv the associated Haar measure on AF . We define Haar

measures d×xv on F ∗v by d×xv := cv
dxv
|xv|v , where cv = (1 − 1

qv
)−1 for v finite,

cv = 1 for v|∞. For v|∞ complex, we use the decomposition C∗ = R∗+ × S1

(with S1 = {x ∈ C∗; |x| = 1}) to write d×xv = d×rv dϑv for variables rv, ϑv
with rv ∈ R∗+, ϑv ∈ S1.
Let S1 ⊆ Sp be a set of primes of F lying above p, S2 := Sp − S1. Let R be a
topological Hausdorff ring.

Definition 3.1. We define the module of continuous functions

C(S1, R) := C(FS1 × F ∗S2
× Ip,∞/Up,∞, R);

and let Cc(S1, R) be the submodule of all compactly supported f ∈ C(S1, R).
We write C0(S1, R), C0c (S1, R) for the submodules of locally constant maps
(or of continuous maps where R is assumed to have the discrete topology).We
further define

C♭c(S1, R) := Cc(∅, R) + C♭c(S1, R) ⊆ C♭c(S1, R)

to be the module of continuous compactly supported maps that are “constant
near (0p, x

p)” for each p ∈ S1.

Definition 3.2. For an R-module M , let Df (S1,M) denote the R-module of
maps

φ : Co(FS1 × F ∗S2
)× Ip,∞F →M

that are Up,∞-invariant and such that φ(·, xp,∞) is a distribution for each
xp,∞ ∈ Ip,∞F .
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Since Ip,∞F /Up,∞ is a discrete topological group, Df (S1,M) naturally identifies
with the space of M -valued distributions on FS1 × F ∗S2

× Ip,∞F /Up,∞. So there
exists a canonical R-bilinear map

Df (S1,M)× C0c (S1, R)→M, (φ, f) 7→
∫
f dφ, (14)

which is easily seen to induce an isomorphism Df (S1,M) ∼=
HomR(C0c (S1, R),M).
For a subgroupE ⊆ F ∗ and an R[E]-moduleM , we let E operate on Df (S1,M)
and C0c (S1, R) by (aφ)(U, xp,∞) := aφ(a−1U, a−1xp,∞) and (af)(x∞) :=
f(a−1x∞) for a ∈ E, U ∈ Co(FS1 ×F ∗S2

), x· ∈ I·F ; thus we have
∫
(af) d(aφ) =

a
∫
f dφ for all a, f, φ.

When M = V is a finite-dimensional vector space over a p-adic field, we write
Dbf (S1, V ) for the subset of φ ∈ Df (S1, V ) such that φ is even a measure on

FS1 × FS2 × Ip,∞F /Up,∞.

Definition 3.3. For a C-vector space V , define D(S1, V ) to be the set of all
maps φ : Co(FS1 × F ∗S2

)× Ip → V such that:

(i) φ is invariant under F× and Up,∞.

(ii) For xp ∈ Ip, φ(·, xp) is a distribution of FS1 × FS2 .

(iii) For all U ∈ Co(FS1 × F ∗S2
), the map φU : I = F×p × Ip → V, (xp, x

p) 7→
φ(xpU, x

p) is smooth, and rapidly decreasing as |x| → ∞ and |x| → 0.

We will need a variant of this last set: Let D′(S1, V ) be the set of all maps
φ ∈ D(S1, V ) that are ”(S1)s-invariant”, i.e. such that for all complex primes
∞j of F and all ζ ∈ S1 = {x ∈ C∗; |x| = 1}, we have

φ(U, xp,∞j , ζx∞j ) = φ(U, xp,∞j , x∞j ) for all x
p = (xp,∞j , x∞j ) ∈ Ip.

There is an obvious surjective map

D(S1, V )→ D′(S1, V ), φ 7→
(
(U, x) 7→

∫

(S1)s
φ(U, x)dϑr · · · dϑr+s−1

)

given by integrating over (S1)s ⊆ (C∗)s →֒ I∞.

Let F ∗+ denote the set of all x ∈ F∗ that are totally positive, i.e. positive
with respect to every real embedding of F . (For F totally imaginary, we have
F ∗ = F ∗+.) Let F ∗′ ⊆ F ∗+ be a maximal torsion-free subgroup of F ∗+. If F has
at least one real embedding, we obviously have F ∗′ = F ∗+; for totally imaginary
F , F ∗′ is a subgroup of finite index of F ∗ with F/F ∗′ ∼= µF , the roots of unity
of F .
We set

E′ := F ∗′ ∩O×F ⊆ O×F ,
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so E′ is a torsion-free Z-module of rank d. E′ operates freely and discretely on
the space

Rd+1
0 :=

{
(x0, . . . , xd) ∈ Rd+1|

d∑

i=0

xi = 0

}

via the embedding

E′ →֒ Rd+1
0

a 7→ (log |σi(a)|)i∈S∞

(cf. proof of Dirichlet’s unit theorem, e.g. in [Neu92], Ch. 1), and
the quotient Rd+1

0 /E′ is compact. We choose the orientation on Rd+1
0 in-

duced by the natural orientation on Rd via the isomorphism Rd ∼= Rd+1
0 ,

(x1, . . . , xd) 7→ (−∑d
i=1 xi, x1, . . . , xd). So Rd+1

0 /E′ becomes an oriented com-
pact d-dimensional manifold.
Let Gp be the Galois group of the maximal abelian extension of F which is
unramified outside p and ∞; for a C-vector space V , let Dist(Gp, V ) be the
set of V -valued distributions of Gp. Denote by ̺ : IF /F ∗ → Gp the projection
given by global reciprocity.

3.2 Global measures

Now let V = C, equipped with the trivial F ∗′-action. We want to construct a
commutative diagram

D(S1,C)
φ 7→µφ

&&MMMMMMMMMMM

φ 7→κφ // Hd
(
F ∗′,Df (S1,C)

)

κ 7→µκ=κ∩∂(·)vvmmmmmmmmmmmmm

Dist(Gp,C)

(15)

First, let R be any topological Hausdorff ring. Let E′ denote the closure of
E′ in Up. The projection map pr : I∞/Up,∞ → I∞/(E′ × Up,∞) induces an
isomorphism

pr∗ : Cc(I∞/(E′ × Up,∞), R)→ H0(E′, Cc(I∞/Up,∞, R)),

and the reciprocity map induces a surjective map ̺ : I∞/(E′ × Up,∞)→ Gp.
Now we can define a map

̺♯ : H0(F
∗′/E′, Cc(I∞/(E′ × Up,∞), R))→ C(Gp, R),

[f ] 7→
(
̺(x) 7→

∑

ζ∈F∗′/E′

f(ζx) for x ∈ I∞/(E′ × Up,∞)
)
.

This is an isomorphism, with inverse map f 7→ [(f ◦ ̺) · 1F ], where 1F is the
characteristic function of a fundamental domain F of the action of F ∗′/E′ on
I∞/U∞.
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We get a composite map

C(Gp, R)
(̺♯)−1

−−−−→ H0

(
F ∗′/E′, Cc(I∞/(E′ × Up,∞), R)

)

pr∗−−→ H0

(
F ∗′/E′, H0(E′, Cc(I∞/Up,∞, R))

)

−→ H0

(
F ∗′/E′, H0(E′, Cc(S1, R))

)
,

(16)

where the last arrow is induced by the “extension by zero” from
Cc(I∞/Up,∞, R) to Cc(S1, R).
Now let η ∈ Hd(E

′,Z) ∼= Z be the generator that corresponds to the given
orientation of Rd+1

0 . This gives us, for every R-module A, a homomorphism

H0

(
F ∗′/E′, H0(E′, A)

) ∩η // H0

(
F ∗′/E′, Hd(E

′, A)
)

Composing this with the edge morphism

H0

(
F ∗′/E′, Hd(E

′, A)
)
→ Hd(F

∗′, A) (17)

(and setting A = Cc(S1, R)) gives a map

H0

(
F ∗′/E′, H0(E′, Cc(S1, R))

)
→ Hd

(
F ∗′, Cc(S1, R)

)
(18)

We define
∂ : C(Gp, R)→ Hd

(
F ∗′, Cc(S1, R)

)

as the composition of (16) with this map.
Now, letting M be an R-module equipped with the trivial F ∗′-action, the
bilinear form (14)

Df (S1,M)× Cc(S1, R) → M

(φ, f) 7→
∫
f dφ

induces a cap product

∩ : Hd
(
F ∗′,Df (S1,M)

)
×Hd

(
F ∗′, Cc(S1, R)

)
→ H0(F

∗′,M) =M. (19)

Thus for each κ ∈ Hd(F ∗′,Df (S1,M)), we get a distribution µκ on Gp by
defining ∫

Gp
f(γ) µκ(dγ) := κ ∩ ∂(f) (20)

for all continuous maps f : Gp → R.
Now let M = V be a finite-dimensional vector space over a p-adic field
K, and let κ ∈ Hd(F ∗′,Dbf (S1, V )). We identify κ with its image in

Hd(F ∗′,Df (S1, V )); then it is easily seen that µκ is also a measure, i.e. we
have a map

Hd(F ∗′,Dbf (S1, V ))→ Distb(Gp, V ), κ 7→ µκ. (21)
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Let L|F be a Zp-extension of F . Since it is unramified outside p, it gives
rise to a continuous homomorphism Gp → Gal(L|F ) via σ 7→ σ|L. Fixing an
isomorphism Gal(L|F ) ∼= pεpZp (where εp = 2 for p = 2, εp = 1 for p odd),
we obtain a surjective homomorphism ℓ : Gp → pεpZp. (Note that pεpZp is the
space of definition of the p-adic exponential function expp.)

Example 3.4. Let L be the cyclotomic Zp-extension of F . Then we can take
ℓ = logp ◦N , where N : Gp → Z∗p is the p-adic cyclotomic character, defined

by requiring γζ = ζN (γ) for all γ ∈ Gp and all p-power roots of unity ζ. It is
well-known (cf. [Wa82], par. 5) that logp(Z

∗
p) = pεpZp.

It is well-known that F has t independent Zp-extensions, where s + 1 ≤ t ≤
[F : Q]; the Leopoldt conjecture implies t = s+1. µκ defines a t-variable p-adic
L-function as follows:

Definition 3.5. Let K be a p-adic field, V a finite-dimensional K-vector
space, κ ∈ Hd(F ∗′,Dbf (S1, V )). Let ℓ1, . . . , ℓt : Gp → pεpZp be continuous
homomorphisms.The p-adic L-function of κ is given by

Lp(s, κ) := Lp(s1, . . . , st, κ) :=

∫

Gp

(
t∏

i=1

expp(siℓi(γ))

)
µκ(dγ)

for all s1, . . . , st ∈ Zp.

Remark 3.6. Let Σ := {±1}r, where r is the number of real embeddings of F .
The group isomorphism Z/2Z ∼= {±1}, ε 7→ (−1)ε, induces a pairing

〈·, ·〉 : Σ→ {±1}, 〈((−1)εi)i, ((−1)ε
′
i)i〉 := (−1)

∑
i εiε

′
i .

For a field k of characteristic zero, a k[Σ]-module V and µ = (µ0, . . . , µr−1) ∈ Σ,
we put Vµ := {v ∈ V | 〈µ, ν〉v = νv ∀ν ∈ Σ}, so that we have V =

⊕
µ∈Σ Vµ.

We write vµ for the projection of v ∈ V to Vµ, and v+ := v(1,...,1).

For r > 0, we identify Σ with F ∗/F ∗′ via the isomorphism Σ ∼=
∏r−1
i=0 R∗/R∗+ ∼=

F ∗/F ∗′ = F ∗/F ∗+. Then for each F ∗-moduleM , Σ acts onHd(F ∗′,Df (S1,M))
and on Hd(F ∗′,Dbf (S1,M)). For r = 0, we let the trivial group Σ act on these

groups as well for ease of notation. The exact sequence Σ ∼=
∏r−1
i=0 R∗/R∗+ =

I∞/I0∞ → Gp → G+p → 0 of class field theory (where I0∞ is the maximal
connected subgroup of I∞) yields an action of Σ on Gp. We easily check that
(21) is Σ-equivariant, and that the maps γ 7→ expp(sℓi(γ)) factor over Gp →
G+p (since Zp-extensions are unramified at ∞). Therefore we have Lp(s, κ) =
Lp(s, κ+).

For φ ∈ D(S1, V ) and f ∈ C0(I/F ∗,C), let
∫

I/F∗

f(x)φ(d×xp, x
p) d×xp := [Up : U ]

∫

I/F∗

f(x)φU (x) d
×x,
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where we choose an open set U ⊆ Up such that f(xpu, x
p) = f(xp, x

p) for all
(xp, x

p) ∈ I and u ∈ U ; such a U exists by lemma 3.7 below. Since this integral
is additive in f , there exists a unique V -valued distribution µφ on Gp such that

∫

Gp
f dµφ =

∫

I/F∗

f(̺(x))φ(d×xp, x
p) d×xp (22)

for all functions f ∈ C0(Gp, V ).

Lemma 3.7. Let F : I/F ∗ → X be a locally constant map to a set X. Then
there exists an open subgroup U ⊆ I such that f factors over I/F ∗U .

Proof. I∞ =
∏
v|∞ Fv is connected, thus f factors over f : I/F ∗I∞ → X . Since

I/F ∗I∞ is profinite, f further factors over a subgroup U ′ ⊆ I∞ of finite index,
which is open.

Let U0
∞ :=

∏
v∈S0

∞
R∗+; the isomorphisms U0

∞ ∼= Rd, (rv)v 7→ (log rv)v, and

Rd ∼= Rd+1
0 give it the structure of a d-dimensional oriented manifold (with the

natural orientation). It has the d-form d×r1 · . . . · d×rd, where (by slight abuse
of notation) we choose d×ri on F∞i corresponding to the Haar measure d×xi
resp. d×ri on R∗+ ⊆ F ∗∞i

. E′ operates on U0
∞ via a 7→ (|σi(a)|)i∈S0

∞
, so the

isomorphism U0
∞ ∼= Rd+1

0 is E′-equivariant.
For φ ∈ D′(S1, V ), set

∫ ∞

0

φ d×r0 : Co(FS1 × F ∗S2
)× Ip,∞0 → C

(U, xp,∞0) 7→
∫ ∞

0

φ(U, r0, x
p,∞0) d×r0,

where we let r0 ∈ F∞0 run through the positive real line R∗+ in F∞0 . Composing
this with the projection D(S1, V )→ D′(S1, V ) gives us a map

D(S1, V )→ H0
(
F ∗′,Df (S1, C

∞(U0
∞, V ))

)
,

φ 7→
∫

(S1)s

(∫ ∞

0

φ d×r0

)
dϑr dϑr+1 . . . dϑr+s−1

(23)

(where C∞(U0
∞, V ) denotes the space of smooth V -valued functions on U0

∞),
since one easily checks that

∫∞
0 φ d×r0 is F ∗′-invariant.

Define the complex C• := Df (S1,Ω
•(U0
∞, V )). By the Poincare lemma, this is

a resolution of Df (S1, V ). We now define the map φ 7→ κφ as the composition
of (23) with the composition

H0
(
F ∗′,Df (S1, C

∞(U0
∞, V ))

)
→ H0(F ∗′, Cd)→ Hd(F ∗′,Df (S1, V )), (24)

where the first map is induced by

C∞(U0
∞, V )→ Ωd(U0

∞, V ), f 7→ f(r1, . . . , rd)d
×r1 · . . . · d×rd, (25)
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and the second is an edge morphism in the spectral sequence

Hq(F ∗′, Cp)⇒ Hp+q(F ∗′,Df (S1, V )). (26)

Specializing to V = C, we now have:

Proposition 3.8. The diagram (15) commutes, i.e., for each φ ∈ D(S1,C),
we have

µφ = µκφ .

Proof. Analoguously to [Sp14], proof of prop. 4.21, we define a pairing

〈 , 〉 : D(S1,C)× C0(Gp,C)→ C

as the composite of (23)× (16) with

H0
(
F ∗′,Df (S1, C

∞(U0
∞,C))

)
×H0

(
F ∗′/E′, H0(E′, C0c (S1,C))

)

∩−→ H0

(
F ∗′/E′, H0(E′, C∞(U0

∞,C))
)
→ H0(F

∗′/E′,C) ∼= C, (27)

where ∩ is the cap product induced by (14), and the second map is induced by

H0
(
E′, C∞(U0

∞,C)
)
→ C, f 7→

∫

U0
∞/E′

f(r1, . . . , rd) d
×r1 . . . d

×rd. (28)

Then we can show that

κφ ∩ ∂(f) = 〈φ, f〉 =
∫

Gp
f(γ) µφ(dγ) for all f ∈ C0(Gp,C),

by copying the proof for the totally real case (replacing F ∗+ by F ∗′, E+ by
E′), using the fact that for a d-form on the d-dimensional oriented manifold
M := Rd+1

0 /E′ ∼= U0
∞/E

′, integration over M corresponds to taking the cap
product with the fundamental class η of M under the canonical isomorphism
Hd
dR(M) ∼= Hd

sing(M) = Hd(E′,C).

3.3 Exceptional zeros

Now let ℓ1, . . . , ℓt : Gp → Zp be continuous homomorphisms. Let again S1 =
{p1, . . . , pn} ⊆ Sp be a set of primes above p, of cardinality n := #S1.

Proposition 3.9. For each x = (x1, . . . , xt) ∈ Nt0 set |x| :=∑t
i=1 xi. Then

∂(

t∏

i=1

ℓxii ) = 0 for all x with |x| ≤ n− 1.
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Proof. We can readily generalize the proof of Spieß’ result for the p-adic cy-
clotomic character (ℓ = logp ◦N ) in the totally real case ([Sp14], Prop. 4.6(a),
Lemmas 4.1 and 4.7) to show that ∂(ℓx) = 0 for all 0 ≤ x ≤ n − 1, us-
ing the facts that we can write F ∗′ = E′ × T for some subgroup T ⊆ F ∗′

(since F ∗′/E′ = F ∗/O×F is a free Z-module), and that for each homomorphism
ℓ : Gp → Zp, the composition

ℓ̃ : I∞
̺−→ Gp ℓ−→ Zp →֒Qp.

is zero on I∞,p (since the pro-q-part of Gp is finite for every prime q 6= p and
Qp is torsion-free).

Now for a ring R ⊇ Q, each monomial
∏t
i=1X

ni
i ∈ R[X1, . . . , Xt] of degree

n =
∑
i ni can be written as a linear combination of n-th powers (Xi+ri,jXj)

n.

Therefore each product
∏t
i=1 ℓ

xi
i of degree x = |x| is a linear combination of

x-th powers of the homomorphisms ℓi,j := ℓi + ri,jℓj : Gp → Zp. This proves
the proposition.

Definition 3.10. A t-variable p-adic analytic function f(s) = f(s1, . . . , st)
(si ∈ Zp) has vanishing order ≥ n at the point 0 = (0, . . . , 0) if all its partial
derivatives of total order ≤ n− 1 vanish, i.e. if

∂k

(∂s)k
f(0) :=

∂k

∂sk11 · · ·∂sktt
f(0) = 0

for all k = (k1, . . . , kt) ∈ Nt0 with k := |k| ≤ n− 1. We write ords=0 f(s) ≥ n
in this case.

Theorem 3.11. Let n := #(S1), κ ∈ Hd(F ∗′,Dbf (S1, V )), V a finite-
dimensional vector space over a p-adic field. Then Lp(s, κ) is a locally analytic
function, and we have

ords=0 Lp(s, κ) ≥ n.

Proof. We have

∂k

(∂s)k
Lp(0, κ) =

∫

Gp

(
t∏

i=1

ℓi(γ)
ki

)
µκ(dγ) = κ ∩ ∂

(
t∏

i=1

ℓi(γ)
ki

)

for all k = (k1, . . . , kt) ∈ Nt0. Thus the theorem follows from proposition
3.9.

3.4 Integral cohomology classes

Definition 3.12. A nonzero cohomology class κ ∈ Hd(F ∗′,Df (S1,C)) is called
integral if κ lies in the image of

Hd(F ∗′,Df (S1, R))⊗R C→ Hd(F ∗′,Df (S1,C))
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for some Dedekind ring R ⊆ O. If, in addition, there exists a torsion-free R-
submodule M ⊆ Hd(F ∗′,Df (S1, R)) of rank ≤ 1 (i.e. M can be embedded
into R) such that κ lies in the image of M ⊗R C → Hd(F ∗′,Df (S1,C)), then
κ is integral of rank ≤ 1.

For κ as in def. 3.12 and R ⊆ C, we let Lκ,R be the image of

Hd(F
∗′, C0c (S1, R))→ H0(F

∗′,C) = C, x 7→ κ ∩ x.
Proposition 3.13. Let κ ∈ Hd(F ∗′,Df (S1,C)) be integral. Then
(a) µκ is a p-adic measure.
(b) There exists a Dedekind ring R ⊆ O such that Lκ,R is a finitely generated
R-module (resp. a torsion-free R-module of rank ≤ 1, if κ is integral of rank
≤ 1).
For each such R, the map Hd(F ∗′,Df (S1, Lκ,R))⊗Q→ Hd(F ∗′,Df (S1,C)) is
injective and κ lies in its image.

Proof. The proofs of the corresponding results for totally real F ([Sp14],
prop. 4.17 and cor. 4.18) also work in the general case.

Remark 3.14. Let κ be integral with Dedekind ring R as above. By (b) of the
proposition, we can view κ as an element of Hd(F ∗′,Df (S1, Lκ,R)) ⊗ Q. Put
Vκ := Lκ,R ⊗R Cp; let κ be the image of κ under the composition

Hd(F ∗′,Df (S1, Lκ,R))⊗R Q → Hd(F ∗′,Df (S1, Lκ,R))⊗R Cp
→ Hd(F ∗′,Dbf (S1, Vκ)),

where the second map is induced by Df (S1, Lκ,R) ⊗R Cp → Dbf (S1, Vκ). By
[Sp14], lemma 4.15, κ does not depend on the choice of R.
Since µκ is a p-adic measure, µκ allows integration of all continuous functions
f ∈ C(Gp,Cp), and by abuse of notation, we write Lp(s, κ) := Lp(s, κ) (cf.
remark 3.6). So Lp(s, κ) has values in the finite-dimensional Cp-vector space
Vκ.

4 p-adic L-functions of automorphic forms

We keep the notations from chapter 3; so F is again a number field with r real
embeddings and s pairs of complex embeddings.
For an ideal 0 6= m ⊆ OF , we letK0(m)v ⊆ G(OFv ) be the subgroup of matrices
congruent to an upper triangular matrix modulo m, and we set K0(m) :=∏
v∤∞K0(m)v, K0(m)S :=

∏
v∤∞,v/∈S K0(m)v for a finite set of primes S. For

each p|p, let qp = N(p) denote the number of elements of the residue class field
of Fp.
We denote by | · |C the square of the usual absolute value on C, i.e. |z|C = zz for
all z ∈ C, and write | · |R for the usual absolute value on R in context. We write

|α| := |α|
1
2

C for the archimedian absolute value when α is given as a complex
number in the context; whereas in the context of the p-adic characters, | · |
denotes the p-adic absolute value, unless otherwise noted.
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Definition 4.1. Let A0(G, 2, χZ) denote the set of all cuspidal automorphic
representations π = ⊗vπv of G(AF ) with central character χZ such that πv ∼=
σ(| · |1/2Fv

, | · |−1/2Fv
) at all archimedian primes v. Here we follow the notation

of [JL70]; so σ(| · |1/2Fv
, | · |−1/2Fv

) is the discrete series of weight 2, D(2), if v
is real, and is isomorphic to the principal series representation π(µ1, µ2) with
µ1(z) = z1/2z −1/2, µ2(z) = z−1/2z1/2 if v is complex (cf. section 4.5 below).

We will only consider automorphic representations that are p-ordinary , i.e πp
is ordinary (in the sense of chapter 2) for every p|p.
Therefore, for each p|p we fix two non-zero elements αp,1, αp,2 ∈ O ⊆ C such
that παp,1,αp,2 is an ordinary, unitary representation. By the classification of
unitary representations (see e.g. [Ge75], Thm. 4.27), a spherical representation
παp,1,αp,2 = π(χ1, χ2) is unitary if and only if either χ1, χ2 are both unitary
characters (i.e. |αp,1| = |αp,2| = √qp), or χ1,2 = χ0| · |±s with χ0 unitary and

− 1
2 < s < 1

2 . A special representation παp,1,αp,2 = π(χ1, χ2) is unitary if and
only if the central character χ1χ2 is unitary. In all three cases, we have thus
max{|αp,1|, |αp,2|} ≥ √qp. Without loss of generality, we will assume the αp,i

to be ordered such that |αp,1| ≤ |αp,2| for all p|p.
As in chapter 2, we define ap := αp,1 + αp,2, νp := αp,1αp,2/qp.
Let αi := (αp,i, p|p), for i = 1, 2. We denote by A0(G, 2, χZ , α1, α2) the subset
of all π ∈ A0(G, 2, χZ) such that πp = παp,1,αp,2 for all p|p.
For later use we note that π∞ = ⊗v∤∞πv is known to be defined over a finite
extension of Q, the smallest such field being the field of definition of π (cf.
[Sp14]).

4.1 Upper half-space

For k ∈ {R,C}, let Hm := Hk := k×R∗+ be the upper half-space of dimension
m := [k : R] + 1. Each Hm is a differentiable manifold of dimension m. If
we write x = (u, t) ∈ Hm with t ∈ R∗+, u in R or C, respectively, it has a

Riemannian metric ds2 = dt2+du du
t , which induces a hyperbolic geometry on

Hm, i.e. the geodesic lines on Hm are given by “vertical” lines {u} × R∗+ and
half-circles with center in the line or plane t = 0. HR is naturally isomorphic
to the complex upper half-plane {z ∈ C| Im(z) > 0}.
We have the decompositions GL2(C)+ = B′C · Z(C) · KC and GL2(R)+ =

B′R · Z(R) · KR, where B
′
k ⊆ GL2(k) is the subgroup of matrices

( R∗
+ k

0 1

)
for

k = R,C, Z is the center, and KR = SO(2), KC = SU(2) (cf. [By98], Cor. 43).
Identifying B′k with Hk via ( t z0 1 ) 7→ (z, t) gives natural projections

πR : GL2(R)+ ։ GL2(R)+/Z(R) SO(2) ∼= H2,

πC : GL2(C)։ GL2(C)/Z(C)KC
∼= HC

and corresponding left GL2(k)-actions on cosets.
A differential form ω on Hm is called left-invariant if it is invariant under
the pullback L∗g of left multiplication Lg : x 7→ gx on Hm, for all g ∈ G.
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Following [By98], eqs. (4.20), (4.24), we choose the following basis of left-
invariant differential 1-forms on H3:

β0 := −dz
t
, β1 :=

dt

t
, β2 :=

dz

t
,

and on H2 (writing z = x+ iy ∈ H2 ⊆ C):

β1 :=
dz

y
, β2 := −dz

y
.

We note that a form f1β1 + f2β2 is harmonic on H2 if and only if f1/y and
f2/y are holomorphic functions in z ([By98], lemma 60).

The Jacobian J(g, (0, 1)) of left multiplication by g in (0, 1) ∈ Hm with respect
to the basis (βi)i gives rise to a representation

̺ = ̺k : Z(k) ·Kk → SLm(C)

with ̺|Z(k) trivial, which on Kk is explicitly given by

̺C(h) =



u2 2uv v2

−uv uu− vv vu
v2 −2uv u2


 for h =

(
u v
−v u

)
∈ SU(2),

resp.

̺R

(
cos(ϑ) sin(ϑ)
− sin(ϑ) cos(ϑ)

)
=

(
e2iϑ 0
0 e−2iϑ

)

([By98], (4.27), (4.21)). In the real case, we will only consider harmonic forms
onH2 that are multiples of β1, thus we sometimes identify ̺R with its restriction

̺
(1)
R to the first basis vector β1,

̺
(1)
R : SO(2)→ S1 ⊆ C∗, κϑ =

(
cos(ϑ) sin(ϑ)
− sin(ϑ) cos(ϑ)

)
7→ e2iϑ.

For each i, let ωi be the left-invariant differential 1-form on GL2(k) which
coincides with the pullback (πC)

∗βi at the identity. Write ω (resp. β) for the
column vector of the ωi (resp. βi). Then we have the following lemma from
[By98]:

Lemma 4.2. For each i, the differential ωi on G induces βi on Hm, by restric-
tion to the subgroup B′k ∼= Hm. For a function φ : G→ Cm, the form φ·ω (with
Cm considered as a row vector, so · is the scalar product of vectors) induces
f · β, where f : Hm → Cm is given by

f(z, t) := φ

((
t z
0 1

))
.
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(See [By98], Lemma 57.)
To consider the infinite primes of F all at once, we define

H∞ :=
d∏

i=0

Hmi =
r−1∏

i=0

H2 ×
d∏

i=r

H3

(where mi = 2 if σi is a real embedding, and mi = 3 if σi is complex), and let

H0
∞ :=

∏d
i=1Hmi be the product with the zeroth factor removed. (The choice

of the 0-th factor is for convenience; we could also choose any other infinite
place, whether real or complex.)

For each embedding σi, the elements of P1(F ) are cusps of Hmi : for a given
complex embedding F →֒C, we can identify F with F × {0} →֒C × R≥0 and
define the ”extended upper half-space“ asH3 := H3∪F∪{∞} ⊆ C×R≥0∪{∞};
similarly for a given real embedding F →֒R, we get the extended upper half-
plane H2 := H2 ∪F ∪ {∞} . A basis of neighbourhoods of the cusp ∞ is given
by the sets {(u, t) ∈ Hm|t > N}, N ≫ 0, and of x ∈ F by the open half-balls
in Hm with center (x, 0).
Let G(F )+ ⊆ G(F ) denote the subgroup of matrices with totally positive
determinant. It acts on H0

∞ by composing the embedding

G(F )+ →֒
∏

v|∞,v 6=v0
G(Fv)

+, g 7→ (σ1(g), . . . , σd(g)),

with the actions of G(C)+ = G(C) on H3 and G(R)+ on H2 as defined above,
and on Ωdharm(H0

∞) by the inverse of the corresponding pullback, γ · ω :=
(γ−1)∗ω. Both are left actions.
For each complex v, we write the codomain of ̺Fv as

̺Fv : Z(Fv) ·KFv → SL3(C) =: SL(Vv),

for a three-dimensional C-vector space Vv. We denote the harmonic forms on
GL2(Fv), HFv defined above by ωv, βv etc.

Let V =
⊗

v∈SC
Vv ∼= (C3)⊗s, Z∞ =

∏
v|∞ Z(Fv), K∞ =

∏
v|∞KFv . Denoting

by SC (resp. SR) the set of complex (resp. real) archimedian primes of F , we
can merge the representations ̺Fv for each v|∞ into a representation

̺ = ̺∞ :=
⊗

v∈SC

̺C ⊗
⊗

v∈SR

̺
(1)
R : Z∞ ·K∞ → SL(V ),

and define V -valued vectors of differential forms

ω :=
⊗

v∈SC

ωv ⊗
⊗

v∈SR

ω1
v, β :=

⊗

v∈SC

βv ⊗
⊗

v∈SR

(βv)1

on GL2(F∞) and H∞, respectively.
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4.2 Automorphic forms

Let χZ : A∗F /F
∗ → C∗ be a Hecke character that is trivial at the archimedian

places. We also denote by χZ the corresponding character on Z(AF ) under the
isomorphism A∗F → Z(AF ), a 7→ ( a 0

0 a ).

Definition 4.3. An automorphic cusp form of parallel weight 2 with central
character χZ is a map φ : G(AF )→ V such that

(i) φ(zγg) = χZ(z)φ(g) for all g ∈ G(A), z ∈ Z(A), γ ∈ G(F ).

(ii) φ(gk∞) = φ(g)̺(k∞) for all k∞ ∈ K∞, g ∈ G(A) (considering V as a row
vector).

(iii) φ has “moderate growth“ on B′A := {
(
y x
0 1

)
∈ G(A)}, i.e. ∃C, λ ∀A ∈

B′A : ‖φ(A)‖ ≤ C · sup(|y|λ, |y|−λ) (for any fixed norm ‖·‖ on V );

and φ|G(A∞) · ω is the pullback of a harmon ic form ωφ = fφ · β on H∞.

(iv) There exists a compact open subgroup K ′ ⊆ G(A∞) such that φ(gk) =
φ(g) for all g ∈ G(A) and k ∈ K ′.

(v) For all g ∈ G(AF ),
∫

AF /F
φ

((
1 x
0 1

)
g

)
dx = 0. (“Cuspidality”)

We denote by A0(G, harm, 2, χZ) the space of all such maps φ.

For each g∞ ∈ A∞F , let ωφ(g
∞) be the restriction of φ(g∞, ·) · ω from G(A∞F )

to H∞; it is a (d+ 1)-form on H∞.

We want to integrate ωφ(g
∞) between two cusps of the space Hm0 . (We

will identify each x ∈ P1(F ) with its corresponding cusp in Hm0 in the fol-
lowing.) The geodesic between the cusps x ∈ F and ∞ in Hm0 is the line
{x} × R∗+ ⊆ Hm0 and the integral of ωφ along it is finite since φ is uniformly
rapidly decreasing:

Theorem 4.4. (Gelfand, Piatetski-Shapiro) An automorphic cusp form φ
is rapidly decreasing modulo the center on a fundamental domain F of
GL2(F )\GL2(AF );
i.e. there exists an integer r such that for all N ∈ N there exists a C > 0 such
that

φ(zg) ≤ C|z|r‖g‖−N

for all z ∈ Z(AF ), g ∈ F∩SL2(AF ). Here ‖g‖ := max{|gi,j|, |(g−1)i,j |}i,j∈{1,2}.

Documenta Mathematica 21 (2016) 689–734



p-adic L-Functions of Automorphic Forms 721

(See [CKM04], Thm. 2.2; or [Kur78], (6) for quadratic imaginary F .)
In fact, the integral of ωφ(g

∞) along {x} × R∗+ ⊆ Hm0 equals the integral of
φ(g∞, ·) · ω along a path gt ∈ GL2(F∞0 ), t ∈ R∗+, where we can choose

gt =
1√
t

(
t x
0 1

)
=

( 1√
t

x√
t

0
√
t

)
,

and thus have ‖gt‖ =
√
t for all t ≫ 0, ‖gt‖ = C 1√

t
for t ≪ 1, so the integral∫∞

x ωφ(g
∞) ∈ Ωdharm(H0

∞) is well-defined by the theorem.
For any two cusps a, b ∈ P1(F ), we now define

∫ b

a

ωφ(g
∞) :=

∫ ∞

a

ωφ(g
∞)−

∫ ∞

b

ωφ(g
∞) ∈ Ωdharm(H0

∞).

Since φ is uniformly rapidly decreasing (‖gt‖ does not depend on x, for t≫ 0),
this integral along the path (a, 0) → (a,∞) = (b,∞) → (b, 0) in Hm0 is the
same as the limit (for t → ∞) of the integral along (a, 0) → (a, t) → (b, t) →
(b, 0); and since ωφ is harmonic (and thus integration is path-independent
within Hm0) the latter is in fact independent of t, so equality holds for each

t > 0, or along any path from (a, 0) to (b, 0) in Hm0 . Thus
∫ b
a
ωφ(g

∞) equals
the integral of ωφ(g

∞) along the geodesic from a to b, and we have

∫ b

a

ωφ(g
∞) +

∫ c

b

ωφ(g
∞) =

∫ c

a

ωφ(g
∞)

for any three cusps a, b, c ∈ P1(F ). Let Div(P1(F )) denote the free abelian
group of divisors of P1(F ), and let M := Div0(P1(F )) be the subgroup of
divisors of degree 0.
We can extend the definition of the integral linearly to get a homomorphism

M→ Ωdharm(H0
∞), m 7→

∫

m

ωφ(g
∞),

and easily check that

γ∗
(∫

γm

ωφ(γg)

)
=

∫

m

ωφ(g). (29)

for all γ ∈ G(F )+, g ∈ G(A∞), m ∈ M.
Now let m be an ideal of F prime to p, let χZ be a Hecke character of conductor
dividing m, and α1, α2 as above.

Definition 4.5. We define S2(G,m, α1, α2) to be the C-vector space of all
maps

Φ : G(Ap)→ Bα1,α2(Fp, V ) = Hom(Bα1,α2(Fp,C), V )

such that:
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(a) φ is “almost” K0(m)-invariant (in the notation of [Ge75]), i.e. φ(gk) =
φ(g) for all g ∈ G(Ap) and k ∈ ∏v∤mpG(Ov), and φ(gk) = χZ(a)φ(g) for

all v|m, k =

(
a b
c d

)
∈ K0(m)v and g ∈ G(Ap).

(b) For each ψ ∈ Bα1,α2(Fp,C), the map

〈Φ, ψ〉 : G(A) = G(Fp)×G(Ap)→ V, (gp, g
p) 7→ Φ(gp)(gpψ)

lies in A0(G, harm, 2, χZ).

Note that (a) implies that φ is K ′-invariant for some open subgroup K ′ ⊆
K0(m)p of finite index ([By98]/[We71]).

4.3 Cohomology of GL2(F )

Let M be a left G(F )-module and N an R[H ]-module, for a ring R and a
subgroup H ⊆ G(F ). Let S ⊆ Sp be a set of primes of F dividing p; as above,
let χ = χZ be a Hecke character of conductor m prime to p.

Definition 4.6. For a compact open subgroup K ⊆ K0(m)S ⊆ G(AS,∞), we
denote by Af (K,S,M ;N) the R-module of all maps Φ : G(AS,∞) ×M → N
such that

1. Φ(gk,m) = Φ(g,m) for all g ∈ G(AS,∞), m ∈M , k ∈∏v∤mpG(Ov);

2. Φ(gk) = χZ(a)Φ(g) for all v|m, k =

(
a b
c d

)
∈ K0(m)v and g ∈ G(AS,∞),

m ∈M .

We denote by Af (S,M ;N) the union of the Af (K,S,M ;N) over all compact
open subgroups K.

Af (S,M ;N) is a left G(AS,∞)-module via (γ ·Φ)(g,m) := Φ(γ−1g,m) and has
a left H-operation given by (γ ·Φ)(g,m) := γΦ(γ−1g, γ−1m), commuting with
the G(AS,∞)-operation.
In contrast to our previous notation, we consider two subsets S1 ⊆ S2 ⊆ Sp in
this section. We put (α1, α2)S1 := {(αp,1, αp,2)|p ∈ S1}, we set

Af ((α1, α2)S1 , S2,M ;N) = Af (S2,M ;B(α1,α2)S1 (FS1 , N));

we write Af (m, (α1, α2)S1 , S2,M ;N) := Af (K0(m), (α1, α2)S1 , S2,M ;N). If
S1 = S2, we will usually drop S2 from all these notations.
We have a natural identification of Af (m, (α1, α2)S ,M ;N) with the space of
maps G(AS,∞)×M × B(α1,α2)S(FS , R)→ N that are “almost” K-invariant.

Let S0 ⊆ S1 ⊆ S2 ⊆ Sp be subsets. The pairing (11) induces a pairing

Af ((α1, α2)S1 , S2,M ;N)× B(α1,α2)S0
(FS0 , R)→ Af ((α1, α2)S0 , S2,M ;N)
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which, when restricting to K-invariant elements, induces an isomorphism

Af (K, (α1, α2)S1 , S2,M ;N) ∼= B(α1,α2)S1−S0 (FS1−S0 ,Af (α1, α2)S0 , S2,M ;N).

Putting S0 := S1 − {p} for a prime p ∈ S1, we specifically get an isomorphism

Af (K, (α1, α2)S1 , S2,M ;N) ∼= Bαp,1,αp,2(Fp,Af (α1, α2)S0 , S2,M ;N).

Lemmas 2.9 and 2.10 now immediately imply the following:

Lemma 4.7. Let S ⊆ Sp, p ∈ S, S0 := S−{p}. Let K ⊆ G(AS,∞) be a compact
open subgroup.
(a) If παp,1,αp,2 is spherical, we have exact sequences

0→ Af (K, (α1, α2)S ,M ;N)→ Z
N−νp−−−−→ Z → 0

and

0→ Z → Af (K0, (α1, α2)S0 ,M ;N)
T−ap−−−−→ Af (K0, (α1, α2)S0 ,M ;N)→ 0

for a G(AS0,∞)-module Z and a compact open subgroup K0 = K × Kp of
G(AS0,∞).

(b) If παp,1,αp,2 is special (with central character χp), we have exact sequences

0→ Af (K, (α1, α2)S ,M ;N)→ Z ′ → Z → 0

and

0→Z → Af (K0, (α1, α2)S0 ,M ;N)2 → Af (K0, (α1, α2)S0 ,M ;N)2 → 0,

0→Z ′ → Af (K ′0, (α1, α2)S0 ,M ;N)2 → Af (K ′0, (α1, α2)S0 ,M ;N)2 → 0,

with Z(′) := Af (K(′)
0 , (α1, α2)S0 , S,M ;N(χp)), where K

(′)
0 = K × K

(′)
p are

compact open subgroups of G(AS0,∞).

Proposition 4.8. Let S ⊆ Sp and let K be a compact open subgroup of
G(AS,∞).
(a) For each flat R-module N (with trivial G(F )-action), the canonical map

Hq(G(F )+,Af (K, (α1, α2)S,M;R))⊗R N → Hq(G(F )+,Af (K, (α1, α2)S,M;N))

is an isomorphism for each q ≥ 0.
(b) If R is finitely generated as a Z-module, Hq(G(F )+,Af (K, (α1, α2)S ,M;R)
is finitely generated over R.

Proof. We can copy the proof of [Sp14], Prop. 5.6, using lemma 4.7 instead of
[Sp14], lemma 5.4 to reduce to the case S = ∅.
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We define

Hq
∗(G(F )

+,Af ((α1, α2)S ,M ;R)) := lim−→Hq(G(F )+,Af (K, (α1, α2)S ,M ;R))

where the limit runs over all compact open subgroups K ⊆ G(AS,∞); and
similarly defineHq

∗(B(F )+,Af ((α1, α2)S ,M;R). The proposition immediately
implies

Corollary 4.9. Let R→ R′ be a flat ring homomorphism. Then the canonical
map

Hq
∗(G(F )

+,Af ((α1, α2)S ,M;R))⊗R R′ → Hq
∗(G(F )

+,Af ((α1, α2)S ,M;R′)

is an isomorphism, for all q ≥ 0.

If R = k is a field of characteristic zero, Hq
∗(G(F )+,Af ((α1, α2)S ,M ;R) is a

smooth G(AS,∞)-module, and we have

Hq
∗ (G(F )

+,Af ((α1, α2)S ,M ; k)K = Hq(G(F )+,Af (K, (α1, α2)S ,M ; k).

We identify G(F )/G(F )+ with the group Σ = {±1}r via the isomorphism

G(F )/G(F+)
det−−→ F ∗/F ∗+ ∼= Σ

(with all groups being trivial for r = 0). Then Σ acts on
Hq
∗ (G(F )+,Af ((α1, α2)S ,M ; k) and Hq(G(F )+,Af (K, (α1, α2)S ,M ; k) by

conjugation.For π ∈ A0(G, 2) and µ ∈ Σ, we write Hq
∗ (G(F )+, ·)π,µ :=

HomG(AS,∞)(π
S , Hq

∗(G(F )+, ·))µ.

Proposition 4.10. Let π ∈ A0(G, 2, χZ , α1, α2), S ⊆ Sp. Let k be a field
which contains the field of definition of π. Then for every µ ∈ Σ, we have

Hq
∗ (G(F )

+,Af ((α1, α2)S ,M; k)π,µ =

{
k, if q = d;

0, if q ∈ {0, . . . , d− 1} (30)

Proof. The case S = ∅ is proved analogously to [Sp14], prop. 5.8, using the
results of Harder [Ha87]. For S = S0 ∪ {p} and πp spherical, lemma 4.7(a) and
the statement for S0 give an isomorphism

Hq
∗ (G(F )

+,Af ((α1, α2)S0 ,M; k))π,µ ∼= Hq
∗ (G(F )

+,Af ((α1, α2)S ,M; k))π,µ

since the Hecke operators Tp and Np act on the left-hand side by multiplication
with ap and νp, respectively. If πp is special, we can similarly deduce the
statement for S from that for S0, using the first exact sequence of lemma
4.7(b), since the results of [Ha87] also hold when twisting k by a (central)
character.
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4.4 Eichler-Shimura map

From now on, let S1 ⊆ Sp be the set of places such that πp is the Steinberg
representation (i.e. αp,1 = νp = 1, αp,2 = q).
Given a subgroup K0(m)p ⊆ G(Ap,∞) as above, there is a map

I0 : S2(G,m, α1, α2)→ H0(G(F )+,Af (m, α1, α2,M; Ωdharm(H0
∞)))

given by

I0(Φ) : (ψ, (g,m)) 7→
∫

m

ω〈Φ,ψ〉(1p, g),

for ψ ∈ Bα1,α2(Fp,C), g ∈ G(Ap,∞),m ∈ M, where 1p denotes the unity ele-
ment in G(Fp).
This is well-defined since both sides are “almost” K0(m)-invariant, and the
G(F )+-invariance of I0(Φ) follows from a straightforward calculation, using
(29).
From the complex

Af (m,α1, α2,M;C)→ C• := Af (m, α1, α2,M; Ω•harm(H0
∞))

we get a map

S2(G,m, α1, α2)→ Hd(G(F )+,Af (m, α1, α2,M;C)) (31)

by composing I0 with an edge morphism of the spectral sequence

Hq(G(F )+, Cp) =⇒ Hp+q(G(F )+, C•).

Using the map δα1,α2 : Bα1,α2(F, V ) → Dist(F ∗p , V ) from section 2.6, we next
define a map

∆
α1,α2

V : S2(G,m, α1, α2)→ D(S1, V ) (32)

by

∆
α1,α2

V (Φ)(U, xp) = δα1,α2

(
Φ

(
xp 0
0 1

))
(U)

for U ∈ Co(FS1 × FS2), x
p ∈ Ip, and we denote by ∆α1,α2 : S2(G,m, α1, α2)→

D(S1,C) its (1,...,1)th coordinate function (i.e. corresponding to the harmonic
forms

⊗
v|∞(ωv)1,

⊗
v|∞(βv)1 in section 4.1):

∆α1,α2(Φ)(U, xp) = δα1,α2

(
Φ

(
xp 0
0 1

))

(1,...,1)

(U).

Since for each complex prime v, S1 ∼= SU(2) ∩ T (C) operates on Φ via ̺v,
∆α1,α2 is easily seen to be S1-invariant, i.e. it lies in D′(S1,C).
We also have a natural (i.e. commuting with the complex maps of each C•)
family of maps

Af (m, α1, α2,M,Ωiharm(H0
∞))→ Df (S1,Ω

i(U0
∞,C)) (33)
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for all i ≥ 0, and

Af (m, α1, α2,M,C)→ Df (S1,C) (34)

(the i = −1-th term in the complexes), by mapping Φ ∈ Af (m, α1, α2,M, ·)
first to

(U, xp,∞) 7→ Φ

((
xp,∞ 0
0 1

)
,∞− 0

)
(δα1,α2(1U )) ∈ Ωiharm(H0

∞) resp. ∈ C,

and then for i ≥ 0 restricting the differential forms to Ωi(U0
∞) via

U0
∞ =

∏

v∈S0
∞

R∗+ →֒
∏

v∈S0
∞

Hv = H0
∞.

One easily checks that (33) and (34) are compatible with the homomorphism
of “acting groups” F ∗′ →֒G(F )+, x 7→

(
x 0
0 1

)
, so we get induced maps in coho-

mology

H0(G(F )+,Af (m, α1, α2,M,Ωdharm(H0
∞)))→ H0(F ∗′,Df (S1,Ω

d(U0
∞,C)))

(35)
and

Hd(G(F )+,Af (m, α1, α2,M,C))→ Hd(F ∗′,Df (S1,C)), (36)

which are linked by edge morphisms of the respective spectral sequences to give
a commutative diagram (given in the proof below).

Proposition 4.11. We have a commutative diagram:

S2(G,m, α1, α2)
(31) //

∆
α1,α2

��

Hd(G(F )+,Af (m, α1, α2,M,C))

(36)

��
D′(S1,C)

φ 7→κφ // Hd
(
F ∗′,Df (S1,C)

)

Proof. The given diagram factorizes as

S2(G,m, α1, α2)
I0 //

∆
α1,α2

��

H0(G(F )+,Af (Ω
d
harm(H0

∞))) //

(35)

��

Hd(G(F )+,Af (C))

(36)

��
D′(S1,C) // H0(F ∗′,Df (S1,Ωd(U0

∞,C))) // Hd
(
F ∗′,Df (S1,C)

)

(where we write Af (·) instead of Af (m, α1, α2,M, ·) for brevity). The right-
hand square is the naturally commutative square mentioned above; the com-
mutativity of the left-hand square can easily be checked by hand.
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4.5 Whittaker model

We now consider an automorphic representation π = ⊗νπν ∈
A0(G, 2, χZ , α1, α2). Denote by c(π) :=

∏
v finite c(πv) the conductor of

π.
Let χ : I∞ → C∗ be a unitary character of the finite ideles; for each finite place
v, set χv = χ|F∗

v
. For each prime v of F , let Wv denote the Whittaker model

of πv. For each finite and each real prime, we choose Wv ∈ Wv such that the
local L-factor equals the local zeta function at g = 1, i.e. such that

L(s, πv ⊗ χv) =
∫

F∗
v

Wv

(
x 0
0 1

)
χv(x)|x|s−

1
2 d×x (37)

for any unramified quasi-character χv : F
∗
v → C∗ and Re(s)≫ 0.

This is possible by [Ge75], Thm. 6.12 (ii); and by loc.cit., Prop. 6.17, Wv can
be chosen such that SO(2) operates on Wv via ̺v for real archimedian v, and
is “almost” K0(c(πv))-invariant for finite v.
For complex primes v of F , we can also choose a Wv satisfying (37) and which
behaves well with respect to the SU(2)-action ̺v, as follows:
By [Kur77], there exists a function

Wv = (W 0
v ,W

1
v ,W

2
v ) : G(Fv)→ C3

such that W i
v ∈ Wv for all i, and such that SU(2) operates by the right via ̺v

on Wv; i.e. for all g ∈ G(Fv) and h ∈ SU(2), we have

Wv(gh) =Wv(g)̺C(h).

Note that W 1
v is thus invariant under right multiplication by a diagonal matrix(

u 0
0 u

)
with u ∈ S1 ⊆ C. Since πv has trivial central character for archi-

median v by our assumption, a function in Wv is also invariant under Z(Fv).
Thus we have

W 1
v

(
g

(
u 0
0 1

))
=W 1

v (g) for all g ∈ G(Fv), u ∈ S1.

W 1
v can be described explicitly in terms of a certain Bessel function, as follows.

The modified Bessel differential equation of order α ∈ C is

x2
d2y

dx2
+ x

dy

dx
− (x2 + α2)y = 0.

Its solution space (on {Re z > 0}) is two-dimensional; we are only interested
in the second standard solution Kv, which is characterised by the asymptotics

Kv(z) ∼
√

π

2z
e−z
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(cf. [We71]). By [Kur77],3 we have W 1
v

(
x 0
0 1

)
= 2

πx
2K0(4πx).

(W 0
v andW 2

v can also be described in terms of Bessel functions; they are linearly
dependent and scalar multiples of x2K1(4πx).)

By [JL70], Ch. 1, Thm. 6.2(vi), σ(| · |1/2C , | · |−1/2C ) ∼= π(µ1, µ2) with

µ1(z) = z1/2z −1/2 = |z|−1/2C z, µ2(z) = z−1/2z1/2 = |z|−1/2C z;

and the L-series of the representation is the product of the L-factors of these
two characters:

Lv(s, πv) = L(s, µ1)L(s, µ2) = 2 (2π)−(s+
1
2 )Γ(s+ 1

2 ) · 2 (2π)−(s+
1
2 )Γ(s+ 1

2 )

= 4 (2π)−(2s+1)Γ(s+ 1
2 )

2.

On the other hand, letting d×x = dx
|x|C = dr

r dϑ (for x = reiϑ), we have for

Re(s) > − 1
2 :

∫

C∗

W 1
v

(
x 0
0 1

)
|x|s−

1
2

C d×x =

∫

S1

∫

R+

W 1
v

(
reiϑ 0
0 1

)
|x|s−

1
2

C
dr

r
dϑ

= 4

∫ ∞

0

x2K0(4πx)x
2s−1 dx

x

(invariance under SU(2) · Z(Fv) gives a constant integral w.r.t. ϑ)

= 4 (4π)−2s+1

∫ ∞

0

K0(x)x
2s dx

= 4 (4π)−2s+1 22s−1 Γ(s+ 1
2 )

2

= 4 (2π)−2s+1 Γ(s+ 1
2 )

2

by ([DLMF] 10.43.19). Thus we have

∫

C∗

W 1
v

(
x 0
0 1

)
|x|s−

1
2

C d×x = (2π)2 Lv(s, πv)

for all Re(s) > − 1
2 .We set Wv := (2π)−2 W 1

v ; thus (37) holds also for complex
primes.

Now that we have defined Wv for all primes v, we put W p(g) :=
∏
v∤pWv(gv)

for all g = (gv)v ∈ G(Ap). We will also need the vector-valued function W p :
G(AF )→ V given by

W p(g) :=
∏

v∤p finite or v real

Wv(gv) ·
⊗

v complex

(2π)−2Wv(gv).

3Note that [Kur77] uses a slightly different definition of the Kv, which is 2
π

times our Kv.

Documenta Mathematica 21 (2016) 689–734



p-adic L-Functions of Automorphic Forms 729

4.6 p-adic measures of automorphic forms

Now return to our π ∈ A0(G, 2, χZ , α1, α2). We fix an additive character ψ :
A→ C∗ which is trivial on F , and let ψv denote the restriction of ψ to Fv →֒A,
for all primes v. We further require that ker(ψp) ⊇ Op and p−1 6⊆ kerψp for
all p|p, so that we can apply the results of chapter 2.
As in chapter 2, let µπp

:= µαp,1/νp = µqp/αp,2
denote the distribution

χqp/αp,2
(x)ψp(x)dx on Fp, and let µπp :=

∏
p|p µπp

be the product distribu-

tion on Fp :=
∏

p|p Fp.

Define φ = φπ : Co(FS1 × F ∗S2
)× Ip → C by

φ(U, xp) :=
∑

ζ∈F∗

µπp(ζU)W p

(
ζxp 0
0 1

)
.

By proposition 2.13(a), we have for each U ∈ Co(FS1 × F ∗S2
):

φU (x) := φ(xpU, x
p) =

∑

ζ∈F∗

µπp(ζxpU)W p

(
ζxp 0
0 1

)

=
∑

ζ∈F∗

W

(
ζx 0
0 1

)
,

where W (g) := WU (gp)W
p(gp) lies in the global Whittaker model W =W(π)

for all g = (gp, g
p) ∈ G(A), putting WU := W1U ; so φ is well-defined and lies

in D(S1,C) (since W is smooth and rapidly decreasing; distribution property,
F ∗- and Up,∞-invariance being clear by the definitions of φ and W p).
Let µπ := µφπ be the distribution on Gp corresponding to φπ, as defined in
(22), and let κπ := κφπ ∈ Hd(F ∗′,Df (S1,C)) be the cohomology class defined
by (23) and (24).

Theorem 4.12. Let π ∈ A0(G, 2, χZ , α1, α2); we assume the αp,i to be ordered
such that |αp,1| ≤ |αp,2| for all p|p. (So χp,1 = | · |χp,2 for all special πp.)
(a) Let χ : Gp → C∗ be a character of finite order with conductor f(χ). Then
we have the interpolation property

∫

Gp
χ(γ)µπ(dγ) = τ(χ)

∏

p∈Sp
e(πp, χp) · L(12 , π ⊗ χ),

where

e(πp, χp) =





(1 − αp,1xpq
−1
p )(1 − αp,2x

−1
p q−1

p )(1 − αp,2xpq
−1
p )

(1 − xpα
−1
p,2)

, ordp(f(χ)) = 0

and π spherical,

(1 − αp,1xpq
−1
p )(1 − αp,2x

−1
p q−1

p )

(1 − xpα
−1
p,2)

, ordp(f(χ)) = 0

and π special,

(αp,2/qp)ordp(f(χ)), ordp(f(χ)) > 0
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and xp := χp(̟p).
(b) κπ is integral (cf. definition 3.12). For µ ∈ Σ, let κπ,µ be the projection of

κπ to Hd(F ∗′,Df (S1,C))π,µ. Then κπ,µ is integral of rank ≤ 1.

Proof. (a) We consider χ as a character on IF /F ∗, and choose a subgroup
V =

∏
p|p Vp ⊆ Up such that χp|V = 1.

Since π is unitary, we have |αp,2| ≥ √qp > 1 = |χp(̟p)| for all p, thus
e(πp, χp| · |sp) is non-singular for all s ≥ 0, and we will be able to apply propo-
sition 2.4 locally below.
We have ∫

Gp
χ(γ)µπ(dγ) = [Up : V ]

∫

IF /F∗

χ(x)φV (x)d
×x,

and therefore we have to show that the equality

[Up : V ]

∫

IF /F∗

χ(x)|x|sφV (x)d×x = N(f(χ))sτ(χ)
∏

p|p
e(πp, χp|·|sp)·L(s+ 1

2 , π⊗χ)

holds for s = 0. Since both the left-hand side and L(s+ 1
2 , π⊗χ) are holomorphic

in s (cf. [Ge75], Thm. 6.18), it suffices to show this for Re(s) ≫ 0. But for
such s, we have

[Up : V ]

∫

IF /F∗

χ(x)|x|sφV (x)d×x =

∫

IF

χ(x)|x|sW
(
x 0
0 1

)
d×x

= [Up : V ]

∫

F∗
p

χp(x)|x|sWV

(
x 0
0 1

)
d×x ·

∫

IpF

χp(y)|y|sW p

(
y 0
0 1

)
d×y

=
∏

p|p

∫

F∗
p

χp(x)|x|spµπp
(dx) · LSp(s+ 1

2 , π ⊗ χ)

=
∏

p|p

(
e(πp, χp| · |sp)τ(χp| · |sp)

)
· L(s+ 1

2 , π ⊗ χ)

= N(f(χ))sτ(χ)
∏

p|p
e(πp, χp| · |sp) · L(s+ 1

2 , π ⊗ χ)

by propositions 2.13, 2.4 and equation (37).
(b) Let λα1,α2 ∈ Bα1,α2(Fp,C) be the image of ⊗v|pλav ,νv under the map (13).
For each ψ ∈ Bα1,α2(Fp,C), define

〈Φπ, ψ〉(gp, gp) :=
∑

ζ∈F∗

λα1,α2

((
ζ 0
0 1

)
gp · ψ

)
W p

((
ζ 0
0 1

)
gp
)

=:
∑

ζ∈F∗

Wψ

((
ζ 0
0 1

)
g

)
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for a V -valued function Wψ whose every coordinate function is in W(π).

This defines a map Φπ : G(Ap) → Bα1,α2(Fp, V ). In fact, Φπ lies in
S2(G,m, α1, α2), where m is the prime-to-p part of f(π):
Condition (a) of definition 4.5 follows from the fact that the Wv are almost
K0(c(πv))-invariant, for v ∤ p,∞. For condition (b), we check that 〈Φπ , ψ〉
satisfies the conditions (i)-(v) in the definition of A0(G, harm, 2, χ):
Each coordinate function of 〈Φπ, ψ〉 lies in (the underlying space of) π by
[Bu98], Thm. 3.5.5, thus 〈Φ, ψ〉 fulfills (i) and (v), and has moderate growth.
(ii) and (iv) follow from the choice of the Wv and Wv. Now since πv ∼=
σ(| · |1/2v , | · |−1/2v ) for v|∞, 〈Φ, ψ〉|B′

Fv
· βv = C

∑
ζ∈F∗ Wv

(
ζt 0
0 1

)
· βv is har-

monic for each archimedian place v of F : for real v, it is well-known that
f(z)/y is holomorphic for f ∈ D(2), and thus f · (βv)1 is harmonic; for complex
v, harmonicity follows from the other conditions, see e.g. [Kur78], p. 546 or
[We71].
An easy calculation shows that

λα1,α2

((
ζ 0
0 1

)
δα1,α2(1U )

)
=

∫

ζU

∏

p|p
χαp,2(−x)ψp(−x)dx = µπp(ζU)

for all ζ ∈ F ∗, and therefore we have

∆α1,α2(Φπ)(U, x
p) =

∑

ζ∈F∗

λα1,α2

((
ζ 0
0 1

)
δα1,α2(1U )

)
W p

(
ζxp 0
0 1

)

=
∑

ζ∈F∗

µπp(ζU)W p

(
ζxp 0
0 1

)
= φπ(U, x

p).

Let R be the integral closure of Z[ap, νp; p|p] in its field of fractions; thus R
is a Dedekind ring ⊆ O for which Bα1,α2(F,R) is defined. Since C is a flat
R-module,

Hd(G(F )+,Af (m, α1, α2,M, R))⊗ C→ Hd(G(F )+,Af (m, α1, α2,M,C))

is an isomorphism by proposition 4.8. The map (36) can be described as the
”R-valued” map

Hd(G(F )+,Af (m, α1, α2,M, R))→ Hd
(
F ∗′,Df (R)

)

tensored with C. By proposition 4.11, κπ lies in its image, and thus in
Hd
(
F ∗′,Df (R)

)
⊗ C; i.e. it is integral.

Similarly, it follows from propositions 4.8 and 4.10 that κπ,µ is integral of rank
≤ 1.

Corollary 4.13. µπ is a p-adic measure.

Proof. By proposition 3.8, µπ = µφπ = µκπ . Since κπ is integral, µκπ is a
p-adic measure by corollary 3.13.
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4.7 Vanishing order of the p-adic L-function

Let L1, . . . , Lt be independent Zp-extensions of F , and let ℓ1, . . . , ℓt : Gp →
pεpZp be the homomorphisms corresponding to them (as in section 3.2). Then
we have the p-adic L-function

Lp(s, π) := Lp(s, κπ) := Lp(s1, . . . , st, κπ,+) :=

∫

Gp

t∏

i=1

expp(siℓi(γ))µπ(dγ)

of definition 3.5, with s1, . . . , st ∈ Zp. Lp(s, π) is a locally analytic function
with values in the one-dimensional Cp-vector space Vκπ,+ = Lκ,O,+ ⊗O Cp.
By theorem 3.11, we have

Theorem 4.14. Lp(s, π) is a locally analytic (t-variabled) function, and all
partial derivatives of order ≤ n := #(S1) vanish; i.e. we have

ords=0 Lp(s, π) ≥ n.

Now let E be a modular elliptic curve over F , corresponding to an automorphic
representation π; by this we mean that the local L-factors of the Hasse-Weil
L-function L(E, s) and of the automorphic L-function L(s − 1

2 , π) coincide at
all places v of F . From the definition of the respective L-factors (cf. [Si86] for
the Hasse-Weil L-function, [Ge75] for the automorphic L-function) we know
that π has trivial central character. Moreover, for p|p, πp is a principal series
representation iff E has good reduction at p, and in this case πp is ordinary
iff E is ordinary (i.e. not supersingular) at p; πp is a special (resp. Steinberg)
representation iff E has multiplicative (resp. split multiplicative) reduction at
p. For v|∞, πv is “of weight 2” as assumed before.
We say that E is p-ordinary if it has good ordinary or multiplicative reduction
at all places p|p of F . So E is p-ordinary iff π is ordinary at all p|p. In this
case, we define the p-adic L-function of E by Lp(E, s) := Lp(s, π).
For each i ∈ {1, . . . , t} and each prime p|p of F , we write ℓp,i for the restriction
of ℓi to Fp →֒ I։ Gp. Let qp be the Tate period of E|Fp and ordp the normalized
valuation on F ∗p . Defining the L-invariants of E|Fp with respect to Li by

Lp,i(E) := ℓp,i(qp)/ ordp(qp),

we can generalize Hida’s exceptional zero conjecture to general number fields:

Conjecture 4.15. Let S1 be the set of p|p at which E has split multiplicative
reduction, n := #S1, S2 := Sp \ S1. Then

ords=0 Lp(E, s) ≥ n, (38)

and we have

∂n

∂sni
Lp(E, s)|s=0 = n!

∏

p∈S1

Lp,i(E)
∏

p∈S2

e(πp, 1) · L(E, 1), (39)
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for all i = 1, . . . , t, where e(πp, 1) = (1 − αp,1
−1)2 if E has good ordinary

reduction at p, and e(πp, 1) = 2 if E has non-split multiplicative reduction at
p.

Note that the conjecture (when considered for all sets of independent Zp-
extensions of F ) also determines the “mixed” partial derivatives ∂k

∂nsLp(E, 0)

of order n, since they can be written as Q-linear combinations of n-th “pure”
partial derivatives ∂n

∂s′ni
Lp(E, 0) with respect to other choices of independent

Zp-extensions of F (cf. the proof of proposition 3.9).
Theorem 4.14 immediately implies the first part (38) of the conjecture:

Corollary 4.16. Let E be a p-ordinary modular elliptic curve over F . Let n
be the number of places p|p at which E has split multiplicative reduction. Then
we have

ords=0 Lp(E, s) ≥ n.

In future work, we hope to also establish formula (39) for a class of non-totally-
real number fields.
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Abstract. The Grünbaum–Hadwiger–Ramos hyperplane mass par-
tition problem was introduced by Grünbaum (1960) in a special case
and in general form by Ramos (1996). It asks for the “admissible”
triples (d, j, k) such that for any j masses in Rd there are k hy-
perplanes that cut each of the masses into 2k equal parts. Ramos’
conjecture is that the Avis–Ramos necessary lower bound condition
dk ≥ j(2k − 1) is also sufficient. We develop a “join scheme” for this
problem, such that non-existence of an S±k -equivariant map between
spheres (Sd)∗k → S(Wk ⊕ U⊕jk ) that extends a test map on the sub-
space of (Sd)∗k where the hyperoctahedral group S±k acts non-freely,
implies that (d, j, k) is admissible. For the sphere (Sd)∗k we obtain a
very efficient regular cell decomposition, whose cells get a combina-
torial interpretation with respect to measures on a modified moment
curve. This allows us to apply relative equivariant obstruction theory
successfully, even in the case when the difference of dimensions of the
spheres (Sd)∗k and S(Wk⊕U⊕jk ) is greater than one. The evaluation of
obstruction classes leads to counting problems for concatenated Gray
codes. Thus we give a rigorous, unified treatment of the previously
announced cases of the Grünbaum–Hadwiger–Ramos problem, as well
as a number of new cases for Ramos’ conjecture.

2010 Mathematics Subject Classification: 55N25, 51N20, 52A35,
55R20
Keywords and Phrases: Hyperplane mass partition problem, equi-
variant topological combinatorics, equivariant obstruction theory

1P.B. was supported by the DFG via the Collaborative Research Center TRR 109 “Dis-
cretization in Geometry and Dynamics”, and by the grant ON 174008 of Serbian Ministry of
Education and Science.
F.F. and A.H. were supported by DFG via the Berlin Mathematical School.
G.M.Z. received funding from the ERC project no. 247029-SDModels and by DFG via the
Research Training Group “Methods for Discrete Structures” and the Collaborative Research
Center TRR 109 “Discretization in Geometry and Dynamics”

Documenta Mathematica 21 (2016) 735–771



736 Blagojević, Frick, Haase, Ziegler

1 Introduction

1.1 The Grünbaum–Hadwiger–Ramos hyperplane mass partition
problem

In 1960, Grünbaum [10, Sec. 4.(v)] asked whether for any convex body in Rk

there are k affine hyperplanes that divide it into 2k parts of equal volume: This
is now known to be true for k ≤ 3, due to Hadwiger [11] in 1966, and remains
open and challenging for k = 4. (A weak partition result for k = 4 was given in
2009 by Dimitrijević-Blagojević [8].) For k > 4 it is false, as shown by Avis [1]
in 1984 by considering a measure on a moment curve. In 1996, Ramos [15]
proposed the following generalization of Grünbaum’s problem.

The Grünbaum–Hadwiger–Ramos problem. Determine the minimal di-
mension d = ∆(j, k) such that for every collection of j masses M on Rd there
exists an arrangement of k affine hyperplanes H in Rd that equiparts M.

The Ham Sandwich theorem, conjectured by Steinhaus and proved by Banach,
states that ∆(d, 1) = d. The Grünbaum–Hadwiger–Ramos hyperplane mass
partition problem was studied by many authors. It has been an excellent
testing ground for different equivariant topology methods; see to our recent
survey in [3].
The first general result about the function ∆(j, k) was obtained by Ramos [15],
by generalizing Avis’ observation: The lower bound

∆(j, k) ≥ 2k−1
k j

follows from considering k measures with disjoint connected supports concen-
trated along a moment curve in Rd. Ramos also conjectured that this lower
bound is tight.

The Ramos conjecture. ∆(j, k) = ⌈ 2k−1k j⌉ for every j ≥ 1 and k ≥ 1.

All available evidence up to now supports this, though it has been established
rigorously only in special cases.

1.2 Product scheme and join scheme

It seems natural to use Yd,k := (Sd)k as a configuration space for any k ori-
ented affine hyperplanes/halfspaces in Rd, which leads to the following product
scheme: If there is no equivariant map

(Sd)k −→S±
k
S(U⊕jk )

from the configuration space to the unit sphere in the space U⊕jk of values
on the orthants of Rk that sum to 0, which is equivariant with respect to
the hyperoctahedral (signed permutation) group S±k , then there is no counter-
example for the given parameters, so ∆(j, k) ≤ d.
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However, our critical review [3] of the main papers on the Grünbaum–
Hadwiger–Ramos problem since 1998 has shown that this scheme is very hard to
handle: Except for the 2006 upper bounds by Mani-Levitska, Vrećica & Živalje-
vić [13], derived from a Fadell–Husseini index calculation, it has produced very
few valid results: The group action on (Sd)k is not free, the Fadell–Husseini
index is rather large and thus yields weak results, and there is no efficient cell
complex model at hand.
In this paper, we provide a new approach, which proves to be remarkably clean
and efficient. For this, we use a join scheme, as introduced by Blagojević and
Ziegler [4], which takes the form

F : (Sd)∗k −→S±
k
S(Wk ⊕ U⊕jk ).

Here the domain (Sd)∗k ⊆ R(d+1)×k is a sphere of dimension dk + k − 1, given
by

Xd,k := {(λ1x1, . . . , λkxk) : x1, . . . , xk ∈ Sd, λ1, . . . , λk ≥ 0, λ1+ · · ·+λk = 1},

where we write λ1x1+ · · ·+λkxk as a short-hand for (λ1x1, . . . , λkxk). The co-
domain is a sphere of dimension j(2k−1)+k−2. Both domain and co-domain
are equipped with canonical S±k -actions. We observe that the map restricted
to the points with non-trivial stabilizer (the “non-free part”)

F ′ : X>1
d,k ⊂ (Sd)∗k −→S±

k
S(Wk ⊕ U⊕jk )

is the same up to homotopy for all test maps. If for any parameters (j, k, d) an
equivariant extension F of F ′ does not exist, we get that ∆(j, k) ≤ d.
To decide the existence of this map, or at least obtain necessary criteria, we
employ relative equivariant obstruction theory, as explained by tom Dieck [7,
Sect. II.3]. This turns out to work beautifully, and have a few remarkable
aspects:
• The Fox–Neuwirth [9]/Björner–Ziegler [2] combinatorial stratification

method yields a simple and efficient cone stratification for the space
R(d+1)×k, which is equivariant with respect to the action of S±k on the
columns, and which respects the arrangement of k2 subspaces of codimen-
sion d given by columns of a matrix (x1, . . . , xd) being equal, opposite, or
zero.

• This yields a small equivariant regular CW complex model for the sphere
(Sd)∗k ⊆ R(d+1)×k, for which the the non-free part, given by an arrange-
ment of k2 subspheres of codimension d + 1, is an invariant subcomplex.
The cells DS

I (σ) in the complex are given by combinatorial data.
• To evaluate the obstruction cocycle, we use measures on a non-standard (bi-

nomial coefficient) moment curve. For the resulting test map, the relevant
cells DS

I (σ) can be interpreted as k-tuples of hyperplanes such that some
of the hyperplanes have to pass through prescribed points of the moment
curve, or equivalently, they have to bisect some extra masses.
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1.3 Statement of the main results

The join scheme reduces the Grünbaum–Hadwiger–Ramos problem to a com-
binatorial counting problem that can be solved by hand or by means of a
computer: A k-bit Gray code is a k × 2k binary matrix of all column vectors
of length k such that two consecutive vectors differ by only one bit. Such a
k-bit code can be interpreted as a Hamiltonian path in the graph of the k-cube
[0, 1]k. The transition count of a row in a binary matrix A is the number of
bit-changes, not counting a bit change from the last to the first entry. By
transition counts of a matrix A we refer to the vector of the transition counts
of the rows of the matrix A. Two binary matrices A and A′ are equivalent,
if A can be obtained from A′ by a sequence of permutations of rows and/or
inversion of bits in rows.

Definition 1.1. Let d ≥ 1, j ≥ 1, ℓ ≥ 0 and k ≥ 1 be integers such that
dk = (2k − 1)j + ℓ with 0 ≤ ℓ ≤ d− 1. A binary matrix A of size k × j2k is an
ℓ-equiparting matrix if

(a) A = (A1, . . . , Aj) for Gray codes A1, . . . , Aj with the property that the
last column of Ai is equal to the first column of Ai+1 for 1 ≤ i < j; and

(b) there is one row of the matrix A with the transition count d − ℓ, while
all other rows have transition count d.

Example 1.2. If d = 5, j = 2, ℓ = 1 and k = 3, then a possible 1-equiparting
matrix is

A = (A1, A2) =



0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1
0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1


 .

In this example the first row of A has transition count 4 while the remaining
two rows have transition count 5.

Theorem 1.3. Let d ≥ 1, j ≥ 1, ℓ ≥ 0 and k ≥ 2 be integers with the property
that dk = (2k − 1)j + ℓ and 0 ≤ ℓ ≤ d − 1. The number of non-equivalent
ℓ-equiparting matrices is the number of arrangements of k affine hyperplanes
H that equipart a given collection of j disjoint intervals on a moment curve γ
in Rd, up to renumbering and orientation change of hyperplanes in H, when
it is forced that one of the hyperplanes passes through ℓ prescribed points on γ
that lie to the left of the j disjoint intervals.

In some situations this yields a solution for the Grünbaum–Hadwiger–Ramos
problem.

Theorem 1.4. Let j ≥ 1 and k ≥ 3 be integers, with d := ⌈ 2k−1k j⌉ and

ℓ := ⌈ 2k−1k j⌉k− (2k− 1)j = dk− (2k− 1)j, which implies 0 ≤ ℓ < k ≤ d. If the
number of non-equivalent ℓ-equiparting matrices of size k × j2k is odd, then

∆(j, k) = ⌈ 2k−1k j⌉.
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Theorem 1.4 is also true for k = 1 (and thus d = j, ℓ = 0), where it yields the
Ham Sandwich theorem: In this case an equiparting matrix A is a row vector
of length 2d and transition count d. Thus, each Ai is either (0, 1) or (1, 0),
where Ai uniquely determines Ai+1. Hence, up to inversion of bits A is unique
and so ∆(d, 1) ≤ d, and consequently ∆(d, 1) = d.
While the situation for k = 1 hyperplane is fully understood, we seem to be
far from a complete solution for the case of k = 2 hyperplanes. However, we
do obtain the following instances.

Theorem 1.5. Let t ≥ 1. Then:
(i) ∆(2t − 1, 2) = 3 · 2t−1 − 1,
(ii) ∆(2t, 2) = 3 · 2t−1,
(iii) ∆(2t + 1, 2) = 3 · 2t−1 + 2.

The statements (i) and (iii) were already known: Part (i) is the only case where
the lower bound of Ramos and the upper bound of Mani-Levitska, Vrećica,
and Živaljević [13, Thm. 39] coincide. Part (ii) is Hadwiger’s result [11] for
t = 1; the general case was previously claimed by Mani-Levitska et al. [13,
Prop. 25]. However, the proof of the result was incorrect and not recoverable,
as explained in [3, Sec. 8.1]. Here we recover this result by a different method of
proof. Similarly, statement (iii) was claimed by Živaljević [17, Thm. 2.1] with a
flawed proof; for an explanation of the gap see [3, Sec. 8.2], where we also gave
a proof of (iii) via degrees of equivariant maps [3, Sec. 5]. Here we will prove
all three cases of Theorem 1.5 in a uniform way.
In the case of k = 3 hyperplanes we prove using Theorem 1.4 the following
instances of the Ramos conjecture.

Theorem 1.6.
(i) ∆(2, 3) = 5,
(ii) ∆(4, 3) = 10.

Statement (i) was previously claimed by Ramos [15, Sec. 6.1]. A gap in the
method that Ramos developed and used to get this result was explained in [3,
Sec. 7]. It is also claimed by Vrećica and Živaljević in the recent preprint [16]
without a proof for the crucial [16, Prop. 3].
The reduction result of Hadwiger and Ramos ∆(j, k) ≤ ∆(2j, k − 1) applied
to Theorem 1.6 implies the following consequences. For details on reduction
results see for example [3, Sec. 3.3].

Corollary 1.7.
(i) 4 ≤ ∆(1, 4) ≤ 5,
(ii) 8 ≤ ∆(2, 4) ≤ 10.

Note that ∆(1, 4) is the open case for Grünbaum’s original conjecture.
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2 The join configuration space test map scheme and equivariant
obstruction theory

In this section we develop the join configuration test map scheme that was in-
troduced in [5, Sec. 2.1]. A sufficient condition for ∆(j, k) ≤ d will be phrased
in terms of the non-existence of a particular equivariant map between repre-
sentation spheres.

2.1 Arrangements of k hyperplanes

Let Ĥ = {x ∈ Rd : 〈x, v〉 = a} be an affine hyperplane determined by a vector
v ∈ Rd\{0} and a constant a ∈ R. The hyperplane Ĥ determines two (closed)
halfspaces

Ĥ0 = {x ∈ Rd : 〈x, v〉 ≥ a} and Ĥ1 = {x ∈ Rd : 〈x, v〉 ≤ a}.
Let H = (Ĥ1, . . . , Ĥk) be an arrangement of k affine hyperplanes in Rd, and
let α = (α1, . . . , αk) ∈ (Z/2)k. The orthant determined by the arrangement H
and α ∈ (Z/2)k is the intersection

OHα = Ĥα1
1 ∩ · · · ∩ Ĥαk

k .

LetM = (µ1, . . . , µj) be a collection of finite Borel probability measures on Rd

such that the measure of each hyperplane is zero. Such measures will be called
masses. The assumptions about the measures guarantee that µi(Ĥ0

s ) depends
continuously on Ĥ0

s .
An arrangement of affine hyperplanesH = (Ĥ1, . . . , Ĥk) equiparts the collection
of masses M = (µ1, . . . , µj) if for every element α ∈ (Z/2)k and every ℓ ∈
{1, . . . , j}

µℓ(OHα ) = 1
2k .

2.2 The configuration spaces

The space of all oriented affine hyperplanes (or closed affine halfspaces) in Rd

can be parametrized by the sphere Sd, where the north pole ed+1 and the south
pole −ed+1 represent hyperplanes at infinity. An oriented affine hyperplane in
Rd at infinity is the set Rd or ∅, depending on the orientation. Indeed, embed
Rd into Rd+1 via the map (ξ1, . . . , ξd)

t 7−→ (1, ξ1, . . . , ξd)
t. Then an oriented

affine hyperplane Ĥ in Rd defines an oriented affine (d−1)-dimensional subspace
of Rd+1 that extends (uniquely) to an oriented linear hyperplane H in Rd+1.
The outer unit normal vector that determines the oriented linear hyperplane is
a point on the sphere Sd.
We consider the following configuration spaces that parametrize arrangements
of k oriented affine hyperplanes in Rd:

(1) The join configuration space: Xd,k := (Sd)∗k ∼= S(R(d+1)×k),
(2) The product configuration space: Yd,k := (Sd)k.

The elements of the join Xd,k can be presented as formal convex combinations
λ1v1 + · · ·+ λkvk, where λi ≥ 0,

∑
λi = 1 and vi ∈ Sd.
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2.3 The group actions

The space of all ordered k-tuples of oriented affine hyperplanes in Rd has natural
symmetries: Each hyperplane can change orientation and the hyperplanes can
be permuted. Thus, the group S±k := (Z/2)k ⋊Sk encodes the symmetries of
both configuration spaces.
The group S±k acts onXd,k as follows. Each copy of Z/2 acts antipodally on the
appropriate sphere Sd in the join while the symmetric group Sk acts by per-
muting factors in the join product. More precisely, for ((β1, . . . , βk)⋊ π) ∈ S±k
and λ1v1 + · · ·+ λkvk ∈ Xd,k the action is given by

((β1, . . . , βk)⋊ τ) · (λ1v1 + · · ·+ λkvk) =

λτ−1(1)(−1)β1vτ−1(1) + · · ·+ λτ−1(k)(−1)βkvτ−1(k).

The product space Yd,k is a subspace of the join Xd,k via the diagonal em-
bedding Yd,k −→ Xd,k, (v1, . . . , vk) 7−→ 1

kv1 + · · · + 1
kvk. The product Yd,k is

an invariant subspace of Xd,k with respect to the S±k -action and consequently
inherits the S±k -action from Xd,k. For k ≥ 2, the action of S±k is not free on
either Xd,k or Yd,k.
The sets of points in the configuration spaces Xd,k and Yd,k that have non-
trivial stabilizer with respect to the action of S±k can be described as follows:

X>1
d,k = {λ1v1 + · · ·+ λkvk :

λ1 · · ·λk = 0, or λs = λr and vs = ±vr for some 1 ≤ s < r ≤ k},

and
Y >1
d,k = {(v1, . . . , vk) : vs = ±vr for some 1 ≤ s < r ≤ k}.

2.4 Test spaces

Consider the vector space R(Z/2)k , where the group element ((β1, . . . , βk)⋊τ) ∈
S±k acts on a vector (y(α1,...,αk))(α1,...,αk)∈(Z/2)k ∈ R(Z/2)k by acting on its
indices as

((β1, . . . , βk)⋊ τ) · (α1, . . . , αk) = (β1 + ατ−1(1), . . . , βk + ατ−1(k)). (1)

The subspace of R(Z/2)k defined by

Uk =
{
(yα)α∈(Z/2)k ∈ R(Z/2)k :

∑

α∈(Z/2)k
yα = 0

}

is S±k -invariant and therefore an S±k -subrepresentation.
Next we consider the vector space Rk and its subspace

Wk =
{
(z1, . . . , zk) ∈ Rk :

k∑

i=1

zi = 0
}
.
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The group S±k acts on Rk by permuting coordinates, i.e., for ((β1, . . . , βk)⋊τ) ∈
S±k and (z1, . . . , zk) ∈ Rk we have

((β1, . . . , βk)⋊ τ) · (z1, . . . , zk) = (zτ−1(1), . . . , zτ−1(k)). (2)

In particular, the subgroup (Z/2)k of S±k acts trivially on Rk. The subspace
Wk ⊂ Rk is S±k -invariant and consequently a S±k -subrepresentation.

2.5 Test maps

The product test map associated to the collection of j massesM = (µ1, . . . , µj)

from the configuration space Yd,k to the test space U⊕jk is defined by

φM : Yd,k −→ U⊕jk ,

(v1, . . . , vk) 7−→
((
µi(H

α1
v1 ∩ · · · ∩Hαk

vk
)− 1

2k

)
(α1,...,αk)∈(Z/2)k

)
i∈{1,...,j}

.

In this paper we mostly work with the join configuration space Xd,k. The corr-
esponding join test map associated to a collection of j massesM = (µ1, . . . , µj)

maps the configuration space Xd,k into the related test space Wk ⊕ U⊕jk . It is
defined by

ψM : Xd,k −→Wk ⊕ U⊕jk ,

λ1v1 + · · ·+ λkvk 7−→ (λ1 − 1
k , . . . , λk − 1

k )⊕ (λ1 · · ·λk) · φM(v1, . . . , vk).

Both maps φM and ψM are S±k -equivariant with respect to the actions defined
in Sections 2.3 and 2.4. Let S(U⊕jk ) and S(Wk ⊕U⊕jk ) denote the unit spheres
in the vector spaces U⊕jk and Wk ⊕ U⊕jk , respectively. The maps φM and ψM
are called test maps since we have the following criterion, which reduces finding
an equipartition to finding zeros of the test map.

Proposition 2.1. Let d ≥ 1, k ≥ 1, and j ≥ 1 be integers.
(i) Let M be a collection of j masses on Rd, and let

φM : Yd,k −→ U⊕jk and ψM : Xd,k −→Wk ⊕ U⊕jk

be the S±k -equivariant maps defined above. If 0 ∈ im φM, or 0 ∈
imψM, then there is an arrangement of k affine hyperplanes that
equiparts M.

(ii) If there is no S±k -equivariant map of either type

Yd,k −→ S(U⊕jk ) or Xd,k −→ S(Wk ⊕ U⊕jk ),

then ∆(j, k) ≤ d.
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It is worth pointing out that 0 ∈ imφM if and only if 0 ∈ imψM, while the
existence of an S±k -equivariant map Yd,k −→ S(U⊕jk ) implies the existence of
a S±k -equivariant map Xd,k −→ S(Wk ⊕ U⊕jk ) but not vice versa.
The homotopy class of the restrictions of the test maps φM and ψM on the set
of points with non-trivial stabilizer (as maps avoiding the origin) is independent
of the choice of the massesM, by the following proposition.

Proposition 2.2. Let M and M′ be collections of j masses in Rd. Then
(i) 0 /∈ imφM|Y >1

d,k
and 0 /∈ imψM|X>1

d,k
,

(ii) φM|Y >1
d,k

and φM′ |Y >1
d,k

are S±k -homotopic as maps Y >1
d,k −→ U⊕jk \{0},

and
(iii) ψM|X>1

d,k
and ψM′ |X>1

d,k
are S±k -homotopic as maps X>1

d,k −→ (Wk ⊕
U⊕jk )\{0}.

Proof. (i) If (v1, . . . , vk) ∈ Y >1
d,k , then vs = ±vr for some 1 ≤ s < r ≤ k. Con-

sequently, the corresponding hyperplanes Hvi and Hvj coincide, possibly with
opposite orientations. Thus some of the orthants associated to the collection of
hyperplanes (Hv1 , . . . , Hvk) are empty. Consequently, Proposition 2.1 implies
that 0 /∈ imφM|Y >1

d,k
.

In the case where λ1v1 + · · ·+λkvk ∈ X>1
d,k the additional case λs = 0 for some

1 ≤ s ≤ k may occur. If λs = 0, then the s-th coordinate of ψ(λ1v1 + · · · +
λkvk) ∈Wk ⊕ U⊕jk is equal to − 1

k , and hence 0 /∈ imψM|X>1
d,k

.

(ii) The equivariant homotopy between φM|Y >1
d,k

and φM′ |Y >1
d,k

is just the lin-

ear homotopy in U⊕jk . For this the linear homotopy should not have ze-
ros, compare [3, proof of Cor. 5.4]. It suffices to prove that for each point
(v1, . . . , vk) ∈ Y >1

d,k , the points φM(v1, . . . , vk) and φM′(v1, . . . , vk) belong to
some affine subspace of the test space that is not linear.
First, observe that R(Z/2)k , considered as a real (Z/2)k representation, is the
real regular representation of (Z/2)k and therefore it decomposes into the direct
sum of all real irreducible representations. For this we use the fact that all real
irreducible representations of (Z/2)k are 1-dimensional. The subspace Uk seen
as a real (Z/2)k subrepresentation of (Z/2)k decomposes as follows:

Uk ∼=
⊕

α∈(Z/2)k\{0}
Vα. (3)

Here Vα is the 1-dimensional real representation of (Z/2)k determined by β ·v =
−v for x ∈ Vα if and only if α · β :=

∑
αsβs = 1 ∈ Z/2, for β ∈ (Z/2)k. The

isomorphism (3) is given by the direct sum of the projections πα : Uk −→ Vα,
α ∈ (Z/2)k\{0},

(yβ)β∈(Z/2)k\{0} 7−→
∑

α·β=1

yβ −
∑

α·β=0

yβ .
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Now let vs = ±vr. Consider α ∈ (Z/2)k given by αs = 1 = αr and αℓ = 0 for
ℓ /∈ {s, r}, and the corresponding projection π⊕jα : U⊕jk −→ V ⊕jα . Then

π⊕jα ◦ φM(v1, . . . , vk) = π⊕jα ◦ φM′(v1, . . . , vk) = (±1, . . . ,±1).

(iii) Likewise, the linear homotopy between ψM|X>1
d,k

and ψM′ |X>1
d,k

is equiv-

ariant and avoids zero. Let λ1v1 + · · · + λkvk ∈ X>1
d,k. If λ := λ1 · · ·λk 6= 0,

λs = λr and vs = ±vr, then

(π⊕jα ◦ η ◦ ψM)(λ1v1 + · · ·+ λkvk) =

= (π⊕jα ◦ η ◦ ψM′)(λ1v1 + · · ·+ λkvk) = (±λ, . . . ,±λ),

where η : Wk ⊕ U⊕jk −→ U⊕jk is the projection. Finally, in the case when
λs = 0 for some 1 ≤ s ≤ k, ψM(λ1v1 + · · ·+λkvk) and ψM′(λ1v1 + · · ·+λkvk)
after projection to the sth coordinate of the subrepresentation Wk are equal
to − 1

k .

Denote the radial projections by

ρ : U⊕jk \{0} −→ S(U⊕jk ) and ν : (Wk ⊕ U⊕jk )\{0} −→ S(Wk ⊕ U⊕jk ).

Note that ρ and ν are S±k -equivariant maps. Now the criterion stated in
Proposition 2.1 (ii) can be strengthened as follows.

Theorem 2.3. Let d ≥ 1, k ≥ 1 and j ≥ 1 be integers, and let M be a
collection of j masses in Rd. We have the following two criteria:

(i) If there is no S±k -equivariant map

Yd,k −→ S(U⊕jk )

whose restriction to Y >1
d,k is S±k -homotopic to ρ ◦ φM|Y >1

d,k
, then

∆(j, k) ≤ d.
(ii) If there is no S±k -equivariant map

Xd,k −→ S(Wk ⊕ U⊕jk )

whose restriction to X>1
d,k is S±k -homotopic to ν ◦ ψM|X>1

d,k
, then

∆(j, k) ≤ d.

2.6 Applying relative equivariant obstruction theory

In order to prove Theorems 1.4, 1.5, and 1.6 via Theorem 2.3(ii), we study the
existence of an S±k -equivariant map

Xd,k −→ S(Wk ⊕ U⊕jk ), (4)

whose restriction to X>1
d,k is S±k -homotopic to ν ◦ ψM|X>1

d,k
for some fixed col-

lectionM of j masses in Rd. If we prove that such a map cannot exist, Theo-
rems 1.4, 1.5, and 1.6 follow.
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Denote by
N1 := (d+ 1)k − 1

the dimension of the sphere Xd,k = (Sd)∗k, and by

N2 := (2k − 1)j + k − 2

the dimension of the sphere S(Wk ⊕ U⊕jk ).
If N1 ≤ N2, then

dimXd,k = N1 ≤ conn
(
S(Wk ⊕ U⊕jk )

)
+ 1 = N2.

Consequently, all obstructions to the existence of an S±k -equivariant map (4)
vanish and so the map exists. Here conn(·) denotes the connectivity of a space.
Therefore, we assume that N1 > N2, which is equivalent to the Ramos lower
bound d ≥ 2k−1

k j. Furthermore, the following prerequisites for applying equiv-
ariant obstruction theory are satisfied:
• The N1-sphere Xd,k can be given the structure of a relative S±k -CW com-

plex X := (Xd,k, X
>1
d,k) with a free S±k -action on Xd,k\X>1

d,k: In Section 3
we construct an explicit relative S±k -CW complex that models Xd,k.

• The sphere S(Wk ⊕ U⊕jk ) is path connected and N2-simple, except in the
trivial case of k = j = 1 when N2 = 0. Indeed, the group π1(S(Wk⊕U⊕jk ))
is abelian for N2 = 1 and trivial for N2 > 1 and therefore its action on
πN2(S(Wk ⊕ U⊕jk )) is trivial.

• The S±k -equivariant map h : X>1
d,k −→ S(Wk ⊕U⊕jk ) given by the composi-

tion h := ν ◦ ψM|X>1
d,k

, for a fixed collection of j masses M, serves as the
base map for extension.

Since the sphere S(Wk⊕U⊕jk ) is (N2−1)-connected, the map h can be extended
to a S±k -equivariant map from the N2-skeleton X(N2) −→ S(Wk ⊕ U⊕jk ). A
necessary criterion for the existence of the S±k -equivariant map (4) extending
h is that the S±k -equivariant map h = ν ◦ ψM|X>1

d,k
can be extended to a map

from the (N2 + 1)-skeleton X(N2+1) −→ S(Wk ⊕ U⊕jk ).
Given the above hypotheses, we can apply relative equivariant obstruction the-
ory, as presented by tom Dieck [7, Sec. II.3], to decide the existence of such an
extension.
If g is an equivariant extension of h to the N2-skeleton X(N2), then the ob-
struction to extending g to the (N2 +1)-skeleton is encoded by the equivariant
cocycle

o(g) ∈ CN2+1

S±
k

(
Xd,k, X

>1
d,k ; πN2(S(Wk ⊕ U⊕jk ))

)
.

The S±k -equivariant map g : X(N2) −→ S(Wk ⊕ U⊕jk ) extends to X(N2+1) if
and only if o(g) = 0. Furthermore, the cohomology class

[o(g)] ∈ HN2+1

S±
k

(
Xd,k, X

>1
d,k ; πN2(S(Wk ⊕ U⊕jk ))

)
,
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vanishes if and only if the restriction g|X(N2−1) to the (N2 − 1)-skeleton can be
extended to the (N2 + 1)-skeleton X(N2+1). Any two extensions g and g′ of h
to the N2-skeleton are equivariantly homotopic on the (N2 − 1)-skeleton and
therefore the cohomology classes coincide: [o(g)] = [o(g′)]. Hence, it suffices
to compute the cohomology class [o(ν ◦ ψM|X(N2))] for a fixed collection of j
massesM with the property that 0 /∈ im(ψM|X(N2)).
Let f be the attaching map for an (N2 +1)-cell θ and e its corresponding basis
element in the cellular chain group CN2+1(Xd,k, X

>1
d,k). Then

o(ν ◦ ψM|X(N2))(e) = [ν ◦ ψM ◦ f |∂θ]

is the homotopy class of the map represented by the composition

∂θj
f |∂θ

//X(N2)
ν◦ψM|X(N2)

//S(Wk ⊕ U⊕jk ).

Since ∂θ and S(Wk⊕U⊕jk ) are spheres of the same dimension N2, the homotopy
class [ν ◦ψM ◦f |∂θ] is determined by the degree of the map ν ◦ψM ◦f |∂θ. Here
we assume that the S±k -CW structure onXd,k is endowed with cell orientations,
and in addition an orientation on the sphere S(Wk ⊕U⊕jk ) is fixed in advance.
Therefore, the degree of the map ν ◦ ψM ◦ f |∂θ is well-defined.
Let α := ψM ◦ f |∂θ. In order to compute the degree of the map ν ◦ α and con-
sequently the obstruction cocycle evaluated at e, fix the collection of measures
as follows. LetM be the collection of masses (I1, . . . , Ij) where Ir is the mass
concentrated on the segment γ((t1r, t

2
r)) of the moment curve in Rd

γ(t) = (t,
(
t
2

)
,
(
t
3

)
, . . . ,

(
t
d

)
)t,

such that
ℓ < t11 < t21 < t12 < t22 < · · · < t1j < t2j ,

for an integer ℓ, 0 ≤ ℓ ≤ d−1. The intervals (I1, . . . , Ij) determined by numbers
t1r < t2r can be chosen in such a way that 0 /∈ im(ψM|X(N2)). For every concrete
situation in Section 4 this is verified directly.
Now consider the following commutative diagram:

∂θ
f |∂θ

//

��

X(N2)
ψM|

X(N2)
//

��

Wk ⊕ U⊕jk \{0}

��

ν
// S(Wk ⊕ U⊕jk )

θ
f

// X(N2+1)
ψM|X(N2+1)

// Wk ⊕ U⊕jk

where the vertical arrows are inclusions, and the composition of the lower
horizontal maps is denoted by β := ψM|X(N2+1) ◦ f . Furthermore, let Bε(0)
be a ball with center 0 in Wk ⊕ U⊕jk of sufficiently small radius ε > 0. Set
θ̃ := θ\β−1(Bε(0)). Since dim θ = dimWk ⊕ U⊕jk we can assume that the set
of zeros β−1(0) ⊂ relint θ is finite, say of cardinality r ≥ 0. Again, in every
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calculation presented in Section 4 this assumption is explicitly verified. The
function β is a restriction of the test map and therefore the points in β−1(0)
correspond to arrangements of k hyperplanes H in relint θ that equipart M.
Moreover, the facts that the measures are intervals on a moment curve and
that each hyperplane of the arrangement from β−1(0) cuts the moment curve
in d distinct points imply that each zero in β−1(0) is isolated and transversal.
The boundary of θ̃ consists of the boundary ∂θ and r disjoint copies of N2-
spheres S1, . . . , Sr, one for each zero of β on θ. Consequently, the fundamental
class of ∂θ is equal to the sum of fundamental classes

∑
[Si] in HN1(θ̃;Z). Here

the fundamental class of ∂θ is determined by the cell orientation inherited from
the S±k -CW structure on Xd,k. The fundamental classes of [Si] are determined
in such a way that the equality [∂θ] =

∑
[Si] holds. Thus

∑
(ν◦β|θ̃)∗([Si]) = (ν◦β|θ̃)∗([∂θ]) = (ν◦α)∗([∂θ]) = deg(ν◦α)·[S(Wk⊕U⊕jk )].

Recall, we have fixed the orientation on the sphere S(Wk ⊕ U⊕jk ) and so the
fundamental class [S(Wk ⊕U⊕jk )] is also completely determined. On the other
hand,

∑
(ν ◦ β|Si)∗([Si]) =

(∑
deg(ν ◦ β|Si)

)
· [S(Wk ⊕ U⊕jk )].

Hence, deg(ν◦α) =∑ deg(ν◦β|Si) where the sum ranges over all arrangements
of k hyperplanes H in relint θ that equipart M; consult [14, Prop. IV.4.5]. In
other words,

o(ν ◦ψM|X(N2))(e) = [ν ◦ψM ◦ f |∂θ] = deg(ν ◦α) · ζ =
∑

deg(ν ◦β|Si) · ζ, (5)

where ζ ∈ πN2(S(Wk ⊕ U⊕jk )) ∼= Z is a generator, and the sum ranges over all
arrangements of k hyperplanes H in relint θ that equipartM.
If in addition we assume that all local degrees deg(ν ◦β|Si) are ±1 and that the
number of arrangements of k hyperplanes H in relint θ that equipartM is odd,
then we conclude that o(ν ◦ ψM|X(N2))(e) 6= 0. It will turn out that in many
situations this information implies that the cohomology class [o(ν ◦ ψM)] is
not zero, and consequently the related S±k -equivariant map (4) does not exist,
concluding the proof of corresponding Theorems 1.4, 1.5, and 1.6.

3 A regular cell complex model for the join configuration space

In this section, motivated by methods used in [2] and [6], we construct a regular
S±k -CW model for the join configuration space Xd,k = (Sd)∗k ∼= S(R(d+1)×k)
such that X>1

d,k is a S±k -CW subcomplex. Consequently, (Xd,k, X
>1
d,k) has the

structure of a relative S±k -CW complex. For simplicity the cell complex we
construct is denoted by X := (Xd,k, X

>1
d,k) as well. The cell model is obtained

in two steps:
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(1) the vector space R(d+1)×k is decomposed into a union of disjoint relatively
open cones (each containing the origin in its closure) on which the S±k -
action operates linearly permuting the cones, and then

(2) the open cells of a regular S±k -CW model are obtained as intersections of
these relatively open cones with the unit sphere S(R(d+1)×k).

The explicit relative S±k -CW complex we construct here is an essential object
needed for the study of the existence of S±k -equivariant maps Xd,k −→ S(Wk⊕
U⊕jk ) via the relative equivariant obstruction theory of tom Dieck [7, Sec. II.3].

3.1 Stratifications by cones associated to an arrangement

The first step in the construction of the S±k -CW model is an appropriate strat-
ification of the ambient space R(d+1)×k. First we introduce the notion of the
stratification of a Euclidean space and collect some relevant properties.

Definition 3.1. Let A be an arrangement of linear subspaces in a Euclidean
space E. A stratification of E (by cones) associated to A is a finite collection
C of subsets of E that satisfies the following properties:

(i) C consists of finitely many non-empty relatively open polyhedral cones
in E.

(ii) C is a partition of E, i.e., E =
⊎
C∈C C.

(iii) The closure C of every cone C ∈ C is a union of cones in C.
(iv) Every subspace A ∈ A is a union of cones in C.
An element of the family C is called a stratum.

Example 3.2. Let E be a Euclidean space of dimension d, let L be a linear
subspace of codimension r, where 1 ≤ r ≤ d, and let A be the arrangement
{L}. Choose a flag that terminates at L, i.e., fix a sequence of linear subspaces
in E

E = L(0) ⊃ L(1) ⊃ · · · ⊃ L(r) = L, (6)

so that dimL(i) = d− i. The family C associated to the flag (6) consists of L
and of the connected components of the successive complements

L(0)\L(1), L(1)\L(2), . . . , L(r−1)\L(r).

A L(i) is a hyperplane in L(i−1), each of the complements L(i−1)\L(i) has two
connected components. This indeed yields a stratification by cones for the
arrangement A in E.

Definition 3.3. Let (A1,A2, . . . ,An) be a collection of arrangements of linear
subspaces in the Euclidean space E and let (C1, C2 . . . , Cn) be the associated
collection of stratifications of E by cones. The common refinement of the
stratifications is the family

C := {C1 ∩C2 ∩ · · · ∩Cn 6= ∅ : Ci ∈ Ci for all i}.
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In order to verify that the common refinement of stratifications is again a
stratification, we use the following elementary lemma.

Lemma 3.4. Let A1, . . . , An be relatively open convex sets in E that have non-
empty intersection, A1∩· · ·∩An 6= ∅. Then the following relation holds for the
closures:

A1 ∩ · · · ∩ An = A1 ∩ · · · ∩ An.

Proof. The inclusion “⊆” follows directly. For the opposite inclusion take x ∈
A1 ∩ · · · ∩ An. Choose a point y ∈ A1 ∩ · · · ∩ An 6= ∅ and consider the line
segment (x, y] := {λx+(1−λ)y : 0 ≤ λ < 1}. As each Ai is relatively open, the
segment (x, y] is contained in each of the Ai and consequently it is contained
in A1 ∩ · · · ∩An. Thus we obtain a sequence in this intersection converging to
x, which implies that x ∈ A1 ∩ · · · ∩ An.

Proposition 3.5. Given stratifications by cones C1, C2 . . . , Cn associated to
linear subspace arrangements A1,A2, . . . ,An, their common refinement is a
stratification by cones associated to the subspace arrangement A := A1 ∪ · · · ∪
An.

Proof. Properties (i) and (ii) of Definition 3.1 follow immediately from the
definition of the common refinement. To verify property (iv), observe that a
subspace At ∈ At is a union of strata from Ct, say At =

⋃
s Ut,s where Ut,s ∈ Ct.

Hence, taking the union of intersections C1 ∩ · · · ∩Ut,s ∩ · · · ∩Cn for all Ci ∈ Ci
where i 6= t, and all Ut,s gives At. Property (iii) follows from Lemma 3.4.

Example 3.6. Let E be a Euclidean space of dimension d and let A =
{L1, . . . , Ls} be an arrangement of linear subspaces of E. As in Example 3.2, for
each of the subspaces Li in the arrangement A fix a flag L(s)

i and form the cor-
responding stratifications C1, . . . , Cs. The common refinement of stratifications
C1, . . . , Cs is a stratification by cones associated to the subspace arrangementA.

An arrangement of linear subspaces is essential if the intersection of the sub-
spaces in the arrangement is {0}.

Proposition 3.7. The intersection of a stratification C of E by cones associ-
ated to an essential linear subspace arrangement with the sphere S(E) gives a
regular CW-complex.

Proof. The elements C ∈ C are relative open polyhedral cones. As {0} is a
stratum by itself, none of the strata contains a line through the origin. Thus
C ∩ S(E) is an open cell, whose closure C ∩ S(E) is a finite union of cells of
the form C′ ∩ S(E), so we get a regular CW complex.

3.2 A stratification of R(d+1)×k

Now we introduce the stratification of R(d+1)×k that will give us a S±k -CW
model forXd,k. One version of it, C, arises from the construction in the previous
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section. However, we also give combinatorial descriptions of relatively-open
convex cones in the stratification C′ directly, for which the action of S±k is
evident. We then verify that C and C′ coincide.

3.2.1 Stratification

Let elements x ∈ R(d+1)×k be written as x = (x1, . . . , xk) where xi =
(xt,i)t∈[d+1] is the i-th column of the matrix x. Consider the arrangement
A consisting of the following subspaces:

Lr := {(x1, . . . , xk) ∈ R(d+1)×k : xr = 0}, 1 ≤ r ≤ k
L+
r,s := {(x1, . . . , xk) ∈ R(d+1)×k : xr − xs = 0}, 1 ≤ r < s ≤ k

L−r,s := {(x1, . . . , xk) ∈ R(d+1)×k : xr + xs = 0}, 1 ≤ r < s ≤ k.

With each subspace we associate a flag:
(i) With Lr = {xr = 0} we associate

R(d+1)×k ⊃ {x1,r = 0} ⊃ {x1,r = x2,r = 0} ⊃ · · · ⊃
{x1,r = x2,r = · · · = xd+1,r = 0},

(ii) With L+
r,s = {xr − xs = 0} we associate

R(d+1)×k ⊃ {x1,r−x1,s = 0} ⊃ {x1,r−x1,s = x2,r−x2,s = 0} ⊃ · · · ⊃
{x1,r − x1,s = x2,r − x2,s = · · · = xd+1,r − xd+1,s = 0},

(iii) L−r,s = {xr + xs = 0} we associate

R(d+1)×k ⊃ {x1,r+x1,s = 0} ⊃ {x1,r+x1,s = x2,r+x2,s = 0} ⊃ · · · ⊃
{x1,r + x1,s = x2,r + x2,s = · · · = xd+1,r + xd+1,s = 0}.

The construction from Example 3.2 shows how every subspace in A leads to
a stratification by cones of R(d+1)×k. The stratifications associated to the
subspaces Lr, L+

r,s, L
−
r,s are denoted by Cr, C+r,s, C−r,s, respectively. Now, if we

apply Example 3.6 to this concrete situation we obtain the stratification by
cones C of R(d+1)×k associated to the subspace arrangementA. This means that
each stratum of C is a non-empty intersection of strata from the stratifications
Cr, C+r,s, C−r,s where 1 ≤ r < s ≤ k.

3.2.2 Partition

Let us fix:
• a permutation σ := (σ1, σ2, . . . , σk) ≡ (σ1σ2 . . . σk) ∈ Sk, σ : t 7→ σt,
• a collection of signs S := (s1, . . . , sk) ∈ {+1,−1}k, and
• integers I := (i1, . . . , ik) ∈ {1, . . . , d+ 2}k.
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Furthermore, define x0 to be the origin in R(d+1)×k, σ0 = 0 and s0 = 1. Define

CSI (σ) = Cs1,...,ski1,...,ik
(σ1, σ2, . . . , σk) ⊆ R(d+1)×k

to be the set of all points (x1, . . . , xk) ∈ R(d+1)×k, xi = (x1,i, . . . , xd+1,i), such
that for each 1 ≤ t ≤ k,
• if 1 ≤ it ≤ d+1, then st−1xit,σt−1 < stxit,σt with st−1xi′,σt−1 = stxi′,σt for

every i′ < it,
• if it = d+ 2, then sit−1xσt−1 = sitxσt .

Any triple (σ|I|S) ∈ Sk × {1, . . . , d + 2}k × {+1,−1}k is called a symbol. In
the notation of symbols we abbreviate signs {+1,−1} by {+,−}. The defining
set of “inequalities” for the stratum CSI (σ) is briefly denoted by:

CSI (σ) = Cs1,...,ski1,...,ik
(σ1, σ2, . . . , σk)

= {(x1, . . . , xk) ∈ R(d+1)×k : 0 <i1 s1xσ1 <i2 s2xσ2 <i3 · · · <ik skxσk},

where y <i y′, for 1 ≤ i ≤ d + 1, means that y and y′ agree in the first i − 1
coordinates and at the i-th coordinate yi < y′i. The inequality y <d+2 y

′

denotes that y = y′. Each set CSI (σ) is the relative interior of a polyhedral
cone in (Rd+1)k of codimension (i1 − 1) + · · ·+ (ik − 1), i.e.,

dimCs1,...,ski1,...,ik
(σ1, σ2, . . . , σk) = (d+ 2)k − (i1 + · · ·+ ik).

Let C′ denote the family of strata CSI (σ) defined by all symbols, i.e.,

C′ = {CSI (σ) : (σ|I|S) ∈ Sk × {1, . . . , d+ 2}k × {+1,−1}k}.

Different symbols can define the same set, and

CSI (σ) ∩ CS
′

I′ (σ) 6= ∅ ⇐⇒ CSI (σ) = CS
′

I′ (σ).

In order to verify that the family C′ is a partition of R(d+1)×k it remains to
prove that it is a covering.

Lemma 3.8.
⋃ C′ = R(d+1)×k.

Proof. Let (x1, . . . , xk) ∈ R(d+1)×k. First, choose signs r1, . . . , rk ∈ {+1,−1}
so that the vectors r1x1, . . . , rkxk are greater or equal to 0 ∈ R(d+1)×k with
respect to the lexicographic order, i.e., the first non-zero coordinate of each of
the vectors rixi is greater than zero. The choice of signs is not unique if one
of the vectors xi is zero. Next, record a permutation σ ∈ Sk such that

0 <lex rσ1xσ1 <lex rσ2xσ2 <lex · · · <lex rσkxσk ,

where <lex denotes the lexicographic order. The permutation σ is not unique
if rixi = rtxt for some i 6= t. Define si := rσi . Finally, collect coordinates it
where vectors st−1xσt−1 and stxσt first differ, or put it = d+2 if they coincide.
Thus, (x1, . . . , xk) ∈ Cs1,...,ski1,...,ik

(σ1, σ2, . . . , σk).
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Example 3.9. Let d = 0 and k = 2. Then the plane R2 is decomposed into
the following cones. There are 8 open cones of dimension 2:

C+,+
1,1 (12) = {(x1, x2) ∈ R2 : 0 < x1 < x2},

C−,+1,1 (12) = {(x1, x2) ∈ R2 : 0 < −x1 < x2},
C+,−

1,1 (12) = {(x1, x2) ∈ R2 : 0 < x1 < −x2},
C−,−1,1 (12) = {(x1, x2) ∈ R2 : 0 < −x1 < −x2},
C+,+

1,1 (21) = {(x1, x2) ∈ R2 : 0 < x2 < x1},
C−,+1,1 (21) = {(x1, x2) ∈ R2 : 0 < −x2 < x1},
C+,−

1,1 (21) = {(x1, x2) ∈ R2 : 0 < x2 < −x1},
C−,−1,1 (21) = {(x1, x2) ∈ R2 : 0 < −x2 < −x1}.

Furthermore, there are 8 cones of dimension 1:

C+,+
1,2 (12) = C+,+

1,2 (21) = {(x1, x2) ∈ R2 : 0 < x1 = x2},
C−,+1,2 (12) = C+,−

1,2 (21) = {(x1, x2) ∈ R2 : 0 < −x1 = x2},
C+,−

1,2 (12) = C−,+1,2 (21) = {(x1, x2) ∈ R2 : 0 < x1 = −x2},
C−,−1,2 (12) = C−,−1,2 (21) = {(x1, x2) ∈ R2 : 0 < −x1 = −x2},
C+,+

2,1 (12) = C−,+2,1 (12) = {(x1, x2) ∈ R2 : 0 = x1 < x2},
C+,−

2,1 (12) = C−,−2,1 (12) = {(x1, x2) ∈ R2 : 0 = x1 < −x2},
C+,+

2,1 (21) = C−,+2,1 (21) = {(x1, x2) ∈ R2 : 0 = x2 < x1},
C+,−

2,1 (21) = C−,−2,1 (21) = {(x1, x2) ∈ R2 : 0 = x2 < −x1}.

The origin in R2 is given by C±,±2,2 (12) = C±,±2,2 (21). The example illustrates a
property of our decomposition of R(d+1)×k: There is a surjection from symbals
to cones that is not a bijection, i.e., different symbols can define the same cones.

Example 3.10. Let d = 2 and k = 4. The stratum associated to the symbol
(2143 | 2, 3, 1, 4 | + 1,−1,+1,−1) can be described explicitly as follows.








x1,1 x1,2 x1,3 x1,4
x2,1 x2,2 x2,3 x2,4
x3,1 x3,2 x3,3 x3,4


 ∈ (R3)4 :

0 = x1,2 = −x1,1 < x1,4 = −x1,3
0 < x2,2 = −x2,1 x2,4 = −x2,3

x3,2 < −x3,1 x3,4 = −x3,3



 .

In particular,
C+,−,+,−

2,3,1,4 (2143) = C+,−,−,+
2,3,1,4 (2134).

3.2.3 C and C′ coincide

We proved that C is a stratification by cones of R(d+1)×k, and that C′ is a
partition of R(d+1)×k. Since both C and C′ are partitions it suffices to prove
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x1

x2

C
+,+

1,1 (12)

C
+,+

1,1 (21)

C
−,+

1,1 (12)

C
+,−

1,1 (21)

C
−,−

1,1 (21) C
−,+

1,1 (21)

C
−,−

1,1 (12) C
+,−

1,1 (12)

Figure 1: Illustration of the stratification in Example 3.9

that for every symbol (σ|I|S) ∈ Sk × {1, . . . , d + 2}k × {+1,−1}k the cone
CSI (σ) ∈ C′ also belongs to C.
Consider the cone CSI (σ) in C′. It is determined by

CSI (σ) = Cs1,...,ski1,...,ik
(σ1, σ2, . . . , σk)

= {(x1, . . . , xk) ∈ R(d+1)×k : 0 <i1 s1xσ1 <i2 s2xσ2 <i3 · · · <ik skxσk}.

The defining inequalities for CSI (σ) imply that (x1, . . . , xk) ∈ CSI (σ) if and
only if
• 0 <min{i1,...,ia} saxa for 1 ≤ a ≤ k, and
• saxa <min{ia+1,...,ib} sbxb for 1 ≤ a < b ≤ k,

if and only if
• (x1, . . . , xk) belongs to the appropriate one of two strata in the complement

La
(min{i1,...,ia}−1) \ La(min{i1,...,ia}−2)

of the stratification Ca depending on the sign sa where 1 ≤ a ≤ k, and
• (x1, . . . , xk) belongs to the appropriate one of two strata in the complement

Lsasba,b
(min{ia+1,...,ib}−1) \ Lsasba,b

(min{ia+1,...,ib}−2)

of the stratification Csasba,b depending on the sign of the product sasb where
1 ≤ a < b ≤ k. The product sasb, appearing in the “exponent notation” of
Lsasba,b , is either “+” when the product sasb = 1, or “−” when sasb = −1.

Here we use the notation of Examples 3.2 and 3.6.
Thus we have proved that CSI (σ) ∈ C and consequently C = C′.
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3.3 The S±k -CW model for Xd,k

The action of the group S±k on the space R(d+1)×k induces an action on the
family of strata C by as follows:

π · CSI (σ) = CSI (πσ), (7)

εt · CSI (σ) = εt · Cs1,...,ski1,...,ik
(σ1, σ2, . . . , σk)

= Cs1,...,−st,...,ski1,...,ik
(σ1, σ2, . . . , σk), (8)

where π ∈ Sk and ε1, . . . , εk are the canonical generators of the subgroup
(Z/2)k of S±k .
The S±k -CW complex that models Xd,k = S(R(d+1)×k) is obtained by inter-
secting each stratum CSI (σ) with the unit sphere S(R(d+1)×k). Each stratum is
a relatively open cone that does not contain a line. Therefore the intersection

DS
I (σ) = Ds1,...,sk

i1,...,ik
(σ1, σ2, . . . , σk) := Cs1,...,ski1,...,ik

(σ1, σ2, . . . , σk) ∩ S(R(d+1)×k)

is an open cell of dimension (d+ 2)k− (i1 + · · ·+ ik)− 1. The action of S±k is
induced by (7) and (8):

π ·DS
I (σ) = DS

I (πσ), (9)

εt ·DS
I (σ) = εt ·Ds1,...,sk

i1,...,ik
(σ1, σ2, . . . , σk)

= Ds1,...,−st,...,sk
i1,...,ik

(σ1, σ2, . . . , σk). (10)

Thus we have obtained a regular S±k -CW model for Xd,k. In particular, the
action of the group S±k on the space R(d+1)×k induces a cellular action on the
model.

Theorem 3.11. Let d ≥ 1 and k ≥ 1 be integers, and N1 = (d+ 1)k − 1. The
family of cells

{DS
I (σ) : (σ|I|S) 6= (σ|d+ 2, . . . , d+ 2|S)}

forms a finite regular N1-dimensional S±k -CW complex X := (Xd,k, X
>1
d,k) that

models the join configuration space Xd,k = S(R(d+1)×k). It has
• one full S±k -orbit in maximal dimension N1, and
• k full S±k -orbits in dimension N1 − 1.

The (cellular) S±k -action on Xd,k is given by (9) and (10). Furthermore the
collection of cells

{DS
I (σ) : is = d+ 2 for some 1 ≤ s ≤ k}

is a S±k -CW subcomplex and models X>1
d,k.

Example 3.12. Let d ≥ 1 and k ≥ 2 be integers with dk = (2k−1)j+ ℓ, where
0 ≤ ℓ ≤ d − 1. Consider the cell θ := D+,+,+,...,+

ℓ+1,1,1,...,1(1, 2, 3, . . . , k) of dimension
N1 − ℓ = N2 + 1 in Xd,k. It is determined by the following inequalities:

0 <ℓ+1 x1 <1 x2 <1 · · · <1 xk.
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For the process of determining the boundary of θ, depending on value of ℓ, we
distinguish the following cases.
(1) Let ℓ = 0. Then θ := D+,+,+,...,+

1,1,1,...,1 (1, 2, 3, . . . , k). The cells of codimension
1 in the boundary of θ are obtained by introducing one of the following
extra equalities:

x1,1 = 0 , x1,1 = x1,2 , . . . x1,k−1 = x1,k.

Each of these equalities will give two cells of dimension N2, hence in total
2k cells of codimension 1, in the boundary of θ.
(a) The equality x1,1 = 0 induces cells:

γ1 := D+,+,+,...,+
2,1,1,...,1 (1, 2, 3, . . . , k), γ2 := D−,+,+,...,+2,1,1,...,1 (1, 2, 3, . . . , k)

that are related, as sets, via γ2 = ε1 · γ1. Both cells γ1 and γ2 belong
to the linear subspace

V1 = {(x1, . . . , xk) ∈ R(d+1)×k : x1,1 = 0}.

(b) The equality x1,r−1 = x1,r for 2 ≤ r ≤ k gives cells:

γ2r−1 := D+,+,+,...,+
1,...,1,2,1,...,1(1, . . . , r − 1, r, r + 1, . . . , k),

γ2r := D+,+,+,...,+
1,...,1,2,1,...,1(1, . . . , r, r − 1, r + 1, . . . , k)

satisfying γ2r = τr−1,r ·γ2r−1. In these cells the index 2 in the subscript
1, . . . , 1, 2, 1, . . . , 1 appears at the position r. These cells belong to the
linear subspace

Vr = {(x1, . . . , xk) ∈ R(d+1)×k : x1,r−1 = x1,r}.

Let eθ denote a generator in CN2+1(Xd,k, X
>1
d,k) that corresponds to the

cell θ. Furthermore let eγ1 , . . . , eγ2k denote generators in CN2(Xd,k, X
>1
d,k)

related to the cells γ1, . . . , γ2k.
The boundary of the cell θ is contained in the union of the linear subspaces
V1, . . . , Vk. Therefore we can orient the cells γ2i−1, γ2i consistently with
the orientation of Vi, 1 ≤ i ≤ k, that is given in such a way that

∂eθ = (eγ1 + eγ2) + (eγ3 + eγ4) + · · ·+ (eγ2k−1
+ eγ2k).

Consequently,

∂eθ = (1 + (−1)dε1) · eγ1 +
k∑

i=2

(1 + (−1)dτi−1,i) · eγ2i−1 . (11)

(2) Let ℓ = 1. Then θ := D+,+,+,...,+
2,1,1,...,1 (1, 2, 3, . . . , k). Now the cells in the

boundary of θ are obtained by introducing extra equalities:

x2,1 = 0 , (0 =)x1,1 = x1,2 , . . . x1,k−1 = x1,k.
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Each of these equalities, except for the second one, will give two cells of
dimension N2, which yields 2(k − 1) cells in total, in the boundary of θ.
The equality x1,1 = x1,2 will give additional four cells in the boundary of θ.
(a) The equality x2,1 = 0 induces cells:

γ1 := D+,+,+,...,+
3,1,1,...,1 (1, 2, 3, . . . , k), γ2 := D−,+,+,...,+3,1,1,...,1 (1, 2, 3, . . . , k)

that are related, as sets, via γ2 = ε1 · γ1. Notice that both cells γ1
and γ2 belong to the linear subspace

V1 = {(x1, . . . , xk) ∈ R(d+1)×k : x1,1 = x2,1 = 0}.

(b) The equality x1,1 = x1,2 yields the cells

γ3 := D+,+,+,...,+
2,2,1,...,1 (1, 2, 3, . . . , k), γ31 := D+,−,+,...,+

2,2,1,...,1 (1, 2, 3, . . . , k),

γ32 := D+,+,+,...,+
2,2,1,...,1 (2, 1, 3, . . . , k), γ33 := D−,+,+,...,+2,2,1,...,1 (2, 1, 3, . . . , k).

They satisfy set identities γ31 = ε2 · γ3, γ32 = τ1,2 · γ3, and γ33 =
ε1τ1,2 · γ3. All four cells belong to the linear subspace

V2 = {(x1, . . . , xk) ∈ R(d+1)×k : 0 = x1,1 = x1,2}.

(c) The equality x1,r−1 = x1,r for 3 ≤ r ≤ k gives cells:

γ2r−1 := D+,+,+,...,+
2,...,1,2,1,...,1(1, . . . , r − 1, r, r + 1, . . . , k),

γ2r := D+,+,+,...,+
2,...,1,2,1,...,1(1, . . . , r, r − 1, r + 1, . . . , k)

satisfying γ2r = τr−1,r · γ2r−1. In these cells the second index 2 in
the subscript 2, . . . , 1, 2, 1, . . . , 1 appears at the position r. These cells
belong to the linear subspace

Vr = {(x1, . . . , xk) ∈ R(d+1)×k : x1,1 = 0, x1,r−1 = x1,r}.

Again eθ denotes a generator in CN2+1(Xd,k, X
>1
d,k) corresponding to θ.

Let eγ1 , eγ2 , eγ3 , eγ31 , eγ32 , eγ33 , eγ4 . . . , eγ2k denote generators in
CN2(Xd,k, X

>1
d,k) related to the cells γ1, γ2, γ3, γ31, γ32, γ33, . . . , γ2k.

The boundary of the cell θ, as before, is contained in the union of the
linear subspaces V1, . . . , Vk. Therefore we can orient cells consistently with
the orientation of Vi, 1 ≤ i ≤ k, that is given in such a way that

∂eθ = (eγ1 + eγ2) + (eγ3 + eγ31 + eγ32 + eγ33) + · · ·+ (eγ2k−1
+ eγ2k).

Consequently,

∂eθ = (1 + (−1)d−1ε1) · eγ1 + (12)

(1 + (−1)dε2 + (−1)dτ1,2 + (−1)d+dε1τ1,2) · eγ3 +
k∑

i=3

(1 + (−1)dτi−1,i) · eγ2i−1 .
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(3) Let 2 ≤ ℓ ≤ d − 1. Then θ := D+,+,+,...,+
ℓ+1,1,1,...,1(1, 2, 3, . . . , k). The cells in the

boundary of θ are now obtained by introducing following equalities:

xℓ+1,1 = 0 , (0 =)x1,1 = x1,2 , . . . x1,k−1 = x1,k.

Each of them will give two cells of dimension N2 in the boundary of θ, all
together 2k.
(a) The equality xℓ+1,1 = 0 induces cells:

γ1 := D+,+,+,...,+
ℓ+2,1,1,...,1(1, 2, 3, . . . , k), γ2 := D−,+,+,...,+ℓ+2,1,1,...,1(1, 2, 3, . . . , k)

that are related, as sets, via γ2 = ε1 · γ1. Both cells γ1 and γ2 belong
to the linear subspace

V1 = {(x1, . . . , xk) ∈ R(d+1)×k : x1,1 = · · · = xℓ+1,1 = 0}.
(b) The equality (0 =)x1,1 = x1,2 gives the cells

γ3 := D+,+,+,...,+
ℓ+1,2,1,...,1(1, 2, 3, . . . , k), γ4 := D+,−,+,...,+

ℓ+1,2,1,...,1(1, 2, 3, . . . , k)

that satisfy γ4 = ε2 · γ3. Both cells belong to the linear subspace

V2 = {(x1, . . . , xk) ∈ R(d+1)×k : x1,1 = · · · = xℓ,1 = 0, x1,1 = x1,2}.
(c) The equality x1,r−1 = x1,r for 3 ≤ r ≤ k gives cells:

γ2r−1 := D+,+,+,...,+
ℓ+1,...,1,2,1,...,1(1, . . . , r − 1, r, r + 1, . . . , k),

γ2r := D+,+,+,...,+
ℓ+1,...,1,2,1,...,1(1, . . . , r, r − 1, r + 1, . . . , k)

satisfying γ2r = τr−1,r ·γ2r−1. In these cells the index 2 in the subscript
ℓ+1, . . . , 1, 2, 1, . . . , 1 appears at the position r. These cells belong to
the linear subspace

Vr = {(x1, . . . , xk) ∈ R(d+1)×k : x1,1 = · · · = xℓ,1 = 0, x1,r−1 = x1,r}.
Again eθ denotes a generator in CN2+1(Xd,k, X

>1
d,k) that corresponds to

the cell θ. Furthermore eγ1 , . . . , eγ2k denote generators in CN2(Xd,k, X
>1
d,k)

related to the cells γ1, . . . , γ2k.
As before, the boundary of the cell θ is contained in the union of the linear
subspaces V1, . . . , Vk. Thus we can orient cells γ2i−1, γ2i consistently with
the orientation of Vi, 1 ≤ i ≤ k, that is given in such a way that

∂eθ = (eγ1 + eγ2) + (eγ3 + eγ4) + · · ·+ (eγ2k−1
+ eγ2k).

Hence,

∂eθ = (1+(−1)d−ℓε1)·eγ1+(1+(−1)dε2)·eγ3+
k∑

i=3

(1+(−1)dτi−1,i)·eγ2i−1 .

(13)
The relations (11), (12) and (13) that we have now derived will be essential in
the proofs of Theorems 1.4 and 1.5.
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3.4 The arrangements parametrized by a cell

In this section we describe all arrangements of k hyperplanes parametrized by
the cell

θ := D+,+,+,...,+
ℓ+1,1,1,...,1(1, 2, 3, . . . , k),

where 1 ≤ ℓ ≤ d − 1. This description will be one of the key ingredients in
Section 4 when the obstruction cocycle is evaluated on the cell θ.
Recall that the cell θ is defined as the intersection of the sphere S(R(d+1)×k)
and the cone given by the inequalities:

0 <ℓ+1 x1 <1 x2 <1 · · · <1 xk.

Consider the binomial coefficient moment curve γ̂ : R −→ Rd defined by

γ̂(t) = (t,
(
t
2

)
,
(
t
3

)
, . . . ,

(
t
d

)
)t. (14)

After embedding Rd −→ Rd+1, (ξ1, . . . , ξd)
t 7−→ (1, ξ1, . . . , ξd)

t it corresponds
to the curve γ : R −→ Rd+1 given

γ(t) = (1, t,
(
t
2

)
,
(
t
3

)
, . . . ,

(
t
d

)
)t.

Consider the following points on the moment curve γ:

q1 := γ(0), . . . , qℓ+1 := γ(ℓ). (15)

Next, recall that each oriented affine hyperplane Ĥ in Rd (embedded in Rd+1)
determines the unique linear hyperplane H such that Ĥ = H ∩Rd, and almost
vice versa. Now, the family of arrangements parametrized by the (open) cell θ
is described as follows:

Lemma 3.13. The cell θ = D+,+,+,...,+
ℓ+1,1,1,...,1(1, 2, 3, . . . , k) parametrizes all arrange-

ments H = (H1, . . . , Hk) of k linear hyperplanes in Rd+1, where the order and
orientation are fixed appropriately such that
• Q := {q1, . . . , qℓ} ⊂ H1,
• qℓ+1 /∈ H1,
• q1 /∈ H2, . . . , q1 /∈ Hk, and
• H2, . . . , Hk have unit normal vectors with different (positive) first coordi-

nates, that is, |{〈x2, q1〉, 〈x3, q1〉, . . . , 〈xk, q1〉}| = k − 1.
Here xi ∈ S(R(d+1)×k) is a unit normal vector of the hyperplane Hi, for 1 ≤
i ≤ k.

Proof. Observe that {q1, . . . , qℓ} ⊂ H1 holds if and only if 〈x1, q1〉 = 〈x1, q2〉 =
· · · = 〈x1, qℓ〉 = 0 if and only if x1,1 = x2,1 = · · · = xℓ,1 = 0: This is true
since we have the binomial moment curve, so qi = γ(i− 1) has only the first i
coordinates non-zero.
Furthermore, qℓ+1 /∈ H1 holds if and only if xℓ+1,1 6= 0; choosing an appropriate
orientation for H1 we can assume that xℓ+1,1 > 0.
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The third condition is equivalent to 0 /∈ {〈x2, q1〉, 〈x3, q1〉, . . . , 〈xk, q1〉}, that
is, x1,2, x1,3, . . . , x1,k 6= 0. Choosing orientations of H2, . . . , Hk suitably this
yields x1,2, x1,3, . . . , x1,k > 0.
Since the values x1,2 = 〈x2, q1〉, x1,3 = 〈x3, q1〉, . . . , x1,k = 〈xk, q1〉 are positive
and distinct, we get 0 < x1,2 < x1,3 < · · · < x1,k by choosing the right order
on H2, . . . , Hk.

4 Proofs

4.1 Proof of Theorem 1.3

Let d ≥ 1, j ≥ 1, ℓ ≥ 0 and k ≥ 2 be integers with the property that dk =
j(2k − 1) + ℓ for 0 ≤ ℓ ≤ d− 1.
Consider a collection of j ordered disjoint intervalsM = (I1, . . . , Ij) along the
moment curve γ. Let Q = {q1, . . . , qℓ} ⊂ γ be a set of ℓ predetermined points
that lie to the left of the interval I1. We prove Theorem 1.3 in two steps.

Lemma 4.1. Let A be an ℓ-equiparting matrix, that is, a binary matrix of size
k × j2k with one row of transition count d− ℓ and all other rows of transition
count d such that A = (A1, . . . , Aj) for Gray codes A1, . . . , Aj with the property
that the last column of Ai is equal to the first column of Ai+1 for 1 ≤ i < j.
Then A determines an arrangement H of k affine hyperplanes that equipart
M = (I1, . . . , Ij) and one of the hyperplanes passes through each point in Q.

Proof. Without loss of generality we assume that the first row of the matrix A
has transition count d− ℓ while rows 2 through k have transition count d. For
a row as of the matrix A, denote by ts its transition count, 1 ≤ s ≤ k.
Place j(2k + 1) ordered points qℓ+1, . . . , qℓ+j(2k+1) on γ, such that

Ii = [qℓ+(i−1)2k+i, qℓ+i2k+i]

and each sequence of 2k+1 points divides Ii into 2k subintervals of equal length.
Ordered refers to the property that qr = γ(tr) if t1 < t2 < · · · < tj(2k+1).
We now define the hyperplanes in H by specifying which of the points they pass
through and then choosing their orientations. Force the affine hyperplane H1

to pass through all of the points in Q. For s = 1, . . . , i, the affine hyperplane
Hs passes through xℓ+r+i if there is a bit change in row as from entry r to entry
r + 1 for (i − 1)2k < r ≤ i2k. Orient Hs such that the subinterval [qr, qr+1]
is on the positive side of Hs if it corresponds to a 0-entry in as. Since each
A1, . . . , Aj is a Gray code, the arrangement H is indeed an equipartition.

Lemma 4.2. Every arrangement of k affine hyperplanes H that equipartsM =
(I1, . . . , Ij) and where one of the hyperplanes passes through each point of Q
induces a unique binary matrix A as in Lemma 4.1.

Proof. Since dk = j(2k − 1) + ℓ and 0 ≤ ℓ ≤ d − 1, the hyperplanes in H
must pass through the points qℓ+(i−1)2k+i+1, . . . , qℓ+i2k+i−1 of the intervals Ii
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for i ∈ {1, . . . , j}. Recording the position of the subintervals [qℓ+r, qℓ+r+1], for
r 6= i2k + i, with respect to each hyperplane leads to a matrix as in described
in Lemma 4.1.

q10 q11

q19

q12q9

q18

I1 I2

q1

H1

q2 q3

Figure 2: Illustration of one step in the proof of Lemma 4.1. Here H1 is an affine

hyperplane bisecting two intervals I1 and I2 on the 5-dimensional moment curve.

Thus the number of non-equivalent ℓ-equiparting matrices is the same as the
number of arrangements of k affine hyperplanes H that equipart the collection
of j disjoint intervals on the moment curve in Rd, up to renumbering and
orientation change of hyperplanes in H, when one of the hyperplanes is forced
to pass through ℓ prescribed points on the moment curve lying to the left of
the intervals. This concludes the proof of Theorem 1.3.

4.2 Proof of Theorem 1.4

Let j ≥ 1 and k ≥ 3 be integers with d = ⌈ 2k−1k j⌉ and ℓ = dk − (2k − 1)j. In
addition, assume that the number of non-equivalent ℓ-equiparting matrices of
size k × j2k is odd.
In order to prove that ∆(j, k) ≤ d it suffices by Theorem 2.3 to prove that
there is no S±k -equivariant map

Xd,k −→ S(Wk ⊕ U⊕jk ),

whose restriction to X>1
d,k is S±k -homotopic to ν ◦ψM|X>1

d,k
forM = (I1, . . . , Ij).

Following Section 2.6 we verify that the cohomology class

[o(g)] ∈ HN2+1

S±
k

(
Xd,k, X

>1
d,k ; πN2(S(Wk ⊕ U⊕jk ))

)
,

does not vanish, where g = ν ◦ ψM|X(N2) .
Consider the cell θ := D+,+,+,...,+

ℓ+1,1,1,...,1(1, 2, 3, . . . , k) of dimension (d+1)k−1− ℓ =
N2 + 1 in Xd,k, as in Example 3.12. Let eθ denote the corresponding basis
element of the cell θ in the cellular chain group CN2+1(Xd,k, X

>1
d,k), and let hθ

be the attaching map of θ. This cell is cut out from the unit sphere S(R(d+1)×k)
by the following inequalities:

0 <ℓ+1 x1 <1 x2 <1 · · · <1 xk.

In particular, this means that the first ℓ coordinates of x1 are zero, i.e., x1,1 =
x2,1 = x3,1 = · · · = xℓ,1 = 0, and xℓ+1,1 > 0.
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Let us fix ℓ points Q = {q1, . . . , qℓ} on the moment curve (14) in Rd+1 as
it was done in (15): q1 := γ(0), . . . , qℓ := γ(ℓ − 1). Then, by Lemma 3.13,
the relative interior ofD+,+,+,...,+

ℓ+1,1,1,...,1(1, 2, 3, . . . , k) parametrizes the arrangements
H = (H1, . . . , Hk) for which orientations and order of the hyperplanes are fixed
with H1 containing all the points from Q. According to the formula (5) we have
that

o(g)(eθ) = [ν ◦ ψM ◦ hθ|∂θ] =
∑

deg(ν ◦ ψM|X(N2+1) ◦ hθ|Si) · ζ,

where as before ζ ∈ πN2(S(Wk⊕U⊕jk )) ∼= Z is a generator, and the sum ranges
over all arrangements of k hyperplanes in relint θ that equipartM. Here, as be-
fore, Si denotes a smallN2-sphere around a root of the function ψM|X(N2+1)◦hθ,
i.e., the point that parametrizes an arrangements of k hyperplanes in relint θ
that equipartM.
Now, the local degrees of the function ν ◦ ψM|X(N2+1) ◦ hθ are ±1. Indeed, in
a small neighborhood U ⊆ relint θ around any root the test map ψM is a con-
tinuous bijection. Thus ψM|∂U is a continuous bijection into some N2-sphere
around the origin in Wk⊕U⊕jk and by compactness of ∂U is a homeomorphism.
Consequently,

o(g)(eθ) =
∑

deg(ν ◦ ψM|X(N2+1) ◦ hθ|Si) · ζ =
(∑

±1
)
· ζ = a · ζ, (16)

where the sum ranges over all arrangements of k hyperplanes in relint θ that
equipartM. According to Theorem 1.3 the number of (±1)’s in the sum (16) is
equal to the number of non-equivalent ℓ-equiparting matrices of size k×j2k. By
our assumption this number is odd and consequently a ∈ Z is an odd integer.
We obtained that

o(g)(eθ) = a · ζ, (17)

where a ∈ Z is an odd integer.

Remark 4.3. It is important to point out that the calculations and formulas
up to this point also hold for k = 2. The assumption k ≥ 3 affects the S±k =

(Z/2)k ⋊ Sk module structure on πN2(S(Wk ⊕ U⊕jk )) ∼= Z. For k ≥ 2 every
generator εi of the subgroup (Z/2)k acts trivially, while each transposition τi,t,
a generator of the subgroup Sk, acts as multiplication by −1 in the case k ≥ 3,
and as multiplication by (−1)j+1 in the case k = 2.

Finally, we prove that [o(g)] does not vanish and conclude the proof. This will
be achieved by proving that the cocycle o(g) is not a coboundary.
Let us assume to the contrary that o(g) is a coboundary. Thus there exists a
cochain

h ∈ CN2

S±
k

(
Xd,k, X

>1
d,k ; πN2(S(Wk ⊕ U⊕jk ))

)

such that o(g) = δh, where δ denotes the coboundary operator. In the case
when
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(1) ℓ = 0 the relation (11) implies that

a · ζ = o(g)(eθ) = δh(eθ) = h(∂eθ)

= (1 + (−1)dε1) · h(eγ1) +
k∑

i=2

(1 + (−1)dτi−1,i) · h(eγ2i−1)

= (1 + (−1)d) · h(eγ1) +
k∑

i=2

(1 + (−1)d+1) · h(eγ2i−1)

= 2b · ζ,

for some integer b. Since a is an odd integer this is not possible, and
therefore o(g) is not a coboundary.

(2) ℓ = 1 the relation (12) implies that

a · ζ = o(g)(eθ) = δh(eθ) = h(∂eθ)

= (1 + (−1)d−1ε1) · h(eγ1) +
(1 + (−1)dε2 + (−1)dτ1,2 + (−1)d+dε1τ1,2) · h(eγ3) +
k∑

i=3

(1 + (−1)dτi−1,i) · h(eγ2i−1)

= (1 + (−1)d−1) · h(eγ1) + (1 + (−1)d + (−1)d+1 − 1) · h(eγ3) +
k∑

i=3

(1 + (−1)d+1) · h(eγ2i−1)

= (1 + (−1)d−1) · h(eγ1) +
k∑

i=3

(1 + (−1)d+1) · h(eγ2i−1)

= 2b · ζ,

for b ∈ Z. Again we reached a contradiction, so o(g) is not a coboundary.
(3) 2 ≤ ℓ ≤ d− 1 the relation (13) implies that

a · ζ = o(g)(eθ) = δh(eθ) = h(∂eθ)

= (1 + (−1)d−ℓε1) · h(eγ1) + (1 + (−1)dε2) · h(eγ3) +
k∑

i=3

(1 + (−1)dτi−1,i) · h(eγ2i−1)

= (1 + (−1)d−ℓ) · h(eγ1) + (1 + (−1)d) · h(eγ3) +
k∑

i=3

(1 + (−1)d+1) · h(eγ2i−1)

= 2b · ζ,

for an integer b. Since a is an odd integer this is not possible. Again, o(g)
is not a coboundary.
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4.3 Proof of Theorem 1.5

Let j ≥ 1 be an integer with d = ⌈ 32j⌉ and ℓ = 2d− 3j ≤ 1.
The proof of this theorem is done in the footsteps of the proof of Theorem 1.4.
In all three cases we rely on Theorem 2.3 and prove
• the non-existence of S±2 -equivariant map Xd,2 −→ S(W2 ⊕ U⊕j2 ) whose

restriction to X>1
d,2 is S±2 -homotopic to ν ◦ ψM|X>1

d,2
forM = (I1, . . . , Ij)

• by evaluating the obstruction cocycle o(g) for g = ν ◦ ψM|X(N2) on cells
D+,+

1,1 (1, 2) or D+,+
2,1 (1, 2), depending on ℓ being 0 or 1, using Theorem 1.3;

and then
• prove that the cocycle o(g) cannot be a coboundary, utilizing boundary

formulas from Example 3.12.

4.3.1 2-bit Gray codes

In order to evaluate the obstruction cocycle o(g) on the relevant cells in the
case k = 2 we need to understand (2 × 4)-Gray codes. These correspond to
equipartitions of an interval I on the moment curve into four equal orthants
by intersecting with two hyperplanes H1 and H2 in altogether three points
of the interval. There are two such configurations: either H1 cuts through
the midpoint of I and H2 separates both halves of I into equal pieces by two
additional intersections, or the roles of H1 and H2 are reversed. In terms of
Gray codes we can express this as follows.

Lemma 4.4. There are two different 2-bit Gray codes that start with the zero
column (or any other fixed binary vector of length 2):

(
0 1 1 0
0 0 1 1

)
and

(
0 0 1 1
0 1 1 0

)

Proof. The second column of the Gray code determines the rest of the code,
and there are only two choices for a bit flip.

This means that in the case k = 2 an ℓ-equiparting matrix A has a more
compact representation: it is determined by the first column – a binary vector
of length 2 – and j additional bits, one for each Ai, encoding whether the
first bit flip in Ai is in the first or second row. These j bits cannot be chosen
independently since there are restrictions imposed by the transition count.

Lemma 4.5. Let j ≥ 1 be an integer with d = ⌈ 32j⌉ and ℓ = 2d− 3j ≤ 1.
(1) If ℓ = 0, then the number of non-equivalent 0-equiparting matrices is equal

to
1
2

(
j
j
2

)
.

(2) If ℓ = 1, then the number of non-equivalent 1-equiparting matrices is equal
to (

j
j+1
2

)
.
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Proof. We count the number of non-equivalent ℓ-equiparting matrices of the
form A = (A1, . . . , Aj) where Ai is a 2-bit Gray code. A (2 × 4)-Gray code
with the first bit flip in the first row has in total two bit flips in the first row
and one bit flip in the second row.
(1) Let ℓ = 0. Then 2d = 3j and consequently j has to be even. The matrix A
must have transition count d in each row. Thus, half of the Ai’s have the first
bit flip in the first row. Consequently, 0-equiparting matrices A with a fixed
first column are in bijection with j

2 -element subsets of a set with j elements.
By inverting the bits in each row we can fix the first column of A to be the
zero vector. Additionally, we are allowed to interchange the rows. Up to this
equivalence there are 1

2

(
j
j/2

)
such matrices.

(2) Let ℓ = 1. Then 2d = 3j + 1 and so j is odd. The matrix A must have
transition count d in one row while transition count d − 1 in the remaining
row. Without loss of generality we can assume that A have transition count
d in the first row. Assume that r of the Ai’s have the first bit flip in the first
row. Consequently, j − r of the Ai’s have the first bit flip in the second row.
Now the transition count of the first row is 2r + j − r while the transition
count of the second row is r + 2(j − r). The system of equations 2r + j − r =
d, r+2(j− r) = d− 1 yields that r = j+1

2 . Therefore, up to equivalence, there
are

(
j
r

)
such matrices.

4.3.2 The case ℓ = 0⇔ 2d = 3j

Let θ := D+,+
1,1 (1, 2), and let eθ denote the related basis element of the cell θ in

the top cellular chain group C2d+1(Xd,2, X
>1
d,2) which, in this case, is equivari-

antly generated by θ. According to equation (16), which also holds for k = 2
as explained in Remark 4.3,

o(g)(eθ) =
(∑

±1
)
· ζ = a · ζ, (18)

where ζ ∈ π2d+1(S(W2 ⊕ U⊕j2 )) ∼= Z is a generator, and the sum ranges
over all arrangements of two hyperplanes in relint θ that equipart M. Since
θ parametrizes all arrangements H = (H1, H2) where orientations and order
of hyperplanes are fixed, the sum in (18) ranges over all arrangements of two
hyperplanes that equipart M where orientation and order of hyperplanes are
fixed. Therefore, by Theorem 1.3, the number of (±1)’s in the sum of (18) is
equal to the number of non-equivalent 0-equiparting matrices of size 2 × 4j.
Now, Lemma 4.5 implies that the number of (±1)’s in the sum of (18) is 1

2

(
j
j/2

)
.

Consequently, integer a is odd if and only if 1
2

(
j
j/2

)
is odd.

Assume that the cocycle o(g) is a coboundary. Hence, there exists a cochain

h ∈ C2d
S±

2

(
Xd,2, X

>1
d,2 ; π2d(S(W2 ⊕ U⊕j2 ))

)

with the property that o(g) = δh. The relation (11) for k = 2 transforms into

∂eθ = (1 + (−1)dε1) · eγ1 + (1 + (−1)dτ1,2) · eγ3 .
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Thus we have that

a · ζ = o(g)(eθ) = δh(eθ) = h(∂eθ)

= (1 + (−1)dε1) · h(eγ1) + (1 + (−1)dτ1,2) · h(eγ3)
= (1 + (−1)d) · h(eγ1) + (1 + (−1)d+j+1) · h(eγ3)
= 2b · ζ.

Consequently, o(g) is not a coboundary if and only if a is odd if and only if
1
2

(
j
j/2

)
is odd. Having in mind the Kummer criterion stated below we conclude

that: A S±2 -equivariant map Xd,2 −→ S(W2 ⊕ U⊕j2 ) whose restriction to X>1
d,2

is S±2 -homotopic to ν ◦ ψM|X>1
d,2

does not exists if and only is o(g) is not a

coboundary if and only if a is an odd integer if and only if 1
2

(
j
j/2

)
is odd if and

only if j = 2t for t ≥ 1.

Lemma 4.6 (Kummer [12]). Let n ≥ m ≥ 0 be integers and let p be a prime.
The maximal integer k such that pk divides

(
n
m

)
is the number of carries when

m and n−m are added in base p.

Thus we have proved the case (ii) of Theorem 1.5. Moreover, since the primary
obstruction o(g) is the only obstruction, we have proved that a S±2 -equivariant
map Xd,2 −→ S(W2 ⊕ U⊕j2 ) whose restriction to X>1

d,2 is S±2 -homotopic to
ν ◦ ψM|X>1

d,2
exists if and only if j, an even integer, is not a power of 2.

4.3.3 The case ℓ = 1⇔ 2d = 3j + 1

Let θ := D+,+
2,1 (1, 2), and again let eθ denote the related basis element of the

cell θ in the cellular chain group C2d(Xd,2, X
>1
d,2) which, in this case, is equiv-

ariantly generated by two cells D+,+
2,1 (1, 2) and D+,+

1,2 (1, 2). Again, the equation
(16) implies that

o(g)(eθ) =
(∑

±1
)
· ζ = a · ζ, (19)

where ζ ∈ π2d+1(S(W2 ⊕ U⊕j2 )) ∼= Z is a generator, and the sum ranges over
all arrangements of k hyperplanes in relint θ that equipart M. The cell θ
parametrizes all arrangementsH = (H1, H2) whereH1 passes through the given
point on the moment curve and orientations and order of hyperplanes are fixed.
Thus, the sum in (19) ranges over all arrangements of two hyperplanes that
equipartM whereH1 passes through the given point on the moment curve with
order and orientation of hyperplanes being fixed. Therefore, by Theorem 1.3,
the number of (±1)’s in the sum of (19) is the same as the number of non-
equivalent 1-equiparting matrices of size 2 × 4j. Again, Lemma 4.5 implies
that the number of (±1)’s in the sum of (19) is

(
j

(j+1)/2

)
. The integer a is odd

if and only if
(

j
(j+1)/2

)
is odd if and only if j = 2t − 1 for t ≥ 1.

Assume that the cocycle o(g) is a coboundary. Then there exists a cochain

h ∈ C2d−1
S±

2

(
Xd,2, X

>1
d,2 ; π2d−1(S(W2 ⊕ U⊕j2 ))

)
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with the property that o(g) = δh. Now, the relation (12) for k = 2 transforms
into

∂eθ = (1 + (−1)d−1ε1) · eγ1 + (1 + (−1)dε2 + (−1)dτ1,2 + (−1)d+dε1τ1,2) · eγ3 .

Thus, having in mind that j has to be odd, we have

a · ζ = o(g)(eθ) = δh(eθ) = h(∂eθ)

= (1 + (−1)d−1ε1) · h(eγ1) +
(1 + (−1)dε2 + (−1)dτ1,2 + (−1)d+dε1τ1,2) · h(eγ3)

= (1 + (−1)d−1) · h(eγ1) + (1 + (−1)d + (−1)d+j+1 + (−1)j+1) · h(eγ3)
= (1 + (−1)d−1) · h(eγ1) + (1 + (−1)d + (−1)d + 1) · h(eγ3)

=

{
2h(eγ1), d odd
4h(eγ3), d even.

(20)

Now, we separately consider cases depending on parity of d and value of j.

(1) Let d be odd. Recall that a is odd if and only if j = 2t − 1 for t ≥ 1.
Since d = 1

2 (3j + 1) = 3 · 2t−1 − 1 and d is odd we have that for j = 2t − 1,
with t ≥ 2, the integer a is odd and consequently o(g) is not a coboundary.
Thus a S±2 -equivariant map Xd,2 −→ S(W2 ⊕ U⊕j2 ) whose restriction to X>1

d,2

is S±2 -homotopic to ν ◦ ψM|X>1
d,2

does not exists. We have proved the case (ii)
of Theorem 1.5 for t ≥ 2.

(2) Let d = 2 and j = 1 = 21 − 1. Then the integer a is again odd and conse-
quently cannot be divisible by 4 implying again that o(g) is not a coboundary.
Therefore a S±2 -equivariant map X2,2 −→ S(W2 ⊕ U2) whose restriction to
X>1

2,2 is S±2 -homotopic to ν ◦ψM|X>1
2,2

does not exists. This concludes the proof
of the case (ii) of Theorem 1.5.

(3) Let d ≥ 4 be even. Now we determine the integer a by computing lo-
cal degrees deg(ν ◦ ψM|X(N2+1) ◦ hθ|Si); see (16) and (19). We prove, almost
identically as in [3, Proof of Lem. 5.6], that all local degrees equal, either 1
or −1.
That local degrees of ν ◦ψM|θ are ±1 is simple to see since in a small neighbor-
hood U in relint θ around any root λu+ (1− λ)v the test map ψM|θ is a con-
tinuous bijection. Indeed, for any vector w ∈W2⊕U⊕j2 , with sufficiently small
norm, there is exactly one λu′ + (1− λ)v′ ∈ U with ψM(λu′ + (1− λ)v′) = w.
Thus ψM|∂U is a continuous bijection into some 3j-sphere around the origin of
W2 ⊕ U⊕j2 and by compactness of ∂U is a homeomorphism.
Next we compute the signs of the local degrees. First we describe a neighbor-
hood of every root of the test map ψM in relint θ. Let λu+ (1− λ)v ∈ relint θ
with ψM(λu+ (1− λ)v) = 0. Consequently λ = 1

2 . Denote the intersections of
the hyperplane Hu with the moment curve by x1, . . . , xd in the correct order
along the moment curve. Similarly, let y1, . . . , yd be the intersections of Hv

with the moment curve. In particular, x1 is the point q1 that determines the
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cell θ, see Lemma 3.13. Choose an ǫ > 0 such that ǫ-balls around x2, . . . , xd and
around y1, . . . , yd are pairwise disjoint with the property that these balls inter-
sect the moment curve only in precisely one of the intervals I1, . . . , Ij . Pairs
of hyperplanes (Hu′ , Hv′) with λu′ + (1 − λ)v′ ∈ relint θ that still intersect
the moment curve in the corresponding ǫ-balls parametrize a neighborhood
of 1

2u + 1
2v. The local neighborhood consisting of pairs of hyperplanes with

the same orientation still intersecting the moment curve in the corresponding
ǫ-balls where the parameter λ is in some neighborhood of 1

2 . For sufficiently
small ǫ > 0 the neighborhood can be naturally parametrized by the product

(12 − ǫ, 12 + ǫ)×
2d∏

i=2

(−ǫ, ǫ),

where the first factor relates to λ, the next d − 1 factors correspond to neigh-
borhoods of the x2, . . . , xd and the last d factors to ǫ-balls around y1, . . . , yd. A
natural basis of the tangent space at 1

2u+
1
2v is obtained via the push-forward

of the canonical basis of R2d as tangent space at (12 , 0, . . . , 0)
t.

Consider the subspace Z ⊆ relint θ that consists all points λu+(1−λ)v associ-
ated to the pairs of hyperplanes (Hu, Hv) such that both hyperplanes intersect
the moment curve in d points. In the space Z the local degrees only depend
on the orientations of the hyperplanes Hu and Hv, but these are fixed since
Z ⊆ relint θ. Indeed, any two neighborhoods of distinct roots of the test map
ψM can be mapped onto each other by a composition of coordinate charts since
their domains coincide. This is a smooth map of degree 1: the Jacobian at the
root is the identity map. Let 1

2u + 1
2v and 1

2u
′ + 1

2v
′ be roots in Z of the test

map ψM and let Ψ be the change of coordinate chart described above. Then
ψM and ψM ◦Ψ differ in a neighborhood of 1

2u+
1
2v just by a permutation of

coordinates. This permutation is always even by the following:

Claim. Let A and B be finite sets of the same cardinality. Then the cardinality
of the symmetric sum A △ B is even.

The orientations of the hyperplanes Hu and Hv are fixed by the condition that
1
2u + 1

2v ∈ relint θ. Thus, Hu and Hv are completely determined by the set of
intervals that Hu cuts once. Let A ⊆ {1, . . . , j} be the set of indices of intervals
I1, . . . , Ih that Hu intersects once, and let B ⊆ {1, . . . , j} be the same set for
Hv. Then Ψ is a composition of a multiple of A △ B transpositions and, hence,
an even permutation. This means that all the local degrees (±1’s) in the sum
(19) are of the same sign, and consequently a = ±

(
j

(j+1)/2

)
.

Now, since d is even the equality (20) implies that

a · ζ = 4b · ζ.

Thus, if o(g) is a coboundary a is divisible by 4. In the case j = 2t + 1
where t ≥ 2, and d = 3 · 2t−1 + 2 the Kummer criterion implies that the
binomial coefficient

(
j

(j+1)/2

)
is divisible by 2 but not by 4. Hence, o(g) is
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not a coboundary and a S±2 -equivariant map Xd,2 −→ S(W2 ⊕ U⊕j2 ) whose
restriction to X>1

d,2 is S±2 -homotopic to ν ◦ ψM|X>1
d,2

does not exist.
This concludes the final instance (iii) of Theorem 1.5.

4.4 Proof of Theorem 1.6

We prove both instances of the Ramos conjecture ∆(2, 3) = 5 and ∆(4, 3) = 10
using Theorem 1.4. Thus in order to prove that
• ∆(2, 3) = 5 it suffices to show that the number of non-equivalent

1-equiparting matrices of size 3× 2 · 23 is odd, Proposition 4.8;
• ∆(4, 3) = 10 it suffices to show that the number of non-equivalent

2-equiparting matrices of size 3× 4 · 23 is also odd, Enumeration 4.9.
Consequently we turn our attention to 3-bit Gray codes. It is not hard to see
that the following lemma holds.

Lemma 4.7. Let c1 ∈ {0, 1}3 be a choice of first column.
(i) There are 18 different 3-bit Gray codes A = (c1, c2, . . . , c8) ∈ {0, 1}3×8

that start with c1. They have transition counts (3, 2, 2), (3, 3, 1), or
(4, 2, 1).

(ii) There are 3 equivalence classes of Gray codes that start with with c1. The
three classes can be distinguished by their transition counts.

Proof. (i): Starting at a given vertex of the 3-cube, there are precisely 18
Hamiltonian paths. This can be seen directly or by computer enumeration.
(ii): Follows directly from (i), as all equivalence classes have size 6: If c1 =
(0, 0, 0)t then all elements in a class are obtained by permutation of rows. For
other choices of c1, they are obtained by arbitrary permutations of rows followed
by the “correct” row bit-inversions to obtain c1 in the first column.

Proposition 4.8. There are 13 non-equivalent 1-equiparting matrices that are
of size 3× (2 · 23).

Proof. Let A = (A1, A2) be a 1-equiparting matrix. This means that both A1

and A2 are 3-bit Gray codes and the last column of A1 is equal to the first
column of A2. In addition, the transition counts cannot exceed 5 and must
sum up to 14. Having in mind that A is a 1-equiparting matrix it follows
that A must have transition counts {5, 5, 4}. Hence two of its rows must have
transition count 5 and one row must have transition count 4. In the following
a realization of transition counts is a Gray code with the prescribed transition
counts.
Since we are counting 1-equiparting matrices up to equivalence we may fix the
first column of A, and hence first column of A1, to be (0, 0, 0)t and choose for
A1 one of the matrices from each of the 3 classes of 3-bit Gray codes described
in Lemma 4.7(ii).
If A1 has transition counts (3, 2, 2), i.e., the first row has transition count 3 while
remaining rows have transition count 2, then its last column is (1, 0, 0)t. The
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next Gray code A2 in the matrix a can have transition counts (2, 3, 2), (2, 2, 3),
or (1, 3, 3), each having 2 realizations A2, each with first column (1, 0, 0)t.
If A1 has transition (3, 3, 1), then its last column is (1, 1, 0)t. The Gray code
A2 can have transition counts (2, 2, 3), having 2 realizations, or (1, 2, 4), having
1 realization, or (2, 1, 4), having 1 realization, each with first column (1, 1, 0)t.
If A1 has transition counts (4, 2, 1), then its last column is (0, 0, 1)t. The Gray
code A2 can have transition counts (1, 2, 4), having 1 realization, or (1, 3, 3),
having 2 realizations, each with first column (0, 0, 1)t.
In total we have 6 + 4 + 3 = 13 non-equivalent 1-equiparting matrices A =
(A1, A2).

Enumeration 4.9. There are 2015 non-equivalent 2-equiparting matrices that
are of size 3× 4 · 23.
Proof. Using Lemma 4.7 we enumerate non-equivalent 2-equiparting matrices
by computer. Let A = (A1, A2, A3, A4) be a 2-equiparting matrix. It must have
transition counts {10, 10, 8}. Similarly as above, A is constructed by fixing the
first column to be (0, 0, 0)t and A1 to be one representative from each of the 3
classes of Gray codes. Then all possible Gray codes for A2, A3, A4 are checked,
making sure that the last column of Ai is equal to the first column of Ai+1 and
that the transition counts of A1, . . . , A4 sum up to {10, 10, 8}. This leads to
2015 possibilities.

This concludes the proof of Theorem 1.6.

Remark 4.10. By means of a computer we were able to calculate the number
N(j, k, d) of non-equivalent ℓ-equiparting matrices for several values of j ≥ 1

and k ≥ 3, where d = ⌈ 2k−1k j⌉ and ℓ = dk − (2k − 1)j. See Table 1.

Number N(j, k, d) of non-equiv ℓ-equiparting matrices
given j ≥ 2, and k ≥ 3.

j k ℓ d N(j, k, d)

2 3 1 5 13
3 3 0 7 60
4 3 2 10 2015
5 3 1 12 35040
6 3 0 14 185130
7 3 2 17 7572908
8 3 1 19 132909840
9 3 0 21 732952248
1 4 1 4 16
2 4 2 8 37964

Table 1: Number N(j, k, d) of non-equivalent ℓ-equiparting matrices given j ≥ 2 and

k ≥ 3, where d = ⌈ 2k−1
k
j⌉ and ℓ = dk − (2k − 1)j.
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Abstract. We study quadratic forms on free modules with unique
base, the situation that arises in tropical algebra, and prove the ana-
log of Witt’s Cancelation Theorem. Also, the tensor product of an
indecomposable bilinear module (U, γ) with an indecomposable qua-
dratic module (V, q) is indecomposable, with the exception of one case,
where two indecomposable components arise.
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1. Overview

This paper is part of a program to understand the theory of quadratic forms
over the max-plus algebra and related semirings that arise in several mathemat-
ical contexts. Our motivation comes from two sources, tropical mathematics
and real algebra, which interact with each other. Since the first area is still in
its nascent stage, for the reader’s convenience, we provide a short overview of
this mathematics and related subjects.
Consider the field K of Puiseux series over an algebraically closed field F of
characteristic 0. The elements of K are of the form

f =
∑

τ∈Q
cτ t

τ ,

where cτ ∈ F and the powers of t are taken over well-ordered subsets of Q. (In
the literature one often takes R instead of Q.)
Define the order valuation v : K→ Q by

v(f) := min{τ ∈ Q≥0 : cτ 6= 0}
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for which the dominant term in f becomes cv(f)t
v(f) as t → 0. Then v is a

valuation, with residue field F , with respect to which K is complete and thus
Henselian. By Hensel’s lemma, K also is algebraically closed, and thus elemen-
tarily equivalent to F . Applying v takes us from K to the ordered group Q,
which can be viewed as a “max-plus” semiring (taking −v instead of v), whose
operations are “+” for multiplication and “sup” for addition. This process,
called tropicalization, is explained in [15, 29]. The point of tropicalization is to
simplify the combinatorics in algebraic geometry and linear algebra, and there
has been considerable success in this direction in enumerative geometry.
One can tropicalize structures arising in linear algebra, such as quadratic forms,
simply by replacing the classical addition and multiplication by the max-plus
operations respectively, but then the classical theory does not go through be-
cause our new addition (max) does not have negatives.
Other important (non-tropical) semirings, where our below theory is relevant,
occur in real algebra, such as the positive cone of an ordered field [4, p. 18] or
a partially ordered commutative ring [5, p. 32]. A further application can be
found in the algebra of groups over a splitting field, as described briefly at the
end of this overview.
Recall that a (commutative) semiring is a set R equipped with addition and
multiplication, such that both (R,+, 0) and (R, ·, 1) are abelian monoids with
elements 0 = 0R and 1 = 1R respectively, and multiplication distributes over
addition in the usual way. In other words, R satisfies all the properties of a
commutative ring except the existence of negation under addition. We call a
semiring R a semifield, if every nonzero element of R is invertible; hence R\{0}
is an abelian group.
As in the classical theory, one considers bilinear and quadratic forms defined on
(semi)modules over a semiring R, often a “supersemifield,” in order to obtain
more sophisticated “trigonometric” information, cf. [24, §2, §3].
On one hand, these semirings lack negation, thereby playing havoc even with
the notion of the underlying bilinear form of a quadratic form. On the other
hand, they have the pleasant property that free modules have “unique base,”
cf. Definition 1.2. Thus, our overall object is to classify quadratic forms over
free modules having unique base, with applications to the supertropical setting.
For the reader’s convenience, we recall some terminology and results from
[22, §1-§4]. A module V over R (sometimes called a semimodule) is an
abelian monoid (V,+, 0V ) equipped with a scalar multiplication R × V → V,
(a, v) 7→ av, such that exactly the same axioms hold as customary for modules
over a ring: a1(bv) = (a1b)v, a1(v + w) = a1v + a1w, (a1 + a2)v = a1v + a2v,
1R · v = v, and 0R · v = 0V = a1 · 0V for all a1, a2, b ∈ R, v, w ∈ V. We write 0
for both 0V and 0R, and 1 for 1R.
When considering modules over semifields, one encounters several versions of
“base,” as studied in depth in [21, §4 and §5.3]. Here we take the standard cate-
gorical version, and call an R-module V free, if there exists a family (εi | i ∈ I)
in V such that every x ∈ V has a unique presentation x =

∑
i∈I

xiεi with scalars
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xi ∈ R and only finitely many xi nonzero, and we call (εi | i ∈ I) a base of the
R-module V. Any free module with a base of n elements is clearly isomorphic

to Rn, under the map
n∑
i=1

xiεi 7→ (x1, . . . , xn).

Bilinear forms on V are defined in the obvious way, [21].

Definition 1.1. For any module V over a semiring R, a quadratic form on V
is a function q : V → R with

(1.1) q(ax) = a2q(x)

for any a ∈ R, x ∈ V, together with a symmetric bilinear form b : V × V → R
(not necessarily uniquely determined by q) such that for any x, y ∈ V
(1.2) q(x+ y) = q(x) + q(y) + b(x, y).

Every such bilinear form b will be called a companion of q, and the pair (q, b)
will be called a quadratic pair on V. We also call V a quadratic module.

In this generality, it is difficult to describe quadratic forms adequately on free
modules over an arbitrary semiring. However, our task becomes more manage-
able when we introduce the following condition.

Definition 1.2. An R-module with unique base is a free R-module V in which
any two bases B,B′ are projectively the same, i.e., we obtain the elements of B′

from those of B by multiplying by units of R.

Although this never happens for free modules of rank ≥ 2 over a ring, it turns
out to be quite common in the context of tropical algebra (and also often in
real algebra, as noted in Example 2.4.d).
Our main result, in §5, is an analog of Witt’s cancelation theorem:

Theorem 5.9.If W1,W
′
1,W2,W

′
2 are finitely generated quadratic or bilinear

modules with unique base such that W1
∼=W ′1 and W1 ⊥W2

∼=W2 ⊥W ′2, then
W2
∼=W ′2 (where ∼= means “isometric”).

It actually is given in more general terms, where W2 needs not be finitely
generated.
When R is a ring, then a quadratic form q has just one companion, namely,

b(x, y) := q(x+ y)− q(x) − q(y),
but if R is a semiring that cannot be embedded into a ring, this usually is not
the case, and it is a major concern of quadratic form theory over semirings to
determine all companions of a given quadratic form q : V → R.
The first step in classifying quadratic forms is [22, Propositions 4.1 and 4.2],
which lets us write a quadratic form q as the sum q = κ + ρ, where κ is
quasilinear (and unique) in the sense that κ(x + y) = κ(x) + κ(y), and ρ is
rigid in the sense that it has a unique companion. Quasilinearity of a quadratic
form q implies that, for any vector x =

∑
i∈I

xiεi in V ,

(1.3) q(x) =
∑

i∈I
x2i q(εi),
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i.e., q has diagonal form with respect to the base (εi : i ∈ I).
Quasilinear forms follow aspects of the classical theory of quadratic forms, and
satisfy a Cauchy-Schwartz inequality given in [24]. On the other hand, by [22,
Theorem 3.5], the rigid forms are precisely those with q(εi) = 0 for all i ∈ I.
Our ultimate object being to classify quadratic forms over free modules with
unique base, in this paper we study quadratic forms in terms of orthogonal de-
compositions of such forms into indecomposable forms, and then build them up
again via tensor products of two symmetric bilinear forms and of a symmetric
bilinear form with a quadratic form.
Let us turn now to the tools needed in proving Theorem 5.9.

1.1. Partial quasilinearity. We seldom require quasilinearity in its en-
tirety, but the following partial version plays a major role in our consideration
of orthogonal decompositions of quadratic modules.

Definition 1.3. Given subsets S and T of V , we say that q is quasilinear on
S × T if

q(x+ y) = q(x) + q(y).

for all x ∈ S, y ∈ T.

The following helpful fact is a special case of [22, Lemma 1.18]. (We write
S + S′ for {s+ s′ : s ∈ S, s′ ∈ S′}.)

Lemma 1.4. Let S, S′, T be subsets of V . If q is quasilinear on S × T , S′ × T
and S × S′, then q is quasilinear on (S + S′)× T .

1.2. Disjoint orthogonality. In §3 we develop the notion of (disjoint) or-
thogonality of two given submodulesW1 andW2 of a quadratic R-module (V, q)
(endowed with a fixed quadratic form q), which means that W1 ∩W2 = {0}
and q is partially quasilinear onW1×W2. (Note that there is no direct reference
to an underlying symmetric bilinear form.) When V has unique base, we look
for orthogonal decompositions V =W1 ⊥W2, and more generally V = ⊥

i∈I
Wi,

where the Wi are basic submodules of V , i.e., are generated by subsets of a
base B of V .
We can choose a companion b of q (called “quasiminimal” companion) adapted
to the notion of disjoint orthogonality, and then have an equivalence relation
on the set B at hands, which is generated by the pairs (ε, ε′) in B with ε 6= ε′,
b(ε, ε′) 6= 0. By the use of this equivalence relation the indecomposable basic
submodules of V (in the sense of disjoint orthogonality) can be described as
follows.

Theorem 3.8.Let {Bk | k ∈ K} denote the set of equivalence classes in B
and, for every k ∈ K, let Wk denote the submodule of V having base Bk.

(a) Then every Wk is an indecomposable basic submodule of V and

V = ⊥
k∈K

Wk.
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(b) Every indecomposable basic submodule U of V is contained in Wk, for
some k ∈ K uniquely determined by U.

(c) The modules Wk, k ∈ K, are precisely all the indecomposable basic
orthogonal summands of V.

In §4 we develop the analogous notion of disjoint orthogonality in a bilinear
R-module (V, b) with respect to a fixed symmetric bilinear form b on V , and
we show:

Theorem 4.9. If b is a quasiminimal companion of a a quadratic module (V, q),
then the indecomposable components of (V, q) coincide with the indecomposable
components of (V, b).

In §5, these decomposition theories yield the desired analog (Theorem 5.9) of
Witt’s cancelation theorem.

1.3. Tensor products. The last two sections of the paper are devoted to
tensor products. Whereas tensor products of modules over general semirings
can be carried out in analogy with the usual classical construction over rings,
it requires the use of congruences, resulting in some technical issues dealt with
in [7, Chap. 16], for example. But for free modules with unique base the
construction can be carried out easily, since then one does not need to worry
about well-definedness.
In §6 we construct the tensor product of two free bilinear R-modules over any
semiring R, in analogy to the case where R is a ring, cf. [8, §2], [26, I, §5].
We then take the tensor product of a free bilinear R-module U = (U, γ) with
a free quadratic R-module V = (V, q). A new phenomenon occurs here, in
contrast to the theory over rings. It is necessary first to choose a so-called
balanced companion b of q, which always exists, cf. [22, §1], but which usually
is not unique. We then define the tensor product U ⊗b V , depending on b,
by choosing a so-called expansion B : V × V → R of the quadratic pair (q, b)
which is a (not necessarily symmetric) bilinear form B with

B(x, x) = q(x), B(x, y) +B(y, x) = b(x, y)

for all x, y ∈ V , cf. [22, §1] and then proceed essentially as in the case of rings,
e.g. [26, Definition 1.51], [8, p. 51]1. The resulting quadratic form γ ⊗b q does
not depend on the choice of B but often depends on the choice of b. This is
apparent already in the case γ = ( 0 1

1 0 ), where the matrix b is stored in the
quadratic polynomial γ ⊗b q, cf. Example 6.8 below.
In §7 we turn to the indecomposability of tensor products. For convenience,
we assume that R \ {0} is closed under multiplication and addition, implying
by Theorem 2.3 that all free R-modules have unique base.
After obtaining partial results along the way, we arrive at the main result of
this section, Theorem 7.16, which states that, discarding trivial situations and

1When R is a ring the “b” in the tensor product is not specified since q has only one
companion.
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excluding some pathological semirings, the tensor product of an indecompos-
able bilinear module (U, γ) with an indecomposable quadratic module (V, q) is
again indecomposable, with the exception of one case, where two indecompos-
able components arise.

1.4. Applications. The remainder of this introduction discusses how qua-
dratic forms over modules with unique base over semirings arise naturally in
various contexts in mathematics. (The reader could skip directly on to the
main theoretical results of this paper.)

1.4.1. Quadratic forms over rings. Supertropical semirings, to be defined below
(cf. [25, 22]), establish a class of semirings over which every free module has a
unique base. There is a way to pass from a quadratic form on a free module over
a (commutative) ring R to quadratic forms on free modules over a supertropical
semiring U . To explain this, we sketch the notion of supertropicalization of a
quadratic form q : V → R, obtained by a so-called supervaluation ϕ : R→ U .
An m-valuation (= monoid valuation) on a ring R is a map v : R→M from R
to a totally ordered abelian monoid M = (M, · ,≤), containing an absorbing
element 0 = 0M (0 · x = x · 0 = 0) with 0 ≤ x for all x ∈M , which satisfies the
following rules:

v(0) = 0, v(1) = 1, v(xy) = v(x)v(y),

and

(1.4) v(x + y) ≤ max{v(x), v(y)}
for all x, y ∈ M . When Γ := M \ {0} is a group, we call the m-valuation
v : R → M a valuation. These are exactly the valuations as defined by
Bourbaki [3] and studied, e.g., in [14] and [27, Ch. I], except that for Γ we
have chosen the multiplicative notation instead of the additive notation. In
this case v−1(0) is a prime ideal of R [loc. cit.]. When R is a field this forces
v−1(0) = {0}, and we return to Krull valuations.
Given an m-valuation v : R → M , we equip M with the additive operation
defined as

a+ b := max{a, b},
which makes M a bipotent semiring, i.e., a semiring M ′ in which a+ b ∈ {a, b}
for all a, b ∈ M ′. Conversely any bipotent semiring M ′ has a natural total
order given by

a < b ⇔ a+ b = b,

and can be viewed as a totally ordered abelian monoid with an absorbing
element 0M ′ . Therefore, totally ordered monoids M with zero can be referred
to as bipotent semirings (or bipotent semifields when M \ {0} is a group).
Viewed in this way, rule (1.4) reads

(1.5) v(x + y) ≤ v(x) + v(y).

This brings us into the realm of semirings. A semiring U is called supertropical
if the following conditions hold:
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• e := 1U + 1U is idempotent (i.e., 2× 1 = 4× 1),
• the ghost ideal M = eU is a bipotent semiring,
• addition is defined in terms of the ghost map a 7→ ea and the ordering
of M , as follows:

(1.6) a+ b =





a if ea < eb;
b if eb < ea;
ea if ea = eb.

In particular ea = 0 implies a = 0 (take b = 0 in (1.6)). The elements of eU
are called ghost elements and those of U \ eU are called tangible elements. The
zero element is regarded both as tangible and ghost. See [17, 18, 25] for the
ideas behind this terminology.
A supervaluation on a ring R is a multiplicative map ϕ : R → U sending R
into a supertropical semiring, such that ϕ(0) = 0, ϕ(1) = 1, and

eϕ(x+ y) ≤ eϕ(x) + eϕ(y)

for all x, y ∈ R. The map v := eϕ : R→M , x 7→ eϕ(x), is then an m-valuation,
which as we say is covered by ϕ. For any given m-valuation v : R →M , there
usually is an extended hierarchy of supervaluations ϕ : R→ U covering v (with
U ⊃M , eU =M , U varying) studied in [17, 18].
The supertropicalizations of a quadratic form q : V → R on a free R-module V
are constructed by using a supervaluation ϕ : R→ U as follows. We choose an
ordered base L of V , say L = {vi : i ∈ I} with I = {1, . . . , n}, and write q as
a homogenous polynomial of degree 2

(1.7) q

( n∑

i=1

xivi

)
=

n∑

i=1

αix
2
i +

∑

i<j

βijxixj ,

with αi = q(vi), βij = b(vi, vj), where b is the (unique) companion of q. We
denote by Un the free U -module consisting of all n-tuples in U . Let {ε1, . . . , εn}
be the standard base of U , where each εi has i-th coordinate 1 and all other
coordinates 0. Using a new set of variables λ1, . . . , λn, we define

(1.8) qϕ
( n∑

i=1

λiεi

)
:=

n∑

i=1

ϕ(αi)λ
2
i +

∑

i<j

ϕ(βij)λiλj

by applying ϕ to the coefficients of the polynomial (1.7).

We write (U (I), qϕ), or (Ṽ , q̃) for short, for the supertropicalization of the qua-
dratic module (V, q) with respect to the base L. Since every U -module has

a unique base, cf. §2, the base {εi : i ∈ I} of Ṽ is unique up to permuting
the εi and multiplying them by units of U (which are the invertible tangible
elements of U). That is, the base L of V becomes “frozen” in the free quadratic

module (Ṽ , q̃) obtained from (V, q) by a kind of “degenerate scalar extension”
ϕ : R → U . {ϕ is multiplicative, but respects addition only weakly.} This
central fact motivates our interest in supertropicalization.
One reason that we work with m-valuations in general, instead of just valua-
tions covered by supervaluations, is that m-valuations which are not valuations
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often arise naturally in the context of commutative algebra as described in the
paper [11] of Harrison and Vitulli. They construct so-called “V -valuations”
(there named “formally finite” V -valuations). This construction has been com-
plemented later by D. Zhang with somewhat dual “V 0-valuations” [33]. These
constructions have been revised in [19, §1-§3], showing that any m-valuation
on a ring can be coarsened both to a V -valuation and to a V 0-valuation, and
also to a valuation in a minimal way.
In [12] Harrison and Vitulli, pursuing their idea of “infinite primes” (in the
sense of classical number theory) from [11], construct C-valued places on a
field by a somewhat similar method. This construction has been extended by
Valente and Vitulli in [31] to “preplaces” on a ring R, which are interpreted
in [19] as multiplicative maps χ : R → R′ to a bipotent semiring R′ such that
χ(0) = 0, χ(1) = 1, and

χ(x+ y) ≤ c(χ(x) + χ(y))

for all x, y ∈ R, where c is a unit of R′. Such a map χ provides various
supervaluations ϕ : R → U that cover V -valuations v : R → eU [19, §4].
Since the multiplicative monoids eU \ {0} are cancellative, these V -valuations
are true valuations. By a related method, supervaluations arise that cover
V 0-valuations, which again are true valuations.
Although not all supervaluations can be constructed in this way, at least we gain
a rich stock of m-valuations and supervaluations on a ring. Facing a problem on
quadratic forms over a ring R, it may be a piece of art to address an appropriate
supervaluation which fits best the supertropical framework. Much space is left
for further study in this research direction.

1.4.2. A surprise. In an earlier version of this paper we considered quadratic
forms over supertropical semirings, knowing already from [22, Theorem 0.9]
that a free module over these semirings has unique base, and we obtained the
results in §3-§7 for such quadratic forms. Only later did we realize that these
results go through for any semiring R over which all free modules have unique
base. As a consequence, supertropical semirings hardly appear explicitly in
§3-§7. This paves the way for an extra application, which we now describe.
Namely, take an algebra A with a bilinear form, whose orthogonal base gener-
ates a natural proper semiring of A.

1.4.3. Table algebras. A classical example is the set of characters of a finite
group G over a field whose characteristic does not divide |G|; since the sum
(resp. product) of characters is the character of the direct sum (resp. tensor
product) of their underlying representations, we can restrict to the semiring of
characters, which is a free module over N0. A similar situation arises for the
center of the group algebra, which is a free module whose base is comprised
of the sums of elements from conjugacy classes. These algebras have been
generalized by Hoheisel [13] and Arad-Blau [1] as explained in the fine survey
by Blau [2], where he defines Hoheisel algebras and table algebras. These have
a distinguished base L that spans the sub-semialgebra A+ that they generate

Documenta Mathematica 21 (2016) 773–808



Quadratic and Symmetric Bilinear Forms on Modules 781

over R+, so again A+ is a free module over R+ (with unique base L), and a
natural framework in which to build quadratic forms.

2. R-modules with unique base and their basic submodules

We assume throughout this paper that V is a free R-module with unique
base B. Accordingly, we begin by examining this property.

Remark 2.1. Any change of base of the free module Rn is attained by multi-
plication by an invertible n × n matrix, so having unique base is equivalent to
every invertible matrix in Mn(R) being a generalized permutation matrix.

Our interest in these modules stems from the following key fact.

Theorem 2.2 ([21, Corollary 5.25] and [22, Theorem 0.9] ). If R is a supertrop-
ical semiring, then every free R-module has unique base.

More generally, one may ask, “What conditions on the semiring R guarantee
that Rn has unique base, or equivalently, that every invertible matrix is a
generalized permutation matrix?” The matrix question was answered in [30]
and [6]. In their terminology, an “antiring” is a semiring R such that R \ {0} is
closed under addition. We prefer the terminology “lacks zero sums,” since this
property holds also for sums of squares in a real closed field, and “antiring”
does not seem appropriate in that context.
Tan and Dolz̆na-Oblak classify the invertible matrices over these rings lacking
zero sums. These are just the generalized permutation matrices when R \ {0}
also is closed under multiplication, which they call “entire” (the case in tropical
mathematics), and more generally by [6, Theorem 1] (as interpreted in The-
orem 2.5) when R is indecomposable, i.e., not isomorphic to a direct product
R1 ×R2 of semirings.

Theorem 2.3 (cf. [6, §2, Corollary 3], an alternative proof given below). If
the set R \ {0} is closed under addition and multiplication (i.e., a + b = 0 ⇒
a = b = 0, a · b = 0 ⇒ a = 0 or b = 0), then every free R-module has unique
base.

In view of Remark 2.1, Theorem 2.3 follows from Dolz̆an and Oblak [6, §2,
Corollary 3] using matrix arguments within a wider context extending work of
Tan [30, Proposition 3.2], which in turn relies on Golan’s book on semirings [9,
Lemma 19.4].

Example 2.4. Here are some instances where R\{0} is closed under addition
and multiplication.

a) The “Boolean semifield” B = {−∞, 0} (and thus subalgebras of algebras
that are free modules over B). This shows that our results pertain to
“F1-geometry.”

b) Rewriting the Boolean semifield instead as B = {0, 1} where 1 + 1 =
1, one can generalize it to {0, 1, . . . , q} L = [1, q] := {1, 2, . . . , q} the
“truncated semiring without 0” of [23, Example 2.14], where “a+ b′′ is
defined to be the minimum of their sum and q.
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c) Function semirings, polynomial semirings, and Laurent polynomial
semirings over these semirings.

d) If F is a formally real field, i.e. −1 is not a sum of squares in F , then
the subsemiring R = ΣF 2, consisting of all sums of squares in F , lacks
zero sums. In fact R is a semifield; the inverse of a sum of squares

a = x21 + · · ·+ x2r is a−1 =
(x1
a

)
+ · · ·+

(xr
a

)2
.

Other than the trivial fact that every free R-module of rank 1 has unique base,
all examples known to us of modules with unique base stem from Theorem 2.5,
which is essentially [6, Theorem 1]:

Theorem 2.5 ([6, Theorem 1]). Assume that R is an indecomposable semiring
lacking zero sums. Then every free R-module has unique base.

We now reprove Theorem 2.3 by a simple matrix-free argument in preparation
for a reproof of the more general Theorem 2.5.

Proof of Theorem 2.3. Let V be a free R-module and B a base of V. If x ∈
V \ {0} is given, we have a presentation

x =

r∑

i=1

λixi

with xi ∈ B and λi ∈ R\{0}. We call the set {x1, . . . , xr} ⊂ B the support of x
with respect to B and denote this set by suppB(x). Note that if x, y ∈ V \{0},
then x+ y 6= 0 and

(2.1) suppB(x+ y) = suppB(x) ∪ suppB(y)

due to the assumption that λ+ µ 6= 0 for any λ, µ ∈ R \ {0}. Also
(2.2) suppB(λx) = suppB(x)

for x ∈ V \ {0}, λ ∈ R \ {0}, due to the assumption that for λ, µ ∈ R \ {0} we
have λµ 6= 0.
Now assume that B′ is a second base of V. Given x ∈ B, we have a presentation

x = λ1y1 + · · ·+ λryr

with λi ∈ R \ {0} and distinct yi ∈ B′. It follows from (2.1) and (2.2) that

{x} = suppB(x) = suppB(y1) ∪ · · · ∪ suppB(yr).

This forces

(2.3) {x} = suppB(y1) = · · · = suppB(yr).

¿From this, we infer that r = 1. Indeed, suppose that r ≥ 2. Then y1 = µ1x,
y2 = µ2x with µ1, µ2 ∈ R \ {0}. But this implies µ2y1 = µ1y2, a contradiction
since y1, y2 are different elements of a base of V.
Thus {x} = suppB(y) for a unique y ∈ B′, which means y = λx with λ ∈
R \ {0}. By symmetry we have a unique z ∈ B and µ ∈ R \ {0} with x = µz.
Then x = λµz, whence x = z and λµ = 1. Thus λ, µ ∈ R∗ and x ∈ R∗y,
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y ∈ R∗x. Of course, y runs through all of B′ if x runs through B, since both
B and B′ span the module V. �

Proof of Theorem 2.5. Assume that B and B′ are bases of V. Given x ∈ B,
we write again

(2.4) x = λ1y1 + · · ·+ λryr

with different yi ∈ B′, λi ∈ R \ {0}. But now, instead of (2.3) we can only
conclude that

(2.5) {x} = suppB(λ1y1) = · · · = suppB(λiyi).

Thus we have scalars µi ∈ R \ {0} such that

(2.6) λiyi = µix for 1 ≤ i ≤ r.
Suppose that r ≥ 2. Then we have for all i, j ∈ {1, . . . , r} with i 6= j.

µjλiyi = µjµix = µiµjx = µiλjyj.

Since the yi are elements of a base, this implies µiλj = µjλi = 0 for i 6= j and
then

(2.7) µiµj = 0 for i 6= j.

On the other hand, we obtain from (2.4) and (2.6) that

x = µ1x+ µ2x+ · · ·+ µrx,

and then

(2.8) 1 = µ1 + µ2 + · · ·+ µr.

Multiplying (2.8) by µi and using (2.7), we obtain

(2.9) µ2
i = µi.

Thus

R ∼= Rµ1 × · · · ×Rµr.
This contradicts our assumption that R is indecomposable.
We have proved that r = 1. Thus for every x ∈ B there exist unique y ∈ B′

and λ ∈ R with x = λy. By the same argument as in the end of proof of
Theorem 2.3, we conclude that B is projectively unique. �

Of course, if R \ {0} is closed under multiplication, i.e., R has no zero divisors,
then R is indecomposable. This also holds when R is supertropical (cf. [25, §3],
[22, Definition 0.3]), since then for any two elements µ1, µ2 ofR with µ1+µ2 = 1
either µ1 = 1 or µ2 = 1. Thus, Theorem 2.5 generalizes both Theorems 2.2
and 2.3.
The following example reveals that Theorem 2.5 is the best we can hope for,
in order to guarantee that every free R-module has unique base, as long as we
stick to the natural assumption that R is a semiring lacking zero sums.
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Example 2.6. If R0 is a semiring lacking zero sums, then R := R0 × R0 also
lacks zero sums. Put µ1 = (1, 0), µ2 = (0, 1). These are idempotents in R
with µ1µ2 = 0 and µ1 + µ2 = 1. Now let V be a free R-module with base
B = {ε1, ε2, . . . , εn}, n ≥ 2, choose a permutation π ∈ Sn, π 6= 1, and define

ε′i := µ1εi + µ2επ(i) (1 ≤ i ≤ n).
We claim that B′ := {ε′1, . . . , ε′n} is another base of V.
Indeed, V is a free R0-module with base (µiεj | 1 ≤ i ≤ 2, 1 ≤ j ≤ n). We have

µ1ε
′
i = µ1εi, µ2ε

′
i = µ2επ(i),

and thus (µiε
′
j | 1 ≤ i ≤ 2, 1 ≤ j ≤ n) is a permutation of this base over R0,

i.e., regarded as a set, the same base. Thus certainly B′ spans V as R-module.

Given x ∈ V, let x =
n∑
1
aiε
′
i with ai ∈ R. We have

ai = ai1µ1 + ai2µ2 with ai1 ∈ R0, ai2 ∈ R0,

whence

x =

n∑

i=1

ai1(µ1εi) +

n∑

i=1

ai2(µ2επ(i)).

This shows that the coefficients ai1, ai2 ∈ R0 are uniquely determined by x,
whence the coefficients ai ∈ R are also uniquely determined by x. Our claim is
proved.
Since suppB(ε′i) has two elements if π(i) 6= i, B′ differs projectively from B.
The base B of the R-module V is not unique.

3. Orthogonal decompositions of quadratic modules with unique
base

Assume that V is an R-module equipped with a fixed quadratic form q : V → R.
We then call V = (V, q) a quadratic R-module.

Definition 3.1.

(a) Given two submodules W1,W2 of the R-module V, we say that W1 is
disjointly orthogonal toW2, if W1∩W2 = {0} and q(x+y) = q(x)+q(y)
for all x ∈ W1, y ∈ W2, i.e., q is quasilinear on W1 ×W2. (We say
“orthogonal” for short, when it is clear a priori that W1 ∩W2 = {0}.)

(b) We write V = W1⊥W2 if V = W1 ⊕ W2 (as R-module) with W1

disjointly orthogonal to W2. We then call W1 an orthogonal summand
of W , and W2 an orthogonal complement of W1 in V.

Caution. If V = W1 ⊥ W2, we may choose a companion b of q such that
b(W1,W2) = 0, but note that it could well happen that the set of all x ∈ V
with b(x,W1) = 0 is bigger than W2, even if R is a semifield and q|W1 is
anisotropic (e.g., if q itself is quasilinear). Our notion of orthogonality does
not refer to any bilinear form.
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We now also define infinite orthogonal sums. This seems to be natural, even if
we are originally interested only in finite orthogonal sums. Indeed, even if R is
a semifield, a free R-module with finite base often has many submodules which
are not finitely generated.

Definition 3.2. Let (Vi | i ∈ I) be a family of submodules of the quadratic
module V. We say that V is the orthogonal sum of the family (Vi), and then
write

V = ⊥
i∈I

Vi,

if for any two different indices i, j the submodule Vi is disjointly orthogonal
to Vj , and moreover V =

⊕
i∈I

Vi.

N.B. Of course, then for any subset J ⊂ I, the module VJ =
∑
i∈J

Vi is the

orthogonal sum of the subfamily (Vi | i ∈ J); in short,

VJ = ⊥
i∈J

Vi.

We state a fact which, perhaps contrary to first glance, is not completely trivial.

Proposition 3.3. Assume that we are given an orthogonal decomposition
V = ⊥

i∈I
Vi. Let J and K be two disjoint subsets of I. Then the submodule

VJ = ⊥
i∈J

Vi of V is disjointly orthogonal to VK = ⊥
i∈K

Vi, and thus

VJ∪K = VJ ⊥ VK .
Proof. It follows from Lemma 1.4 above that for any three different indices
i, j, k the form q is quasilinear on Vi × (Vj + Vk), and thus Vi is orthogonal to
Vj ⊥ Vk. By iteration, we see that the claim holds if J and K are finite. In
the general case, let x ∈ VJ and y ∈ VK . There exist finite subsets J ′,K ′ of
J and K with x ∈ VJ′ , y ∈ VK′ , and thus q(x + y) = q(x) + q(y). This proves
that VJ is orthogonal to VK . �

In the rest of this section, we assume that V has unique base.

Definition 3.4. We call a submoduleW of V basic, ifW is spanned by BW :=
B∩W, and thusW is free with base BW . Note that then we have a unique direct
decomposition V =W ⊕U, where the submodule U is basic with base B \BW .
W and U again are R-modules with unique base. We call U the complement
of W in V, and write U =W c.

The theory of basic submodules of V is of utmost simplicity. All of the following
is obvious.

Scholium 3.5.

(a) We have a bijection W 7→ BW := B∩W from the set of basic submod-
ules of V onto the set of subsets of B.
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(b) IfW1 andW2 are basic submodules of V, then alsoW1∩W2 andW1+W2

are basic submodules of V, and

BW1∩W2 = BW1 ∩BW2 , BW1+W2 = BW1 ∪BW2 .

(c) If W is a basic submodule of V, then as stated above,

BW c = B \BW .

(d) Finally, if W1 ⊂W2 are basic submodules of V, then W1 is basic in W2

and W c
1 ∩W2 is the complement of W1 in W2.

Thus a basic orthogonal summand W of V has only one basic orthogonal com-
plement, namely, W c, equipped with the form q|W c.

Definition 3.6. If the quadratic module V has a basic orthogonal summand
W 6= V , we call V decomposable. Otherwise we call V indecomposable. More
generally, we call a basic submodule X of V decomposable if X is decomposable
with respect to q|X, and otherwise we call X indecomposable.

Our next goal is to decompose the given quadratic module V orthogonally into
indecomposable basic submodules. Therefore, we choose a base B of V (unique
up to multiplication by scalar units). We then choose a companion b of q such
that b(ε, η) = 0 for any two different ε, η ∈ B such that q is quasilinear on
Rε × Rη, cf. [22, Theorem 6.3]. We call such a companion b a quasiminimal
companion of q.

Comment. In important cases, e.g., if R is supertropical or more generally
“upper bound” (cf. [22, Definition 5.1]), the set of companions of q can be
partially ordered in a natural way. The prefix “quasi” here is a reminder that
we do not mean minimality with respect to such an ordering.

Lemma 3.7. Let W and W ′ be basic submodules of V with W ∩W ′ = {0}. If b
is any quasiminimal companion of q, then W is (disjointly) orthogonal to W ′

iff b(W,W ′) = 0.

Proof. If b(W,W ′) = 0, then q(x+y) = q(x)+ q(y) for any x ∈ W and y ∈ W ′,
which means by definition that W is orthogonal to W ′. (This holds for any
companion b of q.)
Conversely, if W is orthogonal to W ′, then for base vectors ε ∈ BW , η ∈ BW ′

the form q is quasilinear on Rε × Rη and thus b(ε, η) = 0. This implies that
b(W,W ′) = 0. �

We now introduce the following equivalence relation on the set B. We choose a
quasiminimal companion b of q. Given ε, η ∈ B, we put ε ∼ η, iff either ε = η,
or there exists a sequence ε0, ε1, . . . , εr in B, r ≥ 1, such that ε = ε0, η = εr,
and εi 6= εi+1, b(εi, εi+1) 6= 0 for i = 0, . . . , r − 1.

Theorem 3.8. Let {Bk | k ∈ K} denote the set of equivalence classes in B
and, for every k ∈ K, let Wk denote the submodule of V having base Bk.
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(a) Then every Wk is an indecomposable basic submodule of V and

V = ⊥
k∈K

Wk.

(b) Every indecomposable basic submodule U of V is contained in Wk, for
some k ∈ K uniquely determined by U.

(c) The modules Wk, k ∈ K, are precisely all the indecomposable basic
orthogonal summands of V.

Proof. (a): Suppose that Wk has an orthogonal decomposition Wk = X ⊥ Y
with basic submodules X 6= 0, Y 6= 0. Then Bk is the disjoint union of the
non-empty sets BX and BY . Choosing ε ∈ BX and η ∈ BY , there exists a
sequence ε0, ε1, . . . , εr in Bk with ε = ε0, η = εr and b(εi−1, εi) 6= 0, εi−1 6= εi,
for 1 ≤ i ≤ r. Let s denote the last index in {1, . . . , r} with εs ∈ BX . Then
s < r and εs+1 ∈ BY . But b(X,Y ) = 0 by Lemma 3.7 and thus b(εs, εs+1) = 0,
a contradiction. This proves thatWk is indecomposable. Since B is the disjoint
union of the sets Bk, we have

V =
⊕

k∈K
Wk.

Finally, if k 6= ℓ, then b(Wk,Wℓ) = 0 by the nature of our equivalence relation.
Thus

V = ⊥
k∈K

Wk.

(b): Given an indecomposable basic submodule U of V , we choose k ∈ K with
BU ∩ Bk 6= ∅. Then U ∩ Wk 6= 0. ¿From V = Wk ⊕W c

k , we conclude that
U = (U ∩Wk)⊕ (U ∩W c

k ), and then have U = (U ∩Wk) ⊥ (U ∩W c
k ) because

Wk is orthogonal to W c
k . Since U is indecomposable and U ∩Wk 6= 0, it follows

that U = U ∩Wk, i.e., U ⊂Wk. Since Wk ∩Wℓ = 0 for k 6= ℓ, it is clear that k
is uniquely determined by U.

(c): If U is an indecomposable basic orthogonal summand of V, then V =
U ⊥ U c. We have U ⊂Wk for some k ∈ K, and obtain Wk = U ⊥ (U c ∩Wk),
whence Wk = U. �

Definition 3.9. We call the submodules Wk of V occurring in Theorem 3.8
the indecomposable components of the quadratic module V.

The following facts are easy consequences of the theorem.

Remark 3.10.

(i) If U is a basic orthogonal summand of V, then the indecomposable com-
ponents of the quadratic module U = (U, q|U) are the indecomposable
components of V contained in U.

(ii) If U is any basic submodule of V, then

U = ⊥
k∈K

(U ∩Wk) ,
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and every submodule U ∩Wk 6= {0} is an orthogonal sum of indecom-
posable components of U.

4. Orthogonal decomposition of bilinear modules with unique
base

We now outline a theory of symmetric bilinear forms analogous to the theory
for quadratic forms given in §3. The bilinear theory is easier than the quadratic
theory due the fact that, in contrast to quadratic forms, on a free module we
do not need to distinguish between “functional” and “formal” bilinear forms
cf. [22, §1]. As before, R is a semiring.
Assume in the following that V is an R-module equipped with a fixed symmetric
bilinear form b : V ×V → R.We then call V = (V, b) a bilinear R-module. If X
is a submodule of V , we denote the restriction of b to X ×X by b|X.
Definition 4.1.

(a) Given two submodules W1,W2 of the R-module V , we say that W1 is
disjointly orthogonal to W2, if W1∩W2 = {0} and b(W1,W2) = 0, i.e.,
b(x, y) = 0 for all x ∈W1, y ∈W2.

(b) We write V = W1 ⊥ W2 if W1 is disjointly orthogonal to W2 and
moreover V =W1⊕W2 (as R-module). We then call W1 an orthogonal
summand of V and W2 an orthogonal complement of W1 in V.

Definition 4.2. Let (Vi | i ∈ I) be a family of submodules of the bilinear
module V. We say that V is the orthogonal sum of the family (Vi), and then
write

V = ⊥
i∈I

Vi,

if for any two different indices i, j the submodule Vi is disjointly orthogonal
to Vj , and moreover V =

⊕
i∈I

Vi.

In contrast to the quadratic case, the exact analog of Proposition 3.3 is now a
triviality.

Proposition 4.3. Assume that V = ⊥
i∈I

Vi. Let J and K be disjoint subsets

of I. Then VJ = ⊥
i∈J

Vi is disjointly orthogonal to VK = ⊥
i∈K

Vi, and

VJ∪K = VJ ⊥ VK .
In the following, we assume again that V has unique base. Then again a basic
orthogonal summand W of V has only one basic orthogonal complement in V,
namely, W c equipped with the bilinear form b|W c.
For X a basic submodule of V , we define the properties “decomposable” and
“indecomposable” in exactly the same way as indicated by Definition 3.6 in the
quadratic case.
We start with a definition and description of the “indecomposable components”
of V = (V, b) in a similar fashion as was done in §3 for quadratic modules. We
choose a base B of V and again introduce the appropriate equivalence relation
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on the set B, but now we adopt a more elaborate terminology than in §3. This
will turn out to be useful later on.

Definition 4.4. We call the symmetric bilinear form b alternate if b(ε, ε) = 0
for every ε ∈ B.

Comment. Beware that this does not imply that b(x, x) = 0 for every x ∈ V.
The classical notion of an alternating bilinear form is of no use here since in
the semirings under consideration here (cf. §2) α + β = 0 implies α = β = 0,
whence b(x+ y, x+ y) = 0 implies b(x, y) = 0. An alternating bilinear form in
the classical sense would be identically zero.

Definition 4.5. We associate to the given symmetric bilinear form b an al-
ternate bilinear form balt by the rule

balt(ε, η) =

{
b(ε, η) if ε 6= η

0 if ε = η

for any ε, η ∈ B.

Lemma 4.6. Let W and W ′ be basic submodules of V with W ∩ W ′ = {0}.
Then W is (disjointly) orthogonal to W ′ iff balt(W,W

′) = 0.

Proof. This can be seen exactly as with the parallel Lemma 3.7. Just replace
in its proof the quasiminimal companion of q by balt. �

Definition 4.7.

(a) A path Γ in V = (V, b) of length r ≥ 1 in B is a sequence ε0, ε1, . . . , εr
of elements of B with

balt(εi, εi+1) 6= 0 (0 ≤ i ≤ r − 1).

In essence this condition does not depend on the choice of the base B,
since B is unique up to multiplication by units, and so we also say
that Γ is a path in V . We say that the path runs from ε := ε0 to
η := εr, or that the path connects ε to η. A path of length 1 is called
an edge. This is just a pair (ε, η) in B with ε 6= η and b(ε, η) 6= 0.

(b) We define an equivalence relation on B as follows. Given ε, η ∈ B, we
declare that ε ∼ η if either ε = η or there runs a path from ε to η.

It is now obvious how to mimic the theory of indecomposable components from
the end of §3 in the bilinear setting.

Scholium 4.8. Theorem 3.8 and its proof remain valid for the present equiv-
alence relation on B. We only have to replace the quasiminimal companion b
of q there by balt and to use Lemma 4.6 instead of Lemma 3.7. Again we denote
the set of equivalence classes of B by {Bk | k ∈ K} and the submodule of V
with base Bk by Vk, and again we call the Vk the indecomposable components
of V. Also the analog to Remark 3.10 remains valid.

We state a consequence of the parallel between the two decomposition theories.
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Theorem 4.9. Assume that (V, q) is a quadratic module with unique base and b
is a quasiminimal companion of q. The indecomposable components of (V, q)
coincide with the indecomposable components of (V, b).

Proof. The equivalence relation used in Theorem 3.8 is the same as the equiv-
alence relation in Definition 4.7. �

We add an easy observation on bilinear modules.

Proposition 4.10. Assume that (V, b) is a bilinear R-module with unique base.
A basic submodule W of V is indecomposable with respect to b, iff W is inde-
composable with respect to balt.

Proof. The equivalence relation on B just defined (Definition 4.7) does not
change if we replace b by balt. �

5. Isometries, isotypical components, and a cancelation theorem

Let R be any semiring.

Definition 5.1.

(a) For quadratic R-modules V = (V, q) and V ′ = (V ′, q′), an isometry
σ : V → V ′ is a bijective R-linear map with q′(σx) = q(x) for all x ∈ V.
Likewise, if V = (V, b) and (V ′, b′) are bilinear R-modules, an isometry
is a bijective R-linear map σ : V → V ′ with b′(σx, σy) = b(x, y) for all
x, y ∈ V.

(b) If there exists an isometry σ : V → V ′, we call V and V ′ isometric
and write V ∼= V ′. We then also say that V and V ′ are in the same
isometry class.

In the following we study quadratic and bilinear R-modules with unique base
on an equal footing.
It would not hurt if we supposed that the semiring R satisfies the conditions in
Theorem 2.5, so that every free R-module has unique base, but the simplicity
of all of the arguments in the present section becomes more apparent if we do
not rely on Theorem 2.5.

Notation/Definition 5.2.

(a) Let (V 0
λ | λ ∈ Λ) be a set of representatives of all isometry classes of

indecomposable quadratic (resp. bilinear) R-modules with unique base
of rank bounded by the cardinality of V , in order to avoid set-theoretical
complications.

(b) If W is such an R-module, where W ∼= V 0
λ for a unique λ ∈ Λ, we say

that W has type λ (or: W is indecomposable of type λ).

(c) We say that a quadratic (resp. bilinear) module W 6= 0 with unique
base is isotypical of type λ, if every indecomposable component of V
has type λ.
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(d) Finally, given a quadratic (resp. bilinear) R-module with unique base,
we denote the sum of all indecomposable components of V of type λ by
Vλ and call the Vλ 6= 0 the isotypical components of V .

The following is now obvious from §3 and §4 (cf. Theorem 3.8 and Scholium 4.8).

Proposition 5.3. If V is a quadratic or bilinear R-module with unique base,
then

V = ⊥
λ∈Λ′

Vλ

with Λ′ = {λ ∈ Λ | Vλ 6= 0}.
Since our notion of orthogonality for basic submodules of V is encoded in the
linear and quadratic, resp. bilinear, structure of V, the following fact also is
obvious, but in view of its importance will be dubbed a “theorem”.

Theorem 5.4. Assume that V and V ′ are quadratic (resp. bilinear) R-modules
with unique bases and σ : V → V ′ is an isometry. Let {Vk | k ∈ K} denote the
set of indecomposable components of V.

(a) {σ(Vk) | k ∈ K} is the set of indecomposable components of V ′.

(b) If Vk has type λ, then σ(Vk) has type λ, and so σ(Vλ) = V ′λ for every
λ ∈ Λ.

Also in the remainder of the section, we assume that the quadratic or bilinear
modules have unique base.

Definition 5.5. Let O(V ) denote the group of all isometries σ : V → V (i.e.,
automorphisms) of (V, q), resp. (V, b). As usual, we call O(V ) the orthogonal
group of V.

Theorem 5.4 has the following immediate consequence.

Corollary 5.6. Every σ ∈ O(V ) permutes the indecomposable components
of V of fixed type λ, and so σ(Vλ) = Vλ for every λ ∈ Λ.
We have a natural isomorphism

O(V )
1:1 //

∏
λ∈Λ′

O(Vλ),

sending σ ∈ O(V ) to the family of its restrictions σ|Vλ ∈ O(Vλ).
Definition 5.7.

(a) Let λ ∈ Λ. We denote the cardinality of the set of indecomposable
components of Vλ by mλ(V ), and we call mλ(V ) the multiplicity of Vλ.
{N.B. mλ(V ) can be infinite or zero.}

(b) If mλ ∈ N0 for every λ ∈ Λ, we say that V is isotypically finite.

Theorem 5.8. If V and V ′ are quadratic or bilinear R-modules with unique
bases, then V ∼= V ′ iff mλ(V ) = mλ(V

′) for every λ ∈ Λ.

Proof. This follows from Proposition 5.3 and Theorem 5.4. �
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We are ready for a main result of the paper.

Theorem 5.9. Assume that W1,W2,W
′
1,W

′
2 are quadratic or bilinear modules

with unique base and that W1 is isotypically finite. Assume furthermore that
W1
∼=W ′1 and that W1 ⊥W2

∼=W ′1 ⊥W ′2. Then W2
∼=W ′2.

Proof. For every λ ∈ Λ, clearly mλ(V ) = mλ(W1) + mλ(W2) and mλ(V
′) =

mλ(W
′
1) +mλ(W

′
2). Since V ∼= V ′, the multiplicities mλ(V ) and mλ(V

′) are
equal, and since W1

∼= W ′1, the same holds for the multiplicities mλ(W
′
1).

Since mλ(W1) = mλ(W
′
1) is finite, it follows that mλ(W2) = mλ(W

′
2). By

Theorem 5.8 this implies that W2
∼=W ′2. �

Remark 5.10. If the free R-module W1 has finite rank, then certainly W1 is
isotypically finite. Thus Theorem 5.9 may be viewed as the analog of Witt’s
cancellation theorem from 1937 [32] proved for quadratic forms over fields.

The assumption of isotypical finiteness in Theorem 5.9 cannot be relaxed. In-
deed if mλ(W1) is infinite for at least one λ ∈ Λ, then the cancelation law
becomes false. This is evident by Theorem 5.8 and the following example.

Example 5.11. Assume that V is the orthogonal sum of infinitely many copies
V1, V2, . . . of an indecomposable quadratic or bilinear module V0 with unique
base. Consider the following submodules of V :

W1 := V2 ⊥ V3⊥ · · · , W2 := V1,

W ′1 := V3 ⊥ V4⊥ · · · , W ′2 := V1⊥V2.
Then W1⊥W2 = V =W ′1⊥W ′2, andW1

∼=W ′1. ButW2 is not isometric toW ′2.

6. Expansions and tensor products

Let q : V → R be a quadratic form on an R-module V . We recall from
[22, §1] that, when V is free with base (εi : i ∈ I), then q admits a (not
necessarily unique) balanced companion, i.e., a companion b : V × V → R
such that b(x, x) = 2q(x) for all x ∈ V , and that it suffices to know for this
that b(εi, εi) = 2q(εi) for all i ∈ I [22, Proposition 1.7]. Balanced companions
are a crucial ingredient in our definition below of a tensor product of a free
bilinear module and a free quadratic module. They arise from “expansions”
of q, defined as follows, cf. [22, Definition 1.9].

Definition 6.1. A bilinear form B : V × V → R (not necessarily symmetric)
is an expansion of a balanced pair (q, b) if B +Bt = b, i.e.,

(6.1) B(x, y) +B(y, x) = b(x, y)

for all x, y ∈ V, and
(6.2) q(x) = B(x, x)

for all x ∈ V. If only the form q is given and (6.2) holds, we say that B is an
expansion of q.
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As stated in the [22, §1], every bilinear form B : V ×V → R gives us a balanced
pair (q, b) via (6.1) and (6.2), and, if the R-module V is free, we obtain all such
pairs (q, b) in this way. But we will need a description of all expansions of (q, b)
in the free case.

Construction 6.2. Assume that V is a free R-module and (εi | i ∈ I) is
a base of V. When (q, b) is a balanced pair on V, we obtain all expansions
B : V × V → R of (q, b) as follows.
Let αi := q(εi), βij := b(εi, εj) for i, j ∈ I. We have βij = βji. We choose a
total ordering on I and for every i < j two elements χij , χji ∈ R with

βij = χij + χji, (i < j).

We furthermore put

χii := αi,

and define B by the rule

B(εi, εj) = χij

for all (i, j) ∈ I × I.
In practice one usually chooses χij = βij , χji = 0 for i < j, i.e., takes the
unique “triangular” expansion B of (q, b), cf. [22, §1], but now we do not want
to depend on the choice of a total ordering of the base (εi | i ∈ I). We used
such an ordering above only to ease notation.

Tensor products over semirings in general require the use of congruences [10],
but for free modules the basics can be done precisely as over rings, and we
leave the formal details to the interested reader. We only state here that, given
two free R-modules V1 and V2, with bases B1 and B2, the R-module V1 ⊗R V2
“is” the free R-module with base B1 ⊗B2, which is a renaming of B1 ×B2,
writing ε⊗ η for (ε, η) with ε ∈ B1, η ∈ B2. If

B1 = {εi | i ∈ I}, B2 = {ηj | j ∈ J}
and x =

∑
i∈I

xiεi ∈ V1 and y =
∑
j∈J

yjηj ∈ V2, we define, as common over rings,

(6.3) x⊗ y :=
∑

(i,j)∈I×J
xiyj(εi ⊗ yj),

and this vector is independent of the choice of the bases B1 and B2. If B1

and B2 are bilinear forms on V1 and V2 respectively, we have a well defined
bilinear form on V1 ⊗R V2, denoted by B1 ⊗ B2, such that for any xi ∈ V1,
yj ∈ V2 (i, j ∈ {1, 2})
(6.4) (B1 ⊗B2)(x1 ⊗ x2, y1 ⊗ y2) = B1(x1, y1)B2(x2, y2).

If b1 and b2 are symmetric bilinear forms on V1 and V2 respectively, then b1⊗b2
is symmetric. Then we call the bilinear module (V1 ⊗R V2, b1 ⊗ b2) the tensor
product of the bilinear modules (V1, b1) and (V2, b2).
We next define the tensor product of a free bilinear and a free quadratic module.
The key fact which allows us to do this in a reasonable way is as follows.
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Proposition 6.3. Let γ : U × U → R be a symmetric bilinear form and (q, b)
a balanced quadratic pair on V. Assume that B and B′ are two expansions of
(q, b). Then the bilinear forms γ ⊗ B and γ ⊗ B′ on U ⊗ V yield the same

balanced pair (q̃, b̃) on U ⊗ V. We have b̃ = γ ⊗ b, whence for u1, u2 ∈ U,
v1, v2 ∈ V,
(6.5) b̃(u1 ⊗ v1, u2 ⊗ v2) = γ(u1, u2)b(v1, v2).

Furthermore, for u ∈ U and v ∈ V,
(6.6) q̃(u ⊗ v) = γ(u, u)q(v).

Proof. γ⊗B+(γ⊗B)t = γ⊗B+γt⊗Bt = γ⊗B+γ⊗Bt = γ⊗(B+Bt) = γ⊗b.
Also γ ⊗ B′ + (γ ⊗B′)t = γ ⊗ b. Furthermore,

(γ ⊗B)(u ⊗ v, u⊗ v) = γ(u, u)B(v, v)
= γ(u, u)q(v) = (γ ⊗B′)(u⊗ v, u ⊗ v)

for any u ∈ U, v ∈ V. Together these equations imply

(γ ⊗B)(z, z) = (γ ⊗B′)(z, z)
for any z ∈ U ⊗ V. �

Definition 6.4. We call q̃ the tensor product of the bilinear form γ and the
quadratic form q with respect to the balanced companion b of q, and write

q̃ = γ ⊗b q,
and we also write Ṽ = U ⊗b V for the quadratic R-module Ṽ = (U ⊗ V, q̃).
Remark 6.5. If q has only one balanced companion, we may suppress the “b”
here, writing q̃ = γ⊗ q. Cases in which this happens are: q is rigid, V has rank
one, R is embeddable in a ring.

Proposition 6.6. If U = (U, γ) has an orthogonal decomposition U = ⊥
i∈I

Ui,

then

U ⊗b V = ⊥
i∈I

Ui ⊗b V.

Proof. It is immediate that (γ ⊗ b)(Ui ⊗ V, Uj ⊗ V ) = 0 for i 6= j. �

We proceed to explicit examples. For this we need notation from [22, §1] which
we recall for the convenience of the reader.
Assume that V is free of finite rank n and B is a base of V for which we
now choose a total ordering, B = (ε1, ε2, . . . , εn). Then we identify a bilinear
form B on V with the (n× n)-matrix

(6.7) B =




β11 β12 · · · β1n
β21 β22 β2n
...

...
. . .

...
βn1 · · · βnn


 ,
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where βij = B(ε1, εj). In particular, a bilinear R-module (V, β) is denoted by
a symmetric (n × n)-matrix, namely its Gram matrix b = (βij)1≤i,j≤n, where
βij = βji = b(εi, εj).
Given a quadratic module (V, q), we choose a triangular expansion

(6.8) B =




α1 α12 · · · α1n

0 α2 · · · α2n

...
. . .

...
0 · · · 0 αn




of q and denote q by the triangular scheme

(6.9) q =




α1 α12 · · · α1n

α2 · · · α2n

. . .
...
αn


 ,

so that q is given by the polynomial

q(x) =

n∑

i=1

αix
2
i +

n∑

i<j

αijxixj .

(Such triangular schemes have already been used in the literature when R is a
ring, e.g. [28, I §2].) In the case that q is diagonal, i.e., all αij with i < j are
zero, we usually write instead of (6.8) the single row

(6.10) q = [α1, α2, . . . , αn].

Analogously we use for a diagonal symmetric bilinear form b (i.e., b(εi, εj) = 0
for i 6= j) the notation

(6.11) b = 〈β11, β22, . . . , βnn〉.
We note that the quadratic form (6.9) has the balanced companion

(6.12) b =




α1 α12 · · · α1n

α12 α2 α2n

...
...

. . .
...

α1n · · · αn




and (6.10), being diagonal, has the balanced companion

(6.13) b = 〈2α1, 2α2, . . . , 2αn〉.
Example 6.7. If a1, . . . , an, c ∈ R, then
(6.14) 〈a1, . . . an〉 ⊗ [c] = [a1c, . . . , anc].

This is evident from Proposition 6.6 and the rule 〈a〉 ⊗ [c] = [ac] for one-
dimensional forms which holds by (6.6). In particular

(6.15) [a1, . . . , an] = 〈a1, . . . an〉 ⊗ [1].
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Example 6.8. (As before, R is any semiring.) Assume that V = (V, q) has
dimension n, and take a base η1, . . . , ηn of V. Let

(U, γ) =

(
0 1
1 0

)

with base ε1, ε2.We choose a balanced companion b of V, written as a symmetric
(n× n)-matrix (b(ηi, ηj)). We see by the use of the rules (6.5) and (6.6) that

(6.16)

(
0 1
1 0

)
⊗b q =

[
0 b

0

]

written with respect to the base

ε1 ⊗ η1, . . . , ε1 ⊗ ηn, ε2 ⊗ η1, . . . , ε2 ⊗ ηn.
This example illustrates dramatically that in general the tensor product of γ
and q depends on the chosen balanced companion b of q: tensoring q by ( 0 1

1 0 )
produces the symmetric matrix of b.

Remark 6.9. If γ1 and γ2 are bilinear forms on the same free R-module U ,
then the rules (6.5) and (6.6) imply for any λ1, λ2 ∈ R that

(6.17) (λ1γ1 + λ2γ2)⊗b q = λ1(γ1 ⊗b q) + λ2(γ2 ⊗b q).
Example 6.10. Using (6.17) with

γ1 = 〈a1, a2〉, γ2 =

(
0 1
1 0

)
, λ1 = 1, λ2 = λ,

we obtain from Proposition 6.6 and Example 6.7 that

(6.18)

(
a1 λ
λ a2

)
⊗b q =

[
a1q λb

a2q

]
.

Example 6.11. Let

q =




0 a12 · · · a1n
. . .

. . .
...

an−1,n
0




with aij ∈ R (i < j). Then q is rigid (cf. [22, Proposition 3.4]; no assumption
on R is needed here). Furthermore, let

γ =



γ11 · · · γ1m
...

...
γm1 · · · γmm




with γij = γji ∈ R. Then we obtain by the rules (6.5) and (6.6) that

(6.19) γ ⊗ q =

0 a12γ · · · a1nγ
0 a2nγ

. . . an−1,nγ
0
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More precisely, if the presentations of q and γ above refer to ordered bases
(η1, . . . , ηn) and (ε1, . . . , εm), respectively, then (6.19) refers to the ordered base

(ε1 ⊗ η1, . . . , εm ⊗ η1, ε1 ⊗ η2, . . . , εm ⊗ ηn).
We now consider the tensor product γ ⊗ [a] = γ ⊗b [a], cf. Equation (6.10),
where b is the unique balanced companion of [a], (6.13). Our starting point is
a definition which makes sense for any semiring R and any R-module U.

Definition 6.12. Let γ : U ×U → R be a symmetric bilinear form. The norm
form of γ is the quadratic form n(γ) : U → R with

n(γ)(x) := γ(x, x)

for any x ∈ U.
Remark 6.13. The norm form n(γ) has the expansion γ : U ×U → R and the
associated balanced companion γ + γt = 2γ. The norm forms are precisely all
the quadratic forms which admit a symmetric expansion. If U has a finite base
ε1, . . . , εn, then with respect to this base

(6.20) n(γ) =




γ11 2γ12 · · · 2γ1m
γ22

. . .
...

γmm


 ,

where γij := γ(εi, εj).

Proposition 6.14. Assume that U = (U, γ) is a free bilinear R-module and
a ∈ R. Then
(6.21) U ⊗ [a] ∼= (U, a n(γ)).

Proof. We realize the form [a] as a quadratic module (V, q) with V = Rη free
of rank 1 and q(η) = a. {q has the unique balanced companion b : V ×V → R,
with b(η, η) = 2a.} The form q̃ := γ ⊗ q = γ ⊗b q is given by

q̃(x⊗ η) = γ(x, x)a = (an(γ))(x).

The claim is obvious. �

Example 6.15. Assume that U has base ε1, . . . , εm. Let γij := γ(εi, εj). Then

γ ⊗ [a] ∼= (aγ)⊗ [1],

and

(6.22) γ ⊗ [1] =




γ11 2γ12 · · · 2γ1n
γ22

. . .
...

γmm


 ,

where the right hand side refers to the base ε1 ⊗ η, ε2 ⊗ η, . . . , εm ⊗ η.
At a crucial point in §7, we will need an explicit description of the tensor
products γ⊗b q with q indecomposable of rank 2. We start with a general fact.
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Proposition 6.16. Assume that γ is a symmetric bilinear form on a free R-
module U and q1, q2 are quadratic forms on a free R-module V. Let b1, b2 be
balanced companions of q1 and q2, respectively. Let q := λ1q1 + λ2q2 with
λ1, λ2 ∈ R. Then b := λ1b1 + λ2b2 is a balanced companion of q, and

(6.23) γ ⊗b q = λ1(γ ⊗b1 q1) + λ2(γ ⊗b2 q2).
This form has the balanced companion γ ⊗ b (as we know) and

(6.24) γ ⊗ b = λ1(γ ⊗ b1) + λ2(γ ⊗ b2).
Proof. An easy check by use of (6.5) and (6.6). �

Example 6.17. We take a free module V with base η1, η2, and choose with
respect to this base

q1 =

[
a1 0

a2

]
= [a1, a2], q2 =

[
0 c

0

]

with a1, a2, c ∈ R, c 6= 0, and the balanced companions

b1 =

(
2a1 0
0 2a2

)
, b2 =

(
0 c
c 0

)
.

Then

q := q1 + q2 =

[
a1 c

a2

]

has the balanced companion

b := b1 + b2 =

(
2a1 c
c 2a2

)
.

For

γ =



γ11 · · · γ1m
...

...
γm1 · · · γmm




on a free module U with to the base ε1, . . . , εm, we get

γ ⊗b1 q1 =

[
a1n(γ) 0

a2n(γ)

]
, γ ⊗b2

[
0 c

0

]
=

[
0 cγ

0

]
,

cf. (6.19), and finally

(6.25) γ ⊗b
[
a1 c

a2

]
=

[
a1n(γ) cγ

a2n(γ)

]

with respect to the base

ε1 ⊗ η1, . . . , εm ⊗ η1, ε1 ⊗ η2, . . . , εm ⊗ η2.
Remark 6.18. ¿From (6.25) and (6.18), we obtain the useful formula

(6.26) γ ⊗b
[
a1 c

a2

]
=

(
a1 c
c a2

)
⊗2γ n(γ) ,

by use of Example 6.10 for the quadratic pair (n(γ), 2γ).
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From now on, we assume that V has unique base. {We do not need that U has
unique base.}
Definition 6.19. We call a companion b of q faithful if b is balanced and
quasiminimal.

Proposition 6.20. Assume that b is a faithful companion of q, and that V =
W1 ⊥W2 is an orthogonal decomposition of V. Then, writing U ⊗bWi instead
of U ⊗(b|Wi) Wi, we have

U ⊗b V = U ⊗bW1 ⊥ U ⊗bW2

for any bilinear R-module U.

Proof. b(W1,W2) = 0, since b is quasiminimal. It follows that

(γ ⊗ b)(U ⊗W1, U ⊗W2) = 0.

Thus, q̃ = γ ⊗b q is quasilinear on (U ⊗W1)× (U ⊗W2). �

Example 6.21. Our assumption, that b is faithful, is necessary here. If V =
W1 ⊥W2, and b is balanced, but b(W1,W2) 6= 0, then

(
0 1
1 0

)
⊗b V =

[
0 b

0

]

is not the orthogonal sum of
(
0 1
1 0

)
⊗bW1 and

(
0 1
1 0

)
⊗bW2.

Example 6.22. Let q = [a1, a2, . . . , an] be a diagonal quadratic form. The
diagonal symmetric bilinear form

b := 〈2q1, . . . , 2an〉
is the unique faithful companion of q. For any bilinear R-module (U, γ), we
have

(6.27) γ ⊗b q = γ ⊗ [a1] ⊥ · · · ⊥ γ ⊗ [an].

Concerning the forms γ ⊗ [ai], recall Proposition 6.14 and Example 6.15.

7. Indecomposability in tensor products

In this section, we assume for simplicity that R \ {0} is an entire semiring
lacking zero sums. So every free R-module has unique base (cf. Theorem 2.3),
and R has no zero divisors. We discuss decomposability first in tensor products
of (free) bilinear modules, later in tensor products of bilinear modules with
quadratic modules.
Let V1 = (V1, b1) and V2 = (V2, b2) be indecomposable free (symmetric) bilinear
modules over R, and let V := V1⊗ V2 = (V1 ⊗V2, b) with b := b1⊗ b2. We take
bases B1 and B2 of the R-modules V1, V2 respectively and then have the base

B = B1 ⊗B2 := {ε⊗ η | ε ∈ B1, η ∈ B2}
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of V. Our task is to determine the indecomposable components of V. First we
discuss the “trivial” cases.

Remark 7.1. Assume that V1 has dimension (= rank) one, so V1 ∼= 〈a〉 with
a ∈ R. If a 6= 0, then V is clearly indecomposable. If a = 0, then b1 ⊗ b2 = 0,
whence V is indecomposable only if also dimV2 = 1. Then V = 〈0〉.

In all the following, we assume that V1 6= 〈0〉, V2 6= 〈0〉.
We resort to §4 to describe bases of the indecomposable components of V =
(V, b) as the classes in

B = {ε⊗ η | ε ∈ B1, η ∈ B2}
of an equivalence relation given by “paths”, cf. Definition 4.7. So a path of
length r ≥ 1 in V, i.e., in B, is a sequence

(7.1) Γ = (ε0 ⊗ η0, ε1 ⊗ η1, . . . , εr ⊗ ηr)
with

(7.2) b1(εi, εi+1)b2(ηi, ηi+1) 6= 0

and

(7.3) εi 6= εi+1 or ηi 6= ηi+1

for 0 ≤ i ≤ r − 1.
Let us first assume that both b1 and b2 are alternate, whence also b = b1 ⊗ b2
is alternate. Now condition (7.3) is a consequence of (7.2) and thus can be
ignored. We read off from (7.2) that

(7.4) Γ1 = (ε0, ε1, . . . , εr), Γ2 = (η0, η1, . . . , ηr)

are paths in V1 and V2 respectively of same length r. Conversely, given such
paths Γ1 and Γ2, they combine to a path Γ of length r in V, as written in (7.1).
{Here we use the assumption that R has no zero divisors.} We write

(7.5) Γ = Γ1 ⊗ Γ2.

We will speak of “cycles” in B1, B2, B, in the following obvious way:

Definition 7.2. Let C be a base of a free bilinear R-module W.

(a) We denote the length of a path Γ in C by ℓ(Γ).

(b) A cycle ∆ in W with base point ζ ∈ C is a path (ζ0, ζ1, . . . , ζr) in C
with ζ0 = ζr = ζ. We say that the cycle ∆ is even (resp. odd) if ℓ(∆)
is even (resp. odd). We say that ∆ is a 2-cycle if ℓ(∆) = 2, whence
∆ = (ζ, ζ′, ζ) with (ζ, ζ′) an edge.

Lemma 7.3. Let ε, ε′ ∈ B1 and η, η′ ∈ B2. Let Γ1 be a path from ε to ε′ of
length r and Γ2 a path from η to η′ of length s, and assume that r ≡ s (mod 2).
Then ε⊗ η ∼ ε′ ⊗ η′.
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Proof. Assume, without loss of generality, that s ≥ r, whence s = r + 2t with
t ≥ 0. If t = 0, then Γ1 ⊗ Γ2 is a path from ε⊗ η to ε′ ⊗ η′ in V. If t > 0, we
replace Γ1 = (ε0, ε1, . . . , εr) by

Γ̃1 = (ε0, ε1, . . . , εr, εr−1, εr, . . . )

adjoining t copies of the 2-cycle (εr, εr−1, εr) to Γ1. Now Γ̃1 ⊗ Γ2 runs from
ε⊗ η to ε′ ⊗ η′. �

Theorem 7.4. Assume that both b1 and b2 are alternate (and V1 6= 〈0〉,
V2 6= 〈0〉, as always).

a) If V1 or V2 contains an odd cycle, then V1 ⊗ V2 is indecomposable.

b) Otherwise V1 ⊗ V2 is the orthogonal sum of two indecomposable com-
ponents.

Proof. a): We assume that V1 contains an odd cycle ∆ with base point δ. Let
ε⊗η and ε′⊗η′ be different elements ofB.We want to verify that ε⊗η ∼ ε′⊗η′.
We choose a path Γ1 from ε to ε′ in V1 and a path Γ2 from η to η′ in V2. If
ℓ(Γ1) ≡ ℓ(Γ2) (mod 2), then we know by Lemma 7.3 that ε⊗ η ∼ ε′ ⊗ η′. Now
assume that ℓ(Γ1) and ℓ(Γ2) have different parity. We choose a new path Γ̃1

from ε to ε′ as follows: We first take a path H from ε to the base point δ of ∆,
then we run through ∆, then we take the path inverse to H (in the obvious

sense) from δ to ε, and finally we run through Γ1. The length ℓ(Γ̃1) has different
parity than ℓ(Γ1) and thus the same parity as ℓ(Γ2). We conclude again that
ε⊗ η ∼ ε′ ⊗ η′.
b): Now assume that both V1 and V2 contain only even cycles. This means
that both in V1 and V2 all paths from a fixed start to a fixed end have length
of the same parity. Given ε ⊗ η and ε′ ⊗ η′ in B, every path Γ from ε ⊗ η to
ε′ ⊗ η′ has the shape Γ1 ⊗ Γ2 with Γ1 running from ε to ε′, Γ2 running from η
to η′, and ℓ(Γ1) = ℓ(Γ2). Thus, if the paths from ε to ε′ have length of different
parity than those from η to η′, then ε ⊗ η cannot be connected to ε′ ⊗ η′ by
a path. But ε ⊗ η can be connected to ε′ ⊗ η′′, where η′′ arises from η′ by
adjoining an edge at the endpoint of η′. We fix some ε0 ∈ B1, and η0, η1 ∈ B2

with b2(η0, η1) = 1. Then every element of B can be connected by a path to
ε0 ⊗ η0 or to ε0 ⊗ η1, but not to both. V has exactly two indecomposable
components. �

Remark 7.5. Assume again that b1 and b2 are alternate and B1 and B2 both
contain only even cycles. Let ε, ε′ ∈ B1 and η, η′ ∈ B2, and choose paths Γ1

from ε to ε′ and Γ2 from η to η′. As the proof of Theorem 7.4.b has shown,
ε⊗ η and ε′⊗ η′ lie in the same indecomposable component of V1⊗V2 iff ℓ(Γ1)
and ℓ(Γ2) have the same parity.

There remains the case that b1 or b2 is not alternate.

Theorem 7.6. Assume that b1 is not alternate and – as before – that V1 =
(V1, b1) and V2 = (V2, b2) are indecomposable. Then (V1 ⊗ V2, b1 ⊗ b2) is inde-
composable.
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Proof. Every path in V := V1 ⊗ V2 with respect to (b1)alt ⊗ (b2)alt is also a
path with respect to b1 ⊗ b2, as is easily checked, and the paths in Vi with
respect to bi are the same as those with respect to (bi)alt (i = 1, 2). Thus we
are done by Theorem 7.4, except in the case that all cycles in V1 and in V2 are
even. Then V has two indecomposable components W ′, W ′′ with respect to
(b1)alt ⊗ (b2)alt. The base

B = B1 ⊗B2 := (ε⊗ η | ε ∈ B1, η ∈ B2)

of V1 ⊗ V2 is the disjoint union of sets B′, B′′ which are bases of W ′ and W ′′.
Any two elements of B′ are connected by a path with respect to (b1)alt⊗(b2)alt,
hence by a path with respect to b1 ⊗ b2, and the same holds for the set B′′.
We choose some ρ ∈ B1 with b1(ρ, ρ) 6= 0 and an edge (η0, η1) in B′′. Since R
has no zero divisors, it follows that (ρ⊗ η0, ρ⊗ η1) is an edge in B with respect
to b1 ⊗ b2. Perhaps interchanging W ′ and W ′′, we assume that ρ ⊗ η0 ∈ B′.
Suppose that also ρ⊗η1 ∈ B′. Then there exists a path Γ in B′ with respect to
(b1)alt ⊗ (b2)alt running from ρ⊗ η0 to ρ⊗ η1. Γ has the form Γ1 ⊗Γ2, with Γ1

a cycle in V1 with base point ρ, and Γ2 a path in V2 running from η0 to η1. We
have ℓ(Γ1) = ℓ(Γ2) and ℓ(Γ2) is even. But there exists the path (η0, η1) from
η0 to η1 of length 1. Since all paths in V2 from η0 to η1 have the same parity,
we infer that ℓ(Γ2) is odd, a contradiction.
We conclude that ρ ⊗ η1 ∈ B′′. The elements ρ ⊗ η0 ∈ B′ and ρ ⊗ η1 ∈ B′′

are connected by a path with respect to b1⊗ b2, and thus all elements of B are
connected by paths with respect to b1 ⊗ b2. �

Turning to a study of indecomposable components of tensor products of bilinear
and quadratic modules, we need some more terminology. Let V = (V, q) be a
free quadratic R-module and B a base of V. We focus on balanced companions
of q.

Definition 7.7.

(a) We call a companion b of q faithful if b is balanced and quasiminimal
(cf. §3 above), whence b(ε, ε) = 2q(ε) for all ε ∈ B and b(ε, η) = 0 for
ε 6= η in B such that q is quasilinear on Rε×Rη.

(b) Given a balanced companion b of q, we define a new bilinear form bf
on V by the rule that, for ε, η ∈ B,

bf (ε, η) =

{
0 if ε 6= η and q is quasilinear on Rε×Rη,
b(ε, η) else.

It is clear from [22, Theorem 6.3] that again bf is a companion of q. By def-
inition, this companion is quasiminimal. bf is also balanced, since bf(ε, ε) =
b(ε, ε) = 2q(ε) for all ε ∈ B, cf. [22, Proposition 1.7], and so bf is faithful. We
call bf the faithful companion of q associated to b.

Theorem 7.8. Assume that b is a balanced companion of q, and that W is
a basic submodule of V. Then W is indecomposable with respect to q iff W is
indecomposable with respect to bf .
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Proof. This is a special case of Theorem 4.9, since bf |W = (b|W )f is a quasi-
minimal companion of q|W. �

Definition 7.9.

(a) We say that q is diagonally zero if q(ε) = 0 for every ε ∈ B.

(b) We say that q is anisotropic if q(ε) 6= 0 for every ε ∈ B.

Remarks 7.10.

(i) If q is diagonally zero, then q is rigid, cf. [22, Proposition 3.4]. Con-
versely, if q is rigid and the quadratic form [1] is quasilinear, i.e.,
(α + β)2 = α2 + β2 for any α, β ∈ R, then q is diagonally zero, as
proved in [22, Theorem 3.5].

(ii) If q is anisotropic, then q(x) 6= 0 for every x ∈ V \{0}. So our definition
of anisotropy here coincides with the usual meaning of anisotropy for
quadratic forms (which makes sense, say, for R a semiring without zero
divisors and V any R-module).

Definition 7.11. In a similar vein, we call a symmetric bilinear form b on V
anisotropic if b(ε, ε) 6= 0 for every ε ∈ B, and then have b(x, x) 6= 0 for every
x ∈ V \ {0}.

Note that, if b is a balanced companion of q, then b is anisotropic iff q is
anisotropic.
Assume now that U := (U, γ) is a free bilinear module, V := (V, q) is a free
quadratic module, and b is a balanced companion of q. Let

Ṽ := (Ṽ , q̃) := (U ⊗ V, γ ⊗b q).

We want to determine the indecomposable components of Ṽ . Discarding trivial
cases, we assume that U 6= 〈0〉, V 6= [0].
We choose bases B1 and B2 of the R-modules U and V, respectively, and
introduce the subsets

B+
1 := {ε ∈ B1 | γ(ε, ε) 6= 0},

B0
1 := {ε ∈ B1 | γ(ε, ε) = 0},

B+
2 := {η ∈ B1 | q(η) 6= 0},

B0
2 := {η ∈ B1 | q(η) = 0},

of B1 and B2, respectively, and furthermore the basic submodules
U+, U0, V +, V 0 respectively spanned by these sets.

Lemma 7.12.

a) If ε ∈ B+
1 , then the indecomposable components of the basic submodule

ε ⊗ V := (Rε) ⊗ V of U ⊗ V with respect to q̃ are the submodules
ε ⊗W with W running through the indecomposable components of V
with respect to q.
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b) If η ∈ B+
1 , then the indecomposable components of U ⊗ η := U ⊗ (Rη)

with respect to q̃ are the modules U ⊗ η with U ′ running through the
indecomposable components of U with respect to the norm form n(γ)
of γ (cf. Definition 6.12).

Proof. This follows from the formulas q̃(ε ⊗ y) = γ(ε, ε)q(y) for y ∈ V and
q̃(x⊗ η) = γ(x, x)q(η) for x ∈ U (cf. (6.6)), since γ(ε, ε) 6= 0, q(η) 6= 0. �

In order to avoid certain pathologies concerning indecomposability in tensor
products U ⊗bV, we henceforth will assume that our semiring has the following
property:

(NQL) For any a and c in R \ {0} there exists some µ ∈ R with a+ µc 6= a.

Clearly, this property means that every free quadratic module [ a c0 ] with c 6= 0
is not quasilinear on (Rη1)×(Rη2), where (η1, η2) is the associated base, whence
the label “NQL”.

Examples 7.13.

(a) In the important case that R is supertropical the condition (NQL) holds
iff all principal ideals in eR are unbounded with respect to the total or-
dering of eR. In particular, the “multiplicatively unbounded supertrop-
ical semirings” appearing in [20, §7] have NQL.

(b) If R is any entire semiring lacking zero sums, then the polynomial
ring R[t] in one variable (and so in any set of variables) has NQL.

(c) The polynomial function semirings over supersemirings appearing in
[25, §4] have NQL.

Lemma 7.14. Assume that (V, q) is indecomposable. Let a, c ∈ R \ {0}. Then
(
a c
c 0

)
⊗b V =

[
aq cb

0

]

(cf. (6.19)) is indecomposable.

Proof. Let

(U, γ) =

(
a c
c 0

)

with respect to a base ε1, ε2 and assume for notational convenience that V has
a finite base η1, . . . , ηn. By Lemma 7.12.a, we have

ε1 ⊗ η1 ∼ ε1 ⊗ η2 ∼ · · · ∼ ε1 ⊗ ηn.
For given ε1 ⊗ ηi, ε2 ⊗ ηj with i 6= j, γ ⊗b q has the value table

[
aq(ηi) cb(ηi, ηj)

0

]
.

Starting with ε2 ⊗ ηj , we find some ηi, i 6= j, with b(ηi, ηj) 6= 0, because (V, q)
is indecomposable. Since R has NQL, it follows that R(εi ⊗ ηi) +R(εj ⊗ ηj) is
indecomposable with respect to q̃, whence ε1 ⊗ ηi ∼ ε2 ⊗ ηj . Thus all εk ⊗ ηℓ
are equivalent. �
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Lemma 7.15. Assume that (U, n(γ)) is indecomposable. Let a, c ∈ R \ {0}.
Then the tensor product U ⊗b

[
a c

0

]
, taken with respect to b =

(
2a c
c 0

)
, is

indecomposable.

Proof. By formula (6.26)

γ ⊗b
[
a c

0

]
=

(
a c
c 0

)
⊗2γ n(γ).

Now Lemma 7.14 with (V, q) := (U, n(γ)) gives the claim. �

We are ready for the main result of this section. Recall that U := (U, γ).

Theorem 7.16. Assume that R has NQL. Assume furthermore that both
(U, n(γ)) and the quadratic free module V = (V, q) are indecomposable, and
U 6= 〈0〉, V 6= [0]. Let b be a balanced companion of q. Then the quadratic
module U⊗bV := (U ⊗V, γ⊗b q) is indecomposable, except in the case that γ is
alternate, q is diagonally zero, U and V contain only even cycles with respect
to γ and b. Then U⊗bV has exactly two indecomposable components, and these
coincide with the indecomposable components of U ⊗ V with respect to γ ⊗ b,
and also with respect to γ ⊗ bf .
Proof. Of course, indecomposability of (U, n(γ)) implies indecomposability of
(U, γ). As before, let q̃ := γ ⊗b q. We distinguish three cases.

1) Assume that V + 6= {0}, i.e., there exist anisotropic base vectors in V. Our
claim is that all elements of B1 ⊗B2 are equivalent, whence U ⊗b V is inde-
composable.
We choose η0 ∈ B+

2 . By Lemma 7.12.b, the module

(U ⊗ η0, q̃) := (U ⊗ η0, q̃ | U ⊗ η0)
is indecomposable, and thus all elements of B1 ⊗ η0 are equivalent.
Let ε ⊗ η ∈ B1 ⊗B2. We verify the equivalence of ε ⊗ η with some element
of B1 ⊗ η0, and then will be done. If γ(ε, ε) 6= 0, then by Lemma 7.12.a, all
elements of ε ⊗B2 are equivalent, whence ε ⊗ η ∼ ε ⊗ η0. Assume now that
γ(ε, ε) = 0. Since (U, γ) is indecomposable, there exists some ε′ ∈ B1 with
c := γ(ε′, ε) 6= 0. Let a := γ(ε′, ε′). We choose a base η1, . . . , ηn of V, assuming
for notational convenience that V has finite rank. By Example 6.10,

(Rε′ +Rε)⊗b V =

[
aq cq

0

]

with respect to the base ε′⊗η1, . . . , ε′⊗ηn, ε⊗η1, . . . , ε⊗η2. Now Lemma 7.14
tells us that (Rε′ + Rε) ⊗b V is indecomposable, whence all elements ε ⊗ η,
ε′ ⊗ η′ with η, η′ ∈ B2 are equivalent. In particular, ε⊗ η ∼ ε′ ⊗ η0.
2) Assume that U+ 6= {0}, i.e., there exist an anisotropic base vector in U with
respect to n(γ). Our claim again is that all elements of B1⊗B2 are equivalent,
whence U ⊗b V is indecomposable. We choose ε0 ∈ B+

1 , and then know by
Lemma 7.12.a that all elements of ε0 ⊗B2 are equivalent.

Documenta Mathematica 21 (2016) 773–808



806 Z. Izhakian, M. Knebusch, L. Rowen

Let ε ⊗ η ∈ B1 ⊗ B2 be given. We verify equivalence of ε ⊗ η with some
element of ε0 ⊗B2, and then will be done. If q(η) 6= 0, then by Lemma 7.12.a
all elements of B1 ⊗ η are equivalent, and thus ε⊗ η ∼ ε0 ⊗ η.
Hence, we may assume that q(η) = 0. Since (V, q) is indecomposable, there
exists some η′ ∈ B2 with c := b(η, η′) 6= 0. Let a := q(η′). Then

(Rη′ +Rη, q) =

[
a c

0

]
.

Let b′ := b|(Rη′ +Rη) =

(
a c
c 0

)
. Then we see from (6.25) that

γ ⊗b′
[
a c

0

]
=

[
an(γ) cγ

0

]
.

By Lemma 7.15, this quadratic module is indecomposable, whence all elements
ε⊗ η, ε′ ⊗ η′ with ε, ε′ ∈ B1 are equivalent. In particular, ε⊗ η ∼ ε0 ⊗ η′.
3) The remaining case: U = U0, and V = V 0, i.e., γ is alternate and q is
diagonally zero. Now (U ⊗ V, q̃) is rigid. By Theorem 7.8, the indecomposable
components of (U⊗V, q̃) coincide with those of (U⊗V, (γ⊗b)f). But q̃ has only
one companion, whence (γ ⊗ b)f = γ ⊗ b = γ ⊗ bf . Invoking Theorem 7.4, we
see that the assertion of the theorem also holds in the case under consideration,
where γ is alternate and b is diagonally zero. �

In general, let {Ui | i ∈ I} denote the set of indecomposable components of
(U, n(γ)). Then

U ⊗b V = ⊥
i∈I

Ui ⊗b V
by Proposition 6.6, whence, applying Theorem 7.16 to each summand Ui⊗b V,
we obtain a complete list of all indecomposable components of U ⊗b V. In
particular, if q is not diagonally zero, or if (V, b) contains an odd cycle, then
the Ui ⊗b V themselves are the indecomposable components of U ⊗b V.
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Abstract. To a Boolean inverse monoid S we associate a universal
C*-algebra C∗B(S) and show that it is equal to Exel’s tight C*-algebra
of S. We then show that any invariant mean on S (in the sense
of Kudryavtseva, Lawson, Lenz and Resende) gives rise to a trace
on C∗B(S), and vice-versa, under a condition on S equivalent to the
underlying groupoid being Hausdorff. Under certain mild conditions,
the space of traces of C∗B(S) is shown to be isomorphic to the space of
invariant means of S. We then use many known results about traces
of C*-algebras to draw conclusions about invariant means on Boolean
inverse monoids; in particular we quote a result of Blackadar to show
that any metrizable Choquet simplex arises as the space of invariant
means for some AF inverse monoid S.

2010 Mathematics Subject Classification: 20M18, 46L55, 46L05

1 Introduction

This article is the continuation of our study of the relationship between inverse
semigroups and C*-algebras. An inverse semigroup is a semigroup S for which
every element s ∈ S has a unique “inverse” s∗ in the sense that

ss∗s = s and s∗ss∗ = s∗.

An important subsemigroup of any inverse semigroup is its set of idempotents
E(S) = {e ∈ S | e2 = e} = {s∗s | s ∈ S}. Any set of partial isometries closed
under product and involution inside a C*-algebra is an inverse semigroup, and
its set of idempotents forms a commuting set of projections. Many C*-algebras
A have been profitably studied in the following way:

1Supported by the NSERC grants of Benôıt Collins, Thierry Giordano, and Vladimir
Pestov. cstar050@uottawa.ca.
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1. identify a generating inverse semigroup S,

2. write down an abstract characterization of S,

3. show that A is universal for some class of representations of S.

We say “some class” above because typically considering all representations
(as in the construction of Paterson [Pat99]) gives us a larger C*-algebra than
we started with. For example, consider the multiplicative semigroup inside
the Cuntz algebra O2 generated by the two canonical generators s0 and s1; in
semigroup literature this is usually denoted P2 and called the polycyclic monoid
of order 2. The C*-algebra which is universal for all representations of P2 is
T2, the Toeplitz extension of O2. In an effort to arrive back at the original C*-
algebra in cases such as this, Exel defined the notion of tight representations
[Exe08], and showed that the universal C*-algebras for tight representations
of P2 is O2. See [Sta16], [Sta15], [EP16], [EP14], [EGS12], [COP15] for other
examples of this approach.
Another approach to this issue is to instead alter the inverse semigroup S.
An inverse semigroup carries with it a natural order structure, and when an
inverse semigroup S is represented in a C*-algebra A, two elements s, t ∈ S,
which did not have a lowest upper bound in S, may have one inside A. So,
from P2, Lawson and Scott [LS14, Proposition 3.32] constructed a new inverse
semigroup C2, called the Cuntz inverse monoid, by adding to P2 all possible
joins of compatible elements (s, t are compatible if s∗t, st∗ ∈ E(S)).
The Cuntz inverse monoid is an example of a Boolean inverse monoid, and the
goal of this paper is to define universal C*-algebras for such monoids and study
them. A Boolean inverse monoid is an inverse semigroup which contains joins
of all finite compatible sets of elements and whose idempotent set is a Boolean
algebra. To properly represent a Boolean inverse monoid S, one reasons, one
should insist that the join of two compatible s, t ∈ S be sent to the join of
the images of s and t. We prove in Proposition 3.3 that such a representation
is necessarily a tight representation, and so we obtain that the universal C*-
algebra of a Boolean inverse monoid (which we denote C∗B(S)) is exactly its
tight C*-algebra, Theorem 3.5. This is the starting point of our study, as
the universal tight C*-algebra can be realized as the C*-algebra of an ample
groupoid.
The main inspiration of this paper is [KLLR16] which defines and studies in-
variant means on Boolean inverse monoids. An invariant mean is a function
µ : E(S)→ [0,∞) such that µ(e∨f) = µ(e)+µ(f) when e and f are orthogonal,
and such that µ(ss∗) = µ(s∗s) for all s ∈ S. If one thinks of the idempotents
as clopen sets in the Stone space of the Boolean algebra E(S), such a function
has the flavour of an invariant measure or a trace. We make this precise in
Section 4: as long as S satisfies a condition which guarantees that the induced
groupoid is Hausdorff (which we call condition (H)), every invariant mean on
S gives rise to a trace on C∗B(S) (Proposition 4.6) and every trace on C∗B(S)
gives rise to an invariant mean on S (Proposition 4.7). This becomes a one-
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to-one correspondence if we assume that the associated groupoid Gtight(S) is
principal and amenable (Theorem 4.13). We also prove that, whether Gtight(S)
is principal and amenable or not, there is an affine isomorphism between the
space of invariant means on S and the space of Gtight(S)-invariant measures on
its unit space (Proposition 4.11).
In the final section, we apply our results to examples of interest. We study
the AF inverse monoids in detail – these are Boolean inverse monoids arising
from Bratteli diagrams in much the same way as AF C*-algebras. As it should
be, given a Bratteli diagram, the C*-algebra of its Boolean inverse monoid is
isomorphic to the AF algebra it determines (Theorem 5.1). From this we can
conclude, using the results of Section 4 and the seminal result of Blackadar
[Bla80], that any Choquet simplex arises as the space of invariant means for
some Boolean inverse monoid. We go on to consider two examples where there is
typically only one invariant mean, those being self-similar groups and aperiodic
tilings.

2 Preliminaries and notation

We will use the following general notation. If X is a set and U ⊂ X , let IdU
denote the map from U to U which fixes every point, and let 1U denote the
characteristic function on U , i.e. 1U : X → C defined by 1U (x) = 1 if x ∈ U
and 1U (x) = 0 if x /∈ U . If F is a finite subset of X , we write F ⊂fin X .

2.1 Inverse semigroups

An inverse semigroup is a semigroup S such that for all s ∈ S, there is a unique
element s∗ ∈ S such that

ss∗s = s, s∗ss∗ = s∗.

The element s∗ is called the inverse of s. All inverse semigroups in this paper
are assumed to be discrete and countable. For s, t ∈ S, one has (s∗)∗ = s and
(st)∗ = t∗s∗. Although not implied by the definition, we will always assume
that inverse semigroups have a 0 element, that is, an element such that

0s = s0 = 0 for all s ∈ S.

An inverse semigroup with identity is called an inverse monoid. Even though
we call s∗ the inverse of s, we need not have ss∗ = 1, although it is always true
that (ss∗)2 = ss∗ss∗ = ss∗, i.e. ss∗ (and s∗s for that matter) is an idempotent.
We denote the set of all idempotents in S by

E(S) = {e ∈ S | e2 = e}.

It is a nontrivial fact that if S is an inverse semigroup, then E(S) is closed
under multiplication and commutative. It is also clear that if e ∈ E(S), then
e∗ = e.
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Let X be a set, and let

I(X) = {f : U → V | U, V ⊂ X, f bijective}.

Then I(X) is an inverse monoid with the operation of composition on the
largest possible domain, and inverse given by function inverse; this is called the
symmetric inverse monoid on X . Every idempotent in I(X) is given by IdU
for some U ⊂ X . The function IdX is the identity for I(X), and the empty
function is the 0 element for I(X). The fundamental Wagner-Preston theorem
states that every inverse semigroup is embeddable in I(X) for some set X –
one can think of this as analogous to the Cayley theorem for groups.
Every inverse semigroup carries a natural order structure: for s, t ∈ S we say
s 6 t if and only if ts∗s = s, which is also equivalent to ss∗t = s. For elements
e, f ∈ E(S), we have e 6 f if and only if ef = e. As usual, for s, t ∈ S,
the join (or least upper bound) of s and t will be denoted s ∨ t (if it exists),
and the meet (or greatest lower bound) of s and t will be denoted s ∧ t (if
it exists). For A ⊂ S, we let A↑ = {t ∈ S | s 6 t for some s ∈ A} and
A↓ = {t ∈ S | t 6 s for some s ∈ A}.
If s, t ∈ S, then we say s and t are compatible if s∗t, st∗ ∈ E(S), and a set
F ⊂ S is called compatible if all pairs of elements of F are compatible.

Definition 2.1. An inverse semigroup S is called distributive if whenever we
have a compatible set F ⊂fin S, then

∨
s∈F s exists in S, and for all t ∈ S we

have

t

(∨

s∈F
s

)
=
∨

s∈F
ts and

(∨

s∈F
s

)
t =

∨

s∈F
st.

In the natural partial order, the idempotents form a meet semilattice, which
is to say that any two elements e, f ∈ E(S) have a meet, namely ef . If
C ⊂ X ⊂ E(S), we say that C is a cover of X if for all x ∈ X there exists
c ∈ C such that cx 6= 0.
In a distributive inverse semigroup each pair of idempotents has a join in ad-
dition to the meet mentioned above, but in general E(S) will not have relative
complements and so in general will not be a Boolean algebra. The case where
E(S) is a Boolean algebra is the subject of the present paper.

Definition 2.2. A Boolean inverse monoid is a distributive inverse monoid S
with the property that E(S) is a Boolean algebra, that is, for every e ∈ E(S)
there exists e⊥ ∈ E(S) such that ee⊥ = 0, e ∨ e⊥ = 1, and the operations
∨,∧,⊥ satisfy the laws of a Boolean algebra [GH09, Chapter 2].

Example 2.3. Perhaps the best way to think about the order structure and
related concepts above is by describing them on I(X), which turns out to be
a Boolean inverse monoid. Firstly, for g, h ∈ I(X), g 6 h if and only if h
extends g as a function. In I(X), two functions f and g are compatible if
they agree on the intersection of their domains and their inverses agree on
the intersection of their ranges. In such a situation, one can form the join
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f ∨ g which is the union of the two functions; this will again be an element of
I(X). Composing h ∈ I(X) with f ∨ g will be the same as hf ∨ hg. Finally,
E(I(X)) = {IdU | U ⊂ X} is a Boolean algebra (isomorphic to the Boolean
algebra of all subsets of X) with Id⊥U = IdUc .

2.2 Étale groupoids

A groupoid is a small category where every arrow is invertible. If G is a groupoid,
the set of elements γγ−1 is denoted G(0) and is called the set of units of G. The
maps r : G → G(0) and d : G → G(0) defined by r(γ) = γγ−1 and d(γ) = γ−1γ
are called the range and source maps, respectively.

The set G(2) = {(γ, η) ∈ G2 | r(η) = d(γ)} is called the set of composable
pairs. A topological groupoid is a groupoid G which is a topological space and
for which the inverse map from G to G and the product from G(2) to G are both
continuous (where in the latter, the topology on G(2) is the product topology
inherited from G2).
We say that a topological groupoid G is étale if it is locally compact, second
countable, G(0) is Hausdorff, and the maps r and d are both local homeomor-
phisms. Note that an étale groupoid need not be Hausdorff. If G is étale, then
G(0) is open, and G is Hausdorff if and only if G(0) is closed (see for example
[EP16, Proposition 3.10]).

For x ∈ G(0), let G(x) = {γ ∈ G | r(γ) = d(γ) = x} – this is a group,
and is called the isotropy group at x. A groupoid G is said to be principal
if all the isotropy groups are trivial, and a topological groupoid is said to
be essentially principal if the points with trivial isotropy groups are dense in
G(0). A topological groupoid is said to be minimal if for all x ∈ G(0), the set
OG(x) = r(d−1(x)) is dense in G(0) (the set OG(x) is called the orbit of x).

If G is an étale groupoid, an open set U ⊂ G is called a bisection if r|U and d|U
are both injective (and hence homeomorphisms). The set of all bisections is
denoted Gop and is a distributive inverse semigroup when given the operations
of setwise product and inverse. We say that an étale groupoid G is ample
if the set of compact bisections forms a basis for the topology on G. The
set of compact bisections is called the ample semigroup of G, is denoted Ga,
and is also a distributive inverse subsemigroup of Gop [LL13, Lemma 3.14].
Since G is second countable, Ga must be countable [Exe10, Corollary 4.3]. If
G(0) is compact, then the idempotent set of Ga is the set of all clopen sets
in G(0), and so Ga is a Boolean inverse monoid (see also [Ste10, Proposition
3.7] which shows that when G is Hausdorff and G(0) is only locally compact,
Ga is a Boolean inverse semigroup, i.e. a distributive inverse semigroup whose
idempotent semilattice is a generalized Boolean algebra).

To an étale groupoid G one can associate C*-algebras through the theory de-
veloped by Renault [Ren80]. Let Cc(G) denote the linear space of continuous
compactly supported functions on G. Then Cc(G) becomes a ∗-algebra with
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product and involution given by

fg(γ) =
∑

γ1γ2=γ

f(γ1)g(γ2), f∗(γ) = f(γ−1).

From this one can produce two C*-algebras C∗(G) and C∗red(G) (called the
C*-algebra of G and the reduced C*-algebra of G, respectively) by completing
Cc(G) in certain norms, see [Ren80, Definitions 1.12 and 2.8]. There is always a
surjective ∗-homomorphism Λ : C∗(G) → C∗red(G), and if Λ is an isomorphism
we say that G satisfies weak containment. If G is amenable [ADR00], then
G satisfies weak containment. There is an example of a case where Λ is an
isomorphism for a nonamenable groupoid [Wil15], but under some conditions on
G one has that weak containment and amenability are equivalent, see [AD16b,
Theorem B].
Recall that if B ⊂ A are both C*-algebras, then a surjective linear map E :
A → B is called a conditional expectation if E is contractive, E ◦ E = E,
and E(bac) = bE(a)c for all b, c ∈ B and a ∈ A. Let G be a Hausdorff étale
groupoid with compact unit space, and consider the map E : Cc(G)→ C(G(0))
defined by

E(f) = f |G(0) . (1)

Then this map extends to a conditional expectation on both C∗(G) and C∗red(G),
both denoted E. On C∗red(G), E is faithful in the sense that if E(a∗a) = 0, then
a = 0.
Let G be an ample étale groupoid. Both C*-algebras contain Cc(G), and hence
if U is a compact bisection, 1U is an element of both C*-algebras. Hence we
have a map π : Ga → C∗(G) given by π(U) = 1U . This map satisfies π(UV ) =
π(U)π(V ), π(U−1), and π(0) = 0, in other words, π is a representation of the
inverse semigroup Ga [Exe10].

2.3 The tight groupoid of an inverse semigroup

Let S be an inverse semigroup. A filter in E(S) is a nonempty subset ξ ⊂ E(S)
such that

1. 0 /∈ ξ,
2. e, f ∈ ξ implies that ef ∈ ξ, and
3. e ∈ ξ, e 6 f implies f ∈ ξ.

The set of filters is denoted Ê0(S), and can be viewed as a subspace of
{0, 1}E(S). For X,Y ⊂fin E(S), let

U(X,Y ) = {ξ ∈ Ê0(S) | X ⊂ ξ, Y ∩ ξ = ∅}.

sets of this form are clopen and generate the topology on Ê0(S) as X and Y

vary over all the finite subsets of E(S). With this topology, Ê0(S) is called the
spectrum of E(S).
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A filter is called an ultrafilter if it is not properly contained in any other filter.
The set of all ultrafilters is denoted Ê∞(S). As a subspace of Ê0(S), Ê∞(S)

may not be closed. Let Êtight(S) denote the closure of Ê∞(S) in Ê0(S) – this is
called the tight spectrum of E(S). Of course, when E(S) is a Boolean algebra,

Êtight(S) = Ê∞(S) by Stone duality [GH09, Chapter 34].
An action of an inverse semigroup S on a locally compact space X is a semi-
group homomorphism α : S → I(X) such that

1. αs is continuous for all s ∈ S,

2. the domain of αs is open for each s ∈ S, and

3. the union of the domains of the αs is equal to X .

If α is an action of S on X , we write α : S y X . The above implies that
αs∗ = α−1s , and so each αs is a homeomorphism. For each e ∈ E(S), the map
αe is the identity on some open subset Dα

e , and one easily sees that the domain
of αs is Dα

s∗s and the range of αs is Dα
ss∗ , that is

αs : D
α
s∗s → Dα

ss∗ .

There is a natural action θ of S on Êtight(S); this is referred to in [EP16] as

the standard action of S. For e ∈ E(S), let Dθ
e = {ξ ∈ Êtight(S) | e ∈ ξ} =

U({e}, ∅) ∩ Êtight(S). For each s ∈ S and ξ ∈ Dθ
s∗s, define θs(ξ) = {ses∗ | e ∈

ξ}↑ – this is a well-defined homeomorphism from Dθ
s∗s to D

θ
ss∗ , for the details,

see [Exe08].
One can associate a groupoid to an action α : S y X . Let S ×αX = {(s, x) ∈
S × X | x ∈ Dα

s∗s}, and put an equivalence relation ∼ on this set by saying
that (s, x) ∼ (t, y) if and only if x = y and there exists some e ∈ E(S) such
that se = te and x ∈ Dα

e . The set of equivalence classes is denoted

G(α) = {[s, x] | s ∈ S, x ∈ X}

and becomes a groupoid when given the operations

d([s, x]) = x, r([s, x]) = αs(x),

[s, x]−1 = [s∗, αs(x)], [t, αs(x)][s, x] = [ts, x].

This is called the groupoid of germs of α. Note that above we are making
the identification of the unit space with X , because [e, x] = [f, x] for any
e, f ∈ E(S) with x ∈ Dα

e , D
α
f . For s ∈ S and open set U ⊂ Dα

s∗s we let

Θ(s, U) = {[s, x] | x ∈ U}

and endow G(α) with the topology generated by such sets. With this topology
G(α) is an étale groupoid, sets of the above type are bisections, and if X is
totally disconnected G(α) is ample.
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Let θ : S y Êtight(S) be the standard action, and define

Gtight(S) = G(θ).

This is called the tight groupoid of S. This was defined first in [Exe08] and
studied extensively in [EP16].
Let G be an ample étale groupoid, and consider the Boolean inverse monoid Ga.
By work of Exel [Exe10] if one uses the above procedure to produce a groupoid
from Ga, one ends up with exactly G. In symbols,

Gtight(Ga) ∼= G for any ample étale groupoid G. (2)

We note this result was also obtained in [Len08, Theorem 6.11] in the case

where Êtight(S) = Ê∞(S). In particular,

Gtight(Gtight(S)a) ∼= Gtight(S) for all inverse semigroups S.

This result can be made categorical [LL13, Theorem 3.26], and has been gen-
eralized to cases where the space of units is not even Hausdorff. This duality
between Boolean inverse semigroups and ample étale groupoids falls under the
broader program of noncommutative Stone duality, see [LL13] for more details.

3 C*-algebras of Boolean inverse monoids

In this section we describe the tight C*-algebra of a general inverse monoid,
define the C*-algebra of a Boolean inverse monoid, and show that these two
notions coincide for Boolean inverse monoids.
If S is an inverse monoid, then a representation of S in a unital C*-algebra A
is a map π : S → A such that π(0) = 0, π(s∗) = π(s)∗, and π(st) = π(s)π(t)
for all s, t ∈ S. If π is a representation, then C∗(π(E(S))) is a commutative
C*-algebra. Let

Bπ = {e ∈ C∗(π(E(S))) | e2 = e = e∗}

Then this set is a Boolean algebra with operations

e ∧ f = ef, e ∨ f = e+ f − ef, e⊥ = 1− e.

We will be interested in a subclass of representations of S. TakeX,Y ⊂fin E(S),
and define

E(S)X,Y = {e ∈ E(S) | e 6 x for all x ∈ X, ey = 0 for all y ∈ Y }

We say that a representation π : S → A with A unital is tight if for all
X,Y, Z ⊂fin E(S) where Z is a cover of E(S)X,Y , we have the equation

∨

z∈Z
π(z) =

∏

x∈X
π(x)

∏

y∈Y
(1 − π(y)). (3)
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The tight C*-algebra of S, denoted C∗tight(S), is then the universal unital C*-
algebra generated by one element for each element of S subject to the relations
that guarantee that the standard map from S to C∗tight(S) is tight. The above
was all defined in [Exe08] and the interested reader is directed there for the
details. It is a fact that C∗tight(S)

∼= C∗(Gtight(S)) where the latter is the full
groupoid C*-algebra (see e.g. [Exe10, Theorem 2.4]).
If S has the additional structure of being a Boolean inverse monoid, then we
might wonder what extra properties π should have, in particular, what is the
notion of a “join” of two partial isometries in a C*-algebra?
Let A be a C*-algebra, and suppose that S is a Boolean inverse monoid of
partial isometries in A. If we have s, t ∈ S such that s∗t, st∗ ∈ E(S), then

tt∗s = tt∗ss∗s = ss∗tt∗s = s(s∗t)(s∗t)∗ = ss∗t

and if we let as,t := s+ t− ss∗t = s+ t − tt∗s, this is a partial isometry with
range ass∗,tt∗ and support as∗s,t∗t. A short calculation shows that as,t is the
least upper bound for s and t in the natural partial order, and so as,t = s ∨ t.
It is also straightforward that r(s∨ t) = rs∨ rt for all r, s, t ∈ S. This leads us
to the following definitions.

Definition 3.1. Let S be a Boolean inverse monoid. A Boolean inverse monoid
representation of S in a unital C*-algebra A is a map π : S → A such that

1. π(0) = 0,

2. π(st) = π(s)π(t) for all s, t ∈ S,
3. π(s∗) = π(s)∗ for all s ∈ S, and
4. π(s ∨ t) = π(s) + π(t)− π(ss∗t) for all compatible s, t,∈ S.

Definition 3.2. Let S be a Boolean inverse monoid. Then the universal C*-
algebra of S, denoted C∗B(S), is defined to be the universal unital C*-algebra
generated by one element for each element of S subject to the relations which
say that the standard map of S into C∗B(S) is a Boolean inverse monoid repre-
sentation. The map πu which takes an element s to its corresponding element
in C∗B(S) will be called the universal Boolean inverse monoid representation of
S, and we will sometimes use the notation δs := πu(s).

The theory of tight representations was originally developed to deal with rep-
resenting inverse semigroups (in which joins may not exist) inside C*-algebras,
because in a C*-algebra two commuting projections always have a join. It
should come as no surprise then that once we are dealing with an inverse semi-
group where we can take joins, the representations which respect joins end up
being exactly the tight representations, see [DM14, Corollary 2.3]. This is what
we prove in the next proposition.

Proposition 3.3. Let S be a Boolean inverse monoid. Then a map π : S → A
is a Boolean inverse monoid representation of S if and only if π is a tight
representation.
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Proof. Suppose that π is a Boolean inverse monoid representation of S. Then
when restricted to E(S), π is a Boolean algebra homomorphism into Bπ, and
so by [Exe08, Proposition 11.9], π is a tight representation.
On the other hand, suppose that π is a tight representation, and first suppose
that e, f ∈ E(S). Then the set {e, f} is a cover for E(S){e∨f},∅, so

π(e) ∨ π(f) = π(e ∨ f).

Now let s, t ∈ S be compatible, so that s∗t = t∗s and st∗ = ts∗ are both
idempotents, and we have

s∗st∗t = s∗ts∗t = s∗t.

Since (s ∨ t)∗(s ∨ t) = s∗s ∨ t∗t, we have

π(s ∨ t) = π(s ∨ t)π(s∗s ∨ t∗t)
= π(s ∨ t)(π(s∗s) + π(t ∗ t)− π(s∗st∗t)
= π(ss∗s ∨ ts∗s) + π(st∗t ∨ tt∗t)− π(ss∗st∗t ∨ tt∗ts∗s))
= π(s ∨ st∗s) + π(ts∗t ∨ t)− π(st∗t ∨ ts∗s)
= π(s) + π(t)− π(ss∗t)

where the last line follows from the facts that st∗s 6 s, ts∗t 6 t and ts∗s =
st∗t = ss∗t = tt∗s.

We have the following consequence of the proof of the above proposition.

Corollary 3.4. Let S be a Boolean inverse monoid. Then a map π : S → A is
a Boolean inverse monoid representation of S if and only if it is a representation
and for all e, f ∈ E(S) we have π(e ∨ f) = π(e) + π(f)− π(ef).

We now have the following.

Theorem 3.5. Let S be a Boolean inverse monoid. Then

C∗B(S) ∼= C∗tight(S) ∼= C∗(Gtight(S)).

In what follows, we will be studying traces on C*-algebras arising from Boolean
inverse monoids. However, many of our examples will actually arise from in-
verse monoids which are not distributive, and so the Boolean inverse monoid
in question will actually be Gtight(S)a, see (2). The map from S to Gtight(S)a
defined by

s 7→ Θ(s,Dθ
s∗s)

may fail to be injective, and so we cannot say that a given inverse monoid
can be embedded in a Boolean inverse monoid. The obstruction arises from
the following situation: suppose S is an inverse semigroup and that we have
e, f ∈ E(S) such that e 6 f and for all 0 6= k 6 f we have ek 6= 0, in other
words, {e} is a cover for {f}↓. In such a situation, we say that e is dense in
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f2, and by (3) we must have that π(e) = π(f) (see also [Exe09] and [Exe08,
Proposition 11.11]). For most of our examples, we will be considering inverse
semigroups which have faithful tight representations, though we consider one
which does not.
We close this section by recording some consequences of Theorem 3.5. The
tight groupoid and tight C*-algebra of an inverse semigroup were extensively
studied in [EP16] and [Ste16], where they gave conditions on S which imply
that C∗tight(S) is simple and purely infinite. We first recall some definitions
from [EP16].

Definition 3.6. Let S be an inverse semigroup, let s ∈ S and e 6 s∗s. Then
we say that

1. e is fixed by s if se = e, and

2. e is weakly fixed by s if for all 0 6= f 6 e, fsfs∗ 6= 0.

Denote by Js := {e ∈ E(S) | se = e} the set of all fixed idempotents for s ∈ S.
We note that an inverse semigroup for which Js = {0} for all s /∈ E(S) is called
E*-unitary.

Theorem 3.7. Let S be an inverse semigroup. Then

1. Gtight(S) is Hausdorff if and only if Js has a finite cover for all s ∈ S.
[EP16, Theorem 3.16]

2. If Gtight(S) is Hausdorff, then Gtight(S) is essentially principal if and only
if for every s ∈ S and every e ∈ E(S) weakly fixed by s, there exists a
finite cover for {e} by fixed idempotents. [EP16, Theorem 4.10]

3. Gtight(S) is minimal if and only if for every nonzero e, f ∈ E(S), there
exist F ⊂fin S such that {esfs∗ | s ∈ F} is a cover for {e}.[EP16,
Theorem 5.5]

We translate the above to the case where S is a Boolean inverse monoid.

Proposition 3.8. Let S be a Boolean inverse monoid. Then

1. Gtight(S) is Hausdorff if and only if for all s ∈ S, there exists an idempo-
tent es with ses = es such that if e is fixed by s, then e 6 es.

2. If Gtight(S) is Hausdorff, then Gtight(S) is essentially principal if and only
if for every s ∈ S, e weakly fixed by s implies e is fixed by s.

3. Gtight(S) is minimal if and only if for every nonzero e, f ∈ E(S), there
exist F ⊂fin S such that e 6

∨
s∈F sfs

∗.

2This is the terminology used in [Exe08, Definition 11.10] and [Exe09], though in [LS14,
Section 6.3] such an e is called essential in f .
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Proof. Statements 2 and 3 are easy consequences of taking the joins of the
finite covers mentioned. Statement 1 is central to what follows, and is proven
in Lemma 4.2.

If an étale groupoid G is Hausdorff, then C∗(G) is simple if and only if G
is essentially principal, minimal, and satisfies weak containment, see [BCFS14]
(also see [ES15] for a discussion of amenability of groupoids associated to inverse
semigroups).

4 Invariant means and traces

In this section we consider invariant means on Boolean inverse monoids, and
show that such functions always give rise to traces on the associated C*-
algebras. This definition is from [KLLR16].

Definition 4.1. Let S be a Boolean inverse monoid. A nonzero function
µ : E(S)→ [0,∞) will be called an invariant mean if

1. µ(s∗s) = µ(ss∗) for all s ∈ S

2. µ(e ∨ f) = µ(e) + µ(f) for all e, f ∈ E(S) such that ef = 0.

If in addition µ(1) = 1, we call µ a normalized invariant mean. An invariant
mean µ will be called faithful if µ(e) = 0 implies e = 0. We will denote by
M(S) the affine space of all normalized invariant means on S.

We make an important assumption on the Boolean inverse monoids we consider
here. This assumption is equivalent to the groupoid Gtight(S) being Hausdorff
[EP16, Theorem 3.16].3

For every s ∈ S, the set Js = {e ∈ E(S) | se = e} admits a finite cover. (H)

The next lemma records straightforward consequences of condition (H) when
S happens to be a Boolean inverse monoid.

Lemma 4.2. Let S be Boolean inverse monoid which satisfies condition (H).
Then,

1. for each s ∈ S there is an idempotent es such that for any finite cover C
of Js,

es =
∨

c∈C
c. (4)

and Js = Jes ,
3In [Sta15], we define condition (H) for another class of semigroups, namely the right LCM

semigroups. Right LCM semigroups and inverse semigroups are related, but the intersection
of their classes is empty (because right LCM semigroups are left cancellative and we assume
that our inverse semigroups have a zero element). We note that a right LCM semigroup P
satisfies condition (H) in the sense of [Sta15] if and only if its left inverse hull Il(P ) satisfies
condition (H) in the sense of the above.
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2. es∗ = es for all s ∈ S,

3. est 6 ss∗, t∗t for all s, t ∈ S, and

4. es∗tet∗r 6 es∗r for all s, t, r ∈ S.

Proof. To show the first statement, we need to show that any two covers give
the same join. If Js = {0}, there is nothing to do. So suppose that 0 6= e ∈ Js,
suppose that C is a cover for Js, and let eC =

∨
c∈C c. Indeed, the element

ee⊥C must be in Js, and since it is orthogonal to all elements of C and C is a
cover, ee⊥C must be 0. Hence we have

e = eeC ∨ ee⊥C = eeC

and so e 6 eC . Now if K is another cover for Js with join eK and k ∈ K, we
must have that k 6 eC , and so eK 6 eC . Since the argument is symmetric, we
have proven the first statement.
To prove the second statement, if e ∈ Js then we have

ses∗ = es∗ = (se)∗ = e

and so

s∗e = s∗(ses∗) = es∗ss∗ = es∗ = (se)∗ = e

and again by symmetry we have Js = Js∗ and so es = es∗ .
To prove the third statement, we notice

ss∗est = ss∗stest = stest = est

estt
∗t = stestt

∗t = stt∗test = stest = est.

For the fourth statement, we calculate (using 2)

es∗tet∗r = s∗tes∗tet∗r = s∗tt∗res∗tet∗r
= s∗tt∗rr∗tes∗tet∗r = s∗rr∗tes∗tet∗r
= s∗res∗tet∗r

hence es∗tet∗r 6 s∗r and so es∗tet∗r 6 es∗r.

In what will be a crucial step to obtaining a trace from an invariant mean, we
now obtain a relationship between est and ets.

Lemma 4.3. Let S be Boolean inverse monoid which satisfies condition (H).
Then for all s, t ∈ S, we have that s∗ests = ets.

Proof. Suppose that e ∈ Jts. Then tse = e, and so

(st)ses∗ = ses∗
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hence ses∗ ∈ Jst. If C is a cover of Jst and f ∈ Jts, there must exist c ∈ C
such that c(sfs∗) 6= 0. Hence

css∗sfs∗ 6= 0

ss∗csfs∗ 6= 0

s∗csf 6= 0

and so we see that s∗Cs is a cover for Jts. By Lemma 4.2,

ets =
∨

c∈C
s∗cs = s∗

(∨

c∈C
c

)
s = s∗ests.

Lemma 4.3 and Lemma 4.2.3 imply that for all s, t ∈ S and all µ ∈ M(S), we
have µ(est) = µ(ets).

Remark 4.4. We are thankful to Ganna Kudryavtseva for pointing out to us
that the proofs Lemmas 4.2 and 4.3 can be simplified by using the fact from
[KL14, Theorem 8.20] that a Boolean inverse monoid S satisfies condition (H)
if and only if every pair of elements in S has a meet (see also [Ste10, Proposition
3.7] for another wording of this fact). From this, one can see that for all s ∈ S
we have

es = s ∧ (s∗s) = s ∧ (ss∗).

Definition 4.5. Let A be a C*-algebra. A bounded linear functional τ : A→
C is called a trace if

1. τ(a∗a) ≥ 0 for all a ∈ A,

2. τ(ab) = τ(ba) for all a, b ∈ A.

A trace τ is said to be faithful if τ(a∗a) > 0 for all a 6= 0. A trace τ on a unital
C*-algebra is called a tracial state if τ(1) = 1. The set of all tracial states of a
C*-algebra A is denoted T (A).

We are now able to define a trace on C∗B(S) for each µ ∈M(S).

Proposition 4.6. Let S be Boolean inverse monoid which satisfies condition
(H), and let µ ∈M(S). Then there is a trace τµ on C∗B(S) such that

τµ(δs) = µ(es) for all s ∈ S.

If µ is faithful, then the restriction of τµ to C∗red(Gtight(S)) is a faithful trace.

Proof. We define τµ to be as above on the generators δs of C
∗
B(S), and extend

it to B :=span{δs | s ∈ S}, a dense ∗-subalgebra of C∗B(S).
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We first show that τµ(δsδt) = τµ(δtδs). Indeed, by Lemmas 4.2 and 4.3, we
have

τµ(δsδt) = µ(est) = µ(estss
∗) = µ(estss

∗est) = µ((ests)(ests)
∗)

= µ((ests)
∗(ests)) = µ(s∗ests) = µ(ets) = τµ(δtδs).

Since τµ is extended linearly to B, we have that τµ(ab) = τµ(ba) for all a, b ∈ B.
Let F be a finite index set and take x =

∑
i∈F aiδsi in B. We will show that

τµ(x
∗x) ≥ 0. For i, j ∈ F , we let eij = es∗i sj and note that eij = eji. We

calculate:

x∗x =

(∑

s∈S
aiδs∗i

)
∑

j∈F
ajδsj




=
∑

i,j∈F
aiajδs∗i sj

τµ(x
∗x) =

∑

i,j∈F
aiajµ(eij)

=
∑

i∈F
|ai|2µ(eii) +

∑

i,j∈F,i6=j
(aiaj + ajai)µ(eij).

We will show that this sum is positive by using an orthogonal decomposition
of the eij . Let F 2

6= = {{i, j} ⊂ F | i 6= j}, and let D(F 2
6=) = {(A,B) | A ∪ B =

F 2
6=, A ∩B = ∅}. For a = {i, j} ∈ F 2

6=, let ea = eij . We have

eij = eij
∨

(A,B)∈D(F 2
6=)


 ∏

a∈A,b∈B
eae
⊥
b




where the join is an orthogonal join. Of course, the above is only nonzero when
{i, j} ∈ A. We also notice that

eii >
∨

(A,B)∈D(F 2
6=)

i∈∪A


 ∏

a∈A,b∈B
eae
⊥
b




and so τµ(x
∗x) is larger than a linear combination of terms of the form

µ
(∏

a∈A,b∈B eae
⊥
b

)
for partitions (A,B) of F 2

6=: specifically, τµ(x
∗x) is greater

than or equal to

∑

(A,B)∈D(F 2
6=)




∑

i∈∪A
|ai|2 +

∑

a={j,k}∈A
(aiaj + ajai)


µ


 ∏

a∈A,b∈B
eae
⊥
b




 (5)
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If a term
∏
a∈A,b∈B eae

⊥
b is not zero, then we claim that the relation

i ∼ j if and only if i = j or {i, j} ∈ A
is an equivalence relation on ∪A. Indeed, suppose that i, j, k ∈ ∪A are all
pairwise nonequal and {i, j}, {j, k} ∈ A. By Lemma 4.2.4, eijejk 6 eik and
since the product is nonzero, we must have that {i, k} ∈ A. Writing [∪A] for
the set of equivalence classes, we have

∑

i∈∪A
|ai|2 +

∑

a={j,k}∈A
(aiaj + ajai) =

∑

C∈[∪A]



∑

i∈C
|ai|2 +

∑

i,j∈C
i6=j

(aiaj + ajai)




=
∑

C∈[∪A]

∣∣∣∣∣
∑

i∈C
ai

∣∣∣∣∣

2

.

Hence, τµ(x
∗x) ≥ 0, and τµ is positive on B. Hence, τµ extends to a trace on

C∗B(S).
The above calculation shows that if µ is faithful, then τµ is faithful on B. A
short calculation shows that E(δs) = δes , where E is as in (1). Furthermore,
it is clear that on B we have that τµ = τµ ◦ E, and so we will show that τµ
is faithful on C∗red(Gtight(S)) if we show that τµ(a) > 0 for all nonzero positive

a ∈ C(Êtight(S)). If a ∈ C(Êtight(S)) is positive, then it is bounded above zero
on some clopen set given by De for some e ∈ E(S). Hence, τµ(a) ≥ τµ(δe) =
µ(e) which must be strictly positive because µ is faithful.

We now show that given a trace on C∗B(S) we can construct an invariant mean
on S.

Proposition 4.7. Let S be Boolean inverse monoid, let πu : S → C∗B(S) be
the universal Boolean monoid representation of S, and take τ ∈ T (C∗B(S)).
Then the map µτ : E(S)→ [0,∞) defined by

µτ (e) = τ(πu(e)) = τ(δe)

is a normalized invariant mean on S. If τ is faithful then so is µτ .

Proof. That µτ takes positive values follows from τ being positive. We have

µτ (s
∗s) = τ(πu(s

∗s)) = τ(πu(s
∗)πu(s))

= τ(πu(s)πu(s
∗)) = τ(πu(ss

∗))

= µτ (ss
∗).

Also, if e, f ∈ E(S) with ef = 0, then

µτ (e ∨ f) = τ(πu(e ∨ f)) = τ(πu(e) + πu(f))

= τ(πu(e)) + τ(πu(f))

= µτ (e) + µτ (f).
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If τ is faithful and e 6= 0, τ(δe) > 0 because δe is positive and nonzero, and so
µτ is faithful.

Proposition 4.8. Let S be Boolean inverse monoid which satisfies condition
(H). Then the map

µ 7→ τµ 7→ µτµ

is the identity on M(S).

Proof. This is immediate, since if µ ∈M(S) and e ∈ E(S) we have

µτµ(e) = τµ(πu(e)) = τµ(δe) = µ(e).

Given the above, one might wonder under which circumstances we have that
T (C∗B(S)) ∼=M(S). This is not true in the general situation – take for example
S to be the group Z2 = {1,−1} with a zero element adjoined – this is a Boolean
inverse monoid. HereM(S) consists of one element, namely the function which
takes the value 1 on 1 and the value 0 on the zero element. The C*-algebra of
S is the group C*-algebra of Z2, which is isomorphic to C2, a C*-algebra with
many traces (taking the dot product of an element of C2 with any nonnegative
vector whose entries add to 1 determines a normalized trace on C2).
One can still obtain this isomorphism using the following.

Definition 4.9. Let G be an étale groupoid. A regular Borel probability
measure ν on G(0) is called G-invariant if for every bisection U one has that
ν(r(U)) = ν(d(U)). The affine space of all regular G-invariant Borel probability
measures is denoted IM(G).
The following is a special case of [KR06, Proposition 3.2].

Theorem 4.10. (cf [KR06, Proposition 3.2]) Let G be a Hausdorff principal
étale groupoid with compact unit space. Then

T (C∗red(G)) ∼= IM(G)
For τ ∈ T (C∗red(G)) the image of τ under the above isomorphism is the regular
Borel probability measure ν whose existence is guaranteed by the Riesz repre-
sentation theorem applied to the positive linear functional on C(G(0)) given by
restricting τ .

For a proof of Theorem 4.10 in the above form, see [Put, Theorem 3.4.5].
For us, the groupoid Gtight(S) satisfies all of the conditions in Theorem 4.10,
except possibly for being principal. Also note that in the general case,
C∗red(Gtight) may not be isomorphic to C∗B(S). So if we restrict our attention
to Boolean inverse monoids which have principal tight groupoids and for which
C∗red(Gtight(S)) ∼= C∗B(S) (that is to say, Boolean inverse monoids for which
Gtight(S) satisfies weak containment), we can obtain the desired isomorphism.
While this may seem like a restrictive set of assumptions, they are all satisfied
for the examples we consider here.
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Proposition 4.11. Let S be Boolean inverse monoid which satisfies condition
(H), and suppose ν ∈ IM(Gtight(S)). Then the map ην : E(S)→ [0,∞) defined
by

ην(e) = ν(Dθ
e)

is a normalized invariant mean on S. The map that sends ν 7→ ην is an affine
isomorphism of IM(Gtight(S)) and M(S).

Proof. That ην(s
∗s) = ην(ss

∗) follows from invariance of ν applied to the
bisection Θ(s,Ds∗s), and that ην is additive over orthogonal joins follows from
the fact that ν is a measure. This map is clearly affine. Suppose that ην = ηκ
for ν, κ ∈ IM(Gtight(S)). Then ν, κ agree on all sets of the form Dθ

e , and since

these sets generate the topology on Êtight(S), ν and κ agree on all open sets.
Since they are regular Borel probability measures they must be equal, and so
ν 7→ ην is injective.
To get surjectivity, let µ be an invariant mean, and let τµ be as in Proposition

4.6. Then restricting τµ to C(Êtight(S)) and invoking the Riesz representation

theorem gives us a regular invariant probability measure ν on Êtight(S), and
we must have ην = µ.

Corollary 4.12. Let G be an ample Hausdorff groupoid. Then IM(G) ∼=
M(Ga).

So the invariant means on the ample semigroup of an ample Hausdorff groupoid
are in one-to-one correspondence with the G-invariant measures.

Theorem 4.13. Let S be Boolean inverse monoid which satisfies condition (H).
Suppose that Gtight(S) is principal, and that C∗red(Gtight(S)) ∼= C∗B(S). Then

T (C∗B(S)) ∼=M(S)

via the map which sends τ to µτ as in Proposition 4.7. In addition, both are
isomorphic to IM(Gtight(S)).

Proof. This follows from Theorem 4.10 and Proposition 4.11.

There are many results in the literature concerning traces which now apply to
our situation.

Corollary 4.14. Let S be Boolean inverse monoid which satisfies condition
(H). If S admits a faithful invariant mean, then C∗red(Gtight(S)) is stably finite.
If in addition Gtight(S) satisfies weak containment, C∗B(S) is stably finite.

Proof. If µ is a faithful invariant mean, then after normalizing one obtains a
faithful trace on C∗red(Gtight(S)) by Proposition 4.6. Now the result is standard,
see for example [LLR00, Exercise 5.2].

Corollary 4.15. Let S be Boolean inverse monoid which satisfies condition
(H). If C∗B(S) is stably finite and exact, then S has an invariant mean.
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Proof. This is a consequence of the celebrated result of Haagerup [Haa91] when
applied to Proposition 4.7

For the undefined terms above, we direct the interested reader to [BO08]. We
also note that exactness of C∗B(S) has recently been considered in [Li16] and
[AD16a].

5 Examples

5.1 AF inverse monoids

This is a class of Boolean inverse monoids introduced in [LS14] motivated by
the construction of AF C*-algebras from Bratteli diagrams.
A Bratteli diagram is an infinite directed graph B = (V,E, r, s) such that

1. V can be written as a disjoint union of finite sets V = ∪n≥0Vn
2. V0 consists of one element v0, called the root,

3. for all edges e ∈ E, s(e) ∈ Vi implies that r(e) ∈ Vi+1 for all i ≥ 0, and

4. for all i ≥ 1 and all v ∈ Vi, both r−1(v) and s−1(v) are finite and
nonempty.

We also denote s−1(Vi) := Ei, so that E = ∪n≥0En. Let E∗ be the set of all
finite paths in B, including the vertices (treated as paths of length zero). For
v, w ∈ V ∪ E, let vE∗ denote all the paths starting with v, let E∗w be all the
paths ending with w, and let vE∗w be all the paths starting with v and ending
with w.
Given a Bratteli diagram B = (V,E, r, s) we construct a C*-algebra as follows.
We let

A0 = C

A1 =
⊕

v∈V1

M|r−1(v)|,

and define k1(v) = |r−1(v)| for all v ∈ V1. For an integer i > 1 and v ∈ Vi, let

ki(v) =
∑

γ∈r−1(v)

ki−1(s(γ)). (6)

Define
Ai =

⊕

v∈Vi
Mki(v)

Now for all i ≥ 0, one can embed Ai →֒ Ai+1 by viewing, for each v ∈ Vi+1

⊕

γ∈r−1(v)

Mki(s(γ)) ⊂Mki+1(v)
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where the algebras in the direct sum are orthogonal summands along the di-
agonal in Mki+1(v). So A0 →֒ A1 →֒ A1 →֒ · · · can be viewed as an increasing
union of finite dimensional C*-algebra, all of which can be realized as subal-
gebras of B(H) for the same H, and so we can form the norm closure of the
union

AB :=
⋃

n≥0
An.

This C*-algebra is what is known as an AF algebra, and every unital AF algebra
arises this way from some Bratteli diagram.
The AF algebra AB can always be described as the C*-algebra of a principal
groupoid derived from B, see [Ren80] and [ER06]. We reproduce this construc-
tion here. Let XB denote the set of all infinite paths in B which start at the
root. When given the product topology from the discrete topologies on the
En, this is a compact Hausdorff totally disconnected space. For α ∈ v0E∗, we
let C(α) = {x ∈ XB | xi = αi for all i = 0, . . . , |α| − 1}. Sets of this form are
clopen and form a basis for the topology on XB. For n ∈ N, let

R(n)
B = {(x, y) ∈ X ×X | xi = yi for all i ≥ n+ 1}

so a pair of infinite paths (x, y) is in R(n)
B if and only if x and y agree after the

vertices on level n. Clearly, R(n)
B ⊂ R(n+1)

B , and so we can form their union

RB =
⋃

n∈N
R(n)
B .

This is an equivalence relation, known as tail equivalence on XB. For v ∈
V \ {v0} and α, β ∈ v0E∗v, define

C(α, β) = {(x, y) ∈ RB | x ∈ C(α), y ∈ C(β)}

sets of this type form a basis for a topology on RB , and with this topology RB
is a principal Hausdorff étale groupoid with unit space identified with XB, and

C∗(RB) ∼= C∗red(RB) ∼= AB.

In [LS14], a Boolean inverse monoid is constructed from a Bratteli diagram,
mirroring the above construction. We will present this Boolean inverse monoid
in a slightly different way which may be enlightening. Let B = (V,E, r, s) be
a Bratteli diagram. Let S0 be the Boolean inverse monoid (in fact, Boolean
algebra) {0, 1}. For each i ≥ 1, let

Si =
⊕

v∈Vi
I(v0E∗v)

where as in Section 2.1, I(X) denotes the set of partially defined bijections on
X .
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If v ∈ Vi+1 and γ ∈ r−1(v) then one can view I(v0E∗γ) as a subset of I(v0E∗v),
and if η ∈ r−1(v) with γ 6= η, I(v0E∗γ) and I(v0E∗η) are orthogonal. Fur-
thermore, I(v0E∗γ) can be identified with I(v0E∗s(γ)) Hence the direct sum
over r−1(v) can be embedded into I(v0E∗v):

⊕

γ∈r−1(v)

I(v0E∗s(γ)) →֒ I(v0E∗v). (7)

This allows us to embed Si →֒ Si+1

⊕

v∈Vi
I(v0E∗v) →֒

⊕

w∈Vi+1

I(v0E∗w)

where an element φ in a summand I(v0E∗v) gets sent to |s−1(v)| summands
on the right, one for each γ ∈ s−1(v): φ will be sent to the summand inside
I(v0E∗s(γ)) corresponding to v in left hand side of the embedding from (7).
We then define

I(B) = lim
→

(Si →֒ Si+1)

This is a Boolean inverse monoid [LS14, Lemma 3.13]. As a set I(B) is the
union of all the Si, viewed as an increasing union via the identifications above.
In [LS14, Remark 6.5], it is stated that the groupoid one obtains from I(B)
(i.e., Gtight(I(B))) is exactly tail equivalence. We provide the details of that
informal discussion here.
We will describe the ultrafilters in E(I(B)), a Boolean algebra. For v ∈ Vi and
a path α ∈ v0E∗v, let eα = Id{α} ∈ I(v0E∗v). As v ranges over all of Vi and α
ranges over all of v0E

∗v, these idempotents form a orthogonal decomposition
of the identity of I(B). Hence, given an ultrafilter ξ and i > 0 there exists

one and only one path, say α
(i)
ξ ending at level i with e

α
(i)
ξ

∈ ξ. Furthermore,

if j > i, we must have that α
(i)
ξ is a prefix of α

(j)
ξ , because products in an

ultrafilter cannot be zero. So for x ∈ XB, if we define

ξx = {eα | α is a prefix of x}

then we have that
Ê∞(I(B)) = {ξx | x ∈ XB}

By [EP16, Proposition 2.6], the set

{U({eα}, ∅) | α is a prefix of x}

is a neighbourhood basis for ξx. The map λ : XB → Ê∞(I(B)) given by λ(x) =
ξx is a bijection, and since U({eα}, ∅) = λ(C(α)), it is a homeomorphism. If
φ ∈ Si such that φ∗φ ∈ ξx, then we must have that one component of φ is in
I(v0E∗r(xi)), and we must have that

θφ(ξx) = ξφ(x0x1...xi)xi+1xi+2... (8)
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Finally, we claim that RB is isomorphic to Gtight(I(B)). We define a map

Φ : Gtight(I(B))→RB

Φ([φ, ξx]) 7→ (φ(x0x1 . . . xi)xi+1xi+2 . . . , x)

where φ and x are as in (8). If Φ([φ, ξx]) = Φ([ψ, ξy ]), then clearly we must
have ξx = ξy . We must also have that φ, ψ ∈ Si, and φex0x1...xi = ψex0x1...xi ,
hence [φ, ξx] = [ψ, ξy]. It is straightforward to verify that Φ is surjective and
bicontinuous, and so RB ∼= Gtight(I(B)). Since they are both étale, their C*-
algebras must be isomorphic. Hence with the above discussion, we have proven
the following.

Theorem 5.1. Let B be a Bratteli diagram. Then

C∗B(I(B)) ∼= AB.

Furthermore, every unital AF algebra is isomorphic to the universal C*-algebra
of a Boolean inverse monoid of the form I(B) for some B.

Recall that a compact convex metrizable subset X of a locally convex space is
a Choquet simplex if and only if for each x ∈ X there exists a unique measure ν
concentrated on the extreme points of X for which x is the center of gravity of
X for ν [Phe01]. Now we can use the following seminal result of Blackadar to
make a statement about the set of normalized invariant means for AF inverse
monoids.

Theorem 5.2. (Blackadar, see [Bla80, Theorem 3.10]) Let ∆ be any metriz-
able Choquet simplex. Then there exists a unital simple AF algebra A such
that T (A) is affinely isomorphic to ∆.

Corollary 5.3. Let ∆ be any metrizable Choquet simplex. Then there exists
an AF inverse monoid S such that M(S) is affinely isomorphic to ∆.

Proof. This result follows from Theorem 4.13 because Gtight(S) is Hausdorff,
amenable, and principal for every AF inverse monoid S.

5.2 The 3× 3 matrices

This example is a subexample of the previous example, but it will illustrate
how we approach the following two examples.
Let I3 denote the symmetric inverse monoid on the three element set {1, 2, 3}.
This is a Boolean inverse monoid which satisfies condition (H), and we define
a map π : I3 →M3 by saying that

π(φ)ij =

{
1 if φ(j) = i

0 otherwise.

Documenta Mathematica 21 (2016) 809–840



C*-Algebras of Boolean Inverse Monoids 831

Then it is straightforward to verify that π is in fact the universal Boolean
inverse monoid representation of I3.
Now instead consider the subset R3 ⊂ I3 consisting of the identity, the empty
function, and all functions with domain consisting of one element. Then R3

is an inverse monoid, and π(R3) is the set of all matrix units together with
the identity matrix and zero matrix. When restricted to R3, π is the universal
tight representation of R3. Hence C

∗
tight(R3) ∼= C∗B(I3) ∼= M3.

There is only one invariant mean µ on I3 – for an idempotent IdU ∈ I3, we
have µ(IdU ) = 1

3 |U |. The tight groupoid of R3 is the equivalence relation
{1, 2, 3} × {1, 2, 3}, which is principal – we also have that Gtight(R3)

a ∼= I3.
The unique invariant mean on I3 is identified with the unique normalized trace
on M3.
Our last two examples follow this mold, where we have an inverse monoid S
which generates a C*-algebra C∗tight(S), and we relate the traces of C∗tight(S)
to the invariant means of Gtight(S)a.

5.3 Self-similar groups

Let X be a finite set, let G be a group, and let X∗ denote the set of all words
in elements of X , including an empty word ∅. Let Xω denote the Cantor
set of one-sided infinite words in X , with the product topology of the discrete
topology on X . For α ∈ X∗, let C(α) = {αx | x ∈ Xω} – sets of this type are
called cylinder sets and form a clopen basis for the topology on X .
Suppose that we have a faithful length-preserving action of G on X∗, with
(g, α) 7→ g · α, such that for all g ∈ G, x ∈ X there exists a unique element of
G, denoted g|x, such that for all α ∈ X∗

g(xα) = (g · x)(g|x · α).

In this case, the pair (G,X) is called a self-similar group. The map G×X → G,
(g, x) 7→ g|x is called the restriction and extends to G×X∗ via the formula

g|α1···αn = g|α1
|α2
· · · |αn

and this restriction has the property that for α, β ∈ X∗, we have

g(αβ) = (g · α)(g|α · β).

The action of G on X∗ extends to an action of G on Xω given by

g · (x1x2x3 . . . ) = (g · x1)(g|x1
· x2)(g|x1x2

· x3) · · ·

In [Nek09], Nekrashevych associates a C*-algebra to (G,X), denoted OG,X ,
which is the universal C*-algebra generated by a set of isometries {sx}x∈X and
a unitary representation {ug}g∈G satisfying

(i) s∗xsy = 0 if x 6= y,
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(ii)
∑
x∈X sxs

∗
x = 1,

(iii) ugsx = sg·xu g|x .

One can also express OG,X as the tight C*-algebra of an inverse semigroup.
Let

SG,X = {(α, g, β) | α, β ∈ X∗, g ∈ G} ∪ {0}.
This set becomes an inverse semigroup when given the operation

(α, g, β)(γ, h, ν) =





(α(g · γ′), g|γ′ h, ν), if γ = βγ′,

(α, g(h−1
∣∣
β′)
−1, ν(h−1 · β′)), if β = γβ′,

0 otherwise

with
(α, g, β)∗ = (β, g−1, α).

Here, E(SX,G) = {(α, 1G, α) | α ∈ X∗}, and the tight spectrum Êtight(SG,X)
is homeomorphic Xω by the identification

x ∈ Xω 7→ {(α, 1G, α) ∈ E(SG,X) | α is a prefix of x} ∈ Êtight(SG,X).

If θ is the standard action of SG,X on Êtight(SG,X), then D
θ
(α,1G,α)

= C(α). If

s = (α, g, β) ∈ SX,G, then
θs : C(β)→ C(α)

θs(βx) = α(g · x)
It is shown in [EP14] that OG,X is isomorphic to C∗tight(SG,X).
We show that the universal tight representation of SG,X is faithful. This will
be accomplished if we can show that the map from SG,X to Gtight(SG,X)a given
by

s 7→ Θ(s,Dθ
s∗s)

is injective. If s = (α, g, β), then

Θ(s,Dθ
s∗s) = {[(α, g, β), βx] | x ∈ Xω}.

It is straightforward that d(Θ(s,Dθ
s∗s)) = C(β) and r(Θ(s,Dθ

s∗s)) = C(α).
Suppose we have another element t = (γ, h, η) such that Θ(s,Dθ

s∗s) =
Θ(t,Dθ

t∗t). Since these two bisections are equal, their sources (resp. ranges)
must be equal, so C(β) = C(η) (resp. C(α) = C(γ)). Hence, α = γ and
β = η. Since r and d are both bijective on these slices, we must have that for
all βx ∈ C(β), α(g · x) = α(h · x). Hence for all x ∈ Xω, we must have that
g · x = h · x. The action of G on X∗ is faithful, so the induced action of G on
Xω is also faithful, hence g = h and so t = s.
As it stands, the Boolean inverse monoid Gtight(SG,X)a cannot have any invari-
ant means. This is because the subalgebra of OG,X generated by {sx | x ∈ X}
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is isomorphic to the Cuntz algebra O|X|, and a trace on OG,X would have to
restrict to a trace on O|X|, which is purely infinite and hence has no traces.
To justify the inclusion of this example in this paper about invariant means,
we restrict to an inverse subsemigroup of SG,X whose corresponding ample
semigroup will admit an invariant mean. Let

S=
G,X = {(α, g, β) ∈ SG,X | |α| = |β|} ∪ {0}.

One can easily verify that this is closed under product and involution, and so
is a inverse subsemigroup of SG,X , with the same set of idempotents as SG,X .
If α, β ∈ X∗, |α| = |β|, and g ∈ G, then

(α, g, β)∗(α, g, β) = (β, 1G, β), (α, g, β)(α, g, β)∗ = (α, 1G, α).

If µ were an invariant mean on Gtight(S=
G,X)a, then we would have to have, for

all α, β ∈ X∗ and |α| = |β|, that µ(C(α)) = µ(C(β)). Moreover, for a given
length n, the set {C(α) | |α| = n} forms a disjoint partition of Xω, and so we
must have

µ(C(α)) = |X |−|α|. (9)

Any clopen subset of Xω must be a finite disjoint union of cylinders. Hence
the map µ on E(Gtight(S=

G,X)a) determined by (9) is an invariant mean, and is
in fact the unique invariant mean on Gtight(S=

G,X)a.
In the general case, it is possible for Gtight(S=

G,X) to be neither Hausdorff nor
principal. We now give an explicit example where we get a unique trace to go
along with our unique invariant mean.

Example 5.4. (The 2-odometer)
Let X = {0, 1} and let Z = 〈z〉 be the group of integers with identity e written
multiplicatively. The 2-odometer is the self-similar group (Z, X) determined
by

z · 0 = 1 z|0 = e

z · 1 = 0 z|1 = z.

If one views a word α ∈ X∗ as a binary number (written backwards), then z ·α
is the same as 1 added to the binary number for α, truncated to the length
of α if needed. If such truncation is not needed, z|α = e, but if truncation is
needed, z|α = z.
The action of Z on {0, 1}ω induced by the 2-odometer is the familiar Cantor
minimal system of the same name. For x ∈ {0, 1}ω we have

z · x =

{
000 · · · if xi = 1 for all i

00 · · · 01xi+1xi+2 · · · if xi = 0 and xj = 1 for all j < i

This action of Z is free (i.e. zn · x = x implies n = 0) and minimal (i.e. the set
{zn · x | n ∈ Z} is dense in {0, 1}ω for all x ∈ {0, 1}ω).
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Lemma 5.5. The groupoid of germs Gtight(S=
Z,X) is principal.

Proof. Take x, y ∈ {0, 1}ω and suppose that we have α, β ∈ {0, 1}∗ with |α| =
|β| and n ∈ Z such that [(α, zn, β), x] ∈ Gtight(S=

Z,X) and r([(α, zn, β), x]) =
y. This implies that x = βv for some v ∈ {0, 1}ω, and that y = α(zn · v).
Suppose we can find another germ from x to y, that is, suppose we have γ, η ∈
{0, 1}∗ with |γ| = |η| and m ∈ Z such that [(γ, zn, η), x] ∈ Gtight(SZ,X) and
r([(γ, zn, η), x]) = y. Again we can conclude that x = ηu for some u ∈ {0, 1}ω,
and that y = γ(zm · u). There are two cases.
Suppose first that β = ηδ for some δ ∈ {0, 1}∗. Then ηδv = x = ηu, and so
δv = u. We also have α(zn · v) = y = γ(zm · u). Because |α| = |β| ≥ |η| = |γ|,
this implies that there exists ν ∈ {0, 1}∗ with |ν| = |δ| and α = γν. Hence
ν(zn · v) = zm · u = (zm · δ) zm|δ · v, which gives us that ν = zm · δ and
zn · v = zm|δ · v, and since the action on {0, 1}ω is free we have zn = zm|δ.
So we have that x ∈ C(β) = Dθ

(β,e,β), and we calculate

(γ, zn, η)(β, e, β) = (γ(zm · δ), zm|δ , β) = (γν, zn, β) = (α, zn, β)

= (α, zn, β)(β, e, β)

where the first equality is by the definition of the product. Hence
[(α, zn, β), x] = [(γ, zn, η), x]. The case where β is shorter than η is similar.
Hence, Gtight(S=

Z,X) is principal.

It is routine to check that S=
Z,X satisfies condition (H) (in fact, it is E*-unitary,

see [ES16, Example 3.4]). The groupoid Gtight(S=
Z,X) is amenable, see [ADR00,

Proposition 5.1.1] and [EP13, Corollary 10.18]. Hence Theorem 4.13 applies,
and there is only one normalized trace on C∗tight(S

=
Z,X), the one arising from

the invariant mean.
As the observant reader is no doubt aware at this point, C∗tight(S

=
Z,X) is nothing

more than the crossed product C({0, 1}ω)⋊Z arising from the usual odometer
action [Nek04, Theorem 7.2], which has a unique normalized trace due to the
dynamical system ({0, 1}ω,Z) having a unique invariant measure (given by (9)).

5.4 Aperiodic tilings

We close with another example where the traces on the relevant C*-algebras
are known beforehand, and hence give us invariant means.
A tile is a closed subset of Rd homeomorphic to the closed unit ball. A partial
tiling is a collection of tiles in Rd with pairwise disjoint interiors, and the support
of a partial tiling is the union of its tiles. A patch is a finite partial tiling, and
a tiling is a partial tiling with support equal to Rd. If P is a partial tiling and
U ⊂ Rd, then let P (U) be the partial tiling of all tiles in P which intersect U .
A tiling T is called aperiodic if T + x 6= T for all 0 6= x ∈ Rd.
Let T be a tiling. We form an inverse semigroup ST from T as follows.
For a patch P ⊂ T and tiles t1, t2 ∈ P we call the triple (t1, P, t2) a dou-
bly pointed patch. We put an equivalence relation on such triples, by say-
ing that (t1, P, t2) ∼ (r1, Q, r2) if there exists a vector x ∈ Rd such that
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(t1 + x, P + x, t2 + x) = (r1, Q, r2), and let [t1, P, t2] denote the equivalence
class of such a triple – this is referred to a doubly pointed patch class. Let

ST = {[t1, P, t2] | (t1, P, t2) is doubly pointed patch } ∪ {0}

be the set of all doubly pointed patch classes together with a zero element. If
[t1, P, t2], [r1, Q, r2] are two elements of ST , we let

[t1, P, t2][r1, Q, r2] =





[t1, P ∪Q′, r′2] if there exists (r′1, Q
′, r′2) ∈ [r1, Q, r2]

such that r′1 = t2 and P ∪Q′ is
a patch in T + x for some x ∈ Rd

0 otherwise,

and define all products involving 0 to be 0. Also, let [t1, P, t2]
∗ = [t2, P, t1].

With these operations, ST is an inverse semigroup. This inverse semigroup was
defined by Kellendonk [Kel97a] [Kel97b], and is E*-unitary.
Suppose there exists a finite set P of tiles each of which contain the origin in
the interior such that for all t ∈ T , there exists xt ∈ Rd and p ∈ P such that
t = p+xt. In this case, P is called a set of prototiles for T . By possibly adding
labels, we may assume that xt and p are unique – we call xt the puncture of t.
Consider the set

XT = {T − xt | t ∈ T }
and put a metric on XT by setting

d(T1, T2) = inf{1, ǫ | T1(B1/ǫ(0)) = T1(B1/ǫ(0))}

and let Ωpunc denote the completion of XT in this metric (above, Br(x) denotes
the open ball in Rd of radius r around x ∈ R). One can show that all elements
of Ωpunc are tilings consisting of translates of P which also contain an element
of P and that the metric above extends to the same metric on Ωpunc – this is
called the punctured hull of T .
We make the following assumptions on T :

1. T has finite local complexity if for any r > 0, there are only finitely
many patches in T with supports having outer radius less than r, up to
translational equivalence.

2. T is repetitive if for every patch P ⊂ T , there exists R > 0 such that
every ball of radius R in Rd contains a translate of P .

3. T is strongly aperiodic if all elements of Ωpunc are aperiodic.

In this case Ωpunc is homeomorphic to the Cantor set. For a patch P ⊂ T and
tile t ∈ P , let

U(P, t) = {T ′ ∈ Ωpunc | P − xt ⊂ T ′}.
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Figure 1: In the Robinson triangles version of the Penrose tiling, each triangle
is always next to a similar triangle with which it forms a rhombus. Let P be
the dark gray patch, and let P ′ be the patch with the lighter gray tiles added.
Then for any dark gray tile t, U(P, t) = U(P ′, t)

Then these sets are clopen in Ωpunc and generate the topology. Let

Rpunc = {(T1, T1 + x) ∈ Ωpunc × Ωpunc | x ∈ Rd}

and view this equivalence relation as a principal groupoid. Endow it with the
topology inherited by viewing it as a subspace of Ωpunc × Rd. For a patch
P ⊂ T and t1, t2 ∈ P , let

V (t1, P, t2) = {(T1, T2) ∈ Rpunc | T1 ∈ U(P, t1), T2 = T1 + xt1 − xt2}

Then these sets are compact bisections in Rpunc, and generate the topology
on Rpunc. This groupoid is Hausdorff, ample, and amenable [PS99]. The C*-
algebra of Rpunc was defined by Kellendonk in [Kel95] (denoted there AT ) and
studied further in [KP00], [Put00], [Put10], [Phi05], [Sta14].
We proved in [EGS12, Theorem 3] that Gtight(ST ) ∼= Rpunc – the univer-
sal tight representation of ST maps [t1, P, t2] to the characteristic function
of V (t1, P, t2).

4 It is interesting to note that in this case that the universal
tight representation may not be faithful. Suppose that we could find P ⊂ P ′,
both patches in T , and that P + x ⊂ T can only happen if P ′ + x ⊂ T . Then

4The same result follows from [Len08, Section 9] combined with the fact that Lenz’s

groupoid coincides with the tight groupoid when Êtight(S) = Ê∞(S), see [LL13, Theorem
5.15].
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for a tile t ∈ P , the two idempotents [t, P, t], [t, P ′, t] are different elements in
ST , but are both mapped to the characteristic function of U(P, t) = U(P ′, t)
under the universal tight representation – indeed, [t, P ′, t] is dense in [t, P, t],
see Figure 1. We note that [Len08], [Exe09], and [LL13] address other cases
where the tight representation may not be faithful.

The C*-algebra AT can be seen as the C*-algebra of a Boolean inverse monoid,
namely Gtight(ST )a – one could then rightly call this the Boolean inverse monoid
associated to T . The traces of AT are already well-studied, see [KP00], [Put00].
Often, as is the case with the Penrose tiling, there is a unique trace, see [Put00].

Theorem 5.6. Let T be a tiling which satisfies conditions 1–3 above,
and let Gtight(ST )a be the Boolean inverse monoid associated to T . Then
M(Gtight(ST )a) ∼= T (AT ) ∼= IM(Rpunc).
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Abstract. In a 1999 paper, Bercovici and Pata showed that a natural
bijection between the classically, free and Boolean infinitely divisible mea-
sures held at the level of limit theorems of triangular arrays. This result was
extended to include monotone convolution by the authors in [AW14]. In re-
cent years, operator-valued versions of free, Boolean and monotone proba-
bility have also been developed. Belinschi, Popa and Vinnikov showed that
the Bercovici-Pata bijection holds for the operator-valued versions of free
and Boolean probability. In this article, we extend the bijection to include
monotone probability theory even in the operator-valued case. To prove this
result, we develop the general theory of composition semigroups of non-
commutative functions and largely recapture Berkson and Porta’s classical
results on composition semigroups of complex functions in operator-valued
setting. As a byproduct, we deduce that operator-valued monotonically in-
finitely divisible distributions belong to monotone convolution semigroups.
Finally, in the appendix, we extend the result of the second author on the
classification of Cauchy transforms for non-commutative distributions to the
Cauchy transforms associated to more general completely positive maps.
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1. INTRODUCTION

It is a remarkable fact that there are natural bijections between the classes of infinitely
divisible measures in each of the four universal non-commutative probability theories,
which not only arise from the Lévy-Hinc̆in representations of the measures, but are
maintained at the level of limit theorems of triangular arrays. This is made precise in
the following theorem:

Theorem 1.1. Fix a finite positive Borel measureσ on R, a real numberγ,
a sequence of probability measures{µn}n∈N, and a sequence of positive integers
k1 < k2 < · · · . The following assertions are equivalent:

(a) (Classical / tensor) The sequenceµn ∗ µn ∗ · · · ∗ µn︸ ︷︷ ︸
kn

converges weakly to

νγ,σ∗ ;
(b) (Free) The sequenceµn ⊞ µn ⊞ · · ·⊞ µn︸ ︷︷ ︸

kn

converges weakly toνγ,σ
⊞

;

(c) (Boolean) The sequenceµn ⊎ µn ⊎ · · · ⊎ µn︸ ︷︷ ︸
kn

converges weakly toνγ,σ⊎ ;

(d) (Monotone) The sequenceµn ⊲ µn ⊲ · · ·⊲ µn︸ ︷︷ ︸
kn

converges weakly toνγ,σ⊲ ;

(e) The measures

kn
x2

x2 + 1
dµn(x)→ σ

weakly, and

lim
n↑∞

kn

∫

R

x

x2 + 1
dµn(x) = γ.

Hereνγ,σ∗ , νγ,σ
⊞

, νγ,σ⊎ , νγ,σ⊲ are probability measures defined explicitly through their
complex-analytic transforms. The equivalence of classical, free, and Boolean limit
theorems in parts (a), (b), (c) and (e) was proven in a by now classic paper due to
Bercovici and Pata [BP99]. The monotone non-commutative probability theory is of
more recent provenance [Mur00, Mur01]. The inclusion of part (d) was proven in our
recent paper [AW14].
Voiculescu developed operator-valued notions of non-commutative probability
[Voi87] where probability measures are replaced by certaincompletely positive maps
from the ring of non-commutative polynomials over a C∗-algebra. An analogous
theorem in this more general setting, namely the equivalence of parts (b) and (c), was
proven in [BPV12]. The first main result in this paper is the inclusion of (d) at this
level of generality.
In order to study monotone infinitely divisibleB-valued distributions, we must first
develop the theory of composition semigroups of non-commutative functions in a
manner analogous to Berkson and Porta’s study of these semigroups at the level of
complex functions [BPo78]. This stems from the fact that theconvolution operation
for monotone probability theory satisfies the following relation for the associatedF -
transforms,

Fµ⊲ν = Fµ ◦ Fν ,
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so that infinitely-divisible distributions form such a composition semigroup. In the
second main result of the paper, we prove that any monotone infinitely-divisible dis-
tribution can be included in such a semigroup. Note that evenin the scalar-valued
case, this is a recent result, proved by Serban Belinschi in his thesis. Finally, we char-
acterize generators of such composition semigroups, and a smaller set of generators
of composition semigroups ofF -transforms.
In Section 2, we provide background and preliminary results. In section 3, we study
composition semigroups of vector-valued and non-commutative analytic functions.
The main results of this section are Proposition 3.3, which shows that there is a nat-
ural notion of a time derivative for semigroups of vector-valued analytic functions
{ft}t≥0, and Theorem 3.5, which proves that, in the case ofF -transforms and more
general self-maps of the complex upper half plane, these semi-groups are in bijection
with certain classes of functions defined through their analytic and asymptotic proper-
ties. This bijection provides a Lévy-Hinc̆in representation for these infinitely divisible
distributions. In section 4 we prove the main result of the paper, namely the extension
of Theorem 1.1 to the operator-valued case. In contrast to the previous section, this
is achieved through a combinatorial methodology. We close the paper with the Ap-
pendix, which is primarily concerned with the extension of the main result in [Wil13],
namely the classification of the Cauchy transforms associated toB-valued distribu-
tions, to a more general class of functions including the Cauchy transforms associated
to more general CP maps.
Acknowledgements. We are grateful to the referee for helpful comments.

2. PRELIMINARIES

Let B denote a unital C∗-algebra andX a self-adjoint symbol. We will define the
ring of noncommutative polynomialsB〈X〉 as the algebraic free product ofB andX .
B0〈X〉 are polynomials inB〈X〉 with zero constant term.

Definition 2.1. Letµ : B〈X〉 → B denote a linear map. We say thatµ is exponen-
tially boundedwith constantM if

(1) ‖µ(b1Xb2 · · ·Xbn+1)‖ ≤Mn‖b1‖‖b2‖ · · · ‖bn+1‖
We abuse terminology and say that the mapµ is completely positive(CP) if

(2) (µ⊗ 1n)
([
Pi(X)P ∗j (X)

]n
i,j=1

)
≥ 0

for every familyPi(X) ∈ B〈X〉.
We define a setΣ0 to be thoseB-bimodular linear mapsµ satisfying (1) and (2).

For a general introduction to non-commutative functions, we refer to [KVV14].
Throughout,B,A shall denote unital C∗-algebras. LetMn(B) denote then× n ma-
trices with entries inB. We define thenoncommutative space overB to be the set
Bnc = {Mn(B)}∞n=1. A non-commutative setis a subsetΩ ⊂ Bnc that respects
direct sums. That is, forX ∈ Ω ∩ Mn(B) and Y ∈ Ω ∩ Mp(B) we have that
X ⊕ Y ∈ Ω ∩ Mn+p(B). We note that these definitions apply to the more gen-
eral case ofB being any unital, commutative ring, but we focus on theC∗-algebraic
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setting. Givenb ∈ Mn(B), thenon-commutative ballof radiusδ aboutb is the set
Bncδ (b) := ⊔∞k=1Bδ(⊕kb) whereBδ(⊕kb) ⊂Mnk(B) is the standard ball of radiusδ.
A non-commutativefunction is a mapf : Ω→ Anc with the following properties:

(a) f(Ωn) ⊂Mn(A)
(b) f respects direct sums :f(X ⊕ Y ) = f(X)⊕ f(Y )
(c) f respects similarities: ForX ∈ Ωn andS ∈Mn(C) invertible we have that

f(SXS−1) = Sf(X)S−1

provided thatSXS−1 ∈ Ωn.

A non-commutative function is said to belocally bounded in slicesif, for everyn and
elementx ∈ Ωn, f |Ωn is bounded on some neighborhood ofx in the norm topol-
ogy. It is a remarkable fact originally due to Taylor ([Tay72], [Tay73]) that a non-
commutative function that is Gâteaux differentiable and locally bounded in slices is in
fact analytic. A non-commutative function isuniformly analyticat b ∈ Mn(B) if it is
analytic and bounded onBncr (b) for somer > 0.
Let M+,ǫ

n (B) ⊂ Mn(B) denote those elementb ∈ Mn(B) with ℑ(b) > ǫ1n and
M+
n (B) = ∪ǫ>0M

+,ǫ
n . We form a non-commutative set

H+(B) = ⊔∞n=1M
+
n (B)

and refer to this set as thenon-commutative upper half plane.
We define a family of sets inH+(B). Forα, ǫ > 0 define a non-commutative Stolz
angle to be

Γ(n)
α,ǫ := {b ∈M+,ǫ

n (B) : ℑ(b) > αℜ(b)}.
Letµ ∈ Σ0. We define theCauchy transformof µ to be the analytic, non-commutative
functionGµ = {G(n)

µ }∞n=1 such that

G(n)
µ (b) := (µ⊗ 1n)((b −X ⊗ 1n)

−1) : H+(B) 7→ H−(B).
From this map, we may construct themoment generating function, theF-transform,
the Voiculescu transformand theR-transform respectively through the following
equalities:

H(n)(b) := G(n)(b−1) : H−(B) 7→ H−(B)
F (n)(b) := G(n)(b)−1 : H+(B) 7→ H+(B)

ϕ(n)
µ (b) := (F (n)

µ )〈−1〉(b)− b
R(n)
µ (b) := ϕ(n)

µ (b−1)

where the superscript〈−1〉 refers to the composition inverse. We also note that the
moment generating function extend to a neighborhood of0 for µ ∈ Σ0 and that the
Voiculescu-transform is only defined on a subset ofH+(B). The following result,
proven in [Wil13] and [PV13], classifies theF -transforms in terms of their analytic
and asymptotic properties.

Theorem 2.1. Let f = (f (n)) : H+(B)→ H+(B) denote an analytic, noncommu-
tative function. The following conditions are equivalent.

(a) f = Fµ for someµ ∈ Σ0.
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(b) The noncommutative functionk = (k(n))∞n=1 defined by k(n)(b) :=
(f (n)(b−1))−1 has uniformly analytic extension to a neighborhood of0. More-
over, for any sequence{bk}k∈N with ‖b−1k ‖ ↓ 0, b−1k f (n)(bk)→ 1n in norm.

(c) There exists anα ∈ B and aσ : B〈X〉 → B which satisfies (1) and (2) such that,
for all n ∈ N,

f (n)(b) = α1n + b− (σ ⊗ 1n)(b(1 −Xb)−1).
Moreover, the mapσ in (c) is of the formσ(P (X)) = ρ(XP (X)X) for ρ such that
its restriction toB0〈X〉 is positive.

We will require several classical results in complex function theory to prove our re-
sults. Theorem 3.16.3 in [HP74] is a useful analogue of the classical Cauchy estimates
in complex analysis. We also refer to this reference for an overview of the differential
structure of vector valued functions, including the higherorder derivativeδn utilized
below.

Theorem 2.2. Let f be Gâteaux differentiable inU and assume that‖f(x)‖ ≤ M
for x ∈ U . Then

‖δnf(a;h)‖ ≤Mn!

for a+ h ∈ U .

Further, theorem 3.17.17 in [HP74] provides Lipschitz estimates for analytic func-
tions. Indeed, for an analytic functionf that is locally bounded byM(a) in a neigh-
borhood of radiusra, we have that

(3) ‖f(y)− f(x)‖ ≤ 2M(a)‖x− y‖
ra − 2‖x− y‖

Notation 2.2. We define a familyΛ of functionsΦ : H+(B) → H−(B) through
the following properties:

(i) The mapR(b) := Φ(b−1) has uniformly analytic continuation to a non-
commutative ball about0 with R(b)∗ = R(b)

(ii) For any sequence{bk}k∈N ∈ B with ‖b−1k ‖ ↓ 0, we have thatb−1k Φ(bk)→ 0.

We also define a larger family of functionsΛ̃ by replacing (i) and (ii) with the follow-
ing weaker conditions

(I) For anyǫ > 0, Φ is uniformly bounded on⊔∞n=1M
+,ǫ
n (B).

(II) For anyα, ǫ > 0 and a sequence{bk}k∈N ∈ Γ
(n)
α,ǫ with ‖b−1k ‖ ↓ 0, we have that

b−1k Φ(bk)→ 0.

Definition 2.3. Letµ, ν ∈ Σ0. We define themonotone convolutionto be the non-
commutative operation(µ, ν) 7→ µ⊲ ν ∈ Σ0 defined implicitly though the equality

Fµ⊲ν := Fµ ◦ Fν .
Note that this definition uses Theorem 2.1 in an essential way, to show that a
composition ofF -transforms is anF -transform. See Section 4 and references
[Pop08, HS11, Pop12, HS14] for the relation between this definition and monotone
independence of Muraki.
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Definition 2.4. We say thatµ is a⊲-infinitely divisible distribution if, for everyn,
there exists a distributionµn ∈ Σ0 such that

(4) µ = µn ⊲ µn ⊲ · · ·⊲ µn︸ ︷︷ ︸
n times

We define a composition semigroup ofF -transforms{Ft}t∈Q+ by lettingFp/q :=
F ◦pµq whereµ = µ⊲q

q for all p, q ∈ N. We will show in Theorem 3.5 that this semigroup
extends to anR+ semigroup, which moreover is generated by a functionΦ ∈ Λ in a
sense that will be made specific. Moreover, one of the main results in [Wil13] is that
the setΛ is exactly the set of Voiculescu transforms associated to⊞-infinitely divisible
distributions. This is not a coincidence and will drive the main result of this paper.

3. LÉVY-HINC̆IN REPRESENTATIONS FORSEMIGROUPS OFNON-COMMUTATIVE

FUNCTIONS.

We begin this section with a result showing that the divisorsof ⊲-infinitely divisible
distributions maintain the same exponential bound. A similar result can be proven in
the combinatorial setting of Section 4 in an easier manner, but the bound is less sharp.

Proposition 3.1. Letµ denote a⊲-infinitely divisible distribution with exponential
boundM . Then, for eachk, the distributionµk satisfyingµ = µ⊲k

k has exponential
boundM .

Proof. Let Xb1Xb2 · · · bn−1X = Q(X) ∈ B〈X〉 such that‖b1‖ = ‖b2‖ =
· · · ‖bn−1‖ = 1 and assume, for the sake of contradiction, that‖µk(Q(X))‖ > Mn.
Then, using the Schwarz inequality for2-positive maps, we have that

‖µk(Q∗(X)Q(X))‖‖µk(1)‖ ≥ ‖µk(Q(X))µk(Q
∗(X))‖

= ‖µk(Q(X))‖2 > M2n

Since µk(1) = 1, we may assume that our monomialP (X) =
Xb1Xb2 · · · bn−1X2b∗n−1X · · · b∗1X has the property thatµk(P (X)) > M2n.
Define an elementB ∈M2n(B) by

B =




0 1 0 0 0 0 0 · · · 0
1 0 b1 0 0 0 0 · · · 0
0 b∗1 0 1 0 0 0 · · · 0
0 0 1 0 b2 0 0 · · · 0
0 0 0 b∗2 0 1 0 · · · 0
0 0 0 0 1 0 b3 · · · 0

...
...

...
0 0 0 0 0 · · · b∗n−1 0 1
0 0 0 0 0 · · · 0 1 0




.

That is, the superdiagonal alternates between1 andbi, the subdiagonal alternates be-
tween1 andb∗i . Now, let0 < ǫ, δ and

Bδ,ǫ = δB + ǫ

(
2n−1∑

i=1

ei,i

)
+
e2n,2n
δn−1
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whereǫ is arbitrarily small andδ is chosen so thatBδ,ǫ is a strictly positive element.
Moreover, we have that

e1,1(Bδ,ǫ(X ⊗ 12n)Bδ,ǫ)
2ne1,1 = e1,1Bδ,ǫ[(X ⊗ 12n)B

2
δ,ǫ]

2n−1(X ⊗ 12n)Bδ,ǫe1,1

(5)

= P (X) +O(max (δ, ǫ)).

To see this, note that a non-trivial contribution to (5) mustbe of the form

b1,2Xb2,j3bj3,j4Xbj4,j5X · · · bj4n−2,j4n−1bj4n−1,2Xb2,1

where bi,j denotes thei, j entry of Bδ,ǫ. Now, such a non-zero term isnot
O(max (δ, ǫ)) means thatbjℓ,jℓ+1

must equalb2n,2n for two distinctℓ. However, the
only possible way for this to occur is ifjk = k for k = 2, . . . , 2n, j2n = j2n+1 =
j2n+2 = 2n andjp = 4n+ 2− p for p = 2n+ 2, . . . , 4n− 1.
By assumption, there exists a stateφ ∈ B∗ such thatφ(µk(P (X))) > M2k. Thus, for
ǫ small enough, we have that

(6) φ1,1 ◦ (µk ⊗ 12n)((Bδ,ǫ(X ⊗ 12n)Bδ,ǫ)
2n) > M2n

(hereφ⊗e1,1 = φ1,1). This implies that the scalar valued Cauchy transform associated
to this random variable,

Gδ,ǫµk(z) = φ1,1 ◦ (µk ⊗ 12n)((z12n −Bδ,ǫ(X ⊗ 12n)Bδ,ǫ)
−1)

arises from a measure whose support has non-trivial intersection withR \ [−M,M ],
whereas the (similarly defined)Gδ,ǫµ has support contained in[−M,M ] (since its mo-
ments have growth rate smaller than powers ofM ). Using Stieltjes inversion, this
implies that

(7) lim
t↓0
−ℑGδ,ǫµk(x+ it) > 0

for somex > M (or the limit simply does not exist in the atomic case).
Calculating the imaginary part of this Cauchy transform, wehave

ℑ([µk((z12n −Bδ,ǫXBδ,ǫ)−1)]−1) = B−1δ,ǫℑ([µk(B−2δ,ǫ z −X)−1]−1)B−1δ,ǫ

= B−1δ,ǫℑF (n)
µk (zB−2δ,ǫ )B

−1
δ,ǫ

≤ B−1δ,ǫℑF (n)
µ (zB−2δ,ǫ )B

−1
δ,ǫ

= ℑ([µ((z12n −Bδ,ǫXBδ,ǫ)−1)]−1)(8)

where the inequality follows from the fact thatFµ = F ◦k−1µk ◦ Fµk andF -transforms
increase the imaginary part.
Rewriting the right hand side of (8), we have that

ℑ([µ((z12n −Bδ,ǫXBδ,ǫ)−1)]−1)
= [µ((z12n −Bδ,ǫXBδ,ǫ)−1)∗]−1·

ℑ(µ((z12n −Bδ,ǫXBδ,ǫ)−1))[µ((z12n −Bδ,ǫXBδ,ǫ)−1)]−1(9)

= F δ,ǫµ (z)∗ℑ(F δ,ǫµ (z))F δ,ǫµ (z)
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We conclude that

(10) ℑ([µ((z12n −Bδ,ǫXBδ,ǫ)−1)]−1) ≤ F δ,ǫµ (z)∗ℑ(F δ,ǫµ (z))F δ,ǫµ (z).

SinceF δ,ǫµ extends toR \ [−M,M ]

lim
t↓0

Gδ,ǫµ (x+ it)

converges to a positive element inB and

lim
t↓0
ℑ(F δ,ǫµ (x+ it))→ 0

it follows that the right hand side or (10) converges to0 in norm, contradicting (7).
This completes our proof. �

Proposition 3.2. Let µ, µk be as in the preceding proposition. We have that
Fµk → Id in norm ask ↑ ∞ uniformly onM+,ǫ

n (B), and this convergence is also

uniform overn . Moreover, the functionsF (n)
µk (b−1) − b−1 andF (n)

µk (b−1)−1 extend
analytically toBncr (0), where the radiusr is dependent only onM from Proposi-
tion 3.1, and satisfy

(11) F (n)
µk (b−1)− b−1 → 0n

(12) F (n)
µk

(b−1)−1 = H(n)
µk

(b)→ b

where this convergence is uniform onBncr (0).

Proof. Consider the Nevanlinna representations of each of these functions

(13) F (n)
µk

(b) = αk ⊗ 1n + b−G(n)
ρk

(b)

defined in Theorem 2.1 , where we have adopted the notation that µ = µ1. We claim
that the distributionsρk share a common exponential boundN for all k ∈ N.
To prove this claim, first observe that, by Theorem 4.1 in [Wil13], there exist distribu-
tionsνk such that

b − F (n)
µk

(b) = ϕ(n)
νk

(b) = −αk ⊗ 1n +G(n)
ρk

(b).

Moreover, it was shown in [PV13] that if theν and theνk have a common exponential
boundN then the distributionsρ andρk have a common exponential boundN2 + 1.
Focusing on theνk, we may manipulate equations 13 to conclude that

(14) Rνk(b−1) = ϕνk(b) = b−1 − Fµk(b−1).
Now, expand the moment series

(15) F (n)
µk (b−1)−1 = H(n)

µk (b) =

∞∑

p=0

µk((bX)pb).

Note that Proposition 3.1 implies that this function is convergent and uniformly
bounded forb ∈ Bncr (0), independent ofk.
Observe that the moment generating function satisfies
(16)
[H(n)

µk
(b)]−1 = b−1−µk(X)+µk(X)bµk(X)−µk(XbX)+ · · · = b−1+f (n)(b,X)
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wheref (n)(b,X) is analytic inb and converges for‖b‖ small, where the radius of

convergence is only dependent onM . Thus,[H(n)
µk (b)]−1 − b−1 extends to a neigh-

borhood of0 whose radius is independent ofn andk and agrees withF (n)
µk (b−1)−b−1

whenb is invertible. Moreover, these observations, combined with (14) imply that the
functionsRνk have a commonR,C > 0 such that the functions extend to a common
domainBncR (0) with a common boundC. Now a careful look at the Kantorovich ar-
gument in part II of the proof of Theorem4.1 in [Wil13] allows us to conclude that
the exponential bound on the distributionsνk depend only onR, proving our claim.
Recall thatFµk ◦ · · · ◦ Fµk = Fµ we have that

(17) G(n)
ρ (b) = G(n)

ρk (b) +G(n)
ρk ◦ F (n)

µk (b) + · · ·+G(n)
ρk ◦ F (n)

µk ◦ · · · ◦ F (n)
µk︸ ︷︷ ︸

k−1 times

(b)

Letting b = z1n for z ∈ C, we have that

lim
|z|↑∞

zH(n)
ρ

(
1

z
1n

)
= lim
|z|↑∞

zG(n)
ρ (z1n)

= lim
|z|↑∞

k−1∑

ℓ=1

zG(n)
ρk
◦ (F (n)

µk
)◦ℓ(z1n)

= lim
|z|↑∞

k−1∑

ℓ=1

zH(n)
ρk

(
[(F (n)

µk
)◦ℓ(z1n)]

−1
)

= lim
|z|↑∞

k−1∑

ℓ=1

zH(n)
ρk
◦G(n)

νℓ
(z1n)

= lim
|w|↓0

k−1∑

ℓ=1

1

w
H(n)
ρk ◦G(n)

νℓ

(
1

w
1n

)

= lim
|w|↓0

k−1∑

ℓ=1

1

w
H(n)
ρk ◦H(n)

νℓ (w1n)

where[(F (n)
µk )◦ℓ]−1 = Gνℓ is the Cauchy transform of a distributionνℓ ∈ Σ0 (this

follows from Theorem 2.1). Moreover, we have that

lim
|w|↓0

1

w
H(n)
νℓ (w1n) = 1n

so that, passing to limits and utilizing the chain rule and the fact thatH(n)
νℓ (0n) = 0n

, we have that

δH(n)
ρ (0n; 1n) = kδH(n)

ρk
(0n; 1n)

Utilizing the main result in our appendix, Theorem A.1, we conclude that

(18) ρ(1) = µ(X2) = kµk(X
2) = kρk(1).

so thatρk(1) = O(1/k).
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Now, assume thatb ∈ M+,ǫ
n (B). We claim that‖b−1‖ ≤ 1/ǫ. Indeed, observe that,

for b = x+ iy with y > ǫ1n,

(19) b =
√
y(i+ (

√
y)−1x(

√
y)−1)

√
y

(it follows easily from this equation thatb is invertible, but this is known). Thus,

(20) b−1 = (
√
y)−1(i+ (

√
y)−1x(

√
y)−1)−1(

√
y)−1.

Now, utilizing the spectral mapping theorem and the fact that the spectral radius agrees
with the norm for normal operators, we have that‖(√y)−1‖ ≤ (

√
ǫ)−1. Moreover,

sincei + (
√
y)−1x(

√
y)−1 is normal and has spectrum with imaginary part larger

than1, we have that(i + (
√
y)−1x(

√
y)−1)−1 is normal and, by the same spectral

considerations, has norm bounded by1. These observations, combined with (19)
imply our claim.
Thus, forb ∈M+

n (B), we have

‖F (n)
µk (b)− b‖ ≤ ‖αk‖+ ‖(ρk ⊗ 1n)((b −X)−1‖

≤ ‖α‖/k + ‖(b−X)−1‖‖(ρk ⊗ 1n)(1n)‖

≤ ‖α‖
k

+
‖ρk(1)‖

ǫ
=
‖α‖+ ρ(1)/ǫ

k

and the right hand side converges to zero uniformly overM+,ǫ
n (B), independent ofn.

Regarding the second part of our Proposition, we first observe that each of the mo-
ments ofµk converges to0. Indeed, utilizing the Schwarz inequality for2-positive
maps as well as Proposition 3.1, we have that

‖µk(Xb1Xb2X · · · bℓX)‖2 ≤ ‖µk(X2)‖‖µk(Xb∗ℓX · · · b∗2Xb∗1b1Xb2X · · · bℓX)‖

≤ ‖µ(X
2)‖M2ℓ‖b1‖2‖b2‖2 · · · ‖bℓ‖2

k

Moreover, the tail of the series expansion off (n)(b,X) is bounded in norm inde-
pendent ofn and k . the individual entries all go to0 so the we conclude that
f (n)(b,X) → 0 uniformly on b ∈ Bncr (0) ask ↑ ∞ so that we can immediately
conclude that (12) holds. This completes our proof. �

We next prove a differentiation result for vector valued functions. We adapt a proof
found in [BPo78] of a similar result for complex functions.

Proposition 3.3. Let A andB denote unital Banach algebras. Consider an open
subsetΩ ⊂ A. Let ft : Ω 7→ B for all t ≥ 0 be a composition semigroup of analytic
functions. Assume that for everyb′ ∈ Ω, there exists aδ > 0 such that

(a) limt↓0 ft(b)− b→ 0 uniformly overb ∈ Bδ(b′)
(b) For anyT > 0, we have thatft(b)− b is uniformly bounded overb ∈ Bδ(b′) and

t ∈ [0, T ].

Then, there exists an analyticΦ : Ω 7→ B such that

(21)
dft(b)

dt
= −Φ(ft(b)).
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Proof. Fix b′ ∈ Ω. We first claim that there exists anα > 0 such that

(22) ‖f2t(b)− 2ft(b) + b‖ ≤ 1

10
‖ft(b)− b‖.

for all t ∈ [0, α] andb ∈ Bδ/2(b′) where the value ofδ comes from the statement .
Indeed, fixb ∈ Bδ/2(b

′). We first consider the simple case when there exists a se-
quencetn ↓ 0 such thatftn(b) = b. Since{ft} form a composition semigroup, this
property then holds for a dense set oft’s, and by continuity assumption in part (a), for
all t > 0. So (22) holds trivially.
Thus, suppose thatft(b) 6= b for t ∈ [0, α]. Define a family of complex functionsgt
through the following equalities:

ht :=
ft(b)− b
‖ft(b)− b‖

; gt(ζ) := ft(b+ ζht)− b : Bδ/2(0) 7→ B.

whereBδ/2(0) refers to the neighborhood of zero in the complex plane. Notethat,
since we are taking a ball of radiusδ/2, we may defineht for all suchb provided that
our choice ofα is small enough.
Consider the vector valued complex integral

(23)
∫ ‖ft(b)−b‖

0

d

dζ
[gt(ζ)− ζht]dζ.

By (a) and the Cauchy estimates in Theorem 2.2, the integrandcan be made arbitrarily
small fort small. By the fundamental theorem, this integral is equal to

gt(‖ft(b)− b‖)− gt(0)− (ft(b)− b) =
= ft(b + (ft(b)− b))− b− 2(ft(b)− b) = f2t(b)− 2ft(b) + b.

Using our bound on the integrand, equation (22) follows immediately.
We now use (22) to prove that forα > 0 there exists anM > 0 such that

(24) ‖ft(b)− b‖ ≤Mt2/3

for all t ∈ [0, α] andb ∈ Bδ/2(b
′). Indeed, pickt ∈ [0, α] andm ∈ N such that

2mt ≤ α < 2m+1t. Note that inequality (22) and the triangle inequality imply that

2‖ft(b)− b‖ − ‖f2t(b)− b‖ ≤ ‖f2t(b)− 2ft(b) + b‖ ≤ 1

10
‖ft(b)− b‖

so that

(25) ‖ft(b)− b‖ ≤
10

19
‖f2t(b)− b‖ ≤ 2−2/3‖f2t(b)− b‖

Using this estimate inductively, we have

‖ft(b)−b‖ ≤ 2−2/3‖f2t(b)−b‖ ≤ · · · ≤ 2−2m/3‖f2mt(b)−b‖ = t2/3
(

1

2mt

)2/3

M ′

whereM ′ is a bound on‖fs(b) − b‖ for s ≤ 2 which exists by (b). Equation (24)
follows withM = 22/3M ′/α.
Now, revisiting the argument for (22), inequality (24) implies that the integrand in
(23) has bound equal to

2Mt2/3
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as a result of the Cauchy estimates. Thus, we have the following:

(26) ‖f2t(b)− 2ft(b) + b‖ ≤ 2t2/3‖ft(b)− b‖ ≤ 2Mt4/3.

We may further conclude that

(27)

∥∥∥∥
f2t(b)− b

2t
− ft(b)− b

t

∥∥∥∥ ≤Mt1/3

Thus, we have that

(28) lim
k↑∞

2k(f2−k(b)− b)

converges uniformly onBδ/2(b′) and we refer to this limit as−Φ(b).
Using (27), we note thatΦ is locally bounded. Indeed, we have that

‖2p(f1/2p(b)− b) + Φ(b)‖ ≤
∞∑

k=p

‖2k(f1/2k(b)− b)− 2k+1(f1/2k+1(b)− b)‖

≤ M

2

∞∑

k=p

(
1

21/3

)k
=MC(p).(29)

for all b ∈ Bδ/2(b′). Local boundedness ofΦ follows since(f1/2p(b) − b) is locally
bounded. Also note thatC(p)→ 0 asp ↑ ∞.
Regarding analyticity ofΦ, consider a stateϕ ∈ B∗ , b ∈ Bδ/2(b′), and an element
h ∈ B with ‖h‖ ≤ 1. We define complex maps

Hm(z) : Bδ/2(0) ⊂ C→ C

for m ≥ 0 through the equalities:

H0(z) := ϕ ◦ Φ(b+ zh); Hm(z) := 2mϕ ◦ (f2−m(b + zh)− (b+ zh)).

By (28),Hm → H0 for z ∈ Bδ/2(0), and by (29), the limit is bounded on this set.
Thus,H0 is analytic inz. By Dunford’s theorem ([Dun38]), it follows thatΦ(b +
zh) is analytic inz and, therefore, Gâteaux differentiable. As this functionis locally
bounded, it is analytic.
Regarding (21), observe that{ft(b)}t≥0 is compact since it is the continuous image
of [0, t]. As (a) and (b) hold on neighborhoods of every point in this set, taking a finite
cover, we have that (a) and (b) holds uniformly on a neighborhood of this set and,
after a close look at the relevant constants, (29) is also maintained on this set. Now,
fix t ≥ 0 and letℓp/2p → t asp ↑ ∞.

ft(b)− b = (ft(b)− ft−ℓp/2p(b)) +
ℓp∑

j=1

(fj/2p(b)− f(j−1)/2p(b))

= (ft(b)− ft−ℓp/2p(b)) +
ℓp∑

j=1

1

2p
(2p[fj/2p(b)− f(j−1)/2p(b)])

As p ↑ ∞,

ft(b)− ft−ℓp/2p(b) = fℓp/2p ◦ ft−ℓp/2p(b)− ft−ℓp/2p(b)→ 0
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since (a) holds on the entire path. Moreover, the remaining summand is simply a
Riemann sum approximation of a sequence of functions converging uniformly to−Φ◦
fs(b) for s ∈ [0, t]. The following equation follows immediately:

ft(b) = b−
∫ t

0

Φ ◦ fs(b)ds.

We conclude that (21) holds, completing our proof. �

Corollary 3.4. LetA andB denote Banach algebras andΩ ⊂ ⊔∞n=1Mn(A) a non-
commutative set. LetFt : Ω 7→ ⊔∞n=1Mn(B) for all t ≥ 0 and assume that they form a
composition semigroup of analytic non-commutative functions. Assume that, for each
n, the composition semigroup of vector valued analytic functions{F (n)

t }t≥0 satisfies
the hypotheses of Proposition 3.3. Then there exists an analytic, noncommutative map
Φ : Ω 7→ ⊔∞n=1Mn(B) such that

(30)
dF

(n)
t (b)

dt
= −Φ(n)(F

(n)
t (b))

for all n ∈ N, b ∈ Ωn.
Moreover, if we strengthen these assumptions so that, for any n andb ∈Mn(B), there
exists aδ > 0 with

(a) limt↓0 Ft − Id→ 0 uniformly overBncδ (b).
(b) For anyT > 0, we have thatft(b) − b is uniformly bounded onBncδ (b) and

t ∈ [0, T ].

thenΦ is uniformly analytic.

Proof. We showed in Proposition 3.3 this mapΦ exists. We must show that it is a
non-commutative function. However, this is immediate since, for b1 ∈ Mn(B) and
b2 ∈Mp(B), we have

Φ(n+p)(b1 ⊕ b2) = lim
k↑∞

2k(F
(n+p)

2−k
(b1 ⊕ b2)− b1 ⊕ b2)

= lim
k↑∞

2k([F
(n)

2−k
(b1)− b1]⊕ [F

(n)

2−k
(b2)− b2])

= Φ(n)(b1)⊕ Φ(p)(b2).

A similar proof shows that it also satisfies the defining invariance property so that our
first claim holds.
With respect to the uniform analyticity, we refer to the proof of Proposition 3.3. Ob-
serve that inequality (22) holds forα small enough. Thisα is only dependent on the
convergence of the integrand in (23). This converges to0 uniformly onBncδ (b) by
assumption (a) and the same Cauchy estimate so that the choice ofα is also uniform
on this set. Moreover, the constantM in (24) is equal to22/3M ′/α whereM ′ is
the upper bound onFs − Id for s ≤ α. Assumption (b) implies that this bound is
uniform onBncδ (b). Thus, inequality (29) holds on all of this set, implying uniform
analyticity. �

Theorem 3.5. Let {Ft}t∈Q+ denote a composition semigroup of non-commutative
functionsFt : H+(B) 7→ H+(B) such that
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(i) ‖F (n)
t (b) − b‖ → 0 uniformly onM+,ǫ

n (B) for all ǫ > 0, independent ofn as
t ↓ 0.

(ii) For any α, ǫ > 0 and sequencebk ∈ Γ
(n)
α,ǫ with ‖b−1k ‖ ↓ 0, we have that

b−1k F
(n)
t (bk)→ 1n ask ↑ ∞

(iii) ℑF (n)
t (b) ≥ ℑb for all b ∈M+

n (B) andt ≥ 0.

Then{Ft}t∈Q+ extends to a semigroup{Ft}t≥0 and the mapΦ from Proposition 3.4
is an element of̃Λ.
Since, by Proposition 3.2, the conditions above are satisfied by F -transforms, this
implies that a⊲-infinitely divisible distributionµ as in Definition 2.4 can be realized
asµ = µ1 for a monotone convolution semigroup{µt}t≥0. For such a semigroup,
Φ ∈ Λ.
Conversely, given a mapΦ ∈ Λ̃ we may construct a semigroup of non-commutative
functions satisfying the hypotheses above as well as the differential equation

(31)
dFt(b)

dt
= −Φ(Ft(b))

If Φ ∈ Λ then the semigroup arises from a⊲-infinitely divisible distribution.

We shall refer to this elementΦ as thegeneratoror the semigroup{Ft}t≥0.

Proof. First, letΦ ∈ Λ̃. We will produce the semigroup it generates by the method of
successive approximations.
Consider a sequence of non-commutative functions{fk(t, ·)}t≥0, k∈N defined as fol-
lows:

(32) f
(n)
1 (t, b) = b; f

(n)
k+1(t, b) = b−

∫ t

0

Φ(f
(n)
k (s, b))ds.

We claim thatfk(t, ·) is convergent and satisfies the semigroup property with genera-
torΦ.
Observe that sinceΦ is uniformly bounded by a constantM on setM+,ǫ/2

n (B) and
fk(t, ·) maps the setM+,ǫ

n (B) to itself since

Φ : H+(B) 7→ H−(B)
we have that

(33) ℑf (n)
k (t, b) ≥ ℑ(b).

By (3), this implies thatf (n)
k (t, ·) is Lipschitz on the setBǫ/2(b) ⊂M+,ǫ/2

n (B) for all
b ∈ M+,ǫ

n (B), and the Lipschitz constantL is uniform over bothk, b and boundedt.
Moreover, we may extend the Lipschitz inequality

‖fk(t, b)− fk(t, b′)‖ ≤ L‖b− b′‖
to all b, b′ ∈ M+,ǫ

n (B) by taking a pathb + s(b′ − b) for s ∈ [0, 1] and using the
Lipschitz estimate on intervals of distanceǫ/2 since the distances are additive on this
path. Using this Lipschitz estimate in the integrand of (32), we conclude that

(34) ‖f (n)
2 (t, b)− f (n)

1 (t, b)‖ = t‖Φ(b)‖ ≤ tML
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and we may conclude that

‖f (n)
3 (t, b)− f (n)

2 (t, b)‖ =
∥∥∥∥
∫ t

0

[Φ(f
(n)
2 (s, b))− Φ(f

(n)
1 (s, b))]ds

∥∥∥∥

≤ L
∥∥∥∥
∫ t

0

[f
(n)
2 (s, b)− f (n)

1 (s, b)]ds

∥∥∥∥

≤ L
∫ t

0

[LMs]ds ≤ t2L2M

2

Continuing inductively, we have that

(35) ‖f (n)
k+1(t, b)− f

(n)
k (t, b)‖ ≤ M(Lt)k+1

L(k + 1)!
.

For any choice oft ∈ [0, α], we have that

(36) f
(n)
N+1(t, b)− b =

N∑

k=0

(
f
(n)
k+1(t, b)− f

(n)
k (t, b)

)

is a convergent series asN ↑ ∞ and we may conclude thatfN(t, ·) converges to a
functionf(t, ·) uniformly onM+,ǫ

n (B), independent ofn.
It is clear thatf(t, ·) satisfies (31). Regarding the asymptotics, letα, ǫ > 0 and fix
a sequencebℓ ∈ Γ

(n)
α,ǫ with ‖b−1ℓ ‖ ↓ 0. Note thatb−1ℓ f

(n)
1 (t, bℓ) ≡ 1n and satisfies

‖f (n)
1 (t, bℓ)‖−1 ↓ 0 as ‖b−1ℓ ‖ ↓ 0. We claim b−1ℓ f

(n)
k (t, bℓ) → 1n and satisfies

‖f (n)
k (t, bℓ)‖−1 ↓ 0 as‖b−1ℓ ‖ ↓ 0 for all k, uniformly overt ∈ [0, α].

Proceeding by induction, we have that for fixedk

(37) b−1ℓ f
(n)
k+1(t, bℓ) = 1n −

∫ t

0

[b−1ℓ f
(n)
k (s, bℓ)](f

(n)
k (s, bℓ))

−1Φ(f (n)
k (s, bℓ))ds.

We bound the integrand by

‖[b−1ℓ f
(n)
k (s, bℓ)]‖‖(f (n)

k (s, bℓ))
−1Φ(f (n)

k (s, bℓ))‖
which converges to0 uniformly overs ∈ [0, α] by induction, so that (37) converges to
1n. Moreover,

‖[f (n)
k+1(t, bℓ)]

−1‖ ≤ ‖b−1ℓ ‖‖bℓ[f
(n)
k+1(t, bℓ)]

−1‖ → 0.

Thus, eachfk(t, ·) has the appropriate asymptotics and, sincef(t, ·) is a uniform limit
of these functions onM+,ǫ

n , our claim holds Condition (iii) follows from (33).
In order to complete our proof, we further assume thatΦ ∈ Λ and prove that the
functionsf(t, ·) are in fact theF -transforms of noncommutative distributionsµt ∈
Σ0. To do so we must show that the functionf(t, b−1)−1 has a uniformly analytic
extension to a neighborhood of0 for all t ≥ 0. Note that, sinceΦ ∈ Λ, there exists
a δ > 0 and constantsM,L > 0 such thatΦ(n)(b−1) extends toBncδ (0) with upper
boundM and Lipschitz constantL.
Now fix α > 0. We claim that, forγ > 0 small enough we have thatf (n)

k (t, b−1)−1

extends toBγ(0n) ⊂ Mn(B) for all n and satisfiesf (n)
k (t, b−1)−1 ∈ Bδ(0n) for all
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b ∈ Bγ(0n). Choose anyt ∈ [0, α] andb ∈ Bγ(0n) whereγ < δ is yet unspecified.
We have

‖f (n)
2 (t, b−1)−1 − f (n)

1 (t, b−1)−1‖ =
∥∥∥∥∥

[(
1n −

∫ t

0

bΦ(b−1)ds

)−1
− 1n

]
b

∥∥∥∥∥

≤
∞∑

n=1

∥∥∥∥
∫ t

0

bΦ(b−1)ds

∥∥∥∥
n

‖b‖

≤ γ
∞∑

n=1

(γMα)n

=
γ2Mα

1− γMα

Deriving a similar inequality for generalk, we have that

‖f (n)
k+1(t, b

−1)−1 − f (n)
k (t, b−1)−1‖

=

∥∥∥∥∥

(
b−1 −

∫ t

0

Φ ◦ f (n)
k (s, b−1)ds

)−1
−
(
b−1 −

∫ t

0

Φ ◦ f (n)
k−1(s, b

−1)ds

)−1∥∥∥∥∥

=

∥∥∥∥∥

(
1n −

∫ t

0

bΦ(f
(n)
k (t, b−1))

)−1(
b

∫ t

0

Φ(f
(n)
k−1(t, b

−1))− Φ(f
(n)
k (t, b−1))

)

(
1n −

∫ t

0

bΦ(f
(n)
k−1(t, b

−1))

)−1
b

∥∥∥∥∥

≤
(

1

1− γMα

)2

(γ2Lα)‖f (n)
k (t, b−1)−1 − f (n)

k−1(t, b
−1)−1‖

(38)

By induction, we have that

‖f (n)
k+1(t, b

−1)−1 − b‖ =
k∑

ℓ=1

Mγ2ℓLℓ−1αℓ

(1− γMα)2ℓ−1

This is convergent ask ↑ ∞ for γ small and converges to0 asγ ↓ 0. Thus, forγ small
enough, we have thatf (n)

k+1(t, b
−1) ∈ Bδ(0n) for all k andn and, therefore, converges

to a limit function onBγ(0n) (since the differences in (38) are Cauchy). This limit
function must agree withf(t, ·) by analytic continuation. This completes our proof
thatf(t, ·) is anF -transform for allt.
To address the converse, consider a semigroup{Ft}t∈Q+ satisfying the (i) and (ii) in
the statement of the theorem. First note that this easily extends to anR+ composition
semigroup. Indeed, defineFt(b) = limp/q→t Fp/q(b). To see that this is well defined,
note that, asp/q, p′/q′ → t, we have

‖F (n)
p/q (b)− F

(n)
p′/q′(b)‖ = ‖F

(n)
p/q−p′/q′ ◦ F

(n)
p′/q′(b)− F

(n)
p′/q′(b)‖ → 0

uniformly onM+,ǫ
n (B) by property (i) and (iii) . It is immediate that this is a compo-

sition semigroup overR+ satisfying (i), (ii) and (iii).
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By Corollary 3.4, this semigroup may be differentiated to produce a non-commutative
functionΦ . Regarding the asymptotics ofΦ, consider the inequality

(39) ‖b−1Φ(n)(b)‖ ≤
∥∥∥∥∥
b−1(F (n)

t (b)− b)
t

∥∥∥∥∥+ ‖b
−1‖

∥∥∥∥∥
(F

(n)
t (b)− b)

t
− Φ(n)(b)

∥∥∥∥∥ .

Utilizing inequality (29) in the proof of Proposition 3.3 produces

(40)

∥∥∥∥∥
(F

(n)

2N
(b)− b)
2N

− Φ(n)(b)

∥∥∥∥∥ ≤M
∞∑

k=N+1

(
1

21/3

)k

where thisM = 2M ′/α . As was noted in the proof of Corollary 3.4, uniform
convergence in the sense of (i) and (ii) implies a uniform bound onM . Thus, (40)
converges to0 uniformly onM+,ǫ

n (B) so that, for fixedt small enough, second term
on the right hand side of (39) is smaller than anyδ > 0 for b ∈ M+,ǫ

n (B). Letting

bk ∈ Γ
(n)
α,ǫ satisfy‖b−1k ‖ ↓ 0, the first term on the right hand side of (39) converges to

0 by assumption (ii), and it follows thatΦ ∈ Λ̃.
If {Ft}t≥0 arises from a⊲-infinitely divisible measure, then it follows from Proposi-

tion 3.1 and Theorem 2.1 thatb−1k F
(n)
µt (bk)→ 1n for any sequencebk ∈Mn(B) with

‖b−1k ‖ ↓ 0 and a similar proof allows one to conclude thatΦ satisfies condition (ii) in
the definition ofΛ.
It remains to show thatΦ satisfies (i). However, Proposition 3.2 implies that there
exists a fixedr > 0 such that each functionF (n)

µt (b−1)− b−1 extends toBr({0}) and
converges to0 uniformly on this set. Thus, the strengthened hypotheses inCorollary
3.3 hold so that the non-commutative function defined by the equalities

R(n)(b) = lim
t↓0

F
(n)
µt (b−1)− b−1

t

is uniformly analytic at0 and, by continuation, is an extension ofΦ(n)(b−1) for each
n. Thus,Φ ∈ Λ, completing our proof. �

The following proposition establishes continuity in generating the semigroups, and
may be useful in future applications.

Proposition 3.6. Assume thatΦ1,Φ2 ∈ Λ̃ generate the semigroups of noncom-
mutative functions{F1(t, ·)}t≥0 and{F2(t, ·)}t≥0. If we assume that‖Φ(n)

1 (b) −
Φ

(n)
2 (b)‖ < ǫ for all b ∈ Bδ(b

′) ⊂ Mn(B), a ball of radiusδ whereℑ(b′) > δ1n,

then we may conclude that‖F (n)
1 (1, b)− F (n)

2 (1, b)‖ < Cǫ for all b ∈ Bδ(b′) where
C depends only onΦ1.

Proof. To prove our claim, we first note that, by the vector-valued chain rule,

δ2F
(n)
i (t, b)

δt2
= δΦ(n)

(
F

(n)
i (t, b),

δ

δt
F (n)(b, t)

)

so thatFi(t, b) is twice differentiable int and has uniformly bounded derivative for
b ∈ H+,ǫ(B) andt ∈ [0, 1]. We refer to the maximum of this bound overi = 1, 2 as
M2.
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Using the remainder estimates for the Taylor series associated toFi, we have the
following:

(41) ‖Fi(b, t+ γ)− Fi(b, t)− γΦ(Fi(b, t))‖ ≤
M2γ

2

2

Let M1 = supb∈M+,ǫ
n (B), n∈N ‖δΦ(n)(b, ·)‖. Utilizing the estimate (41) withγ =

1/N , we produce the following inequalities:

‖F (n)
1 (b, t0 + 1/N)− F (n)

2 (b, t0 + 1/N)‖

≤ M2

N2
+

1

N
‖Φ(n)

1 (F
(n)
1 (b, t0))− Φ

(n)
2 (F

(n)
2 (b, t0))‖

+ ‖F (n)
1 (b, t0)− F (n)

2 (b, t0)‖

≤ M2

N2
+

1

N
‖Φ(n)

1 (F
(n)
1 (b, t0))− Φ

(n)
1 (F

(n)
2 (b, t0))‖

+
1

N
‖Φ(n)

1 (F
(n)
2 (b, t0))− Φ

(n)
2 (F

(n)
2 (b, t0))‖ + ‖F (n)

1 (b, t0)− F (n)
2 (b, t0)‖

≤ M2

N2
+

ǫ

N
+

(
1 +

M1

N

)
‖F (n)

1 (b, t0)− F (n)
2 (b, t0)‖

Using this estimate inductively, we have that

‖F (n)
1 (b, 1)− F (n)

2 (b, 1)‖ ≤
(
ǫ

N
+
M2

N2

)N−1∑

k=0

(
1 +

M1

N

)k
→ eM1 − 1

M1
ǫ

where the convergence occurs asN ↑ ∞. This implies our result.
�

4. THE BERCOVICI-PATA BIJECTION.

Definition 4.1. Let (S,≺) be a poset (partially ordered set). Anorder onS is an
order-preserving bijection

f : (S,≺)→ ({1, 2, . . . , |S|} , <) .

Denote byo(S) the number of different orders onS.

Lemma 4.2. Let (S,≺) be a poset, andS = U ⊔ V a partition ofS. U andV are
posets with the induced order.

(a) Suppose that for allu ∈ U andv ∈ V , u ≺ v. Then

o(S) = o(U)o(V ).

(b) Suppose that for allu ∈ U andv ∈ V , u andv are unrelated to each other.
Then

o(S)

|S|! =
o(U)

|U |!
o(V )

|V |! .
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Proof. Part (a) is obvious. It is also clear that under the assumptions of part (b), there
is a bijection between the orders onS and triples

{order onU , order onV , a subset of{1, 2, . . . , |S|} of cardinality|U |} .
Therefore

o(S) =

(|S|
|U |

)
o(U)o(V ).

This implies part (b). �

Definition 4.3. For a non-crossing partitionπ = {V1, V2, . . . , Vk}, define a partial
order on it as follows: forU, V ∈ π, U ≺ V if for somei, j ∈ U and anyv ∈ V , we
havei < v < j. In this case we say thatU coversV . Minimal elements with respect
to this order are called theouterblocks ofπ; the rest are theinner blocks.

See [HS11, HS14] for more on orders on non-crossing partitions.

Definition 4.4. Letµ : B〈X〉 → B be aB-bimodule map; at this point no positivity
assumptions are made. Itsmonotone cumulant functionalis theB-bimodule mapKµ :
B0〈X〉 → B defined implicitly by

(42) µ[b0Xb1X . . . bn−1Xbn] =
∑

π∈NC(n)

o(π)

|π|! K
µ
π [b0Xb1X . . . bn−1Xbn].

Here for a non-crossing partitionπ, Kµ
π is defined in terms ofKµ in the usual way

as in [Spe98] (see Section 3 of [ABFN13] for a detailed discussion), ando(π) is the
number of orders onπ considered as a poset (as in the preceding definition). The
implicit definition determines the monotone cumulants uniquely since
(43)

Kµ[b0X . . . bn−1Xbn] = µ[b0X . . . bn−1Xbn]−
∑

π∈NC(n)

π 6=1̂n

o(π)

|π|! K
µ
π [b0X . . . bn−1Xbn],

and the second term on the right-hand side can be expressed interms of lower-order
moments.

Remark 4.5. ForN ∈ N, we note that

Kµ⊗1N = Kµ ⊗ 1N .

The proof of this fact is identical to that of Proposition 6.3of [PV13].
It follows that the generating function arguments in the rest of this section work
equally well for eachµ ⊗ 1N , and so the corresponding generating functions com-
pletely determine the states.

Lemma 4.6. For B-bimodule maps,µi → µ if and only ifKµi → Kµ.

Proof. By assumption,µi[b] = b = µ[b]. Forn ≥ 1, clearly if

Kµi [b0Xb1X . . . bn−1Xbn]→ Kµ[b0Xb1X . . . bn−1Xbn]

then
µi[b0Xb1X . . . bn−1Xbn]→ µ[b0Xb1X . . . bn−1Xbn]
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from equation (42). The other implication follows by induction on n, using equa-
tion (43). �

Definition 4.7. Forµ as above andη : B → B a linear map, defineµ⊲η via

Kµ⊲η

[b0Xb1X . . . bn−1Xbn] = b0η (K
µ[Xb1X . . . bn−1X ]) bn.

Define the formal generating functions

Hµ(b) =

∞∑

n=0

µ[b(Xb)n]

and

Kµ(b) =

∞∑

n=1

Kµ[b(Xb)n].

Note that as formal series,
Hµ(b) = Gµ(b−1),

so our notation is consistent with the analytic function notation in the rest of the article,
except that we use superscripts for formal series. Note alsothat these generating
functions differ by a factor ofb from the more standard ones, and are more appropriate
for the computations with monotone convolution.

Remark 4.8. Fix n ∈ N andπ ∈ NC(n). Denote byV1, . . . , Vk the outer blocks of
π, by c(Vi) the partition consisting ofVi and the inner blocks it covers, and bycj(Vi),
j = 1, 2, . . . , |Vi| − 1 the partition consisting of the inner blocks lying between the
jth and the(j + 1)st elements ofVi. By Lemma 4.2 part (b),

(44)
o(π)

|π|! =

k∏

i=1

o(c(Vi))

|c(Vi)|!
.

By part (a) of that lemma,

o(c(Vi)) = o({Vi})o



|Vi|−1⋃

j=1

cj(Vi)


 = o



|Vi|−1⋃

j=1

cj(Vi)




and so by part (b),

(45)
o(c(Vi))

(|c(Vi)| − 1)!
=

|Vi|−1∏

j=1

o(cj(Vi))

|cj(Vi)|!
.

The following results may be contained in [Pop08], and are closely related to Propo-
sition 3.5 in [HS14]. We provide a purely combinatorial direct proof.

Proposition 4.9. Let µ : B〈X〉 → B be an exponentially boundedB-bimodule
map. Then for eachn

dH(µ⊗1N )⊲t(b)

dt
= Kµ⊗1N (H(µ⊗1N )⊲t(b)).
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Proof. It suffices to prove the result forN = 1. We begin by proving this equality for
each of the coefficients of the series expansions ofHµ⊲t

andKµ ◦Hµ⊲t

. Since

d

dt
µ⊲t[b(Xb)n] =

d

dt

∑

π∈NC(n)

t|π|
o(π)

|π|! K
µ
π [bXbX . . . bXb]

=
∑

π∈NC(n)

t|π|−1
o(π)

(|π| − 1)!
Kµ
π [bXbX . . . bXb],

(46)

the coefficient ofKµ
π [b(Xb)

n] in its expansion ist|π|−1 o(π)
(|π|−1)! . On the other hand,

Kµ

[
Hµ⊲t

(b)
(
XHµ⊲t

(b)
)l]

= Kµ
[
Hµ⊲t

(b)XHµ⊲t

(b)X . . .Hµ⊲t

(b)XHµ⊲t

(b)
]

=
∑

k0,...,kl≥0
Kµ


 ∑

π0∈NC(k0)

t|π0| o(π0)
|π0|!

Kµ
π0
X

∑

π1∈NC(k1)

t|π1| o(π1)
|π1|!

Kµ
π1
X . . .X

∑

πl∈NC(kl)

t|πl|
o(πl)

|πl|!
Kµ
πl




=
∑

k0,...,kl≥0

∑

πi∈NC(ki),
0≤i≤l

o(π0)

|π0|!
o(π1)

|π1|!
. . .

o(πl)

|πl|!
Kµ

[
Kµ
π0
XKµ

π1
X . . .XKµ

πl

]
t|π0|+|π1|+...+|πl|,

whereK∅(b) = b. Fixing n = k0 + . . . + kl + l, each term in this expansion is a
multiple ofKµ

π [b(Xb)
n], whereπ is constructed from partitionsπ0, π1, . . . , πk and

an additional outer block ofl elements:

V = {k0 + 1, k0 + k1 + 2, . . . , k0 + . . .+ kl−1 + l} ∈ π

and

πi = restriction ofπ to [k0 + . . .+ ki−1 + i+1, k0 + . . .+ ki+ i], i = 0, 1, . . . , l.

Note that|π0|+ |π1|+ . . .+ |πl| = |π| − 1. This identification has an inverse, which
requires first choosing one of thek outer blocks ofπ. Order the outer blocks left-
to-right and call the specially chosen blockVi. Using the notation from Remark 4.8,
we see that the coefficient ofKµ

π [b(Xb)
n] in the expansion ofKµ(Hµ⊲t

(b)) is t|π|−1
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times

k∑

i=1

o
(⋃

j<i c(Vj)
)

∣∣∣
⋃
j<i c(Vj)

∣∣∣!



|Vi|−1∏

j=1

o(cj(Vi))

|cj(Vi)|!



o
(⋃

j>i c(Vj)
)

∣∣∣
⋃
j>i c(Vj)

∣∣∣!

=

k∑

i=1

o(c(Vi))

(|c(Vi)| − 1)!

∏

j 6=i

o(c(Vj))

|c(Vj)|!

=

k∏

j=1

o(c(Vj))

|c(Vj)|!

k∑

i=1

|c(Vi)|

= |π|
k∏

j=1

o(c(Vj))

|c(Vj)|!

=
o(π)

(|π| − 1)!
.

Here we used equation (45), and equation (44) applied to partitions
⋃
j<i c(Vj) and⋃

j>i c(Vj), in the first line, and again (44) in the last line. Since we obtained the
same coefficient as in expansion (46), the result is proved for each of the individual
components of the respective series expansions for eachn ∈ N.
Extending this to the series expansions and, therefore, thefunctions, observe that all of
the sets over which the sums occur have cardinality whose growth rate is exponential
overn. Thus, for‖b‖ small enough, the exponential boundedness ofµ implies that
the respective series are absolutely convergent. We may therefore conclude that thet
coefficients of the series expansions agree, provided thatb ∈ Bδ(0) for δ > 0 small
enough. Thus,

dHµ⊲t

(b)

dt
= Kµ(Hµ⊲t

(b)).

for b ∈ Bδ(0).
To extend to arbitrary bounded sets inB−, consider the net of difference quotients

Dµ
h(b, t) =

Hµ⊲t+h

(b)−Hµ⊲t

(b)

h

for t > 0. We have just shown that

lim
h→0

Dµ
h(b, t)→ Kµ(Hµ⊲t

(b))

uniformly onBδ(0). By Theorem2.10 in [BPV12], this implies that the same is true
on all bounded sets inB−. Thus, at the level of functions,

dHµ⊲t

(b)

dt
= Kµ(Hµ⊲t

(b)),

proving our result. �

Corollary 4.10.

H(µ⊗1n)⊲(s+t)

(b) = H(µ⊗1n)⊲s
(
H(µ⊗1n)⊲t(b)

)
.
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In particular,

Fµ
⊲(s+t)

(b) = Fµ
⊲s
(
Fµ

⊲t

(b)
)
,

so the combinatorial definition of monotone convolution powers coincides with the
complex analytic one in Definition 2.3.

Proof. By Proposition 4.9,Hµ⊲s
(
Hµ⊲t

(b)
)

, as a function ofs, satisfies

d

ds
Hµ⊲s

(
Hµ⊲t

(b)
)
= Kµ

(
Hµ⊲s

(
Hµ⊲t

(b)
))

,

Hµ⊲s
(
Hµ⊲t

(b)
)∣∣∣
s=0

= Hµ⊲t

(b).

Since, by the same proposition,Hµ⊲(s+t)

(b) also satisfies this differential equation
with this initial condition, they coincide for all positives.
For the second statement, we observe that

Gµ
⊲s
(
Fµ

⊲t

(b)
)
= Gµ

⊲s

((
Gµ

⊲t

(b)
)−1)

= Hµ⊲s
(
Hµ⊲t

(b−1)
)
=

= Hµ⊲(s+t)

(b−1) = Gµ
⊲(s+t)

(b).

�

Proposition 4.11. If µ, ν ∈ Σ0 andµ ⊲ µ = ν ⊲ ν, thenµ = ν. In particular, if
the square root with respect to the monotone convolution exists, it is unique.

Proof. Under the given assumption,

Kµ =
1

2
Kµ⊲µ = Kν,

and thereforeµ = ν. �

Remark 4.12. Let γ ∈ B be self-adjoint, andσ : B〈X〉 → B be a completely
positive butnot necessarily aB-bimodule map. Defineνγ,σ⊎ via its Boolean cumulant
functional

Bν
γ,σ
⊎ [b0Xb1] = b0γb1, Bν

γ,σ
⊎ [b0Xb1X . . . bn−1Xbn] = b0σ[b1X . . . bn−1]bn.

It is known [BPV12, ABFN13] thatνγ,σ⊎ is a completely positiveB-bimodule map.
Similarly, defineνγ,σ⊲ via its monotone cumulant functional

Kνγ,σ⊲ [b0Xb1] = b0γb1, Kνγ,σ⊲ [b0Xb1X . . . bn−1Xbn] = b0σ[b1X . . . bn−1]bn.

We could also defineνγ,σ
⊞

via its free cumulant functional

Rν
γ,σ

⊞ [b0Xb1] = b0γb1, Rν
γ,σ

⊞ [b0Xb1X . . . bn−1Xbn] = b0σ[b1X . . . bn−1]bn.

Lemma 4.13. Let ki → ∞ be a numerical sequence,{µi : B〈X〉 → B}∞i=1 a se-
quence of linearB-bimodule maps, andρ : B0〈X〉 → B a linearB-bimodule map.
The following are equivalent.

(a) kiµi[P (X)]→ ρ[P (X)] for all P (X) ∈ B0〈X〉.
(b) kiRµi [P (X)]→ ρ[P (X)] for all P (X) ∈ B0〈X〉.
(c) kiBµi [P (X)]→ ρ[P (X)] for all P (X) ∈ B0〈X〉.
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(d) kiKµi [P (X)]→ ρ[P (X)] for all P (X) ∈ B0〈X〉.
Here in all cases, the convergence is in norm onB.

Proof. We will prove the equivalence between (a) and (d); the rest are similar, and
were proved in [BPV12]. Indeed, onB0〈X〉,

kiµi[b0Xb1X . . . bn−1Xbn] = kiK
µi [b0Xb1X . . . bn−1Xbn]

+
∑

π∈NC(n)
|π|≥2

1

k
|π|−1
i

o(π)

|π|! (kiK
µi)π [b0Xb1X . . . bn−1Xbn].

It follows immediately that (d) implies (a). The converse implication follows by in-
duction onn. �

Corollary 4.14. For linear B-bimodule mapsµi : B〈X〉 → B, the following are
equivalent.

(a)

kiµi[X ]→ γ, kiµi[Xb1X . . . bn−1X ]→ σ[b1X . . . bn−1].

(b)

µ⊞ki
i → νγ,σ

⊞
.

(c)

µ⊎kii → νγ,σ⊎ .

(d)

µ⊲ki
i → νγ,σ⊲ .

Proof. We will prove the equivalence between (a) and (d); the rest are similar, see
Lecture 13 in [NS06]. Indeed, by Lemma 4.6, the statement in part (d) is equivalent
to

kiK
µi → Kνγ,σ⊲ ,

which by definition ofνγ,σ⊲ means

kiK
µi [X ]→ γ, kiK

µi [Xb1X . . . bn−1X ]→ σ[b1X . . . bn−1]

This is equivalent to (a) by the preceding lemma. �

Corollary 4.15. νγ,σ⊲ is a completely positive map.

Proof. We can choose completely positiveµi such thatµ⊎ii → νγ,σ⊎ , for example by

takingµi = ν
1
i γ,

1
i σ⊎ . Thenνγ,σ⊲ is the limit of completely positive mapsµ⊲i

i , and as
such is completely positive (monotone convolution of two completely positive maps
is known to be positive, see Proposition 6.2 of [Pop08] and also [Pop12]). �

Proposition 4.16. Monotone convolution semigroups of completely positiveB-
bimodule maps are in a one-to-one correspondence with pairs(γ, σ) as above.
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Proof.
{
νtγ,tσ⊲ : t ≥ 0

}
form a one-parameter monotone convolution semigroup of

completely positiveB-bimodule maps. Conversely, if{µt} is such a semigroup, define

γ =
d

dt

∣∣∣∣
t=0

µt[X ] = Kµ1 [X ] ∈ Bsa,

σ[b1X . . . bn−1] =
d

dt

∣∣∣∣
t=0

µt[Xb1X . . . bn−1X ] = Kµ1 [Xb1X . . . bn−1X ].

Since forPi ∈ B〈X〉 andci ∈ B,

N∑

i,j=1

c∗i σ[P
∗
i Pj ]cj =

d

dt

∣∣∣∣
t=0

µt




N∑

i,j=1

c∗iXP
∗
i PjXcj


 =

= lim
t↓0

1

t
µt




N∑

i,j=1

c∗iXP
∗
i PjXcj


 ≥ 0,

σ is completely positive �

Remark 4.17. A short calculation shows that

Φ(b) = γ +Gσ(b).

This, combined with Theorem 2.1, gives an alternative proofof the result in Theo-
rem 3.5 that generators of semigroups arising from⊲-infinitely divisible distributions
coincide with the setΛ. One can also use a standard combinatorial argument to show
that⊲-infinitely divisible distributions belong to such one-parameter semigroups. At
this point, we do not know how to obtain the more general results in Theorem 3.5 by
combinatorial methods.

APPENDIX A. CHARACTERIZATION OF GENERALCAUCHY TRANSFORMS

In this appendix, we extend the main result in [Wil13], namely the classification of
the Cauchy transforms associated to distributionsµ ∈ Σ0, to the Cauchy transforms
associated to more general CP maps.

Theorem A.1. The following are equivalent:

(I) The analytic non-commutative functionG = (G(n))n≥1 : H+(B) → H−(B)
has the property thatH = (H(n))n≥1 defined through the equalitiesH(n)(b) :=

G(n)(b−1) for all n ∈ N andb ∈ Mn(B) has uniformly analytic extension to a
neighborhood of0 satisfyingH(n)(0) = 0.

(II) There exists aC-linear mapσ : B〈X〉 → B satisfying (1) and (2) such that
G(n)(b) = σ((b −X)−1).

Proof. We begin with (II)⇒ (I). Let σ satisfy (1) and (2). By [PV13], Lemma5.8,
we may conclude that there exists a⊞-infinitely divisible distributionµ ∈ Σ0 such
that ρµ(XP (X)X) = σ(P (X)) for all P (X) ∈ B〈X〉 (here,ρµ denotes the free
cumulant function associated toµ). Thus, the Voiculescu transform ofµ satisfies the
following equality:

(47) ϕ(n)
µ (b) = −σ((b−X)−1)
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for all n ∈ N and where the inverse in the equality is considered as a geometric series,
so that the right hand side is convergent for‖b−1‖ small enough dependent on (1).
Sinceµ is⊞-infinitely divisible, by Proposition5.1 in [Wil13], we have that the left
hand side of (47) extends to

H+(B) ∪H−(B)
∞⋃

n=1

{b ∈Mn(B) : ‖b−1‖ < C}

whereC is a fixed constant, independent ofn.
Now, by Proposition1.2 in [PV13], the fact thatµ ∈ Σ0 implies thatµ is realized as
the distribution arising from a non-commutative probability space(A, E,B). That is,

µ(P (X)) = E(P (a))

for a fixed self-adjoint elementa ∈ B and allP (X) ∈ B〈X〉. Thus,σ((b −X)−1) =
ρµ(a(b − a)−1a) and, sinceb − a ∈ M+

n (B) andρµ is a CP map onB〈X〉0 we may
conclude that theσ((b −X)−1) ∈M−n (B) for all b ∈M+

n (B).
Further note that

H(b) = σ((b−1 −X)−1) =
∞∑

k=0

σ((bX)kb)

is convergent in a neighborhood of zero sinceσ satisfies (1). It is also immediate that
H(0) = 0. This completes one direction of our proof.
We now prove (I)⇒ (II). We will follow the proof of Theorem 4.1 in [Wil13] and
refer to this paper for the appropriate terminology.
We recover our operatorσ through the differential structure ofH . Indeed, we define
the mapσ by letting

(σ⊗1n)(b1(X⊗1n)b2 · · · (X⊗1n)bℓ+1) := ∆ℓ+1
R H(n)( 0, . . . , 0︸ ︷︷ ︸

ℓ+2 − times

)(b1, b2, . . . , bℓ+1)

for elementsb1, b2, · · · , bℓ+1 ∈ Mn(B). It is a consequence of Proposition3.1 in
[Wil13] and [KVV14], Theorem 3.10 that this is a well defined operator. Moreover,
the equality

∆ℓ+1
R H(n)( 0, . . . , 0︸ ︷︷ ︸

ℓ+2 − times

)(b, b, . . . , b) =
1

(ℓ+ 1)!

dℓ+1

dtℓ+1
H(n)(0 + tb)|t=0

and the fact that the function is analytic in a neighborhood of 0 implies that

(48) H(n)(b) =

∞∑

k=0

(σ ⊗ 1n)((bX)kb)

once we show thatσ satisfies (1). Continuation will allow us to conclude that

(49) G(n)(b) =

∞∑

k=0

(σ ⊗ 1n)((b
−1X)kb−1) = (σ ⊗ 1n)((b −X)−1).

Thus, our theorem will follow when we can show thatσ satisfies properties (1) and
(2).
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To prove (1), we note that this is equivalent to showing that

‖σ(b1Xb2 · · ·Xbℓ+1)‖ ≤ CM ℓ+1

for a fixedC > 0, provided that‖b1‖ = · · · = ‖bℓ+1‖ = 1. This will follow
from uniform analyticity and matches the proof of the same fact in [Wil13]. Indeed,
consider the element ofMℓ+2(B)

B =




0 b1 0 0 · · · 0
0 0 b2 0 · · · 0
0 0 0 b3 · · · 0

...
...

0 0 0 0 · · · bℓ+1

0 0 0 0 · · · 0



.

Note thatH(ℓ+1) has a bound ofC on a ball of radiusr about0, independent ofℓ
since we are assuming thatH is uniformly analytic. Thus,

‖σ(b1Xb2 · · ·Xbℓ+1)‖ =
‖δℓ+1H(ℓ+2)(0;B)‖

(ℓ+ 1)!

= ‖∆ℓ+1
R H(ℓ+2)(0, . . . , 0)(B, . . . , B)‖

= ‖r−(ℓ+1)∆ℓ+1
R H(ℓ+2)(0, . . . , 0)(rB, . . . , rB)‖

=

(
1

r

)ℓ+1 ‖δℓ+1H(ℓ+2)(0; rB)‖
(ℓ+ 1)!

≤ C
(
1

r

)ℓ+1

where the last inequality follows from the Cauchy estimatesin Theorem 2.2.
We must prove the technical fact that fact that

(50) σ|Mn(B) ≥ 0

Assume thatσ(P ) < 0 for someP ∈ M+
n (B) where we can assume thatP > δ1 for

someδ > 0. Note thatG(n)(zP−1) ∈ M−n (B) for all z ∈ C+ by assumption so that
λG(n)(iλP−1) ∈ M−n (B) for all λ ∈ R+. Utilizing the series expansion in (49) as
well as the exponential bound that we have just proven, we conclude that the

lim
λ↑∞

λG(n)(iλP−1) =
σ(P )

i
= −iσ(P ) /∈M−n (B).

This contradiction implies (50).
It remains to show (2). Once again, this will closely follow the proof of the analogous
fact in Theorem 4.1 in [Wil13]. Indeed, we will first show that

(51) (σ ⊗ 1n)(P (X ⊗ 1n + b0)
∗P (X ⊗ 1n + b0)) ≥ 0

for any monomialP (X) = b1(X ⊗ 1n)b2 · · ·X ⊗ 1nbℓ+1 ∈ Mn(B)〈X〉 andb0 ∈
Mn(B). We also assume that|bℓ+1| > ǫ1n and the general case follows by letting
ǫ ↓ 0.
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Towards this end, we consider elementsC,E0, E1 ∈Mn(ℓ+1)(B) defined as follows:

C =




0 c1 0 0 0 · · · 0
c∗1 0 c2 0 0 · · · 0
0 c∗2 0 c3 0 · · · 0
...

...
...

0 0 · · · 0 c∗ℓ−1 0 cℓ
0 0 · · · 0 0 c∗ℓ |cℓ+1|2




;E0 = 1n ⊕ 1n ⊕ · · · ⊕ 1n︸ ︷︷ ︸
ℓ times

⊕0n

andE1 = 1n(ℓ+1)−E0 whereci = δbi for i = 1, . . . , ℓ andcℓ+1 = bℓ+1/δ
ℓ for δ > 0

to be specified. Note thatb1Xb2 · · ·Xbℓ+1 = c1Xc2 · · ·Xcℓ+1. We define a function

ĝn(ℓ+1)(b) := Gn(ℓ+1)(b− b0) : M+
n(ℓ+1)(B)→M−n(ℓ+1)(B)

The following properties are rather trivial and their proofmatches those of Theorem
4.1 in [Wil13].

(a) C + ǫE0 > γ1n for someγ > 0 provided thatδ > 0 is small enough.
(b) Then× n minor in the top left corner of

[(C + ǫE0)(X ⊗ 1n(ℓ+1) + b0 ⊗ 1ℓ+1)]
2(ℓ−1)(C + ǫE0)

is equal toP (X + b0)P
∗(X + b0) +O(ǫ).

(c) ĝ(n(ℓ+1))(b) =
∑∞
p=0 σ([b

−1(X⊗1n(ℓ+1)+ b0⊗1ℓ+1)]
pb−1) for b−1 in a neigh-

borhood of0.
(d) We have thatzĝ(n(ℓ+1))(zb)→ σ(b−1) in norm as|z| ↑ ∞ for b > γ1n.
(e) ĥ(n(ℓ+1))(b) := ĝ(n(ℓ+1))(b−1) has analytic extension to a neighborhood of zero.

The only one of these properties that differs from the proof of Theorem 4.1 in [Wil13]
is (d). It follows immediately from the series expansion in (48).
We now have the pieces in place to prove (51). Note that (a) implies thatC + ǫE0 is
invertible so that the map

z 7→ ĝ(n(ℓ+1))(z(C + ǫE0)
−1)

sendsC+ intoMn(B)−. LetBi,j ∈ Mn(B) for i, j = 1, . . . , ℓ + 1 and consider the
elementB = (Bi,j)

ℓ+1
i,j=1 ∈Mn(ℓ+1)(B). Given a statef ∈Mn(B)∗ we define a new

state
f1,1(B) := f(B1,1) :Mn(ℓ+1)(B)→ C.

We may define a map

Gf,C,ǫ(z) = f1,1 ◦ ĝ(n(ℓ+1))(z(C + ǫE0)
−1) : C+ → C−.

Properties (c) and (d) imply the following forz ∈ C+:

lim
|z|↑∞

zGf,C,ǫ(z) = lim
|z|↑∞

f1,1

[
zĝ(n(ℓ+1))(z(C + ǫE0)

−1)
]

= f1,1(σ(C + ǫE0)) ≥ 0

where the last inequality will follow from the fact thatf1,1 is a state, property (a) and
(50).
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Now, observe that the coefficient ofz−2ℓ+1 in the functionGf,C,ǫ is equal to
ρ(t2(ℓ−1)) > 0. Furthermore, since

Gf,C,ǫ(z) = Gρ(z) =
∞∑

ℓ=0

ρ(tℓ)

zℓ+1

=

∞∑

ℓ=0

f1,1(σ([(C + ǫE0)(X ⊗ 1n(ℓ+1) + b0)]
ℓ(C + ǫE0)))

zℓ+1

we may conclude that

f1,1 ◦ σ([(C + ǫE0)(X ⊗ 1n(ℓ+1) + b0)]
2(ℓ−1)(C + ǫE0)) = ρ(t2(ℓ−1)) ≥ 0.

Recalling (b), it follows thatf ◦ σ([P (X + b0)P
∗(X + b0) + O(ǫ)]) ≥ 0. Letting

ǫ ↓ 0 and noting thatf was an arbitrary state, we have proven that

(σ ⊗ 1n)(P (X + b0)P
∗(X + b0)) ≥ 0

for any monomialP (X) ∈Mn(B)〈X〉.
The extension from the case of monomials to general elementsin B〈X〉 follows the
proof in [Wil13] exactly so we will refrain from repeating it. This implies (2) and,
therefore, our theorem. �
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Henri Poincaré Probab. Stat.47 (2011), no. 4, 1160–1170. MR 2884229

[HS14] , On operator-valued monotone independence, Nagoya Math. J.215
(2014), 151–167. MR 3263527

[KVV14] Dmitry S. Kaliuzhnyi-Verbovetskyi and Victor Vinnikov, Foundations of
free noncommutative function theory, Mathematical Surveys and Mono-
graphs, vol. 199, American Mathematical Society, Providence, RI, 2014.
MR 3244229

[Mur00] Naofumi Muraki, Monotonic convolution and monotonic levy-hincin for-
mula, preprint, 2000.

[Mur01] , Monotonic independence, monotonic central limit theorem and
monotonic law of small numbers, Infin. Dimens. Anal. Quantum Probab.
Relat. Top.4 (2001), no. 1, 39–58. MR 1824472 (2002e:46076)

[NS06] Alexandru Nica and Roland Speicher,Lectures on the combinatorics of
free probability, London Mathematical Society Lecture Note Series, vol.
335, Cambridge University Press, Cambridge, 2006. MR MR2266879
(2008k:46198)

[Pop08] Mihai Popa,A combinatorial approach to monotonic independence over a
C∗-algebra, Pacific J. Math.237 (2008), no. 2, 299–325. MR 2421124
(2009k:46119)

[Pop12] , Realization of conditionally monotone independence and monotone
products of completely positive maps, J. Operator Theory68 (2012), no. 1,
257–274. MR 2966045

[PV13] Mihai Popa and Victor Vinnikov,Non-commutative functions and the non-
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1. Introduction

Following B. Bowditch [10], we say that a group Γ is diffuse if every finite
non-empty subset A ⊂ Γ has an extremal point, that is, an element a ∈ A such
that for any g ∈ Γ \ {1} either ga or g−1a is not in A (see also 2.1 below).
A non-empty finite set without extremal points will be called a ravel1; thus a
group is diffuse if and only if it does not contain a ravel. Every non-trivial finite
subgroup of Γ is a ravel, hence a diffuse group is torsion-free. In this work, we
use geometric methods to discuss various examples of diffuse and non-diffuse
groups.
The interest in diffuse groups stems from Bowditch’s observation that they
have the unique product property (see Section 2.2 below). Originally, unique
products were introduced in the study of group rings of discrete, torsion-free
groups. More precisely, it is easily seen that if a group Γ has unique products,
then it satisfies Kaplansky’s unit conjecture. In simple terms, this means that
the units in the group ring C[Γ] are all trivial, i.e. of the form λg with λ ∈ C×

and g ∈ Γ. A similar question can be asked replacing C by some integral do-
main. A weaker conjecture (Kaplansky’s zero divisor conjecture) asserts that
C[Γ] contains no zero divisor, and a still weaker one asserts that it contains no
idempotents other than 1Γ. There are other approaches to the zero divisor and
idempotent conjecture (see for example [5], [47, Chapter 10]) which have suc-
ceeded in proving it for large classes of groups, whereas the unit conjecture has
(to the best of our knowledge) only been tackled by establishing the possibly
stronger unique product property. Consequently it is still unknown if the unit
conjecture holds, for example, for all torsion-free groups in the class of crys-
tallographic groups (see [23] for more on the subject), while the zero-divisor
conjecture is known to hold (among other) for all torsion-free groups in the
finite-by-solvable class, as proven by Kropholler, Linnell and Moody in [45].
There are further applications of the unique product property. For instance, if
Γ has unique products, then it satisfies a conjecture of Y. O. Hamidoune on
the size of isoperimetric atoms (cf. Conjecture 10 in [7]). Let us also mention
that it is known that torsion-free groups without unique products exist, see for
instance [57],[54],[61],[3],[19]. We note that for the examples in [57] (and their
generalization in [61]) it is not known if the zero-divisor conjecture holds.
Using Lazard’s theory of analytic pro-p groups, one can show that every arith-
metic group Γ has a finite index subgroup Γ′ such that the group ring Z[Γ′]
satisfies the zero divisor conjecture. This work originated from the idea to
study Kaplansky’s unit conjecture virtually. In this spirit we establish virtual
diffuseness for various classes of groups and, moreover, we discuss examples of
diffuse and non-diffuse groups in order to clarify the border between the two.
Our results are based on geometric considerations.

1.1. Results.

1We think of this as an entangled ball of string.

Documenta Mathematica 21 (2016) 873–915



On Geometric Aspects of Diffuse Groups 875

1.1.1. Crystallographic groups. The torsion-free crystallographic groups, also
called Bieberbach groups, are virtually diffuse since free abelian groups are
diffuse. However, already in dimension three there is a Bieberbach group ∆P

which is not diffuse [10]. In fact, Promislow even showed that the group ∆P

does not satisfy the unique product property [54]. On the other hand, the nine
other 3-dimensional Bieberbach groups are diffuse. So is there an easy way
to decide whether a given Bieberbach group is diffuse or not? In Section 3
we discuss this question and show that in many cases it suffices to know the
holonomy group.

Theorem A. Let Γ be a Bieberbach group with holonomy group G.

(i) If G is not solvable, then Γ is not diffuse.
(ii) If G has only cyclic Sylow subgroups, then Γ is diffuse.

Note that a finite group G with cyclic Sylow subgroups is meta-cyclic, thus
solvable. We further show that in the remaining case, where G is solvable and
has a non-cyclic Sylow subgroup, the group G is indeed the holonomy of both a
diffuse and a non-diffuse Bieberbach group. Moreover, we give a complete list of
the 16 non-diffuse Bieberbach groups in dimension four. Our approach is based
on the equivalence of diffuseness and local indicability for amenable groups as
obtained by Linnell and Witte Morris [46]. We include a new geometric proof
of their result for the special case of virtually abelian groups.

1.1.2. Discrete subgroups of rank-one Lie groups. The class of hyperbolic
groups is one of the main sources of examples of diffuse groups in [10]: it
is an immediate consequence of Corollary 5.2 loc. cit. that any residually finite
word-hyperbolic group contains with finite index a diffuse subgroup (the same
statement for unique products was proven earlier by T. Delzant [24]). In partic-
ular, cocompact discrete subgroups of rank one Lie groups are virtually diffuse
(for example, given an arithmetic lattice Γ in such a Lie group, any normal
congruence subgroup of Γ of sufficiently high level is diffuse). On the other
hand, not much is known in this respect about relatively hyperbolic groups,
and it is natural to ask whether a group which is hyperbolic relative to diffuse
subgroups must itself be virtually diffuse. In this paper we answer this question
in the affirmative in the case of non-uniform lattices in rank one Lie groups.

Theorem B. If Γ is a lattice in one of the Lie groups SO(n, 1), SU(n, 1) or
Sp(n, 1) then there is a finite-index subgroup Γ′ ≤ Γ such that Γ′ is diffuse.

In the case of an arithmetic lattice, the proof actually shows that normal con-
gruence subgroups of sufficiently large level are diffuse. We left open the case
of non-uniform lattices in the exceptional rank one group F−204 , but it is almost
certain that our proof adapts also to this case. Theorem B is obtained as a
corollary of a result on a more general class of geometrically finite groups of
isometries. Another consequence is the following theorem.

Theorem C. Let Γ be any discrete, finitely generated subgroup of SL2(C).
There exists a finite-index subgroup Γ′ ≤ Γ such that Γ′ is diffuse.
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The proofs of these theorems use the same approach as Bowditch’s, that is a
metric criterion (Lemma 2.1 below) for the action on the relevant hyperbolic
space. The main new point we have to establish concerns the behaviour of
unipotent isometries: the result we need (Proposition 4.2 below) is fairly easy to
observe for real hyperbolic spaces; for complex ones it follows from a theorem of
M. Phillips [53], and we show that the argument used there can be generalized
in a straightforward way to quaternionic hyperbolic spaces. We also study
axial isometries of real hyperbolic spaces in some detail, and give an optimal
criterion (Proposition 4.5) which may be of use in determining whether a given
hyperbolic manifold has a diffuse fundamental group.

1.1.3. Three–manifold groups. Following the solution of both Thurston’s Ge-
ometrization conjecture (by G. Perelman [51, 52]) and the Virtually Haken
conjecture (by I. Agol [2] building on work of D. Wise) it is known by previous
work of J. Howie [40], and S. Boyer, D. Rolfsen and B. Wiest [12] that the
fundamental group of any compact three–manifold contains a left-orderable
finite-index subgroup. Since left-orderable groups are diffuse (see Section 2.2
below) this implies the following.

Theorem D. Let M be a compact three–manifold, then there is a finite-index
subgroup of π1(M) which is diffuse.

Actually, one does not need Agol’s work to prove this weaker result: the case of
irreducible manifolds with non-trivial JSJ-decomposition is dealt with in [12,
Theorem 1.1(2)], and non-hyperbolic geometric manifolds are easily seen to be
virtually orderable. Finally, closed hyperbolic manifolds can be handled by
Bowditch’s result (see (iv) in Section 2.1 below).
We give a more direct proof of Theorem D in Section 5; the tools we use
(mainly a ‘virtual’ gluing lemma) may be of independent interest. The relation
between diffuseness (or unique products) and left-orderability is not very clear
at present; in Appendix B Nathan Dunfield gives an example of a compact
hyperbolic three-manifold whose fundamental group is not left-orderable, but
nonetheless diffuse.

Acknowledgements. We are pleased to thank to George Bergman, Andres
Navas and Markus Steenbock for valuable comments on a first version of this
paper. The second author would especially like to thank Pierre Will for di-
recting him to the article [53]. We thank the anonymous referee for comments
improving the exposition.
Both authors are grateful to the Max-Planck-Institut für Mathematik in Bonn,
where this work was initially developed, and which supported them financially
during this phase.

2. Diffuse groups

We briefly review various notions and works related to diffuseness and present
some questions and related examples of groups.
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2.1. A quick survey of Bowditch’s paper. We give here a short recapit-
ulation of some of the content in Bowditch’s paper [10]. The general notion of
a diffuse action of a group is introduced there and defined as follows: let Γ be
a group acting on a set X . Given a finite subset A ⊂ X , an element a ∈ A is
said to be an extremal point in A, if for all g ∈ Γ which do not stabilize a then
either ga or g−1a is not in A. The action of Γ on X is said to be diffuse if every
finite subset A of X with |A| ≥ 2 has at least two extremal points. An action
in which each finite subset has at least one extremal point is called weakly
diffuse by Bowditch; we will not use this notion in the sequel. It was observed
by Linnell and Witte-Morris [46, Prop.6.2.] that a free action is diffuse if and
only if it is weakly diffuse. Thus a group is diffuse (in the sense given in the
introduction) if and only if its action on itself by left-translations is diffuse.
More generally, Bowditch proves that if a group admits a diffuse action whose
stabilizers are diffuse groups, then the group itself is diffuse. In particular, an
extension of diffuse groups is diffuse as well.
The above can be used to deduce the diffuseness of many groups. For example,
strongly polycyclic groups are diffuse since they are, by definition, obtained
from the trivial group by taking successive extensions by Z. Bowditch’s paper
provides many more examples of diffuse groups:

(i) The fundamental group of a compact surface of nonpositive Euler char-
acteristic is diffuse;

(ii) More generally, any free isometric action of a group on an R-tree is diffuse;
(iii) A free product of two diffuse groups is itself diffuse;
(iv) A closed hyperbolic manifold with injectivity radius larger than log(1 +√

2) has a diffuse fundamental group.

We conclude this section with the following simple useful lemma, which appears
as Lemma 5.1 in [10].

Lemma 2.1. If Γ acts on a metric space (X, dX) satisfying the condition

(∗) ∀x, y ∈ X, g ∈ Γ : gx 6= x =⇒ max(dX(gx, y), dX(g−1x, y)) > d(x, y)

then the action is diffuse.

Proof. Let A ⊂ X be compact with at least two elements. Take a, b in A with
d(a, b) = diam(A), then these are extremal in A. It suffices to check this for a.
Given g ∈ Γ not stabilizing a, then ga or g−1a is farther away from b, hence
not in A. �

Note that this argument does not require nor that the action be isometric,
neither that the function dX on X ×X be a distance. However this geometric
statement is sufficient for all our concerns in this paper.

2.2. Related properties. Various properties of groups have been defined,
which are closely related to diffuseness. We remind the reader of some of these
properties and their mutual relations.
Let Γ be a group. We say that Γ is locally indicable, if every finitely generated
non-trivial subgroup admits a non-trivial homomorphism into the group Z. In
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other words, every non-trivial finitely generated subgroup of Γ has a positive
first rational Betti number.
Let ≺ be a total order on Γ. The order is called left invariant, if

x ≺ y =⇒ gx ≺ gy
for all x, y and g in Γ. We say that the order ≺ on Γ is locally invariant if for
all x, g ∈ Γ with g 6= 1 either gx ≺ x or g−1x ≺ x. Not all torsion-free groups
admit orders with one of these properties. We say that Γ is left-orderable (resp.
LIO) if there exists a left-invariant (resp. locally invariant) order on Γ. It is
easily seen that an LIO group is diffuse. In fact, it was pointed out by Linnell
and Witte Morris [46] that a group is LIO if and only if it is diffuse. One can see
this as follows: If Γ is diffuse then every finite subset admits a locally invariant
order (in an appropriate sense), and this yields a locally invariant order on Γ
by a compactness argument.
The group Γ is said to have the unique product property (or to have unique
products) if for every two finite non-empty subsets A,B ⊂ Γ there is an element
in the product x ∈ A · B which can be written uniquely in the form x = ab
with a ∈ A and b ∈ B.
The following implications are well-known (for a complete account see [25]):

locally indicable
(1)
=⇒ left-orderable

(2)
=⇒ diffuse

(3)
=⇒ unique products

An example of Bergman [6] shows that (1) is in general not an equivalence, i.e.
there are left-orderable groups which are not locally indicable (further examples
are given by some of the hyperbolic three–manifolds studied in [16, Section 10]
which have a left-orderable fundamental group with finite abelianization).
An explicit example showing that (2) is not an equivalence either is explained
in the appendix written by Nathan Dunfield (see Theorem B.1). However, the
reverse implication to (3), that is the relation between unique products and
diffuseness, remains completely mysterious to us. We have no idea what the
answer to the following question should be (even by restricting to groups in
a smaller class, for example crystallographic, amenable, linear or hyperbolic
groups).

Question 1. Does there exist a group which is not diffuse but has unique
products?

It seems extremely hard to verify, for a given group, the unique product prop-
erty without using any of the other three properties.

2.3. Some particular hyperbolic three–manifolds.

2.3.1. A diffuse, non-orderable group. In Appendix B Nathan Dunfield de-
scribes explicitly an example of an arithmetic Kleinian group which is diffuse
but not left-orderable – this yields the following result (Theorem B.1).

Theorem 2.2 (Dunfield). There exists a finitely presented (hyperbolic) group
which is diffuse but not left-orderable.
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With Linnell and Witte-Morris’ result this shows that there is a difference in
these matters between amenable and hyperbolic groups. To verify that the
group is diffuse one can use Bowditch’s result or our Proposition 4.5.
Let us make a few comments on the origins of this example. The possibility
to find such a group among this class of examples was proposed, unbeknownst
to the authors, by A. Navas—see [25, 1.4.3]. Nathan Dunfield had previously
computed a vast list of examples of closed hyperbolic three–manifolds whose
fundamental group is not left-orderable (for some examples see [16]), using an
algorithm described in the second paper. The example in Appendix B was not
in this list, but was obtained by searching through the towers of finite covers
of hyperbolic 3-manifolds studied in [18, §6].

2.3.2. A non-diffuse lattice in PSL2(C). We also found an example of a com-
pact hyperbolic 3-manifold with a non-diffuse fundamental group; in fact it is
the hyperbolic three–manifold of smallest volume.

Theorem 2.3. The fundamental group of the Weeks manifold is not diffuse.

We verified this result by explicitly computing a ravel in the fundamental group
of the Weeks manifold. We describe the algorithm and its implementations in
Section A.1. In fact, given a group Γ and a finite subset A one can decide
whether A contains a ravel by the following procedure: choose a random point
a ∈ A; if it is extremal (which we check using a sub-algorithm based on the
solution to the word problem in Γ) we iterate the algorithm on A\{a}, otherwise
we continue with another one. Once all the points of A have been tested, what
remains is either empty or a ravel in Γ.

2.3.3. Arithmetic Kleinian groups. In a follow-up to this paper we will inves-
tigate the diffuseness properties of arithmetic Kleinian groups, in the hope of
finding more examples of the above phenomena. Let us mention two results
that will be proven there:

(i) Let p > 2 be a prime. There is a constant Cp such that if Γ is a
torsion-free arithmetic group with invariant trace field F of degree p
and discriminant DF > Cp, then Γ is diffuse.

(ii) If Γ is a torsion-free Kleinian group derived from a quaternion algebra
over an imaginary quadratic field F such that

DF 6= −3,−4,−7,−8,−11,−15,−20,−24
then Γ is diffuse.

2.4. Groups which are not virtually diffuse. All groups considered in
this article are residually finite and turn out to be virtually diffuse. Due to a
lack of examples, we are curious about an answer to the following question.

Question 2. Is there a finitely generated (resp. finitely presented) group which
is torsion-free, residually finite and not virtually diffuse?
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The answer is positive without the finiteness hypotheses: given any non-diffuse,
torsion-free, residually finite group Γ, then an infinite restricted direct product
of factors isomorphic to Γ is residually finite and not virtually diffuse.
Furthermore, if we do not require the group to be residually finite, then one
may take a restricted wreath product Γ ≀ U with some infinite group U . The
group Γ ≀ U is not virtually diffuse and it is finitely generated if Γ and U are
finitely generated (not finitely presented, however). Moreover, by a theorem
of Gruenberg [32] such a wreath product (Γ non-abelian, U infinite) is not
residually finite. Other examples of groups which are not virtually diffuse are
the amenable simple groups constructed by K. Juschenko and N. Monod in [42];
these groups cannot be locally indicable, however they are neither residually
finite nor finitely presented.
In the case of hyperbolic groups, this question is related to the residual prop-
erties of these groups – namely it is still not known if all hyperbolic groups
are residually finite. A hyperbolic group which is not virtually diffuse would
thus be, in light of the results of Delzant–Bowditch, not residually finite. It is
unclear to the authors if this approach is feasible; for results in this direction
see [31].
Finally, let us note that it would also be interesting to study the more restrictive
class of linear groups instead of residually finite ones.

3. Fundamental groups of infra-solvmanifolds

3.1. Introduction.

3.1.1. Infra-solvmanifolds. In this section we discuss diffuse and non-diffuse
fundamental groups of infra-solvmanifolds. The focus lies on crystallographic
groups, however we shall begin the discussion in a more general setting. Let G
be a connected, simply connected, solvable Lie group and let Aut(G) denote
the group of continuous automorphisms of G. The affine group of G is the
semidirect product Aff(G) = G ⋊ Aut(G). A lattice Γ ⊂ G is a discrete
cocompact subgroup of G. An infra-solvmanifold (of type G) is a quotient
manifold G/Λ where Λ ⊆ Aff(G) is a torsion-free subgroup of the affine group
such that Λ ∩G has finite index in Λ and is a lattice in G. If Λ is not diffuse,
we say that G/Λ is a non-diffuse infra-solvmanifold.
The compact infra-solvmanifolds which come from a nilpotent Lie group G
are characterised by the property that they are almost flat: that is, they ad-
mit Riemannian metrics with bounded diameter and arbitrarily small sectional
curvatures (this is a theorem of M. Gromov, see [30], [15]). Those that come
from abelian G are exactly those that are flat, i.e. they admit a Riemannian
metric with vanishing sectional curvatures. We will study the latter in detail
further in this section. We are not aware of any geometric characterization of
general infra-solvmanifolds.

3.1.2. Diffuse virtually polycyclic groups are strongly polycyclic. Recall that a
group Γ is (strongly) polycyclic if it admits a subnormal series with (infinite)
cyclic factors. By a result of Mostow lattices in connected solvable Lie groups
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are polycyclic (cf. Prop. 3.7 in [55]). Consequently, the fundamental group of
an infra-solvmanifold is a virtually polycyclic group.
As virtually polycyclic groups are amenable, we can use the following striking
result of Linnell and Witte Morris [46].

Theorem 3.1 (Linnell, Witte Morris). An amenable group is diffuse if and
only if it is locally indicable.

We shall give a geometric proof of this theorem for the special case of virtually
abelian groups in the next section. Here we confine ourselves to pointing out
the following algebraic consequence.

Proposition 3.2. A virtually polycyclic group Γ is diffuse if and only if
Γ is strongly polycyclic. Consequently, the fundamental group of an infra-
solvmanifold is diffuse exactly if it is strongly polycyclic.

Proof. Clearly, a strongly polycyclic group is a virtually polycyclic group, in
addition it is diffuse by Theorem 1.2 in [10].
Assume that Γ is diffuse and virtually polycyclic. We show that Γ is strongly
polycyclic by induction on the Hirsch length h(Γ). If h(Γ) = 0, then Γ is a
finite group and as such it can only be diffuse if it is trivial.
Suppose h(Γ) = n > 0 and suppose that the claim holds for all groups of
Hirsch length at most n− 1. By Theorem 3.1 the group Γ is locally indicable
and (since Γ is finitely generated) we can find a surjective homomorphism
φ : Γ→ Z. Observe that h(Γ) = h(ker(φ))+ 1. The kernel ker(φ) is diffuse and
virtually polycyclic, and we deduce from the induction hypothesis, that ker(φ)
(and so Γ) is strongly polycyclic. �

In the next three sections we focus on crystallographic groups. After the discus-
sion of a geometric proof of Theorem 3.1 in the crystallographic setting (3.2),
we will analyse the influence of the structure of the holonomy group for the
existence of ravels (3.3). We also give a list of all non-diffuse crystallographic
groups in dimension up to four (3.4). Finally, we discuss a family of non-diffuse
infra-solvmanifolds in 3.5 which are not flat manifolds.

3.2. Geometric construction of ravels in virtually abelian groups.
The equivalence of local indicability and diffuseness for amenable groups which
was established by Linnell and Witte Morris [46] is a powerful result. Accord-
ingly a virtually polycyclic group with vanishing first rational Betti number
contains a ravel. However, their proof does not explain a construction of ravels
based on the vanishing Betti number. They stress that this does not seem to
be obvious even for virtually abelian groups. The purpose of this section is to
give a geometric and elementary proof of this theorem, for the special case of
virtually abelian groups, which is based on an explicit construction of ravels.

Theorem 3.3. A virtually abelian group is diffuse exactly if it is locally indi-
cable.
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As discussed in Section 2.2 local indicability implies diffuseness. It suffices to
prove the converse. Let Γ0 be a virtually abelian group and assume that it is
not locally indicable. We can find a finitely generated subgroup Γ ⊂ Γ0 with
vanishing first rational Betti number. If Γ contains torsion, it is not diffuse.
Thus we assume that Γ is torsion-free. Since a finitely generated torsion-free
virtually abelian group is crystallographic, the theorem follows from the next
lemma.

Lemma 3.4. Let Γ be a crystallographic group acting on a euclidean space E.
If b1(Γ) = 0, then for all e ∈ E and all sufficiently large r > 0 the set

B(r, e) = { γ ∈ Γ | ‖γe− e‖ ≤ r }
is a ravel.

Proof. We can assume e = 0 ∈ E. Let Γ be a non-trivial crystallographic group
with vanishing first Betti number and let π : Γ→ G be the projection onto the
holonomy group at 0. The translation subgroup is denoted by T and we fix
some r0 > 0 so that for every u ∈ E there is t ∈ T satisfying ‖u− t‖ ≤ r0.
The first Betti number b1(Γ) is exactly the dimension of the space EG of G-
fixed vectors. Thus b1(Γ) = 0 means that G acts without non-trivial fixed
points on E. Since every non-zero vector is moved by G, there is a real number
δ < 1 such that for all u ∈ E there is g ∈ G such that

(1) ‖gu+ u‖ ≤ 2δ‖u‖.
For r > 0 let Br denote the closed ball of radius r around 0. Fix u ∈ Br; we
shall find γ ∈ Γ such that ‖γu‖ ≤ r and ‖γ−1u‖ ≤ r provided r is sufficiently
large. We pick g ∈ G as in (1) and we choose some γ0 ∈ Γ with π(γ0) = g.
Define w0 = γ0(0). We observe that for every two vectors v1, v2 ∈ E with
distance d, there is x ∈ w0 + T with

max
i=1,2

(‖vi − x‖) ≤ r0 +
d

2
.

Indeed, the ball of radius r0 around the midpoint of the line between v1 and
v2 contains an element x ∈ w0 + T . Apply this to the vectors v1 = u and
v2 = −gu to find some x = w0 + t. By construction we get d ≤ 2δr.
Finally we define γ = t ◦ γ0 to deduce the inequalities

‖γu‖ = ‖gu+ x‖ = ‖ − gu− x‖ ≤ r0 + δr

and
‖γ−1u‖ = ‖g−1u− g−1x‖ = ‖u− x‖ ≤ r0 + δr.

As δ < 1 the right hand side is less than r for all sufficiently large r. �

3.3. Diffuseness and the holonomy of crystallographic groups. We
take a closer look at the non-diffuse crystallographic groups and their holonomy
groups. It will turn out that for a given crystallographic group one can often
decide from the holonomy group whether or not the group is diffuse. In the
following a Bieberbach group is a non-trivial torsion-free crystallographic group.
Let Γ be a Bieberbach group, it has a finite index normal maximal abelian
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subgroup T ⊂ Γ. Recall that the finite quotientG = Γ/T is called the holonomy
group of Γ. Since every finite group is the holonomy group of some Bieberbach
group (by a result due to Auslander-Kuranishi [4]), this naturally divides the
finite groups into three classes.

Definition 1. A finite group G is holonomy diffuse if every Bieberbach group
Γ with holonomy group G is diffuse. It is holonomy anti-diffuse if every Bieber-
bach group Γ with holonomy group G is non-diffuse. Otherwise we say that G
is holonomy mixed.

For example, the finite group (Z/2Z)2 is holonomy mixed. In fact, the Promis-
low group ∆P (also known as Hantzche-Wendt group or Passman group) is a
non-diffuse [10] Bieberbach group with holonomy group (Z/2Z)2 – thus (Z/2Z)2

is not holonomy diffuse. On the other hand it is easy to construct diffuse groups
with holonomy group (Z/2Z)2 (cf. Lemma 3.9 below).
In this section we prove the following algebraic characterisation of these three
classes of finite groups.

Theorem 3.5. A finite group G is

(i) holonomy anti-diffuse if and only if it is not solvable.
(ii) holonomy diffuse exactly if every Sylow subgroup is cyclic.
(iii) holonomy mixed if and only if it is solvable and has a non-cyclic Sylow

subgroup.

The proof of this theorem will be given as a sequence of lemmata below. A
finite group G with cyclic Sylow subgroups is meta-cyclic (Thm. 9.4.3 in [34]).
In particular, such a group G is solvable and hence it suffices to prove the as-
sertions (i) and (ii). One direction of (i) is easy. By Proposition 3.2 a diffuse
Bieberbach group is solvable and thus cannot have a finite non-solvable quo-
tient, i.e. a non-solvable group is holonomy anti-diffuse. For (i) it remains to
verify that every finite solvable group is the holonomy of some diffuse Bieber-
bach group; this will be done in Lemma 3.9.
In order to prove (ii), we shall use a terminology introduced by Hiller-Sah [38].

Definition 2. A finite group G is primitive if it is the holonomy group of a
Bieberbach group with finite abelianization.

Statement (ii) of the theorem will follow from the next lemma.

Lemma 3.6. Let G be a finite group. The following statements are equivalent.

(a) G is not holonomy diffuse.
(b) G has a non-cyclic Sylow subgroup.
(c) G contains a normal primitive subgroup.

We frequently use the following notion: A cohomology class α ∈ H2(G,A) (for
some finite group G and some G-module A) is called special if it corresponds to
a torsion-free extension of G by A (cf. [38]). Equivalently, if A is free abelian,
the restriction of α to any cyclic subgroup of G is non-zero.
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Proof. Hiller-Sah [38] obtained an algebraic characterisation of primitive
groups. They showed that a finite group is primitive exactly if it does not
contain a cyclic Sylow p-subgroup which admits a normal complement (see
also [21] for a different criterion).
(a) =⇒ (b): Assume G is not holonomy diffuse and take a non-diffuse Bieber-
bach group Γ with holonomy group G. As Γ is not locally indicable we find a
non-trivial subgroup Γ0 ≤ Γ with b1(Γ0) = 0. The holonomy group G0 of Γ0 is
primitive. Let p be the smallest prime divisor of |G0|. The Sylow p-subgroups
of G0 are not cyclic, since otherwise they would admit a normal complement (by
a result of Burnside [14]). Let π : Γ → G be the projection. The image π(Γ0)
has G0 as a quotient and hence π(Γ0) also has non-cyclic Sylow p-subgroups.
As every p-group is contained in a Sylow p-subgroup, we deduce that the Sylow
p-subgroups of G are not cyclic.

(b) =⇒ (c): Let p be a prime such that the Sylow p-subgroups of G are
not cyclic. Consider the subgroup H of G generated by all p-Sylow subgroups.
The group H is normal in G and we claim that it is primitive. The Sylow
p-subgroups of H are precisely those of G and they are not cyclic. Let p′ be
a prime divisor of |H | different from p. Suppose there is a (cyclic) Sylow p′-
subgroup Q in H which admits a normal complement N . As H/N is a p′-group,
the Sylow p-subgroups of H lie in N . By construction H is generated by its
Sylow p-subgroups and so N = H . This contradicts the existence of such a
Sylow p′-subgroup.

(c) =⇒ (a): Assume now that G contains a normal subgroup N E G which is
primitive. We show that G is not holonomy diffuse. Since N is primitive, there
exists Bieberbach group Λ with holonomy group N and with b1(Λ,Q) = 0. Let
A be the translation subgroup of Λ and let α ∈ H2(N,A) be the special class
corresponding to the extension Λ. The vanishing Betti number b1(Λ,Q) = 0 is
equivalent to AN = {0}.
Consider the induced Z[G]-module B := indGN (A). Let T be a transversal of N
in G containing 1G. If we restrict the action on B to N we obtain

B|N =
⊕

g∈T
A(g)

where A(g) is the N -module obtained from A by twisting with the action with
g, i.e. h ∈ N acts by g−1hg on A. In particular, BN = {0} and A = A(1G) is
a direct summand of B|N .

Observe that every class in H2(N,B) which projects to α ∈ H2(N,A) is spe-
cial and defines thus a Bieberbach group with finite abelianization. Shapiro’s
isomorphism sh2 : H2(G,B) → H2(N,A) is the composition of the restriction
resNG and the projectionH2(N,B)→ H2(N,A). We deduce that there is a class
γ ∈ H2(G,B) which maps to some special class β ∈ H2(N,B) (which projects
onto α ∈ H2(N,A)). Let Λ′ be the Bieberbach group (with b1(Λ

′) = 0) corre-
sponding to β. The group corresponding to γ might not be torsion-free, so we
need to vary γ so that it becomes a special class.
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Let H be the collection of all cyclic prime order subgroupsC ofG which intersect
N trivially. For each C ∈ H we define

MC := indGC(Z)

where C acts trivially on Z. The group N acts freely on C\G, since C ∩N =
{1G}. Therefore (MC)|N is a free Z[N ]-module. We define the Z[G]-module

M = B ⊕
⊕

C∈H
MC .

Using Shapiro’s Lemma we find classes αC ∈ H2(G,MC) which restrict to
non-trivial classes in H2(C,MC). Consider the cohomology class δ := γ ⊕⊕

C∈H αC ∈ H2(G,M).
The class δ is special, as can be seen as follows. For every C ∈ H this follows
from the fact that αC restricts non-trivially to C. For the cyclic subgroups
C ≤ N this holds since the restriction of γ to N is special. Consequently δ
defines a Bieberbach group Γ with holonomy group G.
Finally, we claim that resNG (δ) = i∗(resNG (γ)) where i : B →M is the inclusion
map. Indeed, H2(N,MC) = 0 sinceMC is a free Z[N ]-module. Since resNG (γ) =
β we conclude that Γ contains the group Λ′ as a subgroup and thus Γ is not
locally indicable. �

We are left with constructing diffuse Bieberbach groups for a given solvable
holonomy group. We start with a simple lemma concerning fibre products of
groups. For 0 ≤ i ≤ n let Γi be a group with a surjective homomorphism ψi
onto some fixed group G. The fibre product ×GΓi is defined as a subgroup of
the direct product

∏
i Γi by

×GΓi := { (γi)i ∈
n∏

i=0

Γi | ψi(γi) = ψ0(γ0) for all i }.

In this setting we observe the following

Lemma 3.7. If Γ0 is diffuse and kerψi ⊂ Γi is diffuse for all i ∈ {1, . . . , n},
then ×GΓi is diffuse.

Proof. There is a short exact sequence

1 −→
n∏

i=1

kerψi
j−→ ×GΓi −→ Γ0 −→ 1

so the claim follows from Theorem 1.2 in [10]. �

Lemma 3.8. Let G be a finite group and let M1, . . . ,Mn be free Z-modules with
G-action. Let αi ∈ H2(G,Mi) be classes. If one of these classes defines a
diffuse extension group of G, then the sum of the αi in H

2(G,M1 ⊕ · · · ⊕Mn)
defines a diffuse extension of G.

Proof. Taking the sum of classes corresponds to the formation of fibre products
of the associated extensions, so the claim follows from Lemma 3.7. �
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Lemma 3.9. Every finite solvable group is the holonomy group of a diffuse
Bieberbach group.

Proof. We begin by constructing diffuse Bieberbach groups with given abelian
holonomy group. Let A be an abelian group and let Γ1 be a Bieberbach group
with holonomy group A and projection ψ1 : Γ1 → A. Write A as a quotient
of a free abelian group Γ0 = Zk of finite rank with projection ψ0 : Zk → A.
By Lemma 3.7 the fibred product Γ0 ×A Γ1 is a diffuse Bieberbach group with
holonomy group A (the kernel of ψ1 is free abelian).
Assume now that G is solvable. We construct a diffuse Bieberbach group Γ
with holonomy group G. We will proceed by induction on the derived length
of G. The basis for the induction is given by the construction for abelian
groups above. Let G′ be the derived group of G. By induction hypothesis
there is a faithful G′-moduleM and a “diffuse” class α ∈ H2(G′,M). Consider

the induced module B = indGG′(M). The restriction of B to G′ decomposes
into a direct sum

B|G′ ∼=M ⊕X.

There is a class β ∈ H2(G,B) which maps to α under Shapiro’s isomorphism

sh2 : H2(G,B)→ H2(G′,M). Due to this the restriction resG
′

G (β) decomposes

as α⊕x ∈ H2(G′,M)⊕H2(G′, X). By Lemma 3.8 the class resG
′

G (β) is diffuse.
Let Γ1 be the extension of G which corresponds to the class β. By what we
have seen, the subgroup Λ1 = ker(Γ1 → G/G′) is diffuse. Finally, we write the
finite abelian group G/G′ as a quotient of a free abelian group Γ0 = Zk. By
Lemma 3.7 the fibre product Γ0 ×G/G′ Γ1 is diffuse. In fact, it is a Bieberbach
group with holonomy group G. �

3.4. Non-diffuse Bieberbach groups in small dimensions. In this sec-
tion we briefly describe the classification of all Bieberbach groups in dimension
d ≤ 4 which are not diffuse. The complete classification of crystallographic
groups in these dimensions is given in [13] and we refer to them according to
their system of enumeration.
In dimensions 2 and 3 the classification is very easy. In dimension d = 2 there
are two Bieberbach groups and both of them are diffuse. In dimension d = 3
there are exactly 10 Bieberbach groups. The only group among those with
vanishing first rational Betti number is the Promislow (or Hantzsche-Wendt)
group ∆P (which is called 3/1/1/04 in [13]).
Now we consider the case d = 4, in this case there are 74 Bieberbach groups. As
a consequence of the considerations for dimensions 2 and 3, a Bieberbach group
Γ of dimension d = 4 is not diffuse if and only if it has vanishing Betti number
or contains the Promislow group ∆P . Vanishing Betti number is something
that can be detected easily from the classification. So how can one detect the
existence of a subgroup isomorphic to ∆P ? The answer is given in the following
lemma.
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Lemma 3.10. Let Γ be a Bieberbach group acting on E = R4 and assume that
b1(Γ) > 0. Let π : Γ → G be the projection onto the holonomy group. Then Γ
is not diffuse if and only if it contains elements g, h ∈ Γ such that

(i) S := 〈π(g), π(h)〉 ∼= (Z/2Z)2,
(ii) dimES = 1 and
(iii) if E = ES ⊕ V as S-module, then g · 0 and h · 0 lie in V .

Proof. Since b1(Γ) > 0, the group Γ is not diffuse exactly if it contains ∆P as
a subgroup.
Assume Γ contains ∆P and let Λ = ker(π) be the translation subgroup of Γ
(considered as a lattice in E). We claim that the holonomy group of ∆P embeds
into G via π. We show that L := ∆P ∩ Λ is the maximal abelian finite index
subgroup of ∆P . The lattice L spans a three-dimensional subspace V ⊆ E on
which ∆P /L ∼= π(∆P ) acts without fixed points. Since b1(Γ) > 0 the group
S = π(∆P ) has a one-dimensional fixed point space ES which is a complement
of V in E. Suppose L1 is an abelian subgroup of ∆P which contains L. Then
L1/L acts trivially on E and (as G acts faithfully on E) we conclude L1 = L.
Take g and h in Γ such π(g) and π(h) generate S, clearly g · 0, h · 0 ∈ V .
The group S acts without non-trivial fixed points on V and E = ES ⊕ V is a
decomposition as S-module.
Conversely, if we can find g, h ∈ Γ as above, then they generate a Bieberbach
group of smaller dimension and with vanishing first Betti number. Hence they
generate a group isomorphic to ∆P . �

Using this lemma and the results of the previous section one can decide for
each of the 74 Bieberbach groups whether they are diffuse or not. It turns out
there are 16 non-diffuse groups in dimension 4, namely (cf. [13]):

04/03/01/006, 05/01/02/009, 05/01/04/006, 05/01/07/004,
06/01/01/049, 06/01/01/092, 06/02/01/027, 06/02/01/050,
12/03/04/006, 12/03/10/005, 12/04/03/011, 13/04/01/023,
13/04/04/011, 24/01/02/004, 24/01/04/004, 25/01/01/010.

The elementary abelian groups (Z/2Z)2, (Z/2Z)3, the dihedral group D8, the
alternating groupA4 and the direct product groupA4×Z/2Z occur as holonomy
groups. Among these groups only four groups have vanishing first Betti num-
ber (these are 04/03/01/006, 06/02/01/027, 06/02/01/050 and 12/04/03/011).
However, one can check that these groups contain the Promislow group as well.
In a sense the Promislow group is the only reason for Bieberbach groups in di-
mension 4 to be non-diffuse (thus non of these groups has the unique product
property). This leads to the following question: What is the smallest dimen-
sion d0 of a non-diffuse Bieberbach group which does not contain ∆P ? Clearly,
such a group has vanishing first Betti number. Note that there is a group
with vanishing first Betti number and holonomy (Z/3Z)2 in dimension 8 (see
[38]); thus 5 ≤ d0 ≤ 8. The so-called generalized Hantzsche-Wendt groups are
higher dimensional analogs of ∆P (cf. [63, 58]). However, any such group Γ
with b1(Γ) = 0 contains the Promislow group (see Prop. 8.2 in [58]).
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3.5. A family of non-diffuse infra-solvmanifolds. Many geometric
questions are not answered by the simple algebraic observation in Proposi-
tion 3.2. For instance, given a simply connected solvable Lie group G, is there
an infra-solvmanifold of type G with non-diffuse fundamental group? To our
knowledge there is no criterion which decides whether a solvable Lie group G
admits a lattice at all. Hence we do not expect a simple answer for the above
question. We briefly discuss an infinite family of simply connected solvable
groups where every infra-solvmanifold is commensurable to a non-diffuse one.
Let ρ1, . . . , ρn be n ≥ 1 distinct real numbers with ρi > 1 for all i = 1, . . . , n.
We define the Lie group

G := R2n ⋊R

where s ∈ R acts by the diagonal matrix β(s) := diag(ρs1, . . . , ρ
s
n, ρ
−s
1 , . . . , ρ−sn )

on R2n. The group G is a simply connected solvable Lie group. The isomor-
phism class of G depends only one the line spanned by (log ρ1, . . . , log ρn) in
Rn. For n = 1 the group G is the three dimensional solvable group Sol, which
will be reconsidered in Section 5.

Proposition 3.11. In the above setting the following holds.

(a) The Lie group G has a lattice if and only if there is t0 > 0 such that
the polynomial f(X) :=

∏n
i=1(1 − (ρt0i + ρ−t0i )X + X2) has integral

coefficients.
(b) If G admits a lattice, then every infra-solvmanifold of type G is com-

mensurable to a non-diffuse one.

Before we prove the proposition, we describe the group of automorphisms of G.
Let σ ∈ Aut(G), then σ(x, t) = (Wx+f(t), λt) for some λ ∈ R×,W ∈ GL2n(R)
and f ∈ Z1(R,R2n) a smooth cocycle for the action of s ∈ R on R2n via β(λ·s).
Using thatH1(R,R2n) = 0 we can compose σ with an inner automorphism of G
(given by an element in [G,G]) such that f(t) = 0. Observe that the following
equality has to hold

β(λt)W =Wβ(t)

for all t ∈ R. As a consequence λ is 1 or −1. In the former case W is diagonal,
in the latter case W is a product of a diagonal matrix and

W0 =

(
0 1n
1n 0

)
.

Let D+ denote the group generated by diagonal matrices in GL2n(R) and W0,
then Aut(G) ∼= R2n ⋊D+.

Proof of Proposition 3.11. Ad (a): Note that N := R2n = [G,G] is the max-
imal connected normal nilpotent subgroup of G. Suppose that G contains a
lattice Γ. Then Γ0 := Γ ∩N is a lattice in N (cf. Cor. 3.5 in [55]) and Γ/Γ0 is
a lattice in G/N ∼= R. Let t0 ∈ R so that we can identify Γ/Γ0 with Zt0 in R.
Take a basis of Γ0, with respect to this basis β(t0) is a matrix in SL2n(Z). The
polynomial f is the charcteristic polynomial of β(t0) and the claim follows.
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Conversely, let t0 > 0 with f ∈ Z[X ] as above. Take any matrix A ∈ SL2n(Z)
with characteristic polynomial f , e.g. if f(X) = X2n + a2n−1X2n−1 + · · · +
a1X + a0 then the matrix A with ones above the diagonal and last row
(−a0,−a1, . . . ,−a2n−1) has suitable characteristic polynomial.
Since by assumption all the ρi are distinct and real, we find P ∈ GL2n(R) with
PAP−1 = β(t0). Now define Γ0 := PZ2n and we obtain a lattice Γ := Γ0⋊(Zt0)
in G.

Ad (b): Let Λ ⊂ Aff(G) be the fundamental group of an infra-solvmanifold.
Define Γ := G ∩ Λ and Γ0 := Γ ∩ N where N = R2n is the maximal normal
nilpotent subgroup. The first Betti number of Λ is b1(Λ) = dimR(G/N)Λ/Γ.
The quotient Γ/Γ0 is a lattice in R, so is of the form Zt0 for some t0 > 0.
Take any basis of the lattice Γ0 ⊆ R2n. We shall consider coordinates on
R2n with respect to this basis from now on. In particular, β(t0) is given by
an integral matrix A ∈ SL2n(Z) and further Γ is isomorphic to the strongly
polycyclic group Z2n ⋊ Z where Z acts via A. Let F/Q be a finite totally
real Galois extension which splits the characteristic polynomial of A, so the
Galois group permutes the eigenvalues of A. Moreover, the Galois group acts on
Γ0⊗ZF so that we can find a set of eigenvectors which are permuted accordingly.
Let B ∈ GL2n(F ) be the matrix whose columns are the chosen eigenvectors,
then B−1AB = β(t0) and for all σ ∈ Gal(F/Q) we have σ(B) = BPσ for a
permutation matrix Pσ ∈ GL2n(Z). It is easily seen that Pσ commutes with
W0, and hence W = BW0B

−1 is stable under the Galois group, this means
W ∈ GL2n(Q).
Since W is of order two, we can find a sublattice L ⊂ Γ0 which admits a basis
of eigenvectors of W . Pick one of these basis vectors, say v, with eigenvalue
one, find q ∈ Z \ {0} with qΓ0 ⊂ L and take a positive integer r so that

Ar ≡ 1 mod 4q.

This way we find a finite index subgroup Γ′ := L ⋊ rZ of Γ which is stable
under the automorphism τ defined by (x, t) 7→ (Wx,−t). Since we want to
construct a torsion-free group we cannot add τ into the group. Instead we
take the group Λ′ generated by (12v, 0)τ and Γ′ in the affine group Aff(G). A
short calculation shows that Λ′ is torsion-free and hence Λ′ is the fundamental
group of an infra-solvmanifold of type G which is commensurable with Λ. By
construction the first Betti number b1(Λ

′) = dimR(G/N)Λ
′/Γ′

vanishes and so
Λ′ is not diffuse by Theorem 3.1. �

4. Fundamental groups of hyperbolic manifolds

In this section we prove Theorems B and C from the introduction. We give a
short overview of rank one symmetric spaces before studying first their unipo-
tent and then their axial isometries in view of applying Lemma 2.1. Then we
review some well-known properties of geometrically finite groups of isometries
before proving a more general result (Theorem 4.8) and showing how it implies
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Theorems B and C. We also study the action on the boundary, resulting in
Theorem 4.11, which will be used in the next section.

4.1. Hyperbolic spaces.

4.1.1. Isometries. We recall some terminology about isometries of Hadamard
manifolds: if g ∈ Isom+(X) where X is a complete simply connected manifold
with non-positive curvature then g is said to be

• Hyperbolic (or axial) if min(g) = infx∈X dX(x, gx) > 0;
• Parabolic if it fixes exactly one point in the visual boundary ∂X , equiv-
alently min(g) = 0 and g has no fixed point inside X .

We will be interested here in the case where X = G/K is a symmetric space
associated to a simple Lie group G of real rank one. An element g ∈ G then
acts on X as an hyperbolic isometry if and only if it is semisimple and has
an eigenvalue of absolute value > 1 in the adjoint representation. Parabolic
isometries of X are algebraically characterised as corresponding to the non-
semisimple elements of G; their eigenvalues are necessarily of absolute value
one. If they are all equal to one then the element of G is said to be unipotent,
as well as the corresponding isometry of X .

4.1.2. Projective model. Here we describe models for the hyperbolic spaces
HnA for A = R,C,H (the symmetric spaces associated to the Lie groups
SO(n, 1), SU(n, 1) and Sp(n, 1) respectively) which we will use later for com-
putations. We will denote by z 7→ z the involution on A fixing R, and define
as usual the reduced norm and trace of A by

|z|A/R = zz = zz, trA/R(z) = z + z

We let V = An,1, by which we mean that V is the right A-vector space An+1

endowed with the sesquilinear inner product given by2

〈v, v′〉 = v′n+1v1 +

n∑

i=2

v′ivi + v′1vn+1.

The (special if A = R or C) isometry group G of V is then isomorphic to
SO(n, 1), SU(n, 1) or Sp(n, 1). Let:

V− = {v ∈ V | 〈v, v〉 < 0} =
{
v ∈ V | trA/R(v1vn+1) < −

n∑

i=2

|vi|A/R
}

then the image X = PV− of V− in the A-projective space PV of V can be
endowed with a distance function dX given by:

(2) cosh

(
dX([v], [v′])

2

)2

=
|〈v, v′〉|A/R
〈v, v〉〈v′, v′〉 .

This distance is G-invariant, and the stabilizer in G of a point in V− is a max-
imal compact subgroup of G. Hence the space X is a model for the symmetric

2We use the model of [43] rather than that of [53].
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space G/K (where K = SO(n), SU(n) or Sp(n) according to whether A = R,C
or H).
The following lemma will be of use later.

Lemma 4.1. If v, v′ ∈ V− then trA/R(vn+1v
′
n+1〈v, v′〉) < 0.

Proof. Since trA/R(vn+1v
′
n+1〈v, v′〉) does not change sign when we multiply v

or v′ by a element of A from the right, we may suppose that vn+1 = v′n+1 = 1.
In this case we have:

trA/R(vn+1v
′
n+1〈v, v′〉) = trA/R(v1) + trA/R(v

′
1) + trA/R

(
n∑

i=2

v′ivi

)
.

Now we have

trA/R

(
n∑

i=2

v′ivi

)
≤ 2

√√√√
(

n∑

i=2

|vi|A/R
)
·
(

n∑

i=2

|v′i|A/R
)

by Cauchy-Schwarz, and since v, v′ ∈ V− we get

trA/R(vn+1v
′
n+1〈v, v′〉) < trA/R

(
n∑

i=2

v′ivi

)
−

n∑

i=2

|vi|A/R −
n∑

i=2

|v′i|A/R

≤ −



√√√√

n∑

i=2

|vi|A/R −

√√√√
n∑

i=2

|v′i|A/R




2

≤ 0.

�

4.2. Unipotent isometries and distance functions. In this subsection
we prove the following proposition, which is the main ingredient we use in
extending the results of [10] from cocompact subgroups to general lattices.

Proposition 4.2. Let A be one of R,C or H and let η 6= 1 be a unipotent
isometry of X = HnA and a, x ∈ HnA. Then

max
(
d(a, ηx), d(a, η−1x)

)
> d(a, x).

Proof. We say that a function h : Z→ R is strictly convex if h is the restriction
to Z of a strictly convex function on R (equivalently all points on the graph of
h are extremal in their convex hull and h has a finite lower bound). We will
use the following criterion, similar to Lemma 6.1 in [53].

Lemma 4.3. Let X be a metric space, x ∈ X and let φ ∈ Isom(X). Suppose
that there exists an increasing function f : [0,+∞[→ R such that for any y ∈ X
the function hy : k 7→ f(dX(y, φkx)) is strictly convex. Let

Bk = {y ∈ X : dX(y, φkx) ≤ dX(y, x)}.
Then we have B1 ∩B−1 = ∅.
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Proof. Suppose there is a y ∈ X such that

dX(y, φx), dX(y, φ−1x) ≤ dX(y, x).

Since f is increasing this means that hy(1), hy(−1) ≤ hy(0): but this is impos-
sible since hy is strictly convex. �

Applying it to φ = η, we see that it suffices to prove that for any z, w ∈ X the
function

f : t ∈ R 7→ cosh

(
dX(z, ηtw)

2

)2

is strictly convex on R, i.e. f ′′ > 0. Of course we need only to prove that
f ′′(0) > 0 since z, w are arbitrary. By the formula (2) for arc length in hyper-
bolic spaces it suffices to prove this for the function

h : t 7→ |〈v, ηtv′〉|A/R
for any two v, v′ ∈ An,1 (which we normalize so that their last coordinate
equals 1). Now we have:

d2h

dt2
=

d

dt

(
trA/R

(
〈v, ηtv′〉 d

dt
〈v, ηtv′〉

))

= 2

∣∣∣∣
d

dt
〈v, ηtv′〉

∣∣∣∣
A/R

+ trA/R

(
〈v, ηtv′〉 d

2

dt2
〈v, ηtv′〉

)
.

There are two distinct cases (see either [53, Section 3] or [43, Section 1]): η can
be conjugated to a matrix of one of the following forms:


1 −a −|a|A/R/2
0 1n−1 a
0 0 1


 , a ∈ An or



1 0 b
0 1n−1 0
0 0 1


 , b ∈ A totally imaginary.

In the second case we get that d2

dt2 η
t = 0, hence

d2h

dt2
= 2

∣∣∣∣
d

dt
〈v, ηtv′〉

∣∣∣∣
A/R

= 2|b|A/R > 0.

In the first case (which we normalize so that |a|A/R = 1) we have at t = 0:

d2h

dt2
= 2

∣∣∣∣
d

dt
〈v, ηtv′〉

∣∣∣∣
A/R

− trA/R
(
vn+1v

′
n+1〈v, v′〉

)

and hence the result follows from Lemma 4.1. �

4.3. Hyperbolic isometries and distance functions. In view of estab-
lishing the inequality (∗) in Lemma 2.1 axial isometries in negatively curved
spaces have a much simpler behaviour than parabolic ones: one only needs to
use the hyperbolicity of the space on which they act as soon as their minimal
displacement is large enough, as was already observed in [10] (see Lemma 4.4
below). On the other hand, isometries with small enough minimal displace-
ment which rotate non-trivially around their axis obviously do not satisfy (∗)
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for all y; we study this phenomenon in more detail for real hyperbolic spaces
below, obtaining an optimal criterion in Proposition 4.5.

4.3.1. Gromov-hyperbolic spaces. The following lemma is a slightly more pre-
cise version of Corollary 5.2 [10]. It has essentially the same proof; we will give
the details, which are not contained in [10].

Lemma 4.4. Let δ > 0 and d > 0; there exists a constant C(δ, d) such that for
any δ-hyperbolic space X and any axial isometry γ of X such that min(γ) ≥
C(δ, d) and any pair (x, a) ∈ X we have

max(d(γx, a), d(γ−1x, a)) ≥ d(x, a) + d.

Proof. Let γ be as in the statement (with the constant C = C(δ, d) to be deter-
mined later), let L be its axis. Let w,w′, w′′ be the projections of x, γx, γ−1x
on L, and v that of a. We will suppose (without loss of generality) that v lies
on the ray in L originating at w and passing through w′.
Now let T be a metric tree with set of vertices constructed as follows: we take
the geodesic segment on L containing all of w,w′, w′′ and v and we add the
arcs [x,w], etc. Then, for any two vertices u, u′ of T we have

dX(u, u′) ≤ dT (u, u′) ≤ dX(u, u′) + c

where c depends only on δ (see the proof of Proposition 6.7 in [11]). In this
tree we have

dT (a, γ
−1x) = dX(a, v) + dX(v, w) + dX(w,w′′) + dX(w′′, γ−1x)

= dX(w, γ−1w) + dX(a, v) + dX(v, w) + dX(w, x)

= min(γ) + dT (a, x)

and using both inequalities above we get that

dX(a, γ−1x) ≥ dT (a, γ−1x)− c ≥ dX(a, x) + min(γ)− c.
We see that for min(γ) ≥ C(δ, d) = c+ d the desired result follows. �

4.3.2. A more precise result in real hyperbolic spaces. We briefly discuss a quan-
titative version of Lemma 4.4. Bowditch observed (cf. Thm. 5.3 in [10]) that a
group Γ which acts freely by axial transformations on the hyperbolic space HnR
is diffuse if every γ ∈ Γ \ {1} has translation length at least 2 log(1 +

√
2). We

obtain a slight improvement relating the lower bound on the translation length
more closely to the eigenvalues of the rotational part of the transformation.
Our proof is based on a calculation in the upper half-space model of HnR, i.e.
we consider HnR = { x ∈ Rn | xn > 0 } with the hyperbolic metric d (see §4.6 in
[56]). Every axial transformation γ on HnR is conjugate to a transformation of
the form x 7→ kAx where A is an orthogonal matrix in O(n− 1) (acting on the
first n − 1 components) and k > 1 is a real number (see Thm. 4.7.4 in [56]).
We say that A is the rotational part of γ. The translation length of γ is given
by min(γ) = log(k). We define the absolute rotation rγ of γ to be the maximal
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value of |λ − 1| where λ runs through all eigenvalues of A. In other words,
rγ is merely the operator norm of the matrix A − 1. The absolute rotation
measures how close the eigenvalues get to −1. It is apparent from Bowditch’s
proof that the case of eigenvalue −1 (rotation of angle π) is the problematic
case whereas the situation should improve significantly for rotation bounded
away from angle π. We prove the following sharp result.

Proposition 4.5. An axial transformation γ of HnR has the property

(⋆) max(d(x, γy), d(x, γ−1y)) > d(x, y) for all x, y ∈ HnR
if and only if the translation length min(γ) satisfies

(♣) min(γ) ≥ arcosh(1 + rγ).

Using the same argument as above we immediately obtain the following im-
provement of Bowditch’s Theorem 5.3 (we use Proposition 4.2 to take care of
the unipotent elements).

Corollary. Let Γ be a group which acts freely by axial or unipotent trans-
formations of the hyperbolic space HnR. If the translation length of every axial
γ ∈ Γ satisfies inequality (♣), then Γ is diffuse.

Remark. (1) It is a trivial matter to see that the converse of the corollary does
not hold. Take any axial transformation γ 6= 1 which does not obey inequality
(♣), then the diffuse group Γ = Z acts via γ on Hn.
(2) If γ ∈ SL2(C) is hyperbolic, with an eigenvalue λ = eℓ/2eiθ/2 then the
condition (♣) is equivalent to

cosh(ℓ) ≥ 1 +
√
2− 2 cos(θ).

Proof of Proposition 4.5. Let γ be an axial transformation which satisfies (♣).
We will show that for all x, y ∈ HnR we have max(d(x, γy), d(x, γ−1y)) > d(x, y).
After conjugation we can assume that γ(a) = Aka with k > 1 and A ∈ O(n−1).
We take x, y to lie in the upper half-space model, then we may consider them as
elements of Rn. We will suppose in the sequel that ‖x‖ ≤ ‖y‖ in the euclidean
metric of Rn, and under this hypothesis we shall prove that d(x, γy) > d(x, y).
If the opposite inequality ‖x‖ ≥ ‖y‖ holds we get that d(y, γx) > d(x, y), hence
d(x, γ−1y) > d(x, y) which implies the proposition.
Using the definition of the hyperbolic metric and the monotonicity of cosh on
positive numbers, it suffices to show

‖x−Aky‖2 > k‖x− y‖2.
In other words, we need to show that the largest real zero of the quadratic
function

f(t) = t2‖y‖2 − t(‖x‖2 + ‖y‖2 + 2〈x,Ay − y〉) + ‖x‖2

is smaller than exp(arcosh(1 + rγ)) = 1 + rγ +
√
r2γ + 2rγ . We may divide by

‖y‖2 and we can thus assume ‖y‖ = 1 and 0 < ‖x‖ ≤ 1. The large root of f(t)
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is

t0 =
‖x‖2 + 1

2
+ 〈x,Ay − y〉+ 1

2

√
(‖x‖2 + 1 + 2〈x,Ay − y〉)2 − 4‖x‖2.

Note that if rγ = 0, then k > 1 = t0.
Suppose that rγ > 0. Indeed, by Cauchy-Schwarz |〈x,Ay − y〉| < rγ‖x‖ and
the inequality is strict since xn > 0. As a consequence t0 < t(‖x‖) where

t(s) =
s2 + 1

2
+ rγs+

1

2

√
(s2 + 1 + 2rγs)2 − 4s2.

Finally, we determine the maximum of the function t(s) for s ∈ [0, 1]. A simple
calculation shows that there is no local maximum in the interval [0, 1]. We
conclude that the maximal value is attained at s = 1 and is precisely

t(1) = 1 + rγ +
√
r2γ + 2rγ .

Conversely, assume that (♣) does not hold. In this case we have 1 < k <

1 + rγ +
√
r2γ + 2rγ and thus rγ 6= 0. Choose some vector y ∈ Rn with yn = 0

and ‖y‖ = 1 so that ‖Ay − y‖ = rγ (this is possible since rγ is the operator
norm of A − 1). We define x = r−1γ (Ay − y) and we observe that x 6= y since
the orthogonal matrix A has no eigenvalues of absolute value exceeding one.
The following inequalities hold:

‖x− k−1A−1y‖2
k−1

≤ ‖x− kAy‖
2

k
< ‖x− y‖2.

The first follows from 〈x,A−1y〉 ≤ 〈x, y〉+ rγ = 〈x,Ay〉. The second inequality

follows from the assumption k < 1 + rγ +
√
r2γ + 2rγ . Since the last inequality

is strict, we can use continuity to find distinct x′ and y′ in the upper half-space
(close to x and y), so that still

max

{‖x′ − k−1A−1y′‖2
k−1

,
‖x′ − kAy′‖2

k

}
< ‖x′ − y′‖2.

Interpreting x′ and y′ as points in the hyperbolic space, the assertion follows
from the definition of the hyperbolic metric. �

4.4. Geometric finiteness. There are numerous equivalent definitions of
geometric finiteness for discrete subgroups of isometries of rank one spaces, see
for example [49, Section 3.1] or [56, Section 12.4] for real hyperbolic spaces.
We shall use the equivalent definitions given by B. Bowditch in [9] for general
negatively-curved manifolds.
The only facts from the theory of geometrically finite groups we will need in this
section are the following two lemmas which are quite immediate consequences
of the equivalent definitions.
In the rest of this section we will always use the following notation: whenever
P is a parabolic subgroup in a rank-one Lie group and we write

P =MAN
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this means that A is a split torus,M is compact and N is the unipotent radical
of P (such a decomposition is essentially—up to conjugation of A and M by
an element of N—unique).

Lemma 4.6. Let G be a rank-one Lie group and Γ ≤ G be a geometrically finite
subgroup, all of whose parabolic elements have finite-order eigenvalues. Then
there is a subgroup Γ′ ≤ Γ of finite index such that all parabolic isometries
contained in Γ′ are unipotent elements of G.

Proof. From [9, Corollary 6.5] we know that Γ has only finitely many conju-
gacy classes of maximal parabolic subgroups; by residual finiteness of Γ we
will be finished if we can show that for any parabolic subgroup P of G such
that the fixed point of P in ∂HnR is a cusp point, the group Λ = Γ ∩ P is
virtually unipotent. Writing P = MAN we see that it suffices to verify that
the projection of Λ on A is trivial (Indeed, since then Λ is contained in MN ,
and its projection to M is finite because it has only finite-order elements by
the hypothesis on eigenvalues, and it is finitely generated by [9, Proposition
4.1]). This follows from discreteness of Γ: if it contained an element λ with a
non-trivial projection on A, then for any non-trivial n ∈ N we have that either
λknλ−k or λ−knλk goes to the identity of G; but since the fixed point of P is a
cusp point for Γ the intersection Γ∩N must be nontrivial, hence there cannot
exist such a λ. �

Lemma 4.7. Let G be a rank-one Lie group, Γ a torsion-free geometrically finite
subgroup of G and MΓ = Γ\X. Then for any ℓ0 there are only finitely many
closed geodesics of length less than ℓ0 in MΓ.

Proof. See also [56, Theorem 12.7.8]. One of Bowditch’s characterizations of
geometrical finiteness is the following: let LΓ ⊂ ∂X be the limit set of Γ, i.e.
the closure of the set of points fixed by some nontrivial element of Γ, and let
YΓ ⊂ X be the convex hull in X of LΓ. Let CΓ = Γ\YΓ (the ‘convex core’ of
MΓ), and let M[ε,+∞[ be the ε-thick part of MΓ. Then Γ is geometrically finite
if and only if CΓ ∩M[ε,+∞[ is compact (for some or any ε): see [9, Section 5.3].
It is a well-known consequence of Margulis’ lemma that there is an ε0 > 0 such
that all geodesics in MΓ of length less than ℓ0 are contained in the ε0-thick
part. On the other hand it is clear that any closed geodesic of MΓ is contained
in CΓ (since the endpoints of any lift are in LΓ) and hence all closed geodesics
of MΓ with length ≤ ℓ0 are contained in the compact set CΓ ∩M[ε0,+∞[, which
implies that there are only finitely many such. �

4.5. Main results.

4.5.1. Action on the space.

Theorem 4.8. Let G be one of the Lie groups SO(n, 1), SU(n, 1) or Sp(n, 1),
X the associated symmetric space and let Γ be a geometrically finite subgroup
of G. Suppose that all eigenvalues of parabolic elements of Γ are roots of unity.
Then there exists a finite-index subgroup Γ′ ⊂ Γ such that Γ′ acts diffusely
on X.
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Proof. Let Γ′ be a finite-index subgroup of Γ such that all semisimple elements
γ ∈ Γ′ have min(γ) > C(δX , 1) (where δX is a hyperbolicity constant for X ,
which is Gromov-hyperbolic since it is a negatively-curved, simply connected
Riemannian manifold, and C(δX , 1) is the constant from Lemma 4.4)—such
a subgroup exists by Lemma 4.7 and the residual finiteness of Γ. By Lemma
4.6 we may also suppose that the parabolic isometries in Γ′ are exclusively
unipotent.
Now we can check that the hypothesis (∗) in Lemma 2.1 holds for the action
of Γ on X : for axial isometries we only have to apply Lemma 4.4, and for
unipotent elements Proposition 4.2. �

The hypothesis on eigenvalues of parabolic elements is equivalent to asking that
every parabolic subgroup of Γ contains a finite-index subgroup which consists
of unipotent elements. It is necessary for an application of Lemma 2.1, as
shown by the following construction.

Lemma 4.9. For n ≥ 4 there exists a discrete, two-generated free subgroup Γ
of SO(n, 1) such that for all x ∈ HnR there is a y ∈ HnR and a g ∈ Γ \ {1} such
that

d(x, y) ≥ d(gx, y), d(g−1x, y).
Proof. It suffices to prove this lemma for SO(4, 1). Let ω be an infinite-order
rotation of R2 and let φ be the isometry of R3 = R × R2 given by (t, x) 7→
(t + 1, ω · x). Then it is easy to see that for any k and any x not on the

axis R × 0 of φ the bisectors between x and φ±kx intersect. Let φ̃ be the
isometry of H4

R obtained by taking the Poincaré extension of φ (i.e. we fix a

point on ∂H4
R and define φ̃ by identifying the horospheres at this point with

the Euclidean three–space on which φ acts), which will also not satisfy (∗) for
all points outside of a two dimensional totally geodesic submanifold Yφ.
Now take φ1, φ2 as above. There exists a g ∈ Isom(H4

R) such that gYφ2g
−1 ∩

Yφ2 = ∅, and then for any k1, k2 > 0 the group 〈φ̃k11 , φ̃k22 〉 satisfies the second
conclusion of the lemma. It remains to prove that for k1, k2 large enough
it is a discrete (and free) group. This is done by a very standard argument

which goes as follows: There are disjoint open neighbourhoods Ui of Fix(φ̃i)

in ∂H4
R (not containing Fix(φ̃j), j 6= i) and positive integers k1, k2 such that

for all k ∈ Z, |k| ≥ ki we have φ̃ki (H
4
R \ Ui) ⊂ Ui. Now we can apply the ping-

pong lemma of Klein to obtain freeness and discreteness of 〈φ̃k11 , φ̃k22 〉: fix a

ξ ∈ ∂H4
R \ (U1 ∪U2), then any non-trivial reduced word in φ̃1, φ̃2 sends ξ inside

one of U1 or U2, hence the orbit of ξ is discrete in ∂H4
R ( proving discreteness of

〈φ̃k11 , φ̃k22 〉) and any such word is nontrivial in SO(4, 1) (proving freeness). �

On the other hand this phenomenon cannot happen in H2
R,H

3
R, which yields

the following corollary of Theorem 4.8.

Corollary 1. If Γ is a finitely generated discrete subgroup of SL2(C) then Γ
is virtually diffuse.
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Proof. Since in dimension three all Kleinian groups are isomorphic to geomet-
rically finite ones (this is a consequence of Thurston’s hyperbolization theorem
for Haken manifolds, as explained in [49, Theorem 4.10]) the result would fol-
low if we can prove diffuseness for the latter class. But parabolic isometries
of H3 are necessarily unipotent (since if an element of SL2(C) has two equal
eigenvalues, they must be equal to ±1, and hence it is unipotent in the adjoint
representation), and thus we can apply Theorem 4.8 to deduce that a geometri-
cally finite Kleinian group in dimension three has a finite-index subgroup which
acts diffusely on H3.
We could also deduce Corollary 1 from the veracity of the Tameness conjecture
[1], [17] and the virtual diffuseness of three–manifolds groups, Theorem D from
the introduction. �

Also, when parabolic subgroups of Γ are large enough3 the hypothesis should
be satisfied. We will be content with the following application of this principle.

Corollary 2. If Γ is a lattice in one of the Lie groups SO(n, 1), SU(n, 1) or
Sp(n, 1) then Γ is virtually diffuse.

Proof. A lattice Γ in a rank one Lie group G is a geometrically finite group (cf.
5.4.2 in [9]), hence we need to prove that the parabolic isometries contained in
Γ have only roots of unity as eigenvalues. In the case that Γ is arithmetic there
is a quick argument: for any γ ∈ Γ, the eigenvalues of γ are algebraic numbers.
If in addition γ is parabolic, then all its eigenvalues are of absolute value one
as well as their conjugates (because the group defining Γ is compact at other
infinite places). A theorem of Kronecker [27, Theorem 1.31] shows that any
algebraic integer in C whose Galois conjugates are all of absolute value one
must be a root of unity, and it follows that the eigenvalues of γ are roots of
unity.
One can also use a more direct geometric argument to prove this in full gener-
ality. Let P =MAN be a parabolic subgroup of G which contains a parabolic
element of Γ; then it is well-known that Γ ∩ P is contained in MN (see the
proof of Lemma 4.6 above). Also Λ = Γ ∩ N is a lattice in N , in particular
Λ\N is compact (this follows from the Margulis Lemma [9, Proposition 3.5.1],
which implies that horosphere quotients inject into Γ\X , and the finiteness of
the volume of Γ\X). Corollary 2 will then follow from the next lemma.

Lemma 4.10. Let N be a simply connected nilpotent Lie group containing a
lattice Λ, and Q ≤ Aut(N) a subgroup which preserves Λ, all of whose elements
have only eigenvalues of absolute value one (in the representation on the Lie
algebra n). Then these eigenvalues are in fact roots of unity.

Proof. The exponential map exp : n → N is a diffeomorphism. By [55, The-
orem 2.12], there is a lattice L in the vector space n such that 〈exp(L)〉 = Λ.
It follows that the adjoint action of Q preserves L, hence for any q ∈ Q the

3For example, in the real hyperbolic case, when their span in the Lie algebra is of codi-
mension smaller than one.

Documenta Mathematica 21 (2016) 873–915



On Geometric Aspects of Diffuse Groups 899

characteristic polynomial of Ad(q) has integer coefficients, hence its eigenvalues
are the conjugates of some finite set of algebraic integers. Since they are also
all of absolute value one it follows from Kronecker’s theorem that they must
be roots of unity. �

It follows that, in the above setting, the image of Γ ∩ P in M has a finite-
order image in Aut(N) where M acts by conjugation. This action is faithful
(because an element of M cannot act trivially of an horosphere associated to
N , otherwise it would act trivially on the whole of X since it preserves these
horospheres) and it follows that the hypothesis on eigenvalues in Theorem 4.8
is satisfied by Γ. �

4.5.2. Action on the boundary.

Theorem 4.11. Let Γ, G be as in the statement of Theorem 4.8. Then there
is a finite-index Γ′ ⊂ Γ such that for any parabolic fixed point ξ ∈ ∂X for Γ′

with stabilizer Λξ in Γ′ the action of Γ′ on Γ′/Λξ is diffuse.

Proof. We take a finite-index subgroup Γ′ ≤ Γ as in the proof of Theorem 4.8
above. The key point is the following lemma.

Lemma 4.12. There is a dense subset SΓ′ ⊂ X such that for any x0 ∈ SΓ′ and
any parabolic fixed point ξ of Γ′, if bξ is a Busemann function at ξ we have

(3) ∀g ∈ Γ′, g 6∈ Λξ : max
(
bξ(gx0), bξ(g

−1x0)
)
> bξ(x0).

Proof. Fix ξ and bξ as in the statement. By definition of a Busemann function
there is a unit speed geodesic ray σ : [0,∞[→ X running to ξ in X ∪ ∂X , such
that for all x ∈ X we have

bξ(x) = lim
t→+∞

(d(x, σ(t)) − t) .

On the other hand, by construction of Γ′ (using Lemma 4.4) we know that for
all axial isometries g ∈ Γ′ \ {1} we have

∀t ≥ 0 max
(
d(gx0, σ(t)), d(g

−1x0, σ(t))
)
≥ d(x0, σ(t)) + 1;

passing to the limit we obtain (3) for all such g and for any choice of x0.
Now we show that for certain generic x0 the same is true for unipotent isome-
tries. In any case, for any unipotent isometry g ofX , it follows from Proposition
4.2 and the same argument as above that

(4) max(bξ(g
−1x0), bξ(gx0)) ≥ bξ(x0)

for all x0. We want to choose x0 in order to be able to rule out equality if
g ∈ Γ′−Λξ. For a given unipotent isometry η and a ζ ∈ ∂X with ηζ 6= ζ define

Eζ,η = {x ∈ X | bζ(ηx) = bζ(x)}
(note that this does not depend on the choice of the Busemann function bζ).
This is an embedded hyperplane in X , and hence (by Baire’s theorem) the
subset

SΓ′ = X −
⋃

ζ,η

Eζ,η
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where the union runs over all parabolic elements η of Γ′ and all parabolic fixed
points ζ of Γ′, is dense in X . Moreover, by the definition of SΓ′ , for x0 ∈ SΓ′

we never have bξ(gx0) = bξ(x0) for any unipotent g ∈ Γ′ with gξ 6= ξ. Thus (4)
has to be a strict inequality. �

Let ξ0 ∈ ∂X be a parabolic fixed point of Γ′ and bξ0 a Busemann function at
ξ0. We write Λ = Λξ0 . The function bξ0 is Λ-invariant and if we choose some
x0 ∈ X we may define a function f = fx0 on Γ′/Λ by

(5) f(γΛ) = bξ0(γ
−1x0) = bγξ0(x0).

By the lemma this function satisfies

(6) ∀γΛ ∈ Γ′/Λ, ∀g ∈ Γ′, g 6∈ γΛγ−1 : max
(
f(gγΛ), f(g−1γΛ)

)
> f(γΛ),

whenever x0 ∈ SΓ′ . Indeed, we have

max
(
f(gγΛ), f(g−1γΛ)

)
= max

(
bγξ0(gx0), bγξ0(g

−1x0)
)

and according to (3) the right-hand side is strictly larger than bγξ0(x0) = f(γΛ).
The existence of a function f satisfying (6) implies that the action Γ′ on Γ′/Λ
is weakly diffuse, i.e. every non-empty finite subset A ⊂ Γ′/Λ has at least one
extremal point. Indeed, any a ∈ A such that f(a) realizes the maximum of f
on A is extremal in A.
Using an additional trick we can actually deduce diffuseness. Let A ⊂ Γ′/Λ be
finite with |A| ≥ 2, and let a be an extremal point. By shifting A we can assume
that a = Λ. Now let ξ0 be the fixed point of Λ and bξ0 a Busemann function.
Choose x0 ∈ SΓ′ such that x0 is (up to Λ) the only point realizing the minimum
of bξ0 on Γ′x0 (this is possible by taking x0 in a sufficiently small horoball at
ξ0, since SΓ′ is dense) and define f on Γ′/Λ as in (5). By construction f takes
it’s minimal value at a. So let b ∈ A be a point where f takes a maximal value.
By the given argument b is extremal in A. On the other hand f(b) > f(a) and
so b 6= a. We conclude that A has at least two extremal points. �

5. Fundamental groups of three–manifolds

In this section we prove Theorem D, whose statement we recall now :

Theorem. LetM be a compact three–manifold and Γ = π1(M) its fundamental
group. Then there is a finite-index subgroup Γ′ ≤ Γ which is diffuse.

The proof is a rather typical application of Geometrization. We begin with an
algebraic result on graph products, afterwards we use it to construct a suitable
covering (cf. [37]).

5.1. Algebraic preliminaries: a gluing lemma. Bowditch [10] showed
that if Γ is the fundamental group of a graph of groups such that for any
vertex group Γi and adjacent edge group Λi, both the group Λi and the action
of Γi on Γi/Λi are diffuse, then Γ is diffuse. In order to glue manifolds it is
necessary to understand graph products of virtually diffuse groups. For free
products there is a very simple argument.

Documenta Mathematica 21 (2016) 873–915



On Geometric Aspects of Diffuse Groups 901

Lemma 5.1. The free product G = G1 ∗ G2 of two virtually diffuse groups G1

and G2 is again virtually diffuse.

Proof. Let Hi ≤f Gi be a finite index diffuse subgroup. Consider the homo-
morphism φ : G → G1 ×G2. The kernel K of φ is a free group (cf. I. Prop. 4
in [60]). Let H denote the inverse image of H1×H2 under φ. The subgroup H
has finite index in G and H ∩K is a free group. We get a short exact sequence

1 −→ K ∩H −→ H → H1 ×H2 −→ 1.

From Theorem 1.2 in [10] we see that H is diffuse. �

Note that the same argument shows that the free product of diffuse groups is
diffuse. In order to understand amalgamated products and HNN extensions of
virtually diffuse groups one needs to argue more carefully.
We will use the Bass-Serre theory of graph products of groups. We shall use
the notation of [60]. Recall that a graph of groups (G, Y ) is a finite graph Y
with vertices V (Y ) and edges E(Y ). Every edge e has an origin o(e) ∈ V (Y )
and a terminus t(e) ∈ V (Y ). Moreover for every edge there is an opposite
edge ē. To every vertex P ∈ V (Y ) and every edge e ∈ E(Y ) there are attached
groups GP and Ge = Gē. Moreover, for every edge e there is a monomorphism
ie : Ge → Gt(e) usually denoted by a 7→ ae. To a graph of groups one attaches
a fundamental group π1(G, Y ) – the graph product.
Let (G, Y ) be a graph of groups. A normal subcollection (N, Y ) consists of two
families (NP E GP )P∈V (Y ) and (Ne E Ge)e∈E(Y ) of normal subgroups in the
vertex and edge groups which are compatible in the sense that

ie(Ne) = ie(Ge) ∩Nt(e) and Ne = Nē

for every edge e ∈ E(Y ). We say that (N, Y ) is of finite index, if for every
vertex P the index of NP in GP is finite.

Lemma 5.2. Let (G, Y ) be a graph of finite groups. The fundamental group
Γ = π1(G, Y ) is residually finite and virtually free.

Proof. The residual finiteness follows from Theorem 3.1 of Hempel [37]. To
apply his result we need to specify sufficiently small normal subcollections
(H,Y ) in (G, Y ) such for every P ∈ V (Y ) the group HP has finite index in
GP . Since we are dealing with finite groups it is easy to check that we can
simply choose HP = {1} and He = {1} for every vertex P and edge e.
Using that Γ is residually finite, we can find a finite index subgroup N E Γ
which intersects the embedded vertex group GP trivially for any of the finitely
many vertices P ∈ V (Y ). Therefore, the subgroup N acts freely (without edge
inversion) on the Bass-Serre tree associated with the graph (G, Y ). We deduce
that N is a free group [60, I. Thm. 4]. �

Let (G, Y ) be a graph of groups and let (N, Y ) be a normal subcollection.
To such a data we can associate a quotient graph of groups (H,Y ) where
HP = GP /NP and He = Ge/Ne for all vertices P and edges e. There is a
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natural surjective quotient morphism q : π1(G, Y ) → π1(H,Y ). We are now
able to state and prove the (algebraic) gluing Lemma.

Lemma 5.3 (Gluing Lemma). Let (G, Y ) be a graph of groups such that

(i) every edge group Ge is diffuse
(ii) there is a normal subcollection (N, Y ) of finite index such that for every

edge e ∈ E(Y ) the group Nt(e) acts diffusely on Gt(e)/ie(Ge).

In this case the fundamental group Γ = π1(G, Y ) is virtually diffuse.

Proof. Consider the associated quotient morphism q : Γ → π1(H,Y ). The
kernel N of q is the normal subgroup generated by the groups (NP )P∈V (Y ). Let
Γ and N act on the Bass-Serre tree T associated with (G, Y ). The stabilizer
in Γ (resp. N) of a vertex v ∈ V (T ) above P ∈ V (Y ) is isomorphic to GP
(resp. NP ). It acts on the set of adjacent edges E(v) ⊂ E(T ). Pick an edge
e ∈ E(Y ) with t(e) = P . As a set with GP action E(v) is isomorphic to
GP /ie(Ge). By assumption (ii) the action of NP on GP /ie(Ge) is diffuse. By
a result of Bowditch [10, Prop. 2.2] we deduce that E(T ) is a diffuse N set.
Since the edge groups are assumed to be diffuse, we see that N is diffuse.
The quotient (H,Y ) is a graph of finite groups, we know from Lemma 5.2 that
it is virtually free. Since free groups are diffuse, the short exact sequence

1 −→ N −→ Γ −→ π1(H,Y ) −→ 1

implies the assertion by Thm. 1.2 (2) of [10]. �

5.2. Geometrization and the proof of Theorem D.

5.2.1. Definitions. We recall here the definitions which allow to state the Ge-
ometrization Theorem which was conjectured by W. Thurston ([64], see also
[59]) and proven by G. Perelman [51, 52] (see also [44] for a complete account
of Perelman’s proof).
In the following we consider (without loss of generality) only orientable man-
ifolds. A three–manifold M is called irreducible if all embedded 2-spheres in
M bound a ball. A manifold is prime if it is irreducible or homeomorphic to
S1 × S2. According to the Kneser–Milnor decomposition every closed three–
manifold is a finite connected sum of prime manifolds. A closed irreducible
manifold M has a further topological decomposition, called the Jaco–Shalen–
Johansson decomposition, which consists in a canonical collection of embedded,
essentially disjoint 2-tori in M (see [41]). The Geometrization Theorem states
that every connected component of the complement in M of this collection of
tori is either a finite volume hyperbolic manifold or Seifert fibered.

5.2.2. Virtual diffuseness. The following lemma treats the pieces of the Ge-
ometrization Theorem. It is the key ingredient for Theorem D.

Lemma 5.4. Let M be a compact three–manifold with incompressible toric
boundary. If M is either hyperbolic of finite volume or Seifert fibered, then
Γ = π1(M) contains a diffuse subgroup Γ′ of finite index. Moreover, if M has
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non-empty boundary, then for almost all primes p the group Γ′ can be chosen
so that for any peripheral subgroup Λ of Γ

(a) the Γ′-action on Γ/Λ is diffuse and
(b) Γ′ ∩ Λ is the characteristic subgroup of index p2.

Proof. Assume first that M is closed. If M is Seifert fibered, then π1(M) is a
an extension of a group which is virtually a surface group by a cyclic group C
(cf. Lemma 3.2 in [59]). If C is infinite, such a group is virtually diffuse by the
results of Bowditch [10]. Otherwise M is covered by S3 and the fundamental
group is finite. If M is hyperbolic, then the virtual diffuseness follows from
Theorem B.
Now we turn to the case where M has non-empty boundary. Assume first that
M is hyperbolic. In π1(M) there are only finitely many, say m, hyperbolic
conjugacy classes represented by elements h1, . . . , hm with translation length
less than 2 log(1 +

√
2) (cf. Lemma 4.7). By Lemma 4.1 of [37] we can find,

for almost all primes p, a normal subgroup of finite index Γ′p ≤ π1(M) which
does not contain h1, . . . , hm and which intersects each peripheral subgroup in
its characteristic subgroup of index p2. Using Theorem 4.11 such a group Γ′p is
diffuse and acts diffusely on Γ/Λ for any peripheral Λ when p is large enough.
Finally assume that M is Seifert fibered. There is a short exact sequence

1 −→ Z −→ π1(M)
q−→ G −→ 1

where Z is generated by the regular fibers and G is the fundamental group of a
two dimensional orbifold B with non-empty boundary. Taking the finite index
subgroup of elements commuting with the regular fibres (which contains the
peripheral subgroups), we can assume that the extension is central. Since the
boundary of M is incompressible, the simple closed boundary curves d1, . . . dk
of B have infinite order in G. For almost all primes p there is a free normal
subgroup Gp ⊂ G of finite index such that Gp ∩ 〈di〉 = 〈dpi 〉. One way to see
this is to argue using the presentation of G as given in [36, 12.1]. Geometrically
this can be seen as follows: Glue a disc with a p-cone point into every boundary
curve of B. For almost all p the resulting orbifold Bp is good and has hence

a finite sheeted regular cover B̃p which is a manifold. Removing the inverse
images of the glued discs we obtain a finite covering space Sp of B which is
a compact surface so that the boundary components are p-fold covers of the
boundary components of B. Since a compact surface with non-empty boundary
has a free fundamental group the claim follows.

The finite sheeted cover M̃p corresponding to q−1(Gp) has fundamental group
isomorphic to Z × Gp. Finally the group Γ′p = pZ × Gp is diffuse and inter-

sects the peripheral subgroups in their characteristic subgroups of index p2. It
remains to verify that the action of Γ′p on Γ/Λ is diffuse. This action factors
through the group Gp and so the assertion follows, for p large enough, from
Theorem 4.11 if we embed Gp as a discrete subgroup into SL2(R).
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There is another argument for the diffuseness of this action: We can assume
that the surface Sp has more than one boundary component, and so the bound-
ary curves can be chosen to be part of a free generating set. Let F be a free
group and f ∈ F an element of a free generating set, then by Prop. 2.2 in [10]
the action of F on F/〈f〉 is diffuse. �

5.2.3. Proof of Theorem D. Let M be a compact three–manifold; by doubling
it (and since virtual diffuseness passes to subgroups) we may assume that it
is in fact closed. By Lemma 5.1 and the Kneser–Milnor decomposition we
may assume thatM is irreducible. An irreducible manifold admits a geometric
decomposition (see 5.2.1), which yields a decomposition of π1(M) as a graph
of groups whose vertex groups are fundamental groups of Seifert fibered or
hyperbolic manifolds and the edge groups are peripheral subgroups. Choosing
a prime number p which is admissible for all the occurring pieces, it follows
from Lemma 5.4 that this graph of groups has a normal subcollection which
satisfies the hypotheses of Lemma 5.3.

5.3. Three–dimensional infra-solvmanifolds. A three–dimensional solv-
manifold is a (left) quotient of the solvable Lie group

Sol = R2 ⋊R; t · x =

(
et

e−t

)
· x

by a discrete subgroup; an infra-solvmanifold is a quotient of such by a finite
group acting freely. Any left-invariant Riemannian metric on Sol induces a
complete Riemannian metric on an infra-solvmanifold. A compact solvmanifold
is finitely covered by a torus bundle (see for example [59, Theorem 5.3 (i)]),
hence its fundamental group contains a subgroup of finite index which is an
extension of Z2 by Z. More precisely, this group will be isomorphic to some

ΓA = 〈Z2, t | ∀v ∈ Z2, tvt−1 = Av〉
where A ∈ SL2(Z) is not unipotent. Such a group is diffuse by [10, Thm 1.2].
On the other hand we will now explain how to construct infra-solvmanifolds
(so-called ‘torus semi-bundles’) of dimension three with zero first Betti number
(by gluing I-bundles over Klein bottles, see [35]), which are then not locally
indicable and hence not diffuse.
The following result is a special case of Proposition 3.11. We shall give another
geometric argument (see also [33, Corollary 8.3] for a complete description
of the groups of isometries acting properly discontinuously, freely and cocom-
pactly on Sol from which it follows easily).

Proposition 5.5. In every commensurability class of compact three–
dimensional infra-solvmanifolds there is a manifold with non-diffuse fun-
damental group.

Proof. In this proof we will first describe a topological construction from [35]
of sol-manifolds with b1 = 0, and then show that any sol-manifold is commen-
surable to one of these.
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Let N be the non-trivial I-bundle over the Klein bottle, so that ∂N = T2.
Then for any mapping class B ∈ SL2(Z) of T2 the gluing M = N ∪φ N has
b1(M) = 0 or is Seifert; in the former case it is a sol-manifold and is doubly
covered by the torus bundle with holonomy A0 = SB−1SB where S is the
symmetry (x, y) 7→ (−x, y). In this way we get all A0s of the form

(7) A0 =

(
b 2a
2c b

)

where a, b, c ∈ Z: this follows from a direct computation.
On the other hand we will see that for any hyperbolic A ∈ SL2(Z) there is
an integer n > 0 such that An is conjugated to a matrix of the form above.
This implies the proposition since then the mapping torus of An (which covers
that of A) has a quotient with b1 = 0. Let us prove this claim: take L to be
the geodesic line (in the Poincaré upper half-plane) orthogonal to the axis of
A ending at ∞; then we can find h ∈ SL2(Q) such that hL = (0,∞). Since
h commensurates SL2(Z) the group hAZh−1 ∩ SL2(Z) is non-trivial ; take any
A′ 6= Id in there, then A′ has both diagonal coefficients equal (this also follows
from a simple computation). Taking A0 to be the cube or square of A′ we get
a matrix of the form (7) above. �

Appendix A. Computational aspects

A.1. Finding ravels. Given a group Γ it is a substantial problem to decide
whether or not the group is diffuse. To a certain degree this problem is vulner-
able to a computational approach which will be explained in this section.
For all the following algorithms we suppose that we have a way of solving
the word problem in a given group Γ; in practice we used computations with
matrices to do this. We will not make reference to the group Γ in the algorithms.
The first algorithm determines, given a finite subset A of Γ and an element
a ∈ A, whether a is extremal in A or not.

Algorithm 1 Given a ∈ A ⊂ Γ, determines if a is extremal in A

1: function IsExtremal(a,A)
2: B = A \ {a}
3: for all b ∈ B do
4: if ab−1a ∈ A then return False ⊲ If b = ga and
g−1a = ab−1a ∈ A then a is not extremal.

5: return True

The following algorithm returns the largest ravel contained in A by successively
removing extremal points. If A contains no ravel, then it returns the empty
set. Of course, the algorithm is not able to decide if a ravel exists at all (hence
is of no use to prove that a group is diffuse).
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Algorithm 2 Given A ⊂ Γ, finds the largest ravel contained in A

1: function FindRavel(A)
2: for all a ∈ A do
3: if IsExtremal(a,A) = True then return FindRavel(A \ {a})
4: return A ⊲ No extremal point was found in A, so A is a ravel or

empty

Finally, it may be of interest to determine minimal ravels; the following algo-
rithm, starting from a ravel A, finds a minimal one contained in A (note that
the result may depend on the order on which the elements of A are looped
over).

Algorithm 3 Given a ravel A ⊂ Γ, finds a minimal ravel contained in A

1: function MinRavel(A)
2: for all a ∈ A do
3: B = FindRavel(A \ {a})
4: if B 6= ∅ then return MinRavel(B)

5: return A

To prove Proposition 2.3 we ran (with two different implementations in Magma
[8] and in Sage/Python [62]) the algorithms to test diffuseness on the group
with presentation

〈a, b|a2b2a2b−1ab−1, a2b2a−1ba−1b2〉,
which is the fundamental group of the Weeks manifold, the hyperbolic three–
manifold of smallest volume. We actually used the representation to SL2(C)
given in the proof of Proposition 3.2 in [20]:

a =

(
x 1
0 x−1

)
, b =

(
x 0

2− (x+ x−1) x−1

)

where

x6 + 2x4 − x3 + 2x2 + 1 = 0.

It turns out that the word metric ball of radius four in the generators a, b
contains a ravel of cardinality 141 (further computation showed that the latter
contains a minimal ravel of cardinality 23).

A.2. Implementation.

A.2.1. SAGE. The Sage implementation of the algorithm (for linear groups)
can be found in [26]. It has to be run in a Sage environment, and the main
function is max_diff, which takes as input a pair (S,M) where M is a Sage
MatrixSpace object, and S a collection of invertible matrices in M. Its output
is the (possibly empty) maximal ravel contained in S. The file also contains
the function ball, which inputs a triple (r, gens,M) which computes the ball of
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radius r in the group generated by the set gens of invertible matrices in M (in
the word metric associated to gens). Another file in [26] can be run directly in a
Sage environment and outputs a ravel of cardinality 141 in the Weeks manifold
group.

A.2.2. MAGMA. An implementation for the MAGMA computer algebra sys-
tem can be found in [26]. It includes functions findRavel, findMinRavel and
a procedure BallWeeks to generate a ball of given radius in the Weeks manifold
group. To compute a ravel in the Weeks manifold group run the following lines

|> B := BallWeeks(4);

|> findRavel(B);

Appendix B. A diffuse group which is not left-orderable
by Nathan M. Dunfield

This appendix is devoted to the proof of

Theorem B.1. Let N be the closed orientable hyperbolic 3-manifold defined
below. Then π1(N) is diffuse but not left-orderable.

This example was found by searching through the towers of finite covers of
hyperbolic 3-manifolds studied in [18, §6]. There, each manifold has b1 = 0
(which is necessary for π1 to be non–left-orderable) and the length of the systole
goes to infinity (so that we can apply Bowditch’s criterion for diffuseness). We
begin by giving two descriptions of N , one purely arithmetic and the other
purely topological.

B.1. Arithmetic description. Throughout this section, a good reference
for arithmetic hyperbolic 3-manifolds is [48]. Let K = Q(α) be the number
field where α3+α−1 = 0; this is the unique cubic field with discriminant −31.
It has one real embedding and one pair of complex embeddings; our convention
is that the complex place corresponds to α ≈ −0.3411639 + 1.1615414i. Its
integer ring OK has unique factorization, so we will not distinguish between
prime elements and prime ideals of OK . The unique prime of norm 3 in OK is
π = α + 1, and let D be the quaternion algebra over K ramified at exactly π
and the real place of K. Concretely, we can take D to be generated by i and
j where i2 = −1, j2 = −3 and k = ij = −ji. The manifold N will be the
congruence arithmetic hyperbolic 3-manifold associated to D and the level π3,
whose detailed construction we now give.
Let OD be a maximal order in D; this is unique up to conjugation by [48,
Example 6.7.9(3)]. Let O1

D denote the elements of OD of (reduced) norm 1.
At the complex place of K, the algebra C ⊗K D is just the matrix algebra
M2(C). Let Λ be the subgroup of PSL2(C) ∼= Isom+ H3 which is the image of
O1
D under the induced map D1 → SL2(C) → PSL2(C). Since D is a division

algebra, Λ is a cocompact lattice. Let Kπ be the π-adic completion of K, which
is isomorphic to Q3. Let Dπ = Kπ ⊗K D, which is the unique quaternion
division algebra over Kπ [48, §2.6]. Define w : Dπ → Z by w = ν ◦ n where
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ν : Kπ → Z is the (logarithmic) valuation and n : Dπ → Kπ is the norm
function. Then Oπ = {u ∈ Dπ | w(u) ≥ 0} is the valuation ring of Dπ and
Q = {u ∈ Dπ | w(u) ≥ 1} is the maximal two-sided ideal in Oπ (compare [48,
§6.4]). Define Γ to be the image of O1

D ∩
(
1 +Q3

)
in PSL2(C), and let N be

the associated hyperbolic orbifold Γ
∖
H3.

We claim that Γ is torsion-free and hence N is a manifold. First note that
Qn = {u ∈ Dπ | w(u) ≥ n}. Now for γ ∈ Γ, we have γ = 1 + q for q ∈ Q3;
from n(γ) = 1 we get that tr(γ) − 2 = −n(q) and thus tr(γ) − 2 ∈ π3 since
w(q) ≥ 3. If γ has finite order, then tr(γ) = ξ + ξ−1 where ξ is a root of unity.
Since tr(γ) ∈ OK , it would have to be one of {−1, 0, 1} and none of those are
2 mod π3. So N is a manifold.

B.2. Topological description. Let M be the hyperbolic 3-manifold
m007(3, 2) from the Hodgson-Weeks census [39]; alternatively, M is the
(−9/2,−3/2) Dehn surgery on the Whitehead link L, where +1 surgery on
L yields the figure-8 knot rather than the trefoil. Then vol(M) ≈ 1.58316666
and H1(M ;Z) = Z/3Z⊕Z/9Z. Let N ′ be the regular cover ofM corresponding
to any epimorphism π1(M) → (Z/3Z)2; thus vol(N ′) ≈ 14.24849994. We will
show:

Proposition B.2. The hyperbolic manifolds N and N ′ are isometric.

Proof. We give a detailed outline, but many steps are best checked by rigorous
computation; complete Sage [62] source code for this is available at [26]. From
a triangulation for the alternate topological description of M as m036(3,−1),
Snap [29, 22] gives the group presentation

(8) π1(M) =
〈
a, b

∣∣ aaBaabbAbb = 1, abbAbAAbAbb = 1
〉

where A = a−1 and B = b−1. Moreover, Snap rigorously checks that M is
hyperbolic and that the holonomy representation π1(M) → PSL2(C) lifts to
ρ : π1(M) → SL2(C) which is characterized (up to conjugacy) by tr (ρ(a)) =
tr (ρ(b)) = α2 + 1 and tr (ρ(ab)) = α.
An OK basis for OD can be taken to be {1, i, x, y} where x = (i + j)/2 and
y = (3π + 3π2i+ π2j + πk)/6. If we define

(9) a = 1 + αi + αx+ (α− 1)y and b = −i · a · i
then computing the norms and traces of

{
a, b, a·b

}
and evaluating the relations

in (8) shows that a 7→ a and b 7→ b gives a homomorphism π1(M) → O1
D ≤

SL2(C) which is a conjugate of ρ. Henceforth, we identify π1(M) with the

subgroup of O1
D generated by

{
a, b
}
.

Now, GAP or Magma [28, 8] easily checks that π1 (N
′) is generated by

{
c = a3 , d = b3 , e = baBA, f = bABa

}

with defining relators:

DefDeceFdFcFe DeceDecDCEfCEfCfDf

ECEdFcDfDeceDeccFec fCfDecdcFecfDeceDec
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To see that π1 (N
′) ≤ Γ, one just checks that w(g − 1) = 3 for g in {c, d, e, f}

to confirm that each is in 1 + Q3. By the volume formula [48, Thm 11.1.3],
vol(Λ

∖
H3) ≈ 0.26386111 and hence [Λ : π1 (N

′)] = 54. On the other hand,
one can calculate [Λ : Γ] exactly as in the proof of Theorem 1.4 of [18]; while
the number field in that example is Q(

√
−2), in both examples Kπ

∼= Q3 and
hence have isomorphic Dπ. Since it turns out that [Λ : Γ] is also 54, we have
π1 (N

′) = Γ as claimed. �

Theorem B.1 follows immediately from the following two lemmas, whose proofs
are independent of one another.

Lemma B.3. Let N be the closed hyperbolic 3-manifold defined above. Then N
has systole ≈ 1.80203613> 2 log

(
1 +
√
2
)
. In particular, π1(N) is diffuse.

Lemma B.4. Let N be the closed hyperbolic 3-manifold defined above. Then
π1(N) is not left-orderable.

Proof of Lemma B.3. We will show that the shortest geodesics inN correspond
to elements γ ∈ Γ = π1(N) with tr(γ) = α2−α; one such element is ec = baBaa .
Since the translation length of γ is given by

(10) min(γ) = T (tr(γ)) where T (z) = Re
(
2 arcosh(z/2)

)

the systole will thus have length ≈ 1.8020361. The conclusion that Γ is diffuse
follows immediately from Bowditch’s criterion (iv) quoted above in Section 2.1.
We will use the Minkowski geometry of numbers picture (see e.g. [50, §I.5]) to
determine the possible traces of elements of Γ with short translation lengths.
Let τC : K → C be the preferred complex embedding and τR : K → R be the
real embedding. We have the usual embedding from K into the Minkowski
space KR = R × C given by ι = τR × τC, and the key fact is that ι(OK) is a
lattice in KR. Thus the following set is finite:

T =
{
t ∈ OK

∣∣ |τR(t)| ≤ 2, |τC(t)| ≤ 4, and t− 2 ≡ 0 mod π3
}

We next show that T contains tr(γ) for any γ ∈ Γ with min(γ) ≤ 2.5. That
|τR(tr γ)| ≤ 2 follows since Γ is arithmetic: the quaternion algebra D ramifies
at the real place and so D1 becomes SU2 there. To see that min(γ) ≤ 2.5
implies |τC(t)| ≤ 4, note that T (z) is minimized for fixed |z| on the real axis
and that T (4) < 2.6339.
To complete the proof of the lemma, we will show that T = {2, α2−α, −2α2+
α − 1}, which suffices since T (−2α2 + α − 1) ≈ 2.33248166. The natural

inner product on KR is such that |ι(k)|2 = |τR(k)|2 + 2|τC(k)|2 for all k ∈ K.
Hence any element of T has norm ≤ 6, and our strategy is to enumerate all
elements of ι(OK) to that norm and check which are in T . A Z-basis for OK
is {1, α, α2}, and the Gram matrix in that basis for the inner product on KR

has smallest eigenvalue ≈ 1.534033. Regarding Z3 as having the standard norm
from R3, this says that the natural map Z3 → ι(OK) is distance nondecreasing.
Hence every element of T has the form c0 + c1α + c2a

2 where ci ∈ Z with
c21 + c22 + c23 ≤ 36. Computing T is now a simple enumeration of the 925 such
triples (c1, c2, c3). See [26] for a short program which does this. �
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Turning to the proof of Lemma B.4, you will quickly see that it was discovered
by computer, using the method of [16, §8]. Verifying its correctness is a matter
of checking that 23 different elements in Γ are the identity, which can be easily
done using the explicit quaternions given in (9); sample code for this is provided
with [26].

Proof of Lemma B.4. Assume Γ is left-orderable and consider the positive cone
P = {γ ∈ Γ | γ > 1}. We define some additional elements of Γ by

g = aBABB h = abbAb n = aBBAB m = aBaab v = ABAAb

By symmetry, we can assume g ∈ P . We now try all the possibilities for
whether the elements {g, h, n, d, c,m, v} are in P or not, in each case leading
to the contradiction that 1 ∈ P .

Case h ∈ P :
Case n ∈ P :

Case d ∈ P :
Case c ∈ P :

Case m ∈ P : Then P contains the following, which is 1 in Γ:
cgndhmgmcmdhmchm

Case M ∈ P : Then P contains the following, which is 1 in Γ:
MgndhdMgndhdMgnMhdMndMdMgndhdMgnMhdMgn

Case C ∈ P : Then P contains the following, which is 1 in Γ:
hCggnhCgChCgd

Case D ∈ P :
Case c ∈ P :

Case m ∈ P : Then P contains the following, which is 1 in Γ:
mcDnDmcDnDmcmnDmhDmDmcDnDmcmnDmc

Case M ∈ P : Then P contains the following, which is 1 in Γ:
gnMDnMgnnMgncDnMg

Case C ∈ P : Then P contains the following, which is 1 in Γ:
ChDnhCgDnhCggnnhCggnhCg

Case N ∈ P :
Case d ∈ P : Then P contains the following, which is 1 in Γ:

NdhNgdNdhhNgdNdhdNdhNgdNgdNdhdNdhNgdN
Case D ∈ P :

Case c ∈ P :
Case m ∈ P : Then P contains the following, which is 1 in Γ:

DmchNgmgmDNm
Case M ∈ P :

Case f ∈ P : Then P contains the following, which is 1 in Γ:
hNcNfhMhNcNfhNhNfDf

Case F ∈ P : Then P contains the following, which is 1 in Γ:
NhNcFMhNhNcFMhNcMhNcFcF

Case C ∈ P :
Case v ∈ P :

Case f ∈ P : Then P contains the following, which is 1 in Γ:
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ChCgChNfhf
Case F ∈ P : Then P contains the following, which is 1 in Γ:

CvFhCgvhCgvFhCgCh
Case V ∈ P : Then P contains the following, which is 1 in Γ:

ChCgChNhCgChVChChNhCgChhChNhCgChVChVhhChNhCgChVChV
Case H ∈ P :

Case n ∈ P :
Case d ∈ P : Then P contains the following, which is 1 in Γ:

nHggdHnHgnnHggnnHggdHnHgndgnnHggnnHggdHnHgnn
Case D ∈ P :

Case c ∈ P : Then P contains the following, which is 1 in Γ:
DnHcHDHgnnHcHDHDnnHcHDHDnDH

Case C ∈ P : Then P contains the following, which is 1 in Γ:
DHCnHgnnHggnnHgnHCnHgnnCnHCnHgnn

Case N ∈ P :
Case d ∈ P :

Case c ∈ P : Then P contains the following, which is 1 in Γ:
NNgdHcNgdHggdHgdNNgdHcNgdHggNgdHcNgdNNgdHcd

Case C ∈ P : Then P contains the following, which is 1 in Γ:
NgdHggdCgdNNgdCgNgdHggdCgdHggdCgdNd

Case D ∈ P :
Case c ∈ P :

Case m ∈ P : Then P contains the following, which is 1 in Γ:
NcHcHDNmDHDcHcHDNmHcHDNcHccHD

Case M ∈ P :
Case v ∈ P : Then P contains the following, which is 1 in Γ:

HcHDMvHcHDNcHHcHDNcHcv
Case V ∈ P : Then P contains the following, which is 1 in Γ:

DcVcHDNcHcHDcVcHDHVcHDH
Case C ∈ P :

Case m ∈ P : Then P contains the following, which is 1 in Γ:
DmgmDNmDNgmgmDNmDHDDmgmDNmDHHgmDNm

Case M ∈ P : Then P contains the following, which is 1 in Γ:
HDHCMHCMHDMCDHCMHDMHDMCMHCMHDM

�
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1 Introduction

An algebraic group H defined over an algebraically closed field F is a disjoint
union of connected components. The component H◦ containing the identity
element is a normal subgroup in H that acts via multiplication on each of the
other components. Every F -point x in a connected component X of H gives
an isomorphism of varieties with an H◦-action H◦

∼−→ X via h 7→ hx.
When F is not assumed to be algebraically closed, the identity component H◦

is still defined as an F -subgroup of H , but the other components need not be.
Suppose X is a connected subvariety of H such that, after base change to the
algebraic closure Falg of F , X × Falg is a connected component of H × Falg.
Then, by the previous paragraph, X is an H◦-torsor, but X may have no F -
points. We remark that the question of whether X has an F -point arises when
describing the embedding of the category of compact real Lie groups into the
category of linear algebraic groups over R, see [Se, §5].

1.1 Outer automorphisms of algebraic groups

We will focus on the case where H = Aut(G) and G is semisimple, which
amounts to asking about the existence of outer automorphisms of G. This
question has previously been studied in [MT], [PrT], [Gar 12], [CKT], [CEKT],
and [KT]. Writing ∆ for the Dynkin diagram of G endowed with the natu-
ral action by the Galois group Gal(Fsep/F ) gives an exact sequence of group
schemes

1 −−−−→ Aut(G)◦ −−−−→ Aut(G)
α−−−−→ Aut(∆)

as in [DG, Chap. XXIV, Th. 1.3 and §3.6] or [Sp, §16.3], hence a natural map
α(F ) : Aut(G)(F ) → Aut(∆)(F ). Note that Aut(∆)(Falg) is identified with
the connected components of Aut(G) × Falg in such a way that Aut(∆)(F ) is
identified with those components that are defined over F . We ask: is α(F )
onto? That is, which of the components of Aut(G) that are defined over F also
have an F -point?
Sending an element g of G to conjugation by g defines a surjection G →
Aut(G)◦, and the F -points Aut(G)◦(F ) are called inner automorphisms. The
F -points of the other components of Aut(G) are called outer. Therefore, our
question may be rephrased as: Is every automorphism of the Dynkin diagram
that is compatible with the natural action by the Galois group of F induced from
an F -automorphism of G?
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One can quickly observe that α(F ) need not be onto, for example, with the
group SL(A) where A is a central simple algebra of odd exponent, where an
outer automorphism would amount to an isomorphism of A with its opposite
algebra. This is a special case of a general cohomological obstruction. Namely,
writing Z for the scheme-theoretic center of the simply connected cover of G,
G naturally defines an element tG ∈ H2(F,Z) called the Tits class as in [T,
4.2] or [KMRT, 31.6]. (The cohomology used in this paper is fppf.) For every
character χ : Z → Gm, the image χ(tG) ∈ H2(F,Gm) is known as a Tits algebra
of G; for example, when G = SL(A), Z is identified with the group of (degA)-
th roots of unity, the group of characters is generated by the natural inclusion
χ : Z →֒ Gm, and χ(tSL(A)) is the class of A. (More such examples are given
in [KMRT, §27.B].) This example illustrates also the general fact: tG = 0 if
and only if EndG(V ) is a field for every irreducible representation V of G. The
group scheme Aut(∆) acts on H2(F,Z), and it was shown in [Gar 12, Th. 11]
that this provides an obstruction to the surjectivity of α(F ), namely:

im [α : Aut(G)(F )→ Aut(∆)(F )] ⊆ {π ∈ Aut(∆)(F ) | π(tG) = tG}. (1.1.1)

It is interesting to know when equality holds in (1.1.1), because this information
is useful in Galois cohomology computations. (For example, when G is simply
connected, equality in (1.1.1) is equivalent to the exactness of H1(F,Z) →
H1(F,G) → H1(F,Aut(G)).) Certainly, equality need not hold in (1.1.1), for
example when G is semisimple (take G to be the product of the compact and
split real forms of G2) or when G is neither simply connected nor adjoint (take
G to be the split group SO8, for which |imα| = 2 but the right side of (1.1.1)
has 6 elements). However, when G is simple and simply connected or adjoint,
it is known that equality holds in (1.1.1) when G has inner type or for some
fields F . Therefore, one might optimistically hope that the following is true:

Conjecture 1.1.2. If G is an absolutely simple algebraic group that is simply
connected or adjoint, then equality holds in (1.1.1).

The remaining open cases are where G has type 2An for odd n ≥ 3 (the case
where n is even is Cor. 9.1.2), 2Dn for n ≥ 3, 3D4, and

2E6. Most of this paper
is dedicated to settling one of these four cases.

Theorem A. If G is a simple algebraic group of type 3D4 over a field F , then
equality holds in (1.1.1).

One can ask also for a stronger property to hold:

Question 1.1.3. Suppose π is in α(Aut(G)(F )). Does there exist a φ ∈
Aut(G)(F ) so that α(φ) = π and φ and π have the same order?

This question, and a refinement of it where one asks for detailed information
about the possible φ’s, was considered for example in [MT], [PrT], [CKT],
[CEKT], and [KT]. (The paper [Br] considers a different but related question,
on the level of group schemes and not k-points.) It was observed in [Gar 12]
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that the answer to Question 1.1.3 is “yes” in all the cases where Conjecture
1.1.2 is known to hold. However, [KT] gives an example of a group G of type
3D4 that does not have an outer automorphism of order 3, yet the conjecture
holds for G by Theorem A. That is, combining the results of this paper and
[KT] gives the first example where the conjecture holds for a group but the
answer to Question 1.1.3 is “no”, see Example 8.3.1.
In the final section of the paper, §9, we translate the conjecture for groups of
type A into one in the language of algebras with involution as in [KMRT], give
a criterion for the existence of outer automorphisms of order 2 (i.e., prove a
version for type A of the main result of [KT]), and exhibit a group of type 2A
that does not have an outer automorphism of order 2.

1.2 Skolem-Noether Theorem for Albert algebras

In order to prove Theorem A, we translate it into a statement about Albert
F -algebras, 27-dimensional exceptional central simple Jordan algebras. Specif-
ically, we realize a simply connected group G of type 3D4 with tG = 0 as a
subgroup of the structure group of an Albert algebra J that fixes a cyclic cubic
subfield E elementwise, as in [KMRT, 38.7]. For such a group, the right side
of (1.1.1) is Z/3 and we prove equality in (1.1.1) by extending, in a controlled
way, a nontrivial F -automorphism of E to J , see the proof of Prop. 8.2.2. The
desired extension exists by Theorem B below, whose proof is the focus of §§2–7.
We spend the majority of the paper working with Jordan algebras.
Let J be an Albert algebra over a field F and suppose E,E′ ⊆ J are cubic
étale subalgebras. It is known since Albert-Jacobson [AJ] that in general an
isomorphism ϕ : E → E′ cannot be extended to an automorphism of J . Thus
the Skolem-Noether Theorem fails to hold for cubic étale subalgebras of Albert
algebras. In fact, even in the important special case that E = E′ is split and
ϕ is an automorphism of E having order 3, obstructions to the validity of this
result may be read off from [AJ, Th. 9]. We provide a way out of this impasse by
replacing the automorphism group of J by its structure group and allowing the
isomorphism ϕ to be twisted by the right multiplication of a norm-one element
in E. More precisely, referring to our notational conventions in Sections 1.3−3
below, we will establish the following result. For w ∈ E, write Rw : E → E for
the right multiplication e 7→ ew.

Theorem B. Let ϕ : E
∼−→ E′ be an isomorphism of cubic étale subalgebras

of an Albert algebra J over a field F . Then there exists an element w ∈ E
satisfying NE(w) = 1 such that ϕ◦Rw : E → E′ can be extended to an element
of the structure group of J .

Note that no restrictions on the characteristic of F will be imposed. In order to
prove Theorem B, we first derive its analogue (in fact, a substantial generaliza-
tion of it, see Th. 5.2.7 below) for absolutely simple Jordan algebras of degree
3 and dimension 9 in place of J . This generalization is based on the notions
of weak and strong equivalence for isotopic embeddings of cubic étale algebras
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into cubic Jordan algebras (4.1) and is derived here by elementary manipula-
tions of the two Tits constructions. After a short digression into norm classes
for pairs of isotopic embeddings in § 6, Theorem B is established by combining
Th. 5.2.7 with a density argument and the fact that an isotopy between abso-
lutely simple nine-dimensional subalgebras of an Albert algebra can always be
extended to an element of its structure group (Prop. 7.2.4).

1.3 Conventions.

Throughout this paper, we fix a base field F of arbitrary characteristic. All
linear non-associative algebras over F are tacitly assumed to contain an identity
element. If C is such an algebra, we write C× for the collection of invertible
elements in C, whenever this makes sense. For any commutative associative
algebra K over F , we denote by CK := C ⊗ K the scalar extension (or base
change) of C from F to K, unadorned tensor products always being taken
over F . In other terminological and notational conventions, we mostly follow
[KMRT]. In fact, the sole truly significant deviation from this rule is presented
by the theory of Jordan algebras: while [KMRT, Chap. IX] confines itself to the
linear version of this theory, which works well only over fields of characteristic
not 2 or, more generally, over commutative rings containing 1

2 , we insist on the
quadratic one, surviving as it does in full generality over arbitrary commutative
rings. For convenience, we will assemble the necessary background material in
the next two sections of this paper.

2 Jordan algebras

The purpose of this section is to present a survey of the standard vocabulary
of arbitrary Jordan algebras. Our main reference is [J 81].

2.1 The concept of a Jordan algebra

By a (unital quadratic) Jordan algebra over F , we mean an F -vector space J
together with a quadratic map x 7→ Ux from J to EndF (J) (the U -operator)
and a distinguished element 1J ∈ J (the unit or identity element) such that,
writing

{xyz} := Vx,yz := Ux,zy := (Ux+z − Ux − Uz)y
for the associated triple product, the equations

U1J = 1J ,

UUxy = UxUyUx (fundamental formula), (2.1.1)

UxVy,x = Vx,yUx

hold in all scalar extensions. We always simply write J to indicate a Jordan
algebra over F , U -operator and identity element being understood. A subalge-
bra of J is an F -subspace containing the identity element and stable under the
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operation Uxy; it is then a Jordan algebra in its own right. A homomorphism
of Jordan algebras over F is an F -linear map preserving U -operators and iden-
tity elements. In this way we obtain the category of Jordan algebras over F .
By definition, the property of being a Jordan algebra is preserved by arbitrary
scalar extensions. In keeping with the conventions of Section 1.3, we write JK
for the base change of J from F to any commutative associative F -algebra K.

2.2 Linear Jordan algebras

Assume char(F ) 6= 2. Then Jordan algebras as defined in 2.1 and linear Jordan
algebras as defined in [KMRT, § 37] are virtually the same. Indeed, let J
be a unital quadratic Jordan algebra over F . Then J becomes an ordinary
non-associative F -algebra under the multiplication x · y := 1

2Ux,y1J , and this
F -algebra is a linear Jordan algebra in the sense that it is commutative and
satisfies the Jordan identity x · ((x · x) · y) = (x · x) · (x · y). Conversely, let J
be a linear Jordan algebra over F . Then the U -operator Uxy := 2x · (x · y) −
(x · x) · y and the identity element 1J convert J into a unital quadratic Jordan
algebra. The two constructions are inverse to one another and determine an
isomorphism of categories between unital quadratic Jordan algebras and linear
Jordan algebras over F .

2.3 Ideals and simplicity

Let J be a Jordan algebra over F . A subspace I ⊆ J is said to be an ideal if
UIJ+UJI+{IIJ} ⊆ J . In this case, the quotient space J/I carries canonically
the structure of a Jordan algebra over F such that the projection J → J/I is
a homomorphism. A Jordan algebra is said to be simple if it is non-zero and
there are no ideals other than the trivial ones. We speak of an absolutely simple
Jordan algebra if it stays simple under all base field extensions. (There is also a
notion of central simplicity which, however, is weaker than absolute simplicity,
although the two agree for char(F ) 6= 2.)

2.4 Standard examples

First, let A be an associative F -algebra. Then the vector space A together with
the U -operator Uxy := xyx and the identity element 1A is a Jordan algebra
over F , denoted by A+. If A is simple, then so is A+ [McC 69b, Th. 4]. Next,
let (B, τ) be an F -algebra with involution, so B is a non-associative algebra
over F and τ : B → B is an F -linear anti-automorphism of period 2. Then

H(B, τ) := {x ∈ B | τ(x) = x}

is a subspace of B. Moreover, if B is associative, then H(B, τ) is a subalgebra
of B+, hence a Jordan algebra which is simple if (B, τ) is simple as an algebra
with involution [McC69b, Th. 5].
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2.5 Powers

Let J be a Jordan algebra over F . The powers of x ∈ J with integer exponents
n ≥ 0 are defined recursively by x0 = 1J , x

1 = x, xn+2 = Uxx
n. Note for

J = A+ as in 2.4, powers in J and in A are the same. For J arbitrary, they
satisfy the relations

Uxmx
n = x2m+n, {xmxnxp} = 2xm+n+p, (xm)n = xmn, (2.5.1)

hence force

F [x] :=
∑

n≥0
Fxn

to be a subalgebra of J . In many cases — e.g., if char(F ) 6= 2 or if J is simple
(but not always [J 81, 1.31, 1.32]) — there exists a commutative associative
F -algebra R, necessarily unique, such that F [x] = R+ [McC 70, Prop. 1], [J 81,
Prop. 4.6.2]. By abuse of language, we simply write R = F [x] and say R is a
subalgebra of J .

In a slightly different, but similar, vein we wish to talk about étale subalgebras
of a Jordan algebra. This is justified by the fact that étale F -algebras are
completely determined by their Jordan structure. More precisely, we have the
following simple result.

Lemma 2.5.2. Let E,R be commutative associative F -algebras such that E
is finite-dimensional étale. Then ϕ : E+ ∼−→ R+ is an isomorphism of Jordan
algebras if and only if ϕ : E

∼−→ R is an isomorphism of commutative associative
algebras.

Proof. Extending scalars if necessary, we may assume that E as a (unital) F -
algebra is generated by a single element x ∈ E , since this is easily seen to hold
unless F = F2, the field with two elements. But since the powers of x in E
agree with those in E+ = R+, hence with those in R, the assertion follows.

2.6 Inverses and Jordan division algebras

Let J be a Jordan algebra over F . An element x ∈ J is said to be invertible if
the U -operator Ux : J → J is bijective (equivalently, 1J ∈ Im(Ux)), in which
case we call x−1 := U−1x x the inverse of x in J . Invertibility and inverses
are preserved by homomorphisms. It follows from the fundamental formula
(2.1.1) that, if x, y ∈ J are invertible, then so is Uxy and (Uxy)

−1 = Ux−1y−1.
Moreover, setting xn := (x−1)−n for n ∈ Z, n < 0, we have (2.5.1) for all
m,n, p ∈ Z. In agreement with earlier conventions, the set of invertible elements
in J will be denoted by J×. If J× = J\{0} 6= ∅, then we call J a Jordan division
algebra. If A is an associative algebra, then (A+)× = A×, and the inverses are
the same. Similarly, if (B, τ) is an associative algebra with involution, then
H(B, τ)× = H(B, τ) ∩B×, and, again, the inverses are the same.
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2.7 Isotopes

Let J be a Jordan algebra over F and p ∈ J×. Then the vector space J together

with the U -operator U
(p)
x := UxUp and the distinguished element 1

(p)
J := p−1 is

a Jordan algebra over F , called the p-isotope (or simply an isotope) of J and
denoted by J (p). We have J (p)× = J× and (J (p))(q) = J (Upq) for all q ∈ J×,
which implies (J (p))(q) = J for q := p−2. Passing to isotopes is functorial in
the following sense: if ϕ : J → J ′ is a homomorphism of Jordan algebras, then
so is ϕ : J (p) → J ′(ϕ(p)), for any p ∈ J×.
Let A be an associative algebra over F and p ∈ (A+)× = A×. Then right
multiplication by p in A gives an isomorphism Rp : (A+)(p)

∼→ A+ of Jordan
algebras. On the other hand, if (B, τ) is an associative algebra with involution,
then so is (B, τ (p)), for any p ∈ H(B, τ)×, where τ (p) : B → B via x 7→
p−1τ(x)p stands for the p-twist of τ , and

Rp : H(B, τ)(p)
∼−→ H(B, τ (p)) (2.7.1)

is an isomorphism of Jordan algebras.

2.8 Homotopies and the structure group

If J, J ′ are Jordan algebras over F , a homotopy from J to J ′ is a homomorphism
ϕ : J → J ′(p

′) of Jordan algebras, for some p′ ∈ J ′×. In this case, p′ = ϕ(1J)
−1

is uniquely determined by ϕ. Bijective homotopies are called isotopies, while
injective homotopies are called isotopic embeddings. The set of isotopies from
J to itself is a subgroup of GL(J), called the structure group of J and denoted
by Str(J). It consists of all linear bijections η : J → J such that some linear
bijection η♯ : J → J satisfies Uη(x) = ηUxη

♯ for all x ∈ J . The structure group
contains the automorphism group of J as a subgroup; more precisely, Aut(J)
is the stabilizer of 1J in Str(J). Finally, thanks to the fundamental formula
(2.1.1), we have Uy ∈ Str(J) for all y ∈ J×.

3 Cubic Jordan algebras

In this section, we recall the main ingredients of the approach to a particu-
larly important class of Jordan algebras through the formalism of cubic norm
structures. Our main references are [McC69a] and [JK]. Systematic use will
be made of the following notation: given a polynomial map P : V → W be-
tween vector spaces V,W over F and y ∈ V , we denote by ∂yP : V → W the
polynomial map given by the derivative of P in the direction y, so (∂yP )(x)
for x ∈ V is the coefficient of the variable t in the expansion of P (x+ ty):

P (x+ ty) = P (x) + t(∂yP )(x) + · · · .

Documenta Mathematica 21 (2016) 917–954



Outer Automorphisms and a Skolem-Noether Theorem 925

3.1 Cubic norm structures

By a cubic norm structure over F we mean a quadruple X = (V, c, ♯,N) con-
sisting of a vector space V over F , a distinguished element c ∈ V (the base
point), a quadratic map x 7→ x♯ from V to V (the adjoint), with bilineariza-
tion x× y := (x+ y)♯− x♯− y♯, and a cubic form N : V → F (the norm), such
that, writing

T (y, z) := (∂yN)(c)(∂zN)(c)− (∂y∂zN)(c) (y, z ∈ V )

for the (bilinear) trace ofX and T (y) := T (y, c) for the linear one, the equations

c♯ = c, N(c) = 1 (base point identities), (3.1.1)

c× x = T (x)c− x (unit identity), (3.1.2)

(∂yN)(x) = T (x♯, y) (gradient identity), (3.1.3)

x♯♯ = N(x)x (adjoint identity) (3.1.4)

hold in all scalar extensions. A subspace of V is called a cubic norm sub-
structure of X if it contains the base point and is stable under the adjoint
map; it may then canonically be regarded as a cubic norm structure in its
own right. A homomorphism of cubic norm structures is a linear map of the
underlying vector spaces preserving base points, adjoints and norms. A cubic
norm structure X as above is said to be non-singular if V has finite dimension
over F and the bilinear trace T : V × V → F is a non-degenerate symmetric
bilinear form. If X and Y are cubic norm structures over F , with Y non-
singular, and ϕ : X → Y is a surjective linear map preserving base points and
norms, then ϕ is an isomorphism of cubic norm structures [McC69a, p. 507].

3.2 The associated Jordan algebra

Let X = (V, c, ♯,N) be a cubic norm structure over F and write T for its
bilinear trace. Then the U -operator

Uxy := T (x, y)x− x♯ × y (3.2.1)

and the base point c convert the vector space V into a Jordan algebra over
F , denoted by J(X) and called the Jordan algebra associated with X . The
construction of J(X) is clearly functorial in X . We have

N(Uxy) = N(x)2N(y) (x, y ∈ J). (3.2.2)

Jordan algebras isomorphic to J(X) for some cubic norm structure X over
F are said to be cubic. For example, let J be a Jordan algebra over F that
is generically algebraic (e.g., finite-dimensional) of degree 3 over F . Then
X = (V, c, ♯,N), where V is the vector space underlying J , c := 1J , ♯ is the
numerator of the inversion map, and N := NJ is the generic norm of J , is

Documenta Mathematica 21 (2016) 917–954



926 Skip Garibaldi and Holger P. Petersson

a cubic norm structure over F satisfying J = J(X); in particular, J is a
cubic Jordan algebra. In view of this correspondence, we rarely distinguish
carefully between a cubic norm structure and its associated Jordan algebra.
Non-singular cubic Jordan algebras, i.e., Jordan algebras arising from non-
singular cubic norm structures, by [McC69a, p. 507] have no absolute zero
divisors, so Ux = 0 implies x = 0.

3.3 Cubic étale algebras

Let E be a cubic étale F -algebra. Then Lemma 2.5.2 allows us to identify
E = E+ as a generically algebraic Jordan algebra of degree 3 (with U -operator
Uxy = x2y), so we may write E = E+ = J(V, c, ♯,N) as in 3.2, where c = 1E is
the unit element, ♯ is the adjoint and N = NE is the norm of E = E+. We also
write TE for the (bilinear) trace of E. The discriminant (algebra) of E will be
denoted by ∆(E); it is a quadratic étale F -algebra [KMRT, 18.C].

3.4 Isotopes of cubic norm structures

Let X = (V, c, ♯,N) be a cubic norm structure over F . An element p ∈ V is
invertible in J(X) if and only if N(p) 6= 0, in which case p−1 = N(p)−1p♯.
Moreover,

X(p) := (V, c(p), ♯(p), N (p)),

with c(p) := p−1, x♯
(p)

:= N(p)U−1p x♯, N (p) := N(p)N , is again a cubic norm
structure over F , called the p-isotope of X . This terminology is justified since
the associated Jordan algebra J(X(p)) = J(X)(p) is the p-isotope of J(X). We
also note that the bilinear trace of X(p) is given by

T (p)(y, z) = T (Upy, z) (y, z ∈ X) (3.4.1)

in terms of the bilinear trace T of X . Combining the preceding considerations
with 3.1, we conclude that the structure group of a non-singular cubic Jordan
algebra agrees with its group of norm similarities.

3.5 Cubic Jordan matrix algebras

Let C be a composition algebra over F , so C is a Hurwitz algebra in the sense of
[KMRT, §33C], with norm nC , trace tC , and conjugation v 7→ v̄ := tC(v)1C−v.
Note in particular that the base field itself is a composition even if it has
characteristic 2. For any diagonal matrix

Γ = diag(γ1, γ2, γ3) ∈ GL3(F ),

the pair

(Mat3(C), τΓ) , τΓ(x) := Γ−1x̄tΓ (x ∈Mat3(C)),
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is a non-associative F -algebra with involution, allowing us to consider the sub-
space Her3(C,Γ) ⊆ Mat3(C) consisting of all elements x ∈ Mat3(C) that are
Γ-hermitian (x = Γ−1x̄tΓ) and have scalars down the diagonal. Note that we
have

Her3(C,Γ) ⊆ H(Mat3(C), τΓ)

in the sense of 2.4, with equality for char(F ) 6= 2 but not in general. In terms
of the usual matrix units eij ∈ Mat3(C), 1 ≤ i, j ≤ 3, we therefore have

Her3(C,Γ) =
∑

(Feii + C[jl]),

the sum on the right being taken over all cyclic permutations (ijl) of (123),
where

C[jl] := {v[jl] | v ∈ C}, v[jl] := γlvejl + γj v̄elj .

Now put V := Her3(C,Γ) as a vector space over F , c := 13 (the 3 × 3 unit
matrix) and define adjoint and norm on V by

x♯ :=
∑((

αjαl − γjγlnC(vi)
)
eii +

(
− αivi + γivjvl

)
[jl]
)
,

N(x) := α1α2α3 −
∑

γjγlαinC(vi) + γ1γ2γ3tC(v1v2v3)

for all x =
∑

(αieii+vi[jl]) in all scalar extensions of V . Then X := (V, c, ♯,N)
is a cubic norm structure over F . Henceforth, the symbol Her3(C,Γ) will stand
for this cubic norm structure but also for its associated cubic Jordan algebra.
We always abbreviate Her3(C) := Her3(C,13).

3.6 Albert algebras

Writing Zor(F ) for the split octonion algebra of Zorn vector matrices over F
[KMRT, VIII, Exc. 5], the cubic Jordan matrix algebra Her3(Zor(F )) is called
the split Albert algebra over F . By an Albert algebra over F , we mean an
F -form of Her3(Zor(F )), i.e., a Jordan algebra over F (necessarily absolutely
simple and non-singular of degree 3 and dimension 27) that becomes isomorphic
to the split Albert algebra when extending scalars to the separable closure.
Albert algebras are either reduced, hence have the form Her3(C,Γ) as in 3.5, C
an octonion algebra over F (necessarily unique), or are cubic Jordan division
algebras.

3.7 Associative algebras of degree 3 with unitary involution

By an associative algebra of degree 3 with unitary involution over F we mean a
triple (K,B, τ) with the following properties: K is a quadratic étale F -algebra,
with norm nK , trace tK and conjugation ιK , a 7→ ā, B is an associative algebra
of degree 3 over K and τ : B → B is an F -linear involution that induces the
conjugation of K via restriction. All this makes obvious sense even in the
special case that K ∼= F ×F is split, as do the generic norm, trace and adjoint
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of B, which are written as NB, TB, ♯, respectively, connect naturally with the
involution τ and agree with the corresponding notions for the cubic Jordan
algebra B+. In particular, H(B, τ) is a Jordan algebra of degree 3 over F
whose associated cubic norm structure derives from that of B+ via restriction.
Let (K,B, τ) be an associative algebra of degree 3 with unitary involution
over F . We say (K,B, τ) is non-singular if the corresponding cubic Jordan
algebra B+ has this property, equivalently, if B is free of finite rank over K
and TB : B×B → K is a non-degenerate symmetric bilinear form in the usual
sense. We say (K,B, τ) is central simple if K is the centre of B and (B, τ) is
simple as an algebra with involution. This allows us to speak of (B, τ) as a
central simple associative algebra of degree 3 with unitary involution over F ,
the centre of B (a quadratic étale F -algebra) being understood.

3.8 The second Tits construction

Let (K,B, τ) be an associative algebra of degree 3 with unitary involution over
F and suppose we are given a norm pair (u, µ) of (K,B, τ), i.e., a pair of
invertible elements u ∈ H(B, τ), µ ∈ K such that NB(u) = nK(µ). We put
V := H(B, τ) ⊕ Bj as the external direct sum of H(B, τ) and B as vector
spaces over F , using j as a placeholder. We define base point, adjoint and
norm on V by the formulas

c := 1B + 0 · j, (3.8.1)

x♯ := (v♯0 − vuv̄) + (µ̄v̄♯u−1 − v0v)j, (3.8.2)

N(x) := NB(v0) + µNB(v) + µ̄NB(v) − TB
(
v0, vuτ(v)

)
(3.8.3)

for x = v0+vj, v0 ∈ H(B, τ), v ∈ B (and in all scalar extensions as well). Then
we obtain a cubic norm structure X := (V, c, ♯,N) over F whose associated
cubic Jordan algebra will be denoted by J := J(K,B, τ, u, µ) := J(X) and has
the bilinear trace

T (x, y) = TB(v0, w0) + TB
(
vuτ(w)

)
+ TB

(
wuτ(v)

)

= TB(v0, w0) + tK

(
TB
(
vuτ(w)

))
(3.8.4)

for x as above and y = w0 + wj, w0 ∈ H(B, τ), w ∈ B. It follows that, if
(K,B, τ) is non-singular, then so is J . Note also that the cubic Jordan algebra
H(B, τ) identifies with a subalgebra of J through the initial summand.
If (K,B, τ) is central simple in the sense of 3.7, then K is the centre of B,
J(B, τ, u, µ) := J(K,B, τ, u, µ) is an Albert algebra over F , and all Albert
algebras can be obtained in this way. More precisely, every Albert algebra J
over F contains a subalgebra isomorphic to H(B, τ) for some central simple
associative algebra (B, τ) of degree 3 with unitary involution over F , and ev-
ery homomorphism H(B, τ) → J can be extended to an isomorphism from
J(B, τ, u, µ) to J , for some norm pair (u, µ) of (K,B, τ), with K the centre of
B.
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Our next result is a variant of [PeR84b, Prop. 3.9] which extends the isomor-
phism (2.7.1) in a natural way.

Lemma 3.8.5. Let (K,B, τ) be a non-singular associative algebra of degree 3
with unitary involution over F and suppose (u, µ) is a norm pair of (K,B, τ).
Then, given any p ∈ H(B, τ)×, writing τ (p) for the p-twist of τ in the sense of
2.7 and setting u(p) := p♯u, µ(p) := NB(p)µ, the following statements hold.

a. (K,B, τ (p)) is a non-singular associative algebra of degree 3 with unitary
involution over F .

b. H(B, τ (p)) = H(B, τ)p, and (u(p), µ(p)) is a norm pair of (K,B, τ (p)).

c. The map

R̂p : J(K,B, τ, u, µ)
(p) ∼−→ J(K,B, τ (p), u(p), µ(p))

defined via v0+vj 7−→ v0p+(p−1vp)j is an isomorphism of cubic Jordan
algebras.

Proof. (a): This follows immediately from 3.7.
(b): The first assertion is a consequence of (2.7.1). As to the second, we
clearly have u(p) ∈ B× and µ(p) ∈ K×. Moreover, from p−1 = NB(p)

−1p♯

we deduce NB(p
♯) = NB(p)

2 and pp♯ = NB(p)1B = p♯p, hence τ (p)(u(p)) =
p−1τ(u)p♯p = NB(p)p

−1u = p♯u = u(p). Thus u(p) ∈ H(B, τ (p))× and
NB(u

(p)) = NB(p)
2nB(u) = NB(u)

2nK(µ) = nK(µ(p)), which completes the
proof.
(c): By (b), (3.4.1) and 3.8, the map R̂p is a linear bijection between non-
singular cubic Jordan algebras preserving base points. By 3.1, it therefore
suffices to show that it preserves norms as well. Writing N (resp. N ′) for the
norm of J(K,B, τ, u, µ) (resp. J(K,B, τ (p), u(p), µ(p))), we let v0 ∈ H(B, τ),
v ∈ B and compute, using (3.8.3),

(N ′ ◦ R̂p)(v0 + vj) = N ′(v0p+ (p−1vp)j)

= NB(p)NB(v0) +NB(p)µNB(v) +NB(p)µ̄NB(v)

− TB
(
v0pp

−1vpp♯uτ (p)(p−1vp)
)

= NB(p)
(
NB(v0) + µNB(v) + µ̄NB(v)− TB

(
v0vuτ(v)

))

= N (p)(v0 + vj),

as desired.

Remark 3.8.6. The lemma holds without the non-singularity condition on
(K,B, τ) but the proof is more involved.

If the quadratic étale F -algebra K in 3.8 is split, there is a less cumbersome
way of describing the output of the second Tits construction.
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3.9 The first Tits construction

Let A be an associative algebra of degree 3 over F and µ ∈ F×. Put V :=
A⊕Aj1 ⊕Aj2 as the direct sum of three copies of A as an F -vector space and
define base point, adjoint and norm on V by the formulas c := 1A+0 ·j1+0 ·j2,

x♯ := (v♯0 − v1v2) + (µ−1v♯2 − v0v1)j1 + (µv♯1 − v2v0)j2, (3.9.1)

N(x) := NA(v0) + µNA(v1) + µ−1NA(v2)− TA(v0v1v2) (3.9.2)

for x = v0+ v1j1+ v2j2, v0, v1, v2 running over all scalar extensions of A. Then
X := (V, c, ♯,N) is a cubic norm structure over F , with bilinear trace given by

T (x, y) = TA(v0, w0) + TA(v1, w2) + TA(v2, w1) (3.9.3)

for x as above and y = w0+w1j1+w2j2, w0, w1, w2 ∈ A. The associated cubic
Jordan algebra will be denoted by J(A, µ) := J(X). The Jordan algebra A+

identifies with a cubic subalgebra of J(A, µ) through the initial summand, and
if A is central simple, then J(A, µ) is an Albert algebra, which is either split
or division.
Now let (K,B, τ) be an associative algebra of degree 3 with unitary involution
over F and suppose (u, µ) is a norm pair of (K,B, τ). If K = F × F is split,
then we have canonical identifications (B, τ) = (A × Aop, ε) for some associa-
tive algebra A of degree 3 over F , where ε denotes the exchange involution,
and H(B, τ) = A+ as cubic Jordan algebras, where the inclusion H(B, τ) ⊆ B
corresponds to the diagonal embedding A+ →֒ A×Aop. Moreover, µ = (α, β),
where α ∈ F is invertible, β = α−1NA(u), and there exists a canonical iso-
morphism J := J(K,B, τ, u, µ) ∼= J(A,α) =: J ′ matching H(B, τ) canonically
with A+ as subalgebras of J, J ′, respectively. On the other hand, if K is a field,
the preceding considerations apply to the base change from F to K and then
yield an isomorphism J(K,B, τ, u, µ)K ∼= J(B, µ).

4 The weak and strong Skolem-Noether properties

As we have pointed out in 1.2, extending an isomorphism between cubic étale
subalgebras of an Albert algebra J to an automorphism on all of J will in gen-
eral not be possible. Working with elements of the structure group rather than
automorphisms, our Theorem B above is supposed to serve as a substitute for
this deficiency. Unfortunately, however, this substitute suffers from deficiencies
of its own since the natural habitat of the structure group is the category of
Jordan algebras not under homomorphisms but, instead, under homotopies.
Fixing a cubic Jordan algebra J over our base field F and a cubic étale F -
algebra E throughout this section, we therefore feel justified in phrasing the
following formal definition.

4.1 Weak and strong equivalence of isotopic embeddings

(a) Two isotopic embeddings i, i′ : E → J in the sense of 2.8 are said to be
weakly equivalent if there exist an element w ∈ E of norm 1 and an element
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ψ ∈ Str(J) such that the diagram

E
Rw

//

i′

��

E

i
��

J
ψ

// J

(4.1.1)

commutes. They are said to be strongly equivalent if ψ ∈ Str(J) can further-
more be chosen so that the diagram commutes with w = 1 (i.e., Rw = IdE).
Weak and strong equivalence clearly define equivalence relations on the set of
isotopic embeddings from E to J .
(b) The pair (E, J) is said to satisfy the weak (resp. strong) Skolem-Noether
property for isotopic embeddings if any two isotopic embeddings from E to J
are weakly (resp. strongly) equivalent. The weak (resp. strong) Skolem-Noether
property for isomorphic embeddings is defined similarly, by restricting the maps
i, i′ to be isomorphic embeddings instead of merely isotopic ones.

Remark 4.1.2. In 4.1 we have defined four different properties, depending on
whether one considers the weak or strong Skolem-Noether property for isotopic
or isomorphic embeddings. Clearly the combination weak/isomorphic is the
weakest of these four properties and strong/isotopic is the strongest.
In the case where J is an Albert algebra, Theorem B is equivalent to saying
that the pair (E, J) satisfies the weakest combination, the weak Skolem-Noether
property for isomorphic embeddings. On the other hand, suppose i, i′ : E → J
are isomorphic embeddings and ψ ∈ Str(J) makes (4.1.1) commutative with
w = 1. Then ψ fixes 1J and hence is an automorphism of J . But such an
automorphism will in general not exist [AJ, Th. 9], and if it doesn’t the pair
(E, J) will fail to satisfy the strong Skolem-Noether property for isomorphic
embeddings. In view of this failure, we are led quite naturally to the following
(as yet) open question:

Does the pair (E, J), with J absolutely simple (of degree 3), always
satisfy the weak Skolem-Noether property for isotopic embeddings?

(4.1.3)

This is equivalent to asking whether, given two cubic étale subalgebras E1 ⊆
J (p1), E2 ⊆ J (p2) for some p1, p2 ∈ J×, every isotopy η : E1 → E2 allows a
norm-one element w ∈ E1 such that the isotopy η◦Rw : E1 → E2 extends to an
element of the structure group of J . Regrettably, the methodological arsenal
assembled in the present paper, consisting as it does of rather elementary ma-
nipulations involving the two Tits constructions, does not seem strong enough
to provide an affirmative answer to this question.
But in the case where J is absolutely simple of dimension 9 — i.e., the Jordan
algebra of symmetric elements in a central simple associative algebra of degree
3 with unitary involution over F [McCZ, 15.5] — we will show in Th. 5.2.7 be-
low that the weak Skolem-Noether property for isotopic embeddings does hold.
This result, in turn, will be instrumental in proving Theorem B in §7. Regard-
ing the strong Skolem-Noether property for isomorphic embeddings, Theorem
1.1 in [GanS] gives a way to measure its failure.
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5 Cubic Jordan algebras of dimension 9

Our goal in this section will be to answer Question 4.1.3 affirmatively in case
J is a nine-dimensional absolutely simple cubic Jordan algebra over F . Before
we will be able to do so, a few preparations are required.

5.1 Quadratic and cubic étale algebras

(a) If K and L are quadratic étale algebras over F , then so is

K ∗ L := H(K ⊗ L, ιK ⊗ ιL),

where ιK and ιL denote the conjugations of K and L, respectively. The
composition (K,L) 7→ K ∗ L corresponds to the abelian group structure of
H1(F,Z/2Z), which classifies quadratic étale F -algebras [KMRT, (29.9)].

(b) Next suppose L and E are a quadratic and cubic étale F -algebras, respec-
tively. Then E ⊗ L may canonically be viewed as a cubic étale L-algebra,
whose norm, trace, adjoint will again be denoted by NE , TE, ♯, respectively.
On the other hand, E ⊗L may also be viewed canonically as a quadratic étale
E-algebra, whose norm, trace and conjugation will again be denoted by nL,
tL, and ιL, x 7→ x̄, respectively. We may and always will identify E ⊆ E ⊗ L
through the first factor and then have E = H(E ⊗ L, ιL).

5.2 The étale Tits process

[PeT04a, 1.3] Let L, resp. E, be a quadratic, resp cubic, étale algebra over F
and as in 3.3 write ∆(E) for the discriminant of E, which is a quadratic étale
F -algebra. With the conventions of 5.1 (b), the triple (K,B, τ) := (L,E⊗L, ιL)
is an associative algebra of degree 3 with unitary involution over F in the sense
of 3.7 such that H(B, τ) = E. Hence, if (u, b) is a norm pair of (L,E ⊗ L, ιL),
the second Tits construction 3.8 leads to a cubic Jordan algebra

J(E,L, u, b) := J(K,B, τ, u, b) = J(L,E ⊗ L, ιL, u, b)

that belongs to the cubic norm structure (V, c, ♯,N) where V = E ⊕ (E ⊗ L)j
as a vector space over F and c, ♯,N are defined by (3.8.1)–(3.8.3) in all scalar
extensions. The cubic Jordan algebra J(E,L, u, b) is said to arise from E,L, u, b
by means of the étale Tits process. There exists a central simple associative
algebra (B, τ) of degree 3 with unitary involution over F uniquely determined
by the condition that J(E,L, u, b) ∼= H(B, τ), and by [PeR 84b, Th. 1], the
centre of B is isomorphic to ∆(E) ∗ L (cf. 5.1 (a)) as a quadratic étale F -
algebra.

For convenience, we now recall three results from [PeT04a] that will play a
crucial role in providing an affirmative answer to Question 4.1.3 under the
conditions spelled out at the beginning of this section.
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Theorem 5.2.1. ([PeT04a, 1.6]) Let E be a cubic étale F -algebra, (B, τ) a
central simple associative algebra of degree 3 with unitary involution over F
and suppose i is an isomorphic embedding from E to H(B, τ). Writing K
for the centre of B and setting L := K ∗∆(E), there is a norm pair (u, b) of
(L,E⊗L, ιL) such that i extends to an isomorphism from the étale Tits process
algebra J(E,L, u, b) onto H(B, τ).

Theorem 5.2.2. ([PeT04a, 3.2]) Let E,E′ and L,L′ be cubic and quadratic
étale algebras, respectively, over F and suppose we are given norm pairs (u, b)
of (L,E ⊗ L, ιL) and (u′, b′) of (L′, E′ ⊗ L′, ιL′). We write

J := J(E,L, u, b) = E ⊕ (E ⊗ L)j, J ′ := J(E′, L′, u′, b′) = E′ ⊕ (E′ ⊗ L′)j′

as in 5.2 for the corresponding étale Tits process algebras and let ϕ : E′
∼→ E

be an isomorphism. Then, for an arbitrary map Φ: J ′ → J , the following
conditions are equivalent.

(i) Φ is an isomorphism extending ϕ.

(ii) There exist an isomorphism ψ : L′
∼→ L and an invertible element y ∈

E ⊗ L such that ϕ(u′) = nL(y)u, ψ(b
′) = NE(y)b and

Φ(v′0 + v′j′) = ϕ(v′0) +
(
y(ϕ⊗ ψ)(v′)

)
j (5.2.3)

for all v′0 ∈ E′, v′ ∈ E′ ⊗ L′.

Proposition 5.2.4. ([PeT04a, 4.3]) Let E be a cubic étale F -algebra and
α, α′ ∈ F×. Then the following conditions are equivalent.

i. The first Tits constructions J(E,α) and J(E,α′) (cf. 3.9) are isomorphic.

ii. J(E,α) and J(E,α′) are isotopic.

iii. α ≡ α′ε mod NE(E
×) for some ε = ±1.

iv. The identity of E can be extended to an isomorphism from J(E,α) onto
J(E,α′).

Our next aim will be to derive a version of Th. 5.2.1 that works with isotopic
rather than isomorphic embeddings and brings in a normalization condition
already known from [KMRT, (39.2)].

Proposition 5.2.5. Let (B, τ) be a central simple associative algebra of degree
3 with unitary involution over F and write K for the centre of B. Suppose
further that E is a cubic étale F -algebra and put L := K ∗ ∆(E). Given
any isotopic embedding i : E → J := H(B, τ), there exist elements u ∈ E,
b ∈ L such that NE(u) = nL(b) = 1 and i can be extended to an isotopy from
J(E,L, u, b) onto J .
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Proof. By 2.8, some invertible element p ∈ J makes i : E → J (p) an isomorphic
embedding. On the other hand, invoking 2.7 and writing τ (p) for the p-twist of
τ , it follows that

Rp : J
(p) ∼−→ H(B, τ (p))

is an isomorphism of cubic Jordan algebras, forcing i1 := Rp ◦ i : E →
H(B, τ (p)) to be an isomorphic embedding. Hence Th. 5.2.1 yields a norm
pair (u1, µ1) of (L,E ⊗ L, ιL) such that, adapting the notation of 3.8 to the
present set-up in an obvious manner, i1 extends to an isomorphism

η′1 : J(E,L, u1, b1) = E ⊕ (E ⊗ L)j1 ∼−→ H(B, τ (p)).

Thus η1 := Rp−1 ◦ η′1 : J(E,L.u1, b1)
∼→ J (p) is an isomorphism, which may

therefore be viewed as an isotopy from J(E,L, u1, b1) onto J extending i. Now
put u := NE(u1)

−1u31, b := b̄1b
−1
1 and y := u1 ⊗ b−11 ∈ (E ⊗ L)× to conclude

NE(u) = nL(b) = 1 as well as nL(y)u1 = u, NE(y)b1 = b. Applying Th. 5.2.2
to ϕ := 1E , ψ := 1L, we therefore obtain an isomorphism

Φ: J(E,L, u, b)
∼−→ J(E,L, u1, b1), v0 + vj1 7−→ v0 + (yv)j

of cubic Jordan algebras, and η := η1 ◦ Φ: J(E,L, u, b) → J is an isotopy of
the desired kind.

Lemma 5.2.6. Let L, resp. E be a quadratic, resp. cubic étale algebra over F
and suppose we are given elements u ∈ E, b ∈ L satisfying NE(u) = nL(b) = 1.
Then w := u−1 ∈ E has norm 1 and Rw : E → E extends to an isomorphism

R̂w : J(E,L, 1E, b)
∼−→ J(E,L, u, b)(u), v + xj 7−→ (vw) + xj

of cubic Jordan algebras.

Proof. This follows immediately from Lemma 3.8.5 for (K,B, τ) := (L,E ⊗
L, ιL), µ := b and p := u.

We are now ready for the main result of this section.

Theorem 5.2.7. Let (B, τ) be a central simple associative algebra of degree
3 with unitary involution over F and E a cubic étale F -algebra. Then the
pair (E, J) with J := H(B, τ) satisfies the weak Skolem-Noether property for
isotopic embeddings in the sense of 4.1 (b).

Proof. Given two isotopic embeddings i, i′ : E → J , we must show that they
are weakly equivalent. In order to do so, we write K for the centre of B as
a quadratic étale F -algebra and put L := K ∗∆(E). Then Prop. 5.2.5 yields
elements u, u′ ∈ E, b, b′ ∈ L satisfying

NE(u) = NE(u
′) = nL(b) = nL(b

′) = 1 (5.2.8)
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such that the isotopic embeddings i, i′ can be extended to isotopies

η : J(E,L, u, b) = E ⊕ (E ⊗ L)j −→ J,

η′ : J(E,L, u′, b′) = E ⊕ (E ⊗ L)j′ −→ J, (5.2.9)

respectively. We now distinguish the following two cases.
Case 1: L ∼= F × F is split. As we have noted in 3.9, there exist elements
α, α′ ∈ F× and isomorphisms

Φ: J(E,L, u, b)
∼−→ J(E,α), Φ′ : J(E,L, u′, b′)

∼−→ J(E,α′)

extending the identity of E. Thus (5.2.9) implies that Φ ◦ η−1 ◦ η′ ◦
Φ′−1 : J(E,α′) → J(E,α) is an isotopy, and applying Prop. 5.2.4, we find
an isomorphism θ : J(E,α′)

∼→ J(E,α) extending the identity of E. But then
ϕ := η◦Φ−1◦θ◦Φ′◦η′−1 : J −→ J is an isotopy, hence belongs to the structure
group of J , and satisfies

ϕ ◦ i′ = η ◦ Φ−1 ◦ θ ◦ Φ′ ◦ η′−1 ◦ η′|E = η|E = i.

Thus i and i′ are even strongly equivalent.
Case 2: L is a field. Since J(E,L, u, b) and J(E,L, u′, b′) are isotopic (via
η′−1 ◦ η), so are their scalar extensions from F to L. From this and 3.9 we
therefore conclude that J(E⊗L, b) and J(E⊗L, b′) are isotopic over L. Hence,
by Prop. 5.2.4,

b = b′εNE(z) (5.2.10)

for some ε = ±1 and some z ∈ (E ⊗ L)×. Now put ϕ := 1E , ψ := ιL and
y := u′ ⊗ 1L ∈ (E ⊗ L)×. Making use of (5.2.8) we deduce nL(y)u

′−1 = u′,
NE(y)b

′−1 = b̄′. Hence Th. 5.2.2 shows that the identity of E can be extended
to an isomorphism

θ : J(E,L, u′, b′)
∼−→ J(E,L, u′−1, b′−1),

and we still have NE(u
′−1) = nL(b

′−1) = 1. Thus, replacing η′ by η′ ◦ θ−1 if
necessary, we may assume ε = 1 in (5.2.10), i.e.,

b = b′NE(z). (5.2.11)

Next put ϕ := 1E, ψ := 1L and y := z ∈ (E ⊗ L)×, u1 := nL(y)u
′, b1 :=

NE(y)b
′ = b (by (5.2.11)). Taking L-norms in (5.2.11) and observing (5.2.8),

we conclude NE(y)NE(y) = nL
(
NE(z)) = 1, and since u1 = yȳu′, this implies

NE(u1) = 1. Hence Th. 5.2.2 yields an isomorphism

θ : J(E,L, u1, b1)
∼−→ J(E,L, u′, b′)

extending the identity of E, and replacing η′ by η′ ◦ θ if necessary, we may and
from now on will assume

b = b′. (5.2.12)
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Setting w := u−1 and consulting Lemma 5.2.6, we have NE(w) = 1 and obtain
a commutative diagram

E
Rw

//
� _

��

E
i

//
� _

��

J

J(E,L, 1E, b)
R̂w

// J(E,L, u, b),
η

55jjjjjjjjjjjjjj

where η ◦ R̂w : J(E,L, 1E, b) → J is an isotopy and the isotopic embeddings
i, i ◦Rw from E to J are easily seen to be weakly equivalent. Hence, replacing
i by i ◦Rw and η by η ◦ R̂w if necessary, we may assume u = 1E. But then, by
symmetry, we may assume u′ = 1E as well, forcing

η, η′ : J(E,L, 1E, b) −→ J

to be isotopies extending i, i′, respectively. Thus ψ := η◦η′−1 ∈ Str(J) satisfies
ψ ◦ i′ = η ◦ η′−1 ◦ η′|E = η|E = i, so i and i′ are strongly, hence weakly,
equivalent.

6 Norm classes and strong equivalence

6.1

Let (B, τ) be a central simple associative algebra of degree 3 with unitary
involution over F and E a cubic étale F -algebra. Then the centre, K, of B and
the discriminant, ∆(E), of E are quadratic étale F -algebras, as is L := K∗∆(E)
(cf. 5.1 (a)). To any pair (i, i′) of isotopic embeddings from E to J := H(B, τ)
we will attach an invariant, belonging to E×/nL((E⊗L)×) and called the norm
class of (i, i′), and we will show that i and i′ are strongly equivalent if and only
if their norm class is trivial. In order to achieve these objectives, a number of
preparations will be needed.
We begin with an extension of Th. 5.2.2 from isomorphisms to isotopies.

Proposition 6.1.1. Let E,E′ and L,L′ be cubic and quadratic étale algebras,
respectively, over F and suppose we are given norm pairs (u, b) of (L,E⊗L, ιL)
and (u′, b′) of (L′, E′ ⊗ L′, ιL′). We write

J := J(E,L, u, b) = E ⊕ (E ⊗ L)j, J ′ := J(E′, L′, u′, b′) = E′ ⊕ (E′ ⊗ L′)j′

as in 5.2 for the corresponding étale Tits process algebras and let ϕ : E′
∼→ E

be an isotopy. Then, letting Φ: J ′ → J be an arbitrary map and setting p :=
ϕ(1E′)−1 ∈ E×, the following conditions are equivalent.

i. Φ is an isotopy extending ϕ.

ii. There exist an isomorphism ψ : L′
∼→ L and an invertible element y ∈

E ⊗ L such that ϕ(u′) = nL(y)p
♯p−3u, ψ(b′) = NE(y)b and

Φ(v′0 + v′j′) = ϕ(v′0) +
(
y(ϕ⊗ ψ)(v′)

)
j (6.1.2)

for all v′0 ∈ E′, v′ ∈ E′ ⊗ L′.
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Proof. ϕ1 := Rp ◦ ϕ : E′ → E is an isotopy preserving units, hence is an
isomorphism. By 5.2 we have

J := J(E,L, u, b) = J(L,E ⊗ L, ιL, u, b),

and in obvious notation, setting u(p) := p♯u, b(p) := NE(p)b, Lemma 3.8.5
yields an isomorphism

R̂p : J
(p) ∼−→ J1 := J(L,E ⊗ L, ιL, u(p), b(p)) = J(E,L, u(p), b(p)),

v0 + vj 7−→ (v0p) + vj1

Thus R̂p : J → J1 is an isotopy and Φ1 := R̂p ◦Φ is a map from J ′ to J1. Since
ϕ1 preserves units, this leads to the following chain of equivalent conditions.

Φ is an isotopy extending ϕ⇐⇒ Φ1 is an isotopy extending ϕ1

⇐⇒ Φ1 is an isotopy extending ϕ1

and preserving units

⇐⇒ Φ1 is an isomorphism extending ϕ1.

By Th. 5.2.2, therefore, (i) holds if and only if there exist an element y1 ∈
(E ⊗ L)× and an isomorphism ψ : L′ → L such that ϕ1(u

′) = nL(y1)u
(p),

ψ(b′) = NE(y1)b
(p) and

Φ1(v
′
0 + v′j′) = ϕ1(v

′
0) +

(
y1(ϕ1 ⊗ ψ)(v′)

)
j1

for all v′0 ∈ E′, v′ ∈ E′ ⊗ L′. Setting y := y1p, and observing (ϕ1 ⊗ ψ)(v′) =
(ϕ ⊗ ψ)(v′)p for all v′ ∈ E′ ⊗ L′, it is now straightforward to check that the
preceding equations, in the given order, are equivalent to the ones in condition
(ii) of the theorem.

With the notational conventions of 5.1 (b), we next recall the following result.

Lemma 6.1.3. ([PeT04a, Lemma 4.5]) Let L (resp. E) be a quadratic (resp.
a cubic) étale F -algebra. Given y ∈ E ⊗ L such that c := NE(y) satisfies
nL(c) = 1, there exists an element y′ ∈ E ⊗ L satisfying NE(y

′) = c and
nL(y

′) = 1.

6.2 Notation

For the remainder of this section we fix a central simple associative algebra
(B, τ) of degree 3 with unitary involution over F and a cubic étale F -algebra
E. We write K for the centre of B, put J := H(B, τ) and L := K ∗∆(E) in
the sense of 5.1.

Theorem 6.2.1. Let i : E → J be an isotopic embedding and suppose w ∈ E
has norm 1. Then the isotopic embeddings i and i◦Rw from E to J are strongly
equivalent if and only if w ∈ nL((E ⊗ L)×).
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Proof. By Prop. 5.2.5, we find a norm pair (u, b) of (L,E ⊗ L, ιL) such that i
extends to an isotopy η : J1 := J(E,L, u, b) → J . On the other hand, i and
i ◦Rw are strongly equivalent by definition (cf. 4.1) if and only if there exists
an element Ψ ∈ Str(J) making the central square in the diagram

J1

η
((PPPPPPPPPPPPP E?
_oo

Rw
//

i
��

E

i
��

� � // J1

η
vvmmmmmmmmmmmmm

J
Ψ

// J .
(6.2.2)

commutative, equivalently, the isotopy ϕ := Rw : E → E can be extended
to an element of the structure group of J1. By Prop. 6.1.1 (with p = w−1),
this in turn happens if and only if some invertible element y ∈ E ⊗ L has
uw = nL(y)(w

−1)♯w3u = nL(y)w
4u, i.e., w = nL(w

2y), and eitherNE(y) = 1
or NE(y) = b̄b−1. Replacing y by w2y, we conclude that i and i ◦ Rw are
strongly equivalent if and only

some y ∈ E ⊗ L satisfies (i) nL(y) = w and (ii) NE(y) ∈ {1, b̄b−1}. (6.2.3)

In particular, for i and i ◦ Rw to be strongly equivalent it is necessary that
w ∈ nL((E ⊗ L)×). Conversely, let this be so. Then some y ∈ E ⊗ L satisfies
condition (i) of (6.2.3), so we have w = nL(y) and nL(NE(y)) = NE(nL(y)) =
NE(w) = 1. Hence Lemma 6.1.3 yields an element y′ ∈ E ⊗ L such that
NE(y

′) = NE(y) and nL(y
′) = 1. Setting z := yy′−1 ∈ E ⊗ L, we conclude

nL(z) = nL(y) = w and NE(z) = NE(y)NE(y
′)−1 = 1, hence that (6.2.3) holds

for z in place of y. Thus i and i ◦Rw are strongly equivalent.

6.3 Norm classes

Let i, i′ : E → J be isotopic embeddings. By Th. 5.2.7, there exist a norm-one
element w ∈ E as well as an element ψ ∈ Str(J) such that the left-hand square
of the diagram

E
Rw

//

i′

��

E

i
��

E
Rw′

oo

i′

��
J

ψ
// J J

ψ′
oo

commutes. Given another norm-one element w′ ∈ E and another element
ψ′ ∈ Str(J) such that the right-hand square of the above diagram commutes as
well, then the isotopic embeddings i′ and i′ ◦Rww′−1 from E to J are strongly
equivalent (via ψ′−1 ◦ ψ), and Th. 6.2.1 implies w ≡ w′ mod nL((E ⊗ L)×).
Thus the class of w mod nL((E⊗L)×) does not depend on the choice of w and
ψ. We write this class as [i, i′] and call it the norm class of (i, i′); it is clearly
symmetric in i, i′. We say i, i′ have trivial norm class if

[i, i′] = 1 in E×/nL((E ⊗ L)×).
For three isotopic embeddings i, i′, i′′ : E → J , it is also trivially checked that
[i, i′′] = [i, i′][i′, i′′].
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Corollary 6.3.1. Two isotopic embeddings i, i′ : E → J are strongly equiva-
lent if and only if [i, i′] is trivial.

Proof. Let i, i′ : E → J be isotopic embeddings. By Th. 5.2.7, they are weakly
equivalent, so some norm-one element w ∈ E makes i′ and i ◦ Rw strongly
equivalent. Thus i and i′ are strongly equivalent if and only if i and i ◦Rw are
strongly equivalent, which by Th. 6.2.1 amounts to the same as w ∈ nL((E ⊗
L)×), i.e., to i and i′ having trivial norm class.

Remark 6.3.2. When confined to isomorphic rather than isotopic embeddings,
Cor. 6.3.1 reduces to [PeT04a, Th. 4.2].

6.4 The connection with Jordan pairs.

We are grateful to a referee for having suggested to phrase some of the preceding
results in the language of Jordan pairs. Her or his arguments may be sketched
as follows.
Referring to Loos [Loos] for the necessary background material, we consider cu-
bic étale F -algebras E,E′, a central simple associative algebra (B, τ) of degree
3 with unitary involution over F , put J := H(B, τ) and write E := (E+, E+),
E ′ := (E′+, E′+), J := (J, J) for the Jordan pairs corresponding to the Jordan
algebra E+, E′+, J , respectively. Then we make the following observations.

10. Isotopic embeddings from E to J are basically the same as embeddings
(i.e., injective homomorphisms) of Jordan pairs from E to J . Indeed, let
ϕ : E+ → J be an isotopic embedding, so some p ∈ J× makes ϕ : E+ → J (p)

an injective homomorphism. Arguing as in the proof of [Loos, 1.8], it then
follows that (ϕ,Upϕ) : E → J is an embedding of Jordan pairs. Conversely, let
h = (h+, h−) : E → J be an embedding of Jordan pairs.. Then e := (e+, e−) :=
(h+(1J ), h−(1J)) is an idempotent of J such that h(E) ⊆ J2(e). We will be
through once we have shown J2(e) = J since this implies, again following the
proof of loc.cit., that p := e− is invertible in J and h+ is an injective homo-
morphism from from E+ to J (p), hence an isotopic embedding from E to J . In
order to show J2(e) = J , we may extend scalars if necessary to the algebraic
closure of F to obtain a frame X = (e1, e2, e3) in J2(e) satisfying e =

∑
ei.

But since J has degree three, X is also a frame of J , forcing e ∈ J to be a
maximal idempotent. Now [Pe 78, Cor. 4] implies the assertion.

20. Let w ∈ E×. Then it is straightforward to check that Rw : E → E belongs
the structure group of E+, and the automorphism of E it corresponds to via
[Loos, 1.8] is Rw := (Rw, Rw−1).

30. We claim that the isomorphisms from E to E ′ are precisely the pairs of
maps (ϕ ◦ Rw, ϕ ◦ Rw−1) = (ϕ, ϕ) ◦ Rw, where ϕ : E → E′ is an isomorphism
of cubic étale F -algebras and w ∈ E×. By 20, maps of this form are clearly
isomorphisms from E to E ′. Conversely, let h = (h+, h−) : E → E ′ be an iso-
morphism. Then v := h−1+ (1E′) ∈ E× and ϕ := h+ ◦ Rw−1 : E+ → E′+ with
w := v−1 is an isotopy preserving units, hence an isomorphism of cubic étale
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F -algebras (Lemma 2.5.2) such that h+ = ϕ ◦Rw. Now [Loos, 1.8] yields also
h− = ϕ ◦Rw−1 .

40. We denote by EAut(J ) the elementary automorphism group of J , meaning
the group of automorphisms (h+, h−) of J such that both h+ and h− leave the
norm of J invariant. Under the correspondence of [Loos, 1.8], EAut(J ) identi-
fies canonically with the elementary structure group of J , denoted by EStr(J)
and defined to be the group of all g ∈ Str(J) that leave the norm of J invariant.

50. We are now in a position to phrase, e.g., the weak Skolem-Noether property
for isotopic embeddings (cf. 4.1) in the language of Jordan pairs as follows:
given any two isomorphic embeddings j, j′ : E → J , there exist an invertible
element w ∈ E and an elementary automorphism Ψ of J such that the diagram

E Rw
//

j′

��

E
j
��

J
Ψ

// J

commutes. Note that we have replaced the normalization condition NE(w) = 1
of 4.1 by the equivalent one of Ψ being an elementary (rather than arbitrary)
automorphism of J . Combining Th. 5.2.7 with 30 we also see that two maximal
tori of J are conjugate under EAut(J ) if and only if they are isomorphic.

7 Albert algebras: proof of Theorem B

7.1

It would be interesting to know whether Th. 5.2.7, the notion of norm class
as defined in 6.3, or Cor. 6.3.1 can be extended from absolutely simple Jordan
algebras of degree 3 and dimension 9 to Albert algebras. Unfortunately, we
have neither been able either to answer this question in the affirmative nor
to exhibit a counter example. Therefore, we will have to be more modest
by settling with Theorem B, i.e., with the weak Skolem-Noether property for
isomorphic rather than arbitrary isotopic embeddings. Given a cubic étale
algebra E and an Albert algebra J over F , the idea of the proof is to factor
two isomorphic embeddings from E to J through the same absolutely simple
nine-dimensional subalgebra of J , which by structure theory will have the form
H(B, τ) for some central simple associative algebra (B, τ) of degree 3 with
unitary involution over F , allowing us to apply Th. 5.2.7 and reach the desired
conclusion. The fact that we have not succeeded in extending the preceding
factorization property from isomorphic to isotopic embeddings from E to J is
the main reason for the deficiencies alluded to at the beginning of this section.

Throughout, we fix an arbitrary Albert algebra J and a cubic étale algebra
E over F . In order to carry out the procedure we have just described, a few
preparations will be needed.
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Lemma 7.1.1. Assume F is algebraically closed and denote by E1 :=
Diag3(F ) ⊆ Mat3(F )

+ the cubic étale subalgebra of diagonal matrices. Then
there exists a cubic étale subalgebra E2 ⊆ Mat3(F )

+ such that Mat3(F )
+ is

generated by E1 and E2 as a cubic Jordan algebra over F .

Proof. We realize Mat3(F )
+ as a first Tits construction

J1 := Mat3(F )
+ = J(E1, 1),

with adjoint ♯, norm N , trace T , and identify the diagonal matrices on the
left with E1 viewed canonically as a cubic subalgebra of J(E1, 1). Since F is
infinite, we find an element u0 ∈ E1 satisfying E1 = F [u0]. Letting α ∈ F×,
we put

y := u0 + αj1 ∈ J1.

Since u0 and j1 generate J1 as a cubic Jordan algebra, so do u0 and y, hence
E1 and E2 := F [y]. It remains to show that, for a suitable choice of α, the
F -algebra E2 is cubic étale. We first deduce from (3.9.1) and (3.9.3) that

y♯ = u♯0 + (−αu0)j1 + α2j2,

T (y) = TE1(u0),

T (y♯) = TE1(u
♯
0),

N(y) = NE1(u0) + α3.

Thus y has the generic minimum (= characteristic) polynomial

t3 − TE1(u0)t
2 + TE1(u

♯
0)t−

(
NE1(u0) + α3

)
∈ F [t],

whose discriminant by [Lang, IV, Exc. 12(b)] is

∆y := TE1(u0)
2TE1(u

♯
0)

2 − 4TE1(u
♯
0)

3 − 4TE1(u0)
3(NE1(u0) + α3)

− 27(NE1(u0) + α3)2 + 18TE1(u0)TE1(u
♯
0)(NE1(u0) + α3)

= ∆u0 −
(
4TE1(u0)

3 + 54NE1(u0)− 18TE1(u0)TE1(u
♯
0)
)
α3 − 27α6,

where ∆u0 6= 0 is the discriminant of the minimum polynomial of u0. Regard-
less of the characteristic, we can therefore choose α ∈ F× in such a way that
∆y 6= 0, in which case E2 is a cubic étale F -algebra.

7.2 Digression: pointed quadratic forms

By a pointed quadratic form over F we mean a triple (V, q, c) consisting of an
F -vector space V , a quadratic form q : V → F , with bilinearization q(x, y) =
q(x + y)− q(x) − q(y), and an element c ∈ V that is a base point for q in the
sense that q(c) = 1. Then V together with the U -operator

Uxy := q(x, ȳ)x− q(x)ȳ (x, y ∈ V ), (7.2.1)
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where ȳ := q(c, y)c − y, and the unit element 1J := c is a Jordan algebra
over F , denoted by J := J(V, q, c) and called the Jordan algebra of the pointed
quadratic form (V, q, c). It follows immediately from (7.2.1) that the subalgebra
of J generated by a family of elements xi ∈ J , i ∈ I, is Fc+

∑
i∈I Fxi.

Lemma 7.2.2. Assume F is infinite and let i, i′ : E → J be isomorphic embed-
dings. Then there exist isomorphic embeddings i1, i

′
1 : E → J such that i (resp.,

i′) is strongly equivalent to i1 (resp., i′1) and the subalgebra of J generated by
i1(E) ∪ i′1(E) is absolutely simple of degree 3 and dimension 9.

Proof. We proceed in two steps. Assume first that F is algebraically closed.
Then E = F × F × F and J = Her3(C) are both split, C being the octonion
algebra of Zorn vector matrices over F . Note that Mat3(F )

+ ∼= Her3(F × F )
may be viewed canonically as a subalgebra of J . By splitness of E, there are
frames (i.e., complete orthogonal systems of absolutely primitive idempotents)
(ep)1≤p≤3, (e′p)1≤p≤3 in J such that i(E) =

∑
Fep, i

′(E) =
∑
Fe′p. But frames

in the split Albert algebra are conjugate under the automorphism group. Hence
we find automorphisms ϕ, ψ of J satisfying ϕ(ep) = ψ(e′p) = epp for 1 ≤ p ≤ 3.
Applying Lemma 7.1.1, we find a cubic étale subalgebra E2 ⊆ Mat3(F )

+ ⊆ J
that together with E1 := Diag3(F ) = (ϕ◦ i)(E) generates Mat3(F )

+ as a cubic
Jordan algebra over F . Again, the cubic étale E2 is split, so we find a frame
(cp)1≤p≤3 in J satisfying E2 =

∑
Fcp. This in turn leads to an automorphism

ψ′ of J sending epp to cp for 1 ≤ p ≤ 3. Then i1 := ϕ◦ i and i′1 := ψ′ ◦ψ ◦ i′ are
strongly equivalent to i, i′, respectively, and satisfy i1(E) = E1, i

′
1(E) = E2,

hence have the desired property.

Now let F be an arbitrary infinite field and write F̄ for its algebraic closure.
We have E = F [u] for some u ∈ E and put x := i(u), x′ := i′(u) ∈ J .
We write k-alg for the category of commutative associative k-algebras with 1,
put G := Aut(J) × Aut(J) as a group scheme over F and, given R ∈ k-alg,
(ϕ, ϕ′) ∈ G(R), write xm := xm(ϕ, ϕ′), 1 ≤ m ≤ 9, in this order for the
elements

x1 := 1JR , x2 := ϕ(xR), x3 := ϕ(x♯R),

x4 := ϕ′(xR), x5 := ϕ′(x♯R), x6 := ϕ(xR)× ϕ′(xR),
x7 := ϕ(x♯R)× ϕ′(xR), x8 := ϕ(xR)× ϕ′(x♯R), x9 := ϕ(x♯R)× ϕ′(x♯).

By a result of Brühne (cf. [Pe 15, Prop. 6.6]), the subalgebra of JR generated
by (ϕ ◦ iR)(ER) and (ϕ′ ◦ i′R)(ER) is spanned as an R-module by the elements
x1, . . . , x9. Now consider the open subscheme X ⊆ G defined by the condition
that X(R), R ∈ k-alg, consist of all elements (ϕ, ϕ′) ∈ G(R) satisfying

det
(
TJ
(
xm(ϕ, ϕ′), xn(ϕ, ϕ

′)
))

1≤m,n≤9
∈ R×.

By what we have just seen, this is equivalent to saying that the subalgebra of
JR generated by (ϕ ◦ iR)(ER) and (ϕ′ ◦ i′R)(ER) is a free R-module of rank 9
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and has a non-singular trace form. By the preceding paragraph, X(F̄ ) ⊆ G(F̄ )
is a non-empty (Zariski-) open, hence dense, subset. On the other hand, by
[Sp, 13.3.9(iii)], G(F ) is dense in G(F̄ ). Hence so is X(F ) = X(F̄ ) ∩G(F ). In
particular, we can find elements ϕ, ϕ′ ∈ Aut(J)(F ) such that the subalgebra
J ′ of J generated by (ϕ ◦ i)(E) and (ϕ′ ◦ i′)(E) is non-singular of dimension
9. This property is preserved under base field extensions, as is the property of
being generated by two elements. Hence, if J ′ were not absolutely simple, some
base field extension of it would split into the direct sum of two ideals one of
which would be the Jordan algebra of a pointed quadratic form of dimension 8
[R, Th. 1]. On the other hand, the property of being generated by two elements
is inherited by this Jordan algebra, which by 7.2 is impossible. Thus i1 := ϕ◦ i
and i′1 := ϕ′ ◦ i′ satisfy all conditions of the lemma.

Proposition 7.2.3. Suppose J is split (which holds automatically if F is a
finite field) and let i : E → J be an isomorphic embedding. Writing K := ∆(E)
for the discriminant of E, there exists a subalgebra J1 ⊆ J such that

i(E) ⊆ J1 ∼= Her3(K,Γ), Γ := diag(1,−1, 1).

Proof. Replacing E by i(E) if necessary, we may assume E ⊆ J and that
i : E →֒ J is the inclusion. We write E⊥ ⊆ J for the orthogonal complement
of E in J relative to the bilinear trace and, for all v ∈ E⊥, denote by qE(v) the
E-component of v♯ relative to the decomposition J = E ⊕ E⊥. By [PeR84a,
Prop. 2.1], E⊥ may be viewed as an E-module in a natural way, and qE : E⊥ →
E is a quadratic form over E. Moreover, combining [PeR 84a, Cor. 3.8] with a
result of Engelberger [E, Prop. 1.2.5], we conclude that there exists an element
v ∈ E⊥ that is invertible in J and satisfies qE(v) = 0. Now [PeR84a, Prop. 2.2]
yields a non-zero element α ∈ F such that the inclusion E →֒ J can be extended
to an isomorphic embedding from the étale first Tits construction J(E,α) into
J . Write J1 ⊆ J for its image. Then E ⊆ J1 ∼= J(E,α), and from [PeR84b,
Th. 3] we deduce J(E,α) ∼= Her3(K,Γ) with Γ := diag(1,−1, 1) as above.

Proposition 7.2.4. Let J1, J
′
1 be nine-dimensional absolutely simple subalge-

bras of J . Then every isotopy J1 → J ′1 can be extended to an element of the
structure group of J .

Proof. Let η1 : J1 → J ′1 be an isotopy. Then some w ∈ J×1 makes η1 : J
(w)
1 →

J ′1 an isomorphism. On the other hand, structure theory yields a central simple
associative algebra (B, τ) of degree 3 with unitary involution over F and an
isomorphism ϕ : H(B, τ) → J1 which, setting p := ϕ−1(w) ∈ H(B, τ)×, may
be regarded as an isomorphism

ϕ : H(B, τ)(p)
∼−→ J

(w)
1 .

On the other hand, following (2.7.1),

Rp : H(B, τ)(p)
∼−→ H(B, τ (p))
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is an isomorphism as well, and combining, we end up with an isomorphism

ϕ′ := η1 ◦ ϕ ◦R−1p : H(B, τ (p))
∼−→ J ′1.

Writing K for the centre of B and consulting 3.8, we now find a norm pair
(u, µ) of (B, τ) such that ϕ extends to an isomorphism

Φ: J(B, τ, u, µ)
∼−→ J.

Similarly, we find a norm pair (u′, µ′) of (B, τ (p)) such that ϕ′ extends to an
isomorphism

Φ′ : J(B, τ (p), u′, µ′)
∼−→ J.

Next, setting u1 := p♯−1u′, µ1 := NB(p)
−1µ′, we apply Lemma 3.8.5 to obtain

an isotopy

R̂p : J(B, τ, u1, µ1)→ J(B, τ (p), u′, µ′), v0 + vj 7→ (v0p) + (p−1vp)j,
(7.2.5)

and combining, we end up with an isotopy

R̂−1p ◦ Φ′−1 ◦ Φ: J(B, τ, u, µ) −→ J(B, τ, u1, µ1).

Hence [Pe 04, Th. 5.2] yields an isomorphism

Ψ: J(B, τ, u, µ)
∼−→ J(B, τ, u1, µ1)

inducing the identity on H(B, τ). Thus

η := Φ′ ◦ R̂p ◦Ψ ◦ Φ−1 : J −→ J

is an isotopy that fits into the diagram

J(B, τ, u1, µ1)

R̂p

((QQQQQQQQQQQQQ

J(B, τ, u, µ)

Φ

��

Ψ

OO

J(B, τ (p), u′, µ′)

Φ′

��

H(B, τ)
Rp

//
?�

OO

ϕ

��

H(B, τ (p))
?�

OO

ϕ′

��
J1 η1

//
� _

��

J ′1� _

��
J η

// J,

whose arrows are either inclusions or isotopies. Now, since η◦Φ = Φ′◦R̂p◦Ψ by

definition of η, and R̂p agrees with Rp on H(B, τ) by (7.2.5), simple diagram
chasing shows that η ∈ Str(J) is an extension of η1.
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We can now prove Theorem B in a form reminiscent of Th. 5.2.7.

Theorem 7.2.6. Let J be an Albert algebra over F and E a cubic étale F -
algebra. Then the pair (E, J) satisfies the weak Skolem-Noether property for
isomorphic embeddings.

Proof. Leit i, i′ : E → J be two isomorphic embeddings. We must show that
they are weakly equivalent and first claim that we may assume the following:
there exist a central simple associative algebra (B, τ) of degree 3 with unitary
involution over F and a subalgebra J1 ⊆ J such that J1 ∼= H(B, τ) and i, i′

factor uniquely through J1 to isomorphic embeddings i1 : E → J1, i
′
1 : E → J1.

Indeed, replacing the isomorphic embeddings i, i′ by strongly equivalent ones
if necessary, this is clear by Lemma 7.2.2 provided F is infinite. On the other
hand, if F is finite, Prop. 7.2.3 leads to absolutely simple nine-dimensional sub-
algebras J1, J

′
1 ⊆ J that are isomorphic and have the property that i, i′ factor

uniquely through J1, J
′
1 to isomorphic embeddings i1 : E → J1, i

′
1 : E → J ′1,

respectively. But every isomorphism from J ′1 to J1 extends to an automorphism
of J [KMRT, 40.15], [Pe 04, Remark 5.6(b)]. Hence we may assume J ′1 = J1,
as desired.
With J1, i1, i

′
1 as above, Th. 5.2.7 yields elements w ∈ E of norm 1 and ϕ1 ∈

Str(J1) such that i1◦Rw = ϕ1◦i′1. Using Prop. 7.2.4, we extend ϕ1 to an element
ϕ ∈ Str(J) and therefore conclude that the diagram (4.1.1) commutes.

8 Outer automorphisms for type 3D4: proof of Theorem A

In this section, we apply Theorem B to prove Theorem A.

8.1 A subgroup of Str(J)

Let E be a cubic étale subalgebra of an Albert algebra J and write H for the
subgroup of h ∈ Str(J) that normalize E and such thatNh = N . Note that, for
ϕ ∈ Aut(E), the element ψ ∈ Str(J) provided by Theorem B to extend ϕ ◦Rw
to all of J belongs to H . Indeed, as ψ ∈ Str(J), there is a µ ∈ F× such that
Nψ = µN , but for e ∈ E we have N(ψ(e)) = N(ϕ(ew)) = N(ϕ(e))N(ϕ(w)) =
N(e).
We now describe H in the case where J is a matrix Jordan algebra as in §3.5
with Γ = 13 and E is the subalgebra of diagonal matrices. We rely on some
facts that are only proved in the literature under the hypothesis charF 6= 2, 3.
This hypothesis is not strictly necessary but we adopt it for now in order to ease
the writing. Fix h ∈ H . The norm N restricts to E as N(

∑
αieii) = α1α2α3,

so h permutes the three singular points [eii] in the projective variety N |E = 0
in P(E). There is an embedding of the symmetric group on 3 letters, Sym3, in
H acting by permuting the eii by their indices, see [Gar 06, §3.2] for an explicit
formula, and consequently H ∼= H0 ⋊ Sym3, where H0 is the subgroup of H
of elements normalizing Feii for each i. For w := (w1, w2, w3) ∈ (F×)×3 such
that w1w2w3 = 1, it follows that Uw ∈ H (cf. (3.2.2)) sends eii 7→ w2

i eii.
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Assuming now that F is algebraically closed, after multiplying h by a suitable
Uw, we may assume that h restricts to be the identity on E. The subgroup
of such elements of Str(J) is identified with the Spin(C) which acts on the
off-diagonal entries in J as a direct sum of the three inequivalent minuscule
8-dimensional representations, see [KMRT, 36.5, 38.6, 38.7] or [J 71, p. 18,

Prop. 6]. Thus, we may identify H with (R
(1)
E/F (Gm) · Spin(C))⋊ Sym3, where

Sym3 acts via outer automorphisms on Spin(C) as in [Gar 06, §3] or [KMRT,
35.15].

8.2 The Tits class

Recall from §1.1 that the Dynkin diagram of a group G is endowed with an
action by the absolute Galois group of F , and elements of Aut(∆)(F ) act nat-
urally on H2(F,Z), for Z the scheme-theoretic center of the simply connected
cover of G.

Lemma 8.2.1. Let G be a group of type D4 over a field F with Dynkin diagram
∆. If there is a π ∈ Aut(∆)(F ) of order 3 such that π(tG) = tG, then G has
type 1D4 or 3D4 and tG = 0.

Proof. For the first claim, if G has type 2D4 or 6D4, then Aut(∆)(F ) = Z/2
or 1.
Now suppose that G has type 1D4. We may assume that G is simply connected.
The center Z of G is µ2×µ2, with automorphism group Sym3 and π acts on Z
with order 3. The three nonzero characters χ1, χ2, χ3 : Z → Gm are permuted
transitively by π, so by hypothesis the element χi(tG) ∈ H2(F,Gm) does not
depend on i. As the χi’s satisfy the equations χ1 + χ2 + χ3 = 0 and 2χi = 0
(compare [T, 6.2] or [KMRT, 9.14]), it follows that χi(tG) = 0 for all i, hence
tG = 0 by [Gar 12, Prop. 7].
If G has type 3D4, then there is a unique cyclic cubic field extension E of
F such that G × E has type 1D4. By the previous paragraph, restriction
H2(F,Z)→ H2(E,Z) kills tG. That map is injective because Z has exponent
2, so tG = 0.

In the next result, the harder, “if” direction is the crux case of the proof of
Theorem A and is an application of Theorem B. The easier, “only if” direction
amounts to [CEKT, Th. 13.1] or [KT, Prop. 4.2]; we include it here as a
consequence of the (a priori stronger) Lemma 8.2.1.

Proposition 8.2.2. Let G be a group of type D4 over a field F . The image of
α(F ) : Aut(G)(F ) → Aut(∆)(F ) contains an element of order 3 if and only if
G has type 1D4 or 3D4, G is simply connected or adjoint, and tG = 0.

Proof. “If” : We may assume that G is simply connected. If G has type 1D4,
then G is Spin(q) for some 3-Pfister quadratic form q, and the famous triality
automorphisms of Spin(q) as in [SpV, 3.6.3, 3.6.4] are of order 3 and have image
in Aut(∆)(F ) of order 3. So assume G has type 3D4.
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Assume for this paragraph that charF 6= 2, 3. There is a uniquely determined
cyclic Galois field extension E of F such that G×E has type 1D4. By hypoth-
esis, there is an Albert F -algebra J with norm form N such that E ⊂ J and
we may identify G with the algebraic group with K-points

{g ∈ GL(J ⊗K) | Ng = N and g|E⊗K = IdE⊗K}

for every extensionK of F . Take now ϕ to be a non-identity F -automorphism of
E and w ∈ E of norm 1 and ψ ∈ Str(J) to be the elements given by Theorem
B such that ψ|E = ϕ ◦ Rw. As ψ normalizes E and preserves N , it follows
immediately that ψ normalizes G as a subgroup of Str(J). (Alternatively this
is obvious from the fact that in subsection 8.1, Spin(C) is the derived subgroup
of H◦.) Tracking through the description of H in subsection 8.1, we find that
conjugation by ψ is an outer automorphism of G such that ψ3 is inner.
In case F has characteristic 2 or 3, one can reduce to the case of characteristic
zero as follows. Find R a complete discrete valuation ring with residue field F
and fraction field K of characteristic zero. Lifting E to R allows us to construct
a quasi-split simply connected group scheme Gq over R whose base change to
F is the quasi-split inner form Gq of G. We have maps

H1(F,Gq)
∼←− H1

ét(R,Gq) →֒ H1(K,Gq ×K)

where the first map is an isomorphism by Hensel and the second map is injective
by [BT]. Twisting by a well chosen Gq-torsor, we obtain

H1(F,G)
∼←− H1

ét(R,G) →֒ H1(K,G ×K)

where G × K has type 3D4 and zero Tits class and G ∼= G × F . Now in
Aut(G)(F ) → Aut(∆)(F ) = Z/3, the inverse image of 1 is a connected com-
ponent X of Aut(G) defined over F , a G-torsor. Lifting X to H1(K,G ×K),
we discover that this G-torsor is trivial (by the characteristic zero case of the
theorem), hence X is F -trivial, i.e., has an F -point.

“Only if” : Let φ ∈ Aut(G)(F ) be such that α(φ) has order 3. In view of the

inclusion (1.1.1), Lemma 8.2.1 applies. If G has type 3D4, then it is necessarily
simply connected or adjoint, so assume G has type 1D4. Then φ lifts to an
automorphism of the simply connected cover G̃ of G, hence acts on the center
Z of G̃ in such a way that it preserves the kernel of the map Z → G. As Z
is isomorphic to µ2 × µ2 and φ acts on it as an automorphism of order 3, the
kernel must be 0 or Z, hence G is simply connected or adjoint.

8.3 Proof of Theorem A

Let G be a group of type 3D4, so Aut(∆)(F ) = Z/3; put π for a generator. If
π(tG) 6= tG, then the right side of (1.1.1) is a singleton and the containment is
trivially an equality, so assume π(tG) = tG. Then tG = 0 by Lemma 8.2.1 and
the conclusion follows by Proposition 8.2.2.
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Example 8.3.1. Let F0 be a field with a cubic Galois extension E0. For the
split adjoint group PSO8 of type D4 over F , a choice of pinning gives an
isomorphism of Aut(PSO8) with PSO8 ⋊ Sym3 , such that elements of Sym3

normalize the Borel subgroup appearing in the pinning. Twisting Spin8 by
a 1-cocycle with values in H1(F0, Sym3) representing the class of E0 gives a
simply connected quasi-split group Gq of type 3D4. As in [GarMS, pp. 11, 12],
there exists an extension F of F0 and a versal torsor ξ ∈ H1(F,Gq); define
G to be Gq × F twisted by ξ. As ξ is versal, the Rost invariant rGq (ξ) ∈
H3(F,Z/6Z) has maximal order, namely 6 [GarMS, p. 149]. Moreover, the
map α(F ) : Aut(G)(F )→ Aut(∆)(F ) = Z/3 is onto by Theorem A.
In case charF0 6= 2, 3, G is Aut(Γ) for some twisted composition Γ in the
sense of [KMRT, §36]. As rGq (ξ) is not 2-torsion, by [KMRT, 40.16], Γ is not
Hurwitz, and by [KT], Aut(G)(F ) contains no outer automorphisms of order
3. This is a newly observed phenomenon, in that in all other cases where α(F )
is known to be onto, it is also split.

9 Outer automorphisms for type A

9.1 Groups of type An

We now consider Conjecture 1.1.2 and Question 1.1.3 for groups G of type An.
If G has inner type (i.e., is isogenous to SL1(B) for a degree d central simple
F -algebra) then equality holds in (1.1.1) and the answer to Question 1.1.3 is
“yes” as in [Gar 12, p. 232].
So assume that G has outer type and in particular n ≥ 2. The simply connected
cover of G is SU(B, τ) for B a central simple K-algebra of degree d := n + 1,
where K is a quadratic étale F -algebra, and τ is a unitary K/F -involution.
(This generalizes the (K,B, τ) defined in §3.7 by replacing 3 by d.) As the
center Z of SU(B, τ) is the group scheme (µd)[K] of d-th roots of unity twisted
by K in the sense of [KMRT, p. 418] (i.e., is the Cartier dual of the finite étale
group scheme (Z/d)[K]), every subgroup of Z is characteristic, hence (1.1.1) is
an equality for G if and only if it is so for SU(B, τ) and similarly the answers
to Question 1.1.3 are the same for G and SU(B, τ). Therefore, we need only
treat SU(B, τ) below.
The automorphism group Aut(∆)(F ) is Z/2 and its nonzero element π acts on
H2(F,Z) as −1, hence π(tSU(B,τ)) = −tSU(B,τ) and the right side of (1.1.1)
is a singleton (if 2tSU(B,τ) 6= 0) or has two elements (if 2tSU(B,τ) = 0). These
cases are distinguished by the following lemma.

Lemma 9.1.1. In case d is even (resp., odd): 2tSU(B,τ) = 0 if and only if
B ⊗K B (resp., B) is a matrix algebra over K.

Proof. The cocenter Z∗ := Hom(Z,Gm) is (Z/d)[K]; put χi ∈ Z∗ for the el-
ement corresponding to i ∈ (Z/d)[K]. If d = 2e for some integer e, then the
element χe is fixed by Gal(F ) and 2χe = χd = 0, regardless of B or tSU(B,τ).
All other χi have stabilizer subgroup Gal(K) and χi(2tSU(B,τ)) ∈ H2(K,Z)
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can be identified with the class of B⊗2i in the Brauer group of K, cf. [KMRT,
p. 378].
The algebra B ⊗K B is a matrix algebra, then, if and only if χi vanishes on
2tSU(B,τ) for all i. This is equivalent to 2tSU(B,τ) = 0 by [Gar 12, Prop. 7].
When the degree d of B is odd, B ⊗K B is a matrix algebra if and only if B is
such.

Corollary 9.1.2. If G is a group of type An for n even, then equality holds
in (1.1.1) and the answer to Question 1.1.3 is “yes”.

Proof. We may assume that G has outer type and is SU(B, τ). If 2tSU(B,τ) 6= 0,
then the right side of (1.1.1) is a singleton and the claim is trivial. Otherwise,
by Lemma 9.1.1, B is a matrix algebra, i.e., SU(B, τ) is the special unitary
group of a K/F -hermitian form, and the claim follows.

9.2

The algebraic group Aut(SU(B, τ)) has two connected components: the iden-
tity component, which is identified with the adjoint group of SU(B, τ), and the
other component, whose F -points are the outer automorphisms of SU(B, τ).

Theorem 9.2.1. There is an isomorphism between the F -variety of K-linear
anti-automorphisms of B commuting with τ and the non-identity component
of Aut SU(B, τ), given by sending an anti-automorphism ψ to the outer auto-
morphism g 7→ ψ(g)−1.

Clearly, such an anti-automorphism provides an isomorphism of B with its
opposite algebra, hence can only exist when B has exponent 2. This is a
concrete illustration of the inclusion (1.1.1).

Proof. First suppose that F is separably closed, in which case we may iden-
tify K = F × F , B = Md(F ) × Md(F ), and τ(b1, b2) = (bt2, b

t
1). A K-

linear anti-automorphism ψ is, by Skolem-Noether, of the form ψ(b1, b2) =
(x1b

t
1x
−1
1 , x2b

t
2x
−1
2 ) for some x1, x2 ∈ PGLd(F ), and the assumption that

ψτ = τψ forces that x2 = x−t1 .
As NrdB/K ψ = NrdB/K , it follows that ψ is an automorphism of the variety
SU(B, τ), hence φ defined by φ(g) := ψ(g)−1 is an automorphism of the group.
As φ(b) = b−1 for b ∈ K×, i.e., φ acts nontrivially on the center, φ is an outer
automorphism.
We have shown that there is a well-defined morphism from the variety of anti-
automorphisms commuting with τ to the outer automorphisms of SU(B, τ),
and it remains to prove that it is an isomorphism. For this, note that PGLd
acts on SU(B, τ) where the group action is just function composition, that
this action is the natural action of the identity component of SU(B, τ) on its
other connected component, and that therefore the outer automorphisms are
a PGLd-torsor. Furthermore, the first paragraph of the proof showed that the
anti-automorphisms commuting with τ also make up a PGLd-torsor, where the
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actions are related by y.ψ = y−1.φ for y ∈ PGLd. This completes the proof for
F separably closed.
For general F , we note that the map ψ 7→ φ is F -defined and gives an isomor-
phism over Fsep, hence is an isomorphism over F .

9.3

We do not know how to prove or disprove existence of an anti-automorphism
commuting with τ in general, but we can give a criterion for Question 1.1.3
that is analogous to the one given in [KT] for groups of type 3D4.

Corollary 9.3.1. A group SU(B, τ) of outer type A has an F -defined outer
automorphism of order 2 if and only if there exists a central simple algebra
(B0, τ0) over F with τ0 an involution of the first kind such that (B, τ) is iso-
morphic to (B0 ⊗K, τ0 ⊗ ι), for ι the non-identity F -automorphism of K.

Proof. The bijection in Theorem 9.2.1 identifies outer automorphisms of order
2 with anti-automorphisms of order 2. If such a (B0, τ0) exists, then clearly τ0
provides an anti-automorphism of order 2.
Conversely, given an anti-automorphism τ0 of order 2, define a semilinear auto-
morphism of B via ι := τ0τ . Set B0 := {b ∈ B | ι(b) = b}; it is an F -subalgebra
and τ0 restricts to be an involution on B0.

Example 9.3.2. We now exhibit a (B, τ) with B of exponent 2, but such that
SU(B, τ) has no outer automorphism of order 2 over F . The paper [ART]
provides a field F and a division F -algebra C of degree 8 and exponent 2 such
that C is not a tensor product of quaternion algebras. Moreover, it provides a
quadratic extension K/F contained in C. It follows that C ⊗K has index 4,
and we set B to be the underlying division algebra. As corK/F [B] = 2[C] = 0
in the Brauer group, B has a unitary involution τ .
For sake of contradiction, suppose that SU(B, τ) had an outer automorphism
of order 2, hence there exists a (B0, τ0) as in Corollary 9.3.1. Then B0 has
degree 4, so B0 is a biquaternion algebra. Moreover, C ⊗ B0 is split by K,
hence is Brauer-equivalent to a quaternion algebra Q. By comparing degrees,
we deduce that C is isomorphic to B0 ⊗Q, contradicting the choice of C.

9.4 Type 2E6

Results entirely analogous to Theorem 9.2.1, Corollary 9.3.1, and Example 9.3.2
also hold for groups G of type 2E6, using proofs of a similar flavor. The Dynkin
diagram of type E6 has automorphism group Z/2 = {Id, π}, and arguing as
in Lemmas 8.2.1 or 9.1.1 shows that π(tG) = tG if and only if tG = 0. So
for addressing Conjecture 1.1.2 and Question 1.1.3, it suffices to consider only
those groups with zero Tits class, which can be completely described in terms
of the hermitian Jordan triples introduced in [GarP, §4] or the Brown algebras
studied in [Gar 01]. We leave the details to the interested reader.
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Does Conjecture 1.1.2 hold for every group of type 2E6? One might hope to
imitate the outline of the proof of Theorem A. Does an analogue of Theorem
B hold, where one replaces Albert algebras, cubic Galois extensions, and the
inclusion of root systems D4 ⊂ E6 by Brown algebras or Freudenthal triple
systems, quadratic Galois extensions, and the inclusion E6 ⊂ E7?
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Abstract. We show that the Gerstenhaber-Schack cohomology of
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Schack cohomology, this is used to show that both Gerstenhaber-
Schack and Hochschild cohomological dimensions of the coordinate
algebra of the quantum permutation group are 3.
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1 Introduction

We study homological properties of Hopf algebras by using Yetter-Drinfeld
modules and tensor category techniques. We are especially interested in the
following question:

Question 1.1. If A and B are Hopf algebras having equivalent tensor
categories of comodules, how are their Hochschild cohomologies related? In
particular do A and B have the same cohomological dimension?
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We have seen in [10] that the Hochschild cohomologies of two such Hopf algebras
A and B are indeed closely related, using resolutions of the trivial Yetter-
Drinfeld module over A (or over B) formed by free Yetter-Drinfeld modules.
In the present paper we continue this study along the same line of ideas.

Our first remark in view of Question 1.1 is that there exists at least a coho-
mology theory for Hopf algebras that is known to be well-behaved with respect
to this situation: Gerstenhaber-Schack cohomology [27, 28]. Let A be a Hopf
algebra and let M be a Hopf bimodule over A: the Gerstenhaber-Schack co-
homology H∗GS(A,M) of A with coefficients in M [28] is defined to be the ho-
mology of an explicit bicomplex whose columns are modeled on the Hochschild
complex of the underlying algebra and rows are modeled on the Cartier com-
plex of the underlying coalgebra. When M = A is the trivial Hopf bimodule,
then H∗GS(A,A) =: H∗b (A) is known as the bialgebra cohomology of A. This
cohomology theory, which can also be defined in terms of Yetter-Drinfeld mod-
ules, was first introduced in view of applications to deformation theory, and
has been used as a key tool in the proof of several fundamental results on
finite-dimensional Hopf algebras [55, 23].

If A and B are Hopf algebras having equivalent tensor categories of comod-

ules, then there exists a tensor equivalence F : AAM
A

A → B
BM

B

B between their
categories of Hopf bimodules such that for any Hopf bimodule M over A, we
have H∗GS(A,M) ≃ H∗GS(B,F (M)), and in particular H∗b (A) ≃ H∗b (B) and
cdGS(A) = cdGS(B) (where cdGS denotes the Gerstenhaber-Schack cohomo-
logical dimension, defined in the obvious way, see Section 5). We call these
properties the monoidal invariance of Gerstenhaber-Schack cohomology.

Going back to Question 1.1, the next question is to study how Hochschild
and Gerstenhaber-Schack cohomologies are related. We show that the
Gerstenhaber-Schack cohomology of a Hopf algebra determines its Hochschild
cohomology. More precisely, we show that if A is a Hopf algebra, then there

exists a functor G :AMA →A
AM

A

A such that for any A-bimodule M , we have

H∗(A,M) ≃ H∗GS(A,G(M))

In particular we have cd(A) ≤ cdGS(A). Then if A and B are Hopf algebras as
in Question 1.1, combining this with the monoidal invariance of Gerstenhaber-

Schack cohomology, we get the existence of two functors F1 : AMA → B
BM

B

B

and F2 :BMB →A
AM

A

A such that for any A-bimodule M and any B-bimodule
N , we have

H∗(A,M) ≃ H∗GS(B,F1(M)) and H∗(B,N) ≃ H∗GS(A,F2(N))

In particular

max(cd(A), cd(B)) ≤ cdGS(A) = cdGS(B)

These isomorphisms and this inequality thus provide partial answers to Ques-
tion 1.1. They lead to the following new question:

Documenta Mathematica 21 (2016) 955–986



Cohomologies of Hopf Algebras 957

Question 1.2. Is it true that cd(A) = cdGS(A) for any Hopf algebra A over a
field of characteristic zero? Is it true at least if A is assumed to be cosemisim-
ple?

A positive answer would give the monoidal invariance of cohomological dimen-
sion and fully answer the last part of Question 1.1, and would also be a natural
infinite-dimensional generalization of a famous result by Larson-Radford [38],
which states that, in characteristic zero, a finite-dimensional cosemisimple Hopf
algebra is semisimple. See Remark 5.8.

We provide (Corollary 5.10) a partial positive answer to Question 1.2 in the
case where A is cosemisimple of Kac type (the square of the antipode is the
identity), and in turn this gives a partial positive answer to Question 1.1 (see
Corollary 5.11).

We then apply our general considerations to quantum symmetry Hopf algebras,
which were the first motivation for this work. Let (R,ϕ) semisimple measured
algebra of dimension ≥ 4, and let Aaut(R,ϕ) be its quantum symmetry Hopf
algebra [61, 8]. We compute, in the cosemisimple case, the bialgebra cohomol-
ogy of Aaut(R,ϕ), and we show that cd(Aaut(R,ϕ)) ≤ cdGS(Aaut(R,ϕ)) = 3,
with equality if ϕ is a trace. These results include in particular the coordinate
algebra of Wang’s quantum permutation group S+

n [61].

As a last comment to further motivate the use of Gerstenhaber-Schack coho-
mology as an appropriate cohomology theory for Hopf algebras (apart from its
use to get information on Hochschild cohomology itself), we would like to point
out that, in the examples computed so far, it also has the merit to avoid the
“dimension drop” phenomenon usually encountered for quantum algebras (see
[31, 32]): the canonical choice of coefficients (the trivial Hopf bimodule) is the
good one to get the cohomological dimension. It would be interesting to know
if this can be further generalized.

The paper is organized as follows. Section 2 consists of preliminaries. In Sec-
tion 3 we discuss the cohomological dimension of a Hopf subalgebra and the
sub-additivity of the cohomological dimension under extensions. Section 4 is
devoted to Yetter-Drinfeld modules: we recall the concept of free (resp. co-
free) Yetter Drinfeld module and we introduce the notion of relative projective
(resp. injective) Yetter-Drinfeld module, which corresponds, via the tensor
equivalence between Yetter-Drinfeld modules and Hopf bimodules [49], to the
notion of relative projective (resp. injective) Hopf bimodule considered in [53].
We show that relative projective (resp. injective) Yetter-Drinfeld modules are
precisely the direct summands of free (resp. co-free) Yetter-Drinfeld modules.
This section also contains some considerations on free Yetter-Drinfeld modules
over adjoint Hopf subalgebras. In Section 5, after having recalled some basic
facts on Gerstenhaber-Schack cohomology, we provide an explicit complex that
computes the Gerstenhaber-Schack cohomology H∗GS(A, V ), if A is cosemisim-
ple or if the Yetter-Drinfeld module V is relative injective, using results from
[53] in this last case (see Proposition 5.3). We then show that Gerstenhaber-
Schack cohomology determines Hochschild cohomology, and show that Ques-
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tion 1.2 has a positive answer in the case of cosemisimple Hopf algebras of Kac
type. In Section 6 we study the examples mentioned earlier in the introduction.
In Section 7 we discuss the Gerstenhaber-Schack cohomological dimension in
the setting of Hopf algebras having a projection.

2 Preliminaries

In this preliminary section we fix some notation, we recall some basic definitions
and facts on the Hochschild cohomology of a Hopf algebra, and we discuss exact
sequences of Hopf algebras.

2.1 Notations and conventions

We work over C (or over any algebraically closed field of characteristic zero).
This assumption does not affect any of the theoretical results in the paper,
but is important for the examples we consider. We assume that the reader
is familiar with the theory of Hopf algebras and their tensor categories of co-
modules, as e.g. in [34, 35, 42]. If A is a Hopf algebra, as usual, ∆, ε and S
stand respectively for the comultiplication, counit and antipode of A. We use
Sweedler’s notations in the standard way. The category of right A-comodules
is denoted MA, the category of right A-modules is denoted MA, etc... The
trivial (right) A-module is denoted Cε. The set of A-module morphisms (resp.
A-comodule morphisms) between two A-modules (resp. two A-comodules) V
and W is denoted HomA(V,W ) (resp. HomA(V,W )).

2.2 Hochschild cohomology of a Hopf algebra

If A is an algebra and M is an A-bimodule, then H∗(A,M) denotes, as usual,
the Hochschild cohomology of A with coefficients in M . See e.g. [62].

Definition 2.1. The Hochschild cohomological dimension of an algebra A is
defined to be

cd(A) = sup{n : Hn(A,M) 6= 0 for some A− bimodule M} ∈ N ∪ {∞}

As noted by several authors (see [25], [29], [31], [13], [17], [10]), the Hochschild
cohomology of a Hopf algebra can be described by using a suitable Ext functor
on the category of left or right A-modules. Indeed, if A is a Hopf algebra and
M is an A-bimodule, we have

H∗(A,M) ≃ Ext∗A(Cε,M
′)

where the above Ext is in the category of right A-modules and M ′ is M
equipped with the right A-module structure given by x← a = S(a(1)) ·x · a(2).
This leads to the following description of the cohomological dimension of a
Hopf algebra.
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Proposition 2.2. Let A be a Hopf algebra. We have

cd(A) = sup{n : ExtnA(Cε,M) 6= 0 for some A−module M}
= inf{n : ExtiA(Cε,−) = 0 for i > n}
= inf{n : Cε admits a projective resolution of length n}

Proof. The previous isomorphism ensures that

cd(A) ≤ sup{n : ExtnA(Cε,M) 6= 0 for some A−module M}

If V is a right A-module, let εV be the A-bimodule whose right structure is
that of V and whose left structure is trivial, i.e. given by ε. Then (εV )′ = V ,
hence the converse inequality holds, and the first equality in the statement is
proved, as well as the second one. The last one is shown similarly as in the
case of group cohomology, see e.g. [14, Chapter VIII, Lemma 2.1].

Examples 2.3. 1. If G is a linear algebraic group, with coordinate algebra
O(G), it is well-known that cd(O(G)) = dimG.

2. If Γ is a (discrete) group, then cd(CΓ) = cdC(Γ), the cohomological
dimension of Γ with coefficients C. We have cd(CΓ) = 0 if and only
if Γ is finite, and if Γ is finitely generated, then cd(CΓ) = 1 if and only if
Γ contains a free normal subgroup of finite index, see [22].

3. If A is a finite-dimensional Hopf algebra, then either cd(A) = 0 (when
A is semisimple) or cd(A) = ∞, a finite-dimensional Hopf algebra being
Frobenius and hence self-injective.

2.3 Exact sequences of Hopf algebras

A sequence of Hopf algebra maps

C→ B
i→ A

p→ L→ C

is said to be exact [3] if the following conditions hold:

1. i is injective and p is surjective,

2. ker p = Ai(B)+ = i(B)+A, where i(B)+ = i(B) ∩Ker(ε),

3. i(B) = AcoL = {a ∈ A : (id ⊗ p)∆(a) = a ⊗ 1} = coLA = {a ∈ A :
(p⊗ id)∆(a) = 1⊗ a}.

Note that condition (2) implies pi = ε1.

Proposition 2.4. Let
C→ B

i→ A
p→ L→ C

be a sequence of Hopf algebra maps where i is injective, p is surjective and pi
= ε1. Assume that the antipode of A is bijective. Consider the following three
assertions.
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1. A is faithfully flat as a right B-module and Ker(p) = Ai(B)+ = i(B)+A.

2. coLA = AcoL = i(B) and p is left or right faithfully coflat.

3. The sequence is exact.

Then we have (1)⇒ (3) and (2)⇒ (3), and if (3) holds, then we have (1) ⇐⇒
(2).

An exact sequence satisfying (1) and (2) is called strict [52]. Note that p is
automatically faithfully coflat if L is cosemisimple.
That (1) ⇒ (3) holds is well-known (see [3, Proposition 1.2.4], [51, Lemma
1.3], [42, Proposition 3.4.3], or more generally [59, Theorem 1]). Also that
(1) ⇐⇒ (2) if (3) holds is known, see [51, Corollary 1.8]. I wish to thank the
referee for pointing out that (2)⇒ (3) follows from [59, Theorem 2], combined
with [44, Remark 1.3].

3 Cohomological dimension of a Hopf subalgebra

In this section we discuss the behavior of cohomological dimension when passing
to a Hopf subalgebra, which, under mild assumptions, is similar to the group
cohomology case.

Proposition 3.1. Let B ⊂ A be a Hopf subalgebra. Assume that one of the
following conditions holds.

1. A is projective as a right B-module.

2. The antipode of A is bijective and A is faithfully flat as a right B-module.

3. A is cosemisimple.

4. The exists a Hopf algebra map π : A→ B such that π|B = idB.

5. The antipode of A is bijective and B is commutative.

Then cd(B) ≤ cd(A).

Proof. If A is projective as a right B-module, any projective right A-module
is projective as a right B-module, thus a resolution of length n of Cε in MA

yields a resolution of length n in MB, and thus Proposition 2.2 ensures that
cd(B) ≤ cd(A). Assuming (2), Corollary 1.8 in [51] yields that A is projective as
a right B-module, and we conclude by (1). If we assume that A is cosemisimple,
then its antipode is bijective and by [16] A is faithfully flat as a right B-module,
and we conclude by (2). If we assume (4), then A is free as a right B-module,
see [47] (we will come back to this situation in Section 7), thus we conclude by
(1). If B is commutative, then A is faithfully flat over B by Proposition 3.12
in [4], and again we conclude by (2).
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The following result is the generalization of the sub-additivity of cohomological
dimension under extensions (see e.g. Proposition 2.4 in [14]) with essentially the
same proof, using Stefan’s spectral sequence [54] as the natural generalization
of the Hochschild-Serre spectral sequence.

Proposition 3.2. Let

C −→ B
i−→ A

p−→ L −→ C

be a strict exact sequence of Hopf algebras , and assume that the antipode of A
is bijective. Then we have cd(B) ≤ cd(A) ≤ cd(B) + cd(L). If moreover L is
semisimple, then cd(B) = cd(A).

Proof. By [51, Lemma 1.3], (or more generally [59, Theorem 1], see also [42,
Proposition 3.4.3]), the canonical map

A⊗B A −→ A⊗ L
a⊗B a′ 7−→ aa′(1) ⊗ p(a′(2))

is bijective. Thus B ⊂ A is an L-Galois extension, and A is faithfully flat both
as a left and right B-module (the antipode of A is bijective). Thus for any
A-A-bimodule M there exists a spectral sequence [54]

Epq2 = Hp(L;Hq(B,M))⇒ Hp+q(A,M)

The spectral sequence is concentrated in the rectangle 0 ≤ p ≤ cd(L), 0 ≤
q ≤ cd(B), and it follows that for i > cd(L) + cd(B), we have Hi(A,M) = 0,
and this proves the inequality. If L is semisimple, then cd(L) = 0, and hence
cd(B) = cd(A).

4 Yetter-Drinfeld modules

Let A be a Hopf algebra. Recall that a (right-right) Yetter-Drinfeld module
over A is a right A-comodule and right A-module V satisfying the condition,
∀v ∈ V , ∀a ∈ A,

(v ← a)(0) ⊗ (v ← a)(1) = v(0) ← a(2) ⊗ S(a(1))v(1)a(3)
The category of Yetter-Drinfeld modules over A is denoted YDAA: the mor-
phisms are the A-linear A-colinear maps. Endowed with the usual tensor prod-
uct of modules and comodules, it is a tensor category, with unit the trivial
Yetter-Drinfeld module, denoted C.
An important example of Yetter-Drinfeld module is the right coadjoint Yetter-
Drinfeld module Acoad: as a right A-module Acoad = A and the right A-
comodule structure is defined by

adr(a) = a(2) ⊗ S(a(1))a(3), ∀a ∈ A
The coadjoint Yetter-Drinfeld module has a natural generalization, discussed
in the next subsection.
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4.1 Free and co-free Yetter-Drinfeld modules

We now discuss some important constructions of Yetter-Drinfeld modules (left-
right versions of these constructions were first given in [15], see [53] as well, in
the context of Hopf bimodules).
Let V be a right A-comodule. The Yetter-Drinfeld module V ⊠A is defined as
follows [10]. As a vector space V ⊠ A = V ⊗ A, the right module structure is
given by multiplication on the right, and the right coaction αV⊠A is defined by

αV⊠A(v ⊗ a) = v(0) ⊗ a(2) ⊗ S(a(1))v(1)a(3)

Note that Acoad = C⊠A.
A Yetter-Drinfeld module is said to be free if it is isomorphic to V ⊠A for some
comodule V .
The construction of the free Yetter-Drinfeld module on a comodule yields a
functor L = −⊠A :MA −→ YDAA which is left adjoint to the forgetful functor
R : YDAA −→MA . Indeed we have natural isomorphisms

HomA(V,R(X)) −→ HomYDAA(V ⊠A,X)

f 7−→ f̃ , f̃(v ⊗ a) = f(v)← a

for any A-comodule V and any Yetter-Drinfeld module X .
Now let M be a right A-module. The Yetter-drinfeld module M#A is defined
as follows: the underlying vector space isM ⊗A, the right coaction is idM ⊗∆,
while the right action is given by

(x ⊗ a)← b = x · b(2) ⊗ S(b(1))ab(3)

The Yetter-Drinfeld module C#A is the adjoint Yetter-Drinfeld module, de-
noted Aad.
A Yetter-Drinfeld module will be said to be co-free if it is isomorphic to M#A
for some moduleM . The construction of the co-free Yetter-Drinfeld module on
a module yields a functor L = −#A :MA −→ YDAA which is right adjoint to
the forgetful functor L : YDAA −→MA. Indeed we have natural isomorphisms

HomYDAA(X,M#A) −→ HomA(L(X),M)

f 7−→ (idM ⊗ ε)f,

for any A-module M and any Yetter-Drinfeld module X .

4.2 Relative projective and relative injective Yetter-Drinfeld
modules

We will use the following notions.

Definition 4.1. Let V be a Yetter-Drinfeld module over A. Then V is said to
be relative projective if the functor HomYDAA(V,−) transforms exact sequences
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of Yetter-Drinfeld modules that split as sequences of comodules to exact se-
quences of vector spaces.
Similarly V is said to be relative injective if the functor HomYDAA(−, V ) trans-
forms exact sequences of Yetter-Drinfeld modules that split as sequences of
modules to exact sequences of vector spaces.

Relative projective Yetter-Drinfeld modules have the following characteriza-
tion.

Proposition 4.2. Let P be a Yetter-Drinfeld module over A. The following
assertions are equivalent.

1. P is relative projective.

2. Any surjective morphism of Yetter-Drinfeld modules f : M → P that
admits a section which is a map of comodules admits a section which is
a morphism of Yetter-Drinfeld modules.

3. P is a direct summand of a free Yetter-Drinfeld module.

If A is cosemisimple, these conditions are equivalent to P being a projective
object of YDAA.
Proof. The proof of (1)⇒(2) is similar to the usual one for modules. Assume
(2), and consider the surjective Yetter-Drinfeld module morphism R(P )⊠A→
P , x ⊗ a 7→ x ← a. The map P → R(P ) ⊠ A, x 7→ x ⊗ 1 is an A-colinear
section, so by (2) P is indeed, as a Yetter-Drinfeld module, a direct summand
of R(P )⊠A.
Assume now that P is free, i.e. P = V ⊠A for some comodule V , and let

0→M
i→ N

p→ Q→ 0

be an exact sequence of Yetter-Drinfeld modules that splits as a sequence of
comodules. The sequence

0→ HomYDAA(P,M)
i−−→ HomYDAA(P,N)

p−−→ HomYDAA(P,Q)

is exact and we have to show the surjectivity of the map on the right. Let
s : Q → N be a morphism of comodules such that ps = idQ. Let ϕ ∈
HomYDAA(V ⊠A,Q), and let ϕ0 : V → Q be defined by ϕ0(v) = ϕ(v⊗1): ϕ0 is a

map of comodules, and so is sϕ0. Considering now s̃ϕ0 ∈ HomYDAA(V ⊠A,N),

we have ps̃ϕ0 = ϕ, which gives the expected surjectivity result. Now if
V ⊠ A ≃ P ⊕ M as Yetter-Drinfeld modules, then HomYDAA(V ⊠ A,−) ≃
HomYDAA(P,−)⊕HomYDAA(M,−), and the usual argument for projective mod-
ules work to conclude that P is relative projective.
It is clear that a projective Yetter-Drinfeld module is relative projective, and if
A is cosemisimple, a free Yetter-Drinfeld module is a projective object in YDAA
(Proposition 3.3 in [10]), hence a direct summand of a free Yetter-Drinfeld
module is projective, and so is a relative projective Yetter-Drinfeld module.
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Similarly, relative injective Yetter-Drinfeld modules are characterized as fol-
lows. The proof is similar to the one of the previous result, and is left to the
reader.

Proposition 4.3. Let I be a Yetter-Drinfeld module over A. The following
assertions are equivalent.

1. I is relative injective.

2. Any injective morphism of Yetter-Drinfeld modules f : I → M that ad-
mits a section which is a map of modules admits a section which is a
morphism of Yetter-Drinfeld modules.

3. P is a direct summand of a co-free Yetter-Drinfeld module.

4.3 Yetter-Drinfeld modules and Hopf bimodules

In this subsection we briefly recall the category equivalence between Yetter-
Drinfeld modules and Hopf bimodules [49], and check that the notion of relative
projective objects (resp. relative injective objects) for Yetter-Drinfeld modules
corresponds to that for Hopf bimodules considered in [53].
First recall that a Hopf bimodule over A is an A-bimodule and A-bicomodule
M whose respective left and right coactions λ : M → A ⊗M and ρ : M →
M ⊗A are A-bimodule maps. The category of Hopf bimodules over A, whose

morphisms are the bimodule and bicomodule maps, is denotedAAM
A

A.
If M is Hopf bimodule over A, then coAM = {x ∈ M | λ(x) = 1 ⊗ x} is
a right subcomodule of M , and inherits a right A-module structure given by
x ← a = S(a(1)).x.a(2), making it into a Yetter-Drinfeld module over A. This
defines a functor

A
AM

A

A −→ YDAA
M 7−→ coAM

Conversely, starting from a Yetter-Drinfeld module V , one defines a Hopf bi-
module structure on A⊗ V as follows. The bimodule structure is given by

a.(b⊗ v).c = abc(1) ⊗ (v ← c(2))

and the bicomodule structure is given by the following left and right coactions

λ : A⊗ V −→ A⊗A⊗ V ρ : A⊗ V −→ A⊗ V ⊗A
a⊗ v 7−→ a(1) ⊗ a(2) ⊗ v a⊗ v 7−→ a(1) ⊗ v(0) ⊗ a(2)v(1)

If f : V −→W is a morphism of Yetter-Drinfeld module, then idA⊗f : A⊗V →
A⊗W is a morphism of Hopf bimodules, and hence we get a functor

YDAA −→A
AM

A

A

V 7−→ A⊗ V
The two functors just defined are quasi-inverse equivalences, see [49].
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Lemma 4.4. Relative projective (resp. relative injective) objects in YDAA corres-

pond, via the category equivalence YDAA ≃ A
AM

A

A, to relative projective (resp.

relative injective) objects of AAM
A

A in the sense of [53].

Proof. Let M be a Hopf bimodule over A. That M is relatively projective
means that the functor HomA

AM
A

A

(M,−) transforms exact sequences of Hopf

bimodules that split as sequences of bicomodules to exact sequences of vector
spaces. The proof of the lemma easily reduces to the following statement.
Let f : V → W be a surjective morphism of Yetter-Drinfeld modules, inducing
a surjective morphism of Hopf bimodules idA⊗f : A⊗V → A⊗W . Then there
exists an A-comodule section to f if and only if there exists an A-bicomodule
section to idA ⊗ f .
Indeed, if s :W → V is A-colinear with fs = idW , then idA⊗s : A⊗W → A⊗V
is A-bicolinear and is a section to idA ⊗ f . Conversely starting with an A-
bicolinear map T : A ⊗W → A⊗ V with (idA ⊗ f)T = idA⊗W , then the map
s : W → V defined by s(w) = ε ⊗ idV (T (1 ⊗ w)) is A-colinear, and satisfies
fs = idW .
In a similar manner, that M is relatively injective means that the functor
HomA

AM
A

A

(−,M, ) transforms exact sequences of Hopf bimodules that split as

sequences of bimodules to exact sequences of vector spaces. The proof that this
corresponds to the notion of relative injective Yetter-Drinfeld module is left to
the reader.

4.4 Adjoint Hopf subalgebras

We now discuss the way to restrict certain free Yetter-Drinfeld to adjoint Hopf
subalgebras.

Proposition 4.5. Let B ⊂ A be a Hopf subalgebra. The following assertions
are equivalent.

1. For any a ∈ A and b ∈ B, we have

a(2) ⊗ S(a(1))ba(3) ∈ A⊗B

2. For any B-comodule W , we have αV⊠A(W ⊠A) ⊂ (W ⊠A)⊗B so that
W ⊠A is an object of YDBB.

Proof. (1) ⇒ (2) follows from the definition of αV⊠A. Conversely, assuming
that (2) holds, take W = B the regular B-comodule. Then for any a ∈ A and
b ∈ B, we have

b(1) ⊗ a(2) ⊗ S(a(1))b(2)a(3) ∈ A⊗A⊗B
and hence

a(2) ⊗ S(a(1))ba(3) = a(2) ⊗ S(a1)ε(b(1))b(2)a(3) ∈ A⊗B
Thus (1) holds.
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Definition 4.6. A Hopf subalgebra B ⊂ A is said to be adjoint if it satisfies
the equivalent conditions of Proposition 4.5.

Very often adjoint Hopf subalgebras are obtained in the following way. Recall
that a Hopf algebra map f : A → L is said to be cocentral if f(a(1)) ⊗ a(2) =
f(a(2))⊗ a(1) for any a ∈ A.

Proposition 4.7. Let B ⊂ A be a Hopf subalgebra. Assume that there exists
a cocentral and surjective Hopf algebra map p : A → L such that B = AcoL.
Then B ⊂ A is an adjoint Hopf subalgebra. Conversely if B ⊂ A is an adjoint
Hopf subalgebra, if A and B have bijective antipodes and if A is faithfully flat
as a right B-module, then there exists a cocentral surjective Hopf algebra map
p : A→ L such that B = AcoL.

Proof. Let a ∈ A and b ∈ B. Since p(b) = ε(b)1, we have, using the cocentrality
of p,

idA ⊗ idB ⊗ p
(
a(2) ⊗ (S(a(1))ba(3))(1) ⊗ (S(a(1))ba(3))(2)

)

= idA ⊗ idB ⊗ p
(
a(3) ⊗ S(a(2))b(1)a(4) ⊗ S(a(1))b(2)a(5)

)

= a(3) ⊗ S(a(2))b(1)a(4) ⊗ pS(a(1))p(b(2))p(a(5))
= a(3) ⊗ S(a(2))ba(4) ⊗ pS(a(1))p(a(5))
= a(2) ⊗ S(a(1))ba(3) ⊗ 1

Hence a(2) ⊗ S(a(1))ba(3) ∈ A ⊗ AcoL = A ⊗ B: this shows that B ⊂ A is
adjoint.
Conversely, assume that B ⊂ A is adjoint, that A and B have bijective an-
tipodes and that A is faithfully flat as a right B-module. Then for any a ∈ A
and b ∈ B, we have

S(a(1))ba(2) = ε(a(2))ε(b(1))S(a(1))b(2)a(3) ∈ B

It is well-known that this implies B+A ⊂ AB+, and hence AB+ ⊂ B+A by
the bijectivity of the antipodes. It follows that B+A is a Hopf ideal in A, and
we denote by p : A → A/B+A = L the canonical Hopf algebra surjection. By
construction we have B ⊂ AcoL, and for b ∈ B we have p(b) = ε(b). Hence we
have for any a ∈ A, a⊗ 1 = a(2) ⊗ p(S(a(1))a(3)), hence

a(2) ⊗ p(a(1)) = (1 ⊗ p(a(1)))(a(2) ⊗ 1)

= (1 ⊗ p(a(1))(a(3) ⊗ p(S(a(2))a(4))) = a(1) ⊗ p(a(2))

and this shows that p is cocentral. Finally we have B = AcoL by Corollary 1.8
in [51].

We now discuss a condition that ensures that the restriction of a free Yetter-
Drinfeld module to an adjoint Hopf subalgebra as in Proposition 4.5 remains a
relative projective Yetter-Drinfeld module.
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Proposition 4.8. Let B ⊂ A be a Hopf subalgebra with B = AcoL for some
cocentral and surjective Hopf algebra map p : A→ L. Assume that there exists
a linear map σ : L→ A such that

1. pσ = idL;

2. σ(x)(1) ⊗ p(σ(x)(2)) = σ(x(1))⊗ x(2), for any x ∈ L;
3. σ(x)(1)S(σ(x)(3))⊗ σ(x)(2) = 1B ⊗ σ(x), for any x ∈ L.

Then for any B-comodule W , the object W ⊠ A ∈ YDBB is relative projective.
Such a map σ exists if A is cosemisimple.

Proof. We first claim that for any a ∈ A, we have

σp(a(1))(1) ⊗ S(σp(a(1))(2))a(2) ∈ A⊗B

For any x ∈ L, we have, by (2)

σ(x)(1) ⊗ σ(x)(2) ⊗ p(σ(x)(3)) = σ(x(1))(1) ⊗ σ(x(1))(2) ⊗ x(2)
and hence for any a ∈ A

σp(a)(1) ⊗ σp(a)(2) ⊗ p(σp(a)(3)) = σp(a(1))(1) ⊗ σp(a(1))(2) ⊗ p(a(2))

We have

(idA ⊗ p⊗ idA)(idA ⊗∆)
(
σp(a(1))(1) ⊗ S(σp(a(1))(2))a(2)

)

= σp(a(1))(1) ⊗ Sp(σp(a(1))(3))p(a(2))⊗ S(σp(a(1))(2))a(3)
= σp(a(1))(1) ⊗ Sp(a(2))p(a(3))⊗ S(σp(a(1))(2))a(4)
= σp(a(1))(1) ⊗ 1⊗ S(σp(a(1))(2))a(2)

and this proves our claim.
We thus get for any B-comodule W , a linear map

ι :W ⊠A −→ (W ⊠A)⊠B

w ⊗ a 7−→ w ⊗ σp(a(1))(1) ⊗ S(σp(a(1))(2))a(2)
that we claim to be a morphism of Yetter-Drinfeld modules over B. That ι
is a left B-module map is easily checked. Denoting by β the B-coaction on
(W ⊠A)⊠B, we have

βι(w ⊗ a) = w(0) ⊗ σp(a(1))(2) ⊗ S(σp(a(1))(5))a(3)⊗
S
(
S(σp(a(1))(6)a(2)

)
S(σp(a(1))(1))w(1)σp(a(1))(3)S(σp(a(1))(4))a(4)

=w(0) ⊗ σp(a(1))(2) ⊗ S(σp(a(1))(3))a(3)⊗
S
(
S(σp(a(1))(4))a(2)

)
S(σp(a(1))(1))w(1)a(4)

=w(0) ⊗ σp(a(1))(2) ⊗ S(σp(a(1))(3))a(3)⊗
S(a(2))S

(
σp(a(1))1S(σp(a(1))(4))

)
w(1)a(4)
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By (3), for x ∈ L, we have

σ(x)(2) ⊗ σ(x)(1)S(σ(x)(3)) = σ(x) ⊗ 1B

and hence

σ(x)(2) ⊗ S(σ(x)(3))⊗ σ(x)(1)S(σ(x)(4)) = σ(x)(1) ⊗ S(σ(x)(2))⊗ 1B

Thus

βι(w ⊗ a) = w(0) ⊗ σp(a(1))(1) ⊗ S(σp(a(1))(2))a(3) ⊗ S(a(2))w(1)a(4)

Now let γ be the B-coaction on W ⊠A. We have

(ι⊗ idB)γ(w ⊗ a) = ι⊗ idB(w(0) ⊗ a(2) ⊗ S(a(1))w(1)a(3))

= w(0) ⊗ σp(a(2))(1) ⊗ S(σp(a(2))(2))a(3) ⊗ S(a(1))w(1)a(4)

= w(0) ⊗ σp(a(1))(1) ⊗ S(σp(a(1))(2))a(3) ⊗ S(a(2))w(1)a(4) = βι(w ⊗ a)

where we have used the cocentrality of p. It follows that ι is B-colinear, and
hence is a morphism of Yetter-Drinfeld modules over B. Consider now

µ : (W ⊠A)⊠B −→W ⊠A

w ⊗ a⊗ b 7−→ w ⊗ ab

It is straightforward to check that µ is a morphism of Yetter-Drinfeld modules
over B, with µι = idW⊠A and hence we conclude from Proposition 4.2 that
W ⊠A is a relative projective Yetter-Drinfeld module over B.
For the last assertion, note that L and A both admit right Bcop ⊗L-comodule
structures given by

L −→ L⊗ (Bcop ⊗ L), A −→ A⊗ (Bcop ⊗ L)
x 7−→ x(1) ⊗ 1⊗ x(2), a 7−→ a(2) ⊗ a(1)S(a(3))⊗ p(a(4))

and that p is Bcop ⊗ L-colinear. If A is cosemisimple then so is B and so is
L (since p is cocentral), hence Bcop ⊗ L is cosemisimple. Thus there exists a
Bcop ⊗ L-colinear section to p, which satisfies our 3 conditions.

There are also situations where the Hopf algebra in the proposition is not
cosemisimple and the map σ still exists, see Section 6.

5 Gerstenhaber-Schack cohomology.

5.1 Generalities.

Let A be a Hopf algebra and let V be a Yetter-Drinfeld module over A. The
Gerstenhaber-Schack cohomology of A with coefficients in V , that we denote
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H∗GS(A, V ), was introduced in [27, 28] by using an explicit bicomplex. In fact
Gerstenhaber-Schack used Hopf bimodules instead of Yetter-Drinfeld modules
to define their cohomology, but in view of the equivalence between Hopf bimod-
ules and Yetter-Drinfeld modules, we shall work with the simpler framework of
Yetter-Drinfeld modules (a Yetter-Drinfeld version of the Gerstenhaber-Schack
bicomplex is provided in [45]). A special instance of Gerstenhaber-Schack co-
homology is bialgebra cohomology, given by H∗b (A) = H∗GS(A,C).
As an example, we have by [46], H∗b (CΓ) ≃ H∗(CΓ,C) for any discrete group Γ.
The bialgebra cohomology of O(G) for a connected reductive algebraic group
G is also described in [46], Theorem 9.2, and some finite-dimensional examples
are computed in [58]. Applications to deformations of pointed Hopf algebras
are given in [41].

A key result, due to Taillefer [57, 56], shows that Gerstenhaber-Schack coho-
mology is in fact an Ext-functor:

H∗GS(A, V ) ≃ Ext∗YDAA(C, V )

We will use this description as a definition (we will recall and use the definition
based on a bicomplex in the proof of the forthcoming Proposition 5.3).

Definition 5.1. The Gerstenhaber-Schack cohomological dimension of a Hopf
algebra A is defined to be

cdGS(A) = sup{n : Hn
GS(A, V ) 6= 0 for some V ∈ YDAA} ∈ N ∪ {∞}

If A and B are Hopf algebras having equivalent tensor categories of comodules,
then the given tensor equivalence F :MA ≃⊗MB induces a tensor equivalence
F̂ : YDAA ≃⊗ YDBB (see e.g. [11, 10], this is easy to see thanks to the description
of the category of Yetter-Drinfeld modules as the weak center of the category
of comodules, see [50]). Hence we get, for any Yetter-Drinfeld module V over
A, an isomorphism

H∗GS(A, V ) ≃ H∗GS(B, F̂ (V ))

and moreover cdGS(A) = cdGS(B). These properties are what we call the
monoidal invariance of Gerstenhaber-Schack cohomology.

5.2 Complexes to compute Gerstenhaber-Schack cohomology.

We now discuss the description of complexes that compute Gerstenhaber-
Schack cohomology in particular cases.

Recall that a Hopf algebra A is said to be co-Frobenius if there exists a non-
zero A-colinear map A → C. By [39], A is co-Frobenius if and only if the
category MA of right comodules has enough projectives. Finite-dimensional
Hopf algebras are co-Frobenius, as well as cosemisimple Hopf algebras. See
[1, 2] for more examples.
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Proposition 5.2. Let A be a co-Frobenius Hopf algebra and let

P. = · · ·Pn+1 → Pn → · · · → P1 → P0 → 0

be a resolution of C by projective objects of YDAA. We have, for any Yetter-
Drinfeld module V over A, an isomorphism

H∗GS(A, V ) ≃ H∗(HomYDAA(P., V ))

and we have

cdGS(A) = inf{n : C admits a projective resolution of length n in YDAA}

Proof. We know, since A is co-Frobenius, that YDAA has enough projective
objects (Corollary 3.4 in [10]). Thus the description of H∗GS(A,−) as an Ext
functor [57] yields that if P. is a a resolution of C by projective objects of YDAA,
we have

H∗GS(A, V ) ≃ H∗(HomYDAA(P., V ))

for any Yetter-Drinfeld module V . The proof of the last statement is similar
to the one for group cohomology, see [14, Chapter VIII, Lemma 2.1].

Recall [10] that for any n ∈ N, the Yetter-Drinfeld module A⊠n is defined as
follows:

A⊠0 = C, A⊠1 = C⊠A = Acoad, A
⊠2 = A⊠1⊠A, . . . , A⊠(n+1) = A⊠n⊠A, . . .

After the obvious vector space identification of A⊠n with A⊗n, the right A-
module structure of A⊠n is given by right multiplication and its comodule
structure is given by

ad(n)r : A⊠n −→ A⊠n ⊗A
a1 ⊗ · · · ⊗ an 7−→ a1(2) ⊗ · · · ⊗ an(2) ⊗ S(a1(1) · · · an(1))a1(3) · · · an(3)

Proposition 5.3. Let A be a Hopf algebra and let V be a Yetter-Drinfeld
module over A. Assume that one of the following conditions holds.

1. A is cosemisimple.

2. V is relative injective.

Then the Gerstenhaber-Schack cohomology H∗GS(A, V ) is the cohomology of the
complex

0→ HomA(C, V )
∂−→HomA(A⊠1, V )

∂→ · · ·
∂→ HomA(A⊠n, V )

∂−→ HomA(A⊠n+1, V )
∂−→ · · ·
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where the differential ∂ : HomA(A⊠n, V ) −→ HomA(A⊠n+1, V ) is given by

∂(f)(a1 ⊗ · · · ⊗ an+1) =ε(a1)f(a2 ⊗ · · · ⊗ an+1)+
n∑

i=1

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1)

+ (−1)n+1f(a1 ⊗ · · · ⊗ an) · an+1

Proof. By [10], Proposition 3.6, the standard resolution of Cε yields in a fact
resolution of C by free Yetter-Drinfeld modules in the category YDAA

· · · −→ A⊠n+1 −→ A⊠n −→ · · · −→ A⊠2 −→ A⊠1 −→ 0

where each differential is given by

A⊠n+1 −→A⊠n

a1 ⊗ · · · ⊗ an+1 7−→ε(a1)a2 ⊗ · · · ⊗ an+1+
n∑

i=1

(−1)ia1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

If A is cosemimple, then free Yetter-Drinfeld modules are projective, and we
get, after standard identification using the fact that the free functor is left
adjoint, the result by Proposition 5.2.
To prove the result if the second condition holds, we recall the definition of
Gerstenhaber-Schack cohomology using a bicomplex [53]. Let V,W be ob-
jects in YDAA, let P• → V → 0 be a relative projective resolution of V (this
means that the objects Pq, q ≥ 0, are relative projective and the the sequence
P• → V → 0 splits as a sequence of comodules), and let 0 → W → I• be
a relative injective resolution of W (this means that the objects Ip, p ≥ 0,
are relative injective and the the sequence 0 → W → I• splits as a se-
quence of modules). We then can form, in a standard way, the bicomplex
C•,•(V,W ) = HomYDAA(P•, I

•). The uniqueness, up to homotopy, of the previ-

ous resolutions ([53], chapter 10) shows that the cohomology of the bicomplex
C•,•(V,W ) = HomYDAA(P•, I

•) is independent of the choice of these resolutions,
and is the Gertenhaber-Schack cohomology of the Yetter-Drinfeld modules V
and W (see [56, 57] as well). When V = C, we get the Gerstenhaber Schack-
cohomology H∗GS(A,W ) as defined in Subsection 5.1, by [57].
Assuming that W is relative injective, we can use the relative injective resolu-
tion

0→W →W → 0→ · · · → 0 · · ·
together with the standard resolution of the trivial object C as above (which is
indeed a relative projective resolution of C), and we get a bicomplex with only
one non-zero column, which is, again using the fact that the free functor is left
adjoint, easily identified with the complex in the statement of the proposition.
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Remark 5.4. When V = C is the trivial Yetter-Drinfeld module, the complex
in Theorem 5.3 is the same as the one defined in [26] in the study of additive
deformations of Hopf algebras, which are of interest in quantum probability.
This complex is also the complex that defines the so-called Davydov-Yetter
cohomology of the tensor categoryMA ([18, 60], see [24], Chapter 7).

Remark 5.5. Let V be a Yetter-Drinfeld module over A. The complex in
Proposition 5.3 is a subcomplex of the complex that computes the Hochshild
cohomology H∗(A, εV ), where the left A-module structure on εV is the one
induced by the counit and the right module structure is the original one. We
thus have a linear map

H∗GS(A, V )→ H∗(A, εV ) ≃ ExtA(Cε, V )

which is not injective in general. Indeed for q ∈ C∗ generic (q = ±1
or not a root of unity), we have H3

GS(O(SLq(2)),C) ≃ C (see [10]), while
H3(O(SLq(2)), εCε) = 0 if q2 6= 1 (see e.g. [31]). In Subsection 5.4 we provide
some conditions that ensure that the above map is injective.

5.3 Relation with Hochschild cohomology

We are ready to show that the Gerstenhaber-Schack cohomology of a Hopf
algebra determines its Hochschild cohomology.

Theorem 5.6. Let A be a Hopf algebra and let M be an A-bimodule. Endow
M ⊗A with a Yetter-Drinfeld module structure defined by (a, b ∈ A, m ∈M)

m⊗ a 7→ m⊗ a(1) ⊗ a(2), (m⊗ a)← b = S(b(2)).m.b(3) ⊗ S(b(1))ab(4)

and denote by M ′#A the resulting Yetter-Drinfeld module. Then we have an
isomorphism

H∗(A,M) ≃ H∗GS(A,M
′#A)

In particular we have cd(A) ≤ cdGS(A).

Proof. The Yetter-Drinfeld module M ′#A is the co-free Yetter-Drinfeld as-
sociated to the right A-module M ′ of Section 2. It is thus a relative injec-
tive Yetter-Drinfeld module (Proposition 4.3), and we can use the complex of
Proposition 5.3 to compute its Gerstenhaber-Schack cohomology.

Recall that since H∗(A,M) ≃ Ext∗A(Cε,M
′) (Section 2), the complex to com-

pute H∗(A,M) is

0 −→Hom(C,M ′) ∂−→ Hom(A,M ′)
∂−→ · · ·

· · · ∂−→ Hom(A⊗n,M ′)
∂−→ Hom(A⊗n+1,M ′)

∂−→ · · ·
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where the differential ∂ : Hom(A⊗n,M ′) −→ Hom(A⊗n+1,M ′) is given by

∂(f)(a1 ⊗ · · · ⊗ an+1) =ε(a1)f(a2 ⊗ · · · ⊗ an+1)

+

n∑

i=1

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1)

+ (−1)n+1S(an+1(1)) · f(a1 ⊗ · · · ⊗ an) · an+1(2)

For all n ≥ 0, we have linear isomorphisms

HomA(A⊠n,M ′#A) −→ Hom(A⊗n,M ′)

f 7−→ (idM ⊗ ε)f

For f ∈ Hom(A⊠n,M ′#A) and a1, . . . , an ∈ A, with f(a1⊗· · ·⊗an) =
∑

imi⊗
bi, we have

idM⊗ε(f(a1 ⊗ · · · ⊗ an)← an+1)

= idM ⊗ ε
(∑

i

S(an+1(2)).mi.an+1(3) ⊗ S(an+1(1))bian+1(4)

)

=
∑

i

ε(bi)S(an+1(1)).mi.an+1(2)

= S(an+1(1)). ((idM ⊗ ε)(f(a1 ⊗ · · · ⊗ an+1)) .an+1(2)

From this computation it follows easily that the previous isomorphisms com-
mute with the differentials (as already said, the one for Gerstenhaber-Schack
cohomology being given by the complex of Proposition 5.3), and hence the
complexes that define both cohomologies are isomorphic.

We get the results announced in the introduction, providing a partial answer
to Question 1.1.

Corollary 5.7. Let A and B be Hopf algebras such that there exists an equiv-
alence of linear tensor categories MA ≃⊗MB. Then there exist two functors

F1 :AMA → YDBB and F2 :BMB → YDAA
such that for any A-bimodule M and any B-bimodule N , we have

H∗(A,M) ≃ H∗GS(B,F1(M)) and H∗(B,N) ≃ H∗GS(A,F2(N))

In particular we have max(cd(A), cd(B)) ≤ cdGS(A) = cdGS(B).

Proof. The construction in the previous theorem clearly yields a functor

AMA → YDAA, that we compose with the functor YDAA → YDBB from the
discussion at the end of subsection 5.1, to get the announced functor F1, and
similarly the functor F2. The last claim follows immediately.
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Remark 5.8. Recall that Question 1.2, motivated by Theorem 5.6, asks if
cd(A) = cdGS(A) for any Hopf algebraA. Question 1.2 has indeed a positive an-
swer in the finite-dimensional case: if A is semisimple, then it is cosemisimple by
the Larson-Radford theorem [38], and hence YDAA is semisimple (since the Drin-
feld doubleD(A) is then semisimple, see [48]), so we have cd(A) = 0 = cdGS(A).
If A is not semisimple, then cd(A) = ∞ = cdGS(A). It thus follows that a
positive answer to Question 1.2 would provide a natural infinite-dimensional
generalization to the above mentioned Larson-Radford theorem.

The characteristic zero assumption is indeed necessary: if A is a finite-
dimensional semisimple non cosemisimple Hopf algebra, the base field being
then necessarily of characteristic > 0 [38], then cd(A) = 0 < cdGS(A) =∞.

See the next subsection for some partial results in the cosemisimple case.

5.4 Cosemisimple Hopf algebras

We now provide some more precise partial answers to Questions 1.1 and 1.2
when the Hopf algebra is cosemisimple and of Kac type (recall that this means
that S2 = id).

Proposition 5.9. Let A be a cosemisimple Hopf algebra of Kac type, and let
V be a Yetter-Drinfeld module over A. Then the natural linear map

H∗GS(A, V )→ H∗(A, εV )

arising from Proposition 5.3 is injective.

Proof. Let h be the Haar integral on A. Recall that for any A-comodules V
and W , we have a surjective averaging operator

M : Hom(V,W ) −→ HomA(V,W )

f 7−→M(f), M(f)(v) = h
(
f(v(0))(1)S(v(1))

)
f(v(0))(0)

with f ∈ HomA(V,W ) if and only if M(f) = f . Now let V be our given
Yetter-Drinfeld module, and let f ∈ Hom(A⊗n, V ). We thus have M(f) ∈
HomA(A⊠n, V ), with

M(f)(a1 ⊗ · · · ⊗ an) =
h
(
f(a1(2) ⊗ · · · ⊗ an(2))(1)S(a1(3) · · · an(3))S2(a1(1) · · · an(1))

)

f(a1(2) ⊗ · · · ⊗ an(2))(0)

It is a tedious but straightforward verification to check that, under our as-
sumption, we have ∂(M(f)) = M(∂(f)). To convince the reader, we present
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the verification at n = 2. Let f ∈ Hom(A⊗2, V ). We have

∂(M(f))(a⊗ b⊗ c) =
ε(a)h

(
f(b(2) ⊗ c(2))(1)S(b(3)c(3))S2(b(1)c(1))

)
f(b(2) ⊗ c(2))(0)

− h
(
f(a(2)b(2) ⊗ c(2))(1)S(a(3)b(3)c(3))S2(a(1)b(1)c(1))

)
f(a(2)b(2) ⊗ c(2))(0)

+ h
(
f(a(2) ⊗ b(2)c(2))(1)S(a(3)b(3)c(3))S2(a(1)b(1)c(1))

)
f(a(2) ⊗ b(2)c(2))(0)

− h
(
f(a(2) ⊗ b(2))(1)S(a(3)b(3))S2(a(1)b(1))

)
f(a(2) ⊗ b(2))(0) · c

On the other hand we have

M(∂(f))(a⊗ b ⊗ c) =
h
(
∂(f)(a(2) ⊗ b(2) ⊗ c(2))(1)S(a(3)b(3)c(3))S2(a(1)b(1)c(1))

)

∂(f)(a(2) ⊗ b(2) ⊗ c(2))(0)
= h

(
ε(a(2))f(b(2) ⊗ c(2))(1)S(a(3)b(3)c(3))S2(a(1)b(1)c(1))

)
f(b(2) ⊗ c(2))(0)

− h
(
f(a(2)b(2) ⊗ c(2))(1)S(a(3)b(3)c(3))S2(a(1)b(1)c(1))

)
f(a(2)b(2) ⊗ c(2))(0)

+ h
(
f(a(2) ⊗ b(2)c(2))(1)S(a(3)b(3)c(3))S2(a(1)b(1)c(1))

)
f(a(2) ⊗ b(2)c(2))(0)

− h
(
(f(a(2) ⊗ b(2)) · c(2))(1)S(a(3)b(3)c(3))S2(a(1)b(1)c(1))

)

((f(a(2) ⊗ b(2)) · c(2))(0)

Using the Yetter-Drinfeld condition, the last expression equals

h
(
S(c(2))f(a(2) ⊗ b(2))(1)c(4)S(a(3)b(3)c(5))S2(a(1)b(1)c(1))

)
(f(a(2)⊗b(2))(0)·c(3)

The fact that S2 = id and that the Haar integral is a trace (since S2 = id)
then shows that this last expression equals the last one in the computation of
∂(M(f))(a⊗ b⊗ c), and shows that indeed ∂(M(f)) =M(∂(f)).

Now let f ∈ HomA(A⊠n, V ) be such that f = ∂(µ) for some µ ∈
Hom(A⊗n−1, V ). Then M(f) = M(∂(µ)) = ∂(M(µ))), with M(µ) ∈
HomA(A⊠n−1, V ), and hence f = 0 in Hn

GS(A, V ): our claim is proved.

We thus get the following partial answers to Questions 1.2 and 1.1.

Corollary 5.10. Let A be cosemisimple Hopf algebra of Kac type. Then
cd(A) = cdGS(A).

Proof. We have cd(A) ≤ cdGS(A) by Theorem 5.6, and the previous proposition
ensures that cdGS(A) ≤ cd(A).

Corollary 5.11. Let A and B be cosemisimple Hopf algebras such that there
exists an equivalence of linear tensor categories MA ≃⊗ MB. If A is of Kac
type, then we have cd(A) ≥ cd(B), and if A and B both are of Kac type, then
cd(A) = cd(B).
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Proof. We have, combining Theorem 5.6 and the previous corollary,

cd(A) = cdGS(A) = cdGS(B) ≥ cd(B)

with cd(B) = cdGS(B) if B is of Kac type as well.

See the next section for examples that are not of Kac type.

6 Application to quantum symmetry algebras

In this section we provide applications of the previous considerations to quan-
tum symmetry algebras.

6.1 The universal Hopf algebra of a non-degenerate bilinear
form and its adjoint subalgebra

Let E ∈ GLn(C). Recall that the algebra B(E) [21] is presented by generators
(uij)1≤i,j≤n and relations

E−1utEu = In = uE−1utE,

where u is the matrix (uij)1≤i,j≤n. It has a Hopf algebra structure defined by

∆(uij) =

n∑

k=1

uik ⊗ ukj , ε(uij) = δij , S(u) = E−1utE

The Hopf algebra B(E) represents the quantum symmetry group of the bilinear
form associated to the matrix E. It can also be constructed as a quotient of the
FRT bialgebra associated to Yang-Baxter operators constructed by Gurevich
[30]. For the matrix

Eq =

(
0 1
−q−1 0

)

we have B(Eq) = O(SLq(2)), and thus the Hopf algebras B(E) are natural
generalizations of O(SLq(2)). It is shown in [9] that for q ∈ C∗ satisfying
tr(E−1Et) = −q − q−1, the tensor categories of comodules over B(E) and
O(SLq(2)) are equivalent. Thus B(E) is cosemisimple if and only if the corre-
sponding q is not a root of unity or q = ±1.
It was proved in [10] that if n ≥ 2, then cd(B(E)) = 3 (Theorem 6.1 and
Proposition 6.4 in [10], see e.g. [31] for the case E = Eq and [17] for the case
E = In), and the bialgebra cohomology of B(E) was computed there in the
cosemisimple case.
As a preliminary step towards the study of quantum symmetry algebras of
semisimple algebras, we now study the adjoint subalgebra B+(E) of B(E).
The algebra B+(E) is, by definition, the subalgebra of B(E) generated by the
elements uijukl, 1 ≤ i, j, k, l ≤ n. It is easily seen to be a Hopf subalgebra.
Also it is easily seen that B+(E) = B(E)coCZ2 , where p is the cocentral Hopf
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algebra map B(E)→ CZ2, uij 7→ δijg, where g stands for the generator of Z2,
the cyclic group of order 2. The Hopf algebra B+(E) is cosemisimple if and
only if B(E) is.

Lemma 6.1. Assume that tr(E−1Et) 6= 0. Then there exists a linear map
σ : CZ2 → B(E) satisfying the conditions of Proposition 4.8.

Proof. Consider the matrix F = E(Et)−1 = (αij). We have tr(F ) =
tr(E−1Et) = t 6= 0. Consider the element x = t−1

∑
ij αijuij ∈ B(E) and

let σ : CZ2 → B(E) be the unique linear map such that σ(1) = 1 and σ(g) = x.
It is straightforward to check that σ indeed satisfies the conditions of Proposi-
tion 4.8.

Theorem 6.2. Let E ∈ GLn(C) with n ≥ 2. Then we have cd(B+(E)) = 3 ≤
cdGS(B+(E)), and if moreover B+(E) is cosemisimple, then cdGS(B+(E)) = 3.

Proof. We have, by Proposition 2.4, a strict exact sequence of Hopf algebras

C→ B+(E)→ B(E)→ CZ2 → C

so it follows from Proposition 3.2 that cd(B+(E)) = cd(B(E)) = 3. By Theo-
rem 5.6 we have cdGS(B+(E)) ≥ 3.
Consider now the exact sequence of free Yetter-Drinfeld modules over B(E)
from [10]:

0→ C⊠B(E)
φ1→ (V ∗E⊗VE)⊠B(E)

φ2→ (V ∗E⊗VE)⊠B(E)
φ3−→ C⊠B(E)

ε−→ C→ 0

All the B(E)-comodules involved in the left terms are in fact comodules over
B+(E), so we have, by Proposition 4.5, an exact sequence of Yetter-Drinfeld
modules over B+(E). Assume now that B+(E) is cosemisimple. The previous
lemma ensures that we are in the situation of Proposition 4.8, so all the terms
in the sequence (except the last one of course) are projective Yetter-Drinfeld
modules over B+(E). We conclude from Proposition 5.2 that cdGS(B+(E)) ≤ 3,
and hence that cdGS(B+(E)) = 3.

To compute the bialgebra cohomology of B+(E) in the cosemisimple case, we

need some preliminaries. We specialize at Eq =

(
0 1
−q−1 0

)
and we put A =

B(Eq) = O(SLq(2)) (with its standard generators a, b, c, d) and B = B+(Eq).
In the next lemma we only assume that q + q−1 6= 0. Recall from Subsection
4.4 that if W is a B-comodule, then W ⊠ A is a Yetter-Drinfeld module over
B.

Lemma 6.3. We have, for any B-comodule W , a vector space isomorphism

HomYDBB (W ⊠A,C) −→ HomB(W,C)⊕HomB(W,C)

ψ 7−→ (ψ(− ⊗ 1), ψ(−⊗ χ))

where χ = q−1a+ qd.
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Proof. Let ψ ∈ HomYDBB (W ⊠ A,C). That both ψ(− ⊗ 1) and ψ(− ⊗ χ) are
B-comodule maps follow from the fact that 1 and χ are coinvariant for the
co-adjoint action of A. We have, for any w ∈W , using the B-linearity

ψ(w ⊗ b) = ψ(w ⊗ b(ad− q−1bc)) = ψ(w ⊗ bad) = qψ(w ⊗ abd) = 0

and similarly ψ(w ⊗ c) = 0. We also have

ψ(w ⊗ d) = ψ(w ⊗ d(ad− q−1bc))) = ψ(w ⊗ dad) = ψ(w ⊗ ad2) = ψ(w ⊗ a)

These identities, together with the fact that A = B ⊕B′, where B′ = XB and
X = {a, b, c, d}, show that the map in the statement of the lemma is injective.
For (ψ1, ψ2) ∈ HomB(W,C)⊕HomB(W,C), we define a linear map ψ : W⊗A→
C by

ψ(w ⊗ (y + y′)) = ψ1(w)ε(y) + (q + q−1)−1ψ2(w)ε(y
′), y ∈ B, y ∈ B′

It is clear that ψ is A-linear and a direct verification to check that ψ is a map
of B-comodules, for the co-action ofW ⊠A. Hence we have ψ ∈ HomYDBB (W ⊠
A,C), and clearly ψ(− ⊗ 1) = ψ1 and ψ(− ⊗ χ) = ψ2. Therefore our map is
surjective, and we are done.

Theorem 6.4. Let E ∈ GLn(C) with n ≥ 2. If B+(E) is cosemisimple, then

Hn
b (B+(E)) ≃

{
0 if n 6= 0, 3

C if n = 0, 3

Proof. The monoidal invariance of bialgebra cohomology enables us to assume
that E = Eq as in the previous discussion, of which we keep the notations.
We denote by V the fundamental A-comodule of dimension 2, of which we fix
a basis e1, e2. We have an exact sequence of Yetter-Drinfeld modules over A
(and over B)

0→ C⊠A
φ1−→ (V ∗ ⊗ V )⊠A

φ2−→ (V ∗ ⊗ V )⊠A
φ3−→ C⊠A ε−→ C→ 0

with for any x ∈ A (see the proof of Lemma 5.6 in [10])

φ1(x) = e∗1 ⊗ e1⊗((−q−1 + qd)x) + e∗1 ⊗ e2 ⊗ (−cx)
+ e∗2 ⊗ e1 ⊗ (−bx) + e∗2 ⊗ e2 ⊗ ((−q + q−1a)x)

φ2(e
∗
1 ⊗ e1 ⊗ x) = e∗1 ⊗ e1 ⊗ x+ e∗2 ⊗ e1 ⊗ (−qbx) + e∗2 ⊗ e2 ⊗ ax

φ2(e
∗
1 ⊗ e2 ⊗ x) = e∗1 ⊗ e1 ⊗ bx+ e∗1 ⊗ e2 ⊗ (1− q−1a)x

φ2(e
∗
2 ⊗ e1 ⊗ x) = e∗2 ⊗ e1 ⊗ (1− qd)x+ e∗2 ⊗ e2 ⊗ cx

φ2(e
∗
2 ⊗ e2 ⊗ x) = e∗1 ⊗ e1 ⊗ dx+ e∗1 ⊗ e2 ⊗ (−q−1cx) + e∗2 ⊗ e2 ⊗ x

φ3(e
∗
1 ⊗ e1 ⊗ x) = (a− 1)x, φ3(e

∗
1 ⊗ e2 ⊗ x) = bx,

φ3(e
∗
2 ⊗ e1 ⊗ x) = cx, φ3(e

∗
2 ⊗ e2 ⊗ x) = (d− 1)x
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and by Lemma 6.3, Proposition 4.8 and Proposition 5.2, the bialgebra coho-
mology of B is the cohomology of the complex

0→HomYDBB (C⊠A,C)
φt3→ HomYDBB (V

∗ ⊗ V )⊠A,C)

φt2→ HomYDBB (V
∗ ⊗ V )⊠A,C)

φt1→ HomYDBB (C⊠A,C)→ 0

We have, by the previous lemma, HomYDBB (C⊠A,C) ≃ C2, and

HomYDBB (V
∗ ⊗ V )⊠A,C) ≃ HomB(V ∗ ⊗ V,C)⊕HomB(V ∗ ⊗ V,C) ≃ C2

Therefore the previous complex is isomorphic to a complex of the form

0 −→ C2 −→ C2 −→ C2 −→ C2 −→ 0

The reader will easily write down explicitly this complex and compute its coho-
mology, yielding the announced result for the bialgebra cohomology of B.

6.2 Bialgebra cohomology and cohomological dimensions of
Aaut(R,ϕ)

Let (R,ϕ) be a finite-dimensional measured algebra: this means that R is a
finite-dimensional algebra and ϕ : R→ C is a linear map (a measure on R) such
that the associated bilinear map R×R→ C, (x, y) 7→ ϕ(xy) is non-degenerate.
Thus a finite-dimensional measured algebra is a Frobenius algebra together
with a fixed measure. A coaction of a Hopf algebra A on a finite-dimensional
measured algebra (R,ϕ) is an A-comodule structure on R making it into an
A-comodule algebra and such that ϕ : R → C is A-colinear. It is well-known
that there exists a universal Hopf algebra coacting on (R,ϕ) (see [61] in the
compact case with R semisimple and [8] in general), that we denote Aaut(R,ϕ)
and call the quantum symmetry algebra of (R,ϕ). The following particular
cases are of special interest.

1. For R = Cn and ϕ = ϕn the canonical integration map (with ϕn(ei) = 1
for e1, . . . , en the canonical basis of Cn), we have Aaut(Cn, ϕn) =: As(n),
the coordinate algebra on the quantum permutation group [61], presented
by generators xij , 1 ≤ i, j ≤ n, submitted to the relations

n∑

l=1

xli = 1 =

n∑

l=1

xil, xikxij = δkjxij , xkixji = δkjxji, 1 ≤ i, j, k ≤ n

Its Hopf algebra structure is defined by

∆(xij) =

n∑

k=1

xik ⊗ xkj , ε(xij) = δij , S(xij) = xji

The Hopf algebra As(n) is infinite-dimensional if n ≥ 4 [61].
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2. For R = M2(C) and q ∈ C∗, let trq : M2(C) → C be the q-trace,
i.e. trq(g) = qg11 + q−1g22 for g = (gij) ∈ M2(C). Then we have
Aaut(M2(C), trq) ≃ O(PSLq(2)), the latter algebra being B+(Eq) in the
notation of the previous subsection (it is often denoted O(SOq1/2(3)),
see e.g. [35]). The above isomorphism Aaut(M2(C), trq) → O(PSLq(2))
is constructed using the universal property of Aaut(M2(C), trq), and the
verification that it is indeed injective is a long and tedious computation,
as in [20].

Let (R,ϕ) be a finite-dimensional measured algebra. Since ϕ ◦ m is non-
degenerate, where m is the multiplication of R, there exists a linear map
δ : C→ R⊗R such that (R,ϕ ◦m, δ) is a left dual for R, i.e.

((ϕ ◦m)⊗ idR) ◦ (idR ⊗ δ) = idR = (idR ⊗ (ϕ ◦m)) ◦ (δ ⊗ idR)

Following [43], we put

ϕ̃ = ϕ ◦m ◦ (m⊗ idR) ◦ (idR ⊗ δ) : R→ C

and we say that (R,ϕ) (or ϕ) is normalizable if ϕ(1) 6= 0 and if there exists
λ ∈ C∗ such that ϕ̃ = λϕ. Using the definition of Frobenius algebra in terms of
coalgebras, the coproduct is ∆ = (m⊗ idR) ◦ (idR⊗ δ) = (idR⊗m) ◦ (δ⊗ idR),
and we have ϕ̃ = ϕ ◦m ◦∆.
The condition that ϕ is normalizable is equivalent to require, in the language of
[33, Definition 3.1], that R/C is a strongly separable extension with Frobenius
system (ϕ, xi, yi), where δ(1) =

∑
i xi ⊗ yi. It thus follows that if ϕ is normal-

izable, then R is necesarily a separable (semisimple) algebra. Conversely, if R
is semisimple, writing R as a direct product of matrix algebras, one easily sees
the conditions that ensure that ϕ is normalizable, see [43].
It is shown in [43] (Corollary 4.9), generalizing earlier results from [5, 6, 19], that
if (R,ϕ) is a finite-dimensional semisimple measured algebra with dim(R) ≥ 4
and ϕ normalizable, then there exists q ∈ C∗ with q + q−1 6= 0 such that

MAaut(R,ϕ) ≃⊗MO(PSLq(2))

The parameter q is determined as follows. First consider λ ∈ C∗ such that
ϕ̃ = λϕ and choose µ ∈ C∗ such that µ2 = λϕ(1). Then q is any solution of the
equation q+ q−1 = µ (recall that O(PSLq(2)) = O(PSL−q(2)), so the choice of
µ does not play any role).
As an example, for (Cn, ϕn) as above (and n ≥ 4), ϕn is normalizable with the
corresponding λ equal to 1, and q is any solution of the equation q+q−1 =

√
n.

Theorem 6.5. Let (R,ϕ) be a finite-dimensional semisimple measured algebra
with dim(R) ≥ 4 and ϕ normalizable. Assume that Aaut(R,ϕ) is cosemisimple.
Then we have

Hn
b (Aaut(R,ϕ)) ≃

{
0 if n 6= 0, 3

C if n = 0, 3
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and cd(Aaut(R,ϕ)) ≤ cdGS(Aaut(R,ϕ)) = 3, with equality if ϕ is a trace. In
particular we have cd(As(n)) = 3 = cdGS(As(n)) for any n ≥ 4.

Proof. The proof follows immediately from the combination of the above
monoidal equivalence, the monoidal invariance of Gerstenhaber-Schack co-
homology, Theorem 6.2, Theorem 6.4, Theorem 5.6, and Corollary 5.10
(Aaut(R,ϕ) being of Kac type when ϕ is a trace).

Note that the length 3 resolution of the trivial Yetter-Drinfeld module over
O(PSLq(2)) by relative projective Yetter-Drinfeld modules considered in the
previous subsection (see the proof of Theorem 6.4) transports to a length 3
resolution of the trivial Yetter-Drinfeld module over Aaut(R,ϕ) by relative
projective Yetter-Drinfeld modules (see Theorem 4.1 in [10]), and in partic-
ular this yields a length 3 projective resolution of the trivial module over
Aaut(R,ϕ). We have not been able to write down this resolution explicitly
enough to compute Hochschild cohomology groups and show that one always
has cd(Aaut(R,ϕ)) = 3. We believe that this is true however.

Remark 6.6. It follows that the L2-Betti numbers ([36]) β
(2)
k (As(n)) vanish

for k ≥ 4, and we have as well β
(2)
0 (As(n)) = 0 by [37].

7 Hopf algebras with a projection

It is natural to ask whether similar results to those of Section 2 hold for
Gerstenhaber-Schack cohomological dimension. A positive answer to Question
1.2 would of course provide an affirmative answer. So far, our only positive
result in this direction is the following one, in the setting of Hopf algebras with
a projection [47, 40].

Proposition 7.1. Let B ⊂ A be a Hopf subalgebra. Assume that there exists a
Hopf algebra map π : A→ B such that π|B = idB and that A is cosemisimple.
Then we have cdGS(B) ≤ cdGS(A).

Proof. The inclusion B ⊂ A together with the Hopf algebra map π : A → B
induce a vector space preserving linear exact tensor functor

F : YDAA −→ YDBB
where if V is Yetter-Drinfeld module over A, then F (V ) = V as a vector space,
the B-module structure is the restriction of that of A, and the B-comodule
structure is given by (idV ⊗π)α, where α is the original co-action of A. We claim
that it is enough to show that F sends (relative) projective Yetter-Drinfeld
modules overA to (relative) projective Yetter-Drinfeld modules overB. Indeed,
if we have a length n resolution of the trivial Yetter-Drinfeld module over A by
(relative) projectives, the functor F will transform it into a a length n resolution
of the trivial Yetter-Drinfeld module over B by (relative) projectives, and hence
by Proposition 5.2, we have cdGS(B) ≤ cdGS(A).
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As usual, put R = coBA = {a ∈ A | π(a(1))⊗a(2) = 1⊗a}. This is a subalgebra
of A and we have (id ⊗ π)∆(R) ⊂ R ⊗ B, which endows R with a right B-
comodule structure. For any a ∈ A, we have a(2)πS

−1(a(1)) ∈ R (since A is
cosemisimple, its antipode is bijective), and thus we have a linear isomorphism
[47, 40]

A −→ R⊗B
a 7−→ a(3)πS

−1(a(2))⊗ π(a(1))

whose inverse is the restriction of the multiplication of A. Let V be a right
A-comodule: it also has a right B-comodule structure obtained using the pro-
jection π : A→ B, that we denote Vπ . Consider now the map

F (V ⊠A) −→ (Vπ ⊗R)⊠B
v ⊗ a 7−→ v ⊗ a(3)πS−1(a(2))⊗ π(a(1))

This is an isomorphism by the previous considerations, and it is a direct verifi-
cation to check that it is a morphism of Yetter-Drinfeld modules over B. Hence
the functor F sends free Yetter-Drinfeld modules over A to free Yetter-Drinfeld
modules over B, and since it is additive, it sends, by Proposition 4.2, projective
Yetter-Drinfeld modules over A to projective Yetter-Drinfeld modules over B.
This concludes the proof.

As an illustration, consider the hyperoctahedral Hopf algebra Ah(n) [7]. This is
the algebra presented by generators aij , 1 ≤ i, j ≤ n, submitted to the relations

n∑

l=1

a2li = 1 =
n∑

l=1

a2il, aikaij = 0 = ajiaki if j 6= k, 1 ≤ i, j, k ≤ n

Its Hopf algebra structure is given by the same formulas as those for As(n).
There exist Hopf algebra maps i : As(n) → Ah(n), xij 7→ a2ij , π : Ah(n) →
As(n), aij 7→ xij , such that πi = id. Hence we deduce from the previous
proposition that cdGS(Ah(n)) ≥ cdGS(As(n)), and hence by Theorem 6.5, if
n ≥ 4, we have cdGS(Ah(n)) ≥ cdGS(As(n)) = 3 (since Ah(n) is cosemisimple
of Kac type, this could be deduced as well from the combination of Proposition
3.1 and Corollary 5.10).
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find two characterizations of semiprojectivity for subhomogeneous
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1 Introduction

The concept of semiprojectivity is a type of perturbation theory for C∗-algebras
which has become a frequently used tool in many different aspects of C∗-
algebra theory. Due to a certain kind of rigidity, semiprojective C∗-algebras
are technically important in various situations. In particular, the existence
and comparison of limit structures via approximate interwinings, which is an
integral part of the Elliott classification program, often relies on perturba-
tion properties of this type. This is one of the reasons why direct limits over
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semiprojective C∗-algebras, e.g., AF- or AT-algebras, are particularly tractable
and one therefore constructs models preferably from semiprojective building
blocks. The most popular of those are without doubt the non-commutative
CW-complexes (NCCWs) introduced by Eilers, Loring and Pedersen. These
are in fact semiprojective in dimension one ([ELP98], but see also [End14]). In
this paper, we study semiprojectivity for general subhomogeneous C∗-algebras
and see whether there exist more interesting examples, i.e., besides the one-
dimensional NCCW complexes (1-NCCWs), that could possibly serve as useful
building blocks in the construction of ASH-algebras. In Theorem 5.1.2, we give
two characterizations of semiprojectivity for subhomogenous C∗-algebras: an
abstract one in terms of primitive ideal spaces and a concrete one by means
of certain limit structures. These show that it is quite a restriction for a sub-
homogeneous C∗-algebra to be semiprojective, though many examples beyond
the class of 1-NCCWs exist. On the other hand, a detailed study of the struc-
ture of these algebras further reveals that they can always be approximated
by 1-NCCWs in a very strong sense, see Corollary 5.2.1, and hence essentially
share the same properties.

The work of this paper is based on the characterization of semiprojectivity for
commutative C∗-algebras, which was recently obtained by Sørensen and Thiel
in [ST12]. They showed that a commutative C∗-algebra C(X) is semiprojective
if and only if X is an absolute neighborhood retract of dimension at most
1 (a 1-ANR), thereby confirming a conjecture of Blackadar and generalizing
earlier work of Chigogidze and Dranishnikov on the projective case ([CD10]).
Their characterization further applies to trivially homogeneous C∗-algebras,
i.e. to algebras of the form C(X,Mn). In a first step, we generalize their
result to general homogeneous C∗-algebras. The main difficulty, however, is to
understand which ways of ’gluing together’ several homogeneous C∗-algebras
preserve semiprojectivity, or more precisely: Which extensions of semipro-
jective, homogeneous C∗-algebras are again semiprojective? Conversely, is
semiprojectivity preserved when passing to a homogeneous subquotient? These
questions essentially ask for the permanence behavior of semiprojectivity along
extensions of the form 0→ C0(X,Mn)→ A→ B → 0. While it is known that
the permanence properties of semiprojectivity with respect to extensions are
rather bad in general, we are able to work out a complete description of its
behavior in the special case of extensions by homogeneous ideals, see Theorem
4.3.2. With this permanence result at hand, it is then straightforward to
characterize semiprojectivity for subhomogeneous C∗-algebras in terms of
their primitive ideal spaces. In particular, it is a necessary condition that the
subspaces corresponding to a fixed dimension are all 1-ANRs. Combining this
with the structure result for one-dimensional ANR-spaces from [ST12], we
further obtain a more concrete description of semiprojective, subhomogeneous
C∗-algebras by identifying them with certain special direct limits of 1-NCCWs.

This paper is organized as follows. In section 2, we briefly recall some topo-
logical definitions and results that will be used troughout the paper. We fur-
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ther remind the reader of some facts about semiprojectivity, subhomogeneous
C∗-algebras and their primitive ideal spaces. We then start by constructing
a lifting problem which is unsolvable for strongly quasidiagonal C∗-algebras.
This lifting problem then allows us to extend the results of [ST12] from the
commutative to the homogeneous case.
Section 3 contains a number of new contructions for semiprojective C∗-algebras.
We first introduce a technique to extend lifting problems, a method that can be
used to show that in certain situations semiprojectivity passes to ideals. After
that, we introduce a class of maps which give rise to direct limits that preserve
semiprojectivity. Important examples of such maps are given and discussed.
Section 4 is devoted to the study of extensions by homogeneous C∗-algebras,
i.e. extensions of the form 0 → C0(X,Mn) → A → B → 0. In 4.1, we define
and study a certain set-valued retract map R : Prim(A)→ 2Prim(B) associated
to such an extension. We discuss regularity concepts for R, i.e. continuity and
finiteness conditions, and show how regularity of R relates to lifting properties
of the corresponding Busby map and, by that, to splitting properties of the
extension itself. In particular, we identify conditions under which regularity of
R implies the existence of a splitting map s : B → A with good multiplicative
properties. After that, we verify the required regularity properties for R in the
case of a semiprojective extension A. In section 4.2 it is shown how certain limit
structures for the spaceX give rise to limit structures for the extension A, again
provided that the associated retract map R is sufficiently regular. Putting all
these results together in 4.3, we find a ’2 out of 3’-type statement, Theorem
4.3.2, which gives a complete description for the behavior of semiprojectivity
along extensions of the considered type.
In section 5.1, we use this permanence result to work out two characterizations
of semiprojectivity for subhomogeneous C∗-algebras. These are presented in
Theorem 5.1.2, the main result of this paper. Based on this, we find a number
of consequences for the structure of these algebras, e.g. information about their
K-theory and dimension. Further applications, such as closure and approxi-
mation properties, are discussed in 5.2. We finish by illustrating how this also
gives a simple method to exclude semiprojectivity and show that the higher
quantum permutation algebras are not semiprojective.

2 Preliminaries

2.1 The structure of 1-dimensional ANR-spaces

We are particularly interested in ANR-spaces of dimension at most one. The
structure of these spaces has been studied and described in detail in [ST12,
section 4]. Here we recall the most important notions and results. More in-
formation about ANR-spaces can be found in [Bor67]. For proofs and further
reading on the theory of continua, we refer the reader to Nadler’s book [Nad92].

Definition 2.1.1. A compact, metric space X is an absolute retract (abbrevi-
ated AR-space) if every map f : Z → X from a closed subspace Z of a compact,
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metric space Y extends to a map g : Y → X, i.e. g ◦ ι = f with ι : Z → Y the
inclusion map:

Y
g

~~~
~

~
~

X Z
f

oo

ι

OO

If every map f : Z → X from a closed subspace Z of a compact, metric space
Y extends to a map g : V → X on a closed neighborhood V of Z

Y

V
g

~~~
~

~
~

OO

X Z
f

oo

ι

OO

then X is called an absolute neighborhood retract (abbreviated ANR-space).

A compact, locally connected, metric space is called a Peano space. A con-
nected Peano space is called a Peano continuum. By the Hahn-Mazurkiewicz
Theorem, these continua can be characterized as the continuous images of the
unit interval. In particular, every Peano continuum is path-connected, while
every Peano space is locally path-connected.
Now given an ANR-space X , we can embed it into the Hilbert cube Q and
obtain a retract from a neighborhood of X in Q onto X . Hence an ANR-
space inherits all local properties of the Hilbert cube which are preserved under
retracts. These properties include local connectedness, so that all ANR-spaces
are Peano spaces. The converse, however, is not true in general. But as we will
see, it is possible to identify the ANR-spaces among all Peano spaces, at least
in the one-dimensional case.
A closed subspace Y of a space X is a retract of X if there exists a continuous
map r : X → Y such that r|Y = idY . If the retract map r : X → Y regarded as
a map to X is homotopic to the identity, then Y is called a deformation retract
of X . It is a strong deformation retract if in addition the homotopy can be
chosen to fix the subspace Y . The following concept of a core continuum is due
to Meilstrup. It is crucial for understanding the structure of one-dimensional
ANR-spaces.

Definition + Lemma 2.1.2 ([Mei05]). Let X be a non-contractible one-dimen-
sional Peano continuum. Then there exists a unique strong deformation retract
which contains no further proper deformation retract. We call it the core of X
and denote it by core(X).

As in [ST12], we define the core of a contractible, one-dimensional Peano con-
tinuum to be any fixed point. Many questions about one-dimensional Peano
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continua can be reduced to questions about their cores. This reduction step
uses a special retract map, the so-called first point map.
Recall that an arc between two points x0, x1 ∈ X is a path [0, 1]→ X from x0
to x1 which is a homeomorphism onto its image.

Definition + Lemma 2.1.3 ([ST12, 4.14-16]). Let X be a one-dimensional
Peano continuum and Y a subcontinuum with core(X) ⊂ Y . For each x ∈ X\Y
there is a unique point r(x) ∈ Y such that r(x) is a point of an arc in X from x
to any point of Y . Setting r(x) = x for all x ∈ Y , we obtain a map r : X → Y .
This map is called the first point map, it is continuous and a strong deformation
retract from X onto Y .

The following follows directly from the proof of [ST12, Lemma 4.14].

Lemma 2.1.4. Let X be a one-dimensional Peano continuum, Y ⊆ X a subcon-
tinuum containing core(X) and r : X → Y the first point map onto Y . Then
the following is true:

(i) For every point x ∈ X\Y there exists an arc from x to r(x) ∈ Y which
is unique up to reparametrization.

(ii) If α is a path from x ∈ X\Y to y ∈ Y , then r(im(α)) ⊆ im(α).

The simplest example of a one-dimensional Peano space is a graph, i.e. a finite,
one-dimensional CW-complex. The order of a point x in a graph X is defined
as the smallest number n ∈ N such that for every neighborhood V of x there
exists an open neighborhood U ⊆ V of x with |∂U | = |U\U | ≤ n. We denote
the order of x in X by order(x,X).
Given a one-dimensional Peano continuum X , one can reconstruct the space
X from its core by ’adding’ the arcs which connect points of X\ core(X) with
the core as described in 2.1.4. This procedure yields a limit structure for one-
dimensional Peano spaces which first appeared as Theorem 4.17 of [ST12]. In
the case of one-dimensional ANR-spaces, the core is a finite graph and hence
the limit structure entirely consists of finite graphs.

Theorem 2.1.5 ([ST12, Theorem 4.17]). Let X be a one-dimensional Peano
continuum. Then there exists a sequence {Yk}∞k=1 such that

(i) each Yk is a subcontinuum of X.

(ii) Yk ⊂ Yk+1.

(iii) limk Yk = X.

(iv) Y1 = core(X) and for each k, Yk+1 is obtained from Yk by attaching a
line segment at a single point, i.e., Yk+1\Yk is an arc with end point pk
such that Yk+1\Yk ∩ Yk = {pk}.

(v) letting rk : X → Yk be the first point map for Yk we have that {rk}∞k=1

converges uniformly to the identity map on X.
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If X is also an ANR, then all Yk are finite graphs. If X is even contractible
(i.e. an AR), then core(X) is just some point and all Yk are finite trees.

We will need a local criterion for identifying one-dimensional ANR-spaces
among general Peano spaces. It was observed by Ward how to get such a
characterization in terms of embeddings of circles.

Definition 2.1.6. Let X be a compact, metric space, then X does not contain
small circles if there is an ǫ > 0 such that diam(ι(S1)) ≥ ǫ for every embedding
ι : S1 → X.

Note that the property of containing arbitrarily small circles does not depend
on the particular choice of metric.

Theorem 2.1.7 ([War60]). For a Peano space X the following are equivalent:

(i) X does not contain small circles.

(ii) X is an ANR-space of dimension at most one.

This statement can also be interpreted as follows. Non-embeddability of circles
into X is the same as uniqueness of arcs in X , i.e. an arc between to two given
points is unique up to reparametrization. More precisely, a Peano continuum
is a one-dimensional AR-space if and only if there is no embedding S1 →֒ X
if and only if X has unique arcs. Similarly, Theorem 2.1.7 can be read as: A
Peano continuum X is a one-dimensional ANR-space if and only if it has locally
unique arcs, meaning that every point has a neighbouhood in which any two
points can be joined by a unique arc.

2.2 Subhomogeneous C∗-algebras

In this section we collect some well known results on subhomogeneous C∗-
algebras. In particular, we recall some facts on their primitive ideal spaces.
More detailed information can be found in [Dix77, Chapter 3] and [Bla06,
Section IV.1.4].

Definition 2.2.1. Let N ∈ N. A C∗-algebra A is N -homogeneous if all its
irreducible representations are of dimension N . A is N -subhomogeneous if
every irreducible representation of A has dimension at most N .

The standard example of a N -homogeneous C∗-algebra is C0(X,MN ) for some
locally compact space X . As the next proposition shows, subhomogeneous C∗-
algebras can be characterized as subalgebras of such. A proof of this fact can
be found in [Bla06, IV.1.4.3-4].

Proposition 2.2.2. A C∗-algebra A is N -subhomogeneous if and only if it is
isomorphic to a subalgebra of some N -homogeneous C∗-algebra C(X,MN ). If
A is separable, we may choose X to be the Cantor set K.

Documenta Mathematica 21 (2016) 987–1049



Semiprojectivity for Subhomogeneous C∗-Algebras 993

Example 2.2.3 (1-NCCWs). One of the most important examples of subhomo-
geneous C∗-algebras is the class of non-commutative CW-complexes (NCCWs)
defined by Eilers, Loring and Pedersen in [ELP98]. The one-dimensional
NCCWs, which we will abbreviate by 1-NCCWs, are defined as pullbacks of
the form

1-NCCW //____

���
�
� G

��
C([0, 1], F )ev0⊕ ev1// F ⊕ F

with F and G finite-dimensional C∗-algebras. These are particularly interesting
since they are semiprojective by [ELP98, Theorem 6.2.2].

For a subhomogeneous C∗-algebra A, the primitive ideal space Prim(A), i.e.
the set of kernels of irreducible representations endowed with the Jacobson
topology, contains a lot of information. Another useful decription of the topol-
ogy on Prim(A) is given by the folllowing lemma which we will make use of
regularly. For an ideal J in a C∗-algebra A we write ‖x‖J to denote the norm
of the image of the element x ∈ A in the quotient A/J .

Lemma 2.2.4 ([Bla06, II.6.5.6]). Let A be a C∗-algebra.

1. If x ∈ A, define x̌ : Prim(A) → R≥0 by x̌(J) = ‖x‖J . Then x̌ is lower
semicontinuous.

2. If {xi} is a dense set in the unit ball of A, and Ui = {J ∈ Prim(A) :
x̌i(J) > 1/2}, then {Ui} forms a base for the topology of Prim(A).

3. If x ∈ A and λ > 0, then {J ∈ Prim(A) : x̌(J) ≥ λ} is compact (but not
necessarily closed) in Prim(A).

Since we will mostly be interested in finite-dimensional representations, we
consider the subspaces

Primn(A) = {ker(π) ∈ Prim(A) : dim(π) = n}

for each finite n. Similarly, we write

Prim≤n(A) = {ker(π) ∈ Prim(A) : dim(π) ≤ n} =
⋃

k≤n
Primk(A).

The following theorem describes the structure of these subspaces of Prim(A)
and the relations between them.

Theorem 2.2.5 ([Dix77, 3.6.3-4]). Let A be a C∗-algebra. The following holds
for each n ∈ N:

(i) Prim≤n(A) is closed in Prim(A).

(ii) Primn(A) is open in Prim≤n(A).
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(iii) Primn(A) is locally compact and Hausdorff.

Now assume that A is a N -subhomogeneous C∗-algebra. In this case Theorem
2.2.5 gives a set-theoretical (but in general not a topological) decomposition of
its primitive spectrum

Prim(A) =

N⊔

n=1

Primn(A).

While each subspace in this decomposition is nice, in the sense that it is Haus-
dorff, Prim(A) itself is typically non-Hausdorff. In the subhomogeneous setting
it is at least a T1-space, i.e. points are closed. If we further assume A to be sep-
arable and unital, the space Prim(A) will also be separable and quasi-compact.
Given a general C∗-algebra A, there is a one-to-one correspondence between
(closed) ideals J of A and closed subsets of Prim(A). More precisely, one
can identify Prim(A/J) with the closed subset {K ∈ Prim(A) : J ⊆ K}. In
particular, we can consider the quotient A≤n corresponding to the closed sub-
set Prim≤n(A) ⊆ Prim(A). This quotient is the maximal n-subhomogeneous
quotient of A and has the following universal property: Any ∗-homomorphism
ϕ : A→ B to some n-subhomogeneous C∗-algebra B factors uniquely through
A≤n:

A
ϕ //

!! !!C
CC

CC
CC

C B

A≤n

=={
{

{
{

2.3 Semiprojective C∗-algebras

We recall the definition of semiprojectivity for C∗-algebras, the main property
of study in this paper. More detailed information about lifting properties for
C∗-algebras can be found in Loring’s book [Lor97].

Definition 2.3.1 ([Bla85, Definition 2.10]). A separable C∗-algebra A is
semiprojective if for every C∗-algebra B and every increasing chain of ide-
als Jn in B with J∞ =

⋃
n Jn, and for every ∗-homomorphism ϕ : A→ B/J∞

there exist n ∈ N and a ∗-homomorphism ϕ : A → B/Jn making the following
diagram commute:

B

πn0����
B/Jn

π∞
n

����
A

ϕ //

ϕ
==z

z
z

z
z

B/J∞
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In this situation, the map ϕ is called a partial lift of ϕ. The C∗-algebra A is
projective if, in the situation above, we can always find a lift ϕ : A→ B for ϕ.
Let C be a class of C∗-algebras. A C∗-algebra A is (semi)projective with respect
to C if it satisfies the definitions above with the restriction that the C∗-algebras
B,B/Jn and B/J∞ all belong to the class C.
Remark 2.3.2. One may also define semiprojectivity as a lifting property for
maps to certain direct limits: an increasing sequence of ideals Jn in B gives
an inductive system (B/Jn)n with surjective connecting maps πn+1

n : B/Jn →
B/Jn+1 and limit (isomorphic to) B/J∞. On the other hand, it is easily seen
that every such system gives an increasing chain of ideals (ker(πn0 ))n. Hence,
semiprojectivity is equivalent to being able to lift maps to lim−→Dn to a finite
stage Dn provided that all connecting maps of the system are surjective. It is
sometimes more convenient to work in this picture.

2.3.1 An unsolvable lifting problem

In order to show that a C∗-algebra does not have a certain lifting property, we
need to construct unsolvable lifting problems. One such construction by Loring
([Lor97, Proposition 10.1.8]) uses the fact that normal elements in quotient C∗-
algebras do not admit normal preimages in general, e.g. Fredholm operators
of non-zero index. Here, we generalize Loring’s construction and obtain a
version which also works for almost normal elements. Combining this with
Lin’s theorem on almost normal matrices, we are able to construct unsolvable
lifting problems not only for commutative C∗-algebras, as in Loring’s case, but
for the much larger class of strongly quasidiagonal C∗-algebras.
First we observe that almost normal elements in quotient C∗-algebras always
admit (almost as) almost normal preimages. Given an element x of some C∗-
algebra and ǫ > 0, we say that x is ǫ-normal if ‖x∗x− xx∗‖ ≤ ǫ‖x‖ holds.
Lemma 2.3.3. Let A, B be C∗-algebras and π : A→ B a surjective ∗-homomor-
phism. Then for every ǫ-normal element y ∈ B there exists a (2ǫ)-normal
element x ∈ A with π(x) = y and ‖x‖ = ‖y‖.
Proof. Let (uλ)λ∈Λ denote an approximate unit for ker(π) which is quasicentral
for A. Pick any preimage x0 of x with ‖x0‖ = ‖x‖ and set x := (1−uλ0)x0 for
a suitable λ0 ∈ Λ.

The next lemma is due to Halmos. A short proof using the Fredholm alternative
can be found in [BH74, Lemma 2].

Lemma 2.3.4 (Halmos). Let S ∈ B(H) be a proper isometry, then

dist (S, {N +K |N,K ∈ B(H), N normal, K compact}) = 1.

It is a famous result by H. Lin that in matrix algebras almost normal ele-
ments are uniformly close to normal ones ([Lin97]). A short, alternative proof
involving semiprojectivity arguments can be found in [FR01].
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Theorem 2.3.5 (Lin). For every ǫ > 0, there is a δ > 0 so that, for any d and
any X in Md satisfying

‖XX∗ −X∗X‖ ≤ δ and ‖X‖ ≤ 1

there is a normal Y in Md such that

‖X − Y ‖ ≤ ǫ.

The following is the basis for most of our unsolvable lifting problems appearing
in this paper. Recall that a C∗-algebra A is strongly quasidiagonal if every
representation of A is quasidiagonal. See [Bla06, Section V.4.2] or [Bro00] for
more information on quasidiagonality.
In the following, let T denote the Toeplitz algebra C∗(S|S∗S = 1) and ̺ : T →
C(S1) the quotient map given by mapping S to the canonical generator z of
C(S1).

Proposition 2.3.6. There exists δ > 0 such that the following holds for
all n ∈ N: If A is strongly quasidiagonal and ϕ : A → C(S1) ⊗ Mn is any
∗-homomorphism with dist(z ⊗ 1n, im(ϕ)) < δ, then ϕ does not lift to a
∗-homomorphism from A to T ⊗Mn:

T ⊗Mn

̺⊗id
����

A
ϕ //

∄
11

~
x

r
m i e

C(S1)⊗Mn

Proof. Choose δ′ > 0 corresponding to ǫ = 1/6 as in Theorem 2.3.5 and set
δ = δ′/14. Let a′ ∈ A be such that ‖ϕ(a′)−z⊗1n‖ < δ, then ‖[ϕ(a′), ϕ(a′)∗]‖ ≤
2δ(‖ϕ(a′)‖+1) < 5δ‖ϕ(a′)‖. Hence by Lemma 2.3.3 there exists a (10δ)-normal
element a ∈ A with ϕ(a) = ϕ(a′) and 5/6 < ‖a‖ = ‖ϕ(a′)‖ < 6/5. Now if ψ
is a ∗-homomorphism with (̺ ⊗ id) ◦ ψ = ϕ as indicated, we regard ψ as a
representation on H⊕n with T generated by the unilateral shift S on H. By
assumption, ψ is then a quasidiagonal representation. In particular, ψ(a) can
be approximated arbitrarily well by block-diagonal operators ([Bro00, Theorem
5.2]). We may therefore choose a (11δ)-normal block-diagonal operator B with
5/6 ≤ ‖B‖ ≤ 6/5 within distance at most 1/3 from ψ(a). Applying Lin’s The-
orem to the normalized, (14δ)-normal block-diagonal operator ‖B‖−1B shows
the existence of a normal element N ∈ H⊕n with ‖ψ(a)−N‖ ≤ 2/3. But then
we find

‖(N − S ⊗ 1n) +K(H⊕n)‖
≤ ‖N − ψ(a)‖ + ‖(̺⊗ id)(ψ(a) − S ⊗ 1n)‖
≤ 2

3 + ‖ϕ(a′)− z ⊗ 1n‖
≤ 2

3 + δ < 1

in contradiction to Lemma 2.3.4.
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2.3.2 The homogeneous case

In [ST12], A. Sørensen and H. Thiel characterized semiprojectivity for commu-
tative C∗-algebras. Moreover, they gave a description of semiprojectivity for
homogeneous trivial fields, i.e. C∗-algebras of the form C0(X,MN ). Note that
the projective case was settled earlier by A. Chigogidze and A. Dranishnikov
in [CD10]. Their result is as follows.

Theorem 2.3.7 ([ST12]). Let X be a locally compact, metric space and N ∈ N.
Then the following are equivalent:

1. C0(X,MN ) is (semi)projective.

2. The one-point compactification αX is an A(N)R-space and dim(X) ≤ 1.

The work of Sørensen and Thiel will be the starting point for our analysis of
semiprojectivity for subhomogeneous C∗-algebras. In this section, we reduce
the general N -homogeneous case to their result by showing that semiprojectiv-
ity for homogeneous, locally trivial fields implies global triviality. We further
obtain some information about parts of the primitive ideal space for general
semiprojective C∗-algebras.

Lemma 2.3.8. Let I be a N -homogeneous ideal in a C∗-algebra A. If A is
semiprojective with respect to N -subhomogeneous C∗-algebras, then the one-
point compactification αPrim(I) is a Peano space. If A is semiprojective, we
further have dim(αPrim(I)) ≤ 1.

Proof. Let A≤N be the maximal N -subhomogeneous quotient of A, then I is
also an ideal in A≤N . Being N -homogeneous, the ideal I is isomorphic to the
section algebra Γ0(E) of a locally trivial MN -bundle E over the locally com-
pact, second countable, metrizable Hausdorff space Prim(I) by [Fel61, The-
orem 3.2]. Since A≤N is separable and N -subhomogenous, we can embed it
into C(K,MN ) with K the Cantor set by Proposition 2.2.2. Using the well

known middle-third construction of K = lim←−k(
⊔2k

[0, 1]), we can write C(K) as

a direct limit lim−→k
C([0, 1])⊕2k with surjective connecting maps. After tensoring

with MN , we obtain a lifting problem for A and hence can apply semiprojec-
tivity of A with respect to N -subhomogenous C∗-algebras. As the solution to
this lifting problem factors through A≤N , we obtain an embedding of A≤N into

C([0, 1],MN)
⊕2k for some k.

A //____

����

C([0, 1],MN)
⊕2k

����
I

>>~~~~~~~~~
// A≤N //

88

C(K,MN )

The restriction of this embedding to I induces a continuous surjection π of⊔2k
[0, 1] onto αPrim(I). By the Hahn-Mazurkiewicz Theorem ([Nad92, The-

orem 8.18]), this shows that αPrim(I) is a Peano space. Furthermore, we find
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a basis of compact neighborhoods consisting of Peano continua for any point x
of αPrim(I) by [Nad92, Theorem 8.10].
Now let A be semiprojective and assume that dim(Prim(I)) =
dim(αPrim(I)) > 1. Arguing precisely as in [ST12, Proposition 3.1], we
use our basis of neighborhoods for points of Prim(I) to find arbitrarily small
circles around a point x ∈ Prim(I). Using triviality of E around x, we obtain
a lifting problem for A:

A

��

//_______
(
(
⊕

N T )
+
/ (
⊕n

1 K)
)
⊗MN

����

I //

⊆

99ssssssssssssssss (⊕
N C(S1)

)+ ⊗MN

(
(
⊕

N T )
+
/ (
⊕

N K)
)
⊗MN

Semiprojectivity of A allows us to solve this lifting problem. Now restrict a
partial lift to the ideal I and consider its coordinates to obtain a commutative
diagram

T ⊗MN

����
I // //

99t
t

t
t

t
t C(S1)⊗MN .

The map on the bottom is surjective since it is induced by the inclusion of one
of the circles around x. But a diagram like this does not exist by Proposition
2.3.6 because I is homogeneous and by that strongly quasidiagonal.

Corollary 2.3.9. Let A be a semiprojective C∗-algebra, then αPrimn(A) is
a Peano space for every n ∈ N.

Proof. If A is semiprojective, each A≤n is semiprojective with respect to
n-subhomogeneous C∗-algebras. Hence we can apply Lemma 2.3.8 to the
n-homogeneous ideal ker(A≤n → A≤n−1) in A≤n whose primitive ideal space
is homeomorphic to Primn(A).

It is known to the experts that there are no non-trivial Mn-valued fields over
one-dimensional spaces and we are indebted to L. Robert for pointing this fact
out to us. Since we couldn’t find a proof in the literature, we include one here.

Lemma 2.3.10. Let E be a locally trivial field of C∗-algebras over a separable,
metrizable, locally compact Hausdorff space X with fiber MN and Γ0(E) the
corresponding section algebra. If dim(X) ≤ 1, then Γ0(E) is C0(X)-isomorphic
to C0(X,MN ).

Proof. First assume that X is compact. One-dimensionality of X implies that
that the Dixmier-Douady invariant δ ∈ Ȟ3(X,Z) corresponding to Γ0(E) van-
ishes. Therefore Γ0(E) is stably C(X)-isomorphic to C(X,MN) by Dixmier-
Douady classification (see e.g. [RW98, Corollary 5.56]). Let ψ : Γ(E) ⊗ K →
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C(X,MN )⊗K be such an isomorphism and note that Γ(E) ∼= her(ψ(1Γ(E)⊗e))
via ψ with e a minimal projection in K. Equivalence of projections over one-
dimensional spaces is completely determined by their rank by [Phi07, Propo-
sition 4.2]. Since ψ(1Γ(E) ⊗ e) and 1C(X,MN ) ⊗ e share the same rank N
everywhere we therefore find v ∈ C(X,MN ) ⊗ K with v∗v = ψ(1Γ(E) ⊗ e)
and vv∗ = 1C(X,MN ) ⊗ e. But then Ad(v) gives a C(X)-isomorphism from
her(ψ(1Γ(E) ⊗ e)) onto her(1C(X,MN ) ⊗ e) = C(X,MN ).

Now consider the case of non-compact X . Since X is σ-compact, it clearly suf-
fices to prove the following: Given compact subsetsX1 ⊆ X2 of X and a C(X1)-
isomorphism ϕ1 : Γ(E|X1

) → C(X1,MN ) there exists a C(X2)-isomorphism
ϕ2 : Γ(E|X2

) → C(X2,MN ) extending ϕ1. By the first part of the proof there
is a C(X2)-isomorphism ψ2 : Γ(E|X2

) → C(X2,MN ). One-dimensionality of

X1 implies Ȟ2(X1,Z) = 0, which means that every C(X1)-automorphism of
C(X1,MN ) is inner by [RW98, Theorem 5.42]. In particular, ϕ1 ◦ (ψ−12 )|X1

is
of the form Ad(u) for some unitary u ∈ C(X1,MN ). It remains to extend u to
a unitary in C(X2,MN ). This, however, follows from one-dimensionality of X
and [HW48, Theorem VI.4].

We are now able to extend the results of [ST12] to the case of general N -
homogeneous C∗-algebras:

Theorem 2.3.11. Let A be a N -homogeneous C∗-algebra. The following are
equivalent:

1. A is (semi)projective.

2. A ∼= C0(Prim(A),MN ) and αPrim(A) is an A(N)R-space of dimension
at most 1.

Proof. We know that (1) implies A ∼= C0(Prim(A),MN ) by Lemma 2.3.8 and
Lemma 2.3.10. The remaining implications are given by Theorem 2.3.7.

3 Constructions for semiprojective C∗-algebras

Unfortunately, the class of semiprojective C∗-algebras lacks good permanence
properties. In fact, semiprojectivity is not preserved by most C∗-algebraic
standard constructions and the list of positive permanence results, most of
which can be found in [Lor97], is surprisingly short. Here, we extend this list
by a few new results.

3.1 Extending lifting problems

In this section, we introduce a technique to extend lifting problems from ide-
als to larger C∗-algebras. This technique can be used to show that in many
situations lifting properties of a C∗-algebra pass to its ideals.
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Lemma 3.1.1. Given a surjective inductive system of short exact sequences

0 // Cn
ιn //

πn+1
n ����

Dn
̺n //

πn+1
n ����

En //

π
n+1
n ����

0

0 // Cn+1
ιn+1 // Dn+1

̺n+1 // En+1
// 0

and a commutative diagram of extensions

0 // lim−→Cn
ι∞ // lim−→Dn

̺∞ // lim−→En // 0

0 // I
i //

ϕ

OO

A
p //

ϕ

OO

B //

ϕ

OO

0

the following holds: If both A and B are semiprojective, then ϕ lifts to Cn for
some n. If both A and B are projective, then ϕ lifts to C1.

Proof. First observe that we may assume the ∗-homomorphism ϕ to be injective
since otherwise we simply pass to the system of extensions

0 // Cn
ιn // Dn ⊕B

̺n⊕idB// En ⊕ B // 0

and replace ϕ by ϕ⊕ p and ϕ by ϕ⊕ idB. Using semiprojectivity of B, we can
find a partial lift ψ : B → En0 of ϕ for some n0, i.e. π

∞
n0
◦ψ = ϕ. Now consider

the C∗-subalgebras

D′n := ̺−1n ((π
n
n0
◦ ψ)(B)) ⊆ Dn

and observe that the restriction of πn+1
n to D′n surjects onto D′n+1. We also

find that the direct limit lim−→D′n = π∞n0
(D′n0

) of this new system contains ϕ(A).
Hence semiprojectivity of A allows us to lift ϕ (regarded as a map to lim−→D′n) to
D′n for some n ≥ n0. Let σ : A→ D′n be a suitable partial lift, i.e. π∞n ◦σ = ϕ,
then the restriction of σ to the ideal I will be a solution to the original lifing
problem for ϕ: The only thing we need to check is that the image of I under σ
is in fact contained in Cn. But we know that π

∞
n is injective on (̺n ◦ σ)(A) ⊆

(π
n
n0
◦ ψ)(B) since ϕ = π

∞
n ◦ (π

n
n0
◦ ψ) was assumed to be injective. Hence the

identity

(π
∞
n ◦̺n◦σ)(i(I)) = (̺∞ ◦π∞n ◦σ)(i(I)) = (̺∞◦ϕ)(i(I)) = (̺∞◦ι∞)(ϕ(I)) = 0

confirms that σ(i(I)) ⊆ in(Cn) holds.

Now assume that we are given an inductive system

· · · // // Cn
πn+1
n // // Cn+1

// // · · ·
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of separable C∗-algebras with surjective connecting homomorphisms. Then
each connecting map πn+1

n canonically extends to a surjective ∗-homomorphism
πn+1
n on the level of multiplier C∗-algebras ([WO93, Theorem 2.3.9]), i.e., we

automatically obtain a surjective inductive system of extensions

0 // Cn //

πn+1
n ����

M(Cn) //

πn+1
n ����

Q(Cn) //

π
n+1
n ����

0

0 // Cn+1
//M(Cn+1) // Q(Cn+1) // 0

.

We would like to apply Lemma 3.1.1 to such a system of extensions. However,
the reader should be really careful when working with multipliers and direct
limits at the same time since these constructions are not completely compatible:
Each π∞n : Cn → lim−→Cn extends to a ∗-homomorphismM(Cn)→M(lim−→Cn).
The collection of these maps induces a ∗-homomorphism pM : lim−→M(Cn) →
M(lim−→Cn) which is always surjective but only in trivial cases injective. The
same occurs for the quotients, i.e. for the system of corona algebras Q(Cn).
The situation can be summarized in the commutative diagram with exact rows

0 // Cn

����

//M(Cn)

����

// Q(Cn)

����

// 0

0 // lim−→Cn // lim−→M(Cn)

pM
����

// lim−→Q(Cn)

pQ
����

// 0

0 // lim−→Cn //M(lim−→Cn) // Q(lim−→Cn) // 0

where the quotient maps pM and pQ are the obstacles for an application of
Lemma 3.1.1. The following proposition makes these obstacles more precise.

Proposition 3.1.2. Let A and B be semiprojective C∗-algebras and

0 // I // A // B // 0 [τ ]

a short exact sequence with Busby map τ : B → Q(I). Let I
∼−→ lim−→Cn be

an isomorphism from I to the limit of an inductive system of separable C∗-
algebras Cn with surjective connecting maps. If the Busby map τ can be lifted
as indicated

lim−→Q(Cn)

pQ
����

B
τ //

88q
q

q
q

q
q Q(I) ∼= Q(lim−→Cn)

,

then I → lim−→Cn lifts to Cn for some n. If both A and B are projective, we can
obtain a lift to C1.
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Proof. Keeping in mind that pQ is the Busby map associated to the extension
0 → lim−→Cn → lim−→M(Cn) → lim−→Q(Cn) → 0, the claim follows by combining
Theorem 2.2 of [ELP99] with Lemma 3.1.1.

One special case, in which the existence of a lift for the Busby map τ as
in Proposition 3.1.2 is automatic, is when the quotient B is a projective
C∗-algebra. Hence we obtain a new proof for the permanence result below
which has the advantage that it does not use so-called corona extendability (cf.
[Lor97, Section 12.2]).

Corollary 3.1.3 ([LP98], Theorem 5.3). Let 0 → I → A → B → 0
be short exact. If A is (semi)projective and B is projective, then I is also
(semi)projective.

Another very specific lifting problem for which Proposition 3.1.2 applies, is the
following mapping telescope contruction due to Brown.

Lemma 3.1.4. Let a sequence (Ck)k of separable C∗-algebras be given and con-
sider the telescope system (Tn, ̺

n+1
n ) associated to

⊕∞
k=0 Ck = lim−→n

⊕n
k=0 Ck,

i.e.

Tn =

{
f ∈ C

(
[n,∞],

∞⊕

k=0

Ck

)
: t ≤ m⇒ f(t) ∈

m⊕

k=1

Ck

}

with ̺n+1
n : Tn → Tn+1 the (surjective) restriction maps, so that

lim−→n
(Tn, ̺

n+1
n ) ∼=

⊕∞
k=1 Ck. Then both canonical quotient maps in the

diagram

0 // lim−→Tn // lim−→M(Tn) //

pM
����

lim−→Q(Tn) //

pQ
����

0

0 // lim−→Tn //M(lim−→Tn) //

DD

Q(lim−→Tn) //

DD

0

split.

Proof. It suffices to produce a split for pM which is the identity on lim−→Tn. Un-

der the identification lim−→Tn ∼=
⊕∞

k=0 Ck we have M(lim−→Tn) ∼=
∏∞
k=0M(Ck).

One checks that

Tn =

n⊕

k=0

C([n,∞], Ck)⊕
⊕

k>n

C0((k,∞], Ck)

and hence ∞∏

k=0

C([max{n, k},∞],M(Ck)) ⊂M(Tn).

It follows that the sum of embeddings as constant functions

∞∏

k=0

M(Ck)→
∞∏

k=0

C([max{n, k},∞],M(Ck)) ⊂M(Tn)
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defines a split for the quotient map lim−→M(Tn) → M(lim−→Tn). It is easily

verified that this split is the identity on
⊕∞

k=1 Ck.

Remark 3.1.5 (Lifting the Busby map). Given an extension 0 → I → A →
B → 0 with both A and B semiprojective, the associated Busby map does in
general not lift as in 3.1.2. However, there are a number of interesting sit-
uations where it does lift and we therefore can use Propostion 3.1.2 to obtain
lifting properties for the ideal I. One such example is studied in [End14], where
it is (implicitly) shown that the Busby map lifts if B is a finite-dimensional C∗-
algebra. This observation leads to the fact that semiprojectivity passes to ideals
of finite codimension. Further examples will be given in section 4, where we
study Busby maps associated to extensions by homogeneous ideals and identify
conditions which guarantee that 3.1.2 applies.

3.2 Direct limits which preserve semiprojectivity

3.2.1 Weakly conditionally projective homomorphisms

The following definition characterizes ∗-homomorphisms along which lifting
solutions can be extended in an approximate manner. This type of maps is
implicitly used in [CD10] and [ST12] in the special case of finitely presented,
commutative C∗-algebras.

Definition 3.2.1. A ∗-homomorphism ϕ : A→ B is weakly conditionally pro-
jective if the following holds: Given ǫ > 0, a finite subset F ⊂ A and a com-
muting square

A

ϕ

��

ψ // D

π
����

B
̺ // D/J,

there exists a ∗-homomorphism ψ′ : B → D as indicated

A

ϕ

��

ψ // D

π
����

B
̺ //

ψ′
=={

{
{

{
D/J

which satisfies π ◦ ψ′ = ̺ and ‖(ψ′ ◦ ϕ)(a)− ψ(a)‖ < ǫ for all a ∈ F .
The definition above is a weakening of the notion of conditionally projective
morphisms, as introduced in section 5.3 of [ELP98], where one asks the homo-
morphism ψ′ in 3.2.1 to make both triangles of the lower diagram to commute
exactly. While conditionally projective morphisms are extremely rare (even
when working with projective C∗-algebras, cf. the example below), there is a
sufficient supply of weakly conditionally projective ones, as we will show in the
next section.
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Example 3.2.2. The inclusion map id⊕ 0: C0(0, 1] → C0(0, 1] ⊕ C0(0, 1] is
weakly conditionally projective but not conditionally projective. This can be
illustrated by considering the commuting square

C0(0, 1]
ψ //

id⊕ 0

��

C0(0, 3)
π
����

C0(0, 1]⊕ C0[2, 3) C0(0, 1]⊕ C0[2, 3)

where π is the restriction map and ψ is given by sending the canonical generator
t of C0(0, 1] to the function

(ψ(t))(s) =





s if s ≤ 1

1− s if 1 < s ≤ 2

0 if 2 ≤ s
.

It is clear that there is no lift for the generator of C0[2, 3) which is orthogonal to
ψ(t). This shows that the map id⊕ 0 is not conditionally projective. However,
after replacing ψ(t) with (ψ(t)−ǫ)+ for any ǫ > 0, finding an orthogonal lift for
the generator of the second summand is no longer a problem. Using this idea,
it will be shown in Proposition 3.2.4 that id⊕ 0 is in fact weakly conditionally
projective.

If A is a (semi)projective C∗-algebra and ϕ : A → B is weakly conditionally
projective, then B is of course also (semi)projective. The next lemma shows
that (semi)projectivity is even preserved along a sequence of such maps. Its
proof is of an approximate nature and relies on a one-sided approximate inter-
twining argument (cf. section 2.3 of [Rør02]), a technique borrowed from the
Elliott classification program.

Lemma 3.2.3. Suppose A1

ϕ2
1 // A2

ϕ3
2 // A3

ϕ4
3 // · · · is an inductive system

of separable C∗-algebras. If A1 is (semi)projective and all connecting maps
ϕn+1
n are weakly conditionally projective, then the limit A∞ = lim−→(An, ϕ

n+1
n )

is also (semi)projective.

Proof. We will only consider the projective case, the statement for the semipro-
jective case is proven analogously with obvious modifications. Choose finite
subsets Fn ⊂ An with ϕn+1

n (Fn) ⊆ Fn+1 such that the union
⋃∞
m=n(ϕ

m
n )−1(Fm)

is dense in An for all n. Further let (ǫn)n be a sequence in R>0 with∑∞
n=1 ǫn <∞. Now let ̺ : A∞ → D/J be a ∗-homomorphism to some quotient

C∗-algebraD/J . By projectivity of A1 there is a
∗-homomorphism s1 : A1 → D

with π ◦ s1 = ̺◦ϕ∞1 . Since the maps ϕn+1
n are weakly conditionally projective,

we can inductively choose sn+1 : An+1 → D with π ◦ sn+1 = ̺ ◦ϕ∞n+1 such that

‖sn(a)− (sn+1 ◦ ϕn+1
n )(a)‖ < ǫn
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holds for all a ∈ Fn. It is now a standard computation (and therefore ommited)
to check that ((sm ◦ ϕmn )(x))m is a Cauchy sequence in D for every x ∈ Fn.
Furthermore, the induced map ϕ∞n (x) 7→ limm(sm ◦ ϕmn )(x) extends from the
dense subset

⋃
n ϕ
∞
n (Fn) to a ∗-homomorphism s : A∞ → D.

An
sn //

ϕn+1
n

��

D

π

����

An+1

ϕ∞
n+1

��

sn+1

;;w
w

w
w

w

A∞
̺ //

s

GG

D/J

Since each sn lifts π, the same holds for their pointwise limit, i.e. the limit
map s satisfies π ◦ s = ̺. This shows that A∞ is projective.

3.2.2 Adding non-commutative edges

In order to make Lemma 3.2.3 a useful tool for constructing semipro-
jective C∗-algebras, we have to ensure the existence of weakly projective
∗-homomorphisms as defined in 3.2.1. The examples we work out in this section
arise in special pullback situations where one ’adds a non-commutative edge’
to a given C∗-algebra A. By this we mean that we form the pullback of A
and C([0, 1])⊗Mn over a n-dimensional representation of A and the evaluation
map ev0. In the special case of A = C(X) being a commutative C∗-algebra
and n = 1 this pullback construction already appeared in [CD10] and [ST12]
where it indeed corresponds to attaching an egde [0, 1] at one point to the
space X . Here we show that the map obtained by extending elements of A
as constant functions onto the attached non-commutative edge gives an exam-
ple of a weakly conditionally projective ∗-homomorphism. As an application,
we observe that the AF-telescopes studied in [LP98] arise from weakly pro-
jective ∗-homomorphisms and hence projectivity of these algebras is a direct
consequence of Lemma 3.2.3.

Adapting notation from [ELP98], we set

T (C, G) = {f ∈ C0((0, 2], G) : t ≤ 1⇒ f(t) ∈ C · 1G},

S(C, G) = {f ∈ C0((0, 2), G) : t ≤ 1⇒ f(t) ∈ C · 1G}
for G a unital C∗-algebra. We further write

T (C, G, F ) =
{
f ∈ C0((0, 3], F ) : t ≤ 2⇒ f(t) ∈ G

t ≤ 1⇒ f(t) ∈ C · 1G

}
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with respect to a fixed inclusion G ⊆ F . We have the diagram

T (C, G, F ) //

��

C([2, 3], F )
ev2

��
T (C, G)

ev2 // F

which is a special case of the pullback situation considered in the next proposi-
tion. However, this example is in some sense generic and implementing it into
the general situation is an essential part of proving the following.

Proposition 3.2.4. Given a (semi)projective C∗-algebra Q and a ∗-homomor-
phism τ : Q→Mn, the following holds:

1. The pullback P over τ and ev0 : C([0, 1],Mn)→Mn, i.e.

P = {(q, f) ∈ Q⊕ C([0, 1],Mn) : τ(q) = f(0)},

is (semi)projective.

2. The canonical split s : Q→ P , q 7→ (q, τ(q)⊗1[0,1]) is weakly conditionally
projective.

Proof. (1) Semiprojectivity of the pullback P follows from [End14, Corollary
3.4]. Since P is homotopy equivalent to Q, the projective statement follows
from the semiprojective one using [Bla12, Corollary 5.2].

(2) For technical reasons we identify the attached interval [0, 1] with [2, 3] and
consider the pullback

P //___

���
�
� C([2, 3],Mn)

ev2

��
Q

τ // Mn

with s : Q → P , q 7→ (q, τ(q) ⊗ 1[2,3]) instead. Denote by G ⊆ Mn the image
of τ . According to [ELP98, Theorem 2.3.3], we can find a ∗-homomorphism
ϕ : T (C, G)→ Q such that

0 // ker(τ) // Q
τ // G // 0

0 // S(C, G) //

OO

T (C, G)

ϕ

OO

ev2 // G // 0

commutes and ϕ|S(C,G) is a proper ∗-homomorphism to ker(τ) (meaning that
the hereditary subalgebra generated by its image is all of ker(τ)). Using the
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pullback property of P , ϕ can be extended to ϕ : T (C, G,Mn)→ P such that

0 // C0((2, 3],Mn) // P // Q //
s

ss
0

0 // C0((2, 3],Mn) // T (C, G,Mn)

ϕ

OO

// T (C, G)

ϕ

OO

//
s′pp

0

commutes. In particular we have ϕ ◦ s′ = s ◦ ϕ, where s′ is the canonical split
which simply extends functions constantly onto [2, 3].
Choose generators f1, ..., fl of norm 1 for C0((2, 3],Mn) and generators g1, ..., gk
of norm 1 for T (C, G). We need the following ’softened’ versions of P : For δ > 0
we consider the universal C∗-algebra

Pδ = C∗
({
f δ, qδ : f ∈ C0((2, 3],Mn), q ∈ Q

}
|RC0((2,3],Mn)&RQ&Rδ

)

which is generated by copies of C0((2, 3],Mn) and Q (here RC0((2,3],Mn),RQ
denote all the relations from C0((2, 3],Mn) resp. fromQ) and additional, finitely
many relations

Rδ =
{
‖f δi (ϕ(gj))δ − (fi(gj(2)⊗ 1[2,3]))

δ‖ ≤ δ
}
1≤i≤l
1≤j≤k

.

Note that P = lim−→Pδ with respect to the canonical surjections pδ,δ′ : Pδ → Pδ′

(for δ > δ′) and denote the induced maps Pδ → P, f δ 7→ f, qδ 7→ s(q) by pδ,0.
Since P is semiprojective by part (1) of this proposition, we can find a partial
lift jδ : P → Pδ for some δ > 0, i.e. pδ,0 ◦ jδ = idP .
Now let a finite set F = {x1, ..., xm} ⊆ Q and ǫ > 0 and be given. Denoting
the inclusions Q → Pδ, q 7→ qδ by sδ, we can (after decreasing δ if necessary)
assume that ‖sδ(xi)− (jδ ◦ s)(xi)‖ ≤ ǫ holds for all 1 ≤ i ≤ m. Now given any
commuting square

Q

s

��

ψ // D

π
����

P
̺ // D/J

it only remains to construct a ∗-homomorphism ψδ : Pδ → D such that in the
diagram

Q
ψ //

s

��

sδ

��@
@@

@@
@@

D

π

����

Pδ

ψδ

==z
z

z
z

pδ,0

����
��

��
��

P

jδ

LL

̺
// D/J
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the upper central triangle and the lower right triangle commute.

We consider the following subalgebras of T (C, G) and S(C, G) for any η > 0:

Tη(C, G) = {f ∈ T (C, G) : f is constant on (0, η] ∪ [2− η, 2]}
Sη(C, G) = {f ∈ S(C, G) : f is constant (=0) on (0, η] ∪ [2− η, 2]}

Since

T (C, G) =
⋃

η>0

Tη(C, G)

we find 0 < η < 1
2 and elements g̃j ∈ Tη(C, G) with g̃j(2) = gj(2) and

‖gj−g̃j‖ < δ for every 1 ≤ j ≤ k. Let h ∈ T (C, G) be the scalar-valued function
which equals 1G on [η, 2−η], satisfies h(0) = h(2) = 0 and is linear in between.
Consider the hereditary C∗-subalgebraD′ = (1− (ψ ◦ ϕ)(h))D(1 − (ψ ◦ ϕ)(h))
and define

D′′ := (ψ ◦ ϕ)(Tη(C, G)) +D′ ⊆ D.

Then (ψ ◦ϕ)(Sη(C, G)) and D′ are orthogonal ideals in D′′ because h is central
in T (C, G). We further have (̺ ◦ ϕ)(C0((2, 3],Mn)) ⊆ π(D′) and hence obtain
a commutative diagram

0 // (ψ ◦ ϕ)(Sη(C, G)) //

π����

D′′ //

π����

HD +D′ //

�����
� 0

0 // (̺ ◦ ϕ ◦ s′)(Sη(C, G)) // π(D′′) // HD/J + π(D′) // 0

0 // s′(Sη(C, G)) //

̺◦ϕ
OO

s′(Tη(C, G)) + C0((2, 3],Mn)

̺◦ϕ
OO

// T̂ (G,Mn) //

OO�
�

0

where HD and HD/J are finite-dimensional C∗-algebras given by

HD = (ψ ◦ ϕ)(Tη(C, G))/(ψ ◦ ϕ)(Sη(C, G)),

HD/J = (̺ ◦ ϕ ◦ s′)(Tη(C, G))/(̺ ◦ ϕ ◦ s′)(Sη(C, G))

and T̂ (G,Mn) denotes what is called a crushed telescope in [ELP98]:

T̂ (G,Mn) = {f ∈ C([2, 3],Mn) : f(2) ∈ G}

By [ELP98, Proposition 6.1.1], the embedding G → T̂ (G,Mn) as
constant functions is a conditionally projective map (in the sense
of [ELP98, Section 5.3]). It is hence possible to extend the map

G
∼ // Tη(C, G)/Sη(C, G) // HD ⊂ HD +D′ to a ∗-homomorphism
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ψ′ : T̂ (G,Mn)→ HD +D′ such that the diagram with exact rows

0 // D′ //

π
����

HD +D′ //

����

HD
//

����

qq
0

0 // π(D′) // HD/J + π(D′) // HD/J // 0

0 // C0((2, 3],Mn) //

̺◦ϕ

OO

T̂ (G,Mn) ev2

//

ψ′

;
2

(

@@

�
�

�

OO

G

OO

qq
//

??

0

commutes. In particular, ψ′ restricts to a ∗-homomorphism C0((2, 3],Mn)→ D′

which we will also denote by ψ′. But then a diagram chase confirms that

ψ′(fi) · (ψ ◦ ϕ)(g̃j) = ψ′(fi · (g̃j(2)⊗ 1[2,3]))

holds for every i, j. Finally, define ψδ : Pδ → D by

qδ 7→ ψ(q) and f δi 7→ ψ′(fi).

It needs to be checked that ψδ is well-defined, i.e. that the elements ψδ(f
δ
i )

and ψδ(ϕ(gj)
δ) satisfy the relations Rδ:

‖ψδ(f δi )ψδ(ϕ(gj)δ)− ψδ((fi(gj(2)⊗ 1[2,3]))
δ)‖

= ‖ψ′(fi)((ψ ◦ ϕ)(gj))− ψ′(fi(gj(2)⊗ 1[2,3]))‖
≤ ‖ψ′(fi)(ψ ◦ ϕ)(g̃j)− ψ′(fi(g̃j(2)⊗ 1[2,3]))‖+ ‖fi‖ · ‖gj − g̃j‖ < δ

Since we also have ψδ ◦ sδ = ψ and π ◦ ψδ = ̺ ◦ pδ,0, the proof is hereby
complete.

One example, where pullbacks as in 3.2.4 show up, is the class of so-called
AF-telescopes defined by Loring and Pedersen:

Definition 3.2.5 ([LP98]). Let A =
⋃
An be the inductive limit of an increas-

ing union of finite-dimensional C∗-algebras An. We define the AF-telescope
associated to this AF-system as

T (A) = {f ∈ C0((0,∞], A) : t ≤ n⇒ f(t) ∈ An}.

We have an obvious limit structure for T (A) = lim−→T (Ak) over the finite tele-
scopes

T (Ak) = {f ∈ C0((0, k], Ak)) : t ≤ n⇒ f(t) ∈ An}.
Now the embedding of T (Ak) into T (Ak+1) is given by extending the elements
of T (Ak) constantly onto the attached interval [k, k+1]. This is nothing but a
finite composition of maps as in part (2) of 3.2.4. Hence the connecting maps
in the system of finite telescopes are weakly conditionally projective and using
Lemma 3.2.3 we recover [LP98, Theorem 7.2]:
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Corollary 3.2.6. All AF -telescopes are projective.

In contrast to the original proof we didn’t have to work out any description of
the telescopes by generators and relations. Such a description would have to
encode the structure of each An as well as the inlusions An ⊂ An+1 (i.e., the
Bratteli-diagram of the system). Showing that such an infinite set of generators
and relations gives rise to a projective C∗-algebra is possible but complicated.
Instead we showed that these algebras are build up from the projective C∗-
algebra T (A0)=0 using operations which preserve projectivity.

4 Extensions by homogeneous C∗-algebras

In this section we study extensions by (trivially) homogeneous C∗-algebras, i.e.
extensions of the form

0 // C0(X,MN ) // A // B // 0.

Our final goal is to understand the behavior of semiprojectivity along such
extensions, and we will eventually achieve this in Theorem 4.3.2.

4.1 Associated retract maps

Identifying X with an open subset of Prim(A), we make the following definition
of an associated retract map. This map will play a key role in our study of
extensions.

Definition 4.1.1. Let X be locally compact space with connected components
(Xi)i∈I and

0 // C0(X,MN ) // A // B // 0

a short exact sequence of C∗-algebras. We define the (set-valued) retract map
R associated to the extension to be the map

R : Prim(A)→ 2Prim(B)

given by

R(z) =

{
z if z ∈ Prim(B),

∂Xi = Xi\Xi if z ∈ Xi ⊆ X.

Note that R defined as above takes indeed values in 2Prim(B) because the con-
nected components Xi are always closed in X . However, in our cases of interest
the components Xi will actually be clopen in X (e.g. if X is locally connected)
so that we have a topological decomposition X =

⊔
iXi.
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4.1.1 Regularity properties for set-valued maps

LetX,Y be sets and S : X → 2Y a set-valued map. We say that S has pointwise
finite image if S(x) ⊆ Y is a finite set for every x ∈ X . If furthermore X and
Y are topological spaces, we will use the following notion of semicontinuity for
S (cf. [AF90, Section 1.4]).

Definition + Lemma 4.1.2. Let X,Y be topological spaces. A set-valued
map S : X → 2Y is lower semicontinuous if one of the following equivalent
conditions holds:

(i) {x ∈ X : S(x) ⊆ B} is closed in X for every closed B ⊆ Y .

(ii) For every neighborhood N(y) of y ∈ S(x) there exists a neighborhood
N(x) of x with S(x) ∩N(y) 6= ∅ for every x ∈ N(x).

(iii) For every net (xλ)λ∈Λ ⊂ X with xλ → x and every y ∈ S(x) there exists
a net (yµ)µ∈M ⊂ {S(xλ) : λ ∈ Λ} such that yµ → y.

Proof. (i) ⇒ (ii): Let N(y) be an open neighborhood of y ∈ S(x). Then
{x ∈ X : S(x) ⊂ Y \N(y)} is closed and does not contain x. Hence we find
an open neighborhood N(x) of x in X\{x ∈ X : S(x) ⊂ Y \N(y)} = {x ∈ X :
S(x) ∩N(y) 6= ∅}.
(ii)⇒ (iii): Denote by N the family of neighborhoods of y ordered by reversed
inclusion. Set M = {(λ,N) ∈ Λ × N : S(xλ′) ∩ N 6= ∅ ∀ λ′ ≥ λ}, then
by assumption M is nonempty and directed with respect to the partial order
(λ1, N1) ≤ (λ2, N2) iff λ1 ≤ λ2 and N2 ⊆ N1. Now pick a y(λ,N) ∈ S(xλ) ∩N
for each (λ,N) ∈M , then (yµ)µ∈M constitutes a suitable net converging to y.
(iii) ⇒ (i): Let a closed set B ⊆ Y and (xλ)λ∈Λ ⊂ {x ∈ X : S(x) ⊆ B}
with xλ → x be given. Then for any y ∈ S(x) we find a net yµ → y with
(yµ) ⊂ {S(xλ) : λ ∈ Λ} ⊂ B. Since B is closed we have y ∈ B showing that
S(x) ⊂ B.

Remark 4.1.3. An ordinary (i.e. a single-valued) map is evidently lower semi-
continuous in the sense above if and only if it is continuous. If both spaces X
and Y are first countable, we may use sequences instead of nets in condition
(iii).

Examples of set-valued maps that are lower semicontinuous in the sense above
arise from split extensions by homogeneous C∗-algebras as follows.

Example 4.1.4. Let a split-exact sequence of separable C∗-algebras

0 // C0(X,Mn) // A π
// B //

s
}}

0

be given and consider the set-valued map Rs : Prim(A)→ 2Prim(B) given by

Rs(z) =

{
z if z ∈ Prim(B){

[πz,1], ..., [πz,r(z)]
}

if z ∈ X

Documenta Mathematica 21 (2016) 987–1049



1012 Dominic Enders

where πz,1 ⊕ ...⊕ πz,r(z) is the decomposition of B
s−→ A→ Cb(X,Mn)

evz−−→Mn

into irreducible summands. Then Rs is lower semicontinuous in the sense of
4.1.2.

Proof. We verify condition (ii) of 4.1.2: Let zn → z in Prim(A) and a neigh-
borhood N(y) of y ∈ Rs(z) in Prim(B) be given. By Lemma 2.2.4 we may
assume that N(y) is of the form {z ∈ Prim(B) : b̌(z) > 1/2} for some b ∈ B.
By definition of Rs, we find ˇs(b)(z) = maxy∈Rs(z) b̌(y) for all z ∈ Prim(A).

Hence N(z) = {z ∈ Prim(A) : ˇs(b) > 1/2} constitutes a neighborhood of z in
Prim(A) which satisfies 4.1.2 (ii).

Note that the retract map Rs in 4.1.4 highly depends on the choice of splitting
s while the retract map R from 4.1.1 is associated to the underlying extension
in a natural way. It is the goal of section 4.1.2 to find a splitting s such that
R = Rs holds. This is, however, not always possible. It can even happen that
the underlying extension splits while R is not of the form Rs for any splitting
s (cf. remark 4.3.3). Under suitable conditions, we will at least be able to
arrange R = Rs outside of a compact set K ⊂ X , i.e. we can find a (not

necessarily multiplicative) splitting map s such that B
s−→ A → Cb(X,Mn) is

multiplicative on X\K so that Rs(x) is still well-defined and coincides with
R(x) for all x ∈ Prim(A)\K.

4.1.2 Lifting the Busby map

In this section we identify conditions on an extension

0 // C0(X,MN ) // A // B //?}}
0 [τ ]

which allow us to contruct a splitting s : B → A. This is evidently the same as
asking for a lift of the corresponding Busby map τ as indicated on the left of
the commutative diagram

C(βX,MN )

̺

����

∏
i∈I
C(βXi,MN )

����

B
τ //

s
77

⊕τi
66

C(χ(X),MN ) // //
∏
i∈I
C(χ(Xi),MN ).

We will produce a suitable lift of τ in two steps:

1. For every component Xi of X , we trivialize the map τi : B →
C(χ(Xi),MN ), i.e. we conjugate it to a constant map, so that it can
be lifted to C(βXi,MN ). This step requires the associated retract map
R from 4.1.1 to have pointwise finite image and the spaces χ(Xi) to be
connected and low-dimensional.
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2. We extend the collection of lifts for the τi’s to a lift for τ . Here we need
the associated retract map R to be lower semicontinuous.

In many cases of interest, the spaces χ(Xi) will not be connected, so that we
have to modify the first step of the lifting process. This results in the fact that
we cannot find a (multiplicative) split s in general. Instead we will settle for a
lift s of τ with slightly weaker multiplicative properties.
First we give the connection between the retract map R and the Busby map τ
of the extension.

Lemma 4.1.5. Let a short exact sequence

0 // I // A
π // B // 0

with Busby map τ : B → Q(I) be given. Identifying Prim(I) with the open sub-
set {J |I * J} of Prim(A) and denoting by ∂ Prim(I) its boundary in Prim(A),
the following statements hold:

(i) J ∈ ∂ Prim(I)⇔ I + I⊥ ⊆ J for every J ∈ Prim(A),

(ii) ∂ Prim(I) = {J : ker(τ ◦ π) ⊆ J} ∼= Prim(τ(B)).

If in addition I is subhomogeneous, we further have

(iii) |∂ Prim(I)| <∞⇔ dim(τ(B)) <∞.

Proof. For (i) it suffices to check that Prim(I⊥) = Prim(A)\Prim(I) where I⊥

denotes the annihilator of I in A. But this follows directly from the definition
of the Jacobson topology on Prim(A):

J /∈ Prim(I) ⇔ ⋂
K∈Prim(I)

K * J

⇔ ∃x ∈ A : x /∈ J while ‖x‖K = 0 ∀ K ∈ Prim(I)
⇔ ∃x ∈ I⊥ : x /∈ J
⇔ I⊥ * J
⇔ J ∈ Prim(I⊥).

As I⊥ = ker(A→M(I)), one finds ker(τ ◦ π) = I + I⊥. Together with (i) this
shows

Prim(τ(B)) = Prim((τ ◦ π)(A))
∼= {J ∈ Prim(A) : ker(τ ◦ π) ⊆ J}
= {J ∈ Prim(A) : I + I⊥ ⊆ J}
= ∂ Prim(I).

For the last statement note that if all irreducible representations of I have
dimension at most n, the same holds for all irreducible representations π of
A with ker(π) contained in Prim(I). So by the correspondence described in
(ii), irreducible representations of τ(B) are also at most n-dimensional. Hence,
in this case, finitenesss of ∂ Prim(I) is equivalent to finite-dimensionality of
τ(B).
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For technical reasons we would prefer to work with unital extensions. However,
it is not clear whether unitization preserves the regularity of R, i.e. whether
the retract map associated to a unitized extension 0 → C0(X,MN ) → A+ →
B+ → 0 is lower semicontinuous provided that the retract map associated to
the original extension is. As the next lemma shows, this is true and holds in
fact for more general extensions.

Lemma 4.1.6. Let a locally compact space X with clopen connected components
and a commutative diagram

0

��

0

��
0 // C0(X,MN ) // A //

��

B //

��

0

0 // C0(X,MN ) // C //

π

��

D //

��

0

F

��

F

��
0 0

of short exact sequences of separable C∗-algebras be given. Let R : Prim(A)→
2Prim(B) (resp. S : Prim(C) → 2Prim(D)) be the set-valued retract map asso-
ciated to the upper (resp. the lower) horizontal sequence as in 4.1.1. If the
quotient F is a finite-dimensional C∗-algebra, then the following holds:

1. If R has pointwise finite image, then so does S.

2. If R is lower semicontinuous, then so is S.

Proof. (1) This is immediate since Prim(F ) is a finite set and one easily verifies
S(x) ⊆ R(x) ∪ Prim(F ) for all x ∈ X .
(2) We may assume that F is simple and hence π is irreducible. Note that
S(J) = R(J) for all J ∈ Prim(B) ⊂ Prim(D), while for x ∈ X we have either
S(x) = R(x) or S(x) = R(x) ∪ {[π]}. Given a closed subset K ⊆ Prim(D),
we need to verify that {J ∈ Prim(C) : S(J) ⊆ K} is closed in Prim(C). If
[π] ∈ K, then {J ∈ Prim(C) : S(J) ⊆ K} = {J ∈ Prim(A) : R(J) ⊆ K} ∪ {[π]}
is closed in Prim(C) because {J ∈ Prim(A) : R(J) ⊆ K} is closed in Prim(A)
by semicontinuity of R. Now if [π] /∈ K, the only relevant case to check is a
sequence xn ⊂ X converging to x ∈ Prim(D) with S(xn) ⊆ K for all n. We
then need to show that S(x) = x ∈ K as well. Decompose X =

⋃
i∈I Xi into its

clopen connected components and write xn ∈ Xin for suitable in ∈ I. We may
assume that in 6= im for n 6= m since otherwise x ∈ ∂Xin = S(xn) for some
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n. Since R is lower semicontinuous, we know that the boundary of
⋃
nXin in

Prim(A) is contained in K ∩ Prim(A) and hence ∂ (
⋃
nXin) ⊂ K ∪ {[π]} in

Prim(C).
Let p denote the projection of C0(X,MN ) onto C0(

⋃
nXin ,MN ). This map

canonically extends to p and p making the diagram

0 // C0(X,Mk) //

p
����

C //

p
��

D //

p
��

0

0 //
⊕
n
C0(Xin ,MN ) //

⊆
��

∏
n
C(βXin ,MN ) //

∏
n C(βXin ,MN )⊕
n C0(Xin ,MN )

//

q
����

0

0 //
∏
n
C0(Xin ,MN ) //

∏
n
C(βXin ,MN ) //

∏
n
C(χ(Xin),MN ) // 0

commute. Using Lemma 4.1.5, we can indentify the boundary of
⋃
nXin in

Prim(C) with Prim
(
p(D)

)
. We already know that p factors through DK ⊕

F , where DK denotes the quotient corresponding to the closed subset K of
Prim(D), and denote the induced map by ϕ:

D
p //

πK⊕π
""E

EE
EE

EE
EE

E

∏
n C(βXin ,MN)⊕
n C0(Xin ,MN )

DK ⊕ F
ϕ

88pppppp

We further know that the composition q ◦ ϕ|F : F → ∏
n C(χ(Xin),MN ) van-

ishes because [π] /∈ ∂Xin = R(xn) ⊆ K for all n. Hence the image of F under

ϕ is contained in ker(q) =
∏
n C0(Xin ,MN )⊕
n C0(Xin ,MN ) . But since this C∗-algebra is projec-

tionless and F is finite-dimensional, we find ϕ|F = 0. Consequently, p factors

throughDK which means nothing but x ∈ ∂ (⋃nXin) = Prim
(
p(D)

)
⊆ K.

Lemma 4.1.7. Let X be a connected, compact space of dimension at most 1.
For every finite-dimensional C∗-algebra F ⊆ C(X,Mn) there exists a unitary
u ∈ C(X,Mn) such that uFu∗ is contained in the constant Mn-valued functions
on X.

Proof. Since dim(X) ≤ 1, equivalence of projections in C(X,Mn) is completely
determined by their rank ([Phi07, Proposition 4.2]). In particular, the C∗-
algebra C(X,Mn) has cancellation. Hence [RLL00, Lemma 7.3.2] shows that
the inclusion F ⊂ C(X,Mn) is unitarily equivalent to any constant embedding
ι : F → Mn ⊆ C(X,Mn) with rank(ι(p)) = rank(p) for all minimal projections
p ∈ F .
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Lemma 4.1.8. Let X be a connected, locally compact, metrizable space of di-
mension at most 1. Then every unitary in C(χ(X),Mn) lifts to a unitary in
C(βX,Mn).

Proof. By [Phi07, Proposition 4.2], we have K0(C(αX,Mn)) ∼= Z via [p] 7→
rank(p). Using the 6-term exact sequence in K-theory, this shows that the
induced map K1(C(βX,Mn)) → K1(C(χ(X),Mn)) is surjective. Combining
this with K1-bijectivity of C(βX,Mn), which is guaranteed by dim(βX) =
dim(X) ≤ 1 ([Nag70, Thm. 9.5]) and [Phi07, Theorem 4.7], the claim follows.

Proposition 4.1.9. Let a short exact sequence of separable C∗-algebras

0 // C0(X,MN ) // A // B // 0 [τ ]

with Busby invariant τ be given. Assume that X is at most one-dimensional,
has clopen connected components (Xi)i∈I and that every corona space χ(Xi) has
only finitely many connected components. If the associated set-valued retract
map R as in 4.1.1 has pointwise finite image, then there is a unitary U ∈
C(βX,MN ) such that for each i ∈ I the composition

B
τ−→ C(χ(X),Mn)

Ad(̺(U))−−−−−−→ C(χ(X),MN )→ C(χ(Xi),Mn)

has image contained in the locally constant MN -valued functions on χ(Xi).

Proof. By Lemma 4.1.5, the image of each τi : B
τ−→ C(χ(X),MN ) →

C(χ(Xi),MN ) is finite-dimensional. Since by [Nag70, Thm. 9.5] furthermore
dimχ(Xi) ≤ dimβXi = dimXi ≤ dimX ≤ 1, we can apply Lemma 4.1.7
to obtain unitaries ui ∈ C(χ(Xi),MN ) such that uiτi(B)u∗i is contained in
the locally constant functions on χ(Xi). These unitaries can be lifted to uni-
taries Ui ∈ C(βXi,MN ) by Lemma 4.1.8. Now U = ⊕iUi ∈

∏
i C(βXi,MN ) =

C(βX,MN ) has the desired property.

Lemma 4.1.10. Let a short exact sequence of separable C∗-algebras

0 // C0(X,MN ) // A // B // 0 [τ ]

with Busby map τ be given. Assume that X is at most one-dimensional
and that the connected components (Xi)i∈I of X are clopen. Further as-
sume that the image of τ is constant on each χ(Xi) ⊆ χ(X). Denote by
ι : A → M(C0(X,MN )) = C(βX,MN ) the canonical map. If the set-valued
retract map R : Prim(A) → 2Prim(B) as defined in 4.1.1 is lower semicontinu-
ous, the following statement holds:
For every finite set G ⊂ A, every ǫ > 0 and almost every i ∈ I there exists a
unitary Ui ∈ C(αXi,MN ) ⊂ C(βXi,MN ) such that

∥∥(Uiι(a)|βXiU∗i )(x) − ι(a)(y)
∥∥ < ǫ

holds for all a ∈ G, x ∈ βXi and y ∈ χ(Xi).
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Proof. We may assume that A is unital by Lemma 4.1.6. Let a finite set G ⊂ A
and ǫ > 0 be given. For each x ∈ βX , we write Fx = im(evx ◦ι) ⊆MN and

T1(Fx) = {f ∈ C([0, 1], Fx) : f(0) ∈ C · 1Fx},

S1(Fx) = {f ∈ C0([0, 1), Fx) : f(0) ∈ C · 1Fx}.
Further let hη ∈ C0[0, 1) denote the function t 7→ max{1 − t − η, 0}. Using
the Urysohn-type result [ELP98, Theorem 2.3.3], we find for each x ∈ βX a
commuting diagram

0 // Jx // A
evx ◦ι // Fx // 0

0 // S(C, Fx)

ϕx

OO

// T (C, Fx)

ϕx

OO

ev1

// Fx //

sx
ww

0

such that ϕx is unital and ϕx is proper. Let sx : Fx → T (C, Fx) be any map
satisfying sx(b)(t) = b for t ≥ 1/2, so that in particular ev1 ◦sx = idFx holds.
Now consider

Vx,δ = {y ∈ βX : (evy ◦ι)(ϕx(hδ)) = 0}
which is, for δ > 0, a closed neighborhood of x in βX . Note that by assumption
χ(Xi) ∩ Vx,δ 6= ∅ implies χ(Xi) ⊆ Vx,δ. We further claim the following: For
almost every i ∈ I the inclusion χ(Xi) ⊆ Vx,δ implies Xi ⊂ Vx,2δ. Assume
otherwise, then we find pairwise different in ∈ I, points xn ∈ Xin such that
χ(Xin) ⊆ Vx,δ while xn /∈ Vx,2δ for all n. We may assume that evxn ◦ι converges
pointwise to a representation π. Then

‖π(ϕx(hδ))‖ = lim
n
‖(evxn ◦ι ◦ ϕx)(hδ)‖ ≥ δ

since xn 6= Vx,2δ implies that evxn ◦ι ◦ ϕ contains irreducible summands cor-
responding to evaluations at points t with t < 1 − 2δ. On the other hand,
since the retract map R is lower semicontinuous, we find each irreducible sum-
mand of π to be the limit of irreducible subrepresentations ̺n of evyn ◦ι where
yn ∈ χ(Xin) ⊆ Vx,δ. Hence

‖π(ϕx(hδ))‖ ≤ lim inf
n
‖̺n(ϕx(hδ))‖ = 0

by 2.2.4, giving a contradiction and thereby proving our claim.
Since ϕx is proper, we have Jx =

⋃
η>0 her(ϕx(hη)). Hence there exists 1/2 >

δ(x) > 0 such that

inf
{
‖(a− (ϕx ◦ sx ◦ evx ◦ι)(a))− b‖ : b ∈ her(ϕx(h2δ(x)))

}
<
ǫ

2

for all a ∈ G. By compactness of χ(X), we find x1, ..., xm such that

χ(X) ⊆
m⋃

j=1

Vxj ,δ(xj).
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Then by the claim proved earlier, for almost every i with χ(Xi) ⊆ Vxj ,δ(xj) we
have a factorization as indicated

A

evxj ◦ι
��

πj

)) ))RRRRRRRRRRRRRRRRR
ι //

∏
i C(αXi,MN ) // C(αXi,MN ),

Fxj
πj◦ϕxj ◦sxj

// A/〈ϕxj (h2δ(xj))〉
ιi

66mmmmmmm

where 〈ϕxj (h2δ(xj))〉 denotes the ideal generated by ϕxj (h2δ(xj)) and πj the
corresponding quotient map. By the choice of δ(xj), the lower left triangle
commutes up to ǫ/2 on the finite set G. Also note that the map πj ◦ ϕxj ◦ sxj
is multiplicative.
Finally, by Lemma 4.1.7 there exists a unitary Ui ∈ C(αXi,MN ) such that
Ad(Ui) ◦ (ιi ◦ πj ◦ ϕxj ◦ sxj ) is a constant embedding. Of course, we may
arrange U(∞) = 1. We then verify

‖(Uiι(a)|βXiU∗i )(x) − ι(a)(y)‖
≤ ‖(Ui(ιi ◦ πj ◦ ϕxj ◦ sxj )((evxj ◦ι)(a))U∗i )(x) − (ιi ◦ πj)(a)(y)‖ + ǫ

2

≤ ‖(Ui(ιi ◦ πj ◦ ϕxj ◦ sxj )((evxj ◦ι)(a))U∗i )(y)− (ιi ◦ πj)(a)(y)‖ + ǫ
2

= ‖(ιi ◦ (πj ◦ ϕxj ◦ sxj ) ◦ (evxj ◦ι))(a)(y) − (ιi ◦ πj)(a)(y)‖ + ǫ
2

≤ ǫ.

Applying this procedure to each of the finitely many points x1, ..., xm, the
statement of the lemma follows.

Using Lemma 4.1.10 we can now construct a split for our sequence of interest
- at least in the case of τ(B) being constant on each χ(Xi).

Corollary 4.1.11. If 0→ C0(X,MN )→ A→ B → 0 is a short exact sequence
of separable C∗-algebras such that the assumptions of Lemma 4.1.10 hold, then
this sequence splits.

Proof. Let τ : B → Q(C0(X,MN )) = C(χ(X),MN ) denote the Busby map of
the sequence. We have the canonical commutative diagram

0 //⊕
i C0(Xi,MN ) // C(βX,MN )

̺ // C(χ(X),MN ) // 0

0 // C0(X,MN ) // A
π //

ι

OO

B //

τ

OO

0.

Choose points yi ∈ χ(Xi) for every i ∈ I. Using separability of A and Lemma
4.1.10, we find a unitary U ∈ ∏i C(αXi,MN ) ⊂∏i C(βXi,MN ) = C(βX,MN )
with

Uι(a)U∗ −
∏

i

ι(a)(yi) · 1αXi ∈
⊕

i

C0(Xi,MN )
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for all a ∈ A (where ι(a)(yi) · 1αXi denotes the function on αXi with constant
value ι(a)(yi)). By setting s(π(a)) = U∗ (

∏
i(ι(a)(yi) · 1αXi)U we find s : B →

C(βX,MN ) with (̺ ◦ s)(π(a)) = (̺ ◦ ι)(a) = τ(π(a)) by the formula above.
Identifying A with the pullback over ̺ and τ , we can regard s as a map from
B to A with π ◦ s = idB, i.e. we have constructed a split for the sequence.

As the example 0 → C0(0, 1) → C[0, 1] → C2 → 0 shows, we cannot expect
extensions by C0(X,MN) to split if the corona space of X (or of one of its
components) is not connected. We will now deal with these components and
show that one can still obtain a split s : B → A which, though not multiplicative
in general, has still good multiplicative properties.

Lemma 4.1.12. Let 0 → C0(X,MN ) → A → B → 0 be a short exact sequence
with Busby map τ . Assume that the corona space χ(X) of X has only finitely
many connected components and that the image of τ is contained in the locally
constant functions on χ(X). Then there exists a compact set K ⊂ X and a
completely positive split s : B → C(βX,MN ) which is multiplicative outside of
an open set U ⊂ K.

Proof. Let χ(X) =
⋃K
k=1 Yk be the decomposition of the corona space into its

connected components. By assumption τ decomposes as ⊕Kk=1τk with im(τk) ⊂
MN ·1Yk ⊆ C(χ(X),MN ). Lift the indicator functions 1Y1 , · · · , 1YK to pairwise
orthogonal contractions h1, · · · , hK in C(βX,C · 1MN ) and let f : [0, 1]→ [0, 1]
be the continuous function which equals 1 on

[
1
2 , 1
]
, satisfies f(0) = 0 and is

linear in between. We define a completely positive map s : B → C(βX,MN ) by

s(b)(x) =
∑K

k=1 τk(b) · f(hk)(x) and check that in the diagram

A
ι //

��

C(βX,MN )

��
B

τ //

s

99sss
sss C(χ(X),MN )

the right triangle commutes. Set K =
⋂K
k=1 h

−1
k ([0, 12 ]) ⊂ X , then s is multi-

plicative outside of the open set U =
⋂K
k=1 h

−1
k ([0, 12 )) ⊂ K ⊂ X .

Proposition 4.1.13. Let 0 → C0(X,MN ) → A → B → 0 be a short exact
sequence of separable C∗-algebras with Busby map τ . Assume that X is at
most one-dimensional and has clopen connected components (Xi)i∈I . Further
assume that each corona space χ(Xi) has only finitely many connected compo-
nents and that χ(Xi) is connected for almost all i ∈ I. If for each i ∈ I the

image of τi : B
τ−→ C(χ(X),MN )→ C(χ(Xi),MN ) is locally constant on χ(Xi)

and the set-valued retract map R : Prim(A) → 2Prim(B) as in 4.1.1 is lower
semicontinuous, the following holds: There exists a compact set K ⊂ X and a
completely positive split s : B → C(βX,MN ) which is multiplicative outside of
an open set U ⊂ K.
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Proof. Let I0 ⊆ I be a finite set such that χ(Xi) is connected for every i ∈
I1 := I\I0. We may then study the extensions (∗ = 0 or 1)

0 //
⊕
i∈I
C0(Xi,MN ) //

prI∗
����

A // B //

ϕ∗

��

0

0 //
⊕
i∈I∗
C0(Xi,MN ) // A //

ι∗

��

A/
⊕
i∈I∗
C0(Xi,MN ) //

τ∗

��

s∗

wwp p p p p p
0

0 //
⊕
i∈I∗
C0(Xi,MN ) //

∏
i∈I∗
C(βXi,MN ) //

∏
i∈I∗

C(βXi,MN )⊕
i∈I∗

C0(Xi,MN )
// 0

with Busby maps τ∗. Denote the map B → A/
⊕

i∈I∗ C0(Xi,MN ) induced
by the projection prI∗ by ϕ∗. It is now easy to check that for ∗ = 1 the short
exact sequence in the middle row satisfies the assumptions of Lemma 4.1.10 and
hence admits a splitting s1 by Corollary 4.1.11. For ∗ = 0, we apply Lemma
4.1.12 to obtain a compact set K ⊂ ⊔i∈I0 Xi and a completely positive split
s0 which is multiplicative outside of an open set U ⊂ K ⊂ ⊔i∈I0 Xi. Setting
s = s0 ◦ϕ0⊕ s1 ◦ϕ1, we now get a split for the original sequence. In particular,
̺ ◦ s = τ holds due to the commutative diagram

0 // C0(X,MN ) // A //

ι0⊕ι1
��

B //

τ0⊕τ1
��

s

vvm m m m m m m m

τ

��

0

0 //
⊕
∗=0,1

⊕
i∈I∗
C0(Xi,MN ) //

⊕
∗=0,1

∏
i∈I∗
C(βXi,MN ) //

⊕
∗=0,1

∏
i∈I∗

C(βXi,MN )⊕
i∈I∗

C0(Xi,MN )
// 0

0 //
⊕
i∈I
C0(Xi,MN ) //

∏
i∈I
C(βXi,MN ) ̺ //

∏
i∈I C(βXi,MN )⊕
i∈I C0(Xi,MN)

// 0.

Summarizing the results of this section, we obtain the following.

Theorem 4.1.14. Let a short exact sequence of separable C∗-algebras

0 // C0(X,MN ) // A // B // 0 [τ ]

with Busby map τ be given. Assume that X satisfies the conditions

1. dimX ≤ 1,

2. the connected components (Xi)i∈I of X are clopen,

3. each χ(Xi) has finitely many connected components,
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4. almost all χ(Xi) are connected,

then the following holds: If the associated set-valued retract map
R : Prim(A)→ 2Prim(B) given as in 4.1.1 by

R(z) =

{
z if z ∈ Prim(B)

∂Xi = Xi\Xi if z ∈ Xi ⊆ X

is lower semicontinuous and has pointwise finite image, then there exists a
compact set K ⊂ X and a completely positive split s : B → A for the sequence
such that the composition

B
s // A //M(C0(X,MN )) = Cb(X,MN )

is multiplicative outside of an open set U ⊂ K.

Proof. Note that we can replace the given extension by any strongly unitarily
equivalent one (in sense of [Bla06, II.8.4.12]) without changing the retract map
R. Hence, by Proposition 4.1.9, we may assume that the image of τ is locally
constant on each χ(Xi). Now Proposition 4.1.13 provides a split s with the
desired properties.

4.1.3 Retract maps for semiprojective extensions

We now verify the regularity properties for the set-valued retract map
R : Prim(A) → 2Prim(B) associated to an extension 0 → C0(X,MN ) → A →
B → 0 in the case that both the ideal C0(X,MN ) and the extension A are
semiprojective C∗-algebras.

First we need the following definition which is an adaption of 2.1.2 and 2.1.3
to the setting of pointed spaces.

Definition 4.1.15. Let (X, x0) be a pointed one-dimensional Peano continuum
and r : X → core(X) the first point map onto the core of X as in 2.1.3 (where
we choose core(X) to be any point x 6= x0 if X is contractible). Denote the
unique arc from x0 to r(x0) by [x0, r(x0)], then we say that

core(X, x0) := core(X) ∪ [x0, r(x0)]

is the core of (X, x0). It is the smallest subcontinuum of X which contains both
core(X) and the point x0.

Now let X be a non-compact space with the property that its one-point com-
pactification αX = X ∪ {∞} is a one-dimensional ANR-space. We are inter-
ested in the structure of the space X at around infinitity (i.e. outside of large
compact sets) which is reflected in its corona space χ(X) = βX\X . At least
some information about χ(X) can be obtained by studying neighborhoods of
the point∞ in αX . The following lemma describes some special neighborhoods
which relate nicely to the finite graph core(αX,∞).
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Lemma 4.1.16. Let X be a connected, non-compact space such that its one-
point compactification αX = X ∪ {∞} is a one-dimensional ANR-space. Fix
a geodesic metric d on αX (which exists by [Bin49], [Moi49]), then for any
compact set C ⊂ αX\{∞} there exists a closed neighborhood V of ∞ with the
following properties:

(i) {x ∈ X : d(x,∞) ≤ ǫ} ⊆ V ⊆ X\C for some ǫ > 0.

(ii) V ∩core(αX,∞) is homeomorphic to the space of K many intervals [0, 1]
glued together at the 0-endpoints with K = order(∞, core(αX,∞)). The
gluing point corresponds to ∞ under this identification.

Let D(k) ⊆ V denote the k-th copy of [0, 1] under the identification described
above and let r be the first point map onto core(αX,∞). We can further ar-
range:

(iii) V =
⋃K
k=1 r

−1 (D(k)
)
and r−1

(
D(k )

)
∩ r−1

(
D(k′)

)
= {∞} for k 6= k′.

(iv) The connected components of V \{∞} are given by V (k) :=
r−1

(
D(k)\{∞}

)
.

(v) Every path in V from x ∈ V (k) to x′ ∈ V (k′) with k 6= k′ contains ∞.

Proof. We first note that r−1({∞}) ∩X is open. Assume there is x ∈ X with
r(x) = ∞ and d(x,∞) = r > 0. Then given any y ∈ X with d(x, y) < r we
choose an isometric arc α : [0, d(x, y)] → αX from x to y. Now the arc from y
to ∞ given by first following α in reverse direction and then going along the
unique arc from x to ∞ must run through r(y) by 2.1.3. Since every point
on the second arc gets mapped to ∞ by r, we find either r(y) = ∞ or there
is 0 < t < d(x, y) such that α(t) = r(y) ∈ core(αX,∞). In the second case,
the arc α|[0,t] must run through r(x) = ∞ which, using the fact that α was
isometric, gives the contradiction d(x,∞) < t < d(x, y) < r. Since r−1({∞})
is also closed, connectedness of X implies in fact r−1({∞}) = {∞}.
By definition ofK (see section 2.1), the closed set {x ∈ core(αX,∞) : d(x,∞) ≤
ǫ} satisfies the description in (ii) for all sufficiently small ǫ > 0. We set

V = {x ∈ αX : d(r(x),∞) ≤ ǫ},

then V ∩core(αX,∞) = r(V ) = {x ∈ core(αX,∞) : d(x,∞) ≤ ǫ} so that condi-
tion (ii) is satisfied. For (i), we observe that d(x,∞) ≤ ǫ implies d(r(x),∞) ≤ ǫ
since d is geodesic and every arc from x to ∞ runs through r(x). Since
∞ /∈ r(C), we have min{d(r(x),∞) : x ∈ C} > 0 and therefore V ∩ C = ∅
for ǫ sufficiently small. Condition (iii) follows immediately from the definition
of V . The sets V (k) are connected and open by construction, so that (iv) holds.
(v) follows from (iv).

We now collect some information about the corona space χ(X) in the case
of connected X . These observations are mostly based on the work of Grove
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and Pedersen in [GP84] and the graph-like structure of one-dimensional ANR-
spaces.

Lemma 4.1.17. Let X be a connected, non-compact space such that its one-
point compactification αX is a one-dimensional ANR-space. Then the corona
space χ(X) has covering dimension at most 1 and its number of connected
components is given by K = order(∞, core(αX,∞)) <∞. In particular, if αX
is a one-dimensional AR-space, then χ(X) is connected.

Proof. Apply Lemma 4.1.16 to (αX,∞). It is straightforward to check that
the map

C(χ(X)) = Cb(X)/C0(X)→
K⊕

k=1

Cb(V (k))/C0(V (k)) =

K⊕

k=1

C(χ(V (k)))

is an isomorphism. Therefore we find χ(X) =
⊔K
k=1 χ(V

(k)) and it suffices to
check that each χ(V (k)) is connected. By Proposition 3.5 of [GP84], it is now
enough to show that each V (k) is connected at infinity. So let a compact set
C1 ⊂ V (k) be given and denote by r : V (k) ∪ {∞} → D(k) the first point map.
Using the identification [0, 1] ∼= D(k) where the point 0 corresponds to the point
∞, we find t > 0 such that r(C1) ⊂ [t, 1]. But C2 := r−1([t, 1]) is easily seen to
be compact while V (k)\C2 = r−1((0, t)) is path-connected by definition of r.
For the dimension statement we note that dim(χ(X)) ≤ dim(βX) = dim(X) ≤
1 by [Nag70, Theorem 9.5].

Remark 4.1.18. The assumption that X is connected in 4.1.17 is necessary.
If we drop it, the corona space χ(X) may no longer have finitely many con-
nected components, but the following weaker statement holds: If αX is a one-
dimensional ANR-space, so will be αXi for any connected component Xi of X.
However, it follows from 2.1.7 that all but finitely many components lead to
contractible spaces αXi, i.e. to one-dimensional AR-spaces. Since in this case
core(αXi,∞) is just an arc [x,∞] for some x ∈ Xi, we see from Lemma 4.1.17
that χ(Xi) is connected for almost every component Xi of X.

We will now see that, in the situation described in the beginning of this section,
the set-valued retract map R has pointwise finite image, i.e. |R(z)| <∞ for all
z ∈ Prim(A). The cardinality of these sets is in fact uniformly bounded and we
give an upper bound which only depends on N and the structure of the finite
graph core(αX,∞).

Proposition 4.1.19. Let A be a semiprojective C∗-algebra containing an ideal
of the form C0(X,MN ). If αX = X ∪ {∞} is a one-dimensional ANR-space,
then every connected component C of X has finite boundary ∂C = C\C in
Prim(A). More precisely, we find

|∂C| ≤ N · order(∞, (αC,∞)) <∞.
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Proof. Since X is locally connected, the connected components of X are clopen
and αC is again a one-dimensional ANR-space for every component C of X .
Hence we may assume that C = X . Fix a geodesic metric d on αX = X ∪{∞}
([Bin49], [Moi49]) and let V be a neighborhood of∞ as constructed in Lemma
4.1.16, satisfying {x ∈ αX : d(x,∞) ≤ ǫ} ⊆ V for some ǫ > 0. We further

choose sequences (x
(k)
n )n ⊆ D(k)\{∞} converging to ∞ and write x

(1)
∞ = · · · =

x
(K)
∞ = ∞. By compactness of the unit ball in MN and separability of A, we

may assume that the representation

π(k) : A→MN , a 7→ lim
n→∞

a(x(k)n )

exists for all 1 ≤ k ≤ K. Here, a(x) denotes the image of a ∈ A under the
extension of the point evaluation evx : C0(X,MN )→MN to A. For a sequence
(xn)n in X ⊆ Prim(A) we write Lim(xn) = {z ∈ Prim(A) : xn → z}. Our goal
is then to show that there exists a finite set S ⊂ Prim(A) such that Lim(xn) ⊂ S
for every sequence (xn)n ⊂ X with xn → ∞ in αX . We will show that each

S(k) := Lim(x
(k)
n ) consists of at most N elements and that S :=

⋃K
k=1 S

(k) has
the desired property described above. First observe that

S(k) =
{[
π
(k)
1

]
, . . . ,

[
π
(k)
r(k)

]}

holds, where π(k) ≃ π(k)
1 ⊕· · ·⊕π

(k)
r(k) is the decomposition of π(k) into irreducible

summands. The ⊇-inclusion is immediate, for the other direction assume that

x
(k)
n → ker(̺) for some irreducible representation ̺ with ̺ 6≃ π(k)

i for all i. Since

all x
(k)
n correspond to N -dimensional representations, we also have dim(̺) ≤ N .

Therefore all π
(k)
i and ̺ drop to irreducible representations of the maximal N -

subhomogeneous quotient A≤N of A (cf. section 2.2). Because Prim(A≤N ) is

a T1-space, the finite set {[π(k)
1 ], . . . , [π

(k)
r(k)]} is closed and [̺] can be separated

from it. In terms of 2.2.4, this means that there exists a ∈ A such that ‖̺(a)‖ >
1 while ‖π(k)

i (a)‖ ≤ 1 for all i. On the other hand, we find

‖̺(a)‖ ≤ lim inf
n→∞

∥∥∥a(x(k)n )
∥∥∥ =

∥∥∥π(k)(a)
∥∥∥ = max

i=1...r(k)

∥∥∥π(k)
i (a)

∥∥∥ ≤ 1,

using 2.2.4 again. Hence [̺] = [π
(k)
i ] for some i and in particular

∣∣S(k)
∣∣ =

r(k) ≤ N for every k.

It now suffices to show that Lim(xn) ⊆ S(k) for sequences (xn) ⊂ X with
xn → ∞ such that r(xn) ∈ D(k) for some fixed k and all n. Let such a
sequence (xn)n for some fixed k be given and pick z ∈ Lim(xn). In order to
show that z ∈ S(k), we consider the compact spaces

Yn :=

{
(t, t)|0 ≤ t ≤ 1

n

}
∪
⋃

m≥n

({
1

m

}
×
[
0,

1

m

])
⊂ R2.
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Note that Yn+1 ⊂ Yn and
⋂
n Yn = (0, 0). We will now ’glue’ C(Yn,MN ) to

A in the following way: As before, we may assume that xn → z in Prim(A)
and that π∞(a) = limn a(xn) exists for every a ∈ A. In particular, we find
z = [πi,∞] for some i where π∞ ≃ π1,∞ ⊕ · · · ⊕ πr∞,∞ is the decomposition
of π∞ into irreducible summands. Let c denote the C∗-algebra of convergent
MN -valued sequences, we can then form the pullback An := A ⊕c C(Yn,MN )
over the two ∗-homomorphisms

A −→ c
a 7→ (a(xn), a(xn+1), a(xn+2), . . . )

and
C(Yn,MN ) −→ c.

f 7→ f(( 1n , 0), f(
1

n+1 , 0), f(
1

n+2 , 0), . . . )

These pullbacks form an inductive system in the obvious way. Further note
that the connecting maps An → An+1 are all surjective. The limit lim−→An can
be identified with A via the isomorphism induced by the projections An =
A⊕c C(Yn,MN )→ A onto the left summand. Using semiprojectivity of A, we
can find a partial lift to some finite stage An of this inductive system:

An = A⊕c C(Yn,MN ) //

����

C(Yn,MN )

C0(X,MN )
⊆ // A

∼= //

77ooooooo lim−→An

Let ϕ : A → C(Yn,MN ) be the composition of this lift with the projection
An → C(Yn,MN ) to the right summand. The restriction of ϕ to the ideal
C0(X,MN ) then induces a continuous map ϕ∗ : Yn → αX with ϕ∗

(
1
m , 0

)
= xm

for all m ≥ n and ϕ∗(0, 0) = ∞. Denote by h the strictly positive element of
C0(X,MN ) given by h(x) = d(x,∞) · 1MN . After increasing n, we may assume
that ‖ϕ(h)‖ < ǫ holds. For m ≥ n, we consider the paths αm :

[
0, 2

m

]
→ Yn

given by

αm(t) =

{(
1
m , t

)
if 0 ≤ t ≤ 1

m(
2
m − t, 2

m − t
)

if 1
m ≤ t ≤ 2

m .

Set t∞,m = min{t : ϕ(h)(αm(t)) = 0}, then 0 < t∞,m ≤ 2
m because

of ‖ϕ(h)(αm(0))‖ = ‖ϕ(h)( 1
m , 0)‖ = ‖h(xm)‖ = d(xm,∞) > 0 and

ϕ(h)(αm( 2
m)) = ϕ(h)(0, 0) = h(∞) = 0. By setting βm(t) = ϕ∗(αm(t)) we

obtain paths βm : [0, t∞,m]→ αX which have the properties

(1) βm(0) = xm,
(2) βm(t) =∞ if and only if t = t∞,m,
(3) im(βm) ⊆ V (k) for all m,

(4) x
(k)
l ∈ im(βm) for fixed m and all sufficiently large l.
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The first property is clear while the second one follows directly from the def-
inition of t∞,m. In order to verify properties (3) and (4) we have to in-
volve the structure of the neighborhood V and by that the special struc-
ture of αX as a one-dimensional ANR-space. From ‖ϕ(h)‖ < ǫ we obtain
im(βm) ⊆ im(αm) ⊆ {x ∈ αX : d(x,∞) ≤ ǫ} ⊆ V , it then follows from (1),
(2) and property (v) in Lemma 4.1.16 that im(βm) ⊆ V (k). For (4), observe
that im(βm) contains r(im(βm)) by part (ii) of Lemma 2.1.4, where r is the
first-point map αX → core(αX,∞). Under the identification D(k) ∼= [0, 1],
the connected set r(im(βm)) corresponds to a proper interval containing the

0-endpoint and hence it contains x
(k)
l for almost every l.

Now set πm = evβ(t∞,m) ◦ϕ : A→MN and let πm ≃ π1,m ⊕ · · · ⊕ πrm,m be the
decomposition into irreducible summands. We claim that the identity

S(k) = {[π1,m] , · · · , [πrm,m]}

holds for all m. Involving property (4) for the path βm, we find

‖πm(a)‖ = lim
tրt∞,m

∥∥(evβ(t) ◦ϕ)(a)
∥∥ = lim

l→∞

∥∥∥a
(
x
(k)
l

)∥∥∥ =
∥∥∥π(k)(a)

∥∥∥

for every fixed m and all a ∈ A. Now the same separation argument as in the
beginning of the proof shows that the finite-dimensional representations π(k)

and πm share the same irreducible summands for every m. Since βm(t∞,m)→
(0, 0) in Yn, we find πm = evβ(t∞,m) ◦ϕ → ev(0,0) ◦ϕ = π∞ pointwise. Hence

by the above identity, π∞ and π(k) also share the same irreducible summands.
In particular, we find z ∈ S(k) which finishes the proof.

Next, we show that in our situation the set-valued retract map R is also lower
semicontinuous in the sense of 4.1.2.

Proposition 4.1.20. Let 0 → C0(X,MN ) → A → B → 0 be a short exact
sequence of separable C∗-algebras. If αX is a one-dimensional ANR-space and
A is semiprojective, then the associated retract map R as in 4.1.1 is lower
semicontinuous.

Proof. Let X =
⊔
i∈I Xi denote the decomposition of X into its connected

components. By separability of A it suffices to verify condition (iii) of Lemma
4.1.2 for a given sequence xn → z in Prim(A). The case z ∈ X is trivial since
X is locally connected and therefore has open connected components. The
critical case is when xn ∈ X for all n but z ∈ Prim(B). In this case, we write
xn ∈ Xin and we may assume that π∞(a) = limn a(xn) is well defined for all
a ∈ A. In particular, z corresponds to the kernel of an irreducible summand
πj,∞ of π∞ ≃ π1,∞ ⊕ · · · ⊕ πr,∞, as we have already seen in the beginning of
the proof of Proposition 4.1.19. Using exactly the same construction of ’gluing
the space Y to A along the sequence (xn)’ as in the proof of 4.1.19, one now
shows that

{[π1,∞], · · · , [πr,∞]} ⊆
⋃

n

∂Xin .
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Hence we find yn ∈ ∂Xin = R(xn) with yn → [πj,∞] = z showing that the
retract map R is in fact lower semicontinuous.

4.2 Existence of limit structures

Consider an extension of separable C∗-algebras

0→ C0(X,MN )→ A→ B → 0

where the one-point compactification of X is assumed to be a one-dimensional
ANR-space. We know from Theorem 2.1.5 that in this case αX comes as a
inverse limit of finite graphs over a surprisingly simple system of connecting
maps. Here we show that under the right assumptions on the set-valued re-
tract map R : Prim(A)→ 2Prim(B) associated to the sequence above, this limit
structure for αX is compatible with the extension of B by C0(X,MN ) in the
following sense: We prove the existence of a direct limit structure for A which
describes it as the C∗-algebra B with a sequence of non-commutative finite
graphs (1-NCCW’s) attached. The connecting maps of this direct system are
obtained from the limit structure for αX and hence can be described in full
detail.

Lemma 4.2.1. Let a short exact sequence of separable C∗-algebras
0 → C0(X,MN ) → A → B → 0 with Busby map τ be given. Assume
that αX is a one-dimensional ANR-space and that the associated set-valued
retract map R : Prim(A) → 2Prim(B) as in 4.1.1 is lower semicontinuous
and has pointwise finite image. Then A is isomorphic to the direct limit
B∞ = lim−→

(
Bi, s

i+1
i

)
of an inductive system

B0
s10

// B1
s21

//

r01
{{{{

B2
//

r12
{{{{

· · ·
sii−1

//
{{{{

Bi //

s∞i

66

ri−1
i

}}}} · · · // B∞

ri∞

vvvv

where

• B0 is given as a pullback B ⊕F D with D a 1-NCCW and dim(F ) <∞.
Furthermore, if αX is contractible, we may even arrange B0

∼= B.

and

• for every i ∈ N there is a representation πi : Bi →MN such that Bi+1 is

defined as the pullback Bi+1

rii+1
����

// C([0, 1],MN)

ev0
����

Bi

si+1
i

CC

πi // MN .

The map si+1
i : Bi → Bi+1 is given by a 7→ (a, πi(a) ⊗ 1[0,1]) and hence

satisfies rii+1 ◦ si+1
i = idBi .
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Proof. Let X =
⊔
j∈J Cj be the decomposition of X into its clopen connected

components. Denote by J1 ⊆ J the subset of those indices for which the corona
space χ(Cj) is connected and note that J0 := J\J1 is finite by Remark 4.1.18.
We have the canonical commutative diagram

0 // C0(X,MN ) // A //

ι0⊕ι1
��

B //

τ0⊕τ1
��

0

0 //
⊕

∗=0,1
j∈J∗

C0(Cj ,MN ) //
⊕
∗=0,1

∏
j∈J∗

C(βCj ,MN )q0⊕q1//
⊕
∗=0,1

∏
j∈J∗

C(βCj ,MN )⊕
j∈J∗

C0(Cj,MN )
// 0

where τ0 ⊕ τ1 is the Busby map τ and the right square is a pullback diagram.
Since we can pass to any strongly unitarily equivalent extension (in the sense of
[Bla06, II.8.4.12]) without changing the retract map R, we can, by Proposition
4.1.9 and the finiteness condition on R, assume that for every j the image of

τj : B
τ−→
∏
j′ C(βCj′ ,MN )⊕
j′ C0(Cj′ ,MN )

→ C(βCj ,MN )

C0(Cj ,MN )
= C(χ(Cj),MN )

is locally constant on χ(Cj), and even constant if j ∈ J1. Furthermore, using
lower semicontinuity of R and arguing as in the proof of Corollary 4.1.11, we
may assume that

ι1(A) ⊆
∏

j∈J1

MN · 1βCj +
⊕

j∈J1

C0(Cj ,MN ).

Next, we write αX = X ∪ {∞} as a limit of finite graphs. By Theorem
2.1.5 we can find a sequence of finite graphs Xi ⊂ Xi+1 ⊂ αX such that
X0 = core(αX,∞) (in the sense of 4.1.15) and each Xi+1 is obtained from
Xi by attaching a line segment [0, 1] at the 0-endpoint to a single point yi of
Xi. Furthermore we have lim←−Xi = αX along the sequence of first point maps

̺i∞ : αX → Xi. We need to fix some notation: Denote the inclusion of Xi

into Xi+1 by ιi+1
i and the retract from Xi+1 to Xi by collapsing the attached

interval to the attaching point yi by ̺
i
i+1. An analogous notation is used for

the inclusion Xi ⊆ αX :

Xi
ιi+1
i

// Xi+1

̺ii+1

yyyy

ι∞i+1

// αX

̺i+1
∞

yyyy

Now for every pair of indices i, j we have Xi ∩ Cj sitting inside Cj . Note that
Xi+1\Xi ∩ Cj(i) 6= ∅ for a unique j(i) ∈ J since ∞ ∈ X0. We define suitable
compactifications αj(Xi ∩ Cj) of Xi ∩ Cj as follows: if X0 ∩ Cj = ∅, we let
αj(Xi ∩ Cj) = α(Xi ∩ Cj) be the usual one-point compactification for any
i ∈ N. In the case X0 ∩ Cj 6= ∅, which will occur only finitely many times,
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we have an inclusion Cb(Xi ∩ Cj) ⊆ Cb(Cj) induced by the surjective retract
̺i∞|Cj : Cj → Xi ∩ Cj and we define αj(Xi ∩Cj) via

C(αj(Xi ∩Cj)) =



f ∈ Cb(Xi ∩ Cj) ⊆ Cb(Cj) = C(βCj) :

f is locally
constant
on χ(Cj)



 .

Since the corona space χ(Cj) has only finitely many connected components by
Lemma 4.1.17, αj(Xi ∩ Cj) will be a finite-point compactification of Xi ∩ Cj
(meaning that αj(Xi∩Cj)\(Xi∩Cj) is a finite set). In particular, αj(Xi∩Cj)
is a finite graph for any pair of indices i and j. We are now ready to iteratively
define the C∗-algebras Bi as the pullbacks over

Bi //

��

B

τ
��∏

j C(αj(Xi ∩Cj),MN )
q //

∏
j C(βCj,MN )⊕
j C0(Cj ,MN )

with respect to the inclusions (̺i∞|Cj)
∗ ⊗ idMN : C(αj(Xi ∩ Cj),MN ) ⊆

C(βCj ,MN ). Let us first simplify the description ofBi. For every fixed i, the set
Xi∩Cj is empty for almost every j ∈ J so that C(αj(Xi∩Cj),MN ) = MN ·1βCj
for almost every j. Given ((fj)j , b) ∈ Bi, this implies fj = τj(b)·1βCj for almost
every j. Hence Bi is isomorphic to the pullback

Bi //

��

B

⊕
j∈J(i)

τj

��⊕
j∈J(i)

C(αj(Xi ∩Cj),MN ) q //
⊕

j∈J(i)

C(βCj,MN )
C0(Cj,MN )

for the finite set J(i) = {j ∈ J : Xi ∩ Cj 6= ∅} ⊆ J . Since every α(Xi ∩ Cj)
is a finite graph, the C∗-algebra on the lower left side is a 1-NCCW. One also
checks that the pullbacks are taken over finite-dimensional C∗-algebras because
(⊕j∈J(i)τj)(B) consists of locally constant functions on the space

⊔
j∈J(i) χ(Cj)

which has only finitely many connected components by Lemma 4.1.17.
Next, we specify the inductive structure, i.e. the connecting maps si+1

i : Bi →
Bi+1 and retracts rii+1 : Bi+1 → Bi. By definition, we find Bi ⊆ Bi+1 ⊆ A
with the inclusions coming from (̺ii+1)

∗ ⊗ idMN resp. by (̺i+1
∞ )∗ ⊗ idMN .

We denote them by si+1
i resp. by s∞i . Since

⋃
i C(αj(Xi ∩ Cj),MN ) ⊇⋃

i C0(Xi ∩ Cj ,MN ) = C0(X ∩ Cj ,MN ) for every j ∈ J , we find C0(X,MN ) ⊆⋃
iBi. One further checks that

⊕
j∈J0
C(αj(X0 ∩ Cj),MN ) surjects via q

onto the locally constant functions on
⊔
j∈J0

χ(Cj). Together with τ1(B) ⊆
q1(
∏
j∈J1

MN · 1βCj) ⊆ q1(
∏
j∈J1
C(αj(X0 ∩ Cj),MN )) it follows that

⋃
iBi is

the pullback over τ and q, and hence
⋃
iBi = A.
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It remains to verify the description of the connecting maps si+1
i . We have

Xi ∩ Cj = Xi+1 ∩ Cj if j 6= j(i) and αj(Xi ∩ Cj(i)) ⊆ αj(Xi+1 ∩ Cj(i)) ∼=
αj(Xi ∩ Cj(i)) ∪{yi}={0} [0, 1]. This means there is a pullback diagram

C(αj(Xi+1 ∩ Cj(i)),MN ) //

����

C([0, 1],MN )

ev0

����
C(αj(Xi ∩ Cj(i)),MN )

evyi //

(̺ii+1)
∗⊗idMN

DD

MN

where (̺ii+1)
∗ ⊗ idMN corresponds to f 7→ (f, f(yi) ⊗ 1[0,1]) in the pullback

picture and the downward arrow on the left side comes from the inclusion
αj(Xi ∩ Cj(i)) ⊆ αj(Xi+1 ∩ Cj(i)). This map induces a surjection Bi+1 → Bi
which will be denoted by rii+1 and gives the claimed pullback diagram.

Finally, if αX is an AR-space, the core X0 = core(αX,∞) = [x0,∞] is nothing
but an arc from some point x0 ∈ X to∞. In this case the finite set J(0) consists
of a single element j(0), namely the index corresponding to the component
containing x0. By definition, B0 comes as a pullback

B0
//

��

B

τj(0)

��
C([x0,∞],MN )

ev∞ // MN · 1χ(Cj(0))

and hence an index shift allows us to start with B0
∼= B.

The procedure of forming extensions by C∗-algebras of the form C0(X,MN )
can of course be iterated. The next proposition shows that, if all the attached
spacesX are one-dimensional ANRs up to compactification, the limit structures
which we get from Lemma 4.2.1 for each step can be combined into a single
one.

Proposition 4.2.2. Let a short exact sequence of separable C∗-algebras 0 →
C0(X,MN ) → A → B → 0 be given. Assume that αX is a one-dimensional
ANR-space and that the associated set-valued retract map R : Prim(A) →
2Prim(B) as in 4.1.1 is lower semicontinuous and has pointwise finite image.
Further assume that there exists a direct limit structure for B

B0
s10

// B1
s21

//

r01
{{{{

B2
//

r12
{{{{

· · ·
sii−1

//
{{{{

Bi //

s∞i

77

ri−1
i

}}}} · · · // B

ri∞

vvvv

such that all Bi are 1-NCCWs and at each stage there is a representation
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pi : Bi →Mni such that Bi+1 is defined as the pullback

Bi+1

rii+1
����

ti+1 // C([0, 1],Mni)

ev0

����
Bi

si+1
i

CC

pi // Mni

and si+1
i : Bi → Bi+1 is given by a 7→ (a, pi(a)⊗ 1[0,1]).

Then A is isomorphic to the limit A∞ of an inductive system

A0
σ1
0

// A1
σ2
1

//

̺01
{{{{

A2
//

̺12
{{{{

· · ·
σii−1

//
{{{{

Ai //

σ∞
i

66

̺i−1
i

}}}} · · · // A∞

̺i∞

vvvv

where all Ai are 1-NCCWs and at each stage there is a representation πi : Ai →
Mmi such that Ai+1 is defined as the pullback

Ai+1

̺ii+1
����

// C([0, 1],Mmi)

ev0

����
Ai

σi+1
i

CC

πi // Mmi

and σi+1
i : Ai → Ai+1 is given by a 7→ (a, πi(a)⊗ 1[0,1]). Furthermore, if αX is

an AR-space we may even arrange A0
∼= B0.

Proof. By Lemma 4.2.1, we know that A can be written as an inductive limit

A0
s10

// A1
s21

//

r01yyyy
A2

//

r12yyyy
· · ·

sii−1

//
zzzz

Ai
//

s∞i

77

ri−1
i

}}}} · · · // A

ri∞

wwww

with a pullback structure

Ai+1

rii+1
����

// C([0, 1],MN )

ev0

����
Ai

si+1
i

DD

pi // MN

at every stage and si+1
i : Ai → Ai+1 given by a 7→ (a, pi(a) ⊗ 1[0,1]). The

starting algebra A0 comes as a pullback

A0
//

��

D

ϕ

��
B

ψ // F
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with D a 1-NCCW and dim(F ) < ∞. In the case of αX being an AR-space,
we may choose A0 = B, i.e. D = 0. For j ∈ N we now define A0,j to be the
pullback

A0,j //

̺0,j

��

D

ϕ

��
Bj

ψ◦s∞j // F.

The maps sj+1
j ,s∞j homomorphisms σ0,j+1

0,j : A0,j → A0,j+1 and σ0,∞
0,j : A0,j →

A0, leading to an inductive limit structure with lim−→j
(A0,j , σ

0,j+1
0,j ) = A0. We

proceed iteratively, defining Ai+1,j to be the pullback

Ai+1,j //

̺i,ji+1,j

��

C([0, 1],MN)

ev0

��
Ai,j

pi◦σi,∞i,j
//

σi+1,j
i,j

CC

MN

with σi+1,j
i,j : Ai,j → Ai+1,j given by a 7→ (a, (pi ◦ σi,∞i,j )(a) ⊗ 1[0,1]).

It is then checked that σi,j+1
i,j and σi,∞i,j induce compatible homomor-

phisms σi+1,j+1
i+1,j : Ai+1,j → Ai+1,j+1 and σi+1,∞

i+1,j : Ai+1,j → Ai+1 with

lim−→j
(Ai+1,j , σ

i+1,j+1
i+1,j ) = Ai+1. Observing that for every i and j

Ai,j+1

tj+1◦̺0,j+1◦̺0,j+1
i,j+1 //

̺i,ji,j+1

��

C([0, 1],Mnj)

ev0

��
Ai,j

pj◦̺0,j◦̺0,ji,j
//

σi,j+1
i,j

DD

Mnj

is indeed a pullback diagram, we get the desired limit structure for A by fol-
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lowing the diagonal in the commutative diagram

A00
//

��

A01
//

��

A02
//

��

A03
//

��

· · · // A0

��
A10

//

��

A11
//

��

A12
//

��

A13
//

��

· · · // A1

��
A20

//

��

A21
//

��

A22
//

��

A23
//

��

· · · // A2

��
A30

//

��

A31
//

��

A32
//

��

A33
//

��

· · · // A3

��
...

...
...

...
. . .

...

as indicated. Note that, since all connecting maps are injective, the limit over
the diagonal equals lim−→An = A.

4.3 Keeping track of semiprojectivity

We now reap the fruit of our labor in the previous sections and work out a ’2
out of 3’-type statement describing the behavior of semiprojectivity with re-
spect to extensions by homogeneous C∗-algebras. While for general extensions
the behavior of semiprojectivity is either not at all understood or known to be
rather bad, Theorem 4.3.2 gives a complete and satisfying answer in the case of
homogeneous ideals. It is the very first result of this type and allows to under-
stand semiprojectivity for C∗-algebras which are built up from homogeneous
pieces, see chapter 5.1.

Proposition 4.3.1. Let 0 → C0(X,MN ) → A → B → 0 be a short exact
sequence of C∗-algebras. If both A and B are (semi)projective, then the one-
point compactification αX is a one-dimensional A(N)R-space.

Proof. The projective case follows directly from Corollary 3.1.3 and Theorem
2.3.7 while the semiprojective case requires some more work. By Lemma 2.3.8
we know that αX is a Peano space of dimension at most 1. The proof of 2.3.8
further shows that there are no small circles accumulating in X . However,
in order to show that αX is an ANR-space we have to exclude the possi-
bility of smaller and smaller circles accumulating at ∞ ∈ αX , see Theorem
2.1.7. Assume that we find a sequence of circles with diameters converging
to 0 (with respect to some fixed geodesic metric ([Bin49], [Moi49])) at around
∞ ∈ αX . After passing to a subsequence, there are two possible situations:
either each circle contains the point ∞ or none of them does. Both cases are
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treated exactly the same, for the sake of brevity we only consider the situa-
tion where ∞ is contained in all circles. In this case have a ∗-homomorphism
ϕ : C0(X,MN ) → ⊕∞

n=1 C0((0, 1)n,MN ) where (0, 1)n ∼= (0, 1) is the part of
the n-th circle contained in X . Note that each coordinate projection gives
a surjection ϕn : C0(X,MN ) → C0((0, 1),MN ) while ϕ itself is not necessarily
surjective (because the circles might intersect in X). We make use of Brown’s
mapping telescope associated to

⊕∞
n=1 C0((0, 1)n,MN ), i.e.

Tk =

{
f ∈ C([k,∞],

∞⊕

n=1

C0((0, 1)n,MN )) : t ≤ l⇒ f(t) ∈
l⊕

n=1

C0((0, 1)n,MN )

}

with the obvious (surjective) restrictions as connecting maps giving lim−→Tk =⊕∞
n=1 C0((0, 1)n,MN ). Using Lemma 3.1.4, we find a commutative diagram

0 // lim−→Tk // lim−→M(Tk) // lim−→Q(Tk) // 0

0 // C0(X,MN ) //

ϕ

OO

A //

ϕ

OO

B //

ϕ

OO

0

.

It now follows from the semiprojectivity assumptions and Lemma 3.1.1 that ϕ
lifts to Tk for some k, which is equivalent to a solution of the original lifting
problem

k⊕
n=1
C0((0, 1)n,MN )

⊆
��

C0(X,MN )
ϕ //

66

∞⊕
n=1
C0((0, 1)n,MN )

up to homotopy. This, however, implies

im(K1(ϕ)) ⊆ K1

(
k⊕

n=1
C0((0, 1)n,MN )

)

=
k∑

n=1
Z

⊂
∞∑
n=1

Z = K1

( ∞⊕
n=1
C0((0, 1)n,MN )

)

which gives a contradiction as follows. Because ϕk+1 is surjective and
dim(αX) ≤ 1, we can extend the canonical unitary function from α((0, 1)n) to
a unitary u on all of αX by [HW48, Theorem VI.4]. This unitary then satisfies
u − 1 ∈ C0(X) and K1(ϕ)([u ⊗ 1MN ]) = N ∈ Z = K1(C0((0, 1)k+1,MN )). This
shows that there are no small circles at around ∞ in αX and hence that αX
is a one-dimensional ANR-space by Theorem 2.1.7.
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Theorem 4.3.2. Let a short exact sequence of C∗-algebras 0 → I → A →
B → 0 be given and assume that the ideal I is a N -homogeneous C∗-algebra
with Prim(I) = X. Denote by (Xi)i∈I the connected components of X and
consider the following statements:

(I) I is (semi)projective.

(II) A is (semi)projective.

(III) B is (semi)projective and the set-valued retract map R : Prim(A) →
2Prim(B) given as in 4.1.1 by

R(z) =

{
z if z ∈ Prim(B),

∂Xi = Xi\Xi if z ∈ Xi ⊆ X = Prim(I)

is lower semicontinuous and has pointwise finite image.

If any two of these statements are true, then the third one also holds.

Proof. (I)+(II)⇒(III): By Theorem 2.3.11, we know that the sequence is iso-
morphic to an extension

0 // C0(X,MN ) // A
π // B // 0

with the one-point compactification of X a one-dimensional A(N)R-space. The
set-valued retract map R is then lower semicontinuous by Proposition 4.1.20
and has pointwise finite image by Proposition 4.1.19. But now Theorem 4.1.14
applies and shows that there is a completely positive split s for the quotient
map π such that the composition B

s−→ A
ι−→ Cb(X,MN ) is multiplicative outside

of an open set U ⊂ K ⊂ X where K is compact.

Let a lifting problem ϕ : B
∼−→ D/J = lim−→D/Jn be given. Since A is

semiprojective, we can solve the resulting lifting problem for A, meaning
we find ψ : A → D/Jn for some n with πn ◦ ψ = ϕ ◦ π. Restricting to
herD/Jn(ψ(C0(X,MN ))) + ψ(A) ⊆ D/Jn, we may assume that ψ|C0(X,MN ) is
proper as a ∗-homomorphism to J/Jn and hence induces a mapM(ψ) between
multiplier algebras. Since the restriction of πn ◦ ψ to the ideal C0(X,MN )
vanishes, we may use compactness of K to assume that ψ maps C0(U,MN )
to 0 (after increasing n if necessary). This further implies thatM(ψ) factors
through r : Cb(X,MN ) → Cb(X\U,MN). We then find s′ := r ◦ ι ◦ s to be
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multiplicative and hence a ∗-homomorphism:

A

ι

$$I
IIIIIIIII

π

��

ψ // D/Jn
ιn

%%K
KKKKKKKK

πn

����

Cb(X,MN )

r

$$ $$J
JJJJJJJJ

M(ψ) //M(J/Jn)

̺n

����

Cb(X\U,MN)

M(ψ)′

44hhhhhhhhh

B
ϕ //

s

DD

s′
44hhhhhhhhhhh D/J

τn // Q(J/Jn)

The inclusion of J/Jn as an ideal in D/Jn gives canonical ∗-homomorphisms ιn
and τn as in the diagram above. One now checks that ̺n ◦ (M(ψ)′ ◦s′) = τn ◦ϕ
holds. Combining this with the fact that the trapezoid on the right is a pullback
diagram, we see that the pair (ϕ, (M(ψ)′ ◦ s′)) defines a lift B → D/Jn for ϕ.
This shows that the quotient B is semiprojective.
For the projective version of the statement, one uses Corollary 4.1.11 to see
that the sequence admits a multiplicative split s : B → A rather than just a
completely positive one.

(I)+(III)⇒(II): We know that I ∼= C0(X,MN ) with αX a one-dimensional
A(N)R-space by Theorem 2.3.11. Now Lemma 4.2.1 applies and we obtain a
limit structure for A

B0
s10

// B1
s21

//

r01
{{{{

B2
//

r12
{{{{

· · ·
sii−1

//
{{{{

Bi //

s∞i

22

ri−1
i

}}}} · · · // lim−→
(
Bi, s

i+1
i

) ∼= A

ri∞

uuuu

with B0 given as a pullback of B and a 1-NCCW D over a finite-dimensional
C∗-algebra. In particular, B0 is semiprojective by [End14, Corollary 3.4]. In
the projective case, we can take B0 = B to be projective. In both cases, the
connecting maps in the system above arise from pullback diagrams

Bi+1

rii+1
����

// C([0, 1],MN)

ev0

����
Bi

si+1
i

CC

πi // MN

with si+1
i (a) = (a, πi(a) ⊗ 1[0,1]). Since these maps are weakly conditionally

projective by Proposition 3.2.4, we obtain (semi)projectivity of A from Lemma
3.2.3.
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(II)+(III)⇒(I): This implication holds under even weaker hypothesis. More
precisely, we show that (semi)projectivity of both A and B implies I to be
(semi)projective. The assumption on the retract map R is not needed here.

First we apply Lemma 2.3.8 to find the one-point compactification of Prim(I) to
be a Peano space of dimension at most 1, and hence I is trivially homogeneous
by Lemma 2.3.10. Now Proposition 4.3.1 shows that αX is in fact an ANR-
space which, together with Theorem 2.3.11, means that I is semiprojective.
The projective version is Corollary 3.1.3.

Remark 4.3.3. Theorem 4.3.2 shows that regularity properties of the retract
map R : Prim(A) → 2Prim(B) are crucial for semiprojectivity to behave nicely
with respect to extensions by homogeneous C∗-algebras. This can already be
observed and illustrated in the commutative case. Given an extension of com-
mutative C∗-algebras

0→ C0(X)→ C0(Y )→ C0(Y \X)→ 0,

the following holds: If both the ideal C0(X) and the quotient C0(Y \X) are
(semi)projective, then the extension C0(Y ) is (semi)projective if and only if
the retract map R : Y → 2Y \X is lower semicontinuous and has pointwise fi-
nite image. The following examples show that both properties for R are not
automatic:

(a) An examples with R not having pointwise finite image is contained as exam-
ple 5.5 in [LP98], we include it here for completeness. Let X = {(x, sinx−1) :
0 < x ≤ 1} ⊂ R2 and Y = X ∪{(0, y) : − 1 ≤ y < 1}, then we get an extension
isomorphic to

0→ C0(0, 1]→ C0(Y )→ C0(0, 1]→ 0.

Here both the ideal and the quotient are projective, but the extension C0(Y ) is
not (because αY is not locally connected and hence not an AR-space). In this
example, we find R(x) = {(0, y) : − 1 ≤ y < 1} to be infinite for all x ∈ X.

(b) The following is an example where R fails to be lower semicontinuous.
Consider Y = {(x, 0): 0 ≤ x < 1}∪⋃n Cn ⊂ R2 with Cn = {(t, (1− t)/n) : 0 ≤
t < 1} the straight line from (0, 1/n) to (1, 0) with the endpoint (1, 0) removed.
With X =

⋃
n Cn ⊂ Y we obtain an extension isomorphic to

0→
⊕

n

C0(0, 1]→ C0(Y )→ C0(0, 1]→ 0.

Here both the ideal and the quotient are projective while the extension C0(Y )
is not (again because αY is not locally connected). We also find (0, 1/n) →
(0, 0) in Y but R((0, 1/n)) = ∅ for all n, which shows that R is not lower
semicontinuous. The descriptive reason for C0(Y ) not being projective in this
case is that the length of the attached intervals Cn does not tend to 0 as n goes
to infinity.
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5 The structure of semiprojective subhomogeneous C∗-algebras

5.1 The main result

With Theorem 4.3.2 at hand, we are now able to keep track of semiprojec-
tivity when decomposing a subhomogeneous C∗-algebra into its homogeneous
subquotients. On the other hand, Theorem 4.3.2 also tells us in which man-
ner homogeneous, semiprojective C∗-algebras may be combined in order to give
subhomogeneous C∗-algebras which are again semiprojective. This leads to the
main result of this chapter, Theorem 5.1.2, which gives two characterizations
of projectivity and semiprojectivity for subhomogeneous C∗-algebras.

Lemma 5.1.1. Let A be a N -subhomogeneous C∗-algebra. If A is semiprojec-
tive, then the maximal N -homogeneous ideal of A is also semiprojective.

Proof. By Lemma 2.3.8 we know that the one-point compactification of
X = PrimN (A) is a one-dimensional Peano space. Since any locally trivial
MN -bundle over X is globally trivial by Lemma 2.3.10, we are concerned with
an extension of the form

0 // C0(X,MN ) // A
π // A≤N−1 // 0

where A≤N−1 denotes the maximal (N -1)-subhomogeneous quotient of A.
Since A is semiprojective, A≤N−1 will be semiprojective with respect to
(N -1)-subhomogeneous C∗-algebras. In order to show that C0(X,MN ) is
semiprojective, it remains to show that αX = X ∪ {∞} does not contain
small circles at around ∞, cf. Theorem 2.1.7. The proof for this is similar to
the one of 4.3.1. We use notations from 2.3.8 and follow the proof there to
arrive at a commutative diagram

0 // lim−→Tk // lim−→M(Tk) // lim−→Q(Tk) // 0

0 // C0(X,MN ) //

ϕ

OO

A
π //

ϕ

OO

A≤N−1 //

ϕ

OO

0

.

We may not solve the lifting problem for A≤N−1 directly since the algebras
Q(Tk) are not (N -1)-subhomogeneous. Instead we will replace the Q(Tk) by
suitable (N -1)-subhomogeneous subalgebras which will then lead to a solvable
lifting problem for A≤N−1. Let ιn denote the n-th coordinate of the map
A→ Cb(X,MN )→∏

n Cb((0, 1)n,MN ). We then have a lift of ϕ given by

A → C([k,∞],
∏
n Cb((0, 1),MN )) → M(Tk)

a 7→ 1[k,∞] ⊗ (ιn(a))
∞
n=1

where the map on the right is induced by the inclusion of Tk as an ideal in
C([k,∞],

∏
n Cb((0, 1),MN )). Consider in there the central element f = (fn)

∞
n=1
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with fn the scalar function that equals 0 on [k, n], 1 on [n + 1,∞] and which
is linear in between. Then

ψ : A → C([k,∞],
∏
n Cb((0, 1),MN )) → M(Tk)

a 7→ (fn ⊗ ιn(a))∞n=1

is a completely positive lift of ϕ which sends C0(X,MN ) to Tk. Hence ψ in-
duces a completely positive lift ψ′ : A≤N−1 → Q(Tk) of ϕ. We claim that
C∗(ψ′(A≤N−1)) is in fact (N -1)-subhomogeneous. To see this, we use the al-
gebraic characterization of subhomogenity as described in [Bla06, IV.1.4.6].
It suffices to check that γ(C∗(ψ′(A≤N−1))) satisfies the polynomial relations
pr(N−1) for every irreducible representation γ of Q(Tk). By definition of ψ,
we find γ ◦ ψ′(π(a)) = t · γ′(ι(a)) for some representation γ′ of ι(A), some
t ∈ [0, 1] and every a ∈ A. Moreover, since ψ′ maps C0(X,MN ) to 0, we
obtain γ ◦ ψ′(π(a)) = t · γ′′(π(a)) for some representation γ′′ of A≤N−1. Us-
ing (N -1)-subhomogeneity of A≤N−1, it now follows easily that the elements
of γ(C∗(ψ′(A≤N−1))) satisfy the polynomial relations pr(N−1) from [Bla06,
IV.1.4.6]. Knowing that the image of ϕ has a (N -1)-subhomogenous preimage
in Q(Tk), we may now solve the lifting problem for A≤N−1. It then follows
from Lemma 3.1.1 (and its proof) that ϕ lifts to Tk for some k. The remainder
of the proof is exactly the same as the one of Proposition 4.3.1.

We now present two characterizations of projectivity and semiprojectivity for
subhomogeneous C∗-algebras. The first one describes semiprojectivity of these
algebras in terms of their primitive ideal spaces. The second description char-
acterizes them as those C∗-algebras which arise from 1-NCCWs by adding a
sequence of non-commutative edges (of bounded dimension), cf. section 3.2.2.

Theorem 5.1.2. Let A be a N -subhomogeneous C∗-algebra, then the following
are equivalent:

(1) A is semiprojective (resp. projective).

(2) For every n = 1, ..., N the following holds:

• The one-point compactification of Primn(A) is an ANR-space (resp.
an AR-space) of dimension at most 1.

• If (Xi)i∈I denotes the family of connected components of Primn(A),
then the set-valued retract map

Rn : Prim≤n(A)→ 2Prim≤n−1(A)

given by

z 7→
{
z if z ∈ Prim≤n−1(A)

∂Xi if z ∈ Xi ⊂ Primn(A)

is lower semicontinuous and has pointwise finite image.
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(3) A is isomorphic to the direct limit lim−→k
(Ak, s

k+1
k ) of a sequence of

1-NCCWs

· · · // Ak
sk+1
k

//
}}}}

Ak+1
//

rkk+1

yyyy
· · ·

yyyy

(with A0 = 0) such that for each stage there is a pullback diagram

Ak+1
//

rkk+1
����

C([0, 1],Mn)

ev0

��
Ak

πk //

sk+1
k

CC

Mn

with n ≤ N and sk+1
k given by a 7→ (a, πk(a)⊗ 1[0,1]).

Proof. (1) ⇒ (2): We prove the implication by induction over N . The base
case N = 1 is given by Theorem 2.3.7. Now given a N -subhomogeneous,
(semi)projective C∗-algebra A, we know by Lemma 5.1.1 that the maxi-
mal N -homogeneous ideal AN of A is (semi)projective as well. This forces
αPrimN (A) to be a one-dimensional A(N)R-space by Theorem 2.3.11. Apply-
ing Theorem 4.3.2 to the sequence

0→ AN → A→ A≤N−1 → 0

now shows that the retract map RN : PrimN (A) → 2Prim≤N−1(A) is lower
semicontinuous, has pointwise finite image and that the maximal (N -1)-
subhomogeneous quotient A≤N−1 is (semi)projective. The remaining state-
ments follow from the induction hypothesis applied to A≤N−1.
(2) ⇒ (3): By Lemma 2.3.10, we know that the maximal N -homogeneous
ideal AN of A is of the form C0(PrimN (A),MN ). Using induction over N , the
statement then follows from Proposition 4.2.2 applied to the sequence

0→ C0(PrimN (A),MN )→ A→ A≤N−1 → 0.

The base case N = 1 is given by Theorem 2.1.5.
(3)⇒ (1): Note that the connecting maps are weakly conditionally projective
by Proposition 3.2.4, then apply Lemma 3.2.3.

Remark 5.1.3. The most prominent examples of subhomogeneous, semipro-
jective C∗-algebras are the one-dimensional non-commutative CW-complexes
(1-NCCWs, see Example 2.2.3). The structure theorem 5.1.2 shows that these
indeed play a special role in the class of all subhomogeneous, semiprojective
C∗-algebras. By part (2) of 5.1.2, they are precisely those subhomogeneous,
semiprojective C∗-algebras for which the spaces αPrimn are all finite graphs
rather than general one-dimensional ANR-spaces. Hence 1-NCCWs should
be thought of as the elements of ’finite type’ in the class of subhomogeneous,
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semiprojective C∗-algebras. Moreover, part (3) of 5.1.2 shows that every sub-
homogeneous, semiprojective C∗-algebra can be constructed from 1-NCCWs in
a very controlled manner. Therefore these algebras share many properties with
1-NCCWs, as we will see in section 5.2.1 in more detail.

5.2 Applications

Now we discuss some consequences of Theorem 5.1.2. First we collect some
properties of semiprojective, subhomogeneous C∗-algebras which follow from
the descriptions in 5.1.2. This includes information about their dimension and
K-theory as well as details about their relation to 1-NCCWs and some further
closure properties.
At least in principle one can use the structure theorem 5.1.2 to test any given
subhomogeneous C∗-algebra A for (semi)projectivity. Since this would require
a complete computation of the primitive ideal space of A, it is not recommended
though. Instead one might use 5.1.2 as a tool to disprove semiprojectivity for a
candidate A. In fact, showing directly that a C∗-algebraA is not semiprojective
can be surprisingly difficult. One might therefore take one of the conditions
from 5.1.2 which are easier to verify and test A for those instead. We illustrate
this strategy in section 5.2.2 by proving the quantum permutation algebras to
be not semiprojective. This corrects a claim in [Bla04] on semiprojectivity of
universal C∗-algebras generated by finitely many projections with order and
orthogonality relations.

5.2.1 Further structural properties

By part (3) of Theorem 5.1.2, we know that any semiprojective, subhomoge-
neous C∗-algebra comes as a direct limit of 1-NCCWs. Since the connecting
maps are explicitly given and of a very special nature, it is possible to show
that these limits are approximated by 1-NCCWs in a very strong sense. The
following corollary makes this approximation precise.

Corollary 5.2.1 (Approximation by 1-NCCWs). Let A be a subhomogeneous
C∗-algebra. If A is semiprojective, then for every finite set G ⊂ A and every
ǫ > 0 there exist a 1-NCCW B ⊆ A and a ∗-homomorphism r : A → B such
that G ⊂ǫ B and r is a strong deformation retract for B, meaning that there
exists a homotopy Ht from H0 = idA to H1 = r with Ht|B = idB for all t.
In particular, A is homotopy equivalent to a one-dimensional non-commutative
CW-complex.

Proof. Use part (3) of Theorem 5.1.2 to write A = lim−→An and find a suitable
1-NCCW B = An0 which almost contains the given finite set G. It is straight-
forward to check that the strong deformation retracts rn0

n : An → An0 give rise
to a strong deformation retract r : lim−→An → An0 .

In particular, 1-NCCWs and semiprojective, subhomogeneous C∗-algebras
share the same homotopy invariant properties. For example, we obtain the
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following restrictions on the K-theory of these algebras:

Corollary 5.2.2. Let A be a subhomogeneous C∗-algebra. If A is semipro-
jective, then its K-theory is finitely generated and K1(A) is torsion free.

Another typical phenomenon of (nuclear) semiprojective C∗-algebras is that
they appear to be one-dimensional in some sense. In the context of subho-
mogeneous C∗-algebras, we can now make this precise using the notion of
topological dimension which, for subhomogeneous A, is given by topdim(A) =
maxn dim(αPrimn(A)).

Corollary 5.2.3. Let A be a subhomogeneous C∗-algebra. If A is semipro-
jective, then A has stable rank 1 and topdim(A) ≤ 1.

Proof. The statement on the stable rank of A follows from Corollary 5.2.1,
while the topological dimension can be estimated using part (2) of Theorem
5.1.2.

Our structure theorem can also be used to study permanence properties of
semiprojectivity when restricted to the class of subhomogeneous C∗-algebras.
In fact, these turn out to be way better then in the general situation. This can
be illustrated by the following longstanding question by Blackadar and Loring:
Given a short exact sequence of C∗-algebras

0 // I // A // F // 0

with finite-dimensional F , does the following hold?

I semiprojective⇔ A semiprojective

While we showed the ’⇐’-implication to hold in general in [End14], S. Eilers
and T. Katsura proved the ’⇒’-implication to be wrong ([EK]), even in the case
of split extensions by C. We refer the reader to [Sør12] for counterexamples
which involve infinite C∗-algebras. However, when one restricts to the class of
subhomogeneous C∗-algebras, this implication holds:

Corollary 5.2.4. Let a short exact sequence of C∗-algebras

0 // I // A
π // F // 0

with finite-dimensional F be given. If I is subhomogeneous and semiprojective,
then A is also semiprojective.

Proof. We verify condition (2) in Theorem 5.1.2 for A. By assumption, each
Primk(I) is a one-dimensional ANR-space after compactification and the same
holds for any space obtained from Primk(I) by adding finitely many points
([ST12, Theorem 6.1]). Hence the one-point compactifications of Primk(A)
are 1-dimensional ANRs for all k. If we assume F = Mn, then the set-valued
retract maps Rk are unchanged for k < n. For k = n, regularity of Rk follows
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from regularity of the retract map for I and the fact that {[π]} is closed in
Prim≤k(A) = Prim≤k(I) ∪ {[π]}. For k > n, we apply Lemma 4.1.6 to

0

��

0

��
0 // C0(Primk(I),Mk) // I≤k //

��

I≤k−1 //

��

0

0 // C0(Primk(A),Mk) // A≤k //

π

��

A≤k−1 //

��

0

F

��

F

��
0 0

and see that Rk : Prim≤k(A) → 2Prim≤k−1(A) is again lower semicontinuous
and has pointwise finite image.

5.2.2 Quantum permutation algebras

We are now going to demonstrate how the structure theorem 5.1.2 can be used
to show that certain C∗-algebras fail to be semiprojective. We would like to
thank T. Katsura for pointing out to us the quantum permutation algebras
([Wan98], [BC08]) as a testcase:

Definition 5.2.5 ([BC08]). For n ∈ N, the quantum permutation algebra
As(n) is the universal C∗-algebra generated by n2 elements uij, 1 ≤ i, j ≤ n,
with relations

uij = u∗ij = u2ij &
∑
j uij =

∑
i uij = 1.

It is not clear from the definition whether the C∗-algebras As(n) are semipro-
jective or not. For n ∈ {1, 2, 3} one easily finds As(n) ∼= Cn! so that we have
semiprojectivity in that cases. For higher n one might expect semiprojectivity
of As(n) because of the formal similarity to graph C∗-algebras. In fact, their
definition only involves finitely many projections and orthogonality resp. order
relations between them. Since graph C∗-algebras associated to finite graphs are
easily seen to be semiprojective, one might think that we also have semipro-
jectivity for the quantum permutation algebras. This was even erroneously
claimed to be true in [Bla04, example 2.8(vi)]. In this section we will show
that the C∗-algebras As(n) are in fact not semiprojective for all n ≥ 4.
One can reduce the question for semiprojectivity of these algebras to the case
n = 4. The following result of Banica and Collins shows that the algebra As(4)
is 4-subhomogeneous, so that our machinery applies. The idea is to get enough
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information about the primitive spectrum of As(4) to show that it contains
closed subsets of dimension strictly greater than 1. This will then contradict
part (2) of 5.1.2, so that As(4) cannot be semiprojective.

We follow notations from [BC08] and denote the Pauli matrices by

c1 =

(
1 0
0 1

)
, c2 =

(
i 0
0 −i

)
, c3 =

(
0 1
−1 0

)
, c4 =

(
0 i
i 0

)
.

Set ξxij = cixcj and regard M2 as a Hilbert space with respect to the scalar
product < a|b >= tr(b∗a). Then for any x ∈ SU(2) we find {ξxij}j=1..4 and
{ξxij}i=1..4 to be a basis for M2. Under the identification M4

∼= B(M2), Banica
and Collins studied the following representation of As(4):

Proposition 5.2.6 (Theorem 4.1 of [BC08]). The ∗-homomorphism given by

π : As(4) −→ C(SU(2),M4)
uij 7→

(
x 7→ rank one projection onto C · ξxij

)

is faithful. It is called the Pauli representation of As(4).

For the remainder of this section let S denote the following subset of SU(2):

S :=

{(
λ −µ
µ λ

)
∈ SU(2) : min

{
|Re(λµ)|, | Im(λµ)|, |Re(λµ)|,

| Im(λµ)|, ||λ| − |µ||

}
= 0

}

We will now study the representations of As(4) obtained by composing the
Pauli representation with a point evaluation. As we will see, most points of
SU(2) lead to irreducible representations which are furthermore locally pairwise
inequivalent.

Lemma 5.2.7. The representation πx = evx ◦π : As(4)→ M4 is irreducible for
every x ∈ SU(2)\S.

Proof. Let x =

(
λ −µ
µ λ

)
∈ SU(2)\S be given, we show that the com-

mutant of πx(As(4)) equals the scalars. Therefore we will check the ma-
trix entries of the elements πx(uij) with respect to the orthonormal basis{

1√
2
ξx11,

1√
2
ξx12,

1√
2
ξx13,

1√
2
ξx14

}
of M2

∼= C4. Since in this picture πx(u1i) equals

the elementary matrix eii, every element in (πx(As(4)))
′
is diagonal. But we

also find

(πx(u23))12 = 1
2 < πx(u23)ξ

x
12|ξx11 >

= 1
4 < ξx12|ξx23 >< ξx23|ξx11 >= 4 · Re(λµ)Im(λµ) 6= 0,

(πx(u22))13 = 1
4 < ξx13|ξx22 >< ξx22|ξx11 >= 2 · Re(λµ)(|λ|2 − |µ|2) 6= 0,

(πx(u22))14 = 1
4 < ξx14|ξx22 >< ξx22|ξx11 >= −2 · Im(λµ)(|λ|2 − |µ|2) 6= 0.

So the only elements ofM4 commuting with all of πx(As(4)) are the scalars.
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Proposition 5.2.8. Every x ∈ SU(2)\S admits a small neighborhood V ⊆
SU(2)\S such that for all distinct y, y′ ∈ V the representations πy and πy′ are
not unitarily equivalent.

Proof. Let x =

(
λ0 −µ0

µ0 λ0

)
∈ SU(2)\S be given, then

ǫ := min

{
|Re(λ0µ0)|, | Im(λ0µ0)|, |Re(λ0µ0)|,
| Im(λ0µ0)|, ||λ0| − |µ0|| , |λ0|

}
> 0.

Define a neighborhood V ⊆ SU(2)\S of x by

V =

{(
λ −µ
µ λ

)
∈ SU(2)\S : |λ− λ0| <

ǫ

3
, |µ− µ0| <

ǫ

3

}
.

Now let y, y′ ∈ V with unitarily equivalent representations πy and πy′ be given.
We compute the value

‖πy(u11u22)‖ = 1
4‖(< − |ξ

y
11 > ξy11) ◦ (< − |ξy22 > ξy22)‖

= 1
4 | < ξy22|ξy11 > | · ‖(< − |ξy22 > ξy11)‖

= 1
4 | < ξy22|ξy11 > | · ‖ξy22‖‖ξy11‖

=
∣∣|λ|2 − |µ|2

∣∣

which is invariant under unitary equivalence. So we find
∣∣|λ|2 − |µ|2|

∣∣ =∣∣|λ′|2 − |µ′|2
∣∣. This implies

(|λ| = |λ′| ∧ |µ| = |µ′|) ∨ (|λ| = |µ′| ∧ |µ| = |λ′|)

because of |λ|2 + |µ|2 = 1 = |λ′|2 + |µ′|2. By definition of V we have

||λ| − |µ′|| ≥ ||λ0| − |µ0|| − ||λ| − |λ0|| − ||µ′| − |µ0|| >
ǫ

3
> 0,

so that we can exclude the second case. Analogously, computing the invariants
‖πy(u13u22)‖ and ‖πy(u14u22)‖ gives

|Re(λµ)| = |Re(λ′µ′)| and | Im(λµ)| = | Im(λ′µ′)|

and checking ‖πy(u11u42)‖ and ‖πy(u11u32)‖ shows

|Re(λµ)| = |Re(λ′µ′)| and | Im(λµ)| = | Im(λ′µ′)| .

The last four equalities imply λµ = λ′µ′ and λµ = λ′µ′ by the choice of V .
Together with |λ| = |λ′| and |µ| = |µ′| we find (λ, µ) = (λ′, µ′) or (λ, µ) =
(−λ′,−µ′). In the second case we get |λ − λ′| = 2|λ| ≥ 2|λ0| − 2|λ − λ0| ≥ 4ǫ

3
contradicting |λ− λ′| ≤ |λ− λ0|+ |λ′ − λ0| < 2ǫ

3 by the choice of V . It follows
that y = y′.

By now we have obtained enough information about Prim(As(4)) to show that
it does not satisfy condition (2) of Theorem 5.1.2. Hence we find:
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Theorem 5.2.9. The C∗-algebra As(4) is not semiprojective.

Proof. Choose a point x0 ∈ SU(2)\S and a neighborhood V of x0 as in Propo-
sition 5.2.8. Since SU(2) is a real 3-manifold, there is a neighborhood of x0
contained in V which is homeomorphic to D3 = {x ∈ R : ‖x‖ ≤ 1}. The restric-
tion of the Pauli representation π to this neighborhood gives a ∗-homomorphism
ϕ : As(4)→ C(D3,M4) with the property that evx ◦ϕ and evy ◦ϕ are irreducible
but not unitarily equivalent for all distinct x, y ∈ D3. The pointwise surjec-
tivity of ϕ given by Lemma 5.2.7 and a Stone-Weierstraß argument ([Kap51,
Theorem 3.1]) show that ϕ is in fact surjective. This implies that Prim4(As(4))
contains a closed 3-dimensional subset and hence dim(Prim4(As(4))) ≥ 3. As
a consequence, As(4) cannot be semiprojective because it is subhomogeneous
by Proposition 5.2.6 but fails to satisfy condition (2) of Theorem 5.1.2.

It is not hard to show that semiprojectivity of As(n) for some n > 4 would
force As(4) to be semiprojective. Since we have just shown that this is not the
case, we obtain:

Corollary 5.2.10. The C∗-algebras As(n) are not semiprojective for n ≥ 4.

Proof. For n ≥ 4 there is a canonical surjection ̺n : As(n)→ As(4) given by

u
(n)
ij 7→





u
(4)
ij if 1 ≤ i, j ≤ 4

1 if i = j > 4

0 otherwise

.

The kernel of ̺n is generated by the finite set of projections{
u
(n)
ij : ̺n

(
u
(n)
ij

)
= 0
}
. It follows from [Sør12, Proposition 3], which ex-

tends the idea of [Neu00, Proposition 5.19], that semiprojectivity of As(n)
would imply semiprojectivity of ̺n(As(n)) = As(4). Since this is not the case
by Theorem 5.2.9, As(n) cannot be semiprojective for all n ≥ 4.
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