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INTRODUCTION

Let G* be a general linear group over a non-Archimedean local field of charac-
teristic 0, and G be an inner form of G*. In this paper, we refine the results
of the rectifying characters in the context of the essentially tame Jacquet-
Langlands correspondence [BI111] by proving that each rectifying character
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SOME ENDOSCOPIC PROPERTIES . .. 347

admits a factorization into a product of characters called (-data, defined sim-
ilarly to x-data in [LS87], which are significant in describing the essentially
tame local Langlands correspondence for G.

We know from [BIT11] that the rectifying characters are quadratic characters
that measure the difference between two correspondences for essentially tame
supercuspidal representations of G and G*: the representation theoretic one by
matching the maximal simple types of the two groups, and the functorial one
from the Jacquet-Langlands correspondence. On the representation theoretic
side, the maximal simple types of G can be constructed using certain char-
acters of its elliptic maximal tori, while on the functorial side, the Langlands
parameters for G can be functorially lifted from the parameters of the same
collection of characters.

Combining these results with our result on rectifying characters, we show that
the essentially tame local Langlands correspondence for G can be described
completely by admissible embeddings, defined in [.S87], of the L-groups of el-
liptic maximal tori into the L-group of GG, generalizing an analogous description
proved by the author [Tam] in the split case (when G = G*).

1.1 BACKGROUND

Let I be a non-Archimedean local field, G* be the group GL,, defined over F,
and G be an inner form of G* defined over F. The set of F-points G(F') of G
is therefore isomorphic to GL,,(D) as a group, where D is a central division
algebra over F of dimension d? and m = n/d.

Let A2, (D) (resp. A2 (F)) be the discrete series of G(F) (resp. G*(F)), i.e., the
set of equivalence classes of irreducible admissible representations that are es-
sentially square integrable mod-center. The Jacquet-Langlands correspondence
asserts a bijection

JL: A2(F) — A2,(D)

determined by a character relation (see (3.5)) between a representation in
A2(F) and its image in A2 (D). The existence of this bijection is known,
starting from the case n = 2 [JL70], when G(F') is the multiplicative group
of the quaternion algebra over F. For arbitrary n, when G(F) is the multi-
plicative group of a division algebra, the existence is proved by [Rog&3]. The
general situations are treated by [DIXV84] in the characteristic zero case and
by [Bad02], [BHL10] in the positive characteristic case.

Bushnell and Henniart describe in [BHI11, (2.1)] the image of JL when it is
restricted to the subset A% (F) of supercuspidal representations. The image
is the subset of representations in A2, (D), each of whose parametric degree is
equal to n. We do not need the full definition of the parametric degree of a
representation, so we only refer to [BIT11, Section 2.7] for details. We only
need to know that

e the parametric degree of a representation in A2 (D) is a positive integer
divisor of n,
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348 K.-F. Tam

e a representation in A2 (D) is supercuspidal if its parametric degree is n;
the converse is true in the split case (when G = G*) but not in general,
and

e the parametric degree is preserved under JL.

Furthermore, we can describe the image of JL of each representation m €
A% (F) when 7 is essentially tame, a notion we will explain in Section 3.2.
More precisely, if we let A% (D) (resp. A%(F)) be the set of essentially tame
representations in A2, (D) (resp. AZ(F)) whose parametric degree is n, then
we can describe completely the essentially tame Jacquet-Langlands correspon-
dence:

JL : A°(F) — A%(D),
as in [BIT11, Theorem A].
To explain the theorem and describe JL completely, we require the notion of
admissible characters from [[How77]. In Section 3.1, we define the set P, (F)
of (equivalence classes of) admissible pairs (E/F,¢) € P, (F), where E/F is a
tamely ramified extension of degree n and & is a character of E* admissible
over F. This set bijectively parametrizes both A% (F) and A% (D) explicitly
[BIT11], using the theory of simple types of G(F) developed in [BF&5], [Gra07],
[Séc04], [SécObal, [Séc05D], [SS08], [BSS12] which generalizes the corresponding
theory in the split case [BK93], [BHI6] and the division algebra case [Zin92],
[Bro96].
If we denote by

rIL: Py (F) — ASHF), (E/F,€) — pllg (1.1)

and
pll: P, (F) — A%(D), (E/F,&) + pll¢ (1.2)

the above bijections, then Bushnell and Henniart proved in [BI11] that the
composition
—1
v Py(F) 25 AS(F) L5 A (D) 25— P,(F)
maps an admissible pair (E/F,§) € P,(F) to another pair of the form (E/F,¢-
pVe), where pre is a tamely ramified character pre of E* depending on . We

borrow the terminology from [BH10] and call the character prg the rectifier of
¢ for the essentially tame Jacquet-Langlands correspondence.

1.2 MAIN RESULTS

The main result of this paper is to relate the rectifier pre with a special set of
characters, called (-data in this paper, introduced in the theory of endoscopy
of Langlands and Shelstad [L.S87]. The significance of (-data will be explained
in the next section, together with a brief summary of the previous results of
the author [Tam].
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To describe the main result, we first assume that char(F) = 0 (see Remark
1.3 about this assumption). Let T" be the F-torus such that T'(F) = E*. We
regard T' as a maximal torus embedded in G. In contrast to the split case,
we have to carefully choose the embedding 7" — G relative to an hereditary
op-order in G(F) associated to . This will be explained in Section 2.5. Given
this embedding, let ® = ®(G,T') be the root system, which is invariant under
the action of the absolute Galois group I'r of F' if we view ® as a subset of the
character group of T'. For each root A € ®, we denote by E) the fixed field of
the stabilizer of A in I'p, so that E) is a field extension of a I'p-conjugate of
E. We recall from [[.587, Corollary 2.5.B] that (-data is a set of characters

{G) ={Ohermas

where each (y is a character of E satisfying the conditions in loc. cit. (and
will be recalled in Section 5.1). Here A ranges over a suitable subset of roots
in ®, denoted by I'p\® for the moment, representing the I'p-orbits of ® and
such that E) is a field extension of E (but not just its conjugate).

The following theorem restates the main result, Theorem 5.5, in a simpler way.

THEOREM 1.1. Given a character £ of E* admissible over F.

(i) There exists a set of C-data {Qx¢}rer\a such that

DV¢ = H C)\,£|EX-

AET R\

(11) The values of each (¢ can be expressed in terms of certain invariants,
called t-factors in this paper, of the corresponding component in the com-
plete symmetric decomposition of the finite symplectic modules associated
to & (see the notations and definitions in Sections 4.2 and 3.7).

O

We explain statement (ii) of the above theorem. The finite symplectic modules
appear in the respective constructions of the extended maximal simple types
inducing pIle and pIle in (1.1) and (1.2) (see [BH11, (2.5.4)], or the summary
in Section 3.5). Each of these modules admits an orthogonal decomposition,
called a complete symmetric decomposition in this paper (Proposition 4.4),
whose components are parametrized by the same set I'z\® parameterizing the
factors in (i) of the Theorem. The t-factors are, roughly speaking, defined by
the symplectic signs attached to these components.

When proving Theorem 1.1, we pick a choice of characters {(x ¢} xer,\a, where
each character ( ¢ has values in terms of the t-factors of the corresponding com-
ponent, the one indexed by A. We then show that these characters constitute a
set of (-data. Moreover, using the multiplicativity of t-factors, the product of
these (-data, when restricted to E*, is equal to the rectifier pv¢, whose values
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350 K.-F. Tam

are given in the First and Second Comparison Theorems of [BI11]. Hence our
result refines the one in loc. cit..

While the finite symplectic modules and their decompositions are also stud-
ied by the author in the split case [Tam)], there are extra conditions on the
components of these modules in the general case. These conditions come from
the extra ramifications of the related compact subgroups in constructing the
extended maximal simple types. The degrees of these ramifications depend on
the residue degree f(F/F) and, with other conditions similar to those in the
split case, determine whether each component is trivial or not. This new phe-
nomenon will be fully studied in Section 4. In particular, when E/F is totally
ramified and £ is fixed, the finite symplectic modules are isomorphic to each
other for all inner forms of G*, a fact already known in [BIH11, Proposition
5.6].

1.3 RELATION WITH THE PREVIOUS RESULTS

The significance of the factorization of pvg in Theorem 1.1(i) comes from [Tam],
which proves an analogous factorization of the rectifier pp¢ for the essentially
tame local Langlands correspondence [BH05a].

We first recall from loc. cit. that the rectifier ppue measures the difference
between the “naive correspondence” and the essentially tame Langlands corre-
spondence for G*; more precisely, the Langlands parameter of pll¢ defined in
(1.1) is the induced representation

Ind~ (€ - pyse) (1.3)

of the Weil group Wr of I, where { - pji¢ is regarded as a character of Wg by
class field theory [Tat79]. In [Tam, Theorem 1.1], the author proved that the
rectifier ppue admits a factorization

rre= [ xaelex
AT R\

where {Xx¢}rer\o is a set of x-data, consisting of characters of E satisfying
the conditions similar to those of (-data (see Section 5.1).
With a collection of x-data, we follow [[.S87, Section 2.6] to construct an ad-
missible embedding

I{Xx,g} : LT — LG

of the L-group T of the maximal torus 7T into the L-group “G of G*. (For
convenience, we call “T an L-torus in this paper.) Let £ :Wp — T be an
L-homomorphism whose class is the parameter of the character £ of E* =
T(F) under the local Langlands correspondence of the torus 7', i.e., the Artin
reciprocity for E* [Tat79]. In a previous result of the author [Tam, Corollary
1.2], the Langlands parameter (1.3) of pIl¢ is isomorphic to the composition

natural proj.
G —

I 08 W =T 5 T GL,(C)
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as a representation of Wpg. In other words, the essentially tame local Langlands
correspondence for G* can be described by admissible embeddings of L-tori.
A set of (-data is the ‘difference’ of two sets of y-data, in the sense that, given
a set {xx} of x-data, we have

{X\} is another set of y-data < {xa(xA) '} is a set of (-data.

If we define the local Langlands correspondence for G as the composition of
the local Langlands correspondence for G* and the Jacquet-Langlands corre-
spondence JL, then we can express the Langlands parameter of pIl¢ using an
admissible embedding of L-tori, as follows.

COROLLARY 1.2. Let {xa¢} and {(x¢} be respectively the x-data and the ¢-
data associated to an admissible character €. The Langlands parameter

Ind)yr (€ - ppe - pre)

of pll¢ is isomorphic to

: al proj.
I ecrey 08 Wr — Lp _y Ly natural proj., GL,(C)
as a representation of Wp. O

Hence analogously we can describe the essentially tame local Langlands corre-
spondence for G by admissible embeddings of L-tori.

As a consequence, we show in Proposition 5.7 that the factorization of pre in
Theorem 1.1(i) is functorial, in the following sense. Let K/F be an interme-
diate extension of E/F, so that if the pair (F/F,¢) is admissible over F', then
(E/K,€) is admissible over K by definition. We denote the centralizer of K*
in G(F) by GLy,, (Dk), where D is a K-division algebra and my a positive
integer. If {C) ¢} is the set of (-data associated to &, then the partial product

11 Ouelmx.

AETR\®, Al o x #£1

(a product similar to Theorem 1.1.(i), with factors ranging over the characters
being non-trivial on K *) is the rectifier p, ve of £ over K.

REMARK 1.3. We would like to remark on the condition of the characteristic
char(F') = 0, as we also did in [Tam, Remark 1.3]. The readers should be
aware that the works of [JL70], [DKV84], [Bad02], [BH11] make the Jacquet-
Langlands correspondence valid for local fields of arbitrary characteristic. In
our paper, we apply the condition char(F) = 0 only because we refer to the
theory of endoscopy from [L.S87], [KS99]. However, we do not actually need
this condition for the part of the theory that we allude to, which is about
the admissible embeddings of L-tori. In [Tam, Section 6] (or rather [LS87,
Section 2.5]), we see that these kind of embeddings can be defined without
any condition of char(F’). Therefore, the condition char(F) = 0 in this paper
should be treated as a mild condition. O
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352 K.-F. Tam

1.4 NOTATIONS

Throughout the paper, F' denotes a non-Archimedean local field of character-
istic 0. Its ring of integers is op with the maximal ideal pp. The residue
field kp = op/pr has ¢ elements and is of characteristic p. We denote by
vp : F* — 7 the discrete valuation on F. We denote by I'r the absolute
Galois group of F', and by Wpg the Weil group of F.

The multiplicative group F'* decomposes into a product of subgroups

(wF> X pp X U}ly‘

They are namely the group generated by a prime element wp, the group pr of
roots of unity of order prime to p, and the 1-unit group UA := 1+ ppr. We will
identify pp with k in the natural way. We then write Up = U := pp x U}
and UL := 1+ p%, for each positive integer i. Let w,, be the group of nth roots
of unity in the algebraic closure F of F, and z, be a choice of primitive nth
root in .

The F-level of a character £ of F'* is the smallest integer a > —1 such that
£ |U;+1 is trivial. A character £ of F* is called unramified if £|y, is trivial, or
equivalently, if its F-level is —1. Tt is called tamely ramified if &| Uy, s trivial,
or equivalently, if its F-level is 0.

Given a field extension E/F, we denote its ramification index by e = e(E/F)
and its residue degree by f = f(E/F). We also denote by trg,/r and norm
Ng/p the trace and norm respectively.

We fix an additive character 1p of F' of level 0, which means that 1 is trivial
on pp but is non-trivial on 0. Hence ¢p|,, induces a non-trivial character of
kr. We write g = ¥ otrg/p.

Suppose that A is a central simple algebra over F. We denote the reduced
trace by trd4,r and the reduced norm by Nrd,, .

Given a set X, we denote its cardinality by #X. If H is a group and X is a
H-set, then we denote the action of h € H on € X by z — "z. The set of
H-orbits is denoted by H\X. If 7 is a representation of H (over a given field),
we denote its equivalence class by (H, 7).

2 SOME BASIC SETUPS

2.1 ROOT SYSTEM

Given a field extension E/F of degree n, we let T be the induced torus
Resp/rGy,. We embed T into G as an elliptic maximal torus, and denote
the image still by 7. The choice of this embedding will be specific in Section
2.5, but at this moment this choice is irrelevant. Let ® = ®(G,T') be the root
system of T in G. Following [Tam, Section 3.1}, we can denote each root in
® by [{] where g = gI'y and h = hI'g are distinct cosets in I'p/T'g. (We
use the same notation g for an element in I'r and its I"g-cosets, for notation

convenience.) The I'p-action on ® is given by z - [{] = [77]. For each root
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A € @, we denote by [A] its I'p-orbit WrA. Each T'g-orbit contains a root of

the form [H for some non-trivial coset g € I'p/Tg.

For each root A € ®, we denote the stabilizers {g € T'r|9\ = A} and {g €
Tr|9\ = £} by 'y and T'1) respectively and their fixed fields by Ey and Eyy
respectively. We call a root A symmetric if [Ey : E1y] = 2, and asymmetric
otherwise. Equivalently, A is symmetric if and only if A and —\ are in the same
I'p-orbit. Note that the symmetry of ® is preserved by the I'p-action. Let

(i) T'r\Psym be the set of I' p-orbits of symmetric roots,
(i) T'p\Pasym be the set of I'p-orbits of asymmetric roots, and

(iii) T'p\Pasym/+ be the set of equivalence classes of asymmetric I p-orbits by
identifying [A] and [—\].

We denote by (I'g\I'r/T'g)’ the collection of non-trivial double cosets, and by
[g] the double coset I'pgl’'p. We can deduce the following proposition easily.

ProrosIiTION 2.1. The map
Lp\® — (Pp\Lr/Tr)'s [N = Wr [4] = [g],

is a bijection between the set T'p\® of I'p-orbits of the root system ® and the
set (Tg\I'r/Tr)" of non-trivial double cosets.

We can therefore call g € I'r symmetric if [g] = [g7], and asymmetric oth-
erwise, so that the bijection in Proposition 2.1 preserves symmetries on both
sides. Let

(1) (Te\I'r/TE)sym be the set of symmetric non-trivial double cosets,
(il) (TE\I'r/T'E)asym be the set of asymmetric non-trivial double cosets, and
(iii) (TE\I'r/TE)asym/+ be the set of equivalence classes of (I'e\I'r/T'£)asym
by identifying [g] with [¢~}].

We choose subsets Dgym and Dagym/+ of representatives in I'r/I'g of
(Ce\I'r/TE)sym and (FE\FF/FE)aSym/i respectively, and write

Dasym = Dasym/:l: U {g_1|g € Dasym/:i:}'

We also choose subsets Rsym and Ragym/+ of representatives in @ of orbits
in Ip\®gym and I'p\®P,gym/+ respectively such that every root A € Ry :=
Rsym U Ragym/+ is of the form [_ﬂ for some g € Di := Dgym U Dagym/+, and
write
7?/asym = 7?'asym/:i: u (_Rasym/:l:)'

Hence Rsym, Rasym, and Rugym/+ correspond bijectively to Dsym, Dasym, and
D,sym/+ respectively by the identification in Proposition 2.1. Denote E; := Ey
and Ey, := E1y. Notice that E, = E(YE), composite field of E and 7E.
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2.2  GALOIS GROUPS

Let E/F be a field extension of degree n. In most of the paper, we assume
that E/F is tamely ramified, which means that p is coprime to e. By [Lan94,
I1.§5], we can choose wg and wpr such that

Wy = 2p/FWF, for some zp/p € pE. (2.1)

Choose in F'* a primitive eth root of unity z. and an eth root 2g/Fe Of 2p/F.
(We do not require that 2§, JFe = Ze> if a is the multiplicative order of 2z, p.)
Denote L = E|zc, 2p/p,c| and [ = [L : E]. With the choices of wr and wg as
in (2.1), we define the following F-automorphisms on L.

(i) p: 2z 2% forall z € pur, and ¢ : wg — zpwp.
(ii) o: 2z z, forall z € py,, and 0 : wg — z.wg.

Here z4 lies in pp satisfying (z4wpg)® = z?ﬂ/FwF. More generally, we write

i 1 i1 i_q
Y wop = 24w where z4 = z¢+q+ T4 s an eth root of z%/ )

Therefore, I'pjp = (o) x (¢) with relation ¢ o 0 0 ¢! = o%. Suppose that
I/ = (0°¢f) for some integer ¢ satisfying the condition:

T_1
e divides ¢ KA .
gl —1
We can choose o
{oi¢7|i=0,...,e—1,j=0,....f—1}

as coset representatives for the quotient I'y,p = I'r/I'g. Moreover, elements
in a fixed double coset are of the form [0'¢’] with a fixed j mod f.

PROPOSITION 2.2 ([Tam, Proposition 3.3]). The double coset [g] = [o¢7] is
symmetric only if j =0 or, when f is even, j = f/2. O

We call those symmetric [0?] ramified and those symmetric [0 ¢//2] unramified,
and denote by (I'g\I'r/T'E)sym—ram and (F'e\I'r/TE)sym—unram respectively
the collections of symmetric ramified and symmetric unramified double cosets.
We provide several useful results concerning the parity of certain subsets in
Fe\l'r/Tg.

PROPOSITION 2.3 ([Tam, Propositions 3.4 and 3.5]). (i) If [g] is symmetric
unramified, then the degree [E, : E| is odd.

(ZZ) The pamty Of #(FE\FF/FE)sym—unram is equal to that Ofe(f - 1)
O

LEMMA 2.4. Suppose that f is even. The following are equivalent.

(i) There exists o' ¢?/? € Wy, for some i.
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(i) zyr/2 is an eth root of unity.
(iii) zp/p € Ky, where K /F is unramified of degree f/2.

(v) fw:=[F: Flwg]] is even.

Proof. (i) is equivalent to (ii) since oo g = zlzgr2wwp. To show that (iii)
. . . £/2
implies (ii), we recall that Z41/2 is an eth root of z%/F

£r2_ . . L
zj{; /F Y= 1 and Zgs/2 18 an eth root of unity. The converse is similar. To show

the equivalence of (iii) and (iv), we notice that f(F[wg]/F) = f(Flzg/r]/F) =
[/ fw. Hence that Flzg,p] C K is equivalent to that fe is even. O

~'If 2 € K4, then

LEMMA 2.5. Suppose that g = o'¢f/? satisfies the conditions in Lemma 2.4.

(i) The double coset [o'¢pf/?] is automatically symmetric.

(Z’L) The sel (FE\FF[WE]/FE)symfunram - (FE\FF/FE)symfunram N
(T e\ ey /TE) contains a single element [o"¢7/?].

Proof. For (i), we consider the actions of o?¢//? and its inverse (o?¢f/?)~!
on E. We certainly have “id’f/sz = (“%f/Z)AWE = wpg by definition. We
also have '¢"%2 = (@'¢7/7 = 2a’® for all » € pp. Therefore oig!/2T'y =
(0'¢f/?)~'T'p and in particular [o'¢//?] = [(c?¢f/?)~1]. For (ii), we know
by Lemma 2.4.(ii) that the double coset is the one containing o?¢//? where
Zgt/z = Ze_i. O

ProprOSITION 2.6. When f is even, the parity of the cardinality of
(Te\I'F/T'E)sym—unram — ' plwy) 05 equal to e + fom — 1.

Proof. Recall

(i) by Lemma 2.4 that there exists o?¢//? € Wy if and only if f is even,
and

(ii) by Proposition 2.3 that the parity of the number of symmetric [o?¢//?] is
the same as that of e.

By combining these facts, we have the assertion. O

2.3  DIVISION ALGEBRA

Let D be a division algebra over F' of dimension n?. Denote its unique maximal
order by op and the maximal ideal of op by pp. Suppose that the Hasse-
invariant of D is h = h(D), so that ged(n,h) = 1. By [Rei03, (14.5) Theorem],
we can choose a primitive (¢" — 1)th root z of unity in D and a uniformizer

wp such that
h
@ = wr and wpzwp' = 27 . (2.2)
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We write K,, = F[z] and pup = (z), then K, is a maximal unramified extension
(of degree n) in D, and pp is a group of roots of unity of order ¢ — 1, both
defined up to conjugacy by D*. Therefore, the conjugation of wp acts on K,
as the hth power of the Frobenius automorphism, i.e.,

wDuw;)l = ¢hu for all u € K,,.

We write U, := 1 + p%, for all positive integer i. The multiplicative subgroup
D* hence decomposes into a semi-direct product

((wp) x pp) x Up,.

Let E/F be a tamely ramified field extension of degree n, and let K be the
maximal unramified sub-extension in E/F. We assume that K C K, and
that the uniformizers wp and wp satisfy @y = zg/pwr as in (2.1) for some
zp/r € pp. If we define 2p,p € pup = pk, to be a solution of

Nk, /k(2p/E) = 2E/F) (2.3)

then we may take wp = wézD/E and this defines an embedding of F into D
over F'. Note that from (2.2)

2wzl = zl_qhiw}, (2.4)

forall z € up = ux and all i € Z.

2.4 HEREDITARY ORDERS IN CENTRAL SIMPLE ALGEBRA

If G is an F-inner form of G* = GL,,, then G(F) = A*, where A be a central
simple algebra over F. By Wedderburn Theorem [Rei03, (7.4)Theorem]|, A is
isomorphic to Mat,, (D), where D is a division algebra of F-dimension d? and
md = n. Therefore, G(F) = GL,,(D). Any field extension of degree n can be
embedded into A as a maximal subfield in A, and any two such embeddings
are conjugate under G(F).

Let 21 be an op-hereditary order in A, Py be its Jacobson radical, and Ry be
the G(F)-normalizer of 20*. If 2 is principal, in the sense that there exists
wy € Ky such that wyA = Awy = Pa, then the valuation vy : Ky — Z is
defined by 22 = Az = ‘)32["‘(1) for all z € Ry. We also write Uy = U§ = A%,

Ul =1+ % for each positive integer i, Uy = UQEM for all z € R>q, and

vgt= U UL

zER>o, y>x

Suppose that Ey is a subfield in A and 2 is Eg-pure, i.e., Ey* C fg, then we
define the ramification index e(4/0g,) to be the integer e satisfying v | g, x =
evg,. We therefore have

7 J o ie+j
PP = Pa
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and
plo, NG = pip e/
for all 7,7 € Z.
In the split case G = G*, i.e., when A = A* = Mat,(F), we denote the
hereditary order 2 by 2A*.

2.5 EMBEDDING CONDITIONS

Suppose we fix an F-embedding Ey <— A, let Ey and 2l be as in the previous
section, and write Ay the centralizer of Ey in A. We can restrict the embedding
to Ef < G(F), and denote the centralizer by Af = Zgr)(E;). Under the
above setup, there are many choices of 2 among its Zg(r) (E{)-conjugacy class.
In this paper, we assume the conditions (i)-(iii) below, all adopted from [BT111],
to fix a unique 2.

(i) [BHLL, Section 3.2] If E/Ey is an unramified extension in Ay such that
[E : F] = n, then we require that 2( is E-pure, i.e., E* C fy.
Let 24y be the centralizer of Ey in 2, i.e., Ay = AN Ay, which is a hereditary
op,-order in Ap, with Jacobson radical Py, = Po N Ao.

(i) [BH11, (2.3.1)(2)] There exists a fixed integer e(2(/Ap) > 1 such that

Ph N Ag = mg{/{)e(m/mo) for every k € Z. (2.5)

We say that 2 is the canonical continuation of 2y in A. Under (ii), we have
moreover Ky N Ag = Ry, -

(iil) [BH11, (2.3.2)] 2Ap is a maximal hereditary og,-order in Ay, i.e.,
6(52[0/0E0) =1.

Under these conditions, 2 is the unique Fy-pure hereditary order in A such that
AN Ag = 2p. Moreover, 2 is maximal among all Fy-pure hereditary orders in
A, and both 2 and 2 are principal (by [BH11, the remark after (2.3.2)]).

By [Zin99, 0. Theorem]|, if the op-period of 2 is denoted by r = () =
e(2/op), i.e. wpA =Py, then we have an isomorphism

Q[/‘Bgl %Mats(kD)T, (26)

where s = s() = f/e(™U/og). Once A (and hence D) is fixed, the integers r
and s depend only on F; indeed s = s(E/F) = ged(f,m) and r = r(E/F) =
e/ ged(d,e) =m/s.

If K is an intermediate subfield in E/F, we write fxx = f(F/K) and ex =
e(E/K). By [Zin99, 1. Prop.] the centralizer Ax = Z4(K) is isomorphic to
Mat,y,, (Dk ), where Dk is a division algebra over K of degree d3., with

d

= scd(d (KT and mg = ged(m,n(E/K)).

di
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Let 2 be the centralizer of K in 2. It is routine to check that (EoK, ) is
a canonical continuation of Ap, x and is also E-pure, i.e., (i)-(iii) are satisfied
when we change our base field from F' to K. We therefore have an isomorphism

Q[K/;‘pglx = MatSK (kDK )Tkv (27)

where rx = ex/ged(di, ex) and sk = ged(fx, mK).

2.6 CHARACTERS

Let Nrdy/p : AX — F* be the reduced norm of G(F) = A*. By [Rei03,
(33.4)Theorem] and [NM43, Satz 2], Nrdy,p is surjective and its kernel is
the commutator subgroup of G(F). Therefore, any character of G(F') factors
through Nrd 4 p.

We define the A-level of a character £ of A* as the smallest integer a > —1
such that &| patt is trivial. This is analogous to the F-level of a character of

F* defined in Section 1.4.

ProroOSITION 2.7. If the F-level of a character & of F'* is r, then the A-level
of the character § o Nrdy p is r-e(U/op).

Proof. Tt suffices to show that
NrdA/F(UQe(m/"F)) = Uy, for all 7 € R>o.

This follows from [BF&5, (2.8.3)]. O

3 THE ESSENTIALLY TAME JACQUET-LANGLANDS CORRESPONDENCE

3.1 ADMISSIBLE CHARACTERS

We recall the definition of admissible characters in [How77], [Moy86]. Given a
tamely ramified finite extension E/F, let £ be a character of E*. We call a
pair (E/F,§) admissible over F if £ is an admissible character over F, i.e., for
every intermediate subfield K between E/F,

(i) if ¢ factors through the norm Ng/ g, then £ = K;
(i) if £[yy factors through Np/x then E/K is unramified.

Two admissible pairs (E/F, ) and (E'/F, ') are called F-equivalent if there is
g € I'p such that 9E = E’ and 9¢ = £'. Let P, (F) be the set of F-equivalence
classes of the admissible pair (E/F,£), with each class in P, (F) still denoted
by (E/F, &) for convenience.

Every admissible character £ admits a factorization (see [[Tow77, Corollary of
Lemma 11] or [Moy86, Lemma 2.2.4])

§=¢&1(60°Ng/g,) (&t © Ngyp,)(&+1 0 Np/r), (3.1)
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where, in the notations above, the decreasing sequence of fields
E=FE 1D2FE2FE 2 ---2FE DE1=F.

and the increasing E-levels a1 = 0 < ag < a1 < -+ < a3 < a4 of the
characters {g o Ng/g,, k = 0,...,¢t + 1, are uniquely determined. We call the
E-levels ay the jumps of € and call the collection {Fy,axlk = 0,...,t} the
Jump data of §. By convention, when Ey = E, we replace ({o o Ng/g,)§-1 by
&o and assume that £_p is trivial; otherwise, £_; is tamely ramified and F/Fy
is unramified [Moy86, Defnition 2.2.3]. There are certain generic conditions
imposed on the jump data of the character by its admissibility, but we do
not need them fully in this paper. We refer the interested reader to [Moy&6,
Definition 2.2.3] and [BH10, Section 8.2] for these conditions (and when E/F
is totally ramified, see also [BI105b, Section 1]), and only use one of their
consequences in (3.11).

We fix a (non-canonical) choice of {_; in the factorization (3.1) as follows. We
fix a choice of the wild component &,, of £ to be the product

(oo Ng/gy) (&t o Ng/g,)(&ir10 Neg/r)

which satisfies
¢w(wr) =1 and &, has a p-power order (3.2)

(see [BH11, Lemma 1 of Section 4.3]), and define the tame component of £ to
be €1 = &€, We write

E=E2() =&(&1°Ngyp,) - (410 Ngy/r), (3.3)

such that £, = =0 Ng/p,.

Suppose that Ey/F is a tamely ramified extension of degree dividing n and
E/Ep is unramified. Let Z be a character of U}JU. Following [BI105a, Section
1.3], we call (Ey/F,E) an admissible 1-pair over F if = does not factor through
any norm Ng, g with F € K C Ey. We denote by P)(F) the set of F-
equivalence classes of these pairs. Therefore, the map

is well-defined and surjective. Notice that we can define the jump-data of a
1-pair, such that the jump-data of an admissible pair is the same as that of its
associated 1-pair.

3.2 THE CORRESPONDENCES

Let G* be GL,, defined over F', and G be an inner form of G* whose F-point is
isomorphic to GL,,(D) for some central F-division algebra D of dimension d>
and n = md. Let A2(F) (resp. A2, (D)) be the collection of equivalence classes
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of irreducible smooth representations of G*(F') (resp. G(F')) which are essen-
tially square-integrable modulo center. The Jacquet-Langlands correspondence
is a canonical bijection

JL : A%(F) — A%, (D) (3.4)

between the two collections determined by a character relation between 7 €
A2(F) and its image JL(m) € A2,(D): for every pair of semi-simple elliptic
regular elements (g,g*), where g € G(F) and g* € G*(F), with the same
reduced characteristic polynomial, we have [BIT11, Section 1.4]

(=1)"""Ox(9") = Oyr(m(9), (3.5)

where O (resp. © jr(x)) is the character of 7 (resp. JL(r)).
For each representation 7 € A2 (D), let

~

(i) f(m) be the number of unramified characters y of F* that x @ @ = &
(here x is regarded as a representation of G(F) by composing with the
reduced norm map Nrd : G(F) — F*), and

(ii) 0(m) be the parametric degree of m (we do not require its full definition,
so we only refer to [BH11, Section 2.7] for details).

It is known that () is a positive integer and is a multiple of f(w). Moreover,
7 is supercuspidal if §(7) = n, while the converse is only true in the split case
(when G = G*).

Recall that we denote by A%(F) the set of supercuspidal representations of
G*(F). The correspondence (3.4) restricts to a bijection

JL : A%(F) = {r € A%(D)|6(r) = n}.

We call 7 essentially tame if p does not divide 6(w)/f(m). Let A% (D) be the
set of isomorphism classes of irreducible representations in A2 (D) which are
essentially tame and satisfy §(m) = n. Therefore ASY(F) is the same collection
defined in [BI105a]. Since the Jacquet-Langlands correspondence in (3.4) pre-
serves the invariants 6(7) and f(7), we have the following theorem [BIT11, 2.8.
Corollary 2].

THEOREM 3.1 (Essentially tame Jacquet-Langlands correspondence). The re-
striction of the Jacquet-Langlands correspondence induces a bijection

JL : ASH(F) — A%Y(D).
This bijection preserves the central characters on both sides. O

Bushnell and Henniart described this bijection explicitly in a way parallel to
[BHO5a], [BHO5b], [BH10]. We recall the results briefly as follows. On the one
hand, we have the bijection

FIL: Po(F) — A(F), (E/F,€) v plle, (3.6)
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generalizing the construction of Howe [[How77]. On the other hand, there is an
analogous bijection

pll: P,(F) — ASN(D), (E/F,€) — pllg, (3.7)

using the constructions in [S¢éc04], [Séc05a], [Séc05Db], [SS08]. In fact, what is
constructed in [BH11] is the inverse of (3.7), using the method called ‘attached-
pairs’, since the construction parallel to (3.6) exhibits some ‘novel technical
difficulties” as mentioned in [BIT11, Introduction 4.]. In the split case, the
attached-pair method yields the inverse of (3.6) (see 4.4 of [BH11]).
The composition of the bijection in (3.6), the correspondence in Theorem 3.1,
and the inverse of (3.7),
FIL ret JL,  jet plI™*

pv: P (F) =— ASH(F) == AS (D) =—— P,(F), (3.8)
determines a tamely ramified quadratic character pve of E* for each admissible
character & of E*, depending only on the wild part of £, such that for each
admissible pair (E/F,§), the pair (E/F, pve - £) is also admissible and

pv(E/F,§) = (E/F, pre - €). (3.9)

We call this character pre the rectifier of £ (for the Jacquet-Langlands corre-
spondence). Using the First and Second Comparison Theorems of [BIH11], we
can compute the values of pre. To express these values, we need the knowledge
of certain invariants of finite symplectic modules, which will be described in
Section 3.8. Finally, with the expression of pre, we see that we can describe
the correspondence in Theorem 3.1 explicitly, using (3.6), (3.7), and (3.8).

3.3 SOME SUBGROUPS

We recall certain subgroups of G(F). Suppose that the jump data {Ej, ax|k =
0,...,t} are defined by the factorization (3.1) of an admissible pair (E/F,¢),
or equivalently, of its associated 1-pair (Ey/F,Z). We require that (FEp,2A)
satisfy the conditions in Section 2.5. We write Ay the centralizer of Fj in A
and A = A NA. We can then define Py, , Us, , Uy, and UQ””[:' for x € R>o
analogously as in Section 2.4. Following [Gra07, Definition 4.1], we construct
the pro-p subgroups

Hl (E, Ql) _ UglloUQ(lalge(Qll/aE)/Q)Jr o Ug(litfle(mt/UE)/2)+UQ(lat€(Ql/0E)/2)+ and

J! (E, A) = U%lUUgl(ie(Qll/oE)/Q o Uglf:w(glt/UE)/QU;te(Ql/UE)/Q.

(3.10)

We also construct the subgroups

[1]

J(
JEA) = EXJE Q) = ELJEA).

’Q[) — UQ[UUgl(ie(ml/UE)/Q o Uatfle(glt/UE)/QUglte(Ql/oE)/2 and

t
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We abbreviate these groups by H', J!, J and J if the admissible character
¢ is fixed. Notice that H', J!,J are compact subgroups of G(F) and J is a
compact-mod-center subgroup of G(F).
In [Séc04, Section 3.1], these subgroups are defined based on a simple stratum
[2(, —ve(8), 0, 8], where 3 is a suitable element in Fy, depending on = and such
that

—v(f) = the E-level of 20 N/, .

The group H'(Z,2) is denoted by H*(B,21) in loc. cit. (and similarly for
the other subgroups). This construction is an obvious generalization of [BI<93,
Section 3.1] (see also [BIT11, Section 2.5] and the Comment therewithin).

3.4 SIMPLE CHARACTERS

Given an admissible 1-pair (Ey/F,Z) and a finite unramified extension E/Ey,
we define H'(Z,2l) as in (3.10). Using the idea of [Moy&6, Section 3.2] (see
also [S¢éc04, Definitions 3.22, 3.45, Proposition 3.47]), we attach to (Ey/F, =)
a simple character (H'(Z,2l),0= ) as follows. Suppose that = admits a fac-
torization of the form (3.3), with each & o Ng /g, , where k = 0,...,t + 1, a
character of U}EO. The generic conditions on the factorization imply that for
each & there is ¢, € B, Npp"* such that Ejyiq[ck] = Ex and

fk ] NE/Ek(l + .CC) = ’l/}F(tI‘E/F(CkZL')) for all z € pgk/2)+. (311)
Note that the element ¢, can be chosen mod pgak/ % We denote the character

on the right side of (3.11) by ., .
We define a character 0= g of the subgroup H*(Z,2l) in (3.10) by the follow-
ing inductive procedure. We first define a character ;41 on the subgroup

plare@er1/op)/2)+ (note that indeed Fy11 = F and ;41 = 2) by

Att1

U(ate(Q[Hl/UE)/QH'_

i1 0 Nrdyyp on Uy "

Inductively, suppose 6y is defined, we construct 6 on the subgroup

Uk e /o8) D+ aneiss [06)/ D+ (arel/or)/2)+

g1
by
(€ oNrda, /m,) -+ (§41 0 Nrda/r) on Ug([ikfle(mk/oE)/QH and (3.12)
(the,, © trday, /g, )Ok+1 o0 Uz(lii(mkﬂ/%w” Ul -
On the intersection U¢R/°B)/DF  wo have
A ?

Okt1 = (k1 0 Nrda,,/myyy) o (G410 Nrdayr)

and
w(}k © trdQlk/Ek = é-k o NrdAk/Ek
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By Proposition 2.7 and (3.11), the two characters in (3.12) agree on the inter-
section, and so 0 is defined. Finally, we define = g = 6 on H*(Z,2). By
construction, this character 6= g is normalized by Ry, hence it is a simple
character by [Gra07, 5.3 Definition.(i)].

To get back our character = from 0z g, just notice that 6= E|U}3 factors through
NEg/g,, hence there is a unique character = of Uéo such that Z o Ng/p, =
957E|U}3'

3.5 LOCAL CONSTRUCTIONS OF ATTACHED PAIRS

We briefly summarize the construction in [BIH11, Sec. 4] of the bijection pII in
(3.7). We will distinguish between the ‘level-zero’ case and the ‘positive-level’
case (we refer to [BIT11, Sections 2.4 and 2.6] the definition of these cases ).
As we remarked in the Introduction, it is indeed the inverse of pII that we are
going to describe.
In the level-zero case, the construction is similar to the one in the split case.
Each level zero m € A% (D) contains a representation (GL,,(0p), ), called a
maximal simple type of level zero, inflated from an irreducible cuspidal rep-
resentation (GL,,(kp),\). This representation A corresponds, via Green’s
parametrization [Gre55], to a kg /kp-regular character € of k., where E/F
is the unramified extension of degree n. We define the character £ of E* such
that §|0]§ is the inflation of £ and | px is the central character of 7. By [BI11,
4.2. Proposition], the attached pair (E/F,§) is admissible and the correspon-
dence

A%(D)level—o — Pn(F)le'uel—Oa = (E/Fa 6)’ (313)

is bijective. We can show that = = cIndg(F)A, where the condition 6(7) = n
implies that J = F*GL,,(0p), and (J, A) is defined by the conditions

AlgL,,(op) = A and A|px is a multiple of §|px. (3.14)

The representation (J, A) is called an extended maximal simple type of level
Zero.

In the positive level case, we first recall the construction of a extended maximal
simple type in general. Suppose we have a simple character (H',6). For
example, we can construct a simple character § = 0= g as in Section 3.4 using
an admissible pair (E/F,&). We notice that the commutator subgroup [J!, J1]
lies in H' [BK93, (3.1.15)]. By [S¢c04, Théoreme 3.52], the above simple
character 6 induces an non-degenerate alternating bilinear form

ho(z,y) = 0([1 + 2,1 +y]), for all 1 + 2,1 +y € J*, (3.15)

on the F,-vector space
A0 == J'/H".

The classical theory of Heisenberg representation implies that there is a unique
representation 7 of J!/ker § containing the character 6 of H'/ ker @ as a central
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character. We then define 1 as the inflation of 77 to J!. By [S¢c05a, Théoreme
2.28], there exists a unique irreducible representation (J, k), which is called a
B-extension (or wide extension in [BIT11]) of n and satisfies certain conditions
on its intertwining in G(F) (see [BIT11, (2.5.5)]). We now choose a maximal
simple type (GLp,(0p,),0) of Af = Zgp)(Ey ) of level zero and inflate it
to a representation (J, o), since we know that J = GL,,,(0p,)J'. We obtain
a maximal simple type (J,A), where A = Kk ® 0. By [S¢c05b, Théoreme 5.2],
there exists an irreducible representation A of J = Ey*.J! (by the condition
d(m) = n), extending A and whose compact-induction to G(F) is irreducible
and supercuspidal. The representation (J,A) is called an extended maximal
simple type. By [BIH 11, Lemma 2 of Section 4.3], we can fix a unique extended
type containing (J, A) and satisfying the (non-canonical) conditions:

wp € ker A and det A has a p-power order.

Following [BI 11, Section 3 and 4], we have to approach indirectly to describe
the inverse of pIl. Suppose that we are given a representation m € A% (D)
of positive level. By [SS08, Théoréme 5.21], it contains an extended maximal
simple type (J, A) of the above form, such that A|g: is a multiple of a simple
character (H',0). There is a unique character &, of EX, depending on 0| UL,

satisfying the conditions in (3.2). In particular, we have
9|U§10 = Z0Nrdy, /g, such that §w|U}; =Z0Ng/g,-

By the discussion of the previous paragraph, we can attach to &, an extended
maximal simple type (J, A, ) such that A =2 A_1®A,, for a uniquely determined
extended maximal simple type (J,A_1) of level zero. Attached to (J,A_q) is
a level zero character £_1 of E* admissible over Ey, as mentioned in the level
zero case. Finally, by [BIT11, 4.3. Proposition], the attached pair (E/F,¢),
where & = £_1&,, is admissible and independent of the various choices above.
We call (E/F,§) a pair attached to .

The technical part is to show that the attaching map

A5 (D) = Po(F), 7= (E/F,¢)

is well-defined and injective. This is done in the Parametrization Theorem of
[BH11, Section 6]. The composition (3.8) is then injective (since the maps
rII and JL are known to be bijective) and preserves the restriction of each
character to the subgroup F* U}, which is of finite index of E*. Therefore,
the map in (3.8) and hence plI in (3.7), is bijective.

3.6 FINITE SYMPLECTIC MODULES

Since the group J normalizes the subgroups H*', J', and the simple character
0 of H', it acts on the finite quotient AV = JY/H?!. This quotient is denoted
by 4+U¢ in the split case A = A*, which is studied in [BH10] and [Tam]. Notice
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that the quotient is clearly a finite dimensional IF,-vector space. The action of
J induces a symplectic F,J-module structure on this space with respect to the
non-degenerate alternating form hy in (3.15). We have a decomposition of

AVe = aVeo® - B aDe s, (3.16)

into [F,J-submodules, where

ake(mk+1/0E)/2
B, — App1
ATEE = Uake(Qlk/OE)/QU(ake(QlHl/OE)/?)Jr
e i1 (3.17)
ape(Aky1/0r)/2 ’

- m%{i+1 k+1/0E

- are(2A 2 age(A 2
;’BQ[Z( k/oE)/ +;I§(Ql:+l( kt+1/08)/2)+

for K = 0,...,t. In this paper, We call this decomposition the coarse de-
composition of 40¢. By [Séc04, Proposition 3.9], the decomposition (3.16) is
orthogonal.

In the sequel, we will be interested in the adjoint action of E* on 42U restricted
from that of J, which factors through the finite group ¥p,p := E*/F*(E* N
Jh).

The following Proposition appears in [BI111, Proposition 5.6]. We re-interpret
its proof here.

PROPOSITION 3.2. If E/F is totally ramified, then 40¢ = 2+De.
Proof. From the proofs of Propositions 4.1 and 4.2 (which are purely algebra

and do not require the knowledge of this section), we see that the totally
ramified condition implies that

. i1 . i1~ i ‘
Qo /PR =) /PLT = Tnd, " ke (3.18)
as a kpWp,p,-module, for all j € Z and k =1,...,t + 1. Moreover, we know

that in the split case the index e(2;/og) (appearing in the powers in (3.17),
when A = A*) is always 1, and in general each e(2/op) (again appearing in
(3.17)) divides f(E/E})) (remember that f(E/E))/e(2/0g) is the integer sg,
appearing in (2.7), when K = E}), which is equal to 1 in the totally ramified
case. Hence from the expression in (3.17) and using (3.18), we see that both
AB¢  and 4«Vg i are isomorphic to

ak/2 (ar/2)+"
Bo, ~+ B
Hence their sums 22¢ and 4+ are also isomorphic. O
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3.7 INVARIANTS OF FINITE SYMPLECTIC MODULES

Let T be a finite cyclic group whose order is not divisible by p. We call a
finite F,I'-module V' symplectic if there is a non-degenerate alternating form
h:V xV — F, which is I'-invariant, in the sense that

h("v1,"v9) = h(vy,v2), for all ¥ € T, vy,v3 € V.

The simple module V) corresponding to a character A € Hom(I‘,I_F;) is the
field F,[A(T)] generated over F,, by the image A(T), with T'-action

Tv= A7), forall y € T, v € V).
Its Fp-linear dual Vi = Hom(V},[F,,) is isomorphic to Vy-1 by the map
V-1 — V/\*, V= (’LU = tIp, (1)) /F, (wv)),

such that the canonical pairing (-,-) : Vi x V-1 — F}, is I'-invariant.
We recall some basic facts from [BF83, (8.2.3)] and [BHI10, Sec. 3, Prop. 4].

PROPOSITION 3.3. (i) An indecomposable symplectic F,I'-module is isomor-
phic to either one of the following two kinds,

(a) a hyperbolic module of the form Vy = Vi @ Vy-1 such that either
A2 =1 or Vy 2 V-1, with the alternating form

th((UhUT)a ('UQ’U;)) = <’U1,U;> - <U2aUT> )

for all (v1,v7), (va, v3) € Vy;

(b) an anisotropic module of the form Vy with A\* # 1 and Vy = Vy-1.
In this case, [Fp[A(T)] : Fp] is even and the alternating form hy, is
defined, up to I'-isometry, by

(v1,v2) = trE, (A1) /R, (QU102), for all vi,v2 € Vy,
where v — ¥ is the Fp-automorphism of F,[A(T)] of order 2 and

a € FANT)]* satisfies & = —a.

(i) If Vi is anisotropic and Fy[A(I')]+ denotes the subfield of Fu[\(I')]
such that Fu[ND)]/FplMTD)]x is quadratic, then XN(T') is a subgroup of
ker(Ng, (D)1 /6, D))

(i11) The T-isometry class of a symplectic F,I'-module (V, h) is determined by
the underlying F,I'-module V.

Part (iii) is particularly useful because, when we talk about invariants of I'-
isometry classes of symplectic F,I'-modules, we do not have to write down the
alternating forms explicitly.
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Given a finite symplectic F,I-module 2, we attach a sign t%(%) € {£1} and
a quadratic character t}.(0) of I'. We also set

tr () = tp(V)tr (V) (7),

where 7 is any generator of I'. We call these ¢-factors of 5.
We recall from [BH10, Section 3] the definition the t-factors.

(i) I T acts on U trivially, then
th (V) =1 and (V) = 1.
(ii) Let U be an indecomposable symplectic F,I'-module.
(a) If U = V) & V-1 is hyperbolic, then
te (V) =1 and tH(V) = sgny () (V).

Here sgnyr) (W) : I' — {£1} is the character whose image v
sghy () (V) is the signature of the multiplication by A(7y) as a per-
mutation of the set 0.

(b) If U =V, is anisotropic, then
t2 (V) = —1 and

. ( Y )foranyVEI"
r(V)(7) ker (N, ()] /7, (A(D)]+)

Here (—) is the symbol defined as follows: for every finite cyclic group

H
( x ) )1 ifzeH?
H/) | -1 otherwise.
(iii) If U decomposes into an orthogonal sum U; L - - - LU, of indecomposable
symplectic F,I'-modules, then

)

th(B) = th(By) - - th(By) for i =0, 1.

Notice that when p = 2, the order of T is odd. In this case, th() is always
trivial, because all signature characters and symbols (—) are trivial.
3.8 VALUES OF RECTIFIERS

Given a tamely ramified extension E/F and an F-admissible character £ of
E*, let pve be the rectifier of ¢ defined in (3.9). To describe the values of pre,
we need to impose a condition on wg defined in (2.1):

wg € Ey, (319)
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where Ej be the first field appearing in the factorization (3.1) of £&. This con-
dition is the same as in the Second Comparison Theorem of [BIH 11, Section
7], where we further require that w?, € F for some integer r coprime to p. In-
deed, from the assumption in (2.1) this extra requirement is automatic in our
situation. Under (3.19), the roots of unity zg,p, 24: (defined in Section 2.2),
and others related to wp in later sections all depend on the first field Ey in
the jump data of &.

The values of the rectifier pv¢ depends on the t-factors

th,(4B¢), ty,(4-De), t(e) (4De) and () (a-Ve),

where p = pp/p and (w) = <w>E/F abbreviate the following subgroups of
Ug/r= EX/FXU}E,

= pp/pr and

e (3.20)
(w) := the subgroup generated by the image of wg.

By the First and Second Comparison Theorems of [BH11], the rectifier pre has
values

DVelup = t,(aBe)t,, (4~ V) and
pre(wp) = (—1)" ="Mt (4B )t () (4= V),

where fo, = [E: Flwg]] = f(E/Flwg]) and mo, = ged(m, fr).
In the case when E/F is totally ramified, Proposition 3.2 implies that

(3.21)

n—m

pe is unramified and pre(wp) = (—1) ’

as stated in [BH11, 5.3.Theorem)].

4  FINITE SYMPLECTIC MODULES

4.1 STANDARD MODULES OF CENTRAL SIMPLE ALGEBRA

Let 2 be the hereditary F-pure order in A, as discussed in Sections 2.4 and 2.5.
The isomorphism (2.6) implies that % /P4 " = Mat,(kp)” for all j € Z, where
s = ged(f,m) and r = e/ ged(d, e). We denote this quotient by (Mats(kp)”);
when we want to emphases the index j. Notice that as kpWV g, p-modules, all
(Mats(kp)");, for j ranges over all Z, are isomorphic to each other.

When 20 = 2* and j = 0, we know that tg« := A* /Po = Mat,, (kr) admits a
root-space decomposition

Us+ = Uy @ Uy

Melr\@

where Up = o /pr on which Vg, p acts trivially, and Uy is the kr-subspace
on which ¥, acts by the character A. Note that the equivalence class of the
kW g/ p-module iy depends only on the I'g-orbit of A
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For future computation, we rewrite the above decomposition as
g+ = @ ﬂ[g] (4.1)
[g]€eTE\T'F/TE

using the identification in Proposition 2.1. Here iy = kg as a kp-vector
space for each [g] € 'g\I'r/T'g, and the ¥, p-action on each v € U, is given
as follows: if [g] = [0¢’], then

o= (ijfl)*lv for all z € pp and ®%v = (zl245) !0, (4.2)

where z. and z4; are defined in Section 2.2.
For general inner form G, we first consider a simple case when A is a division
algebra D. We write (kp); := P4, /B for each j € Z.

PROPOSITION 4.1. For each j € Z, the kpV g, p-module (kp); is isomorphic
to
@ u[a-id)hj]. (4.3)
[0iphI]eTp\T'F /TE

Proof. Recall that, if we denote by K the maximal unramified extension in D
(of degree n over F'), then

P = Opxwh Dogwd -
Hence we can use xw?,, with € px U {0}, as a representative in 3%, of an
element in (kp) j- We regard (kp) ; as a kg-vector space of dimension e such

that z € pg acts on each piece (kg); by the character {Qﬁj} (2) = 21-d" 4qin

(2.4). Therefore, a Frobenius reciprocity argument (which is still valid when p
does not divide #WV /) implies that

~ v
(kD>j = Ind“(i;ZF (kE)j)

more precisely, the action of wg has eigenvalues (zizgni)™t, i = 0,...,e —

Ny
1, where we recall that z4s; is an eth root of z%;gl. Hence we have the

decomposition (4.3) with the W, p-action on each component U,igns| as in
(4.2) for each fixed j.

For the general A, if we write (Mats(kp)™);» = ‘Bg/‘ﬁg“ for each j' € Z,
then we have the following result.
PROPOSITION 4.2. For each j' € Z, we have a decomposition

(Mats(kp)"); = D Hioiga)-

[0'¢71€TE\TF/TE
j=hj’ mod f/s

as a Vg, p-module. (Recall that f/s = d/gcd(d,e) = e(A/og).)
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Proof. Denote by Ep = E N D the maximal subfield contained in both E and
D, then [kg, : kr] = f/s and [kp : kg,| = ged(d, e) = e/r. By Proposition
4.1, we know that z € pg, acts on (Mats(kp)”); as a sum of (kgp, )ny, i-e.,
z acts by the character [d—);}j/} (z) = zl_th/, where ¢ is the image of ¢ under
the natural projection

FkE/kF — FkED/kF' (44)

(Note that the arguments above concerning Proposition 4.1 still valid even
though Ep may not be a maximal subfield of D.) We now consider the kg, -
embeddings (where all choices are conjugate to each other)

kED — kE — Mats(kED) — Mats(kp),

Notice that kg is a maximal subfield of Mat,(kg,). By the “twisted group
ring decomposition”, we know that z € pugr acts on Mats(kg,) as a sum of
((kg)nj )®, ie., z acts on each of the s summands of kg by the character

(;j} (2) = zlqu, for ¢7 ranges over the s pre-images of qzhj/ under the natural
projection (4.4). We denote this pr-module by Mat,(kg, ), . Finally, since
the relative degree of (Mats(kp))” over Maty(kg,) is e = [Vg/p : pe/pr],
a Frobenius reciprocity argument (which is still valid when p does not divide
#V g, p) implies that

” ~ v
(Mats(kp) )j/ = Induz;ZFMats(kED )j/;

Therefore, we have obtained the desired decomposition and proved the propo-
sition. O
The following Corollary is a direct consequence of Proposition 4.2.

COROLLARY 4.3. The graded algebra

f/s—1
o= P Mat,(kp)");,
§'=0
is isomorphic to g as a Y, p-module. O

We provide some notations for later use. We write

Usym = @ Upg)

[9]€(Te\TF/TE)sym

and also Usym—ram and Usym —unram analogously. Given intermediate extensions
FCKCLCE, we write

Uk = @ Ujg)

[9]eTe\(T'r.-TK)/TE
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We also define the symmetric module associated to Uy (or Upy—17) by

e D Uro—1y if [g] is asymmetric,
g =0T ) (4.5)
l] if [g] is symmetric,
and call
o = 2o @ u[g} (4.6)

[9)€(TE\TF/TE)symU(TE\TF/T'E )asym/+

the complete symmetric decomposition of g. If U is a submodule of gy, we
also use the same convention to denote its submodules, for example, U/ =
Uryp MY and W, = Uy, NV, and also call

T = (Lo N) D By

[91€(TE\TF/TE)symU(TE\TF/TE)asym/+

the complete symmetric decomposition of U

4.2  COMPLETE DECOMPOSITION OF FINITE SYMPLECTIC MODULES

We are interested in the adjoint action of E* on 4 restricted from that of J,
which factors through the finite group E* /F*(E*NJ') = U, p. We also know
that this action preserves the symplectic structure hy (3.15) on 4. Hence
AU is moreover a finite symplectic F,I'-module for each cyclic subgroup I' of
Vg p. We denote the U, -isotypic component in 4U¢ by 4% 4, and obtain
the decompositions

aT¢ = D Ve = D 4B (g
[91e(TE\TF/TE) [9]€Te\TF/TE)symU(CE\LF/T E)asym,/ +
(4.7
inherited from (4.1) and (4.6) respectively. These decomposition are finer than
the one in (3.16). Indeed, it is easy to see that

AVe k= aAVe By By = @ AT¢ g
9]€Te\(Te,, , —TE,)/TE
for k=0,...,t.

PROPOSITION 4.4. The complete symmetric decomposition of 40 is orthogonal
with respect to the alternating form hy.

Proof. Since we know that the Vg, p-components of 42¢ consist of those in
the standard module g, which is isomorphic to the standard one Ly« in the
split case, the proof of the assertion is just analogous to the one in the split
case [Tam, (5.10)], based on the argument of [BF83, (8.2.3),(8.2.4)]. O

We would like to describe the isotypic component appearing in the complete de-
composition (4.7) of 4. We first write e(A/Ax41) := e(A/og)/e(Akt1/0E).
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PROPOSITION 4.5. The quotient ‘BJQ[ N Ak+1/‘,]3é[+ N Agy1 is non-trivial if and
only if j € e(A/Ap11)Z.

Proof. Since ‘,Bé[ NApt1 = ‘Bj/e(m/m’““) for all j € Z, the assertion follows

g1
directly. O
We now specify j = ji = e(2/0g)a /2 for some integer ay, and so ‘)3%{‘ NAg+1 =
‘,Bg[ii(?k“/w)m, such that the index on the right side is the one appearing in

the group J* (3.10). The condition in Proposition 4.5 is satisfied if and only if
ay is even or e(Ag4+1/0g) is even, in which case

make(ﬁlk+1/0E)/2
ADe i &= Tril
L are(Aps1 2+ are(2A 2
mQ[kkJr(l k+1/0E)/ +q39lkk( k/oE)/

~ JMats, ,, (kp, )™+ /Mats, (kp,)™ when axe(y/op)/2 € Z,
B Ma'tsk+1(ka+1)Tk+1 otherwise,

where 1, and sy are the invariants of 2, analogous to r and s of .
To summarize, 4U¢ ;. is isomorphic to

0 when ay, is odd and e(j41/0g) is odd,
Mats, , (kp,., )™
when ay, is odd, (/o) is odd, and e(Ax+1/0g) is even,
Mat,, , (kp,,, )™ /Mat,, (kp, )™
when ay, is even or e(2;/og) is even.
The action of Vg, r on ‘)3%{“ N Apyq is given by i/ € I'g,,.,, where j has

image hjj in the natural projection Z/fZ — Z/e(2/og)Z. Therefore, directly
from the description of 4U¢ ;. above, we have the following decompositions.

PROPOSITION 4.6. The complete decomposition of the component AU is
given as follows.

(i) When ay, is odd and e(Ax41/05) is odd, then 4D¢ y is trivial.
(i1) When ay, is odd, e(y/og) is odd, and e(Aj41/0g) is even, then
FRUNES D Hig)-

l9]=[c"¢'|€Te\T's,,, /TE
j=hjr mod e(A/og)

(iii) When ay, is even or e(Uy/og) is even, then

FRUFSE D Upg)-

[g]=lo" #']€DE\ (T, ~T'5, ) /T
j=hjr mod e(A/og)
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4.3 SOME PROPERTIES OF PARITIES OF JUMPS
Let R be the index when f(E/ER) is odd and f(E/Epr41) is even.

LEMMA 4.7. We have (FER+1/FE)sym—unram = ((FER+1 _FER)/FE)sym—unram-

Proof. Recall Proposition 2.2 that every symmetric unramified [g] are of the
form [0?¢f/?], so there is no coset of the form o?¢f/2 belonging to I'g,. O

Let @ be the index when e(2g/og) is odd and e(Ag+1/0E) is even.

LEMMA 4.8. Suppose that [ is even. We always have R < Q. If moreover m
s odd, then (Q = R.

Proof. We know that e(2/og) divides f(E/Ey), so that if @ < R, then the
even number e(Ag11/0g) divides f(E/Eg+1), which divides the odd number
f(E/ER). This is a contradiction. Hence R < Q. When R < @, then

e(Ap+1/0g) is odd and f(F/Fr41) is even. (4.8)
Since
E/E
e /05) = s/ s = T st mETE” )
the statement (4.8) is equivalent to saying that
the 2-powers of the numerator and (4.10)
the denominator on the right side of (4.9) are equal.
This power is greater than 0. Hence (4.10) is equivalent to that
(the 2-power of m) > (the 2-power of f(E/Er+1)) > 0. (4.11)
If m is odd, then (4.11) is a contradiction. O

4.4 SYMMETRIC SUBMODULES

We write 4U¢ sym = aVe N Usym and aVe¢ sym—ram and 4V¢ sym—unram analo-
gously.

4.4.1 CASE WHEN f IS ODD

From Proposition 3.2, we always have
Amg,sym = Amg,sym—ram = A*%f,sym—ram = A*%f,sym- (412)
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4.4.2 CASE WHEN f IS EVEN

Notice that the natural projection Z/fZ — Z/e(2/0g)Z maps

(4.13)

0 if e(2A /o) divides f/2,
/2 {e(Ql/OE)/Q #0 otherwise

The condition that e(2 /o) divides f/2 is equivalent to that s is even. When f
is even, then s = ged(f, m) is even if and only if m is even. We hence separate
the cases according to the parity of m.

4.4.3 CASE WHEN BOTH f AND m ARE EVEN

In this case, f/2 is mapped to 0 by Z/fZ — Z/e(A/or)Z. We separate the
cases according to the parity of the jump ar. When ay, is odd, neither 0 or f/2
is mapped to hji #0 € Z/e(A/og)Z, and so 4V¢ i is trivial. When ay, is even,
both 0 and f/2 are mapped to hjr = 0 by (4.13), and s0 AD¢ k. sym = Yk sym-
We also recall that

)0 if ay, is odd,
A~V 1 = . .
Upsym  if ay is even.

Whatever the parity of ay is, we always have 4U¢ sym = 4= D¢ sym-

4.4.4 CASE WHEN f IS EVEN AND m IS ODD

In this case, notice that e(2/og) must be even, and

0 if ay, is even,
ik =e(A/og)ar/2 = mod e(2/o
o @ /ox)an/ {6(91/015)/2 @/ E){ if ay is odd.
Therefore,
Amﬁ,k,sym—ram if ag is even,
AB¢ ksym = o
AD¢ g sym—unram  if ay is odd.

Using Proposition 4.6, we find that when ay, is even,

Amf,k,sym = uEk/EkJrl,symfram = @ u[ai] )
(o€ N T 211 ~Te) /T )eyim

Here the index R is defined in Section 4.3. When ay, is odd, 4*U¢ i sym is trivial
when k < R, and is isomorphic to

LlE'/E'R+1,symfumram = @ u[aid;f/?]
[0i¢p//2]e(PE\TEL /TE)sym
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when k = R, and to

uEk/Ek+1 ,Sym—unram — @ Ll[a“5<;sf/2]
[oi¢//21e(Ce\(TE, y —TE,)/TE)sym

when k£ > R.
We observe that, whether a is odd or even, the symmetric unramified part of
AU and 4-Ue are complementary, in the sense that

Amf,k,symfunram D A~ m.f,k,symfumram = uEk/Ek+1,sym—unram

forall k=0,...,t
We summarize the above in the following.

PROPOSITION 4.9. We always have AU¢ sym—ram = 4= Ve sym—ram and

I

(i) when f is odd, or when both f and m are even, then s%g¢ sym—unram

A*mf,symfunram;
(11) when f is even and m is odd, then AU¢ sym—unram B A+ Ve sym—unram =
m-—unram:-
Usy
4.5 T-FACTORS OF ISOTYPIC COMPONENTS

We recall the values of the t-factors th(0), i = 0,1, when T is one of the cyclic
subgroups p and (@) of Vg, p defined in (3.20), and U is a symmetric module
Uy, defined in (4.5). The following Proposition describes all ¢4 (ki) except
when [g] = [0¢/2].

PROPOSITION 4.10 ([Tam, Proposition 4.9]). (i) If [g] = [0'¢’] is asymmet-

ric, then
t%(u[g]) = 1, t}‘(u[g]) P2 = Sgnzqi,l (ﬂ[g]),
0oy (M) =1, and t1, () (wr) = sgn; i Mig)-
(ii) If [g] = [0%] is symmetric and not equal to [1] or [0°/?], then

th(tlg) =1, tu(dg) =1,

i
tmy (Slg)) = =1, and t] (4 ):wEH( : )
(=) (M g] () ] ker(N]Fp[zg]/]Fp[zg]i)

(iii) If [g] = [o'¢f/?] is symmetric, then
t%(u[g]) = -1, ti(u[g]) is quadratic,
and
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(1) if 2Lz45/2 = 1, then t(()w> (Ug)) =1 and t%w> M) =1,

(]I) Zf ZéZ¢f/2 = 71, then t?w>(ﬂ[g]) = 1 and t%w>(ﬂ[g])(wE) =
(—1)3@*=1),

(II) if zizys/2 # £1, then t?w> (Ug)) = =1 and

ZiZ f/2
tlw (ﬂ[]):wE»—) ¢ .
S ker(Nr, (ziz, /o] /Fylziz, /] )
O

In the exceptional case, when [g] = [0°/?], we have pe, = pe. To unify
notation, we define

th(8iges2) - pp = {£1}, 2 (%) . (4.14)

E

The ), (ww)-module structure of {,e/2; does not concern us (see the explanation
after Formula (5.5)).

The following properties concerning symmetric double cosets are useful when
computing the above t-factors.

PROPOSITION 4.11. Suppose that [g] is symmetric.
(i) If [g] is ramified (resp. unramified), then [Ug : k| is even (resp. odd).

(i) Let Fp[[ ] (wE)] be the field extension of F, generated by the image of
(4] (wE) in k5. If [g] # [09/?%], then the degree [ty : Fp[[ 4] (wp)]] is
odd.

Proof. The first statement for ramified [g] is a simple calculation, and that for
unramified [g] is a consequence of Proposition 2.3. The second statement is
proved in [Tam, Lemma 4.8]. O
We would like to extend our definition of the t-factors th (HUyg)), with i = 0,1,
from p to py = pp,/pmr. We define

b, (Rig)) = 1 (8
and for all z € pg,
sgnri,  (Ug)) if [g] is asymmetric,
[9} ()

tlltg (ﬂ[g]) R [0i¢f[u[157]1kE]/2](2)

ker NkEg /kEig

if [g] is symmetric.

PROPOSITION 4.12. The restriction tLg (L)) to pis t),(Uig)) -
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Proof. For asymmetric [g], the result is immediate by definition. For symmet-
ric ramified [g], the restriction of the root |:o,i¢f[Ll1[g]:kE]:| to p = pr/pr is

trivial, so the assertion is again true. When [g] is symmetric unramified, we
have to show that the restriction of m) to p is (m), or

equivalently, to show that the index of the subgroup ker Ny /i, = prgr/24q of

ker Ny, jxp, = B it s/ is odd, which follows from Proposition 4.11. O

5 ZETA-DATA

5.1 ADMISSIBLE EMBEDDINGS OF L-TORI

As mentioned in Section 1.3, to understand (-data, it is better to first under-
stand x-data, which is motivated by constructing admissible embeddings of
L-tori [LLS87, Section 2.6].

We take T' to be an elliptic torus of G isomorphic to Resg/pGy,. Its dual torus
T is Indg,p(C*), which is isomorphic to (C*)™ as a group. It is equipped with
the induced action of the Weil group Wpg, which factors through the action of
the Galois group I'r. We define the L-torus “T := T x Wr as the L-group of
T.

We assume that the dual torus 7" is embedded into the L-group “'G = G X Wp
of G, where G = GL,, (C), with image T. For convenience, we simply denote
the image of ¢ € T by the embedding 7 — 7 C G also by t € T. This
embedding should be defined using the chosen splittings of G and G. As we
do not need the full detail of the definition of this embedding, we only refer to
[LLS87, Section 2.5] for details (or, when (G,T') = (GL,,Resg,pGpn), see [Tam,
Section 6.1]). All we need to know is that we can always assume that the image
T is the diagonal subgroup of G.

With the embedding T—T chosen, an admissible embedding from T to G
is a morphism of groups I : “T" — @ of the form

I(t xw) =tI(1 xw) for all t x w € *T.

Note that an admissible embedding maps Wp into N4 (7T), ie., the factor
I(1 x w) above lies in N (7). Two admissible embeddings I1, I are called
Int(7)-equivalent if there is ¢t € T such that

I (w) = tI(w)t™* for all w € Wp.

By [LLS87, Section 2.6], admissible embeddings exist, and the collection of these
embeddings can be described as follows.

PROPOSITION 5.1. The set of admissible embeddings from LT to 'G is a
ZY*Wp, T)-torsor, and the set of the Int(T)-equivalence classes of these em-
beddings is an H'(Wp,T)-torsor.
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The idea in [LL587, Section 2.5] of constructing an admissible embedding is to
choose a set of characters

{x2}re®, where x) : EY — C*,
called x-data, such that the following conditions hold.

DEFINITION 5.2. (i) For each A € ®, we have x_) = X;l and ywy = Yy
for all w € Wp.

(ii) If X\ is symmetric, then ]| EX, equals the quadratic character dp, /g,
attached to the extension E)/FEyy.

Remember that, in Section 2.1, we choose a subset R+ = Rgym U Ragym/+ of @
representing the orbits Wp\®gym and Wr\®,gym/+. Hence, by condition (i),
the set of y-data depends completely on the subset {xx}rer.. We still call
such a subset a set of x-data. Moreover, using Artin reciprocity [Tat79], we
may regard each ) as a character of the Weil group Wg, .

Following the recipe in [[LS87, Section 2.5], we can define an admissible embed-
ding

I{XA} : LT — LG

depending on a given set of y-data. In our present situation, we can describe
the admissible embedding Iy} in Proposition 5.3 below. We first recall the
Langlands correspondence for the torus 7' = Resg, G, which is a bijection

Hom(T(F),C*) — H'(Wg, T). (5.1)
Given a character £ of T(F) = E*, we denote by € a l-cocycle in Zl(WF,T)
whose class is the image of € under (5.1). Given x-data {xx}rer., we define
EX
K= Mx} = H ReSEixkv
AER

where R = R U (—Rasym/+) i a subset representing I'r\®. It is easy to check
that the product of the restricted characters is independent of representatives
in R, so we usually write

E><
i= I R
[AJETF\®

PROPOSITION 5.3 ([Tam, Proposition 6.5]). For every character £ of E*, the
composition

Iy 0 We = 2T » 1@ 2%, GL,,(C)

is isomorphic to Indg, (€ - figy,}) as a representation of Wp. O
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We now define a analogous set of characters
{O e, where ¢y 1 EY — C*,

called (-data, such that the following conditions hold.

DEFINITION 5.4. (i) For each A € ®, we have (_y = ¢; ' and Cuy = “() for
all w € Wp.

(ii) If A is symmetric, then ClEix is trivial.

We can view a set of (-data as the difference of two sets of y-data. Motivated
from Propositions 5.1 and 5.3, the product character

E><
V= Z/{Q\} = H I%QSEAX C)\.
Merrp\®

can be viewed as measuring the difference of two admissible embeddings.
Recall that, similar to choosing R+, we can also choose Dt = Dgym U Dagym/+
to be a subset of I'p/T'g consisting of representatives of (I'g\I'r/T'g)sym and
(PE\I'F/T'E)asym/+ respectively, and obtain a bijection from Proposition 2.1,

Ry = 7zsym|_|7—\)‘asym/i — Dy = Dsymupasym/ia A= [517} =g

We usually denote by E; and E 4 the fields E\ and E4 respectively, if g € Dy
corresponds to A € R+. We also denote by (, the character ¢y, and write

EX
V= V{Cy} = H I{GSE‘QX Cg-
[9)eWE\WF /WE)’

5.2 SYMMETRIC UNRAMIFIED ZETA-DATA

We choose a specific (-data (, for each [g] = [0'¢f/?] €
(WE\Wr/WE)sym—unram, base on the results from the x-datum y,.

Notice that, since E,/Ei, is quadratic unramified, the norm group
Ng,/p.,(E;) has a decomposition

Mg, X <ZiZ¢f/2w2E> X Uéig
and we take a root of unity zo € pg, such that
Z0WE € E;g - NEg/E:tg(E;>
We only consider tamely ramified x-data and (-data, i.e., we require that
Xg|U]1§y =1 and Cg|U113g =1.
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Therefore, the Definition 5.2.(ii) of x-data is explicitly (see [Tam, (7.6)])

Xg(BELg) =1, xg(zézw/zw%) =1, and x4(z0wg) = —1. (5.2)

Hence, given a x-datum x4, we can obtain a (-datum (, easily by requiring

Cg|uE9 = X9|;LEQ and (g(@E) = —x4(@E).

In [Tam, Section 7.4], in the cases when Ug (4 = (] is non-trivial, we construct
a y-datum

—twy (Upg) if ¢ g = wp,

=+ (8.1) and =
Xglps, uy (Hig7) and x4 (@we) {t<w>(u[g]) otherwise.

In other words, the character x, satisfies the conditions in (5.2). Hence the
character

t(w} (ﬂ[g]) if Uid)fﬂ?ﬂE = wWEg,

L =t (U d =
Colup, = tu, (Ug)) and Gy(wr) {—t<w>(ﬂ[g]) otherwise

is a (-datum. This (-datum will be used in the next section.

5.3 ZETA-DATA ASSOCIATED TO ADMISSIBLE CHARACTERS

Given an admissible character £ of E* over F', we first assign, for each [g] €
WE\Wr/WE)asym/+, the values of the (-data to

Cotlum, =58, (4580, (4-Djg) =ty (aBe ()t (4-Be fg))-

In this way, the product of the characters

-1
Cocorie = Co (Ce) = Coco 3]
has values

(Cas [51) lun2) = s (4 ) [3] (s (4B ) (3] ()
= t1,(a%¢ ()11, (4= Ve )

and

(Cog o [5]) (@r) = Coelus ([5] (@r))

= sgn AU [41)580 A=V
o TR e (0 Tei)
= t (o) (4D ) (TE )t ) (4= B [g)) ()

= Uw) (4D ¢ g ) () (4D [g))-
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We then assign, for each [g] € (Wg\Wr/WE)asym/+, arbitrary values to
Cg.e(wr) and (y-1 ¢(wp), as long as the product satisfies (5.3). (This phe-
nomenon is comparable to [[L587, Lemma 3.3.A], as explained in [Tam, Remark
7.2].) It is routine to check that each ;¢ is a (-datum. Indeed, this checking
is exactly the same as that in the y-data case (see [Tam, Section 7.2]), since
Definition 5.2.(i) is the same as that of x-data.

We then assign values to the ¢-data for each [g] € Wg\Wr/WEg)sym case by
case.

5.3.1 CASE WHEN f IS ODD

Recall from (4.12) that
tr(ADe sym) = th(a+ Ve sym), for i = 0,1 and T = p, (). (5.4)

We assign the (-data to the following values. If e is odd (so that m is odd since
m divides e), we assign all ;¢ to be trivial. If e is even, then we just take all
o6 [g] # [0¢/?], to be trivial and

Cge/2£|“E =1 and CUE/Q&:(ZUE) = (_1)m.
To show that (,e/2 ¢ is a (-datum, notice that since NE/Eige/Q (wg) =
= —w%, and since

_wEiaem

CU€/27£(WE>2 - 08/275(71)406/275(7w%'> - (1)(1) = 15

we can assign X,e/2 ¢(wg) to either 1 or —1 to obtain a (-datum. By (5.4), we
can rewrite our assigned (-data as

Cotlpr = t,14 (Amfa[g] )tilL(A* Qj57[51])

¢yc(om) = 4 1= (4T o))t (a- Vo)) ifg# 02  (55)
9 - m : e
(1)t () (4D [g) ) (o) (4= Te ) if g = /2.

Note that t () (4D¢ [ye/2)) is not defined (see the paragraph containing Formula
(4.14)). In fact, we just take

t(w) (Amf,[ae/2]> = t(w} (A*ng,[ae/z]) = 1’

since 4%U¢ [ye/2) = 4«Vg 5e/2) by Proposition 3.2, and it is shown in [Tam,
Proposition 5.3] that 4+ (,e/2) is always trivial.
The product of (-data is equal to

H Coelmp) =1

[9leWE\WF /WE)’

[g]EWE\WEr /Wg)’ 1 if e is odd,
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which is rewritten as

11 Co.elup = tp(aDe)t), (a-Te)
[9leWE\WF/WE)'
and
(=)™t (o) (aBe) by (4+Ve) i e is even,
11 Cg’g(wm:{t ( Qg;t (g*il;) g if e is odd
l9leWE\WFr/WE)' (@) \ AN U m) (A ~g .

The product is equal to the rectifier given in (3.21),
pVelur = 1 and prg(wp) = (~1)™7Y = (=1)™,

when E/F is totally ramified.

5.3.2 CASE WHEN f IS EVEN

Let K be the maximal unramified extension of E/F. If we define p, ve to
be the ramified part of prg, which is also the rectifier corresponding to the
admissible pair (E/K,£), then we have

D Ve = 11 C.elmx
g€ We\WK /Wk)’

as when f is odd, and in particular

e—mg

prve(@we) = (=1) :
where my = ged(e, m). Therefore, our plan is to distribute the sign

1 if m is even,

(1) (e {(_1)e+fw+1 (5.6)

if m is odd,

to each (g ¢(wg), where [¢] is symmetric unramified, multiplying the product of
t-factors ¢ () (AVe [g])t (ew) (4= Ve [g))- As before, we separate the cases according
to the parity of m.

When m is even, recall from Proposition 4.9 that we have either

both AU¢ ksym and 4«Ue¢ i sym are trivial,

or
both AU¢ ksym and a«Ug¢ i sym are isomorphic to Uy sym.

We assign the trivial (-data for all [g] € Wg\Wr/WE)sym—unram, 0 that
Coitlur = tu(aBe )t 4+ Be 1)) and (o6 (@E) = ey (4D [g])E () (4 D [g))-
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The product of (g4 ¢(wg) is trivial, or we can write

H Co.elue =t (ATt} (a-De)
[9l€WE\WF /WE)’
and 11 Cg.6(@B) = t(m) (ATe)t () (4= V).

g€ WE\WF /WE)'

Note that in the second product, the sign without t-factors is equal to (5.6),
which is just 1.
When m is odd, we have

Amf,symfunram D a- mE,symfumram = i/[syrnfunrarn-
We then assign the (-data to be
Colue = (a0 1))t (4 B ) = £ (L)
and (g ¢(@r) = ~t(w) (4De,[g)) () (4= Ve [g) = ~L(e) (Tg))-

for all symmetric unramified [g] except the one which stabilizes wg, in which
we assign

Colun = 1, (aBe gt (4 Ve [g)) = 1 (LU1g))
and Cg.e(wp) = t(w) (40 [g))t (@) (4* D [g]) = tiw) (D))

In Section 5.2, we checked that the above characters give rise to (-data. The
product of ¢ is hence

11 Coelup = tp(aDe)t}, (a-Te)
[9leWE\WF/WE)'
and I1 Coe(@wr) = (1) /=t ) (4D )t () (a- V),

[9l€eWu\WEr/Wg)’
by Proposition 2.6. Again in the second product, the sign without t-factors is
equal to (5.6).
5.4 'THE MAIN THEOREM
To summarize, we verified the following theorem.
THEOREM 5.5. Let & be an admissible character of E* over F'.

(1) Let s8¢ (resp. a-Ve) be the finite symplectic module defined by & when
G(F) = GL, (D) (resp. when G*(F) = GL,(F)). The following condi-
tions define a collection of (-data {(y.¢}gep

asym/+UDsym -

(a) All (4 ¢ are tamely ramified.
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(b) Ifg S Dasym/i, then

Cotlum, = th, (4Be (gt p, (4B ()

and
Co.e(wE) can be any value satisfying
Cot(@E)Cg1 (@) = Uw) (4D¢ [g)) () (4~ Ve [))-
(c) If g € Dyym, then

Cy,£|uE9 = tiag (Amfa[g])tllxg R UI))

and

Co.6(@E) = €gt(z) (AT, [g))t () (4= D g))
where €, is equal to 1 if ¢ € (Dsym—ram — {06/2}) UWrp(wy) and is
equal to (71)m ifg € (Dsymfunram - WF[wE]) U {06/2}-

(11) Let pve be the rectifier of & and {(g.¢}tgep, be the (-data in (i), then

pVg = 1T Coelmx.
g€ WE\WF /WE)'
O

REMARK 5.6. As long as the F-dimension of the division algebra D is fixed, the
rectifier prg is independent of the Hasse-invariant h = h(D) of D, as stated in
[BHI11, Theorem C]. This is because the modules 4U¢, where A = Mat,, (D) and
D ranges over all division algebra with same F-dimension, are all isomorphic
to each other. Similarly, the (-data {(, ¢} are independent of h(D). O

5.5 FUNCTORIAL PROPERTY

Let K be an intermediate subfield in E/F, and write
ng =n(E/K) = fxex = f(E/K)e(E/K) and mg = ged(m, ng).
Similar to Section 3.2, we have the Jacquet-Langlands correspondence
JLg + A (K) = ASt (Dk),

between essentially tame supercuspidal representations of G(F)x =
GLy . (Dk) and its split inner form G*(F) g = GLj,, (K). We can parametrize
both collections by the admissible pairs in P, (K), and obtain the rectifier
map

—1

1T
Dt : Puge (K) < A% (K) 225 A% (Dy) 25— P, (K),
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such that
DKV(E/Kvg) = (E/Fﬂg ’ DKVE)'

for a tamely ramified character p, ve of E* for each pair (E/K,§) € Py, (K).
With the embedding condition for (EoK, ) as discussed in Section 2.5, we
define the subgroups (see also [BIT11, 3.2 Proposition])

Hy = H'(Z,A)NG(F)k and Jj = J'(E,A) N G(F)k

Each subgroup above admits a similar factorization as in (3.10). We then
obtain

AKQ]g = J}(/H}( = AQ]g ﬂﬂE/K
and similarly for 4: .
Denote Vp/x = EX/K*UL, and view 4,0 and A2 Ve as kxVp K-
submodules of Ug k. Denote the subgroups of Vg, i by

KE /K = pE/pKx and
(w)E/K = the subgroup generated by the image of wg.

Using the results in Section 3.8, with the base field changed from F' to K, the
values of p, v¢ is given by

DKVE|ILE = t;lLE/K (AKmf)tllLE/K(A;(Q]§>

and D Vf(wE) — (_1)nK—mK+fw,K_mvat<w>E/K (Akmg)t<w>E/K (A’%mg)
for a prime element wp € FyK (see the beginning of Section 3.8). Here

fo.x = f(E/K[wg]) and
Mok = ged(mk, fo k) = ged(m,ng, f(E/K[wE])).

Now suppose that (E/F,€) € P,(F). By the definition of admissibility, we
can regard ¢ as an admissible character over K and form the pair (E/K,¢) €
P, (K).

PROPOSITION 5.7. In this situation, we have

DxVe = 11 Coelmx.

lg)eWE\WK /WE)'

Proof. Notice that if U is a kpW¥ g, p-submodule of Ug/k, we have

th, (0 =t, (V)and t,

ME/K KHE/F

(V) = (),

E/K t<w>E/F

where pp/p and (@), are just p and (w) respectively considered in (3.20).
Hence we have

Dy Velpp = H Coutlpr-

lg)eWE\WK /WE)'
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It remains to consider the values of both characters at @wg. Notice that the left
side has value

(_1)nx—mx+fw,x—mw,xt

() 1 (A D)) 1 (a3, D)
while the right side has value

(a sign) - 1T t ey (4 D 1g))t ) (a3, Ve [g))-
[9]eWE\WK /WE)'

The t-factors on both sides are clearly equal. We will recall, by Theorem 5.5,
the values of the sign on the right side in different cases and show that, in each
case, this sign is equal to the one on the left side.

We first consider when fx is odd, which can be reduced to the case when E/K
is totally ramified. We further separate into cases.

e When e is odd, or when e is even and eg is odd, then my is also odd.
The sign on the left is (—1)¢% ™« = 1, while that on the right is also 1
since o¢/? ¢ Wk.

e When ek is even, the sign on the left is (—1)°¥~™K = (—1)™ since
my =m mod 2, while that on the right is (—1)™ since ¢/ € Wy.

We then consider then fx is even. Let L be the maximal unramified extension
of E/K. We recall, after disregarding the symmetric ramified component (as
we did at the beginning of Sub-section 5.3.2), the sign on the left is equal to
(see (5.6))

1 if mg is even,

_1)eK—mL(_q NKg—MK+fo K—Mwo K —
(=1) (=) {(1)ef(+fwwk+1 if mx is odd.

Recall from Proposition 2.6 that the number ex + f k=1 is just the cardinality
of

(FE\FK/FE)sym—unram - FK[WE] .
Hence by Theorem 5.5, the sign on the right side is
(71)m(61<+fw,1<+1)_

By knowing that mx = m mod 2, the sign above is equal to the one on the
left side. 0
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