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1 Introduction

Let G∗ be a general linear group over a non-Archimedean local field of charac-
teristic 0, and G be an inner form of G∗. In this paper, we refine the results
of the rectifying characters in the context of the essentially tame Jacquet-
Langlands correspondence [BH11] by proving that each rectifying character

Documenta Mathematica 21 (2016) 345–389



Some Endoscopic Properties . . . 347

admits a factorization into a product of characters called ζ-data, defined sim-
ilarly to χ-data in [LS87], which are significant in describing the essentially
tame local Langlands correspondence for G.
We know from [BH11] that the rectifying characters are quadratic characters
that measure the difference between two correspondences for essentially tame
supercuspidal representations of G and G∗: the representation theoretic one by
matching the maximal simple types of the two groups, and the functorial one
from the Jacquet-Langlands correspondence. On the representation theoretic
side, the maximal simple types of G can be constructed using certain char-
acters of its elliptic maximal tori, while on the functorial side, the Langlands
parameters for G can be functorially lifted from the parameters of the same
collection of characters.
Combining these results with our result on rectifying characters, we show that
the essentially tame local Langlands correspondence for G can be described
completely by admissible embeddings, defined in [LS87], of the L-groups of el-
liptic maximal tori into the L-group of G, generalizing an analogous description
proved by the author [Tam] in the split case (when G = G∗).

1.1 Background

Let F be a non-Archimedean local field, G∗ be the group GLn defined over F ,
and G be an inner form of G∗ defined over F . The set of F -points G(F ) of G
is therefore isomorphic to GLm(D) as a group, where D is a central division
algebra over F of dimension d2 and m = n/d.
Let A2

m(D) (resp. A2
n(F )) be the discrete series of G(F ) (resp. G

∗(F )), i.e., the
set of equivalence classes of irreducible admissible representations that are es-
sentially square integrable mod-center. The Jacquet-Langlands correspondence
asserts a bijection

JL : A2
n(F ) → A2

m(D)

determined by a character relation (see (3.5)) between a representation in
A2

n(F ) and its image in A2
m(D). The existence of this bijection is known,

starting from the case n = 2 [JL70], when G(F ) is the multiplicative group
of the quaternion algebra over F . For arbitrary n, when G(F ) is the multi-
plicative group of a division algebra, the existence is proved by [Rog83]. The
general situations are treated by [DKV84] in the characteristic zero case and
by [Bad02], [BHL10] in the positive characteristic case.
Bushnell and Henniart describe in [BH11, (2.1)] the image of JL when it is
restricted to the subset A0

n(F ) of supercuspidal representations. The image
is the subset of representations in A2

m(D), each of whose parametric degree is
equal to n. We do not need the full definition of the parametric degree of a
representation, so we only refer to [BH11, Section 2.7] for details. We only
need to know that

• the parametric degree of a representation in A2
m(D) is a positive integer

divisor of n,
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• a representation in A2
m(D) is supercuspidal if its parametric degree is n;

the converse is true in the split case (when G = G∗) but not in general,
and

• the parametric degree is preserved under JL.

Furthermore, we can describe the image of JL of each representation π ∈
A0

n(F ) when π is essentially tame, a notion we will explain in Section 3.2.
More precisely, if we let Aet

m(D) (resp. Aet
n (F )) be the set of essentially tame

representations in A2
m(D) (resp. A2

n(F )) whose parametric degree is n, then
we can describe completely the essentially tame Jacquet-Langlands correspon-
dence:

JL : Aet
n (F ) → Aet

m(D),

as in [BH11, Theorem A].
To explain the theorem and describe JL completely, we require the notion of
admissible characters from [How77]. In Section 3.1, we define the set Pn(F )
of (equivalence classes of) admissible pairs (E/F, ξ) ∈ Pn(F ), where E/F is a
tamely ramified extension of degree n and ξ is a character of E× admissible
over F . This set bijectively parametrizes both Aet

n (F ) and Aet
m(D) explicitly

[BH11], using the theory of simple types of G(F ) developed in [BF85], [Gra07],
[Séc04], [Séc05a], [Séc05b], [SS08], [BSS12] which generalizes the corresponding
theory in the split case [BK93], [BH96] and the division algebra case [Zin92],
[Bro96].
If we denote by

FΠ : Pn(F ) → Aet
n (F ), (E/F, ξ) 7→ FΠξ (1.1)

and

DΠ : Pn(F ) → Aet
m(D), (E/F, ξ) 7→ DΠξ (1.2)

the above bijections, then Bushnell and Henniart proved in [BH11] that the
composition

ν : Pn(F )
FΠ
−−→ Aet

n (F )
JL
−−→ Aet

m(D) DΠ−1

−−−−→ Pn(F )

maps an admissible pair (E/F, ξ) ∈ Pn(F ) to another pair of the form (E/F, ξ ·

Dνξ), where Dνξ is a tamely ramified character Dνξ of E× depending on ξ. We
borrow the terminology from [BH10] and call the character Dνξ the rectifier of
ξ for the essentially tame Jacquet-Langlands correspondence.

1.2 Main results

The main result of this paper is to relate the rectifier Dνξ with a special set of
characters, called ζ-data in this paper, introduced in the theory of endoscopy
of Langlands and Shelstad [LS87]. The significance of ζ-data will be explained
in the next section, together with a brief summary of the previous results of
the author [Tam].
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To describe the main result, we first assume that char(F ) = 0 (see Remark
1.3 about this assumption). Let T be the F -torus such that T (F ) = E×. We
regard T as a maximal torus embedded in G. In contrast to the split case,
we have to carefully choose the embedding T → G relative to an hereditary
oF -order in G(F ) associated to ξ. This will be explained in Section 2.5. Given
this embedding, let Φ = Φ(G, T ) be the root system, which is invariant under
the action of the absolute Galois group ΓF of F if we view Φ as a subset of the
character group of T . For each root λ ∈ Φ, we denote by Eλ the fixed field of
the stabilizer of λ in ΓF , so that Eλ is a field extension of a ΓF -conjugate of
E. We recall from [LS87, Corollary 2.5.B] that ζ-data is a set of characters

{ζλ} = {ζλ}λ∈ΓF \Φ,

where each ζλ is a character of E×
λ satisfying the conditions in loc. cit. (and

will be recalled in Section 5.1). Here λ ranges over a suitable subset of roots
in Φ, denoted by ΓF \Φ for the moment, representing the ΓF -orbits of Φ and
such that Eλ is a field extension of E (but not just its conjugate).
The following theorem restates the main result, Theorem 5.5, in a simpler way.

Theorem 1.1. Given a character ξ of E× admissible over F .

(i) There exists a set of ζ-data {ζλ,ξ}λ∈ΓF \Φ such that

Dνξ =
∏

λ∈ΓF \Φ

ζλ,ξ|E× .

(ii) The values of each ζλ,ξ can be expressed in terms of certain invariants,
called t-factors in this paper, of the corresponding component in the com-
plete symmetric decomposition of the finite symplectic modules associated
to ξ (see the notations and definitions in Sections 4.2 and 3.7).

We explain statement (ii) of the above theorem. The finite symplectic modules
appear in the respective constructions of the extended maximal simple types
inducing FΠξ and DΠξ in (1.1) and (1.2) (see [BH11, (2.5.4)], or the summary
in Section 3.5). Each of these modules admits an orthogonal decomposition,
called a complete symmetric decomposition in this paper (Proposition 4.4),
whose components are parametrized by the same set ΓF \Φ parameterizing the
factors in (i) of the Theorem. The t-factors are, roughly speaking, defined by
the symplectic signs attached to these components.
When proving Theorem 1.1, we pick a choice of characters {ζλ,ξ}λ∈ΓF \Φ, where
each character ζλ,ξ has values in terms of the t-factors of the corresponding com-
ponent, the one indexed by λ. We then show that these characters constitute a
set of ζ-data. Moreover, using the multiplicativity of t-factors, the product of
these ζ-data, when restricted to E×, is equal to the rectifier Dνξ, whose values

Documenta Mathematica 21 (2016) 345–389



350 K.-F. Tam

are given in the First and Second Comparison Theorems of [BH11]. Hence our
result refines the one in loc. cit..
While the finite symplectic modules and their decompositions are also stud-
ied by the author in the split case [Tam], there are extra conditions on the
components of these modules in the general case. These conditions come from
the extra ramifications of the related compact subgroups in constructing the
extended maximal simple types. The degrees of these ramifications depend on
the residue degree f(E/F ) and, with other conditions similar to those in the
split case, determine whether each component is trivial or not. This new phe-
nomenon will be fully studied in Section 4. In particular, when E/F is totally
ramified and ξ is fixed, the finite symplectic modules are isomorphic to each
other for all inner forms of G∗, a fact already known in [BH11, Proposition
5.6].

1.3 Relation with the previous results

The significance of the factorization of Dνξ in Theorem 1.1(i) comes from [Tam],
which proves an analogous factorization of the rectifier Fµξ for the essentially
tame local Langlands correspondence [BH05a].
We first recall from loc. cit. that the rectifier Fµξ measures the difference
between the “näıve correspondence” and the essentially tame Langlands corre-
spondence for G∗; more precisely, the Langlands parameter of FΠξ defined in
(1.1) is the induced representation

IndWF

WE
(ξ · Fµξ) (1.3)

of the Weil group WF of F , where ξ · Fµξ is regarded as a character of WE by
class field theory [Tat79]. In [Tam, Theorem 1.1], the author proved that the
rectifier Fµξ admits a factorization

Fµξ =
∏

λ∈ΓF \Φ

χλ,ξ|E× ,

where {χλ,ξ}λ∈ΓF \Φ is a set of χ-data, consisting of characters of E×
λ satisfying

the conditions similar to those of ζ-data (see Section 5.1).
With a collection of χ-data, we follow [LS87, Section 2.6] to construct an ad-
missible embedding

I{χλ,ξ} : LT → LG

of the L-group LT of the maximal torus T into the L-group LG of G∗. (For
convenience, we call LT an L-torus in this paper.) Let ξ̃ : WF → LT be an
L-homomorphism whose class is the parameter of the character ξ of E× =
T (F ) under the local Langlands correspondence of the torus T , i.e., the Artin
reciprocity for E× [Tat79]. In a previous result of the author [Tam, Corollary
1.2], the Langlands parameter (1.3) of FΠξ is isomorphic to the composition

I{χλ,ξ} ◦ ξ̃ : WF → LT → LG
natural proj.
−−−−−−−−→ GLn(C)
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as a representation ofWF . In other words, the essentially tame local Langlands
correspondence for G∗ can be described by admissible embeddings of L-tori.
A set of ζ-data is the ‘difference’ of two sets of χ-data, in the sense that, given
a set {χλ} of χ-data, we have

{χ′
λ} is another set of χ-data ⇔ {χλ(χ

′
λ)

−1} is a set of ζ-data.

If we define the local Langlands correspondence for G as the composition of
the local Langlands correspondence for G∗ and the Jacquet-Langlands corre-
spondence JL, then we can express the Langlands parameter of DΠξ using an
admissible embedding of L-tori, as follows.

Corollary 1.2. Let {χλ,ξ} and {ζλ,ξ} be respectively the χ-data and the ζ-
data associated to an admissible character ξ. The Langlands parameter

IndWF

WE
(ξ · Fµξ · Dνξ)

of DΠξ is isomorphic to

I{χλ,ξ ·ζλ,ξ} ◦ ξ̃ : WF → LT → LG
natural proj.
−−−−−−−−→ GLn(C)

as a representation of WF .

Hence analogously we can describe the essentially tame local Langlands corre-
spondence for G by admissible embeddings of L-tori.
As a consequence, we show in Proposition 5.7 that the factorization of Dνξ in
Theorem 1.1(i) is functorial, in the following sense. Let K/F be an interme-
diate extension of E/F , so that if the pair (E/F, ξ) is admissible over F , then
(E/K, ξ) is admissible over K by definition. We denote the centralizer of K×

in G(F ) by GLmK (DK), where DK is a K-division algebra and mK a positive
integer. If {ζλ,ξ} is the set of ζ-data associated to ξ, then the partial product

∏

λ∈ΓF \Φ, λ|K× 6=1

ζλ,ξ|E× .

(a product similar to Theorem 1.1.(i), with factors ranging over the characters
being non-trivial on K×) is the rectifier DKνξ of ξ over K.

Remark 1.3. We would like to remark on the condition of the characteristic
char(F ) = 0, as we also did in [Tam, Remark 1.3]. The readers should be
aware that the works of [JL70], [DKV84], [Bad02], [BH11] make the Jacquet-
Langlands correspondence valid for local fields of arbitrary characteristic. In
our paper, we apply the condition char(F ) = 0 only because we refer to the
theory of endoscopy from [LS87], [KS99]. However, we do not actually need
this condition for the part of the theory that we allude to, which is about
the admissible embeddings of L-tori. In [Tam, Section 6] (or rather [LS87,
Section 2.5]), we see that these kind of embeddings can be defined without
any condition of char(F ). Therefore, the condition char(F ) = 0 in this paper
should be treated as a mild condition.
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1.4 Notations

Throughout the paper, F denotes a non-Archimedean local field of character-
istic 0. Its ring of integers is oF with the maximal ideal pF . The residue
field kF = oF /pF has q elements and is of characteristic p. We denote by
vF : F× → Z the discrete valuation on F . We denote by ΓF the absolute
Galois group of F , and by WF the Weil group of F .
The multiplicative group F× decomposes into a product of subgroups

〈̟F 〉 × µF × U1
F .

They are namely the group generated by a prime element ̟F , the group µF of
roots of unity of order prime to p, and the 1-unit group U1

F := 1+ pF . We will
identify µF with k

×
F in the natural way. We then write UF = U0

F := µF × U1
F

and U i
F := 1+ piF for each positive integer i. Let µn be the group of nth roots

of unity in the algebraic closure F̄ of F , and zn be a choice of primitive nth
root in µn.
The F -level of a character ξ of F× is the smallest integer a ≥ −1 such that
ξ|Ua+1

F
is trivial. A character ξ of F× is called unramified if ξ|UF is trivial, or

equivalently, if its F -level is −1. It is called tamely ramified if ξ|U1
F
is trivial,

or equivalently, if its F -level is 0.
Given a field extension E/F , we denote its ramification index by e = e(E/F )
and its residue degree by f = f(E/F ). We also denote by trE/F and norm
NE/F the trace and norm respectively.
We fix an additive character ψF of F of level 0, which means that ψF is trivial
on pF but is non-trivial on oF . Hence ψF |oF induces a non-trivial character of
kF . We write ψE = ψF ◦ trE/F .
Suppose that A is a central simple algebra over F . We denote the reduced
trace by trdA/F and the reduced norm by NrdA/F .
Given a set X , we denote its cardinality by #X . If H is a group and X is a
H-set, then we denote the action of h ∈ H on x ∈ X by x 7→ hx. The set of
H-orbits is denoted by H\X . If π is a representation of H (over a given field),
we denote its equivalence class by (H, π).

2 Some basic setups

2.1 Root system

Given a field extension E/F of degree n, we let T be the induced torus
ResE/FGm. We embed T into G as an elliptic maximal torus, and denote
the image still by T . The choice of this embedding will be specific in Section
2.5, but at this moment this choice is irrelevant. Let Φ = Φ(G, T ) be the root
system of T in G. Following [Tam, Section 3.1], we can denote each root in
Φ by [ gh ] where g = gΓE and h = hΓE are distinct cosets in ΓF /ΓE . (We
use the same notation g for an element in ΓF and its ΓE-cosets, for notation
convenience.) The ΓF -action on Φ is given by x · [ gh ] = [ xgxh ] . For each root
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λ ∈ Φ, we denote by [λ] its ΓF -orbit WFλ. Each ΓF -orbit contains a root of
the form

[

1
g

]

for some non-trivial coset g ∈ ΓF /ΓE .
For each root λ ∈ Φ, we denote the stabilizers {g ∈ ΓF |

gλ = λ} and {g ∈
ΓF |

gλ = ±λ} by Γλ and Γ±λ respectively and their fixed fields by Eλ and E±λ

respectively. We call a root λ symmetric if [Eλ : E±λ] = 2, and asymmetric
otherwise. Equivalently, λ is symmetric if and only if λ and −λ are in the same
ΓF -orbit. Note that the symmetry of Φ is preserved by the ΓF -action. Let

(i) ΓF \Φsym be the set of ΓF -orbits of symmetric roots,

(ii) ΓF \Φasym be the set of ΓF -orbits of asymmetric roots, and

(iii) ΓF \Φasym/± be the set of equivalence classes of asymmetric ΓF -orbits by
identifying [λ] and [−λ].

We denote by (ΓE\ΓF /ΓE)
′ the collection of non-trivial double cosets, and by

[g] the double coset ΓEgΓE . We can deduce the following proposition easily.

Proposition 2.1. The map

ΓF \Φ → (ΓE\ΓF /ΓE)
′, [λ] = WF

[

1
g

]

7→ [g],

is a bijection between the set ΓF \Φ of ΓF -orbits of the root system Φ and the
set (ΓE\ΓF/ΓE)

′ of non-trivial double cosets.

We can therefore call g ∈ ΓF symmetric if [g] = [g−1], and asymmetric oth-
erwise, so that the bijection in Proposition 2.1 preserves symmetries on both
sides. Let

(i) (ΓE\ΓF /ΓE)sym be the set of symmetric non-trivial double cosets,

(ii) (ΓE\ΓF /ΓE)asym be the set of asymmetric non-trivial double cosets, and

(iii) (ΓE\ΓF /ΓE)asym/± be the set of equivalence classes of (ΓE\ΓF /ΓE)asym
by identifying [g] with [g−1].

We choose subsets Dsym and Dasym/± of representatives in ΓF /ΓE of
(ΓE\ΓF /ΓE)sym and (ΓE\ΓF /ΓE)asym/± respectively, and write

Dasym = Dasym/± ⊔ {g−1|g ∈ Dasym/±}.

We also choose subsets Rsym and Rasym/± of representatives in Φ of orbits
in ΓF \Φsym and ΓF \Φasym/± respectively such that every root λ ∈ R± :=

Rsym ⊔ Rasym/± is of the form
[

1
g

]

for some g ∈ D± := Dsym ⊔ Dasym/±, and
write

Rasym = Rasym/± ⊔ (−Rasym/±).

Hence Rsym, Rasym, and Rasym/± correspond bijectively to Dsym,Dasym, and
Dasym/± respectively by the identification in Proposition 2.1. Denote Eg := Eλ

and E±g := E±λ. Notice that Eg = E(gE), composite field of E and gE.
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354 K.-F. Tam

2.2 Galois groups

Let E/F be a field extension of degree n. In most of the paper, we assume
that E/F is tamely ramified, which means that p is coprime to e. By [Lan94,
II.§5], we can choose ̟E and ̟F such that

̟e
E = zE/F̟F , for some zE/F ∈ µE . (2.1)

Choose in F̄× a primitive eth root of unity ze and an eth root zE/F,e of zE/F .
(We do not require that zaE/F,e = ze, if a is the multiplicative order of zE/F .)

Denote L = E[ze, zE/F,e] and l = [L : E]. With the choices of ̟F and ̟E as
in (2.1), we define the following F -automorphisms on L.

(i) φ : z 7→ zq, for all z ∈ µL, and φ : ̟E 7→ zφ̟E .

(ii) σ : z 7→ z, for all z ∈ µL, and σ : ̟E 7→ ze̟E .

Here zφ lies in µE satisfying (zφ̟E)
e = zqE/F̟F . More generally, we write

φi

̟E = zφi̟E where zφi = z1+q+···+qi−1

φ is an eth root of zq
i−1

E/F .

Therefore, ΓL/F = 〈σ〉 ⋊ 〈φ〉 with relation φ ◦ σ ◦ φ−1 = σq. Suppose that

ΓL/E = 〈σcφf 〉 for some integer c satisfying the condition:

e divides c

(

qfl − 1

qf − 1

)

.

We can choose
{σiφj |i = 0, . . . , e− 1, j = 0, . . . , f − 1}

as coset representatives for the quotient ΓE/F = ΓF /ΓE. Moreover, elements
in a fixed double coset are of the form [σiφj ] with a fixed j mod f .

Proposition 2.2 ([Tam, Proposition 3.3]). The double coset [g] = [σiφj ] is
symmetric only if j = 0 or, when f is even, j = f/2.

We call those symmetric [σi] ramified and those symmetric [σiφf/2] unramified,
and denote by (ΓE\ΓF /ΓE)sym−ram and (ΓE\ΓF/ΓE)sym−unram respectively
the collections of symmetric ramified and symmetric unramified double cosets.
We provide several useful results concerning the parity of certain subsets in
ΓE\ΓF /ΓE.

Proposition 2.3 ([Tam, Propositions 3.4 and 3.5]). (i) If [g] is symmetric
unramified, then the degree [Eg : E] is odd.

(ii) The parity of #(ΓE\ΓF /ΓE)sym−unram is equal to that of e(f − 1).

Lemma 2.4. Suppose that f is even. The following are equivalent.

(i) There exists σiφf/2 ∈ WF [̟E ] for some i.
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(ii) zφf/2 is an eth root of unity.

(iii) zE/F ∈ K+, where K+/F is unramified of degree f/2.

(iv) f̟ := [E : F [̟E]] is even.

Proof. (i) is equivalent to (ii) since σiφf/2

̟E = ziezφf/2̟E . To show that (iii)

implies (ii), we recall that zφf/2 is an eth root of zq
f/2−1

E/F . If zE/F ∈ K+, then

zq
f/2−1

E/F = 1 and zφf/2 is an eth root of unity. The converse is similar. To show

the equivalence of (iii) and (iv), we notice that f(F [̟E]/F ) = f(F [zE/F ]/F ) =
f/f̟. Hence that F [zE/F ] ⊆ K+ is equivalent to that f̟ is even.

Lemma 2.5. Suppose that g = σiφf/2 satisfies the conditions in Lemma 2.4.

(i) The double coset [σiφf/2] is automatically symmetric.

(ii) The set (ΓE\ΓF [̟E ]/ΓE)sym−unram = (ΓE\ΓF/ΓE)sym−unram ∩

(ΓE\ΓF [̟E]/ΓE) contains a single element [σiφf/2].

Proof. For (i), we consider the actions of σiφf/2 and its inverse (σiφf/2)−1

on E. We certainly have σiφf/2

̟E = (σiφf/2)−1

̟E = ̟E by definition. We

also have σiφf/2

z = (σiφf/2)−1

z = zq
f/2

for all z ∈ µE. Therefore σiφf/2ΓE =
(σiφf/2)−1ΓE and in particular [σiφf/2] = [(σiφf/2)−1]. For (ii), we know
by Lemma 2.4.(ii) that the double coset is the one containing σiφf/2 where
zφf/2 = z−i

e .

Proposition 2.6. When f is even, the parity of the cardinality of
(ΓE\ΓF /ΓE)sym−unram − ΓF [̟E ] is equal to e + f̟ − 1.

Proof. Recall

(i) by Lemma 2.4 that there exists σiφf/2 ∈WF [̟E ] if and only if f̟ is even,
and

(ii) by Proposition 2.3 that the parity of the number of symmetric [σiφf/2] is
the same as that of e.

By combining these facts, we have the assertion.

2.3 Division algebra

Let D be a division algebra over F of dimension n2. Denote its unique maximal
order by oD and the maximal ideal of oD by pD. Suppose that the Hasse-
invariant of D is h = h(D), so that gcd(n, h) = 1. By [Rei03, (14.5) Theorem],
we can choose a primitive (qn − 1)th root z of unity in D and a uniformizer
̟D such that

̟n
D = ̟F and ̟Dz̟

−1
D = zq

h

. (2.2)

Documenta Mathematica 21 (2016) 345–389



356 K.-F. Tam

We write Kn = F [z] and µD = 〈z〉, then Kn is a maximal unramified extension
(of degree n) in D, and µD is a group of roots of unity of order qn − 1, both
defined up to conjugacy by D×. Therefore, the conjugation of ̟D acts on Kn

as the hth power of the Frobenius automorphism, i.e.,

̟Du̟
−1
D = φh

u for all u ∈ Kn.

We write U i
D := 1 + piD for all positive integer i. The multiplicative subgroup

D× hence decomposes into a semi-direct product

(〈̟D〉⋉ µD)⋉ U1
D.

Let E/F be a tamely ramified field extension of degree n, and let K be the
maximal unramified sub-extension in E/F . We assume that K ⊆ Kn and
that the uniformizers ̟E and ̟F satisfy ̟e

E = zE/F̟F as in (2.1) for some
zE/F ∈ µE . If we define zD/E ∈ µD = µKn to be a solution of

NKn/K(zD/E) = zE/F , (2.3)

then we may take ̟E = ̟f
DzD/E and this defines an embedding of E into D

over F . Note that from (2.2)

z̟i
Dz

−1 = z1−qhi

̟i
D (2.4)

for all z ∈ µE = µK and all i ∈ Z.

2.4 Hereditary orders in central simple algebra

If G is an F -inner form of G∗ = GLn, then G(F ) = A×, where A be a central
simple algebra over F . By Wedderburn Theorem [Rei03, (7.4)Theorem], A is
isomorphic to Matm(D), where D is a division algebra of F -dimension d2 and
md = n. Therefore, G(F ) ∼= GLm(D). Any field extension of degree n can be
embedded into A as a maximal subfield in A, and any two such embeddings
are conjugate under G(F ).
Let A be an oF -hereditary order in A, PA be its Jacobson radical, and KA be
the G(F )-normalizer of A×. If A is principal, in the sense that there exists
̟A ∈ KA such that ̟AA = A̟A = PA, then the valuation vA : KA → Z is

defined by xA = Ax = P
vA(x)
A

for all x ∈ KA. We also write UA = U0
A
= A×,

U i
A
= 1 +Pi

A
for each positive integer i, Ux

A
= U

⌈x⌉
A

for all x ∈ R≥0, and

Ux+
A

=
⋃

x∈R≥0, y>x

Uy
A
.

Suppose that E0 is a subfield in A and A is E0-pure, i.e., E0
× ⊆ KA, then we

define the ramification index e(A/oE0) to be the integer e satisfying vA|E0
× =

evE0 . We therefore have
piE0

P
j
A
= P

ie+j
A
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and
piE0

∩P
j
A
= p

max{i,j/e}
E0

for all i, j ∈ Z.
In the split case G = G∗, i.e., when A = A∗ = Matn(F ), we denote the
hereditary order A by A∗.

2.5 Embedding conditions

Suppose we fix an F -embedding E0 →֒ A, let E0 and A be as in the previous
section, and write A0 the centralizer of E0 in A. We can restrict the embedding
to E×

0 →֒ G(F ), and denote the centralizer by A×
0 = ZG(F )(E

×
0 ). Under the

above setup, there are many choices of A among its ZG(F )(E
×
0 )-conjugacy class.

In this paper, we assume the conditions (i)-(iii) below, all adopted from [BH11],
to fix a unique A.

(i) [BH11, Section 3.2] If E/E0 is an unramified extension in A0 such that
[E : F ] = n, then we require that A is E-pure, i.e., E× ⊆ KA.

Let A0 be the centralizer of E0 in A, i.e., A0 = A ∩ A0, which is a hereditary
oE0-order in A0, with Jacobson radical PA0 = PA ∩A0.

(ii) [BH11, (2.3.1)(2)] There exists a fixed integer e(A/A0) ≥ 1 such that

Pk
A ∩ A0 = P

k/e(A/A0)
A0

for every k ∈ Z. (2.5)

We say that A is the canonical continuation of A0 in A. Under (ii), we have
moreover KA ∩A0 = KA0 .

(iii) [BH11, (2.3.2)] A0 is a maximal hereditary oE0-order in A0, i.e.,
e(A0/oE0) = 1.

Under these conditions, A is the unique E0-pure hereditary order in A such that
A ∩ A0 = A0. Moreover, A is maximal among all E0-pure hereditary orders in
A, and both A and A0 are principal (by [BH11, the remark after (2.3.2)]).
By [Zin99, 0. Theorem], if the oD-period of A is denoted by r = r(A) =
e(A/oD), i.e. ̟DA = Pr

A
, then we have an isomorphism

A/PA
∼= Mats(kD)r, (2.6)

where s = s(A) = f/e(A/oE). Once A (and hence D) is fixed, the integers r
and s depend only on E; indeed s = s(E/F ) = gcd(f,m) and r = r(E/F ) =
e/ gcd(d, e) = m/s.
If K is an intermediate subfield in E/F , we write fK = f(E/K) and eK =
e(E/K). By [Zin99, 1. Prop.] the centralizer AK = ZA(K) is isomorphic to
Matmk

(DK), where DK is a division algebra over K of degree d2K , with

dK =
d

gcd(d, n(K/F ))
and mK = gcd(m,n(E/K)).
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Let AK be the centralizer of K in A. It is routine to check that (E0K,AK) is
a canonical continuation of AE0K and is also E-pure, i.e., (i)-(iii) are satisfied
when we change our base field from F to K. We therefore have an isomorphism

AK/PAK
∼= MatsK (kDK )rK , (2.7)

where rK = eK/ gcd(dK , eK) and sK = gcd(fK ,mK).

2.6 Characters

Let NrdA/F : A× → F× be the reduced norm of G(F ) = A×. By [Rei03,
(33.4)Theorem] and [NM43, Satz 2], NrdA/F is surjective and its kernel is
the commutator subgroup of G(F ). Therefore, any character of G(F ) factors
through NrdA/F .
We define the A-level of a character ξ of A× as the smallest integer a ≥ −1
such that ξ|Ua+1

A

is trivial. This is analogous to the F -level of a character of

F× defined in Section 1.4.

Proposition 2.7. If the F -level of a character ξ of F× is r, then the A-level
of the character ξ ◦NrdA/F is r · e(A/oF ).

Proof. It suffices to show that

NrdA/F (U
r·e(A/oF )
A

) = U r
F for all r ∈ R≥0.

This follows from [BF85, (2.8.3)].

3 The essentially tame Jacquet-Langlands correspondence

3.1 Admissible characters

We recall the definition of admissible characters in [How77], [Moy86]. Given a
tamely ramified finite extension E/F , let ξ be a character of E×. We call a
pair (E/F, ξ) admissible over F if ξ is an admissible character over F , i.e., for
every intermediate subfield K between E/F ,

(i) if ξ factors through the norm NE/K , then E = K;

(ii) if ξ|U1
E
factors through NE/K then E/K is unramified.

Two admissible pairs (E/F, ξ) and (E′/F, ξ′) are called F -equivalent if there is
g ∈ ΓF such that gE = E′ and gξ = ξ′. Let Pn(F ) be the set of F -equivalence
classes of the admissible pair (E/F, ξ), with each class in Pn(F ) still denoted
by (E/F, ξ) for convenience.
Every admissible character ξ admits a factorization (see [How77, Corollary of
Lemma 11] or [Moy86, Lemma 2.2.4])

ξ = ξ−1(ξ0 ◦NE/E0
) · · · (ξt ◦NE/Et

)(ξt+1 ◦NE/F ), (3.1)
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where, in the notations above, the decreasing sequence of fields

E = E−1 ⊇ E0 ) E1 ) · · · ) Et ) Et+1 = F.

and the increasing E-levels a−1 = 0 < a0 < a1 < · · · < at ≤ at+1 of the
characters ξk ◦ NE/Ek

, k = 0, . . . , t + 1, are uniquely determined. We call the
E-levels ak the jumps of ξ and call the collection {Ek, ak|k = 0, . . . , t} the
jump data of ξ. By convention, when E0 = E, we replace (ξ0 ◦NE/E0

)ξ−1 by
ξ0 and assume that ξ−1 is trivial; otherwise, ξ−1 is tamely ramified and E/E0

is unramified [Moy86, Defnition 2.2.3]. There are certain generic conditions
imposed on the jump data of the character by its admissibility, but we do
not need them fully in this paper. We refer the interested reader to [Moy86,
Definition 2.2.3] and [BH10, Section 8.2] for these conditions (and when E/F
is totally ramified, see also [BH05b, Section 1]), and only use one of their
consequences in (3.11).
We fix a (non-canonical) choice of ξ−1 in the factorization (3.1) as follows. We
fix a choice of the wild component ξw of ξ to be the product

(ξ0 ◦NE/E0
) · · · (ξt ◦NE/Et

)(ξt+1 ◦NE/F )

which satisfies

ξw(̟F ) = 1 and ξw has a p-power order (3.2)

(see [BH11, Lemma 1 of Section 4.3]), and define the tame component of ξ to
be ξ−1 = ξξ−1

w . We write

Ξ = Ξ(ξ) = ξ0(ξ1 ◦NE0/E1
) · · · (ξt+1 ◦NE0/F ), (3.3)

such that ξw = Ξ ◦NE/E0
.

Suppose that E0/F is a tamely ramified extension of degree dividing n and
E/E0 is unramified. Let Ξ be a character of U1

E0
. Following [BH05a, Section

1.3], we call (E0/F,Ξ) an admissible 1-pair over F if Ξ does not factor through
any norm NE0/K with F ⊆ K ( E0. We denote by P 1

n(F ) the set of F -
equivalence classes of these pairs. Therefore, the map

Pn(F ) → P 1
n(F ), (E/F, ξ) 7→ (E0/F,Ξ(ξ)|U1

E0
),

is well-defined and surjective. Notice that we can define the jump-data of a
1-pair, such that the jump-data of an admissible pair is the same as that of its
associated 1-pair.

3.2 The correspondences

Let G∗ be GLn defined over F , and G be an inner form of G∗ whose F -point is
isomorphic to GLm(D) for some central F -division algebra D of dimension d2

and n = md. Let A2
n(F ) (resp. A

2
m(D)) be the collection of equivalence classes
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of irreducible smooth representations of G∗(F ) (resp. G(F )) which are essen-
tially square-integrable modulo center. The Jacquet-Langlands correspondence
is a canonical bijection

JL : A2
n(F ) → A2

m(D) (3.4)

between the two collections determined by a character relation between π ∈
A2

n(F ) and its image JL(π) ∈ A2
m(D): for every pair of semi-simple elliptic

regular elements (g, g∗), where g ∈ G(F ) and g∗ ∈ G∗(F ), with the same
reduced characteristic polynomial, we have [BH11, Section 1.4]

(−1)n−mΘπ(g
∗) = ΘJL(π)(g), (3.5)

where Θπ (resp. ΘJL(π)) is the character of π (resp. JL(π)).
For each representation π ∈ A2

m(D), let

(i) f(π) be the number of unramified characters χ of F× that χ ⊗ π ∼= π
(here χ is regarded as a representation of G(F ) by composing with the
reduced norm map Nrd : G(F ) → F×), and

(ii) δ(π) be the parametric degree of π (we do not require its full definition,
so we only refer to [BH11, Section 2.7] for details).

It is known that δ(π) is a positive integer and is a multiple of f(π). Moreover,
π is supercuspidal if δ(π) = n, while the converse is only true in the split case
(when G = G∗).
Recall that we denote by A0

n(F ) the set of supercuspidal representations of
G∗(F ). The correspondence (3.4) restricts to a bijection

JL : A0
n(F ) → {π ∈ A2

m(D)|δ(π) = n}.

We call π essentially tame if p does not divide δ(π)/f(π). Let Aet
m(D) be the

set of isomorphism classes of irreducible representations in A2
m(D) which are

essentially tame and satisfy δ(π) = n. Therefore Aet
n (F ) is the same collection

defined in [BH05a]. Since the Jacquet-Langlands correspondence in (3.4) pre-
serves the invariants δ(π) and f(π), we have the following theorem [BH11, 2.8.
Corollary 2].

Theorem 3.1 (Essentially tame Jacquet-Langlands correspondence). The re-
striction of the Jacquet-Langlands correspondence induces a bijection

JL : Aet
n (F ) → Aet

m(D).

This bijection preserves the central characters on both sides.

Bushnell and Henniart described this bijection explicitly in a way parallel to
[BH05a], [BH05b], [BH10]. We recall the results briefly as follows. On the one
hand, we have the bijection

FΠ : Pn(F ) → Aet
n (F ), (E/F, ξ) 7→ FΠξ, (3.6)
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generalizing the construction of Howe [How77]. On the other hand, there is an
analogous bijection

DΠ : Pn(F ) → Aet
m(D), (E/F, ξ) 7→ DΠξ, (3.7)

using the constructions in [Séc04], [Séc05a], [Séc05b], [SS08]. In fact, what is
constructed in [BH11] is the inverse of (3.7), using the method called ‘attached-
pairs’, since the construction parallel to (3.6) exhibits some ‘novel technical
difficulties’ as mentioned in [BH11, Introduction 4.]. In the split case, the
attached-pair method yields the inverse of (3.6) (see 4.4 of [BH11]).
The composition of the bijection in (3.6), the correspondence in Theorem 3.1,
and the inverse of (3.7),

Dν : Pn(F )
FΠ
−−→ Aet

n (F )
JL
−−→ Aet

m(D) DΠ−1

−−−−→ Pn(F ), (3.8)

determines a tamely ramified quadratic character Dνξ of E
× for each admissible

character ξ of E×, depending only on the wild part of ξ, such that for each
admissible pair (E/F, ξ), the pair (E/F,Dνξ · ξ) is also admissible and

Dν(E/F, ξ) = (E/F,Dνξ · ξ). (3.9)

We call this character Dνξ the rectifier of ξ (for the Jacquet-Langlands corre-
spondence). Using the First and Second Comparison Theorems of [BH11], we
can compute the values of Dνξ. To express these values, we need the knowledge
of certain invariants of finite symplectic modules, which will be described in
Section 3.8. Finally, with the expression of Dνξ, we see that we can describe
the correspondence in Theorem 3.1 explicitly, using (3.6), (3.7), and (3.8).

3.3 Some subgroups

We recall certain subgroups of G(F ). Suppose that the jump data {Ek, ak|k =
0, . . . , t} are defined by the factorization (3.1) of an admissible pair (E/F, ξ),
or equivalently, of its associated 1-pair (E0/F,Ξ). We require that (E0,A)
satisfy the conditions in Section 2.5. We write Ak the centralizer of Ek in A
and Ak = Ak ∩ A. We can then define PAk

, UAk
, Ux

Ak
, and Ux+

Ak
for x ∈ R≥0

analogously as in Section 2.4. Following [Gra07, Definition 4.1], we construct
the pro-p subgroups

H1(Ξ,A) = U1
A0
U

(a0e(A1/oE)/2)+
A1

· · ·U
(at−1e(At/oE)/2)+
At

U
(ate(A/oE)/2)+
A

and

J1(Ξ,A) = U1
A0
U

a0e(A1/oE)/2
A1

· · ·U
at−1e(At/oE)/2
At

U
ate(A/oE)/2
A

.

(3.10)

We also construct the subgroups

J(Ξ,A) = UA0U
a0e(A1/oE)/2
A1

· · ·U
at−1e(At/oE)/2
At

U
ate(A/oE)/2
A

and

J(Ξ,A) = E×J(Ξ,A) = E×
0 J(Ξ,A).
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We abbreviate these groups by H1, J1, J and J if the admissible character
ξ is fixed. Notice that H1, J1, J are compact subgroups of G(F ) and J is a
compact-mod-center subgroup of G(F ).
In [Séc04, Section 3.1], these subgroups are defined based on a simple stratum
[A,−vA(β), 0, β], where β is a suitable element in E0, depending on Ξ and such
that

−vA(β) = the E-level of Ξ ◦NE/E0
.

The group H1(Ξ,A) is denoted by H1(β,A) in loc. cit. (and similarly for
the other subgroups). This construction is an obvious generalization of [BK93,
Section 3.1] (see also [BH11, Section 2.5] and the Comment therewithin).

3.4 Simple characters

Given an admissible 1-pair (E0/F,Ξ) and a finite unramified extension E/E0,
we define H1(Ξ,A) as in (3.10). Using the idea of [Moy86, Section 3.2] (see
also [Séc04, Definitions 3.22, 3.45, Proposition 3.47]), we attach to (E0/F,Ξ)
a simple character (H1(Ξ,A), θΞ,E) as follows. Suppose that Ξ admits a fac-
torization of the form (3.3), with each ξk ◦ NE0/Ek

, where k = 0, . . . , t + 1, a
character of U1

E0
. The generic conditions on the factorization imply that for

each ξk there is ck ∈ Ek ∩ p−ak

E such that Ek+1[ck] = Ek and

ξk ◦NE/Ek
(1 + x) = ψF (trE/F (ckx)) for all x ∈ p

(ak/2)+
E . (3.11)

Note that the element ck can be chosen mod p
−ak/2
E . We denote the character

on the right side of (3.11) by ψck .
We define a character θΞ,E of the subgroup H1(Ξ,A) in (3.10) by the follow-
ing inductive procedure. We first define a character θt+1 on the subgroup

U
(ate(At+1/oE)/2)+
At+1

(note that indeed Et+1 = F and At+1 = A) by

ξt+1 ◦NrdA/F on U
(ate(At+1/oE)/2)+
At+1

.

Inductively, suppose θk+1 is defined, we construct θk on the subgroup

U
(ak−1e(Ak/oE)/2)+
Ak

U
(ake(Ak+1/oE)/2)+
Ak+1

· · ·U
(ate(A/oE)/2)+
A

by

(ξk ◦NrdAk/Ek
) · · · (ξt+1 ◦NrdA/F ) on U

(ak−1e(Ak/oE)/2)+
Ak

and

(ψck ◦ trdAk/Ek
)θk+1 on U

(ake(Ak+1/oE)/2)+
Ak+1

· · ·U
(ate(A/oE)/2)+
A

.
(3.12)

On the intersection U
(ake(Ak/oE)/2)+
Ak

, we have

θk+1 = (ξk+1 ◦NrdAk+1/Ek+1
) · · · (ξt+1 ◦NrdA/F )

and
ψck ◦ trdAk/Ek

= ξk ◦NrdAk/Ek
.
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By Proposition 2.7 and (3.11), the two characters in (3.12) agree on the inter-
section, and so θk is defined. Finally, we define θΞ,E = θ0 on H1(Ξ,A). By
construction, this character θΞ,E is normalized by KA0 , hence it is a simple
character by [Gra07, 5.3 Definition.(i)].
To get back our character Ξ from θΞ,E , just notice that θΞ,E |U1

E
factors through

NE/E0
, hence there is a unique character Ξ of U1

E0
such that Ξ ◦ NE/E0

=
θΞ,E |U1

E
.

3.5 Local constructions of attached pairs

We briefly summarize the construction in [BH11, Sec. 4] of the bijection DΠ in
(3.7). We will distinguish between the ‘level-zero’ case and the ‘positive-level’
case (we refer to [BH11, Sections 2.4 and 2.6] the definition of these cases ).
As we remarked in the Introduction, it is indeed the inverse of DΠ that we are
going to describe.
In the level-zero case, the construction is similar to the one in the split case.
Each level zero π ∈ Aet

m(D) contains a representation (GLm(oD), λ), called a
maximal simple type of level zero, inflated from an irreducible cuspidal rep-
resentation (GLm(kD), λ̄). This representation λ̄ corresponds, via Green’s
parametrization [Gre55], to a kE/kF -regular character ξ̄ of k×

E , where E/F
is the unramified extension of degree n. We define the character ξ of E× such
that ξ|

o
×
E
is the inflation of ξ̄ and ξ|F× is the central character of π. By [BH11,

4.2. Proposition], the attached pair (E/F, ξ) is admissible and the correspon-
dence

Aet
m(D)level−0 → Pn(F )level−0 , π 7→ (E/F, ξ), (3.13)

is bijective. We can show that π = cInd
G(F )
J

Λ, where the condition δ(π) = n
implies that J = F×GLm(oD), and (J,Λ) is defined by the conditions

Λ|GLm(oD) = λ and Λ|F× is a multiple of ξ|F× . (3.14)

The representation (J,Λ) is called an extended maximal simple type of level
zero.
In the positive level case, we first recall the construction of a extended maximal
simple type in general. Suppose we have a simple character (H1, θ). For
example, we can construct a simple character θ = θΞ,E as in Section 3.4 using
an admissible pair (E/F, ξ). We notice that the commutator subgroup [J1, J1]
lies in H1 [BK93, (3.1.15)]. By [Séc04, Théorème 3.52], the above simple
character θ induces an non-degenerate alternating bilinear form

hθ(x, y) = θ([1 + x, 1 + y]), for all 1 + x, 1 + y ∈ J1, (3.15)

on the Fp-vector space

AVξ := J1/H1.

The classical theory of Heisenberg representation implies that there is a unique
representation η̄ of J1/ ker θ containing the character θ of H1/ ker θ as a central
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character. We then define η as the inflation of η̄ to J1. By [Séc05a, Théorème
2.28], there exists a unique irreducible representation (J, κ), which is called a
β-extension (or wide extension in [BH11]) of η and satisfies certain conditions
on its intertwining in G(F ) (see [BH11, (2.5.5)]). We now choose a maximal
simple type (GLm0(oD0), σ) of A×

0 = ZG(F )(E
×
0 ) of level zero and inflate it

to a representation (J, σ), since we know that J = GLm0(oD0)J
1. We obtain

a maximal simple type (J, λ), where λ = κ ⊗ σ. By [Séc05b, Théorème 5.2],
there exists an irreducible representation Λ of J = E0

×J1 (by the condition
δ(π) = n), extending λ and whose compact-induction to G(F ) is irreducible
and supercuspidal. The representation (J,Λ) is called an extended maximal
simple type. By [BH11, Lemma 2 of Section 4.3], we can fix a unique extended
type containing (J, λ) and satisfying the (non-canonical) conditions:

̟F ∈ kerΛ and detΛ has a p-power order.

Following [BH11, Section 3 and 4], we have to approach indirectly to describe
the inverse of DΠ. Suppose that we are given a representation π ∈ Aet

m(D)
of positive level. By [SS08, Théorème 5.21], it contains an extended maximal
simple type (J,Λ) of the above form, such that Λ|H1 is a multiple of a simple
character (H1, θ). There is a unique character ξw of E×, depending on θ|U1

A0
,

satisfying the conditions in (3.2). In particular, we have

θ|U1
A0

= Ξ ◦NrdA0/E0
, such that ξw|U1

E
= Ξ ◦NE/E0

.

By the discussion of the previous paragraph, we can attach to ξw an extended
maximal simple type (J,Λw) such that Λ ∼= Λ−1⊗Λw for a uniquely determined
extended maximal simple type (J,Λ−1) of level zero. Attached to (J,Λ−1) is
a level zero character ξ−1 of E× admissible over E0, as mentioned in the level
zero case. Finally, by [BH11, 4.3. Proposition], the attached pair (E/F, ξ),
where ξ = ξ−1ξw , is admissible and independent of the various choices above.
We call (E/F, ξ) a pair attached to π.
The technical part is to show that the attaching map

Aet
m(D) → Pn(F ), π 7→ (E/F, ξ)

is well-defined and injective. This is done in the Parametrization Theorem of
[BH11, Section 6]. The composition (3.8) is then injective (since the maps

FΠ and JL are known to be bijective) and preserves the restriction of each
character to the subgroup F×U1

E , which is of finite index of E×. Therefore,
the map in (3.8) and hence DΠ in (3.7), is bijective.

3.6 Finite symplectic modules

Since the group J normalizes the subgroups H1, J1, and the simple character
θ of H1, it acts on the finite quotient AVξ := J1/H1. This quotient is denoted
by A∗Vξ in the split case A = A∗, which is studied in [BH10] and [Tam]. Notice
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that the quotient is clearly a finite dimensional Fp-vector space. The action of
J induces a symplectic FpJ-module structure on this space with respect to the
non-degenerate alternating form hθ in (3.15). We have a decomposition of

AVξ = AVξ,0 ⊕ · · · ⊕ AVξ,t, (3.16)

into FpJ-submodules, where

AVξ,k =
U

ake(Ak+1/oE)/2
Ak+1

U
ake(Ak/oE)/2
Ak

U
(ake(Ak+1/oE)/2)+
Ak+1

=
P

ake(Ak+1/oE)/2
Ak+1

P
ake(Ak/oE)/2
Ak

+P
(ake(Ak+1/oE)/2)+
Ak+1

(3.17)

for k = 0, . . . , t. In this paper, We call this decomposition the coarse de-
composition of AVξ. By [Séc04, Proposition 3.9], the decomposition (3.16) is
orthogonal.

In the sequel, we will be interested in the adjoint action of E× on AVξ restricted
from that of J, which factors through the finite group ΨE/F := E×/F×(E× ∩
J1).

The following Proposition appears in [BH11, Proposition 5.6]. We re-interpret
its proof here.

Proposition 3.2. If E/F is totally ramified, then AVξ
∼= A∗Vξ.

Proof. From the proofs of Propositions 4.1 and 4.2 (which are purely algebra
and do not require the knowledge of this section), we see that the totally
ramified condition implies that

P
j
A∗

k
/Pj+1

A∗
k

∼= P
j
Ak
/Pj+1

Ak

∼= Ind
ΨE/Ek
1 kF (3.18)

as a kFΨE/Ek
-module, for all j ∈ Z and k = 1, . . . , t + 1. Moreover, we know

that in the split case the index e(A∗
k/oE) (appearing in the powers in (3.17),

when A = A∗) is always 1, and in general each e(Ak/oE) (again appearing in
(3.17)) divides f(E/Ek) (remember that f(E/Ek)/e(Ak/oE) is the integer sEk

appearing in (2.7), when K = Ek), which is equal to 1 in the totally ramified
case. Hence from the expression in (3.17) and using (3.18), we see that both

AVξ,k and A∗Vξ,k are isomorphic to

P
ak/2
Ak+1

P
ak/2
Ak

+P
(ak/2)+
Ak+1

.

Hence their sums AVξ and A∗Vξ are also isomorphic.
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3.7 Invariants of finite symplectic modules

Let Γ be a finite cyclic group whose order is not divisible by p. We call a
finite FpΓ-module V symplectic if there is a non-degenerate alternating form
h : V × V → Fp which is Γ-invariant, in the sense that

h(γv1,
γv2) = h(v1, v2), for all γ ∈ Γ, v1, v2 ∈ V.

The simple module Vλ corresponding to a character λ ∈ Hom(Γ, F̄×
p ) is the

field Fp[λ(Γ)] generated over Fp by the image λ(Γ), with Γ-action

γv = λ(γ)v, for all γ ∈ Γ, v ∈ Vλ.

Its Fp-linear dual V
∗
λ = Hom(Vλ,Fp) is isomorphic to Vλ−1 by the map

Vλ−1 → V ∗
λ , v 7→ (w 7→ trFp[λ(Γ)]/Fp

(wv)),

such that the canonical pairing 〈·, ·〉 : Vλ × Vλ−1 → Fp is Γ-invariant.
We recall some basic facts from [BF83, (8.2.3)] and [BH10, Sec. 3, Prop. 4].

Proposition 3.3. (i) An indecomposable symplectic FpΓ-module is isomor-
phic to either one of the following two kinds,

(a) a hyperbolic module of the form Vλ = Vλ ⊕ Vλ−1 such that either
λ2 = 1 or Vλ ≇ Vλ−1 , with the alternating form

hVλ
((v1, v

∗
1), (v2, v

∗
2)) = 〈v1, v

∗
2〉 − 〈v2, v

∗
1〉 ,

for all (v1, v
∗
1), (v2, v

∗
2) ∈ Vλ;

(b) an anisotropic module of the form Vλ with λ2 6= 1 and Vλ ∼= Vλ−1 .
In this case, [Fp[λ(Γ)] : Fp] is even and the alternating form hVλ

is
defined, up to Γ-isometry, by

(v1, v2) 7→ trFp[λ(Γ)]/Fp
(αv1v̄2), for all v1, v2 ∈ Vλ,

where v 7→ v̄ is the Fp-automorphism of Fp[λ(Γ)] of order 2 and
α ∈ Fp[λ(Γ)]

× satisfies ᾱ = −α.

(ii) If Vλ is anisotropic and Fp[λ(Γ)]± denotes the subfield of Fp[λ(Γ)]
such that Fp[λ(Γ)]/Fp[λ(Γ)]± is quadratic, then λ(Γ) is a subgroup of
ker(NFp[λ(Γ)]/Fp[λ(Γ)]±)

(iii) The Γ-isometry class of a symplectic FpΓ-module (V,h) is determined by
the underlying FpΓ-module V .

Part (iii) is particularly useful because, when we talk about invariants of Γ-
isometry classes of symplectic FpΓ-modules, we do not have to write down the
alternating forms explicitly.
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Given a finite symplectic FpΓ-module V, we attach a sign t0
Γ
(V) ∈ {±1} and

a quadratic character t1
Γ
(V) of Γ. We also set

tΓ(V) = t0Γ(V)t1Γ(V)(γ),

where γ is any generator of Γ. We call these t-factors of V.
We recall from [BH10, Section 3] the definition the t-factors.

(i) If Γ acts on V trivially, then

t0
Γ
(V) = 1 and t1

Γ
(V) ≡ 1.

(ii) Let V be an indecomposable symplectic FpΓ-module.

(a) If V = Vλ ⊕Vλ−1 is hyperbolic, then

t0Γ(V) = 1 and t1Γ(V) = sgnλ(Γ)(Vλ).

Here sgnλ(Γ)(Vλ) : Γ → {±1} is the character whose image γ 7→
sgnλ(γ)(Vλ) is the signature of the multiplication by λ(γ) as a per-
mutation of the set Vλ.

(b) If V = Vλ is anisotropic, then

t0
Γ
(V) = −1 and

t1Γ(V)(γ) =

(

γ

ker(NFp[λ(Γ)]/Fp[λ(Γ)]±)

)

for any γ ∈ Γ.

Here
(

·
·

)

is the symbol defined as follows: for every finite cyclic group
H ,

( x

H

)

=

{

1 if x ∈ H2,

−1 otherwise.

(iii) If V decomposes into an orthogonal sum V1⊥ · · ·⊥Vt of indecomposable
symplectic FpΓ-modules, then

tiΓ(V) = tiΓ(V1) · · · t
i
Γ(Vt) for i = 0, 1.

Notice that when p = 2, the order of Γ is odd. In this case, t1
Γ
(V) is always

trivial, because all signature characters and symbols
(

·
·

)

are trivial.

3.8 Values of rectifiers

Given a tamely ramified extension E/F and an F -admissible character ξ of
E×, let Dνξ be the rectifier of ξ defined in (3.9). To describe the values of Dνξ,
we need to impose a condition on ̟E defined in (2.1):

̟E ∈ E0, (3.19)
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where E0 be the first field appearing in the factorization (3.1) of ξ. This con-
dition is the same as in the Second Comparison Theorem of [BH11, Section
7], where we further require that ̟r

E ∈ F for some integer r coprime to p. In-
deed, from the assumption in (2.1) this extra requirement is automatic in our
situation. Under (3.19), the roots of unity zE/F , zφi (defined in Section 2.2),
and others related to ̟E in later sections all depend on the first field E0 in
the jump data of ξ.
The values of the rectifier Dνξ depends on the t-factors

t1
µ
(AVξ), t

1
µ
(A∗Vξ), t〈̟〉(AVξ) and t〈̟〉(A∗Vξ),

where µ = µE/F and 〈̟〉 = 〈̟〉E/F abbreviate the following subgroups of

ΨE/F = E×/F×U1
E ,

µ := µE/µF and

〈̟〉 := the subgroup generated by the image of ̟E.
(3.20)

By the First and Second Comparison Theorems of [BH11], the rectifier Dνξ has
values

Dνξ|µE = t1
µ
(AVξ)t

1
µ
(A∗Vξ) and

Dνξ(̟E) = (−1)n−m+f̟−m̟ t〈̟〉(AVξ)t〈̟〉(A∗Vξ),
(3.21)

where f̟ := [E : F [̟E ]] = f(E/F [̟E]) and m̟ = gcd(m, f̟).
In the case when E/F is totally ramified, Proposition 3.2 implies that

Dνξ is unramified and Dνξ(̟E) = (−1)n−m,

as stated in [BH11, 5.3.Theorem].

4 Finite symplectic modules

4.1 Standard modules of central simple algebra

Let A be the hereditary E-pure order in A, as discussed in Sections 2.4 and 2.5.
The isomorphism (2.6) implies thatPj

A
/Pj+1

A
∼= Mats(kD)r for all j ∈ Z, where

s = gcd(f,m) and r = e/ gcd(d, e). We denote this quotient by (Mats(kD)r)j
when we want to emphases the index j. Notice that as kFΨE/F -modules, all
(Mats(kD)r)j , for j ranges over all Z, are isomorphic to each other.
When A = A∗ and j = 0, we know that UA∗ := A∗/PA∗ ∼= Matn(kF ) admits a
root-space decomposition

UA∗ ∼= U0

⊕

[λ]∈ΓF \Φ

U[λ],

where U0
∼= oE/pE on which ΨE/F acts trivially, and U[λ] is the kF -subspace

on which ΨE/F acts by the character λ. Note that the equivalence class of the
kFΨE/F -module U[λ] depends only on the ΓF -orbit of λ.
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For future computation, we rewrite the above decomposition as

UA∗ ∼=
⊕

[g]∈ΓE\ΓF /ΓE

U[g] (4.1)

using the identification in Proposition 2.1. Here U[g]
∼= kE(gE) as a kF -vector

space for each [g] ∈ ΓE\ΓF/ΓE , and the ΨE/F -action on each v ∈ U[g] is given
as follows: if [g] = [σiφj ], then

zv = (zq
j−1)−1v for all z ∈ µE and ̟Ev = (ziezφj)−1v, (4.2)

where ze and zφj are defined in Section 2.2.
For general inner form G, we first consider a simple case when A is a division
algebra D. We write (kD)j := P

j
D/P

j+1
D for each j ∈ Z.

Proposition 4.1. For each j ∈ Z, the kFΨE/F -module (kD)j is isomorphic
to

⊕

[σiφhj ]∈ΓE\ΓF /ΓE

U[σiφhj ]. (4.3)

Proof. Recall that, if we denote by K the maximal unramified extension in D
(of degree n over F ), then

Pi
D = · · · ⊕ pK̟

i
D ⊕ oK̟

i+1
D ⊕ · · · .

Hence we can use x̟i
D, with x ∈ µK ∪ {0}, as a representative in Pi

D of an
element in (kD)j . We regard (kD)j as a kE-vector space of dimension e such

that z ∈ µE acts on each piece (kE)j by the character
[

1
φhj

]

(z) = z1−qhj

as in

(2.4). Therefore, a Frobenius reciprocity argument (which is still valid when p
does not divide #ΨE/F ) implies that

(kD)j ∼= Ind
ΨE/F

µE/µF
(kE)j ;

more precisely, the action of ̟E has eigenvalues (ziezφhj )−1, i = 0, . . . , e −

1, where we recall that zφhj is an eth root of zq
hj−1

E/F . Hence we have the

decomposition (4.3) with the ΨE/F -action on each component U[σiφhj ] as in
(4.2) for each fixed j.

For the general A, if we write (Mats(kD)r)j′ := P
j′

A
/Pj′+1

A
for each j′ ∈ Z,

then we have the following result.

Proposition 4.2. For each j′ ∈ Z, we have a decomposition

(Mats(kD)r)j′ ∼=
⊕

[σiφj ]∈ΓE\ΓF /ΓE

j≡hj′ mod f/s

U[σiφj ].

as a ΨE/F -module. (Recall that f/s = d/ gcd(d, e) = e(A/oE).)
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Proof. Denote by ED = E ∩D the maximal subfield contained in both E and
D, then [kED : kF ] = f/s and [kD : kED ] = gcd(d, e) = e/r. By Proposition
4.1, we know that z ∈ µED acts on (Mats(kD)r)j′ as a sum of (kED )hj′ , i.e.,

z acts by the character
[

1

φ̄hj′

]

(z) = z1−qhj′

, where φ̄ is the image of φ under

the natural projection

ΓkE/kF
→ ΓkED

/kF
. (4.4)

(Note that the arguments above concerning Proposition 4.1 still valid even
though ED may not be a maximal subfield of D.) We now consider the kED -
embeddings (where all choices are conjugate to each other)

kED −→ kE −→ Mats(kED ) −→ Mats(kD),

Notice that kE is a maximal subfield of Mats(kED ). By the “twisted group
ring decomposition”, we know that z ∈ µE acts on Mats(kED ) as a sum of
((kE)hj′ )

s, i.e., z acts on each of the s summands of kE by the character
[

1
φj

]

(z) = z1−qj , for φj ranges over the s pre-images of φ̄hj
′

under the natural

projection (4.4). We denote this µE-module by Mats(kED )j′ . Finally, since
the relative degree of (Mats(kD))r over Mats(kED ) is e = [ΨE/F : µE/µF ],
a Frobenius reciprocity argument (which is still valid when p does not divide
#ΨE/F ) implies that

(Mats(kD)r)j′ ∼= Ind
ΨE/F

µE/µF
Mats(kED )j′ ;

Therefore, we have obtained the desired decomposition and proved the propo-
sition.
The following Corollary is a direct consequence of Proposition 4.2.

Corollary 4.3. The graded algebra

UA :=

f/s−1
⊕

j′=0

(Mats(kD)r)j′ ,

is isomorphic to UA∗ as a ΨE/F -module.

We provide some notations for later use. We write

Usym :=
⊕

[g]∈(ΓE\ΓF /ΓE)sym

U[g]

and also Usym−ram and Usym−unram analogously. Given intermediate extensions
F ⊆ K ⊆ L ⊆ E, we write

UK/L :=
⊕

[g]∈ΓE\(ΓL−ΓK)/ΓE

U[g]
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We also define the symmetric module associated to U[g] (or U[g−1]) by

U[g] :=

{

U[g] ⊕ U[g−1] if [g] is asymmetric,

U[g] if [g] is symmetric,
(4.5)

and call
UA

∼= U0

⊕

[g]∈(ΓE\ΓF /ΓE)sym⊔(ΓE\ΓF /ΓE)asym/±

U[g] (4.6)

the complete symmetric decomposition of UA. If V is a submodule of UA, we
also use the same convention to denote its submodules, for example, VK/L =
UK/L ∩V and V[g] = U[g] ∩V, and also call

V ∼= (U0 ∩V)
⊕

[g]∈(ΓE\ΓF /ΓE)sym⊔(ΓE\ΓF /ΓE)asym/±

V[g]

the complete symmetric decomposition of V

4.2 Complete decomposition of finite symplectic modules

We are interested in the adjoint action of E× on AVξ restricted from that of J,
which factors through the finite groupE×/F×(E×∩J1) ∼= ΨE/F . We also know
that this action preserves the symplectic structure hθ (3.15) on AVξ. Hence

AVξ is moreover a finite symplectic FpΓ-module for each cyclic subgroup Γ of
ΨE/F . We denote the U[g]-isotypic component in AVξ by AVξ,[g], and obtain
the decompositions

AVξ =
⊕

[g]∈(ΓE\ΓF /ΓE)′

AVξ,[g] =
⊕

[g]∈(ΓE\ΓF /ΓE)sym⊔(ΓE\ΓF /ΓE)asym/±

AVξ,[g]

(4.7)
inherited from (4.1) and (4.6) respectively. These decomposition are finer than
the one in (3.16). Indeed, it is easy to see that

AVξ,k := AVξ,Ek/Ek+1
=

⊕

[g]∈ΓE\(ΓEk+1
−ΓEk

)/ΓE

AVξ,[g]

for k = 0, . . . , t.

Proposition 4.4. The complete symmetric decomposition of AVξ is orthogonal
with respect to the alternating form hθ.

Proof. Since we know that the ΨE/F -components of AVξ consist of those in
the standard module UA, which is isomorphic to the standard one UA∗ in the
split case, the proof of the assertion is just analogous to the one in the split
case [Tam, (5.10)], based on the argument of [BF83, (8.2.3),(8.2.4)].

We would like to describe the isotypic component appearing in the complete de-
composition (4.7) of AVξ. We first write e(A/Ak+1) := e(A/oE)/e(Ak+1/oE).
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Proposition 4.5. The quotient Pj
A
∩ Ak+1/P

j+
A

∩ Ak+1 is non-trivial if and
only if j ∈ e(A/Ak+1)Z.

Proof. Since P
j
A
∩ Ak+1 = P

j/e(A/Ak+1)
Ak+1

for all j ∈ Z, the assertion follows
directly.

We now specify j = jk = e(A/oE)ak/2 for some integer ak, and soPjk
A
∩Ak+1 =

P
ake(Ak+1/oE)/2
Ak+1

, such that the index on the right side is the one appearing in

the group J1 (3.10). The condition in Proposition 4.5 is satisfied if and only if
ak is even or e(Ak+1/oE) is even, in which case

AVξ,k
∼=

P
ake(Ak+1/oE)/2
Ak+1

P
ake(Ak+1/oE)/2+
Ak+1

+P
ake(Ak/oE)/2
Ak

∼=

{

Matsk+1
(kDk+1

)rk+1/Matsk(kDk
)rk when ake(Ak/oE)/2 ∈ Z,

Matsk+1
(kDk+1

)rk+1 otherwise,

where rk and sk are the invariants of Ak analogous to r and s of A.
To summarize, AVξ,k is isomorphic to

0 when ak is odd and e(Ak+1/oE) is odd,

Matsk+1
(kDk+1

)rk+1

when ak is odd, e(Ak/oE) is odd, and e(Ak+1/oE) is even,

Matsk+1
(kDk+1

)rk+1/Matsk(kDk
)rk

when ak is even or e(Ak/oE) is even.

The action of ΨE/F on P
jk
A

∩ Ak+1 is given by σiφjh ∈ ΓEk+1
, where j has

image hjk in the natural projection Z/fZ → Z/e(A/oE)Z. Therefore, directly
from the description of AVξ,k above, we have the following decompositions.

Proposition 4.6. The complete decomposition of the component AVξ,k is
given as follows.

(i) When ak is odd and e(Ak+1/oE) is odd, then AVξ,k is trivial.

(ii) When ak is odd, e(Ak/oE) is odd, and e(Ak+1/oE) is even, then

AVξ,k
∼=

⊕

[g]=[σiφj]∈ΓE\ΓEk+1
/ΓE

j≡hjk mod e(A/oE)

U[g].

(iii) When ak is even or e(Ak/oE) is even, then

AVξ,k
∼=

⊕

[g]=[σiφj ]∈ΓE\(ΓEk+1
−ΓEk

)/ΓE

j≡hjk mod e(A/oE)

U[g].
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4.3 Some properties of parities of jumps

Let R be the index when f(E/ER) is odd and f(E/ER+1) is even.

Lemma 4.7. We have (ΓER+1/ΓE)sym−unram = ((ΓER+1 −ΓER)/ΓE)sym−unram.

Proof. Recall Proposition 2.2 that every symmetric unramified [g] are of the
form [σiφf/2], so there is no coset of the form σiφf/2 belonging to ΓER .

Let Q be the index when e(AQ/oE) is odd and e(AQ+1/oE) is even.

Lemma 4.8. Suppose that f is even. We always have R ≤ Q. If moreover m
is odd, then Q = R.

Proof. We know that e(Ak/oE) divides f(E/Ek), so that if Q < R, then the
even number e(AQ+1/oE) divides f(E/EQ+1), which divides the odd number
f(E/ER). This is a contradiction. Hence R ≤ Q. When R � Q, then

e(AR+1/oE) is odd and f(E/ER+1) is even. (4.8)

Since

e(AR+1/oE) = fER+1/sER+1 =
f(E/ER+1)

gcd(f(E/ER+1), gcd(m,n(E/ER+1)))
, (4.9)

the statement (4.8) is equivalent to saying that

the 2-powers of the numerator and

the denominator on the right side of (4.9) are equal.
(4.10)

This power is greater than 0. Hence (4.10) is equivalent to that

(the 2-power of m) ≥ (the 2-power of f(E/ER+1)) 
 0. (4.11)

If m is odd, then (4.11) is a contradiction.

4.4 Symmetric submodules

We write AVξ,sym = AVξ ∩ Usym and AVξ,sym−ram and AVξ,sym−unram analo-
gously.

4.4.1 Case when f is odd

From Proposition 3.2, we always have

AVξ,sym = AVξ,sym−ram
∼= A∗Vξ,sym−ram = A∗Vξ,sym. (4.12)
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4.4.2 Case when f is even

Notice that the natural projection Z/fZ → Z/e(A/oE)Z maps

f/2 7→

{

0 if e(A/oE) divides f/2,

e(A/oE)/2 6= 0 otherwise
(4.13)

The condition that e(A/oE) divides f/2 is equivalent to that s is even. When f
is even, then s = gcd(f,m) is even if and only if m is even. We hence separate
the cases according to the parity of m.

4.4.3 Case when both f and m are even

In this case, f/2 is mapped to 0 by Z/fZ → Z/e(A/oE)Z. We separate the
cases according to the parity of the jump ak. When ak is odd, neither 0 or f/2
is mapped to hjk 6= 0 ∈ Z/e(A/oE)Z, and so AVξ,k is trivial. When ak is even,
both 0 and f/2 are mapped to hjk = 0 by (4.13), and so AVξ,k,sym

∼= Uk,sym.
We also recall that

A∗Vξ,k
∼=

{

0 if ak is odd,

Uk,sym if ak is even.

Whatever the parity of ak is, we always have AVξ,sym
∼= A∗Vξ,sym.

4.4.4 Case when f is even and m is odd

In this case, notice that e(A/oE) must be even, and

jk = e(A/oE)ak/2 ≡

{

0

e(A/oE)/2
mod e(A/oE)

{

if ak is even,

if ak is odd.

Therefore,

AVξ,k,sym =

{

AVξ,k,sym−ram if ak is even,

AVξ,k,sym−unram if ak is odd.

Using Proposition 4.6, we find that when ak is even,

AVξ,k,sym = UEk/Ek+1,sym−ram =
⊕

[σi]∈(ΓE\(ΓER+1
−ΓER

)/ΓE)sym

U[σi],

Here the index R is defined in Section 4.3. When ak is odd, AVξ,k,sym is trivial
when k < R, and is isomorphic to

UE/ER+1,sym−unram =
⊕

[σiφf/2]∈(ΓE\ΓER
/ΓE)sym

U[σiφf/2]
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when k = R, and to

UEk/Ek+1,sym−unram =
⊕

[σiφf/2]∈(ΓE\(ΓEk+1
−ΓEk

)/ΓE)sym

U[σiφf/2]

when k > R.
We observe that, whether ak is odd or even, the symmetric unramified part of

AVξ and A∗Vξ are complementary, in the sense that

AVξ,k,sym−unram ⊕ A∗Vξ,k,sym−unram = UEk/Ek+1,sym−unram

for all k = 0, . . . , t
We summarize the above in the following.

Proposition 4.9. We always have AVξ,sym−ram
∼= A∗Vξ,sym−ram and

(i) when f is odd, or when both f and m are even, then AVξ,sym−unram
∼=

A∗Vξ,sym−unram;

(ii) when f is even and m is odd, then AVξ,sym−unram ⊕ A∗Vξ,sym−unram =
Usym−unram.

4.5 t-factors of isotypic components

We recall the values of the t-factors ti
Γ
(V), i = 0, 1, when Γ is one of the cyclic

subgroups µ and 〈̟〉 of ΨE/F defined in (3.20), and V is a symmetric module
U[g] defined in (4.5). The following Proposition describes all ti

Γ
(U[g]) except

when [g] = [σe/2].

Proposition 4.10 ([Tam, Proposition 4.9]). (i) If [g] = [σiφj ] is asymmet-
ric, then

t0
µ
(U[g]) = 1, t1

µ
(U[g]) : z 7→ sgnzqi−1(U[g]),

t0〈̟〉(U[g]) = 1, and t1〈̟〉(U[g])(̟E) = sgnzi
ezφj

(U[g]).

(ii) If [g] = [σi] is symmetric and not equal to [1] or [σe/2], then

t0
µ
(U[g]) = 1, t1

µ
(U[g]) ≡ 1,

t0〈̟〉(U[g]) = −1, and t1〈̟〉(U[g]) : ̟E 7→

(

zie
ker(NFp[zi

e]/Fp[zi
e]±

)

)

.

(iii) If [g] = [σiφf/2] is symmetric, then

t0
µ
(U[g]) = −1, t1

µ
(U[g]) is quadratic,

and
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(I) if ziezφf/2 = 1, then t0〈̟〉(U[g]) = 1 and t1〈̟〉(U[g]) ≡ 1;

(II) if ziezφf/2 = −1, then t0〈̟〉(U[g]) = 1 and t1〈̟〉(U[g])(̟E) =

(−1)
1
2 (q

f/2−1);

(III) if ziezφf/2 6= ±1, then t0〈̟〉(U[g]) = −1 and

t1〈̟〉(U[g]) : ̟E 7→

(

ziezφf/2

ker(NFp[zi
ezφf/2 ]/Fp[zi

ezφf/2 ]±)

)

.

In the exceptional case, when [g] = [σe/2], we have µEg = µE . To unify
notation, we define

t1
µ
(U[σe/2]) : µE → {±1}, x 7→

(

x

µE

)

. (4.14)

The Fp〈̟〉-module structure of U[σe/2] does not concern us (see the explanation
after Formula (5.5)).
The following properties concerning symmetric double cosets are useful when
computing the above t-factors.

Proposition 4.11. Suppose that [g] is symmetric.

(i) If [g] is ramified (resp. unramified), then [U[g] : kE ] is even (resp. odd).

(ii) Let Fp[
[

1
g

]

(̟E)] be the field extension of Fp generated by the image of
[

1
g

]

(̟E) in k̄
×
F . If [g] 6= [σe/2], then the degree [U[g] : Fp[

[

1
g

]

(̟E)]] is
odd.

Proof. The first statement for ramified [g] is a simple calculation, and that for
unramified [g] is a consequence of Proposition 2.3. The second statement is
proved in [Tam, Lemma 4.8].
We would like to extend our definition of the t-factors ti

µ
(U[g]), with i = 0, 1,

from µ to µg = µEg/µF . We define

t0
µg

(U[g]) := t0
µ
(U[g])

and for all z ∈ µg,

t1
µg

(U[g]) : z 7→



















sgn[ 1
g

]

(z)
(U[g]) if [g] is asymmetric,





[

1

σiφ
f[U[g]:kE ]/2

]

(z)

kerNkEg
/kE±g



 if [g] is symmetric.

Proposition 4.12. The restriction t1
µg

(U[g]) to µ is t1
µ
(U[g]) .
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Proof. For asymmetric [g], the result is immediate by definition. For symmet-

ric ramified [g], the restriction of the root
[

1

σiφ
f[U[g]:kE ]

]

to µ = µE/µF is

trivial, so the assertion is again true. When [g] is symmetric unramified, we

have to show that the restriction of

(

·
kerNkEg

/kE±g

)

to µ is
(

·
kerNkE/kE±

)

, or

equivalently, to show that the index of the subgroup kerNkE/kE±
∼= µqf/2+1 of

kerNkE/kE±
∼= µ

q
f[U[g] :kE ]/2

+1
is odd, which follows from Proposition 4.11.

5 Zeta-data

5.1 Admissible embeddings of L-tori

As mentioned in Section 1.3, to understand ζ-data, it is better to first under-
stand χ-data, which is motivated by constructing admissible embeddings of
L-tori [LS87, Section 2.6].

We take T to be an elliptic torus of G isomorphic to ResE/FGm. Its dual torus

T̂ is IndE/F (C
×), which is isomorphic to (C×)n as a group. It is equipped with

the induced action of the Weil group WF , which factors through the action of
the Galois group ΓF . We define the L-torus LT := T̂ ⋊WF as the L-group of
T .
We assume that the dual torus T̂ is embedded into the L-group LG = Ĝ×WF

of G, where Ĝ = GLn(C), with image T . For convenience, we simply denote
the image of t ∈ T̂ by the embedding T̂ → T ⊂ Ĝ also by t ∈ T . This
embedding should be defined using the chosen splittings of G and Ĝ. As we
do not need the full detail of the definition of this embedding, we only refer to
[LS87, Section 2.5] for details (or, when (G, T ) = (GLn,ResE/FGm), see [Tam,
Section 6.1]). All we need to know is that we can always assume that the image
T is the diagonal subgroup of Ĝ.
With the embedding T̂ → T chosen, an admissible embedding from LT to LG
is a morphism of groups I : LT → LG of the form

I(t⋊ w) = tI(1⋊ w) for all t⋊ w ∈ LT.

Note that an admissible embedding maps WF into NĜ(T ), i.e., the factor
I(1 ⋊ w) above lies in NĜ(T ). Two admissible embeddings I1, I2 are called
Int(T )-equivalent if there is t ∈ T such that

I1(w) = tI2(w)t
−1 for all w ∈ WF .

By [LS87, Section 2.6], admissible embeddings exist, and the collection of these
embeddings can be described as follows.

Proposition 5.1. The set of admissible embeddings from LT to LG is a
Z1(WF , T̂ )-torsor, and the set of the Int(T )-equivalence classes of these em-
beddings is an H1(WF , T̂ )-torsor.
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The idea in [LS87, Section 2.5] of constructing an admissible embedding is to
choose a set of characters

{χλ}λ∈Φ, where χλ : E×
λ → C×,

called χ-data, such that the following conditions hold.

Definition 5.2. (i) For each λ ∈ Φ, we have χ−λ = χ−1
λ and χwλ = wχλ

for all w ∈ WF .

(ii) If λ is symmetric, then χ|E×
±λ

equals the quadratic character δEλ/E±λ

attached to the extension Eλ/E±λ.

Remember that, in Section 2.1, we choose a subset R± = Rsym⊔Rasym/± of Φ
representing the orbits WF \Φsym and WF \Φasym/±. Hence, by condition (i),
the set of χ-data depends completely on the subset {χλ}λ∈R± . We still call
such a subset a set of χ-data. Moreover, using Artin reciprocity [Tat79], we
may regard each χλ as a character of the Weil group WEλ

.
Following the recipe in [LS87, Section 2.5], we can define an admissible embed-
ding

I{χλ} : LT → LG

depending on a given set of χ-data. In our present situation, we can describe
the admissible embedding I{χλ} in Proposition 5.3 below. We first recall the
Langlands correspondence for the torus T = ResE/FGm, which is a bijection

Hom(T (F ),C×) → H1(WF , T̂ ). (5.1)

Given a character ξ of T (F ) = E×, we denote by ξ̃ a 1-cocycle in Z1(WF , T̂ )
whose class is the image of ξ under (5.1). Given χ-data {χλ}λ∈R± , we define

µ := µ{χλ} =
∏

λ∈R

Res
E×

λ

E×χλ,

where R = R±⊔(−Rasym/±) is a subset representing ΓF \Φ. It is easy to check
that the product of the restricted characters is independent of representatives
in R, so we usually write

µ =
∏

[λ]∈ΓF \Φ

Res
E×

λ

E×χλ.

Proposition 5.3 ([Tam, Proposition 6.5]). For every character ξ of E×, the
composition

I{χλ} ◦ ξ̃ : WF → LT → LG
proj
−−→ GLn(C)

is isomorphic to IndE/F (ξ · µ{χλ}) as a representation of WF .
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We now define a analogous set of characters

{ζλ}λ∈Φ, where ζλ : E×
λ → C×,

called ζ-data, such that the following conditions hold.

Definition 5.4. (i) For each λ ∈ Φ, we have ζ−λ = ζ−1
λ and ζwλ = wζλ for

all w ∈ WF .

(ii) If λ is symmetric, then ζ|E×
±λ

is trivial.

We can view a set of ζ-data as the difference of two sets of χ-data. Motivated
from Propositions 5.1 and 5.3, the product character

ν := ν{ζλ} =
∏

[λ]∈ΓF \Φ

Res
E×

λ

E×ζλ.

can be viewed as measuring the difference of two admissible embeddings.
Recall that, similar to choosing R±, we can also choose D± = Dsym ⊔Dasym/±

to be a subset of ΓF /ΓE consisting of representatives of (ΓE\ΓF/ΓE)sym and
(ΓE\ΓF /ΓE)asym/± respectively, and obtain a bijection from Proposition 2.1,

R± = Rsym

⊔

Rasym/± → D± = Dsym

⊔

Dasym/±, λ =
[

1
g

]

7→ g.

We usually denote by Eg and E±g the fields Eλ and E±λ respectively, if g ∈ D±

corresponds to λ ∈ R±. We also denote by ζg the character ζλ, and write

ν := ν{ζg} =
∏

[g]∈(WE\WF /WE)′

Res
E×

g

E×ζg.

5.2 Symmetric unramified zeta-data

We choose a specific ζ-data ζg for each [g] = [σiφf/2] ∈
(WE\WF/WE)sym−unram, base on the results from the χ-datum χg.
Notice that, since Eg/E±g is quadratic unramified, the norm group
NEg/E±g

(E×
g ) has a decomposition

µE±g
×
〈

ziezφf/2̟2
E

〉

× U1
E±g

and we take a root of unity z0 ∈ µEg
such that

z0̟E ∈ E×
±g −NEg/E±g

(E×
g ).

We only consider tamely ramified χ-data and ζ-data, i.e., we require that

χg|U1
Eg

≡ 1 and ζg|U1
Eg

≡ 1.
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Therefore, the Definition 5.2.(ii) of χ-data is explicitly (see [Tam, (7.6)])

χg(µE±g) = 1, χg(z
i
ezφf/2̟2

E) = 1, and χg(z0̟E) = −1. (5.2)

Hence, given a χ-datum χg, we can obtain a ζ-datum ζg easily by requiring

ζg|µEg
= χg|µEg

and ζg(̟E) = −χg(̟E).

In [Tam, Section 7.4], in the cases whenVξ,[g]
∼= U[g] is non-trivial, we construct

a χ-datum

χg|µEg
= t1

µg
(U[g]) and χg(̟E) =

{

−t〈̟〉(U[g]) if σiφf/2

̟E = ̟E ,

t〈̟〉(U[g]) otherwise.

In other words, the character χg satisfies the conditions in (5.2). Hence the
character

ζg|µEg
= t1

µg
(U[g]) and ζg(̟E) =

{

t〈̟〉(U[g]) if σiφf/2

̟E = ̟E ,

−t〈̟〉(U[g]) otherwise

is a ζ-datum. This ζ-datum will be used in the next section.

5.3 Zeta-data associated to admissible characters

Given an admissible character ξ of E× over F , we first assign, for each [g] ∈
(WE\WF/WE)asym/±, the values of the ζ-data to

ζg,ξ|µEg
= sgn

µEg
(AV[g])sgnµEg

(A∗V[g]) = t1
µg

(AVξ,[g])t
1
µg

(A∗Vξ,[g]).

In this way, the product of the characters

ζg,ξζg−1,ξ = ζg,ξ

(

ζgg,ξ

)−1

= ζg,ξ ◦
[

1
g

]

has values
(

ζg,ξ ◦
[

1
g

])

|µE (z) = sgn
µE

(AVξ,[g])(
[

1
g

]

(z))sgn
µE

(A∗Vξ,[g])(
[

1
g

]

(z))

= t1
µ
(AVξ,[g])t

1
µ
(A∗Vξ,[g])

and
(

ζg,ξ ◦
[

1
g

])

(̟E) = ζg,ξ|µE

([

1
g

]

(̟E)
)

= sgn[ 1
g

]

(̟E)
(AVξ,[g])sgn[ 1

g

]

(̟E)
(A∗Vξ,[g])

= t1〈̟〉(AVξ,[g])(̟E)t
1
〈̟〉(A∗Vξ,[g])(̟E)

= t〈̟〉(AVξ,[g])t〈̟〉(A∗Vξ,[g]).

(5.3)
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We then assign, for each [g] ∈ (WE\WF/WE)asym/±, arbitrary values to
ζg,ξ(̟E) and ζg−1,ξ(̟E), as long as the product satisfies (5.3). (This phe-
nomenon is comparable to [LS87, Lemma 3.3.A], as explained in [Tam, Remark
7.2].) It is routine to check that each ζg,ξ is a ζ-datum. Indeed, this checking
is exactly the same as that in the χ-data case (see [Tam, Section 7.2]), since
Definition 5.2.(i) is the same as that of χ-data.
We then assign values to the ζ-data for each [g] ∈ (WE\WF /WE)sym case by
case.

5.3.1 Case when f is odd

Recall from (4.12) that

tiΓ(AVξ,sym) = tiΓ(A∗Vξ,sym), for i = 0, 1 and Γ = µ, 〈̟〉. (5.4)

We assign the ζ-data to the following values. If e is odd (so that m is odd since
m divides e), we assign all ζg,ξ to be trivial. If e is even, then we just take all
ζg,ξ, [g] 6= [σe/2], to be trivial and

ζσe/2,ξ|µE ≡ 1 and ζσe/2,ξ(̟E) = (−1)m.

To show that ζσe/2,ξ is a ζ-datum, notice that since NE/E
±σe/2

(̟E) =

−̟E
±σe/2

= −̟2
E, and since

ζσe/2,ξ(̟E)
2 = ζσe/2,ξ(−1)ζσe/2,ξ(−̟

2
E) = (1)(1) = 1,

we can assign χσe/2,ξ(̟E) to either 1 or −1 to obtain a ζ-datum. By (5.4), we
can rewrite our assigned ζ-data as

ζg,ξ|µE = t1
µ
(AVξ,[g])t

1
µ
(A∗Vξ,[g])

ζg,ξ(̟E) =

{

t〈̟〉(AVξ,[g])t〈̟〉(A∗Vξ,[g]) if g 6= σe/2,

(−1)mt〈̟〉(AVξ,[g])t〈̟〉(A∗Vξ,[g]) if g = σe/2.

(5.5)

Note that t〈̟〉(AVξ,[σe/2]) is not defined (see the paragraph containing Formula
(4.14)). In fact, we just take

t〈̟〉(AVξ,[σe/2]) = t〈̟〉(A∗Vξ,[σe/2]) = 1,

since AVξ,[σe/2]
∼= A∗Vξ,[σe/2] by Proposition 3.2, and it is shown in [Tam,

Proposition 5.3] that A∗Vξ,[σe/2] is always trivial.
The product of ζ-data is equal to

∏

[g]∈(WE\WF /WE)′

ζg,ξ(̟E) ≡ 1

and
∏

[g]∈(WE\WF /WE)′

ζg,ξ(̟E) =

{

(−1)m if e is even,

1 if e is odd,
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which is rewritten as

∏

[g]∈(WE\WF /WE)′

ζg,ξ|µE ≡ t1
µ
(AVξ)t

1
µ
(A∗Vξ)

and

∏

[g]∈(WE\WF /WE)′

ζg,ξ(̟E) =

{

(−1)mt〈̟〉(AVξ)t〈̟〉(A∗Vξ) if e is even,

t〈̟〉(AVξ)t〈̟〉(A∗Vξ) if e is odd.

The product is equal to the rectifier given in (3.21),

Dνξ|µE ≡ 1 and Dνξ(̟E) = (−1)m(d−1) = (−1)e−m,

when E/F is totally ramified.

5.3.2 Case when f is even

Let K be the maximal unramified extension of E/F . If we define DKνξ to
be the ramified part of Dνξ, which is also the rectifier corresponding to the
admissible pair (E/K, ξ), then we have

DKνξ =
∏

[g]∈(WE\WK/WE)′

ζg,ξ|E× ,

as when f is odd, and in particular

DKνξ(̟E) = (−1)e−mK ,

where mK = gcd(e,m). Therefore, our plan is to distribute the sign

(−1)e−mK (−1)n−m+f̟−m̟ =

{

1 if m is even,

(−1)e+f̟+1 if m is odd,
(5.6)

to each ζg,ξ(̟E), where [g] is symmetric unramified, multiplying the product of
t-factors t〈̟〉(AVξ,[g])t〈̟〉(A∗Vξ,[g]). As before, we separate the cases according
to the parity of m.
When m is even, recall from Proposition 4.9 that we have either

both AVξ,k,sym and A∗Vξ,k,sym are trivial,

or
both AVξ,k,sym and A∗Vξ,k,sym are isomorphic to Uk,sym.

We assign the trivial ζ-data for all [g] ∈ (WE\WF/WE)sym−unram, so that

ζg,ξ|µE = t1
µ
(AVξ,[g])t

1
µ
(A∗Vξ,[g]) and ζg,ξ(̟E) = t〈̟〉(AVξ,[g])t〈̟〉(A∗Vξ,[g]).
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The product of ζg,ξ(̟E) is trivial, or we can write

∏

[g]∈(WE\WF /WE)′

ζg,ξ|µE = t1
µ
(AVξ)t

1
µ
(A∗Vξ)

and
∏

[g]∈(WE\WF /WE)′

ζg,ξ(̟E) = t〈̟〉(AVξ)t〈̟〉(A∗Vξ).

Note that in the second product, the sign without t-factors is equal to (5.6),
which is just 1.
When m is odd, we have

AVξ,sym−unram ⊕ A∗Vξ,sym−unram = Usym−unram.

We then assign the ζ-data to be

ζg,ξ|µE = t1
µ
(AVξ,[g])t

1
µ
(A∗Vξ,[g]) = t1

µ
(U[g])

and ζg,ξ(̟E) = −t〈̟〉(AVξ,[g])t〈̟〉(A∗Vξ,[g]) = −t〈̟〉(V[g]).

for all symmetric unramified [g] except the one which stabilizes ̟E , in which
we assign

ζg,ξ|µE = t1
µ
(AVξ,[g])t

1
µ
(A∗Vξ,[g]) = t1

µ
(U[g])

and ζg,ξ(̟E) = t〈̟〉(AVξ,[g])t〈̟〉(A∗Vξ,[g]) = t〈̟〉(V[g]).

In Section 5.2, we checked that the above characters give rise to ζ-data. The
product of ζ is hence

∏

[g]∈(WE\WF /WE)′

ζg,ξ|µE = t1
µ
(AVξ)t

1
µ
(A∗Vξ)

and
∏

[g]∈(WE\WF /WE)′

ζg,ξ(̟E) = (−1)e+f̟+1t〈̟〉(AVξ)t〈̟〉(A∗Vξ),

by Proposition 2.6. Again in the second product, the sign without t-factors is
equal to (5.6).

5.4 The main theorem

To summarize, we verified the following theorem.

Theorem 5.5. Let ξ be an admissible character of E× over F .

(i) Let AVξ (resp. A∗Vξ) be the finite symplectic module defined by ξ when
G(F ) = GLm(D) (resp. when G∗(F ) = GLn(F )). The following condi-
tions define a collection of ζ-data {ζg,ξ}g∈Dasym/±⊔Dsym.

(a) All ζg,ξ are tamely ramified.
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(b) If g ∈ Dasym/±, then

ζg,ξ|µEg
= t1

µg
(AVξ,[g])t

1
µg

(A∗Vξ,[g])

and

ζg,ξ(̟E) can be any value satisfying

ζg,ξ(̟E)ζg−1,ξ(̟E) = t〈̟〉(AVξ,[g])t〈̟〉(A∗Vξ,[g]).

(c) If g ∈ Dsym, then

ζg,ξ|µEg
= t1

µg
(AVξ,[g])t

1
µg

(A∗Vξ,[g])

and
ζg,ξ(̟E) = ǫgt〈̟〉(AVξ,[g])t〈̟〉(A∗Vξ,[g]),

where ǫg is equal to 1 if g ∈ (Dsym−ram − {σe/2}) ∪ WF [̟E ] and is

equal to (−1)m if g ∈ (Dsym−unram −WF [̟E ]) ∪ {σe/2}.

(ii) Let Dνξ be the rectifier of ξ and {ζg,ξ}g∈D± be the ζ-data in (i), then

Dνξ =
∏

[g]∈(WE\WF /WE)′

ζg,ξ|E× .

Remark 5.6. As long as the F -dimension of the division algebraD is fixed, the
rectifier Dνξ is independent of the Hasse-invariant h = h(D) of D, as stated in
[BH11, Theorem C]. This is because the modules AVξ, whereA = Matn(D) and
D ranges over all division algebra with same F -dimension, are all isomorphic
to each other. Similarly, the ζ-data {ζg,ξ} are independent of h(D).

5.5 Functorial property

Let K be an intermediate subfield in E/F , and write

nK = n(E/K) = fKeK = f(E/K)e(E/K) and mK = gcd(m,nK).

Similar to Section 3.2, we have the Jacquet-Langlands correspondence

JLK : Aet
nK

(K) → Aet
mK

(DK),

between essentially tame supercuspidal representations of G(F )K =
GLmK (DK) and its split inner form G∗(F )K = GLnK (K). We can parametrize
both collections by the admissible pairs in PnK (K), and obtain the rectifier
map

DKν : PnK (K) KΠ
−−→ Aet

nK
(K)

JLK−−−→ Aet
mK

(DK)
DK

Π−1

−−−−−→ PnK (K),
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such that

DKν(E/K, ξ) = (E/F, ξ · DKνξ).

for a tamely ramified character DKνξ of E× for each pair (E/K, ξ) ∈ PnK (K).
With the embedding condition for (E0K,AK) as discussed in Section 2.5, we
define the subgroups (see also [BH11, 3.2 Proposition])

H1
K = H1(Ξ,A) ∩G(F )K and J1

K = J1(Ξ,A) ∩G(F )K

Each subgroup above admits a similar factorization as in (3.10). We then
obtain

AKVξ = J1
K/H

1
K = AVξ ∩ UE/K

and similarly for A∗
K
Vξ.

Denote ΨE/K = E×/K×U1
E , and view AKVξ and A∗

K
Vξ as kKΨE/K-

submodules of UE/K . Denote the subgroups of ΨE/K by

µE/K = µE/µK and

〈̟〉E/K = the subgroup generated by the image of ̟E .

Using the results in Section 3.8, with the base field changed from F to K, the
values of DKνξ is given by

DKνξ|µE = t1
µE/K

(AKVξ)t
1
µE/K

(A∗
K
Vξ)

and DKνξ(̟E) = (−1)nK−mK+f̟,K−m̟,K t〈̟〉E/K
(AKVξ)t〈̟〉E/K

(A∗
K
Vξ)

for a prime element ̟E ∈ E0K (see the beginning of Section 3.8). Here

f̟,K = f(E/K[̟E]) and

m̟,K = gcd(mK , f̟,K) = gcd(m,nK , f(E/K[̟E])).

Now suppose that (E/F, ξ) ∈ Pn(F ). By the definition of admissibility, we
can regard ξ as an admissible character over K and form the pair (E/K, ξ) ∈
PnK (K).

Proposition 5.7. In this situation, we have

DKνξ =
∏

[g]∈(WE\WK/WE)′

ζg,ξ|E× .

Proof. Notice that if V is a kFΨE/F -submodule of UE/K , we have

t1
µE/K

(V) = t1
µE/F

(V) and t〈̟〉E/K
(V) = t〈̟〉E/F

(V),

where µE/F and 〈̟〉E/F are just µ and 〈̟〉 respectively considered in (3.20).
Hence we have

DKνξ|µE =
∏

[g]∈(WE\WK/WE)′

ζg,ξ|µE .
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It remains to consider the values of both characters at ̟E . Notice that the left
side has value

(−1)nK−mK+f̟,K−m̟,K t〈̟〉E/K
(AKVξ)t〈̟〉E/K

(A∗
K
Vξ),

while the right side has value

(a sign) ·
∏

[g]∈(WE\WK/WE)′

t〈̟〉(AKVξ,[g])t〈̟〉(A∗
K
Vξ,[g]).

The t-factors on both sides are clearly equal. We will recall, by Theorem 5.5,
the values of the sign on the right side in different cases and show that, in each
case, this sign is equal to the one on the left side.

We first consider when fK is odd, which can be reduced to the case when E/K
is totally ramified. We further separate into cases.

• When e is odd, or when e is even and eK is odd, then mK is also odd.
The sign on the left is (−1)eK−mK = 1, while that on the right is also 1
since σe/2 /∈ WK .

• When eK is even, the sign on the left is (−1)eK−mK = (−1)m since
mK ≡ m mod 2, while that on the right is (−1)m since σe/2 ∈ WK .

We then consider then fK is even. Let L be the maximal unramified extension
of E/K. We recall, after disregarding the symmetric ramified component (as
we did at the beginning of Sub-section 5.3.2), the sign on the left is equal to
(see (5.6))

(−1)eK−mL(−1)nK−mK+f̟,K−m̟,K =

{

1 if mK is even,

(−1)eK+f̟,K+1 if mK is odd.

Recall from Proposition 2.6 that the number eK+f̟,K+1 is just the cardinality
of

(ΓE\ΓK/ΓE)sym−unram − ΓK[̟E ].

Hence by Theorem 5.5, the sign on the right side is

(−1)m(eK+f̟,K+1).

By knowing that mK ≡ m mod 2, the sign above is equal to the one on the
left side.
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Gruppe einer p-adischen Divisionsalgebra, Proc. Imp. Acad. Tokyo
19 (1943), 622–628. MR 0014081 (7,238a)

[Rei03] I. Reiner, Maximal orders, London Mathematical Society Mono-
graphs. New Series, vol. 28, The Clarendon Press Oxford University
Press, Oxford, 2003, Corrected reprint of the 1975 original, With a
foreword by M. J. Taylor. MR 1972204 (2004c:16026)

[Rog83] Jonathan D. Rogawski, Representations of GL(n) and division alge-
bras over a p-adic field, Duke Math. J. 50 (1983), no. 1, 161–196.
MR 700135 (84j:12018)
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