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and Peternell.

2010 Mathematics Subject Classification: 14B05, 32S05
Keywords and Phrases: Singularities of the minimal model program,
differential forms, Lipman-Zariski conjecture

1

Contents

1. Introduction 816
2. Dropping non-exceptional divisors 819
3. Dropping certain exceptional divisors 820
4. Proof of Theorem 1.2 824
5. Proof of Theorem 1.4 825
6. Optimality of Theorem 1.4 826

1The first named author was partially supported by the DFG-Forschergruppe 790 “Classi-
fication of Algebraic Surfaces and Compact Complex Manifolds”. The second named author
was supported in part by NSF Grants DMS-0856185, DMS-1301888 and the Craig McKibben
and Sarah Merner Endowed Professorship in Mathematics at the University of Washington.

Documenta Mathematica 19 (2014) 815–830



816 Patrick Graf, Sándor J Kovács
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1. Introduction

1.A. Main results. The Lipman-Zariski conjecture [Lip65] asserts the fol-
lowing.

Conjecture 1.1. Let X be a complex variety such that the tangent sheaf
TX := HomOX

(Ω1
X ,OX) is locally free. Then X is smooth.

Despite being almost 50 years old, this conjecture remains open in general.
It is therefore natural to consider special cases. The conjecture is known to
hold in the case that the singular locus of X has codimension at least 3 by the
work of Flenner [Fle88] and for complete intersections by the work of Källström
[Käl11]. Recently, Jörder [Jör13] proved the conjecture under the assumption
that TX locally has a basis consisting of commuting vector fields. Earlier work
on Conjecture 1.1 includes [SS72], [Hoc75], and [SvS85].
In a slightly different direction, one may consider varieties with only singulari-
ties arising in the minimal model program. The minimal model program aims
at the birational classification of varieties, and it is well-known that even if
one is interested only in smooth varieties, running the mmp requires dealing
with singular models. For us the most important classes will be klt (Kawa-
mata log terminal) and log canonical. Klt singularities form the largest class
of singularities where most of the mmp is known to work, while the class of
log canonical singularities is the largest class where the relevant notions of the
mmp make sense. It is also a more stable class than that of klt singularities; log
canonical singularities and their non-normal versions play an important role
in compactifications of moduli spaces of canonically polarized varieties. For
the precise definitions, we refer to [KM98, Sec. 2.3]. Greb-Kebekus-Kovács-
Peternell [GKKP11, Theorem 6.1] showed Conjecture 1.1 for klt spaces.
In this paper, we prove the following new special case of Conjecture 1.1.

Theorem 1.2 (Lipman-Zariski conjecture given an extension theorem). Let X

be a normal complex variety, and let π : X̃ → X be a log resolution. Assume
that the sheaf

π∗Ω
1
X̃
(log D̃)

is reflexive for some snc divisor D̃ ⊂ X̃. Then the Lipman-Zariski conjecture
holds for X, i.e., TX being locally free implies that X is smooth.

Note that Lipman [Lip65, Thm. 3] proved that if TX is locally free, then
X is normal. Hence the normality assumption in our theorem is not a real
restriction.
Also note that the reflexivity assumption in the theorem is equivalent to say-

ing that logarithmic 1-forms defined on the snc locus of (X, π∗D̃) extend to

logarithmic 1-forms on (X̃, D̃) – cf. [GKKP11, Rem. 1.5.2].
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By [GKKP11, Thm. 1.5], we have the following immediate corollary.

Corollary 1.3 (Lipman-Zariski conjecture for log canonical pairs). Let
(X,D) be a complex log canonical pair. Then the Lipman-Zariski conjecture
holds for X.

By the same method of proof as in Theorem 1.2, we obtain the following result.

Theorem 1.4 (Extension theorem for 1-forms on log canonical pairs). Let

(X,D) be a complex log canonical pair, and let π : X̃ → X be a log resolution
of (X,D). Then the sheaf

π∗Ω
1
X̃
(log D̃)

is reflexive, where D̃ is any reduced divisor such that

Exc(π) ∧ π−1(⌊D⌋) ⊆ supp D̃ ⊆ π−1(⌊D⌋).

Here ⌊D⌋ denotes the coefficient-wise round-down of D. In our case, ⌊D⌋
is simply the union of all components of D that have coefficient one. The
expression Exc(π) ∧ π−1(⌊D⌋) denotes the largest divisor contained in both
Exc(π) and π−1(⌊D⌋).
In a similar fashion as above, the reflexivity assertion is equivalent to say-

ing that any logarithmic 1-form defined on the snc locus of (X, π∗D̃) can be

extended to X̃ , possibly acquiring logarithmic poles along D̃.
Theorem 1.4 should be compared to the extension theorem [GKKP11,

Thm. 1.5]. There the conclusion is similar, with D̃ replaced by D̂, the largest
reduced divisor contained in π−1(non-klt locus). (The non-klt locus is the
smallest closed subset W ⊂ X such that (X,D) is klt away from W . Note that
this contains ⌊D⌋.) Theorem 1.4 says that [GKKP11, Thm. 1.5] is not optimal:
we allow logarithmic poles only along a smaller divisor. For example, if D = ∅
but X is not klt, e.g. if X is a cone over an abelian variety, then D̃ = 0 while

D̂ is nonzero.

1.B. Further results. We show that Theorem 1.4 in turn is optimal, both

with respect to the pole divisor D̃ and with respect to the degree of the forms
considered. To be more precise, concerning the first point we prove the follow-
ing.

Theorem 1.5 (Optimality of Theorem 1.4). Let (X,D) and π be as in Theo-

rem 1.4, and let D̃ = π−1(⌊D⌋). Assume that one of the following holds:

(1.5.1) X is Q-factorial, or

(1.5.2) dimX = 2.

Then for any divisor B such that π−1
∗

⌊D⌋ ≤ B � D̃, the sheaf π∗Ω
1
X̃
(logB) is

not reflexive.

As to the second point, we show that for resolutions of log canonical pairs,
forms of higher degree may acquire logarithmic poles along exceptional divisors
of discrepancy strictly greater than −1, even if the boundary divisor of the pair
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is empty. This improves upon an example given in [GKKP11, Ex. 3.2]. The
precise statement is as follows.

Theorem 1.6 (Non-extension over klt places, cf. Theorem 7.4). There exists a
three-dimensional complex log canonical pair (X, ∅) with empty boundary such

that there is a divisor E0 ⊂ X̃ of discrepancy 0 in some log resolution X̃ → X,
and a 2-form on the smooth locus of X that acquires a logarithmic pole along

E0 when pulled back to X̃.

1.C. Overview of proofs. The proofs of our main results are based on the
two auxiliary Theorems 2.1 and 3.1. The purpose of these theorems is to shrink
the divisor along which we allow pulled-back 1-forms to acquire logarithmic
poles. Theorem 2.1 deals with non-exceptional components, while Theorem 3.1
handles the exceptional ones.
To prove Theorem 1.2, we first apply Theorem 2.1 and then Theorem 3.1 in
order to shrink that pole divisor to zero. Then an argument going back to
[SvS85, (1.6)] completes the proof. To prove Theorem 1.4, we take [GKKP11,
Thm. 16.1] as our starting point and then apply Theorems 2.1 and 3.1.

1.D. Recent work by Druel. In [Dru13, Thm. 1.1], Druel has recently
obtained Corollary 1.3 by an independent proof. He employs a cutting-down
procedure to reduce to the surface case, where the main work is done. Note
however that this case is essentially already contained in [SvS85]. To be more
precise, if x ∈ X is a normal surface singularity with smooth locus U and

π : X̃ → X is a log resolution with exceptional divisor E, then [SvS85, Cor. 1.4]
says that the map

H0(U,Ω1
U )

/
H0(X̃,Ω1

X̃
) −→ H0(U,Ω2

U )
/
H0(X̃,Ω2

X̃
(logE))

induced by differentiation is injective. If x ∈ X is log canonical, then by
definition the right-hand side is zero, hence so is the left-hand side. This means

that all 1-forms defined on U extend to X̃ without poles. Now the argument
given in [SvS85, (1.6)] shows that if TX is free, then x ∈ X is in fact smooth.

1.E. Acknowledgements. The authors would like to thank Daniel Greb,
Clemens Jörder and Stefan Kebekus for interesting discussions on the subject
of this paper.

1.F. Notation, definitions, and conventions. Throughout this paper,
we work over the field of complex numbers C.
A pair (X,D) consists of a normal variety X over C and an effective R-Weil
divisor D on X .
Let (X,D) be a pair and x ∈ X a point. We say that (X,D) is snc at x if
there exists a Zariski-open neighbourhood U ⊆ X of x such that U is smooth
and suppD∩U is either empty, or a divisor with simple normal crossings. The
pair (X,D) is called an snc pair or simply snc if it is snc at every point of X .
For the definitions of klt and log canonical pairs, we refer to [KM98, Sec. 2.3].
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Given a pair (X,D), let (X,D)reg denote the maximal open subset of X where
(X,D) is snc, and (X,D)sing its complement, with the induced reduced sub-
scheme structure.
Let (X,D) be a pair. A log resolution of (X,D) is a proper birational morphism

π : X̃ → X such that X̃ is smooth, both the pre-image π−1(suppD) of suppD

and the exceptional set E = Exc(π) are of pure codimension one in X̃, and

(X̃, D̃ + E) is an snc pair where D̃ = π−1(suppD)red is the reduced divisor
supported on π−1(suppD).
Let D be a divisor on a normal variety, and let D =

∑
aiDi be its decompo-

sition into irreducible components. The round-down ⌊D⌋ of D is defined to be∑
⌊ai⌋Di, where ⌊ai⌋ is the largest integer less than or equal to ai.

Let D1, D2 be divisors on a normal variety. Then D1∨D2 denotes the smallest
divisor that contains both D1 and D2, while D1∧D2 denotes the largest divisor
that is contained in both D1 and D2.

2. Dropping non-exceptional divisors

In this section we prove that if the extension theorem holds for a pair (X,Γ+∆)
where ∆ is a reduced effective divisor, then it also holds for (X,Γ). More
precisely we prove the following.

Theorem 2.1 (Dropping non-exceptional divisors). Let X be a normal variety

and π : X̃ → X a log resolution of X. Assume that the sheaf

π∗Ω
1
X̃
(log D̃)

is reflexive for some snc divisor D̃. Let ∆ be a reduced effective divisor on X

such that supp∆ ⊂ π∗D̃. Then the sheaf

π∗Ω
1
X̃
(log B̃)

is also reflexive, where B̃ = D̃ − π−1
∗

∆.

Proof. Notice that one may assume that ∆ is irreducible and conclude the

general case via replacing D̃ by B̃ and iterating the process for all irreducible

components of ∆. For simplicity let us denote π−1
∗

∆ by ∆̃. Consider the
following short exact sequence given by the residue map, cf. [EV92, 2.3(b)]:

0 → Ω1
X̃
(log B̃) → Ω1

X̃
(log D̃) → O∆̃ → 0.

Pushing this forward via π gives

0 → π∗Ω
1
X̃
(log B̃) → π∗Ω

1
X̃
(log D̃) → Q → 0,

where Q ⊂ π∗O∆̃. In particular, Q is supported on ∆ and it is torsion-free as
an O∆-module. It follows that the only associated prime of Q has height 1.
Then the statement follows from [Har80, Cor. 1.5]. �
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3. Dropping certain exceptional divisors

The aim of the present section is to show that if ω is a logarithmic 1-form on a
smooth variety whose poles are contained in an exceptional divisor, then ω in
fact does not have any poles.

Theorem 3.1 (Dropping exceptional divisors). Let X be a normal variety and

π : X̃ → X a log resolution. Let E be a reduced π-exceptional divisor. Then
the natural inclusion map

H0
(
X̃,Ω1

X̃

)
→֒ H0

(
X̃,Ω1

X̃
(logE)

)

is an isomorphism. Equivalently, the inclusion π∗Ω
1
X̃

⊂ π∗Ω
1
X̃
(logE) is an

isomorphism of sheaves.

Theorem 3.1 is a consequence of the following two propositions.

Proposition 3.2 (Theorem 3.1 for isolated singularities). Let X be a normal

variety and π : X̃ → X a log resolution. Let E be a reduced divisor which is
mapped to a single point by π. Then the natural inclusion map

H0
(
X̃,Ω1

X̃

)
→֒ H0

(
X̃,Ω1

X̃
(logE)

)

is an isomorphism.

Proposition 3.3. Proposition 3.2 implies Theorem 3.1.

Proposition 3.2 was first observed by Wahl in the case of surfaces, cf. [Wah85,
Lemma 1.3]. Our proof of Proposition 3.3 follows the lines of [GKK10, Section
7.D].

3.A. The first Chern class. We collect some well-known facts about the
first Chern class of a line bundle.

Notation 3.4 (First Chern class). Let X be a smooth variety and L ∈ Pic(X)
a line bundle. The first Chern class c1(L ) ∈ H1(X,Ω1

X) is the image of
L under the map Pic(X) = H1(X,O∗

X) → H1(X,Ω1
X) induced by the map

d log : O∗

X → Ω1
X that sends f 7→ f−1df .

Lemma 3.5 (Connecting homomorphism of the residue sequence). Let X be a
smooth variety and E ⊂ X an snc divisor, consisting of irreducible components
E1, . . . , Ek. Consider the short exact sequence

(3.6) 0 → Ω1
X → Ω1

X(logE) →
k⊕

i=1

OEi
→ 0

given by the residue map (cf. [EV92, 2.3(a)]). The associated connecting ho-
momorphism

δ :

k⊕

i=1

H0(Ei,OEi
) → H1(X,Ω1

X)

sends
1Ei

7→ c1(OX(Ei)), 1 ≤ i ≤ k.
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Here 1Ei
denotes the function that is constant with value 1 on Ei and vanishes

on the other components.

Proof. This is well-known, and easy to prove by a Čech cohomology computa-
tion. �

For a proof of the following fact see [For81, Paragraph 17].

Fact 3.7 (Residue map on curves). Let C be a smooth projective curve. Then
there is a canonically defined linear map Res : H1(C,Ω1

C) → C, which is an
isomorphism. �

Lemma 3.8 (Residue and degree). If L ∈ Pic(C) is a line bundle on a smooth
projective curve, then Res(c1(L )) = degL .

Proof. For P ∈ C a point and L = OC(P ), the claim is easily seen to be true
from the description of Res given in [For81, Thm. 17.3]. By linearity, this is
enough. �

3.B. Proof of Proposition 3.2. Wemay assumeX to be affine of dimension
≥ 2. Let E1, . . . , Ek be the irreducible components of E. Consider the short
exact sequence (3.6),

0 → Ω1
X̃

→ Ω1
X̃
(logE) →

k⊕

i=1

OEi
→ 0.

By the corresponding long exact sequence, it suffices to show injectivity of the
induced map

δ :

k⊕

i=1

H0(Ei,OEi
) → H1(X̃,Ω1

X̃
).

Note that we may assume π to be a projective morphism and then X̃ is quasi-

projective. After choosing a (locally closed) embedding of X̃ into a projective

space, letH ⊂ X̃ be the intersection of general hyperplanesH1, . . . , HdimX−2 ⊂

X̃. (If X is a surface, then H = X̃.) We formulate the properties of H in a
separate lemma.

Lemma 3.9. Using the notation introduced above we have that (H,E|H) is
an snc surface pair. Furthermore, for any i, Ci := Ei|H is irreducible (in
particular, nonempty), and π|H is proper and birational onto its image.

Proof. If dimX = 2, then there is nothing to prove, so we may assume that

dimX ≥ 3. In particular the intersection of two irreducible divisors on X̃ is still
positive dimensional and hence if one of them is ample, then the intersection
is connected. We will use this fact below.
We proceed inductively, cutting by one hyperplane at a time. First we cut
by H1. By Bertini’s theorem E + H1 is snc and H1 is connected and hence
irreducible by the above discussion. Hence (H1, E|H1

) is an snc pair, and the
Ei|H1

are smooth and irreducible for all i by Bertini again. It is clear that π|H1

is proper and since H1 is general, π|H1
is birational.

Documenta Mathematica 19 (2014) 815–830



822 Patrick Graf, Sándor J Kovács

Now we are in the same situation as before cutting by H1, so we may apply
the same argument again and obtain the statement for H1 ∩H2. After finitely
many steps, we arrive at H . �

The image π(H) need not be normal, but we may normalize it and get a
birational morphism H → π(H)ν , which contracts all the Ci. Then negative
definiteness ([KM98, Lemma 3.40]) asserts that the intersection matrix A :=
(Ci · Cj) is invertible.
Recall that we need to show the injectivity of δ. To this end, think of the Ci
as smooth projective curves in X̃, consider the restriction morphism

r : H1(X̃,Ω1
X̃
) →

k⊕

i=1

H1(Ci,Ω
1
Ci
),

and observe that the composition

r ◦ δ :
k⊕

i=1

H0(Ei,OEi
) →

k⊕

i=1

H1(Ci,Ω
1
Ci
)

is an isomorphism: On the left-hand side, choose the basis consisting of the

functions 1Ei
, and on each summand of

k⊕
i=1

H1(Ci,Ω
1
Ci
), choose the basis

canonically determined by the residue map of Fact 3.7. By Lemmas 3.5 and
3.8 the map r ◦ δ with respect to these bases is given by the matrix A. We have
already noted that this matrix is invertible. �

3.C. Proof of Proposition 3.3. We will make essential use of the following
proposition.

Proposition 3.10 (Negativity lemma, see [GKK10, Proposition 7.5]). Let

ϕ : Ỹ → Y be a projective birational morphism between normal quasi-projective

varieties of dimension ≥ 2, where Ỹ is smooth. Let y ∈ Y be a point
whose preimage ϕ−1(y) has (not necessarily pure) codimension one and let
F0, . . . , Fk ⊂ ϕ−1(y) be the reduced divisorial components. If all the Fi are
smooth and

∑
eiFi is a nonzero effective divisor, then there is a 0 ≤ j ≤ k

such that ej 6= 0 and h0(Fj ,OỸ (
∑
eiFi)|Fj

) = 0. �

Proof of Proposition 3.3. We may assume X to be affine of dimension ≥ 2. Let

(3.11) σ ∈ H0
(
X̃,Ω1

X̃
(logE)

)

be a logarithmic 1-form. Assuming Proposition 3.2, we will show that

(3.12) σ ∈ H0
(
X̃,Ω1

X̃

)
.

To this end, we will consider an irreducible component of E′ ⊂ E for which
dimπ(E′) is maximal among the irreducible components of E, and for any such

E′ we will show that σ ∈ H0
(
X̃,Ω1

X̃
(log(E−E′))

)
. Then replace E by E−E′

and repeat the argument until E disappears.
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No. 1 2 3 4 5 6 7 8 9 10 · · ·

dimX 2 3 3 4 4 4 5 5 5 5 · · ·

codimX π(E
′) 2 2 3 2 3 4 2 3 4 5 · · ·

We proceed by induction on pairs of numbers
(
dimX, codimX π(E

′)
)
ordered

lexicographically as indicated in the following table:
In order to simplify notation, we number the irreducible components Ei of E
such that E′ = E0 and π(Ei) = π(E0) if and only if 0 ≤ i ≤ k, for some k. Let
ei be the pole orders of σ along the Ei. These are the minimal non-negative
numbers such that

σ ∈ H0
(
X̃,Ω1

X̃
⊗ OX̃(

∑
eiEi)

)
.

By (3.11), we already know all the ei are either 0 or 1, and our aim is to show
that e0 = 0.
Start of induction. This is the case dimX = codimX π(E0) = 2. For surfaces,
every exceptional divisor is contracted to a point, so Proposition 3.2 applies.
Inductive step. We distinguish two possibilities: the divisor E0 may be mapped
to a point by π, or it may be mapped to a positive-dimensional variety.
If dim π(E0) = 0, then by the choice of E0, every exceptional divisor contained
in E is contracted to a point, so Proposition 3.2 applies again.
If dimπ(E0) > 0, choose general hyperplanes H1, . . . , Hdimπ(E0) ⊂ X , let H be

the intersection H1 ∩ · · · ∩ Hdimπ(E0) and H̃ the preimage π−1(H). Applying
[GKKP11, Lemmas 2.23 and 2.24], we obtain that H is normal and π|H̃ is a
log resolution. The intersection H ∩ π(E0) is finite, but nonempty. Shrinking
X , we may assume that H ∩ π(E0) consists of a single point, say x. Now set
Fx = (π|H̃)−1(x) and

Fx,i = Fx ∩ Ei = (π|Ei
)−1(x).

Then Fx is the union of the Fx,i.

Claim 3.13. The subsets Fx,0, . . . , Fx,k are smooth, irreducible, and have codi-

mension one in H̃, while the other Fx,i are empty.

Proof. If 0 ≤ i ≤ k, then being a general fibre of π|Ei
, Fx,i is smooth of

dimension dimEi−dimπ(E0) = dim H̃−1. Since Fx,i = H̃∩Ei, it is an ample
divisor on Ei, hence connected and by being smooth it is also irreducible.
On the other hand, if i > k, then by the choice of E′ = E0, we have that
π(E0) 6⊂ π(Ei), and hence x 6∈ π(Ei) and so Fx,i = ∅. �

Claim 3.13 implies that it is possible to apply Proposition 3.10 to π|H̃ : H̃ → H ,
x ∈ H , and Fx,0, . . . , Fx,k, which we will do later.

Now consider the dual of the normal bundle sequence for H̃ ⊂ X̃,

0 // N∗

H̃/X̃
// Ω1
X̃
|H̃

ρ
// Ω1
H̃

// 0,
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twist it with F := OH̃(
∑
eiEi|H̃), and restrict to Fx,j , for 0 ≤ j ≤ k:

N∗

H̃/X̃
⊗ F α //

��

Ω1
X̃
|H̃ ⊗ F

β
//

rj

��

Ω1
H̃
⊗ F

��

N∗

H̃/X̃
⊗ F |Fx,j

αj
// Ω1
X̃
|H̃ ⊗ F

∣∣
Fx,j

βj
// Ω1
H̃
⊗ F |Fx,j

.

Since H has smaller dimension than X , the induction hypothesis gives us that
β(σ|H̃) has no poles, that is

(3.14) β(σ|H̃) ∈ H0(H̃,Ω1
H̃
) ⊂ H0(H̃,Ω1

H̃
⊗ F ).

Recall that we want to show that e0 = 0. We will show more generally that
ej = 0 for all 0 ≤ j ≤ k. So, assume to the contrary that there is an index j
with ej = 1. By the definition of the ei, σ|H̃ as a section in Ω1

X̃
|H̃⊗F does not

vanish along Fx,j. But by (3.14), β(σ|H̃) does vanish along Fx,j . So rj(σ|H̃) is a

nonzero global section in kerβj , which means that H0(Fx,j , N
∗

H̃/X̃
⊗F |Fx,j

) 6=

0.
Now note that NH̃/X̃ |Fx,j

is trivial, because NH̃/X̃ is the pullback of NH/X .

Hence from H0(Fx,j , N
∗

H̃/X̃
⊗F |Fx,j

) 6= 0 it follows that H0(Fx,j ,F |Fx,j
) 6= 0.

Since this holds for all j with ej = 1, we have a contradiction to Proposi-
tion 3.10, showing in particular that e0 = 0 and thus completing the proof of
Proposition 3.3. �

4. Proof of Theorem 1.2

The aim of the present section is to prove Theorem 1.2. First, for the reader’s
convenience we recall some facts about resolutions of singularities.

Lemma 4.1 (Reflexivity is independent of the choice of resolution). Let X be

a normal variety such that π∗Ω
1
X̃

is reflexive for some resolution π : X̃ → X.

Then ϕ∗Ω
1
X′ is reflexive for any resolution ϕ : X ′ → X.

Proof. Let ψ : X̂ → X be a resolution of X that dominates both X̃ and X ′,
i.e. we have the following commutative diagram.

X̂

π̂

����
��

��
�

ϕ̂

��@
@@

@@
@@

@

ψ

��

X̃

π
��@

@@
@@

@@
X ′

ϕ
~~}}

}}
}}

}}

X

Since X̃ and X ′ are smooth, we have π̂∗Ω
1
X̂

= Ω1
X̃

and ϕ̂∗Ω
1
X̂

= Ω1
X′ . We

obtain
ϕ∗Ω

1
X′ = ϕ∗ϕ̂∗Ω

1
X̂

= ψ∗Ω
1
X̂

= π∗π̂∗Ω
1
X̂

= π∗Ω
1
X̃
.
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Since π∗Ω
1
X̃

is reflexive by assumption, so is ϕ∗Ω
1
X′ . �

The next theorem is a special case of [GKK10, Cor. 4.7].

Theorem 4.2 (Functorial resolutions). Let X be a normal variety. Then there
exists a resolution ϕ : X ′ → X with the property that ϕ∗TX′ is reflexive,

i.e. for any vector field ξ on some open subset U ⊂ X, there is a vector field ξ̃
on ϕ−1(U) that agrees with ξ wherever ϕ is an isomorphism.

Sketch of proof. It is a classical fact [Kau65, Satz 3] that vector fields on X

are in one-to-one correspondence with local C-actions on X . Loosely speaking,
a local C-action is a C-action such that t • z is only defined for sufficiently
small values of |t|, dependent on z. For any local C-action, the action map
C×X ⊃ U → X is a smooth morphism.
By [Kol07, Thm. 3.45], there exists a resolution functor R which to any variety
assigns a resolution in such a way that smooth morphisms between varieties can
be lifted to the resolutions. The resolutions output by R are called functorial
resolutions. Let ϕ : X ′ → X be the functorial resolution of X . Applying the
functor R to the action map associated to a vector field ξ on X , we obtain a
diagram

C×X ′

id×ϕ

��

U ′?
_oo

��

// X ′

ϕ

��
C×X U?

_oo // X.

One then checks that the map U ′ → X ′ is a local C-action, giving rise to a

vector field ξ̃ on X ′ which extends ξ as desired.
For a rigorous proof of Theorem 4.2, the reader may consult [GKK10, Sec. 4].

�

Proof of Theorem 1.2. By assumption, we have a log resolution π : X̃ → X

such that π∗Ω
1
X̃
(log D̃) is reflexive. We may uniquely write D̃ = D̃bir+E, where

E is exceptional and no component of D̃bir is exceptional. By Theorem 2.1,
π∗Ω

1
X̃
(logE) is reflexive. Then by Theorem 3.1, also π∗Ω

1
X̃

is reflexive.

Let ϕ : X ′ → X be the functorial resolution from Theorem 4.2, so that vector
fields on X can be lifted to X ′. By Lemma 4.1, ϕ∗Ω

1
X′ is reflexive. Now the

proof of [GKKP11, Theorem 6.1] applies verbatim to show that if TX is locally
free, then X is smooth. �

5. Proof of Theorem 1.4

By Theorem 2.1 we may assume that D̃ = π−1(⌊D⌋)red. Let E denote the

exceptional locus of π. Let D̂ = π−1
∗

⌊D⌋+E. Note that D̂ is obtained from D̃

by adding finitely many irreducible π-exceptional divisors whose image via π is

not contained in ⌊D⌋. By [GKKP11, Thm. 16.1], we know that π∗Ω
1
X̃
(log D̂)

is reflexive. Let E1 be an irreducible component of D̂ that is not contained in

D̃. As we observed above, this means that π(E1) 6⊂ ⌊D⌋, so by localizing near
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the general point of π(E1), that is, by further shrinking X , we may assume

that ⌊D⌋ = ∅. In this case, D̂ is π-exceptional, hence Theorem 3.1 implies that

π∗Ω
1
X̃
(log D̂ − E1) is reflexive. We may iterate this process as long as D̂ is

larger than D̃ and so the statement follows. �

6. Optimality of Theorem 1.4

In this section, we show that extension of differential forms as in Theorem 1.4

fails in many cases if one shrinks the pole divisor D̃ further, or if one considers
forms of higher degree.

6.A. Shrinking D̃ further. The aim of this subsection is to prove Theo-
rem 1.5. First we need two lemmas.

Lemma 6.1 (Strictly logarithmic poles). Let X be a smooth variety and f ∈
OX(X) a regular function such that its reduced zero set, D = {f = 0}red ⊂ X,
is a divisor with simple normal crossings. Then d log f ∈ H0(X,Ω1

X(logD)),
and d log f 6∈ H0(X,Ω1

X(logB)) for any reduced divisor 0 ≤ B < D.

Proof. This follows directly from the definition of logarithmic differentials. �

Lemma 6.2 (Non-reflexivity). Let (X,Σ) be a pair, where Σ is a reduced divi-

sor, π : X̃ → X a log resolution of (X,Σ), and D̃ the largest reduced divisor
contained in π−1(Σ). Let E0 be an irreducible π-exceptional divisor that is
mapped into an effective divisor D whose support is contained in Σ and which
is Q-Cartier at the general point of π(E). Then the sheaf π∗Ω

1
X̃
(logB) is not

reflexive for any reduced divisor π−1
∗

Σ ≤ B ≤ D̃ − E0.

Proof. By the assumptions, there is an open set U ⊂ X with π(E0) ∩ U 6= ∅,
and a function f ∈ OX(U) cutting out some multiple of D. Set g = π∗f ∈
OX̃(π−1(U)). By Lemma 6.1,

d log g ∈ H0
(
U \ π(Exc(π)), π∗Ω

1
X̃
(logB)

)

but
d log g 6∈ H0

(
U, π∗Ω

1
X̃
(logB)

)
.

So d log g cannot be extended over the codimension ≥ 2 subset π(Exc(π)). This
implies that π∗Ω

1
X̃
(logB) is not reflexive. �

Proof of Theorem 1.5. Let E0 be a component of D̃ − B. Then E0 is π-

exceptional and π−1
∗
D ≤ B ≤ D̃ − E0. If we are in case (1.5.1), Lemma 6.2

applies immediately. Hence we may assume we are in case (1.5.2). Then π(E0)

is a point p ∈ X , and we have p ∈ D ⊂ X , because E0 ⊂ D̃ ⊂ π−1(⌊D⌋)
set-theoretically. We will show that D is Q-Cartier at p, then the claim follows
from Lemma 6.2.
By shrinking X we may assume that (X,D) is snc away from p. For 0 < ε ≤ 1,
the pair (X, (1 − ε)D) is numerically dlt [KM98, Ntn. 4.1, Lem. 3.41]. By
[KM98, Prop. 4.11], X is Q-factorial. In particular, D is Q-Cartier. �
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6.B. Other values of p. The analogue of Theorem 1.4 does not hold for p-
forms with p ≥ 2. Counterexamples may be obtained by taking a p-dimensional
normal Gorenstein singularity z ∈ Z which is log canonical but not klt (notice
that this only exists if p ≥ 2), and considering the product X = Z ×Cn−p, for
n ≥ p arbitrary.
Let σ be a local generator for ωZ and replace Z with a neighbourhood of z where
σ is everywhere defined. Then pr∗1σ ∈ H0(Xreg,Ω

p
Xreg

) will not be extendable

without logarithmic poles on any resolution of singularities of X .
This way one obtains counterexamples to the analogue of Theorem 1.4 for any
p ≥ 2 in arbitrary dimension n ≥ p.

7. Non-Extension without poles over klt places

In this section, we consider a reduced log canonical pair (X,D) and a log

resolution π : X̃ → X of (X,D). Deviating slightly from our previous notation,
we let

E = π−1
∗
D + Exc(π),

Enklt = sum of all divisors in E with discrepancy −1,

Enklt ∨ π−1(D) = sum of all divisors contained in Enklt or in π
−1(D),

D̃ = largest reduced divisor contained in π−1(non-klt locus).

pt Then we obviously have

Enklt ≤ Enklt ∨ π
−1(D) ≤ D̃ ≤ E.

The extension theorem [GKKP11, Thm. 1.5] states that the sheaves

π∗Ω
p

X̃
(log D̃) are reflexive for all values of p. In [GKKP11, Section 3.B],

it was observed that basically by the definition of discrepancy, even the sheaf
π∗Ω

n
X̃
(logEnklt) is reflexive, where n = dimX . This leads to the following

natural question.

Question 7.1. Are the sheaves π∗Ω
p

X̃
(logEnklt) also reflexive when p < n?

The answer turns out to be “no”. However, in the counterexample given in
[GKKP11, Ex. 3.2], X is the quadric cone, D consists of two rulings, and
the exceptional divisor where extension fails is contained in the preimage of
D. This means that [GKKP11, Ex. 3.2] does not answer the following refined
version of Question 7.1:

Question 7.2. Are the sheaves π∗Ω
p

X̃

(
log

(
Enklt ∨ π−1(D)

))
reflexive when

p < n?

In this section, we will give an example showing that even this question has to
be answered negatively. First we need a lemma.

Lemma 7.3 (Cusp singularities). There exists a log canonical Gorenstein sur-

face singularity 0 ∈ S that has a log resolution S̃ → S containing two distinct
exceptional curves C1, C2 which both have discrepancy −1 and whose intersec-
tion is non-empty.
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Proof. This follows from the classification of log canonical Gorenstein surface
singularities [Kaw88, Sec. 9]. It is also possible to explicitly write down a hyper-
surface singularity with the desired property. Namely, consider the following
polynomial in three variables:

f(x, y, z) = x2(x+ z)− y2z + z4.

A tedious but routine calculation shows that the origin in C3 is an isolated
singular point of S = {f = 0} ⊂ C3, so 0 ∈ S is a normal Gorenstein surface
singularity. Furthermore, blowing up 0 ∈ X yields a resolution whose excep-
tional locus consists of a rational curve C1 with a single node, and which has
discrepancy −1. Blowing up that node, we obtain a log resolution containing
an additional exceptional rational curve C2, also of discrepancy −1, such that
C2 and the strict transform of C1 meet in two points. �

The next theorem tells us that the answer to Question 7.2 is “no”.

Theorem 7.4 (Non-extension over klt places, cf. Theorem 1.6). There exists a
three-dimensional reduced log canonical pair (X,D) such that using the notation
introduced at the beginning of this section, the sheaf π∗Ω

2
X̃

(
log

(
Enklt∨π−1(D)

))

is not reflexive.

Proof. Let 0 ∈ S and p ∈ C1 ∩C2 ⊂ S̃ be as in Lemma 7.3. Take X := S×A1
C

and D = ∅. Then X ′ := S̃ × A1
C
→ X is a log resolution of (X,D). On X ′,

blow up a point of the form (p, t) with t ∈ A1
C
arbitrary to obtain f : X̃ → X ′.

This gives a log resolution π : X̃ → X of (X,D). Denote by E0 ⊂ X̃ the
exceptional divisor arising from blowing up the point (p, t), and note that its
discrepancy a(E0, X,D) = 0 by [KM98, Lemmata 2.29 and 2.30]. Hence we
have the following diagram.

X = S × A1
C

��

X ′ = S̃ × A1
C

oo X̃ ⊃ E0

f
oo

π

ll

S

In order to prove the claim, consider a local generator σ of the canonical sheaf

ωS in a neighborhood U of 0 ∈ S, and denote its pullback to X ′ and X̃ by σ′

and σ̃, respectively. Choose local coordinates (u, v, w) on X ′ and (x, y, z) on

X̃ such that f : X̃ → X ′ is given by

f(x, y, z) = (x, xy, xz)

in these coordinates. Then E0 = {x = 0}. Furthermore, we may assume that
the exceptional divisor of X ′ → X is given by the equation vw = 0. Then, up
to a unit, we have

σ′ = d log v ∧ d logw

by construction, so

σ̃ = f∗σ′ = (d log x+ d log y) ∧ (d log x+ d log z).
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This shows that

σ̃ ∈ H0
(
π−1(U × A1

C), Ω
2
X̃
(logE)

)

has a pole along E0 = {x = 0}. However, since a(E0, X,D) = 0 and D = ∅,
we see that E0 is not contained in Enklt ∨ π−1(D). An argument similar to
the proof of Lemma 6.2 now yields that π∗Ω

2
X̃

(
log

(
Enklt ∨ π−1(D)

))
is not

reflexive. �
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