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Abstract. According to the Bloch–Beilinson conjectures, an auto-
morphism of a K3 surface X that acts as the identity on the tran-
scendental lattice should act trivially on CH2(X). We discuss this
conjecture for symplectic involutions and prove it in one third of all
cases. The main point is to use special elliptic K3 surfaces and stable
maps to produce covering families of elliptic curves on the generic K3
surface that are invariant under the involution.
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0.1. Let X be a complex projective K3 surface with an automorphism

f : X
∼

// X . According to the general philosophy of the Bloch–Beilinson
conjectures, the induced action of f on the kernel of the cycle map
CH∗(X) // H∗(X,Z) should be determined by the action of f on the cok-
ernel of the cycle map. More precisely, one expects the following to be true:

Conjecture 0.1. f∗ = id on CH2(X)0 if and only if f∗ = id on T (X).

Here, CH2(X)0 ⊂ CH2(X) is the degree zero part, i.e. the kernel of the cycle
map CH2(X) // H4(X,Z) ∼= Z, and T (X) ⊂ H2(X,Z) is the transcendental
lattice which can be described as the orthogonal complement of the Néron–
Severi group NS(X) ⊂ H2(X,Z). Alternatively, T (X) ⊂ H2(X,Z) is the
smallest sub-Hodge structure such that H2,0(X) ⊂ T (X)⊗ C. Thus, f∗ = id
on T (X) if and only if f acts trivially on H2,0(X). The latter is spanned by
the unique (up to scaling) regular two-form σ ∈ H0(X,Ω2

X), which we think
of as a holomorphic symplectic structure. For this reason, an automorphism

f : X
∼

// X with f∗ = id on T (X) is called a symplectomorphism.

It is well known that f∗ = id on CH2(X)0 implies that f acts trivially on
T (X) (see e.g. [16, Ch. 23]). Appropriately rephrased, this holds for arbitrary
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508 D. Huybrechts and M. Kemeny

smooth projective varieties and for arbitrary correspondences. It is the converse
of the statement that is difficult and that shall be discussed here for symplectic
involutions of K3 surfaces, i.e. automorphisms f of order two with f∗σ = σ.

0.2. K3 surfaces X endowed with a symplectic involution f : X
∼

// X come
in families. As shown by van Geemen and Sarti in [4], the moduli space of such
(X, f) has one resp. two connected components in each degree 2d > 0 depending
on the parity of d. To be more precise, let Λd be the lattice Zℓ⊕E8(−2) with

(ℓ.ℓ) = 2d and denote for d ≡ 0(2) by Λ̃d the unique even lattice containing

Λd with Λ̃d/Λ2
∼= Z/2Z and such that E8(−2) ⊂ Λ̃d is primitive (see [4, Prop.

2.2]).

Then for generic (X, f) one has NS(X) ∼= Λd or NS(X) ∼= Λ̃d. The class
ℓ corresponds under this isomorphism to an ample line bundle L on X which
spans the f -invariant part of NS(X). If (X, f) is not generic, then one still finds

Λd or Λ̃d as a primitive sublattice in NS(X) with E8(−2) as the orthogonal
complement of the invariant part. Conversely, by the Global Torelli theorem
any X parametrized by the (non-empty and in fact 11-dimensional) connected

moduli spaces MΛd
or M

Λ̃d

of Λd resp. Λ̃d-lattice polarized K3 surfaces comes

with a symplectic involution f that is determined by its action = −id on E8(−2)
and = id on its orthogonal complement.
In other words, for each d ≡ 1(2) the moduli space of K3 surfaces X with
a symplectic involution f and an invariant polarization of degree 2d has one
connected component MΛd

, whereas for d ≡ 0(2) it has two connected com-
ponents, MΛd

and M
Λ̃d

. Thus the following theorem, the main result of the
present paper, proves Conjecture 0.1 in one third of all possible cases.

Theorem 0.2. Let d ≡ 0(2) and (X, f) ∈ M
Λ̃d

. Then f∗ = id on CH2(X).

0.3. For d = 1 (double covers of P2) and d = 2 (quartics in P3) the conjecture
is known to hold, see [2, 14, 15]. For d = 3 (complete intersection of a cubic
and a quadric in P4) an interesting approach is outlined in [6]. Theorem 3.2
in [17] proves the conjecture for equivariant complete intersections in varieties
with trivial Chow groups.
In [7] the conjecture has been proven for (X, f) in dense subsets of MΛd

and
M

Λ̃d

. The proof there relies on Fourier–Mukai equivalences of the bounded
derived category of coherent sheaves on X and it is not clear how to push the
techniques further to cover generic and hence arbitrary (X, f).
The techniques to prove Theorem 0.2 can be applied to symplectic automor-

phisms f : X
∼

// X of order > 2. If the order of f is a prime p, then p = 2, 3, 5,
or 7 (cf. [13]), and the results of [4] have in [3] been successfully generalized
to cover also the cases p = 3, 5, and 7. Our methods prove Conjecture 0.1 for
many components of the moduli space of (X, f) in these cases too, see Section
5.
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Theorem 0.3. For p = 3, 5, or 7 and d = ep, there exists one component of the
moduli space of polarized K3 surfaces (X,L) with a symplectic automorphism

f : X
∼

// X of order p and L2 = 2d such that Conjecture 0.1 holds true. ✷

0.4. The proof of Theorem 0.2 neither uses derived categories as in [7] nor any
deep cycle arguments as e.g. in [6]. As we shall explain in Section 1, it is enough
to find a dominating family of integral genus one curves on X that are invariant
under f and avoid the fixed points of f . The conjecture is then deduced from
the absence of torsion in CH2(X). It is not clear whether the existence of such
a family should be expected in general, but it will be shown here for generic K3
surfaces parametrized by points in M

Λ̃d

. This is done in two steps. Firstly, we

construct a family of genus one (reducible) curves on a particular elliptic K3
surface for which f is given by translation by a two-torsion section, see Section
3. Then, the theory of stable maps is applied to obtain the desired family for
generic X .
The missing piece to prove Conjecture 0.1 in full generality, or at least for
symplectic involutions, is the lack of special K3 surfaces in MΛd

for which
appropriate families of genus one curves can be described explicitly.
Acknowledgments: We thank Richard Thomas for a useful discussion con-
cerning Section 2.
Addendum: The results of this article have meanwhile been improved by C.
Voisin and the first author. In [18] Voisin replaces singular elliptic curves in
the quotient X/〈f〉 and their étale cover in X , as used in this paper, by smooth
ample curves of high genus. A dimension estimate for the corresponding Prym
variety yields finite dimensionality of the ani-invariant part of the Chow group
and eventually f∗ = id on CH2(X) for symplectic involutions. In particular,
neither degeneration to special elliptic K3 surfaces nor the deformation the-
ory of stable maps, which we believe to be of independent interest, enter her
arguments. In [8] we use instead arguments involving the derived category
Db(Coh(X)) and lattice theory as developed in [7] to prove the result for sym-
plectic automorphisms of prime order p 6= 2. Both results taken together prove
f∗ = id on CH2(X) for symplectic automorphisms of arbitrary finite order.

1. Covering families of elliptic curves

Let f : X
∼

// X be a symplectic automorphism of finite order and denote

its quotient by X̄ := X/〈f〉, which is a singular K3 surface. If f has prime
order p, then p = 2, 3, 5, or 7 (see [13]). In order to prove Conjecture 0.1 for
symplectic automorphisms of finite order (and we do not have anything to say
for automorphisms of infinite order), one can restrict to those. The number of
fixed points of f , all isolated, can be determined by the Lefschetz fixed point
formula. E.g. for a symplectic involution, i.e. p = 2, there are exactly eight
fixed points.
In the following, a family Ct ⊂ X of curves given by C ⊂ S ×X is called domi-
nating if the projection C // X is dominant, i.e. if the curves Ct parametrized
by the closed point t ∈ S cover a Zariski open subset of X .
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Proposition 1.1. Let f : X
∼

// X be a symplectic automorphism. Assume
there exists a dominating family of integral f -invariant curves Ct ⊂X of geo-
metric genus one with Ct∩Fix(f) = ∅ for generic t. Then f∗ = id on CH2(X).

Proof. It suffices to prove that for generic x ∈ X the points x and y := f(x)
are rationally equivalent, i.e. [x] = [y] in CH2(X). Since by Roitman’s theorem
CH2(X) is torsion free (see e.g. [16, Ch. 22]), the latter is equivalent to [x]− [y]
being torsion. For any morphism g : C // X from a smooth irreducible curve

C the induced g∗ : Pic(C) = CH1(C) // CH2(X) is a group homomorphism.

Thus, if there exist lifts x̃, ỹ ∈ C of x resp. y such that O(x̃ − ỹ) ∈ Pic0(C) is
a torsion line bundle, then automatically [x] = [y] in CH2(X).
By assumption, a generic closed point x ∈ X lies on one of the curves Ct. Since
the curves Ct are assumed to be f invariant, y = f(x) is contained in the same

curve and f lifts to an automorphism f̃ of the normalization C := C̃t, which
is a smooth integral curve of genus one. As Ct avoids the fixed points of f ,

the automorphism f̃ : C
∼

// C is fixed point free and hence D := C/〈f̃〉 is
also smooth of genus one. After choosing origins for C and D appropriately,
C // D is a morphism of elliptic curves which can be viewed as a quotient of

C by a finite subgroup Γ ⊂ C ∼= Pic0(C). Hence points in the same fibre of
C // D differ by elements of Γ. In particular, OC(x̃ − ỹ) ∈ Γ ⊂ Pic0(C) is a
torsion line bundle. �

The problem now becomes to construct a family of genus one curves as re-
quired. We do not know how to do this directly. On the special elliptic surface
considered in Section 3 a family of genus one curves is constructed, but the
curves are not integral. They become integral only after deformations to the
generic case.

2. Stable maps to K3 surfaces

Let X // S be an irreducible family of K3 surfaces with a global line bundle

L. Consider the moduli stack Mg(X ,L) // S of stable maps h : D // Xt to

fibres of X // S such that D is of arithmetic genus g with h∗(D) ∈ |Lt|. As
the stack structure of Mg(X ,L) is of no importance to us, we shall ignore it
and treat Mg(X ,L) as a moduli space. If we do not want to fix the linear
equivalence class of the image curves, we will simply write Mg(X ).
The following fact has been used in various contexts in the literature, but
mostly for g = 0 (see e.g. [1, 12]). We shall need the following statement for
g = 1.

Proposition 2.1. Every irreducible component of Mg(X ,L) is of dimension
at least g + dim(S).

Proof. The starting point is [10, Thm. 2.17]: For simplicity let π : X // S be

a smooth projective family over an irreducible base S and let D // S be a flat
and projective family of curves. Every irreducible component of MorS(D,X )
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containing a morphism h : D := D0
// X := X0 is of dimension at least

(1) χ(D,h∗TX) + dim(S).

The first term χ(D,h∗TX) = h0(D,h∗TX) − h1(D,h∗TX) reflects the usual
deformation-obstruction theory for the morphism h : D // X . A priori,

the obstructions to deforming the morphism h : D // X are contained in

H1(D,h∗TX ), which is part of an exact sequence

. . . // H1(D,h∗TX) // H1(D,h∗TX ) // H1(D,h∗π∗TS) // 0.

Since the morphism D // X ⊂ X // S is constant, there are no obstructions
to deforming it sideways at least when S is smooth. In other words, the ob-
structions to deforming h : D // X are contained in the image of H1(D,h∗TX)
which leads to the stronger bound in (1).
A similar argument allows one to treat the case of varying domain D. The
usual obstruction theory for stable maps shows that Mg(X,L) in [h : D // X ]

is of dimension at least χ(D, (h∗ΩX
// ΩD)∗), where the two term complex

h∗ΩX
// ΩD is concentrated in degree −1 and 0, see [5]. For X = X0 in a fam-

ily X // S, the analogue of (1) then says that Mg(X ) in a point corresponding

to a stable map h : D // X is of dimension at least

(2) χ(D, (h∗ΩX
// ΩD)∗) + dim(S) = g − 1 + dim(S)

The last equation follows from a standard Riemann–Roch calculation.
The remaining issue is to increase the bound by restricting to families X // S
which come with a deformation L of L := O(h∗(D)). One can either invoke
reduced deformation theory for K3 surfaces as developed recently in [11] in
great detail or use the following trick.
Any given family (X ,L) // S with a polarization L can be thickened to a

family X̃ // S̃ with dim S̃ = dimS + 1 such that transversally to S ⊂ S̃ the
line bundle L is obstructed (even to first order). More precisely, for t ∈ S the
line bundle Lt on Xt deforms to first order in the direction of v ∈ TS̃,t if and

only if v ∈ TS,t ⊂ TS̃,t. If L is fibrewise ample, then the thickening X̃ // S̃ can
be explicitly described by using the twistor space construction for each fibre
Xt and the Kähler class given by c1(Lt). (Note that in particular, X̃ // S̃ will
in general not be projective.) Otherwise, one uses the standard deformation
theory of K3 surfaces to produce such a family at least locally, which is enough
for the following dimension count.
By the discussion above, Mg(X̃ ) is in [h : D // X ] of dimension

g − 1 + dim(S̃) = g + dim(S).

On the other hand, h : D // X cannot deform sideways in a tangent direction
v ∈ TS̃,0 that is not contained in TS,0, because O(h∗(D)) = L0. This shows

that the two moduli spaces Mg(X̃ ) and Mg(X ) coincide near the point given
by [h : D // X ]. �
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Corollary 2.2. Suppose the fibre M0 of an irreducible component M ⊂
Mg(X ,L) is of dimension ≤ g for some 0 ∈ S. Then M dominates S. ✷

In other words, if the moduli space Mg(X0,L0) of stable maps to one fibre X0

has the expected dimension g in [h : D // X0], then h can be deformed to a

stable map ht : Dt
// Xt to the generic fibre. To ensure that the condition is

met, we shall later use the following criterion, c.f. [9, Cor. 1.2.5] and [12, Lem.
2.6].

Proposition 2.3. Suppose the stable map h : D // X satisfies the following
conditions:
i) If D1, D2, . . . , Dn are the components of D, then D2, . . . , Dn are smooth and
rational.
ii) The first component D1 is smooth of genus g and h|D1

: D1
// X is an

embedding.
iii) The morphism h is unramified.
iv) Two components Di and Dj intersect transversally in one point if |i−j| = 1
and not at all otherwise.
Then Mg(X) is of dimension g in [h : D // X ].

Proof. We copy the argument from [1, Lem. 2.7]. First of all, since h is unram-
ified, the complex h∗ΩX

// ΩD is a locally free sheaf of rank one concentrated
in degree−1, the dual of which is denotedNh. Then, one proceeds by induction
over n and uses the exact sequence

0 // Nh(−x)|D′
// Nh

// Nh|Dn

// 0,

where D′ := D1 ∪ . . . ∪Dn−1 and {x} = Dn−1 ∩Dn. From the exact sequence

0 // N ∗

h |Dn

// h∗ΩX |Dn

// ΩD|Dn

// 0

and ΩD|Dn

∼= O(−1), one deduces Nh|Dn

∼= O(−1). Thus, Hi(Nh) ∼=
Hi(Nh(−x)|D′). On the other hand, Nh(−x)|D′ = Nh′ , where h′ := h|D′ :
D′

// X . By induction this eventually yields Hi(Nh) ∼= Hi(ND1/X). But

clearly, h0(ND1/X) = h0(D1, ωD1
) = g and the deformations of D1 ⊂ X are

unobstructed. �

Remark 2.4. Maybe more geometrically, the arguments show that deforma-
tions of h : D // X are all given by deforming D1 ⊂ X .

3. Special elliptic surfaces

We follow [4, Sect. 4] for the construction of an elliptic K3 surface X // P1

with a symplectic involution given by a two-torsion section. Deformations of

X will lead to K3 surfaces with Néron–Severi group Λ̃2d with d = 2e > 2.
The elliptic K3 surface X // P1 is described by an equation of the form

(3) y2 = x(x2 + a(t)x + b(t))

with general a(t) and b(t) of degree 4 resp. 8. Then the fibration has two
obvious sections: The section at infinity σ given by x = z = 0, which will serve
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us as the zero section, and a disjoint section τ given by x = y = 0. Using
the explicit equation, one finds that τ has order two. Thus, translation by τ

defines an involution f : X
∼

// X which is symplectic.

Still following [4], one computes the singular fibres of X // P1: There are eight
fibres of type I1 (a rational curve with one node) and eight fibres of type I2
(the union of two copies of P1 intersecting transversally in two points). They
can be found over the zeroes of b ∈ H0(P1,O(8)) resp. a2 − 4b ∈ H0(P1,O(8)).
The fixed points of f are the nodes of the eight I1-fibres which are all avoided
by σ and τ . Moreover, f interchanges the two components of each I2-fibre.

. . . . . .

q q qq
σ

q q qq

q q

τ

N1 N8

The components of the I2-fibres not meeting σ are denoted N1, . . . , N8. Then
N̂ = (1/2)

∑
Ni ∈ NS(X). Moreover, if F denotes the class of a generic fibre

(and by abuse also a generic fibre itself), then σ and F span a hyperbolic plane

and τ = σ + 2F − N̂ . The Néron–Severi group of X (for general a and b) is

thus 〈σ, F 〉 ⊕ 〈N1, . . . , N8, N̂〉, which is of rank 10.
Next consider a curve of the form C = eN+F+σ+τ , where N is one of the I2-
fibres, and let L := O(C). Then L is big and nef. Indeed, (L.L) = 4e > 0 and
C intersects all its irreducible components positively, e.g. (C.σ) = e − 1 > 0.
In fact, L is ample as it clearly intersects all horizontal curves positively and
has also positive intersection with all (−2)-curves (e.g. the two components of
the I2-fibres). Moreover, L is primitive, as (C.Ni) = 1. Since f respects the
fibration and interchanges σ and τ , the curve C is f -invariant and disjoint from
Fix(f).

q q
σ

q q
τ

eN FC :

Let us now consider the quotient X̄ := X/〈f〉 which is a singular K3 surface
with eight ordinary double points. Its minimal resolution Y // X̄ comes with

a natural elliptic fibration Y // P
1. Note that the fibres of type I1 and I2 are

interchanged when passing from X to Y .
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The quotient C̄ := C/〈f〉 ⊂ X̄ avoids the singular locus of X̄ and thus can also
be viewed as a curve in Y . For the same reason, the line bundle L descends to
an ample line bundle L̄ on Ȳ . Note that C̄ decomposes as C̄ = eN̄ + F̄ + σ̄,
where N̄ is an I1-fibre of Y // P1, F̄ is a smooth fibre, and σ̄ is a section.

q q
σ̄

eN̄ F̄C̄ :

Lemma 3.1. There exists a stable map h : D // X̄ of arithmetic genus one

with image C̄ and such that M1(X̄, L̄) is one-dimensional in h.

Proof. Since C̄ avoids the singularities of X̄, we can equally work with C̄ ⊂ Y .

The curve D shall have components D1, D2, . . . , Dn, n = e+2, with D1

∼
// F̄ ,

D2

∼
// σ̄, and Di

// N̄ , i ≥ 2, being the normalization. The gluing is defined
according to the picture (cf. [1, 9, 12]):

D1

D2

D3Dn

q

q q

q

. . .

//

q

r

q q
σ̄

eN̄ F̄

Obviously, D is of arithmetic genus one and h∗(D) = C̄. Moreover, the as-
sumptions of Proposition 2.3 are satisfied and hence M1(Y ) is of dimension
one in [h : D // Y ]. �

Now consider a generic deformation

(4) (X ,L) // S

of (X,L, f), i.e. (X0, f0) = (X, f) for a distinguished 0 ∈ S and for generic
t ∈ S the fibre NS(Xt) has rank ρ = 9 with ft-invariant part spanned by Lt.
Taking quotients, one obtains a family of singular K3 surfaces X̄ // S. Clearly,

L = O(C) descends to the quotient X̄, for C is f -invariant and avoids the fixed
points. Hence the line bundle L also descends to a relatively ample line bundle
L̄. (The obstructions to deforming L resp. L̄ sideways are the same.) Note
that for generic t ∈ S the line bundle L̄t generates Pic(X̄t).
Let us apply the discussion of Section 2 to h : D // X̄0 = X̄. So, consider the

relative moduli space of stable maps of genus one M1(X̄ , L̄) // S.
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Corollary 3.2. The stable map h : D // X̄ thus constructed deforms side-

ways to stable maps ht : Dt
// X̄t. Moreover, for generic t ∈ S the curve

ht∗(Dt) ⊂ X̄t and its preimage in Xt are integral and disjoint from the singular
locus resp. the fixed point set of ft.

Proof. The existence of the deformation to the nearby fibres follows directly
from Proposition 2.3 and Corollary 2.2. Since C̄ = h∗(D) avoids the singulari-
ties of X̄, this will hold for generic t. Clearly, ht∗(Dt) ∈ |L̄t|. Therefore, since
Lt generates the invariant part of NS(Xt) and hence L̄t generates NS(X̄t), the
curve ht∗(Dt) must be integral.
Suppose the preimage Ct of ht∗(Dt) were not integral for t generic, i.e. Ct =
C′

t+C′′

t with ft(C
′

t) = C′′

t . (Use that ft is an involution.) The two components
would then specialize to C′ resp. C′′ on X with C = C′ +C′′ and f(C′) = C′′.
We may assume that F ⊂ C′. But then also F = f(F ) ⊂ f(C′) = C′′ which
eventually yields the contradiction that F appears with multiplicity at least
two in C. �

Remark 3.3. In fact, since the stable map h : D // X deforms with the fibre

component F in a one-dimensional family, also the deformations ht : Dt
// X̄t

come in a family dominating X̄t. Thus, one obtains a dominating family of
integral genus one curves in the generic deformation Xt that are ft-invariant
and avoid the fixed points of ft.

4. Proof of the main theorem

The outcome of the above construction are generic K3 surfaces Xt ∈ M
Λ̃d

with

a symplectic involution ft such that X̄t = Xt/〈ft〉 contains a one-dimensional
family of integral curves of geometric genus one that avoid the singular locus.
This immediately leads to a proof of our main result.

Theorem 4.1. For all (X, f) ∈ M
Λ̃
, the symplectic involution f : X

∼
// X

acts as id on CH2(X).

Proof. The case d = 2 follows from [14]. So we assume d = 2e > 2, i.e. e > 1.
We first show that the above discussion combined with Proposition 1.1 proves
the assertion for generic (X, f) ∈ M

Λ̃d

.

Consider a deformation (4) of the special elliptic K3 surface (3). Then for

generic t ∈ S one has NS(Xt) = Λ̃d. Indeed, by [4, Prop. 2.7] only in this case
do all ft-invariant line bundles actually descend to the quotient X̄t. Hence the
elliptic K3 surfaces described by (3) can be connected to the generic K3 surface
parametrized by M

Λ̃d

. Here we use that M
Λ̃d

is connected.

The generic fibre of the family (4) satisfies the assumption of Proposition 1.1.
Indeed, by Corollary 3.2 and Remark 3.3 there exists a dominating family of
integral curves of arithmetic genus one on the generic fibre Xt that are invariant
under the involution and avoid the fixed points.
Now consider an arbitrary (X, f) ∈ M

Λ̃d

. Then any x ∈ X can be viewed as a

specialization of points xt in generic deformations (Xt, ft) ∈ M
Λ̃d

. Clearly, the
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points ft(xt) then specialize to f(x). For generic Xt we have already shown
[xt] = [ft(xt)] in CH2(Xt) and thus specialization yields [x] = [f(x)] in CH2(X)
for all x ∈ X . �

5. Further comments

We briefly outline how to adapt our techniques to the case of symplectic auto-
morphisms of prime order. For p = 3, 5, and 7, Garbagnati and Sarti describe
in [3, Thm. 4.1] lattices Ωp of rank 12, 16, resp. 18 that are isomorphic to the
anti-invariant part of f∗ acting on H2(X,Z). Similar to the case p = 2, the
generic polarized K3 surface (X,L) of degree 2d with a symplectic automor-

phism f : X
∼

// X of order p leaving L fixed has Picard group isomorphic to

Λp,d := ZL ⊕ Ωp or possibly, if d ≡ 0(p), isomorphic to a lattice Λ̃p,d that
contains Λp,d as a primitive sublattice of index p. In fact, the case Λ7,d is
not realized if d ≡ 0(7) (cf. [3, Prop. 5.2]), but unfortunately it is not known

whether the lattices Λ̃p,d are unique for given p and d ≡ 0(p) (see [3, Sec. 6]).
The moduli spaces are of dimension 7, 3, resp. 1.
Examples of symplectic automorphisms of order 3, 5, and 7 have been described
in [3, Sec. 3.1]. They are again given by translation by a torsion section.
The Picard numbers in these examples are 14, 18, resp. 20 and in each case
they correspond to points in (at least) one component of the moduli space
of polarized K3 surfaces (X,L) with a symplectic automorphism f of degree
L2 = 2d. This leads to the following result:

Theorem 5.1. For p = 3, 5, or 7 and d = ep, there exists one component of the
moduli space of polarized K3 surfaces (X,L) with a symplectic automorphism

f : X
∼

// X of order p and L2 = 2d such that Conjecture 0.1 holds true. ✷

It is very likely that for p = 7 and d ≡ 0(7) the result can be strengthened to

cover all K3 surfaces, as we would expect that Λ̃7,d is in fact unique.
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