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Symplectic Involutions of K3 Surfaces
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Abstract. A symplectic involution on a K3 surface is an involution
which preserves the holomorphic 2-form. We prove that such a sym-
plectic involution acts as the identity on the CH0 group of the K3
surface, as predicted by Bloch’s conjecture.
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1 Introduction

For a smooth complex projective variety X , Mumford has shown in [9] that the
triviality of the Chow group CH0(X), i.e. CH0(X)hom = 0, implies the vanish-
ing of holomorphic forms of positive degree on X . An immediate generalization
is the fact that a 0-correspondence Γ ∈ CHd(Y ×X), with d = dimX , which
induces the 0-map Γ∗ : CH0(Y )hom → CH0(X)hom has the property that the
maps Γ∗ : Hi,0(X) → Hi,0(Y ) vanish for i > 0.
Bloch’s conjecture is a sort of converse to the above statement, but it needs
the introduction of a certain filtration on CH0 groups of smooth projective
varieties. The beginning of this conjectural filtration is

F 0CH0(X) = CH0(X), F 1CH0(X) = CH0(X)hom, (1)

F 2CH0(X) = CH0(X)alb := Ker (albX : CH0(X)hom → Alb(X)).

As the filtration is supposed to satisfy F kCH0(X) = 0 for k > dimX , we find
that for surfaces, the filtration is fully determined by (1).
Bloch’s conjecture for correspondences with values in surfaces is then the fol-
lowing:
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Conjecture 1.1 Let S be a smooth projective surface, and let X be a smooth
projective variety, Γ ∈ CH2(X × S) be a correspondence such that the maps
Γ∗ : Hi,0(S) → Hi,0(X) vanish for i > 0. Then

Γ∗ : CH0(X)alb → CH0(S)alb

vanishes.

This question can be addressed in particular in the case of self-correspondences
associated to finite group actions on surfaces. A particular case of the conjec-
ture above is the following:

Conjecture 1.2 Let G be a finite group acting on a smooth projective complex
surface S with q = 0. Let χ : G → {1,−1} be a character. Assume that
H2,0(S)χ = 0. Then CH0(S)

χ
hom = 0.

Here
H2,0(S)χ := {ω ∈ H2,0(S), g∗ω = χ(g)ω, ∀g ∈ G},

CH0(S)
χ
hom := {z ∈ CH0(S)hom, g∗z = χ(g)z, ∀g ∈ G}.

This is indeed the particular case of the conjecture 1.1 applied to the 0-
correspondence

πχ :=
∑

g∈G

χ(g)Γg ∈ CH2(S × S),

where Γg ⊂ S × S is the graph of g.
Conjecture 1.2 is proved in [13] in the situation where S is the zero set of a
transverse section of a G-invariant vector bundle on any variety X with trivial
Chow groups (that is CH∗(X)hom ⊗Q = 0), under the assumption that E has
many G-invariant sections. This generalizes our previous work in [12], where
the case of the Godeaux action of Z/5Z on the CH0 group of invariant quintic
surfaces was solved. This also covers the case (already considered in [12]) of
the action of the involution i on P3 acting with two −1 eigenvectors and two
+1 eigenvectors on homogeneous coordinates, if we take for S a quartic surface
defined by an i-invariant equation and we look at the antiinvariant part of
CH0(S).
In the paper [5], Huybrechts proved that a derived autoequivalence of a K3
surface S acting as the identity on H∗(S,Z) acts as the identity on CH0(S).
The next situation to consider is that of a symplectic finite order automorphism
g of a K3 surface S. Thus g is by definition an automorphism of S such that
g∗ω = ω, where ω is the holomorphic 2-form on S. Such a g acts trivially
on H2,0(S) so it has trivial action on the transcendental lattice of S, so the
difference

g∗ − Id ∈ AutH∗(S,Z)

is, at least over Q, induced by the cohomology class of a cycle of the form∑
i αiCi ⊗C′

i. where Ci, C
′
i are curves on S and αi are rational coefficients. It

seems that if one could take the αi to be integers, the above mentioned result
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of Huybrechts would apply to show that g∗ is the identity on CH0(S). Still the
problem remains open for these symplectic automorphisms and was explicitly
raised by Huybrechts in [7]. In this note, the case of a symplectic involution i
acting on a K3 surface S is considered. The fact that such symplectic involu-
tions act trivially on CH0(S) has been proved on one hand in a finite number
of cases in [4], [12], [13], and on the other hand (and more significantly), it has
been established in [6] for any K3 surface with symplectic involution in one of
the three series introduced by van Geemen and Sarti [3] (each series contains
itself an infinite number of families indexed by an integer d, and the three series
differ first of all by the parity of this integer d, and secondly, when d is even, by
the structure of the Néron-Severi lattice of the general such surface admitting
an invariant line bundle of self-intersection 2d).
The present paper solves the problem in general :

Theorem 1.3 Let S be an algebraic K3 surface, and let i : S → S be a
symplectic involution. Then i∗ acts as the identity on CH0(S).

The proof is elementary : It uses the fact that Prym varieties of étale double
covers of curves of genus g are of dimension g − 1. This departure point is
the obvious generalization of the starting point of Huybrechts and Kemeny’s
work [6], who work with elliptic curves and their étale double covers. This
observation is applied to the étale double covers of generic smooth ample curves
C ⊂ S/i and allows us to prove in section 3 that the group of i-antiinvariant 0-
cycles on S is finite dimensional in the Roitman sense (the definition is recalled
in section 2). One then uses a mild generalization (Theorem 2.3 established
in section 2) of a fundamental result due to Roitman (cf. [10]) in order to
conclude that the group of i-antiinvariant 0-cycles on S is in fact trivial.

2 Finite dimensionality in the sense of Roitman

Let X be a smooth (connected for simplicity) projective variety over C, and
let P ⊂ CH0(X) be a subgroup.

Definition 2.1 We will say that P is finite dimensional in the Roitman sense
if there exist a (nonnecessarily connected) smooth projective variety W , and a
correspondence Γ ⊂ W×X such that P is contained in the set {Γ∗(w), w ∈ W}.

Remark 2.2 As P is a subgroup and the cycles Γ∗(w) have finitely many
possible degrees (depending on the connected component of W to which w
belongs), we conclude that if P is finite dimensional in the Roitman sense, all
elements of P have degree 0 (so P ⊂ CH0(X)hom as X is connected).

The following result is essentially due to Roitman. (It is in fact due to Roitman
in the case where M = X and ImZ∗ = CH0(X)hom, see also [14], lecture 5).
The proof we give below is slightly different, as it makes use of Proposition
2.4, while Roitman uses only elementary arguments. The proof given here
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also has the advantage that it does not need the torsion freeness of the group
Ker (albM : CH0(M)hom → AlbM)).
Let M and X be smooth connected projective varieties with X of dimension
d. Let Z ∈ CHd(M ×X) be a correspondence.

Theorem 2.3 Assume that Im (Z∗ : CH0(M) → CH0(X)) is finite dimen-
sional in the Roitman sense. Then the map Z∗ : CH0(M)hom → CH0(X)
factors through the Albanese morphism albM : CH0(M)hom → AlbM of M .

Proof. By definition, there exist a smooth projective variety W and a corre-
spondence Γ ⊂ W×X such that ImZ∗ is contained in the set {Γ∗(w), w ∈ W}.
Let C ⊂ M be a curve which is a very general complete intersection of suf-
ficiently ample hypersurfaces Hi ⊂ M . Then by the Lefschetz theorem on
hyperplane sections, the Jacobian J(C) maps surjectively to Alb(M) and the
kernel K(C) is connected, hence an abelian variety. We will prove for com-
pleteness the following result:

Proposition 2.4 When the Hi’s are sufficiciently ample and very general,
K(C) is a simple abelian variety.

We fix now C as above, satisfying the conclusion of Proposition 2.4 and let
j : C → M be the inclusion, which induces the morphism j∗ : J(C) =
CH0(C)hom → CH0(M). We note that by taking the Hi sufficiently am-
ple, the dimension of K(C) can be made arbitrarily large, so we may assume
dimK > dimW .
Let R ⊂ K(C)×W be the following set:

R = {(k, w) ∈ K(C)×W, Z∗(j∗(k)) = Γ∗(w) in CH0(X)}.

It is known (cf. [15, 10.1.1]) that R is a countable union of closed irreducible
algebraic subsets Ri ofK(C)×W . As ImZ∗ is contained in the set {Γ∗(w), w ∈
W}, the union of the images of the first projections p|Ri

: Ri → K(C) is equal
to K(C). A countability argument then shows that there exists an i such that

pr1|Ri
: Ri → K(C)

is dominating. It follows in particular that dimRi ≥ dimK(C) > dimW . The
fibers of the second projection

pr2|Ri
: Ri → W

are thus positive dimensional. Let w ∈ W , and Fw ⊂ K(C) be the fiber
over w. Then Fw ⊂ K(C) is positive dimensional, hence it generates K(C)
as a group because K(C) is simple. On the other hand, by definition of R,
for any f ∈ Fw, we have Z∗(j∗(f)) = Γ∗(w) in CH0(X), hence the cycle
Z∗(j∗(f)) is independent of f ∈ FW . Thus for any 0-cycle z of Fw , we have
Z∗(j∗(z)) = deg z Γ∗(w) and it follows then from the fact that Fw generates
K(C) as a group that Z∗ ◦ j∗ vanishes identically on K(C).
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In order to conclude that Z∗ : CH0(M)hom → CH0(X) factors through AlbM ,
we now observe the following: For any degree 0 cycle of M , which we write
in the form zm = z+m − z−m with z+m =

∑
l≤k ml, z

−
m =

∑
k+1≤l≤2k ml, with

m = (m1, . . . ,m2k) ∈ M2k, we can blow up M at the points mi, i = 1, . . . , 2k,
which gives us τ : M ′ → M , with exceptional divisors Ei over the points mi.
We can choose H ∈ PicM so that L = τ∗H −

∑
i Ei is ample on M ′ and then

apply Proposition 2.4 to an adequate multiple of L. We conclude that there
is a complete intersection curve j : C →֒ M ′ which satisfies the conclusion of
Proposition 2.4, that is the kernel of the map

j∗ : J(C) → AlbM ′ = AlbM

is a simple abelian variety of high dimension. Note that τ(C) contains all the
points mi. Assuming now that the 0-cycle zm = z+m − z−m is annihilated by
albM , any of its lifts z′ to M ′ belongs to Ker albM ′ , hence choosing a lift z′

supported in C, we conclude that as a 0-cycle of C, z′ belongs to j∗(K(C)).
Applying the previous reasoning to the correspondence Z ′ := Z ◦ τ between
M ′ and X , we conclude that Z∗(zm) = Z ′

∗(z
′) = 0 in CH0(X).

Proof of Proposition 2.4. First of all, we reduce the problem to the
case where M is a surface, by replacing M by a smooth complete intersection
T = H1 ∩ . . . ∩ Hm−2 of ample hypersurfaces and recalling that due to the
Lefschetz theorem on hyperplane sections [15, 2.3.2], AlbM = Alb T . Now we
take on T a Lefschetz pencil of very ample curves Tt, t ∈ P1. Picard-Lefschetz
theory has for consequence (see [15, 3.2.3]) the irreducibility of the monodromy
action ρ : π1(P

1
reg, t0) → AutH1(Tt0 ,Q)van, where

H1(Tt0 ,Q)van := Ker (H1(Tt0 ,Q) → H3(T,Q)).

The same proof shows as well the irreducibility of the action of any finite index
subgroup Γ ⊂ π1(P

1
reg, t0).

Assume by contradiction that for the general curve Tt, the abelian variety
K(Ct) is not simple. Then there is a finite cover r : D → P1, and a proper
sub-abelian fibration

A ⊂ KD,

where KD → Dreg is the pull-back to Dreg := r−1(P1
reg) of the family of abelian

varieties K(Ct), t ∈ P1
reg. This sub-abelian fibration (taken up to isogenies)

corresponds to a sub-local system L of the pull-back to Dreg of the local system
on P1

reg with fiber H1(Ct,Q)van.
The monodromy action on P1

reg being irreducible on any finite index subgroup
of π1(P

1
reg, t0), it is irreducible on the image r∗(π1(Dreg, s0)), r(s0) = t0. This

contradicts the existence of L.

In the next section, we will prove the following:

Documenta Mathematica 17 (2012) 851–860



856 Claire Voisin

Proposition 2.5 Let S be an algebraic K3 surface, and let i : S → S be a
symplectic involution. Then the antiinvariant part

CH0(S)
− = {z ∈ CH0(S), i∗(z) = −z}

is finite dimensional in the Roitman sense.

Proof of Theorem 1.3 We apply Theorem 2.3 to the case where X = S,
M = S and Z is the cycle ∆S −Graph(i). Here ∆S is the diagonal of S and
Graph(i) is the graph of i. Proposition 2.5 says that ImZ∗ is finite dimensional
in the Roitman sense and Theorem 2.3 tells us then that Z∗ : CH0(S)hom →
CH0(S)hom factors through AlbS = 0. Hence Z∗ vanishes on CH0(S)hom. On
the other hand, Z∗ is multiplication by 2 on CH0(S)

− ⊂ CH0(S)hom and we
thus proved that CH0(S)

− is a 2-torsion group; as CH0(S) has no torsion by
[11], we conclude that CH0(S)

− = 0. Thus Z∗ = Id on CH0(S).

3 Proof of Proposition 2.5

We start with the following lemma: Let M, X be smooth projective varieties
with dimX = d. Let Γ ∈ CHd(M × X) be a correspondence. Each point
(m1, . . . ,mk) ∈ Mk determines an element

∑
imi ∈ CH0(M). Hence we get a

map
Γ∗ : Mk → CH0(X).

Lemma 3.1 Assume there is a point m ∈ M such that Γ∗(m) = 0 in CH0(X)
and for some integer g > 0, one has Γ∗(M

g−1) = Γ∗(M
g) as subsets of

CH0(X). Then ImΓ∗ is finite dimensional in the Roitman sense.

Proof. Since Γ∗(M
g−1) = Γ∗(M

g), it is obvious by induction that
Γ∗(M

g−1) = Γ∗M
k for any k ≥ g − 1. Any cycle z ∈ CH0(M) can be written

as z+ − z−, where z+ and z− are effective cycles, of degree k+, k−. Up to
adding the adequate multiples of m to z+ and z−, which does not change Γ∗z,
we may assume that k+ = k− ≥ g. Thus Γ∗(z) = Γ∗(z

+) − Γ∗(z
−), where

Γ∗(z
+) and Γ∗(z

−) belong to Γ∗(M
k) = Γ∗(M

g−1). Hence we proved that the
correspondence Γ′ ∈ CHd(M2g−2 ×X), defined as

Γ′ =
∑

i≤g−1

(pri, pX)∗Γ−
∑

g≤i≤2g−2

(pri, pX)∗Γ

satisfies
ImΓ∗ = Γ′

∗(M
2g−2).

According to Definition 2.1, ImΓ∗ is finite dimensional in the Roitman sense.
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Proof of Proposition 2.5. Let S be a K3 surface endowed with a sym-
plectic involution i. The quotient surface Σ = S/i is a singular K3 surface.
(By blowing-up its singular points, which correspond to the fixed points of i, it
becomes a honest K3 surface.) The canonical bundle of Σ (or rather Σreg) is
trivial. Let L ∈ PicΣ be very ample, and let 2g− 2 = deg c1(L)

2. By triviality
of KΣreg

, g is the genus of the smooth curves in |L|. Furthermore, we have
dim |L| = g, due to the exact sequence

0 → C → H0(Σ, L) → H0(C,L|C) = H0(C,KC) → 0,

which comes from the similar exact sequence on the desingularization Σ̃ of Σ,
which has H1(Σ̃,O

Σ̃
) = 0.

Note also that for a smooth ample curve C ⊂ Σ, the inverse image C̃ ⊂ S is
smooth, connected, and is an étale double cover of C. (Only the connectedness
is to be proved, and this follows from the fact that otherwise each component
C1, C2 of C̃ ⊂ S has positive self-intersection and C1 ·C2 = 0 since C̃ is smooth.
This contradicts the Hodge index theorem.)

Let Γ ∈ CH2(S×S) be the correspondence ∆S −Graph(i). We prove now the
following, where cS is the effective 0-cycle of degree 1 introduced in [1]:

Claim 3.2 We have Γ∗(cS) = 0 and Γ∗(S
g) = Γ∗(S

g−1).

According to Lemma 3.1, this proves Proposition 2.5, since CH0(S)
− = ImΓ∗.

(The last fact follows from the fact that Γ∗ acts as −2 Id on CH0(S)
−, which

is a divisible group.)

Proof of the claim. The cycle cS is obviously i-invariant since it is the
class of any point of S belonging to a rational curve D ⊂ S, and if x ∈ D then
i(x) ∈ i(D) also belongs to a rational curve in S.

Let s = (s1, . . . , sg) be a general point of Sg. Then if we denote by σi the
image of si in Σ = S/i, the g-uple (σ1, . . . , σg) is generic in Σg and there exists
a unique curve Cs ∈ |L| containing all the σi’s. The curve Cs being general

in |L|, it is smooth and thus we have the étale double cover C̃s → Cs, with

C̃s ⊂ S containing the points si. Consider the 0-cycle

zs =
∑

l

sl − i(
∑

l

sl) = Γ∗(
∑

l

sl) ∈ CH0(S).

This cycle clearly depends only on the Abel image

alb
C̃s
(
∑

l

sl − i(
∑

l

sl)),

which is an antiinvariant element of J(C̃s) or, up to 2-torsion, an element of

the Prym variety P (C̃s/Cs) which is a g − 1-dimensional abelian variety.
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In other words, we find that, on a Zariski open set U of Sg, the map

Sg → CH0(S)
−, (s1, . . . , sg) 7→ zs,

factors through the morphism

f : U → P(C̃/C), (s1, . . . , sg) 7→ alb
C̃s

(s1 + . . .+ sg − i(s1)− . . .− i(sg)),

where C → |L|0 is the universal smooth curve over the Zariski open set |L|0 of

|L| parameterizing smooth curves, C̃ → |L|0 is the universal family of double

covers, and P(C̃/C) → |L|0 is the corresponding Prym fibration.

The total space of the Prym fibration P(C̃/C) has dimension 2g−1, while U has
dimension 2g, so the morphism f has positive dimensional fibers. It follows that
for s ∈ U , there is a curve Fs ⊂ Sg such that the 0-cycle zt =

∑
l tl − i(

∑
l tl)

is rationally equivalent to zs in S for any (t1, . . . , tg) ∈ Fs. Choose an ample
curve D ⊂ S whose irreducible components are rational (the existence of such
a curve is well-known and due to Mori-Mukai, cf. [8]). The curve Fs meets the
ample divisor

∑
l pr

−1

l (D), where prl : S
g → S is the l-th projection. Hence the

0-cycle zs is rationally equivalent to a 0-cycle of the form zt =
∑

l tl − i(
∑

l tl),
where we have tl0 ∈ D for some l0. We have seen already that the 0-cycle
tl0 − i(tl0) vanishes in CH0(S) and it follows that zs is rationally equivalent to
the cycle

∑
l 6=l0

tl − i(
∑

l tl 6=l0). Thus zs ∈ Γ∗(S
g−1) for s = (s1, . . . , sg) ∈ U .

To conclude the proof, we have to show that the above result is true for any
(s1, . . . , sg) ∈ Sg. This follows from the following statement :

Fact 3.3 Let Y be a connected complex projective variety. Let U ⊂ Y be the
complement of a countable union of proper closed algebraic subsets. Then any
0-cycle z of Y is rationally equivalent in Y to a 0-cycle supported on U .

A proof of Fact 3.3 is as follows: there exists a curve C ⊂ Y which is irreducible,
contains Sup z and intersects U non-trivially. Then C \ C ∩ U is countable. It
suffices to prove that there exists a 0-cycle z′ of C supported on C ∩ U which
is rationally equivalent to z on C. We may assume that C is smooth by taking
normalization if necessary. Then we write z = z1 − z2 in PicC, where z1 and
z2 are very ample divisors on C. Since [z1| and |z2| are base-point free, there
exist members z′1 ∈ |z1|, z

′
2 ∈ |z2| which avoid the countably many points in

C \C∩U , hence are supported on C∩U . Then z = z′1−z′2 in PicC = CH0(C).

We apply this statement to Y = Sg to conclude that the cycles zs for s =
(s1, . . . , sg) ∈ U fill-in the image Γ∗(S

g). We thus conclude that zs ∈ Γ∗(S
g−1)

for any s = (s1, . . . , sg) ∈ Sg since we already know the result for s ∈ U .
Proposition 2.5 is thus proved.
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