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Abstract. It has been observed that certain localizations of the
spectrum of topological modular forms are self-dual (Mahowald-Rezk,
Gross-Hopkins). We provide an integral explanation of these results
that is internal to the geometry of the (compactified) moduli stack of
elliptic curvesM, yet is only true in the derived setting. When 2 is
inverted, a choice of level 2 structure for an elliptic curve provides a
geometrically well-behaved cover ofM, which allows one to consider
Tmf as the homotopy fixed points of Tmf(2), topological modular
forms with level 2 structure, under a natural action by GL2(Z/2).
As a result of Grothendieck-Serre duality, we obtain that Tmf(2) is
self-dual. The vanishing of the associated Tate spectrum then makes
Tmf itself Anderson self-dual.
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1 Introduction

There are several notions of duality in homotopy theory, and a family of such
originates with Brown and Comenetz. In [BC76], they introduced the spectrum
IQ/Z which represents the cohomology theory that assigns to a spectrum X the
Pontryagin duals HomZ(π−∗X,Q/Z) of its homotopy groups. Brown-Comenetz
duality is difficult to tackle directly, so Mahowald and Rezk [MR99] studied
a tower approximating it, such that at each stage the self-dual objects turn
out to have interesting chromatic properties. In particular, they show that
self-duality is detected on cohomology as a module over the Steenrod algebra.

Documenta Mathematica 17 (2012) 271–311



272 Vesna Stojanoska

Consequently, a version of the spectrum tmf of topological modular forms
possesses self-dual properties.
The question thus arises whether this self-duality of tmf is already inherent
in its geometric construction. Indeed, the advent of derived algebraic geom-
etry not only allows for the construction of an object such as tmf , but also
for bringing in geometric notions of duality to homotopy theory, most no-
tably Grothendieck-Serre duality. However, it is rarely possible to identify the
abstractly constructed (derived) dualizing sheaves with a concrete and com-
putable object. This stands in contrast to ordinary algebraic geometry, where
a few smallness assumptions guarantee that the sheaf of differentials is a dual-
izing sheaf (eg. [Har77, III.7]).
Nevertheless, the case of the moduli stack of elliptic curves1M0 and topological
modular forms allows for a hands-on approach to Serre duality in a derived
setting. Even if the underlying ordinary stack does not admit a traditional Serre
duality pairing, the derived version ofM0 is considerably better behaved. The
purpose of this paper is to show how the input from homotopy theory brings
duality back into the picture. Conversely, it provides an integral interpretation
of the aforementioned self-duality for tmf that is inherent in the geometry of
the moduli stack of elliptic curves.
The duality that naturally occurs from the geometric viewpoint is not quite that
of Brown and Comenetz, but an integral version thereof, called Anderson du-
ality and denoted IZ [And69, HS05]. After localization with respect to Morava
K-theory K(n) for n > 0, however, Anderson duality and Brown-Comenetz
duality only differ by a shift.
Elliptic curves have come into homotopy theory because they give rise to in-
teresting one-parameter formal groups of heights one or two. The homotopical
version of these is the notion of an elliptic spectrum: an even periodic spectrum
E, together with an elliptic curve C over π0E, and an isomorphism between the
formal group of E and the completion of C at the identity section. Étale maps
Specπ0E →M

0 give rise to such spectra; more strongly, as a consequence of
the Goerss-Hopkins-Miller theorem, the assignment of an elliptic spectrum to
an étale map to M0 gives an étale sheaf of E∞-ring spectra on the moduli
stack of elliptic curves. Better still, the compactification ofM0, which we will
hereby denote by M, admits such a sheaf, denoted Otop, whose underlying
ordinary stack is the usual stack of generalized elliptic curves [Beh07]. The
derived global sections of Otop are called Tmf , the spectrum of topological
modular forms. This is the non-connective, non-periodic version of Tmf .2

The main result proved in this paper is the following theorem:

Theorem 13.1. The Anderson dual of Tmf [1/2] is Σ21Tmf [1/2].

The proof is geometric in the sense that it uses Serre duality on a cover ofM

1The moduli stack of elliptic curves is sometimes also denoted Mell or M1,1; we chose
the notation from [DR73].

2We chose this notation to distinguish this version of topological modular forms from the
connective tmf and the periodic TMF .
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as well as descent, manifested in the vanishing of a certain Tate spectrum.
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2 Dualities

We begin by recalling the definitions and properties of Brown-Comenetz and
Anderson duality.
In [BC76], Brown and Comenetz studied the functor on spectra

X 7→ I∗Q/Z(X) = HomZ(π−∗X,Q/Z).

Because Q/Z is an injective Z-module, this defines a cohomology theory, and
is therefore represented by some spectrum; denote it IQ/Z. We shall abuse
notation, and write IQ/Z also for the functor

X 7→ F (X, IQ/Z),

which we think of as “dualizing” with respect to IQ/Z. And indeed, if X is a
spectrum whose homotopy groups are finite, then the natural “double-duality”
map X → IQ/ZIQ/ZX is an equivalence.
In a similar fashion, one can define IQ

3 to be the spectrum corepresenting the
functor

X 7→ HomZ(π−∗X,Q).

The quotient map Q → Q/Z gives rise to a natural map IQ → IQ/Z; in ac-
cordance with the algebraic situation, we denote by IZ the fiber of the latter
map. As I have learned from Mark Behrens, the functor corepresented by IZ
has been introduced by Anderson in [And69], and further employed by Hopkins
and Singer in [HS05].
For R any of Z, Q, or Q/Z, denote also by IR the functor on spectra
X 7→ F (X, IR). When R is an injective Z-module, we have that π∗IRX =
HomZ(π−∗X,R).
Now for any spectrum X , we have a fiber sequence

IZX → IQX
ϕ
−→ IQ/ZX, (1)

3In fact, IQ is the Eilenberg-MacLane spectrum HQ.
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giving a long exact sequence of homotopy groups

· · · πt+1IQ/ZX //

##FFFFFFFF
πtIZX //

��
88

88
88

8
πtIQX · · ·

Cokerπt+1ϕ

>>~~~~~~~~
Kerπtϕ

BB�������

But the kernel and cokernel of π∗ϕ compute the derived Z-duals of the homo-
topy groups of X , so we obtain short exact sequences

0→ Ext1Z(π−t−1X,Z)→ πtIZX → HomZ(π−tX,Z)→ 0.

We can think of these as organized in a two-line spectral sequence:

ExtsZ(πtX,Z)⇒ π−t−sIZX. (2)

Remark 2.1. In this project we will use Anderson duality in the localization
of the category of spectra where we invert some integer n (we will mostly be
interested in the case n = 2). The correct way to proceed is to replace Z by
Z[1/n] everywhere. In particular, the homotopy groups of the Anderson dual
of X will be computed by ExtsZ[1/n](πtX,Z[1/n]).

2.1 Relation to K(n)-local and Mahowald-Rezk Duality

This section is a digression meant to suggest the relevance of Anderson duality
by relating it to K(n)-local Brown-Comenetz dualty as well as Mahowald-Rezk
duality.
We recall the definition of the Brown-Comenetz duality functor in the K(n)-
local category from [HS99, Ch. 10]. Fix a prime p, and for any n ≥ 0, let
K(n) denote the Morava K-theory spectrum, and let Ln denote the Bousfield
localization functor with respect to the Johnson-Wilson spectrum E(n). There
is a natural transformation Ln → Ln−1, whose homotopy fiber is called the
monochromatic layer functor Mn, and a homotopy pull-back square

Ln //

��

LK(n)

��

Ln−1
// Ln−1LK(n),

(3)

implying that Mn is also the fiber of LK(n) → Ln−1LK(n).
The K(n)-local Brown-Comenetz dual of X is defined to be InX =
F (MnX, IQ/Z), the Brown-Comenetz dual of the n-th monochromatic layer
of X . By (3), InX only depends on the K(n)-localization of X (since MnX
only depends on LK(n)X), and by the first part of the proof of Proposition 2.2
below, InX is K(n)-local. Therefore we can view In as an endofunctor of the
K(n)-local category.
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Note that after localization with respect to the Morava K-theories K(n) for
n ≥ 1, IQX becomes contractible since it is rational. The fiber sequence (1)
then gives that LK(n)IQ/ZX = LK(n)ΣIZX . By Proposition 2.2 below, we
have that InX is the K(n)-localization of the Brown-Comenetz dual of LnX .
In particular, if X is already E(n)-local, then

InX = LK(n)ΣIZX. (4)

In order to define the Mahowald-Rezk duality functor [MR99] we need some
preliminary definitions. Let Ti be a sequence of finite spectra of type i and let
Tel(i) be the mapping telescope of some vi self-map of Ti. The finite localization
Lfn of X is the Bousfield localization with respect to the wedge Tel(0) ∨ · · · ∨
Tel(n), and Cfn is the fiber of the localization map X → LfnX . A spectrum X
satisfies the E(n)-telescope conjecture [Rav84, 10.5] if and only if the natural
map LfnX → LnX is an equivalence (eg. [MR99]).
Let X be a spectrum whose Fp-cohomology is finitely presented over the Steen-
rod algebra; the Mahowald-Rezk dualWn is defined to be the Brown-Comenetz
dual IQ/ZC

f
n .

Suppose now that X is an E(n)-local spectrum which satisfies the E(n) and
E(n − 1)-telescope conjectures. This condition is satisfied by the spectra of
topological modular forms [Beh06, 2.4.7] with which we are concerned in this
work. Then the monochromatic layer MnX is the fiber of the natural map
LfnX → Lfn−1X . Taking the Brown-Comenetz dual of the first column in the
diagram of fiber sequences

Σ−1MnX //

��

⋆ //

��

MnX

��

CfnX
//

��

X // LfnX

��

Cfn−1X
// X // Lfn−1X

implies the fiber sequence [Beh06, 2.4.4]

Wn−1X →WnX → LK(n)IZX,

relating Mahowald-Rezk duality to K(n)-local Anderson duality.
We have used the following result.

Proposition 2.2. For any X and Y , the natural map F (LnX,Y ) →
F (MnX,Y ) is K(n)-localization.

Proof. First of all, we need to show that F (MnX,Y ) is K(n)-local. This is
equivalent to the condition that for any K(n)-acyclic spectrum Z, the function
spectrum F (Z, F (MnX,Y )) = F (Z∧MnX,Y ) is contractible. But the functor
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Mn is smashing, and is also the fiber of LK(n) → Ln−1LK(n), by the homotopy
pull-back square (3). Therefore, for K(n)-acyclic Z, MnZ is contractible, and
the claim follows.
It remains to show that the fiber F (Ln−1X,Y ) is K(n)-acyclic. To do this,
smash with a generalized Moore spectrum Tn. This is a finite, Spanier-
Whitehead self-dual (up to a suspension shift) spectrum of type n, which is
therefore E(n− 1)-acyclic. A construction of such a spectrum can be found in
Section 4 of [HS99]. We have (up to a suitable suspension)

F (Ln−1X,Y ) ∧ Tn = F (Ln−1X,Y ) ∧DTn = F
(

Tn, F (Ln−1X,Y )
)

= F
(

(Ln−1Tn) ∧X,Y
)

= ∗,

implying that F (Ln−1X,Y ) is K(n)-acyclic, which proves the proposition.

3 Derived Stacks

In this section we briefly recall the notion of derived stack which will be useful
to us; a good general reference for the classical theory of stacks is [LMB00].
Roughly speaking, stacks arise as solutions to moduli problems by allowing
points to have nontrivial automorphisms. The classical viewpoint is that a
stack is a category fibered in groupoids. One can also equivalently view a stack
as a presheaf of groupoids [Hol08].
Deligne-Mumford stacks are particularly well-behaved, because they can be
studied by maps from schemes in the following sense. If X is a Deligne-Mumford
stack, then X has an étale cover by a scheme, and any map from a scheme S to
X is representable. (A map of stacks f : X → Y is said to be representable if
for any scheme S over Y, the (2-categorical) pullback X ×

Y
S is again a scheme.)

Derived stacks are obtained by allowing sheaves valued in a category which has
homotopy theory, for example differential graded algebras, simplicial rings, or
commutative ring spectra. To be able to make sense of the latter, one needs a
nice model for the category of spectra and its smash product, with a good notion
of commutative rings and modules over those. Much has been written recently
about derived algebraic geometry, work of Lurie on the one hand [Lur11b,
Lur09, Lur11a] and Toën-Vezossi on the other [TV05, TV08]. For this project
we only consider sheaves of E∞-rings on ordinary sites, and consequently we
avoid the need to work with infinity categories. Derived Deligne-Mumford
stacks will be defined as follows.

Definition 3.1. A derived Deligne-Mumford stack is a pair (X ,OtopX ) consist-

ing of a topological space (or a Grothendieck topos) X and a sheaf OtopX of
E∞-ring spectra on its small étale site such that

(a) the pair (X , π0O
top
X ) is an ordinary Deligne-Mumford stack, and

(b) for every k, πkO
top
X is a quasi-coherent π0O

top
X -module.
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Here and elsewhere in this paper, by π∗F of a sheaf of E∞-rings we will mean
the sheafification of the presheaf U 7→ π∗F(U).
Next we discuss sheaves of E∞-ring spectra. Let C be a small Grothendieck
site. By a presheaf of E∞-rings on C we shall mean simply a functor F : Cop →
(E∞-Rings). The default example of a site C will be the small étale site Xét of
a stack X [LMB00, Ch. 12].
A presheaf F of E∞-rings on C is said to satisfy hyperdescent or that it is a
sheaf provided that the natural map F(X)→ holimF(U•) is a weak equivalence
for every hypercover U• → X . Hyperdescent is closely related to fibrancy in
Jardine’s model category structure [Jar87, Jar00]. Specifically if F → QF is a
fibrant replacement in Jardine’s model structure, then [DHI04] shows that F
satisfies hyperdescent if and only if F (U) → QF (U) is a weak equivalence for
all U .
When the site C has enough points, one may use Godement resolutions in order
to “sheafify” a presheaf [Jar87, Section 3]. In particular, since Xét has enough
points we may form the Godement resolution F → GF . The global sections of
GF are called the derived global sections of F and Jardine’s construction also
gives a spectral sequence to compute the homotopy groups

Hs(X , πtF)⇒ πt+sRΓF . (5)

4 Moduli of Elliptic Curves and Level Stuctures

In this section, we summarize the results of interest regarding the moduli stacks
of elliptic curves and level structures. Standard references for the ordinary
geometry are Deligne-Rapoport [DR73], Katz-Mazur [KM85], and Silverman
[Sil86].
A curve over a base scheme (or stack) S is a proper, flat morphism p : C → S,
of finite presentation and relative dimension one. An elliptic curve is a curve
p : C → S of genus one whose geometric fibers are connected, smooth, and
proper, equipped with a section e : S → C or equivalently, equipped with a
commutative group structure [KM85, 2.1.1] . These objects are classified by
the moduli stack of elliptic curvesM0.
The j-invariant of an elliptic curve gives a map j :M0 → A1 which identifies
A1 with the coarse moduli scheme [KM85, 8.2]. Thus M0 is not proper, and
in order to have Grothendieck-Serre duality this is a property we need. Hence,
we shall work with the compactification M of M0, which has a modular de-
scription in terms of generalized elliptic curves: it classifies proper curves of
genus one, whose geometric fibers are connected and allowed to have an iso-
lated nodal singularity away from the point marked by the specified section e
[DR73, II.1.12].
If C is smooth, then the multiplication by n map [n] : C → C is finite flat
map of degree n2 [DR73, II.1.18], whose kernel we denote by C[n]. If n is
invertible in the ground scheme S, the kernel C[n] is finite étale over S, and
étale locally isomorphic to (Z/n)2. A level n structure is then a choice of an
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isomorphism φ : (Z/n)2 → C[n] [DR73, IV.2.3]. We denote the moduli stack
(implicitly understood as an object over SpecZ[1/n]) which classifies smooth

elliptic curves equipped with a level n structure byM(n)
0
.

In order to give a modular description of the compactificationM(n) ofM(n)
0
,

we need to talk about so-called Néron polygons. We recall the definitions from
[DR73, II.1]. A (Néron) n-gon is a curve over an algebraically closed field
isomorphic to the standard n-gon, which is the quotient of P1 × Z/n obtained
by identifying the infinity section of the i-th copy of P1 with the zero section
of the (i + 1)-st. A curve p : C → S is a stable curve of genus one if its
geometric fibers are either smooth, proper, and connected, or Néron polygons.
A generalized elliptic curve is a stable curve of genus one, equipped with a
morphism + : Csm ×

S
C → C which

(a) restricts to the smooth locus Csm of C, making it into a commutative
group scheme, and

(b) gives an action of the group scheme Csm on C, which on the singular
geometric fibers of C is given as a rotation of the irreducible components.

Given a generalized elliptic curve p : C → S, there is a locally finite family
of disjoint closed subschemes (Sn)n≥1 of S, such that C restricted to Sn is
isomorphic to the standard n-gon, and the union of all Sn’s is the image of the
singular locus Csing of C [DR73, II.1.15].

The morphism n : Csm → Csm is again finite and flat, and if C is an m-
gon, the kernel C[n] is étale locally isomorphic to (µn × Z/(n,m)) [DR73,
II.1.18]. In particular, if C a generalized elliptic curve whose geometric fibers
are either smooth or n-gons, then the scheme of n-torsion points C[n] is étale
locally isomorphic to (Z/n)2. These curves give a modular interpretation of the

compactificationM(n) ofM(n)
0
. The moduli stackM(n) overZ[1/n] classifies

generalized elliptic curves with geometric fibers that are either smooth or n-
gons, equipped with a level n structure, i.e. an isomorphism ϕ : (Z/n)2 → C[n]
[DR73, IV.2.3].

Note that GL2(Z/n) acts on M(n) on the right by pre-composing with the
level structure, that is, g : (C,ϕ) 7→ (C,ϕ ◦ g). If C is smooth, this action is
free and transitive on the set of level n structures. If C is an n-gon, then the
stabilizer of a given level n structure is a subgroup of GL2(Z/n) conjugate to

the upper triangular matrices U =

{(

1 ∗
0 1

)}

.

The forgetful mapM(n)
0
→M0[1/n] extends to the compactifications, where

it is given by forgetting the level structure and contracting the irreducible
components that do not meet the identity section [DR73, IV.1]. The re-
sulting map q : M(n) → M[1/n] is a finite flat cover of M[1/n] of degree
|GL2(Z/n)|. Moreover, the restriction of q to the locus of smooth curves is an
étale GL2(Z/n)-torsor, and over the locus of singular curves, q is ramified of
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degree n [Kat73, A1.5]. In fact, at the “cusps” the map q is given as

q :M(n)
∞ ∼= HomU (GL2(Z/n),M

∞)→M∞.

Note that level 1 structure on a generalized elliptic curve C/S is nothing but
the specified identity section e : S → C. Thus we can think ofM asM(1).
The objectsM(n), n ≥ 1, come equipped with (Z-)graded sheaves, the tensor
powers ω∗

M(n) of the sheaf of invariant differentials [DR73, I.2]. Given a general-
ized elliptic curve p : C ⇄ S : e, let I be the ideal sheaf of the closed embedding
e. The fact that C is nonsingular at e implies that the map p∗(I/I

2)→ p∗ωC/S
is an isomorphism [Har77, II.8.12]. Denote this sheaf on S by ωC . It is locally
free of rank one, because C is a curve over S, with a potential singularity away
from e. The sheaf of invariant differentials onM(n) is then defined by

ωM(n)(S
C
−→M(n)) = ωC .

It is a quasi-coherent sheaf which is an invertible line bundle onM(n).
The ring of modular forms with level n structures is defined to be the graded
ring of global sections

MF (n)∗ = H0(M(n), ω∗
M(n)),

where, as usual, we denote MF (1)∗ simply by MF∗.

5 Topological Modular Forms and Level Structures

By the obstruction theory of Goerss-Hopkins-Miller, as well as work of Lurie,
the moduli stackM has been upgraded to a derived Deligne-Mumford stack,
in such a way that the underlying ordinary geometry is respected. Namely, a
proof of the following theorem can be found in Mark Behrens’ notes [Beh07].

Theorem 5.1 (Goerss-Hopkins-Miller, Lurie). The moduli stack M admits a
sheaf of E∞-rings Otop on its étale site which makes it into a derived Deligne-
Mumford stack. For an étale map SpecR→M classifying a generalized elliptic
curve C/R, the sections Otop(SpecR) form an even weakly periodic ring spec-
trum E such that

(a) π0E = R, and

(b) the formal group GE associated to E is isomorphic to the completion Ĉ
at the identity section.

Moreover, there are isomorphisms of quasi-coherent π0O
top-modules π2kO

top ∼=
ωkM and π2k+1O

top ∼= 0 for all integers k.

The spectrum of topological modular forms Tmf is defined to be the E∞-ring
spectrum of global sections RΓ(Otop).
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We remark that inverting 6 kills all torsion in the cohomology ofM as well as
the homotopy of Tmf . In that case, following the approach of this paper would
fairly formally imply Anderson self-duality for Tmf [1/6] from the fact thatM
has Grothendieck-Serre duality. To understand integral duality on the derived
moduli stack of generalized elliptic curves, we would like to use the strategy
of descent, dealing separately with the 2 and 3-torsion. The case when 2 is
invertible captures the 3-torsion, is more tractable, and is thoroughly worked
out in this paper by using the smallest good cover by level structures, M(2).
The 2-torsion phenomena involve computations that are more daunting and
will be dealt with subsequently. However, the same methodology works to give
the required self-duality result.
To begin, we need to lift M(2) and the covering map q : M(2) → M to
the setting of derived Deligne-Mumford stacks. We point out that this is not
immediate from Theorem 5.1 because the map q is not étale. However, we
will explain how one can amend the construction to obtain a sheaf of E∞-
rings O(2)top on M(2). We will also incorporate the GL2(Z/2)-action, which
is crucial for our result.
We will in fact sketch an argument based on Mark Behrens’ [Beh07] to construct
sheaves O(n)top on M(n)[1/2n] for any n, as the extra generality does not
complicate the solution.
As we remarked earlier, the restriction of q to the smooth locus M(n)0 is
an étale GL2(Z/n)-torsor, hence we automatically obtain O(n)|M(n)0 together
with its GL2(Z/n)-action. We will use the Tate curve and K(1)-local obstruc-
tion theory to construct the E∞-ring of sections of the putative O(n)top in a
neighborhood of the cusps, and sketch a proof of the following theorem.

Theorem 5.2 (Goerss-Hopkins). The moduli stack M(n) (as an object over
Z[1/2n]) admits a sheaf of even weakly periodic E∞-rings O(n)top on its
étale site which makes it into a derived Deligne-Mumford stack. There are
isomorphisms of quasi-coherent π0O(n)

top-modules π2kO(n)
top ∼= ωkM(n) and

π2k−1O(n)
top ∼= 0 for all integers k. Moreover, the covering map q :M(n) →

M[1/2n] is a map of derived Deligne-Mumford stacks.

5.1 Equivariant K(1)-local Obstruction Theory

This is a combination of the Goerss-Hopkins’ [GH04b, GH04a] and Cooke’s
[Coo78] obstruction theories, which in fact is contained although not explicitly
stated in [GH04b, GH04a]. Let G be a finite group; a G-equivariant θ-algebra
is an algebraic model for the p-adic K-theory of an E∞ ring spectrum with an
action of G by E∞-ring maps. Here, G-equivariance means that the action of
G commutes with the θ-algebra operations. As G-objects are G-diagrams, the
obstruction theory framework of [GH04a] applies.
Let Hs

G−θ(A,B[t]) denote the s-th derived functor of derivations from A into
B[t]4 in the category of G-equivariant θ-algebras. These are the G-equivariant

4For a graded module B, B[t] is the shifted graded module with B[t]k = Bt+k.
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derivatons from A into B[t], and there is a composite functor spectral sequence

Hr(G,Hs−r
θ (A,B[t]))⇒ Hs

G−θ(A,B[t]). (6)

Theorem 5.3 (Goerss-Hopkins). (a) Given a G − θ-algebra A, the obstruc-
tions to existence of a K(1)-local even-periodic E∞-ring X with a G-
action by E∞-ring maps, such that K∗X ∼= A (as G − θ-algebras) lie
in

Hs
G−θ(A,A[−s+ 2]) for s ≥ 3.

The obstructions to uniqueness like in

Hs
G−θ(A,A[−s+ 1]) for s ≥ 2.

(b) Given K(1)-local E∞-ring G-spectra X and Y whose K-theory is p-
complete, and an equivariant map of θ-algebras f∗ : K∗X → K∗Y , the
obstructions to lifting f∗ to an equivariant map of E∞-ring spectra lie in

Hs
G−θ(K∗X,K∗Y [−s+ 1]), for s ≥ 2,

while the obstructions to uniqueness of such a map lie in

Hs
G−θ(K∗X,K∗Y [−s]), for s ≥ 1.

(c) Given such a map f : X → Y , there exists a spectral sequence

Hs
G−θ(K∗X,K∗Y [t])⇒ π−t−s(E∞(X,Y )G, f),

computing the homotopy groups of the space of equivariant E∞-ring maps,
based at f .

5.2 The Igusa Tower

Fix a prime p > 2 which does not divide n. LetMp denote the p-completion
ofM, and letM∞ denote a formal neighborhood of the cusps ofMp. We will
use the same embellishments for the moduli with level structures.
The idea is to use the above Goerss-Hopkins obstruction theory to construct
the E∞-ring of sections overM(n)

∞
of the desired O(n)top, from the algebraic

data provided by the Igusa tower, which will supply an equivariant θ-algebra.
We will consider the moduli stack M(n) as an object over Z[1/n, ζ], for ζ a
primitive n-th root of unity. The structure map M(n) → SpecZ[1/n, ζ] is
given by the Weil pairing [KM85, 5.6].
The structure ofM∞ as well asM(n)

∞
is best understood by the Tate curves.

We already mentioned that the singular locus is given by Néron n-gons; the
n-Tate curve is a generalized elliptic curve in a neighborhood of the singular
locus. It is defined over the ring Z[[q1/n]], so that it is smooth when q is
invertible and a Néron n-gon when q is zero. For details of the construction,
the reader is referred to [DR73, VII].
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From [DR73, VII] and [KM85, Ch 10], we learn that M∞ = Spf Zp[[q]], and

thatM(n)∞ =
∐

cusps

Spf Zp[ζ][[q
1/n]]. The GL2(Z/n)-action onM(n)∞ is un-

derstood by studying level structures on Tate curves, and is fully described
in [KM85, Theorem 10.9.1]. The group U of upper-triangular matrices in

GL2(Z/n) acts on B(n) = Zp[ζ][[q
1/n]] by the roots of unity:

(

1 a
0 1

)

∈ U

sends q1/n to ζaq1/n. Note that then, the inclusion Zp[[q]] → B(n) is U -
equivariant, and M(n)

∞
is represented by the induced GL2(Z/n)-module

A(n) = HomU (GL2(Z/n), B(n)).
Denote byM(pk, n)

∞
a formal neighborhood of the cusps in the moduli stack

of generalized elliptic curves equipped with level structure maps

η : µpk
∼
−→ C[pk]

ϕ : (Z/n)2
∼
−→ C[n].

Note that as we are working in a formal neighborhood of the singular locus,
the curves C classified byM(pk, n)

∞
have ordinary reduction modulo p. As k

runs through the positive integers, we obtain an inverse system called the Igusa
tower, and we will write M(p∞, n) for the inverse limit. It is the Z×

p -torsor
over M(n)

∞
given by the formal affine scheme Spf Hom(Z×

p , A(n)) [KM85,
Theorem 12.7.1].
The Tate curve comes equipped with a canonical invariant differential, which
makes ωM(n)∞ isomorphic to the line bundle associated to the graded A(n)-

module A(n)[1]. We define A(n)∗ to be the evenly graded A(n)-module, which
in degree 2t is H0(M(n)∞, ωtM(n)∞) ∼= A(n)[t]. Similarly we define A(p∞, n)∗.

The modules A(p∞, n)∗ = Hom(Z×
p , A(n)∗) have a natural GL2(Z/n)-

equivariant θ-algebra structure, with operations coming from the following
maps

(ψk)∗ :M(p∞, n)→M(p∞, n)

(C, η, ϕ) 7→ (C, η ◦ [k], ϕ),

(ψp)∗ :M(p∞, n)→M(p∞, n)

(C, η, ϕ) 7→ (C(p), η(p), ϕ(p)).

Here, C(p) is the elliptic curve obtained from C by pulling back along the
absolute Frobenius map on the base scheme. The multiplication by p isogeny
[p] : C → C factors through C(p) as the relative Frobenius F : C → C(p)

followed by the Verschiebung map V : C(p) → C [KM85, 12.1]. The level
structure ϕ(p) : (Z/n)2 → C(p) is the unique map making the diagram

(Z/n)2

ϕ

��

ϕ(p)

{{v
v

v
v

v

C(p)
V

// C
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commute. Likewise, η(p) is the unique level structure making an analogous
diagram commute. More details on η(p) are in [Beh07, Section 5]. The op-
eration ψk comes from the action of Z×

p on the induced module A(p∞, n)∗ =
Hom(Z×

p , A(n)∗).
We point out that from this description of the operations, it is clear that the
GL2(Z/n)-action commutes with the operations ψk and ψp, which in particular
gives an isomorphism

A(p∞, n)∗ ∼= HomU

(

G,Hom
(

Z×
p , B(n)∗

))

. (7)

Denote by B(p∞, n)∗ the θ-algebra Hom(Z×
p , B(n)∗).

As a first step, we apply (a) of Theorem 5.3 to construct even-periodic K(1)-
local GL2(Z/n)-equivariant E∞-ring spectra Tmf(n)∞p whose p-adic K-theory
is given by A(p∞, n)∗. The starting point is the input to the spectral sequence
(6), the group cohomology

Hr
(

GL2(Z/n), H
s−r
θ (A(p∞, n)∗, A(p

∞, n)∗)
)

. (8)

Remark 5.4. Lemma 7.5 of [Beh07] implies that Hs
θ (B(p∞, n)∗, B(p∞, n)∗) = 0

for s > 1, from which we deduce the existence of a unique K(1)-local weakly
even periodic E∞-ring spectrum that we will denote by K[[q1/n]], whose K-
theory is the θ-algebra B(p∞, n)∗. This spectrum K[[q1/n]] should be thought
of as the sections of O(n)top over a formal neighborhood of a single cusp of
M(n).

By the same token, we also know that Hs
θ (A(p

∞, n)∗, A(p
∞, n)∗) = 0 for s > 1,

and

H0
θ (A(p

∞, n)∗, A(p
∞, n)∗) ∼= HomU

(

GL2(Z/n), H
0
θ (A(p

∞, n)∗, B(p∞, n)∗)
)

.

Thus the group cohomology (8) is simply

Hr
(

U,H0
θ (A(p

∞, n)∗, B(p∞, n)∗)
)

which is trivial for r > 0 as the coefficients are p-complete, and the group U
has order n, coprime to p. Therefore, the spectral sequence (6) collapses to
give that

Hs
GL2(Z/n)−θ

(A(p∞, n)∗, A(p
∞, n)∗) = 0, for s > 0.

Applying Theorem 5.3 now gives our required GL2(Z/n)-spectra Tmf(n)
∞
p .

A similar argument produces a GL2(Z/n)-equivariant E∞-ring map

q∞ : Tmf∞
p → Tmf(n)∞p ,

where Tmf∞ is given the trivial GL2(Z/n)-action.

Proposition 5.5. The map q∞ : Tmf∞
p → Tmf(n)∞p is the inclusion of

homotopy fixed points.
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Proof. Note that from our construction it follows that Tmf(n)∞p is equivalent

to HomU (GL2(Z/n),K[[q1/n]]), whereK[[q1/n]] has the U -action lifting the one
we described above on its θ-algebra B(n)∗. (This action lifts by obstruction
theory to the E∞-level because the order of U is coprime to p.) Since Tmf∞

p

has trivial GL2(Z/n)-action, the map q∞ factors through the homotopy fixed
point spectrum

(

Tmf(n)∞p
)hGL2(Z/n) ∼= K[[q1/n]]hU .

So we need that the map q′ : Tmf∞ = K[[q]]→ K[[q1/n]]hU be an equivalence.
The homotopy groups of K[[q1/n]]hU are simply the U -invariant homotopy in
K[[q1/n]], because U has no higher cohomology with p-adic coefficients. Thus
π∗q

′ is an isomorphism, and the result follows.

5.3 Gluing

We need to patch these results together to obtain the sheaf O(n)top on the
étale site ofM(n).
To construct the presheaves Õ(n)topp on the site of affine schemes étale over
M(n), one follows the procedure of [Beh07, Step 2, Sections 7 and 8]. Thus
for each prime p > 2 which does not divide n, we have Õ(n)p on M(n)p. As

in [Beh07, Section 9], rational homotopy theory produces a presheaf Õ(n)Q.
These glue together to give Õ(n) (note, 2n will be invertible in Õ(n)).
By construction, the homotopy group sheaves of Õ(n)top are given by the tensor
powers of the sheaf of invariant differentials ωM(n), which is a quasi-coherent

sheaf onM(n). Section 2 of [Beh07] explains how this data gives rise to a sheaf
O(n)top on the étale site of M(n), so that the E∞-ring spectrum Tmf(n) of
global sections of O(n)top can also be described as follows.

Denote by TMF (n) the E∞-ring spectrum of sections RΓ
(

O(n)top|M(n)0

)

over the locus of smooth curves. Let TMF (n)∞ be the the E∞-ring of sec-
tions of O(n)top|M(n)0 in a formal neighborhood of the cusps. Both have
a GL2(Z/n)-action by construction. The equivariant obstruction theory of
Theorem 6 can be used again to construct a GL2(Z/n)-equivariant map
TMF (n)K(1) → TMF (n)∞p that refines the q-expansion map; again, the
key point as that K∗(TMF (n)∞p ) is a U -induced GL2(Z/n)-module. Pre-
composing with the K(1)-localization map, we get a GL2(Z/n)-E∞-ring map
TMF (n)→ TMF (n)∞.
We build Tmf(n)p as a pullback

Tmf(n)p //

��

Tmf(n)∞p

��

TMF (n)p // TMF (n)∞p
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All maps involved are GL2(Z/n)-equivariant maps of E∞-rings, so Tmf(n)
constructed this way has a GL2(Z/n)-action as well.

6 Descent and Homotopy Fixed Points

We have remarked several times that the map q0 : M(n)
0
→ M0 is a

GL2(Z/n)-torsor, thus we have a particularly nice form of étale descent. On
global sections, this statement translates to the equivalence

TMF [1/2n]→ TMF (n)hGL2(Z/n).

The remarkable fact is that this property goes through for the compactified
version as well.

Theorem 6.1. The map Tmf [1/2n]→ Tmf(n)hGL2(Z/n) is an equivalence.

Proof. This is true away from the cusps, but by Proposition 5.5, it is also true
near the cusps. We constructed Tmf(n) from these two via pullback diagrams,
and homotopy fixed points commute with pullbacks.

Remark 6.2. For the rest of this paper, we will investigate Tmf(2), the spec-
trum of topological modular forms with level 2 structure. Note that this spec-
trum differs from the more commonly encountered TMF0(2), which is the
receptacle for the Ochanine genus [Och87], as well as the spectrum appearing
in the resolution of the K(2)-local sphere [GHMR05, Beh06]. The latter is
obtained by considering isogenies of degree 2 on elliptic curves, so-called Γ0(2)
structures.

7 Level 2 Structures Made Explicit

In this section we find an explicit presentation of the moduli stackM(2).
Let E/S be a generalized elliptic curve over a scheme on which 2 is invertible,
and whose geometric fibers are either smooth or have a nodal singularity (i.e.
are Néron 1-gons). Then Zariski locally, E is isomorphic to a Weierstrass curve
of a specific and particularly simple form. Explicitly, there is a cover U → S
and functions x, y on U such that the map U → P2

U given by [x, y, 1] is an
isomorphism between EU = E×

S
U and a Weierstrass curve in P2

U given by the

equation

Eb : y2 = x3 +
b2
4
x2 +

b4
2
x+

b6
4

=: fb(x), (9)

such that the identity for the group structure on EU is mapped to the point at
infinity [0, 1, 0][Sil86, III.3],[KM85]. Any two Weierstrass equations for EU are
related by a linear change of variables of the form

x 7→ u−2x+ r

y 7→ u−3y.
(10)
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The object which classifies locally Weierstrass curves of the form (9), together
with isomorphisms which are given as linear change of variables (10), is a stack
Mweier [1/2], and the above assignment E 7→ Eb of a locally Weierstrass curve
to an elliptic curve defines a map w :M[1/2]→Mweier [1/2].
The Weierstrass curve (9) associated to a generalized elliptic curve E over an
algebraically closed field has the following properties: E is smooth if and only if
the discriminant of fb(x) has no repeated roots, and E has a nodal singularity if
and only if fb(x) has a repeated but not a triple root. Moreover, non-isomorphic
elliptic curves cannot have isomorphic Weierstrass presentations. Thus the
map w :M[1/2] →Mweier [1/2] injects M[1/2] into the open substack U(∆)
of Mweier[1/2] which is the locus where the discriminant of fb has order of
vanishing at most one.
Conversely, any Weierstrass curve of the form (9) has genus one, is smooth if
and only if fb(x) has no repeated roots, and has a nodal singularity whenever
it has a double root, so w : M[1/2] → U(∆) is also surjective, hence an
isomorphism. Using this and the fact that points of order two on an elliptic
curve are well understood, we will find a fairly simple presentation ofM(2).
The moduli stack of locally Weierstrass curves is represented by the Hopf al-
gebroid

(B = Z[1/2][b2, b4, b6], B[u±1, r]).

Explicitly, there is a presentation SpecB →Mweier[1/2], such that

SpecB ×
Mweier [1/2]

SpecB = SpecB[u±1, r].

The projection maps to SpecB are Spec of the inclusion of B in B[u±1] and
Spec of the map

b2 7→ u2(b2 + 12r)

b4 7→ u4(b4 + rb2 + 6r2)

b6 7→ u6(b6 + 2rb4 + r2b2 + 4r3)

which is obtained by plugging in the transformation (10) into (9). In other
words, Mweier [1/2] is simply obtained from SpecB by enforcing the isomor-
phisms that come from the change of variables (10).
Suppose E/S is a smooth elliptic curve which is given locally as a Weierstrass
curve (9), and let φ : (Z/2)2 → E be a level 2 structure. For convenience in
the notation, define e0 =

(

1
1

)

, e1 =
(

1
0

)

, e2 =
(

0
1

)

∈ (Z/2)2. Then φ(ei) are
all points of exact order 2 on E, thus have y-coordinate equal to zero since
[−1](y, x) = (−y, x) ([Sil86, III.2]) and (9) becomes

y2 = (x− x0)(x − x1)(x− x2), (11)

where xi = x(φ(ei)) are all different.
If E is a generalized elliptic curve which is singular, i.e. E is a Néron 2-gon,
then a choice of level 2 structure makes E locally isomorphic to the blow-up
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of (11) at the singularity (seen as a point of P2), with xi = xj 6= xk, for
{i, j, k} = {0, 1, 2}.
So let A = Z[1/2][x0, x1, x2], let L be the line in SpecA defined by the ideal
(x0 − x1, x1 − x2, x2 − x0), and let SpecA− L be the open complement. The
change of variables (10) translates to a (Ga ⋊Gm)-action on SpecA that pre-
serves L and is given by:

xi 7→ u2(xi − r).

Consider the isomorphism ψ : (SpecA− L)
∼
−→ (A2 − {0})× A1:

(x0, x1, x2) 7→ ((x1 − x0, x2 − x0), x0) .

We see that Ga acts trivially on the (A2−{0})-factor, and freely by translation
on A1. Therefore the quotient (SpecA− L)//Ga is

M̃(2) = A2 − {0} = SpecZ[1/2][λ1, λ2]− {0},

the quotient map being ψ composed with the projection onto the first factor.
This corresponds to choosing coordinates in which E is of the form:

y2 = x(x − λ1)(x − λ2). (12)

The Gm-action is given by grading A as well as Λ = Z[1/2][λ1, λ2] so that
the degree of each xi and λi is 2. It follows that M(2) = M̃(2)//Gm is the
weighted projective line ProjΛ = (Spec Λ−{0})//Gm. Note that we are taking
homotopy quotient which makes a difference: −1 is a non-trivial automorphism
onM(2) of order 2.
The sheaf ωM(2) is an ample invertible line bundle on M(2), locally gen-

erated by the invariant differential ηEλ
=
dx

2y
. From (10) we see that the

Gm = SpecZ[u±1]-action changes ηEλ
to uηEλ

. Hence, ωM(2) is the line bundle
on M(2) = ProjΛ which corresponds to the shifted module Λ[1], standardly
denoted by O(1). We summarize the result.

Proposition 7.1. The moduli stack of generalized elliptic curves with a choice
of a level 2 structure M(2) is isomorphic to ProjΛ = (Spec Λ − {0})//Gm,
via the mapM(2)→ ProjΛ which classifies the sheaf of invariant differentials

ωM(2)onM(2). The universal curve over the locus of smooth curvesM(2)
0
=

ProjΛ−{0, 1,∞} is the curve of equation (12). The fibers at 0, 1, and ∞, are
Néron 2-gons obtained by blowing up the singularity of the curve (12).

Remark 7.2. As specifying a Gm-action is the same as specifying a grading,
we can think of the ringed space (M(2), ω∗

M(2)) as the ringed space (M̃(2) =

SpecΛ− {0},OM̃(2)) together with the induced grading.

Next we proceed to understand the action of GL2(Z/2) on the global sections
H0(M(2), ω∗

M(2)) = Λ. By definition, the action comes from the natural action
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of GL2(Z/2) on (Z/2)2 and hence by pre-composition on the level structure
maps φ : (Z/2)2 → E[2]. If we think of GL2(Z/2) as the symmetric group S3,
then this action permutes the non-zero elements {e0, e1, e2} of (Z/2)2, which
translates to the action on

H0(SpecA− L,OSpecA−L) = Z[x0, x1, x2],

given as g ·xi = xgi where g ∈ S3 = Perm{0, 1, 2}. The map on H0 induced by

the projection (SpecA− L)→ M̃(2) is

Z[λ1, λ2]→ Z[x0, x1, x2]

λi 7→ xi − x0

Therefore, we obtain that gλi is the inverse image of xgi − xg0. That is,
gλi = λgi − λg0, where we implicitly understand that λ0 = 0. We have proven
the following lemma.

Lemma 7.3. Choose the generators of S3 = Perm{0, 1, 2}, σ = (012) and
τ = (12). Then the S3 action on Λ = H0(M(2), ω∗

M(2)) is determined by

τ : λ1 7→ λ2 σ : λ1 7→ λ2 − λ1

λ2 7→ λ1 λ2 7→ −λ1.

This fully describes the global sectionsH0(M(2), ω∗
M(2)) as an S3-module. The

action on H1(M(2), ω∗
M(2)) is not as apparent and we deal with it using Serre

duality (8.5).

8 (Equivariant) Serre Duality for M(2)

We will proceed to prove Serre duality forM(2) in an explicit manner that will
be useful later, by following the standard computations for projective spaces,
as in [Har77]. To emphasize the analogy with the corresponding statements
about the usual projective line, we might write ProjΛ and O(∗) instead of
M(2) and ω∗

M(2), in view of Remark (7.2). Also remember that for brevity, we

might omit writing 1/2.

Proposition 8.1. The cohomology of M(2) with coefficients in the graded
sheaf of invariant differentials ω∗

M(2) is computed as

Hs(M(2), ω∗
M(2)) =











Λ, s = 0

Λ/(λ∞1 , λ
∞
2 ), s = 1

0, else

where Λ/(λ∞1 , λ
∞
2 ) is a torsion Λ-module with a Z[1/2]-basis of monomials 1

λi
1λ

j
2

for i, j both positive.
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Remark 8.2. The module Λ/(λ∞1 , λ
∞
2 ) is inductively defined by the short exact

sequences

0→Λ
λ1−→ Λ

[ 1

λ1

]

→ Λ/(λ∞1 )→ 0

0→Λ/(λ∞1 )
λ2−→ Λ

[ 1

λ1λ2

]

→ Λ/(λ∞1 , λ
∞
2 )→ 0.

Remark 8.3. Note that according to 7.2, H∗(M(2), ω∗
M(2)) is isomorphic to

H∗(M̃(2),OM̃(2)) with the induced grading. It is these latter cohomology
groups that we shall compute.

Proof. We proceed using the local cohomology long exact sequence [Har77, Ch
III, ex. 2.3] for

M̃(2) ⊂ SpecΛ ⊃ {0}.

The local cohomology groups R∗Γ{0}(SpecΛ,O) are computed via a Koszul
complex as follows. The ideal of definition for the point {0} ∈ SpecΛ is (λ1, λ2),
and the generators λi form a regular sequence. Hence, R∗Γ{0}(Spec Λ,O) is
the cohomology of the Koszul complex

Λ→ Λ
[ 1

λ1

]

× Λ
[ 1

λ2

]

→ Λ
[ 1

λ1λ2

]

,

which is Λ/(λ∞1 , λ
∞
2 ), concentrated in (cohomological) degree two. We also

know that H∗(SpecΛ,O) = Λ concentrated in degree zero, so that the local
cohomology long exact sequence splits into

0→ Λ→ H0(M̃(2),O)→ 0

0→ H1(M̃(2),O)→ Λ/(λ∞1 , λ
∞
2 )→ 0,

giving the result.

Lemma 8.4. We have the following properties of the sheaf of differentials on
M(2).

(a) There is an isomorphism ΩM(2)
∼= ω−4

M(2).

(b) The cohomology group Hs(M(2),ΩM(2)) is zero unless s = 1, and
H1(M(2),ΩM(2)) is the sign representation Zsgn[1/2] of S3.

Proof. (a) The differential form η = λ1dλ2 − λ2dλ1 is a nowhere vanishing
differential form of degree four, thus a trivializing global section of the
sheaf O(4)⊗ ΩProjΛ. Hence there is an isomorphism ΩProjΛ

∼= O(−4).

(b) From Proposition 8.1, H∗(ProjΛ,Ω) is Z[1/2] concentrated in cohomo-
logical degree one, and generated by

η

λ1λ2
=
λ1
λ2
d
(λ2
λ1

)

.
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Any projective transformation ϕ of ProjΛ acts on H1(ProjΛ,Ω) by the
determinant detϕ. By our previous computations, as summarized in
Lemma 7.3, the transpositions of S3 act with determinant −1, and the
elements of order 3 of S3 with determinant 1. Hence the claim.

We are now ready to state and prove the following result.

Theorem 8.5 (Serre Duality). The sheaf of differentials ΩM(2) is a dualizing
sheaf on M(2), i.e. the natural cup product map

H0(M(2), ωtM(2))⊗H
1(M(2), ω−t

M(2) ⊗ ΩM(2))→ H1(M(2),ΩM(2)),

is a perfect pairing which is compatible with the S3-action.

Remark 8.6. Compatibility with the S3-action simply means that for every
g ∈ S3, the following diagram commutes

H0(M(2), g∗ωt
M(2))⊗H1(M(2), g∗ω−t

M(2) ⊗ g∗ΩM(2)) //

g

��

H1(M(2), g∗ΩM(2))

g

��

H0(M(2), ωt
M(2))⊗H1(M(2), ω−t

M(2)
⊗ ΩM(2)) // H1(M(2),ΩM(2))

.

But we have made a choice of generators for Λ = H0(M(2), ω∗
M(2))

∼=

H0(M(2), g∗ω∗
M(2)), and we have described the S3-action on those genera-

tors in Lemma 7.3. If we think of the induced maps g : H∗(M(2), g∗ω∗
M(2))→

H∗(M(2), ω∗
M(2)) as a change of basis action of S3, Theorem 8.5 states that we

have a perfect pairing of S3-modules. As a consequence, there is an S3-module
isomorphism

H1(M(2), ω∗−4
M(2))

∼= Hom(Λ,Zsgn[1/2]) = Λ∨
sgn.

(The subscript sgn will always denote twisting by the sign representation of
S3.)

Proof. Proposition 8.1 and Lemma 8.4 give us explicitly all of the modules
involved. Namely, H0(ProjΛ,O(∗)) is free on the monomials λi1λ

j
2, for i, j ≥ 0,

and H1(ProjΛ,O(∗)) is free on the monomials 1

λi
1λ

j
2

= 1

λi−1
1 λj−1

2

1
λ1λ2

, for i, j >

0. Lemma (8.4) gives us in addition that H1(ProjΛ,O(∗)⊗ ΩM(2)) is free on
1

λi−1
1 λj−1

2

η
λ1λ2

. We conclude that

(λi1λ
j
2,

η

λi+1
1 λj+1

2

) 7→
η

λ1λ2

is really a perfect pairing.
Moreover, this pairing is compatible with any projective transformation ϕ of
ProjΛ, which includes the S3-action as well as change of basis. Any such ϕ
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acts on H∗(ProjΛ,O(∗)) by a linear change of variables, and changes η by the
determinant detϕ. Thus the diagram

H0(M(2), ϕ∗ωt
M(2))⊗H1(M(2), ϕ∗ω−t

M(2) ⊗ ϕ∗ΩM(2)) //

ϕ

��

ϕ⊗detϕ

��

H1(M(2), ϕ∗ΩM(2))

detϕ

��

H0(M(2), ωt
M(2))⊗H1(M(2), ω−t

M(2) ⊗ ΩM(2)) // H1(M(2),ΩM(2))

commutes.

We explicitly described the induced action on the global sections
H0(ProjΛ,O(∗)) = Λ in Lemma 7.3, and in (8.4) we have identified
H1(ProjΛ,ΩProjΛ) with the sign representation Zsgn of S3. Therefore,
the perfect pairing is the natural map

Λ⊗ Λ∨
sgn → Zsgn[1/2].

9 Anderson Duality for Tmf(2)

The above Serre duality pairing forM(2) enables us to compute the homotopy
groups of Tmf(2) as a module over S3. We obtain that the E2 term of the
spectral sequence (5) for Tmf(2) looks as follows:

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

-32 -24 -16 -8 0 8 16 24
�������������������������

������������������������
Λ

Λ∨
sgn

Figure 1: Jardine spectral sequence (5) for π∗Tmf(2)

As there is no space for differentials or extensions, we conclude that

π∗Tmf(2) = Λ⊕ Σ−9Λ∨
sgn.

Even better, we are now able to prove self-duality for Tmf(2).

Since we are working with 2 inverted everywhere, the Anderson dual of Tmf(2)
is defined by dualizing the homotopy groups as Z[1/2]-modules, as noted in
Remark 2.1. Although this duality may deserve the notation IZ[1/2], we forbear
in the interest of compactness of the notation.

Recall that the Anderson dual of Tmf(2) is the function spectrum
F (Tmf(2), IZ), so it inherits an action by S3 from the one on Tmf(2).

Theorem 9.1. The Anderson dual of Tmf(2) is Σ9Tmf(2). The inherited
S3-action on π∗IZTmf(2) corresponds to the action on π∗Σ

9Tmf(2) up to a
twist by sign.
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Proof. On the level of homotopy groups, we have the spectral sequence (2)
which collapses because each πiTmf(2) is a free (and dualizable) Z-module.
Thus

π∗IZTmf(2) = (Λ ⊕ Σ−9Λ∨
sgn)

∨,

which is isomorphic to Σ9(π∗Tmf(2))sgn = Λ∨⊕Σ9Λsgn, as π∗Tmf(2)-modules
via a double duality map. Now, IZTmf(2), being defined as the function
spectrum F (Tmf(2), IZ), is naturally a Tmf(2)-module, thus a dualizing class
f : S9 → IZTmf(2) extends to an equivalence f̃ : Σ9Tmf(2) → IZTmf(2).
Specifically, let f : S9 → IZTmf(2) represent a generator of π9IZTmf(2) =
Z[1/2], which is also a generator of π∗IZTmf(2) as a π∗Tmf(2)-module. Then
the composition

f̃ : S9 ∧ Tmf(2)
f∧IdTmf(2)
−−−−−−−→ IZTmf(2) ∧ Tmf(2)

ψ
−→ IZTmf(2),

where ψ is the Tmf(2)-action map, gives the required equivalence. Namely, let
a be an element of π∗Tmf(2); then f̃∗(Σ

9a) = [f ]a, but f was chosen so that
its homotopy class generates π∗IZTmf(2) as a π∗Tmf(2)-module.

10 Group Cohomology Computations

This section is purely technical; for further use, we compute the S3 homology
and cohomology of the module H∗(M(2), ω∗

M(2)) = Λ ⊕ Σ−9Λ∨
sgn, where the

action is described in Lemma 7.3. First we deal with Tate cohomology, and
then we proceed to compute the invariants and coinvariants.

10.1 Tate Cohomology

The symmetric group on three letters fits in a short exact sequence

1→ C3 → S3 → C2 → 1,

producing a Lyndon-Hochschield-Serre spectral sequence for the cohomology
of S3. If 2 is invertible in the S3-module M , the spectral sequence collapses to
give that the S3 cohomology, as well as the S3-Tate cohomology, is computed
as the fixed points of the C3-analogue

H∗(C3,M)C2 ∼= H∗(S3,M)

Ĥ∗(C3,M)C2 ∼= Ĥ∗(S3,M).

Therefore, it suffices to compute the respective C3-cohomology groups as C2-
modules.

To do this, we proceed as in [GHMR05]. Give A = Z[1/2][x0, x1, x2] the left
S3-action as follows: g ∈ S3 maps xi to (−1)sgn gxgi. We have a surjection of
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S3-modules A→ Λ given by

x0 7→ λ1

σ(x0) = x1 7→ λ2 − λ1 = σ(λ1)

σ2(x0) = x2 7→ −λ2 = σ2(λ2).

The kernel of this map is the ideal generated by σ1 = x0 + x1 + x2. Therefore,
we have a short exact sequence

0→ Aσ1 → A→ Λ→ 0. (13)

The orbit under σ of each monomial of A has 3 elements, unless that polynomial
is a power of σ3 = x0x1x2. Therefore, A splits as a sum of a S3-module F with
free C3-action and Z[σ3] which has trivial C3-action, i.e.

A = F ⊕ Z[σ3]. (14)

Let N : A → H0(C3, A) be the additive norm map, and let d denote the
cohomology class in bidegree (0, 6) represented by σ3. Then we have an exact
sequence

A
N
−→ H∗(C3, A)→ Z/3[b, d]→ 0,

where b is a cohomology class of bidegree (2, 0). The Tate cohomology of A is
then

Ĥ∗(C3, A) ∼= H∗(C3, A)[b
−1]

∼
→ Z/3[b±1, d].

The quotient C2-action is given by τ(b) = −b and τ(d) = −d. Similarly, noting
that the degree of σ1 is 2, and τ(σ1) = −σ1, we obtain that the C3-cohomology
of the module Aσ1 is the same as that of A, with the internal grading shifted
by 2, and the quotient C2-action twisted by sign. In other words,

Ĥ∗(C3, Aσ1) ∼= Σ2
(

(Zsgn/3)[b̃
±1, d̃]

)

.

where again b̃ and d̃ have bidegrees (2, 0) and (0, 6) respectively, and the quo-
tient C2-action is described by

τ : b̃id̃j 7→ (−1)i+j+1 b̃id̃j .

Note that Ĥ∗(C3, A) and Ĥ
∗(C3, Aσ1) are concentrated in even cohomological

degrees. Therefore, the long exact sequence in cohomology induced by (13)
breaks up into the exact sequences

0→ Ĥ2k−1(C3,Λ)→ Ĥ2k(C3, Aσ1)→ Ĥ2k(C3, A)→ Ĥ2k(C3,Λ)→ 0. (15)

The middle map in this exact sequence is zero, because it is induced by mul-
tiplication by σ1, which is in the image of the additive norm on A. It follows
that

Ĥ∗(C3,Λ) ∼= Z/3[a, b±1, d]/(a2),
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where a is the element in bidegree (1, 2) which maps to b̃ ∈ Ĥ2(C3, Aσ1). The
quotient action by C2 is described as

τ : a 7→ a

b 7→ −b

d 7→ −d.

Now it only remains to take fixed points to compute the Tate cohomology of
Λ and Λsgn.

Proposition 10.1. Denote by R the graded ring Z/3[a, b±2, d2]/(a2). Then
Tate cohomology of the S3-modules Λ and Λsgn is

Ĥ∗(S3,Λ) = R⊕Rbd,

Ĥ∗(S3,Λsgn) = Rb⊕Rd.

Remark 10.2. The classes a and bd will represent the elements of π∗Tmf com-
monly known as α and β, respectively, at least up to a unit.

10.2 Invariants

We now proceed to compute the invariants H0(S3, H
∗(M(2), ω∗

M(2))). The
result is summarized in the next proposition.

Proposition 10.3. The invariants of Λ under the S3-action are isomorphic
to the ring of modular forms MF∗[1/2], i.e.

ΛS3 = Z[1/2][c4, c6,∆]/(1728∆− c34 − c
2
6).

The twisted invariants module ΛS3
sgn is a free ΛS3-module on a generator d of

degree 6.

Proof. Let ε ∈ A denote the alternating polynomial (x1−x2)(x1−x3)(x2−x3).
Then ε2 is symmetric, so it must be a polynomial g(σ1, σ2, σ3) in the elementary
symmetric polynomials. Indeed, g is the discriminant of the polynomial

(x − x0)(x − x1)(x − x2) = x3 + σ1x
2 + σ2x+ σ3. (11)

The C3 invariants in A are the alternating polynomials in three variables

AC3 = Z[σ1, σ2, σ3, ε]/(ε
2 − g).

The quotient action by C2 fixes σ2 and ε, and changes the sign of σ1 and σ3.
Since C3 fixes σ1, the invariants in the ideal in A generated by σ1 are the ideal
generated by σ1 in the invariants AC3 . As H1(C3, Aσ1) = 0, the long exact
sequence in cohomology gives a short exact sequence of invariants

σ1A
C3 → AC3 → ΛC3 → 0.
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Denoting by p the quotient map AC3 → ΛC3 , we now have

ΛC3 ∼= AC3/(σ1) = Z[p(σ2), p(σ3), p(ε)]/p(ε
2 + 27σ2

3 + 4σ3
2)

where τ fixes p(σ2) and p(ε) and changes the sign of p(σ3). It is consistent with
the above computations of Tate cohomology to denote σ3 and p(σ3) by d. The
invariant quantities are well-known; they are the modular forms of Eλ of (12),
the universal elliptic curve overM(2):

p(σ2) =− (λ21 + λ22 − λ1λ2) = −
1

16
c4

p(ε) =− (λ1 + λ2)(2λ
2
1 + 2λ22 − 5λ1λ2) =

1

32
c6

p(σ2
3) =d

2 = λ21λ
2
2(λ2 − λ1)

2 =
1

16
∆.

(16)

Hence, d is a square root of the discriminant ∆, and since 2 is invertible, we
get that the invariants

ΛS3 = Z[1/2][p(σ2), p(σ
2
3), p(ε)]/p(ε

2 + 27σ2
3 + 4σ3

2)

= Z[1/2][c4, c6,∆]/(1728∆− c34 + c26) =MF∗

(17)

are the ring of modular forms, as expected. Moreover, there is a splitting
ΛC3 ∼= ΛS3 ⊕ dΛS3 , giving that

ΛS3
sgn = dΛS3 . (18)

10.3 Coinvariants and Dual Invariants

To be able to use Theorem (8.5) to compute homotopy groups, we also need
to know the S3-cohomology of the signed dual of Λ. For this, we can use the
composite functor spectral sequence for the functors HomZ(−,Z) and Z ⊗

ZS3

(−).

Since Λ is free over Z, we get that

HomZ(Z ⊗
ZS3

Λsgn,Z) ∼= HomZS3(Z,Λ
∨
sgn),

and a spectral sequence

ExtpZ(Hq(S3,Λsgn),Z)⇒ Hp+q(S3,Λ
∨
sgn). (19)

The input for this spectral sequence is computed in the following lemma.

Lemma 10.4. The coinvariants of Λ and Λsgn under the S3 action are

H0(S3,Λ) = (3, c4, c6)⊕ ab
−1dZ/3[∆]

H0(S3,Λsgn) = d(3, c4, c6)⊕ ab
−1Z/3[∆],

where (3, c4, c6) is the ideal of the ring ΛS3 =MF∗ of modular forms generated
by 3, c4 and c6, and d(3, c4, c6) is the corresponding submodule of the free ΛS3-
module generated by d.
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Proof. We use the exact sequence

0→ Ĥ−1(S3,M)→ H0(S3,M)
N
−→ H0(S3,M)→ Ĥ0(S3,M)→ 0. (20)

For M = Λ, this is

0→ ab−1dZ/3[∆]→ H0(S3,Λ)
N
−→ Z[c4, c6,∆]/(∼)

π
−→ Z/3[∆]→ 0,

where the rightmost map π sends c4 and c6 to zero, and ∆ to ∆. Hence its
kernel is the ideal (3, c4, c6), which is a free Z-module so we have a splitting as
claimed.
Similarly, for M = Λsgn, the exact sequence (20) becomes

0→ ab−1Z/3[∆]→ H0(S3,Λsgn)
N
−→ dZ[c4, c6,∆]/(∼)

dπ
−→ dZ/3[∆]→ 0.

The kernel of dπ is the ideal d(3, c4, c6), and the result follows.

Corollary 10.5. The S3-invariants of the dual module Λ∨ are the module
dual to the ideal (3, c4, c6), and the S3-invariants of the dual module Λ∨

sgn are
the module dual to the ideal d(3, c4, c6).

Proof. In view of the above spectral sequence (19), to compute the invariants
it suffices to compute the coinvariants, which we just did in Lemma 10.4, and
dualize.

We need one more computational result crucial in the proof of the main The-
orem 13.1.

Proposition 10.6. There is an isomorphism of modules over the cohomology
ring H∗(S3, π∗Tmf(2))

H∗(S3, π∗IZTmf(2)) ∼= H∗(S3, π∗Σ
21Tmf(2)).

Proof. We need to show that H∗(S3,Σ
9Λsgn ⊕ Λ∨) is a shift by 12 of

H∗(S3,Σ
9Λ⊕Λ∨

sgn). First of all, we look at the non-torsion elements. Putting
together the results from equation (18) and Corollary 10.5 yields

H0(S3,Σ
9Λsgn ⊕ Λ∨) = dH0(S3,Σ

9Λ⊕ Λ∨
sgn),

and indeed we shall find that the shift in higher cohomology also comes from
multiplication by the element d (of topological grading 12).
Now we look at the higher cohomology groups, computed in Proposition 10.1.
Identifying (b−1)∨ with b, we obtain, in positive cohomological grading

H∗(S3, π∗IZTmf(2)) = Σ9H∗(S3,Λsgn)⊕H
∗(Λ∨)

= Z/3[b2,∆]〈Σ9b,Σ9ab,Σ9b2d,Σ9ad〉

⊕Z/3[b2,∆]/(∆∞)〈b2∆, a∨b2∆, bd, a∨bd〉,
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which we are comparing to

Σ21H∗(S3, π∗Tmf(2)) = Σ9dH∗(S3,Λ)⊕ dH
∗(S3,Λ

∨
sgn)

= Z/3[b2,∆]〈Σ9b2d,Σ9ad,Σ9b∆,Σ9ab∆〉

⊕Z/3[b2,∆]/(∆∞)〈bd∆, a∨bd∆, b2∆, a∨b2∆〉.

Everything is straightforwardly identical, except for the match for the genera-
tors Σ9b,Σ9ab ∈ Σ9H∗(S3,Λsgn) which have cohomological gradings 2 and 3,
and topological gradings 7 and 10 respectively. On the other side of the equa-
tion we have generators a∨bd, bd ∈ H∗(S3,Λ

∨) = Σ9H∗(S3, H
1(M(2), ω∗)),

whose cohomological gradings are 2 and 3, and topological 7 and 10 respec-
tively. Identifying these elements gives an isomorphism which is compatible
with multiplication by a, b, d.

10.4 Localization

We record the behavior of our group cohomology rings when we invert a mod-
ular form; in Section 11.1 we will be inverting c4 and ∆.

Proposition 10.7. Let M be one of the modules Λ, Λsgn; the ring of modular
forms MF∗ = ΛS3 acts on M . Let m ∈ MF∗, and let M [m−1] be the module
obtained from M by inverting the action of m. Then

H∗(S3,M [m−1]) ∼= H∗(S3,M)[m−1].

Proof. Since the ring of modular form is S3-invariant, the group S3 acts MF∗-
linearly on M ; in fact, S3 acts Z[m±1]-linearly on M , where m is our chosen
modular form. By Exercise 6.1.2 and Proposition 3.3.10 in [Wei94], it follows
that

H∗(S3,M [m−1]) = Ext∗Z[m±1][S3](Z[m
±1],M [m−1])

= Ext∗Z[m][S3](Z[m],M)[m−1] = H∗(S3,M)[m−1].

Note that if M is one of the dual modules Λ∨ or Λ∨
sgn, the elements of positive

degree (i.e. non-scalar elements) in the ring of modular forms MF∗ act on
M nilpotently. Therefore M [m−1] = 0 for such an m. Moreover, for degree
reasons, c4a = 0 = c4b, and we obtain the following result.

Proposition 10.8. The higher group cohomology of S3 with coefficients in
π∗Tmf(2)[c

−1
4 ] vanishes, and

H∗(S3, π∗Tmf(2)[c
−1
4 ]) = H0(S3,Λ)[c

−1
4 ] =MF∗[c

−1
4 ].

Inverting ∆ has the effect of annihilating the cohomology that comes from the
negative homotopy groups of Tmf(2); in other words,

H∗(S3, π∗TMF (2)) = H∗(S3, π∗Tmf(2)[∆
−1]) = H∗(S3,Λ)[∆

−1].
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11 Homotopy Fixed Points

In this section we will use the map q : M(2) → M[1/2] and our knowledge
about Tmf(2) from the previous sections to compute the homotopy groups of
Tmf , in a way that displays the self-duality we are looking for. Economizing
the notation, we will writeM to meanM[1/2] throughout.

11.1 Homotopy Fixed Point Spectral Sequence

We will use Theorem 6.1 to compute the homotopy groups of Tmf via the
homotopy fixed point spectral sequence

H∗(S3, π∗Tmf(2))⇒ π∗Tmf. (21)

We will employ two methods of calculating the E2-term of this spectral se-
quence: the first one is more conducive to computing the differentials, and the
second is more conducive to understanding the duality pairing.

Method One

The moduli stackM has an open cover by the substacksM0 =M[∆−1] and
M[c−1

4 ], giving the cube of pullbacks

M0[c−1
4 ] //

��

M0

��

M(2)
0
[c−1

4 ]

66nnn
//

��

M(2)
0

;;www

��

M[c−1
4 ] //M.

M(2)[c−1
4 ]

66mmm
//M(2)

;;wwww

Since ∆, c4 are S3-invariant elements of H∗(M(2), ω∗), the maps in this dia-
gram are compatible with the S3-action. Taking global sections of the front
square, we obtain a cofiber sequence

Tmf(2)→ TMF (2) ∨ Tmf(2)[c−1
4 ]→ TMF (2)[c−1

4 ],

compatible with the S3-action. Consequently, there is a cofiber sequence of the
associated homotopy fixed point spectral sequences, converging to the cofiber
sequence from the rear pullback square of the above diagram

Tmf → TMF ∨ Tmf [c−1
4 ]→ TMF [c−1

4 ]. (22)

We would like to deduce information about the differentials of the spectral
sequence for Tmf from the others. According to Proposition 10.8, we know
that the spectral sequences for Tmf [c−1

4 ] and TMF [c−1
4 ] collapse at their E2

pages and that all torsion elements come from TMF . From Proposition 10.1,
we know what they are.
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As the differentials in the spectral sequence (21) involve the torsion elements
in the higher cohomology groups H∗(S3, π∗Tmf(2)), they have to come from
the spectral sequence for TMF 5, where they are (by now) classical. They are
determined by the following lemma, which we get from [Bau08] or [Rez01].

Lemma 11.1. The elements α and β in π∗S(3) are mapped to a and bd respec-
tively under the Hurewicz map π∗S(3) → π∗TMF .

Hence, d5(∆) = αβ2, d9(α∆) = β5, and the rest of the pattern follows by
multiplicativity.
The aggregate result is depicted in the chart of Figure 2.

Method Two

On the other hand, we could proceed using our Serre duality for M(2) and
the spectral sequence (19). The purpose is to describe the elements below the
line t = 0 as elements of H∗(S3,Λ

∨
sgn). Indeed, according to the Serre duality

pairing from Theorem 8.5, we have an isomorphism

Hs(S3, H
1(M(2), ωt−4)) ∼= Hs(S3,Λ

∨
sgn),

and the latter is computed in Corollary 10.5 via the collapsing spectral sequence
(19) and Lemma 10.4

ExtpZ(Hq(S3,Λsgn),Z)⇒ Hp+q(S3,Λ
∨
sgn).

In Section 10 we computed the input for this spectral sequence. The coinvari-
ants are given as

H0(S3,Λsgn) = Z/3[∆]ab−1 ⊕ d(3, c4, c6)

by Lemma 10.4, and the remaining homology groups are computed via the Tate
cohomology groups. Namely, for q ≥ 1,

Hq(S3,Λsgn) ∼= Ĥ−q−1(S3,Λsgn)

which, according to Proposition 10.1, equals to the part of cohomological
degree (−q − 1) in the Tate cohomology of Λsgn, which is Rb ⊕ Rd, where
R = Z/3[a, b±2,∆]/(a2). Recall, the cohomological grading of a is one, that of
b is two, and ∆ has cohomological grading zero.
In particular, we find that the invariants H0(S3,Λ

∨
sgn) are the module dual to

the ideal d(3, c4, c6). This describes the negatively graded non-torsion elements.
For example, the element dual to 3d is in bidegree (t, s) = (−10, 1). We can
similarly describe the torsion elements as duals. If X is a torsion abelian group,
let X∨ denote Ext1Z(X,Z), and for x ∈ X , let x∨ denote the element in X∨

corresponding to x under an isomorphism X ∼= X∨. For example, (ab−1)∨

is in bidegree (−6, 2), and the element corresponding to b−2d lies in bidegree
(−10, 5).

5Explicitly, the cofiber sequence (22) gives a commutative square of spectral sequences
just as in the proof of Theorem 13.1 below, which allows for comparing differentials.
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11.2 Duality Pairing

Consider the non-torsion part of the spectral sequence (21) for π∗Tmf . Accord-
ing to Lemma 10.4, on the E2 page, it is MF∗ ⊕ Σ−9d∨(3, c4, c6)

∨. Applying
the differentials only changes the coefficients of various powers of ∆. Namely,
the only differentials supported on the zero-line are d5(∆

m) for non-negative
integersm not divisible by 3, which hit a corresponding class of order 3. There-
fore, 3ǫ∆m is a permanent cycle, where ǫ is zero if m is divisible by 3 and one
otherwise. In the negatively graded part, only (3∆3kd)∨, for non-negative k,
support a differential d9 and hit a class of order 3, thus (3ǫ∆md)∨ are perma-
nent cycles, for ǫ as above. The pairing at E∞ is thus obvious: 3ǫ∆mci4c

j
6 and

(3ǫ∆mdci4c
j
6)

∨ match up to the generator of Z in π−21Tmf .

The pairing on torsion depends even more on the homotopy theory, and inter-
estingly not only on the differentials, but also on the exotic multiplications by
α. The non-negative graded part is Z[∆3] tensored with the pattern in Fig-

ure 3, whereas the negative graded part is (Z[∆3]/∆∞) d∨

λ1λ2
tensored with the

elements depicted in Figure 4.

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

α

αβ

β

β2

β3

β4

α∆ = β3

α

αβ∆ = β4

α

� �
3∆

�
3∆2

Figure 3: Torsion in positive degrees

Everything pairs to α∨β5(∆2)∨, which is d9(
(3d)∨

λ1λ2
), i.e. the image under d9 of

1/3 of the dualizing class. Even though α∨β5(∆2)∨ is zero in the homotopy
groups of Tmf , the corresponding element in the homotopy groups of the
K(2)-local sphere is nontrivial [HKM08], thus it makes sense to talk about the
pairing.

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

β(∆2)∨
β2(∆2)∨

α∨β(∆2)∨
α∨β2(∆2)∨

α∨β3(∆2)∨
α∨β4(∆2)∨

β(∆)∨ = α∨β4(∆2)∨

α

β2∆∨ = α∨β5(∆2)∨

α

�
(3∆2)∨

�
3∆∨

�
1∨

αβ∆

α∆
β4

β3 β2

β

αβ
α

Figure 4: Torsion in negative degrees

Documenta Mathematica 17 (2012) 271–311



302 Vesna Stojanoska

12 The Tate Spectrum

In this section we will relate the duality apparent in the homotopy groups of
Tmf ≃ Tmf(2)hS3 to the vanishing of the associated Tate spectrum. The
objective is to establish the following:

Theorem 12.1. The norm map Tmf(2)hS3 → Tmf(2)hS3 is an equivalence.

A key role is played by the fact that S3 has periodic cohomology.

Generalized Tate cohomology was first introduced by Adem-Cohen-Dwyer in
[ACD89]. However, it was Greenlees and May who generalized and improved
the theory, and, more importantly, developed excellent computational tools in
[GM95]. In this section, we shall summarize the relevant results from [GM95]
and apply them to the problem at hand.
Suppose k is a spectrum with an action by a finite group G; in the terminology
of equivariant homotopy theory, this is known as a naive G-spectrum. There is
a norm map [GM95, 5.3], [LMSM86, II.7.1] from the homotopy orbit spectrum
khG to the homotopy fixed point spectrum khG whose cofiber we shall call the
Tate spectrum associated to the G-spectrum k, and for simplicity denote it by
ktG

khG → khG → ktG. (23)

According to [GM95, Proposition 3.5], if k is a ring spectrum, then so are the
associated homotopy fixed point and Tate spectra, and the map between them
is a ring map.

We can compute the homotopy groups of each of the three spectra in (23) using
the Atiyah-Hirzebruch-type spectral sequences Ě∗, E∗, Ê∗ [GM95, Theorems
10.3, 10.5, 10.6]

Ěp,q2 = H−p(G, πqk)⇒ πq−pkhG

Ep,q2 = Hp(G, πqk)⇒ πq−pk
hG

Êp,q2 = Ĥp(G, πqk)⇒ πq−pk
tG,

which are conditionally convergent. As these spectral sequences can be con-
structed by filtering EG, the first two are in fact the homotopy fixed point and
homotopy orbit spectral sequences. In the case when k = Tmf(2), the first two
are half-plane spectral sequences, whereas the third one is in fact a full plane
spectral sequence. Moreover, the last two are spectral sequences of differential
algebras.
The norm cofibration sequence (23) relates these three spectral sequences by
giving rise to maps between them, which on the E2-terms are precisely the
standard long exact sequence in group cohomology:

· · · → H−p(G,M)→ Hp(G,M)→ Ĥp(G,M)→ H−p−1(G,M)→ · · · (24)
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The map of spectral sequences E∗ → Ê∗ is compatible with the differential
algebra structure, which will be important in our calculations as it will allow
us to determine the differentials in the Tate spectral sequence (and then further
in the homotopy orbit spectral sequence).

Proof of Theorem 12.1 . We prove that the norm is an equivalence by showing
that the associated Tate spectrum is contractible, using the above Tate spectral
sequence for the case of k = Tmf(2) and G = S3

Ĥp(S3, π2t−qTmf(2)) = Ĥp(S3, H
q(M(2), ωt))⇒ π2t−p−qTmf(2)

tS3. (25)

The E2-page is the Tate cohomology

Ĥ∗(S3,Λ⊕ Σ−9Λ∨
sgn),

which we computed in Proposition 10.1 to be

R⊕Rbd⊕
ηd∨

λ1λ2
R∨ ⊕

ηb∨

λ1λ2
R∨,

where R = Z/3[a, b±2,∆]/(a2), and R∨ = Ext1Z(R,Z). Comparing the two
methods for computing the E2-page of the homotopy fixed point spectral se-

quence (21) identifies ηd∨

λ1λ2
with α

∆ and ηb∨

λ1λ2
with α

β . Further, we can identify

b∨ with b−1 and similarly for ∆, as it does not change the ring structure, and
does not cause ambiguity. We obtain

ηd∨

λ1λ2
R∨ =

α

∆
R∨ =

1

∆
Z/3[a, b±2,∆−1]/(a2)

ηb∨

λ1λ2
R∨ =

α

β
R∨ =

b

d
Z/3[a, b±2,∆−1]/(a2) =

β

∆
Z/3[a, b±2,∆−1]/(a2).

Summing all up, we get the E2-page of the Tate spectral sequence

Ĥ∗(S3, π∗Tmf(2)) = Z/3[α, β±1,∆±1]/(α2), (26)

depicted in Figure 5.
The compatibility with the homotopy fixed point spectral sequence implies that
d5(∆) = αβ2 and d9(α∆

2) = β5; by multiplicativity, we obtain a differential
pattern as showed below in Figure 5. From the chart we see that the tenth
page of the spectral sequence is zero, and, as this was a conditionally conver-
gent spectral sequence, it follows that it is strongly convergent, thus the Tate
spectrum Tmf(2)tS3 is contractible.

12.1 Homotopy Orbits

As a corollary of the vanishing of the Tate spectrum Tmf(2)tS3, we fully de-
scribe the homotopy orbit spectral sequence

Hs(S3, πtTmf(2))⇒ πt+sTmf(2)hS3 = πt+sTmf. (27)
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·

·1
α

β

β
2

β
3

α
β

∆

α
∆

α
β
∆

b∨
d
∨

Figure 5: Tate spectral sequence (25) for π∗Tmf(2)
tS3
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From (26), we obtain the higher homology groups as well as the differentials.
If S denotes the ring Z/3[β−1,∆±1],

⊕

s>0

Hs(S3, πtTmf(2)) = Σ−1(β−1S ⊕ αβ−2S).

(The suspension shift is a consequence of the fact that the isomorphism comes
from the coboundary map Ĥ∗ → H−∗−1.) The coinvariants are computed in
Lemma 10.4. The spectral sequence is illustrated in Figure 6, with the the topo-
logical grading on the horizontal axis and for consistency, the cohomological on
the vertical axis.

13 Duality for Tmf

In this section we finally combine the above results to arrive at self-duality
for Tmf . The major ingredient in the proof is Theorem 12.1, which gives an
isomorphism between the values of a right adjoint (homotopy fixed points) and
a left adjoint (homotopy orbits). This situation often leads to a Grothendieck-
Serre-type duality, which in reality is a statement that a functor (derived global
sections) which naturally has a left adjoint (pullback) also has a right adjoint
[FHM03].
Consider the following chain of equivalences involving the Anderson dual of
Tmf

IZTmf = F (Tmf, IZ)← F (Tmf(2)hS3, IZ)→ F (Tmf(2)hS3, IZ)

≃ F (Tmf(2), IZ)
hS3 ≃ (Σ9Tmf(2)sgn)

hS3 ,

which implies a homotopy fixed point spectral sequence converging to the ho-
motopy groups of IZTmf . From our calculations in Section 10 made precise
in Proposition 10.6, the E2-term of this spectral sequence is isomorphic to the
E2-term for the homotopy fixed point spectral sequence for Tmf(2)hS3, shifted
by 21 to the right. A shift of 9 comes from the suspension, and an additional
shift of 12 comes from the twist by sign (which is realized by multiplication by
the element d whose topological degree is 12). It is now plausible that IZTmf
might be equivalent to Σ21Tmf ; it only remains to verify that the differential
pattern is as desired. To do this, we use methods similar to the comparison
of spectral sequences in [Mil81] and in the algebraic setting, [Del71]: a com-
mutative square of spectral sequences, some of which collapse, allowing for the
tracking of differentials.

Theorem 13.1. The Anderson dual of Tmf [1/2] is Σ21Tmf [1/2].

Remark 13.2. Here again Anderson duals are taken in the category of spectra
with 2 inverted, and 2 will implicitly be inverted everywhere in order for the
presentation to be more compact. In particular, Z will denote Z[1/2], and Q/Z
will denote Q/Z[1/2].
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Proof. For brevity, let us introduce the following notation: for R any of
Z,Q,Q/Z, we let A•

R be the cosimplicial spectrum F (ES3+ ∧
S3

Tmf(2), IR).

In particular we have that

AhR = F
(

(S3)
∧(h+1)
+ ∧

S3

Tmf(2), IR
)

.

Then the totalization TotA•
Z ≃ IZTmf is equivalent to the fiber of the natural

map TotA•
Q → TotA•

Q/Z. In other words, we are looking at the diagram

A0
Q

+3

��

A1
Q

_ *4

��

A2
Q · · ·

��

A0
Q/Z

+3 A1
Q/Z

_*4 A2
Q/Z · · ·

and the fact that totalization commutes with taking fibers gives us two ways to
compute the homotopy groups of IZTmf . Taking the fibers first gives rise to the
homotopy fixed point spectral sequence whose differentials we are to determine:
Each vertical diagram gives rise to an Anderson duality spectral sequence (2),

which collapses at E2, as the homotopy groups of each
(

(S3)
∧(h+1)
+ ∧

S3

Tmf(2)
)

are free over Z. On the other hand, assembling the horizontal direction first
gives a map of the Q and Q/Z-duals of the homotopy fixed point spectral
sequence for the S3-action on Tmf(2); this is because Q and Q/Z are injective
Z-modules, thus dualizing is an exact functor.
Let R• denote the standard injective resolution of Z, namely R0 = Q and
R1 = Q/Z related by the obvious quotient map. Then, schematically, we have
a diagram of E1-pages

HomZ

(

Z[S3]
⊗(h+1) ⊗

Z[S3]
πtTmf(2), R

v
)

A
��

B
+3 HomZ

(

πt+hTmf(2)hS3, R
v
)

D

��
HomZ

(

Z[S3]
⊗(h+1) ⊗

Z[S3]
πtTmf(2),Z

) C
+3 π−t−h−vIZTmf(2)hS3.

The spectral sequence A collapses at E2, and C is the homotopy fixed point
spectral sequence that we are interested in: its E2 page is the S3-cohomology
of the Z-duals of π∗Tmf(2), which are the homotopy groups of the Anderson
dual of Tmf(2)

H∗ HomZ

(

Z[S3]
⊗(h+1) ⊗

Z[S3]
πtTmf(2),Z

)

∼= H∗ HomZ[S3]

(

Z[S3]
⊗(h+1),HomZ(πtTmf(2),Z)

)

∼= Hh(S3, π−tIZTmf(2)).
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Indeed, the E2-pages assemble in the following diagram

ExtvZ
(

Hh(S3, πtTmf(2)),Z
)

A
��

B
+3 ExtvZ

(

πt+hTmf(2)hS3,Z
)

D
��

Hh+v(S3, π−tIZTmf(2))
C

+3 π−t−h−vIZTmf(2)hS3.

The spectral sequence A is the dual module group cohomology spectral se-
quence (19), and it collapses, whereas D is the Anderson duality spectral se-
quence (2) which likewise collapses at E2. The spectral sequence B is dual
to the homotopy orbit spectral sequence Ě∗ (27), which we have completely
described in Figure 6. Now [Del71, Proposition 1.3.2] tells us that the differen-
tials in B are compatible with the filtration giving C if and only if A collapses,
which holds in our case. Consequently, B and C are isomorphic.
In conclusion, we read off the differentials from the homotopy orbit spectral
sequence (Figure 6). There are only non-zero d5 and d9. For example, the gen-
erators in degrees (6, 3) and (2, 7) support a d5 as the corresponding elements
in (27) are hit by a differential d5. Similarly, the generator in (1, 72) supports
a d9, as it corresponds to an element hit by a d9. There is no possibility for
any other differentials, and the chart is isomorphic to a shift by 21 of the one
in Figure 2.
By now we have an abstract isomorphism of the homotopy groups of IZTmf
and Σ21Tmf , as π∗Tmf -modules. As in Theorem 9.1, we build a map realizing
this isomorphism by specifying the dualizing class and then extending using the
Tmf -module structure on IZTmf .

As a corollary, we recover [Beh06, Proposition 2.4.1].

Corollary 13.3. At odd primes, the Gross-Hopkins dual of LK(2)Tmf is
Σ22LK(2)Tmf .

Proof. The spectrum Tmf is E(2)-local, hence we can compute the Gross-
Hopkins dual I2Tmf as ΣLK(2)IZTmf by (4).
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Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A
Series of Modern Surveys in Mathematics [Results in Mathemat-
ics and Related Areas. 3rd Series. A Series of Modern Surveys in
Mathematics], vol. 39, Springer-Verlag, Berlin, 2000.

[LMSM86] L. G. Lewis, Jr., J. P. May, M. Steinberger, and J. E. McClure,
Equivariant stable homotopy theory, Lecture Notes in Mathematics,
vol. 1213, Springer-Verlag, Berlin, 1986, With contributions by J.
E. McClure.

[Lur09] Jacob Lurie, Higher topos theory, Annals of Mathematics Studies,
vol. 170, Princeton University Press, Princeton, NJ, 2009.

[Lur11a] , Derived algebraic geometry, 2011.

[Lur11b] , Higher algebra, 2011.

[Mil81] Haynes R. Miller, On relations between Adams spectral sequences,
with an application to the stable homotopy of a Moore space, J.
Pure Appl. Algebra 20 (1981), no. 3, 287–312.

[MR99] Mark Mahowald and Charles Rezk, Brown-Comenetz duality and
the Adams spectral sequence, Amer. J. Math. 121 (1999), no. 6,
1153–1177.

[Och87] Serge Ochanine, Sur les genres multiplicatifs définis par des
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