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Abstract. We classify real Kirchberg algebras using united K-
theory. Precisely, let A and B be real simple separable nuclear purely
infinite C*-algebras that satisfy the universal coefficient theorem such
that AC and BC are also simple. In the stable case, A and B are iso-
morphic if and only if KCRT(A) ∼= KCRT(B). In the unital case, A and
B are isomorphic if and only if (KCRT (A), [1A]) ∼= (KCRT(B), [1B]).
We also prove that the complexification of such a real C*-algebra is
purely infinite, resolving a question left open from [43]. Thus the real
C*-algebras classified here are exactly those real C*-algebras whose
complexification falls under the classification result of Kirchberg [26]
and Phillips [35]. As an application, we find all real forms of the
complex Cuntz algebras On for 2 ≤ n ≤ ∞.
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1. Introduction

One of the highlights of the classification theory of simple amenable C*-algebras
is the classification of purely infinite nuclear simple C*-algebras, obtained by
Kirchberg and Phillips in [26] and [35]. This classification theorem relies in
an essential way on the Universal Coefficient Theorem established by Rosen-
berg and Schochet in [40], where it was observed that “For reasons pointed out
already by Atiyah, there can be no good Künneth Theorem or Universal Co-
efficient Theorem for the KKO groups of real C*-algebras; this explains why
we deal only with complex C*-algebras”. Thus at the time of the Kirchberg
and Phillips classification, the lack of a universal coefficient theorem was the
primary barrier to extending the classification result to real C*-algebras.
However, in [8], a new invariant called united K-theory was introduced for
real C*-algebras and in [9] a universal coefficient theorem was proven for real
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C*-algebras using united K-theory. In the present paper, we take advantage of
these developments to provide a complete classification of a class of real simple
purely infinite C*-algebras in terms of united K-theory. The real C*-algebras
that are classified are exactly those real C*-algebras for which the complexi-
fication is covered by the Kirchberg and Phillips theory. As an application of
our classification we determine all the real forms of the complex Cuntz algebras
On for 1 ≤ n ≤ ∞: there are two such forms when n is odd and one when n is
even or infinite.
The overall framework of the proof will be the same as that in the paper
[35] and the underlying theory on which that paper was built. Furthermore,
many of the proofs in the development leading to the main theorems of [35]
carry over to the real case without significant change. In those cases, we will
simply refer to the established proofs in the literature without reproducing
them here. However there are many situations where the arguments in the real
case require modification and we will then provide full proofs or full discussion
of the necessary modifications.
In Section 2, we describe the invariant of united K-theory and summarize its
key properties. In Section 3 we then establish real analogues of some of the
fundamental properties of purely infinite algebras, in the course of which we
resolve a problem left hanging in [43] and [13] by showing that the complexifi-
cation of a purely infinite simple real C*-algebra is also purely infinite (using
the original definition for simple algebras). Following the complex case, as
developed in [38], we then establish (in Theorem 5.2) criteria for two unital
homomorphisms from the real Cuntz algebra OR

n (n even) to be approximately
unitarily equivalent. Modifications of the complex arguments are required to
establish some of the preliminary results: in Section 4 we modify the required
results about exponential rank, noting that the close link between self-adjoint
and skew-adjoint elements is absent in a real C*-algebra, and in Section 5 we
modify the result from [15] establishing the Rokhlin property of the Bernoulli
shift on the CAR-algebra.
Our next step is to establish real analogues of Kirchberg’s tensor product the-
orems and his embedding theorem. This is achieved in Section 6 by using the
relevant complex results and the embedding of C into M2(R). In Sections 7,
8, 9 and 10, we closely follow [35] indicating how the results achieved for the
complex case can be obtained in the real case. In particular, Section 7 contains
a key result about uniqueness of homomorphisms from OR

∞ to a real purely infi-
nite C*-algebras. Section 8 contains the theory of asymptotic morphisms in the
context of real C*-algebras and Section 9 culminates in a theorem identifying
KK-theory to a group of asymptotic unitary equivalence classes of asymptotic
morphisms as in Section 4 of [35]. To accomplish this, we make use of the ax-
iomatic characterization of KK-theory for real C*-algebras established in [12].
This development culminates in Section 10, which contains the statements and
proofs of our classification theorems, and in Section 11, which uses these re-
sults to describe the real forms of Cuntz algebras. The notation we use in these
sections closely follows that in [35].
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We will use the notation HR for a real Hilbert space; and B(HR) and KR for
the real C*-algebras of bounded and compact operators HR. For the complex
versions of these objects we will use H, B(H), and K. For a C*-algebra A, we
will write Mn(A) for the matrix algebra over A; and Mn will stand for Mn(R).
Following standard convention, we will use On for the complex Cuntz algebras
and OR

n for the real versions. The complexification of a real C*-algebra A will
be denoted by AC. We will use Φ throughout to denote the conjugate linear
automorphism of AC defined by a+ ib 7→ a− ib (for a, b ∈ A). Note that A can
be recovered from Φ as the fixed point set. Finally, a tensor product written as
A⊗B will in most cases be the C*-algebra tensor product over R, but should
be understood to be a tensor product over C if both A and B are known to
be complex C*-algebras. Recall that if A and B are real C*-algebras, then
(A⊗B)C ∼= AC ⊗BC.

2. Preliminaries on United K-Theory

United K-theory was developed in the commutative context in [14] and sub-
sequently extended to the context of real C*-algebras in [8]. United K-theory
consists of the three separate K-theory modules as well as several natural
transformations among them. In this section, we give the definition of united
K-theory and summarize the features needed in this paper. Details are in [8],
[9], [10].

Definition 2.1. Let A be a real C*-algebra. The united K-theory of A is given
by

KCRT(A) = {KO∗(A),KU∗(A),KT∗(A), r, c, ε, ζ, ψU , ψT , γ, τ} .

In this definition, KO∗(A) = K∗(A) is the standard K-theory of a real C*-
algebra, considered as a graded module over the ring K∗(R). This means in
particular that there are operations

ηO : KOn(A) → KOn+1(A)

ξ : KOn(A) → KOn+4(A)

βO : KOn(A) → KOn+8(A)

corresponding to multiplication by the elements of the same name in KO∗(R).
The operation βO is the periodicity isomorphism of real K-theory.
The second item KU∗(A) = K∗(AC) is the K-theory of the complexification of
A, having period 2. It is a module over K∗(C), which is to say that that there
is an isomorphism of period 2 and the two remaining groups are independent
with no operations between them.
Finally, KT∗(A) is the period 4 self-conjugate K-theory originally defined in
the topological setting in [1]. In the non-commutative setting, it is more easily
defined as KT∗(A) = K∗(T ⊗A) in terms of the algebra T = {f ∈ C([0, 1],C) |
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f(0) = f(1)} (see [8]). Self-conjugate K-theory is a module over the ring
K∗(T ), giving operations

ηO : KTn(A) → KTn+1(A)

ω : KTn(A) → KTn+3(A)

βT : KTn(A) → KTn+4(A) .

The rest of the information in united K-theory consists of operations

cn : KOn(A) −→ KUn(A) rn : KUn(A) −→ KOn(A)

εn : KOn(A) −→ KTn(A) ζn : KTn(A) −→ KUn(A)

(ψU)n : KUn(A) −→ KUn(A) (ψT )n : KTn(A) −→ KTn(A)

γn : KUn(A) −→ KTn−1(A) τn : KTn(A) −→ KOn+1(A)

among the three K-theory modules.
For example, c is induced by the natural inclusion A→ AC; r by the inclusion
AC →M2(A); and ψU by the involution Φ on AC. These operations are known
to satisfy the following relations (see Proposition 1.7 of [8]):

rc = 2 ψUβU = −βUψU ξ = rβ2
U
c

cr = 1 + ψU ψTβT = βTψT ω = βTγζ

r = τγ εβO = β2
T
ε βTετ = ετβT + ηTβT

c = ζε ζβT = β2
U
ζ εrζ = 1 + ψT

(ψU)
2 = 1 γβ2

U
= βTγ γcτ = 1− ψT

(ψT )
2 = 1 τβ2

T
= βOτ τ = −τψT

ψTε = ε γ = γψU τβTε = 0

ζγ = 0 ηO = τε εξ = 2βTε

ζ = ψUζ ηT = γβUζ ξτ = 2τβT .

United K-theory takes values in the algebraic category of CRT-modules. A
CRT-module consists of a triple (MO,MU ,MT ) of graded modules, one over
each of the rings K∗(R), K∗(C), and K∗(T ); as well as natural transformations
c, r, ε, ζ, ψU , ψT , γ, τ that satisfy the above relations.
For any real C*-algebra A, the CRT-module KCRT(A) is acyclic, which means
that the sequences

· · · −→KOn(A)
ηO−−→ KOn+1(A)

c−→ KUn+1(A)
rβ−1

U−−−→ KOn−1(A) −→ · · ·

· · · −→KOn(A)
η2O−−→ KOn+2(A)

ε−→ KTn+2(A)
τβ−1

T−−−→ KOn−1(A) −→ · · ·

· · · −→KUn+1(A)
γ−→ KTn(A)

ζ−→ KUn(A)
1−ψU−−−−→ KUn(A) −→ · · ·

are exact.
The important advantage of the full united K-theory over ordinary K-theory
for a real C*-algebraA is that it yields both a Künneth formula (Theorem 4.2 of
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[8]) and a univeral coefficient theorem (Theorem 1.1 of [9]). For later reference,
we now state two results that follow from those fundamental theorems.

Proposition 2.2. For any real C*-algebra A,

(1) KCRT(OR
2 ⊗A) = 0

(2) KCRT(OR
∞ ⊗A) ∼= KCRT(A).

Proof. By Table IV of [8], we have KCRT(OR
2 ) = 0. Then (1) follows by the

Künneth formula.
The unital inclusion R → OR

∞ induces an isomorphism on united K-theory.
This follows from Theorem 4 of [10] and the fact that the unital inclusion C →
O∞ induces an isomorphism on (complex) K-theory. Thus, Theorem 3.5 of [8]
gives KCRT(OR

∞)⊗CRT K
CRT(A) ∼= KCRT(A) and Tor(KCRT(OR

∞),KCRT(A)) = 0.
Then the isomorphism of (2) follows by the Main Theorem of [8]. �

Recall from [41] that the bootstrap class N is the smallest subcategory of
complex, separable, nuclear C*-algebras that contains the separable type I C*-
algebras; that is closed under the operations of taking inductive limits, stable
isomorphisms, and crossed products by Z and R; and that satisfies the two out
of three rule for short exact sequences (i.e. if 0 → A → B → C → 0 is exact
and two of A, B, C are in N , then the third is also in N ).

Proposition 2.3 (Corollary 4.11 of [9]). Let A and B be real separable C*-
algebras such that AC and BC are in N . Then A and B are KK-equivalent if
and only if KCRT (A) ∼= KCRT(B).

This last result is the essential preliminary result for our classification of real
purely infinite simple C*-algebras. We will also make use of Theorem 1 of [10],
which states that every countable acyclic CRT-module can be realized as the
united K-theory a real separable C*-algebra, indeed the C*-algebra can even
be taken to be simple and purely infinite.
We now describe a simpler variation of united K-theory that, by results from
[23], contains as much information as the full version of united K-theory.

Definition 2.4. Let A be a real C*-algebra. Then

KCR(A) = {KO∗(A),KU∗(A), r, c, ψU}

For any real C*-algebra, KCR(A) is an acyclic CR-module, which means that
the relations

rc = 2 ψUβU = −βUψU ξ = rβ2
U
c

cr = 1 + ψU ψ2
U
= 1 ψUc = c

are satisfied and that the sequence

· · · −→ KOn(A)
ηO−−→ KOn+1(A)

c−→ KUn+1(A)
rβ−1

U−−−→ KOn−1(A) −→ · · ·
is exact.
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Let Γ be the forgetful functor from the category CRT-modules to the category
of CR-modules. It is immediate from Theorem 4.2.1 of [23] that Γ is injective
(but not surjective) on the class of acyclic CRT-modules. Hence we have the
following result.

Proposition 2.5. Let A and B be real C*-algebras. Then KCRT(A) ∼= KCRT(B)
if and only if KCR(A) ∼= KCR(B).

Note, however, that the results of [10] do not extend to CR-modules. Not every
countable acyclic CR-module can be realized as KCR(A) for a real C*-algebra
A.

3. Preliminaries on Real Simple Purely Infinite C*-Algebras

In this section, we provide some preliminaries on simple and purely infinite
C*-algebras, including a theorem characterizing simple purely infinite real C*-
algebras in terms of their complexification. One direction of this characteriza-
tion was achieved in [43] and [13].
Let A be a real unital C*-algebra, let U(A) denote the group of unitary elements
in A, and let U0(A) denote the connected component of the identity in U(A).
Note that if u is a unitary in a real C*-algebra, then the spectrum σ(u) ⊆ T

satisfies σ(u) = σ(u) and the real C*-algebra generated by u is isomorphic
to the algebra of complex-valued continuous functions f on σ(u) that satisfy

f(z) = f(z). (If a is an element of A, then by definition the spectrum σ(a) is
found by passing to AC.)
We begin by making an explicit mention of a fairly well-known result about
real simple C*-algebras.

Definition 3.1. A real C*-algebra A is c-simple if AC is simple.

Proposition 3.2. A simple real C*-algebra A is either c-simple or is isomor-
phic to a simple complex C*-algebra.

Proof. Let I be a proper ideal in AC. Then J = A ∩ I ∩ Φ(I) = 0 and so
I ∩ Φ(I) = 0. Furthermore, I + Φ(I) = AC. It then follows that the map
x 7→ x+Φ(x) is an isomorphism from the complex C*-algebra I onto A. �

As the structure of simple complex C*-algebras is comparatively well-
understood, our primary interest lies in c-simple C*-algebras.
As in the complex case, we will use the tilde ∼ to denote the relation of Murray-
von Neumann equivalence of projections. A projection is said to be infinite if
it is Murray-von Neumann equivalent to a proper subprojection of itself. The
following definition of purely infinite is from [43]. Bearing in mind subsequent
developments, such as [27] and [28], a different definition should be made in
the non-simple case. However the focus in this paper is on simple algebras, for
which the definition below is appropriate.

Definition 3.3. Let A be a real simple C*-algebra.
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(1) A subalgebra B is a regular hereditary subalgebra of A if there is an
element x ∈ A+ such that B = xAx.

(2) A is purely infinite if every regular hereditary subalgebra of A contains
an infinite projection.

Proposition 3.4. Let A be a separable simple purely infinite real C*-algebra.
Then either A is unital or there is a real unital simple purely infinite C*-algebra
A0 such that A ∼= KR ⊗A0.

Proof. As in Section 27.5 of [2]. �

Proposition 3.5. Let A be a simple purely infinite C*-algebra and let p be a
projection in A. Then pAp and A are stably isomorphic.

Proof. In the complex case, this result follows from Corollary 2.6 of [16]. The
proof of that result and the proofs of the preliminary lemmas of Section 2 of
[16] work the same in the real case. �

For the rest of this section, fε will denote the real-valued function such that
fε(t) = 0 for t ≤ ε/2, fε(t) = 1 for t ≥ ε, and fε(t) is linear on [ε/2, ε].

Lemma 3.6. For any real C*-algebra A, the following are equivalent.

(1) For any non-zero a, b ∈ A there exist x, y ∈ A with a = xby.
(2) For any non-zero positive a, b ∈ A there exists x ∈ A with a = xbx∗.

Proof. (2) ⇒ (1). Let 0 6= a, b ∈ A. As in the complex case, described in 1.4.5 of
[33], there exists u ∈ A with a = u(a∗a)1/4. Let x ∈ A with (a∗a)1/4 = xbb∗x∗

and observe that a = (ux)b(b∗x∗).
(1) ⇒ (2). This uses the argument for the complex case, from Lemma 1.7 and
Proposition 1.10 of [18]. If a, b ∈ A are positive and non-zero and ε is chosen so
that fε(b) 6= 0 then a = (zz∗zk)b(zz∗zk)∗, where x, y are chosen so that a1/6 =
xfε(b)y, k ≥ 0 is chosen so that fε/2(b) = kbk and z = x(fε(b)yy

∗fε(b))
1/2. �

Lemma 3.7. Let A be a real C*-algebra such that for all non-zero elements a, b
there exist x, y with a = xby. Suppose that A contains a non-zero projection
and let c be a non-zero positive element such that cAc 6= A. Then cAc contains
an infinite projection.

Proof. The argument from (vii) ⇒ (i) of Theorem 2.2 of [31] applies to the
real case to show that for any non-trivial projection p and positive element x
there is a Murray-von Neumann equivalence between p and a subprojection of
x. We will repeatedly use this fact.
In the unital case, this shows that the unit 1 is Murray-van Neumann equivalent
to a projection of cAc, which is necessarily infinite.
Now suppose that A has no unit but has a non-zero projection p. Applying the
fact above to a non-zero positive element d in (1−p)A(1−p) gives a projection
q such that p ∼ q and p ⊥ q. Now apply the fact again using the projection
p + q and the positive element p to show that p + q is infinite. Finally, apply
the same fact using the projection p + q and the positive element c to show
that p+ q is Murray-von Neumann equivalent to a projection in cAc. �
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Lemma 3.8. Let A be a real simple C*-algebra. Then the following are equiv-
alent:

(1) A is purely infinite,
(2) A is not isomorphic to R, C, or H and for each pair of non-zero ele-

ments a, b ∈ A there exist x, y ∈ A such that a = xby,
(3) A is not isomorphic to R, C, or H and for each pair of non-zero positive

elements a, b ∈ A there exists x ∈ A such that a = xbx∗.

Furthermore, if these conditions are satisfied, then for all ε > 0 the element x

in (3) can be chosen to satisfy ‖x‖ ≤ (‖a‖/‖b‖)1/2 + ε.

Proof. As the result is well-known in the complex case, we may assume by
Theorem 3.1 that A is c-simple. By Lemma 3.6, (2) and (3) are equivalent.
For (1) ⇒ (2), let a, b be non-zero elements of A, identified with e11(KR ⊗
A)e11. We are assuming AC is simple, so Theorem 2.4 of [17] applied to the
unital algebra pAp implies that K ⊗ pACp is algebraically simple. Then by
Proposition 3.5, K⊗AC is algebraically simple, whence KR⊗A is. The argument
from (ii) ⇒ (xi) of Theorem 2.2 of [31], then produces x, y ∈ KR ⊗ A with
a = xby, so a = (e11xe11)b(e11ye11).
For (2) ⇒ (1), we use a simplified argument based on the proof of Theorem 1.2
of [31]. Note first that if a nonzero projection can be found in A then Lemma 3.7
gives the result. (In particular, this takes care of the unital case.) Let a, d be
non-zero positive elements of A with da = ad = a (for a positive element x
with norm 1 take a = f1/2(x) and d = f1/4(x)). Then let s, t ∈ A with d = sat

and let y = (as∗sa)1/2t. An easy argument shows that |y||y∗| = |y∗| hence
f1/2(|y|)f1/8(|y∗|) = f1/8(|y∗|). Unless f1/4(|y|) is a projection, Lemma 4.2 of

[7] gives a scaling element t ∈ A. In this case, pn = fn+ f
1/2
n tf

1/2
n + f

1/2
n t∗f

1/2
n

(where fn = tn(t∗)n − tn+1(t∗)n+1 for n ≥ 2) is a projection by Theorem 3.1
of [7], .
The final condition holds as in Lemma 2.4 of [28]. �

Theorem 3.9. A real c-simple C*-algebra A is purely infinite if and only if
AC is purely infinite.

Proof. From Theorem 3.3 of [43] we know that A is purely infinite if AC is.
For the converse, suppose A is purely infinite, let ω be a free ultrafilter on N

and let Aω be the corresponding ultrapower algebra, defined in Definition 6.2.2
of [39]. Note that the proofs of Proposition 6.2.6 of [39] and the preliminary
Lemma 6.2.3 carry over directly to the real case (using Lemma 3.8). Therefore
Aω is simple and purely infinite. Suppose that D is a dimension function,
as defined in Definition I.1.2 of [5], on the complexification (Aω)C ∼= (AC)ω .
For each positive non-zero a, b in Aω there exist x, y ∈ Aω with b = xax∗

and a = yby∗ so D(a) = D(b). For any infinite projection p ∈ Aω , there
exists a projection q < p with D(p) = D(q) + D(p − q) = D(p) + D(p), so
D(a) = D(p) = 0 for each positive a ∈ Aω . Then for each positive a ∈ (Aω)C,
we have 0 ≤ D(a) ≤ D(a + Φ(a)) = 0. So there is no dimension function on
(Aω)C and therefore, by Theorem II.2.2 of [5], no 2-quasitrace. Therefore AC
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is weakly purely infinite by Theorem 4.8 of [28]. By Corollary 4.16 of [28] it is
therefore purely infinite. �

Corollary 3.10. (1) If A and B are stably isomorphic real C*-algebras,
and if A is purely infinite and c-simple then so is B.

(2) Any inductive limit of real purely infinite c-simple C*-algebras is again
purely infinite and c-simple.

(3) If A and B are purely infinite and c-simple, then so is A⊗min B.

Proof. These results follow immediately from Theorem 3.9 and the same results
in the complex case (see Proposition 4.1.8 of [39]). �

We now work toward showing that the K0 and K1 groups of a real purely
infinite algebra can be described in a similar way to the complex case. The
next two lemmas provide the required modification of Lemma 1.7 of [19].

Lemma 3.11. Let A be a real c-simple purely infinite unital C*-algebra and let
u ∈ U(A) and let λ ∈ σ(u). For any ε > 0 there exists v ∈ U(A) such that
‖u− v‖ < ε and

(1) if λ = λ∗ then v = v0 + λp where p is a non-zero projection in A and
v0 ∈ U(p⊥Ap⊥).

(2) if λ 6= λ∗ then v = v0 + λp1 + λ∗p2 where p1 and p2 are orthogonal
non-zero orthogonal projections in AC satisfying Φ(p1) = p2 and v0 ∈
U((p1 + p2)

⊥A(p1 + p2)
⊥).

Proof. First assume that λ = λ∗. Let h be a positive function on σ(u) such
that supp(h) ⊂ Nε0(λ) and h(z

∗) = h(z) for all z ∈ σ(u). Then h(u) ∈ A and

let p be a non-zero projection in h(u)Ah(u). As in the proof of Lemma 1.7
of [19], we have ‖u − (p⊥up⊥ + λp)‖ ≤ 3ε0. Then the polar decomposition of
(p⊥up⊥ + λp) yields a unitary v of the required form that, if ε0 is sufficiently
small, will satisfy ‖u− v‖ < ε.
Now assume λ 6= λ∗. Choose ε0 small enough so that Nε0(λ) ∩ Nε0(λ

∗) =
∅. Let h1 be a positive function on σ(u) such that supp(h1) ⊂ Nε0(λ). By
Theorem 3.9, AC is purely infinite so there is a non-zero projection p1 in B =
h1(u)ACh1(u).
Define p2 = Φ(p1) ∈ Φ(B) and p = p1 + p2. Now Φ(h1(u)) = h2(u) where h2 is
the continuous function on σ(u) defined by h2(z) = h1(z

∗). Since supp(h2) ⊂
Nε0(λ

∗), we have h1(u)h2(u) = 0. Thus p1 and p2 are orthogonal projections
and p ∈ A.
As in Lemma 1.7 of [19], we have ‖up1 − λp1‖ ≤ ε0 and ‖up2 − λ∗p2‖ ≤ ε0
from which it follows that ‖u − (p⊥up⊥ + λp1 + λ∗p2)‖ ≤ 8ε0. The required
unitary v is obtained by taking the polar decomposition of p⊥up⊥+λp1+λ

∗p2
in A. �

Lemma 3.12. Let A and u be as above. Then there is a projection p in A and
a unitary v in U(p⊥Ap⊥) such that u ∼ v + p.
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Proof. If 1 ∈ σ(u) then using Lemma 3.11, approximate u by an element of the
form v + p. If the approximation is close enough, then the two unitaries will
be in the same path component.
If λ ∈ σ(u) where λ 6= λ∗, use Lemma 3.11 to approximate u by v+λp1+λ

∗p2.
Then we can easily find a path from λp1+λ

∗p2 to p1+p2 in (p1+p2)A(p1+p2).
The only possibility left is u = −1. In that case, find two orthogonal projections
q1 and q2 and a partial isometry s such that ss∗ = q1 and s∗s = q2. Let
p = q1 + q2. The projection p can be rotated to −p within the 2 × 2 matrix
algebra generated by q1, q2 and s. Hence the unitary −1 = −(p⊥)+−p can be
connected to the unitary −(p⊥) + p. �

Proposition 3.13. Let A be a c-simple purely infinite real C*-algebra. Then

(1) K0(A) = {[p] | p is a non-zero projection in A}
(2) K1(A) = U(A)/U0(A) (for A unital).

Proof. In the complex case, these results are proven in Section 1 of [19]. The
proofs of those results as well as the proofs of the preliminary lemmas carry over
to the real case, with two modifications. The first is to the proof of Lemma 1.7
of [19], which we already addressed with the proof of Lemma 3.12 above.
Secondly, in the proof of Lemma 1.1 of [19] the author uses an element of the
form

w̃ = w + w∗ + (1− w∗w − ww∗), (where w2 = 0)

that is a unitary lying in the finite dimensional C*-algebra generated by w. In
the complex case it follows that w̃ ∈ U0(A), whereas in the real case unitary
groups of finite dimensional C*-algebras are not connected in general.
However, if instead we take w̃ = w − w∗ + (1 − w∗w − ww∗) then w̃ is in the
connected component of the identity, as it corresponds to a matrix of the form(

0 1
−1 0

)
. The proof of Lemma 1.1 of [19] can be completed without change using

this alternative w̃. �

We note that part (1) of Proposition 3.13 appeared as Proposition 11 of [10].

4. Exponential Rank

Definition 4.1. An element a in a real C*-algebra A is skew-adjoint if a∗ =
−a. The set of skew-adjoint elements is denoted by Ask.

If a is skew-adjoint, then σ(a) = −σ(a) ⊆ iR and the real unital C*-algebra
generated by a is isomorphic to

{f ∈ C(σ(a),C) | f(it)∗ = f(−it)} .
Furthermore, if a is a skew-adjoint element in a real unital C*-algebra A, then
exp(a) is a unitary in A.

Lemma 4.2. Let A and B be unital real C*-algebras.

(1) U0(A) = {∏n
i=1 exp(ki) | ki ∈ Ask, n ∈ N}.

(2) If α : A→ B is unital and surjective, then α(U0(A)) = U0(B).
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Proof. Suppose first that u is a unitary element in A with ‖u − 1‖ < 2.
Then −1 /∈ σ(u). We define a continuous function f : T \ {0} → i(−π, π) by
f(exp(it)) = it for t ∈ (−π, π). Then f(u) is in the real C*-algebra generated
by u, is skew-adjoint, and satisfies exp(f(u)) = u.
More, generally, if u ∈ U0(A) then there exists a chain
u = u0, u1, u2, . . . , un = 1 with ‖ui−1 − ui‖ < 2 for all i ∈ {1, 2, . . . , n}.
Then applying the previous paragraph we have ui−1u

∗
i = exp(ki) for all i with

1 ≤ i ≤ n. Then u =
∏n
i=1 exp(ki).

Conversely, if {ki}ni=1 is any collection of skew-adjoint elements, then u(t) =∏n
i=1 exp(tki) for 0 ≤ t ≤ 1 is a continuous path of unitaries from 1A to∏n
i=1 exp(ki). This proves (1).

For (2), the inclusion α(U0(A)) ⊆ U0(B) is immediate. Let u ∈ U0(B). Then
u =

∏n
i=1 exp(ki) for some skew-adjoint elements ki ∈ B. Let li ∈ A be

elements such that α(li) = ki. We may assume that li is skew-adjoint for all i,
by replacing with 1

2 (li − l∗i ) if necessary. Then u = α (
∏n
i=1 exp(li)). �

Let E = {exp(k) | k ∈ Ask} and let En be the set of all products of at most n
elements of E . Thus U0(A) = ∪∞

n=1En. The argument in the proof above also
implies that the set En+1 contains the topological closure of En so that we have
the an increasing sequence

E ⊆ E ⊆ E2 ⊆ (E)2 ⊆ · · · ⊆ (E)n ⊆ (En) ⊆ (E)n+1 ⊆ . . .

similar to that in [37], motivating the following definition.
Definition 4.3.

(1) The exponential rank of A, written cer(A), is equal to the integer n if
En is the smallest set in this sequence to be equal to U0(A) and is equal
to the symbol n + ε if En is the smallest set to be equal to U0(A). If
En 6= U0(A) for all n then cer(A) = ∞.

(2) The exponential length of A, written cel(A), is equal to the smallest
number 0 < cel(A) ≤ ∞ such that every unitary u in U0(A) can be
written in the form

u = exp(k1) exp(k2) · · · exp(kn)
where ki ∈ Ask and

‖k1‖+ ‖k2‖+ · · ·+ ‖kn‖ ≤ cel(A) .

With these definitions, the proofs of Section 2 of [37] can be applied with
minimal modification to prove the following results.

Lemma 4.4. Let A be a real unital C*-algebra and let n be a positive integer.

(1) If cel(A) < nπ then cer(A) ≤ n.
(2) If cel(A) ≤ nπ then cer(A) ≤ n+ ε.

Lemma 4.5. Let A be a real unital C*-algebra. If every unitary u ∈ U0(A) can
be connected to the identity by a rectifiable path of length no more than M , then
cel(A) ≤M .
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Definition 4.6. A real C*-algebra A has real skew rank zero if the elements
of Ask with finite spectrum are dense in Ask.

In the case of a complex C*-algebra A there is a bicontinuous bijection Asa →
Ask given by multiplication by i, showing that A has skew rank zero if and only
it has real rank zero. However, in the case of real C*-algebras things are more
subtle. For example the condition of being skew-rank zero is not equivalent (in
the unital case) to the condition that the invertible elements of Ask are dense.
Indeed, all finite dimensional real C*-algebras have real skew rank zero, but
the invertibles of (Mn)sk are dense only if n is even.

Proposition 4.7. Let A be a real unital c-simple purely infinite C*-algebra
satisfying [1] ∈ 2K0(A). Then the invertibles of Ask are dense in Ask and A
has real skew rank zero.

Proof. Let A be a real purely infinite C*-algebra such that [1] ∈ 2K0(A). Let
a ∈ Ask and let ε > 0 be given. Define functions g : iR → R and f : iR → iR
by

g(it) = max{ε− |t|, 0} and f(it) =






i(t+ ε) t ≤ −ε
0 |t| < ε

i(t− ε) t ≥ ε .

Then g(a) ∈ A+ and f(a) ∈ Ask.

Since A is purely infinite, there is a projection p ∈ g(a)Ag(a) with 2[p] = [1] ∈
K0(A). Then [1− p] = [p] so there is a partial isometry s such that s∗s = 1− p
and ss∗ = p. Since f(a)g(a) = 0 we have f(a) = (1− p)f(a)(1 − p).
Let b = f(a)+ ε(s− s∗). In matrix form under the decomposition indicated by
the projection sum 1 = (1− p) + p we have

b =

(
f(a) −ε
ε 0

)

whence b is invertible. This proves the first statement.
For the second statement, again let a ∈ Ask and let ε > 0 be given. By the first
part of the theorem, we may assume that a is invertible, hence σ(a) ⊂ iR\{0}.
Write a = a1 + a2 where the elements ai ∈ AC satisfy σ(a1) ⊂ i(0,∞) and
σ(a2) ⊂ i(−∞, 0). Note also that Φ(a1) = a2.
Since AC is simple and purely infinite it has real rank zero, so there exists
b1 ∈ (AC)sk such that σ(b1) is a finite subset of iR+ and ‖a1 − b1‖ < ε/2. Let
b2 = Φ(b1) and let b = b1 + b2. Then b is a skew-adjoint element of A with
finite spectrum and ‖a− b‖ < ε. �

Lemma 4.8. Let A be a real c-simple unital C*-algebra such that [1] ∈ 2K0(A).
Let u ∈ U(A) be a unitary such that σ(u) 6= S1. Then for every ε > 0 there is
a unitary v with finite spectrum such that ‖u− v‖ < ε.

Proof. If −1 /∈ σ(u), then there is a continuous function f : σ(u) → i[−π, π]
that is a right inverse to the function it 7→ exp(it) and that satisfies f(z∗) =
f(z)∗. Then f(u) ∈ Ask can be approximated within δ by a skew adjoint
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element b with finite spectrum by Proposition 4.7. For an appropriate choice
of δ, this implies that exp(b) ∈ U(A) approximates u within ε.
Similarly, if 1 /∈ σ(u), then there is a continuous function f : σ(u) → i[−π, π]
that is a right inverse to the function it 7→ − exp(−it) and that satisfies f(z∗) =
f(z)∗.
In the general case, suppose that λ /∈ σ(u) for some λ ∈ S1. Let σ1 = {w ∈
σ(u) | Re(w) > Re(λ)} and let σ2 = {w ∈ σ(u) | Re(w) < Re(λ)}. Then
σ = σ1 ∪ σ2. Let ui = uiEu(σi), where Eu(σi) denotes the spectral projection
of u associated with the clopen subset σi of σ. Then 1 /∈ σ(u2) and −1 /∈
σ(u1). Using the results from the first two paragraphs, let vi be a unitary that
approximates ui in Eu(σi)AEu(σi) within ε. Then since u = u1 + u2 we have
that v = v1 + v2 is a unitary that approximates u within ε. �

Lemma 4.9. Let A be a real unital simple purely infinite C*-algebra let u ∈
U(A) and let {λ1, . . . , λn} be a subset of σ(u) that is closed under conjugation.
For any ε > 0 there exist v ∈ U(A) and orthogonal projections p1, . . . , pn ∈ AC

such that ‖u− v‖ < ε and v = v0 + λ1p1 + · · ·+ λnpn with v0 ∈ U((p1 + · · ·+
pn)

⊥A(p1 + · · ·+ pn)
⊥).

Furthermore, the elements
∑n
i=1 pi and

∑n
i=1 λipi are both in A.

Proof. Use the constructions of Lemma 3.11 above as in the proof of Lemma 6
of [34]. �

Lemma 4.10. Let A be a real unital C*-algebra and let u ∈ U(A). For any
ε > 0 there exists an h ∈M2(A)sk such that ‖u⊕ u∗ − exp(h)‖ < ε.

Proof. As in the proof of Corollary 5 of [34], there exists a continuous path
v(t) of unitaries in M2(A) with v(0) = 1 and v(π/2) = u ⊕ u∗ such that
−1 /∈ σ(v(t)) for 0 ≤ t < π/2. Thus we can find a t close enough to π/2 such
that ‖u⊕ u∗ − v(t)‖ < ε and v(t) = exp(h) for a skew-adjoint h. �

Lemma 4.11. Let A be a real unital c-simple purely infinite C*-algebra such
that [1] ∈ 2K0(A). Let e1, e2, e3, e4 be nonzero orthogonal projections in A that
sum to 1. Let a be a partial isometry such that a∗a = e2 and aa∗ = e3. Let
u ∈ U(e1Ae1) and v ∈ U(e2Ae2) be unitaries with σ(u) = S1. Then for all
ε > 0 there is a unitary z ∈ U(A) and a unitary w ∈ U(e4Ae4) with finite
spectrum such that

‖z∗(u + 1− e1)z − (u+ v + av∗a∗ + w)‖ < ε .

Proof. This proof closely follows that of Lemma 7 of [34]. By Lemma 4.10
there is a unitary in (e2 + e3)A(e2 + e3) that is arbitrarily close to v + av∗a∗

and that has the form exph for h ∈ Ask. This in turn can be approximated
by a unitary that has finite spectrum by Proposition 4.7. The general form of
such a unitary is

n∑

k=1

(λkqk1 + λ∗kqk2) + 1q01 + (−1)q02
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where λ∗k 6= λk, the nonzero projections qki ∈ AC satisfy Φ(qk1) = qk2 for
1 ≤ k ≤ n, and the (possibly zero) projections q0i are in A. Furthermore, the
qki are orthogonal and sum to e2 + e3. Without loss of generality, we assume
that v+ av∗a∗ has this form. With an obvious choice of coefficients λki we can
write this as

v + av∗a∗ =
n∑

k=0

2∑

i=1

λkiqki =
∑

λkiqki .

(Henceforth in this proof will use an undecorated
∑

to represent a double sum

indexed as
∑n
k=0

∑2
i=1.)

Now we replace u by a nearby element of the form given by Lemma 4.9.
Specifically, there are orthogonal projections pki ∈ e1ACe1 and, setting p =
e1 −

∑
pki ∈ A, there is a unitary u0 ∈ pAp such that

u = u0 +
∑

λkipki

(where the projection p0i = 0 if and only if q0i = 0).
For each k ∈ {1, . . . , n} let ck1 ∈ AC be a partial isometry such that c∗k1ck1 =
pk1 and ck1c

∗
k1 < pk1. Then ck2 = Φ(ck1) satisfies c

∗
k2ck2 = pk2 and ck2c

∗
k2 < pk2

and ck = ck1+ck2 ∈ A satisfies c∗kck = pk1+pk2 and ckc
∗
k < pk1+pk2. For k = 0

we obtain partial isometries c0k ∈ A such that c∗0ic0i = p0i and ckic
∗
ki < pki.

Then c = p+
∑
cki ∈ A satisfies

c∗c = e1, cc∗ = e1 −
∑

(pki − ckic
∗
ki), and

cuc∗ = u0 +
∑

λkickic
∗
ki .

Similarly we can find a collection of partial isometries dki with domain projec-
tion qki and range projection a subprojection of pki − c∗kicki that also satisfy
Φ(dk1) = dk2 for k 6= 0 and Φ(dki) = dki for k = 0. Then the partial isometry
d =

∑
dki ∈ A satisfies

d∗d = e2 + e3, dd∗ ≤
∑

(pki − ckic
∗
ki), and

d
(∑

λkiqki

)
d∗ =

∑
λkidkid

∗
ki .

Now, choose a partial isometry b such that

b∗b < e4, bb∗ =
∑

(pki − ckic
∗
ki − dkid

∗
ki)

and define

w0 =
∑

λkib
∗(pki − ckic

∗
ki − dkid

∗
ki)b .

Then z0 = b + c + d is a partial isometry with z∗0z0 = e1 + e2 + e3 + b∗b and
z0z

∗
0 = e1. So in K0(A) we have [e1] = [e1 + e2 + e3 + b∗b], which implies

[1 − e1] = [e4 − b∗b]. By Proposition 11 of [10], there is a partial isometry
z1 ∈ A such that z1z

∗
1 = 1− e1 and z∗1z1 = e4 − b∗b. Then w = w0 + e4 − b∗b is

a unitary with finite spectrum in e4Ae4 and z = z0 + z1 is a unitary in A that
satisfies z∗(u + 1− e1)z = u+

∑
λkiqki + w. �
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Theorem 4.12. Let A be a real unital c-simple purely infinite C*-algebra such
that [1] ∈ 2K0(A). For every u ∈ U0(A) and every ε > 0 there is a unitary v
with finite spectum such that ‖u− v‖ < ε.

Proof. With the lemmas that we have developed, the proof is now the same
as that of the unital case of Theorem 1 and Corollary 2 of [34], except that
wherever there is an element of the form exp(ih) where h is self-adjoint, we use
exp(k) where k is skew-adjoint. �

As in the complex case, we have the following corollary concerning exponential
length.

Corollary 4.13. Let A be a real unital c-simple purely infinite C*-algebra
such that [1] ∈ 2K0(A). Then cel(A) ≤ 4.

Proof. By Theorem 4.12, every unitary u ∈ U0(A) can be approximated within
ε by a unitary v with finite spectrum. For ε sufficiently small, ‖v∗u − 1‖ < ε
implies there exists a skew-adjoint k2 such that v∗u = exp(k2) with ‖k2‖ ≤
4 − π. As v has finite spectrum, there exists a skew-adjoint k1 such that
v = exp(k1) and ‖k1‖ ≤ π. Then u = exp(k1) exp(k2) and ‖k1‖+‖k2‖ ≤ 4. �

5. Homomorphisms from OR
n

The following theorem gives the real version of the Rokhlin property of the
Bernoulli shift, established in [15] and summarized in [39]. Let M2∞ =
limk→∞M2k be the real CAR algebra and let H be the real C*-algebra of
quaternions.

Proposition 5.1. Let σ be the one-sided Bernoulli shift on M2∞ . For each
ε > 0 and for each r ∈ N there exist k ∈ N and projections e0, e1, . . . , e2r = e0 ∈
M2k such that

∑2r

j=1 ej = 1 and ‖σ(ej)−ej+1‖ < ε for all j = 0, 1, 2, . . . , 2r−1.

Proof. Let Ak =M2k and let A =M2∞ . Using the notation of Proposition 5.1.3
of [39], let S denote the unilateral shift on ℓ2(N,C), let ωk = exp(2πi/2k) for
each k ≥ 0 and, given δ > 0, let

f0 =
1√
n0

(1, 1, . . . , 1, 0, 0, . . . ) ∈ ℓ2(N,R)

be a unit vector with ‖Sf0 − f0‖ < δ and let

f1 =
1√
n1

(0, 0, . . . 0, 1,−1, 1,−1, . . . ,−1, 0, 0, . . . )

be a unit vector in ℓ2(N,R), orthogonal to f0, with ‖Sf1 + f1‖ < δ. Then, for
r ∈ N, let f2, . . . , fr ∈ ℓ2(N,C) be defined by

fj =
1

√
nj

(0, 0, . . . 0, 1, ωj, ω
2
j , . . . , ω

nj−1
j , 0, 0, . . . )

where there are sufficiently many initial zeros to make fj orthogonal to its
predecessors and where nj is chosen so that

〈fj , fj〉 = 1 + ω2
j + . . . ω

2(nj−1)
j = 0
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and ‖Sfj − ωjfj‖ < δ. If fj = gj + ihj with gj , hj ∈ ℓ2(N,R) then, from the

orthogonality of fj and fj, ‖gj‖ = ‖hj‖ = 1/
√
2.

Let a : ℓ2(N,C) → AC be the map described in [15] and [39] satisfying
the canonical anticommutation relations and observe that a maps ℓ2(N,R)
into A. Let v1 = w1 = a(f1)(a(f0) + a(f0)

∗) and, for each 2 ≤ j ≤ r

let v2j−2 = a(fj)(a(f0) + a(f0)
∗), v2j−1 = a(fj)(a(f0) + a(f0)

∗), w2j−2 =

a(
√
2gj)(a(f0) + a(f0)

∗) = (v2j−2 + v2j−1)/
√
2 and w2j−1 = a(

√
2hj)(a(f0) +

a(f0)
∗) = −i(v2j−2 − v2j−1)/

√
2. Note that {w1, w2, . . . , w2r−1} ⊂ Ak for all

sufficiently large k.
It is noted in the proof of Proposition 4.1 of [15] that the elements vi for 1 ≤
i ≤ 2r−1 satisfy the relations vivj +vjvi = 0 and viv

∗
j +v

∗
j vi = δij1. It follows

from this that the elements wi for 1 ≤ i ≤ 2r − 1 satisfy the same relations.
Therefore, using the matrix units described in the proof of Proposition 4.1 of
[15], the real C*-algebra B generated by w1, . . . , w2r−1 is isomorphic toM22r−1 .
Slightly varying the proof of Proposition 4.1 of [15], let β be the automorphism
of the complexification of B determined by β(v1) = −v1, β(v2j) = ωjv2j and
β(v2j+1) = ωjv2j+1 for each 1 ≤ j ≤ r−1. Note that β(w2j) =

1
2 (ωj+ωj)w2j+

i
2 (ωj − ωj)w2j+1 and β(w2j+1) = − i

2 (ωj − ωj)w2j +
1
2 (ωj + ωj)w2j+1, so that

β leaves the real algebra B invariant. Identifying B with M22r−1 , there is an
orthogonal matrix W implementing β. By standard linear algebra, described
for example in Section 81 of [22], W is orthogonally conjugate to an orthogonal
matrix consisting of diagonal elements ±1 and diagonal 2×2 rotation matrices,
determined by the eigenvalues of W .
As in [39], on the complexification of B, identified with M22r−1(C), β is
implemented by a diagonal unitary with entries 1, ωr, ω

2
r , . . . , ω

2r−1
r , each

repeated 2r−1 times. (The unitary arises as the tensor product of one
diagonal unitary with entries 1, ωr, ω

2
r , . . . , ω

2r−1
r and another with entries

1, ωr, ωr
2, . . . , ωr

2r−1
−1.) On B ∼= M22r−1 the orthogonal matrix W imple-

menting β is therefore conjugate to an orthogonal matrix with 2 × 2 diagonal

blocks diag(1,−1), R,R2, . . . , R2r−1
−1, each repeated 2r−1 times, where

R =
(

cos(π/2r−1) − sin(π/2r−1)

sin(π/2r−1) cos(π/2r−1)

)
.

The cyclic shift on M2r is implemented by the unitary

V =




0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 1 0



,

which is orthogonally conjugate to diag
(
diag(1,−1), R,R2, . . . , R2r−1

−1
)
. It

follows that the orthogonal element W implementing β on B is orthogonally
conjugate to a direct sum of 2r−1 copies of V and thus that β is conjugate
to a direct sum of 2r−1 cyclic shifts. It follows that there are 2r orthogonal

Documenta Mathematica 16 (2011) 619–655



The Classification of Real . . . 635

projections e0, e1, . . . , e2r = e0 in B (each of rank 2r−1) that are cyclically
permuted by β. As in the proof of Proposition 4.1 of [15], a suitable choice
of δ at the start of the proof ensures that ‖σ(ej) − β(ej)‖ < ε for each j and
therefore the projections e0, e1, . . . , e2r = e0 have the required properties. �

Theorem 5.2. Let D be a real unital C*-algebra satisfying

(i) the canonical homomorphism U(D)/U0(D) → K1(D) is an isomor-
phism, and

(ii) cel(D) <∞.

Let n be an even integer, let φ, ψ be unital homomorphisms from OR
n to D,

let λ be the endomorphism of D defined by λ(a) =
∑n

j=1 φ(sj)aφ(sj)
∗ and

let u ∈ U(D) be defined by u =
∑n

j=1 ψ(sj)φ(sj)
∗, where s1, . . . , sn are the

canonical generators of OR
n. Then the following are equivalent:

(1) u ∈ {vλ(v)∗ | v ∈ U(D)},
(2) [u] ∈ (n− 1)K1(D)
(3) [φ] = [ψ] ∈ KK0(OR

n , D),
(4) φ and ψ are approximately unitarily equivalent.

In particular, these statements are equivalent if D is a real unital purely infinite
c-simple C*-algebra.

Proof of Theorem 5.2. The proof of the equivalence of the four statements,
assuming (i) and (ii), is similar to that of the complex case in Sections 3 and 4
of [38], modified only by the use of unitaries of the form exp(h) with h ∈ Ask
in the proof of the real version of Lemma 4.6 of [38]. We note that in the proof
of the real version of Lemma 3.7 of [38], the required result from [19] holds, as
was observed already in the proof of Proposition 3.13 above.
Suppose D is a real unital purely infinite c-simple C*-algebra. Then condition
(i) holds for D by Proposition 3.13. Since K0(OR

n) = Zn−1 and n is even, we
have [1OR

n
] ∈ 2K0(OR

n). Using the unital homomorphism φ (or ψ) we obtain

[1D] ∈ 2K0(D). Then condition (ii) holds by Corollary 4.13. �

Corollary 5.3.

(1) Let A be a real unital purely infinite c-simple C*-algebra. Any two uni-
tal homomorphisms φ, ψ : OR

2 → A are approximately unitarily equiva-
lent.

(2) Any inductive limit of the form OR
2 → OR

2 → OR
2 → . . . , with unital

connecting homomorphisms, is isomorphic to OR
2 .

(3) OR
2 ⊗OR

2
∼= OR

2 .
(4)

⊗∞

n=1 OR
2
∼= OR

2 .
(5) OR

2 ⊗M2∞
∼= OR

2 .
(6) OR

2 ⊗H ∼= OR
2 .

Proof. We know that KCRT(OR
2 ) = 0 from Section 5 of [8] so the universal

coefficient theorem (Theorem 4.1 of [9]) implies that KK0(OR
2 , D) = 0. Then

part (1) follows immediately from Theorem 5.2.
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Parts (2) and (3) can be proven in the same way as in the complex case. See
Corollary 5.1.5 and Theorem 5.2.1 in [39]. Then part (4) follows from parts (2)
and (3).
There is an isomorphism OR

2
∼=M2(OR

2 ), established as in the complex case: if
s1 and s2 are generators of OR

2 satisfying the canonical relations s∗i sj = δij1OR

2

and
∑2
i=1 sis

∗
i = 1, then

S1 = ( s1 s20 0 ) and S2 =
(

0 0
s1 s2

)

satisfy the same relations and generateM2(OR
2 ). Using that isomorphism, part

(5) follows from part (2).
Finally, part (6) follows from (5) and the formula M2∞ ⊗ H ∼= M2∞ , which
follows from Theorem 10.1 of [21] or from Theorem 4.8 of [42]). �

6. Tensor Product Theorems

In this section, we reproduce for real C*-algebras some standard results regard-
ing tensor products with OR

2 and OR
∞.

Definition 6.1.

(1) A real (resp. complex) C*-algebra A is amenable if for all ε > 0 and all
finite subsets F ⊂ A, there is a finite dimensional real (resp. complex)
C*-algebra B and contractive completely positive linear maps φ : A→
B and ψ : B → A such that

‖ψ ◦ φ(a)− a‖ < ε for all a ∈ F .

(2) A real (resp. complex) C*-algebra A is nuclear if for all real (resp.
complex) C*-algebras B the algebraic tensor product A ⊗R B (resp.
A⊗C B) has a unique C*-norm.

(3) A real (resp. complex) C*-algebra A is exact if the tensor product
functor B 7→ A ⊗min B is exact. Here the tensor product is over R

(resp. C) and B can be any real (resp. complex) C*-algebra.

Lemma 6.2. Let A be a real C*-algebra. Then

(1) A is amenable if and only if AC is amenable.
(2) A is nuclear if and only if AC is nuclear.
(3) A is exact if and only if AC is exact.

Consequently, A is amenable if and only if it is nuclear; and in this case it is
also exact.

Proof. Part (1) can be found in Proposition 3 of [25] and the preceding text.
We claim that there is a one-to-one correspondence between C*-norms on the
algebraic tensor product A⊗R B and those on AC ⊗C BC. Let γ be a C*-norm
on A ⊗R B, and let A ⊗γ B be the real C*-algebra obtained by completion.
Then the complexification (A⊗γ B)C has a unique C*-norm extending that on
A⊗R B. Thus every C*-norm on the algebraic tensor product A⊗R B extends
uniquely to a C*-norm on AC ⊗C BC. Part (2) follows immediately from this
claim.
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It also follows that the restriction of the minimal C*-norm on AC⊗CBC gives the
minimal C*-norm on A⊗RB. This fact, plus the fact that the complexification
functor A 7→ AC is exact, implies (3).
The final statement then follows from the corresponding statement for complex
C*-algebras. See Theorem 6.1.3 of [39] and Theorem 6.5.2 of [32]. �

Proposition 6.3. Let A be a real separable C*-algebra A. Then A is exact if
and only if there is an injective homomorphism ι : A→ OR

2 . If A is unital then
ι can be chosen to be unital.

Proof. Suppose that A is exact. Then AC is separable and exact. Thus, by
Theorem 6.3.11 of [39], there is an injective homomorphism ιC : AC → O2

(which is unital if AC is unital). Then we can take ι to be the composition

A →֒ AC

ιC−→ O2 →֒ M2(OR

2 )
∼= OR

2 .

Conversely, if there is an injective homomorphism ι : A→ OR
2 then the complex-

ification yields an injective homomorphism from AC to O2. By Theorem 6.3.11
of [39] this implies that AC is exact, hence A is exact. �

Lemma 6.4. Let A be a real purely infinite c-simple nuclear unital C*-algebra.
Then all unital endomorphisms on A ⊗ OR

2 are approximately unitarily equiv-
alent.

Proof. In the complex case, this result is found as Theorem 6.3.8 of [39]. We
will use that result to prove the real version.
By Corollary 5.3, Part (5) it suffices to show that any unital homomorphism

γ : A⊗OR

2 ⊗M2∞ → A⊗OR

2 ⊗M2∞

is approximately unitarily equivalent to the identity. We write A′ = A ⊗ OR
2

and let

αℓ,k : A
′ ⊗M2k →֒ A′ ⊗M2ℓ for k < ℓ

αk : A
′ ⊗M2k →֒ A′ ⊗M2∞

be the canonical injections. Then we use the commutative diagram

A′ //

c
��

. . . // A′ ⊗M2k
αk+1,k

//

c
��

A′ ⊗M2k+1
//

c
��

. . . // A′ ⊗M2∞

c
��

A′
C

// . . . // (A′ ⊗M2k)C
αk+1,k

// (A′ ⊗M2k+1)C // . . . // (A′ ⊗M2∞)C

By Theorem 6.3.8 of [39], there is a sequence of unitaries un ∈ (A′ ⊗M2∞)C
such that

‖unau∗n − γ(a)‖ → 0 for all a ∈ A′ ⊗M2∞ .

For each n find an integer k(n) and a unitary vn ∈ (A′ ⊗M2k(n))C such that
‖αk(n)(vn) − un‖ < 1/n. Let wn = r(vn) ∈ A′ ⊗M2k(n)+1 , where r is induced
by the realification map M2k(n) ⊗ C → M2k(n)+1 . We may assume that the
sequence {k(n)}∞n=1 is increasing.
Let a ∈ A′ ⊗M2∞ be given such that ‖a‖ = 1 and let ε > 0. Then find an
integer N large enough so that, for all n ≥ N ,
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• ‖αk(n)(vn)− un‖ < ε,
• ‖unau∗n − γ(a)‖ < ε,
• there exist an, bn ∈ A′ ⊗M2k(n) such that

‖a− αk(n)(an)‖ < ε and ‖γ(a)− αk(n)(bn)‖ < ε .

Then a calculation shows that, for all n ≥ N ,

‖vnanv∗n − bn‖ = ‖αk(n)(vn)αk(n)(an)αk(n)(vn)∗ − αk(n)(bn)‖ < 5ε.

Now for any element x ∈ A′ ⊗M2k(n) we have

αk(n)+1rc(x) = αk(n)+1αk(n)+1,k(n)(x) = αk(n)(x) .

It follows that

‖αk(n)+1(wn)aαk(n)+1(wn)
∗ − γ(a)‖

<‖αk(n)+1(wn)αk(n)(an)αk(n)+1(wn)
∗ − αk(n)(bn)‖+ 2ε

=‖αk(n)+1r(vn)αk(n)+1rc(an)αk(n)+1r(vn)
∗ − αk(n)+1rc(bn)‖ + 2ε

=‖vnc(an)v∗n − c(bn)‖+ 2ε

=‖vnanv∗n − bn‖+ 2ε < 7ε.

�

Theorem 6.5. Let A be a real C*-algebra. Then A is c-simple, separable,
unital, and nuclear if and only if A⊗OR

2
∼= OR

2

Proof. Suppose that A is c-simple, separable, unital, and nuclear. There is a
unital homomorphim γ : OR

2 → A⊗OR
2 given by x 7→ 1⊗x and there is a unital

homomorphism κ : A⊗OR
2 → OR

2 by Lemma 6.2 and Proposition 6.3. Then by
Theorem 5.2 we have κ◦γ ≈u 1OR

2
and by Lemma 6.4 we have γ ◦κ ≈u 1A⊗OR

2
.

Therefore, by (the real analog of) Corollary 2.3.4 of [39], A⊗OR
2
∼= OR

2 .
Conversely, if the isomorphism A ⊗ OR

2
∼= OR

2 holds for a real C*-algebra A,
then we have AC ⊗ O2

∼= O2 which implies by Theorem 7.1.2 of [39] that AC

is simple, separable, unital, and nuclear. Therefore A is c-simple, separable,
unital, and nuclear. �

We note that the hypothesis above requiring that A be c-simple cannot be
relaxed, as the result does not hold for A = O2 (considered as a real C*-
algebra).
Theorem 6.6.

(1) Any two unital homomorphisms φ, ψ from OR
∞ into a real, unital,

purely infinite, nuclear, c-simple C*-algebra A are approximately uni-
tarily equivalent.

(2) Let A be a real c-simple, separable, and nuclear C*-algebra. Then A is
isomorphic to A⊗OR

∞ if and only if A is purely infinite.
(3) OR

∞
∼=

⊗∞

n=1 OR
∞.

Proof. As in Section 7.2 of [39]. �
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Corollary 6.7. Let A and B be real, c-simple, separable, nuclear C*-algebras.
If A or B is purely infinite, then A⊗B is purely infinite.

Proof. From part (2) of Theorem 6.6. �

7. Homomorphisms from OR
∞

The goal of this section is to prove the following theorem, analogous to Propo-
sition 2.2.7 of [35].

Theorem 7.1. Let D be a real unital purely infinite simple C*-algebra, and let
φ, ψ : OR

∞ → D be unital homomorphisms. Then φ is asymptotically unitarily
equivalent to ψ.

The proof of Theorem 7.1 will be the same as that in [35]. However, there are
a couple of background topics that need to be addressed in the context of real
C*-algebras.
We begin with a discussion of approximately divisible real C*-algebras, follow-
ing [6]. It is sufficient to consider only separable unital C*-algebras. Also, we
skirt the general topic of completely noncommutative C*-algebras by taking
into account Definition 2.6 of [6] and the subsequent comment.

Definition 7.2. A separable unital real C*-algebraA is approximately divisible
if for all x1, x2, . . . , xn ∈ A and ε > 0, there is a unital subalgebra B isomorphic
to M2, M3, or M2 ⊕M3 such that ‖xiy − yxi‖ < ε for all i = 1, 2, . . . , n and
all y in the unit ball of B.

The following theorem is the real version of Corollary 2.1.6 of [35].

Lemma 7.3. The tensor product OR
∞ ⊗ D is approximately divisible for any

real separable unital C*-algebra D. In particular, every c-simple, separable,
nuclear, purely infinite, unital real C*-algebra is approximately divisible.

Proof. Let A = OR
∞ ⊗ D. Using the isomorphism OR

∞
∼=

⊗∞

n=1 OR
∞ of The-

orem 6.6 we obtain a sequence of mutually commuting unital homomophisms
φn : OR

∞ → A such that ‖φn(a)b − bφn(a)‖ → 0 for all a ∈ OR
∞ and all b ∈ A.

Choose a unital map γ : M2 ⊕M3 → OR
∞ and let ψn = φn ◦ γ. Then for large

enough n, the subalgebra B = ψn(M2 ⊕M3) works.
The second statement follows from part (2) of Theorem 6.6. �

Lemma 7.4. Let p and q be full projections in M∞(A) where A is a real,
separable, unital, approximately divisible C*-algebra. Then p ∼ q if and only if
[p] = [q] in K0(A).

Proof. The proof is the same as the proof of (the first part of) Proposition 3.10
in [6] in complex case. That proof relies on a progression of results from Sec-
tion 2 of [6] which can all be proven in the real case in the same way with one
minor caveat. The proof of Proposition 2.1 of [6] (which in that paper was
left to the reader) relies on the fact that a complex C*-algebra is spanned by
its unitaries. While this fact is not true in general for real C*-algebras, it can
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easily be shown to be true for finite dimensional real C*-algebras, which is the
relevant case.
The proof of Proposition 3.10 in [6] also relies on Theorem 3.1.4 of [3], which is
a ring-theoretic result stated in enough generality to apply to real C*-algebras.

�

We remark that a more direct proof of Lemma 7.4 can be achieved in the
special case (which is sufficient for our purposes) that A = OR

∞ ⊗D where D
is separable and unital. In that case, we write A =

⊗∞

i=1 OR
∞ ⊗ D and let

An =
⊗n

i=1 OR
∞ ⊗ D be the unital subalgebra of A consisting of the first n

factors in the tensor product. Then for each n and each k, it is easy to find
a unital subalgebra Bn ⊂ A′

n ∩ A that is isomorphic to M2k ⊕M3k . Thus we
achieve the result of Corollary 2.10 of [6] without having to recheck all the
earlier material of Section 2 of [6] in the real case.

Lemma 7.5. Let D be a unital real C*-algebra and let p, q be any two full
projections in KR ⊗ OR

∞ ⊗ D. Then p is Murray-von Neumann equivalent to
a subprojection of q. Furthermore, p is homotopic to q if and only if they
represent the same class in K0(KR ⊗OR

∞ ⊗D) ∼= K0(D).

Proof. With our Lemmas 7.3 and 7.4, as well as Theorem 3.6 of [11], the proof
is the same as that of Lemma 2.1.8 of [35]. �

Proof of Theorem 7.1. With these preliminary definitions and results, the
proof is the same as the proof of Proposition 2.2.7 of [35] including all of
the lemmas and intermediate results in Sections 2.1 and 2.2 of [35]. We note
that in [35], the proofs of Propositions 2.1.9 and 2.1.10 (having to do with
exact stability of the relations defining OR

m and Em(δ)) are referred back to
the proofs of parts (1) and (2) of Lemma 1.3 of [30]. The proof given there for
part (2) produces isometries wj that live in the real algebra En(δ). Therefore

the homomorphisms φ
(m)
δ constructed in the complex case restrict to homo-

morphisms between the real algebras. The same will be true for the analogous
proof of part (1).
We also note that the proofs for the real versions of Lemmas 2.2.1 and 2.2.3 of
[35] rely on our Theorem 5.2 which is only established for n even. Hence for
real C*-algebras, we need to takem to be even in Lemma 2.2.1 and n to be even
in Lemma 2.2.3. This is however, sufficient for all subsequent arguments. �

8. Asymptotic Morphisms

We appropriate the following definition of an asymptotic morphism from Sec-
tion 25.1 of [4]. The other definitions in this section and the next are adapted
from [35].

Definition 8.1. Let A and B be real C*-algebras. An asymptotic morphism
φ from A to B is a family {φt}t∈[0,∞) of maps φt : A→ B such that

(1) the map t 7→ φt(a) is continuous for each a ∈ A, and
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(2) for all a, b ∈ A and all λ ∈ R, the following functions vanish in norm
as t→ ∞:
(a) φt(a+ b)− φt(a)− φt(b),
(b) φt(λa)− λφt(a),
(c) φt(ab)− φt(a)φt(b),
(d) φt(a

∗)− φt(a)
∗.

We say that two asymptotic morphisms φt and ψt from A to B are equivalent
if ‖φt(a) − ψt(a)‖ vanishes as t → ∞ for all a ∈ A. We say that φt and ψt
are homotopic if there is an asymptotic morphism Φt from A to C([0, 1], B)
such that Φt(a)(0) = φt(a) and Φt(a)(1) = ψt(a) for all a ∈ A. Equivalent
asymptotic morphisms are homotopy equivalent (see Remark 25.1.2 of [4]).
We leave the easy proof of the next lemma to the reader.

Lemma 8.2. If A and B are real C*-algebras and φ is an asymptotic morphism
from A to B, then there is an asymptotic morphism φC : AC → BC defined by
(φC)t(a+ ib) = φt(a) + iφt(b).

It can be proven, then, from the same result in the complex case, that for any
asymptotic morphism φ we have lim supt→∞ ‖φt(a)‖ ≤ ‖a‖ for all a ∈ A (see
Proposition 25.1.3 of [4]). Thus, an asymptotic morphism {φt} gives rise to a
unique homomorphism

φ : A→ Cb([0,∞), B)/C0([0,∞), B)

defined in the natural way; and every such homomorphism represents an as-
ymptotic morphism, unique up to equivalence.

Lemma 8.3. Let A be separable and nuclear. Every asymptotic morphism from
A to B is equivalent to one that is completely positive and contractive. Further-
more, if φ and ψ are homopic completely positive and contractive asymptotic
morphisms from A to B, then in fact there is a homotopy from φ to ψ consisting
of completely positive and contractive asymptotic morphisms.

Proof. Let φ be an asymptotic morphism from A to B. Then by Proposi-
tion 1.1.5 of [35], the complexification φC is equivalent to an asymptotic mor-
phism ψ that is completely positive and contractive. The map α : BC → B
defined by α(a + ib) = a is completely positive and contractive. Then the re-
striction of α◦ψ to A is a completely positive, contractive asymptotic morphism
from A to B and is equivalent to φ.
The same construction can be applied to a homotopy to prove the second
statement. �

Definition 8.4. Let φ and ψ be asymptotic morphisms from A to KR ⊗ D.
We define an asymptotic morphism φ⊕ ψ, also from A to KR ⊗D, as follows.
Choose an isomorphism δ : M2(KR) → KR and define

(φ⊕ ψ)t(a) = (δ ⊗ 1D)

(
φt(a) 0
0 ψt(a)

)
.
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Lemma 8.5. The asymptotic morphism φ ⊕ ψ is well defined up to unitary
equivalence, as well as up to homotopy.

Proof. As in the complex case every automorphism of KR is implemented by a
unitary in U(B(HR)) (the proof in, for example, Lemma V.6.1 of [20] works in
the real case). Furthermore, by [36], U(B(HR)) is path connected. (In fact, by
Theorem 3 of [29], it is contractible.) �

Definition 8.6. Let φ : A→ B be an asymptotic morphism of real C*-algebras
and let p ∈ A be a projection. A tail projection for φ(p) is a continuous path
pt of projections for t ∈ [0,∞) such that limt→∞ ‖φt(p)− pt‖ = 0.
We say that φ is full if there is a full projection p ∈ A such that φ(p) has a full
tail projection.

Definition 8.7. Let A and B be real C*-algebras. Two asymptotic morphisms
φ and ψ from A and B are asymptotically unitarily equivalent if there is a

continuous family of unitary elements ut ∈ B̃ such that limt→∞ ‖utφt(a)u∗t −
ψt(a)‖ = 0 for all a ∈ A.

With these definitions, all the results of Sections 1.2 and 1.3 of [35] hold for
real C*-algebras.

Definition 8.8. Let A and D be real C*-algebras. An asymptotic morphism
φ : A→ D has a standard factorization throughOR

∞⊗A if there is an asymptotic
morphism ψ : OR

∞ ⊗ A → D such that the asymptotic morphisms φ(a) and
ψ(1⊗ a) (both from A to D) are asymptotically unitarily equivalent.
Similarly, φ is asymptotically trivially factorizable if there is an asymptotic
morphism ψ : OR

2 ⊗ A → D such that φ(a) and ψ(1 ⊗ a) are asymptotically
unitarily equivalent.

Theorem 8.9 (Theorem 2.3.7 of [35]). Let A be a separable, nuclear, unital,
and c-simple. Let D0 be a unital C*-algebra, and let D = OR

∞ ⊗ D0. Then
two full asymptotic morphisms from A to KR ⊗D are asymptotically unitarily
equivalent if and only they are homotopic.

Proof. The proof of Theorem 2.3.7 in [35] as well as the proofs of all of the
preceeding lemmas in Section 2.3 of [35] can be proven in the real case with
the same proofs, with some extra attention paid to the issue of connectedness
of unitary groups.
In a few places Phillips uses the fact that the unitary group of O2 is connected.
It is also true that OR

2 is connected since K1(OR
2 )

∼= 0. However, on page 85
of [35], Phillips also uses the fact that the unitary group of a corner algebra
of O∞ is connected. The corresponding statement in the real case is not true
since K1(OR

∞) ∼= Z2. We will show how to adjust the proof so that it works in
the real case.
At this point in the proof we are (using Phillips’ notation) trying to find a
path of partial isometries from wn + fn+2 to vn+1 + wn+1 (these are partial
isometries from fn+1+ fn+2 to fn+2+ e). If the unitaries (wn+ fn+2)

∗(vn+1 +
wn+1) and fn+1 + fn+2 are not in the same connected component of (fn+1 +
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fn+2)OR
∞(fn+1 + fn+2), then this can be changed by by multiplying wn+1

on the right by a suitable unitary in fn+2OR
∞fn+2. Thus by re-choosing the

wn’s inductively, we can be sure that there is an appropriate path of partial
isometries at each step. �

9. Groups of Asymptotic Morphisms

Definition 9.1. Let A be a real, separable, nuclear, unital, c-simple C*-algebra
and let D be unital. We define EA(D) to be the the set of homotopy classes of
full asymptotic morphisms from A to KR ⊗OR

∞ ⊗D. That is,

EA(D) = [[A,KR ⊗OR

∞ ⊗D]]+ .

More generally, for D unital or not, we define

ẼA(D) = ker
(
EA(D

+) → EA(R)
)
.

Proposition 9.2. Let A be real, separable, nuclear, unital, and c-simple. Then

ẼA(−) is a functor from the category of separable real C*-algebras with ho-
motopy classes of asymptotic morphisms to abelian groups, that is homotopy
invariant, stable, half exact, and split exact.

Proof. In the complex case, these results are proven in Section 3.1 of [35]. In
the real case, they are proven the same way. Note that split exactness follows
from homotopy invariance and half exactness by Corollary 3.5 of [12]. �

Lemma 9.3. Let A and B be C*-algebras (real or complex). Let φ : A → B be
an asymptotic morphism. If p, q are projections in A with p ≤ q, then there are
tail projections pt (for φ(p)) and qt (for φ(q)) in B with pt ≤ qt for all t.

Proof. Let p̃t and qt be arbitrary tail projections corresponding to φ(p) and
φ(q), respectively (these exist as in Remark 1.2.2 of [35]). One can easily show
that

lim
t→∞

‖p̃t − qtp̃tqt‖ = 0 .

For each t, the element qtp̃tqt is a self adjoint and asymptotically idempotent
element of qtBqt. Therefore, there is a continuous path of projections pt ∈
qtBqt such that

lim
t→∞

‖qtp̃tqt − pt‖ = 0 .

The tail projections pt and qt have the desired properties. �

We note that if A and D are complex C*-algebras there are two groups one

might consider: we let ẼC

A(D) denote the functor of [35] that is based on
complex asymptotic morphisms. On the other hand, according to the notation

established in Definition 9.1, the asymptotic morphisms comprising ẼA(D) are
only required to be asymptotically linear over R (thus the complex structures
of A and D are forgotten). The following theorem relates the two groups.
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Proposition 9.4. If A is a real C*-algebra satisfying the hypotheses of Defi-
nition 9.1 and D is a complex unital C*-algebra, then there is a isomorphism

ẼA(D) ∼= ẼC

AC
(D)

which is natural with respect to complex homomorphisms.

Proof. We show that for a real unital C*-algebra A and a complex C*-algebra
B, there is a bijection

[[A,B]]+ ∼= [[AC, B]]C+

of equivalence classes of full asymptotic morphisms.
Given a complex asymptotic morphism φ from AC to B, then we let Γ(φ) be
the restriction of φ to A. If φ is full, then we claim that Γ(φ) is full. Since
φ is full, there is a full projection p ∈ AC and a full tail projection rt ∈ B
such that ‖φt(p) − rt‖ → 0. Applying Lemma 9.3 to p ≤ 1 we obtain tail
projections pt and qt for p and 1, respectively, such that pt ≤ qt for all t. Since
the tail projections pt and rt are asymptotically equal, it must be that pt are
full projections. It follows that qt are also full projections; and since they are
tail projections for the full projection 1A in A, it follows that Γ(φ) is full.
Given a real asymptotic morphism ψ from A to B, then

∆(ψ)t(a+ ib) = ψt(a) + iψt(b)

defines a complex asymptotic morphism from AC to B. Suppose that ψ is full.
Let p be a full projection in A and let qt ∈ B be a full tail projection for ψ(p).
Then clearly p is full in AC and qt is a full tail projection for ∆(ψ(p)). Hence
∆(ψ) is full.
It is immediate that ∆ is a two-sided inverse for Γ. Furthermore, in the case
that B is stable, it is easy to see that Γ preserves the semigroup operation of
Definition 8.4. Therefore, under the hypotheses of the theorem, there is an

group isomorphism ẼA(D) ∼= ẼC

AC
(D). �

Proposition 9.5. Let A be a separable, nuclear, c-simple unital, real C*-
algebra. Let B be a separable real C*-algebra. Then there is a natural iso-

mophism KK(A,B) ∼= ẼA(B).

The proof in the complex case takes place in Section 3.2 of [35]. Rather than
reconstructing all of the arguments in the real case, we give a proof that uses
results from [12] to reduce the real case to the complex case.

Proof of Proposition 9.5. Fix A satisfying the hypotheses above. Let e be a
rank one projection in KR and let ιA : A→ KR⊗OR

∞⊗A be the homomorphism

defined by ιA(a) = e ⊗ 1 ⊗ a. Let [[ιA]] be the induced element of ẼA(A).
Let [1A] ∈ KK(A,A) be the class of the identity. By Corollary 3.3 of [12],

there is a unique natural transformation α from KK(A,−) to ẼA(−) such
that α([1A]) = [[ιA]]. We will show that

α : KK(A,B) → ẼA(B)
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is an isomorphism for all separable real C*-algebras B. By Theorem 3.9 of [12]
it suffices to show that α is an isomorphism when B is complex.
In the complex case we have the element [1AC

] ∈ KKC(AC, AC) and the homo-
morphism

(ιA)C : AC → KR ⊗OR

∞ ⊗AC
∼= K ⊗O∞ ⊗ AC .

By Theorem 3.7 of [24] there is a unique natural transformation αC from

KKC(AC,−) to ẼC

AC
(−) such that αC([1AC

]) = [[ιCA]]. A special case of The-

orem 3.2.6 of [35] shows that αC is an isomorphism for all separable complex
C*-algebras B.
Consider the following diagram for a complex C*-algebra B,

KKC(AC, B)
αC

//

ν

��

ẼC

AC
(B)

µ

��

KK(A,B)
α

// ẼA(B)

where µ is the isomorphism of Proposition 9.4 above and ν is the isomorphism
of Lemma 4.3 of [9]. To complete the proof, we only need to show that the
diagram commutes. Since the homomorphism αC is characterized by the value
of αC([1AC

]) it suffices to consider the case B = AC as in the diagram

KKC(AC, AC)
αC

//

ν

��

ẼC

AC
(AC)

µ

��

KK(A,AC)
α

// ẼA(AC)

and to show that αC([1AC
]) = (µ−1 ◦ α ◦ ν)([1AC

]) or, equivalently, (µ ◦
αC)([1AC

]) = (α ◦ ν)([1AC
]).

From the construction of ν in the proof of Lemma 4.3 of [9] it is apparent
that ν([1AC

]) = [cA] = (cA)∗([1A]) where cA : A → AC is the real C*-algebra
homomorphism induced by the unital inclusion c : R →֒ C. Thus

(α ◦ ν)([1AC
]) = α((cA)∗([1A])) = (cA)∗(α([1A])) = (cA)∗([[ιA]]) = [[cA]] .

On the other hand, it is apparent from the construction of µ in the proof of
Proposition 9.4 above that µ([[ιCA]]) = [[cA]]. Thus

(µ ◦ αC)([1AC
]) = µ(αC([1AC

])) = µ([[ιCA]]) = [[cA]] .

�

The following is the real version of Theorems 4.1.1 and 4.1.3 of [35].

Theorem 9.6. Let A be a real separable unital nuclear c-simple C*-algebra and
let D be a separable unital C*-algebra. Then the following groups are naturally
isomorphic, via the obvious maps.

(1) KK(A,D)
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(2) The set of asymptotic unitary equivalence classes of full homomor-
phisms from A to KR ⊗OR

∞ ⊗D.
(3) The set of homotopy classes of full homomorphisms from A to KR ⊗

OR
∞ ⊗D.

(4) The set of asymptotic unitary equivalence classes of full homomor-
phisms from KR ⊗OR

∞ ⊗A to KR ⊗OR
∞ ⊗D.

(5) The set of homotopy classes of full homomorphisms from KR⊗OR
∞⊗A

to KR ⊗OR
∞ ⊗D.

Proof. The proof of the isomorphism of (1), (2), and (3) is the same as the
proof of Theorem 4.1.1 in [35]. The proof of the isomorphism of (1), (4), and
(5) relies on Lemma 9.7 below (which is the real version of Lemma 4.1.2 of
[35]). Once that lemma is established, the proof of the isomorphism of (1), (4),
and (5) is the same as the proof of Theorem 4.1.3 of [35]. �

Lemma 9.7. Let A be separable, nuclear, unital, and c-simple; let D0 be sep-
arable and unital; and let D = OR

∞ ⊗ D0. Let t 7→ φt, for t ∈ [0,∞), be
a continuous path of full homomorphisms from KR ⊗ A to KR ⊗ D, and let
ψ : KR ⊗ A → KR ⊗ D be a full homomorphism. Assume that [φ0] = [ψ] in
KK0(A,D). Then there is an asymptotic unitary equivalence from φ to ψ that
consists of unitaries in U0((KR ⊗D)+).

The proof will be essentially the same as the proof of Lemma 4.1.2 of [35].
However, that proof has an error in the third paragraph. The element wt in-
troduced there does not seem to be a unitary as purported. Also, the order of
the product in the definition of zt seems wrong. Fortunately, there is an easy
fix and most of the proof can be left as it is. For clarity and completeness we
present the entire proof, but the only significant difference is the unitary w in
the third paragraph and following. In places where the proof does not change
(such as the entire first and second paragraphs, and most of the final para-
graph), we use exactly the same language as in [35], except for the references
to previous results in the present paper.

Proof of Lemma 9.7. Let {eij} be a system of matrix units for KR. Identify

A with the subalgebra e11 ⊗ A of KR ⊗ A. Define ψ
(0)
t and ψ(0) to be the

restrictions of φt and ψ to A. Then [φ
(0)
0 ] = [ψ(0)] in KK0(A,D). It follows

from (the equivalence of (1) and (3) of) Theorem 9.6 that φ
(0)
0 is homotopic

to ψ(0). Therefore φ
(0)
0 and ψ(0) are homotopic as asymptotic morphisms, and

Theorem 8.9 provides an asymptotic unitary equivalence t 7→ ut in U((KR ⊗
D)+) from φ(0) to ψ(0). Let c ∈ U((KR ⊗D)+) be a unitary with cψ(0)(1) =
ψ(0)(1)c = ψ(0)(1) and such that c is homotopic to u−1

0 . Then c commutes

with every ψ(0)(a). Replacing ut by cut, we obtain an asymptotic unitary
equivalence, which we again call t 7→ ut, from φ(0) to ψ(0) which is in U0(KR ⊗
D)+).
Define eij = eij ⊗ 1. Then in particular utφt(e11)u

∗
t → ψ(e11) as t → ∞.

Therefore there is a continuous path t→ z
(1)
t ∈ U0((KR⊗D)+) such that z

(1)
t →
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1 and z
(1)
t utφt(e11)u

∗
t (z

(1)
t )∗ = ψ(e11) for all t. We still have z

(1)
t utφt(e11 ⊗

a)u∗t (z
(1)
t )∗ → ψ(e11 ⊗ a) for a ∈ A.

For convenience, set f
(1)
ijt = z

(1)
t utφt(eij)u

∗
t (z

(1)
t )∗ and set gij = ψ(eij). For each

fixed t, the f
(1)
ijt are matrix units for KR as are the gij . Also, we have f

(1)
11t = g11.

The projections f
(1)
11t+f

(1)
22t and g11+g22 represent the same element ofK0(D) so

(using Lemma 7.4) there is a continuous path of partial isometries x
(1)
t inKR⊗D

such that x
(1)
t (x

(1)
t )∗ = 1−g11−g22 and (x

(1)
t )∗x

(1)
t = 1−f (1)

11t−f
(1)
22t. Set w

(1)
t =

g11+g21f
(1)
12t+x

(1)
t ∈ U((KR⊗D)+). Then one checks that w

(1)
t f

(1)
ijt (w

(1)
t )∗ = gij

for all t and for 1 ≤ i, j ≤ 2. Choose c(1) ∈ U((KR ⊗D)+) with

c(1)(g11 + g22) = (g11 + g22)c
(1) = g11 + g22

and c(1)w
(1)
1 ∈ U0((KR ⊗D)+) .

Set z(2) = c(1)w
(1)
t for t ≥ 1 and extend z

(2)
t continuously over [0, 1] through

unitaries so that z
(2)
0 = 1, retaining the property that z

(2)
t g11 = g11z

(2)
t = g11.

This gives z
(2)
t = 1 for t = 0, z

(2)
t g11 = g11z

(2)
t = g11 for all t, and

z
(2)
t z

(1)
t utφt(eij)u

∗
t (z

(1)
t )∗(z

(2)
t )∗ = ψ(eij)

for t ≥ 1 and 1 ≤ i, j ≤ 2.
Set p(m) =

∑m
k=1 gkk for all postive integers m. For the induction step, assume

that we have continuous paths unitaries z
(1)
t , z

(2)
t , . . . , z

(n)
t defined on [0,∞)

such that

• z
(n)
t = 1 for 0 ≤ t ≤ n− 2,

• z
(n)
t p(n−1) = p(n−1)z

(n)
t = p(n−1) for all t ≥ 0,

• z
(n)
t · · · z(1)t utφt(eij)u

∗
t (z

(1)
t )∗ · · · (z(n)t )∗ = ψ(eij) for t ≥ n− 1 and 1 ≤

i, j ≤ n.

We must construct a z
(n+1)
t with the corresponding properties. Initially, work-

ing with t ∈ [n,∞), set

f
(n)
ijt = z

(n)
t . . . z

(1)
t utφt(eij)u

∗
t (z

(1)
t )∗ . . . (z

(n)
t )∗

and let x
(n)
t be a continuous path of partial isometries such that x

(n)
t (x

(n)
t )∗ =

1 −∑n
k=1 gkk = 1 − p(n) and (x

(n)
t )∗x

(n)
t = 1 −∑n

k=1 fkkt. Set w
(n)
t = p(n) +

g(n+1) 1f
(n)
1 (n+1) t + x

(n)
t . This continuous path of unitaries satisfies w

(n)
t p(n) =

p(n)w
(n)
t = p(n) and w

(n)
t f

(n)
ijt (w

(n)
t )∗ = gij for all t ≥ n and all 1 ≤ i, j ≤ n+1.

As above, we can find a unitary c(n) such that z
(n+1)
t = c(n)w

(n)
t is in the

connected component of the identity and c(n)p(n+1) = p(n+1)c(n) = c(n). Then

extend z
(n+1)
t so that it is defined for all t ≥ 0 and z

(n+1)
t = 1 for 0 ≤ t ≤ n−1.

Check that this z(n+1) satisfies the corresponding properties listed above.
Now define

zt =
(
lim
n→∞

z
(n)
t · · · z(2)t z

(1)
t

)
ut .
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In a neighborhood of each t, all but finitely many of the z
(k)
t are equal to 1, so

this limit of products yields a continuous path of unitaries of U0((KR ⊗D)+).
Moreover, ztφt(eij)z

∗
t = ψ(eij) whenever t ≥ i, j, so that limt→∞ ztφt(eij)z

∗
t =

ψ(eij) for all i and j, while

lim
t→∞

ztφt(e11 ⊗ a)z∗t = lim
t→∞

z
(1)
t utφt(e11 ⊗ a)u∗t (z

(1)
t )∗ = ψ(e11 ⊗ a)

for all a ∈ A. Since the eij and e11⊗a generate KR⊗A, this shows that t 7→ zt
is an asymptotic unitary equivalence. �

10. Classification of Real Kirchberg Algebras

We now present our main classification theorems for real Kirchberg algebras,
analogous to the results of Section 4.2 of [35].

Theorem 10.1. Let A and B be unital separable nuclear purely infinite c-simple
C*-algebras.

(1) Let η be an invertible element in KK(A,B). Then there is an isomor-
phism φ : KR ⊗A→ KR ⊗B such that [φ] = η.

(2) Let η be an invertible element in KK(A,B) such that [1A]× η = [1B].
Then there is an isomorphism φ : A→ B such that [φ] = η.

Proof. As in the proofs of Theorem 4.2.1 and Corollary 4.2.2 of [35]. �

Theorem 10.2. Let A and B be unital separable nuclear purely infinite c-simple
C*-algebras that satisfy the universal coefficient theorem.

(1) The stable C*-algebras KR ⊗A and KR ⊗B are isomorphic if and only
if KCRT(A) and KCRT (B) are isomorphic CRT-modules.

(2) The unital C*-algebras A and B are isomorphic if and only if the in-
variants (KCRT (A), [1A]) and (KCRT (B), [1B]) are isomorphic.

(3) The stable C*-algebras KR ⊗A and KR ⊗B are isomorphic if and only
if KCR(A) and KCR(B) are isomorphic CR-modules.

(4) The unital C*-algebras A and B are isomorphic if and only if the in-
variants (KCR(A), [1A]) and (KCR(B), [1B ]) are isomorphic.

Proof. Parts (1) and (2) are proven as in the proof of Theorem 4.2.4 of [35],
using Proposition 2.3. Parts (3) and (4) then follow by Proposition 2.5. �

Corollary 10.3.

(1) The functor A 7→ KCRT(A) is a bijection from isomorphism classes
of real stable separable nuclear purely infinite c-simple C*-algebras
that satisfy the universal coefficient theorem to isomorphism classes
of countable acyclic CRT-modules.

(2) The functor A 7→ (KCRT (A), [1A]) is a bijection from isomorphism
classes of real unital separable nuclear purely infinite c-simple C*-
algebras that satisfy the universal coefficient theorem to isomorphism
classes of countable acyclic CRT-modules M with distinguished element
m ∈MO

0 .
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Proof. Combine Theorem 10.2 above with Theorem 1 of [10]. �

Definition 10.4.

(1) Let A be a complex C*-algebra. A real form of A is a real C*-algebra
B such that BC

∼= A.
(2) Let G∗ = (G0, G1) be a pair of groups. A real form of G∗ is an acyclic

CRT-module such that MU
∗

∼= G∗.
(3) Let G∗ = (G0, G1, g) be a pair of groups with a distinguished ele-

ment g ∈ G0. A real form of G∗ is a pair (M,m) where M is an
acyclic CRT-module and m is a distinguished element ofMO

0 such that
(MU

0 ,M
U
1 , c(m)) ∼= (G0, G1, g).

Corollary 10.5. Let A be a complex unital separable nuclear purely infinite
simple C*-algebra satisfying the universal coefficient theorem.

(1) The functor B 7→ KCRT(B) is a bijection from isomorphism classes of
real forms of KR ⊗A to isomorphism classes of real forms of K∗(A).

(2) The functor B 7→ (KCRT(B), [1B]) is a bijection from isomorphism
classes of real forms of A to isomorphism classes of real forms of
(K∗(A), [1A]).

Proof. If B is a real form of KR ⊗ A, then B is necessarily stable separable
nuclear purely infinite and c-simple. Then KU∗(B) = K∗(BC) ∼= K∗(A), so
KCRT(B) is a real form of K∗(A). Conversely, suppose M is a real form of
K∗(A). Since K∗(A) is countable, the exact sequences of Section 2.3 of [14]
imply that M is countable. Then by Corollary 10.3, M ∼= KCRT(B) for some
real stable separable nuclear purely infinite c-simple C*-algebra satisfying the
universal coefficient theorem. Since K∗(BC) ∼= K∗(A), it follows from The-
orem 4.2.4 of [35] that BC

∼= A hence B is a real form of A. Furthermore,
Corollary 10.3 also implies that B is unique up to isomorphism.
In the unital case, suppose that B is a real form of A. As there is a isomorphism
BC

∼= A and the unit of BC is c(1B), there is an isomorphism φ : KU∗(B) →
K∗(A) such that φ∗(c([1B ])) = [1A]. Thus (KCRT (B), [1B]) is a real form of
(K∗(A), [1A]). Conversely, if (M,m) is a real form of K∗(A), then let B be
a real unital separable nuclear purely infinite c-simple C*-algebra such that
(KCRT (B), [1B]) ∼= (M,m). Again, Theorem 4.2.4 of [35], implies that B is a
real form of A. �

11. Real Forms of Cuntz Algebras

In this section, we use Corollary 10.5 to give a complete description of all real
forms of the complex Cuntz algebras On for n ∈ {2, . . . ,∞}. The natural
real form of On is the real Cuntz algebra OR

n , but we will find that there are
others when n is odd. For reference, we show in Table 1 the groups mak-
ing up KCRT(OR

n). In the case of n = ∞ this arises from the isomorphism
KCRT(R) ∼= KCRT(OR

∞) of Proposition 2.2; while for finite n, these CRT-modules
were computed in Section 5.1 of [8].
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Table 1

KCRT (OR
∞)

0 1 2 3 4 5 6 7 8

KO∗ Z Z2 Z2 0 Z 0 0 0 Z

KU∗ Z 0 Z 0 Z 0 Z 0 Z

KT∗ Z Z2 0 Z Z Z2 0 Z Z

KCRT(OR
n) for n even

0 1 2 3 4 5 6 7 8

KO∗ Zn−1 0 0 0 Zn−1 0 0 0 Zn−1

KU∗ Zn−1 0 Zn−1 0 Zn−1 0 Zn−1 0 Zn−1

KT∗ Zn−1 0 0 Zn−1 Zn−1 0 0 Zn−1 Zn−1

KCRT(OR
n) for n− 1 ≡ 2 (mod 4)

0 1 2 3 4 5 6 7 8

KO∗ Zn−1 Z2 Z4 Z2 Zn−1 0 0 0 Zn−1

KU∗ Zn−1 0 Zn−1 0 Zn−1 0 Zn−1 0 Zn−1

KT∗ Zn−1 Z2 Z2 Zn−1 Zn−1 Z2 Z2 Zn−1 Zn−1

KCRT(OR
n) for n− 1 ≡ 0 (mod 4)

0 1 2 3 4 5 6 7 8

KO∗ Zn−1 Z2 Z2
2 Z2 Zn−1 0 0 0 Zn−1

KU∗ Zn−1 0 Zn−1 0 Zn−1 0 Zn−1 0 Zn−1

KT∗ Zn−1 Z2 Z2 Zn−1 Zn−1 Z2 Z2 Zn−1 Zn−1

Theorem 11.1. (1) For n even or n = ∞, there is up to isomorphism only
one real form of On: the real Cuntz algebra OR

n.
(2) For n odd, there are up to isomorphism two real forms of On: the real

Cuntz algebra OR
n and an exotic real form En.

Proof. First check that for odd integers n, n ≥ 3, the groups and operations
shown in Table 2 form an acyclic CRT-module. Using Corollary 10.3 (that
is, Theorem 1 of [10]), let En be the unique real unital separable nuclear c-
simple purely infinite C*-algebra satisfying the universal coefficient theorem
with united K-theory as shown in Table 2 and such that [1En

] corresponds to
a generator of the group in the real part in degree 0.
By Corollary 10.5, the problem of classifying real forms of On (for n ∈
{2, 3, . . . ,∞}) reduces to the algebraic problem of classifying real forms of
(K∗(On), [1On

]). Suppose that (M,m) is such a real form. For n even (respec-
tively n = ∞) we will show that (M,m) is isomorphic to (KCRT(OR

n), [1OR
n
])

(respectively (KCRT(OR
∞), [1OR

∞

])). For n odd we will show that (M,m) is ei-

ther isomorphic to (KCRT(OR
n), [1OR

n
]) or to (KCRT(En), [1En

]). Furthermore, by
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Table 2. KCRT(En), for n odd and n ≥ 3.

0 1 2 3 4 5 6 7 8

KO∗ Z2(n−1) Z2 Z2 0 Z(n−1)/2 0 Z2 Z2 Z2(n−1)

KU∗ Zn−1 0 Zn−1 0 Zn−1 0 Zn−1 0 Zn−1

KT∗ Zn−1 Z2 Z2 Zn−1 Zn−1 Z2 Z2 Zn−1 Zn−1

c∗ 1 0 0 0 2 0 n−1
2 0 1

r∗ 2 0 1 0 1 0 0 0 2
ε∗ 1 1 0 0 2 0 1 n−1

2 1
ζ∗ 1 0 n−1

2 0 1 0 n−1
2 0 1

(ψU)∗ 1 0 −1 0 1 0 −1 0 1
(ψT )∗ 1 1 1 −1 1 1 1 −1 1
γ∗ 1 0 1 0 1 0 1 0 1
τ∗ 1 1 0 1 0 0 1 2 1

Proposition 2.5 it suffices to restrict our attention to the CR-module consisting
of the real and complex parts of M .
Since (M,m) is a real form of (K∗(On), [1On

]) we know that MU
0

∼= Zn−1

(respectively MU
0

∼= Z when n = ∞), MU
1 = 0, and m ∈ MO

0 . We further
suppose that c0(m) ∈MU

0 is a generator (corresponding to the class of the unit
in K0(On)).
We will compute the real part of M (and the behavior of the operations
ηO, ξ, r, c, ψU) using the long exact sequence

· · · →MO
n

ηO−−→MO
n+1

c−→ MU
n+1

rβ−1
U−−−→MO

n−1 → . . .

and the CRT-relations described in Section 2.
SinceMU

k = 0 for k odd it follows that (ηO)k is injective for k odd and surjective
for k even. Furthermore, our hypothesis that c0(m) generatesMU

0 implies that
c0 is surjective, which implies that r−2 = 0 and that (ηO)−2 is injective. Thus
(ηO)−2 : M

O
−2 → MO

−1 is an isomorphism and η3
O
: MO

−3 → MO
0 is injective.

Then the relations η3
O
= 0 and 2ηO = 0 imply that MO

−3 = 0 and that MO
−2

consists only of 2-torsion.
Suppose first that MO

−2
∼= MO

−1 = 0. Then using the long exact sequence

above and the relation rc = 2, the rest of the groups of MO can be easily
computed; except that in the case that n is odd we encounter an extension
problem wherein MO

2 is either isomorphic to Z4 or to Z2 ⊕ Z2. In that case,
the same argument as in the computation of KCRT(OR

n) in Section 5.1 of [8]
shows that MO

2
∼= Z4 exactly when n − 1 ≡ 0 (mod 4) and MO

2
∼= Z2 ⊕ Z2

exactly when n−1 ≡ 2 (mod 4). Thus we find that the real and complex parts
of M (as well as the operations ηO ξ, r, c, ψU) are isomorphic to the real and
complex parts of KCRT(OR

n) (respectively K
CRT(OR

∞)).
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For the remaining case, suppose that MO
−2 6= 0. Since this leads to the exotic

CRT-module KCRT(En), we will include all of the details of this computation.
Since c0 is surjective, the relation ψUc = c implies that (ψU )0 = 1. Then the
relation βUψU = −ψUβU implies that ψU = 1 in degrees congruent to 0 (mod 4)
and ψU = −1 in degrees congruent to 2 (mod 4).
From MO

−3 = 0 it follows that c−2 is injective. But the only non-trivial 2-

torsion subgroup of MU
−2 is isomorphic to Z2, and that occurs only when n

is finite and odd. Thus MO
−2

∼= MO
−1

∼= Z2 and the complexification map
c−2 : Z2 → Zn−1 is multiplication by (n− 1)/2 (in terms of chosen generators).
The map r−4 is surjective and has kernel equal to ((n − 1)/2)Zn−1

∼= Z2 so
MO

−4
∼= Z(n−1)/2. The relation c−4r−4 = 1 + (ψU )−4 = 2 implies that the map

c−4 : Z(n−1)/2 → Zn−1 is multiplication by 2.
Continuing to work our way down, the fact that c−4 is injective implies that
MO

−5 = 0. The fact that the image of c−4 is 2Zn−1 implies that MO
−6

∼= Z2 and
r−6 is surjective. The relation c−6r−6 = 1 + (ψU )−6 = 0 implies that c−6 = 0
from which we see that η−7 is an isomorphism. Thus MO

−7
∼= Z2.

Finally, we compute MO
−8

∼= MO
0 . The exact sequence indicates that it is an

extension of Z2 by Zn−1. We will prove that it is isomorphic to Z2(n−1). If

not, then MO
0

∼= Z2 ⊕ Zn−1 and we can arrange the direct sum decomposition
so that η−1 =

(
1
0

)
and c0 =

(
0 1

)
. Then the relation rc = 2 implies that

r0 =
(
0
2

)
. But then there is no isomorphism from MO

0 /image(r0) ∼= Z2 ⊕Z2 to

MO
1

∼= Z2 as required by the long exact sequence.
Thus in the case that MO

−2 6= 0 it must be that n is odd and it must be that
the real and complex parts of M are isomorphic to the real and complex parts
of KCRT(En) as in Table 2, completing the proof. �

We remark that the above result can instead be obtained using the analysis of
acyclic CRT-modules in [23]. Indeed, let M be an acyclic CRT-module such
thatMU

0 is isomorphic to Zk−1 or Z, MU
1 = 0, and c0 : M

O
0 →MU

0 is surjective
(hence (ψU)0 = 1). By Lemma 8.3.1, Proposition 8.3.2, and Theorem 8.3.3 of
[23], there are isomorphisms

hk(M) := ker(1− (ψU)k)/image(1 + (ψU)k) ∼= ηOM
O
k ⊕ ηOM

O
k+4

and, furthermore, M is determined up to isomorphism by MU , ψU , and the
resulting decompositions of hk(M) for k = 0 and k = 2. Using (ψU)0 = 1 and
(ψU)2 = −1, we obtain

(h0(M), h2(M)) =






(Z2, 0) if MU
0 = Z

(0, 0) if MU
0 = Zn−1 with n even

(Z2,Z2) if MU
0 = Zn−1 with n odd.

The resulting possibilities for M are realized by the united K-theory of OR
∞

and H ⊗ OR
∞ in the first case; by that of OR

n in the second case; and by that
of OR

n , H ⊗ OR
n , En, and H ⊗ En in the third case. The assumption that c0 is

surjective reduces the possibilities to the united K-theory of OR
∞, OR

n , or En.
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universal coefficient theorem for Kasparov’s generalized K-functor, Duke
Math. J. 55 (1987), no. 2, 431–474.

41. Claude Schochet, Topological methods for C∗-algebras. II. Geometric reso-
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