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ABSTRACT. We consider the problem of representing an analytic functio
on a vertical strip by a bilateral Laplace transform. We givealey—Wiener
theorem for weighted Bergman spaces on the existence ofrepobsenta-
tions, with applications. We generalise a result of Battgl 8take, on ab-
scissae of convergence and boundedness of analytic fasatiohalfplanes,
and also consider harmonic functions. We consider anatgtitinuations
of Laplace transforms, and uniqueness questions: if aryamélnction is
the Laplace transform of functiorfs, f, on two disjoint vertical strips, and
extends analytically between the strips, wherfis= f>? We show that
this is related to the uniqueness of the Cauchy problem ohéat equation
with complex space variable, and give some applicatiordydting a new
proof of a Maximum Principle for harmonic functions.
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1 INTRODUCTION AND NOTATION

We are concerned with Laplace transforms: for an analytiection F' on
{a < Re(z) < b}, we would like to know when

o0 o0

e #h(t)dt ~ / e th(t)e Wt dt

t=—o00

F(z) = Lh(z) ~ /
t=—o00
for somenh, in some sense: either as an absolutely convergent Lebegggeal, or as
the L? or tempered distribution Fourier transformaf®h(t). Our normalisation of
the Fourier transform is
o0 1 ~

Flw) ~ / R dt, () ~ ().

=—00
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236 ZEN HARPER

In Section 2 we give a fairly general Paley—Wiener theoreniciwiguarantees the
existence of such ah for analytic functionsF' in certain weighted Bergman spaces,
with applications. In Section 3 we generalise a result of @ttyand M. D. Blake
concerning bounded functions on halfplanes; we obtain #meesresult, but under
weaker assumptions, as well as a similar result for harnfonictions.

In Section 4 we consider theniquenesgroblem, which is important because ana-
Iytic functions can sometimes be represented by Laplacsfwans of different. on
disjoint vertical strips. We obtain an explicit formula fanalytic continuation under
quite mild conditions, and relate this to the heat equati®hus uniqueness theo-
rems on the heat equation immediately give uniquenessehefor boundary values
of harmonic functions; see Corollaries 4.5, 4.6. Finallgct®ns 5, 6 contain some
longer proofs.

The problem of existence of Laplace transform represemsfor functions in certain
spaces has been studied extensively; for example, seesJ4]9], [12], [20], [27],
[29].

Given any domaif2 C C and Banach spacg, we write Hol(Q2, E) for the set of all
analytic functions” : Q@ — E, or justHol(Q2) whenE = C. We need the theory of
Hardy spacessee [1], [10], [21], [25] and [26].

LetC. = {z € C: Re(z) > 0} andR, = {t € R: ¢t > 0}. For any Banach space
E,1<p<ooandF € Hol(C,, E), define

o0

dy 1/p
IFllrce,.ey=sup ([~ IFG+ gt )

The set of allF’ with || F|| < oo is theHardy spaceH?(C,, E). WhenE = C we
write simply H?(C.). We mainly use the cage= 2 with E a Hilbert space.

The classical Paley—Wiener Theorem says that L?(R,,E) — H?(C,,E)is a
unitary operatorfrom L? onto H?, providedthat E is a Hilbert space:

00 1/2
e = ([ 15O d) = 12T,

and£~! : H*(C,,E) — L*(Ry,E) is well-defined. Here, we are thinking of
H?*(C4, E) C L*(iR, F) in terms of a.e. boundary values.

2 HILBERT SPACE PALEY—WIENER TYPE RESULTS
THEOREM 2.1 Let—oco < a < b < 400, let E be a Hilbert space, and €2 =
{z € C:a<Re(z) < b}.

Suppose that : (a,b) — [0,4+0o0] is Lebesgue measurable, with > 0 almost
everywhere. For any’ € Hol(€2, E), define

1 b o0 )
1Flionm =57 [ [ G+ il o) dyds
rz=a Jy=—o0

DOCUMENTA MATHEMATICA 15 (2010) 235-254



LAPLACE TRANSFORM REPRESENTATIONS 237

Foranyh : R — FE strongly measurable, define

b
No(h)? = /t€R|h<t>|% ( [ e d:c) dt.

Then whenevetV, (h) < oo, we haveN, (h) = [|Lh| 120, B)-
Converselylet ' € Hol(Q, E) with || F'[| 12(q,, ) < oo. Assume alsdhat:

B
Va<a<pf<b 3Je(a,B) > 0such that/ v(z) @ dr < 0. (1)
Then: 37 such thatF" = Lh on ), and N, (h) = |[F|[z2(q,u,z)- Furthermore,
F € L*(c +iR) for everya < ¢ < b, soh is given by the standard Bromwich
Inversion Formula

1 [ . 1
h(t) ~ — F : ct iyt dy ~ — F zt d
O~ g | Fevietertay~ o [ Feetas

in the sense of*(R, E) Fourier transforms.

The paper [11] proves this result in the special case 0, b = oo andv(z) =

2" with » > 0, and gives some applications. However, their method ieifit
and probably cannot be generaliséie(conformal transformatioéjr—j induces an
isometric isomorphism with a weighted Bergman space onigiee fbr which(z™),,>0

is an orthogonal bas)s Other related results and examples are given in Section 2
of [19].

ProoF:  The proof thatN, (k) < oo implies Lh € L*(Q,v, E) with the same
norm is not hard: by Fubini’s Theoreryi;:a ||e*“h(t)|\%2(R7E)v(x) dx < co. Thus

e h(t) € L? for a.e.x € (a,b), because > 0 a.e. Now the Plancherel Theorem
can be applied to the functierm®th, for a.e.z, and integrating with/(z)dz gives the
result.

For the converse: first, let < a < § < b. We must show that’ is boundedon
{z +iy : a <z < B}. Letr > 0 be sufficiently small, so that < o« — r < a <

B < pB+r <b Fixy e E* and consideF,(z) = ¢(F(z)). We have the following
result, which is a substitute for the lack of subharmonioity#,, | whenp < 1. See
Lemma 2, p. 172 of [14], there attributed to Hardy and Litted; the proof is given
also on p. 185 of [23]:

1

1/p
Vps0,  FON <G —2/ E()PdAG)) . @
T J)z=A|<r
with someC, < oo. (This is true more generally for harmonic functions in severa

variables. The casg > 1 is trivial by the Mean Value Property By assumption,
ff: v(z)~dx < oo for somes > 0. Now letp = 2¢(1 + ¢)~!. Apply Holder’s

inequality with exponert/p to obtain that

[ r@raae = [ IFGPiar e dae)
[z—Al<r

[z—A|<r
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238 ZEN HARPER

2
is bounded by a multiple O(ﬁz—A\O- | F(2)||?v(z) dA(z))p/ , independently of\
with o < Re(A) < 8. By (2) and (1), we now have,(\)| < K| ¢| g+, so indeed”
is bounded o{« < z < (8} as required.
Second, suppose that, || F(z+iy)||*> dy < oo forz = a, 3, wheren < v < 3 < b.
Thus for eaclt” > 0, Cauchy’s Integral Formula gives
1 F(2)

F(\) = 577 Jon sz forall A € Ry = (o, 5) x (=Y, Y).

But F' is bounded omRy, uniformly in Y, by above; so we can l&f — oo for each
fixed \ to obtain

F(\) = ﬁ (/BJriR — /QHR) jﬁzi\dz, wheneveRe(A) € (a, 5).

Now faHR %dz, as a function otv € C,, is the Szeg0d projection of the

L?(iR, E) function F(iy + «) onto the Hardy spacH?(C, E), and so by the Paley—
Wiener Theorem it can be represented(gs for somef; € L*(R., E). We can

consider simiIarnyBHR %dz. Thus

F(A) =- /too e” A f (1) dt + /tcx; e =N L (t) dt,

=0

and soF'(\) = Lh(A) = [Z___ e h(t)dt on{a < Re(\) < B}, with

/ He*ath(ﬁ)wdﬁ,/ P h(—1)[|2 dt < oo.
0 0

This shows that~“*h(t) € L?(R, E) for eacha < ¢ < 3.

Now v > 0 a.e., sof*_||F(z + iy)||*dy < oo fora.e. z € (a,b). So choose
sequences$a;) \, a and(8;) ' b such that this holds wite = «;,5;. Then
F = Lh; on{a; < Re(A\) < 3;} for eachj. By uniqueness of the Fourier transform
we must havéy; = hy = h a.e.

So finally ' = £Lh on{a < Re(X) < b}, and Plancherel’'s Theorem gives

o0

[+l = [ e o) de

t=—00

1 (e e)

27 Jy=— oo

for eacha < x < b. HenceN, (h) = || F'||12(q,v,E)-

O

Similarly, with the Hausdorff—Young theorem and Paley—#ietheorem fof{?, we
can easily obtain the following result:

THEOREM 2.2 LetF € Hol{a < Re(z) < b}, letl < p < 2, letw satisfy the same
conditions as Theorem 2.1, and suppose that

b oo
/— /__ |F(z +iy)["v(z) dy dx < oo. 3)
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LAPLACE TRANSFORM REPRESENTATIONS 239

Then there exists somhesuch thatr’ = L£h and

o p—1
/b (/ ep,m|h(t)|p/dt) v(z)de < 0. 4)

We can consider Dirichlet—type norms also; for example:

COROLLARY 2.3 LetF € Hol(C,, E), for a Hilbert spacel. Then

// |F'(2)||?zdedy < oo <= F e H?*(C,,E)+ {constant}.
Cy

This is obvious, sincg ||k (t)||2dt/t*> < oo if and only if h(t)/t € L*(Ry, E) if
and only if C(h(t)/t) € H?.

COROLLARY 2.4 LetF € Hol{0 < Re(z) < R} be bounded, for somgé < R <
+o0. Thendg : R — C such thatF'(z) = zLg(z), and

0 T
1
/ 2t g(1) |2 dt < oo, sup —/ lgt)|? dt | < .
—0 T>1/R T 0

Alsosupoc.< g |le” gl Bror) < oc. In particular,

dt < oo.

/°° lg(®)] + e~ |g(—1)]
t=0 1+

In the caseR = +o0, we havey(t) = 0 forall ¢ < 0.
BMO(R) is the very important Bounded Mean Oscillation space, dised in [1],

[16], [23] and many other books, which often serves as a Usehstitute forL>°(R).
For locally integrablef : R — C we have

1
||f||BMO(R) ZSI}p|f—f1|1, where f; = m/lf(t) dt,

I ranges over albbounded intervalsf R, and|!| is thelength

ProOF: The existence of is immediate from Theorem 2.1, if we consid&(z) =
F(z)/z and take, e.gv(x) = z/(1 + z3). The estimates follow from Plancherel’s
Theorem:

< . 1 [®|F(z+iy)| 1
/ e—21t|g(t)|2 dt = 2_ / ‘ (l’ + ’Ly)‘ dy < =
™ x

—o0 oo | XY

For the estimate with > 0, letT > 1/R and consideJtT:O only withz = 1/T. For

ftO:_OO we just letz " R.
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240 7ZEN HARPER

For the BMO result, let0 < ¢ < R. ThenZ£) is an? function ofy € R, with

‘F(C“y) g s “F|. We have

ct+iy ly
) 1 [ Fle+iy)
ct 1yt
e g() B / ctiy e Y

Now apply Lemma 2.5 below to gét~“g|| pymor) < K for someK independent
of c. Forc = 0 andc = R, choose sequences ™\, 0 andc; /' R and use Dominated
Convergence: for each interval (e=¢itg); — g; or (e~F'g); as appropriate. Then
le=citg— (e~%itg);|; also converges appropriately; since 8&70 norm is given by

a supremum over all, we have the result.

O

LEmMMA 2.5 If f € L?(R) theanHB

universal constant independent ff

< Cs .
wom S CSWPser |B£(8)], whereC'is a

Proor: By considering the restrictions gfto R, andR_ separately, it is enough
to considerf € L?(R.) with |3f(8)] < 1. Takeu € L?(R.) and consider the
convolution(k x u)(«) = f::O k(a — s)u(s) ds. By Hardy's Inequality (see [18]),

2

[ wrn@rS < [7 (5[ i) do

< 4/ lu(s)|*ds.

=0
Taking Laplace transforms and using (the easy half of) Térad2.1 gives

/ /C L(8F) (=) Lulz) P ddy < K| LulZoc.,

But this says exactly thatC(3f)(z)|>z dzdy = |(Lf)'(2)|?z dx dy is a Carleson
Measureon C,. Hencelf € Hol(C;) is the Poisson integralbf some function
U € BMO, by [13]. ButalsoLf € H?(C, ), and soLf is the Poisson integral of its
boundary functiory. Hencef = U € BMO as required.

([l

In Theorem 3.1 below we obtain further resultsg@rassuming extra conditions dn
(decay behaviour on a vertical lige

3 RESULTS ASSUMING DECAY ON A VERTICAL LINE

The following theorem generalises the main result of [3].

THEOREM 3.1 Let0 < R < +o0andQ = {z : 0 < Re(z) < R}. LetE be
a Banach space, and Idt € Hol(2, E') be bounded. Assume thad < ¢ < R,
0 < d < landv > 1 such that

. * e(F(e+ )|
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LAPLACE TRANSFORM REPRESENTATIONS 241

Thenthere exists some continuogs R — FE with F(z) = zLg(z) for all z € Q,
such that

M1+t fort > 0,

lo(o)l < { U ©)

MeFt(1+|t])  fort <O.

In the caseR = +o0, we havey(t) = 0 for all ¢ < 0. Alsog satisfies local H8lder
estimates: there is somd < oo such that

lg(t+s) —g(s)|| < Me*t?”  (VseR, 0<t<1). 7)

The proof is given in Section 5. Of course we can get additiorfarmation about
lo(g(t))|? by applying Corollary 2.4 above tpo F.

In [3] the main result was the estimate (6) for the c&e- +oo only, assuming the
much stronger condition

F=CLf with / e~ f(£)||Pdt < 00, p>1,r> 0. ©)
0

[3] also explains that (8) is not sufficient in the case= 1. Under assumption (8),
we would havey(t) = fot f(s)ds. By increasing- if necessary and using Holder’s
inequality, we could také < p < 2 without loss of generality. Then the Hausdorff—
Young Theorem would give (5) far=r withv = (1 —1/p)~t =p’ > 2andé = 1.
The estimate (6) is best possible in general, even undenthna &sumption (8), as
shown in [2].

Additionally (7), which is aconclusionof our theorem, would follow automatically
from the assumption (8).

In the caseR = +oo, we have a similar result fdrarmonicfunctions:

THEOREM 3.2 Let ' : C;. — E be a boundedharmonicfunction, whereF is a
Banach space. Assume tt{&) holds withc > 0.
Then:there exisy; : R, — E continuousj = 1,2, such that

9:(0) =0, lg;®l < K1 +1%),
F(z)=2zLg1(2) + 2Lg2(Z) onC,

andg, g- satisfy the same dlder estimatg7) from Theorem 3.1.

See Section 6 for the proof. Unfortunately, the case< oo is unsatisfactory. For
example, there is no functignsuch that + a = zLg(z), with a € C constant. Thus
2Re(z) = z + z is harmonic and bounded d0 < Re(z) < 1} butcannotbe written
aszLg1(z) + zLg2(z) for any functionsy, ga.

4 UNIQUENESS CONDITIONS
It is natural to consideuniquenessif £f; = Lf; on{a < Re(z) < b}, in any

reasonable sense, thgn = f> by uniqueness of Fourier transforms. However, this
does not answer the following:
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242 ZEN HARPER
QUESTION 4.1 Leta; < by < az < be andF' € Hol{a; < Re(z) < by}, with

sup / |F(c+iy)|?dy < oo, forj=1,2,
aj<c<bj —00

so thatF = Lf; on{a; < Re(z) < b;} for some (uniquely determinedy, f», by

Theorem 2.1. When do we hafie= f>?

In contrast to Laurent series on concentric anfuji < |z| < R;}, it is possible to
havef; # fo. The paper [24] considers

G € Hol(C), G(z) :/ et tdt.
t=0
ThenG is entire, and bounded ofilm(z)| > /2 4 6} for eachd > 0. Define
F(z) = —iG(iz). By Cauchy’s Theorem as in [24] we obtain

F(z) = / e *°exp (fis log s + %) ds, Re(z) > g
s=0

SinceG(z) = G(z), we haveF(—z) = —F(z). Thus

F(z)=— /0 e %% exp (fz's log(—s) — %) ds, Re(z) < .

S=—00 2

SoF is entire and represented differentbilateral Laplace transforms d: > 7/2},
{x < —n/2}, even thoughysing Plancherel’'s Theorem

oo -1
/ P+ ig)dy <M (la] = 5) " whenevets] > /2.
Thus by rescaling, for any > 0 the “gap”{|z| < €} is “unsafe”: crossing the gap
can change the Laplace transform function. However, wd phade below that the

gap{z = 0} can be safely crossed under quite mild restrictions. Fiestlerive an

explicit formulafor analytic continuation of Laplace transforms.

THEOREM 4.2 LetQ = {z:a < Re(z) < b}andF € Hol(Q, E), with E a Banach
space. Assume that< ¢ < b, k > 0, and

| 1P ilexp(-ry?) dy < o. (©)
DefineF, € Hol(C, E), for sufficiently smalb > 0, by
(A — z)2) dX
F (2)=F, . (2) = F(\
(=) (%) //\€c+i]R (A) exp ( 202 1oV 2T
> . (c+iyz)2> dy
= Flc+ e .
[T re e (E5E0) A

Thensupe |F, — F| < K(C)o? for each fixed compaet’ C Q. In particular,
F, — F locally uniformly on{2, asoc — 0.
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LAPLACE TRANSFORM REPRESENTATIONS 243

Proor: DefineG(\,z) = % exp ((A;Q)Q), so that

16O 2 + i) = IEQI eXp<|mRe(A)| — |y —Tm())| )

oV 2T 202

For each fixed € C, F,(z) is the integral of5 (), z) over the contoue + iR, which
converges foil /202 > x by condition (9). Since7(), z) is an analytic function of
A, we can use Cauchy’s Theorem with the same contour as in &me8rl. Pick
w=w +iwy € Qandfixasquar& = {|z — wi|,|y — w2| < 6} C Q. LetY be
large, much larger thafy and consider the contours

I'(z) = {Re(A) =z, Im(A) — we| <Y},
I'i(z) = {Re(\) € [, ], Im(\) =wy £ Y},
I'" = {Re(\) = ¢, Im(\) —wsa| > Y}

For\ € I'$(z), we have

M—Y2/2)7

16021 < sup PG -0 exp (453

nel

uniformly for z € ¥, wherel = T'$(w; — 6) or I = I'f(w; + J) as appropriate
(depending on whethes; < c or w; > ¢). We are usindY — y)? > Y?2/2 and
(c—x)* < M.

Thusfpf;(z) G dX\ — Orapidly asc — 0, uniformly in z, as long ag” is large enough.
By condition (9) again, alsg., G d\ — 0 rapidly asoc — 0, uniformly for z € X.
Finally, the integral ovef'(z) is a standard Gaussian convolution approximation to
F(2):

w2+Y Y
/ G\ z +iy)d\ = / F(z + iu) exp ( (y —u) ) du
I'(z) w

o—Y 20—2 g 27T

AfterY is chosenF (t+iu) is then bounded on the tall, narrow rectanglew; | < 4,

|lu — ws| < Y. If we approximateF'(x + iu) by its Taylor series about + iy, it is

now routine to verify thaﬂr(m) G\, z +iy) d\ = F(x +iy) + O(a?), uniformlyfor

| — w1, |y — wa| < §/2, say. The errors from the other contours are much smaller,
beingO(exp(—v/c?)) for somev > 0.

O

COROLLARY 4.3 With F' as in Theorem 4.2 anfl = C, suppose that

31 <p<2 suchthat / |F(c+iy)|P dy < oo.
Then -
F(z) = lim+ e ' h(t) exp(—c?t?/2) dt (10)
0—0 t=—o00
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locally uniformly forz € €, for some measurable satisfying
/Oc Ih(t)]e™ " dt <o V6> 0.
Proor: We use the Hausdorff-Young Theorem. Set
Mt ~ 5 Fle + iy)(—1) € LV (),

for p’ = (1—1/p)~! the conjugate exponentto This is well-defined for a.&.<€ R.
Now [ h(t)e=<t(y)g(y) dy = [ h(t)e*g(t) dt for every Schwartz functiop. Now
put F'(c + iy) ~ he~<t(y) in the definition ofF}, .(z) and calculate.

O

Notice that (10) is just a weak kind of Laplace transform esgntation forF'. It
says that a particular Abelian summability method assigasvalueF(z) to the for-
mal integral “(*_e~*'h(t) dt”, even though this integral may diverge. See [17] for
much more on these topics; unfortunately the classicalteegiven there appear to be
inadequate for our problem.

COROLLARY 4.4 LetQ) = {2z : a < Re(z) < b} and F € Hol(Q2). Suppose that
there existy < ¢; < c3 < band fy, f2 such that

o0

F(cj +1iy) ~ / fj(t)efcjt exp(—iyt) dt (yeR, j=12),

t=—o0

as Fourier transforms of ;(t)e~* € L?(R). Define

H(z,v) = /too (fi(t) — f2(t) ) exp(izt — vt*)dt

for z € C,v > 0. ThenH has a continuous extensidh : i{2 x [0, o0) — C satisfying

o _on
822 v’

Proor: By Corollary 4.3, equation (10) holds for both = f; andh = fs.
Therefore H(z,v) — F(—iz) — F(—iz) = 0 asv — 0%, for eachz € i§). Because
this convergence is locally uniform, we have the requirettioniity of /. Finally, the
complex heat equatio%l—’j = %—’j follows immediately by differentiating under the
integral sign.

(|

The lettert is normally used for the time variable, but we use: o2 /2 (for variance
with an extra factor o). Now we can apply known results on the heat equation. The
papers [6], [30] prove many results about functions on disbg following corollaries
are closely related (after applying a conformal transfdiomd, but our proofs are
easier and quite different.

H(z,0)=0 (z€iQ).
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LAPLACE TRANSFORM REPRESENTATIONS 245

COROLLARY 4.5 LetF € Hol({—1 < x < 1}) andA, B,r > 0, with

[ 10+ i)y < Aexp(Bla ), Ve 20

— 00

Thensup_, ., [*o |F(z + iy)|?dy < co. In particular, F is bounded onz| <
1 — ¢, for eache > 0.

Notice that, a priori, it is not obvious that any estimate fél(iy)| is possible:
exp(B|z|~") grows so rapidly agz| — 0 that any simple attempt based on the Mean
Value Property must fail.

ProoF: First, by Theorem 3.1, we know that = £f; on{0 < =z < 1} andF =
Lf-on{-1<az <0}, with [7 2 f, (t)]*dt < exp(B§~"), and similarly for
f—. Now considetp = f, — f_. Then

/ e 2t o(1) 2 dt < exp(BS™).

Following Corollary 4.4, define

H(y,v) = /Oo exp(iyt — vt*)p(t) dt

— 00

fory € Randv > 0. ThenH satisfies the heat equation and extends to be continuous
on{v > 0}, with H(y,0) = 0. We calculate

H(y,v)| < ( | e dt) supexp(3|r| — v7?)
— 0o T€R

2
< 672 exp(B67"/2) exp(62/4v) < exp (06_7' + i—) )
v

forany0 < § < 1. We have used the Cauchy—Schwarz inequality &nt? <
exp(0~1/2) < exp(6~7), as long as > 1/2, which we could clearly assume from
the start. Notice that’ does not depend ah

Now choose) = v with a = 1/(r + 2), so thatar = 1 — 2, to obtain

1
o)l < Ao (S ) = A ep(Cl), 1)

forally e R,0 < v < 1,with0 < n < 1. SinceH = H(y,v) is a solution to the
heat equation with (y, 0) = 0, condition (11) implies thatl = 0. See [8], [15]. In
general the conditiofff| < A(e) exp(e/v) for eache > 0 is not sufficient, as shown
in [7], but our proof works because we have an estimateAf@). Thereforep = 0
andf, = f_ almost everywhere, as required.

([l
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COROLLARY 4.6 LetQ = {x +iy : 0 < z < 1}. Let K be a Banach space,
F : Q — E continuous, harmonic oft, andF' € L>(0?). Supposethal, B,r > 0
satisfy

|F(z +iy)|| < Aexp(Blz(1 —z)]™") Vo<z<lyeR
ThenF € L*>(Q) with supg, || F|| = supsq || F||-

This is a Maximum Principle, similar in some waymi quite different in other ways
to the Phragmén—Lindeldftheorems.

Proor: By consideringp o F' for eachy € E*, it is enough to consider the case
E = C; by considerindRe(F), Im(F), we can takeZ = R. Now let F' be the unique
boundecharmonic function withF' = F on 9. For example, we could obtaifi by
conformal mapping and the well-known Poisson Formula fexdisc. By considering
F — F, we only need to prove the special case whers real-valued, and zero on
oN.

By the Schwarz Reflection Principle, we can extdndo be harmonic orC, and
continuous onR, by definingF(n + = + iy) = —F(n — x + iy) repeatedly for
z€[0,1],y e Randn =1,2,3,....

Thus|F| < exp(C - dist(z, Z)~"), wheredist meandistance We haveF' = g + g
for someg € Hol(C_.). Now

1 2m . .
‘N =5— [ F\+re®)e?do
g™ 27rr/o (A +re)e™db,

so that|g’| < exp(C'dist(x,Z)~"), by simple estimates faF’ with the Mean Value
Property. Alsof"Jrll//Q2 '(t)| dt is independent of, because of the reflection process

used to extend’. Thus

9(2)] = ]ga) s [Cawasi [Tgarias

C/

Now consider(z) = g(z)(1+2)~!. By applying Corollary 4.5 té repeatedly on the
domains{|z — n| < 1 — €} (with trivial rescaling), we obtairf ™ |h(z + iy)|?dy <

M(e) forall x > ¢, i.e. h € H>({Re(z) > €}) for eache > 0. Thush LuonCy
for someu onR . with [ e~ |u(t)[*dt < oo for all § > 0. But now

_Fn)
14+n

= 2Re[h(n)] = /0Oo e "2(Reu)(t) dt

foralln =1,2,3,.... SoL(Rew) is bounded and analytic ofRe(z) > 1/2}, with
a zero at each, and thus identically zero everywhere by the Blaschke dandfor
zero sequences of Hardy space functions. Thwis = 0 almost everywhere.
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So@ = —u a.e., and novii(z) = —h(x) forall z > 0, so thatF'(z) = g(z) + g(z) =
0. Now the proof is finished; we have shown thfat= 0 on {0 < = < 1}. Applying
thistoF,, = F(z + ia) for eacha € R, we obtain that”” = 0, as required.

O

We remark, omitting the details, that Corollary 4.6 can bedts prove Corollary 4.5,
so they are equivalent: given an analyficon {|z| < 1}, considerU(z) = F(z) —
F(—z)on{0 <z < 1/2}.

5 PROOF OF THEOREM 3.1

We first prove (6). First consider the scalar c&se- C. By Theorem 2.1 applied to
F(z)/z, we see immediately thadt(z)/z = Lg(z) for somey, given by

F C+ Zy (c+iy)t dy ~ i/ F(Z) ezt dz.
o c+y L Jerir 2

If R = +o00 then Theorem 2.1 also givgs$t) = 0 fort < 0. But [, ., ‘@‘ |dz| <

oo by Holder's inequality, so in fagj : R — C is continuougafter changingy on a
set of measure zero).

The estimateg(¢)| < M(1 +¢) for ¢ > 0 was already proved in [3] for the special
caseR = +oco andF € L%(c + iR) for someg > 1. But that proof needed only the

estimatef‘z‘»i ‘F‘ﬁ)' |dz| = O(k~¢) for somel < e < 1, which follows from (5) by

Holder’s inequality. The proof also applies without chamnghenR < co. Fort < 0,
we can simply apply the result tB(R — z).
The Holder estimate (7) follows by direct calculation: waa

ot +9) —glo)l < [ |E

By Holder’s inequality, this is

’ 1/’/
B F v 1/v zt __ 11
<e” (/ | (f,)lg dy) / le? ~ 117 - | |dz| :
c+1iR |Z| c+iR |Z|

wherea = (1 —120) 1/ =14 6% > 1. Since|z| ~ ¢ + |y| = 1 + |y|, the second
integral above is

|e(c+zy)zt 1|1/
< / — .
(1+lyh)>

, v d
<t / letigl” o, / W
le+iy|<t—1 (1+1yl) le+iy|>t—1 (L+yl)

’ ’ dy
< t”/ (14 |y])” _O‘der/ _dy
ly|<At—1 wi>se-1 (1+|y))e

< tz/(l/t)u’—a-i-l + (1/t)1—a < ta—l-

e“le*t — 1| |dz|.
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Heret is small,A, B > 0 depend or, and|e* — 1| < || for A bounded; note also
thaty’ > «a. Since(a — 1)/v = §/v, we obtain (7) as required) the special case
whereE = C.

Now let E be a general Banach space. A standard Closed Graph Theagameant

shows that
v 1/v
F(z
([ O )™ < e
c+iR |Z|

for all ¢ € E*, with some constark’ < co. For eachp € E* we considetp(F'(z))
and apply the scalar—valued case, to obtain a contingou® — C such that

1 e(F(2) .
F = = — e dz.
AP = 2L0s(), aolt) = 5 [ Pt
Examining the above proof carefully, we find that the consfenin (6) is bounded
by an absolute constant multiple of

/ | leE(2))| |dz| + sup [p(F(2))| < ||l =
c+iR |Z| 2€Q

Thus|g,(t)] < M'||¢|| g+ (1 + t) with someM’ < oo fort > 0, and similarly for
t < 0, sowe can defing: R — E** by ¢g(t)(¢) = g,(t). As usual, regardl C E**
via the canonical embedding. We also have a similar estitogfé for

9ot +5) = gp(s) = [9(t + 5) — g(s)](),

which gives (7) withl|g(t 4 s) — g(s)|| g+~ instead of| - || z. Crucially, this also shows
thatg : R — E** is continuous

But nowy(F(z)) = 2(Lg,)(2) = [2Lg(2)](¢), so thatF'(z) = zLg(z), considered

as anE**-valued function; note thafg converges because we have an estimate for
llg(t)|| g+=. Thus all is finished, except thatt) € E** instead ofE. Put

H:R*}Ea H(t):%/ ij)eztd,z,
Tt JetiR #

which is well-defined and continuous beca%gm %wzﬂ < o0. Now (p o

H)'(t) = (pog)(t) foreachp € E* andt € R. Becausg), ¢ o g are continuous, we
have

t
PU(E) = (1) = [ plalr)dr
HenceH (t) = H(0) + fg g(7)dr as anE**-valued integral, sd{’(t) = ¢(t) for
all t € R, again by continuity ofy : R — E**. Thus finallyg(¢) € E as required,
becauséed is E-valued.
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6 PROOF OF THEOREM 3.2

Now F' : C; — E is harmonic so there existinalytic F; € Hol(Cy, E), with j =
1,2, such thatF'(z) = F1(z) + F»(z). The functionsF, F» are unique up to additive
constants. We will show thdt;, F» can be chosen to satisfy (5) in Theorem 3.1, and
thatFy, Iy are almost boundedath only logarithmic unboundedngsthe result will
then follow by a similar proof to Theorem 3.1.

F is bounded, so we can represéhon {Re(z) > ¢} by its Poisson integral:

1 o0
Yu >0, F(c—i—u—l—iv):;/ F(c+ iy) dy.

u? + (v —y)?

Now we define

Gl()\)—i/ F(Z) dZ, G2()\)_L/’+4R F(Z) dz

27 Joym A — 2 - 2mi A—

I\

for all Re(A\) > ¢, so that

Gj S HO]({RG()\) > C}, E), F()\) =Gy ()\) + G (5\) .

Becaus€G1—F1)(\) = —(G2—F»)(A) onRe(A) > ¢, the functions?; — Fy = Fp—
G are constant; so we have analytic continuatiénss Hol(C, E) for j = 1, 2.
We use the standard theory of the Weighted Hilbert Transfdonmnd in [22], [16]
and many other sources. The famddsckenhoupt weight condition € A, (R) for
w:R—[0,40],1 <v<oois

1 1 v—1
sup (—/w(t) dt> (—/w(s)l/('jl) ds> < 0.
bounded intervalg & \ |Z| J7 | J;

Noww € A, (R) is equivalento the Hilbert transform being bounded é#(w):

Hf(t) = lim —/ M dy existsfora.et € R,
y€ER, ‘y_t|>5

t—y

wheneverf € LY(w), i.e. [;|f[’wdt < oo, and furthermore|H f||L.(w) <
Cu|l fIl v (w) for some constant’,, < oo depending only omw.

For our problem, we easily check thaty) = |y|—° satisfiesw € A,(R) for any
0 < ¢ < 1. Assume for the moment th&t = C. Define

F .
He () :/ Fletiy) dy,
ly—a|>e a—y

so that by above?.(a) — H(a) ase — 0, for almost everya € R and some
H ¢ L*(la]~0=9). Fix a € R such thatd.(a) — H(«) does hold. ForR large,

the condition (5) giveg"yDR ‘F(T;'iy)' dy < R™", and so

F(c+1
H.(a) = / et ®) 0 4 o(r)
e<|ly—al<R Y
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asR — oo, for some unimportant > 0. But F' is harmonic and thus smooth &h, ,

F(ct+iy)—F(ct+ia) dy :
SO J\y—al<1 ‘—Oﬁy dy < co. Also f8<‘y_a|<R oy = 0, so we can write

F y) — F )
H.(a) = / et iy) = Flerio) g, 1 o(rn)
e<|y—al<R o=y

B / F(c+1iy) — F(c+ia)
ly—a|<R a—y

dy + oRr + oc

whereo. — 0 ase — 0T, uniformly in R > 1, and similarlyor — 0 asR — oo,
uniformly in0 < e < 1. Now, forall0 < ¢ < 1,

) 1 F(c+1y) _
Gueriare =g [ eyt R

_i/ F(c+iy) — F(c+ia)
L ly—a|<R §+ Z(Oé - y)

+ F(c+ia)I(R,§),

dy + or

where )

1 d tan™ (R

2 |y—a\<R§+Z(a_y) ™
Now fix R and let¢ — 0*. ThenI(R,¢) — 3 andGi(c + £ +ia) — Gi(c+ i),
simply becausé&’; € Hol(C, ), so that

1 1
Gi(c+ia) = §F(c+ ia) + %Hg(a) + op + o

F(ct+iy)—F(ct+ia)
a—y

by Dominated Convergence, becagf§7§7a|<R’ dy < oo. Finally

lete — 0andR — oo, to giveGy(c + ie) = 3 F(c + ia) + 5= H(a). Thisis true
for almost everyy, and F(c + ia), H(c) are both inL¥(|a|~(*=%)), and thus so is
Gi(c+ia).

Now we havechR Hj%dy < o0, in the special case = C. In general, we get the
same forp o G1, for eachy € E*. This is the estimate (5) we need in Theorem 3.1,
for G instead ofF'.

Theorem 3.1 does not apply &, because>; may be unbounded. However, the
unboundedness is at mdagarithmic by two simple calculations:

LEMMA 6.1 Let F' : Q — E be harmonic, for some domain. Then, for every
z € Qandr > 0suchthat{\: |\ — z| < r} C Q, we have

8F_L7{ (F(A)Qd)\, HaF < maXp = [[FQ)[
[A—z|=r

~X

9z 2mi A—2) 0z r
The proof is immediate, from power series representations.
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LEMMA 6.2 Let ' : C; — E be harmonic and bounded, withi(z) = G;(z) +
G2(z) for G1, G2 € Hol(C4, E). Then there exist constamt$; < oo, j = 1,2, such
that

1G;(z +iy)|le < M;(1+ |logz| +log(1 + |y|)). (12)

Proor: Givenu + iv € C,, we have

Gjlu+iv) —G;(1) = Le[l,S].+/I:57 +L€[Su} G (2) dz,
y=0" ] y=v "

y€[0,v

forany S > 1. ButG, = 9F/8z, so withr = z/2 in Lemma 6.1 we obtain
G (z + iy)|| < 2 (sup(C+ HF||) /. Thus

[v]

61w+ 0] < 61 0)] + 2sup 171 (1og5 + 5]+ 110g 5~ tog).
C+

Now letting S = |v| + 1 gives the result fo67;, and the proof fol75 is similar.

(|

The logarithmic terms are unavoidable; e2§.= —i(log z — log z) is harmonic and
bounded orC = {re? : r > 0, 6] < 7/2}.

Finally, to complete the proof of Theorem 3@; satisfies (12), and also the vertical
estimate (5) om + :R. Similarly, or by considerind’(z) instead (> also satisfies the
same estimates. The local Holder estimate (7) follows filoeproof of Theorem 3.1
without change, since only (5) is needed.

To estimatg|g;(¢)| for larget > 0, we use the same method as Theorem 3.1 (which
in fact is the method used in [3]), but with additional loglanic estimates. As usual,
considerp o F for eachy € E*. In the contour integral formula

1 G
@ogj(t)——/ Lﬂ(z)eztdZ,
c+iR

211 z

use Cauchy’s Theorem to replace iR by the contour§c + iy : |y| > }, {z tix :
t7l <z <cland{t~! +iy: |y| < x}, fort large. Estimatinq%f(z)ezt} on each
of these contours finally gives thigt o g;(t)|/||¢l &~ is

<L €K7+ (1+1logt +log(1 + k) [e“r™" + exp(t™" - t) log(kt)]
for t large and somé < ¢ < 1, which is< 2 upon takings = exp(ct/e).
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