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Abstract. Let N be a positive integer. In this paper we shall
study the special values of multiple polylogarithms at Nth roots of
unity, called multiple polylogarithm values (MPVs) of level N . Our
primary goal in this paper is to investigate the relations among the
MPVs of the same weight and level by using the regularized double
shuffle relations, regularized distribution relations, lifted versions of
such relations from lower weights, and weight one relations which are
produced by relations of weight one MPVs. We call relations from
the above four families standard. Let d(w, N) be the dimension of the
Q-vector space generated by all MPVs of weight w and level N . Re-
cently Deligne and Goncharov were able to obtain some lower bound
of d(w, N) using the motivic mechanism. We call a level N standard
if N = 1, 2, 3 or N = pn for prime p ≥ 5. Our computation suggests
the following dichotomy: If N is standard then the standard relations
should produce all the linear relations and if further N > 3 then the
bound of d(w, N) by Deligne and Goncharov can be improved; oth-
erwise there should be non-standard relations among MPVs for all
sufficiently large weights (depending only on N) and the bound by
Deligne and Goncharov may be sharp. We write down some of the
non-standard relations explicitly with good numerical verification. In
two instances (N = 4, w = 3, 4) we can rigorously prove these relations
by using the octahedral symmetry of {0,∞,±1,±

√
−1}. Throughout

the paper we provide many conjectures which are strongly supported
by computational evidence.
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1 Introduction

In recent years, there is a revival of interest in multi-valued classical polyloga-
rithms (polylogs) and their generalizations. For any positive integers s1, . . . , sℓ,
multiple polylogs of complex variables are defined as follows (note that our in-
dex order is opposite to that of [19]):

Lis1,...,sℓ
(x1, . . . , xℓ) =

∑

k1>···>kℓ>0

xk1

1 · · ·xkℓ

ℓ

ks1

1 · · · ksℓ

ℓ

, (1)

where |x1 · · ·xj | < 1 for j = 1, . . . , ℓ. It can be analytically continued to a
multi-valued meromorhpic function on Cℓ (see [29]). Conventionally ℓ is called
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the depth (or length) and s1 + · · · + sℓ the weight. When the depth ℓ = 1 the
function is nothing but the classical polylog. When the weight is also 1 one
gets the MacLaurin series of − log(1− x). Moreover, setting x1 = · · · = xℓ = 1
and s1 > 1 one obtains the well-known multiple zeta values (MZVs). If one
allows xj ’s to be ±1 then one gets the so-called alternating Euler sums.

1.1 Multiple polylog values at roots of unity

In this paper, the primary objects of study are the multiple polylog values at
roots of unity (MPVs). These special values, MZVs and the alternating Euler
sums in particular, have attracted a lot attention in recent years after they were
found to be connected to many branches of mathematics and physics (see, for
e.g., [7, 8, 10, 11, 15, 19, 28]). Results up to around year 2000 can be found in
the comprehensive survey paper [6].
Starting from early 1990s Hoffman [21, 22] has constructed some quasi-shuffle
(called stuffle in [6]) algebras reflecting the essential combinatorial properties of
MZVs. Later he [23] extends this to incorporate MPVs although his definition
of ∗-product is different from ours. This approach was then improved in [24] and
[26] to study MZVs and MPVs in general, respectively, where the regularized
double shuffle relations play prominent roles. One derives these relations by
comparing (1) with another expression of the multiple polylogs given by the
following iterated integral:

Lis1,...,sℓ
(x1, . . . , xℓ) =

(−1)ℓ

∫ 1

0

(

dt

t

)◦(s1−1)

◦ dt

t − a1
◦ · · · ◦

(

dt

t

)◦(sℓ−1)

◦ dt

t − aℓ
, (2)

where ai = 1/(x1 . . . xi) for 1 ≤ i ≤ ℓ. Here, one defines the iterated integrals

recursively by
∫ b

a
f(t) ◦ w(t) =

∫ b

a
(
∫ x

a
w(t))f(x) for any 1-form w(t) and con-

catenation of 1-forms f(t). One may think the path lies in C; however, it is
more revealing to use iterated integrals in Cℓ to find the analytic continuation
of this function (see [29]).
The main feature of this paper is a quantitative comparison between the results
obtained by Racinet [26] who considers MPVs from the motivic viewpoint of
Drinfeld associators, and those by Deligne and Goncharov [17] who study the
motivic fundamental groups of P1−({0,∞}∪µN ) by using the theory of mixed
Tate motives over S-integers of number fields, where µN is the group of Nth
roots of unity.
Fix an Nth root of unity µ = µN := exp(2π

√
−1/N). An MPV of level N is a

number of the form

LN(s1, . . . , sℓ|i1, . . . , iℓ) := Lis1,...,sℓ
(µi1 , . . . , µiℓ). (3)

We will always identify (i1, . . . , iℓ) with (i1, . . . , iℓ) (mod N). It is easy to see
from (1) that an MPV converges if and only if (s1, µ

i1) 6= (1, 1). Clearly, all
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MPVs of level N are automatically of level Nk for every positive integer k.
For example when i1 = · · · = iℓ = 0 or N = 1 one gets the MZV ζ(s1, . . . , sℓ).
When N = 2 one recovers the alternating Euler sums studied in [8, 31]. To
save space, if a string S repeats n times then {S}n will be used. For example,
LN ({2}2|{0}2) = ζ(2, 2) = π4/120.

Standard conjectures in arithmetic geometry imply that Q-linear relations
among MVPs can only exist between those of the same weight. Let
MPV(w, N) be the Q-span of all the MPVs of weight w and level N .
Let d(w, N) denoted its dimension. In general, it is very difficult to de-
termine d(w, N) because any nontrivial lower bound would provide some
nontrivial irrational/transcendental result which is related to a variant of
Grothendieck’s period conjecture (see [16] or [17, 5.27(c)]). For example, one
can show easily that MPV(2, 4) = 〈log2 2, π2, π log 2

√
−1, (K−1)

√
−1〉, where

K =
∑

n≥0(−1)n/(2n + 1)2 is the Catalan’s constant. From a variant of
Grothendieck’s period conjecture we know d(2, 4) = 4 (see [16]) but we don’t
have an unconditional proof yet. Namely, we cannot prove that the four num-
ber log2 2, π2, π log 2

√
−1, (K − 1)

√
−1 are linearly independent over Q. Thus,

nontrivial lower bound of d(w, N) is hard to come by.

On the other hand, one may obtain upper bound of d(w, N) by finding as
many linear relations in MPV(w, N) as possible. As in the cases of MZVs and
the alternating Euler sums the double shuffle relations play important roles in
revealing the relations among MPVs. In such a relation if all the MPVs involved
are convergent it is called a finite double shuffle relation (FDS). In general one
needs to use regularization to obtain regularized double shuffle relations (RDS)
involving divergent MPVs. We shall recall this theory in §2 building on the
results of [24, 26].

From the point of view of Lyndon words and quasi-symmetric functions Bigotte
et al. [3, 4] have studied MPVs (they call them colored MZVs) primarily by
using double shuffle relations and monodromy argument (cf. [4, Thm. 5.1]).
However, when the level N ≥ 2, these double shuffle relations often are not
complete, as we shall see in this paper (for level two, see also [5]).

1.2 Standard relations of MPVs

If the level N > 3 then there are many non-trivial linear relations in
MPV(1, N) of weight one whose structure is clear to us. Multiplied by MPVs
of weight w − 1 these relations can produce non-trivial linear relations among
MPVs of weight w which are called the weight one relations. Similar to these
relations one may produce new relations by multiplying MPVs on all of the
other types of relations among MPVs of lower weights. We call such relations
lifted relations.

It is well-known that among MPVs there are the so-called finite distribution
relations (FDT), see (14). Racinet [26] further considers the regularization of
these relations by regarding MPVs as the coefficients of some group-like element
in a suitably defined pro-Lie-algebra of motivic origin (see §4). Our computa-
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tion shows that the regularized distribution relations (RDT) do contribute to
new relations not covered by RDS and FDT. But they are not enough yet to
produce all the lifted RDS.

Definition 1.1. We call a Q-linear relation between MPVs standard1 if it can
be produced by some Q-linear combinations of the following four families of
relations: regularized double shuffle relations (RDS), regularized distribution
relations (RDT), weight one relations, and lifted relations from the above.
Otherwise, it is called a non-standard relation.

It is commonly believed that all linear relations among MPVs (i.e. levels one
MPVs) are consequences of RDS. When level N = 2 we believe that all lin-
ear relations among the alternating Euler sums are consequences of RDS and
RDT. Further, in this case, the RDT should correspond to the doubling and
generalized doubling relations of [5].

1.3 Main results

The main goal of this paper is to provide some extensive numerical evidence
concerning the (in)completeness of the standard relations. Namely, these re-
lations in general are not enough to produce all the Q-linear relation between
MPVs (see Remark 8.2 and Conjecture 8.5); however, we have the following
result (see Thm. 8.6 and Thm. 8.3).

Theorem 1.2. Let p ≥ 5 be a prime. Then d(2, p) ≤ (5p + 7)(p + 1)/24 and
d(2, p2) < (p2 − p + 2)2/4. If a variant of Grothendieck’s period conjecture [17,
5.27(c)] is true then the equality holds for d(2, p) and the standard relations in
MPV(2, p) imply all the others.

If weight w = 2 and N = 52, 72, 112, 132 or 53, then our computation (see
Table 1) shows that the standard relations are very likely to be complete.
However, if N > 3 is a 2-power or 3-power or has at least two distinct prime
factors then the standard relations are often incomplete. Moreover, we don’t
know how to obtain the non-standard relations rigorously except that when
the level N = 4 we get (see Thm. 9.1)

Theorem 1.3. If the conjecture in [17, 5.27(c)] is true then all the linear
relations among MPVs of level four and weight three (resp. weight four) are the
consequences of the standard relations and the octahedral relation (53) (resp.
the five octahedral relations (54)-(58)).

Most of the MPV identities in this paper are discovered with the help of
MAPLE using symbolic computations. We have verified all relations numeri-
cally by GiNaC [27] with an error bound < 10−90. Some results contained in
this paper were announced in [30].

1This term was suggested by P. Deligne in a letter to Goncharov and Racinet dated Feb.

25, 2008.
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2 The double shuffle relations and the algebra A

In this section we recall the procedure to transform the shuffle relations among
MPVs into some pure algebra structures. This is a rather straight-forward
variation of a theme first studied by Hoffman for MZVs (see, for e.g., [22, 23])
and then further developed by Ihara et al. in [24] and by Racinet in [26].
Most of the results in this section are well-known but we include them for the
convenience of the reader.
It is Kontsevich [25] who first noticed that MZVs can be represented by iterated
integrals. One can easily extend this to MPVs [26]. Set

a =
dt

t
, bi =

µidt

1 − µit
for i = 0, 1, . . . , N − 1.

For every positive integer n define the word of length n

yn,i := an−1bi.

Then it is straight-forward to verify using (2) that if (s1, µ
i1) 6= (1, 1) then

(cf. [26, (2.5)])

LN(s1, . . . , sn|i1, i2, . . . , in) =

∫ 1

0

ys1,i1ys2,i1+i2 · · · ysn,i1+i2+···+in
. (4)

One can now define an algebra of words as follows:

Definition 2.1. Set A0 = {1} to be the set of the empty word. Define
A = Q〈A〉 to be the graded noncommutative polynomial Q-algebra generated
by letters a and bi for i ≡ 0, . . . , N − 1 (mod N), where A is a locally finite
set of generators whose degree n part An consists of words (i.e., a monomial in
the letters) of depth n. Let A0 be the subalgebra of A generated by words not
beginning with b0 and not ending with a. The words in A

0 are called admissible
words.
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Observe that every MPV can be expressed as an iterated integral over the
closed interval [0, 1] of an admissible word w in A0. This is denoted by

Z(w) :=

∫ 1

0

w. (5)

We remark that the length lg(w) of w is equal to the weight of Z(w). Therefore
in general one has (cf. [26, (2.5) and (2.6)])

LN(s1, . . . , sn|i1, i2, . . . , in) =Z(ys1,i1ys2,i1+i2 · · · ysn,i1+i2+···+in
), (6)

Z(ys1,i1ys2,i2 · · · ysn,in
) =LN(s1, . . . , sn|i1, i2 − i1, . . . , in − in−1). (7)

For example L3(1, 2, 2|1, 0, 2) = Z(y1,1y2,1y2,0). On the other hand, during
1960s Chen developed a theory of iterated integral which can be applied in our
situation.

Lemma 2.2. ([12, (1.5.1)]) Let ωi (i ≥ 1) be C-valued 1-forms on a manifold
M . For every path p,

∫

p

ω1 · · ·ωr

∫

p

ωr+1 · · ·ωr+s =

∫

p

(ω1 · · ·ωr)x(ωr+1 · · ·ωr+s)

where x is the shuffle product defined by

(ω1 · · ·ωr)x(ωr+1 · · ·ωr+s) :=
∑

σ∈Sr+s,σ−1(1)<···<σ−1(r)

σ−1(r+1)<···<σ−1(r+s)

ωσ(1) · · ·ωσ(r+s).

For example, one has

LN (1|1)LN(2, 3|1, 2) = Z(y1,1)Z(y2,1y3,3) = Z(b1x(ab1a
2b3))

=Z(b1ab1a
2b3 + 2ab2

1a
2b3 + (ab1)

2ab3 + ab1a
2b1b3 + ab1a

2b3b1)

=Z(y1,1y2,1y3,3 + 2y2,1y1,1y3,3 + y2
2,1y2,3 + y2,1y3,1y1,3 + y2,1y3,3y1,1)

=LN (1, 2, 3|1, 0, 2) + 2LN(2, 1, 3|1, 0, 2) + LN (2, 2, 2|1, 0, 2)

+ LN (2, 3, 1|1, 0, 2) + LN(2, 3, 1|1, 2, N − 2).

Let Ax be the algebra of A together with the multiplication defined by shuffle
product x. Denote the subalgebra A0 by A0

x
when one considers the shuffle

product. Then one can easily prove

Proposition 2.3. The map Z : A0
x

−→ C is an algebra homomorphism.

On the other hand, MPVs are known to satisfy the series stuffle relations. For
example

LN(2|5)LN (3|4) = LN(2, 3|5, 4) + LN (3, 2|4, 5) + LN(5|9).

To study such relations in general one has the following definition.
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Definition 2.4. Denote by A1 the subalgebra of A which is generated by
words ys,i with s ∈ N and i ≡ 0, . . . , N − 1 (mod N). Equivalently, A1 is
the subalgebra of A generated by words not ending with a. For any word
w = ys1,i1ys2,i2 · · · ysn,in

∈ A1 and positive integer j one defines the exponent
shifting operator τj by

τj(w) = ys1,j+i1ys2,j+i2 · · · ysn,j+in
.

For convenience, on the empty word we adopt the convention that τj(1) = 1.
We then define another multiplication ∗ on A1 by requiring that ∗ distribute
over addition, that 1 ∗w = w ∗ 1 = w for any word w, and that, for any words
ω1, ω2,

ys,jω1 ∗ yt,kω2 = ys,j

(

τj

(

τ−j(ω1) ∗ yt,kω2

)

)

+ yt,k

(

τk

(

ys,jω1 ∗ τ−k(ω2)
)

)

+ ys+t,j+k

(

τj+k

(

τ−j(ω1) ∗ τ−k(ω2)
)

)

. (8)

This multiplication is called the stuffle product in [6].

If one denotes by A1
∗ the algebra (A1, ∗) then it is not hard to show that

Proposition 2.5. (cf. [22, Thm. 2.1]) The polynomial algebra A1
∗ is a commu-

tative graded Q-algebra.

Now one can define the subalgebra A0
∗ similar to A0

x
by replacing the shuffle

product by the stuffle product. Then by induction on the lengths and using
the series definition one can quickly check that for any ω1, ω2 ∈ A0

∗

Z(ω1)Z(ω2) = Z(ω1 ∗ ω2).

This implies that

Proposition 2.6. The map Z : A0
∗ −→ C is an algebra homomorphism.

Definition 2.7. Let w be a positive integer such that w ≥ 2. For nontrivial
ω1, ω2 ∈ A0 with lg(ω1) + lg(ω2) = w one says that

Z(ω1xω2 − ω1 ∗ ω2) = 0 (9)

is a finite double shuffle relation (FDS) of weight w.

It is known that even in level one these relations are not enough to provide all
the relations among MZVs. However, it is believed that one can remedy this by
considering regularized double shuffle relation (RDS) produced by the following
mechanism. This is explained in detail in [24] when Ihara, Kaneko and Zagier
consider MZVs where they call these extended double shuffle relations or EDS.
It is also contained in [26] with a different formulation.
To produce RDS, first, combining Propositions 2.6 and 2.3 one can easily prove
the following algebraic result (cf. [24, Prop. 1]):

Documenta Mathematica 15 (2010) 1–34
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Proposition 2.8. One has two algebra homomorphisms:

Z∗ : (A1
∗, ∗) −→ C[T ], and Zx : (A1

x
,x) −→ C[T ]

which are uniquely determined by the properties that they both extend the eval-
uation map Z : A0 −→ C by sending b0 = y1,0 to T .

Second, in order to establish the crucial relation between Z∗ and Zx one can
adopt the machinery in [24] as follows. For any (s|i) = (s1, . . . , sn|i1, . . . , in)
where ij ’s are integers and sj’s are positive integers, let the image of the corre-
sponding words in A1 under Z∗ and Zx be denoted by Z∗

(s|i)(T ) and Zx

(s|i)(T )
respectively.

Theorem 2.9. (cf. [26, Cor. 2.24]) Define a C-linear map ρ : C[T ] → C[T ] by

ρ(eTu) = exp

(

∞
∑

n=2

(−1)n

n
ζ(n)un

)

eTu, |u| < 1.

Then for any index set (s|i) one has

Zx

(s|i)(T ) = ρ(Z∗
(s|i)(T )). (10)

Definition 2.10. Let w be a positive integer such that w ≥ 2. Let (s|i) be any
index set with the weight of s equal to w. Then every weight w MPV relation
produced by (10) is called a regularized double shuffle relation (RDS) of weight
w. This is obtained by formally setting T = 0 in (10).

Theorem 2.9 is a generalization of [24, Thm. 1] to the higher level MPV cases.
The proof is essentially the same. The above steps can be easily transformed
to computer codes which are used in our MAPLE programs. For example, one
gets by stuffle product

TLN(2|3) =Z∗
(1|0)(T )Z∗

(2|3)(T ) = Z∗(y1,0 ∗ y2,3)

=Z∗
(1,2|0,3)(T ) + Z∗

(2,1|3,3)(T ) + Z∗
(3|3)(T ),

while using shuffle product one has

TLN(2|3) =Zx

(1|0)(T )Zx

(2|3)(T ) = Zx(y1,0xy2,3) = Zx(b0xab3)

=Zx

(1,2|0,3)(T ) + Zx

(2,1|0,3)(T ) + Zx

(2,1|3,0)(T ).

Hence one discovers the following RDS by comparing the above two expressions
using Thm. 2.9:

LN (2, 1|3, 0) + LN (3|3) = LN (2, 1|3, N − 3) + LN(2, 1|0, 3).
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3 Weight one relations

When N ≥ 4 there exist linear relations among MPVs of weight one by a
theorem of Bass [1]. These relations are important because by multiplying any
MPV of weight w − 1 by such a relation one can get a relation between MPVs
of weight w which is called a weight one relation. This is one of the key ideas
in finding the formula in [17, 5.25] concerning d(w, N).
Clearly, there are N − 1 MPVs of weight 1 and level N :

LN(1|j) = − log(1 − µj), 0 < j < N,

where µ = µN = exp(2π
√
−1/N) as before. Here one can take C − (−∞, 0]

as the principle branch of the logarithm. Further, it follows from the motivic
theory of classical polylogs developed by Beilinson and Deligne in [2] and the
Borel’s theorem (see [20, Thm. 2.1]) that the Q-dimension of MPV(1, N) is

d(1, N) = dimK1(Z[µN ][1/N ]) ⊗ Q + 1 = ϕ(N)/2 + ν(N),

where ϕ is the Euler’s totient function and ν(N) is the number of distinct
prime factors of N . Hence there are many linear relations among LN(1|j). For
instance, if j < N/2 then one has the symmetric relation

− log(1−µj) = − log(1−µN−j)− log(−µj) = − log(1−µN−j)+
N − 2j

N
π
√
−1.

Thus for all 1 < j < N/2

(N − 2)(LN(1|j) − LN(1|N − j)) = (N − 2j)(LN(1|1) − LN(1|N − 1)). (11)

Further, from [1, (B)] for any divisor d of N and 1 ≤ a < N/d one has the
distribution relation

∑

0≤j<d

LN(1|a + jN/d) = LN(1|ad). (12)

It follows from the main result of Bass [1] (corrected by Ennola [18]) that all
the linear relations between LN(1|j) are consequences of (11) and (12). Hence
the weight one relations have the following forms in words: for all w ∈ A0











(N − 2)Z(y1,j ∗ w − y1,−j ∗ w) =(N − 2j)Z(y1,1 ∗ w − y1,−1 ∗ w),
∑

0≤j<d

Z(y1,a+jN/d ∗ w) =Z(y1,ad ∗ w). (13)

4 Regularized distribution relations

It is well-known that multiple polylogs satisfy the following distribution formula
(cf. [26, Prop. 2.25]):

Lis1,...,sn
(x1, . . . , xn) = ds1+···+sn−n

∑

yd
j
=xj ,1≤j≤n

Lis1,...,sn
(y1, . . . , yn), (14)
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for all positive integer d. When s1 = 1 one has to exclude the divergent case
x1 = 1. We call these finite distribution relations (FDT). Racinet further
considers the regularized version of these relations, which we now recall briefly.

Fix an embedding µN →֒ C and denote by Γ its image. Define two sets of
words

X := XΓ = {xσ : σ ∈ Γ ∪ {0}}, and Y := YΓ = {xn−1
0 xσ : n ∈ N, σ ∈ Γ}.

Then one may consider the coproduct ∆ of Q〈X〉 defined by ∆xσ = 1 ⊗ xσ +
xσ ⊗ 1 for all σ ∈ Γ ∪ {0}. For every path γ ∈ P1(C) − ({0,∞} ∪ Γ) Racinet
defines the group-like element Iγ ∈ C〈〈X〉〉 by

Iγ :=
∑

p∈N,σ1,...,σp∈Γ∪{0}

Iγ(σ1, . . . , σp)xσ1
· · ·xσp

,

where Iγ(σ1, . . . , σp) is the iterated integral
∫

γ ω(σ1) · · ·ω(σp) with

ω(σ)(t) =

{

σ dt/(1 − σt), if σ 6= 0;
dt/t, if σ = 0.

(One has to correct the obvious typo in the displayed formula just before Prop.
2.8 in [26] by changing aj to αj .) This Iγ is essentially the same element
denoted by dch in [17]. Note that Q〈Y〉 is the sub-algebra of Q〈X〉 generated
by words not ending with x0. Let πY : Q〈X〉 → Q〈Y〉 be the projection. As
x0 is a primitive element one quickly deduces that (Q〈Y〉, ∆) has a graded
co-algebra structure.

Let Q〈X〉
cv

be the sub-algebra of Q〈X〉 not beginning with x1 and not ending
with x0. Let πcv : Q〈X〉 → Q〈X〉

cv
be the projection. Passing to the limit one

gets:

Proposition 4.1. ([26, Prop.2.11]) The series Icv := lima→0+,b→1− πcv(I[a,b])
is group-like in (C〈〈X〉〉

cv
, ∆).

Remark 4.2. The algebras A, A0 and A1 in §2 are essentially equal to Q〈X〉,
Q〈X〉

cv
and Q〈Y〉, respectively, after setting a = x0 and bj = xµj .

Let I be the unique group-like element in (C〈〈X〉〉, ∆) whose coefficients of x0

and x1 are 0 such that πcv(I) = Icv. In order to do the numerical computation
one needs to determine explicitly the coefficients for I. Put

I =
∑

p∈N,,σ1,...,σp∈Γ∪{0}

C(σ1, . . . , σp)xσ1
· · ·xσp

. (15)

Proposition 4.3. Let p, m and n be three non-negative integers. If p > 0 then
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we assume σ1 6= 1 and σp 6= 0. Set (σ1, . . . , σp, {0}n) = (σ1, . . . , σq). Then

C({1}m, σ1, . . . , σp, {0}n)

=















































0, if mn = p = 0;

Z
(

πcv(xσ1
· · ·xσp

)
)

, if m = n = 0;

− 1

m

q
∑

i=1

C({1}m−1, σ1, . . . , σi, 1, σi+1, . . . , σq), if m > 0;

− 1

n

p
∑

i=1

C(σ1, . . . , σi−1, 0, σi, . . . , σp, {0}n−1), if m = 0, n > 0.

(16)

Here Z is defined by (5) after using the identification given by Remark 4.2.

Remark 4.4. This proposition provides the recursive relations one may use to
compute all the coefficients of I.

Proof. Since I is group-like one has

∆I = I ⊗ I. (17)

The first case follows from this immediately since C(0) = C(1) = 0. The second
case is essentially the definition (5) of Z. If m > 0 then one can compare the
coefficient of x1 ⊗xm−1

1 xσ1
· · ·xσq

of the two sides of (17) and find the relation
(16). Finally, if m = 0 and n > 0 then one may similarly consider the coefficient
of xσ1

· · ·xσp
xn−1

0 ⊗ x0 in (17). This finishes the proof of the proposition.

For any divisor d of N let Γd = {σd : σ ∈ Γ}, id : Γd →֒ Γ the embedding, and
pd : Γ ։ Γd the dth power map. They induce two algebra homomorphisms:

pd
∗ : Q〈XΓ〉 −→ Q〈XΓd〉

xσ 7−→
{

dx0, if σ = 0,

xσd , if σ ∈ Γ,

and

i∗d : Q〈XΓ〉 −→ Q〈XΓd〉

xσ 7−→











x0, if σ = 0,

xσ, if σ ∈ Γd,

0, otherwise.

It is easy to see that both i∗d and pd
∗ are ∆-coalgebra morphisms such that

i∗d(I) and pd
∗(I) have the same image under the map πcv. By the standard

Lie-algebra mechanism one has
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Proposition 4.5. ([26, Prop.2.26]) For every divisor d of N

pd
∗(I) = exp





∑

σd=1,σ 6=1

Li1(σ)x1



 i∗d(I). (18)

Combined with Proposition 4.3 the above result provides the so-called regular-
ized distribution relations (RDT) which of course include all the FDT of MPVs
given by (14).
However, sometimes FDT are not independent of the other relations. In the
next theorem one sees that when the weight w = 2 and level N is a prime, all
the distribution relations in (14), where xj = 1 for all j, are consequences of
RDS of MPVs of level N .

Theorem 4.6. For any prime p write L(i, j) = Lp(1, 1|i, j) and D(i) = Lp(2|i).
Define for 1 ≤ i, j < p:

FDT := −D(0) + p

p−1
∑

j=0

D(j), RDS(i) := D(i) + L(i, 0) − L(i,−i),

FDS(i, j) := D(i + j) + L(i, j) + L(j, i) − L(i, j − i) − L(j, i − j).

Then one has

FDT =
∑

1≤i<p

FDS(i, i) + 2
∑

1≤j<i<p

FDS(i, j) + 2

p−1
∑

i=1

RDS(i). (19)

Proof. When p = 2 the second term on the right hand side of (19) is vacuous.
Then it is easy to see that both sides of (19) are equal to D(0) + 2D(1).
We now assume p ≥ 3. Changing the order of summation yields that

2
∑

1≤j<i<p

D(i + j) =

p−1
∑

i=2

i−1
∑

j=1

D(i + j) +

p−2
∑

j=1

p−1
∑

i=j+1

D(i + j)

=

p−2
∑

i=2

p−1
∑

i6=j=1

D(i + j) +

p−2
∑

j=1

D(j − 1) +

p−1
∑

i=2

D(i + 1)

=(p − 3)

p−1
∑

j=0

D(j) −
p−2
∑

i=2

D(i) −
p−1
∑

i=1

D(2i) +

p−2
∑

j=1

D(j) +

p−1
∑

j=2

D(j) + 2D(0)

=(p − 1)D(0) + (p − 3)

p−1
∑

j=1

D(j)

since
∑p−1

j=0 D(i+j) =
∑p−1

j=0 D(j) for all i and
∑p−1

i=1 D(2i) =
∑p−1

i=1 D(i). This
implies that the dilogarithms on the right hand side of (19) exactly add up to
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FDT. Thus one only needs to show that all the double logarithms on the right
hand side of (19) cancel out.

First observe that L(i, 0) in FDS(i, i) and RDS(i) cancel out each other. Now
let us consider the lattice points (i, j) of Z2 corresponding to L(i, j). The
points (i, j) corresponding to L(i, j) with positive signs fill in exactly the area
inside the square [1, p− 1]× [1, p− 1] (including boundary): L(i, i) in FDS(i, i)
provides the diagonal y = x,

∑

1≤j<i<p L(i, j) (resp.
∑

1≤j<i<p L(j, i)) form
the lower right (resp. upper left) triangular region.

For the negative terms of the double logs, L(i,−i) in RDS(i) provides the

diagonal x + y = p,
∑

1≤j<i<p L(i, j − i) =
∑p−1

i=2

∑p−1
j=p+1−i L(i, j) form the

upper right triangular region. Similarly, by changing the order of summation
∑

1≤j<i<p L(j, i−j) =
∑p−2

i=1

∑p−1
j=i+1 L(i, j−i) =

∑p−2
i=1

∑p−1−i
j=1 L(i, j) fills the

lower left region.

To conclude this section we remark that numerical evidence up to level N = 169
supports the following

Conjecture 4.7. In weight two, all RDT are consequences of the weight one
relations, RDS and depth two FDT.

5 Lifted relations from lower weights

Note that when N = 3 there are no weight one relations nor (regularized)
distribution relations. When we deal with MZVs (resp. alternating Euler sums)
we expect that all the linear relations come from RDS (resp. RDS and RDT).
Since there is no weight one relation when level N ≤ 3 it is natural to ask if
RDS and RDT are enough when N = 3. Surprisingly, the answer is no.

The first counterexample is in weight four, i.e., (w, N) = (4, 3). Easy compu-
tation shows that there are 144 MPVs in this case among which there are 239
nontrivial RDS of weight four which include 191 FDS of weight four (see (9)
and (10)). Furthermore, it is easy to verify that all the seven RDT (including
four FDT) can be derived from RDS. Using these relations we get 127 indepen-
dent linear relations among the 144 MPVs. But we have d(4, 3) ≤ 16 by [17,
5.25], so there must be at least one more linearly independent relation. Where
else can we find it? The answer is the so-called lifted relations..

We know that a product of two weight two MPVs is of weight four. So on
each of the five RDS (including two FDS) of weight two in MPV(2, 3) we can
multiply any one of the nine MPVs of (w, N) = (2, 3) to get a relation in
MPV(4, 3). For instance, we have a FDS

Z(y1,1 ∗ y1,1 − y1,1xy1,1) = L3(2|2) + 2L3(1, 1|1, 1)− L3(1, 1|1, 0) = 0.

Multiplying by L3(1, 1|1, 1) = Z(y1,1y1,2) we obtain a new relation which is
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linearly independent from RDS of weight four in MPV(4, 3):

Z
(

y1,1y1,2x(y2,0 + 2y1,1y1,2 − 2y1,1y1,0)
)

=L3(1, 1, 2|1, 1, 0) + 2L3(1, 2, 1|1, 1, 0) + 2L3(2, 1, 1|1, 1, 0)

+L3(2, 1, 1|2, 2, 1) + 4L3({1}4|1, 1, 2, 1) + 8L3({1}4|1, 0, 1, 0)

−6L3({1}4|1, 0, 0, 1)− 4L3({1}4|1, 0, 1, 2)− 2L3({1}4|1, 1, 2, 0) = 0.

Such relations coming from the lower weights are called lifted relations. In
this way, when (w, N) = (4, 3) we can produce 45 lifted RDS relations from
weight two, 58 from weight three. We may also lift RDT and obtain nine
and six relations from weight two and three, respectively. However, all the
lifted relations together only produce one new linearly independent relation, as
expected. Hence we find totally 128 linearly independent relations among the
144 MPVs with (w, N) = (4, 3). This implies that d(4, 3) ≤ 16 which is the
same bound obtained by [17, 5.25] and is proved to be exact under a variant
of Grothendieck’s period conjecture by Deligne [16].
For levels N ≥ 4 one may lift not only RDS and RDT but also the weight
one relations. But by a moment reflection one sees that the lifted weight one
relations are still weight one relations by themselves so one doesn’t really need
to consider them after all.

Definition 5.1. We call a Q-linear relation among MPVs standard if it can
be produced by some Q-linear combinations of the following four families of
relations: regularized double shuffle relations, regularized distribution relations,
weight one relations, and lifted relations from the above. Otherwise, it is called
a non-standard relation.

In general, there are no inclusion relations among the four families of the stan-
dard relations.
Computation in small weight cases supports the following

Conjecture 5.2. Suppose N = 3 or 4. Every MPV of level N is a linear
combination of MPVs of the form L({1}w|t1, . . . , tw) with tj ∈ {1, 2}. Con-
sequently, the Q-dimension of the MPVs of weight w and level N is given by
d(w, N) = 2w for all w ≥ 1.

Remark 5.3. The data in Table 2 in §7 shows that one cannot produce enough
relations by using only the standard relations when (w, N) = (3, 4). In fact,
even though one has d(3, 4) ≤ 8 and d(4, 4) ≤ 16 by [17, 5.25], one can only
show that d(3, 4) ≤ 9 and d(4, 4) ≤ 21 by using only the standard relations.
However, thanks to the octahedral symmetry of P1−({0,∞}∪µ4) one can find
(presumably all) the non-standard relations in these two cases (see Thm. 9.1).

Remark 5.4. Let N = 2, 3, 4 or 8. Assuming a variant of Grothendieck’s period
conjecture, Deligne [16] constructed explicitly a set of basis for MPV(w, N).
His results would also imply that d(w, 2) is given by the Fibonacci numbers,
d(w, 3) = d(w, 4) = 2w, and d(w, 8) = 3w under Grothendieck’s period conjec-
ture.
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6 Some conjectures of FDS and RDS

Fix a level N . Let R be a commutative Q-algebra with 1 and a homomorphism
ZR : A

0 −→ R such that the finite double shuffle (FDS) property holds:

ZR(ω1xω2) = ZR(ω1 ∗ ω2) = ZR(ω1)ZR(ω2).

We then extend ZR to Zx

R and Z∗
R as before. Define an R-module automor-

phism ρR of R[T ] by
ρR(eTu) = AR(u)eTu

where

AR(u) = exp

(

∞
∑

n=2

(−1)n

n
ZR(an−1b0)u

n

)

∈ R[[u]].

If a map ZR : A0 −→ R satisfies the FDS and (Zx

R − ρR ◦ Z∗
R)(ω) = 0 for all

ω ∈ A1 then we say that ZR has the regularized double shuffle (RDS) property.
Let RRDS be the universal algebra (together with a map ZRDS : A0 −→ RRDS)
such that for every Q-algebra R and a map ZR : A0 −→ R satisfying RDS there
always exists a map ϕR to make the following diagram commutative:

A0

ZR
##F

F

F

F

F

F

F

F

F

ZRDS
// RRDS

ϕR

��

R

When N = 2 computation by Blümlein, Broadhurst and Vermaseren [5] shows
that the finite distribution relations and the regularized distribution relations
(18) contribute non-trivially when the weight w = 8 and w = 11, respectively.
When N = 3 computation shows that the lifted relations contribute non-
trivially when the weight w = 4 (see §5) and w = 5: we can only get d(5, 3) ≤ 33
instead of the conjecturally correct dimension 32 without using the lifted re-
lations. Note that in this case there are 612 FDS of weight five, 191 RDS of
weight five, 8 FDT and 7 RDT.
One may use the fact that ZR is an algebra homomorphism to produce lifted
finite double shuffle and lifted regularized double shuffle relations as follows: for
all ω1 ∈ A1, ω0, ω

′
0, ω

′′
0 ∈ A0 with lg(ω1)+lg(ω0) = lg(ω0)+lg(ω′

0)+lg(ω′′
0 ) = w

Zx

R (ω1xω0)−ρR◦Z∗
R(ω1)Z

x

R (ω0) = 0, ZR

(

(ω0∗ω′
0)∗ω′′

0 −(ω0xω′
0)∗ω′′

0

)

= 0.

In general, one can define the universal objects ZSR and RSR corresponding
to the standard relations similar to ZRDS and RRDS such that for every Q-
algebra R and a map ZR : A0 −→ R satisfying the standard relations there
always exists a map ϕR to make the following diagram commutative:

A0

ZR
""E

E

E

E

E

E

E

E

ZSR
// RSR

ϕR

��

R

(20)
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Recall that one has the evaluation map Z : A0 −→ C by Prop. 2.8 which
extends (5).

Conjecture 6.1. Let (R, ZR) = (R, Z) if N = 1, and (R, ZR) = (C, Z) if
N = 2, 3 or N = pn with prime p ≥ 5. If N = 1 (resp. N = 2) then the map
ϕR is injective, namely, the algebra of MPVs of level one or two is isomorphic
to RRDS (resp. RSR). If N = 3 or N = pn (p ≥ 5) then the map ϕC is injective
so the algebra of MPVs of level N is isomorphic to RSR.

The above conjecture generalizes [24, Conjecture 1]. It means that all the
linear relations among MPVs can be produced by RDS when N = 1 or 2, and
by the standard ones when N = 3 or pn with prime p ≥ 5. When N = p ≥ 5,
p a prime, this is proved in Thm. 8.6 under the assumption of a variant of
Grothendieck’s period conjecture.
Computation in many cases such as those listed in Remark 8.2 and Conjec-
ture 8.5 show that MPVs must satisfy some other relations apart from the
standard ones when N has at least two distinct prime factors, so a naive gener-
alization of Conjecture 6.1 to all levels does not exist at present. However, when
N = 4 one can show that octahedral symmetry of P1 − ({0,∞} ∪ µ4) provide
all the non-standard relations under the standard assumption (see Thm. 9.1).
But since we only have numerical evidence in weight three and weight four it
may be a little premature to form a conjecture for level four.

7 The structure of MPVs and some examples

In this section we concentrate on RDS between MPVs of small weights. Most of
the computations in this section are carried out by MAPLE. We have checked
the consistency of these relations with many known ones and verified our results
numerically using GiNac [27] and EZ-face [9].
By considering all the admissible words we see easily that the number of distinct
MPVs of weight w ≥ 2 and level N is N2(N + 1)w−2 and there are at most
N(N + 1)w−2 RDS (but not FDS). If w ≥ 4 then the number of FDS is given
by

(N−1)N2(N+1)w−3+
([w

2

]

−1
)

N4(N+1)w−4 =
(

N2
[w

2

]

−1
)

N2(N+1)w−4.

If w = 2 (resp. w = 3) then the number of FDS is (N − 1)2 (resp. N2(N − 1)).
Therefore, it is not hard to see that the number of standard relations grow
polynomially with the level N but exponentially with the weight w.

7.1 Weight one

From §3 we know that all relations in weight one follow from (11) and (12), and
no RDS exists. The relations in weight one are crucial for higher level cases
because they provide the weight one relations considered in §3. Moreover, easy
computation by (11) and (12) shows that there is a hidden integral structure,
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namely, in each level there exists a Q-basis consisting of MPVs such that every
other MPV is a Z-linear combination of the basis elements. This fact is proved
by Conrad [13, Theorem 4.6]. Similar results should hold for higher weight
cases and we hope to return to this in a future publication [14].

7.2 Weight two

There are N2 MPVs of weight two and level N :

LN (1, 1|i, j), LN(2|j), 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 1.

For 1 ≤ i, j < N the FDS Z∗(y1,i ∗ y1,j) = Zx(y1,ixy1,j) yields

LN (2|i + j) + LN(1, 1|i, j) + LN (1, 1|j, i) = LN(1, 1|i, j − i) + LN(1, 1|j, i − j).
(21)

Now from RDS ρ(Z∗(y1,0 ∗ y1,i)) = Zx(y1,0xy1,i) we get for 1 ≤ i < N

LN (1, 1|i, 0) + LN(2|i) = LN(1, 1|i,−i). (22)

The FDT in (14) yields: for every divisor d of N , and 1 ≤ a, b < d′ := N/d

LN(2|ad) =d

d−1
∑

j=0

LN(2|a + jd′), (23)

LN (1, 1|ad, bd) =

d−1
∑

j,k=0

LN (1, 1|a + jd′, b + kd′). (24)

To derive the RDT we can compare the coefficients of x1xµad in (18) and use
Prop. 4.3 to get: for every divisor d of N , and 1 ≤ a < d′

LN (1|ad)

d−1
∑

j=1

LN(1|jd′) =

d−1
∑

j=1

d−1
∑

k=0

LN(1, 1|jd′, a + kd′)

−
d−1
∑

k=0

LN (1, 1|a + kd′,−a− kd′) − LN (1, 1|ad,−ad). (25)

By definition, the weight one relations are obtained from (11) and (12). For
example, if N = p is a prime then (12) is trivial and (11) is equivalent to the
following: for all 1 ≤ j < h (h := (p − 1)/2)

LN(1|j) − LN(1| − j) = (p − 2j)(LN(1|h) − LN(1|h + 1)). (26)

Thus multiplying by LN (1|i) (1 ≤ i < p) and applying the shuffle relation
LN (1|a)LN(1|b) = LN (12|a, b − a) + LN(12|b, a − b) (here we put LN(12|−) =
LN (1, 1|−) to save space) we get:

LN (12|i, j − i) + LN (12|j, i − j) − LN(12|i,−j − i) − LN (12| − j, i + j)

= (p−2j)
`

LN (12|i, h− i)+LN(12|h, i−h)−LN(12|i,−i−h)−LN(12|−h, i+h)
´

.

(27)
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Computation shows that the following conjecture should hold.

Conjecture 7.1. The RDT (25) follows from the combination of the following
relations: the weight one relations, the RDS (21) and (22), and the FDT (23)
and (24).

7.3 Weight three

Apparently there are N2(N + 1) MPVs of weight three and level N : for each
choice (i, j, k) with 1 ≤ i ≤ N − 1, 0 ≤ j, k ≤ N − 1 we have four MPVs of level
N :

LN(13|i, j, k) := LN (1, 1, 1|i, j, k), LN (1, 2|i, j), LN (2, 1|j, k), LN (3|k).

For 1 ≤ i, j, k < N the FDS Z∗
(

y1,i ∗ (y1,jy1,k)
)

= Zx
(

y1,ix(y1,jy1,k)
)

yields

LN (13|i, j − i, k) + LN(13|j, i − j, k + j − i) + LN(13|j, k, i − k − j)

= LN(2, 1|i + j, k) + LN (1, 2|j, i + k)

+ LN(13|i, j, k) + LN(13|j, i, k) + LN(13|j, k, i). (28)

For 1 ≤ i, j < N the FDS Z∗(y1,i ∗ y2,j) = Zx(y1,ixy2,j) yields

LN (3|i + j) + LN (1, 2|i, j) + LN (2, 1|j, i)
= LN(1, 2|i, j − i) + LN(2, 1|i, j − i) + LN(2, 1|j, i − j). (29)

Moreover, there are three ways to produce RDS. Since ρ(T ) = T the first
family of RDS come from Z∗

(

y1,0 ∗ (y1,iy1,i+j)
)

= Zx
(

y1,0x(y1,iy1,i+j)
)

for
1 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 1:

y1,0 ∗ (y1,iy1,i+j) = y1,0y1,iy1,i+j + y1,iτi(y1,0 ∗ y1,j) + y2,iy1,i+j

=y1,0y1,iy1,i+j + y1,iy1,iy1,i+j + y1,iy1,i+jy1,i+j + y1,iy2,i+j + y2,iy1,i+j

On the other hand,

y1,0xy1,iy1,i+j = y1,0y1,iy1,i+j + y1,iy1,0y1,i+j + y1,iy1,i+jy1,0.

Hence

LN (13|i, 0, j) + LN (13|i, j, 0) + LN(1, 2|i, j) + LN(2, 1|i, j)
= LN (13|i,−i, i + j) + LN(13|i, j,−i − j). (30)

The second family of RDS follow from ρ(Z∗(y1,0 ∗ y2,i)) = Zx(y1,0xy2,i):

y1,0y2,i + y2,iy1,i + y3,i = y1,0y2,i + y2,0y1,i + y2,iy1,0
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which implies that

LN(2, 1, i, 0) + LN (3, i) = LN (2, 1, i,−i) + LN (2, 1, 0, i). (31)

Now we consider the last family of RDS. By the definition of stuffle product:

y1,0 ∗ y1,0 ∗ y1,i =(2y2
1,0 + y2,0) ∗ y1,i

=2y1,0(y1,0 ∗ y1,i) + 2y3
1,i + 2y2,iy1,i + y2,0 ∗ y1,i

=2y2
1,0y1,i + 2y1,0y

2
1,i + 2y1,0y2,i + 2y3

1,i + 2y2,iy1,i + y2,0 ∗ y1,i.

Applying ρ ◦ Z∗ and noticing that Zx

(2|0)(T ) = ζ(2) we get

(T 2 + ζ(2))Zx

(1|i)(T ) = 2Zx

(13|0,0,i)(T ) + 2Zx

(13|0,i,i)(T ) + 2Zx

(1,2|0,i)(T )

+ 2Zx

(13|i,i,i)(T ) + 2Zx

(2,1|i,i)(T ) + Zx

(2|0)(T )Zx

(1|i)(T ). (32)

On the other hand by the definition of shuffle product

y1,0xy1,0xy1,i = 2y2
1,0xy1,i = 2y2

1,0y1,i + 2y1,0y1,iy1,0 + 2y1,iy
2
1,0

Applying Zx we get

T 2Zx

(1|i)(T ) = 2Zx

(13|0,0,i)(T ) + 2Zx

(13|0,i,0)(T ) + 2Zx

(13|i,0,0)(T ). (33)

We further have

Zx(y1,0y
2
1,i + y1,0y2,i − y1,0y1,iy1,0)

=Zx(13|0, i, i)(T ) + Zx

(1,2|0,i)(T ) − Zx

(13|0,i,0)(T )

=2Zx

(13|i,0,0)(T ) − Zx

(2,1|i,0)(T ) − Zx

(2,1|0,i)(T ) − Zx

(13|i,0,i)(T ) − Zx

(13|i,i,0)(T )

where we have used the facts that

Zx

(1,2|0,i)(T ) =TZx

(2|i)(T ) − Zx

(2,1|i,0)(T ) − Zx

(2,1|0,i)(T )

Zx

(13|0,i,i)(T ) =TZx

(1,1|i,i)(T ) − Zx

(13|i,0,i)(T ) − Zx

(13|i,i,0)(T )

Zx

(13|0,i,0)(T ) =TZx

(1,1|i,0) − 2Zx

(13|i,0,0)(T )

Zx

(1,1|i,0)(T ) =Zx

(2|i)(T ) + Zx

(1,1|i,i)(T ).

Hence for 1 ≤ i < N we have by subtracting (33) from (32)

LN (13|i, 0, 0) + LN(2, 1|i, 0) + LN (13|i,−i, 0) =

LN(2, 1|i,−i) + LN (2, 1|0, i) + LN(13|i,−i, i) + LN (13|i, 0,−i). (34)

Setting j = 0 in (30) and subtracting from (34) we get

LN (13|i,−i, 0) = LN (2, 1|i,−i)+LN (2, 1|0, i)+LN (13|i, 0, 0)+LN (1, 2|i, 0). (35)
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7.4 Upper bound of d(w, N) by Deligne and Goncharov

By using the theory of motivic fundamental groups of P1 − ({0,∞} ∪ µN )
Deligne and Goncharov [17, 5.25] show that d(w, N) ≤ D(w, N) where D(w, N)
are defined by the formal power series

1 +

∞
∑

w=1

D(w, N)tw =







(1 − t2 − t3)−1, if N = 1;
(1 − t − t2)−1, if N = 2;
(1 − at + bt2)−1, if N ≥ 3,

(36)

where a = a(N) := ϕ(N)/2 + ν(N), b = b(N) := ν(N) − 1, ϕ is the Euler’s
totient function and ν(N) is the number of distinct prime factors of N . If
N > 2 then we have

∞
∑

w=1

D(w, N)tw = at + (a2 − b)t2 + (a3 − 2ab)t3 + (a4 − 3a2b + b2)t4 + · · ·

In particular, if p is a prime then for any positive integer n

D(w, pn) = a(pn)w =

(

pn−1(p − 1)

2
+ 1

)w

. (37)

We will compare the bound obtained by the standard relations to the bound
D(w, N) in the next two sections.

8 Computational results in weight two

In this section we combine the analysis in the previous sections and the theory
developed by Deligne and Goncharov [17] to present a detailed computation in
weight two and level N ≤ 169.
Let G := ι(Lie Uω) be the motivic fundamental Lie algebra (see [17, (5.12.2)])
associated to the motivic fundamental group of P1−({0,∞}∪µN ). As pointed
out in §6.13 of op. cit. one may safely replace G(µN )(ℓ) by G throughout [20].
Then it follows from the proof of [17, 5.25] that if conjecture [17, 5.27(c)] is
true, which we assume in the following, then

d(2, N) = D(2, N) − dimker(βN ), (38)

where βN :
∧2 G−1,−1 −→ G−2,−2 is given by Ihara’s bracket βN (a∧b) = {a, b}

defined by (5.13.6) of op. cit. Here G•,• is the associated graded of the weight
and depth gradings of G (see [20, §2.1]). Let k(N) := dim ker(βN ). Then

δ1(N) := dimG−1,−1 =

{

1, if N = 1 or 2;
ϕ(N)/2 + ν(N) − 1, if N ≥ 3,

(39)

by [20, Thm. 2.1]. Thus

i(N) := dim Im(βN ) = δ1(N)(δ1(N) − 1)/2 − k(N). (40)
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N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

δ1 1 1 1 1 2 2 3 2 3 3 5 3 6 4 5 4

i 0 0 0 0 0 1 1 1 3 3 5 3 8 6 10 6

k 0 0 0 0 1 0 2 0 0 0 5 0 7 0 0 0

δ2 0 0 1 1 2 2 4 3 6 5 10 5 14 9 14 10

sr 0 0 1 1 2 2 4 4 6 6 10 8 14 12 16 16

D 1 2 4 4 9 8 16 9 16 15 36 15 49 24 35 25

SR 1 2 4 4 8 8 14 10 16 16 31 18 42 27 37 31

d 1 2 4 4 8 8 14 9 16 15 31 15 42 24 35 25

N 17 18 19 20 21 22 23 24 25 26 27 28 29
δ1 8 4 9 5 7 6 11 5 10 7 9 7 14
i 16 6 21 10 21 15 33 10 40 21 36 21 56
k 12 0 15 0 0 0 22 0 5 0 0 0 35
δ2 24 9 30 14 27 20 44 14 50 27 45 27 70
sr 24 18 30 24 32 30 44 32 50 42 54 48 70
D 81 24 100 35 63 48 144 35 121 63 100 63 225
SR 69 33 85 45 68 58 122 53 116 78 109 84 190
d 69 24 85 35 63 48 122 35 116 63 100 63 190

N 30 31 32 33 34 35 36 37 38 39 40 41

δ1 6 15 8 11 9 13 7 18 10 13 9 20

i 15 65 28 55 36 78 21 96 45 78 36 120

k 0 40 0 0 0 0 0 57 0 0 0 70

δ2 19 80 36 65 44 90 27 114 54 90 44 140

sr 48 80 64 80 72 96 72 114 90 112 96 140

D 47 256 81 143 99 195 63 361 120 195 99 441

SR 76 216 109 158 127 201 108 304 156 217 151 371

d 47 216 81 143 99 195 63 304 120 195 99 371

N 42 43 44 45 46 47 48 49 121 125 169
δ1 8 21 11 13 12 23 9 21 55 50 78
i 28 133 55 78 66 161 36 175 1155 1200 2288
k 0 77 0 0 0 92 0 35 330 25 715
δ2 34 154 65 90 77 184 44 196 1210 1250 2366
sr 96 154 120 144 132 184 128 196 1210 1250 2366
D 79 484 143 195 168 576 99 484 3136 2601 6241
SR 141 407 198 249 223 484 183 449 2806 2576 5526
d 79 407 143 195 168 484 99 449 2806 2576 5526

Table 1: Upper bounds of d(2, N) by the standard relations and [17, 5.25].
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Since dimG−2,−1 = ϕ(N)/2 if N > 2 and 0 otherwise the dimension of the
degree two part of G is

δ2(N) := dimG−2,−1 + dimG−2,−2 =

{

i(N), if N = 1 or 2;
ϕ(N)/2 + i(N), if N ≥ 3.

(41)
Let sr(N) be the upper bound of δ2(N) obtained by the standard relations.
This can be computed by the method described in [30, §2]. Let SR(N) be the
upper bound of d(2, N) similarly obtained by the standard relations. In Table
1 we use MAPLE to provide the following data: k(N), sr(N), and SR(N).
Then we can calculate δ1(N), i(N) and δ2(N) by (39), (40) (41), respectively.
From (38) we can check the consistency by verifying

sr(N) − δ2(N) = SR(N) − d(2, N) = SR(N) − D(2, N) + k(N)

which gives the number of linearly independent non-standard relations (as-
suming the conjecture in [17, 5.27(c)]). In Table 1 we provide some computa-
tional data of the above quantities. To save space we write D = D(2, N) and
d = d(2, N).

Definition 8.1. We call the level N standard if either (i) N = 1, 2 or 3, or
(ii) N is a prime power pn (p ≥ 5). Otherwise N is called non-standard.

Remark 8.2. We now make the following comments in the weight two case from
Table 1.
(a) When p ≥ 11 the vector space kerβp contains a subspace isomorphic to the
space of cusp forms of weight two on X1(p) which has dimension (p−5)(p−7)/24
(see [20, Lemma 2.3 & Theorem 7.8]). So it must contain another piece which
has dimension (p− 3)/2 since dim(kerβp) = (p2 − 1)/24 by [30, (6)]. One may
wonder if this missing piece has any significance in geometry and/or number
theory.
(b) If N is a 2-power or a 3-power then D(2, N) should be sharp. See Re-
mark 5.4.
(c) If N has at least two distinct prime factors then D(2, N) seems to be sharp,
though we don’t have any theory to support it.
(d) Suppose the conjecture in [17, 5.27(c)] is true. Then by [17, 5.27], (b)
and (c) is equivalent to saying that the kernel of βN is trivial if the level N is
non-standard. We believe this is also a necessary condition on N for βN to be
trivial.
(e) If the level N > 3 is standard then βN is unlikely to be injective. We con-
jecture that non-standard relation doesn’t exist (i.e., SR(N) is sharp), though
for prime power levels we only have verified this for the first four prime square
levels N = 52, 72, 112, 132, and the first cubic power level N = 53.

The equation dim βp = (p2 − 1)/24 (see [30, (6)]) together with Theorem 8.6
confirms Remark 8.2(e) for prime levels if we assume a variant of Grothendieck’s
period conjecture [17, 5.27(c)]. The next result partially confirms Remark
8.2(e) in the case when the level is a prime square.
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Theorem 8.3. If p ≥ 5 is a prime then kerβp2 6= 0 and

d(2, p2) < D(2, p2) = (p2 − p + 2)2/4.

Proof. By the proof of Delign-Goncharov’s bound D(2, p2) in [17, 5.25] we only
need to show kerβp2 6= 0. In the following we adopt the same notation as in
[17] and [30].
Fix a primitive p2th root of unity µ. Put e(a) = eµa for all integer a. Define

gk,j = e(pk + j) + e(p2 − pk − j) + e(pj) + e(p2 − pj)

for 0 ≤ k < (p − 1)/2, 1 ≤ j ≤ p − 1, and for k = (p − 1)/2, 1 ≤ j ≤ (p − 1)/2.
One only needs to prove the following

Claim. Let h = (p − 3)/2. Then one has

h
∑

k=0

h
∑

l=k

p−2
∑

j=2

{gk,1, gl,j} +

h+1
∑

k=0

h+1
∑

j=2

{gk,1, gh+1,j}

+
h
∑

k=0

h
∑

l=k+1

p−2
∑

j=2

{gk,p−1, gl,j} +
h
∑

k=0

h+1
∑

j=2

{gk,p−1, gh+1,j}

−
h
∑

k=0

h
∑

l=k

p−2
∑

j=2

{gk,j , gl,p−1} −
h
∑

k=0

h
∑

l=k

p−2
∑

j=2

{gk,j , gl+1,1} = 0.

There are h(2h+3)2 = hp2 distinct terms on the left, each with coefficient ±1.

The proof of the claim is straight-forward by a little tedious change of indices
and regrouping.

−
h
∑

k=0

h
∑

l=k

p−2
∑

j=2

{gk,j , gl+1,1} =

h
∑

k=0

k
∑

l=0

p−2
∑

j=2

{gk+1,1, gl,j} =

h+1
∑

k=1

k−1
∑

l=0

p−2
∑

j=2

{gk,1, gl,j}.

Then the expression in the claim becomes

h
∑

k=1

h
∑

l=0

p−2
∑

j=2

{gk,1, gl,j} +
h
∑

l=0

p−2
∑

j=2

{g0,1, gl,j} +
h
∑

l=0

p−2
∑

j=2

{gh+1,1, gl,j}

+
h+1
∑

k=0

h+1
∑

j=2

{gk,1, gh+1,j} +
h
∑

k=0

h
∑

l=0

p−2
∑

j=2

{gk,p−1, gl,j} +
h
∑

k=0

h+1
∑

j=2

{gk,p−1, gh+1,j}

=

h+1
∑

k=0

h
∑

l=0

p−2
∑

j=2

{gk,1, gl,j} +

h+1
∑

k=0

h+1
∑

j=2

{gk,1, gh+1,j}

+

h
∑

k=0

h
∑

l=0

p−2
∑

j=2

{gk,p−1, gl,j} +

h
∑

k=0

h+1
∑

j=2

{gk,p−1, gh+1,j}.

Let us write {a, b} = {e(a), e(b)}. By definition
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{gk,1, gl,j}
={pk + 1, pl + j} + {−pk − 1, pl + j} + {p, pl + j} + {−p, pl + j}
+{pk + 1,−pl − j} + {−pk − 1,−pl − j} + {p,−pl − j} + {−p,−pl − j}
+{pk + 1, pj} + {−pk − 1, pj} + {p, pj} + {−p, pj}
+{pk + 1,−pj} + {−pk − 1,−pj} + {p,−pj}+ {−p,−pj}
={pk + 1, pl + j} + {p(p − k) − 1, pl + j} + {p, pl + j} + {−p, pl + j}
+{pk + 1, p(p − 1 − l) + p − j} + {p(p − k) − 1, p(p − 1 − l) + p − j}

+ {p, p(p− 1 − l) + p − j} + {−p, p(p− 1 − l) + p − j}
+{pk + 1, pj} + {p(p− k) − 1, pj} + {p, pj} + {−p, pj}
+{pk + 1, p(p − j)} + {p(p − k) − 1, p(p− j)}+{p, p(p− j)}+{−p, p(p− j)}.

Then

h+1
∑

k=0

h
∑

l=0

p−2
∑

j=2

{gk,1, gl,j} =
h+1
∑

k=0

h
∑

l=0

p−2
∑

j=2

{pk + 1, pl + j} + {p(p − k) − 1, pl + j}

+{pk + 1, p(p − 1 − l) + j} + {p(p − k) − 1, p(p − 1 − l) + j}
+{p, pl + j} + {−p, pl + j} + {p, p(p − 1 − l) + j} + {−p, p(p− 1 − l) + j}
+2{pk + 1, pj} + 2{p(p− k) − 1, pj} + 2{p, pj}+ 2{−p, pj}

=

h+1
∑

k=0

p−1
∑

l=0,l 6=h+1

p−2
∑

j=2

{pk + 1, pl + j} +

p
∑

k=h+2

p−1
∑

l=0,l 6=h+1

p−2
∑

j=2

{pk − 1, pl + j}

+

h+1
∑

k=0

p−1
∑

l=0,l 6=h+1

p−2
∑

j=2

(

{p, pl + j} + {−p, pl + j}
)

+ 2(h + 1)

h+1
∑

k=0

p−2
∑

j=2

{pk + 1, pj}

+2(h + 1)

p
∑

k=h+2

p−2
∑

j=2

{pk − 1, pj} + 2(h + 2)(h + 1)

p−2
∑

j=2

(

{p, pj} + {−p, pj}
)

.

Thus

h+1
∑

k=0

h
∑

l=0

p−2
∑

j=2

{gk,1, gl,j} +

h+1
∑

k=0

h+1
∑

j=2

{gk,1, gh+1,j}

=

h+1
∑

k=0

p−1
∑

l=0

p−2
∑

j=2

{pk + 1, pl + j} +

p
∑

k=h+2

p−1
∑

l=0

p−2
∑

j=2

{pk − 1, pl + j}

+
p + 1

2

p−1
∑

l=0

p−2
∑

j=2

(

{p, pl + j} + {−p, pl + j}
)

+ p

h+1
∑

k=0

p−2
∑

j=2

{pk + 1, pj}

+p

p
∑

k=h+2

p−2
∑

j=2

{pk − 1, pj} +
p(p + 1)

2

p−2
∑

j=2

(

{p, pj} + {−p, pj}
)

.
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Similarly,

h
∑

k=0

h
∑

l=0

p−2
∑

j=2

{gk,p−1, gl,j} +

h
∑

k=0

h+1
∑

j=2

{gk,p−1, gh+1,j}

=
h+1
∑

k=1

p−1
∑

l=0

p−2
∑

j=2

{pk − 1, pl + j} +

p−1
∑

k=h+2

p−1
∑

l=0

p−2
∑

j=2

{pk + 1, pl + j}

+
p − 1

2

p−1
∑

l=0

p−2
∑

j=2

(

{p, pl + j} + {−p, pl + j}
)

+ p

h+1
∑

k=1

p−2
∑

j=2

{pk − 1, pj}

+p

p−1
∑

k=h+2

p−2
∑

j=2

{pk + 1, pj} +
p(p − 1)

2

p−2
∑

j=2

(

{p, pj} + {−p, pj}
)

.

Altogether the expression in the claim is reduced to

X :=

p−1
∑

k=0

p−1
∑

l=0

p−2
∑

j=2

{pk + 1, pl + j} +

p
∑

k=1

p−1
∑

l=0

p−2
∑

j=2

{pk − 1, pl + j}

+p

p−1
∑

l=0

p−2
∑

j=2

(

{p, pl + j} + {−p, pl + j}
)

+ p

p−1
∑

k=0

p−2
∑

j=2

{pk + 1, pj}

+p

p
∑

k=1

p−2
∑

j=2

{pk − 1, pj} + p2

p−2
∑

j=2

(

{p, pj} + {−p, pj}
)

.

To see this last expression can be reduced to 0 we recall that by definition [17,
(5.13.6)]

{a, b} = {ea, eb} = [ea, eb] + ∂a(eb) − ∂b(ea),

where ∂a is the derivation defined by ∂a(e0) = 0 and ∂a(eζ) = [−[ζ](ea), eζ ]
for any p2th root of unity ζ (see [17, (5.13.4)]). Thus by abuse of notation
[x, y] = [e(x), e(y)] we get

X =

p−1
∑

k=0

p−1
∑

l=0

p−2
∑

j=2

(

[pk + 1, pl + j] − [p(k + l) + j + 1, pl + j]

+ [p(k + l) + j + 1, pk + 1]
)

(42)

+

p
∑

k=1

p−1
∑

l=0

p−2
∑

j=2

(

[pk − 1, pl + j] − [p(k + l) + j − 1, pl + j]

+ [p(k + l) + j − 1, pk − 1]
)

(43)

+p

p−1
∑

l=0

p−2
∑

j=2

(

[p, pl + j] − [p(l + 1) + j, pl + j] + [p(l + 1) + j, p]
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+[−p, pl + j] − [p(l − 1) + j, pl + j] + [p(l − 1) + j,−p]
)

(44)

+p

p−1
∑

k=0

p−2
∑

j=2

(

[pk + 1, pj] − [p(j + k) + 1, pj] + [p(j + k) + 1, pk + 1]
)

(45)

+p

p
∑

k=1

p−2
∑

j=2

(

[pk − 1, pj] − [p(j + k) − 1, pj] + [p(j + k) − 1, pk − 1]
)

(46)

+p2

p−2
∑

j=2

(

[p, pj] − [p(j + 1), pj] + [p(j + 1), p] + [−p, pj]

− [p(j − 1), pj] + [p(j − 1),−p]
)

. (47)

Now by skew-symmetry of Lie bracket

(42) + (43)

=

p−1
∑

k=0

p−1
∑

l=0

p−2
∑

j=2

[pk + 1, pl + j] +

p−1
∑

k=0

p−1
∑

l=0

p−2
∑

j=2

[pk + j, pl + j + 1]

−
p−1
∑

k=0

p−1
∑

l=0

p−1
∑

j=3

[pk + 1, pl + j] +

p
∑

k=1

p−1
∑

l=0

p−2
∑

j=2

[pk − 1, pl + j]

−
p
∑

k=1

p−1
∑

l=0

p−3
∑

j=1

[p(k + l) + j, pl + j + 1] +

p
∑

k=1

p−1
∑

l=0

p−3
∑

j=1

[pl + j, pk − 1]

=

p−1
∑

k=0

p−1
∑

l=0

[pk + 1, pl + 2] +

p−1
∑

k=0

p−1
∑

l=0

[pk + p − 2, pl + p − 1]

−
p−1
∑

k=0

p−1
∑

l=0

[pk + 1, pl + p − 1] +

p
∑

k=1

p−1
∑

l=0

[pk − 1, pl + p − 2]

−
p
∑

k=1

p−1
∑

l=0

[pk + 1, pl + 2] +

p
∑

k=1

p−1
∑

l=0

[pl + 1, pk − 1] = 0.

Similarly we can easily find that (44) = (45) = (46) = (47) = 0. This finishes
the proof of the theorem.

Remark 8.4. The theorem corrects a misprint in the statement of [30, Thm. 2].

In the three cases (w, N) = (2, 8), (2, 10) and (2, 12) we see that SR(N) >
d(w; N) = D(w; N). By numerical computation we have

Conjecture 8.5. We have

d(2, 8) = 9, d(2, 10) = d(2, 12) = 15,
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and the following relations are the linearly independent non-standard relations:

let LN(−) = LN (1, 1|−) and L
(2)
N (−) = LN (2|−), then

37L8(1, 1) =34L
(2)
8 (5) + 112L8(3, 1) + 11L8(3, 0) + 37L

(2)
8 (1) − 2L8(2, 6)

+ 3L8(7, 3) − 111L8(5, 7) + 38L8(7, 7) − 8L8(5, 5), (48)

7L10(5, 2) =72L
(2)
10 (1) + 265L

(2)
10 (7) − 7L10(2, 5) + 64L10(9, 8) + 14L10(5, 6)

− 467L10(4, 2) + 467L10(8, 6) − 164L10(9, 4) + 166L10(7, 9)

− 260L10(8, 1) − 66L10(3, 9) − 7L10(6, 9) + 7L10(6, 5). (49)

L12(8, 7) =5L
(2)
12 (5) + 8L12(8, 10)− 6L12(10, 11)− 8L12(9, 11) + L12(10, 9)

− 15L12(8, 1) + 5L12(9, 10) + 5L12(6, 1) − L12(1, 1)

+ 6L12(8, 11)− 11L12(6, 11) + 8L12(8, 3) − L12(11, 8), (50)

60L12(8, 11) =38L12(8, 7) + 348L12(10, 11) + 502L12(9, 11)

− 492L12(10, 9) + 600L12(8, 1) − 552L12(9, 10)

− 154L12(11, 10) + 20L12(6, 1) + 261L12(6, 11)

− 502L12(8, 3) + 221L12(11, 8) − 319L12(8, 10), (51)

221L12(1, 1) =1854L12(8, 10) + 562L12(8, 7) − 1018L12(10, 11)

− 2416L12(9, 11) + 319L12(10, 9) − 4270L12(8, 1)

+ 2293L12(9, 10) + 956L12(11, 10) + 1110L12(6, 1)

+ 2416L12(8, 11) − 3305L12(6, 11) + 2416L12(8, 3). (52)

When N is a non-standard level we find that very often there are non-standard
relations among MPVs. For examples, the five relations in Conjecture 8.5 are
discovered only through numerical computation. On the other hand, we expect
that the standard relations are enough to produce all the linear relations when
N is standard. In weight two, when N is a prime the answer is confirmed by
the next theorem if one assumes a variant of Grothendieck’s period conjecture.
Computations above provided the primary motivation of this result at the
initial stage of this work.

Theorem 8.6. ([30]) Let p ≥ 5 be a prime. Then

d(2, p) ≤ (5p + 7)(p + 1)

24
.

If the conjecture in [17, 5.27(c)] is true then the equality holds and the standard
relations in MPV(2, p) imply all the others.

Proof. See the proof of [30, Thm. 1].

It follows from [30, (6)] that the kernel βp has dimension

k(p) =
p2 − 1

24

for all prime p ≥ 5. From the data in Table 1 we have
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Conjecture 8.7. (a) For all prime p ≥ 5 kernel βp2 has dimension

k(p2) =
p(p − 1)(p − 2)(p − 3)

24
.

As a consequence, the upper bound of d(2, p2) produced by the standard relations
is

d(2, p2) ≤ 5p4 − 6p3 + 19p2 − 18p + 24

24
.

(b) The standard relations produce all the linear relations and the upper bound
in (a) is sharp.

Conjecture 8.8. (a) For all prime p ≥ 5 kernel βp3 has dimension

k(p3) =
p2(p − 1)(p − 2)(p − 3)(p − 4)

24
.

As a consequence, the upper bound of d(2, p3) produced by the standard relations
is

d(2, p3) ≤ 5p6 − 2p5 − 29p4 + 74p3 − 48p2 + 24

24
.

(b) The standard relations produce all the linear relations and the upper bound
in (a) is sharp.

9 Computational results in weight three, four and five

In this last section we briefly discuss our results in weight three, four and five.
Since the computational complexity increases exponentially with the weight we
cannot do as many cases as we have done in weight two.
Combining the FDS (28), (29), RDS (30)-(35), and the weight one relations (13)
and using MAPLE we have verified that d(3, 1) = 1, d(3, 2) ≤ 3, d(3, 3) ≤ 8....

N 1 2 3 4 5 6 7
SR(3) 1 3 8 9 22 23 50
D(3) 1 3 8 8 27 21 64

SR(4) 1 5 16 21 61 69
D(4) 1 5 16 16 81 55 256

SR(5) 2 8 32
D(5) 2 8 32 32 243 144 1024

N 8 9 10 11 12 13
SR(3) 38 67 70 157 94 246
D(3) 27 64 56 216 56 343

Table 2: Upper bounds of d(w, N) by the standard relations and [17, 5.25].
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We have done similar computation in other small weight and low level cases
and listed the results in Table 2. The values of Deligne and Goncharov’s bound
D(w) = D(w, N) in Table 2 should be compared with the bound SR(w) =
SR(w, N) obtained by the standard relations.
Note that SR(3, 4) = D(3, 4) + 1. By numerical computation using EZface [9]
and GiNac [27] we find the following non-standard relation in weight 3:

5L4(1, 2|2, 3) =46L4(1, 1, 1|1, 0, 0)− 7L4(1, 1, 1|2, 2, 1)− 13L4(1, 1, 1|1, 1, 1)

+ 13L4(1, 2|3, 1)− L4(1, 1, 1|3, 2, 0) + 25L4(1, 1, 1|3, 0, 0)

− 8L4(1, 1, 1|1, 1, 2) + 18L4(2, 1|3, 0), (53)

and five non-standard relations in weight 4:

0 = − 255608l1 − 265360l2 − 219216l3 − 19306179l4 − 214008l5 + 45560l6

− 148296l7 − 1117280l8 − 677152l9 + 86512l10 − 239320l11 − 50032l12

− 121008l13 − 96944l14 + 202328l15 − 1178499l16 + 98944l17

+ 1565754l18 + 23071580l19 + 363568l20 − 3310177l21, (54)

0 =29752l1 + 23312l2 + 10960l3 + 6123413l4 + 16440l5 − 12408l6

+ 7144l7 + 58272l8 + 86976l9 − 15952l10 + 41144l11 + 13552l12

+ 29552l13 + 9840l14 − 36696l15 + 375805l16 − 41760l17

− 477366l18 − 7196900l19 − 62128l20 + 1048983l21, (55)

0 =477444l1 + 431352l2 + 268168l3 + 98404710l4 + 308964l5 − 233140l6

+ 130028l7 + 1563872l8 + 1516032l9 − 296664l10 + 702308l11 + 190136l12

+ 506440l13 + 141592l14 − 636468l15 + 6027441l16 − 701600l17

− 7683609l18 − 115803282l19 − 1063768l20 + 16877562l21, (56)

0 = − 5976l1 + 1776l2 + 8496l3 − 2132671l4 + 3176l5 + 1752l6

+ 3832l7 + 50976l8 − 2688l9 + 2320l10 − 10264l11 − 5808l12

− 6128l13 + 2320l14 + 8120l15 − 132307l16 + 13856l17

+ 162614l18 + 2487604l19 + 12720l20 − 368485l21, (57)

0 = − 474064l1 − 405248l2 − 243520l3 − 54556373l4 − 283952l5 + 84368l6

− 170640l7 − 1033056l8 − 994784l9 + 174880l10 − 540432l11 − 156544l12

− 240512l13 − 49344l14 + 411152l15 − 3357683l16 + 292256l17

+ 4291792l18 + 64572648l19 + 743136l20 − 9470695l21. (58)

where by setting L = L4, 14 = {1}4, ...

l1 = L(14|2, 1, 0, 1), l2 = L(14|2, 12, 0), l3 = L(14|2, 0, 3, 1),
l4 = L(14|2, 03), l5 = L(14|1, 2, 0, 3), l6 = L(14|32, 0, 3),
l7 = L(14|3, 1, 3, 2), l8 = L(14|3, 03), l9 = L(14|3, 0, 1, 0),

l10 = L(14|3, 0, 12), l11 = L(2, 12|0, 3, 0), l12 = L(3, 1|0, 3),
l13 = L(14|2, 2, 3, 0), l14 = L(2, 12|3, 12), l15 = L(2, 12|3, 0, 3),
l16 = L(12, 2|23), l17 = L(14|2, 0, 1, 0), l18 = L(2, 12|22, 0),
l19 = L(14|{2, 0}2), l20 = L(22|3, 0), l21 = L(14|24).
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We now can prove this by using the octahedral symmetry of P1−({0,∞}∪µ4)
(see Remark 5.3). This idea was suggested to the author by Deligne in a letter
dated Feb. 14, 2008.

Theorem 9.1. ([30]) If the conjecture in [17, 5.27(c)] is true then all the linear
relations among MPVs of level four and weight three (resp. weight four) are the
consequences of the standard relations and the octahedral relation (53) (resp.
the five octahedral relations (54)-(58)).

Proof. For the proof please see[30, §3].

From the available data in Table 2 we can formulate the following conjecture.

Conjecture 9.2. Suppose the level N = p is a prime ≥ 5. Then

d(3, p) ≤ p3 + 4p2 + 5p + 14

12
.

Moreover, equality holds if standard relations produce all the linear relations.

We formulated this conjecture under the belief that the upper bound of d(3, p)
produced by the standard relations should be a polynomial of p of degree 3.
Then we find the coefficients by the bounds of d(3, p) for p = 5, 7, 11, 13 in
Table 2.
When w > 2 it’s not too hard to improve the bound of d(w, p) given in [17,
5.25] by the same idea as used in the proof of [17, 5.24] (for example, decrease
the bound by (p2 − 1)/24). But they are often not the best. We conclude our
paper with the following conjecture.

Conjecture 9.3. If N is a standard level then the standard relations always
provide the sharp bounds of d(w, N), namely, all linear relations can be derived
from the standard ones, if further N > 3 then the bound D(w, N) in (36) by
Deligne and Goncharov can be lowered. If N is a non-standard level then the
bound D(w, N) is sharp and there exists a positive integer w0(N) so that at
least one non-standard relation exists in MPV(w, N) for each w ≥ w0(N).

It is likely that one can take w0(4) = w0(6) = w0(9) = 3 and w0(N) = 2 for all
the other non-standard levels N .
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