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1 Introduction

Let k be an algebraically closed field of characteristic p > 2. Let W = W (k)
be its ring of Witt vectors and L = Quot(W ). Let σ be the Frobenius auto-
morphism on k as well as on W . By NilpW we denote the category of schemes
S over Spec(W ) such that p is locally nilpotent on S. Let S be the closed sub-
scheme of S that is defined by the ideal sheaf pOS . Let (X, λX) be a principally
polarized p-divisible group over k. If X is a p-divisible group, we denote its
dual by X̂. Then the polarization λX is an isomorphism X → X̂.
We consider the functor

M : NilpW → Sets,

which assigns to S ∈ NilpW the set of isomorphism classes of pairs (X, ρ),
where X is a p-divisible group over S and ρ : XS = X×Spec(k) S → X×S S is a
quasi-isogeny such that the following condition holds. There exists a principal
polarization λ : X → X̂ such that ρ∨ ◦ λS ◦ ρ and λX,S coincide up to a

scalar. Two pairs (X1, ρ1) and (X2, ρ2) are isomorphic if ρ1 ◦ ρ−1
2 lifts to an

isomorphism X2 → X1. This functor is representable by a formal scheme M
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826 Eva Viehmann

which is locally formally of finite type over Spf(W ) (see [RaZ], Thm. 3.25).
Let Mred be its underlying reduced subscheme, that is the reduced subscheme
of M defined by the maximal ideal of definition. Then Mred is a scheme over
Spec(k).
The analogues of these moduli spaces for p-divisible groups without polariza-
tion have been studied by de Jong and Oort in [JO] for the case that the
rational Dieudonné module of X is simple and in [V1] without making this
additional assumption. There, the sets of connected components and of irre-
ducible components, as well as the dimensions, are determined. In the polarized
case, the moduli spaces Mred have been examined in several low-dimensional
cases. For example, Kaiser ([Kai]) proves a twisted fundamental lemma for
GSp4 by giving a complete description in the case that X is two-dimensional
and supersingular. An independent description of this case is given by Kudla
and Rapoport in [KR]. In [Ri], Richartz describes the moduli space in the case
of three-dimensional supersingular X. In this paper we derive corresponding
results on the global structure of the mo duli space Mred for arbitrary X.
The first main result of this paper concerns the set of connected components
of Mred.

Theorem 1. Let X be nontrivial and let Xm × Xbi × Xet be the decomposition
into its multiplicative, bi-infinitesimal, and étale part. Then

π0(Mred) ∼=
(

GLht(Xm)(Qp)/GLht(Xm)(Zp)
)

× Z.

Next we consider the set of irreducible components of Mred. Let (N,F ) be the
rational Dieudonné module of X. Here, N is an L-vector space of dimension
ht(X) and F : N → N is a σ-linear isomorphism. The polarization λX induces
an anti-symmetric bilinear perfect pairing 〈·, ·〉 on N . Let G be the correspond-
ing general symplectic group of automorphisms of N respecting 〈·, ·〉 up to a
scalar. Let

J = {g ∈ G(L) | g ◦ F = F ◦ g}.

It is the set of Qp-valued points of an algebraic group over Qp (see [RaZ], Prop.
1.12). There is an action of J on Mred.

Theorem 2. The action of J on the set of irreducible components of Mred is
transitive.

We choose a decomposition N =
⊕l

j=1N
j with N j simple of slope λj =

mj/(mj + nj) with (mj , nj) = 1 and λj ≤ λj′ for j < j′. Let

m =









1

2

∑

j

min{mj , nj}







 ,

where ⌊x⌋ is the greatest integer less or equal x. As N is the isocrystal of a
polarized p-divisible group, its Newton polygon is symmetric, i. e. λl+1−j =
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1 − λj . Hence we obtain

m =









∑

{j|mj<nj}

mj +
1

2
| {j | mj = nj = 1} |







 . (1.1)

Theorem 3. Mred is equidimensional of dimension

dimMred =
1

2





∑

j

(mj − 1)(nj − 1)

2
+

∑

j<j′

mjnj′ +m



 . (1.2)

Note that the equidimensionality is already a consequence of Theorem 2. How-
ever, it also follows from the proof of the dimension formula without requiring
additional work.
Our results on the set of connected components and on the dimension of Mred

are analogous to those for other affine Deligne-Lusztig sets for split groups
where a scheme structure is known. We now define these affine Deligne-Lusztig
varieties and give a brief overview over the general results in comparison to the
results for the case treated in this paper.
Let O be a finite unramified extension of Zp or Fp[[t]] and let G be a split
connected reductive group over O. Let F be the quotient field of O. Let
K = G(O). Let L be the completion of the maximal unramified extension of
F and let σ be the Frobenius of L over F . Let A be a maximal torus and B a
Borel subgroup containing A. Let µ ∈ X∗(A) be dominant and let b ∈ G(L).
Let εµ be the image of p or t ∈ F

× under µ. Let

Xµ(b) = {g ∈ G(L)/K | g−1bσ(g) ∈ KεµK} (1.3)

be the generalized affine Deligne-Lusztig set associated to µ and b. We assume
that b ∈ B(G,µ) to have that Xµ(b) is nonempty (compare [Ra], 5). There
are two cases where it is known that Xµ(b) is the set of k-valued points of a
scheme. Here, k denotes the residue field of OL. The first case is that F = Qp

and that Xµ(b) is the set of k-valued points of a Rapoport-Zink space of type
(EL) or (PEL). In that case µ is always minuscule. Rapoport-Zink spaces
without polarization were considered in [V1], in that case G = GLh. For the
moduli spaces considered in this paper let G = GSp2h. We choose a basis
{ei, fi | 1 ≤ i ≤ h} identifying N with L2h and the symplectic form on N with
the symplectic form on L2h defined by requiring that 〈ei, ej〉 = 〈fi, fj〉 = 0
and 〈ei, fj〉 = δi,h+1−j . Let B be the Borel subgroup of G = GSp2h fixing
the complete isotropic flag (e1) ⊂ (e1, e2) ⊂ · · · ⊂ (e1, . . . , eh). We choose A
to be the diagonal torus. Let π1(G) be the quotient of X∗(A) by the coroot
lattice of G. Then the multiplier G → Gm induces an isomorphism π1(G) →
π1(Gm) ∼= Z. Let µ ∈ X∗(A) be the unique minuscule element whose image
in π1(G) is 1. Then pµ is a diagonal matrix with diagonal entries 1 and p,
each with multiplicity h. We write F = bσ with b ∈ G. Note that there is a
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bijection between Mred(k) and the set of Dieudonné lattices in N . Using the
above notation, we have the bijection

Xµ(b) → Mred(k)

g 7→ g(W (k)2h).

The second case is that F is a function field. Here Xµ(b) obtains its scheme
structure by considering it as a subset of the affine GrassmannianG(L)/G(OL).
In this case we do not have to assume µ to be minuscule. The Xµ(b) are lo-
cally closed subschemes of the affine Grassmannian. The closed affine Deligne-
Lusztig varieties X�µ(b) are defined to be the closed reduced subschemes of
G(L)/G(OL) given by X�µ(b) =

⋃

µ′�µ Xµ′(b). Here µ′ � µ if µ− µ′ is a non-
negative linear combination of positive coroots. Note that the two schemes
Xµ(b) and X�µ(b) coincide if µ is minuscule.
The sets of connected components of the moduli spaces of non-polarized p-
divisible groups are given by a formula completely analogous to Theorem 1
(compare [V1], Thm. A). For closed affine Deligne-Lusztig varieties in the
function field case, the set of connected components is also given by a general-
ization of the formula in Theorem 1 (see [V3], Thm. 1). The sets of connected
components of the non-closed Xµ(b) are not known in general. There are exam-
ples (compare [V3], Section 3) which show that a result analogous to Theorem
1 cannot hold for all non-closed Xµ(b).
The only further general case where the set of irreducible components is known
are the reduced subspaces of moduli spaces of p-divisible groups without polar-
ization. Here, the group J also acts transitively on the set of irreducible com-
ponents. There are examples of affine Deligne-Lusztig varieties in the function
field case associated to non-minuscule µ where this is no longer true (compare
[V2], Ex. 6.2).
To discuss the formula for the dimension let us first reformulate Theorem 3.
Let G = GSp2h and µ be as above. Let ν = (λi) ∈ Qh ∼= X∗(A)Q be the
(dominant) Newton vector associated to (N,F ) as defined by Kottwitz, see
[Ko1]. Let ρ be the half-sum of the positive roots of G and ωi the fundamental
weights of the adjoint group Gad. Then one can reformulate (1.2) as

dimMred = 〈2ρ, µ− ν〉 +
∑

i

⌊〈ωi, ν − µ〉⌋. (1.4)

In this form, the dimension formula proves a special case of a conjecture by
Rapoport (see [Ra], Conjecture 5.10) for the dimension of affine Deligne-Lusztig
varieties. Denote by rkQp

the dimension of a maximal Qp-split subtorus and let
defG(F ) = rkQp

G− rkQp
J . Note that defG(F ) only depends on the conjugacy

class of F or equivalently on the σ-conjugacy class of b if we write F = bσ for
some b ∈ G. In our case, it is equal to h−⌈l/2⌉ where l is the number of simple
summands of N . Using Kottwitz’s reformulation of the right hand side of (1.4)
in [Ko2], we obtain

dimMred = 〈ρ, µ− ν〉 −
1

2
defG(F ). (1.5)
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For the case of moduli of p-divisible groups for G = GLh, the analogous formula
for the dimension is shown in [V1]. In the function field case, the dimension
of the generalized affine Deligne-Lusztig variety has been determined in [V2],
[GHKR]. The formula for the dimension is also in this case the analogue of
(1.5).
The dimension of the moduli spaces Mred is also studied by Oort and by Chai
using a different approach. In [O2], Oort defines an almost product structure
(that is, up to a finite morphism) on Newton strata of moduli spaces of polarized
abelian varieties. It is given by an isogeny leaf and a central leaf for the p-
divisible group. The dimension of the isogeny leaf is the same as that of the
corresponding Mred. The dimension of the central leaf is determined by Chai
in [C] and also by Oort in [O4]. The dimension of the Newton polygon stratum
itself is known from [O1]. Then the dimension of Mred can also be computed
as the difference of the dimensions of the Newton polygon stratum and the
central leaf.
We outline the content of the different sections of the paper. In Section 2 we
introduce the necessary background and notation, and reduce the problem to
the case of bi-infinitesimal groups. In the third and fourth section, we define
the open dense subscheme S1 where the a-invariant of the p-divisible group is
1 and describe its set of closed points. This description is refined in Sections 5
and 6 to prove the theorems on the set of irreducible components and on the
dimension, respectively. In the last section we determine the set of connected
components.
Acknowledgement. Part of this paper was written during a stay at the Uni-
versité Paris-Sud at Orsay which was supported by a fellowship within the
Postdoc-Program of the German Academic Exchange Service (DAAD). I thank
the Université Paris-Sud for its hospitality. I thank the referee for very helpful
remarks.

2 Notation and preliminary reductions

2.1 A decomposition of the rational Dieudonné module

The principal polarization λX equips the rational Dieudonné module (N,F ) of
X with a nondegenerate anti-symmetric bilinear pairing 〈·, ·〉. It satisfies

〈v, Fw〉 = σ(〈V v,w〉) (2.1)

for all x, y ∈ N .
We assumed k to be algebraically closed. Then the classification of isocrystals
shows that N has a decomposition into subisocrystals Ni of one of the following
types. Let l be the number of supersingular summands in a decomposition of
N into simple isocrystals. Then

N =

{

N0 ⊕N1 if l is even

N0 ⊕N 1
2
⊕N1 otherwise,

(2.2)
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830 Eva Viehmann

satisfying the following three properties.

1. The slopes of N0 are smaller or equal to 1
2 .

2. The summand N 1
2

is simple and supersingular.

3. N1 is the isocrystal dual to N0, i.e.

〈N0, N0〉 = 〈N1, N1〉 = 〈N0, N 1
2
〉 = 〈N1, N 1

2
〉 = 0.

Note that if l > 1, then this decomposition is not unique and N0 and N1

also contain supersingular summands. For i ∈ {0, 1
2 , 1} we denote by pi the

canonical projection N → Ni.
The moduli spaces Mred for different (X, λX) in the same isogeny class are
isomorphic. Replacing X by an isogenous group we may assume that

X =

{

X0 × X1 if l is even

X0 × X 1
2
× X1 otherwise.

(2.3)

Here, Xi is such that its rational Dieudonné module is Ni.
Mapping (X, ρ) ∈ Mred(k) to the Dieudonné module of X defines a bijection
between Mred(k) and the set of Dieudonné lattices in N that are self-dual up
to a scalar. Here a sublattice Λ of N is called a Dieudonné lattice if ϕ(Λ) ⊆ Λ
for all ϕ in the Dieudonné ring of k,

D = D(k) = W (k)[F, V ]/(FV = V F = p, aV = V σ(a), Fa = σ(a)F ). (2.4)

All lattices considered in this paper are Dieudonné lattices. A lattice Λ ⊂ N
is self-dual up to a scalar if the dual lattice Λ∨ satisfies Λ∨ = cΛ with c ∈ L×.
The following notion is introduced by Oort in [O3].

Definition 2.1. Let X be a p-divisible group over k and Λmin be its Dieudonné
module. Then X is a minimal p-divisible group if End(Λmin) is a maximal order
in End(Λmin) ⊗W L.

Remark 2.2. By Morita equivalence X is minimal if and only if Λmin is the
direct sum of submodules Λi

min such that N i = Λi
min ⊗W L is simple and that

End(Λi
min) is a maximal order in End(N i), which is Oort’s original definition.

Note that in every isogeny class of p-divisible groups over k there is exactly one
isomorphism class of minimal p-divisible groups (compare [O3], 1.1).

Lemma 2.3. There is a k-valued point (X, ρ) of Mred such that X is minimal.

Proof. Let N0 and N1 as in the decomposition above. Let Λmin,0 ⊂ N0 be the
lattice of a minimal p-divisible group and let Λmin, 1

2
⊂ N 1

2
be the Dieudonné

module of X 1
2
. There is only one isomorphism class of one-dimensional super-

singular p-divisible groups and it consists of minimal p-divisible groups. Let
c ∈ L× with Λ∨

min, 1
2

= cΛmin, 1
2
. Let

Λmin,1 = {x ∈ N1 | 〈x, cy〉 ∈ W for all y ∈ Λmin,0}.
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Then Λmin,1 is also the Dieudonné module of a minimal p-divisible group. Fur-
thermore, Λmin = Λmin,0 ⊕ Λmin, 1

2
⊕ Λmin,1 satisfies Λ∨

min = cΛmin. Thus Λmin

corresponds to an element of Mred(k) and to a minimal p-divisible group.

Remark 2.4. There is the following explicit description of the Dieudonné mod-
ule of a minimal p-divisible group: Let N =

⊕

j N
j be a decomposition of N

into simple isocrystals. For each j we write the slope ofN j asmj/(mj+nj) with

(mj , nj) = 1. Then there is a basis ej
1, . . . , e

j
mj+nj

of N j with F (ej
i ) = ej

i+mj

for all i, j. Here we use the notation ej
i+mj+nj

= pej
i . For the existence com-

pare for example [V1], 4.1. Furthermore, these bases may be chosen such that

〈ej
i , e

j′

i′ 〉 = δj,l+1−j′ · δi,mj+nj+1−i′ for 1 ≤ i, i′ ≤ mj + nj = ml+1−j + nl+1−j .
Then we can take the lattice Λmin to be the lattice generated by these basis
elements ej

i .

2.2 Moduli of non-polarized p-divisible groups

For the moment let X be a p-divisible group without polarization. Then associ-
ated to X there is an analogous moduli problem of quasi-isogenies of p-divisible
groups without polarization. If X is polarized, we thus obtain two functors
which are closely related. In this section we recall the definition of the moduli
spaces of non-polarized p-divisible groups and relate them to Mred. Besides,
we provide a technical result on lattices in isocrystals which we need in the
following section.
Let Mnp

X be the functor associating to a scheme S ∈ NilpW the set of pairs
(X, ρ) where X is a p-divisible group over S and ρ a quasi-isogeny XS → XS .
Two such pairs (X1, ρ1) and (X2, ρ2) are identified in this set if ρ1◦ρ

−1
2 lifts to an

isomorphismX2 → X1 over S. This functor is representable by a formal scheme
which is locally formally of finite type over Spf(W ) (see [RaZ], Theorem 2.16).
Let Mnp

X,red be its reduced subscheme. We always include X in this notation,

because we compare Mred to the two moduli spaces Mnp
X,red and Mnp

X0,red.
Let Jnp = {g ∈ GL(N) | g ◦ F = F ◦ g}. Then J ⊆ Jnp.
If X is a principally polarized p-divisible group, then forgetting the polarization
induces a natural inclusion as a closed subscheme

Mred →֒ Mnp
X,red.

Furthermore, there is a natural inclusion as a closed subscheme

Mnp
X0,red →֒ Mred (2.5)

mapping an S-valued point (X0, ρ0) to (X0 × X∨
0 , (ρ, ρ

∨)) if the number of
supersingular summands of N is even and to (X0 ×X 1

2
×X∨

0 , (ρ, ρ 1
2
, ρ∨)) oth-

erwise. Here X 1
2

= X 1
2
,S is the base-change of the unique one-dimensional

supersingular p-divisible group over k and ρ 1
2

= id.
Let ṽ be the valuation on the Dieudonné ring D determined by

ṽ(aF iV j) = 2vp(a) + i+ j (2.6)
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for every a ∈W (k).

Lemma 2.5. One can decompose each B ∈ D uniquely as B = LT(B)+B′ with
ṽ(B′) > ṽ(B) and

LT(B) =
∑

0≤i≤ṽ(B),2α+i=ṽ(B)

pα([ai]V
i + [bi]F

i).

Here [ai] and [bi] are Teichmüller representatives of elements of k× or 0 and
[b0] = 0.

Proof. The V i with i ≥ 0 and the F i with i > 0 together form a basis of the
W (k)-module D. Besides, as k is perfect, every element of W (k) can be written
in a unique way as x =

∑

α≥0 p
α[xα]. Hence we can write B =

∑

i≥0 xiV
i +

∑

i>0 yiF
i =

∑

i≥0

∑

α≥0 p
α[xi,α]V i +

∑

i>0

∑

α≥0 p
α[yi,α]F i where xi, yi are

0 for all but finitely many i. By the definition of ṽ(B), all xi,α, yi,α with
i + 2α < ṽ(B) vanish. Let LT(B) be the sum of all terms pα[xi,α]V i and
pα[yi,α]F i on which ṽ takes the value ṽ(B), i.e. those with 2α + i = ṽ(B).
Then LT(B) is as in the lemma and ṽ(B − LT(B)) > ṽ(B).

Lemma 2.6. Let (N0, b0σ) be the rational Dieudonné module of some p-divisible
group over k. Let m = vp(det b0) and n = dimL(N0) −m. Let v ∈ N0 be not
contained in any proper sub-isocrystal of N0.

1. Ann(v) = {ϕ ∈ D | ϕ(v) = 0} is a principal left ideal of D. There is a
generating element of the form

A = aFn + bVm +
n−1
∑

i=0

aiF
i +

m−1
∑

i=1

biV
i.

with a, b ∈W× and ai, bi ∈W .

2. If N0 is simple (and thus of slope m/(m+ n)), we have

LT(A) =











[a]Fn if n < m

[b]V m if m < n

[a]F + [b]V if m = n = 1

(2.7)

for some a, b ∈ k×.

3. Let N0 = ⊕jN
j be a decomposition of N0 into simple summands. Then

LT(A) = LT(
∏

j Lj). Here each Lj is of the form (2.7) associated to some

nonzero element in N j.

Proof. We use induction on the number of summands in a decomposition of N0

into simple isocrystals. If N0 is simple, the lemma follows immediately from
[V1], Lemma 4.12. For the induction step write N0 = N ′ ⊕ N

′′

where N ′ is
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simple. Let A′ be as in the lemma and associated to N ′ and pN ′(v) where
pN ′ : N → N ′ is the projection. Note that an element of an isocrystal is not
contained in any proper sub-isocrystal if and only if the Dieudonné module
generated by the element is a lattice. Let Λ be the lattice generated by v. The
Dieudonné module generated by A′(v) is equal to Λ ∩ N

′′

, and hence also a
lattice. We may therefore apply the induction hypothesis to A′(v) and N

′′

and
obtain some A

′′

generating Ann(A′(v)). Thus Ann(v) is a principal left ideal
generated by A

′′

A′. Multiplying the corresponding expressions for A
′′

and A′,
the lemma follows.

2.3 Reduction to the bi-infinitesimal case

Let X = Xet×Xbi×Xm be the decomposition of X into its étale, bi-infinitesimal,
and multiplicative parts.

Lemma 2.7. We have

MX,red
∼=

{

Mnp
Xet,red

×MXbi,red if Xbi is nontrivial

Mnp
Xet,red

× Z otherwise.

and
Mnp

Xet,red
∼= GLht(Xet)(Qp)/GLht(Xet)(Zp).

Proof. Consider the following morphism ι from the right to the left hand side of
the first isomorphism. In the first case, an S-valued point ((Xet, ρet), (Xbi, ρbi))
is mapped to (Xet×Xbi×Xm, (ρet, ρbi, ρm)) whereXm = X̂et. Furthermore, ρm

is the dual isogeny of c ·ρet and c is the scalar determined by the duality condi-
tion for ρbi. In the second case ((Xet, ρet), l) is mapped to (Xet×Xm, (ρet, ρm))
with Xm = X̂et and ρm = (pl ·ρet)

∨. In both cases ι is a monomorphism, and to
check that it is a closed immersion we verify the valuation criterion for proper-
ness. Let (X, ρ) be a k[[t]]-valued point of MX,red such that the generic point is
in the image of ι. Let πX : X ։ Xet with Xet étale over Spec(k[[t]]) and X inf
initesimal over Xet, as in [M], Lemma II.4.8. Our assumption implies that this
map has a right inverse Xet,k((t)) → Xk((t)) after base change to Spec(k((t))).
By [J1], Corollary 1.2, this morphism lifts to a morphism Xet → X over k[[t]].
Together with the inclusion of the kernel of πX in X we obtain a morphism of
the product of an étale and an infinitesimal p-divisible group over Spec(k[[t]])
to X . Its inverse is constructed similarly by lifting the projection morphism
of Xk((t)) to the kernel of πX from k((t)) to k[[t]]. Hence X can be written as
a product of an étale and an infinitesimal p-divisible group. As X is selfdual,
it is then also the product of an étale, a bi-infinitesimal, and a multiplicative
p-divisible group, thus of the form Xet ×Xbi×Xm with Xm = X̂et. The quasi-
isogeny ρ is compatible with this decompos ition, and the compatibility with
the polarizations shows that the induced quasi-isogenies (ρet, ρbi, ρm) have the
property that ρbi is selfdual up to some scalar c and ρm is the dual isogeny of
c ·ρet. Hence (X, ρ) is in the image of ι. This finishes the proof that ι is proper,
hence a closed immersion.
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To show that ι is an isomorphism it is thus enough to show that each k-valued
point of the left hand side is contained in its image. From the Hodge-Newton
decomposition (see [Kat], Thm. 1.6.1) we obtain for each k-valued point (X, ρ)
a decomposition X = Xet ×Xbi ×Xm and ρ = ρet × ρbi × ρm into the étale, bi-
infinitesimal, and multiplicative parts. The compatibility with the polarization
then yields that up to some scalar pl, the quasi- isogenies ρm and ρet are dual.
From this the first isomorphism follows. The second isomorphism is shown by
an easy calculation (compare [V1], Section 3).

The lemma reduces the questions after the global structure of Mred to the same
questions for MXbi,red. Thus from now on we assume that X is bi-infinitesimal.

3 The dense subscheme S1

In [V1], 4.2 we define an open dense subscheme Snp
X,1 of Mnp

X,red. Let Λ ⊂ N

be the lattice associated to x ∈ Mnp
X,red(k). Then x ∈ Snp

X,1 if and only if
a(Λ) = dimk(Λ/(FΛ + V Λ)) = 1. As F and V are topologically nilpotent
on Λ, this is equivalent to the existence of some v ∈ Λ such that Λ is the
Dieudonné submodule of N generated by v. Note that a(Λ) can also be defined
as dimk(Hom(αp, X)) where X is the p-divisible group associated to Λ.
Let

S1 = Snp
X,1 ∩Mred ⊆ Mred.

Then S1 is open in Mred.

Lemma 3.1. The open subscheme S1 is dense in Mred.

Proof. Recall that we assume X to be bi-infinitesimal. Let (X, ρ) ∈ Mred(k)
and let λ be a corresponding polarization of X. Note that by [M], Lemma
II.4.16 (or by [J2], Lemma 2.4.4) there is an equivalence of categories between
p-divisible groups over an adic, locally noetherian affine formal scheme Spf(A)
and over Spec(A). From [O1], Corollary 3.11 we obtain a deformation (X,λ)
of (X,λ) over Spec(k[[t]]) such that the generic fiber satisfies a = 1. Next
we show that after a base change we may also deform ρ to a quasi-isogeny ρ
between (X,λ) and the constant p-divisible group (X, λX) that is compatible
with the polarizations. From [OZ], Corollary 3.2 we obtain a deformation of ρ
to a quasi-isogeny between X and a constant p-divisible group Y after a base-
change to the perfect hull of k[[t]]. As Y is constant it is quasi-isogenous to the
base change XSpec(k[[t]]perf ) of X. After composing the deformation of ρ with a
quasi-isogeny between Y and XSpec(k[[t]]perf ) we may assume that Y is already

equal to XSpec(k[[t]]perf ). Let x be the point of Spec(k[[t]]perf) over the generic
point of Spec(k[[t]]). Then we may further compose the quasi-isogeny with
a self-quasi-isogeny of XSpec(k[[t]]perf ) such that in x it is compatible with the

polarizations of the two groups in this point. Thus we obtain a k[[t]]perf-valued
point of Mnp

X,red such that the image of x is in Mred. As Mred is closed, this

has to be a k[[t]]perf-valued point of Mred. Modifying the point by a suitable
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elemen t of J , we may assume that the special point is mapped to (X, ρ). In
the generic point, the a-invariant of the p-divisible group X is 1. Thus this
provides the desired deformation of (X, ρ) to a point of S1.

To determine the dimension and the set of irreducible components of Mred

it is thus sufficient to consider S1. We proceed in the same way as for the
moduli spaces of p-divisible groups without polarization. In contrast to the
non-polarized case it turns out to be useful to use two slightly different sys-
tems of coordinates to prove the assertions on the dimension and on the set of
irreducible components of Mred.
Let us briefly recall the main steps for the moduli spaces Mnp

X,red of non-
polarized p-divisible groups. Their sets of irreducible components and their
dimension are determined by studying Snp

X,1. In [V1], 4 it is shown that the con-

nected components of Snp
X,1 are irreducible and that Jnp = {j ∈ GL(N)|j ◦F =

F ◦ j} acts transitively on them. The first step to prove this is to give a de-
scription of Snp

X,1(k). One uses that each such point corresponds to a lattice
in N with a-invariant 1. As Dieudonné modules, these lattices are generated
by a single element and the description of the set of points is given by classi-
fying these elements generating the lattices. The second step consists in the
construction of a family in Mnp

X,red to show that a set of points which seems to

parametrize an irreducible compo nent of Snp
X,1 indeed comes from an irreducible

subscheme. More precisely, a slight reformulation of the results in [V1], Section
4 yields the following proposition.

Proposition 3.2. Let (N,F ) be the isocrystal of a p-divisible group X over
k. Let m = vp(detF ). Let S = Spec(R) ∈ NilpW be a reduced affine scheme
with pR = 0 and let j ∈ Jnp. Let v ∈ NR = N ⊗L W (R)[ 1p ] such that in every

x ∈ S(k), the reduction vx of v in x satisfies that

vx ∈ jΛmin

and

vp(det j) = max{vp(det j′) | j′ ∈ Jnp and vx ∈ j′Λmin}.

Here, Λmin ⊂ N is the lattice of the minimal p-divisible group in Remark 2.4.
Let R̃ = σ−m(R) be the unique reduced extension of R such that σm : R̃ →
R̃ has image R. Let ṽ ∈ NR̃ with σm(ṽ) = v. Then there is a morphism

ϕ : Spec(R̃) → Mnp
X,red such that for every x ∈ Spec(R̃)(k), the image ϕ(x)

corresponds to the Dieudonné module Λx in N generated by vx.
Assume in addition that X is principally polarized and that for every x, the
Dieudonné module Λx corresponds to a point of Mred. Then ϕ factors through
Mred.

Note that the second condition on vx (or more precisely the existence of the
maximum) implies that the Dieudonné submodule of N generated by vx is a
lattice.
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Proof. To prove the first assertion we may assume that j = id. Note that ṽ
satisfies the same conditions as v. The conditions on the ṽx are reformulated in
[V1], Lemma 4.8. The condition given there is exactly the condition needed in
[V1], Section 4.4 to construct a display over S leading to the claimed morphism
ϕ. It maps x to the Dieudonné lattice generated by σm(ṽx) = vx. The second
assertion is trivial as S is reduced and Mred a closed subscheme of Mnp

X,red.

Remark 3.3. We use the same notation as in the proposition. From [V1], 4.4
we also obtain that under the conditions of Proposition 3.2, the elements

v, V v, . . . , V vp(detF )v, Fv, . . . , F dim N−vp(det F )−1v

are a basis of the freeW (R̃)[ 1p ]-moduleNR̃. They are the images of the standard

basis of N under some element of GL(NR̃).
We apply the preceding to the situation of an isocrystal N = N0 and its
dual, N1. Then GL(N0) × Gm is isomorphic to the Siegel Levi subgroup of
GSp(N0 ⊕ N1). Let v ∈ N0 = N be as in Proposition 3.2. Then there are
elements yi ∈ (N1)R̃ which form a basis of (N1)R̃ which is dual to the basis

(x1, . . . , xdim N0
) = (v, V v, . . . , V vp(detF )v, Fv, . . . , F dim N0−vp(det F )−1v)

with respect to 〈·, ·〉. In other words, the yi ∈ (N1)R̃ are such that 〈xi, yj〉 = δij .

4 Geometric points of S1

4.1 N with an even number of supersingular summands

In this subsection we consider the case that N has an even number of super-
singular summands. By (2.2) we have a decomposition N = N0 ⊕N1.
Recall that by a lattice we always mean a Dieudonné lattice. Let Λ ⊂ N be
the lattice corresponding to a k-valued point of Mred. Then Λ∨ = cΛ for some
c ∈ L×. Let Λ0 = p0(Λ) and Λ1 = Λ∩N1. For a subset M of N and δ ∈ {0, 1}
let

(M)∨δ = {x ∈ Nδ | 〈x, x′〉 ∈W for all x′ ∈M}. (4.1)

Then cΛ1 = (Λ0)
∨
1 . Hence Λ0 and Λ1 correspond to dual p-divisible groups,

which implies a(Λ0) = a(Λ1).
The geometric points of S1 correspond to lattices Λ that in addition satisfy
a(Λ) = 1. Especially, a(Λ0) = a(Λ1) = 1. In this subsection we classify a
slightly larger class of lattices. We fix a lattice Λ0 ⊂ N0 with a(Λ0) = 1 and
c ∈ L×. Then we consider all lattices Λ ⊂ N with

p0(Λ) = Λ0 and Λ∨ = cΛ. (4.2)

Note that we have a description of the set of lattices Λ0 ⊂ N0 with a(Λ0) = 1
from [V1], see also Section 2.2.
The considerations above show that Λ ∩ N1 = Λ1 = c−1(Λ0)

∨
1 is determined

by Λ0 and c. Let v0 be an element generating Λ0 as a Dieudonné module. If
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v ∈ Λ with p0(v) = v0, then Λ is generated by v and Λ1. Let A be a generator
of Ann(v0) as in Lemma 2.6. We write v = v0 + v1 for some v1 ∈ N1. Then
Av = Av1 ∈ Λ1.

Remark 4.1. Let Λ0 and c be as above, and let Λ1 = c−1(Λ0)
∨
1 . Let Λ be a

Dieudonné lattice with p0(Λ) = Λ0, Λ ∩N1 ⊇ Λ1 and

Λ∨ ⊇ cΛ. (4.3)

Let vol(·) denote the volume of a lattice, normalized in such a way that the
lattice corresponding to the basepoint (X, id) of Mred has volume 0. The
conditions imply above that vol(Λ∨) ≤ vol(cΛ) ≤ vol(c(Λ0 ⊕ Λ1)) = vol((Λ0 ⊕
Λ1)

∨). Dualizing the inequality for the first and last term, we see that all terms
must be equal. Thus Λ satisfies (4.2) and Λ ∩N1 = Λ1.

The next step in the description of lattices with (4.2) is to reformulate (4.3). To
do so, we fix a generator v0 of Λ0 and describe the set of all v1 ∈ N1 such that
the lattice Λ generated by v = v0 + v1 and Λ1 as a Dieudonné lattice satisfies
(4.3) and Λ∩N1 = Λ1. Generators for Λ as a W -module are given by Λ1, and
all F iv with i ≥ 0 and V iv with i > 0. Let m,n be as in Lemma 2.6 (associated
to the given N0). Note that as N0 contains all simple summands of N with
slope < 1/2 and half of the supersingular summands, m is the same as in (1.1)
and n = h−m ≥ m. By Lemma 2.6, 1. applied to v0 ∈ N0, the F iv with i > n,
and the V iv with i ≥ m can be written as a linear combination of the F iv with
i ≤ n and the V iv with i < m, and a summand in Ann(v0) · v ⊂ Λ ∩N1 = Λ1.
Hence Λ is already generated by Λ1, the F iv with 0 ≤ i ≤ n and the V iv
with 0 < i < m. The inclusion (4.3) is equivalent to 〈x, y〉 ∈ c−1W for all
x, y ∈ Λ. This is equivalent to the same condition for pairs (x, y) where x and
y are among the generators of Λ described above. From the definition of Λ1 we
see that the values on pairs of elements of Λ automatically satisfy this if one of
the elements is in Λ1. By (2.1) it is enough to consider the products of v with
all other generators. Thus (4.3) is equivalent to

〈v, F iv〉 ∈ c−1W

and

〈v, V iv〉 ∈ c−1W (4.4)

for n ≥ i > 0. Furthermore, the equations for V i together with (2.1) imply
those for F i.
If x and y are elements of the same of the summands N0 or N1, then 〈x, y〉 = 0.
Hence the decomposition of v together with (2.1) shows that (4.4) is equivalent
to

〈v0, V
iv1〉 − 〈V iv0, v1〉 = 〈F iv0, v1〉

σ−i

− 〈V iv0, v1〉 ∈ c−1W. (4.5)

For φ ∈ D let

ξv1
(φ) = 〈φv0, v1〉. (4.6)
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Then ξv1
is left-W -linear in φ. Let A be a generator of Ann(v0) as in Lemma

2.6. Then
ξv1

(ψA) = 0 (4.7)

for all ψ ∈ D. Note that an element v1 ∈ N1 is uniquely determined by
〈v1, F

iv0〉 for i ∈ {0, . . . , n − 1} and 〈v1, V
iv0〉 for i ∈ {1, . . . ,m}. We are

looking for the set of v1 satisfying (4.5). In terms of ξv1
, this is

ξv1
(F i)σ−i

− ξv1
(V i) ∈ c−1W. (4.8)

Lemma 4.2. 1. Let M be the set of W -linear functions ξ : D → L with (4.7)
and (4.8) for i ≤ n. Then (4.6) defines a bijection between M and the
set of elements v1 ∈ N1 as above.

2. Let M be the set of functions ξ : D → L/c−1W with the same properties
as in 1. Then (4.6) defines a bijection between M and the set of equiva-
lence classes of elements v1 as above. Here two such elements are called
equivalent if their difference is in c−1(Λ0)

∨
1 .

Proof. Let ξ : D → L be given. An element v1 of N1 is uniquely determined by
the value of 〈·, v1〉 on v0, Fv0, . . . , F

h−m−1v0, V v0, . . . , V
mv0. These h values

may be chosen arbitrarily. For the values of 〈·, v1〉 on the other elements of
Dv0, a complete set of relations is given by 〈ψAv0, v1〉 = 0 for all ψ ∈ D. This
is equivalent to (4.7). Furthermore, (4.8) is equivalent to the condition that
the lattice generated by Λ1 and v0 + v1 satisfies all required duality properties.
To prove 2., we want to lift ξ : D → L/c−1W to a function with values in
L. We lift the values of ξ at φ ∈ {Vm, V m−1, . . . , 1, . . . , Fh−m−1} arbitrarily.
Then the lifts of the remaining values are uniquely determined by (4.7). As
(4.8) was satisfied before, it still holds (as a relation modulo c−1W ) for the
lifted functions. Then 1. implies the existence of v1. Let now w1 be a second
element inducing ξ (mod c−1W ). Then 〈φv0, w1 − v1〉 ∈ c−1W for all φ ∈ D.
Hence w1 − v1 ∈ c−1(Λ0)

∨
1 .

4.2 N with an odd number of supersingular summands

As parts of this case are similar to the previous one, we mainly describe the
differences. By (2.2) we have a decomposition N = N0 ⊕N 1

2
⊕N1.

We want to classify the lattices Λ ⊂ N corresponding to k-valued points of S1.
As before let Λ0 = p0(Λ) and Λ1 = Λ ∩N1. Let c ∈ L× with Λ∨ = cΛ. Then
cΛ1 = (Λ0)

∨
1 . Besides,

cΛ ∩N 1
2

= (p 1
2
(Λ))∨1

2

. (4.9)

Here we use (·)∨1
2

analogously to (4.1).

Again we use the description of the Dieudonné lattices Λ0 ⊂ N0 with a(Λ0) = 1.
We have to classify the Λ corresponding to some fixed Λ0 and c, and begin by
describing and normalizing the possible images under the projection toN0⊕N 1

2
.

Let v ∈ Λ with Dv = Λ and write v = v0 + v 1
2

+ v1 with vi ∈ Ni. Let A with

ṽ(A) = m be a generator of Ann(v0) as in Lemma 2.6.
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Proposition 4.3. 1. There is a j ∈ J such that j(v) is of the form v0 +
ṽ 1

2
+ ṽ1 with ṽi ∈ Ni and ADṽ 1

2
= DAṽ 1

2
.

2. Let j be as in the previous statement. Then p 1
2
(jΛ) is the unique

Dieudonné lattice in N 1
2

with p 1
2
(jΛ)∨ = (cpm)p 1

2
(jΛ). Besides, (jΛ) ∩

N 1
2

= pmp 1
2
(jΛ).

Proof. To prove 1. let ṽ 1
2
∈ N 1

2
be such that v′1

2

= v 1
2
− ṽ 1

2
is in the kernel of

A and ADṽ 1
2

= DAṽ 1
2
.

We first reduce the assertion of 1. to the case where N0 and N1 are simple of
slope 1

2 . Let A 1
2

be a generator of Ann(v′1
2

) as in Lemma 2.6. As A ∈ Ann(v′1
2

),

we can write A = ÃA 1
2

with Ã ∈ D. Then Ã generates Ann(A 1
2
v0). From

the description of annihilators of elements of N0 in Lemma 2.6 we see that we
may write v0 = v′0 + ṽ0 with A 1

2
v′0 = 0 and ṽ0 lying in a proper subisocrystal

Ñ0 of N0. Then v′0 generates a simple subisocrystal N ′
0 of N0 of slope 1

2

and N0 = N ′
0 ⊕ Ñ0. Let N ′

1 be the subisocrystal of N1 which is dual to N ′
0.

Then we want to show that the assertion of the proposition holds for some
j ∈ J ∩End(N ′

0 ⊕N ′
1
2

⊕N ′
1). To simplify the notation, we may assume that N

only consists of these three summa nds.
We construct the inverse of the claimed element j ∈ J . Let j̃ ∈ {g ∈
GL(N0 ⊕ N1) | g ◦ F = F ◦ g} be in the unipotent radical of the parabolic
subgroup stabilizing the subspace N1. We assume that j̃ /∈ J , i. e. that j̃ is
not compatible with the pairing. Let v0 + v1 with v1 ∈ N1 be the image of
v0. Then Ann(v1) = Ann(v0) and f = 〈v0 + v1, F (v0 + v1)〉 6= 0. Let A be
a generator of Ann(v0) as in Lemma 2.6. Then A = aF + a0 + bV for some
a, b ∈W× and a0 ∈ W . We obtain

0 = 〈v0 + v1, A(v0 + v1)〉
σ = aσfσ − bf.

This is a Qp-linear equation of degree p, thus the set of solutions is a one-
dimensional Qp-vector space in L. As A also generates Ann(v′1

2

), the number

〈v′1
2

, F (v′1
2

)〉 is also in this vector space. Hence there is an α ∈ Q×
p wit h

αf = 〈v′1
2

, F (v′1
2

)〉. By multiplying v1 by a suitable factor, we may assume that

α = −1. Note that this does not change Ann(v1). This implies that

〈v0 + v′1
2

+ v1, F (v0 + v′1
2

+ v1)〉 = 0.

Besides, we have Ann(v0 + v′1
2

+ v1) = Ann(v0). The element j−1 we are

constructing will map v0 to v0 + v′1
2

+ v1. Let Ñ0 = D(v0 + v′1
2

+ v1). Then we

can extend j−1 uniquely to a linear map from N0 to Ñ0 which is compatible
with F . On N1, we define j−1 to be the identity. Then one easily checks that
j−1 : N0 ⊕ N1 → Ñ0 ⊕ N1 respects the pairing. It remains to define j−1 on
N 1

2
. Let Ñ 1

2
be the orthogonal complement of Ñ0 ⊕N1. Then Ñ 1

2
⊆ N 1

2
⊕N1
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Let j−1(v′1
2

) = u where u ∈ Ñ 1
2

is such that pN 1
2

(u) = v′1
2

. Then Ann(u) ⊆

Ann(v′1
2

). As u is contained in a simple isocrystal of slope 1
2 , this inclusion has

to be an equality. As 〈N 1
2
⊕N1, N1〉 = 0, we have 〈u, Fu〉 = 〈v′1

2

, Fv′1
2

〉. Hence

we can extend j−1 to an element of J . Then p 1
2
(j(v0+v 1

2
+v1)) = v 1

2
−v′1

2

= ṽ 1
2
.

Thus j satisfies all properties of 1.

It remains to prove 2. We may assume that j = 1. Note that there is exactly
one Dieudonné lattice of each volume in N 1

2
. Equivalently, for each α ∈ L×

there is exactly one Λ ⊂ N 1
2

with Λ∨ = αΛ. (For the rest of the proof all

dual lattices are the dual lattices inside the selfdual isocrystal N 1
2
.) We have

Λ ∩N 1
2

= c−1(p 1
2
(Λ))∨ ⊆ p 1

2
(Λ). Let Λ 1

2
be the lattice with c−1(Λ 1

2
)∨ = Λ 1

2
.

Then

Λ ∩N 1
2
⊆ Λ 1

2
⊆ p 1

2
(Λ) (4.10)

and the lengths of the two inclusions are equal. We have to show that the
length of the inclusions are both equal to m. The lattice p 1

2
(Λ) also contains

A(p 1
2
(Λ)). As ṽ(A) = m, the length of this inclusion is m. Furthermore,

Λ ∩N 1
2

= Ann(Av1)Av = Ann(Av1)Av 1
2
⊆ DAv 1

2
= ADv 1

2
= Ap 1

2
(Λ).

Note that here we only know that the length of the inclusion is ≥ m = ṽ(A1)
where A1 is a generator of Ann(Av1). Thus we obtain a second chain of inclu-
sions

Λ ∩N 1
2
⊆ Ap 1

2
(Λ) ⊆ p 1

2
(Λ).

We compare this to (4.10). To show that the length of the first inclusion of
this chain is not greater than the length of the second inclusion, we have to
show that Ap 1

2
(Λ) ⊆ Λ 1

2
. By definition of Λ 1

2
this is equivalent to Ap 1

2
(Λ) ⊆

c−1(Ap 1
2
(Λ))∨. To prove this last inclusion we use again the duality relation

for Λ. Note that Ap 1
2
(Λ) = DAv 1

2
= p 1

2
(Λ ∩ (N 1

2
⊕N1)). Let x, y ∈ N 1

2
⊕N1.

Then 〈x, y〉 = 〈p 1
2
(x), p 1

2
(y)〉. Thus the duality relation for Λ implies that

Ap 1
2
(Λ) ⊆ c−1(Ap 1

2
(Λ))∨.

For both Theorem 2 and Theorem 3 it is enough to describe a locally closed
subset of S1 whose image under the action of J is all of S1. Thus we may assume
that j = 1 and that v itself already satisfies the property of the proposition.
Especially, p 1

2
(Λ) is then determined by c.

The element v 1
2

may be modified by arbitrary elements in p 1
2
(Λ ∩ (N 1

2
⊕N1))

without changing Λ. Indeed, for each such element there is an element in Λ
whose projection to N0 ⊕ N 1

2
is the given element. Thus for fixed v0, the

projection of Λ to N0 ⊕ N 1
2

is described by the element v 1
2

varying in the
W -module

p 1
2
(Λ)/p 1

2
(Λ ∩ (N 1

2
⊕N1)) = p 1

2
(Λ)/A(p 1

2
(Λ))
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of length m which is independent of Λ. To choose coordinates for v 1
2

we use

that this module is isomorphic to W/p⌊m/2⌋W ⊕W/p⌈m/2⌉W . Under this iso-
morphism, the element v 1

2
is mapped to an element of the form

⌊m/2⌋
∑

i=1

[yi]p
i−1 ⊕

m
∑

i=⌊m/2⌋+1

[yi]p
i−⌊m/2⌋−1. (4.11)

Here we use that k is perfect, and [yi] is the Teichmüller representative of an
element yi of k.
Note that a(Λ) = 1 (or the condition that j = 1) implies that A(v 1

2
) is a gen-

erator of Λ∩N 1
2

and not only an arbitrary element. This is an open condition

on p 1
2
(Λ)/p 1

2
(Λ ∩ (N 1

2
⊕ N1)). More precisely, it excludes a finite number of

hyperplanes (compare [V1], Lemma 4.8).
Let now v 1

2
also be fixed. It remains to determine the set of possible v1 such

that Λ = D(v0 + v 1
2

+ v1) is a lattice with Λ∨ = cΛ. The same arguments as
in the previous case show that v1 can be chosen in an open subset of the set of
v1 with

〈v0, φv1〉 + 〈v1, φv0〉 ≡ −〈v 1
2
, φv 1

2
〉 (mod c−1W ). (4.12)

for all φ ∈ D.

Remark 4.4. Let φ ∈ D with ṽ(φ) = 2m. Then φv 1
2
∈ pmp 1

2
(Λ) ⊂ c−1Λ∨.

Especially, 〈v 1
2
, φv 1

2
〉 is in c−1W . This is later used in the form that ai =

−〈v 1
2
, F iv 1

2
〉 satisfies (6.3).

Analogously to the previous case we use (4.6) to define ξv. Then we also obtain
the analogue of Lemma 4.2.

Lemma 4.5. 1. Let M be the set of W -linear functions ξ : D → L with (4.7)
and (4.12) for i ≤ n. Then (4.6) defines a bijection between M and the
set of elements v1 ∈ N1 as above.

2. Let M be the set of functions ξ : D → L/c−1W with the same properties
as in 1. Then (4.6) defines a bijection between M and the set of equiva-
lence classes of elements v1 as above. Here two such elements are called
equivalent if their difference is in c−1(Λ0)

∨
1 .

5 The set of irreducible components

Lemma 5.1. Let Λ ⊂ N0⊕N1 be a lattice generated by a sublattice Λ1 ⊂ N1 and
an element v with v = v0+v1 for some v0 ∈ N0 and v1 ∈ N1. Let Λ̃ be generated
by Λ1 and v0 + ṽ1 for some ṽ1 ∈ N1. If ξṽ1

(F i)σ−i

− ξṽ1
(V i) = ξv1

(F i)σ−i

−
ξv1

(V i) for every i ∈ {1, . . . , h} then there is a j ∈ J with j(Λ) = Λ̃.

Proof. The assumption implies that 〈v0 + ṽ1 − v1, ϕ(v0 + ṽ1 − v1)〉 = 0 for
ϕ ∈ {1, V, . . . , V h} (see the reformulation of (4.4) in Section 4.1). By (2.1), the
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same holds for ϕ ∈ {F, . . . , Fh}. As dimN = 2h, the ϕ(v0 + ṽ1 − v1) for these
elements ϕ ∈ D generate N ′ = (D(v0 + ṽ1 − v1)) [1/p] ⊆ N as an L-vector
space. Especially,

〈v0 + ṽ1 − v1, ϕ(v0 + ṽ1 − v1)〉 = 0 (5.1)

for all ϕ ∈ D. Let A be a generator of Ann(v0) as in Lemma 2.6. Then (5.1) for
ϕ = ϕ′A implies that 〈v0, ϕ

′A(ṽ1−v1)〉 = 0 for all ϕ′ ∈ D. Thus A(ṽ1−v1) = 0.
Let j ∈ GL(N) be defined by v0 7→ v0 + ṽ1−v1, j|N1

= id, and j ◦F = F ◦j. To
check that this is well-defined we have to verify that Aj(v0) = j(Av0) = 0. But
A(j(v0)) = A(v0+ṽ1−v1) = 0. By definition j commutes with F . Furthermore,
(5.1) implies that j ∈ G(L). Hence j ∈ J .

For v1 as above and i ∈ {1, . . . , h} let

ψi(v1) = ξv1
(V i) − ξv1

(F i)σ−i

. (5.2)

Then the lemma yields the following corollary.

Corollary 5.2. Let Λ and Λ̃ be two extensions of Λ0 and Λ1 as described
in the previous section (or, in the case of an odd number of supersingular
summands, two extensions of Λ0 and Λ1 associated to the same v 1

2
) and let

v = v0 + v1 and ṽ = v0 + ṽ1 (resp. v = v0 + v 1
2

+ v1 and ṽ = v0 + v 1
2

+ ṽ1) be

the generators. Then ψi(v1) = ψi(ṽ1) for all i implies that Λ and Λ̃ are in one
J-orbit.

Let v0 ∈ N0 such that Dv0 is a lattice in N0. Then the next proposition implies
that for each (c1, . . . , ch) ∈ Lh there is a v1 ∈ N1 with ψi(v1) = ci for all i.

We fix an irreducible component of Snp
X0,1. Then [V1], 4 describes a mor-

phism from a complement of hyperplanes in an affine space to this irre-
ducible component that is a bijection on k-valued points. Let Spec(R0) be
this open subscheme of the affine space. One first defines a suitable element
v0,R0

∈ N0 ⊗W W (R0). The morphism is then constructed in such a way that
each k-valued point x of Spec(R0) is mapped to the lattice in N0 generated by
the reduction of σm(v0,R0

) at x.

Proposition 5.3. Let R be a reduced k-algebra containing σm(R0). Let
c1, . . . , ch ∈ W (R)[1/p]. Then there is a morphism R → R′ where R′ is a
limit of étale extensions of R and a v1 ∈ N1,R′ with ψi(v1) = ci for all i. Here,
the ψi are defined with respect to the universal element σm(v0,R0

) ∈ (N0)σm(R0).

For the proof we need the following lemma to simplify the occurring system of
equations.

Lemma 5.4. Let R be an Fp-algebra and let m,n ∈ N with m ≤ n. For
0 ≤ i ≤ m and 0 ≤ j ≤ n let Pij(x) ∈ (W (R)[ 1p ])[x] be a linear combination of
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the σl(x) = xpl

with l ≥ 0. Assume that the coefficient of x is zero for j < i
and in W (R)× for i = j. Consider the system of equations

n
∑

j=0

Pij(xj) = ai

with ai ∈ W (R)[ 1p ] and i = 0, . . . ,m. It is equivalent to a system of equations

of the form
∑

j Qij(xj) = bi with bi ∈ W (R)[ 1p ] such that the Qij satisfy the
same conditions as the Pij and in addition Qij = 0 if j < i.

Proof. We use a modification of the Gauss algorithm to show by induction on λ
that the system is equivalent to a system of relations of the form

∑

j Q
λ
ij(xj) =

bλi with bλi ∈ L such that the Qλ
ij satisfy the same conditions as the Pij and

in addition Qλ
ij = 0 if j < i and j ≤ λ. For the induction step we have to

carry out the following set of modifications for j = λ + 1 and each i > λ + 1.
If Qλ

ij vanishes, we do not make any modification. We now assume Qλ
ij to

be nontrivial. Let σli(x) and σlj (x) be the highest powers of x occurring in
Qλ

ii and Qλ
ij . If li < lj , we modify the jth equation by a suitable multiple of

σlj−li applied to the ith equation to lower lj . Else we modify the ith equation
by a suitable multiple of σli−lj applied to the jth equation to lower li. We
proceed in this way as long as none of the two polynomials Qλ

ii and Qλ
ij becomes

trivial. Note that the defining properties of the Pij are preserved by these
modifications. As (by induction) Qλ

ij does not have a linear term, the linear

term of Qλ
ii remains unchanged. Thus this process of modifications ends after

a finite number of steps with equations
∑

j Q
λ+1
ij (xj) = bλ+1

i which satisfy

Qλ+1
ij = 0 for j < i and j ≤ λ+ 1. For λ+ 1 = n, this is what we wanted.

Proof of Proposition 5.3. An element v1 ∈ N1,R′ is determined by the values of
ξv1

at any h consecutive elements of . . . , F 2, F, 1, V, V 2, . . . . The other values
of ξ are then determined by ξv1

(φA) = 0 for all φ ∈ D. Here A ∈ Ann(v0) is
as in Lemma 2.6. Indeed, each of these equations for φ = F i or V i for some i
gives a linear equation with coefficients in L between the values of ξv1

at h+ 1
consecutive elements of . . . , F 2, F, 1, V, V 2, . . . . For the proof of the proposition
we take the values ξv1

(F i) for i ∈ {1, . . . , h} as values determining v1. Then
all other values are linear combinations of these ξv1

(F i).
The definition of ψv1

in (5.2) yields

ξv1
(V i)σi

= ξv1
(F i) + ψi(v1)

σi

for i ∈ {1, . . . , h}. On the other hand, ξv1
(V i)σi

is a linear combination of the

ξv1
(F j)σi

for j ∈ {1, . . . , h}. From this we obtain a system of h equations for
the ξv1

(F i) with 1 ≤ i ≤ h of the same form as in Lemma 5.4. The resulting
equations

∑

j Qij(ξv1
(F j)) = bi may be reformulated as Qii(ξv1

(F i)) = ci
where ci also contains the summands corresponding to powers of F larger than
i. We can then consider these equations by decreasing induction on i. For
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each i, the polynomial Qii(x) is a linear combination of powers of x of the

form xσl

, and its linear term does not vanish. Thus there is a limit R′ of étale
extensions of R and ξv1

(F i) ∈ W (R′) ⊗ Q with vp(ξv1
(F i)) ≥ vp(ci) satisfying

these equations. Note that R′ is in general an infinite extension of R, because
the equations are between elements of W (R) ⊗ Q and not over R itself. Given
ξv1

, Remark 3.3 shows that there is an element v1 ∈ (N1)R′ which induces ξv1
.

Indeed, choose v1 to be a suitable linear combination of the dual basis defined
there.

5.1 Proof of Theorem 2

We begin by constructing an irreducible subscheme of the subscheme of S1

where the height of the universal quasi-isogeny is 0. The k-valued points of
this subscheme correspond to lattices Λ with a(Λ) = 1 and Λ∨ = Λ. There
is a d ∈ N such that for each (c1, . . . , ch) ∈ (pdW )h, the v1 constructed in
Proposition 5.3 lies in the lattice Λ1 ⊂ N1. Let R0 as above. In the case
of an even number of supersingular summands let R1 = σm(R0). Otherwise
let σm(v0,R0

) + v 1
2
∈ Nσm(R0)[y1,...,ym] where v0,R0

is as above and where v 1
2
∈

(N 1
2
)σm(R0)[y1,...,ym] is identified with the element in (4.11). The open condition

on Spec(σm(R0)[y1, . . . , ym]) that Av 1
2

is a generator and not only an element

of p 1
2
(Λ∩N 1

2
⊕N1) is equivalent to DAv 1

2
= ADv 1

2
. This condition is satisfied

by all y1 that do not lie in some finite-dimensional Qp-subvector space of k
determined by the kernel of A (compare the proof of Proposition 4.3 1.). In
this case let R1 be the extension of σm(R0) corresponding to this affine open
subscheme. Let in both cases

R = R1[xi,j | i ∈ {1, . . . , h}, j ∈ {0, . . . , d− 1}].

For i ∈ {1, . . . , h} let ci =
∑d−1

j=0 [xi,j ]p
j ∈ W (R). Let Spec(R′) and v1 ∈ NR′

be as in Proposition 5.3. Let v = σm(v0,R0
)+v1, resp. v = σm(v0,R0

)+v 1
2
+v1.

Let S = Spec(R) be an irreducible component of the affine open subscheme of
Spec(R′) consisting of the points x with v1,x ∈ (Dvx)∨1 \(F (Dvx)∨1 +V (Dvx)∨1 ).
We denote the image of v in NR also by v. A s we already know that S1 is
dense, this open subset is nonempty. Let R̃ be the inverse image of R under
σh as in Proposition 3.2. Note that vp(detF ) = h, whereas vp(detF |N0

) = m.

Let S̃ = Spec(R̃). The next step is to define an associated morphism ϕ : S̃ →
Mred such that in each k-valued point x of S̃, the image in Mred(k) corresponds
to the lattice generated by the reduction vx of v at x. By Proposition 3.2 it
is enough to show that there is a j ∈ J such that for each x ∈ S̃(k), we
have vx ∈ jΛmin and vp(det j) = max{vp(det j′) | vx ∈ j′Λmin}. Let η be the

generic point of S̃ and let jη ∈ J be such a maximizing element for η. Then
the same holds for each k-valued point in an open and thus dense subscheme
of S̃. As the property vx ∈ jηΛmin is closed, it is true for each x ∈ S̃(k).
In [V1], 4 it is shown that for lattices Λ ⊂ N with a(Λ) = 1, the difference
vol(Λ)−max{vp(det j′) | Λ ⊂ eqj′Λmin} is a constant only depending on N . In
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our case, the duality condition shows that vol(Dvx) is constant on S̃ and only
depending on c and N . Thus the maximum is also constant. Hence in every
k-valued point, vp(det jη) is equal to this maximum, which is what we wanted

for the existence of ϕ : S̃ → Mred. We obtain an irreducible subscheme ϕ(S̃)
of S1 ⊆ Mred.

To show that J acts transitively on the set of irreducible components we have
to show that for each x ∈ S1(k) there is an element j ∈ J such that jx lies
in the image of ϕ. Let Λ ⊂ N be the lattice corresponding to x. The first
step is to show that there is a j ∈ J such that j(Λ) is selfdual (and not only
up to a scalar c(Λ)). It is enough to show that there is a j ∈ J such that
vp(c(Λ)) = vp(c(jΛ)) + 1. Such an element is given by taking the identity on

N1, multiplication by p on N0, and the map e
1
2

i 7→ e
1
2

i+1 on N 1
2
. Here we use

the notation of Remark 2.4 for the basis of N . Next we want to apply an
element of J modifying Λ0. We have a(p0(Λ)) = a(Λ ∩ N1) = 1. From the
classification of lattices with a = 1 in [V1], 4 we obtain that Jnp

X0
(which may

be considered as a subgroup of J by mapping j ∈ Jnp
X0

to the map consisting of
j and its dual on N1) is acting transitively on the set of irreducible components
of Mnp

X0,red. Thus by possibly multiplying with such an element we assume that
Λ0 lies in the fixed irreducible component chosen for Proposition 5.3. Recall
from Section 4.2 that in the case of an odd number of supersingular summands,
there is a j ∈ J mapping the element v 1

2
to the irreducible family described

there. It remains to study the possible extensions of the lattices Λ0 and Λ1

(or in the second case of the sublattice of N0 ⊕N 1
2

determined by Λ0 and v 1
2

and of Λ1). They are given by the associated elements v1. Fix a generating
element σm(v0) of Λ0 (in the second case also an element v 1

2
) and let v1 be an

element associated to the e xtension Λ with a(Λ) = 1. Then Lemma 5.1 and
the construction of S show that there is an element of J mapping Λ to a lattice
associated to a point of S inducing the same ψi as Λ. Thus the image of ϕ(S̃)
under J is S1, which proves the theorem.

6 Dimension

We use the same notation as before, namely Λ is the lattice corresponding to
a point of S1, generated by an element v = v0 + v 1

2
+ v1 with vi ∈ Ni. Again,

A is a generator of Ann(v0) and Λ0 = p0(Λ) and Λ1 = Λ ∩N1.
To determine the dimension of S1 and of Mred we have to classify the elements
v1 of Section 4 up to elements in c−1Λ1 and not up to the (locally finite) action
of J which we used in Section 5. To do so, it is more useful to use the values
of ξv1

as coordinates instead of the values of ψv1
.

We investigate the set of possible values ξ(φ) ∈ L/c−1W for φ ∈ D using
decreasing induction on ṽ(φ) ≥ 0. Here, ṽ is as in (2.6). Recall from Lemma 4.2
2. that the use of functions ξ with values in L/c−1W instead of L corresponds
to considering v1 as an element of N1/Λ1. But as v1 and v1 + δ with δ ∈ Λ1

lead to the same lattice Λ, this is sufficient to determine the set of possible
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extensions of Λ0 and Λ1.
Instead of equations (4.7) and (4.8) we consider the following slightly more
general problem to treat at the same time the case of an odd number of super-
singular summands. There, (4.8) is replaced by (4.12). We want to consider
W -linear functions ξ : D → L/c−1W with

ξ(F i) − ξ(V i)σi

≡ ai (mod c−1W ) (6.1)

ξ(ψA) ≡ 0 (mod c−1W ) (6.2)

for all ψ ∈ D. Here ai ∈ L are given elements satisfying

aip
ji ∈ c−1W if 2ji + i ≥ 2m. (6.3)

Let Di = {φ ∈ D | ṽ(φ) ≥ i}. We call a W -linear function

ξi0 : Di0 → L/(c−1W )

satisfying (6.1) and (6.2) a partial solution of level i0. Then the induction
step consists in determining the possible partial solutions ξi0 of level i0 leading
to a fixed solution of level i0 + 1. Note that the assumption on ai implies
that there exists the trivial partial solution ξ2m ≡ 0 of level 2m inducing
partial solutions of all higher levels. Recall that we assumed F and V to be
elementwise topologically nilpotent on N . Thus for each function ξ with (6.1)
and (6.2) there is a level i such that ξ induces the trivial partial solution of
level i.
Assume that we already know the ξ(φ) for ṽ(φ) > i0 and want to determine
its possible values for ṽ(φ) = i0. Then we know in particular ξ(pφ) = pξ(φ) ∈
L/c−1W , or ξ(φ) ∈ L/p−1c−1W . We want to determine the possible liftings
modulo c−1W .
A basis of the k-vector space Di0/Di0+1 is given by the i0 + 1 monomials

F i0 , V F i0−1 = pF i0−2, . . . , V i0−1F = pV i0−2, V i0 .

Equation (6.1) leads to ⌊i0/2⌋ relations between the values of ξ on these mono-
mials. Recall that ṽ(A) = m. Thus if ṽ(φ) = i0−m for some φ ∈ D, (6.2) leads
to a relation between the value of ξ on LT(φA) ∈ Di0 and values on Di0+1. As
the ξ are linear, it is sufficient to consider the max{0, i0 −m+ 1} relations for
φ ∈ {F i0−m, pF i0−m−2, . . . , V i0−m} ∩ Di0−m. This count of relations leads to
the notation

r(i0) = ⌊i0/2⌋+ max{0, i0 −m+ 1}.

Then i0 + 1 ≤ r(i0) is equivalent to i0 ≥ 2m.
The following proposition is the main tool to prove Theorem 3 on the dimension
of the moduli spaces.

Proposition 6.1. 1. Let i0 ≥ 2m. Then there is a partial solution ξi0 of
(6.1) and (6.2) of level i0. If we fix ξi0 and an l ∈ N with l ≥ i0, there are
only finitely many other partial solutions ξ̃i0 of level i0 such that ξi0 − ξ̃i0

induces the trivial partial solution of level l of the associated homogenous
system of equations.

Documenta Mathematica 13 (2008) 825–852



Moduli Spaces of Polarized p-Divisible Groups 847

2. Let i0 + 1 > r(i0) and let ξi0+1 be a partial solution of (6.1) and (6.2)
of level i0 + 1. Then to obtain a partial solution ξi0 of level i0 inducing
ξi0+1, one may choose the lifts to L/c−1W of the values of ξi0 at the first
i0 +1− r(i0) monomials pαV β with 2α+β = i0 and β ≤ 2(i0− r(i0))+1
arbitrarily. Each of the remaining values lies in some finite nonempty set
depending polynomially on the values on the previous monomials.

Proof. Note that the existence statement in the first assertion is satisfied as
the condition on the ai yields that there is the trivial solution of level 2m. We
show the two assertions simultaneously. Let ξi0+1 be a fixed partial solution
of level i0 + 1 for any i0. It is enough to show that for a lift ξi0 , the values
of the first max{0, i0 + 1 − r(i0)} variables can be chosen arbitrarily, and that
the remaining values then lie in some finite set depending polynomially on the
values on the previous variables. If i0 + 1 > r(i0), we have to show that this
finite set is nonempty. We investigate the relations (6.1) and (6.2) more closely.
The first set of relations shows that ξi0(paF b) with 2a+ b = i0 is determined
by ξi0(paV b). Thus it is sufficient to consider this latter set of values. Be-
sides, we have to consider (6.2) for ψ ∈ {V i0−m, pV i0−m−2, . . . , F i0−m}. For
B ∈ D let LT(B) as in Lemma 2.6. Then the equations for the values of
ξi0 relate ξi0(LT(ψA)) to something which is known by the induction hypoth-
esis. Let us recall the description of LT(A) from Lemma 2.6 3. Let h′ be
the number of supersingular summands of N0. Let j ≥ 0 with i0 −m− j ≥ 0.
Then LT(V i0−m−jF jA) is a linear combination of V i0−jF j , . . . , V i0−j−h′

F j+h′

whose coefficients are Teichmüller representatives of elements of k. Further-
more, the coefficients of ξi0(V i0−jF j) and ξi0 (V i0−j−h′

F j+h′

) are units in W .
Using (6.1) we may replace values of ξi0 at monomials in F by σ-powers of the
values of the corresponding monomials in V . We thus obtain a relation between
a polynomial in the remaining ⌈(i0+1)/2⌉ values of ξi0 and an expression which
is known by induction. For 2j ≤ i0, the first summand ξi0 (V i0−jF j) remains
the variable associated to the highest power of V which occurs linearly in this
polynomial. In the following we ignore all equations for 2j > i0. They only
occur for i0 > 2m, a case where we only want to prove the finiteness of the set
of solutions. The system of equations with 2j ≤ i0 is of the form considered
in Lemma 5.4. The proof of this Lemma for coefficients in L/c−1W is the
same as for coefficients in L. Thus we obtain that the lifts of the values at the
i0 +1− r(i0) variables associated to the largest values of j can be chosen freely
and the other ones have to satisfy some relation of the form Qii(x) ≡ bi for
some given bi. As the Qii have a linear term they are nontrivial. This implies
that the set of solutions of these equations is nonempty and finite and dep ends
polynomially on the previous values.

6.1 Proof of Theorem 3

By Lemma 3.1 it is enough to show that S1 is equidimensional of the claimed
dimension. From [V1], 4 we obtain that the connected components of Snp

X,1

are irreducible. The discrete invariant with values in Jnp/(Jnp ∩ Stab(Λmin))
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distinguishing the components is given by Λ 7→ jΛ with Λ ⊆ jΛΛmin and

vp(det jΛ) = max{vp(det j) | j ∈ Jnp,Λ ⊆ jΛmin}.

Especially, jΛ is constant on each connected component of S1 ⊆ Snp
X,1. Besides,

p0(jΛΛmin) determines the connected component of p0(Λ) = Λ0 inside SX0,1.
Thus we may fix an irreducible component of SX0,1 and determine the dimen-
sion of the union of connected components of S1 such that Λ0 is in this fixed
component. Let R0 and R1, v0 and v 1

2
be as in the proof of Theorem 2. Again

we use the functions ξ defined with respect to σm(v0) instead of v0. Fix an
arbitrary partial solution ξ2m of (6.1) and (6.2) of level 2m. Let

R2 = R1[xiβ | i ≥ 0, 1 ≤ β ≤ i+ 1 − r(i)].

We use decreasing induction on i to lift ξ2m to a partial solution of level i over
an étale extension Ri

2 of R2. Let R2m
2 = R2. Assume that a lift ξi+1 is given.

Then Proposition 6.1 shows that the values at i + 1 − r(i) monomials with
ṽ = i may be lifted arbitrarily to a value of ξi. If pαV β with 2α + β = i and
β ≤ i+ 1 − r(i) is such a monomial we write (using the induction hypothesis)
ξi+1(pα+1V β) =

∑

i<vp(c−1)[ai]p
i with ai ∈ Ri+1

2 . Then we choose

ξi(pαV β) =
∑

i<vp(c−1)

[ai]p
i−1 + [xiβ ]pvp(c−1)−1.

Let Ri
2 be the extension of Ri+1

2 given by adjoining further variables xiβ for
larger β parametrizing the other values of the lift of ξi+1 to ξi and with relations
as in Proposition 6.1, 2. and its proof. More precisely, Ri

2 is obtained fromRi+1
2

by a finite number of extensions given by equations of the form Qjj(x) ≡ bj
(mod c−1W ) where Qjj(x) is a polynomial that is a finite linear combination

of the monomials xpl

with l ≥ 0 such that the coefficient of x is in W (Ri+1
2 )×.

This implies that Ri
2 is a finite étale extension of Ri+1

2 . Let R3 = R0
2. Let

v1,R3
∈ N1,R3

be such that ξv1,R3
= ξ0. Its existence follows again from the

existence of the dual basis in Remark 3.3. Let v = σm(v0,R0
) + v1,R3

, or
v = σm(v0,R0

) + v 1
2

+ v1,R3
. As in the proof of Theorem 2 let S = §pec(R)

be an irreducible component of the affine open subscheme of Spec(R3) over
which Dv contains (Dv)∨1 . As we want to compute the dimension of S1, we
only have to consider these subschemes. Let R̃ = σ−m(R) as in Proposition
3.2. The same argument as in the proof of Theorem 2 shows that there is
a morphism ϕ : Spec(R̃) → Mred mapping x ∈ Spec(R̃)(k) to the lattice
generated by vx. The finiteness statements in Proposition 6.1 imply that for
each given y ∈ S1 (and thus given ξ) there is an open neighborhood in S1

which only contains points of ϕ(Spec(R̃)) for a finite number of choices of an
irreducible component of SX0,1 and a corresponding component S. Besides,
the construction of R3 together with the description of the k-valued points of
S1 shows that for each y ∈ S1(k) there is exactly one irreducible component
of SX0,1, one corresponding component S, and one point x ∈ Spec(R̃)(k) such
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that ϕ(x) = y. Thus dimMred = dimS1 is the maximum of dimSpec(R̃) for
all irreducible components S. It remains to show that this is equal to the right
hand side of (1.2). Note that Ri is equidimensional for i = 0, 1, 2, 3. From
the construction of S we see that in case of an even number of supersingular
summands,

dim Spec(R̃) = dimS = dimR3 = dimR2

= dimMnp
X0,red +

∑

i≥0

max{0, i+ 1 − r(i)}. (6.4)

In the other case,

dimSpec(R̃) = dimS = dimR3 = dimR2

= dimMnp
X0,red +

∑

i≥0

max{0, i+ 1 − r(i)} +m. (6.5)

The last summand corresponds to the choice of v 1
2
.

From the decomposition of N into l simple summands N j we obtain a decom-
position N0 =

⊕l0
j=1N

j with l0 = ⌊l/2⌋. Let again λj = mj/(mj + nj) be the

slope of N j . Recall from [V1], Theorem B that

dimMnp
X0,red =

l0
∑

j=1

(mj − 1)(nj − 1)

2
+

∑

{j,j′|j<j′≤l0}

mjnj′ .

We denote the right hand side of (1.2) by D. Let us first consider the case
of an even number of supersingular summands. Then by the symmetry of the
Newton polygon we obtain

D − dimMnp
X0,red =

1

2

∑

j<j′≤l

mjnj′ +
m

2
−

∑

j<j′≤l0

mjnj′ .

Again by the symmetry of the Newton polygon this is equal to

=

l0
∑

j=1

l
∑

j′=l0+1

mjnj′

2
+
m

2

=

l0
∑

j,j′=1

mjmj′

2
+
m

2

=
m(m+ 1)

2
.

In the other case, the same calculation shows that

D − dimMnp
X0,red =

m(m+ 1)

2
+ 2

l0
∑

j=1

mjnl0+1

2

=
m(m+ 1)

2
+m.
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In the last step we used that N l0+1 is supersingular, hence nl0+1 = 1.
On the other hand (6.4) implies that in the case of an even number of super-
singular summands,

dimMred − dimMnp
X0,red =

∑

i≥0

max{0, i+ 1 − r(i)}

=
m−1
∑

i=0

(⌊

i

2

⌋

+ 1

)

+
2m−1
∑

i=m

(⌊

i

2

⌋

− i+m

)

= m+
2m−1
∑

i=0

⌊

i

2

⌋

−
m−1
∑

i=0

i

=
m(m+ 1)

2
.

The same calculation with (6.5) shows that for an odd number of supersingular
summands

dimMred − dimMnp
X0,red =

m(m+ 1)

2
+m.

Together with the calculation of D−dimMnp
X0,red, this implies Theorem 3.

7 Connected components

In this section we determine the set of connected components of Mred. The
reduction to the bi-infinitesimal case in Section 2.3 shows that Theorem 1
follows from the next theorem.

Theorem 7.1. Let X be bi-infinitesimal and non-trivial. Then

κ : Mred(k) → Z

Λ 7→ vp(c(Λ)),

where Λ∨ = c(Λ) · Λ, induces a bijection

π0(Mred) ∼= Z.

Proof. From Theorem 2 we obtain a J-equivariant surjection π : J ։

π0(Mred). Besides, the map κ induces a surjection π0(Mred) → Z. We choose
the base point of M to be a minimal p-divisible group. Let Λmin be the cor-
responding lattice in N . An element jΛmin with j ∈ J is in the kernel of κ if
and only if (jΛmin)

∨ = jΛmin. This is equivalent to jΛmin = j′Λmin for some
j′ ∈ J ∩ Sp2h(L). Thus we have to show that J ∩ Sp2h(L) is mapped to a
single connected component of Mred. Our choice of the base point implies that
Stab(Λmin) = K. Thus the surjection π maps J ∩K to the component of the
identity. Note that J ∩ Sp2h(L) = Jder(Qp) where Jder is the derived group of
J . Hence the elements of (J ∩ Sp2h(L))/(J ∩K) correspond to vertices in the
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building of Jder. The building of Jder is connected. To show that all vertices
correspond to points in one connected component of Mred, it is thus enough to
show that if Λ0,Λ1 are the lattices corresponding to two such vertices such that
Λ0 ∩ Λ1 = Λ is of colength 1 in Λ0 and Λ1, then the two lattices correspond
to points in the same connected component of Mred. As a W -module Λ0 is
generated by Λ and v0 for some v0 ∈ N . As the slopes of F are in (0, 1) we have
Fv0, V v0 ∈ Λ. Similarly Λ1 is generated by Λ and some v1 with Fv1, V v1 ∈ Λ.
For a ∈ A1(k) let Λa = 〈Λ, v0+a(v1−v0)〉. As Λ0 and Λ1 are selfdual one easily
sees that Λa is selfdual for each a. By [V1], Lemma 3.4 there is a morphism
A1 → Mnp

red(X) mapping each point a as above to the point of Mnp
red(X) corre-

sponding to Λa. As all Λa are selfdual, this induces a corresponding morphism
f : A1 → Mred. Hence f(0) and f(1), the points corresponding to Λ0 and Λ1,
are in the same connected component of Mred.
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