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Abstract. We investigate the values of several types of Dirichlet series

D(s) for certain integer values of s, and give explicit formulas for the value

D(s) in many cases. The easiest types of D are Dirichlet L-functions and

their variations; a somewhat more complex case involves elliptic functions.

There is one new type that includes
∑∞

n=1(n
2+1)−s for which such values

have not been studied previously.
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Introduction

By a Dirichlet character modulo a positive integer d we mean as usual a

C-valued function χ on Z such that χ(x) = 0 if x is not prime to d, and

χ induces a character on (Z/dZ)×. In this paper we always assume that χ is

primitive and nontrivial, and so d > 1. For such a χ we put

(0.1) L(s, χ) =

∞∑

n=1

χ(n)n−s.

It is well known that if k is a positive integer such that χ(−1) = (−1)k, then

L(k, χ) is πk times an algebraic number, or equivalently, L(1 − k, χ) is an

algebraic number. In fact, there is a well-known formula, first proved by Hecke

in [3]:

(0.2) kd1−kL(1 − k, χ) = −

d−1∑

a=1

χ(a)Bk(a/d),

where Bk(t) is the Bernoulli polynomial of degree k. Actually Hecke gave the

result in terms of L(k, χ), but here we state it in the above form. Hecke’s proof

is based on a classical formula

(0.3) Bk(t) = −k!(2πi)−k
∑

06=h∈Z

h−ke(ht) (0 < k ∈ Z, 0 < t < 1).
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There is also a well-known proof of (0.2), which is essentially the functional

equation of L(s, χ) combined with a proof of (0.3). We will not discuss it in

the present paper, as it is not particularly inspiring.

In [9] we gave many formulas for L(1−k, χ) different from (0.2). The primary

purpose of the present paper is to give elementary proofs for some of them, as

well as (0.2), and discuss similar values of a few more types of Dirichlet series.

The point of our new proofs can be condensed to the following statement: We

find infinite sum expressions for L(s, χ), which are valid for all s ∈ C and so

can be evaluated at s = 1− k, whereas the old proof of Hecke and our proofs in

[9] employ calculations at s = k and involve the Gauss sum of χ.

To make our exposition smooth we put

(0.4) e(z) = exp(2πiz) (z ∈ C),

(0.5) H =
{
z ∈ C

∣∣ Im(z) > 0
}
.

The three additional types of Dirichlet series we consider naturally involve a

complex variable s, and are defined as follows:

(0.6) Dν(s; a, p) =
∑

−a6=n∈Z

(n + a)ν |n + a|−ν−se
(
p(n + a)

)
,

where a ∈ R, p ∈ R, and ν = 0 or 1,

(0.7) Lk(s, z) =
∑

m∈Z

e(mr)(z +m)−k|z + m|−2s (k ∈ Z, r ∈ Q, z ∈ H),

(0.8) ϕν(u, s; L) =
∑

α∈L

(u + α)−ν |u + α|ν−2s,

where L is a lattice in C, 0 ≤ ν ∈ Z, and u ∈ C, /∈ L. We should also note

(0.9) E(z, s) = Im(z)s
∑

(m, n)

(mz +n)−k|mz +n|−2s (0 ≤ k ∈ Z, z ∈ H),

where (m, n) runs over the nonzero elements of Z2. The value E(z, µ) for an

integer µ such that 1−k ≤ µ ≤ 0 was already discussed in [9], and so it is not

the main object of study in this paper, but we mention it because (0.8) is a nat-

ural analogue of (0.9). We will determine in Section 3 the value ϕν(u, κ/2; L)

for an integer κ such that 2 − ν ≤ κ ≤ ν, which may be called a nearly holo-

morphic elliptic function. Now (0.6) is closely connected with L(s, χ). In [9,

Theorem 4.2] we showed that Dν(k; a, p) for 0 < k ∈ Z is elementary factors

times the value of a generalized Euler polynomial Ec,k−1(t) at t = p. In Sec-

tion 2 we will reformulate this in terms of Dν(1 − k; a, p). Finally, the nature

of the series of (0.7) is quite different from the other types. We will show in

Section 4 that ikLk(β, z) is a Q-rational expression in π, e(z/N), and Im(z),

if β ∈ Z and −k < β ≤ 0, where N is the smallest positive integer such that

Nr ∈ Z. Similar results will also be given under other conditions on β. In the

final section we will make some comments in the case where the base field is

an algebraic number field.
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1. L(1 − k, χ)

1.1. We start with an elementary proof of (0.2). Strange as it may sound,

the main idea is the binomial theorem. We first note

(1.1) Bn(t) =
n∑

ν=0

(
n
ν

)
Bνtn−ν (0 ≤ n ∈ Z),

(1.2a) B0 = 1, ζ(0) = −1/2 = B1,

(1.2b) nζ(1 − n) = −Bn (1 < n ∈ Z),

where Bn is the nth Bernoulli number. Formulas (1.1) and (1.2a) are well-

known; (1.2b) is usually given only for even n, but actually true also for odd

n, since ζ(−2m) = 0 = B2m+1 for 0 < m ∈ Z.

To prove (0.2), we first make a trivial calculation:

L(s, χ) −

d−1∑

a=1

χ(a)a−s =

∞∑

m=1

d−1∑

a=1

χ(dm + a)(dm + a)−s

=

∞∑

m=1

d−1∑

a=1

χ(a)(dm)−s

(
1 +

a

dm

)−s

.

Now we apply the binomial theorem to (1 + X)−s. Thus the last double sum

equals

(1.3)

∞∑

m=1

d−1∑

a=1

χ(a)(dm)−s
∞∑

r=0

(
−s
r

) (
a

dm

)r

=

∞∑

r=0

(
−s
r

) ∞∑

m=1

m−s−rd−s
d−1∑

a=1

χ(a)(a/d)r,

where (
τ
r

)
=

τ(τ − 1) . . . (τ − r + 1)

r!
,

which is of course understood to be 1 if r = 0. So far our calculation is formal,

but can be justified at least for Re(s) > 1. Indeed, put Re(s) = σ and |s| = α.

Then

(1.4)

∣∣∣∣
(
−s
r

)∣∣∣∣ ≤
α(α + 1) . . . (α + r − 1)

r!
= (−1)r

(
−α
r

)
.

Therefore the triple sum obtained from (1.3) by taking the absolute value of

each term is majorized by
d−1∑

a=1

∞∑

r=0

∞∑

m=1

m−σ−rd−σ

(
−α
r

) (
−a

d

)r

≤ ζ(σ)d−σ

d−1∑

a=1

∞∑

r=0

(
−α
r

) (
−a

d

)r

= ζ(σ)d−σ
d−1∑

a=1

(
1 −

a

d

)−α
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if σ > 1. Thus, for Re(s) > 1, (1.3) can be justified, and so

(1.5) L(s, χ) −

d−1∑

a=1

χ(a)a−s =

∞∑

r=0

(
−s
r

)
ζ(s + r)d−s

d−1∑

a=1

χ(a)(a/d)r.

We can show that the last sum
∑∞

r=0 defines a meromorphic function in s

on the whole C. For that purpose given s ∈ C, take a positive integer µ so

that Re(s) > −µ and decompose the sum into
∑µ+1

r=0 and
∑∞

r=µ+2 . There is no

problem about the first sum, as it is finite. As for the latter, we have |ζ(s+r)| ≤

ζ(2) for r ≥ µ + 2. Putting ε = (d − 1)/d, we have |
∑d−1

a=1 χ(a)(a/d)r| ≤

(d−1)εr. Therefore for Re(s) > −µ the infinite sum
∑∞

r=µ+2 can be majorized

by

dµ(d − 1)ζ(2)

∞∑

r=0

(
−α
r

)
(−ε)r = dµ(d − 1)ζ(2)(1 − ε)−α.

This proves the desired meromorphy of the right-hand side of (1.5).

Now, for 0 < k ∈ Z, without assuming that χ(−1) = (−1)k, we evaluate

(1.5) at s = 1 − k. We easily see that

(
−s
r

)
= 0 and ζ(s + r) is finite for

s = 1−k if r > k. We have to be careful about the term for r = k, as ζ(s+k)

has a pole at s = 1 − k. Since

(1.6) lim
s→1−k

(
−s
k

)
ζ(s + k) = lim

s→1−k

(
−s
k

)
1

s − 1 + k
=

−1

k
,

the term for r = k at s = 1 − k produces −(dk−1/k)
∑d−1

a=1 χ(a)(a/d)k. Thus

the evaluation of (1.5) at s = 1 − k gives

(1.7) kd1−kL(1 − k, χ) = k

d−1∑

a=1

χ(a)(a/d)k−1

−
d−1∑

a=1

χ(a)(a/d)k +
k−1∑

r=0

k

(
k − 1

r

)
ζ(1 + r − k)

d−1∑

a=1

χ(a)(a/d)r.

By (1.2b) we have, for 0 ≤ r < k − 1,

k

(
k − 1

r

)
ζ(1 + r − k) =

−k

k − r

(
k − 1

r

)
Bk−r = −

(
k
r

)
Bk−r.

The term for r = k − 1 produces kζ(0)
∑d−1

a=1 χ(a)(a/d)k−1, which

combined with the first term on the right-hand side of (1.7) gives

−kB1

∑d−1
a=1 χ(a)(a/d)k−1. Thus we obtain

kd1−kL(1 − k, χ) = −
k∑

r=0

(
k
r

)
Bk−r

d−1∑

a=1

χ(a)(a/d)r,

which together with (1.1) proves (0.2). Notice that we did not assume that

χ(−1) = (−1)k, and so we proved (0.2) for every positive integer k. If χ(−1) =

(−1)k−1, we have L(1−k, χ) = 0, which means that the right-hand side of (0.2)

is 0 if χ(−1) = (−1)k−1. This can be proved more directly; see [9, (4.28)].
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In the above calculation the term for r = 0 actually vanishes, as∑d−1
a=1 χ(a) = 0. However, we included the term for the following reason. In

later subsections we will consider similar infinite sums with r ranging from 0

to ∞, of which the terms for r = 0 are not necessarily zero.

1.2. By the same technique as in §1.1 (that is, employing the binomial

theorem) we will express L(1 − k, χ) explicitly in terms of a polynomial Φk−1

of degree k − 1. Writing n for k − 1, the polynomial is defined by

(1.8) Φn(t) = tn −

[(n+1)/2]∑

ν=1

(
n

2ν − 1

)
(22ν − 1)

B2ν

ν
tn+1−2ν (0 ≤ n ∈ Z),

where Bν denotes the Bernoulli number as before. We understand that Φ0(t) =

1. We will eventually show that Φn is the classical Euler polynomial of degree n,

but we prove Theorem 1.4 below with this definition of Φn, with no knowledge

of the Euler polynomial. We first prove:

Lemma 1.3. Let χ be a primitive Dirichlet character of conductor 4d0 with

0 < d0 ∈ Z. Then χ(a − 2d0) = −χ(a) for every a ∈ Z.

Proof. We may assume that a is prime to 2d0, as the desired equality is

trivial otherwise. Then we can find an integer b such that ab− 1 ∈ 4d0Z, and

we have χ(a − 2d0) = χ(a)χ(1 − 2d0b). Since (1 − 2dob)
2 − 1 ∈ 4d0Z, we have

χ(1 − 2dob) = ±1. Suppose χ(1 − 2dob) = 1; let x = 1 − 2d0y with y ∈ Z.

Then xb − (1 − 2d0b)
y ∈ 4d0Z, and so χ(x)b = 1. Thus χ(x) = 1, as b is

odd. This shows that the conductor of χ is a divisor of 2d0, a contradiction.

Therefore χ(1 − 2d0b) = −1, which proves the desired fact.

Theorem 1.4. Let χ be a nontrivial primitive Dirichlet character modulo

d, and let k be a positive integer such that χ(−1) = (−1)k.

(i) If d = 2q + 1 with 0 < q ∈ Z, then

(1.9) L(1 − k, χ) =
dk−1

2kχ(2) − 1

q∑

b=1

(−1)bχ(b)Φk−1(b/d).

(ii) If d = 4d0 with 1 < d0 ∈ Z, then

(1.10) L(1 − k, χ) = (2d0)
k−1

d0−1∑

a=1

χ(a)Φk−1(2a/d).

Before proving these, we note that these formulas are better than (0.2) in the

sense that Φk−1(t) is of degree k − 1, whereas Bk(t) is of degree k.

Proof. We first put

Z(s) =

∞∑

n=1

(−1)nn−s, Λ(s) =

∞∑

n=1

(−1)nχ(n)n−s.

We easily see that
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Λ(s) + L(s, χ) = 2

∞∑

n=1

χ(2n)(2n)−s = χ(2)21−sL(s, χ),

and a similar equality holds for Z(s). Thus

Z(s) = ζ(s)(21−s − 1), Λ(s) = L(s, χ)
{
χ(2)21−s − 1

}
.

We prove (i) by computing Λ(1− k) for a given k in the same elementary way

as we did in §1.1. With q as in (i) we observe that every positive integer m

not divisible by d can be written uniquely m = nd + a with 0 ≤ n ∈ Z or

m = nd − a with 0 < n ∈ Z, where in either case a is in the range 0 < a ≤ q.

Therefore

Λ(s) =

q∑

a=1

(−1)aχ(a)a−s

+

q∑

a=1

∞∑

n=1

{
(−1)nd+aχ(nd + a)(nd + a)−s + (−1)nd−aχ(nd − a)(nd − a)−s

}
.

The last double sum can be written
q∑

a=1

∞∑

n=1

(−1)n+ad−sn−s

{
χ(a)

(
1 +

a

nd

)−s

+ χ(−a)

(
1 −

a

nd

)−s}
.

Applying the binomial theorem to (1 ± X)−s, we obtain

Λ(s) −

q∑

a=1

(−1)aχ(a)a−s

=

∞∑

n=1

∞∑

r=0

(−1)n(dn)−r−s

(
−s
r

) {
1 + (−1)r+k

} q∑

a=1

(−1)aχ(a)ar

=

∞∑

r=0

d−s

(
−s
r

)
Z(s + r)

{
1 + (−1)r+k

} q∑

a=1

(−1)aχ(a)(a/d)r .

By the same technique as in §1.1, we can justify this for Re(s) > 1. We can

even show that the last sum
∑∞

r=0 is absolutely convergent for every s ∈ C as

follows. We first note that Z is an entire function. Take a positive integer µ and

s so that Re(s) > −µ. Then for r ≥ µ+2 we have |Z(s+r)| ≤ ζ(2). Put |s| = α.

We have also |
∑q

a=1(−1)aχ(a)(a/d)r| ≤ 2−rq. Therefore for Re(s) > −µ the

infinite sum
∑∞

r=µ+2 can be majorized by

2dµζ(2)q

∞∑

r=0

(
−α
r

)
(−2)−r = 2dµζ(2)q(1 − 2−1)−α.

This proves the desired convergence of
∑∞

r=0 . Substituting 1− k for s in the

above equality, we obtain Λ(1− k) as an infinite sum, which is actually a finite

sum, because

(
k − 1

r

)
= 0 if r ≥ k. (This time, the term r = k causes no

problem.) Also, we need only those r such that k−r ∈ 2Z. Putting k−r = 2ν,

we find that
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d1−kL(1 − k, χ)
{
χ(2)2k − 1

}
= d1−kΛ(1 − k)

=

q∑

a=1

(−1)aχ(a)(a/d)k−1 + 2

[k/2]∑

ν=1

(
k − 1
2ν − 1

)
Z(1− 2ν)

q∑

a=1

(−1)aχ(a)(a/d)k−2ν .

From (1.2b) we obtain

(1.11) 2νZ(1 − 2ν) = 2ν(22ν − 1)ζ(1 − 2ν) = (1 − 22ν)B2ν .

Using this expression for Z(1− 2ν), we obtain a formula for L(1− k, χ). Then

comparison of it with our definition of Φn proves (1.9).

Next, let d = 4d0 with 1 < d0 ∈ Z as in (ii). Observe that the set of all

positive integers greater than d0 and not divisible by d0 is the disjoint union

of the sets
{
4νd0±a

∣∣ 0 < a < d0, 0 < ν ∈ Z
}
⊔

{
(4ν+2)d0±a

∣∣ 0 < a < d0, 0 ≤ ν ∈ Z
}
.

Clearly χ(4νd0 ± a) = χ(±a); also χ
(
(4ν + 2)d0 ± a

)
= −χ(±a) by Lemma

1.3. Therefore we have

L(s, χ) =

d0−1∑

a=1

χ(a)a−s

+
∞∑

ν=1

d0−1∑

a=1

{
χ(a)(4νd0 + a)−s + χ(−a)(4νd0 − a)−s

}

−

∞∑

ν=0

d0−1∑

a=1

{
χ(a)

(
(4ν + 2)d0 + a

)−s
+ χ(−a)

(
(4ν + 2)d0 − a

)−s}
.

Employing the binomial theorem in the same manner as before, we have

L(s, χ) −

d0−1∑

a=1

χ(a)a−s

=

∞∑

ν=1

∞∑

r=0

(
−s
r

)
(4νd0)

−s−r
{
1 + (−1)k+r

} d0−1∑

a=1

χ(a)ar

−
∞∑

ν=0

∞∑

r=0

(
−s
r

) (
(4ν + 2)d0

)−s−r{
1 + (−1)k+r

} d0−1∑

a=1

χ(a)ar.

Notice that
∑∞

ν=1(4ν)−s −
∑∞

ν=0(4ν + 2)−s = 2−sZ(s). Therefore

L(s, χ) =

d0−1∑

a=1

χ(a)a−s+
∞∑

r=0

(
−s
r

)
(2d0)

−s−rZ(s+r)
{
1+(−1)k+r

}d0−1∑

a=1

χ(a)ar.

The validity of this formula for all s ∈ C can be proved in the same way as in

the previous case. The last infinite sum
∑∞

r=0 evaluated at s = 1− k becomes

a finite sum
∑k−1

r=0 , which is actually extended only over those r such that

k − r = 2ν with ν ∈ Z. Therefore, using (1.11), we obtain (1.10).
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1.5. Let us now show that Φn coincides with the classical Euler polynomial.

In [9, (4.2)] we defined polynomials Ec, n(t) for c = −e(α) with α ∈ R, /∈ Z,

by

(1.12)
(1 + c)etz

ez + c
=

∞∑

n=0

Ec,n(t)

n!
zn.

If c = 1, the polynomial E1,n(t) is the classical Euler polynomial of degree n.

Our task is to prove

(1.13) E1,n = Φn.

We first note here some basic formulas:

(1.14) Ec,n(t) = (1 + c−1)n!(2πi)−n−1
∑

h∈Z

(h + α)−n−1e
(
(h + α)t

)

(c = −e(α), α ∈ R, /∈ Z; 0 < t < 1 if n = 0; 0 ≤ t ≤ 1 if 0 <n∈ Z),

(1.15) Ec,n(t + r) =

n∑

k=0

(
n
k

)
Ec,k(r)tn−k (0 ≤ n ∈ Z),

(1.16) E1,0(0) = 1, E1,n(0) = 2(1 − 2n+1)(n + 1)−1Bn+1 (0 < n ∈ Z).

Formula (1.14) was given in [9, (4.5)]; the sum
∑

h∈Z means limm→∞

∑
|h|≤m

if n = 0. Replacing t in (1.12) by t+ r and making an obvious calculation, we

obtain (1.15). We have Ec,0(t) = 1 as noted in [9, (4.3h)]. Clearly E1,n(0) = 0

if n is even. Assuming n to be odd, take t = 0 and α = 1/2 in (1.14), and

recall that 2 ·m!(2πi)−mζ(m) = −Bm if 0 < m ∈ 2Z. Then we obtain E1,n(0)

as stated in (1.16). Taking r = 0 in (1.15) and using (1.16), we obtain (1.13).

The value Ec,n(0) for an arbitrary c is given in [9, (4.6)].

1.6. In [9, Theorem 4.14] we proved, for χ, d, and k as in Theorem 1.4,

(1.17) L(1 − k, χ) =
dk−1

2k − χ(2)

q∑

a=1

χ(a)E1,k−1(2a/d),

where q = [(d − 1)/2], and derived (i) and (ii) above, with E1,k−1 in place

of Φk−1, from (1.17). In fact, (i) and (ii) combined are equivalent to (1.17).

Though this is essentially explained in [9, p. 36], here let us show that (1.17) for

even d follows from (ii). With d = 4d0 as before, we have [(d−1)/2] = 2d0−1

and
2d0−1∑

a=1

χ(a)Φk−1(2a/d)

=

d0−1∑

a=1

{
χ(a)Φk−1(2a/d) + χ(2d0 − a)Φk−1

(
2(2d0 − a)/d

)}
.

We have E1,n(1 − t) = (−1)nE1,n(t) as noted in [9, (4.3f)]. This combined

with (1.13) shows that Φk−1(1− t) = (−1)k−1Φk−1(t). By Lemma 1.3, we have

χ(2d0 − a) = −χ(−a) = (−1)k+1χ(a), and so the last sum equals
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2

d0−1∑

a=1

χ(a)Φk−1(2a/d).

Therefore (1.17) follows from (1.10) if d = 4d0. Similarly we can derive(1.17)

for odd d from (1.9), which, in substance, is shown in the last paragraph of [9,

p. 36].

1.7. Our technique is applicable even to ζ(1−k). Instead of ζ(s) we consider

W (s) =
∑∞

m=0(2m + 1)−s. We have clearly

W (s) = 1 +

∞∑

m=1

(2m + 1)−s = 1 +

∞∑

m=1

(2m)−s

(
1 +

1

2m

)−s

= 1 +

∞∑

m=1

(2m)−s
∞∑

r=0

(
−s
r

)
(2m)−r = 1 +

∞∑

r=0

ζ(s + r)

(
−s
r

)
2−s−r.

We evaluate this at s = 1 − k with 0 < k ∈ Z. Our calculation is similar to

that of §1.1; we use (1.6) for determining the term for r = k, which produces

−(2k)−1. Thus

(1 − 2k−1)ζ(1 − k) = W (1 − k) = 1 −
1

2k
+

k−1∑

r=0

(
k − 1

r

)
2k−1−rζ(1 − k + r).

Taking k = 1, we find a well-known fact ζ(0) = −1/2. Also, ζ(1 − k) appears

on both sides. Therefore, putting k−r = t and rearranging our sum, we obtain

(1 − 2k)ζ(1 − k) =
k − 1

2k
+

k−1∑

t=2

(
k − 1
t − 1

)
2t−1ζ(1 − t).

This holds for every even or odd integer k > 1. Recall that ζ(−m) = 0 for

0 < m ∈ 2Z. Thus, taking k = 2n with 0 < n ∈ Z, we obtain a formula for

ζ(1 − 2n) as a linear combination of ζ(1 − 2ν) for 1 ≤ ν < n (which is 0 if

n = 1) plus a constant as follows:

(1.18) (1 − 22n)ζ(1 − 2n) =
2n − 1

4n
+

n−1∑

ν=1

(
2n − 1
2ν − 1

)
22ν−1ζ(1 − 2ν).

Similarly, taking k = 2n + 1 and putting t = 2ν, we obtain

(1.19)

n∑

ν=1

(
2n

2ν − 1

)
22ν−1ζ(1 − 2ν) =

−n

2n + 1
.

Either of these equalities (1.18) and (1.19) expresses ζ(1 − 2n) as a Q-linear

combination of ζ(1 − 2ν) for 1 ≤ ν < n plus a constant. The two expressions

are different, as can easily be seen.

In [9, (11.8)] we gave a similar recurrence formula which can be written

(1.20) 4(1−2n+1)ζ(−n) = 1+2

n∑

k=2

(
n

k − 1

)
(2k−1)ζ(1−k) (0 < n ∈ Z).
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Taking n to be even or odd, we again obtain two different recurrence formulas

for ζ(1 − 2n). It should be noted that the technique of using the binomial

theorem is already in §68 of Landau [5], in which (s−1)ζ(s) is discussed, while

we employ W (s).

2. Extending the parameters c and n in Ec,n

2.1. The function Ec,n(t) is a polynomial in t of degree n, and involves

c = −e(α) with α ∈ R. We now extend this in two ways: first, we take

α ∈ C, /∈ Z; second, we consider (h + α)−s instead of (h + α)−n−1. The first

case is simpler. Since Ec,n(t) is a polynomial in t and (1+ c)−1 as noted in [9,

p. 26], we can define a function En(α, t) by

(2.1) En(α, t) = Ec,n(t), c = −e(α), α ∈ C, /∈ Z, 0 ≤ n ∈ Z.

This is a polynomial in t, whose coefficients are holomorphic functions in α ∈

C, /∈ Z. Now equality (1.14) can be extended to

(2.2) En(α, t) =
(
1 − e(−α)

)
n!(2πi)−n−1

∑

h∈Z

(h + α)−n−1e
(
(h + α)t

)

for all α ∈ C, /∈ Z, where 0 < t < 1 if n = 0, and 0 ≤ t ≤ 1 if n > 0.

Indeed, if n > 0, the right-hand side is absolutely convergent, and defines a

holomorphic function. Since (2.2) holds for α ∈ R, /∈ Z, we obtain (2.2) as

expected. If n = 0, we have to consider limm→∞

∑
|h|≤m(h + α)−1e

(
(h + α)t

)
.

Clearly
m∑

h=−m

e(ht)

α + h
=

1

α
+

m∑

h=1

2α · cos(2πht)

α2 − h2
+ 2i

m∑

h=1

h · sin(2πht)

h2 − α2
.

The last sum on the right-hand side equals
m∑

h=1

sin(2πht)

h
+

m∑

h=1

sin(2πht)α2

h(h2 − α2)
.

It is well-known that the first sum tends to a finite value as m → ∞. Obviously

the last sum converges to a holomorphic function in α ∈ C, /∈ Z as m → ∞.

Thus we can justify (2.2) for n = 0.

Formula (2.2) for n = 0 (with −α in place of α) can be written

(2.3)
e(tα)

1 − e(α)
=

1

2πi

∑

h∈Z

e(th)

h − α
(α ∈ C, /∈ Z, 0 < t < 1).

This was first given by Kronecker [4].

2.2. We next ask if the power (h + a)−n−1 in (1.14) can be replaced by

(h + a)−s with a complex parameter s. Since h + a can be negative, (h + a)−s

is not suitable. Thus, for s ∈ C, a ∈ R, p ∈ R, and ν = 0 or 1 we put

(2.4) Dν(s; a, p) =
∑

−a6=n∈Z

(n + a)ν |n + a|−ν−se
(
p(n + a)

)
,
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(2.5) T ν(s; a, p) = Γ
(
(s + ν)/2

)
π−(s+ν)/2Dν(s; a, p).

Clearly the infinite series of (2.4) is absolutely convergent for Re(s) > 1, and

defines a holomorphic function of s there. Notice that if k − ν ∈ 2Z, then

Dν(k; 0, t) =
∑

06=n∈Z n−ke(nt), which is the infinite sum of (0.3). Thus the

Bernoulli polynomials are included in our discussion.

Theorem 2.3. The function T ν(s; a, p) can be continued as a meromorphic

function of s to the whole C. It is entire if ν = 1. If ν = 0, then T 0(s; a, p) is

−2δ(a)

s
+

2e(ap)δ(p)

s − 1

plus an entire function, where δ(x) = 1 if x ∈ Z and δ(x) = 0 if x /∈ Z.

Moreover,

(2.6) T ν(1 − s; a, p) = i−νe(ap)T ν(s; −p, a).

Proof. Put ϕ(x) = xνe(−x2z−1/2 + px) for x ∈ R and z ∈ H. Denote by

ϕ̂ the Fourier transform of ϕ. Then from [9, (2.25)] we easily obtain ϕ̂(x) =

i−ν(−iz)κ(x − p)νe
(
(x − p)2z/2

)
, where κ = ν + 1/2. Put also

f(z) =
∑

n∈Z

(n + a)νe
(
(n + a)2z/2 + p(n + a)

)
,

and f#(z) = (−iz)−κf(−z−1). Then f(−z−1) =
∑

n∈Z ϕ(n+ a), which equals∑
m∈Z e(ma)ϕ̂(m) by virtue of the Poisson summation formula. In this way

we obtain

f#(z) = i−ν
∑

m∈Z

e(ma)(m − p)νe
(
(m − p)2z/2

)
.

Now T ν(2s − ν; a, p) is the Mellin transform of f(iy), and so we obtain our

theorem by the general principle of Hecke, which is given as Theorem 3.2 in

[9].

Theorem 2.4. For ν = 0 or 1, 0 ≤ a ≤ 1, and a positive integer k such

that k − ν ∈ 2Z we have

(2.7) D0(0; a, p) = −δ(a),

(2.8) Dν(ν − 2m; a, p) = 0 if 0 < m ∈ Z,

(2.9) Dν(1 − k; a, p) = 2(2πi)−k(k − 1)!e(ap)Dν(k; −p, a),

(2.10) Dν(1 − k; a, p) = −2e(ap)Bk(a)/k if p ∈ Z,

(2.11) Dν(1 − k; a, p) =
2e(ap)

1 − e(p)
Ec,k−1(a) if p /∈ Z,

where c = −e(−p), and we have to assume that 0 < a < 1 in (2.10) and (2.11)

if k = 1.

Proof. By Theorem 2.3,
[
sT 0(s; a, p)

]
s=0

= −2δ(a), from which we ob-

tain (2.7). Next, let 0 < m ∈ Z. Since Γ
(
(s + ν)/2

)
Dν(s; a, p) is finite and
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Γ
(
(s + ν)/2

)
has a pole at s = ν − 2m, we obtain (2.8). We easily see that

Γ (1/2−m) = π1/2(−2)m
∏m

t=1(2t−1)−1. Therefore from (2.6) we obtain (2.9).

If p ∈ Z, then Dν(k; −p, a) =
∑

06=n∈Z n−ke(an). The well-known classical

formula, stated in [9, (4.9)] (and also as (0.3)), shows that the last sum equals

−(2πi)kBk(a)/k! for 0 ≤ a ≤ 1 if k > 1, and for 0 < a < 1 if k = 1. If

p /∈ Z, then Dν(k; −p, a) =
∑

n∈Z(n− p)−ke
(
a(n− p)

)
. By (1.14), this equals

(1 + c−1)−1(2πi)kEc,k−1(a)/(k − 1)!, where c = −e(−p), under the same con-

dition on a. Combining these with (2.9), we obtain (2.10) and (2.11).

We note here a special case of (2.10):

(2.12) Dν(1 − k; 0, 0) =

{
− 2Bk/k if k > 1,

0 if k = 1.

It should be noted that D1(s; 0, 0) = 0.

3. Nearly holomorphic elliptic functions

3.1. Let L be a lattice in C. As an analogue of (2.4) we put

(3.1) ϕν(u, s; L) =
∑

α∈L

(u + α)−ν |u + α|ν−2s

for 0 ≤ ν ∈ Z, u ∈ C, /∈ L, and s ∈ C. Clearly

(3.2a) ϕν(λu, s; λL) = λ−ν |λ|ν−2sϕν(u, s; L) for every λ ∈ C×,

(3.2b) ϕν(u + α, s; L) = ϕν(u, s; L) for every α ∈ L.

If L is a Z-lattice in an imaginary quadratic field K and u ∈ K, (3.1) is

the same as the series of [9, (7.1)]. The analytic properties of the series that

we proved there can easily be extended to the case of (3.1). First of all, the

right-hand side of (3.1) is absolutely convergent for Re(s) > 1, and defines a

holomorphic function of s there.

Theorem 3.2. Put Φ(u, s) = π−sΓ (s + ν/2)ϕν(u, s; L). Then Φ(u, s) can

be continued to the whole s-plane as a meromorphic function in s, which

is entire if ν > 0. If ν = 0, then Φ(u, s) is an entire function of s plus

v(L)−1/(s−1), where v(L) = vol(C/L). Moreover, Φ(u, s) is a C∞ function in

u, except when ν = 0 and s = 1, and each derivative (∂/∂u)a(∂/∂u)bΦ(u, s)

is meromorphic in s on the whole C.

Proof. This can be proved by the same argument as in [9, §7.2], except for the

differentiability with respect to u and the last statement about the derivatives,

which can be shown as follows. As shown in the proof of [9, Theorem 3.2], the

product π−sΓ (s)ϕν(u, s − ν/2; L) minus the pole part can be written
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∫ ∞

p

F (u, y)ys−1dy +

∫ ∞

p

G(u, y)yν−sdy,

where

F (u, y) =
∑

α∈L

(u + α)ν exp
(
− π|u + α|2y

)
,

G(u, y) = A
∑

β∈B

exp
(
πi(βu + βu)

) ∑

ξ−β∈M

ξν exp
(
− π|ξ|2y

)

with a constant A, a finite subset B of C, a positive constant p, and lattices L

and M in C. Therefore the differentiability and the last statement follow from

the standard fact on differentiation under the integral sign.

3.3. Before stating the next theorem, we note a few elementary facts. Take

L in the form L = Zω1 + Zω2 with complex numbers ω1 and ω2 such that

ω1/ω2 ∈ H. We put then v(ω1, ω2) = v(L). It can easily be seen that

(3.3) v(ω1, ω2) = |ω2|
2Im(ω1/ω2) = (2i)−1(ω1ω2 − ω1ω2),

and in particular, v(z, 1) = Im(z). We also recall the function ζ of Weierstrass

defined by

(3.4) ζ(u) = ζ(u; ω1, ω2) =
1

u
+

∑

06=α∈L

{
1

u − α
+

1

α
+

u

α2

}
,

where L = Zω1 + Zω2. It is well known that

(3.5) ζ(−u) = −ζ(u), (∂/∂u)ζ(u; ω1, ω2) = −℘(u; ω1, ω2)

with the Weierstrass function ℘. We put as usual

(3.6a) ηµ(ω1, ω2) = 2ζ(ωµ/2) (µ = 1, 2).

Then

(3.6b) ζ(u + ωµ) = ζ(u) + ηµ(ω1, ω2).

We also need the classical nonholomorphic Eisenstein series E2 of weight 2,

which can be given by

(3.7) E2(z) =
1

8πy
−

1

24
+

∞∑

n=1

( ∑

0<d|n

d

)
e(nz).

We are interested in the value of ϕν(u, s; L) at s = ν/2, which is meaningful

for every ν ∈ Z, > 0, by Theorem 3.2. The results can be given as follows.

Theorem 3.4. For L = Zω1 + Zω2 with ω1/ω2 ∈ H we have

(3.8) ϕν(u, ν/2; L) =
(−1)ν

(ν − 1)!

∂ν−2

∂uν−2
℘(u; ω1, ω2) (2 < ν ∈ Z),

(3.9) ϕ2(u, 1; L) = ℘(u; ω1, ω2) − 8π2ω−2
2 E2(ω1/ω2),

(3.10) ϕ1(u, 1/2; L) = ζ(u) + 8π2ω−2
2 E2(ω1/ω2)u − πv(L)−1u,
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(3.11) ηµ(ω1, ω2) = πωµv(L)−1 − 8π2ω−2
2 E2(ω1/ω2)ωµ (µ = 1, 2).

Proof. If ν > 2, then clearly ϕν(u, ν/2; L) =
∑

α∈L(u + α)−ν , from which

we obtain (3.8). The cases ν = 2 and ν = 1 are more interesting. We first

note that

(3.12a) (∂/∂u)ϕν(u, s; L) = (−s − ν/2)ϕν+1(u, s + 1/2; L),

(3.12b) (∂/∂u)ϕν(u, s; L) = (−s + ν/2)ϕν−1(u, s + 1/2; L),

at least for sufficiently large Re(s). Since both sides of (3.12a, b) are meromor-

phic in s on the whole C, we obtain (3.12a, b) for every s. The first formula

with ν = 2 produces

(∂/∂u)ϕ2(u, 1; L) = −2ϕ3(u, 3/2; L) = (∂/∂u)℘(u; ω1, ω2),

from which we obtain ϕ2(u, 1; L) = ℘(u; ω1, ω2) + c(u) with an anti-

holomorphic function c(u). Since (3.12b) shows that ϕ2(u, 1; L) is holomorphic

in u, we see that c(u) does not involve u or u, that is, it is a constant de-

pending only on L. Suppose L = Zz + Z with z ∈ H. For 0 < N ∈ Z and

(p, q) ∈ Z2, /∈ NZ2 define a standard Eisenstein series EN
ν (z, s; p, q) of level

N by [9, (9.1)]. Then we easily see that

ϕν

(
(pz + q)/N, s; L

)
= N2syν/2−sEN

ν (z, s − ν/2; p, q),

ϕν

(
(pz + q)/N, ν/2; L

)
= NνEN

ν (z, 0; p, q).

Define Fν and F2 as in [9, (10.10b, c, d)]. Taking ν = 2, we obtain

ϕ2

(
(pz + q)/N, 1; L

)
= N2EN

2 (z, 0; p, q) = (2πi)2F2(z; p/N, q/N).

By [9, (10.13)], F2(z; a, b) = (2πi)−2℘(az + b; z, 1
)
+ 2E2(z) with E2 of (3.7).

Therefore we can conclude that

(3.13) ϕ2(u, 1; Zz + Z) = ℘(u; z, 1) − 8π2E2(z).

More generally, using (3.2a) we obtain (3.9).

We next consider the case ν = 1. Since (∂/∂u)ζ(u; ω1, ω2) = −℘(u; ω1, ω2),

from (3.9) and (3.12a) we obtain

(∂/∂u)ϕ1(u, 1/2; L) = −ϕ2(u, 1; L)

= (∂/∂u)ζ(u; ω1, ω2) + 8π2ω−2
2 E2(ω1/ω2).

We have also

(∂/∂u)ϕ1(u, 1/2; L) = lim
σ→1

(1 − σ)ϕ0(u, σ; L) = −π/v(L),

since the residue of π−sΓ (s)ϕ0(u, s; L) at s = 1 is v(L)−1 as shown in Theo-

rem 3.2. Therefore ϕ1(u, 1/2; L) = −πu/v(L) + g(u) with a function g holo-

morphic in u. Clearly ∂g/∂u = (∂/∂u)ϕ1(u, 1/2; L), and so we can conclude

that
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(3.14) ϕ1(u, 1/2; L) = ζ(u) + 8π2ω−2
2 E2(ω1/ω2)u − πv(L)−1u + ξ(L)

with a constant ξ(L) independent of u. From (3.2a) we obtain ϕ1(−u, s; L) =

−ϕ1(u, s; L). Also ζ(−u) = −ζ(u). Thus ξ(L) = 0, and consequently we obtain

(3.10). Since ϕ1(u, 1/2; L) is invariant under u 7→ u + ωµ, we obtain (3.11)

from (3.10) and (3.6b).

3.5. In [9] we discussed the value of an Eisenstein series E(z, s) of weight

k at s = −m for an integer m such that 0 ≤ m ≤ k − 1, and observed

that it is nearly holomorphic in the sense that it is a polynomial in y−1 with

holomorphic functions as coefficients; for a precise statement, see [9, Theorem

9.6]. As an analogue we investigate ϕν(u, κ/2; L) for an integer κ such that

2 − ν ≤ κ ≤ ν and κ − ν ∈ 2Z. From (3.12b) we obtain, for 0 ≤ a ∈ Z,

(3.15) (∂/∂u)aϕν(u, (ν/2) − a; L) = a! · ϕν−a(u, (ν − a)/2; L).

Theorem 3.6. Let κ be an integer such that 2 − ν ≤ κ ≤ ν and κ − ν ∈

2Z. Then ϕν(u, κ/2; L) is a polynomial in u of degree d with holomorphic

functions in u as coefficients, where d = (ν − κ)/2 if ν + κ ≥ 4 and d =

(ν − κ + 2)/2 if ν + κ = 2. The leading term is udϕ(ν+κ)/2(u, (ν + κ)/4; L) or

−πd−1v(L)−1ud according as ν + κ ≥ 4 or ν + κ = 2.

Proof. Given κ as in the theorem, put a = (ν −κ)/2. Then (ν/2)−a = κ/2

and ν − a = (ν + κ)/2 ≥ 1. If ν − a ≥ 2, then by Theorem 3.4, ϕν−a(u, (ν −

a)/2; L) is holomorphic in u, and so (3.15) shows that ϕν(u, κ/2; L) is a poly-

nomial in u of degree a with holomorphic functions in u as coefficients. If

ν−a = 1, the function ϕ1(u, 1/2; L) is linear in u as given in (3.10). Therefore

we obtain our theorem.

Thus, we may call ϕν(u, κ/2; L) a nearly holomorphic elliptic function. In

the higher-dimensional case it is natural to consider theta functions instead of

periodic functions. For details of the basic ideas and results on this the reader

is referred to [6] and [7].

4. The series with a parameter in H

4.1. To state the following lemma, we first define a confluent hypergeometric

function τ(y; α, β) for y > 0 and (α, β) ∈ C2 by

(4.1) τ(y; α, β) =

∫ ∞

0

e−yt(1 + t)α−1tβ−1dt.

This is convergent for Re(β) > 0. It can be shown that Γ (β)−1τ(y; α, β) can be

continued to a holomorphic function in (α, β) on the whole C2; see [9, Section

A3], for example. Also, for v ∈ C× and α ∈ C we define vα by

(4.2) vα = exp(α log(v)), −π < Im[log(v)] ≤ π.
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Lemma 4.2. For α, β ∈ C such that Re(α + β) > 1, 0 ≤ r < 1, and

z = x + iy ∈ H we have

iα−β(2π)−α−βΓ (α)Γ (β)
∑

m∈Z

e(mr)(z + m)−α(z + m)−β

=

∞∑

n=1

e
(
(n − r)z

)
(n − r)α+β−1τ

(
4π(n − r)y; α, β

)

+

∞∑

n=1

e
(
− (n + r)z

)
(n + r)α+β−1τ

(
4π(n + r)y; β, α

)

+

{
(4πy)1−α−βΓ (α + β − 1) if r = 0,

e(−rz)rα+β−1τ
(
4πry; β, α

)
if r 6= 0.

Proof. If r = 0, this is Lemma A3.4 of [9]. The case with nontrivial r

can be proved in the same way as follows. Define two functions f(x) and

f1(x) of x ∈ R by f(x) = (x + iy)−α(x − iy)−β with a fixed y > 0 and

f1(x) = e(rx)f(x). Then f̂1(x) = f̂(x − r), and so the Poisson summation

formula (see [9, (2.9)]) shows that

e(−rx)
∑

m∈Z

f1(x + m) = e(−rx)
∑

n∈Z

f̂1(n)e(nx) =
∑

n∈Z

e
(
(n − r)x

)
f̂(n − r).

In [9, p. 133] we determined f̂ explicitly in terms of τ as follows:

iα−β(2π)−α−βΓ (α)Γ (β)f̂ (t) =





e(ity)tα+β−1τ(4πty; α, β) (t > 0),

e(−ity)|t|α+β−1τ(4π|t|y; β, α) (t < 0),

(4πy)1−α−βΓ (α + β − 1) (t = 0).

Therefore we obtain our lemma.

4.3. We now need an elementary result:

(4.3)

∞∑

n=1

nk−1xn =
xPk(x)

(1 − x)k
(1 ≤ k ∈ Z).

Here x is an indeterminate and Pk is a polynomial. We have P1 = P2 = 1 and

Pk+1 = (kx − x + 1)Pk − (x2 − x)P ′
k for k ≥ 2. Thus Pk is of degree k − 2

for k ≥ 2. These are easy; see [9, p. 17]. We also need two formulas and an

estimate given as (A3.11), (A3.14), and Lemma A3.2 in [9]:

(4.4) τ(y; n, β) =

n−1∑

µ=0

(
n − 1

µ

)
Γ (β + µ)y−µ−β (0 < n ∈ Z),

(4.5)
[
τ(y; α, β)/Γ (β)

]
β=0

= 1,

(4.6) Γ (β)−1yβτ(y; α, β) is bounded when (α, β) belongs to a compact subset

of C2 and y > c with a positive constant c.

Our principal aim of this section is to study the nature of the series
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(4.7) Lk(s, z) =
∑

m∈Z

e(mr)(z + m)−k|z + m|−2s,

for certain integer values of s. Here k ∈ Z, r ∈ R, s ∈ C, and z ∈ H. The

sum depends only on r modulo Z, and so we may assume that 0 ≤ r < 1.

Clearly this series is absolutely convergent for Re(2s + k) > 1, and defines a

holomorphic function of s there.

Theorem 4.4. The function Lk(s, z) can be continued as a meromorphic

function of s to the whole C, which is entire if r /∈ Z. If r ∈ Z, the locations

of the poles of Lk(s, z) are the same as those of Γ (2s+k−1)/
{
Γ (s+k)Γ (s)

}
.

Proof. Our function is the infinite series of Lemma 4.2 defined with α = s+k

and β = s. Therefore our assertion can easily be verified by means of the

formula of Lemma 4.2 and the estimate given by (4.6).

Theorem 4.5. Assuming that r ∈ Q, let N be the smallest positive integer

such that Nr ∈ Z and let β ∈ Z. Then the following assertions hold:

(i) If β > 0 or β + k > 0, then Lk(s, z) is finite at s = β and ikLk(β, z) is

a rational function in π, e(z/N), e(−z/N), and Im(z) with coefficients in Q.

(ii) If −k < β ≤ 0, then ik{1 − e(z)}k+βLk(β, z) is a polynomial in

π, e(z/N), Im(z), and Im(z)−1 with coefficients in Q.

(iii) If 0 < β ≤ −k, then ik{1 − e(−z)}βLk(β, z) is a polynomial in π,

e(−z/N), Im(z), and Im(z)−1 with coefficients in Q.

Proof. As we already said, we may assume that 0 ≤ r < 1. Put α = β + k.

We first have to study the nature of Γ (2s + k − 1)/
{
Γ (s + k)Γ (s)

}
at s = β.

This is clearly finite at s = β if α + β > 1. Suppose α + β ≤ 1; then α ≤ 0

if β > 0, and β ≤ 0 if α > 0. In all cases the value is finite, and in fact

is a rational number. We now evaluate the formula of Lemma 4.2 divided by

Γ (α)Γ (β). If α > 0, we have, by (4.4),

τ
(
4π(n − r)y; α, β

)
/Γ (β) =

α−1∑

µ=0

(
α − 1

µ

)
(n − r)−µ−β(4πy)−µ−β

µ−1∏

κ=0

(β + κ).

Thus an infinite sum of the form
∑∞

n=1 e
(
(n− r)z

)
(n− r)α−µ−1 appears. Ap-

plying the binomial theorem to the power of n − r, we see that the sum is a

Q-linear combination of e(−rz)
∑∞

n=1 e(nz)nν for 0 ≤ ν ≤ α− µ− 1. We can

handle τ
(
4π(n + r)y; β, α

)
/Γ (α) in a similar way if β > 0. Put q = e(z) and

qr = e(rz). Then, assuming that 0 < r < 1, α > 0, and β > 0, we have

ikLk(β, z) = q−1
r

α−1∑

µ=0

α−µ−1∑

ν=0

aµνπα−µy−µ−β
∞∑

n=1

nνqn

+ qr

β−1∑

µ=0

β−µ−1∑

ν=0

bµνπβ−µy−µ−α
∞∑

n=0

nνqn,
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where aµν and bµν are rational numbers depending on β, k, and r. Applying

(4.3) to
∑∞

n=1 nνXn with X = q and X = q, we obtain (i). Suppose β ≤ 0 and

β + k > 0; then the sum involving τ
(
4π(n + r)y; β, α

)
/
{
Γ (α)Γ (β)

}
vanishes

and we obtain (ii). The case in which β > 0 and β + k ≤ 0 is similar and

produces (iii). If r = 0, the constant term of ikLk(β, z) is 2π(2y)1−α−βΓ (α+

β − 1)/[Γ (a)Γ (β)], which causes no problem. This completes the proof.

One special case is worthy of attention. Taking β = 0 and 1 < k = α ∈ Z,

and using (4.5), we obtain, for 0 ≤ r < 1,

(4.8)
∑

m∈Z

e
(
r(z + m)

)

(z + m)k
=

(2πi)k

(k − 1)!

k∑

ν=1

(
k − 1
ν − 1

)
rk−ν qPν(q)

(q − 1)ν
,

where q = e(z). We assume 0 < r < 1 and
∑

m∈Z = limh→∞

∑
|m|≤h when

k = 1. In (4.7) we take z in H, but in (4.8) we can take z ∈ C, /∈ Z, since

both sides of (4.8) are meaningful for such z. If k = 1, the result is the same

as (2.3).

We can mention another special case. Namely, take z = ia with a positive

rational number a. Then we see that the values

(4.9)
∑

m∈Z

(a2 + m2)−β

for 0 < β ∈ Z belong to the field generated by π and e−2πa over Q, and

therefore any three such values satisfy a nontrivial algebraic equation over Q.

5. The rationality over a totally real base field

5.1. Throughout this section we fix a totally real algebraic number field F.

The algebraicity of π−kL(k, χ) can be generalized to the case of L-functions

over F, but there is no known formulas similar to (0.2), (1.9), (1.10), except

that Siegel proved some such formulas in [10] and [11] when [F : Q] = 2. The

paper [1] of Hecke may be mentioned in this connection. In this section we

merely consider a generalization of (2.4) and prove an algebraicity result on its

critical values, without producing explicit expressions.

We denote by g, DF , and a the maximal order of F, the discriminant of

F, and the set of archimedean primes of F. We also put Tr(x) = TrF/Q(x) for

x ∈ F and [F : Q] = g. For α ∈ F and a fractional ideal a in F we put

α + a =
{

α + x
∣∣ x ∈ a

}
and ã =

{
ξ ∈ F |Tr(ξa) ⊂ Z

}
.

Given α and a as above, ξ ∈ F, 0 < µ ∈ Z, and a (sufficiently small)

subgroup U of g× of finite index, we put

(5.1) Dµ(s; ξ, α, a) = rU

∑

06=h∈U\(α+a)

ea(hξ)h−µa|h|(µ−s)a,

(5.1a) rU = [g× : U ]−1,
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where ea(ξ) = e
( ∑

v∈a(ξv)
)

for ξ ∈ F and xta =
∏

v∈a xt
v for x ∈ Ca

and U\X means a complete set of representatives for X modulo multiplication

by the elements of U. We have to take U so small that the sum of (5.1) is

meaningful. For instance, it is sufficient to take

U ⊂
{
u ∈ g×

∣∣ua = 1, uξ − ξ ∈ α−1g̃ ∩ ã
}
.

The factor rU makes the quantity of (5.1) independent of the choice of U.

Clearly the sum is convergent for Re(s) > 1. Now Dµ(s; ξ, α, a) is a special

case of the series of [8, (18.1)], and so from Lemma 18.2 of [8] we see that it

can be continued as a holomorphic function in s to the whole C.

Theorem 5.2. For 0 < µ ∈ Z we have

(5.2) (2πi)−µgD
1/2
F Dµ(µ; ξ, 0, a) ∈ Q,

(5.3) Dµ(1 − µ; 0, α, a) ∈ Q.

Proof. The last formula is a restatement of Proposition 18.10(2) of [8]. To

prove (5.2), let b =
{
x ∈ a

∣∣ ea(xξ) = 1
}

and let R be a complete set of

representatives for a/b. Then

Dµ(s; ξ, 0, a) =
∑

β∈R

ea(βξ)Dµ(s; 0, β, b).

Put Qµ(β, b) = (2πi)−µgD
1/2
F Dµ(µ; 0, β, b). Then the quantity of (5.2) equals∑

β∈R ea(βξ)Qµ(β, b). Let t ∈
∏

p Z×
p and let σ be the image of t under

the canonical homomorphism of Q×
A onto Gal(Qab/Q). Our task is to show

that the last sum is invariant under σ. By [8, Proposition 18.10(1)] we have

Qµ(β, b)σ = Qµ(β1, b) with β1 ∈ F such that (tβ1 − β)v ∈ bv for every

nonarchimedean prime v of F. For β ∈ R there is a unique β1 ∈ R with that

property. Now e(c)σ = e(t−1c) for every c ∈ Q/Z =
∏

p(Qp/Zp); see [8, (8.2)].

Since ea(βξ) = e
(
Tr(βξ)

)
, we easily see that ea(βα)σ = ea(β1α), which gives

the desired fact.
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