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Abstract. Suppose given functors A × A′ F
−→ B

G
−→ C between

abelian categories, an object X in A and an object X ′ in A′ such
that F (X,−), F (−, X ′) and G are left exact, and such that further
conditions hold. We show that, E1-terms exempt, the Grothendieck
spectral sequence of the composition of F (X,−) and G evaluated at
X ′ is isomorphic to the Grothendieck spectral sequence of the com-
position of F (−, X ′) and G evaluated at X . The respective E2-terms
are a priori seen to be isomorphic. But instead of trying to com-
pare the differentials and to proceed by induction on the pages, we
rather compare the double complexes that give rise to these spectral
sequences.

2000 Mathematics Subject Classification: 18G40

Keywords and Phrases: Grothendieck spectral sequence, Lyndon-
Hochschild-Serre spectral sequence.

Contents

0 Introduction 679

0.1 Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679

0.2 First comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 679

0.3 Second comparison . . . . . . . . . . . . . . . . . . . . . . . . . 680

0.4 Results of Beyl and Barnes . . . . . . . . . . . . . . . . . . . . 681

0.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 681

Documenta Mathematica 13 (2008) 677–737



678 Matthias Künzer

1 Double and triple complexes 683

1.1 Double complexes . . . . . . . . . . . . . . . . . . . . . . . . . . 683

1.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 683

1.1.2 Applying H in different directions . . . . . . . . . . . . 684

1.1.3 Concentrated double complexes . . . . . . . . . . . . . . 684

1.1.4 Row- and columnwise notions . . . . . . . . . . . . . . . 684

1.1.5 Horizontally and vertically split acyclic double complexes 685

1.1.6 Total complex . . . . . . . . . . . . . . . . . . . . . . . 687

1.1.7 The homotopy category, first quadrant . . . . . . . . . . 687

1.2 Triple complexes . . . . . . . . . . . . . . . . . . . . . . . . . . 688

1.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 688

1.2.2 Planewise total complex . . . . . . . . . . . . . . . . . . 688

2 Cartan-Eilenberg resolutions 689

2.1 A remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689

2.2 Exact categories . . . . . . . . . . . . . . . . . . . . . . . . . . 689

2.3 An exact category structure on C(A) . . . . . . . . . . . . . . . 691

2.4 An exact category structure on C[0(A) . . . . . . . . . . . . . . 694

2.5 The Cartan-Eilenberg resolution of a quasiisomorphism . . . . 694

3 Formalism of spectral sequences 696

3.1 Pointwise split and pointwise finitely filtered complexes . . . . 697

3.2 Spectral objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 697

3.3 Spectral sequences . . . . . . . . . . . . . . . . . . . . . . . . . 698

3.4 A short exact sequence . . . . . . . . . . . . . . . . . . . . . . . 699

3.5 Classical indexing . . . . . . . . . . . . . . . . . . . . . . . . . . 699

3.6 Comparing proper spectral sequences . . . . . . . . . . . . . . . 700

3.7 The first spectral sequence of a double complex . . . . . . . . . 701

4 Grothendieck spectral sequences 703

4.1 Certain quasiisomorphisms are preserved by a left exact functor 703

4.2 Definition of the Grothendieck spectral sequence functor . . . . 704

4.3 Haas transformations . . . . . . . . . . . . . . . . . . . . . . . . 710

4.3.1 Situation . . . . . . . . . . . . . . . . . . . . . . . . . . 710

4.3.2 Construction of the first Haas transformation . . . . . . 710

4.3.3 Construction of the second Haas transformation . . . . 712

5 The first comparison 712

5.1 The first comparison isomorphism . . . . . . . . . . . . . . . . 712

5.2 Naturality of the first comparison isomorphism . . . . . . . . . 713

6 The second comparison 715

6.1 The second comparison isomorphism . . . . . . . . . . . . . . . 715

6.2 Naturality of the second comparison isomorphism . . . . . . . . 717

Documenta Mathematica 13 (2008) 677–737



Comparison of Spectral Sequences Involving Bifunctors 679

7 Acyclic CE-resolutions 719
7.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719
7.2 A theorem of Beyl . . . . . . . . . . . . . . . . . . . . . . . . . 720

8 Applications 721
8.1 A Hopf algebra lemma . . . . . . . . . . . . . . . . . . . . . . . 721

8.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 721
8.1.2 Some basic properties . . . . . . . . . . . . . . . . . . . 722
8.1.3 Normality . . . . . . . . . . . . . . . . . . . . . . . . . . 724
8.1.4 Some remarks and a lemma . . . . . . . . . . . . . . . . 725

8.2 Comparing Hochschild-Serre-Hopf with Grothendieck . . . . . . 730
8.3 Comparing Lyndon-Hochschild-Serre with Grothendieck . . . . 732
8.4 Comparing Hochschild-Serre with Grothendieck . . . . . . . . . 733
8.5 Comparing two spectral sequences for a change of rings . . . . 734
8.6 Comparing two spectral sequences for Ext and ⊗ . . . . . . . . 734
8.7 Comparing two spectral sequences for Ext of sheaves . . . . . . 735

0 Introduction

To calculate Ext∗(X, Y ), one can either resolve X projectively or Y injectively;
the result is, up to isomorphism, the same. To show this, one uses the double
complex arising when one resolves both X and Y ; cf. [5, Chap. V, Th. 8.1].
Two problems in this spirit occur in the context of Grothendieck spectral se-
quences; cf. §§ 0.2, 0.3.

0.1 Language

In §3, we give a brief introduction to the Deligne-Verdier spectral sequence
language; cf. [17, II.§4], [6, App.]; or, on a more basic level, cf. [11, Kap. 4].
This language amounts to considering a diagram E(X) containing all the images
between the homology groups of the subquotients of a given filtered complex
X , instead of, as is classical, only selected ones. This helps to gain some elbow
room in practice : to govern the objects of the diagram E(X) we can make use
of a certain short exact sequence; cf. §3.4.
Dropping the E1-terms and similar ones, we obtain the proper spectral sequence
Ė(X) of our filtered complex X . Amongst others, it contains all Ek-terms for
k ≥ 2 in the classical language; cf. §§ 3.6, 3.5.

0.2 First comparison

Suppose given abelian categories A, A′ and B with enough injectives and an
abelian category C. Suppose given objects X ∈ ObA and X ′ ∈ ObA′. Let

A×A′ -F B be a biadditive functor such that F (X,−) and F (−, X ′) are left

exact. Let B -G C be a left exact functor. Suppose further conditions to hold;
see §5.1.

Documenta Mathematica 13 (2008) 677–737



680 Matthias Künzer

We have a Grothendieck spectral sequence for the composition G ◦ F (X,−)
and a Grothendieck spectral sequence for the composition G ◦ F (−, X ′). We
evaluate the former at X ′ and the latter at X .

In both cases, the E2-terms are (RiG)(RjF )(X, X ′). Moreover, they both
converge to

(

Ri+j(G ◦ F )
)

(X, X ′). So the following assertion is well-motivated.

Theorem 31. The proper Grothendieck spectral sequences just described are
isomorphic; i.e. ĖGr

F (X,−),G(X ′) ≃ ĖGr
F (−,X′),G(X) .

So instead of “resolving X ′ twice”, we may just as well “resolve X twice”.

In fact, the underlying double complexes are connected by a chain of dou-
ble homotopisms, i.e. isomorphisms in the homotopy category as defined in

[5, IV.§4], and rowwise homotopisms (the proof uses a chain • �double
• �roww.

•

-roww.
• -double

•). These morphisms then induce isomorphisms on the associ-
ated proper first spectral sequences.

0.3 Second comparison

Suppose given abelian categories A and B′ with enough injectives and abelian
categories B and C. Suppose given objects X ∈ ObA and Y ∈ ObB. Let

A -F B′ be a left exact functor. Let B × B′ -G C be a biadditive functor
such that G(Y,−) is left exact.

Let B ∈ ObC[0(B) be a resolution of Y , i.e. a complex B admitting a quasiiso-
morphism Conc Y - B. Suppose that G(Bk,−) is exact for all k ≥ 0. Let
A ∈ ObC[0(A) be, say, an injective resolution of X . Suppose further conditions
to hold; see §6.1.

We have a Grothendieck spectral sequence for the composition G(Y,−) ◦ F ,
which we evaluate at X . On the other hand, we can consider the double
complex G(B, FA), where the indices of B count rows and the indices of A
count columns. To the first filtration of its total complex, we can associate the
proper spectral sequence ĖI

(

G(B, FA)
)

.

If B has enough injectives and B is an injective resolution of Y , then in both
cases the E2-terms are a priori seen to be (RiG)

(

Y, (RjF )(X)
)

. So also the
following assertion is well-motivated.

Theorem 34. We have ĖGr
F,G(Y,−)(X) ≃ ĖI

(

G(B, FA)
)

.

So instead of “resolving X twice”, we may just as well “resolve X once and Y
once”.

The left hand side spectral sequence converges to
(

Ri+j(G(Y,−) ◦F )
)

(X). By
this theorem, so does the right hand side one.

The underlying double complexes are connected by two morphisms of double
complexes (in the directions • - • � •) that induce isomorphisms on the
associated proper spectral sequences.

Of course, Theorems 31 and 34 have dual counterparts.
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0.4 Results of Beyl and Barnes

Let R be a commutative ring. Let G be a group. Let N E G be a normal
subgroup. Let M be an RG-module.
Beyl generalises Grothendieck’s setup, allowing for a variant of a Cartan-
Eilenberg resolution that consists of acyclic, but no longer necessarily injective
objects [4, Th. 3.4]. We have documented Beyl’s Theorem as Theorem 40 in
our framework, without claiming originality.
Beyl uses his Theorem to prove that, from the E2-term on, the Grothendieck

spectral sequence for RG -Mod -(−)N

RN -Mod -(−)G/N

R -Mod at M is iso-
morphic to the Lyndon-Hochschild-Serre spectral sequence, i.e. the spectral
sequence associated to the double complex RG(BarG/N ;R⊗R BarG;R , M); cf.
[4, Th. 3.5], [3, §3.5]. This is now also a consequence of Theorems 31 and 34,
as explained in §§ 8.2, 8.3.
Barnes works in a slightly different setup. He supposes given a commutative
ring R, abelian categories A, B and C of R-modules, and left exact functors
F : A - B and G : B - C, where F is supposed to have an exact left adjoint
J : B - A that satisfies F ◦ J = 1B. Moreover, he assumes A to have ample
injectives and C to have enough injectives. In this setup, he obtains a general
comparison theorem. See [2, Sec. X.5, Def. X.2.5, Th. X.5.4].
Beyl [4] and Barnes [2] also consider cup products; in this article, we do not.

0.5 Acknowledgements

Results of Beyl and Haas are included for sake of documentation that they
work within our framework; cf. Theorem 40 and §4. No originality from my
part is claimed.
I thank B. Keller for directing me to [12, XII.§11]. I thank the referee for
helping to considerably improve the presentation, and for suggesting Lemma 47
and §8.2. I thank G. Carnovale and G. Hiß for help with Hopf algebras.

Conventions

Throughout these conventions, let C and D be categories, let A be an additive category, let
B and B′ be abelian categories, and let E be an exact category in which all idempotents split.

• For a, b ∈ Z, we write [a, b] := {c ∈ Z : a ≤ c ≤ b}, [a, b[ := {c ∈ Z : a ≤ c < b},
etc.

• Given I ⊆ Z and i ∈ Z, we write I≥i := {j ∈ I : j ≥ i} and I<i := {j ∈ I : j < i}.

• The disjoint union of sets A and B is denoted by A ⊔ B.

• Composition of morphisms is written on the right, i.e. -a -b = -ab
.

• Functors act on the left. Composition of functors is written on the left, i.e.

-F -G = -G◦F

• Given objects X, Y in C, we denote the set of morphisms from X to Y by C(X, Y ).

• The category of functors from C to D and transformations between them is denoted
by C,D .
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• Denote by C(A) the category of complexes

X = (· · · -d Xi−1 -d Xi -d Xi+1 -d · · · )

with values in A. Denote by C[0(A) the full subcategory of C(A) consisting of com-

plexes X with Xi = 0 for i < 0. We have a full embedding A -Conc
C[0(A), where,

given X ∈ ObA, the complex Conc X has entry X at position 0 and zero elsewhere.

• Given a complex X ∈ Ob C(A) and k ∈ Z, we denote by X•+k the complex that

has differential Xi+k -(−1)kd
Xi+1+k between positions i and i + 1. We also write

X•−1 := X•+(−1) etc.

• Suppose given a full additive subcategory M ⊆ A. Then A/M denotes the quotient
of A by M, which has the same objects as A, and which has as morphisms residue
classes of morphisms of A, where two morphisms are in the same residue class if their
difference factors over an object of M.

• A morphism in A is split if it isomorphic, as a diagram on • - •, to a morphism

of the form X ⊕ Y -
“

1 0
0 0

”

X ⊕ Z. A complex X ∈ Ob C(A) is split if all of its
differentials are split.

• An elementary split acyclic complex in C(A) is a complex of the form

· · · - 0 - T -1 T - 0 - · · · ,

where the entry T is at positions k and k + 1 for some k ∈ Z. A split acyclic complex
is a complex isomorphic to a direct sum of elementary split acyclic complexes, i.e. a
complex isomorphic to a complex of the form

· · · -
“

0 0
1 0

”

T i ⊕ T i+1 -
“

0 0
1 0

”

T i+1 ⊕ T i+2 -
“

0 0
1 0

”

T i+2 ⊕ T i+3 -
“

0 0
1 0

”

· · ·

Let Csp ac(A) ⊆ C(A) denote the full additive subcategory of split acyclic complexes.
Let K(A) := C(A)/Csp ac(A) denote the homotopy category of complexes with values
in A. Let K[0(A) denote the image of C[0(A) in K(A). A morphism in C(A) is a
homotopism if its image in K(A) is an isomorphism.

• We denote by InjB ⊆ B the full subcategory of injective objects.

• Concerning exact categories, introduced by Quillen [14, p. 15], we use the conventions
of [10, Sec. A.2]. In particular, a commutative quadrangle in E being a pullback is
indicated by

A //

��

B

��
C // D ,

a commutative quadrangle being a pushout by

A //

��

B

��
C // D .

• Given X ∈ Ob C(E) with pure differentials, and given k ∈ Z, we denote by ZkX
the kernel of the differential Xk - Xk+1, by Z′kX the cokernel of the differ-
ential Xk−1 - Xk , and by BkX the image of the differential Xk−1 - Xk.

Furthermore, we have pure short exact sequences BkX -r ZkX - HkX and

HkX -r Z′kX - Bk+1X.
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• A morphism X - Y in C(E) between complexes X and Y with pure differentials is
a quasiisomorphism if Hk applied to it yields an isomorphism for all k ∈ Z. A complex
X with pure differentials is acyclic if HkX ≃ 0 for all k ≥ 0. Such a complex is also
called a purely acyclic complex.

• Suppose that B has enough injectives. Given a left exact functor B -F B′, an object
X ∈ ObB is F -acyclic if RiFX ≃ 0 for all i ≥ 1. In other words, X is F -acyclic if for
an injective resolution I ∈ C[0(InjB) of X (and then for all such injective resolutions),
we have HiFI ≃ 0 for all i ≥ 1.

• By a module, we understand a left module, unless stated otherwise. If A is a ring, we
abbreviate A(−, =) := A -Mod(−, =) = HomA(−,=).

1 Double and triple complexes

We fix some notations and sign conventions.

Let A and B be additive categories. Let C(A) -H B be an additive functor.

1.1 Double complexes

1.1.1 Definition

A double complex with entries in A is a diagram

...
...

...

· · ·
d // X i+2,j d //

∂

OO

X i+2,j+1 d //

∂

OO

X i+2,j+2 d //

∂

OO

· · ·

X = · · ·
d // X i+1,j d //

∂

OO

X i+1,j+1 d //

∂

OO

X i+1,j+2 d //

∂

OO

· · ·

· · ·
d // X i,j d //

∂

OO

X i,j+1 d //

∂

OO

X i,j+2 d //

∂

OO

· · ·

...

∂

OO

...

∂

OO

...

∂

OO

in A such that dd = 0, ∂∂ = 0 and d∂ = ∂d everywhere. As morphisms
between double complexes, we take all diagram morphisms. Let CC(A) denote
the category of double complexes. We may identify CC(A) = C(C(A)).
The double complexes considered in this §1.1 are stipulated to have entries in
A.

Let CCx(A) := C[0(C[0(A)) be the category of first quadrant double complexes,
consisting of double complexes X such that X i,j = 0 whenever i < 0 or j < 0.
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Given a double complex X and i ∈ Z, we let X i,∗ ∈ Ob C(A) denote the com-
plex that has entry X i,j at position j ∈ Z, the differentials taken accordingly;
X i,∗ is called the ith row of X .

Similarly, given j ∈ Z, X∗,j ∈ Ob C(A) denotes the jth column of X .

1.1.2 Applying H in different directions

Given X ∈ ObCC(A), we let H(X∗,−) ∈ Ob C(A) denote the complex that
has H(X∗,j) at position j ∈ Z, and as differential H(X∗,j) - H(X∗,j+1)
the image of the morphism X∗,j - X∗,j+1 of complexes under H . Similarly,
H(X−,∗) ∈ Ob C(A) has H(Xj,∗) at position j ∈ Z.

In other words, a “∗” denotes the index direction to which H is applied, a “−”
denotes the surviving index direction. For short, “∗” before “−”.

1.1.3 Concentrated double complexes

Given a complex U ∈ Ob C[0(A), we denote by Conc2 U ∈ ObCCx(A) the
double complex whose 0th row is given by U , and whose other rows are zero;
i.e. given j ∈ Z, then (Conc2 U)i,j equals U j if i = 0, and 0 otherwise, the
differentials taken accordingly. Similarly, Conc1 U ∈ Ob CCx(B) denotes the
double complex whose 0th column is given by U , and whose other columns are
zero.

1.1.4 Row- and columnwise notions

A morphism X -f Y of double complexes is called a rowwise homotopism if

X i,∗ -fi,∗

Y i,∗ is a homotopism for all i ∈ Z. ProvidedA is abelian, it is called a

rowwise quasiisomorphism if X i,∗ -fi,∗

Y i,∗ is a quasiisomorphism for all i ∈ Z.

A morphism X -f Y of double complexes is called a columnwise homotopism

if X∗,j -f∗,j

Y ∗,j is a homotopism for all j ∈ Z. Provided A is abelian, it is

called a columnwise quasiisomorphism if X∗,j -f∗,j

Y ∗,j is a quasiisomorphism
for all j ∈ Z.

Provided A is abelian, a double complex X is called rowwise split if X i,∗ is split
for all i ∈ Z; a short exact sequence X ′ - X - X ′′ of double complexes is
called rowwise split short exact if X ′i,∗ - X i,∗ - X ′′i,∗ is split short exact
for all i ∈ Z.

A double complex X is called rowwise split acyclic if X i,∗ is a split acyclic
complex for all i ∈ Z. It is called columnwise split acyclic if X∗,j is a split
acyclic complex for all j ∈ Z.
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1.1.5 Horizontally and vertically split acyclic double complexes

An elementary horizontally split acyclic double complex is a double complex of
the form

...
...

...
...

· · · // 0

OO

// T i+1

OO

T i+1 //

OO

0

OO

// · · ·

· · · // 0

OO

// T i

∂

OO

T i //

∂

OO

0

OO

// · · ·

...

OO

...

OO

...

OO

...

OO

.

A horizontally split acyclic double complex is a double complex isomorphic to
a direct sum of elementary horizontally split acyclic double complexes, i.e. to
one of the form

...
...

· · · // T i+1,j⊕T i+1,j+1

“

0 0
1 0

”

//

OO

T i+1,j+1⊕T i+1,j+2 //

OO

· · ·

· · · // T i,j⊕T i,j+1

“

0 0
1 0

”

//

“

∂ 0
0 ∂

”

OO

T i,j+1⊕T i,j+2 //

“

∂ 0
0 ∂

”

OO

· · ·

...

OO

...

OO

.
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An elementary vertically split acyclic double complex is a double complex of
the form

...
...

· · · // 0 //

OO

0 //

OO

· · ·

· · · // T i d //

OO

T i+1 //

OO

· · ·

· · · // T i d // T i+1 // · · ·

· · · // 0 //

OO

0 //

OO

· · ·

...

OO

...

OO

.

A vertically split acyclic double complex is a double complex isomorphic to a
direct sum of elementary vertically split acyclic double complexes, i.e. to one
of the form

...
...

· · · // T i+1,j⊕T i+2,j

“

d 0
0 d

”

//

OO

T i+1,j+1⊕T i+2,j+1 //

OO

· · ·

· · · // T i,j⊕T i+1,j

“

d 0
0 d

”

//

“

0 0
1 0

”

OO

T i,j+1⊕T i+1,j+1 //

“

0 0
1 0

”

OO

· · ·

...

OO

...

OO

.

A horizontally split acyclic double complex is in particular rowwise split acyclic.
A vertically split acyclic double complex is in particular columnwise split
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acyclic.
A double complex is called split acyclic if it is isomorphic to the direct sum
of a horizontally and a vertically split acyclic double complex. Let CCsp ac(A)
denote the full additive subcategory of split acyclic double complexes. Let

KK(A) := CC(A)/CCsp ac(A) ;

cf. [5, IV.§4]. A morphism in CC(A) that is mapped to an isomorphism in
KK(A) is called a double homotopism.

A speculative aside. The category K(A) is Heller triangulated; cf.
[10, Def. 1.5.(i), Th. 4.6]. Such a Heller triangulation hinges on two in-
duced shift functors, one of them induced by the shift functor on K(A). Now
KK(A) carries two shift functors, and so there might be more isomorphisms
between induced shift functors one can fix. How can the formal structure of
KK(A) be described?

1.1.6 Total complex

Let KKx(A) be the full image of CCx(A) in KK(A).
The total complex tX of a double complex X ∈ Ob CCx(A) is given by the
complex

tX =
(

X0,0 -(d ∂ )
X0,1 ⊕X1,0 -

“

d ∂ 0
0 −d −∂

”

X0,2 ⊕X1,1 ⊕X2,0

-

 

d ∂ 0 0
0 −d −∂ 0
0 0 d ∂

!

X0,3 ⊕X1,2 ⊕X2,1 ⊕X3,0 - · · ·
)

in ObC[0(A). Using the induced morphisms, we obtain a total complex func-

tor CCx(A) -t C[0(A). Since t maps elementary horizontally or vertically
split acyclic double complexes to split acyclic complexes, it induces a functor

KKx(A) -t K[0(A). If, in addition, A is abelian, the total complex func-
tor maps rowwise quasiisomorphisms and columnwise quasiisomorphisms to
quasiisomorphisms, as one sees using the long exact homology sequence and
induction on a suitable filtration.
Note that we have an isomorphism U -∼ tConc1 U , natural in U ∈ Ob C[0(A),
having entries 1U0 , 1U1 , −1U2 , −1U3 , 1U4 , etc. Moreover, U = tConc2 U ,
natural in U ∈ Ob C[0(A).

1.1.7 The homotopy category of first quadrant double com-
plexes as a quotient

Lemma 1 The residue class functor CC(A) - KK(A), restricted to
CCx(A) - KKx(A), induces an equivalence

CCx(A)/
(

CCsp ac(A) ∩CCx(A)
) -∼ KKx(A) .
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Proof. We have to show faithfulness; i.e. that if a morphism X - Y in
CCx(A) factors over a split acyclic double complex, then it factors over a split
acyclic double complex that lies in ObCCx(A). By symmetry and additivity,
it suffices to show that if a morphism X - Y in CCx(A) factors over a hor-
izontally split acyclic double complex, then it factors over a horizontally split
acyclic double complex that lies in Ob CCx(A). Furthermore, we may assume
X - Y to factor over an elementary horizontally split acyclic double complex
S concentrated in the columns k and k + 1 for some k ∈ Z. We may assume
that Si,j = 0 for i < 0 and j ∈ Z. If k < 0, and in particular, if k = −1, then
X - Y is zero because S - Y is zero, so that in this case we may assume
S = 0. On the other hand, if k ≥ 0, then S ∈ Ob CCx(A).

Cf. also the similar Remark 2.

1.2 Triple complexes

1.2.1 Definition

Let CCC(A) := C(C(C(A))) be the category of triple complexes. A triple
complex Y has entries Y k,ℓ,m for k, ℓ, m ∈ Z.

We denote the differentials in the three directions by Y k,ℓ,m -d1
Y k+1,ℓ,m,

Y k,ℓ,m -d2
Y k,ℓ+1,m and Y k,ℓ,m -d3

Y k,ℓ,m+1, respectively.
Let k, ℓ, m ∈ Z. We shall use the notation Y −,ℓ,= for the double complex hav-
ing at position (k, m) the entry Y k,ℓ,m, differentials taken accordingly. Similarly
the complex Y k,ℓ,∗ etc.
Given a triple complex Y ∈ ObCCC(A), we write HY −,=,∗ ∈ Ob CC(A) for
the double complex having at position (k, ℓ) the entry H(Y k,ℓ,∗), differentials
taken accordingly.
Denote by CCC (A) ⊆ CCC(A) the full subcategory of first octant triple com-
plexes; i.e. triple complexes Y having Y k,ℓ,m = 0 whenever k < 0 or ℓ < 0 or
m < 0.

1.2.2 Planewise total complex

For Y ∈ Ob CCC (A) we denote by t1,2Y ∈ Ob CCx(A) the planewise total
complex of Y , defined for m ∈ Z as

(t1,2Y )∗,m := t(Y −,=,m) ,

with the differentials of t1,2Y in the horizontal direction being induced by the
differentials in the third index direction of Y , and with the differentials of
t1,2Y in the vertical direction being given by the total complex differentials.
Explicitly, given k, ℓ ≥ 0, we have

(t1,2Y )k,ℓ =
⊕

i, j ≥ 0, i+j = k

Y i,j,ℓ .
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By means of induced morphisms, this furnishes a functor

CCC (A) -t1,2
CCx(A)

Y - t1,2Y .

2 Cartan-Eilenberg resolutions

We shall use Quillen’s language of exact categories [14, p. 15] to deal with
Cartan-Eilenberg resolutions [5, XVII.§1], as it has been done by Mac Lane
already before this language was available; cf. [12, XII.§11]. The assertions in
this section are for the most part wellknown.

2.1 A remark

Remark 2 Let A be an additive category. Then

C[0(A)/
(

C[0(A) ∩ Csp ac(A)
) - K[0(A)

is an equivalence.

Proof. Faithfulness is to be shown. A morphism X - Y in C[0(A)
that factors over an elementary split acyclic complex of the form

(· · · - 0 - T T - 0 - · · · ) with T in positions k and k + 1
is zero, provided k < 0.

2.2 Exact categories

Concerning the terminology of exact categories, introduced by
Quillen [14, p. 15], we refer to [10, Sec. A.2].
Let E be an exact category in which all idempotents split. An object I ∈ Ob E
is called relatively injective, or a relative injective (relative to the set of pure
short exact sequences, that is), if E(−, I) maps pure short exact sequences of
E to short exact sequences. We say that E has enough relative injectives, if
for all X ∈ ObE , there exists a relative injective I and a pure monomorphism
X -r I.
In case E is an abelian category, with all short exact sequences stipulated to
be pure, then we omit “relative” and speak of “injectives” etc.

Definition 3 Suppose given a complex X ∈ ObC[0(E) with pure differentials.
A relatively injective complex resolution of X is a complex I ∈ Ob C[0(E),
together with a quasiisomorphism X - I, such that the following properties
are satisfied.

(1) The object entries of I are relatively injective.

(2) The differentials of I are pure.

(3) The quasiisomorphism X - I consists of pure monomorphisms.
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We often refer to such a relatively injective complex resolution just by I.
A relatively injective object resolution, or just a relatively injective resolution,
of an object Y ∈ ObE is a relatively injective complex resolution of ConcY .
A relatively injective resolution is the complex of a relatively injective object
resolution of some object in E .

Remark 4 Suppose that E has enough relative injectives. Every complex X ∈
Ob C[0(E) with pure differentials has a relatively injective complex resolution
I ∈ Ob C[0(E). In particular, every object Y ∈ Ob E has a relatively injective
resolution J ∈ ObC[0(E).

Proof. Let X0 -r I0 be a pure monomorphism into a relatively injective
object I0. Forming a pushout along X0 -r I0, we obtain a pointwise purely
monomorphic morphism of complexes X - X ′ with X ′0 = I0 and X ′k = Xk

for k ≥ 2. By considering its cokernel, we see that it is a quasiisomorphism.
So we may assume X0 to be relatively injective.
Let X1 -r I1 be a pure monomorphism into a relatively injective object I1.
Form a pushout along X1 -r I1 etc.

Remark 5 Suppose given X ∈ Ob C[0(E) with pure differentials such that
HkX ≃ 0 for k ≥ 1. Suppose given I ∈ Ob C[0(E) such that Ik is purely

injective for k ≥ 0, and such that the differential I0 -d I1 has a kernel in E.
Then the map

K[0(E)(X, I) -
E

(

Kern(X0 -d X1), Kern(I0 -d I1)
)

that sends a representing morphism of complexes to the morphism induced on
the mentioned kernels, is bijective.

Suppose E to have enough relative injectives. Let I ⊆ E denote the full subcat-
egory of relative injectives. Let C[0, res(I) denote the full subcategory of C[0(I)
consisting of complexes X with pure differentials such that HkX ≃ 0 for k ≥ 1.
Let K[0, res(I) denote the image of C[0, res(I) in K(E).

Remark 6 The functor C[0, res(I) - E, X - H0(X), induces an equiva-
lence

K[0, res(I) -∼ E .

Proof. This functor is dense by Remark 4, and full and faithful by Remark 5.

Remark 7 (exact Horseshoe Lemma)
Given a pure short exact sequence X ′ - X - X ′′ and relatively injective
resolutions I ′ of X ′ and I ′′ of X ′′, there exists a relatively injective resolution
I of X and a pointwise split short exact sequence I ′ - I - I ′′ that maps
under H0 to X ′ - X - X ′′.
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Proof. Choose pure monomorphisms X ′ -r I ′0 and X ′′ -r I ′′0 into relative
injectives I ′0 and I ′′0. Embed them into a morphism from the pure short exact
sequence

X ′ -r X - X ′′

to the split short exact sequence

I ′ -(1 0)
I ′ ⊕ I ′′ -

“

0
1

”

I ′′ .

Insert the pushout T of X ′ -r X along X ′ -r I ′0 and the pullback of
I ′0 ⊕ I ′′0 - I ′′0 along X ′′ -r I ′′0 to see that X - I ′0 ⊕ I ′′0 is purely
monomorphic. So we can take the cokernel B1I ′ - B1I - B1I ′′ of this
morphism of pure short exact sequences. Considering the cokernels on the
commutative triangle (X, T, I ′0 ⊕ I ′′0) of pure monomorphisms, we obtain a
bicartesian square (T, I ′0 ⊕ I ′′0, B1I ′, B1I) and conclude that the sequence of
cokernels is itself purely short exact. So we can iterate.

2.3 An exact category structure on C(A)

Let A be an abelian category with enough injectives.

Remark 8 The following conditions on a short exact sequence
X ′ - X - X ′′ in C(A) are equivalent.

(1) All connectors in its long exact homology sequence are equal to zero.

(2) The sequence BkX ′ - BkX - BkX ′′ is short exact for all k ∈ Z.

(3) The morphism ZkX - ZkX ′′ is epimorphic for all k ∈ Z.

(3′) The morphism Z′kX ′ - Z′kX is monomorphic for all k ∈ Z.

(4) The diagram

BkX ′ //

��

ZkX ′ //

��

HkX ′

��
BkX //

��

ZkX //

��

HkX

��
BkX ′′ // ZkX ′′ // HkX ′′

has short exact rows and short exact columns for all k ∈ Z.

Proof. We consider the diagram in (4) as a (horizontal) short exact sequence
of (vertical) complexes and regard its long exact homology sequence. Taking
into account that all assertions are supposed to hold for all k ∈ Z, we can
employ the long exact homology sequence on X ′ - X - X ′′ to prove the
equivalence of (1), (2), (3) and (4).
Now the assertion (1) ⇐⇒ (3) is dual to the assertion (1) ⇐⇒ (3′).
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Remark 9 The category C(A), equipped with the set of short exact sequences
that have zero connectors on homology as pure short exact sequences, is an exact
category with enough relatively injective objects in which all idempotents split.
With respect to this exact category structure on C(A), a complex is relatively
injective if and only if it is split and has injective object entries.

Cf. [12, XII.§11], where pure short exact sequences are called proper. A rela-
tively injective object in C(A) is also referred to as an injectively split complex.
To a relatively injective resolution of a complex X ∈ Ob C(A), we also refer
as a Cartan-Eilenberg-resolution, or, for short, as a CE-resolution of X ; cf.
[5, XVII.§1]. A CE-resolution is a CE-resolution of some complex. Considered
as a double complex, it is in particular rowwise split and has injective object
entries.

Given a morphism X -f X ′ in C(A), CE-resolutions J of X and J ′ of X ′, a

morphism J -f̂ J ′ in CC(A) such that (J i,j -f̂i,j

J ′i,j) = (0 - 0) for i < 0
and such that

H0(J∗,− -f̂∗,−

J ′∗,−) = (X -f X ′)

is called a CE-resolution of X -f X ′. By Remarks 9 and 6, each morphism
in C(A) has a CE-resolution.

Proof of Remark 9. We claim that C(A), equipped with the said set of short
exact sequences, is an exact category. We verify the conditions (Ex 1, 2, 3)
listed in [10, Sec. A.2]. The conditions (Ex 1◦, 2◦, 3◦) then follow by duality.

Note that by Remark 8.(3′), a monomorphism X - Y in C(A) is pure if and
only if Z′k(X - Y ) is monomorphic in A for all k ∈ Z.

Ad (Ex 1). To see that a split monomorphism is pure, we may use additivity
of the functor Z′k for k ∈ Z.

Ad (Ex 2). To see that the composition of two pure monomorphisms is pure,
we may use Z′k being a functor for k ∈ Z.

Ad (Ex 3). Suppose given a commutative triangle

Y

�
@@

@@

��@
@@

@

X

??~~~~~~~~
• // Z ,

in C(A). Applying the functor Z′k to it, for k ∈ Z, we conclude that
Z′k(X - Y ) is monomorphic, whence X - Y is purely monomorphic. So
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we may complete to

A

•
@@

@@

  @
@@

@

// B

Y

�
@@

@@

  @
@@

@

>
~~~~

>>~~~~

X

•~~~~

>>~~~~

• // Z

in C(A) with (X, Y, B) and (A, Y, Z) pure short exact sequences. Applying Z′k

to this diagram, we conclude that Z′k(A - B) is a monomorphism for k ∈ Z,
whence A - B is a pure monomorphism.
This proves the claim.
Note that idempotents in C(A) are split since C(A) is also an abelian category.
We claim relative injectivity of complexes with split differentials and injec-
tive object entries. By a direct sum decomposition, and using the fact that
any monomorphism from an elementary split acyclic complex with injective
entries to an arbitrary complex is split, we are reduced to showing that a pure
monomorphism from a complex with a single nonzero injective entry, at posi-
tion 0, say, to an arbitrary complex is split. So suppose given I ∈ Ob InjA,
X ∈ ObC(A) and a pure monomorphism Conc I -r X . Using Remark 8.(3′),
we may choose a retraction to the composite (I - X0 - Z′0X). This yields
a retraction to I - X0 that composes to 0 with X−1 - X0, which can be
employed for the sought retraction X - Conc I. This proves the claim.
Let X ∈ ObC(A). We claim that there exists a pure monomorphism from X
to a relatively injective complex. Since A has enough injectives, by a direct
sum decomposition we are reduced to finding a pure monomorphism from X to
a split complex. Consider the following morphism φk of complexes for k ∈ Z,

· · · // 0 // Xk
(1 0) // Xk ⊕ Z′kX // 0 // · · ·

· · · // Xk−2
d //

OO

Xk−1
d //

d

OO

Xk
d //

(1 p)

OO

Xk+1 //

OO

· · · ,

where Xk -p Z′kX is taken from X . The functor Z′k maps it to the identity.
We take the direct sum of the upper complexes over k ∈ Z and let the mor-
phisms φk be the components of a morphism φ from X to this direct sum. At
position k, this morphism φ is monomorphic because φk is. Moreover, Z′k(φ)
is a monomorphism because Z′k(φk) is. Hence φ is purely monomorphic by
condition (3′) of Remark 8. This proves the claim.

Remark 10 Write E := C(A). Given ℓ ≥ 0, we have a homology functor

E -H
ℓ

A, which induces a functor C(E) -C(Hℓ)
C(A). Suppose given a purely

acyclic complex X ∈ Ob C(E). Then C(Hℓ)X ∈ ObC(A) is acyclic.
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Proof. This follows using the definition of pure short exact sequences, i.e.
Remark 8.(1).

2.4 An exact category structure on C[0(A)

Write CCx, CE(InjA) for the full subcategory of CCx(A) whose objects are
CE-resolutions. Write KKx, CE(InjA) for the full subcategory of KKx(A) whose
objects are CE-resolutions.

Remark 11 The category C[0(A), equipped with the short exact sequences that
lie in C[0(A) and that are pure in C(A) in the sense of Remark 9 as pure short
exact sequences, is an exact category wherein idempotents are split. It has
enough relative injectives, viz. injectively split complexes that lie in C[0(A).

Proof. To show that it has enough relative injectives, we replace φ0 in the proof

of Remark 9 by X -φ
′

0 ConcX0, defined by X0
-1X0

X0 at position 0.

2.5 The Cartan-Eilenberg resolution of a quasiisomorphism

Abbreviate E := C(A), which is an exact category as in Remark 9. Consider
CCx(A) ⊆ C[0(E), where the second index of X ∈ Ob CCx(A) counts the
positions in E = C(A); i.e. when X is viewed as a complex with values in E ,
its entry at position k is given by Xk,∗ ∈ E = C(A).

Remark 12 Suppose given a split acyclic complex X ∈ ObC[0(A). There
exists a horizontally split acyclic CE-resolution J ∈ ObCCx, CE(InjA) of X.

Proof. This holds for an elementary split acyclic complex, and thus also in the
general case by taking a direct sum.

Lemma 13 Suppose given X ∈ ObCCx(A) with pure differentials when con-
sidered as an object of C[0(E), and with Hk

(

X∗,−
)

≃ 0 in C[0(A) for k ≥ 1.
Suppose given J ∈ ObCCx(InjA) with split rows Jk,∗ for k ≥ 1. In other
words, J is supposed to consist of relative injective object entries when consid-
ered as an object of C[0(E).
Then the map

(∗) KKx(A)(X, J) -H0((−)∗,−)
K[0(A)

(

H0
(

X∗,−
)

, H0
(

J∗,−
))

is bijective.

Proof. First, we observe that by Remark 5, we have

(∗∗) K[0(E)(X, J) -H0((−)∗,−)
∼ E

(

H0
(

X∗,−
)

, H0
(

J∗,−
))

.
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So it remains to show that (∗) is injective. Let X -f J be a morphism
that vanishes under (∗). Then H0

(

X∗,−
) - H0

(

J∗,−
)

factors over a split

acyclic complex S ∈ ObC[0(A); cf. Remark 2. Let K be a horizontally split
acyclic CE-resolution of S; cf. Remark 12. By Remark 5, we obtain a mor-
phism X - K that lifts H0

(

X∗,−
) - S and a morphism K - J that lifts

S - H0
(

J∗,−
)

. The composite X - K - J vanishes in KKx(A). The
difference

(X -f J)− (X - K - J)

lifts H0
(

X∗,−
) -0 H0

(

J∗,−
)

. Hence by (∗∗), it vanishes in K[0(E) and so a

fortiori in KKx(A). Altogether, X -f J vanishes in KKx(A).

Proposition 14 The functor CCx, CE(InjA) -H0((−)∗,−)
C[0(A) induces an

equivalence

KKx, CE(InjA) -H0((−)∗,−)
∼ K[0(A) .

Proof. By Lemma 13, this functor is full and faithful. By Remark 4, it is
dense.

Corollary 15 Suppose given X, X ′ ∈ Ob C[0(A). Let J be a CE-resolution
of X. Let J ′ be a CE-resolution of X ′. If X and X ′ are isomorphic in K[0(A),
then J and J ′ are isomorphic in KKx(A).

The following lemma is to be compared to Remark 12.

Lemma 16 Suppose given an acyclic complex X ∈ Ob C[0(A). There exists
a rowwise split acyclic CE-resolution J of X. Each CE-resolution of X is
isomorphic to J in KKx(A).

Proof. By Corollary 15, it suffices to show that there exists a rowwise split
acyclic CE-resolution of X . Recall that a CE-resolution of an arbitrary com-
plex Y ∈ Ob C[0(A) can be constructed by a choice of injective resolutions of
HkY and BkY for k ∈ Z, followed by an application of the abelian Horseshoe
Lemma to the short exact sequences BkY - ZkY - HkY for k ∈ Z and
then to ZkY - Y k - Bk+1Y for k ∈ Z; cf. [5, Chap. XVII, Prop. 1.2].
Since HkX = 0 for k ∈ Z, we may choose the zero resolution for it. Applying
this construction, we obtain a rowwise split acyclic CE-resolution.

Given X -f X ′ in C[0(A), a morphism J -f̂ J ′ in CCx(A) is called a

CE-resolution of X -f X ′ if H0(f̂∗,−) ≃ f , as diagrams of the form • - •.
By Remark 5, given CE-resolutions J of X and J ′ of X ′, there exists a

CE-resolution J -f̂ J ′ of X -f X ′.
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Proposition 17 Let X -f X ′ be a quasiisomorphism in C[0(A). Let

J -f̂ J ′ be a CE-resolution of X -f X ′. Then f̂ can be written as a com-
posite in CCx, CE(InjA) of a rowwise homotopism, followed by a double homo-
topism.

Proof. Choose a pointwise split monomorphism X -a A into a split acyclic
complex X . We can factor

(X -f X ′) =

(

X -(f a )
X ′ ⊕A -

“

1
0

”

X ′

)

,

so that (f a) is a pointwise split monomorphism. Let B be a CE-resolution of
A. Choosing a CE-resolution b of a, we obtain the factorisation

(J -f̂ J ′) =

(

J -( f̂ b)
J ′ ⊕B -

“

1
0

”

J ′

)

.

Since X ′⊕A -

“

1
0

”

X ′ is a homotopism, J ′⊕B -

“

1
0

”

J is a double homotopism;
cf. Corollary 15. Hence f̂ is a composite of a rowwise homotopism and a double
homotopism if and only if this holds for ( f̂ b). So we may assume that f is
pointwise split monomorphic, so in particular, monomorphic.

By Proposition 14, we may replace the given CE-resolution f̂ by an arbitrary
CE-resolution of f between J and an arbitrarily chosen CE-resolution of X ′

without changing the property of being a composite of a rowwise homotopism
and a double homotopism for this newly chosen CE-resolution of f .

Let X -f X ′ - X̄ be a short exact sequence in C[0(A). Since f is a quasi-
isomorphism, X̄ ∈ Ob C[0(A) is acyclic. Let J̄ be a rowwise split acyclic

CE-resolution of X̄; cf. Lemma 16. The short exact sequence X -f X ′ - X̄
is pure by acyclicity of X̄; cf. Remark 8.(1). Hence by the exact Horseshoe
Lemma, there exists a rowwise split short exact sequence J - J̃ ′ - J̄ of

CE-resolutions that maps to X -f X ′ - X̄ under H0
(

(−)∗,−
)

; cf. Remark 7.

Since J̄ is rowwise split acyclic and since the sequence J - J̃ ′ - J̄ is row-
wise split short exact, J - J̃ ′ is a rowwise homotopism. Since J - J̃ ′ is a

CE-resolution of X -f X ′, this proves the proposition.

3 Formalism of spectral sequences

We follow essentially Verdier [17, II.4]; cf. [6, App.]; on a more basic level, cf.
[11, Kap. 4].

Let A be an abelian category.
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3.1 Pointwise split and pointwise finitely filtered complexes

Let Z∞ := {−∞}⊔Z ⊔ {∞}, considered as a linearly ordered set, and thus as
a category. Write ]α, β] := {σ ∈ Z∞ : α < σ ≤ β} for α, β ∈ Z∞ such that
α ≤ β; etc.

Given X ∈ Ob Z∞, C(A) , the morphism of X on α ≤ β in Z∞ shall be

denoted by X(α) -x X(β).
An object X ∈ Ob Z∞, C(A) is called a pointwise split and pointwise finitely
filtered complex (with values in A), provided (SFF 1, 2, 3) hold.

(SFF 1) We have X(−∞) = 0.

(SFF 2) The morphism X(α)i -x
i

X(β)i is split monomorphic for all
i ∈ Z and all α ≤ β in Z∞.

(SFF 3) For all i ∈ Z, there exist β0, α0 ∈ Z such that X(α)i -x
i

X(β)i

is an identity whenever α ≤ β ≤ β0 or α0 ≤ α ≤ β in Z∞.

The pointwise split and pointwise finitely filtered complexes with values in A
form a full subcategory SFFC(A) ⊆ Z∞, C(A) .

Suppose given a pointwise split and pointwise finitely filtered complex X with
values in A for the rest of the present §3.

Let α ∈ Z∞. Write X̄(α) := Cokern
(

X(α− 1) - X(α)
)

for α ∈ Z. Given
i ∈ Z, we obtain X(α)i ≃

⊕

σ∈]−∞,α] X̄(σ)i, which is a finite direct sum. We

identify along this isomorphism. In particular, we get as a matrix representa-
tion for the differential

(

X(α)i -d X(α)i+1
)

=





⊕

σ∈]−∞,α] X̄(σ)i -(di
σ,τ)σ,τ ⊕

τ∈]−∞,α] X̄(τ)i+1



 ,

where di
σ,τ = 0 whenever σ < τ ; a kind of lower triangular matrix.

3.2 Spectral objects

Let Z̄∞ := Z∞ × Z. Write α+k := (α, k), where α ∈ Z∞ and k ∈ Z. Let
α+k ≤ β+ℓ in Z̄∞ if k < ℓ or (k = ℓ and α ≤ β), i.e. let Z̄∞ be linearly ordered
via a lexicographical ordering. We have an automorphism α+k - α+k+1 of
the poset Z̄∞, to which we refer as shift. Note that −∞+k = (−∞)+k.

We have an order preserving injection Z∞
- Z̄∞ , α - α+0. We use this

injection as an identification of Z∞ with its image in Z̄∞ , i.e. we sometimes
write α := α+0 by abuse of notation.
Let Z̄

#
∞ := {(α, β) ∈ Z̄∞ × Z̄∞ : β−1 ≤ α ≤ β ≤ α+1}. We usually

write β/α := (α, β) ∈ Z̄
#
∞; reminiscent of a quotient. The set Z̄

#
∞ is partially

ordered by β/α ≤ β′/α′ :⇐⇒ (β ≤ β′ and α ≤ α′). We have an automorphism
β/α - (β/α)+1 := α+1/β of the poset Z̄

#
∞, to which, again, we refer as shift.
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We write Z
#
∞ := {β/α ∈ Z̄

#
∞ : −∞ ≤ α ≤ β ≤ ∞}. Note that any element of

Z̄
#
∞ can uniquely be written as (β/α)+k for some β/α ∈ Z

#
∞ and some k ∈ Z.

We shall construct the spectral object Sp(X) ∈ Ob Z̄
#
∞, K(A) . The morphism

of Sp(X) on β/α ≤ β′/α′ in Z̄
#
∞ shall be denoted by X(β/α) -x X(β′/α′).

We require that

(

X
(

(β/α)+k
) -x X

(

(β′/α′)+k
)

)

=

(

X(β/α) -x X(β′/α′)

)•+k

for β/α ≤ β′/α′ in Z̄
#
∞; i.e., roughly put, that Sp(X) be periodic up to shift of

complexes.

Define

X
(

β/α
)

:= Cokern
(

X(α) -x X(β)
)

for β/α ∈ Z
#
∞. By periodicity, we conclude that X

(

α/α
)

= 0 and X
(

α+1/α
)

=
0 for all α ∈ Z̄∞.

Write

Di
β/α, β′/α′ := (di

σ,τ )σ∈]α,β], τ∈]α′,β′] : X(β/α)i - X(β′/α′)i+1

for i ∈ Z and β/α, β′/α′ ∈ Z
#
∞.

Given −∞ ≤ α ≤ β ≤ γ ≤ ∞ and i ∈ Z, we let

(

X(β/α)i -x
i

X(γ/α)i

)

:=

(

X(β/α)i -(1 0)
X(β/α)i ⊕X(γ/β)i

)

(

X(γ/α)i -x
i

X(γ/β)i

)

:=

(

X(β/α)i ⊕X(γ/β)i -

“

0
1

”

X(γ/β)i

)

(

X(γ/β)i -x
i

X(α+1/β)i

)

:=

(

X(γ/β)i -
Di

γ/β, β/α

X(β/α)i+1

)

.

By periodicity up to shift of complexes, this defines Sp(X). The construction
is functorial in X ∈ Ob SFFC(A).

3.3 Spectral sequences

Let Z̄
##
∞ := {(γ/α, δ/β) ∈ Z̄

#
∞ × Z̄

#
∞ : δ−1 ≤ α ≤ β ≤ γ ≤ δ ≤ α+1}. Given

(γ/α, δ/β) ∈ Z̄
##
∞ , we usually write δ/β//γ/α := (γ/α, δ/β). The set Z̄

##
∞ is

partially ordered by

δ/β//γ/α ≤ δ′/β′//γ′/α′ :⇐⇒ (γ/α ≤ γ′/α′ and δ/β ≤ δ′/β′) .

Define the spectral sequence E(X) ∈ Ob Z̄
##
∞ ,A of X by letting its value on

δ/β//γ/α ≤ δ′/β′//γ′/α′

Documenta Mathematica 13 (2008) 677–737



Comparison of Spectral Sequences Involving Bifunctors 699

in Z̄
##
∞ be the morphism that appears in the middle column of the diagram

H0
(

X(γ/α)
) � //

H0(x)

��

E(δ/β//γ/α)(X) • //

e

��

H0
(

X(δ/β)
)

H0(x)

��
H0

(

X(γ′/α′)
) � // E(δ′/β′//γ′/α′)(X) • // H0

(

X(δ′/β′)
)

.

Given δ/β//γ/α ∈ Z̄
##
∞ and k ∈ Z, we also write

E(δ/β//γ/α)+k(X) := E
(

(δ/β)+k//(γ/α)+k
)

(X) .

Altogether,

Z∞, C(A) ⊇ SFFC(A) - Z̄
#
∞, K(A) - Z̄

##
∞ ,A

X - Sp(X) - E(X) .

3.4 A short exact sequence

Lemma 18 Given ε−1 ≤ α ≤ β ≤ γ ≤ δ ≤ ε ≤ α+1 in Z̄∞, we have a short
exact sequence

E(ε/β//γ/α)(X) -re E(ε/β//δ/α)(X) -e E(ε/γ//δ/α)(X) .

Proof. See [10, Lem. 3.9].

Lemma 19 Given ε−1 ≤ α ≤ β ≤ γ ≤ δ ≤ ε ≤ α+1 in Z̄∞, we have a short
exact sequence

E(ε/γ//δ/α)(X) -re E(ε/γ//δ/β)(X) -e E(α+1/γ//δ/β)(X) .

Proof. Apply the functor induced by β/α - α+1/β to Sp(X). Then apply
[10, Lem. 3.9].

The short exact sequence in Lemma 18 is called a fundamental short exact
sequence (in first notation), the short exact sequence in Lemma 19 is called
a fundamental short exact sequence (in second notation). They will be used
without further comment.

3.5 Classical indexing

Let 1 ≤ r ≤ ∞ and let p, q ∈ Z. Denote

Ep,q
r = Ep,q

r (X) := E(−p− 1 + r/−p− 1//−p/−p− r)+p+q(X) ,

where i +∞ :=∞ and i−∞ := −∞ for all i ∈ Z.
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Example 20 The short exact sequences in Lemmata 18, 19 allow to derive the
exact couples of Massey. Write

Di,j
r = Di,j

r (X) := E(−i/−∞//−i−r+1/−∞)+i+j(X)

for i, j ∈ Z and r ≥ 1. We obtain an exact sequence

Di, j
r

-e Di−1, j+1
r

-e Ei+r−2, j−r+2
r

-e Di+r−1, j−r+2
r

-e Di+r−2, j−r+3
r

by Lemmata 18, 19.

3.6 Comparing proper spectral sequences

Let X -f Y be a morphism in SFFC(A), i.e. a morphism of pointwise split and

pointwise finitely filtered complexes with values in A. Write E(X) -E(f)
E(Y )

for the induced morphism on the spectral sequences.
For α, β ∈ Z̄∞, we write α <̇ β if

(

α < β
)

or
(

α = β and α ∈ {∞+k : k ∈ Z} ∪ {−∞+k : k ∈ Z}
)

.

We write

˙̄
Z

##
∞ := {δ/β//γ/α ∈ Z̄

##
∞ : δ−1 ≤ α <̇ β ≤ γ <̇ δ ≤ α+1} .

We write

Ė = Ė(X) := E(X)| ˙̄
Z

##
∞

∈ Ob ˙̄
Z

##
∞ ,A

for the proper spectral sequence of X ; analogously for the morphisms.

Lemma 21 If E(α + 1/α− 1//α/α− 2)+k(f) is an isomorphism for all α ∈ Z

and all k ∈ Z, then Ė(f) is an isomorphism.

Proof. Claim 1. We have an isomorphism E(γ/β − 1//β/β − 2)+k(f) for all
k ∈ Z, all β ∈ Z and all γ ∈ Z such that γ > β. We have an isomorphism
E(β + 1/β − 1//β/α− 1)+k(f) for all k ∈ Z, all β ∈ Z and all α ∈ Z such that
α < β.
The assertions follow by induction using the exact sequences

E(γ + 2/γ//γ + 1/β)+k−1 -e E(γ/β − 1//β/β − 2)+k

-e E(γ + 1/β − 1//β/β − 2)+k - 0

and

0 - E(β + 1/β − 1//β/α− 2)+k -e E(β + 1/β − 1//β/α− 1)+k

-e E(β − 1/α− 2//α− 1/α− 3)+k+1 .
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Claim 2. We have an isomorphism E(γ/β− 1//β/α− 1)+k(f) for all k ∈ Z and
all α, β, γ ∈ Z such that α < β < γ.

We proceed by induction on γ − α. By Claim 1, we may assume that α <
β − 1 < β + 1 < γ. Consider the image diagram

E(γ−1/β−1//β/α−1)+k -e E(γ/β−1//β/α−1)+k -re E(γ/β−1//β/α)+k .

Claim 3. We have an isomorphism E(δ/β//γ/α)+k(f) for all k ∈ Z and all
α, β, γ, δ ∈ Z such that α < β ≤ γ < δ.

We may assume that γ − β ≥ 1, for E(δ/β//β/α)+k = 0. We proceed by
induction on γ − β. By Claim 2, we may assume that γ − β ≥ 2. Consider the
short exact sequence

E(δ/β//γ − 1/α)+k -re E(δ/β//γ/α)+k -e E(δ/γ − 1//γ/α)+k .

Claim 4. We have an isomorphism E(δ/β//γ/α)+k(f) for all k ∈ Z and all
α, β, γ, δ ∈ Z∞ such that α < β ≤ γ < δ.

In view of Claim 3, it suffices to choose α̃ ∈ Z small enough such that
E(δ/β//γ/α̃)+k(f) = E(δ/β//γ/−∞)+k(f); etc.

Claim 5. We have an isomorphism E(δ/β//γ/α)+k(f) for all k ∈ Z and all
α, β, γ, δ ∈ Z∞ such that α <̇ β ≤ γ <̇ δ.

In view of Claim 4, it suffices to choose β̃ ∈ Z small enough such that
E(δ/β̃//γ/−∞)+k(f) = E(δ/−∞//γ/−∞)+k(f); etc.

Claim 6. We have an isomorphism E(δ/β//γ/α)+k(f) for all k ∈ Z and all
α, β, γ, δ ∈ Z̄∞ such that −∞ ≤ δ−1 ≤ α <̇ β ≤ γ ≤ ∞ < −∞+1 ≤ δ ≤ α+1.

In view of Claim 5, it suffices to consider the short exact sequence

E(∞/β//γ/δ−1)+k -re E(∞/β//γ/α)+k -e E(δ/β//γ/α)+k .

Claim 7. The morphism Ė(f) is an isomorphism.

Suppose given α, β, γ, δ ∈ Z̄∞ such that δ−1 ≤ α <̇ β ≤ γ <̇ δ ≤ α+1. Via a
shift, we may assume that we are in the situation of Claim 5 or of Claim 6.

3.7 The first spectral sequence of a double complex

Let A be an abelian category. Let X ∈ ObCCx(A). Given n ∈ Z∞, we write
X [n,∗ for the double complex arising from X by replacing X i,j by 0 for all i ∈
[0, n[. We define a pointwise split and pointwise finitely filtered complex tIX ,
called the first filtration of tX, by letting tIX(α) := tX [−α,∗ for α ∈ Z∞; and by
letting tIX(α) - tIX(β) be the pointwise split inclusion tX [−α,∗ - tX [−β,∗

for α, β ∈ Z∞ such that α ≤ β. Let EI = EI(X) := E(tIX). This construction
is functorial in X ∈ Ob CCx(A). Note that tIX(α) = X−α,k+α.

We record the following wellknown lemma in the language we use here.
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Lemma 22 Let α ∈ ]−∞, 0]. Let k ∈ Z such that k ≥ −α. We have

EI(α/α− 1//α/α− 1)+k(X) = Hk+α(X−α,∗)
EI(α + 1/α− 1//α/α− 2)+k(X) = H−α

(

Hk+α(X−,∗)
)

,

naturally in X ∈ ObCCx(A).

Proof. The first equality follows by EI(α/α−1//α/α−1)+k = HktIX(α/α−1) =
Hk+α(X−α,∗).

The morphism tIX(α/α−1) - tIX
(

(α−2)+1/α−1
)

= tIX
(

α−1/α−2
)•+1

from Sp(tIX) is at position k ≥ 0 given by

tIX(α)k = X−α,k+α -(−1)α ∂
X−α+1,k+α = tIX(α− 1)k+1 ;

cf. §1.1.6. In particular, the morphisms

EI(α + 1/α//α + 1/α)+k−1 -e EI(α/α− 1//α/α− 1)+k

-e EI(α− 1/α− 2//α− 1/α− 2)+k+1

are given by

Hk+α(X−α−1,∗) -(−1)α+1Hk+α(∂)
Hk+α(X−α,∗)

-(−1)αHk+α(∂)
Hk+α(X−α+1,∗) .

Now the second equality follows by the diagram

EI(α+1/α−1//α/α−2)+k

•
UUUUUUUU

e

**UUUUUUUU

EI(α/α−1//α/α−2)+k

•
TTTTTTTT

e

))TTTTTTTT

*
jjjjjjjj

e

55jjjjjjjj

EI(α+1/α−1//α/α−1)+k

EI(α+1/α//α+1/α)+k−1 e // EI(α/α−1//α/α−1)+k e //

)
iiiiiiii

e

44iiiiiiii

EI(α−1/α−2//α−1/α−2)+k+1 .

Remark 23 Let X -f Y be a rowwise quasiisomorphism in CCx(A). Then
EI(δ/β//γ/α)+k(f) is an isomorphism for δ−1 ≤ α ≤ β ≤ γ ≤ δ ≤ α+1 in Z̄∞

and k ∈ Z.

Proof. It suffices to show that the morphism Sp(tIf) in Z̄
#
∞, K(A) is point-

wise a quasiisomorphism. To have this, it suffices to show that tf [k,∗ is a quasi-
isomorphism for k ≥ 0. But f [k,∗ is a rowwise quasiisomorphism for k ≥ 0; cf.
§1.1.6.
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Lemma 24 The functor CCx(A) -ĖI ˙̄
Z

##
∞ , A factors over

KKx(A) -ĖI ˙̄
Z

##
∞ , A .

Proof. By Lemma 1, we have to show that ĖI annihilates all elementary horizon-
tally split acyclic double complexes in ObCCx(A) and all elementary vertically
split acyclic double complexes in Ob CCx(A).
Let U ∈ Ob CCx(A) be an elementary vertically split acyclic double complex
concentrated in rows i and i + 1, where i ≥ 0. Let V ∈ ObCCx(A) be an
elementary horizontally split acyclic double complex concentrated in columns
j and j + 1, where j ≥ 0.
Since V is rowwise acyclic, EI annihilates V by Remark 23, whence so does ĖI.
Suppose given

(∗) −∞ ≤ α <̇ β ≤ γ <̇ δ ≤ ∞

in Z̄∞ and k ∈ Z. We claim that the functor EI(δ/β//γ/α)+k annihilates U .
We may assume that β < γ. Note that EI(δ/β//γ/α)+k(U) is the image of

Hk
(

tIU(γ/α)
) - Hk

(

tIU(δ/β)
)

.

The double complex U [−δ,∗/U [−β,∗ is columnwise acyclic except possibly if
−β = i + 1 or if −δ = i + 1. The double complex U [−γ,∗/U [−α,∗ is columnwise
acyclic except possibly if −α = i + 1 or if −γ = i + 1. All three remaining
combinations of these exceptional cases are excluded by (∗), however. Hence
EI(δ/β//γ/α)+k(U) = 0. This proves the claim.
Suppose given

(∗∗) δ−1 ≤ α <̇ β ≤ γ ≤ ∞ ≤ −∞+1 ≤ δ ≤ α+1 .

in Z̄∞ and k ∈ Z. We claim that the functor EI(δ/β//γ/α)+k annihilates U .
We may assume that β < γ and that δ−1 < α. Note that EI(δ/β//γ/α)+k(U)
is the image of

Hk
(

tIU(γ/α)
) - Hk+1

(

tIU(β/δ−1)
)

.

The double complex U [−β,∗/U [−(δ−1),∗ is columnwise acyclic except possibly
if −(δ−1) = i + 1 or if −β = i + 1. The double complex U [−γ,∗/U [−α,∗ is
columnwise acyclic except possibly if−γ = i+1 or if−α = i+1. Both remaining
combinations of these exceptional cases are excluded by (∗∗), however. Hence
EI(δ/β//γ/α)+k(U) = 0. This proves the claim.
Both claims taken together show that ĖI annihilates U .

4 Grothendieck spectral sequences

4.1 Certain quasiisomorphisms are preserved by a left exact
functor

Suppose given abelian categories A, B, and suppose that A has enough injec-

tives. Let A -F B be a left exact functor.
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Remark 25 Suppose given an F -acyclic object X ∈ ObA and an injective res-

olution I ∈ Ob C[0(InjA) of X. Let ConcX -f I be its quasiisomorphism.

Then ConcFX -Ff
FI is a quasiisomorphism.

Proof. This follows since F is left exact and since Hi(FI) ≃ (RiF )X ≃ 0 for
i ≥ 1.

Remark 26 Suppose given a complex U ∈ ObC[0(A) consisting of F -acyclic
objects. There exists an injective complex resolution I ∈ Ob C[0(InjA)

of U such that its quasiisomorphism U -f I maps to a quasiisomorphism

FU -Ff
FI.

Proof. Let J ∈ Ob CCx, CE(InjA) be a CE-resolution of U ; cf. Remark 9. Since
the morphism of double complexes Conc2 U - J is a columnwise quasiiso-
morphism consisting of monomorphisms, taking the total complex, we obtain
a quasiisomorphism U - tJ consisting of monomorphisms. By F -acyclicity
of the entries of U , the image Conc2 FU - FJ under F is a columnwise
quasiisomorphism, too; cf. Remark 25. Hence F maps the quasiisomorphism
U - tJ to the quasiisomorphism FU - F tJ . So we may take I := tJ .

Lemma 27 Suppose given a complex U ∈ ObC[0(A) consisting of F -acyclic

objects and an injective complex resolution I ∈ Ob C[0(InjA) of U . Let U -f I

be its quasiisomorphism. Then FU -Ff
FI is a quasiisomorphism.

Proof. Let U - I ′ be a quasiisomorphism to an injective complex resolution
I ′ that is mapped to a quasiisomorphism by F ; cf. Remark 26. Since U - I ′

is a quasiisomorphism, the induced map K(A)(U, I) �
K(A)(I

′, I) is surjec-
tive, so that there exists a morphism I ′ - I such that (U - I ′ - I) =

(U -f I) in K(A). Since, moreover, U -f I is a quasiisomorphism, I ′ - I
is a homotopism. Since FU - FI ′ is a quasiisomorphism and FI ′ - FI is
a homotopism, we conclude that FU - FI is a quasiisomorphism.

4.2 Definition of the Grothendieck spectral sequence functor

Suppose given abelian categories A, B and C, and suppose that A and B have

enough injectives. Let A -F B and B -G C be left exact functors.
A (F, G)-acyclic resolution of X ∈ ObA is a complex A ∈ Ob C[0(A), together
with a quasiisomorphism Conc X - A, such that the following hold.

(A 1) The object Ai is F -acyclic for i ≥ 0.

(A 2) The object Ai is (G ◦ F )-acyclic for i ≥ 0.

(A 3) The object FAi is G-acyclic for i ≥ 0.
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An object X ∈ ObA that possesses an (F, G)-acyclic resolution is called
(F, G)-acyclicly resolvable. The full subcategory of (F, G)-acyclicly resolvable
objects in A is denoted by A(F,G).

A complex A ∈ ObC[0(A), together with a quasiisomorphism ConcX - A,
is called an F -acyclic resolution of X ∈ ObA if (A 2) holds.

Remark 28 If F carries injective objects to G-acyclic objects, then (A 1) and
(A 3) imply (A 2).

Proof. Given i ≥ 0, we let I be an injective resolution of Ai, and Ĩ the acyclic
complex obtained by appending Ai to I in position −1. Since Ai is F -acyclic,
the complex F Ĩ is acyclic; cf. Remark 25. Note that FB0Ĩ ≃ FAi is G-acyclic
by assumption. Since

(RkG)F Ĩj - (RkG)FBj+1Ĩ - (Rk+1G)FBj Ĩ

is exact in the middle for j ≥ 0 and k ≥ 1, we may conclude by induction on
j and by G-acyclicity assumption on F Ĩj that FBj Ĩ is G-acyclic for j ≥ 0. In
particular, we have (R1G)(FBj Ĩ) ≃ 0 for j ≥ 0, whence

GFBj Ĩ - GFĨj - GFBj+1Ĩ

is short exact for j ≥ 0. We conclude that (G ◦ F )Ĩ is acyclic. Hence Ai is
(G ◦ F )-acyclic.

To see Remark 28, one could also use a Grothendieck spectral sequence, once
established.

Remark 29 Suppose given X ∈ ObA, an injective resolution I of X and an
F -acyclic resolution A of X. Then there exists a quasiisomorphism A - I

that is mapped to 1X by H0. Moreover, any morphism A -u I that is mapped
to 1X by H0 is a quasiisomorphism and is mapped to a quasiisomorphism

FA -Fu
FI by F .

Proof. Let I ′ be an injective complex resolution of A such that its quasiisomor-
phism A - I ′ is mapped to a quasiisomorphism by F ; cf. Remark 26. We
use the composite quasiisomorphism ConcX - A - I ′ to resolve X by I ′.
To prove the first assertion, note that there is a homotopism I ′ - I resolving
1X ; whence the composite (A - I ′ - I) is a quasiisomorphism resolving
1X .
To prove the second assertion, note that the induced map

K(A)(A, I) �
K(A)(I

′, I) is surjective, whence there is a factorisation

(A - I ′ - I) = (A -u I) in K(A) for some morphism I ′ - I, which,

since resolving 1X as well, is a homotopism. In particular, A -u I is a quasi-

isomorphism. Finally, since FI ′ - FI is a homotopism, also FA -Fu
FI is

a quasiisomorphism.
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Alternatively, in the last step of the preceding proof we could have invoked
Lemma 27.

The following construction originates in [5, XVII.§7] and [7, Th. 2.4.1]. In its
present form, it has been carried out by Haas in the classical framework [8].
We do not claim any originality.

I do not know whether the use of injectives in A in the following construction
can be avoided; in any case, it would be desirable to do so.

We set out to define the proper Grothendieck spectral sequence functor

A(F,G)
-ĖGr

F,G ˙̄
Z

##
∞ , C .

We define ĖGr
F,G on objects. Suppose given X ∈ ObA(F,G). Choose an

(F, G)-acyclic resolution AX ∈ ObC[0(A) of X . Choose a CE-resolution
JX ∈ ObCCx(InjB) of FAX . Let EGr

F,G(X) := EI(GJX) = E(tIGJX) ∈

Ob Z̄
##
∞ , C be the Grothendieck spectral sequence of X with respect to F

and G. Accordingly, let

ĖGr
F,G(X) := ĖI(GJX) = Ė(tIGJX) ∈ Ob ˙̄

Z
##
∞ , C

be the proper Grothendieck spectral sequence of X with respect to F and G.

We define ĖGr
F,G on morphisms. Suppose given X ∈ ObA(F,G), and let AX

and JX be as above. Choose an injective resolution IX ∈ ObC[0(InjA) of

X . Choose a quasiisomorphism AX
-pX

IX that is mapped to 1X by H0 and
to a quasiisomorphism by F ; cf. Remark 29. Choose a CE-resolution KX ∈

Ob CCx(InjB) of FIX . Choose a morphism JX
-qX

KX in CCx(InjB) that is
mapped to FpX by H0

(

(−)∗,−
)

; cf. Remark 6.

Note that JX
-qX

KX can be written as a composite in CCx, CE(InjB) of a
rowwise homotopism, followed by a double homotopism; cf. Proposition 17.

Hence, so can GJX
GqX
−−−→ GKX . Thus ĖI(GJX)

ĖI(GqX)
−−−−−→ ĖI(GKX) is an

isomorphism; cf. Remark 23, Lemma 24.

Suppose given X -f Y in A(F,G). Choose a morphism IX
-f
′

IY in C[0(A)

that is mapped to f by H0. Choose a morphism KX
-f
′′

KY in CCx(InjB)
that is mapped to Ff ′ by H0

(

(−)∗,−
)

; cf. Remark 6. Let

ĖGr
F,G(X

f
−→ Y ) :=

(

ĖI(GJX)
ĖI(GqX )
−−−−−→

∼
ĖI(GKX)

ĖI(Gf ′′)
−−−−−→ ĖI(GKY )

ĖI(GqY )
←−−−−−

∼
ĖI(GJY )

)

.
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The procedure can be adumbrated as follows.

X -f

Y

AX

���
pX

IX
-f ′

AY

���
pY

IY

JX

���
qX

KX
-f ′′

JY

���
qY

KY

We show that this defines a functor ĖGr
F,G : A(F,G)

- ˙̄
Z

##
∞ , C . We need to

show independence of the construction from the choices of f ′ and f ′′, for then
functoriality follows by appropriate choices.

Let IX
-f̃
′

IY and KX
-f̃
′′

KY be alternative choices. The residue classes of
f ′ and f̃ ′ in K[0(A) coincide, whence so do the residue classes of Ff ′ and F f̃ ′

in K[0(B). Therefore, the residue classes of f ′′ and f̃ ′′ in KKx(B) coincide; cf.
Proposition 14. Hence, so do the residue classes of Gf ′′ and Gf̃ ′′ in KKx(C).
Thus ĖI(Gf ′′) = ĖI(Gf̃ ′′); cf. Lemma 24.
We show that alternative choices of AX , IX and pX , and of JX , KX and qX ,
yield isomorphic proper Grothendieck spectral sequence functors.

Let ÃX
-p̃X

ĨX and J̃X
-q̃X

K̃X be alternative choices, where X runs through
ObA(F,G).

Suppose given X -f Y in A(F,G). We resolve the commutative quadrangle

X
f // Y

X
f // Y

in A to a commutative quadrangle

IX
f ′

//

uX

��

IY

uY

��
ĨX

f̃ ′

// ĨY
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in K[0(A), in which uX and uY are homotopisms; cf. Remark 6. Then we
resolve the commutative quadrangle

FIX
Ff ′

//

FuX

��

FIY

FuY

��
F ĨX

Ff̃ ′

// F ĨY

in K[0(B) to a commutative quadrangle

KX
f ′′

//

vX

��

KY

vY

��
K̃X

f̃ ′′

// K̃Y

in KKx(B); cf. Proposition 14. Therein, vX and vY are each composed of a
rowwise homotopism, followed by a double homotopism; cf. Proposition 17. So
are GvX and GvY . An application of ĖI

(

G(−)
)

yields the sought isotransfor-
mation, viz.

(

ĖI(GJX)
ĖI(GqX )
−−−−−→

∼
ĖI(GKX)

ĖI(GvX )
−−−−−→

∼
ĖI(GK̃X)

ĖI(Gq̃X)
←−−−−−

∼
ĖI(GJ̃X)

)

at X ∈ ObA(F,G); cf. Remark 23, Lemma 24.

Finally, we recall the starting point of the whole enterprise.

Remark 30 ([5, XVII.§7], [7, Th. 2.4.1]) Suppose given X ∈ ObA(F,G)

and k, ℓ ∈ Z≥0. We have

ĖGr
F,G(−k + 1/−k− 1//−k/−k− 2)+k+ℓ(X) ≃ (RkG)(RℓF )(X)

ĖGr
F,G(∞/−∞//∞/−∞)+k+ℓ(X) ≃

(

Rk+ℓ(G ◦ F )
)

(X) ,

naturally in X.

Proof. Keep the notation of the definition of ĖGr
F,G .

We shall prove the first isomorphism. By Lemma 22, we have

ĖGr
F,G(−k + 1/−k− 1//−k/−k− 2)+k+ℓ(X) ≃ Hk(Hℓ(GJ−,∗

X )) .

Since JX is rowwise split, we have Hℓ(GJ−,∗
X ) ≃ G(HℓJ−,∗

X ). Note that

HℓJ−,∗
X is an injective resolution of HℓFAX ; cf. Remark 8.(1). By Remark 29,

HℓFAX
-HℓFpX

∼ HℓFIX ≃ (RℓF )(X). So

Hk(Hℓ(GJ−,∗
X )) ≃ Hk(G(HℓJ−,∗

X )) ≃ (RkG)(HℓFAX) ≃ (RkG)(RℓF )(X) .
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We shall prove naturality of the first isomorphism. Suppose given X -f Y
in A(F,G). Consider the following commutative diagram. Abbreviate E :=

Ė(−k + 1/−k− 1//−k/−k− 2)+k+ℓ.

E(tIGJX)
E(tIGqX )

∼

//

≀

��

E(tIGKX)
E(tIGf′′) //

≀

��

E(tIGKY )

≀

��

E(tIGJY )
E(tIGqY )

∼

oo

≀

��
HkHℓGJ−,∗

X

HkHℓGq
−,∗
X

∼

//

≀

��

HkHℓGK−,∗
X

HkHℓGf′′−,∗
//

≀

��

HkHℓGK−,∗
Y

≀

��

HkHℓGJ−,∗
Y

HkHℓGq
−,∗
Y

∼

oo

≀

��
HkGHℓJ−,∗

X

HkGHℓq
−,∗
X

∼

//

≀

��

HkGHℓK−,∗
X

HkGHℓf′′−,∗
//

≀

��

HkGHℓK−,∗
Y

≀

��

HkGHℓJ−,∗
Y

HkGHℓq
−,∗
Y

∼

oo

≀

��
(RkG)HℓFAX

(RkG)HℓF pX

∼

// (RkG)HℓFIX

(RkG)HℓF f′

//

≀

��

(RkG)HℓFIY

≀

��

(RkG)HℓFAY

(RkG)HℓF pY

∼

oo

(RkG)(RℓF )(X)
(RkG)(RℓF )(f) // (RkG)(RℓF )(Y )

We shall prove the second isomorphism. By Lemma 27, the quasiisomorphism
FAX

- tJX maps to a quasiisomorphism GFAX
- tGJX ≃ GtJX . By

Lemma 27, the quasiisomorphism AX
-pX

IX maps to a quasiisomorphism

GFAX
-GFpX

GFIX . So

ĖGr
F,G(∞/−∞//∞/−∞)+k+ℓ(X) ≃ Hk+ℓ(tGJX) ≃ Hk+ℓ(GtJX)

≃ Hk+ℓ(GFAX) ≃ Hk+ℓ(GFIX)
≃

(

Rk+ℓ(G ◦ F )
)

(X) .

We shall prove naturality of the second isomorphism. Consider the following
diagram. Abbreviate Ẽ := ĖGr

F,G(∞/−∞//∞/−∞)+k+ℓ.

Ẽ(tIGJX)
Ẽ(tIGqX )

∼

//

≀

��

Ẽ(tIGKX)
Ẽ(tIGf′′) //

≀

��

Ẽ(tIGKY )

≀

��

Ẽ(tIGJY )
Ẽ(tIGqY )

∼

oo

≀

��
Hk+ℓtGJX

Hk+ℓtGqX

∼

//

≀

��

Hk+ℓtGKX

Hk+ℓtGf′′

//

≀

��

Hk+ℓtGKY

≀

��

Hk+ℓtGJY

Hk+ℓtGqY

∼

oo

≀

��
Hk+ℓGtJX

Hk+ℓGtqX

∼

// Hk+ℓGtKX

Hk+ℓGtf′′

// Hk+ℓGtKY Hk+ℓGtJY

Hk+ℓGtqY

∼

oo

Hk+ℓGFAX

Hk+ℓGF pX

∼

//

≀

OO

Hk+ℓGFIX

Hk+ℓGF f′

//

≀

��

OO

Hk+ℓGFIY

≀

��

OO

Hk+ℓGFAY

Hk+ℓGF pY

∼

oo

≀

OO

`

Rk+ℓ(G ◦ F )
´

(X)
(Rk+ℓ(G◦F ))(f)// `Rk+ℓ(G ◦ F )

´

(Y )
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4.3 Haas transformations

The following transformations have been constructed in the classical framework
by Haas [8]. We do not claim any originality.

4.3.1 Situation

Consider the following diagram of abelian categories, left exact functors and
transformations,

A
F //

U

��

B
G //

V

��

C

W

��
A′ F ′

// B′ G′

// C′ ,

µ 8@
yyy yyy

ν 8@
yyy yyy

i.e. F ′ ◦ U -µ V ◦ F and G′ ◦ V -ν W ◦ G. Suppose that the conditions
(1, 2, 3) hold.

(1) The categories A, B, A′ and B′ have enough injectives.

(2) The functors U and V carry injectives to injectives.

(3) The functor F carries injective to G-acyclic objects. The functor F ′

carries injective to G′-acyclic objects.

We haveA(F,G) = A since an injective resolution is an (F, G)-acyclic resolution.
Likewise, we have A′

(F ′,G′) = A′.

Note in particular the case U = 1A , V = 1B and W = 1C .

We set out to define the Haas transformations

ĖGr
F ′,G′

(

U(−)
) -hI

µ
ĖGr

F,G′◦V

(

−
) -hII

ν
ĖGr

F,W◦G

(

−
)

,

where hI
µ depends on F , F ′, G′, U , V and µ, and where hII

ν depends on F , G,
G′, V , W and ν.

4.3.2 Construction of the first Haas transformation

Given T ∈ ObA, we let ĖGr
F,G(T ) be defined via an injective resolution IT of T

and via a CE-resolution JT of FIT ; cf. §4.2.

Given T ′ ∈ ObA′, we let ĖGr
F ′,G′(T ′) be defined via an injective resolution I ′T ′

of T ′ and via a CE-resolution J ′
T ′ of F ′I ′T ′ ; cf. §4.2.

We define hI
µ. Let X ∈ ObA. By Remark 5, there is a unique morphism

I ′UX
-h′X

UIX in K[0(A′) that maps to 1UX under H0. Let J ′
UX

-h′′X
V JX
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be the unique morphism in KKx(B′) that maps to the composite mor-

phism
(

F ′I ′UX
-F ′h′X

F ′UIX
-µ V FIX

)

in K[0(B′) under H0
(

(−)∗,−
)

; cf.

Lemma 13. Let the first Haas transformation be defined by

(

ĖGr
F ′,G′

(

UX
) -hI

µX
ĖGr

F,G′◦V

(

X
)

)

:=
(

EI(G
′J ′

UX) -EI(G
′h′′X)

EI(G
′V JX)

)

.

We show that hI
µ is a transformation. Let X -f Y be a morphism in A.

Let IX
-f
′

IY resolve X -f Y . Let JX
-f
′′

JY resolve FIX
-f
′

FIY .

Let I ′UX
-f̃
′

I ′UY resolve UX -Uf
UY . Let J ′

UX
-f̃
′′

JUY resolve

F ′IUX
-F ′f̃ ′

F ′IUY . The quadrangle

UX

Uf

��

UX

Uf

��
UY UY

commutes in A′. Hence, by Remark 5, applied to I ′UX and UIY , the resolved
quadrangle

I ′UX
h′X //

f̃ ′

��

UIX

Uf ′

��
I ′UY

h′Y

// UIY

commutes in K[0(A′). Hence both quadrangles in

F ′I ′UX
F ′h′X //

F ′f̃ ′

��

F ′UIX

F ′Uf ′

��

µ // V FIX

V Ff ′

��
F ′I ′UY

F ′h′Y

// F ′UIY µ
// V FIY

commute in K[0(B′). By Lemma 13, applied to J ′
UX and V JY , the outer quad-

rangle in the latter diagram can be resolved to the commutative quadrangle

J ′
UX

h′′X //

f̃ ′′

��

V JX

V f ′′

��
J ′

UY
h′′Y

// V JY
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in KKx(B′). Applying EI

(

G′(−)
)

and employing the definitions of ĖGr
F ′,G′ ,

ĖGr
F,G′◦V and hI

µ , we obtain the sought commutative diagram

ĖGr
F ′,G′(UX)

hI
µX

//

ĖGr
F ′,G′ (Uf)

��

ĖGr
F,G′◦V (X)

ĖGr
F,G′◦V

(f)

��
ĖGr

F ′,G′(UY )
hI

µY

// ĖGr
F,G′◦V (Y )

in ˙̄
Z

##
∞ , C′ .

4.3.3 Construction of the second Haas transformation

We maintain the notation of §4.3.2.
Given X ∈ ObA, we let the second Haas transformation be defined by

(

ĖGr
F,G◦V

(

X
) -hII

ν X
ĖGr

F,W◦G

(

X
)

)

:=
(

ĖI(G
′V JX) -ĖI(ν)

ĖI(WGJX)
)

.

It is a transformation since ν is.

5 The first comparison

5.1 The first comparison isomorphism

Suppose given abelian categories A, A′ and B with enough injectives and an
abelian category C.

Let A×A′ -F B be a biadditive functor. Let B -G C be an additive functor.
Suppose given objects X ∈ ObA and X ′ ∈ ObA′. Suppose the following
properties to hold.

(a) The functor F (−, X ′) : A - B is left exact.

(a′) The functor F (X,−) : A′ - B is left exact.

(b) The functor G is left exact.

(c) The object X possesses a
(

F (−, X ′), G
)

-acyclic resolution A ∈

ObC[0(A).

(c′) The object X ′ possesses a
(

F (X,−), G
)

-acyclic resolution A′ ∈

ObC[0(A′).

Moreover, the resolutions appearing in (c) and (c′) are stipulated to have the
following properties.
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(d) For all k ≥ 0, the quasiisomorphism Conc X - A is mapped to a quasi-
isomorphism Conc F (X, A′k) - F (A, A′k) under F (−, A′k).

(d′) For all k ≥ 0, the quasiisomorphism Conc X ′ - A′ is mapped to a
quasiisomorphism Conc F (Ak, X ′) - F (Ak, A′) under F (Ak,−).

The conditions (d, d′) are e.g. satisfied if F (−, A′k) and F (Ak,−) are exact for
all k ≥ 0.

Theorem 31 (first comparison) The proper Grothendieck spectral se-
quence for the functors F (X,−) and G, evaluated at X ′, is isomorphic to
the proper Grothendieck spectral sequence for the functors F (−, X ′) and G,
evaluated at X; i.e.

ĖGr
F (X,−),G(X ′) ≃ ĖGr

F (−,X′),G(X)

in ˙̄
Z

##
∞ , C .

Proof. Let JA , JA′ , JA,A′ ∈ Ob CCx(InjB) be CE-resolutions of the com-
plexes F (A, X ′), F (X, A′), tF (A, A′) ∈ Ob C[0(B), respectively.
The quasiisomorphism ConcX - A is mapped to the morphism
F (Conc X, A′) - F (A, A′), yielding F (X, A′) - tF (A, A′), which is a
quasiisomorphism since ConcF (X, A′k) - F (A, A′k) is a quasiisomorphism
for all k ≥ 0 by (d).
Choose a CE-resolution JA′

- JA,A′ of F (X, A′) - tF (A, A′); cf. Re-
mark 6. Since the morphism F (X, A′) - tF (A, A′) is a quasiisomorphism,
JA′

- JA,A′ is a composite in CCx, CE(InjB) of a rowwise homotopism and
a double homotopism; cf. Proposition 17. So is GJA′

- GJA,A′ . Hence, by
Remark 23 and by Lemma 24, we obtain an isomorphism of the proper spectral
sequences of the first filtrations of the total complexes,

ĖGr
F (X,−),G(X ′) = ĖI(GJA′) -∼ ĖI(GJA,A′) .

Likewise, we have an isomorphism

ĖGr
F (−,X′),G(X) = ĖI(GJA) -∼ ĖI(GJA,A′) .

We compose to an isomorphism ĖGr
F (X,−),G(X ′) -∼ ĖGr

F (−,X′),G(X) as sought.

5.2 Naturality of the first comparison isomorphism

We narrow down the assumptions just as we have done for the introduction of
the Haas transformations in §4.3.1 in order to be able to express, in this narrower
case, a naturality of the first comparison isomorphism from Theorem 31.

Suppose given abelian categories A, A′ and B with enough injectives and an
abelian category C.

Let A×A′ -F B be a biadditive functor. Let B -G C be an additive functor.
Suppose that the following properties hold.
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(a) The functor F (−, X ′) : A - B is left exact for all X ′ ∈ ObA′.

(a′) The functor F (X,−) : A′ - B is left exact for all X ∈ ObA.

(b) The functor G is left exact.

(c) For all X ′ ∈ ObA′, the functor F (−, X ′) carries injective objects to
G-acyclic objects.

(c′) For all X ∈ ObA, the functor F (X,−) carries injective objects to
G-acyclic objects.

(d) The functor F (I,−) is exact for all I ∈ Ob InjA.

(d′) The functor F (−, I ′) is exact for all I ′ ∈ Ob InjA′.

Proposition 32 Suppose given X -x X̃ in A and X ′ ∈ ObA′. Note that
we have a transformation F (x,−) : F (X,−) - F (X̃,−). The following
quadrangle, whose vertical isomorphisms are given by the construction in the
proof of Theorem 31, commutes.

ĖGr
F (X,−),G(X ′)

hI
F (x,−)X

′

//

≀

��

ĖGr
F (X̃,−),G

(X ′)

≀

��
ĖGr

F (−,X′),G(X)
ĖGr

F(−,X′),G
(x)

// ĖGr
F (−,X′),G(X̃)

For the definition of the first Haas transformation hI
F (x,−), see §4.3.2.

An analogous assertion holds with interchanged roles of A and A′.

Proof of Proposition 32. Let I resp. Ĩ be an injective resolution of X resp. X̃ in

A. Let I -x̂ Ĩ be a resolution of X -x X̃ . Let I ′ be an injective resolution
of X ′ in A′.
Let J

(X)
I′ resp. J

(X̃)
I′ be a CE-resolution of F (X, I ′) resp. F (X̃, I ′).

Let JI,I′ resp. JĨ,I′ be a CE-resolution of tF (I, I ′) resp. tF (Ĩ , I ′).

Let JI resp. JĨ be a CE-resolution of F (I, X ′) resp. F (Ĩ , X ′).
We have a commutative diagram

F (X, I ′)
F (x,I′) //

��

F (X̃, I ′)

��
tF (I, I ′)

tF (x̂,I′) // tF (Ĩ , I ′)

F (I, X ′)
F (x̂,X′) //

OO

F (Ĩ , X ′)

OO
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in C[0(B), hence in K[0(B). By Proposition 14, it can be resolved to a commu-
tative diagram

J
(X)
I′

//

��

J
(X̃)
I′

��
JI,I′ // JĨ,I′

JI
//

OO

JĨ

OO

in KKx(B). Application of ĖI

(

G(−)
)

yields the result; cf. Lemma 24.

We refrain from investigating naturality of the first comparison isomorphism in
G.

6 The second comparison

6.1 The second comparison isomorphism

Suppose given abelian categories A and B′ with enough injectives, and abelian
categories B and C.

Let A -F B′ be an additive functor. Let B×B′ -G C be a biadditive functor.
Suppose given objects X ∈ ObA and Y ∈ ObB. Let B ∈ Ob C[0(B) be
a resolution of Y , i.e. suppose a quasiisomorphism Conc Y - B to exist.
Suppose the following properties to hold.

(a) The functor F is left exact.

(b) The functor G(Y,−) is left exact.

(c) The object X possesses an (F, G(Y,−))-acyclic resolution A ∈ Ob C[0(A).

(d) The functor G(Bk,−) is exact for all k ≥ 0.

(e) The functor G(−, I ′) is exact for all I ′ ∈ Ob InjB′.

Remark 33 Suppose given a morphism D -f D′ in CCx(C). If Hℓ(f−,∗) is
a quasiisomorphism for all ℓ ≥ 0, then f induces an isomorphism

ĖI(D) -ĖI(f)
ĖI(D

′)

of proper spectral sequences.

Proof. By Lemma 21, it suffices to show that EI(α + 1/α− 1//α/α− 2)+k(f)
is an isomorphism for all α ∈ Z and all k ∈ Z. By Lemma 22, this amounts to
isomorphisms HkHℓ(f−,∗) for all k, ℓ ≥ 0, i.e. to quasiisomorphisms Hℓ(f−,∗)
for all ℓ ≥ 0.
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Consider the double complex G(B, FA) ∈ Ob CCx(C), where the indices of B
count rows and the indices of A count columns. To the first filtration of its
total complex, we can associate the proper spectral sequence ĖI(G(B, FA)) ∈

Ob ˙̄
Z

##
∞ , C .

Theorem 34 (second comparison) The proper Grothendieck spectral se-
quence for the functors F and G(Y,−), evaluated at X, is isomorphic to
ĖI(G(B, FA)); i.e.

ĖGr
F,G(Y,−)(X) ≃ ĖI(G(B, FA))

in ˙̄
Z

##
∞ , C .

Proof. Let J ′ ∈ ObCCx(InjB′) be a CE-resolution of FA. By definition,
ĖGr

F,G(Y,−)(X) = ĖI(G(Y, J ′)). By Remark 33, it suffices to find D ∈ Ob CCx(C)
and two morphisms of double complexes

G(B, FA) -u D �v
G(Y, J ′)

such that Hℓ(u−,∗) and Hℓ(v−,∗) are quasiisomorphisms for all ℓ ≥ 0.
Given a complex U ∈ ObC[0(B), recall that we denote by Conc2U ∈ ObCCx(B)
the double complex whose row number 0 is given by U , and whose other rows
are zero.
We have a diagram

G(B, Conc2 FA) - G(B, J ′) � G(Conc Y, J ′)

in CCC (C). Let ℓ ≥ 0. Application of Hℓ
(

(−)−,=,∗
)

yields a diagram

(∗) Hℓ
`

G(B, Conc2 FA)−,=,∗
´ - Hℓ

`

G(B, J ′)−,=,∗
´ � Hℓ

`

G(Conc Y, J ′)−,=,∗
´

in CCx(C). We have

Hℓ
(

G(B, Conc2 FA)−,=,∗
)

≃ G
(

B , Hℓ
(

(Conc2 FA)−,∗
)

)

= G
(

B, Conc Hℓ(FA)
)

and
Hℓ

(

G(B, J ′)−,=,∗
)

≃ G
(

B, Hℓ(J ′−,∗)
)

,

since the functor G(Bk,−) is exact for all k ≥ 0 by (d), or, since the
CE-resolution J is rowwise split. Since the CE-resolution J ′ is rowwise split,
we moreover have

Hℓ
(

G(Conc Y, J ′)−,=,∗
)

≃ G
(

ConcY, Hℓ(J ′−,∗)
)

.

So the diagram (∗) is isomorphic to the diagram

(∗∗) G
(

B, ConcHℓ(FA)
) - G

(

B, Hℓ(J ′−,∗)
) � G

(

Conc Y, Hℓ(J ′−,∗)
)

,
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whose left hand side morphism is induced by the quasiisomorphism
Conc Hℓ(FA) - Hℓ(J ′−,∗), and whose right hand side morphism is induced
by the quasiisomorphism Conc Y - B.
By exactness of G(Bk,−) for k ≥ 0, the left hand side morphism of (∗∗) is a row-
wise quasiisomorphism. Since Hℓ(J ′k,∗) is injective, the functor G(−, Hℓ(J ′k,∗))
is exact by (e), and therefore the right hand side morphism of (∗∗) is a column-
wise quasiisomorphism. Thus an application of t to (∗∗) yields two quasi-
isomorphisms; cf. §1.1.6. Hence, also an application of t to (∗) yields two
quasiisomorphisms in the diagram

tHℓ
`

G(B, Conc2 FA)−,=,∗
´ - tHℓ

`

G(B, J ′)−,=,∗
´ � tHℓ

`

G(Conc Y, J ′)−,=,∗
´

.

Note that t ◦ Hℓ
(

(−)−,=,∗
)

= Hℓ
(

(−)−,∗
)

◦ t1,2, where t1,2 denotes taking the
total complex in the first and the second index of a triple complex; cf. §1.2.2.
Hence we have a diagram

Hℓ
`

(t1,2G(B, Conc2 FA))−,∗
´ - Hℓ

`

(t1,2G(B, J ′))−,∗
´ � Hℓ

`

(t1,2G(Conc Y, J ′))−,∗
´

consisting of two quasiisomorphisms. This diagram in turn, is isomorphic to

Hℓ
(

G(B, FA)−,∗
)

- Hℓ
(

(t1,2G(B, J ′))−,∗
)

� Hℓ
(

(

G(Y, J ′)
)−,∗

)

,

where the left hand side morphism is obtained by precomposition with the
isomorphism G(B, FAk) -∼ tConc1 G(B, FAk) = (t1,2G(B, Conc2 FA))−,k,
where k ≥ 0; cf. §1.1.6.
Hence we may take

(

G(B, FA) -u D �v
G(B, J ′)

)

:=
(

G(B, FA) - t1,2G(B, J ′) � G(Y, J ′)
)

.

6.2 Naturality of the second comparison isomorphism

Again, we narrow down the assumptions just as we have done for the introduc-
tion of the Haas transformations in §4.3.1 to express a naturality of the second
comparison isomorphism from Theorem 34.

Suppose given abelian categories A and B′ with enough injectives, and abelian

categories B and C. Suppose given additive functors A --
F

F̃
B′ and a transfor-

mation F -φ F̃ . Let B × B′ -G C be a biadditive functor.

Suppose given a morphism X -x X̃ in A and an object Y ∈ ObB. Let B ∈
Ob C[0(B) be a resolution of Y , i.e. suppose a quasiisomorphism ConcY - B
to exist. Suppose the following properties to hold.

(a) The functors F and F̃ are left exact and carry injective to G(Y,−)-acyclic
objects.

(b) The functor G(Y,−) is left exact.
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(c) The functor G(Bk,−) is exact for all k ≥ 0.

(d) The functor G(−, I ′) is exact for all I ′ ∈ Ob InjB′.

Let A -a Ã in C[0(InjA) be an injective resolution of X -x X̃ in A. Note
that we have a commutative quadrangle

G(B, FA)
G(B,φA) //

G(B,Fa)

��

G(B, F̃A)

G(B,F̃a)

��
G(B, FÃ)

G(B,φÃ) // G(B, F̃ Ã)

in CCx(C).
Note that once chosen injective resolutions A of X and Ã of X̃, the image of

G(B, Fa) in KKx(C) does not depend on the choice of the resolution A -a Ã

of X -x X̃, for C[0(A) -G(B,F (−))
CCx(C) maps an elementary split acyclic

complex to an elementary horizontally split acyclic complex.

Lemma 35 The quadrangle

ĖGr
F,G(Y,−)(X)

ĖGr
F,G(Y,−)(x)

//

≀

��

ĖGr
F,G(Y,−)(X̃)

≀

��
ĖI(G(B, FA))

ĖI(G(B,Fa)) // ĖI(G(B, FÃ))

commutes, where the vertical isomorphisms are those constructed in the proof
of Theorem 34.

Proof. Let J ′ -â J̃ ′ be a CE-resolution of FA -Fa
FÃ. Consider the following

commutative diagram in CCx(C).

G(Y, J ′)
G(Y,â) //

��

G(Y, J̃ ′)

��
t1,2G(B, J ′)

t1,2G(B,â) // t1,2G(B, J̃ ′)

G(B, FA)
G(B,Fa) //

OO

G(B, FÃ)

OO

An application of ĖI yields the result.
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Lemma 36 The quadrangle

ĖGr
F,G(Y,−)(X)

hI
φX

//

≀

��

ĖGr
F̃ ,G(Y,−)

(X)

≀

��
ĖI(G(B, FA))

ĖI(G(B,φA)) // ĖI(G(B, F̃A))

commutes, where the vertical morphisms are those constructed in the proof of
Theorem 34.

For the definition of the first Haas transformation hI
F (x,−), see §4.3.2.

Proof. Let J ′ -φ̂ J̆ ′ be a CE-resolution of FA -Fφ
F̃A. Consider the following

commutative diagram in CCx(C).

G(Y, J ′)
G(Y,φ̂) //

��

G(Y, J̆ ′)

��
t1,2G(B, J ′)

t1,2G(B,φ̂) // t1,2G(BJ̆ ′)

G(B, FA)
G(B,φA) //

OO

G(B, F̃A)

OO

An application of ĖI yields the result.

We refrain from investigating naturality of the second comparison isomorphism
in Y .

7 Acyclic CE-resolutions

We record Beyl’s Theorem [4, Th. 3.4] (here Theorem 40) in order to document
that it fits in our context. The argumentation is entirely due to Beyl [4, Sec. 3],
so we do not claim any originality.

Let A, B and C be abelian categories. Suppose A and B to have enough

injectives. Let A -F B -G C be left exact functors.

7.1 Definition

Let T ∈ Ob C[0(B). In this §7, a CE-resolution of T will synonymously (and
not quite correctly) be called an injective CE-resolution, to emphasise the fact
that its object entries are injective.
We regard C[0(B) as an exact category as in Remarks 9 and 11.
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Definition 37 A double complex B ∈ CCx(B) is called a G-acyclic
CE-resolution of T if the following conditions are satisfied.

(1) We have H0(B∗,−) ≃ T and Hk(B∗,−) ≃ 0 for all k ≥ 1.

(2) The morphism of complexes Bk,∗ - Bk+1,∗, consisting of vertical dif-
ferentials of B, is a pure morphism for all k ≥ 0.

(3) The object Bℓ(Bk,∗) is G-acyclic for all k, ℓ ≥ 0 .

(4) The object Zℓ(Bk,∗) is G-acyclic for all k, ℓ ≥ 0 .

A G-acyclic CE-resolution is a G-acyclic CE-resolution of some T ∈ ObC[0(B).

From (3, 4) and the short exact sequence Zℓ(Bk,∗) - Bk,ℓ - Bℓ+1(Bk,∗),
we conclude that Bk,ℓ is G-acyclic for all k, ℓ ≥ 0 .
From (3, 4) and the short exact sequence Bℓ(Bk,∗) - Zℓ(Bk,∗) - Hℓ(Bk,∗),
we conclude that Hℓ(Bk,∗) is G-acyclic for all k, ℓ ≥ 0 .

Example 38 An injective CE-resolution of T is in particular a G-acyclic
CE-resolution of T .

Note that given Y ∈ ObC(B) and ℓ ∈ Z, we have ZℓGY ≃ GZℓY ,
whence the universal property of the cokernel HℓGY of GY ℓ−1 - ZℓGY
induces a morphism HℓGY - GHℓY . This furnishes a transformation

Hℓ(GXk,∗) -θX
GHℓ(Xk,∗), natural in X ∈ ObCCx(B).

Remark 39 If B is a G-acyclic CE-resolution, then the morphism

Hℓ(GB−,∗) -θB
GHℓ(B−,∗) is an isomorphism for all ℓ ≥ 0.

Proof. The sequences

GBℓ(Bk,∗) - GZℓ(Bk,∗) - GHℓ(Bk,∗)
GZℓ−1(Bk,∗) - GBk,ℓ−1 - GBℓ(Bk,∗)

are short exact for k, ℓ ≥ 0 by G-acyclicity of Bℓ(Bk,∗) resp. of Zℓ−1(Bk,∗). In
particular, the cokernel of GBk,ℓ−1 - GZℓ(Bk,∗) is given by GHℓ(Bk,∗).

7.2 A theorem of Beyl

Let X ∈ ObA(F,G). Let A ∈ C[0(A) be a (F, G)-acyclic resolution of X . Let
B ∈ CCx(B) be a G-acyclic CE-resolution of FA.

Theorem 40 (Beyl, [4, Th. 3.4]) We have an isomorphism of proper spec-
tral sequences

ĖGr
F,G(X) ≃ ĖI(GB)

in ˙̄
Z

##
∞ , C .
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Proof. Since the proper Grothendieck spectral sequence is, up to isomorphism,
independent of the choice of an injective CE-resolution, as pointed out in §4.2,
our assertion is equivalent to the existence of an injective CE-resolution J of
FA such that ĖI(GJ) ≃ ĖI(GB). So by Remark 33, it suffices to show
that there exists an injective CE-resolution J of FA and a morphism B - J
that induces a quasiisomorphism Hℓ(GB−,∗) - Hℓ(GJ−,∗) for all ℓ ≥ 0. By
Remark 39 and Example 38, it suffices to show that GHℓ(B−,∗) - GHℓ(J−,∗)
is a quasiisomorphism for all ℓ ≥ 0.
By the conditions (1, 2) on B and by G-acyclicity of Hℓ(Bk,∗) for k, ℓ ≥ 0, the
complex Hℓ(B−,∗) is a G-acyclic resolution of Hℓ(FA); cf. Remark 10.
By Remark 4, there exists J ∈ ObCCx(InjB) with vertical pure morphisms
and split rows, and a morphism B - J consisting rowwise of pure monomor-
phisms such that Hk(B∗,−) - Hk(J∗,−) is an isomorphism of complexes for
all k ≥ 0. In particular, the composite (Conc2 FA - B - J) turns J into
an injective CE-resolution of FA.
Let ℓ ≥ 0. Since B is a G-acyclic and J an injective CE-resolution of FA,
both ConcHℓ(FA) - Hℓ(B−,∗) and ConcHℓ(FA) - Hℓ(J−,∗) are quasiiso-
morphisms. Hence Hℓ(B−,∗) - Hℓ(J−,∗) is a quasiisomorphism, too. Now
Lemma 27 shows that GHℓ(B−,∗) - GHℓ(J−,∗) is a quasiisomorphism as
well.

8 Applications

We will apply Theorems 31 and 34 in various algebraic situations. In particular,
we will re-prove a theorem of Beyl; viz. Theorem 53 in §8.3.

In several instances below, we will make tacit use of the fact that a left exact
functor between abelian categories respects injectivity of objects provided it
has an exact left adjoint.

8.1 A Hopf algebra lemma

We will establish Lemma 47 in §8.1.4, needed to prove an acyclicity that enters
the proof of the comparison result Theorem 52 in §8.2 for Hopf algebra coho-
mology, which in turn allows to derive comparison results for group cohomology
and Lie algebra cohomology; cf. §§ 8.3, 8.4.

8.1.1 Definition

Let R be a commutative ring. Write ⊗ := ⊗R . A Hopf algebra over R is

an R-algebra H together with R-algebra morphisms H -ε R (counit) and

H -∆ H ⊗ H (comultiplication), and an R-linear map H -S H (antipode)
such that the following conditions (i–iv) hold.
Write x∆ =

∑

i xui ⊗ xvi for x ∈ H , where ui and vi are chosen maps from H
to H , and where i runs over a suitable indexing set. Note that

∑

i (r · x + s · y)ui ⊗ (r · x + s · y)vi = r · (
∑

i xui ⊗ xvi) + s · (
∑

i yui ⊗ yvi)
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for x, y ∈ H and r, s ∈ R, whereas ui and vi are not necessarily R-linear
maps.

The elegant Sweedler notation [15, §1.2] for the images under ∆(∆⊗1) etc. led
the author, being new to Hopf algebras, to confusion in a certain case. So we
will express them in these more naive terms.

Write H ⊗H -∇ H , x⊗ y - x · y and R -η H , r - r · 1H .

Write H ⊗H -τ H ⊗H , x⊗ y - y ⊗ x.

(i) We have ∆(ε⊗ idH) = (x - 1R ⊗ x), i.e.
∑

i xuiε · xvi = x for x ∈ H .

(i′) We have ∆(idH ⊗ε) = (x - x⊗ 1R), i.e.
∑

i xui · xviε = x for x ∈ H .

(ii) We have ∆(idH ⊗∆) = ∆(∆ ⊗ idH), i.e.
∑

i,j xui ⊗ xviuj ⊗ xvivj =
∑

i,j xuiuj ⊗ xuivj ⊗ xvi for x ∈ H .

(iii) We have ∆(S ⊗ idH)∇ = εη, i.e.
∑

i xuiS · xvi = xε · 1H for x ∈ H .

(iii′) We have ∆(idH ⊗S)∇ = εη, i.e.
∑

i xui · xviS = xε · 1H for x ∈ H .

(iv) We have S2 = idH .

In particular, imposing (iv), we stipulate a Hopf algebra to have an involutive
antipode.

8.1.2 Some basic properties

In an attempt to be reasonably self-contained, we recall some basic facts on
Hopf algebras needed for Lemma 47 below; cf. [15, Ch. IV], [1, §2], [13, §§1-3].
In doing so, we shall use direct arguments.

Suppose given a Hopf algebra H over R.

Remark 41 ([15, Prop. 4.0.1], [1, Th. 2.1.4], [13, 3.4.2])
The following hold.

(1) We have
∑

i(x ·y)ui⊗(x ·y)vi =
∑

i,j(xui ·yuj)⊗(xvi ·yvj) for x, y ∈ H.

(2) We have 1HS = 1H .

(3) We have (x · y)S = y · x for x, y ∈ H.

(4) We have Sε = ε.

(5) We have ∆(S ⊗ S)τ = S∆, i.e.
∑

i xuiS ⊗ xviS =
∑

i xSvi ⊗ xSui for
x ∈ H.

(6) We have x · y =
∑

i

(

∑

j(xui)uj · y · (xui)vjS
)

· xvi for x, y ∈ H.

(6′) We have y · x =
∑

i xui ·
(

∑

j(xvi)ujS · y · (xvi)vj

)

for x, y ∈ H.
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(7) We have
∑

i xvi · xuiS = xε · 1H for x ∈ H.

(7′) We have
∑

i xviS · xui = xε · 1H for x ∈ H.

Proof. Ad (1). Given x, y ∈ H , we obtain
∑

i (xy)ui ⊗ (xy)vi = (xy)∆ = x∆ · y∆ =
∑

i,j (xui · yuj)⊗ (xvi · yvj) .

Ad (2). Remarking that 1H∆ = 1H ⊗ 1H , we obtain

1HS = 1H∆(S ⊗ idH)∇
(iii)
= 1Hε · 1H = 1H .

Ad (3). Given x, y ∈ H , we obtain

(x · y)S
2× (i′)

=
∑

i,k(xui · xviε · yuk · yvkε)S
(iii′)
=

∑

i,j,k(xui · yuk · yvkε)S · xviuj · xvivjS
(iii′)
=

∑

i,j,k,ℓ(xui · yuk)S · xviuj · yvkuℓ · yvkvℓS · xvivjS
2× (ii)

=
∑

i,j,k,ℓ(xuiuj · yukuℓ)S · xuivj · yukvℓ · yvkS · xviS
(1)
=

∑

i,j,k(xui · yuk)ujS · (xui · yuk)vj · yvkS · xviS
(iii)
=

∑

i,k(xui · yuk)ε · yvkS · xviS

=
∑

i,k(yukε · yvk)S · (xuiε · xvi)S
2× (i)

= yS · xS .

Ad (4). Note that (yε · z)ε = yε · zε = (y · z)ε for y, z ∈ H . Given x ∈ H , we
obtain

xSε
(i)
= (

∑

i xuiε · xvi)Sε = (
∑

i xuiε · xviS)ε = (
∑

i xui · xviS)ε

(iii′)
= (xε · 1H)ε = xε .

Ad (5). Given x ∈ H , we obtain

x∆(S ⊗ S)τ
(i)
=

∑

i(xuiε · xvi)∆(S ⊗ S)τ
=

∑

i(xuiε · 1H)∆ · xvi∆(S ⊗ S)τ
(iii)
=

∑

i,j(xuiujS · xuivj)∆ · xvi∆(S ⊗ S)τ

=
∑

i,j xuiujS∆ · xuivj∆ · xvi∆(S ⊗ S)τ
(ii)
=

∑

i,j xuiS∆ · xviuj∆ · xvivj∆(S ⊗ S)τ

=
∑

i,j,k,ℓ xuiS∆ · (xviujuk ⊗ xviujvk) · (xvivjvℓS ⊗ xvivjuℓS)

=
∑

i,j,k,ℓ xuiS∆ · (xviujuk · xvivjvℓS ⊗ xviujvk · xvivjuℓS)
(ii)
=

∑

i,j,k,ℓ xuiS∆ · (xviuj · xvivjvkvℓS ⊗ xvivjuk · xvivjvkuℓS)
(ii)
=

∑

i,j,k,ℓ xuiS∆ · (xviuj · xvivjvkS ⊗ xvivjukuℓ · xvivjukvℓS)
(iii′)
=

∑

i,j,k xuiS∆ · (xviuj · xvivjvkS ⊗ xvivjukε · 1H)

=
∑

i,j,k xuiS∆ · (xviuj · (xvivjvk · xvivjukε)S ⊗ 1H)
(i)
=

∑

i,j xuiS∆ · (xviuj · xvivjS ⊗ 1H)
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(iii′)
=

∑

i xuiS∆ · (xviε · 1H ⊗ 1H)
=

∑

i(xui · xviε)S∆
(i′)
= xS∆ .

Ad (6). Given x, y ∈ H , we obtain

x·y
(i′)
=

∑

i xui·y·xviε
(iii)
=

∑

i,j xui·y·xviujS ·xvivj
(ii)
=

∑

i,j xuiuj ·y·xuivjS ·xvi.

Ad (6′). Given x ∈ H , we obtain

y·x
(i)
=

∑

i xuiε·y·xvi
(iii′)
=

∑

i,j xuiuj ·xuivjS ·y·xvi
(ii)
=

∑

i,j xui·xviujS ·y·xvivj .

Ad (7). Given x ∈ H , we have

∑

i xvi · xuiS
(iv)
=

∑

i xS2vi · xS2uiS
(5)
=

∑

i xSuiS · xSviS
2

(iv)
=

∑

i xSuiS · xSvi
(iii)
= xSε · 1H

(4)
= xε · 1H .

Ad (7′). Given x ∈ H , we have

∑

i xviS · xui
(iv)
=

∑

i xS2viS · xS2ui
(5)
=

∑

i xSuiS
2 · xSviS

(iv)
=

∑

i xSui · xSviS
(iii′)
= xSε · 1H

(4)
= xε · 1H .

In the present §8.1, we shall refer to the assertions Remark 41.(1–7′) just by
(1–7′).

8.1.3 Normality

Suppose given a Hopf algebra H over R, and an R-subalgebra K ⊆ H . Suppose
H and K to be flat as modules over R.
Note that K ⊗ K - H ⊗ H is injective. We will identify K ⊗ K with its
image.
The R-subalgebra K ⊆ H is called a Hopf-subalgebra if K∆ ⊆ K ⊗ K and
KS ⊆ K. In this case, we may and will suppose the maps ui and vi to restrict
to maps from K to K.
Suppose K ⊆ H to be a Hopf-subalgebra. It is called normal, if for all a ∈ K
and all x ∈ H , we have

∑

i xui · a · xviS ∈ K and
∑

i xuiS · a · xvi ∈ K .

An ideal I ⊆ H is called a Hopf ideal if I∆ ⊆ I ⊗H + H ⊗ I (where we have
identified I ⊗H and H ⊗ I with their images in H ⊗H), Iε = 0 and IS ⊆ I.
In this case, the quotient H/I carries a Hopf algebra structure via

H/I -ε R , x + I - xε

H/I -∆ H/I ⊗H/I , x + I - ∑

i(xui + I)⊗ (xvi + I)

H/I -S H/I , x + I - xS + I .
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Suppose K ⊆ H to be a normal Hopf subalgebra. Write K+ :=

Kern(H -ε R). By (6, 6′, 3, 4), HK+ = K+H is a Hopf ideal in H .

8.1.4 Some remarks and a lemma

Suppose given a Hopf algebra H over R and a normal Hopf-subalgebra K ⊆ H .
Suppose H and K to be flat as modules over R.
Write H̄ := H/HK+. Given x ∈ H , write x̄ := x + HK+ ∈ H̄ for its residue
class.
Let N ′, N , M , M ′ and Q be H-modules. Let P be an H̄-module, which we
also consider as an H-module via H - H̄, x - x̄.
We write K(N, M) = K(N |K , M |K) for the R-module of K-linear maps from
N to M .

Remark 42 Given f ∈ R(N, M) and x ∈ H, we define x · f ∈ R(N, M) by

[n](x · f) :=
∑

i xui · [xviS · n]f

for n ∈ N . This defines a left H-module structure on R(N, M).

Formally, squared brackets mean the same as parentheses. Informally, squared
brackets are to accentuate the arguments of certain maps.

Proof. We claim that x′ · (x · f) = (x′ · x) · f for x, x′ ∈ H . Suppose given
n ∈ N . We obtain

[n](x′ · (x · f)) =
∑

i x′ui · [x
′viS · n](x · f)

=
∑

i,j x′ui · xuj · [xvjS · x
′viS · n]f

(3)
=

∑

i,j(x
′ui · xuj) · [(x

′vi · xvj)S · n]f
(1)
=

∑

i(x
′ · x)ui · [(x

′ · x)viS · n]f
= [n]((x′ · x) · f) .

We claim that 1H · f = f . Suppose given n ∈ N . We obtain

[n](1H · f) =
∑

i 1Hui · [1HviS · n]f = 1H · [1HS · n]f
(2)
= [n]f ,

remarking that 1H∆ = 1H ⊗ 1H .

I owe to G. Hiß the hint to improve a previous weaker version of Corollary 45
below by means of the following Remark 43.

Denote by

MK := {m ∈M : a ·m = aε ·m for all a ∈ K}

the fixed point module of M under K.

Remark 43 Letting x̄ · m := x · m for x ∈ H and m ∈ MK, we define an
H̄-module structure on MK.
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Proof. The value of the product x̄ ·m does not depend on the chosen represen-
tative x of x̄ since, given y ∈ H , a ∈ K+ and m ∈MK , we have

y · a ·m = y · aε ·m = 0 .

It remains to be shown that given x ∈ H and m ∈MK , the element x ·m lies
in MK . In fact, given a ∈ K, we obtain

a · x ·m
(6′)
=

∑

i xui ·
(

∑

j(xvi)ujS · a · (xvi)vj

)

·m

=
∑

i xui ·
(

∑

j(xvi)ujS · a · (xvi)vj

)

ε ·m

=
∑

i,j xui · xviujSε · aε · xvivjε ·m
(4)
=

∑

i,j xui · xviujε · aε · xvivjε ·m
(ii)
=

∑

i,j xuiuj · xuivjε · aε · xviε ·m
(i′)
=

∑

i xui · aε · xviε ·m
(i′)
= aε · x ·m .

Remark 44 We have (R(N, M))
K

= K(N, M), as subsets of R(N, M).

Proof. The module ( R(N, M))
K

consists of the R-linear maps N -f M that
satisfy

∑

i xui · [xviS · n]f = xε · [n]f .

for x ∈ H and n ∈ N . The module K(N, M) consists of the R-linear maps

N -f M that satisfy
[x · n]f = x · [n]f

for x ∈ H and n ∈ N . By (iii′), we have (R(N, M))
K
⊇ K(N, M).

It remains to show that (R(N, M))
K
⊆ K(N, M). Given f ∈ (R(N, M))

K
,

x ∈ H and n ∈ N , we obtain

x · [n]f
(i′)
=

∑

i xui · xviε · [n]f
=

∑

i xui · [xviε · n]f
(iii)
=

∑

i,j xui · [xviujS · xvivj · n]f
(ii)
=

∑

i,j xuiuj · [xuivjS · xvi · n]f

=
∑

i xuiε · [xvi · n]f
(i)
= [x · n]f .

Corollary 45 Given f ∈ K(N, M) and x ∈ H, we define x̄ · f ∈ K(N, M) by

[n](x̄ · f) :=
∑

i xui · [xviS · n]f

for n ∈ N . This defines a left H̄-module structure on K(N, M).
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Proof. By Remark 42, we may apply Remark 43 to R(N, M). By Remark 44,
the assertion follows.

Remark 46 Given f ∈ K(N, M), x ∈ H, and H-linear maps N ′ -ν N ,

M -µ M ′, we obtain
ν(x̄ · f)µ = x̄ · (νfµ) .

Proof. Given n′ ∈ N ′, we obtain

[n′]
(

ν(x̄ · f)µ
)

=
(
∑

i xui · [xviS · n
′ν]f

)

µ =
∑

i xui · [xviS · n
′](νfµ)

= [n′](x̄ · (νfµ)).

The following Lemma 47 has been suggested by the referee, and has been
achieved with the help of G. Carnovale. It is reminiscent of [16, Cor. 4.3],
but easier. It resembles a bit a Fourier inversion.

Note that the right H̄-module structure on H̄ induces a left H̄-module structure
on R(H̄, M).

Lemma 47 We have the following mutually inverse isomorphisms of
H̄-modules.

K(H, M) -Φ
∼ R(H̄, M)

f - (x̄ - ∑

i xui · [xviS]f)

K(H, M) �Ψ

∼ R(H̄, M)
(x - ∑

j xvj · [ xujS ]g) � g

Proof. We claim that Φ is a welldefined map. We have to show that fΦ is
welldefined, i.e. that its value at x̄ does not depend on the representing element
x. Suppose given y ∈ H and a ∈ K+. We obtain

∑

i(ya)ui · [(ya)viS]f
(1)
=

∑

i,j yui · auj · [(yvi · avj)S]f
(3)
=

∑

i,j yui · auj · [avjS · yviS]f

=
∑

i,j yui · auj · avjS · [yviS]f
(iii′)
=

∑

i yui · aε · [yviS]f
= 0 .

We claim that Φ is H̄-linear. Suppose given y ∈ H and x ∈ H . We obtain

[x̄]((ȳf)Φ) =
∑

i xui · [xviS](ȳf)
=

∑

i,j xui · yuj · [yvjS · xviS]f
(3)
=

∑

i,j xui · yuj · [(xvi · yvj)S]f
(1)
=

∑

i(x · y)ui · [(x · y)viS]f
= [x̄](ȳ(fΦ)) .
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We claim that Ψ is a welldefined map. We have to show that gΨ is K-linear.
Suppose given a ∈ K and x ∈ H . Note that aui ∈ K for all i, whence also
auiS ∈ K, and therefore auiS ≡HK+ auiSε · 1H . We obtain

[a · x](gΨ) =
∑

j(a · x)vj · [ (a · x)ujS ]g
(1)
=

∑

i,j avi · xvj · [ (aui · xuj)S ]g
(3)
=

∑

i,j avi · xvj · [ xujS · auiS ]g

=
∑

i,j avi · xvj · [ xujS · auiSε ]g
(4)
=

∑

i,j auiε · avi · xvj · [ xujS ]g
(i)
=

∑

j a · xvj · [ xujS ]g

= a · [x](gΨ) .

We claim that ΦΨ = id
K(H,M). Suppose given x ∈ H . We obtain

[x](fΦΨ) =
∑

j xvj · [ xujS ](fΦ)

=
∑

i,j xvj · xujSui · [xujSviS]f
(5)
=

∑

i,j xvj · xujviS · [xujuiS
2]f

(iv)
=

∑

i,j xvj · xujviS · [xujui]f
(ii)
=

∑

i,j xvjvi · xvjuiS · [xuj ]f
(7)
=

∑

j xvjε · [xuj ]f
(i)
= [x]f .

We claim that ΨΦ = id
R(H̄,M). Suppose given x ∈ H . We obtain

[x̄](gΨΦ) =
∑

i xui · [xviS](gΨ)

=
∑

i,j xui · xviSvj · [ xviSujS ]g
(5)
=

∑

i,j xui · xviujS · [ xvivjS2 ]g
(iv)
=

∑

i,j xui · xviujS · [ xvivj ]g
(ii)
=

∑

i,j xuiuj · xuivjS · [ xvi ]g
(iii′)
=

∑

i xuiε · [ xvi ]g
(i)
= [x̄]g .

Finally, it follows by H̄-linearity of Φ and by Ψ = Φ−1 that Ψ is H̄-linear.

The tensor product N⊗M is an H-module via ∆. Note that R is an H-module
via ε. Note that R ⊗M ≃M ≃M ⊗R as H-modules by (i, i′).

Remark 48 (cf. [3, Lem. 3.5.1]) We have mutually inverse isomorphisms
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of R-modules

H̄(P, K(Q, M)) -α
∼ H(P ⊗Q, M)

f - (p⊗ q - [q](pf))

H̄(P, K(Q, M)) �β

∼ H(P ⊗Q, M)
(p - (q - [p⊗ q]g)) � g ,

natural in P ∈ Ob H̄-Mod, Q ∈ ObH-Mod and M ∈ ObH-Mod.

Proof. We claim that α is welldefined. We have to show that fα is H-linear.
Suppose given x ∈ H . We obtain

x · (p⊗ q) =
∑

i xui · p⊗ xvi · q

-fα ∑

i[xvi · q]((xui · p)f)
=

∑

i[xvi · q](xui · (pf))
=

∑

i,j xuiuj · [xuivjS · xvi · q](pf)
(ii)
=

∑

i,j xui · [xviujS · xvivj · q](pf)
(iii)
=

∑

i xui · [xviε · q](pf)
(i′)
= x · [q](pf)
= x · [p⊗ q](fα) .

We claim that β is welldefined. First, we have to show that [p](gβ) is K-linear.
Suppose given a ∈ K. We obtain

a·q -[p](gβ)
[p⊗a·q]g

(i)
=

∑

i [auiε·p⊗avi ·q]g =
∑

i [aui ·p⊗avi ·q]g = a·[p⊗q]g .

Second, we have to show that gβ is H̄-linear. Suppose given x ∈ H . We obtain

x̄ · p -gβ
(q - [x̄ · p⊗ q]g)

(i)
= (q - ∑

i[xui · xviε · p⊗ q)]g)
(iii′)
= (q - ∑

i,j [xui · p⊗ xviuj · xvivjS · q)]g)
(ii)
= (q - ∑

i,j [xuiuj · p⊗ xuivj · xviS · q)]g)

= (q - ∑

i xui · [p⊗ xviS · q]g)
= x̄ · (q - [p⊗ q]g) .

Finally, α and β are mutually inverse.

Corollary 49 We have H̄(P, MK) ≃ H̄(P, K(R, M)) ≃ H(P, M) as
R-modules, natural in P and M .

Proof. Note that M ≃ R(R, M) as H-modules, whence MK ≃ K(R, M) as
H̄-modules by Remarks 43, 44. Now the assertion follows from Remark 48,
letting Q = R.
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8.2 Comparing Hochschild-Serre-Hopf with Grothendieck

Let R be a commutative ring. Suppose given a Hopf algebra H over R (with
involutive antipode) and a normal Hopf-subalgebra K ⊆ R; cf. §8.1.3. Write
H̄ := H/HK+. Suppose H , K and H̄ to be projective as modules over R.
Suppose H to be projective as a module over K.
Let B ∈ Ob C(H-Mod) be a projective resolution of R over H . Let B̄ ∈
Ob C(H̄-Mod) be a projective resolution of R over H̄. Note that since H̄ is
projective over R, B̄|R ∈ Ob C(R-Mod) is a projective resolution of R over R.
Let M be an H-module.
By Corollary 45 and by Remark 46, we have a biadditive functor

(H-Mod)◦ × H-Mod -U H̄-Mod
(X , X ′) - U(X, X ′) := K(X, X ′) .

Write

(H̄-Mod)◦ × H̄-Mod -V H̄-Mod
(Y , Y ′) - V (N, M) := H̄(N, M)

for the usual Hom-functor.

Lemma 50 The H̄-module U(H, M) is V (R,−)-acyclic.

Proof. By Lemma 47, this amounts to showing that R(H̄, M) is V (R,−)-
acyclic, which in turn amounts to showing that V

(

B̄ , R(H̄, M)
)

=

H̄

(

B̄ , R(H̄, M)
)

has vanishing cohomology in degrees ≥ 1. Now,

H̄

(

B̄ , R(H̄, M)
)

≃ R(H̄ ⊗H̄ B̄ , M) ≃ R(B̄ , M) ,

whose cohomology in degree i ≥ 1 is ExtiR(R, M) ≃ 0.
Consider the double complex

D(M) = D−,=(M) := V
(

B̄− , U(B= , M)
)

= H̄

(

B̄− , K(B= , M)
)

.

Note that D(M) is isomorphic in CCx(R-Mod) to H

(

B̄− ⊗R B= , M
)

, natu-
rally in M ; cf. Remark 48.
We have functors

H-Mod -U(R,−)
H̄-Mod -V (R,−)

R-Mod .

M - U(R, M) ≃MK

P - V (R, P ) ≃ P H̄

Lemma 51 Given a projective H-module P , the H̄-module U(P, M) is
V (R,−)-acyclic.
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Proof. It suffices to show that U(
∐

Γ H, M) ≃
∏

Γ U(H, M) is V (R,−)-
acyclic for any indexing set Γ. By Lemma 50, it remains to be shown that
RiV (R,

∏

Γ Y ) is isomorphic to
∏

Γ RiV (R, Y ) for a given H̄-module Y and
for i ≥ 1. Having chosen an injective resolution J of Y , we may choose the
injective resolution

∏

Γ J of
∏

Γ Y . Then

RiV (R,
∏

Γ Y ) ≃ HiV (R,
∏

Γ J) ≃ Hi
∏

Γ V (R, J)

≃
∏

Γ HiV (R, J) ≃
∏

Γ RiV (R, Y ) .

Theorem 52 The proper spectral sequences

ĖI(D(M)) and ĖGr
U(R,−), V (R,−)(M)

are isomorphic (in ˙̄
Z

##
∞ , R-Mod ), naturally in M ∈ ObH-Mod.

Proof. To apply Theorem 31 with, in the notation of §5.1,

(

A×A′ -F
B -G

C
)

=
(

(H-Mod)◦ ×H-Mod -U
H̄-Mod -V (R,−)

R-Mod
)

,

and with X = R and X ′ = M , we verify the conditions (a–d′) of loc. cit. in
this case.
Ad (c). We claim that B is a

(

U(−, M), V (R,−)
)

-acyclic resolution of R. We
have to show that U(Bi, M) is V (R,−)-acyclic for i ≥ 0; cf. §4.2. Since Bi is
projective over H , this follows by Lemma 51. This proves the claim.
Ad (c′). Let I be an injective resolution of M over H . We claim that I is a
(

U(R,−), V (R,−)
)

-acyclic resolution of M . We have to show that U(R, Ii)
is V (R,−)-acyclic for i ≥ 0. In fact, by Corollary 49, U(R, Ii) is an injective
H̄-module. This proves the claim.
Ad (d, d′). We claim that U(Bi,−) and U(−, Ii) are exact for i ≥ 0; cf. §5.1.
The former follows from H being projective over K. The latter is a consequence

of Ii|K being injective in K-Mod by exactness of K-Mod -H⊗K−
H-Mod. This

proves the claim.
So an application of Theorem 31 yields

ĖGr
U(R,−),V (R,−)(M) ≃ ĖGr

U(−,M),V (R,−)(R) .

To apply Theorem 34 with, in the notation of §6.1,

(

A -F
B′ , B × B′ -G

C
)

=
(

(H-Mod)◦ -U(−,M)
H̄-Mod , (H̄-Mod)◦ × H̄-Mod -V

C
)

,
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and with X = R and Y = R, we verify the conditions (a–e) of loc. cit. in this
case.
Ad (c). We have already remarked that B is a

(

U(−, M), V (R,−)
)

-acyclic
resolution of R.
Ad (d). As a resolution of R over H̄ , we choose B̄.
So an application of Theorem 34 yields

ĖGr
U(−,M),V (R,−)(R) ≃ ĖI

(

V
(

B̄− , U(B= , M)
)

)

.

Naturality in M ∈ ObH-Mod remains to be shown. Suppose given M -m M̃
in H-Mod. Note that the requirements of §5.2 are met. By Proposition 32, with
roles of A and A′ interchanged, we have the following commutative quadrangle.

ĖGr
U(R,−),V (R,−)(M)

ĖGr
U(R,−),V (R,−)(m)

// ĖGr
U(R,−),V (R,−)(M̃)

ĖGr
U(−,M),V (R,−)(R)

hI
U(−,m)R //

≀

OO

ĖGr
U(−,M̃),V (R,−)

(R)

≀

OO

Note that the requirements of §6.2 are met. By Lemma 36, we have the follow-
ing commutative quadrangle.

ĖGr
U(−,M),V (R,−)(R)

hI
U(−,m)R //

≀

��

ĖGr
U(−,M̃),V (R,−)

(R)

≀

��

ĖI

(

V
(

B̄− , U(B= , M)
)

)

ĖI(V (B̄−, U(B=,m))) // ĖI

(

V
(

B̄− , U(B= , M̃)
)

)

8.3 Comparing Lyndon-Hochschild-Serre with Grothendieck

Let R be a commutative ring. Let G be a group and let N E G be a
normal subgroup. Write Ḡ := G/N . Let M be an RG-module. Write
BarG;R ∈ ObC(RG -Mod) for the bar resolution of R over RG, having
(BarG;R)i = RG⊗(i+1) for i ≥ 0, the tensor product being taken over R.
Note that RG is a Hopf algebra over R via

RG -∆ RG⊗RG , g - g ⊗ g

RG -S RG , g - g−1

RG -ε R , g - 1 ,

where g ∈ G; cf. §8.1.1. Moreover, RN is a normal Hopf subalgebra of RG
such that RG/(RG)(RN)+ ≃ RḠ; cf. §8.1.3.
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Note that RG, RN and RḠ are projective over R, and that RG is projective
over RN .

We have functors RG -Mod -(−)N

RḠ -Mod -(−)Ḡ

R-Mod, taking respective
fixed points.

Theorem 53 (Beyl, [4, Th. 3.5]) The proper spectral sequences

ĖGr
(−)N , (−)Ḡ(M) and ĖI

(

RG

(

(BarḠ;R)− ⊗R (BarG;R)= , M
)

)

are isomorphic (in ˙̄
Z

##
∞ , R-Mod ), naturally in M ∈ ObRG -Mod.

Beyl uses his Theorem 40 to prove Theorem 53. We shall re-derive it from
Theorem 52, which in turn relies on the Theorems 31 and 34.

Proof. This follows by Theorem 52.

8.4 Comparing Hochschild-Serre with Grothendieck

Let R be a commutative ring. Let g be a Lie algebra over R that is free
as an R-module. Let n E g be an ideal such that n and ḡ := g/n are free
as R-modules. Let M be a g-module, i.e. a U(g)-module. Write Barg;R ∈
Ob C(U(g) -Mod) for the Chevalley-Eilenberg resolution of R over U(g), having
(Barg;R)i = U(g)⊗R ∧

i
g for i ≥ 0; cf. [5, XIII.§7] or [18, Th. 7.7.2].

Note that U(g) is a Hopf algebra over R via

U(g) -∆ U(g)⊗ U(g) , g - g ⊗ 1 + 1⊗ g

U(g) -S U(g) , g - −g

U(g) -ε R , g - 0 ,

where g ∈ g; cf. §8.1.1.
Note that U(g), U(n) and U(ḡ) are projective over R, and that U(g) is projective
over U(n); cf. [18, Cor. 7.3.9].

We have functors U(g) -Mod -(−)n

U(ḡ) -Mod -(−)ḡ

R-Mod, taking respective
annihilated submodules; cf. [18, p. 221].

Theorem 54 The proper spectral sequences

ĖGr
(−)n, (−)ḡ(M) and ĖI

(

U(g)

(

(Barḡ;R)− ⊗R (Barg;R)= , M
)

)

are isomorphic (in ˙̄
Z

##
∞ , R-Mod ), naturally in M ∈ ObU(g) -Mod.

Cf. Barnes, [2, Sec. IV.4, Ch. VII].

Proof. This follows by Theorem 52.
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8.5 Comparing two spectral sequences for a change of rings

The following application is taken from [5, XVI.§6].

Let R be a commutative ring. Let A -φ B be a morphism of R-algebras.
Consider the functors

A-Mod -A(B,−)
B-Mod , (B-Mod)◦ ×B-Mod -B(−,=)

R-Mod .

Let X be an A-module, let Y be a B-module.

We shall compare two spectral sequences with E2-terms Exti
B(Y,Extj

A
(B, X)),

converging to Exti+j
A

(Y, X). If one views X⇑B
A := A(B, X) as a way to induce

from A-Mod to B-Mod, this measures the failure of the Eckmann-Shapiro-type

formula Exti
B(Y, X⇑B

A)
?
≃ Exti

A(Y, X), which holds if B is projective over A.

Let I ∈ ObC[0(A-Mod) be an injective resolution of X . Let P ∈
Ob C[0(B-Mod) be a projective resolution of Y .

Proposition 55 The proper spectral sequences

ĖGr
A(B,−), B(Y,−)(X) and ĖI

(

B(P−, A(B, I=))
)

are isomorphic (in ˙̄
Z

##
∞ , R-Mod ).

Proof. To apply Theorem 34, if suffices to remark that for each injective
A-module I ′, the B-module A(B, I ′) is injective, and thus B(Y,−)-acyclic.

Remark 56 The functor A(B,−) can be replaced by A(M,−), where M is an
A-B-bimodule that is flat over B.

8.6 Comparing two spectral sequences for Ext and ⊗

Let R be a commutative ring. Let S be a ring. Let A be an R-algebra. Let
M be an R-S-bimodule. Let X and X ′ be A-modules. Assume that X is flat
over R. Assume that Exti

R(M, X ′) ≃ 0 for i ≥ 1.

Example 57 Let T be a discrete valuation ring, with maximal ideal generated
by t. Let R = T/tℓ for some ℓ ≥ 1. Let S = T/tk, where 1 ≤ k ≤ ℓ. Let G be
a finite group, and let A = RG. Let M = S. Let X and X ′ be RG-modules
that are both finitely generated and free over R.

Consider the functors

(A-Mod)◦ ×A-Mod -A(−,=)
R-Mod -R(M,−)

S -Mod
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Proposition 58 The proper Grothendieck spectral sequences

ĖGr
A(X,−), R(M,−)(X

′) and ĖGr
A(−,X′), R(M,−)(X)

are isomorphic (in ˙̄
Z

##
∞ , S -Mod ).

Both have E2-terms Exti
R

(

M, ExtjA(X, X ′)
)

, and both converge to

Exti+j
A (X ⊗R M, X ′). In particular, in the situation of Example 57, both

have E2-terms Exti
R

(

S, Extj
RG(X, X ′)

)

and converge to Exti+j
RG(X/tk, X ′).

Proof of Proposition 58. To apply Theorem 31, we comment on the conditions
in §5.1.
(c) Given a projective A-module P , we want to show that the R-module

A(P, X ′) is R(M,−)-acyclic. We may assume that P = A, which is to
be viewed as an A-R-bimodule. Now, we have Exti

R

(

M, A(A, X ′)
)

≃

ExtiR(M, X ′) ≃ 0 for i ≥ 1 by assumption.

(c′) Given an injective A-module I ′, the R-module A(X, I ′) is injective since
X is flat over R by assumption.

8.7 Comparing two spectral sequences for Ext of sheaves

Let T -f S be a flat morphism of ringed spaces, i.e. suppose that

OT ⊗f−1OS
− : f−1OS -Mod - OT -Mod

is exact. Consequently, f∗ : OS -Mod - OT -Mod is exact.
Given OS-modules F and F ′, we abbreviate OS(F ,F ′) := HomOS (F ,F ′) ∈
ObR-Mod and OS((F ,F ′)) := HomOS (F ,F ′) ∈ ObOS -Mod.
Let F be an OS-module that has a locally free resolution B ∈ Ob C(OS -Mod);
cf. [9, Prop. III.6.5]. Let G ∈ ObOT -Mod. Let A ∈ Ob C[0(OT -Mod) be an
injective resolution of G.
Consider the functors

OT -Mod -f∗

OS -Mod , (OS -Mod)◦ ×OS -Mod -OS
((−,=))

OS -Mod .

Proposition 59 The proper spectral sequences

ĖGr
f∗, OS

((F ,−))(G) and ĖI

(

OS((B−, f∗A
=))

)

are isomorphic (in ˙̄
Z

##
∞ , OS -Mod ).

In particular, both spectral sequences have E2-terms Ext i
OS

(

F , (Rjf∗)(G)
)

and
converge to (Ri+jIΓF)(G), where IΓF(−) := OS((F , f∗(−))) ≃ f∗ OT((f

∗F ,−)).
For example, if S = {∗} is a one-point-space and if we write R := OS(S), then
we can identify OS -Mod = R-Mod. If, in this case, F = R/rR for some r ∈ R,
then IΓR/rR(G) ≃ Γ(T,G)[r] := {g ∈ G(T ) : rg = 0}.

Proof of Proposition 59. To apply Theorem 34, we comment on the conditions
in §6.1.
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(c) Since f∗ maps injective OT -modules to injective OS-modules by flatness

of T -f S, the complex A is an
(

f∗, OS((F ,−))
)

-acyclic resolution of G.

(e) If I is an injective OS-module and U ⊆ S is an open subset, then I|U
is an injective OU -module; cf. [9, Lem. III.6.1]. Hence OS((−, I)) turns a
short exact sequence of OS-modules into a sequence that is short exact
as a sequence of abelian presheaves, and hence a fortiori short exact as a
sequence of OS-modules. In other words, the functor OS((−, I)) is exact.
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