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366 Paul S. Muhly and Baruch Solel

1 IntroductionLet M be a W ∗-algebra and let E be a W ∗-orrespondene overM . In [31℄ webuilt an operator algebra from this data that we alled the Hardy algebra of Eand whih we denoted H∞(E). If M = E = C - the omplex numbers, then
H∞(E) is the lassial Hardy algebra onsisting of all bounded analyti fun-tions on the open unit dis, D (see Example 2.4 below.) If M = C again, but
E = Cn, then H∞(E) is the free semigroup algebra Ln studied by Davidsonand Pitts [17℄, Popesu [32℄ and others (see Example 2.5.) One of the prinipaldisoveries made in [31℄, and the soure of inspiration for the present paper, isthat attahed to eah faithful normal representation σ ofM there is a dual or-respondene Eσ, whih is a W ∗-orrespondene over the ommutant of σ(M),
σ(M)′, and the elements of H∞(E) de�ne funtions on the open unit ball of
Eσ, D(Eσ). Further, the value distribution theory of these funtions turns outto be linked through our generalization of the Nevanlinna-Pik interpolationtheorem [31, Theorem 5.3℄ with the positivity properties of ertain Pik-likekernels of mappings between operator spaes.In the setting where M = E = C and σ is the 1-dimensional representation of
C on itself, then Eσ is C again. The representation of H∞(E) in terms of fun-tions on D(Eσ) = D is just the usual way we think of H∞(E). In this setting,our Nevanlinna-Pik theorem is exatly the lassial theorem. If, however, σis a representation of C on a Hilbert spae H , dim(H) > 1, then Eσ may beidenti�ed with B(H) and then D(Eσ) beomes the spae of strit ontrationson H , i.e., all those operators of norm stritly less than 1. In this ase, thevalue of an f ∈ H∞(E) at a T ∈ D(E

σ
) is simply f(T ), de�ned through theusual holomorphi funtional alulus. Our Nevanlinna-Pik theorem gives asolution to problems suh as this: given k operators T1, T2, . . . , Tk all of normless than 1 and k operators, A1, A2, . . . , Ak, determine the irumstanes underwhih one an �nd a bounded analyti funtion f on the open unit dis of supnorm at most 1 suh that f(Ti) = Ai, i = 1, 2, . . . , k (See [31, Theorem 6.1℄.)On the other hand, when M = C, E = Cn, and σ is one dimensional, thespae Eσ is Cn and D(Eσ) is the unit ball Bn. Elements in H∞(E) = Lnare realized as holomorphi funtions on Bn that lie in a multiplier spae stud-ied in detail by Arveson [5℄. More aurately, the funtional representation of

H∞(E) = Ln in terms of these funtions expresses this spae as a quotient of
H∞(E) = Ln. The Nevanlinna-Pik theorem of [31℄ ontains those of David-son and Pitts [18℄, Popesu [34℄, and Arias and Popesu [4℄, whih deal withinterpolation problems for these spaes of funtions (possibly tensored with thebounded operators on an auxiliary Hilbert spae). It also ontains some of theresults of Constaninesu and Johnson in [16℄ whih treats elements of Ln asfuntions on the ball of strit row ontrations with values in the operators ona Hilbert spae. (See their Theorem 3.4 in partiular.) This situation ariseswhen one takes M = C and E = Cn, but takes σ to be salar multipliationon an auxiliary Hilbert spae.Our objetive in the present note is basially two fold. First, we wish to identify
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Schur Class Operator Functions . . . 367those funtions on D(E
σ
) that arise from evaluating elements of H∞(E). Forthis purpose, we introdue a family of funtions on D(E

σ
) that we all Shurlass operator funtions (see De�nition 3.1). Roughly speaking, these funtionsare de�ned so that a Pik-like kernel that one may attah to eah one is om-pletely positive de�nite in the sense of Barreto, Bhat, Liebsher and Skeide[14℄. In Theorem 3.3 we use their Theorem 3.2.3 to give a Kolmogorov-typerepresentation of the kernel, from whih we derive an analogue of a unitarysystem matrix ( A B

C D

) whose transfer funtion
A+B(I − L∗

ηD)−1L∗
ηCturns out to be the given Shur lass operator funtion. We then prove inTheorem 3.6 that eah suh transfer funtion arises by evaluating an elementin H∞(E) at points of D(Eσ) and onversely, eah funtion in H∞(E) has arepresentation in terms of a transfer funtion. The meaning of the notation willbe made preise below, but we use it here to highlight the onnetion betweenour analysis and realization theory as it omes from mathematial systemstheory. The point to keep in mind is that funtions on D(Eσ) that ome fromelements of H∞(E) are not, a priori, analyti in any ordinary sense and it isnot at all lear what analyti features they have. Our Theorems 3.1 and 3.6together with [31, Theorem 5.3℄ show that the Shur lass operator funtionsare preisely the funtions one obtains when evaluating funtions in H∞(E)(of norm at most 1) at points of D(Eσ). The fat that eah suh funtion maybe realized as a transfer funtion exhibits a surprising level of analytiity thatis not evident in the de�nition of H∞(E).Our seond objetive is to onnet the usual holomorphi properties of D(Eσ)with the automorphisms of H∞(E). As a spae, D(Eσ) is the unit ball of a

J∗-triple system. Consequently, every holomorphi automorphism of D(Eσ) isthe omposition of a Möbius transformation and a linear isometry [20℄. Eahof these implements an automorphism of the algebra of all bounded, omplex-valued analyti funtions on D(Eσ), but in our setting only ertain of themimplement automorphisms of H∞(E) - those for whih the Möbius part isdetermined by a �entral� element of Eσ (see Theorem 4.21). Our proof requiresthe fat that the evaluation of funtions inH∞(E) (of norm at most 1) at pointsof D(Eσ) are preisely the Shur lass operator funtions on D(Eσ). Indeed, thewhole analysis is an intriate �point - ounterpoint� interplay among elementsof H∞(E), Shur lass funtions, transfer funtions and �lassial� funtiontheory on D(Eσ). In the last setion, we apply our general analysis of theautomorphisms of H∞(E) to the speial ase of H∞-algebras oming fromdireted graphs.In onluding this introdution, we want to note that a preprint of the presentpaper was posted on the arXiv on June 27, 2006. Reently, inspired in partby our preprint, Ball, Biswas, Fang and ter Horst [8℄ were able to realize theFok spae that we desribe here in terms of the theory of ompletely positivede�nite kernels advaned by Barreto, Bhat, Liebsher and Skeide [14℄ that we
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368 Paul S. Muhly and Baruch Solelalso use (See Setion 3 and, in partiular, the proof of Theorem 3.3.) Theanalysis of Ball et al. makes additional ties between the theory of abstratHardy algebras that we develop here and lassial funtion theory on the unitdis.
2 PreliminariesWe start by introduing the basi de�nitions and onstrutions. We shall followLane [24℄ for the general theory of Hilbert C∗-modules that we shall use. Let
A be a C∗-algebra and E be a right module over A endowed with a bi-additivemap 〈·, ·〉 : E × E → A (referred to as an A-valued inner produt) suh that,for ξ, η ∈ E and a ∈ A, 〈ξ, ηa〉 = 〈ξ, η〉a, 〈ξ, η〉∗ = 〈η, ξ〉, and 〈ξ, ξ〉 ≥ 0, with
〈ξ, ξ〉 = 0 only when ξ = 0. Also, E is assumed to be omplete in the norm
‖ξ‖ := ‖〈ξ, ξ〉‖1/2. We write L(E) for the spae of ontinuous, adjointable,
A-module maps on E. It is known to be a C∗-algebra. If M is a von Neumannalgebra and if E is a Hilbert C∗-module overM , then E is said to be self-dual inase every ontinuousM -module map from E toM is given by an inner produtwith an element of E. Let A and B be C∗-algebras. A C∗-orrespondene from
A to B is a Hilbert C∗-module E over B endowed with a struture of a leftmodule over A via a nondegenerate ∗-homomorphism ϕ : A→ L(E).When dealing with a spei� C∗-orrespondene, E, from a C∗-algebra A to a
C∗-algebra B, it will be onvenient sometimes to suppress the ϕ in formulasinvolving the left ation and simply write aξ or a · ξ for ϕ(a)ξ. This shouldause no onfusion in ontext.If E is a C∗-orrespondene from A to B and if F is a orrespondene from
B to C, then the balaned tensor produt, E ⊗B F is an A,C-bimodule thatarries the inner produt de�ned by the formula

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉E⊗BF := 〈η1, ϕ(〈ξ1, ξ2〉E)η2〉FThe Hausdor� ompletion of this bimodule is again denoted by E ⊗B F .In this paper we deal mostly with orrespondenes over von Neumann algebrasthat satisfy some natural additional properties as indiated in the followingde�nition. (For examples and more details see [31℄).
Definition 2.1 LetM and N be von Neumann algebras and let E be a Hilbert
C∗-module over N . Then E is alled a Hilbert W ∗-module over N in ase E isself-dual. The module E is alled a W ∗-orrespondene fromM to N in ase Eis a self-dual C∗-orrespondene from M to N suh that the ∗-homomorphism
ϕ : M → L(E), giving the left module struture on E, is normal. If M = Nwe shall say that E is a W ∗-orrespondene over M .We note that if E is a Hilbert W ∗-module over a von Neumann algebra, then
L(E) is not only a C∗-algebra, but is also a W ∗-algebra. Thus it makes senseto talk about normal homomorphisms into L(E).
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Schur Class Operator Functions . . . 369
Definition 2.2 An isomorphism of a W ∗-orrespondene E1 over M1 anda W ∗-orrespondene E2 over M2 is a pair (σ,Ψ) where σ : M1 → M2 isan isomorphism of von Neumann algebras, Ψ : E1 → E2 is a vetor spaeisomorphism preserving the σ-topology and for e, f ∈ E1 and a, b ∈ M1, wehave Ψ(aeb) = σ(a)Ψ(e)σ(b) and 〈Ψ(e),Ψ(f)〉 = σ(〈e, f〉).When onsidering the tensor produt E ⊗M F of two W ∗-orrespondenes,one needs to take the losure of the C∗-tensor produt in the σ-topology of[6℄ in order to get a W ∗-orrespondene. However, we will not distinguishnotationally between the C∗-tensor produt and the W ∗-tensor produt. Notealso that given aW ∗-orrespondene E overM and a Hilbert spaeH equippedwith a normal representation σ of M , we an form the Hilbert spae E ⊗σ Hby de�ning 〈ξ1 ⊗ h1, ξ2 ⊗ h2〉 = 〈h1, σ(〈ξ1, ξ2〉)h2〉. Thus, H is viewed as aorrespondene from M to C via σ and E ⊗σ H is just the tensor produt of
E and H as W ∗-orrespondenes.Note also that, given an operator X ∈ L(E) and an operator S ∈ σ(M)′, themap ξ ⊗ h 7→ Xξ ⊗ Sh de�nes a bounded operator on E ⊗σ H denoted by
X ⊗ S. The representation of L(E) that results when one lets S = I, is alledthe representation of L(E) indued by σ and is often denoted by σE . Theomposition, σE ◦ϕ is a representation ofM whih we shall also say is induedby σ, but we shall usually denote it by ϕ(·) ⊗ I.Observe that if E is a W ∗-orrespondene over a von Neumann algebra M ,then we may form the tensor powers E⊗n, n ≥ 0, where E⊗0 is simply Mviewed as the identity orrespondene over M , and we may form the W ∗-diret sum of the tensor powers, F(E) := E⊗0 ⊕ E⊗1 ⊕ E⊗2 ⊕ · · · to obtaina W ∗-orrespondene over M alled the (full) Fok spae over E. The ationsof M on the left and right of F(E) are the diagonal ations and, when it isonvenient to do so, we make expliit the left ation by writing ϕ∞ for it.That is, for a ∈ M , ϕ∞(a) := diag{a, ϕ(a), ϕ(2)(a), ϕ(3)(a), · · · }, where for all
n, ϕ(n)(a)(ξ1 ⊗ ξ2 ⊗ · · · ξn) = (ϕ(a)ξ1) ⊗ ξ2 ⊗ · · · ξn, ξ1 ⊗ ξ2 ⊗ · · · ξn ∈ E⊗n.The tensor algebra over E, denoted T+(E), is de�ned to be the norm-losedsubalgebra of L(F(E)) generated by ϕ∞(M) and the reation operators Tξ,
ξ ∈ E, de�ned by the formula Tξη = ξ ⊗ η, η ∈ F(E). We refer the reader to[28℄ for the basi fats about T+(E).
Definition 2.3 ([31℄) Given a W ∗-orrespondene E over the von NeumannalgebraM , the ultraweak losure of the tensor algebra of E, T+(E), in L(F(E)),is alled the Hardy Algebra of E, and is denoted H∞(E).
Example 2.4 If M = E = C, then F(E) an be identi�ed with ℓ2(Z+) or,through the Fourier transform, H2(T). The tensor algebra then is isomorphito the dis algebra A(D) viewed as multipliation operators on H2(T) and theHardy algebra is realized as the lassial Hardy algebra H∞(T).
Example 2.5 If M = C and E = Cn, then F(E) an be identi�ed with thespae l2(F

+
n ), where F+

n is the free semigroup on n generators. The tensor
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370 Paul S. Muhly and Baruch Solelalgebra then is what Popesu refers to as the �non ommutative dis algebra�
An and the Hardy algebra is its w∗-losure. It was studied by Popesu [32℄ andby Davidson and Pitts who denoted it by Ln [17℄.We need to review some basi fats about the representation theory of H∞(E)and of T+(E). See [28, 31℄ for more details.
Definition 2.6 Let E be a W ∗-orrespondene over a von Neumann algebra
M . Then:1. A ompletely ontrative ovariant representation of E on a Hilbert spae

H is a pair (T, σ), where(a) σ is a normal ∗-representation of M in B(H).(b) T is a linear, ompletely ontrative map from E to B(H) that isontinuous in the σ-topology of [6℄ on E and the ultraweak topologyon B(H).() T is a bimodule map in the sense that T (SξR) = σ(S)T (ξ)σ(R),
ξ ∈ E, and S,R ∈M .2. A ompletely ontrative ovariant representation (T, σ) of E in B(H) isalled isometri in ase

T (ξ)∗T (η) = σ(〈ξ, η〉) (1)for all ξ, η ∈ E.It should be noted that the operator spae struture on E to whih De�nition2.6 refers is that whih E inherits when viewed as a subspae of its linkingalgebra.As we showed in [28, Lemmas 3.4�3.6℄ and in [31℄, if a ompletely ontrativeovariant representation, (T, σ), of E in B(H) is given, then it determines aontration T̃ : E ⊗σ H → H de�ned by the formula T̃ (η ⊗ h) := T (η)h,
η ⊗ h ∈ E ⊗σ H . The operator T̃ intertwines the representation σ on H andthe indued representation σE ◦ ϕ = ϕ(·) ⊗ IH on E ⊗σ H ; i.e.

T̃ (ϕ(·) ⊗ I) = σ(·)T̃ . (2)In fat we have the following lemma from [31, Lemma 2.16℄.
Lemma 2.7 The map (T, σ) → T̃ is a bijetion between all ompletely ontra-tive ovariant representations (T, σ) of E on the Hilbert spae H and ontrativeoperators T̃ : E⊗σH → H that satisfy equation (2). Given suh a T̃ satisfyingthis equation, T , de�ned by the formula T (ξ)h := T̃ (ξ ⊗ h), together with σ isa ompletely ontrative ovariant representation of E on H. Further, (T, σ)is isometri if and only if T̃ is an isometry.
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Schur Class Operator Functions . . . 371The importane of the ompletely ontrative ovariant representations of E(or, equivalently, the intertwining ontrations T̃ as above) is that they yieldall ompletely ontrative representations of the tensor algebra. More preisely,we have the following.
Theorem 2.8 Let E be a W ∗-orrespondene over a von Neumann algebra M .To every ompletely ontrative ovariant representation, (T, σ), of E there isa unique ompletely ontrative representation ρ of the tensor algebra T+(E)that satis�es

ρ(Tξ) = T (ξ) ξ ∈ Eand
ρ(ϕ∞(a)) = σ(a) a ∈M.The map (T, σ) 7→ ρ is a bijetion between the set of all ompletely ontrativeovariant representations of E and all ompletely ontrative (algebra) repre-sentations of T+(E) whose restritions to ϕ∞(M) are ontinuous with respetto the ultraweak topology on L(F(E)).

Definition 2.9 If (T, σ) is a ompletely ontrative ovariant representationof a W ∗-orrespondene E over a von Neumann algebra M , we all the repre-sentation ρ of T+(E) desribed in Theorem 2.8 the integrated form of (T, σ)and write ρ = σ × T .
Remark 2.10 One of the prinipal di�ulties one faes in dealing with T+(E)and H∞(E) is to deide when the integrated form, σ × T , of a ompletely on-trative ovariant representation (T, σ) extends from T+(E) to H∞(E). Thisproblem arises already in the simplest situation, vis. when M = C = E. In thissetting, T is given by a single ontration operator on a Hilbert spae, T+(E)�is� the dis algebra and H∞(E) �is� the spae of bounded analyti funtionson the dis. The representation σ×T extends from the dis algebra to H∞(E)preisely when there is no singular part to the spetral measure of the minimalunitary dilation of T . We are not aware of a omparable result in our generalontext but we have some su�ient onditions. One of them is given in thefollowing lemma. It is not a neessary ondition in general.
Lemma 2.11 [31, Corollary 2.14℄ If ‖T̃‖ < 1 then σ × T extends to a ultra-weakly ontinuous representation of H∞(E).In [31℄ we introdued and studied the onepts of duality and of point evaluation(for elements of H∞(E)). These play a entral role in our analysis here.
Definition 2.12 Let E be a W ∗-orrespondene over a von Neumann algebra
M and let σ : M → B(H) be a faithful normal representation ofM on a Hilbertspae H. Then the σ-dual of E, denoted Eσ, is de�ned to be

{η ∈ B(H,E ⊗σ H) | ησ(a) = (ϕ(a) ⊗ I)η, a ∈M}.
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372 Paul S. Muhly and Baruch SolelAn important feature of the dual Eσ is that it is a W ∗-orrespondene, butover the ommutant of σ(M), σ(M)′.
Proposition 2.13 With respet to the ation of σ(M)′ and the σ(M)′-valuedinner produt de�ned as follows, Eσ beomes a W ∗-orrespondene over σ(M)′:For Y and X in σ(M)′, and η ∈ Eσ, X ·η·Y := (I⊗X)ηY , and for η1, η2 ∈ Eσ,
〈η1, η2〉σ(M)′ := η∗1η2.In the following remark we explain what we mean by �evaluating an element of
H∞(E) at a point in the open unit ball of the dual�.
Remark 2.14 The importane of this dual spae, Eσ, is that it is losely re-lated to the representations of E. In fat, the operators in Eσ whose norm doesnot exeed 1 are preisely the adjoints of the operators of the form T̃ for a o-variant pair (T, σ). In partiular, every η in the open unit ball of Eσ (written
D(Eσ)) gives rise to a ovariant pair (T, σ) (with η = T̃ ∗) suh that σ × Textends to a representation of H∞(E).Given X ∈ H∞(E) we an apply the representation assoiated to η to it. Theresulting operator in B(H) will be denoted by X̂(η∗). Thus

X̂(η∗) = (σ × η∗)(X).In this way, we view every element in the Hardy algebra as a B(H)-valuedfuntion
X̂ : D(Eσ)∗ → B(H)on the open unit ball of (Eσ)∗. One of our primary objetives is to understandthe range of the transform X → X̂ , X ∈ H∞(E).

Example 2.15 Suppose M = E = C and σ the representation of C on someHilbert spae H. Then it is easy to hek that Eσ is isomorphi to B(H). Fix an
X ∈ H∞(E). As we mentioned above, this Hardy algebra is the lassial H∞(T)and we an identify X with a funtion f ∈ H∞(T). Given S ∈ D(Eσ) = B(H),it is not hard to hek that X̂(S∗), as de�ned above, is the operator f(S∗)de�ned through the usual holomorphi funtional alulus.
Example 2.16 In [17℄ Davidson and Pitts assoiate to every element of thefree semigroup algebra Ln (see Example 2.5) a funtion on the open unit ball of
Cn. This is a speial ase of our analysis when M = C, E = Cn and σ is a onedimensional representation of C. In this ase σ(M)′ = C and Eσ = Cn. Note,however, that our de�nition allows us to take σ to be the representation of C onan arbitrary Hilbert spae H. If we do so, then Eσ is isomorphi to B(H)(n),the nth olumn spae over B(H), and elements of Ln de�ne funtions on theopen unit ball of this spae viewed as a orrespondene over B(H) with valuesin B(H). This is the perspetive adopted by Constantinesu and Johnson in[16℄. In the analysis of [17℄ it is possible that a non zero element of Ln willgive rise to the zero funtion. We shall show in Lemma 3.8 that, by hoosingan appropriate H we an insure that this does not happen.
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Schur Class Operator Functions . . . 373
Example 2.17 Part of the reent work of Popesu in [35℄ may be ast in ourframework. We will follow his notation. Fix a Hilbert spae K, and let E bethe olumn spae B(K)n. Take, also, a Hilbert spae H and let σ : B(K) →
B(K ⊗ H) be the representation whih sends a ∈ B(K) to a ⊗ IH . Then,sine the ommutant of σ(B(K)) is naturally isomorphi to B(H), it is easy tosee that Eσ is the olumn spae over B(H), B(H)n. It follows that D(Eσ) isthe open unit ball in B(H)n. A free formal power series with oe�ients from
B(K) is a formal series F =

∑
α∈F

+
n
Aα ⊗ Zα where F+

n is the free semigroupon n generators, the Aα are elements of B(K) and where Zα is the monomialin nonommuting indeterminates Z1, Z2, . . . , Zn determined by α. If F hasradius of onvergene equal to 1, then one may evaluate F at points of D(Eσ)∗to get a funtion on D(Eσ)∗ with values in B(K⊗H), vis., F ((S1, S2, · · ·Sn)) =∑
α∈F

+
n
Aα ⊗ Sα. See [35, Theorem 1.1℄. In fat, under additional restritionson the oe�ients Aα, F may be viewed as a funtion X in H∞(B(K)n) in suha way that F ((S1, S2, · · ·Sn)) = X̂(S1, S2, · · ·Sn) in the sense de�ned in [31, p.384℄ and disussed above in Remark 2.14. The spae that Popesu denotes by

H∞(B(X )n
1 ) arises when K = C, and is naturally isometrially isomorphi to

Ln [35, Theorem 3.1℄. We noted in the preeding example that Ln is H∞(Cn).The point of [35℄, at least in part, is to study H∞(B(X )
n
1 ) ≃ Ln = H∞(Cn)through all the representations σ of C on Hilbert spaes H, that is, throughevaluating funtions in H∞(B(X )

n
1 ) at points the unit ball of B(H)n for allpossible H's. The spae B(K)n is Morita equivalent to Cn in the sense of [30℄,at least when dim(K) < ∞, and, in that ase the tensor algebras T+(B(K)n)and T+(Cn) are Morita equivalent in the sense desribed by [15℄. The tensoralgebra T+(Cn), in turn, is naturally isometrially isomorphi to Popesu'snonommutative dis algebra An [33℄. The analysis in [15℄ suggests a sensein whih Cn and B(K)n are Morita equivalent even when dim(K) = ∞, andthat together with [30℄ suggests that H∞(B(K)n) should be Morita equivalent to

H∞(B(X )
n
1 ) ≃ H∞(Cn). This would suggest an even loser onnetion betweenPopesu's free power series, and all that goes with them, and the perspetivewe have taken in this paper, whih, as we shall see, involves generalized Shurfuntions and transfer funtions. The onnetion seems like a promising avenueto explore.In [31℄ we exploited the perspetive of viewing elements of the Hardy algebraas B(H)-valued funtions on the open unit ball of the dual orrespondeneto prove a Nevanlinna-Pik type interpolation theorem. In order to state itwe introdue some notation: For operators B1 and B2 in B(H), we write

Ad(B1, B2) for the map from B(H) to itself that sends S to B1SB
∗
2 . Also, givenelements η1, η2 in D(Eσ), we let θη1,η2

denote the map, from σ(M)′ to itselfthat sends a to 〈η1, aη2〉. That is, θη1,η2
(a) := 〈η1, aη2〉 = η∗1aη2, a ∈ σ(M)′.

Theorem 2.18 ([31, Theorem 5.3℄) Let E be a W ∗-orrespondene over a vonNeumann algebra M and let σ : M → B(H) be a faithful normal representationof M on a Hilbert spae H. Fix k points η1, . . . ηk in the disk D(Eσ) and hoose
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374 Paul S. Muhly and Baruch Solel

2k operators B1, . . . Bk, C1, . . . Ck in B(H). Then there exists an X in H∞(E)suh that ‖X‖ ≤ 1 and
BiX̂(η∗i ) = Cifor i = 1, 2, . . . , k, if and only if the map from Mk(σ(M)′) into Mk(B(H))de�ned by the k × k matrix

(
(Ad(Bi, Bj) −Ad(Ci, Cj)) ◦ (id− θηi,ηj )

−1
) (3)is ompletely positive.That is, the map T , say, given by the matrix (3) is omputed by the formula

T ((aij)) = (bij),where
bij = Bi((id− θηi,ηj )

−1(aij)B
∗
j − Ci((id− θηi,ηj )

−1(aij)C
∗
jand

(id− θηi,ηj )
−1(aij) = aij + θηi,ηj (aij) + θηi,ηj (θηi,ηj (aij)) + · · ·We lose this setion with two tehnial lemmas that will be needed in ouranalysis. Let M and N be W ∗-algebras and let E be a W ∗-orrespondenefrom M to N . Given a σ-losed suborrespondene E0 of E we know thatthe orthogonal projetion P of E onto E0 is a right module map. (See [6,Consequenes 1.8 (ii)℄). In the following lemma we show that P also preservesthe left ation.

Lemma 2.19 Let E be a W ∗-orrespondene from the von Neumann algebra
M to the von Neumann algebra N , and let E0 be a sub W ∗-orrespondene
E0 of E that is losed in the σ-topology of [6, Consequenes 1.8 (ii)℄. If Pis the orthogonal projetion from E onto E0, then P is a bimodule map; i.e.,
P (aξb) = aP (ξ)b for all a ∈M and b ∈ N .
Proof. It su�es to hek that P (eξ) = eP (ξ) for all ξ ∈ E and projetions
e ∈M . For ξ, η ∈ E and a projetion e ∈M , we have
‖eξ + fη‖2 = ‖〈eξ, eξ〉 + 〈fη, fη〉‖ ≤ ‖〈eξ, eξ〉‖ + ‖〈fη, fη〉‖ = ‖eξ‖2 + ‖fη‖2,where f = 1 − e. So, for every λ ∈ R we have

(λ+ 1)2‖fP (eξ)‖2 = ‖fP (eξ + λfP (eξ))‖2 ≤ ‖eξ + λfP (eξ)‖2

≤ ‖eξ‖2 + λ2‖fP (eξ)‖2.Hene, for every λ ∈ R,
(2λ+ 1)‖fP (eξ)‖2 ≤ ‖eξ‖2
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Schur Class Operator Functions . . . 375and, thus,
(I − e)P (eξ) = fP (eξ) = 0.Replaing e by f = I − e we get eP ((I − e)ξ) = 0 and, therefore,
P (eξ) = eP (eξ) = eP (ξ).Sine M is spanned by its projetions, we are done. �

Lemma 2.20 Let E be a W ∗-orrespondene over M , let σ be a faithful normalrepresentation of M on the Hilbert spae E, and let Eσ be the σ-dual orrespon-dene over N := σ(M)′. Then(i) The left ation of N on Eσ is faithful if and only if E is full (i.e. ifand only if the ultraweakly losed ideal generated by the inner produts
〈ξ1, ξ2〉, ξ1, ξ2 ∈ E, is all of M).(ii) The left ation of M on E is faithful if and only if Eσ is full.

Proof. We shall prove (i). Part (ii) then follows by duality (using [31,Theorem 3.6℄). Given S ∈ N , Sη = 0 for every η ∈ Eσ if and only if forall η ∈ Eσ and g ∈ E , (I ⊗ S)η(g) = 0. Sine the losed subspae spannedby the ranges of all η ∈ Eσ is all of E ⊗M E ([31℄), this is equivalent to theequation ξ ⊗ Sg = 0 holding for all g ∈ E and ξ ∈ E. Sine 〈ξ ⊗ Sg, ξ ⊗ Sg〉 =
〈g, S∗〈ξ, ξ〉Sg〉, we �nd that SEσ = 0 if and only if σ(〈E,E〉)S = 0, where
〈E,E〉 is the ultraweakly losed ideal generated by all inner produts. If thisideal is all of M we �nd that the equation SEσ = 0 implies that S = 0. In theother diretion, if this is not the ase, then this ideal is of the form (I − q)Mfor some entral nonzero projetion q and then S = σ(q) is di�erent from 0 butvanishes on Eσ. �

3 Schur class operator functions and realizationThroughout this setion, E will be a �xed W ∗-orrespondene over the vonNeumann algebra M and σ will be a faithful representation of M on a Hilbertspae E . We then form the σ-dual of E, Eσ, whih is a orrespondene over
N := σ(M)′, and we write D(Eσ) for its open unit ball. Further, we write
D(Eσ)∗ for {η∗ | η ∈ D(Eσ)}.The following de�nition is learly motivated by the ondition appearing inTheorem 2.18 and Shur's theorem from lassial funtion theory.
Definition 3.1 Let Ω be a subset of D(Eσ) and let Ω∗ = {ω∗ | ω ∈ Ω}. Afuntion Z : Ω∗ → B(E) will be alled a Shur lass operator funtion (withvalues in B(E)) if, for every k and every hoie of elements η1, η2, . . . , ηk in Ω,the map from Mk(N) to Mk(B(E)) de�ned by the k × k matrix of maps,

((id−Ad(Z(η∗i ), Z(η∗j ))) ◦ (id− θηi,ηj )
−1),is ompletely positive.
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376 Paul S. Muhly and Baruch SolelNote that, when M = E = B(E) and σ is the identity representation of B(E)on E , σ(M)′ is CIE , Eσ is isomorphi to C and D(Eσ)∗ an be identi�ed withthe open unit dis D of C. In this ase our de�nition reovers the lassialShur lass funtions. More preisely, these funtions are usually de�ned asanalyti funtions Z from an open subset Ω of D into the losed unit ball of
B(E) but it is known that suh funtions are preisely those for whih the Pikkernel kZ(z, w) = (I − Z(z)Z(w)∗)(1 − zw̄)−1 is positive semi-de�nite on Ω.The argument of [31, Remark 5.4℄ shows that the positivity of this kernel isequivalent, in our ase, to the ondition of De�nition 3.1. This ondition, inturn, is the same as asserting that the kernel

kZ(ζ∗, ω∗) := (id− Ad(Z(ζ∗), Z(ω∗)) ◦ (id− θζ,ω)−1 (4)is a ompletely positive de�nite kernel on Ω∗ in the sense of De�nition 3.2.2 of[14℄.For the sake of ompleteness, we reord the fat that every element of H∞(E)of norm at most one gives rise to a Shur lass operator funtion.
Theorem 3.2 Let E be a W ∗-orrespondene over a von Neumann algebra Mand let σ be a faithful normal representation of M in B(H) for some Hilbertspae H. If X is an element of H∞(E) of norm at most one, then the funtion
η∗ → X̂(η∗) de�ned in Remark 2.14 is a Shur lass operator funtion on
D((Eσ))∗ with values in B(H).
Proof. One simply takes Bi = I for all i and Ci = X̂(η∗i ) in Theorem 2.18.
�

Theorem 3.3 Let E be a W ∗-orrespondene over a von Neumann algebra M .Suppose also that σ a faithful normal representation of M on a Hilbert spae
E and that q1 and q2 are projetions in σ(M). Finally, suppose that Ω is asubset of D((Eσ)) and that Z is a Shur lass operator funtion on Ω∗ withvalues in q2B(E)q1. Then there is a Hilbert spae H, a normal representation
τ of N := σ(M)′ on H and operators A,B,C and D ful�lling the followingonditions:(i) The operator A lies in q2σ(M)q1.(ii) The operators C, B, and D, are in the spaes B(E1, E

σ ⊗τ H), B(H, E2),and B(H,Eσ⊗τH), respetively, and eah intertwines the representationsof N = σ(M)′ on the relevant spaes (i.e. , for every S ∈ N , CS =
(S ⊗ IH)C, Bτ(S) = SB and Dτ(S) = (S ⊗ IH)D).(iii) The operator matrix

V =

(
A B
C D

)
, (5)viewed as an operator from E1 ⊕H to E2 ⊕ (Eσ ⊗τ H), is a oisometry,whih is unitary if E is full.
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Schur Class Operator Functions . . . 377(iv) For every η∗ in Ω∗,
Z(η∗) = A+ B(I − L∗

ηD)−1L∗
ηC (6)where Lη : H → Eσ ⊗ H is de�ned by the formula Lηh = η ⊗ h (so

L∗
η(θ ⊗ h) = τ(〈η, θ〉)h).

Remark 3.4 Before giving the proof of Theorem 3.3, we want to note that theresult bears a strong resemblane to standard results in the literature. We allspeial attention to [1, 2, 7, 9, 10, 11, 12, 13℄. Indeed, we reommend [7℄,whih is a survey that explains the general strategy for proving the theorem.What is novel in our approah is the adaptation of the results in the literatureto aommodate ompletely positive de�nite kernels.Sine the matrix in equation (5) and the funtion in equation (6) are familiaronstruts in mathematial systems theory, more partiularly from H∞-ontroltheory (see, e.g., [38℄), we adopt the following terminology.
Definition 3.5 Let E be a W ∗-orrespondene over a von Neumann algebra
M . Suppose that σ is a faithful normal representation of M on a Hilbert spae
E and that q1 and q2 are projetions in σ(M). Then an operator matrix V =(
A B
C D

), where the entries A, B, C, and D, satisfy onditions (i) and (ii)of Theorem 3.3 for some normal representation τ of σ(M)′ on a Hilbert spae
H, is alled a system matrix provided V is a oisometry (that is unitary, if Eis full). If V is a system matrix, then the funtion A + B(I − L∗

ηD)−1L∗
ηC,

η∗ ∈ D(Eσ)∗ is alled the transfer funtion determined by V .
Proof. As we just remarked, the hypothesis that Z is a Shur lass funtionon Ω∗ means that the kernel kZ in equation (4) is ompletely positive de�nitein the sense of [14℄. Consequently, we may apply Theorem 3.2.3 of [14℄, whih isa lovely extension of Kolmogorov's representation theorem for positive de�nitekernels, to �nd an N -B(E) W ∗-orrespondene F and a funtion ι from Ω∗ to
F suh that F is spanned by Nι(Ω∗)B(E) and suh that for every η1 and η2 in
Ω∗ and every a ∈ N ,

(id−Ad(Z(η∗1), Z(η∗2))) ◦ (id− θη1,η2
)−1(a) = 〈ι(η1), aι(η2)〉.It follows that for every b ∈ N and every η1, η2 in Ω∗,

b− Z(η∗1)bZ(η∗2)∗ = 〈ι(η1), bι(η2)〉 − 〈ι(η1), 〈η1, bη2〉ι(η2)〉

= 〈ι(η1), bι(η2)〉 − 〈η1 ⊗ ι(η1), bη2 ⊗ ι(η2)〉.Thus,
b+ 〈η1 ⊗ ι(η1), bη2 ⊗ ι(η2)〉 = 〈ι(η1), bι(η2)〉 + Z(η∗1)bZ(η∗2)∗. (7)
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378 Paul S. Muhly and Baruch SolelSet
G1 := span{bZ(η∗)∗q2T ⊕ bι(η)q2T | b ∈ N, η ∈ Ω∗, T ∈ B(E) }and
G2 := span{bq2T ⊕ (bη ⊗ ι(η)q2T ) | b ∈ N, η ∈ Ω∗, T ∈ B(E) }.Then G1 is a sub N -B(E) W ∗-orrespondene of B(E) ⊕ F (where we usethe assumption that q2Z(η∗) = q2Z(η∗)q1) and G2 is a sub N -B(E) W ∗-orrespondene of B(E)⊕(Eσ⊗NF ) . (The losure in the de�nitions ofG1, G2 isin the σ-topology of [6℄. It then follows that G1 and G2 areW ∗-orrespondenes[6, Consequenes 1.8 (i)℄). De�ne v : G1 → G2 by the equation

v(bZ(η∗)∗q2T ⊕ bι(η)q2T ) = bq2T ⊕ (bη ⊗ ι(η)q2T ).It follows from (7) that v is an isometry. It is also lear that it is a bimodulemap. We write Pi for the orthogonal projetion onto Gi, i = 1, 2 and Ṽ for themap
Ṽ := P2vP1 : q1B(E) ⊕ F → q2B(E) ⊕ (Eσ ⊗N F ).Then Ṽ is a partial isometry and, sine P1, v and P2 are all bimodule maps(see Lemma 2.19), so is Ṽ . We write Ṽ matriially:

Ṽ =

(
α β
γ δ

)
,where α : q1B(E) → q2B(E), β : F → q2B(E), γ : q1B(E) → Eσ ⊗ F and

δ : F → Eσ ⊗ F and all these maps are bimodule maps. Let H0 be theHilbert spae F ⊗B(E) E and note that B(E) ⊗B(E) E is isomorphi to E (andthe isomorphism preserves the left N -ation). Tensoring on the right by E (over
B(E)) we obtain a partial isometry

V0 :=

(
A0 B0

C0 D0

)
:

(
E1

H0

)
→

(
E2

Eσ ⊗H0

)
.Here A0 = α ⊗ IE , B0 = β ⊗ IE , C0 = γ ⊗ IE and D0 = δ ⊗ IE . These mapsare well de�ned beause the maps α, β, γ and δ are right B(E)-module maps.Sine these maps are also left N -module maps, so are A0, B0, C0 and D0.By the de�nition of V0, its initial spae is G1 ⊗ E and its �nal spae is G2 ⊗ E .In fat, V0 indues an equivalene of the representations of N on G1 ⊗ E andon G2 ⊗ E .It will be onvenient to use the notationK1 �N K2 if the Hilbert spaesK1 and

K2 are both leftN -modules and the representation ofN onK1 is equivalent to asubrepresentation of the representation of N onK2. This means, of ourse, thatthere is an isometry from K1 into K2 that intertwines the two representations.If the two representations are equivalent we write K1 ≃N K2.
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Schur Class Operator Functions . . . 379Using this notation, we an write G1⊗E ≃N G2⊗E . Form M2 := (E2⊕ (Eσ ⊗
H0)) ⊖ (G2 ⊗ E), whih is a left N -module, and note that L := F(Eσ) ⊗M2also is a left N -module, where the representation of N on L is the induedrepresentation. Sine L = F(Eσ)⊗M2 =

⊕∞
n=0((E

σ)⊗n⊗(M2)), it is evidentthat (Eσ ⊗L)⊕M2 ≃N L. Indeed, the isomorphisms are just the natural onesthat give the assoiativity of the tensor produts involved. Thus, E2 ⊕ (Eσ ⊗
(H0⊕L)) = E2⊕(Eσ⊗H0)⊕(Eσ⊗L) = G2⊗E⊕M2⊕E

σ⊗L ≃N G2⊗E⊕L ≃N

G1 ⊗E ⊕L �N E1 ⊕ (H0 ⊕L). Consequently, we obtain a oisometri operator
V : E1 ⊕ (H0 ⊕ L) → E2 ⊕ Eσ ⊗ (H0 ⊕ L) that intertwines the representationsof N and extends V0. Note that, if V0 were known to be an isometry (so that
G2 ⊗ E ≃N G1 ⊗ E = E1 ⊕H0 ), then we would have equivalene above and Van be hosen to be unitary.Assume that E is full. We also write M1 for (E1 ⊕H0) ⊖G1 ⊗ E . Sine E isfull, the representation ρ of N on Eσ⊗E is faithful (Lemma 2.20) and it followsthat every representation of N is quasiequivalent to a subrepresentation of ρ.Write E∞ for the diret sum of in�nitely many opies of E . Then Eσ⊗E∞ is thediret sum of in�nitely many opies of Eσ⊗E and, thus, every representation of
N is equivalent to a subrepresentation of the representation of N on Eσ ⊗E∞.In partiular, we an write M1 ⊕ E∞ �N Eσ ⊗ E∞. Thus E1 ⊕ (H0 ⊕ E∞) =
(G1⊗E)⊕M1⊕E∞ �N E2⊕ (Eσ ⊗H0)⊕ (Eσ ⊗E∞) = E2⊕ (Eσ ⊗ (H0⊕E∞)).So, replaing H0 by H0 ⊕E∞, we an replae V0 by an isometry and, using theargument just presented, we onlude that the resulting V is a unitary operatorintertwining the representations of N and extending V0.So we let V be the oisometry just onstruted (and treat it as unitary when
E is full). Writing H := H0 ⊕ L, we an express V in the matriial form as inpart (iii) of the statement of the theorem. Conditions (i) and (ii) then followfrom the fat that V intertwines the indiated representations of N . It is leftto prove (iv).Setting b = T = I in the de�nition of v above and writing v in a matriial formwe see that (

α β
γ δ

)(
Z(η∗)∗q2
ι(η)q2

)
=

(
q2

η ⊗ ι(η)q2

)
.Tensoring by IE on the right and identifying B(E)⊗B(E) E with E as above, we�nd that (

A0 B0

C0 D0

)(
Z(η∗)∗g
ι(η) ⊗ g

)
=

(
g

η ⊗ (ι(η) ⊗ g)

)
,for g ∈ E2. Sine A,B,C and D extend A0, B0, C0 and D0 respetively, wean drop the subsript 0. We also use the fat that the matrix we obtain is aoisometry, and thus its adjoint equals its inverse on its range. We onludethat (

A∗ C∗

B∗ D∗

)(
g

η ⊗ (ι(η) ⊗ g)

)
=

(
Z(η∗)∗g
ι(η) ⊗ g

)
. (8)Thus ι(η) ⊗ g = B∗g +D∗(η ⊗ (ι(η) ⊗ g)) = B∗g +D∗Lη(ι(η) ⊗ g) and

ι(η) ⊗ g = (I −D∗Lη)−1B∗g.
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380 Paul S. Muhly and Baruch SolelCombining this equality with the other equation that we get from (8), we have
Z(η∗)∗g = A∗g + C∗Lη(I −D∗Lη)−1B∗g , g ∈ E .Taking adjoints yields (iv). �Thus, Theorem 3.3 asserts that every Shur lass funtion determines a systemmatrix whose transfer funtion represents the funtion. The system matrix isnot unique in general, but as the proof of Theorem 3.3 shows, it arises througha series of natural hoies. Of ourse, equation (6) suggests that every Shurlass funtion represents an element in H∞(E). This is indeed the ase, as thefollowing onverse shows.

Theorem 3.6 Let E be a W ∗-orrespondene over a W ∗-algebra M , and let
σ be a faithful normal representation of M on a Hilbert spae E. If V =(
A B
C D

) is a system matrix determined by a normal representation τ of
N := σ(M)′ on a Hilbert spae H, then there is an X ∈ H∞(E), ‖X‖ ≤ 1,suh that

X̂(η∗) = A+B(I − L∗
ηD)−1L∗

ηC,for all η∗ ∈ D(Eσ)∗ and, onversely, every X ∈ H∞(E), ‖X‖ ≤ 1, may berepresented in this fashion for a suitable system matrix V =

(
A B
C D

).
Proof. For every n ≥ 0 we de�ne an operator Kn from E to (Eσ)⊗n ⊗ E asfollows. For n = 0, we set K0 = A - an operator in B(E). For n = 1, we de�ne
K1, mapping E to Eσ ⊗E , to be (I1 ⊗B)C, where for all k ≥ 1, Ik denotes theidentity operator on (Eσ)⊗k. For n ≥ 2, we set

Kn := (In ⊗B)(In−1 ⊗D) · · · (I1 ⊗D)C.Note, �rst, that it follows from the properties of A,B,C and D that, for every
n ≥ 0 and every a ∈ N , Kna = (ϕn(a) ⊗ IE)Kn where ϕn de�nes the leftmultipliation on (Eσ)⊗n. Thus, writing ι for the identity representation of Non E , Kn lies in the ι-dual of (Eσ)⊗n whih, by Theorem 3.6 and Lemma 3.7of [31℄, is isomorphi to E⊗n. Hene, for every n ≥ 0, Kn de�nes a uniqueelement ξn in E⊗n.For every n ≥ 0 and η ∈ Eσ we shall write Ln(η) for the operator from
(Eσ)⊗n ⊗ E to (Eσ)⊗(n+1) ⊗ E given by tensoring on the left by η. Alsonote that, for k ≥ 1 and n ≥ 0, Ik ⊗ Kn is an operator from (Eσ)⊗k ⊗ Eto (Eσ)⊗(k+n) ⊗ E . With this notation, it is easy to see that, for all k ≥ 1 and
n ≥ 0,

(Ik+1 ⊗Kn)Lk(η) = Lk+n(η)(Ik ⊗Kn). (9)Note, too, that we an write
F(Eσ) ⊗ E = E ⊕ (Eσ ⊗ E) ⊕ · · · ⊕ ((Eσ)⊗m ⊗ E) ⊕ · · ·
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Schur Class Operator Functions . . . 381and every operator on F(Eσ)⊗E an be written in a matriial form with respetto this deomposition (with indies starting at 0). For every m, 0 ≤ m ≤ ∞,we let Sm be the operator de�ned by the matrix whose i, j entry is Ij ⊗Ki−j ,if 0 ≤ j ≤ i ≤ m, and is 0 otherwise. (For m = ∞, it is not lear yet that thematrix so onstruted represents a bounded operator, but this will be veri�edlater).So far we have not used the assumption that V is a oisometry. But if we takethis into aount, form the produt V V ∗, and set it equal to IE⊕(Eσ⊗H), we�nd that
IE −AA∗ = BB∗ (10)

CC∗ = IEσ⊗τ H −DD∗ (11)
AC∗ = −BD∗ (12)We laim that, for 1 ≤ j ≤ i ≤ m, the following equations hold,

(I − SmS
∗
m)i,j = (Ii ⊗B)(Ii−1 ⊗D) · · ·DD∗ · · · (Ij−1 ⊗D∗)(Ij ⊗B∗); (13)that for 0 < i ≤ m,

(I − SmS
∗
m)i,0 = (Ii ⊗B)(Ii−1 ⊗D) · · ·DB∗, (14)and that for i = j = 0,

(I − SmS
∗
m)0,0 = BB∗. (15)Equation (15) follows immediately from (10) sine (Sm)0,0 = A. For 0 < i ≤ mwe ompute (I − SmS

∗
m)i,0 = −(Sm)i,0(Sm)∗0,0 = −(Ii ⊗B)(Ii−1 ⊗D) · · · (I1 ⊗

D)CA∗ = (Ii ⊗ B)(Ii−1 ⊗ D) · · · (I1 ⊗ D)DB∗ where, in the last equality weused (12). It is left to prove (13). Let us write Ri,j for the left hand side of(13). (For j = 0 < i we have Ri,0 = (Ii ⊗ B)(Ii−1 ⊗ D) · · ·DB∗ and whenboth are 0, R0,0 = BB∗). We have K0K
∗
0 = AA∗ = I − BB∗ = I − R0,0R

∗
0,0.For 0 = j < i ≤ m we have KiK

∗
0 = (Ii ⊗ B)(Ii−1 ⊗ D) · · · (I1 ⊗ D)CA∗ =

−(Ii ⊗B)(Ii−1 ⊗D) · · · (I1 ⊗D)DB∗ = −Ri,0 and for 0 < j ≤ i ≤ m, KiK
∗
j =

(Ii ⊗B)(Ii−1 ⊗D) · · · (I1 ⊗D)CC∗(I1 ⊗D∗) · · · (Ij−1 ⊗D∗)(Ij ⊗B∗) = (Ii ⊗
B)(Ii−1 ⊗D) · · · (I1 ⊗D)(I −DD∗)(I1 ⊗D∗) · · · (Ij−1 ⊗D∗)(Ij ⊗B∗) = (Ii ⊗
B)(Ii−1 ⊗D) · · · (I1 ⊗D)(I1 ⊗D∗) · · · (Ij−1 ⊗D∗)(Ij ⊗B∗) − (Ii ⊗B)(Ii−1 ⊗
D) · · · (I1 ⊗D)DD∗(I1 ⊗D∗) · · · (Ij−1 ⊗D∗)(Ij ⊗B∗) = I1 ⊗Ri−1,j−1 −Ri,j .We have
(SmS

∗
m)i,j =

j∑

k=0

(Sm)i,k(Sm)j,k =

j∑

k=0

Ik ⊗Ki−kK
∗
j−k =

j∑

l=0

Ij−l ⊗Ki−j+lK
∗
l .Using the omputation above, we get, for i = j ≤ m,

(SmS
∗
m)i,i = Ii ⊗ (I−R0,0R

∗
0,0)+

i∑

l=1

(Ii−l+1 ⊗Rl−1,l−1− Ii−l ⊗Rl,l) = I−Ri,i
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382 Paul S. Muhly and Baruch Soleland, for j < i ≤ m,
(SmS

∗
m)i,j = −Ij⊗Ri−j,0+

j∑

l=1

(Ij−l+1⊗Ri−j+l−1,l−1−Ij−l⊗Ri−j+l,l) = −Ri,j .This ompletes the proof of the laim. If we let R be the operator whose matrixis (Ri,j) (letting Ri,j = 0 if i or j is larger than m) then we get R = I−SmS
∗
m.But it is easy to verify that R is a positive operator and, thus, ‖Sm‖ ≤ 1. Thisholds for everym and, therefore, we an �nd a weak limit point of the sequene

{Sm}. But this limit point it learly equal to S∞, showing that S∞ is indeeda bounded operator, with norm at most 1.Reall that the indued representation of H∞(E) on F(E) ⊗σ E is the repre-sentation that maps X ∈ H∞(E) to σF(E)(X) := X ⊗ IE . The representationis faithful and is a homeomorphism with respet to the ultraweak topologies.Its image is the ultraweakly losed subalgebra of B(F(E) ⊗ E) generated bythe operators Tξ ⊗ IE and ϕ∞(a) ⊗ IE for ξ ∈ E and a ∈ M . Similarly onede�nes the indued representation ιF(Eσ) of H∞(Eσ) on F(Eσ) ⊗ E and itsimage is generated by the operators Tη ⊗ I and ϕ∞(b) ⊗ I for η ∈ Eσ and
b ∈ N . Reall also, from [31, Theorem 3.9℄, that there is a unitary operator
U : F(Eσ) ⊗ E → F(E) ⊗ E suh that

(ιF(Eσ)(H∞(Eσ)))′ = U∗σF(E)(H∞(E))U.That is, U gives an expliit representation of H∞(Eσ) as the ommutant ofthe indued algebra σF(E)(H∞(E)). Thus, to show that S∞ = U∗(X ⊗ I)Ufor an X ∈ H∞(E), we need only show that S∞ lies in the ommutant of
ιF(Eσ)(H∞(Eσ)). And for this, we only have to show that it ommutes withthe operators ϕ∞(b) ⊗ I, b ∈ N , and Tη ⊗ I, η ∈ Eσ. Note that, matriially,
ϕ∞(b)⊗ I is a diagonal operator whose i, i entry is ϕi(b). For S∞ to ommutewith it we should have, for all j ≤ i,

(Ij ⊗Ki−j)(ϕj(b) ⊗ I) = (ϕi(b) ⊗ I)(Ij ⊗Ki−j).This equality is obvious for j > 0. For j = 0 it amounts to the equality
Kib = (ϕi(b) ⊗ IE)Kiand, this, as was mentioned above, follows immediately from the propertiesof A,B,C and D. To show that S∞ ommutes with every Tη ⊗ I, η ∈ Eσ,note that, matriially, the i, j entry of Tη ⊗ I vanishes unless i = j + 1 and,in this ase the entry is Lj(η). Equation (9) then ensures that S∞ and Tη ⊗ Iommute.Thus, by [31, Theorem 3.9℄, there is an element X ∈ H∞(E) suh that S∞ =

U∗(X ⊗ I)U (= U∗σF(E)(X)U). Sine S∞ has norm at most one, so does X .It remains to show that X is given by the transfer funtion built from V . Tothis end, �x ξ ∈ E and reall that ξ de�nes a map W (ξ) : E → Eσ ⊗ E
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Schur Class Operator Functions . . . 383via the formula W (ξ)∗(η ⊗ h) = L∗
ξη(h), η ⊗ h ∈ Eσ ⊗ E (See [31, Theorem3.6℄.), and that W maps E onto the ι-dual of Eσ. The desired propertiesfollow easily from the de�nition of W . For every k ≥ 0, Ik ⊗W (ξ)∗ is a mapfrom (Eσ)⊗k+1 ⊗ E into (Eσ)⊗k ⊗ E . An easy omputation shows that it isequal to the restrition of U∗(T ∗

ξ ⊗ IE )U to (Eσ)⊗k+1 ⊗ E . (Reall from [31,Lemma 3.8℄ that the restrition of U to (Eσ)⊗k+1⊗E is de�ned by the equation
U(η1 ⊗ · · · ⊗ ηk+1 ⊗ h) = (Ik ⊗ η1) · · · (I1 ⊗ ηk)ηk+1(h).)It then follows that the i, j entry of the matrix assoiated with U∗(Tξ ⊗ IE )Uvanishes unless i = j + 1 and

(U∗(Tξ ⊗ IE)U)j+1,j = Ij ⊗W (ξ).Similarly one an show that, for ξ ∈ E⊗k, the i, j entry of the matrix assoiatedwith U∗(Tξ ⊗ IE)U vanishes unless i = j + k and
(U∗(Tξ ⊗ IE)U)j+k,j = Ij ⊗W (ξ).In the last equation, W (ξ), ξ ∈ E⊗k, is a map from E to (Eσ)⊗k ⊗ E .Reall that we de�ned ξn to be the vetors in E⊗n with W (ξn) = Kn. Thuswe see that the nth lower diagonal in the matriial form of S∞ is the matriialform of U∗(Tξn ⊗ IE )U .Reall from the disussion at the end of Setion 2 in [31℄ that S∞ is the ultra-weak limit of the sequene Σk where

Σk =

k−1∑

j=0

(1 −
j

k
)U∗(Tξj ⊗ I)U.Hene X is the ultraweak limit of Xk where

Xk =

k−1∑

j=0

(1 −
j

k
)Tξjand, for η ∈ Eσ, X̂(η∗) is the ultraweak limit of X̂k(η∗) =

∑k−1
j=0 (1− j

k )T̂ξj (η
∗).Fix η ∈ Eσ and k ≥ 1. Then it is easy to hek that, in the notation of thetheorem, L∗

η(Ik ⊗ B) = (Ik−1 ⊗ B)L∗
η and L∗

η(Ik ⊗D) = (Ik−1 ⊗D)L∗
η, all asoperators on (Eσ)⊗k ⊗H . It then follows that for n ≥ 1,

(L∗
η)nW (ξn) = (L∗

η)nKn = B(L∗
ηD)n−1L∗

ηCand
A+B(I − L∗

ηD)−1L∗
ηC = A+

∞∑

n=1

B(L∗
ηD)n−1L∗

ηC =

∞∑

n=0

(L∗
η)nW (ξn).(Note that the last series onverges in norm). It follows from [31, Proposition5.1℄ that T̂ξn(η∗) = (L∗

η)nW (ξn) and, thus, we �nally onlude that X̂(η∗) =
A+B(I − L∗

ηD)−1L∗
ηC.The `onverse' portion of the Theorem is immediate from Theorems 3.2 and3.3. �

Documenta Mathematica 13 (2008) 365–411



384 Paul S. Muhly and Baruch Solel

Corollary 3.7 Every Shur lass operator funtion de�ned on a subset Ω∗of D(Eσ)∗ with values in some B(E) an be extended to a Shur lass operatorfuntion de�ned on all of D(Eσ)∗.
Proof. Let Z be a Shur lass funtion on Ω∗ and apply Theorem 3.3 torepresent Z as the restrition to Ω∗ of a transfer funtion. The result thenfollows from the evident ombination of Theorems 3.6 and 3.2. �Reall that every element X in H∞(E) with ‖X‖ ≤ 1 de�nes a Shur lassoperator funtion by evaluation at η∗ for η ∈ D(Eσ) (where σ is a suitablepresribed faithful normal representation ofM) . We usually suppress refereneto σ and write X̂ for this Shur lass operator funtion. In general, however,the map X → X̂ is not one-to-one, and whether it is or not depends on thehoie of σ. Indeed, in the partiular ase when M = C and E = Cn, so
H∞(E) is Ln, and when σ is the identity representation of C, Davidson andPitts showed that the kernel of the map X 7→ X̂ is preisely the ommutatorideal in Ln [17℄. We shall show in the next lemma that given E, if σ is hosen tobe faithful and have in�nite uniform multipliity, meaning that σ is an in�nitemultiple of another faithful normal representation of M , then the map X 7→ X̂will be one-to-one. It will be onvenient to write K(σ) for the kernel of themap determined by σ, so that

K(σ) = {X ∈ H∞(E) : X̂(η∗) = 0, η ∈ D(Eσ)} (16)
= {X ∈ H∞(E) : σ × η∗(X) = 0, η ∈ D(Eσ)}.

Lemma 3.8 If σ is a faithful normal representation of M on a Hilbert spae Hof in�nite multipliity, then K(σ) = 0. Moreover, if {Xβ} is a bounded net in
H∞(E) and if there is an element X ∈ H∞(E) suh that for every η ∈ D(Eσ),
X̂β(η∗) → X̂(η∗) in the weak operator topology, then Xβ → X ultraweakly.
Proof. It follows from the struture of isomorphisms of von Neumannalgebras that any two in�nite multiples of faithful representations of a vonNeumann algebra are unitarily equivalent. It follows, therefore, that to provethe lemma, we an pik a speial representation with this property that isonvenient for our purposes. So let π be the representation ofM on F(E)⊗σHde�ned by π = ϕ∞ ⊗ IH . We shall see that K(π) = {0}. For ξ ∈ E let V (ξ) =
Tξ ⊗ IH . Then (V, π) is a representation of E on F(E) ⊗σ H . The integratedform of this representation is the indued representation πF(E) restrited to
H∞(E). It is a faithful representation of H∞(E). For 0 ≤ r ≤ 1, (rV, π) isalso a representation of E. It follows from [31, Lemma 7.11℄ that, for every
X ∈ H∞(E), the limit in the strong operator topology of (π × rV )(X), as
r → 1, is (π × V )(X). Thus, for X 6= 0 in H∞(E), there is an r, 0 ≤ r < 1,suh that (π × rV )(X) 6= 0. Sine for suh r the inequality ‖rV ‖ < 1 holds,and we onlude that K(π) = {0}.For the seond assertion of the lemma, suppose a bounded net {Xβ} in H∞(E)has the property that for every η ∈ D(Eπ), X̂β(η∗) → 0. Sine the net is
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Schur Class Operator Functions . . . 385bounded, it has a ultraweak limit point X0 in H∞(E). Sine �evaluation at
η∗� is the same as applying a ultraweakly ontinuous representation, we seethat X̂β(η∗) → X̂0(η

∗) for every η ∈ D(Eπ). But then, X̂0(η
∗) = 0 for every

η ∈ D(Eπ) and, onsequently, X0 = 0 by the �rst assertion of the lemma. �With this lemma in hand, we summarize the results of this setion for futurereferene in the following orollary.
Corollary 3.9 Let E be a W ∗-orrespondene over the W ∗-algebra M , let
σ be a faithful normal representation of M on the Hilbert spae E and assumethat σ has in�nite multipliity. Then the map X → X̂ is a bijetion from thelosed unit ball of H∞(E) onto the spae of Shur lass B(E)-valued funtionson D(Eσ)∗. Further, for eah X in the losed unit ball of H∞(E), X̂ is thetransfer funtion assoiated with a system matrix V =

(
A B
C D

) de�ned interms of a suitable auxiliary normal representation τ of σ(M)′ on a Hilbertspae H, and onversely, eah suh transfer funtion on D(Eσ)∗,
η∗ → A+B(I − L∗

ηD)−1L∗
ηC,is of the form X̂ for a uniquely determined X ∈ H∞(E): X̂(η∗) = A+B(I −

L∗
ηD)−1L∗

ηC for all η ∈ D(Eσ).
Proof. The proof is just the evident ombination of Lemma 3.8 and Theo-rems 3.2, 3.3, and 3.6. �

Remark 3.10 One may well wonder why not stipulate at the outset that all
σ's have uniform in�nite multipliity. It turns out that in many interesting ex-amples, suh as those oming from graphs, whih we disuss in the last setion,the prinipal σ's one wants to onsider fail to have this property.
4 Applications to automorphisms of the Hardy algebraIn this setion we apply the analysis of Shur lass funtions to study au-tomorphisms of H∞(E). Our �rst goal is to show that under very generalassumptions, the automorphisms are obtained by omposition with (ertain)biholomorphi automorphisms of the open unit ball of the dual orrespondene.For the ase were E = Cn , so that H∞(E) is the algebra Ln studied by David-son and Pitts and by Popesu, this was shown for the dual orrespondeneassoiated with the one dimensional representation σ of C by Davidson andPitts in [17℄.Throughout this setion we will fous on automorphisms α of H∞(E) that areompletely isometri and w∗-homeomorphisms. Also, we shall usually assumethat the restrition of α to ϕ∞(M) is the identity.It is known that, in various settings, one an assume muh less. In [17℄, theauthors begin by assuming that α is simply an algebrai automorphism but,to get the one-to-one orrespondene with automorphisms of the unit ball of
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386 Paul S. Muhly and Baruch Solelthe dual, they need to impose also the assumption that the automorphism isontrative. It then follows from their results that it is, in fat, ompletelyisometri and a w∗-homeomorphism. In [22℄, Katsoulis and Kribs show thatin the setting when E is determined by a direted graph, G say, so H∞(E)is the algebra they denote by LG, an algebrai automorphism is always norm-ontinuous and w∗-ontinuous.As for the assumption that the restrition of α to ϕ∞(M) is the identity, weshall see that for many purposes this is no signi�ant restrition. However,in some situations, it an be a signi�ant tehnial headahe to sort out whathappens if we don't impose the assumption. We will omment on this further,as we proeed. (See, in partiular, Remark 4.10).So, for the remainder of this setion, unless spei�ed otherwise, E will be a �xed
W ∗-orrespondene over a W ∗-algebraM and α will be a �xed automorphismof H∞(E) that is ompletely isometri, w∗-homeomorphi and �xes ϕ∞(M)element-wise. Also, σ will be a faithful normal ∗-representation of M on aHilbert spae H .We think about elements of H∞(E) as funtions on D(Eσ)∗ via the funtionalrepresentation developed in the preeding setion and we want to study thetransposed ation of α on D(Eσ)∗. For every η ∈ D(Eσ), let τ(η) : H → E⊗σHbe de�ned by the equation

τ(η)∗(ξ ⊗ h) = α̂(Tξ)(η
∗)h (= (σ × η∗)(α(Tξ))h ), (17)

ξ⊗h ∈ E⊗σH . (Observe that if α is the identity automorphism ofH∞(E), thenthis equation implies that τ is the identity map, as it should.) The next lemmashows that τ(η) is well de�ned and is an element in the losed unit ball of Eσ.Thus τ is a map from D(Eσ) into D(Eσ). What we would really like to show,however, is that τ arries D(Eσ) into D(Eσ), not the losure. At this stage,we an only arrange for this under speial irumstanes: Theorem 4.7 below.The restrition on irumstanes, however, is not so limiting as to eliminatemany interesting examples. We also want to show that τ is holomorphi on
D(Eσ) in the usual sense of in�nite dimensional holomorphy [21℄.
Lemma 4.1 For eah η ∈ D(Eσ), τ(η) is well de�ned and lies in the losedunit ball of Eσ.
Proof. For ξ ∈ E, let S(ξ) := (σ × η∗)(α(Tξ)). For every a, b ∈ M ,
S(aξb) = (σ×η∗)(α(Taξb)) = (σ×η∗)(α(ϕ∞(a)Tξϕ∞(b))) = (σ◦α)(ϕ∞(a))(σ×
η∗)(α(Tξ))(σ ◦ α)(ϕ∞(b)). By our assumption, σ ◦ α ◦ϕ∞ = σ ◦ ϕ∞ and, thus,
(S, σ) is a ovariant pair. Also, S is a ompletely ontrative map of E into
B(H) as a omposition of three ompletely ontrative maps. Thus S̃∗ = τ(η)lies in the losed unit ball of Eσ. �To determine irumstanes under whih τ maps D(Eσ) into D(Eσ), we �x
η ∈ D(Eσ) and determine irumstanes under whih τ(zη) ∈ D(Eσ), for every
z ∈ D := {z ∈ C | |z| < 1}. This will prove that τ maps D(Eσ) into itself.

Documenta Mathematica 13 (2008) 365–411



Schur Class Operator Functions . . . 387So for z ∈ D, we de�ne
F (z) := τ(z̄η)∗. (18)Thus, F (z)(ξ ⊗ h) = (σ × zη∗)(α(Tξ))h for ξ ∈ E and h ∈ H .

Lemma 4.2 F is an analyti funtion from D into B(E ⊗H,H).
Proof. Fix ξ ⊗ h ∈ E ⊗ H with ‖ξ‖ ≤ 1 and k ∈ H , and onsider theexpression

〈F (z)(ξ ⊗ h), k〉 = 〈α̂(Tξ)(zη
∗)h, k〉.Sine α(Tξ) ∈ H∞(E) and ‖α(Tξ)‖ ≤ 1, we know from Theorem 3.6 that wean write α̂(Tξ)(zη

∗) = A + B(I − zL∗
ηD)−1zL∗

ηC for some system matrix.Thus
α̂(Tξ)(zη

∗) = A+ zBL∗
ηC +

∞∑

k=2

zkB(L∗
η)k−1L∗

ηC.Hene, for every ξ ⊗ h ∈ E ⊗H (even when ‖ξ‖ > 1) and k ∈ H , the funtion
z 7→ 〈F (z)(ξ⊗h), k〉 is analyti. Sine ‖F (z)‖ ≤ 1 by Lemma 4.1, |〈F (z)g, k〉| ≤
‖g‖‖k‖ for every g ∈ E ⊗H and k ∈ H and it follows that, for eah suh g, k,the funtion fg,k(z) := 〈F (z)g, k〉 is analyti in D and |fg,k(z)| ≤ ‖g‖‖k‖. Wean then write fg,k as a onvergent power series fg,k(z) =

∑∞
k=0 an(g, k)znand, for every n ≥ 0, |an(g, k)| ≤ ‖g‖‖k‖. But then there are operators An ∈

B(E ⊗ H,H) with ‖An‖ ≤ 1 suh that an(g, k) = 〈Ang, k〉 for g ∈ E ⊗ Hand k ∈ H . Hene F (z) =
∑∞

k=0 z
nAn where the sum onverges in the weakoperator topology. Sine |z| < 1 and the norms of {An} are bounded by 1, theseries onverges to F (z), for z ∈ D, in the norm topology. We onlude that

F (z) is analyti. �If we were dealing with salar-valued funtions, we would be able to assert that
|F (z)| < 1 for all z ∈ D, unless F is onstant, by the maximum modulus the-orem. Unfortunately, an unalloyed version of the maximum modulus theoremdoes not hold in our setting. This is what leads to the speial hypotheseson τ in Theorem 4.7. The next few results, then, whih lead up to Theorem4.7 ome out of our e�orts to �nd a servieable replaement for the maximummodulus theorem. Our �rst theorem in this diretion, Theorem 4.4, is loselyrelated to [36, Proposition V.2.1℄. It does not seem to follow diretly from thisresult, however. Instead, we appeal to the following lemma, whih in turn isan immediate appliation of an operator form of the lassial Pik riterionfor interpolating operators at pre-assigned points by operator-valued analytifuntions. As suh, it may be traed bak to Sz.-Nagy and Koranyi's in�uentialpaper [37℄. It also is a onsequene of Theorem 6.2 in [31℄, where it is presentedas a orollary of our Nevanlinna-Pik Theorem.
Lemma 4.3 If K,H are Hilbert spaes and if F : D → B(K,H) is an analytifuntion satisfying ‖F (z)‖ ≤ 1 for all z ∈ D, then, for every z1, z2 ∈ D, thematrix (

IH−F (z1)F (z1)
∗

1−|z1|2
IH−F (z1)F (z2)

∗

1−z1z̄2

IH−F (z2)F (z1)
∗

1−z2z̄1

IH−F (z2)F (z2)
∗

1−|z2|2

)
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388 Paul S. Muhly and Baruch Solelis positive. In partiular (setting z1 = z and z2 = 0), for every z ∈ D,
(

IH−F (z)F (z)∗

1−|z|2 IH − F (z)F (0)∗

IH − F (0)F (z)∗ IH − F (0)F (0)∗

)
≥ 0. (19)

Theorem 4.4 Suppose H and K are Hilbert spaes and suppose F : D →
B(K,H) is an analyti funtion that satis�es the following onditions:(1) ‖F (z)‖ ≤ 1 for all z ∈ D.(2) There are projetions P1, P2 in B(H) that sum to IH and projetions

Q1, Q2 in B(K) that sum to IK and satisfy:(i) P1F (0)Q2 = 0 and P2F (0)Q1 = 0.(ii) P1F (0)F (0)∗P1 = P1.(iii) P2F (0)F (0)∗P2 ≤ rP2 for some 0 < r < 1.Then, for every z ∈ D,(1) P1F (z)Q2 = 0.(2) P1F (z)Q1 = P1F (0)Q1.(3) There is a funtion q0(z) on D, suh that 0 < q0(z) < 1 for all z ∈ D,and suh that P2F (z)F (z)∗P2 ≤ q0(z)P2.
Proof. It will be onvenient to use the projetions P1, P2 and Q1, Q2 towrite F (z) matriially as

F (z) =

(
A(z) B(z)
C(z) D(z)

)so that, by assumption,
F (0) =

(
A(0) 0

0 D(0)

)where A(0)A(0)∗ = P1 and D(0)D(0)∗ ≤ rP2.Sine F satis�es the onditions of Lemma 4.3, Equation 19 holds for all z ∈ D.Compressing eah entry of the matrix in (19) to the range of P1 and using thefat that A(0)A(0)∗ = P1 and that P1F (0)Q2 = 0, we get
(

P1−P1F (z)F (z)∗P1

1−|z|2 P1 − P1F (z)Q1A(0)∗

P1 −A(0)Q1F (z)∗P1 0

)
≥ 0. (20)It follows that P1 = P1F (z)Q1A(0)∗. Thus 0 ≤ (P1F (z)Q1 −

A(0))(Q1F (z)∗P1 − A(0)∗) = P1F (z)Q1F (z)∗P1 + A(0)A(0)∗ −
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Schur Class Operator Functions . . . 389
P1F (z)Q1A(0)∗ − A(0)Q1F (z)∗P1 ≤ 0. Consequently, A(0) = P1F (z)Q1(for every z ∈ D).But then P1F (z)Q1F (z)∗P1 = P1 and, sine P1F (z)F (z)∗P1 ≤
P1, P1F (z)Q2 = 0. This proves (1) and (2).Compress eah entry of (19) to the range of P2 to get

(
P2−P2F (z)F (z)∗P2

1−|z|2 P2 − P2F (z)Q2D(0)∗

P2 −D(0)Q2F (z)∗P2 P2 −D(0)D(0)∗

)
≥ 0. (21)Write ∆ for the positive square root of P2 − D(0)D(0)∗ and note that ∆ isinvertible as an operator on the range of P2. Equation (21) implies that

(P2 −D(0)D(z)∗)∆−2(P2 −D(z)D(0)∗) ≤ (
P2 − P2F (z)F (z)∗P2

1 − |z|2
).Sine D(0)D(z)∗ lies in B(P2(H)) and has norm stritly less than 1 (as

‖D(0)‖ < 1), P2 − D(0)D(z)∗ is invertible in B(P2(H)) and so, therefore, is
(P2−D(0)D(z)∗)∆−2(P2−D(z)D(0)∗). Hene, for eah z ∈ D there is a q(z) >
0, suh that P2−P2F (z)F (z)∗P2

1−|z|2 ≥ (P2 − D(0)D(z)∗)∆−2(P2 − D(z)D(0)∗) ≥

q(z)P2. Thus,
P2 − P2F (z)F (z)∗P2 ≥ (1 − |z|2)q(z)P2,whih yields P2F (z)F (z)∗P2 ≤ (1 − q(z)(1 − |z|2))P2. So, if we set q0(z) =

(1 − q(z)(1 − |z|2)), we obtain a funtion with the desired properties. �We return to our analysis of the speial funtion F : D → B(E⊗σH,H) de�nedin equation (18).
Lemma 4.5 The funtion F de�ned by equation (18) satis�es:(1) For every z ∈ D and a ∈ M , F (z)(ϕE(a) ⊗ IH) = σ(a)F (z) and

F (z)F (z)∗ ommutes with σ(M).(2) For every b ∈ σ(M)′, bF (0) = F (0)(IE ⊗ b) and F (0)F (0)∗ ∈ Z(σ(M)).
Proof. Sine F (z)∗ ∈ Eσ by Lemma 4.1, (1) holds. For (2), simply note that
bF (0)(ξ⊗h) = bα(Tξ)(0)h = α(Tξ)(0)bh = F (0)(ξ⊗ bh) = F (0)(IE ⊗ b)(ξ⊗h),where we used the fat that for every X ∈ H∞(E), X(0) ∈ σ(M). �

Definition 4.6 Let τ be the map de�ned by equation (17). We say that τ(0)splits if there are projetions P1, P2 in σ(M)′ suh that(i) P1 + P2 = I,(ii) P1τ(0)∗τ(0)P1 = P1 and(iii) P2τ(0)∗τ(0)P2 ≤ rP2 for some r < 1.
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390 Paul S. Muhly and Baruch SolelNote that τ(0) = F (0)∗ so that, although F depends on a hoie of η ∈ D(Eσ),
F (0) does not. It follows from Lemma 4.5, therefore, that τ(0)∗τ(0) lies in theenter of σ(M), Z(σ(M)) = σ(Z(M)).Note also that, if the enter of M , Z(M), is an atomi abelian von Neumannalgebra, then τ(0) always splits. This is the ase, in partiular, if M is a fatoror if M = Cn. It is also the ase, therefore, when E is the orrespondeneassoiated with a (ountable) direted graph.When τ(0) splits we have the following.
Theorem 4.7 Assume that the left ation map of M on E, ϕE , is injetiveand that τ(0) splits. Then the map τ de�ned in equation (17)) maps D(Eσ)into itself and satis�es the following equation

(α̂(X))(η∗) = X̂(τ(η)∗),for every X ∈ H∞(E) and η ∈ D(Eσ).
Proof. Fix η ∈ D(Eσ) and let F be the map de�ned in (18). Sine τ(0) =
F (0)∗ splits, there are projetions P1, P2 as in De�nition 4.6. Using Lemma 4.5,we see that the onditions of Theorem 4.4 are satis�ed with K = E ⊗H and
Qi = IE ⊗ Pi, i = 1, 2. Thus,

P1F (z) = P1F (z)(IE ⊗ P1) = P1F (0)(IE ⊗ P1) = P1F (0)for all z ∈ D. Consequently, for all ξ ∈ E, P1(σ × zη∗)(α(Tξ)) = P1σ(α(Tξ)0)where, forX ∈ H∞(E), X0 is the image ofX under the onditional expetationonto ϕ∞(M). Sine the representation σ × zη∗ is w∗-ontinuous and α issurjetive, we have for all X ∈ H∞(E),
P1(σ × zη∗)(X) = P1σ(X0).In partiular, letting X = Tξ, we see that P1(σ × zη∗)(Tξ) = 0. Sine, for

h ∈ H , (σ × zη∗)(Tξ)h = P1η
∗(ξ ⊗ h) = 0 we have ηP1 = 0. (Reall that

P1 ∈ σ(M)′ and, thus, ηP1 is well de�ned sine Eσ is a right module over
σ(M)′).Sine η is arbitrary in D(Eσ), EσP1 = 0. If P1 6= 0, it follows that Eσ is notfull and, using Lemma 2.20, the map ϕE is not injetive, ontraditing ourassumption. Thus P1 = 0 and it follows from Theorem 4.4 that ‖F (z)‖ < 1for every z. sine this holds for all η ∈ D(Eσ), the onlusion of the theoremfollows. �Next we show that the map τ is holomorphi on D(Eσ). We view it as amap into B(H,E ⊗ H). To be holomorphi is the same as being Frehet-di�erentiable. If we use [21, Theorem 3.17.1℄ and the fat, proved in Lemma 4.1,that τ is bounded, it su�es to show that τ is (G)-di�erentiable in the sense of[21, De�nition 3.16.2℄. But if we apply [21, Theorem 3.16.1℄, this means thatwe have to show that for every η0, η ∈ D(Eσ), the funtion G(z) := τ(η0 + zη),
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Schur Class Operator Functions . . . 391de�ned on D(η, η0) := {z ∈ C||z| < (1−‖η0‖)/‖η‖} is holomorphi in the senseof [21, De�nition 3.10.1℄.Sine the set of all funtionals on B(H,E ⊗ H) that are w∗-ontinuous is adetermining manifold for B(H,E ⊗ H) in the sense of [21, De�nition 2.8.2℄,it su�es to show that for every w∗-ontinuous funtional w, the map z 7→
w(τ(η0 + zη)) is holomorphi on D(η, η0). It is enough, in fat, to onsider allfuntionals of the form T 7→ 〈Th, ξ ⊗ k〉 for h, k ∈ H and ξ in the unit ball of
E.So we �x η0, η ∈ Eσ, h, k ∈ H and ξ ∈ E with ‖ξ‖ < 1 and write f(z) =
〈τ(η0 + zη)h, ξ ⊗ k〉 for z ∈ D(η, η0). We have

f(z) = 〈h, τ(η0 + zη)∗(ξ ⊗ k)〉 = 〈h, α̂(Tξ)(η
∗
0 + z̄η∗)k〉.Note that by Theorem 3.6, we an write

α̂(Tξ)(η
∗
0 + zη∗) = A+

∞∑

m=1

B((L∗
η0

+ z̄L∗
η)D)m−1(L∗

η0
+ z̄L∗

η)Cwhere A,B,C,D are from some system matrix and the sum onverges in norm.Thus
f(z) = 〈A∗h, k〉 +

∞∑

m=1

〈C∗(Lη0
+ zLη)(D∗(Lη0

+ zLη))m−1B∗h, k〉and this funtion is learly holomorphi.We an onlude:
Corollary 4.8 The funtion τ is a holomorphi map from D(Eσ) to its lo-sure.
Theorem 4.9 Let E be a faithful W ∗-orrespondene over M , let α be anautomorphism of H∞(E) that is ompletely isometri, is a w∗-homeomorphismand leaves ϕ∞(M) elementwise �xed, and let σ be a faithful representationof M . Write τ for the transpose of α de�ned in equation (17) and write θfor the map assoiated similarly with α−1. If both τ(0) and θ(0) split (as inDe�nition 4.6) then τ is a biholomorphi map of the open unit ball of Eσ,
τ−1 = θ, and, for every X ∈ H∞(E),

(α̂(X))(η∗) = X̂(τ(η)∗) , η ∈ D(Eσ). (22)
Proof. We already know that, under the onditions of the theorem, both
τ and θ are holomorphi maps of the open unit ball. It follows from equation(17) that, for every ξ ∈ E, h ∈ H and η ∈ D(Eσ), α̂(Tξ)(η

∗) = τ(η)∗(ξ ⊗ h).But τ(η)∗(ξ ⊗ h) = T̂ξ(τ(η)
∗), so that equation (22) holds for Tξ. It also holdsfor ϕ∞(a), a ∈ M , sine α(ϕ∞(a)) = ϕ∞(a). Therefore it holds for every Xin a w∗-dense subalgebra of H∞(E). By the w∗-ontinuity of α, equation (22)
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392 Paul S. Muhly and Baruch Solelholds for every X ∈ H∞(E). Sine a similar laim holds for α−1 and θ, weonlude that for all X ∈ H∞(E), X̂(η∗) = ̂α−1(α(X))(η∗) = α̂(X)(θ(η)∗) =

X̂(τ(θ(η))∗). Thus τ−1 = θ. �A biholomorphi map τ is said to implement α if equation (22) holds.
Remark 4.10 If α is implemented by τ in the sense of equation (22), then,writing this equation when X = ϕ∞(a), a ∈ M , shows that α leaves ϕ∞(M)elementwise �xed. Also, inspeting the proof of Lemma 4.1, one sees that, if αdoes not have this property, the map τ, de�ned in equation (17) would map theunit ball of Eσ into the unit ball of Eπ where π = σ ◦ ϕ−1

∞ ◦ α ◦ ϕ∞. One anstudy suh automorphisms by studying these maps but the situation beomesquite ompliated, unless one makes a global assumption to begin with, vis.,that σ has uniform in�nite multipliity. In that event, by properties of normalrepresentations of von Neumann algebras, σ and π are unitarily equivalent. Say
π(·) = uσ(·)u∗ for some Hilbert spae isomorphism from the Hilbert spae of σto the Hilbert spae of π. Then it is a straightforward alulation to see that
Eπ = (I ⊗ u)Eσu∗. It is then a straightforward matter to inorporate u intoour formulas.As we have remarked before, D(Eσ) is the unit ball of a J∗-triple system. Itresults, therefore, from well-known theory [20℄ that the biholomorphi mapsof D(Eσ) are determined by Möbius transformations (and �isometri multipli-ers�). As we shall, however, the Möbius transformations of D(Eσ) that im-plement automorphisms of H∞(E) have to have a speial form: They mustbe parametrized by �entral� elements of D(Eσ) in the sense of the followingde�nition. (See also Remark 2.1.3 of [14℄).
Definition 4.11 Let E be a W ∗-orrespondene over a W ∗-algebra M . Theenter of E, denoted Z(E), is the set of ξ ∈ E suh that aξ = ξa for all a ∈M .
Lemma 4.12 (1) The enter Z(E) of a W ∗-orrespondene E over M is a

W ∗-orrespondene over the enter Z(M) of M .(2) Let σ be a faithful normal representation of M on the Hilbert spae E, andfor ξ ∈ E, de�ne Φ(ξ) := Lξ where Lξ maps E to E ⊗ E via the formula
Lξ(h) = ξ⊗h. Then the pair (σ,Φ) de�nes an isomorphism of Z(E) onto
Z(Eσ) in the sense of De�nition 2.2. (Here, Z(E) is a orrespondeneover Z(M) and Z(Eσ) is a orrespondene over Z(σ(M)′) = Z(σ(M)) =
σ(Z(M))).(3) Given a faithful representation σ of M on the Hilbert spae E and γ ∈
D(Eσ), then γ lies in the enter of Eσ if and only if the representation
σ × γ∗ maps H∞(E) into σ(M).

Proof. It is lear that Z(E) is a bimodule over Z(M) and, to prove (1), weneed only show that the inner produt of two elements in Z(E) lies in Z(M).
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Schur Class Operator Functions . . . 393For a ∈M , ξ1, ξ2 ∈ Z(E) we have
a〈ξ1, ξ2〉 = 〈ξ1a

∗, ξ2〉 = 〈a∗ξ1, ξ2〉 = 〈ξ1, aξ2〉 = 〈ξ1, ξ2a〉 = 〈ξ1, ξ2〉a.Hene the inner produt lies in the enter of M , proving (1). We �x a faithfulrepresentation σ of M on E . For ξ ∈ Z(E), a ∈ M and h ∈ E we have
Lξσ(a)h = ξ⊗σ σ(a)h = ξa⊗h = aξ⊗h = (a⊗ I)Lξh. Hene, Lξ ∈ Eσ. Given
b ∈ σ(M)′ and h ∈ E we have Lξbh = ξ ⊗ bh = (IE ⊗ b)Lξh. Thus Lξ lies in
Z(Eσ).For ξ ∈ Z(E), a, b ∈ Z(M), and h ∈ E , Laξbh = aξb ⊗ h = ξab ⊗ h = ξ ⊗
σ(a)σ(b)h = (I ⊗ σ(a))Lξσ(b)h hene

Φ(aξb) = σ(a)Φ(ξ)σ(b).For ξ1, ξ2 ∈ Z(E) we have L∗
ξ1
Lξ2

= σ(〈ξ1, ξ2〉). Therefore the pair (σ,Φ) is anisomorphism of Z(E) into Z(Eσ).To prove that the map Φ is onto, �x an η ∈ Z(Eσ). Then, η is a map from Eto E ⊗σ E satisfying
ησ(a) = (a⊗ I)η (23)and
ηb = (I ⊗ b)η, (24)for a ∈ M and b ∈ σ(M)′. De�ne the map ψ : E → B(E) by ψ(ζ) = η∗Lζand note that for b ∈ σ(M)′ and h ∈ E , η∗Lζbh = η∗(ζ ⊗ bh) = η∗(I ⊗ b)Lζh.Using (24) the latter is equal to bη∗Lζh. Hene ψ(ζ) lies in σ(M). Also

ψ(ζa) = ψ(ζ)σ(a) for all a ∈ M and it then follows from the self dualityof E that there is an ξ ∈ E with 〈ξ, ζ〉 = σ−1(ψ(ζ)). Thus, for all ζ ∈ E,
L∗

ξLζ = σ(〈ξ, ζ〉) = η∗Lζ and we onlude that η = Lξ.It follows from (23) that, for all a ∈M , Lξa = ησ(a) = (a⊗I)η = Laξ, showingthat ξ lies in Z(E).Finally, to prove (3), �x an η ∈ D(Eσ) and write (T, σ) for the ovariant pairassoiated with σ×η∗ (so that, T̃ = η∗). Then the representation mapsH∞(E)into σ(M) if and only if, for eah ξ ∈ E, T (ξ) ∈ σ(M). This holds i�, for all
b ∈ σ(M)′, ξ ∈ E and h ∈ E , T̃ (IE ⊗ b)(ξ⊗ h) = T (ξ)bh = bT (ξ)h = bT̃ (ξ⊗ h);that is, if and only if T̃ (IE⊗b) = bT̃ for every b ∈ σ(M)′. But the last statementsays that η lies in the enter of Eσ. �The following example may help to show that the enter of a orrespondeneis muh less �inert� than the enter of a von Neumann algebra.
Example 4.13 Let M be a von Neumann algebra and let α be an endomor-phism of M . Then we obtain a W ∗-orrespondene over M , denoted αM , bytaking M with its usual right ation and inner produt give by the formula,
〈ξ, η〉 = ξ∗η and by letting α implement the left ation. Then an element ξ in
αM lies in the enter of αM if and only if ξ intertwines α and the identity en-domorphism; i.e., ξ ∈ Z(αM) if and only if α(a)ξ = ξa for all a ∈M . Z(αM)is a muh studied objet in the literature and the preeding lemma spells outsome of its important elementary properties.

Documenta Mathematica 13 (2008) 365–411



394 Paul S. Muhly and Baruch SolelOur goal now is to develop the properties of Möbius transformations of D(Eσ)and to identify those that implement automorphisms of H∞(E). To this end,�x a faithful representation σ of M on a Hilbert spae E . Set N = σ(M)′,write K = E ⊕ (E ⊗σ E), and de�ne the (neessarily faithful) representation ρof N on K by the formula
ρ(S) =

(
S 0
0 I ⊗ S

)
, S ∈ N.For γ ∈ D(Eσ) we set ∆γ := (IE − γ∗γ)1/2 - an element in B(E) - and ∆γ∗ :=

(IE⊗E − γγ∗)1/2 - an element in B(E ⊗ E). When γ is understood, then weshall simply write ∆ for ∆γ and ∆∗ for ∆γ∗ . Given γ ∈ D(Eσ) we de�ne themap gγ on D(Eσ)∗ by the formula,
gγ(z∗) = ∆γ(I − z∗γ)−1(γ∗ − z∗)∆−1

γ∗ , (25)
z ∈ D(Eσ). Then gγ is a biholomorphi automorphism of D(Eσ)∗ that maps 0to γ∗ and γ∗ to 0. Further, g2

γ = id, and every biholomorphi map g of D(Eσ)∗is of the form
g = w ◦ gγwhere w is an isometry on (Eσ)∗ and γ∗ = w−1g(0) [20℄. When γ lies in theenter of Eσ, we see that gγ maps the enter onto itself and it follows that everybiholomorphi automorphism of the open unit ball of (Eσ)∗ that preserves theenter is of the form
g = w ◦ gγwhere γ lies in the enter and w is an isometry on (Eσ)∗ that preserves theenter.If z ∈ D(Eσ), then the series ∑∞

n=0(z
∗γ)n onverges in norm to the operatorin N , (I − z∗γ)−1 =

∑∞
n=0(z

∗γ)n. One easily alulates, then, that
gγ(z∗) = ∆γ∗∆−1

∗ − ∆(I − z∗γ)−1z∗∆∗.Reall that the equation U(z ⊗ h) = z(h) de�nes a Hilbert spae isomorphism
U : Eσ ⊗ E → E ⊗ E [31, p. 369℄. Consequently, as maps on E , ULz = z and
z∗ = L∗

zU
∗. Thus we may write

gγ(z∗) = ∆γ∗∆−1
∗ − ∆(I − L∗

zU
∗γ)−1L∗

zU
∗∆∗.We write K1 = E ⊗σ E for the seond summand in K = E ⊕ (E ⊗σ E) and welet q1 denote the projetion from K onto K1. Likewise, we set K2 = E withprojetion q2. Corresponding to the diret sum deomposition, we de�ne V bythe formula

V :=

(
∆γ∗∆−1

∗ −∆
U∗∆∗ U∗γ

)
:

(
K1

E

)
→

(
K2

Eσ ⊗ E

)
. (26)
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Schur Class Operator Functions . . . 395If we alulate V V ∗, we �nd that the o� diagonal terms vanish and the terms onthe diagonal are ∆γ∗∆−2
∗ γ∆+∆2 and U∗(∆2

∗+γγ∗)U . Sine ∆2
∗+γγ∗ = IE⊗E ,the latter expression is U∗U = IEσ⊗E = q2. For the �rst expression, we notethat γ∗∆−2

∗ γ = γ∗(I − γγ∗)−1γ = (I − γ∗γ)−1 − 1 and ∆γ∗∆−2
∗ γ∆ + ∆2 =

∆((I − γ∗γ)−1 − I)∆ + ∆2 = IE . This shows that V is a oisometry. Similaromputations show that it is, in fat, a unitary operator. Thus V is a transferoperator.We want to apply Theorem 3.6 to obtain an elementX ∈ H∞(E) with X̂(η∗) =
gγ(η∗), for η ∈ D(Eσ). To do this, we �rst let F be the orrespondene Eσand then F ρ is a orrespondene over ρ(N)′. In order to apply Theorem 3.6we let M , in that theorem, be the von Neumann algebra ρ(N)′ and let σ therebe the identity representation of ρ(N)′ on K (so that E there is K). E in thattheorem will be F ρ and N there (the ommutant of σ(M)) will be ρ(N). Therepresentation τ of N then will be the map ρ−1 of ρ(N) on E (so that E willplay the role of H there). Also, q1 will be as above. We set A = ∆γ∗∆−1

∗ ,
B = −∆, C = U∗∆∗ and D = U∗γ. These A,B,C and D give rise to thematriial operator V of equation (26). In order to show that the assumptionsof Theorem 3.6 are satis�ed, we have to show that these operators (A,B,C and
D) all have the required intertwining properties. (Note that we have alreadyheked that V is a unitary operator).The required intertwining properties are:(a) A = ∆γ∗∆−1

∗ lies in q2ρ(N)′q1.(b) B = −∆ lies in N ′.() For every S ∈ N , U∗∆∗(IE ⊗ S) = (S ⊗ IE )U∗∆∗ on E ⊗ E .(d) For every S ∈ N , U∗γS = (IE ⊗ S)U∗γ on E .Indeed, reall that γ lies in the enter of Eσ and, thus, for S ∈ N , γS = (I⊗S)γ.Therefore ∆ ommutes with N and ∆∗ ommutes with I ⊗ S for S ∈ N .This implies (a) and (b). Reall that, for h ∈ E , U∗γh = γ ⊗ h and, thus,
U∗γSh = γ ⊗ Sh = (I ⊗ S)(γ ⊗ h) = (I ⊗ S)U∗γh proving (d). For (), itsu�es to note that U(S ⊗ I)U∗ = I ⊗ S and ∆∗ ommutes with I ⊗ S for all
S ∈ N .We an now apply Theorem 3.6. Sine F ρ plays the role of E in that theoremand the identity representation of ρ(N)′, id, plays the role of σ, Eσ in thattheorem is replaed by (F ρ)id whih, by the duality theorem [31, Theorem 3.6℄ is isomorphi to F = Eσ. We therefore onlude:
Lemma 4.14 For every γ ∈ D(Z(Eσ)), there is an X in H∞(F ρ) with ‖X‖ ≤ 1suh that, for all z ∈ D(Eσ), X̂(z∗) = gγ(z∗).Note that gγ(z∗) is an operator from E ⊗ E into E and an be viewed as anoperator in B(K) whih is where the values of X , as an element of H∞(F ρ),lie.We an now use [31, Theorem 5.3℄ to prove the following.
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396 Paul S. Muhly and Baruch Solel

Corollary 4.15 Fix γ ∈ D(Z(Eσ)) as above. Then, for every z1, z2, . . . , zkin D(Eσ), the map on Mk(σ(M)′) de�ned by the k × k matrix
((id− θgγ (z∗

i )∗,gγ(z∗

j )∗) ◦ (id− θzi,zj )
−1)is ompletely positive.

Proof. Applying [31, Theorem 5.3℄ to X of Lemma 4.14, we get the ompletepositivity of the map de�ned by the matrix
((I −Ad(gγ(z∗i ), gγ(z∗j ))) ◦ (id− θzi,zj)

−1).But note that, for every b ∈ σ(M)′, Ad(gγ(z∗i ), gγ(z∗j ))(ρ(b)) =
gγ(z∗i )ρ(b)gγ(z∗j )∗ = 〈gγ(z∗i )∗, bgγ(z∗j )∗〉 = θgγ(z∗

i )∗,gγ(z∗

j )∗(b). �

Corollary 4.16 Let Z : D(Eσ)∗ → B(E) be a Shur lass operator funtionand let γ be in D(Z(Eσ)). Then the funtion Zγ : D((Eσ)∗) → B(E) de�ned by
Zγ(η∗) = Z(gγ(η∗))is also a Shur lass operator funtion.

Proof. For every ηi, ηj in D(Eσ) we have (id−Ad(Z(gγ(η∗i )), Z(gγ(η∗j )))) ◦

(id− θηi,ηj )
−1 = ((id− Ad(Z(gγ(η∗i )), Z(gγ(η∗j )))) ◦ (id− θgγ (η∗

i )∗,gγ(η∗

j )∗)
−1) ◦

(id − θgγ(η∗

i )∗,gγ(η∗

j )∗) ◦ (id − θηi,ηj )
−1). Hene the map assoiated with Zγ isa omposition of two ompletely positive maps and is, therefore, ompletelypositive. �For the statement of the next lemma, reall from [31, end of Setion 2℄ thatevery X ∈ H∞(E) has a �Fourier series" expansion given by a sequene of�Fourier oe�ient operators" {Ej}. (In [31℄ we wrote {Φj} for this sequene).Eah map Ej is ompletely ontrative, w∗-ontinuous and Ej(Tξ1

Tξ2
· · ·Tξk

) =
Tξ1

Tξ2
· · ·Tξk

if j = k and is zero otherwise. The Cesaro means of the �Fourierseries" of X onverge to X in the w∗-topology.
Lemma 4.17 Let σ be a normal, faithful, representation of M on a Hilbertspae H and let K(σ) denote the kernel of the map X → X̂ de�ned in equation(16).(i) K(σ) ⊆ {X ∈ H∞(E) | E0(X) = E1(X) = 0}.(ii) If, for every k ∈ N, ∨{(η⊗k)(H) | η ∈ D(Eσ)} = E⊗k ⊗H, then K(σ) =

{0}.(iii) Every ompletely isometri automorphism α of H∞(E) that is a w∗-homeomorphism and is implemented by a biholomorphi map of D(Eσ) inthe sense of (22) leaves K(σ) invariant. In partiular, K(σ) is invariantunder the ation of the gauge group and, thus, under the maps Ek, k ≥ 0.
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Schur Class Operator Functions . . . 397
Proof. Write C1 for {X ∈ H∞(E) | E0(X) = E1(X) = 0}. Then for every
X ∈ H∞(E), X = E0(X) + E1(X) +X1 where X1 ∈ C1. Note that for every
η ∈ D(Eσ), every 0 < t ≤ 1 and every k ≥ 0, Ek(X)((tη)∗) = tkE(X)(η∗).Thus, for X ∈ K(σ), 0 = X((tη)∗) = E0(X)(η∗) + tE1(X)(η∗) + t2S where
S is some bounded operator on H . Sine this holds for every 0 < t ≤ 1, wehave (by di�erentiation) E0(X) = 0 and E1(X)(η∗) = 0 for all η ∈ D(Eσ).Write E1(X) = Tξ (for some ξ ∈ E). Then, for all h ∈ H and η ∈ D(Eσ),
0 = E1(X)(η∗)h = η∗(ξ ⊗ h). Sine ∨{η(H)| η ∈ D(Eσ)} = E ⊗ H ([31,Lemma 3.5℄), we �nd that ξ ⊗ h = 0 for all h ∈ H . Sine E is faithful, thisimplies that ξ = 0, ompleting the proof of (i).We an also write 0 = X((tη)∗) = E0(X)(η∗)+tE1(X)(η∗)+· · ·+tkEk(X)(η∗)+
tk+1S and onlude that Ej(X)(η∗) = 0 for all j ≤ k. We an then ontinueas above but to be able to onlude that Ek(X) = 0 we need the ondition inpart (ii) (to replae the use of [31, Lemma 3.5℄ in the argument above).To prove (iii), note that the invariane of K(σ) under an automorphism α asin (iii) follows from (22). The invariane under the gauge group (and under
Ek) is then immediate. �The following proposition is obvious if K(σ) = {0}. But, in fat, it holds forevery faithful, normal representation σ. The argument uses an idea from [17,Proof of Theorem 4.11℄.
Proposition 4.18 Let σ be a faithful, normal representation of M and let
α, β be two homomorphisms of H∞(E) into itself suh that β is ompletely iso-metri, surjetive and a w∗-homeomorphism, while α is ompletely ontrativeand w∗-ontinuous. Suppose they satisfy the equation

α̂(X)(η∗) = β̂(X)(η∗)for all X ∈ H∞(E) and η ∈ D(Eσ). Then α = β.
Proof. It is learly enough to assume β = id and α̂(X)(η∗) = X̂(η∗). Notethat α, viewed as a representation of H∞(E) on F(E)⊗σ H (whose restritionto ϕ∞(M) is ϕ∞(·) ⊗ IH), an be written as (ϕ∞(·) ⊗ IH) × ζ∗ for some ζ inthe losed unit ball of the ϕ∞(·) ⊗ IH -dual of E. Thus, for k ∈ F(E) ⊗σ H ,
α(Tξ)k = (ζ∗)(ξ ⊗ k) and ‖α(Tξ)k‖ ≤ ‖ξ ⊗ k‖ = ‖Tξk‖.Fix h ∈ H viewed as the zeroth summand of F(E)⊗σH . Then for every ξ ∈ E,

‖α(Tξ)h‖ ≤ ‖Tξh‖.By onstrution α(Tξ) − Tξ ∈ K(σ). But also, by Lemma 4.17(i), for every
X ∈ K(σ), Xh is orthogonal to Tξh. Thus

‖α(Tξ)h‖
2 = ‖(α(Tξ) − Tξ)h‖

2 + ‖Tξh‖
2 ≥ ‖Tξh‖

2.We onlude that for every h ∈ H , (α(Tξ)−Tξ)h = 0. It follows that α(Tξ) = Tξfor all ξ ∈ E. Sine α is a w∗-ontinuous homomorphism, α(X) = X for all
X ∈ H∞(E). �
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398 Paul S. Muhly and Baruch SolelThe following lemma will prove very useful when we deal with a representation
σ for whih K(σ) 6= {0}. It relates the σ-dual with the π-dual where π is therepresentation de�ned in the proof of Lemma 3.8 (for whih K(π) = {0}).
Lemma 4.19 Let σ be a faithful representation of M on H and π be the repre-sentation ϕ∞⊗ IH of M on K := F(E)⊗H. Let ψ : σ(M)′ → (ϕ∞(M)⊗ IH)′be de�ned by ψ(b) = IE⊗b and let Ψ : Eσ → Eπ be de�ned by Ψ(η) = IF(E)⊗η.Then we have the following.(1) The pair (ψ,Ψ) is an isomorphism of Eσ into (not neessarily onto) Eπsatisfying

Ψ(η)PH = PE⊗HΨ(η) = η , η ∈ Eσwhere PH is the projetion from K to H (viewed as a subspae) and PE⊗His the projetion of E ⊗K onto E ⊗H.(2) For every X ∈ H∞(E) and ζ ∈ Eπ that satis�es ζPH = PE⊗Hζ, we have
ζ|H ∈ Eσ and the restrition of X̂(ζ∗) to H (viewed as a summand of
F(E) ⊗H = H ⊕ E ⊗H ⊕ · · · ) is X̂((ζ|H)∗).(3) There is an isomorphism Φ of Z(Eσ) onto Z(Eπ) satisfying

Φ(γ)PH = PE⊗HΦ(γ) = γ , γ ∈ Z(Eσ).(4) For η ∈ Eσ and γ ∈ Z(Eσ),
gΦ(γ)(Ψ(η)∗)PE⊗H = PHgΦ(γ)(Ψ(η)∗) = gγ(η∗).

Proof. It is lear that ψ is indeed an isomorphism into (ϕ∞(M) ⊗ IH)′.Note that it follows from the intertwining property of η ∈ Eσ that Ψ(η) is awell de�ned bounded operator. To show that Ψ maps Eσ into Eπ, �x η ∈ Eσ,
θ⊗ h ∈ F(E)⊗H and a ∈M and ompute (IF(E) ⊗ η)π(a)(θ ⊗ h) = (IF(E) ⊗
η)(ϕ∞(a)θ⊗ h) = ϕ∞(a)θ⊗ η(h), where we view F(E)⊗E as the subspae of
F(E) onsisting of all the positive tensor powers of E. But the last expressionis equal to (ϕ∞(a) ⊗ IH)(IF(E) ⊗ η)(θ ⊗ h), showing that Ψ(η) ∈ Eπ.To show that the map is a bimodule map, �x η ∈ Eσ, b, c ∈ σ(M)′ and
θ ⊗ h ∈ F(E) ⊗ H . Then Ψ(cηb)(θ ⊗ h) = θ ⊗ (cηb)h = θ ⊗ (IE ⊗ c)ηbh =
ψ(c)(θ ⊗ ηbh) = ψ(c)Ψ(η)(θ ⊗ bh) = ψ(c)Ψ(η)ψ(b)(θ ⊗ h), proving that theimage of Ψ lies in Eπ. Regarding the inner produt, we have: 〈Ψ(η1),Ψ(η2)〉 =
Ψ(η1)

∗Ψ(η2) = (IF(E) ⊗ η1)
∗(IF(E) ⊗ η2) = (IF(E) ⊗ η∗1η2) = ψ(〈η1, η2〉) for all

η1, η2 ∈ Eσ. Thus (ψ,Ψ) is an isomorphism of Eσ into Eπ. The proof of theequation Ψ(η)PH = PE⊗HΨ(η) = η for η ∈ Eσ is easy. This proves (1).To prove (2), let ζ ∈ Eπ satisfy ζPH = PE⊗Hζ and �x a ∈M and h ∈ H . Then
(ζ|H)σ(a)h = ζ(ϕ∞(a)⊗IH)h = (ϕE(a)⊗IK)PE⊗Hζh = (ϕE(a)⊗IH)(ζ|H)h.Thus, ζ|H ∈ Eσ. To prove that X̂((ζ|H)∗) = X̂(ζ∗)|H , let, �rst, onsider X =

ϕ∞(a) for a ∈ M . Then X̂(ζ∗) = ϕ∞(a) ⊗ IH and X̂((η|H)∗) = σ(a) and (2)
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Schur Class Operator Functions . . . 399holds in this ase. Take X = Tξ for some ξ ∈ E. Then, for h ∈ H ⊆ F(E)⊗H ,
X̂(ζ∗)h = ζ∗(ξ ⊗ h) = (ζ|H)∗(ξ ⊗ h) = X̂((ζ|H)∗)h. In partiular, we see that
H is invariant for all X̂(ζ∗) where X runs over a set of generators. Thus, His invariant under X̂(ζ∗) for all X ∈ H∞(E) and (2) holds for all X 's in a
w∗-dense subalgebra of H∞(E). Sine the map X 7→ X̂(ζ∗) is w∗-ontinuous,we are done.To prove (3), reall from Lemma 4.12 (2) that both Z(Eσ) and Z(Eπ) areisomorphi to Z(E). Combining these two isomorphisms, we get Φ. Morepreisely, every η ∈ Z(Eσ) is equal to Lξ for some ξ ∈ Z(E) (that is, η(h) =
ξ ⊗ h, h ∈ H). Then we set Φ(η)k = ξ ⊗ k for k ∈ K = F(E) ⊗ H . Theequation Φ(γ)PH = PE⊗HΦ(γ) = γ , γ ∈ Z(Eσ) follows easily.Part (4) follows from (1) and (3). �Fix X ∈ H∞(E) with ‖X‖ ≤ 1, let π = ϕ∞ ⊗ IH , as in Lemma 3.8, and let γbe an element of D(Z(Eπ)). Then if X̂ is the Shur lass operator funtion on
D((Eπ)∗) determined by X then by Corollary 4.16, X̂ ◦ gγ also is a Shur lassoperator funtion on D((Eπ)∗). By Corollary 3.9 there is an element αγ(X) in
H∞(E), whose norm does not exeed 1, suh that α̂γ(X) = X̂ ◦gγ. Further, byLemma 3.8, this element is uniquely de�ned. We an, of ourse, extend this toa map, αγ , from H∞(E) to itself suh that, for X ∈ H∞(E) and η ∈ D((Eπ)∗),

α̂γ(X)(η∗) = X̂(gγ(η∗)). (27)
Lemma 4.20 Let σ and π be as in Lemma 4.19. Then:(i) For every γ ∈ D(Z(Eπ)), αγ , de�ned by equation (27) is an automorphismof the algebra H∞(E) that is ompletely isometri and is a homeomor-phism with respet to the ultraweak topology.(ii) For every γ ∈ D(Z(Eσ)) let αγ be de�ned to be αΦ(γ) (with Φ as inLemma 4.19). Then, for every X ∈ H∞(E) and η ∈ Eσ,

α̂γ(X)(η∗) = X̂(gγ(η∗)). (28)
Proof. We �rst prove (i). Linearity and multipliativity of αγ are easyto hek. Sine g2

γ = id, αγ is invertible (with α−1
γ = αγ). So it is an auto-morphism. Sine αγ maps the losed unit ball of H∞(E) into itself (as doesthe inverse map), αγ is isometri. It is, in fat, ompletely isometri. Tosee this, onsider, for n ∈ N, the algebra H∞(Mn(E)), assoiated with the

W ∗-orrespondene Mn(E) over the von Neumann algebra Mn(M). The or-responding Fok spae is Mn(F(E)) and the algebra an be identi�ed with
Mn(H∞(E)). The representation σ of M gives rise to a representation σn of
Mn(M) on H(n) = Cn ⊗H (with σn(Mn(M))′ = ICn ⊗ σ(M)′ ∼= σ(M)′). Onean hek that Eσ ∼= (Mn(E))σn . For γ ∈ Z(Eσ), write γ′ for the orrespondingelement of Z(Mn(Eσ)). Then αγ′ ats on Mn(H∞(E)) by applying αγ to eah
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400 Paul S. Muhly and Baruch Solelentry. Sine we know that αγ′ is an isometry, it follows that αγ is a ompleteisometry.It is left to show that αγ is ontinuous with respet to the ultraweak topology.For this, let {Xβ} be a net in the losed unit ball of H∞(E) that onvergesultraweakly to X . Sine evaluating at η∗ (for η in the open unit ball) amountsto applying a ultraweakly ontinuous representation , we have, for every suh
η, X̂β(η∗) → X̂(η∗) in the weak operator topology. Sine this holds for gγ(η∗)in plae of η, we see that, for every η in the open unit ball of Eσ,

α̂γ(Xβ)(η∗) → α̂γ(X)(η∗).Using Lemma 3.8, we �nd that αγ(Xβ) → αγ(X) in the ultraweak topology.This proves (i).Part (ii) of the lemma results from the following omputation
α̂γ(X)(η∗) = ̂αΦ(γ)(X)(Ψ(η)∗)|H = X̂(gΦ(γ)(Ψ(η)∗))|H

= X̂(gΦ(γ)(Ψ(η)∗)|E ⊗H) = X̂(gγ(η)∗),where we used equation (27) and Lemma 4.19. �Note that we needed to use the representation π in order to de�ne, for every
X ∈ H∞(E), the element αγ(X) in H∞(E) satisfying (27). That is, we usedthe fat that K(π) = 0. One we de�ned it, it may be more onvenient to workwith the original representation σ (whih an be hosen to be an arbitraryfaithful representation) and invoke (28). Note that, using Proposition 4.18, wesee that there is only one automorphism that satis�es (28).
Theorem 4.21 Let E be a W ∗-orrespondene over M and let σ be a faithfulnormal representation of M on a Hilbert spae H. Let α be an isometri auto-morphism of H∞(E) and assume that g : D(Eσ)∗ → D(Eσ)∗ is a biholomorphiautomorphism of D(Eσ)∗ suh that

α̂(X)(η∗) = X̂(g(η∗)),for all X ∈ H∞(E) and all η ∈ Eσ. Then:(i) g(DZ((Eσ)∗)) ⊆ DZ((Eσ)∗).(ii) There is a γ ∈ DZ((Eσ)) and a unitary operator u in L(E) suh that
u(Z(E)) = Z(E) and suh that

g(η∗) = gγ(η∗) ◦ (u⊗ IE)(as a map from E ⊗σ H to H).(iii) With u as in (ii), there is an automorphism αu of H∞(E) suh that
αu(Tξ) = Tuξ for every ξ ∈ E.
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Schur Class Operator Functions . . . 401(iv) With u and γ as in (ii),
α = αγ ◦ αuwhere αγ is the automorphism de�ned in equation (27) (and satis�es(28)).(v) For every η1, η2, . . . , ηk in the open unit ball of Eσ, the map de�ned bythe k × k matrix

((id− θg(η∗

i )∗,g(η∗

j )∗) ◦ (id− θηi,ηj )
−1)is ompletely positive.

Proof. Note �rst that, sine α is an isometri automorphism, it maps ϕ∞(M)onto itself.Suppose η lies in D(Z(Eσ)∗). Then, by part (3) of Lemma 4.12, X̂(η∗) ∈ σ(M)for every X ∈ H∞(E). But then, for every X , X̂(g(η∗)) lies in σ(M), showingthat g(η∗) ∈ Z(Eσ). This proves (i).The disussion following Lemma 4.12 shows that we an write g = w ◦ gγ forsome γ in DZ((Eσ)) and an isometry w on (Eσ)∗ that preserves the enter. Let
αγ be the automorphism desribed in Lemma 4.20(ii) and write β = α−1

γ ◦ α.Then it follows that
β̂(X)(η∗) = X̂(wη∗)for X ∈ H∞(E) and η ∈ D(Eσ).For η = 0 and Y ∈ H∞(E) we have Ŷ (0) = σ(E0(Y )) where E0 is the ondi-tional expetation of H∞(E) ontoM (whereM is viewed as the �zeroth term�).Thus, σ(E0(β(X))) = β̂(X)(0) = X̂(0) = σ(E0(X)) for every X ∈ H∞(E).Sine σ is faithful, E0(β(X)) = E0(X). Thus, for every ξ ∈ E, E0(β(Tξ)) = 0and we an write
β(Tξ) = Tθ + Y (29)where Y lies in (TE)2H∞(E). Write C for (TE)2H∞(E). Sine (29) holds forall ξ ∈ E, β(C) ⊆ C. We an apply the same arguments to β−1, in plae of β,and �nd that β−1(C) ⊆ C. Applying β−1 to (29), we �nd that
β−1(Tθ) = Tξ + Z (30)for some Z ∈ C.Arguing as in the proof of Proposition 4.18, we �nd that, for every h ∈ H ,

‖β(Tξ)h‖ ≤ ‖Tξh‖ and ‖β(Tξ)‖
2 = ‖Y h‖2 + ‖Tθh‖

2 ≥ ‖Tθh‖
2. Thus ‖Tξh‖ ≥

‖Tθh‖. Applying the same arguments to β−1 (using (30) in plae of (29))we �nd that ‖Tθh‖ ≥ ‖Tξh‖ and, thus, ‖Tξh‖ = ‖Tθh‖ and, onsequently,
Y h = 0 for all h ∈ H . Thus Y = 0 and β(Tξ) = Tθ. Sine β is isometri,
‖Tξ‖ = ‖Tθ‖. It follows that ‖ξ‖ = ‖θ‖. If we write θ = uξ (and reall thatthen β(Tξ) = Tuξ) then u is a linear isometry. We also have, for a ∈ M ,
Tu(ξa) = β(Tξa) = β(Tξa) = β(Tξ)a = Tu(ξ)a = Tu(ξ)a. Hene u is an isometri
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402 Paul S. Muhly and Baruch Solel(right) module map and, therefore, u lies in L(E). Sine β is an automorphism,
u is a unitary operator. We also have β(Tξ) = Tuξ, so β = αu (in the notationof (iii)). This proves (iii) and (iv).Reall that β̂(X)(η∗) = X̂(wη∗) and set X = Tξ to get T̂uξ(η

∗) = β̂(Tξ)(η
∗) =

T̂ξ(wη
∗). Hene η∗Luξ = (wη∗)Lξ. Applying this to h ∈ E we get η∗(uξ⊗h) =

(wη∗)(ξ ⊗ h). Hene wη∗ = η∗ ◦ (u ⊗ I), proving g(η∗) = gγ(η∗) ◦ (u ⊗ IE).To prove (ii) we need only to show that u preserves the enter of E. So �x
ξ ∈ Z(E). By Lemma 4.12, L∗

ξ lies in the enter of (Eσ)∗. Thus wL∗
ξ lies in

Z((Eσ)∗). But wL∗
ξ = L∗

ξ ◦ (u⊗ I) = Lu∗ξ. Thus Lu∗ξ lies in Z((Eτ )∗). UsingLemma 4.12 again we get u∗ξ ∈ Z(E). This shows that u∗Z(E) ⊆ Z(E) and,applying the same argument to β−1, we omplete the proof of (ii).To prove (v), �x b ∈ σ(M)′ and ηi, ηj in D(Eσ) and ompute 〈g(η∗i ), b ·g(η∗j )〉 =
g(η∗i )(IE ⊗ b)g(η∗j )∗ = gγ(η∗i )(u ⊗ IE )(IE ⊗ b)(u∗ ⊗ IE)gγ(ηj)

∗ = gγ(η∗i )(IE ⊗
b)gγ(η∗j )∗ = 〈gγ(η∗i ), b · gγ(η∗j )〉. Thus (v) follows from Corollary 4.15. �Combining Theorem 4.21 with Theorem 4.9, we get the following.
Theorem 4.22 Let E be a faithful W ∗-orrespondene over M where Z(M)is atomi. Let α be an automorphism of H∞(E) that is ompletely isometriand a w∗-homeomorphism and leaves ϕ∞(M) elementwise �xed and let σ be afaithful representation of M .Then there is a γ ∈ DZ((Eσ)) and a unitary operator u in L(E), satisfying
u(Z(E)) = Z(E), suh that

α = αγ ◦ αu,where αγ is the automorphism de�ned in Lemma 4.20 and αu(Tξ) = Tuξ forevery ξ ∈ E.In partiular, if Z(E) = {0}, every suh automorphism is αu for some unitaryoperator u ∈ L(E).Theorem 4.22 provides another perspetive on the results from [26, 27℄. Theanalyti rossed produts disussed there are of the form H∞(E), where Eis the orrespondene αM assoiated with a von Neumann algebra M and anautomorphism α that is properly outer. This means that Z(E) = {0}. Theorem4.22 implies that all automorphisms of H∞(E) are given by automorphisms of
Ṁ .
5 Examples : Graph AlgebrasIn this setion we onsider some examples that ome from direted graphs.We shall assume for simpliity that our graphs have �nitely many verties andedges. We write Q both for the graph and for its set of edges. The spae ofverties will be denoted V . We shall write s and r for the soure and range mapson Q, mapping Q to V , and we shall think of an edge e in Q as �pointing� from
s(e) to r(e). For simpliity, we shall also assume that r is surjetive, i.e., weshall assume that Q is without soures. Write Q∗ for the set of all �nite paths
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Schur Class Operator Functions . . . 403in Q, i.e., the path ategory generated by Q. An element in Q will be written
α = e1e2 · · · ek, where s(ei) = r(ei+1). We set s(α) = s(ek), r(α) = r(e1), and
|α| = k, the length of α. We will also view vertex v ∈ V as a �path of length
0", and we extend r and s to V simply by setting r(v) = s(v) = v.Let M be C(V ), the set of omplex-valued funtions on V . Of ourse, Mis a �nite dimensional ommutative von Neumann algebra. Likewise, we let
E be C(Q), the set of omplex-valued funtions on Q. Then we de�ne an
M -bimodule struture on E as follows: for f ∈ E, ψ ∈M and e ∈ Q,

(fψ)(e) := f(e)ψ(s(e)),and
(ψf)(e) := ψ(r(e))f(e).Note that the �no soures" assumption implies that the left ation of M isfaithful. An M -valued inner produt on E will be given by the formula

〈f, g〉(v) =
∑

s(e)=v

f(e)g(e),for f, g ∈ E and v ∈ V . With these operations, E beomes a W ∗-orrespondene over M . The algebra H∞(E) in this ase will be written
H∞(Q). In the literature, H∞(Q) is sometimes denoted LQ. It is the ul-traweak losure of the tensor algebra T+(E(Q)) ating on the Fok spae of
F(E(Q)). For e ∈ Q, let δe be the δ-funtion at e, i.e., δe(e′) = 1 if e = e′ andis zero otherwise. Then Tδe is a partial isometry that we denote by Se. Also,for v ∈ V , Pv is de�ned to be ϕ∞(δv). Then eah Pv is a projetion and it isan easy matter to see that the families {Se : e ∈ Q} and {Pv : v ∈ V } form aCuntz-Toeplitz family in the sense that the following onditions are satis�ed:(i) PvPu = 0 if u 6= v,(ii) S∗

eSf = 0 if e 6= f(iii) S∗
eSe = Ps(e) and(iv) ∑r(e)=v SeS

∗
e ≤ Pv for all v ∈ V .In fat, these partiular families yield a faithful representation of the Cuntz-Toeplitz algebra T (E(Q)) [19℄. The algebra T+(E(Q)) is the norm-losed (un-starred) algebra that they generate inside T (E(Q)) and H∞(Q) is the ultra-weak losure of T+(E(Q)). The algebra T+(E(Q)) was �rst de�ned and studiedin [25℄, providing examples of the theory developed in [28℄. It was alled a quiveralgebra there beause in pure algebra, graphs of the form Q are alled quivers.(Hene the notation we use here.) The properties of quiver algebras were fur-ther developed in [29℄. In [23℄, the fous was on H∞(Q) and the authors alledthis algebra a free semigroupoid algebras. Both algebras are often representedas algebras of operators on l2(Q

∗), and it will be helpful to understand how
Documenta Mathematica 13 (2008) 365–411



404 Paul S. Muhly and Baruch Solelfrom the perspetive of this note. Let H0 be a Hilbert spae whose dimensionequals the number of verties, let {ev| v ∈ V } be a �xed orthonormal basis for
H0 and let σ0 be the diagonal representation ofM = C(V ) on H0. Then l2(Q∗)is isomorphi to F(E(Q))⊗σ0

H0 where the isomorphism maps an element ξα ofthe standard orthonormal basis of l2(Q∗) to δα ⊗es(e) (where, for α = e1 · · · ek,
δα = δe1

⊗ · · · ⊗ δek
∈ E⊗k). The partial isometries Se an then be viewedas the shift operators Seξα = ξeα. Thus, the representations of T+(E(Q)) and

H∞(Q) on l2(Q∗) are just the representations indued by σ0.Quite generally, a ompletely ontrative ovariant representation of E(Q) ona Hilbert spae H is given by a representation σ of M = C(V ) on H and by aontrative map T̃ : E ⊗σ H → H satisfying equation (2). The representation
σ is given by the projetions Qv = σ(δv) whose sum is I. Also, from T̃ we mayde�ne maps T (e) ∈ B(H) by the equation T (e)h = T̃ (δe ⊗ h) and it is easyto hek that T̃ T̃ ∗ =

∑
e T (e)T (e)∗ and T (e) = Qr(e)T (e)Qs(e). Thus to everyompletely ontrative representation of the quiver algebra T+(E(Q)) we asso-iate a family {T (e)|e ∈ Q} of maps on H that satisfy ∑e T (e)T (e)∗ ≤ I and

T (e) = Qr(e)T (e)Qs(e). Conversely, every suh family de�nes a representation,written σ×T (or σ× T̃ ), satisfying (σ×T )(Se) = T (e) and (σ×T )(Pv) = Qv.We �x σ to be σ0 and write H in plae of H0. So that, in this ase, eahprojetion Qv is one dimensional (with range equal to Cev). Then obviously
σ(M)′ = σ(M). To desribe the σ-dual of E, write Q−1 for the direted graphobtained from Q by reversing all arrows, so that s(e−1) = r(e) and r(e−1) =
s(e). Sometimes Q−1 is denoted Qop and is alled the opposite graph. Notethat the Hilbert spae E⊗σH0 is spanned by the orthonormal basis {δe⊗es(α)}.Fix η ∈ Eσ and note that its ovariane property implies that, for every e ∈ Q,
η∗(δe ⊗ es(e)) = η∗(δr(e)δe ⊗ es(e)) = Qr(e)η

∗(δe ⊗ es(e)) = η(e−1)er(e) for some
η(e−1) ∈ C. The reason for the �strange" way of writing that salar is that wean view η as an element of E(Q−1) and the orrespondene struture on Eσ,as desribed in Proposition 2.13, �ts the orrespondene struture of E(Q−1).Consequently, we an identify the two and write

Eσ = E(Q−1).(See Example 4.3 in [31℄ for a desription of the struture of the dual orre-spondene for more general representations σ ). It will also be onvenient towrite η matriially with respet to the orthonormal bases {δv | v ∈ V } of H0and {δe ⊗ es(e)}e∈Q of E ⊗H0 as
(η)e,r(e) = η(e−1). (31)Suppose η ∈ D(Eσ). For every X ∈ H∞(Q), we have de�ned X(η∗) as anelement of B(H) in Remark 2.14. For the generators of H∞(Q), the de�nitionyields the equations,

P̂v(η∗) = θv,v , v ∈ V (32)and
Ŝe(η

∗) = η(e−1)θr(e),s(e) , e ∈ Q (33)
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Schur Class Operator Functions . . . 405where θv,w is the partial isometry operator on H that maps ew to ev andvanishes on (ew)⊥. For a general X ∈ H∞(Q), X̂(η∗) is obtained by using thelinearity, multipliativity and w∗-ontinuity of the map X 7→ X̂(η∗).The proof of the next lemma is straightforward and is omitted.
Lemma 5.1 The enters of the orrespondenes E(Q) and E(Q−1) are givenby the formulae

Z(E(Q)) = span{δe | s(e) = r(e)}and
Z(E(Q−1)) = span{δe−1 | s(e) = r(e)}.The following proposition is immediate from Theorem 4.22.

Proposition 5.2 If there is no e ∈ Q with s(e) = r(e), then every automor-phism α of H∞(Q) that is ompletely isometri, w∗-homeomorphi and leaves
ϕ∞(C(V )) elementwise �xed (that is, does not permute the verties) is of theform αu for some unitary u ∈ L(E(Q)). That is,

α(Se) =
∑

s(f)=s(e)

uf,eSfwhere the salars uf,e are given by uf,e = (u(δe))(f). (Note that this is zero if
s(f) 6= s(e), sine u(δe) = u(δeδs(e)) = u(δe)δs(e)).We note, as we did at the beginning of Setion 4, that the assumptions madeon the automorphism an be weakened using arguments of [22℄ but we shallnot elaborate on this here.
Example 5.3 Let Q be an n-yle (for n > 1) ; that is V = {v1, v2, . . . , vn}and Q = {e1, . . . , en} where ei is the arrow from v1 to vi+1 (or to v1 when
i = n). Then, for every α as in Proposition 5.2, there are {λ1, λ2, . . . , λn} with
|λi| = 1, suh that α(Sei ) = λiSei for all i.The rest of this setion will be devoted to the study of the following example,whih is very simple, yet provides a full array of the strutures we have beenstudying.
Example 5.4 Let the vertex set of the graph have two elements: V = {v, w}.Suppose the edge set onsists of three elements Q = {e, f, g}, where e is thearrow from v to w, so s(e) = v, r(e) = w; f is an arrow from w to v; and g isa loop based at w, s(g) = r(g) = w.Then by Lemma 5.1, Z(E(Q)) = Cδg. We know from Theorem 4.22 that everyautomorphism α is the omposition of an automorphism, written αu assoiatedwith a unitary in L(E(Q)) that maps δg into λ3δg (with |λ3| = 1) and anautomorphism assoiated with a �Möbius transformation".

Documenta Mathematica 13 (2008) 365–411



406 Paul S. Muhly and Baruch SolelAs noted in Proposition 5.2, (u(δe′))(f ′) = 0 unless s(e′) = s(f ′), so that
u(δe) ∈ Cδe and u(δf ) ∈ span{δf , δg}. Sine u∗ is unitary, we have that
u(δf ) = λfδf . Thus

αu(Se) = λeSe, αu(Sf ) = λfSf (34)and
αu(Sg) = λgSgfor λe, λf , λg with absolute value 1.It is left to analyze the Möbius transformations and the orresponding auto-morphisms. Sine the enter of Eσ are salar multiples of δg−1 , the Möbiustransformations are assoiated with salars λ ∈ D (in fat, with λδg−1 ) and willbe denoted τλ, λ ∈ D. We have

τλ(η∗) = ∆λ(I − η∗(λδg−1 ))−1(λ̄δg−1 − η∗)∆−1
λ∗ (35)where ∆λ = (IH−(λδg−1)∗(λδg−1))1/2 and ∆λ∗ = (IE⊗H−(λδg−1)(λδg−1 )∗)1/2.It will be onvenient to write τλ(η∗) matriially as a map from E⊗H , with theordered orthonormal basis {δe ⊗ δv, δf ⊗ δw, δg ⊗ δw}, to H , with the orderedorthonormal basis {δv, δw}. Using the formula (31), we see that

η =




0 η(e−1)
η(f−1) 0

0 η(g−1)


and

λδg−1 =




0 0
0 0
0 λ


 .The omputation of the expression in (35) yields

τλ(η∗) =

(
0 −η(f−1) 0

−η(e−1)(1−|λ|2)1/2

1−λη(g−1)
0 λ̄−η(g−1)

1−λη(g−1)

)
.Thus

τλ(η∗)∗(e−1) =
−η(e−1)(1 − |λ|2)1/2

1 − λη(g−1)
= −η(e−1)(1 − |λ|2)1/2

∞∑

k=0

(λη(g−1))k,

τλ(η∗)∗(f−1) = −η(f−1),and
τλ(η∗)∗(g−1) =

λ̄− η(g−1)

1 − λη(g−1)
= (λ̄− η(g−1))

∞∑

k=0

(λη(g−1))k.
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Schur Class Operator Functions . . . 407This suggests setting
T (e) = −(1 − |λ|2)1/2

∞∑

k=0

(λSg)kSe,

T (f) = −Sfand
T (g) = −(λ̄Pw − Sg)

∞∑

k=0

(λSg)k.Using (32), (33) and the fat that the map X 7→ X̂(η∗) is a ontinuous homo-morphism, we get
T̂ (e)(η∗) = τλ(η∗)∗(e−1)θw,v,
T̂ (f)(η∗) = τλ(η∗)∗(f−1)θv,wand
T̂ (g)(η∗) = τλ(η∗)∗(g−1)θw,w.Using Theorem 4.9, Theorem 4.22, Equation (34) and Theorem 4.18, we on-lude the following.

Theorem 5.5 (1) For every λ ∈ D, there is a unique automorphism αλ of
H∞(Q) suh that, for every e′ ∈ {e, f, g}, αλ(Se′) − T (e′) ∈ K(σ).(2) Every ompletely isometri, w∗-homeomorphi automorphism α of
H∞(Q) an be written

α = αu ◦ αλwhere λ ∈ D and αu(Se′ ) = λe′Se′ for every e′ ∈ {e, f, g} (where λe, λfand λg are omplex numbers of absolute value 1).
Proof. The only thing that we need to larify here is that, in part (2),we do not have to require that α �xes Pv and Pw. Indeed, assume that
α satis�es α(Pv) = Pw and α(Pw) = Pv. Then α(Se) = Pvα(Se)Pw and,thus, E0(α(Se)) = 0 and E1(α(Se)) ∈ CSf . Similarly, we get E0(α(Sf )) =
E1(α(Sg)) = 0, E1(α(Sf )) ∈ CSe and E0(α(Sg)) ∈ CPv. Thus, Sg is not in therange of α, ontraditing the surjetivity of α. �Finally, we note the following.
Proposition 5.6 In this example, K(σ) is the ideal generated by the ommu-tator [Sg, SeSf ].
Proof. Sine we shall not use this result, we only sketh the idea of theproof. It follows from Lemma 4.17 that it su�es to analyze Ek(K(σ)) fora given k. Sine K(σ) is an ideal, it su�es to onsider Pv′Ek(K(σ))Pv′′ for�xed v′, v′′ ∈ {v, w}. Evaluating an element of Pv′Ek(K(σ))Pv′′ in η∗ yields a
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408 Paul S. Muhly and Baruch Solelpolynomial in three the variables z1 = η(e−1), z2 = η(f−1) and z3 = η(f−1).This polynomial is de�ned on a small enough neighborhood of 0 and, from thede�nition of K(σ), it vanishes there. It follows that its oe�ients are all 0.This shows that an element in Pv′Ek(K(σ))Pv′′ is a linear ombination of sumsof the form ∑
aiSαi (for some paths αi) where ∑ ai = 0 and for every i, j,the paths αi and αj satisfy s(αi) = s(αj) = v′′, r(αi) = r(αj) = v′ and bothpaths ontain the same edges (with the same multipliities) but in a di�erentorder. A moment's re�etion shows that this an happen only if the two pathsare idential exept that, at some points, one path travels along g and thenalong ef while the other path �hooses" to travel �rst along ef and then along

g. This shows that the element in Pv′Ek(K(σ))Pv′′ lies in the ideal generatedby [Sg, SeSf ]. �
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