G-Structures Entières et Modules de Wach
In this paper, we study the tannakian properties of the Fontaine-Laffaille functor $\mathop{\bf V_{cris}}$ thanks to the theory of Wach's modules. We construct a point of the torsor linking cristalline representations and weakly admissible filtered modules, preserving the lattices in the sens of the Fontaine-Laffaille correspondance.
2000 Mathematics Subject Classification: 11F80, 11F85, 11S20, 11S23
Keywords and Phrases: Représentations galoisiennes, représentations cristallines, représentations entières, modules filtrés, $(\phi,\Gamma)$-modules
Full text: dvi.gz 99 k, dvi 253 k, ps.gz 871 k, pdf 440 k.
Home Page of DOCUMENTA MATHEMATICA