Capacité Associeé a un Courant Positif Fermé
Let $\Omega$ be an open set of $\mathbb{C}^n$ and $T$ be a positive closed current of dimension $p\geq 1$ on $\Omega$, we define a capacity associated to $T$ by: $$C_T(K,\Omega)=C_T(K)={sup} \left\{\ds\int_K{T\wedge(dd^c v)^p,\ v\in {psh}(\Omega),\ 0<v<1}\right\}$$ where $K$ is a compact set of $\Omega$. We prove, in the same way as Bedford-Taylor, that a locally bounded plurisubharmonic function is quasi-continuous with respect to $C_T$. In the second part we define the convergence relatively to $C_T$ and we prove that if $(u_j)$ is a family of locally uniformly bounded plurisubharmonic functions and $u$ is a locally bounded plurisubharmonic function such that $u_j \rightarrow u$ relatively to $C_T$ then $T\wedge (dd^cu_j)^p\rightarrow T\wedge (dd^cu)^p$ in the current sense.
2000 Mathematics Subject Classification: 32C30; 31C10; 31A15; 32W20.
Keywords and Phrases: courant positif, plurisousharmonique , capacité, operateur de Monge Ampère.
Full text: dvi.gz 29 k, dvi 77 k, ps.gz 804 k, pdf 189 k.
Home Page of DOCUMENTA MATHEMATICA