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Abstract. The following bounds for the anticanonical bundle K∗
X =

det TX of a complex homogeneous projective rational manifold X of
dimension n are established:

3n ≤ dimH0(X,K∗
X) ≤

(

2n + 1

n

)

and 2nn! ≤ deg K∗
X ≤ (n + 1)n

with equality in the lower bounds if and only if X is a flag manifold
and equality in the upper bounds if and only if X is complex projective
space. None of these bounds holds for general Fano manifolds.
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The homogeneous compact complex manifolds X that admit an equivariant
embedding in projective space are precisely the quotients X = G/P where G
is a semisimple complex Lie group and P is a parabolic subgroup. Moreover,
any such quotient is rational and has a very ample anticanonical bundle, K∗

X =
det TX . In particular, X is a Fano manifold.
Various bounds have been established for the numerical invariants of K∗

X when
X is a general Fano manifold, see [6, 8, 9, 10]. For example, there exists a
constant c(n) that depends only on n = dimX such that deg K∗

X ≤ c(n)n. In
this article we establish the following bounds when X = G/P :

3n ≤ dimH0(X,K∗
X) ≤

(

2n + 1

n

)

and 2nn! ≤ deg K∗
X ≤ (n + 1)n

with equality in the lower bounds if and only if X is a flag manifold (i.e., P is
a Borel subgroup of G), and equality in the upper bounds if and only if X is
complex projective space, P

n.
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These bounds do not hold for general Fano manifolds. For example, let X =
P(OPn−1 ⊕OPn−1(n − 1)). Then X is a P

1-bundle over P
n−1, π : X → P

n−1,
and K∗

X = π∗OPn−1(1)⊗ξ2 where ξ is the tautological line bundle on X whose
restriction to any fiber P

1 of π gives ξ|P1
∼= OP1(1). It follows that X is

a Fano manifold with dimH0(X,K∗
X) = n +

(

2n−1
n−1

)

+
(

3n−2
n−1

)

and deg K∗
X =

((2n − 1)n − 1)/(n − 1). An example where the lower bounds do not hold is
given by X = S × (P1)n−2 where S is a del Pezzo surface.
In the homogeneous case there are well-known formulas from representation
theory that can be used to calculate dimH0(X,K∗

X) and deg K∗
X exactly. How-

ever, these formulas, which are products of rational numbers indexed by the
roots of the group, do not easily lend themselves to comparison with expres-
sions in n = dim X. The point of this paper is to overcome this difficulty.
The bounds are proved by first reducing to the case of simple Lie groups and
then showing for each classical type that the known formulas can be broken up
into subproducts of certain simple sequences. These subproducts are shown to
satisfy inequalities that can be combined to yield the desired inequalities for
the full product. The bounds for the exceptional types are verified through
exhaustive calculations.
The above upper bounds can be trivially extended to any homogeneous compact
complex manifold X = G/H. The sections of K∗

X define an equivariant map
of X to projective space that coincides with the normalizer fibration G/H →
G/N , N = NG(H0), [1, p.79]. Since the base Y = G/N is a homogeneous
projective rational manifold, the upper bounds hold for Y and hence for X.
For a homogeneous projective rational manifold X, the dimension of the holo-
morphic automorphism group, dim Aut(X) = dimH0(X,TX), never exceeds
n(n+2). In fact, this bound holds when X is any homogeneous compact Kähler
manifold [5]. However, there are homogeneous compact complex manifolds for
which dim Aut(X) grows exponentially in n, see [12]. In [13], the above estimate
for dimH0(X,K∗

X) plays an important role in establishing the following bound

for the non-Kähler case: dim Aut(X) ≤ n2−1+
(

2n−1
n−1

)

∼ O(22n−1/
√

(n − 1)π).

1 Roots and Weights

In this section we introduce some notation and well-known facts about semisim-
ple Lie groups [2, 7], and recall a formula for finding the weight µX associated
to the line bundle K∗

X when X = G/P [4, 11].
Let G be a semisimple complex Lie group and let T be a maximal torus of G.
Let Lie(G) and Lie(T ) be the corresponding Lie algebras. Let Φ ⊂ Lie(T )∗

denote the roots of G with respect to T and let {α1, . . . , αℓ} be a system
of simple roots. Let Φ+ denote the subset of positive roots—those that are
positive integral combinations of the simple roots. For any root α ∈ Φ, let
eα ∈ Lie(G) be the corresponding root vector: [x, eα] = α(x)eα for all x ∈
Lie(T ).
Let λ1, . . . , λℓ be the fundamental dominant weights of G—those weights de-
fined by 〈λi, αj〉 = 2(λi, αj)/(αj , αj) = δij where ( , ) denotes the Killing form.
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Any weight µ ∈ Lie(T )∗ can be written µ =
∑ℓ

i=1〈µ, αi〉λi.
A Borel subgroup is a maximal solvable subgroup of G, and any such subgroup
is conjugate to the subgroup B generated by T and the root groups expCeα,
for all α ∈ −Φ+. Let P be a parabolic subgroup of G, that is, a subgroup
containing a Borel subgroup. We may assume that P contains B. Let P = R·S
be a Levi decomposition of P where R is a maximal solvable normal subgroup
of P and S is semisimple. We let ΦP denote the subsystem of roots of S and let
Φ+

P = ΦP ∩ Φ+. Let I denote the subset of indexes, I ⊂ {1, . . . , ℓ}, such that
Φ+

P ∩{α1, . . . , αℓ} = {αi}i∈I . The conjugacy class of P is uniquely determined
by I and any such choice of indexes is associated to a parabolic subgroup of G.
Let X = G/P , and define Φ+

X = Φ+ \ Φ+
P . Since TX is generated at the

identity coset by the root vectors eα for α ∈ Φ+
X , the anticanonical bundle

K∗
X = detTX , n = dimX, is the homogeneous line bundle associated to the

weight

µX =
∑

α∈Φ+

X

α

The weight µX is dominant: 〈µX , αi〉 > 0 for i /∈ I, and 〈µX , αi〉 = 0 for i ∈ I.
In particular, K∗

X is a very ample line bundle and µX is orthogonal to the
roots Φ+

P . If P = B, X is called a flag manifold.
We now recall a simple formula for calculating the coefficients 〈µX , αi〉 of µX ,
see [11]: A set of indexes J is called connected if the subdiagram of the Dynkin
diagram of G corresponding to the simple roots αj , j ∈ J , is connected. An
index i is said to be adjacent to J if i 6∈ J and J0 ∪ {i} is connected for some
connected component J0 of J . The set of indexes adjacent to J is denoted by
∂J . The number of elements in J is denoted |J |.

Definition 1 Let J be a connected set of indexes. For i 6∈ ∂J define νi(J) = 0.
For i ∈ ∂J define νi(J) to be the number next to the appropriate diagram below.

The black nodes correspond to J and the white node corresponds to i. Symmetry

of Dynkin diagrams is tacitly assumed.

◦ • · · · • • |J |,
◦ • · · · •>• 2|J | − 1, • • · · · •>◦ 2|J |,
◦ • · · · •<• 2|J |, • • · · · •<◦ |J |,
◦ • · · · • •

•
• 2|J | − 2, • • · · · • •

•
◦ 2|J | − 2,

◦ • •
•

• • 10, • • •
◦

• • 9,

◦ • • •
•

• • 16, • • • •
•

• ◦ 15,

• • • •
◦

• • 12, ◦ • • • •
•

• • 27,

• • • • •
•

• ◦ 21, • • • • •
◦

• • 15,

◦ •>• • 6, • •>• ◦ 9,
◦<• 3, •<◦ 1,
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For an arbitrary set of indexes I define νi(I) = νi(I1) + · · · + νi(Ip) where

I1, . . . , Ip are the connected components of I.

Proposition 1 ([11]) Let X = G/P where G is a semisimple complex Lie

group and P is a parabolic subgroup defined by a set of indexes I. Let µX be

the weight of the anticanonical bundle K∗
X of X. Then

µX =
∑

i6∈I

(2 + νi(I))λi

2 Estimating Products

We now prove some estimates for various products that appear in the proof of
the main theorem.

Lemma 1 For any non-negative integers s and t,
(

2t + 1

t

)(

2s + 1

s

)

≤

(

2(t + s) + 1

t + s

)

(1)

(t + 1)t

t!
·
(s + 1)s

s!
≤

(t + s + 1)t+s

(t + s)!
(2)

with equality if and only if t or s is 0.

Proof. The inequalities are obviously equalities when s or t is 0. So we assume
t, s > 0 and show strict inequalities hold for (1) and (2) by fixing s and applying
induction on t. They are easily seen to hold for t = 1. Let g(t) =

(

2t+1
t

)

(resp.,
(t+1)t/t!), and let f(t) = g(t+1)/g(t) = 4−2/(t+2) (resp., [1+1/(t+1)]t+1),
an increasing function of t > 0. By the induction hypothesis,

g(t + 1)g(s) = f(t)g(t)g(s) < f(t)g(t + s) < f(t + s)g(t + s) = g(t + s + 1)

2

Definition 2 Let t and s be positive integers. A simple sequence (of length
s) is a set S of rational numbers of the form

S = S(t, s) =
{3t + s − 1 + i

t + i

∣

∣

∣
0 ≤ i ≤ s − 1

}

The shifted sequence of S(t, s) is

S′ = S′(t, s) =
{3t + s − 1 + i

t + i
− 1

∣

∣

∣
0 ≤ i ≤ s − 1

}

The products of the numbers in S and S′ are denoted by

ΠS =

s−1
∏

i=0

3t + s − 1 + i

t + i
=

(

3t + 2s − 2

s

)

/

(

t + s − 1

s

)

ΠS′ =
s−1
∏

i=0

2t + s − 1

t + i
=

(2t + s − 1)s(t − 1)!

(t + s − 1)!
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Lemma 2 Let S(t, s) be a simple sequence and let S′(t, s) be the shifted sequence

of S(t, s).

1. If the first and last elements of S(t, s) are removed, the remaining set is

the simple sequence S(t + 1, s − 2).

2. ΠS(t, s) and ΠS′(t, s) are decreasing in t. In particular,

3s = lim
t→∞

ΠS(t, s) ≤ ΠS(t, s) ≤ ΠS(1, s) =

(

2s + 1

s

)

2s = lim
t→∞

ΠS′(t, s) ≤ ΠS′(t, s) ≤ ΠS′(1, s) =
(s + 1)s

s!

Proof. The first assertion is immediate from the definition. To prove the second
assertion, let f(t) = ΠS(t, s) and let m = [(s − 1)/2] be the least integer
≤ (s − 1)/2. Then, for t > 0,

d

dt
log f(t) =

s−1
∑

i=0

2i − (s − 1)

(3t + s − 1 + i)(t + i)

=

m
∑

i=0

−
s − 1 − 2i

(3t + s − 1 + i)(t + i)
+

s − 1 − 2i

(3t + 2s − 2 − i)(t + s − 1 − i)
≤ 0

and hence f is decreasing.
Now let g(t) = ΠS′(t, s) and define h(t) = g(t + 1)/g(t) = [1 + 2/(2t + s −
1)]st/(t + s). Then

d

dt
log h(t) =

s(s2 − 1)

t(t + s)((2t + s)2 − 1)
≥ 0

so h is increasing and approaches 1 as t → ∞. Therefore, g is decreasing. 2

3 Bounds for K∗
X

Theorem 1 Let X be a homogeneous projective rational manifold of dimen-

sion n. Then

3n ≤ dim H0(X,K∗
X) ≤

(

2n + 1

n

)

and 2nn! ≤ deg K∗
X ≤ (n + 1)n

with equality in the lower bounds if and only if X is a flag manifold and equality

in the upper bounds if and only if X = P
n.

Proof. Write X = G/P where G is a semisimple Lie group and P is a
parabolic subgroup. Let I be the subset of indexes that defines P , and let
I1, . . . , Im be the connected components of I. Let µX be the weight of the
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anticanonical bundle as given in Proposition 1 so that H0(X,K∗
X) is the irre-

ducible representation of G with highest weight µX =
∑

i/∈I(2 + νi(I))λi. Set
δ = (1/2)

∑

α>0 α = λ1 + · · · + λℓ. By the Weyl dimension formula [7],

h = dim H0(X,K∗
X) =

∏

α∈Φ+

X

(µX + δ, α)

(δ, α)
(3)

and the degree of K∗
X is given by [4]

d = deg K∗
X = n!

∏

α∈Φ+

X

(µX , α)

(δ, α)
(4)

Let G1, . . . , Gr be the simple factors of G. Then X = X1 × · · · × Xr where
Xi = Gi/Gi ∩ P . Let n = dimX, ni = dim Xi, hi = dim H0(Xi,K

∗
Xi

) and

di = deg K∗
Xi

, 1 ≤ i ≤ r. If 3ni ≤ hi ≤
(

2ni+1
ni

)

and 2nini! ≤ di ≤ (ni + 1)ni ,
1 ≤ i ≤ r, then the above formulas along with Lemma 1 imply 3n ≤ h =
h1 · · ·hr ≤

∏r
i=1

(

2ni+1
ni

)

≤
(

2n+1
n

)

and 2nn! ≤ d = n! (d1/n1!) · · · (dr/nr!) ≤

n!
∏r

i=1(ni + 1)ni/ni! ≤ (n + 1)n, since n = n1 + · · · + nr. We may therefore
assume that G is simple.

The theorem can be verified by direct calculation for each of the exceptional
simple Lie groups and their finite number of conjugacy classes of parabolic
subgroups. While the details are too lengthy to include in this article, the
results can be summarized as follows. The minimum of h is 3n and is achieved
only for Borel subgroups. The maximum of h is always strictly less than

(

2n+1
n

)

.

In fact, the minimum of
(

2n+1
n

)

/h over all parabolic subgroups for each type is
greater than 3.11 for E6, 9.96 for E7, 758.2 for E8, 3.24 for F4, and 1.22 for G2,
and this minimum is achieved for the maximal parabolic subgroups defined by
I = {2, . . . , ℓ}, or {1, 2, 3} for F4 (the simple roots are indexed from left to
right in the diagrams shown in Definition 1).

The proof for the classical types Aℓ, Bℓ, Cℓ and Dℓ is accomplished by show-
ing that the product (3) can be written as a product of simple sequences
S1, . . . , Sσ. For, if we know that h = ΠS1 · · ·ΠSσ, it follows from (4)
that d = n! ΠS′

1 · · ·ΠS′
σ, and by Lemmas 1 and 2, we obtain 3n ≤ h ≤

∏σ
i=1

(

2|Si|+1
|Si|

)

≤
(

2n+1
n

)

and 2nn! ≤ d ≤ n!
∏σ

i=1(|Si| + 1)|Si|/|Si|! ≤ (n + 1)n,

since n = |S1| + · · · + |Sσ|. We now prove that such a decomposition of (3) is
possible for each simple classical type.

Type Aℓ: Let µX + δ = m1λ1 + · · ·+mℓλℓ, where mi = 〈µX , αi〉+1, 1 ≤ i ≤ ℓ,
and let ǫ1, . . . , ǫℓ+1 denote the standard orthonormal basis of R

ℓ+1. The simple
roots for type Aℓ are αi = ǫi − ǫi+1, 1 ≤ i ≤ ℓ and the positive roots are
αi + · · ·+αj−1 = ǫi−ǫj , 1 ≤ i < j ≤ ℓ+1. The dimension formula (3) becomes
h =

∏

aij where aij = (mi + · · · + mj−1)/(j − i) and the product is taken
over all indexes i < j that are not both in same connected component of I.
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According to Proposition 1, the coefficients m1, . . . ,mℓ are given by

mi =















1 if i ∈ I
3 + |Iν | if i ∈ ∂Iν for some ν
3 + |Iν | + |Iν+1| if i ∈ ∂Iν ∩ ∂Iν+1 for some ν
3 otherwise

(5)

An example is given by the list of numbers at the top of Figure 1 (the indexes
in I correspond to black nodes).
The numbers in the product h =

∏

aij can be arranged into rectangular arrays
as follows. Let i1 < · · · < ik be an ordered list of those indexes i not in I and
set i0 = 0, ik+1 = ℓ + 1. For 1 ≤ p ≤ q ≤ k, define Rpq = {aij | ip−1 < i ≤
ip, iq < j ≤ iq+1}, as illustrated in Figure 1.

Figure 1: Type Aℓ decomposition

3 5 1 1 8 1 1 1 6
◦ ◦ • • ◦ • • • ◦

3
1

8
2

9
3

10
4

18
5

19
6

20
7

21
8

27
9

5
1

6
2

7
3

15
4

16
5

17
6

18
7

24
8

10
3

11
4

12
5

13
6

19
7

9
2

10
3

11
4

12
5

18
6

8
1

9
2

10
3

11
4

17
5

9
4

8
3

7
2

6
1

Then h is the product of the numbers in all the rectangular arrays Rpq, 1 ≤
p ≤ q ≤ k. Each Rpq consists of rational numbers whose numerators and
denominators both increase by 1 in each row and column, starting in the lower
left corner, aip(iq+1). From (5) it follows that aip(iq+1) has the form (3t+s−1)/t
where t = iq − ip +1 and s is the number of rows+columns− 1 = (ip − ip−1)+
(iq+1 − iq) − 1. Therefore, Rpq may be decomposed into simple sequences,
Rpq = S0∪. . .∪Sσ where S0 = {aij | i = ip−1+1 or j = iq+1} = S(t, s) is the set
of numbers in the left column and the top row of Rpq, and Si = S(t+i, s−2i) is
obtained by removing the lower left and top right number from Si−1, 1 ≤ i ≤ σ,
as illustrated in Figure 2.
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Figure 2: Type Aℓ rectangular array

10
3

11
4

12
5

13
6

9
2

10
3

11
4

12
5

8
1

9
2

10
3

11
4

Repeating this procedure for each rectangular array Rpq, 1 ≤ p ≤ q ≤ k, shows
that for type Aℓ the product (3) can be decomposed into a product of simple
sequences.
Type Bℓ: We now show the same type of decomposition is possible for type
Bℓ by embedding the appropriate numbers into a diagram for type A2ℓ−1. We
again write µX + δ = m1λ1 + · · · + mℓλℓ, mi = 〈µX , αi〉 + 1, 1 ≤ i ≤ ℓ,
and let ǫ1, . . . , ǫℓ denote the standard orthonormal basis of R

ℓ. The simple
roots are αi = ǫi − ǫi+1, 1 ≤ i ≤ ℓ − 1, and αℓ = ǫℓ. The positive roots
are αi + · · · + αj−1 = ǫi − ǫj , αi + · · · + αj−1 + 2αj + · · · + 2αℓ = ǫi + ǫj ,
1 ≤ i < j ≤ ℓ, and αi + · · · + αℓ = ǫi, 1 ≤ i ≤ ℓ. The dimension formula (3)
becomes h =

∏

aij ×
∏

bij where aij = (mi + · · ·+mj−1)/(j−i), 1 ≤ i < j ≤ ℓ,
bij = (mi + · · ·+mj−1 +2mj + · · ·+2mℓ−1 +mℓ)/(2ℓ− i−j +1), 1 ≤ i ≤ j ≤ ℓ.
To avoid trivial factors, these products should be taken over i, j not in the same
connected component of I, although in the following arguments it is convenient
to include all terms.
Define Î = {i | i ∈ I or 2ℓ − i ∈ I}. Then Î defines a parabolic subgroup P̂
of a simple group Ĝ of type A2ℓ−1. Let X̂ = Ĝ/P̂ . By Proposition 1, the
coefficients of µX + δ appear as the first half of the coefficients of µX̂ + δ, see
Figure 3.

Figure 3: Conversion of type Bℓ to type A2ℓ−1

m1 m2 mℓ−1 mℓ mℓ−1 m2 m1

• • · · · • • • · · · • •

For a fixed i the product hi =
∏

aij ×
∏

bij can be arranged as

mi

1
·
mi + mi+1

2
· · ·

mi + · · · + mℓ

ℓ − i + 1
·
si + mℓ−1

ℓ − i + 2
· · ·

si + mℓ−1 + · · · + mi

2(ℓ − i) + 1

where si = mi + · · · + mℓ. Therefore, the non-trivial terms in h correspond
to the numbers in the upper left half of the rectangular arrays Rpq defined
for type A2ℓ−1. These triangular arrays can clearly be broken up into simple
sequences, see Figure 4, showing that h is a product of simple sequences.
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Figure 4: Type Bℓ decomposition

1 1 1 9 1 1 1 9 1 1 1
• • • > ◦ −→ • • • ◦ • • •

12
4

13
5

14
6

15
7

11
3

12
4

13
5

10
2

11
3

9
1

Type Cℓ: The proof for this case is almost identical to type Bℓ. The simple
roots are αi = ǫi − ǫi+1, 1 ≤ i ≤ ℓ − 1, and αℓ = 2ǫℓ. The positive roots are
αi + · · · + αj−1 = ǫi − ǫj , αi + · · · + αj−1 + 2αj + · · · + 2αℓ−1 + αℓ = ǫi + ǫj ,
1 ≤ i < j ≤ ℓ, and 2αi + · · · + 2αℓ + αℓ = 2ǫi, 1 ≤ i ≤ ℓ. The dimension
formula (3) becomes h =

∏

aij ×
∏

bij where aij = (mi + · · · + mj−1)/(j − i),
1 ≤ i < j ≤ ℓ, bij = (mi + · · · + mj−1 + 2mj + · · · + 2mℓ)/(2ℓ − i − j + 2),
1 ≤ i ≤ j ≤ ℓ.
Define Î = {i | i ∈ I or 2ℓ − i + 1 ∈ I}. Then Î defines a parabolic subgroup
P̂ of a simple group Ĝ of type A2ℓ. Let X̂ = Ĝ/P̂ . By Proposition 1, the
coefficients of µX + δ appear as the first half of the coefficients of µX̂ + δ, see
Figure 5.

Figure 5: Conversion of type Cℓ to type A2ℓ

m1 m2 mℓ−1 mℓ mℓ mℓ−1 m2 m1

• • · · · • • • • · · · • •

For a fixed i the product hi =
∏

aij ×
∏

bij can be arranged as

mi

1
·
mi + mi+1

2
· · ·

mi + · · · + mℓ

ℓ − i + 1
·

si + mℓ

ℓ − i + 2
· · ·

si + mℓ + · · · + mi+1

2(ℓ − i) + 1

where si = mi + · · · + mℓ. Therefore, the non-trivial terms in h correspond
to the numbers in the upper left half (above the diagonal) of the rectangular
arrays Rpq defined for type A2ℓ. These triangular arrays can be broken up into
simple sequences as before, see Figure 6, showing that h is a product of simple
sequences.
Type Dℓ: The proof for this case must be handled somewhat differently than
the previous two cases. The simple roots are αi = ǫi − ǫi+1, 1 ≤ i ≤ ℓ− 1, and
αℓ = ǫℓ−1 + ǫℓ. The positive roots are αi + · · · + αj−1 = ǫi − ǫj , 1 ≤ i < j ≤ ℓ,
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Figure 6: Type Cℓ decomposition

1 1 1 6 1 1 1 6 6 1 1 1
• • • < ◦ −→ • • • ◦ ◦ • • •

9
4

15
5

16
6

17
7

8
3

14
4

15
5

7
2

13
3

6
1

αi + · · · + αj−1 + 2αj + · · · + 2αℓ−2 + αℓ−1 + αℓ = ǫi + ǫj , 1 ≤ i < j ≤ ℓ − 1,
and αi + · · · + αℓ−2 + αℓ = ǫi + ǫℓ, 1 ≤ i ≤ ℓ − 2. The dimension formula (3)
becomes h =

∏

aij ×
∏

bij ×
∏

ci where aij = (mi + · · · + mj−1)/(j − i),
1 ≤ i < j ≤ ℓ, bij = (mi+· · ·+mj−1+2mj+· · ·+2mℓ−2+mℓ−1+mℓ)/(2ℓ−i−j),
1 ≤ i < j ≤ ℓ − 1, ci = (mi + · · · + mℓ−2 + mℓ)/(ℓ − i), 1 ≤ i ≤ ℓ − 2, and
cℓ−1 = mℓ.
By symmetry of the Dynkin diagram, we may assume mℓ−1 ≤ mℓ. We first
assume mℓ−1 = mℓ. Define Î = {i | i ∈ I or 2ℓ − i − 1 ∈ I (and i > ℓ)}.
Then Î defines a parabolic subgroup P̂ of a simple group Ĝ of type A2ℓ−2. Let
X̂ = Ĝ/P̂ . By Proposition 1, the coefficients of µX + δ appear as the first half
of the coefficients of µX̂ + δ, see Figure 7.

Figure 7: Conversion of type Dℓ to type A2ℓ−2

m1 m2 mℓ−1 mℓ mℓ−2 m2 m1

• • · · · • • • · · · • •

For a fixed i the product hi =
∏

aij ×
∏

bij can be arranged as

mi

1
·
mi + mi+1

2
· · ·

mi + · · · + mℓ

ℓ − i + 1
·
si + mℓ−2

ℓ − i + 2
· · ·

si + mℓ−2 + · · · + mi+1

2(ℓ − i) − 1

where si = mi + · · ·+ mℓ. Therefore, the non-trivial terms in
∏

hi correspond
to the numbers in the upper left half (above the diagonal) of the rectangular
arrays Rpq defined for type A2ℓ−2. These triangular arrays can be broken up
into simple sequences as before, see Figure 8. The numbers in the remain-
ing product,

∏

ci, are easily seen to form a product of simple sequences by
Proposition 1. Therefore, the full product h is a product of simple sequences.
We now assume mℓ−1 < mℓ. In this case, the product h is organized in a
slightly different way. For fixed i, the previous product hi is split into two
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Figure 8: Type Dℓ decomposition, mℓ−1 = mℓ
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terms with ci inserted at the beginning of the second term:

mi

1
·
mi + mi+1

2
· · ·

mi + · · · + mℓ−1

ℓ − i

mi + · · · + mℓ−2 + mℓ

ℓ − i
·

si

ℓ − i + 1
·
si + mℓ−2

ℓ − i + 2
· · ·

si + mℓ−2 + · · · + mi+1

2(ℓ − i) − 1

Therefore, the non-trivial terms in the product h come from two arrays, the first
corresponding to the numbers in the rectangular arrays Rpq defined for type
Aℓ−1 and the second corresponding to the numbers in the upper half of certain
rectangular arrays Rpq defined for type A2ℓ−3. As before, these rectangular
and triangular arrays can be broken up into simple sequences, see Figure 9,
and hence the product h is a product of simple sequences.

Figure 9: Type Dℓ decomposition, mℓ−1 < mℓ
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It remains to show that equality is obtained only in the designated cases. From
Lemmas 1 and 2 is is clear that if h = 3n then all the simple sequences making
up h must have length one and each consists of the number 3. Consequently,
mi = 3 for 1 ≤ i ≤ ℓ, so that µX = 2δ, and, by Proposition 1, X is a flag
manifold. Likewise, if h =

(

2n+1
n

)

, then h must be the product of just one
simple sequence, h = S(1, n). By Proposition 1, this situation occurs either in
type An when m1 = n + 2 and mi = 1, 2 ≤ i ≤ n (or mn = n + 2 and mi = 1,
1 ≤ i ≤ n − 1), or in type Cℓ when n = 2ℓ − 1, m1 = n + 2 = 2ℓ + 1, and
mi = 1, 2 ≤ i ≤ ℓ. In both of these cases the underlying manifold is projective
space, P

n. If the degree is d = 2nn! (resp. (n + 1)n), then from (3) and (4),
h = 3n (resp.

(

2n+1
n

)

), and the same argument applies. 2
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