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Abstract. It is shown that bounded solutions to semilinear elliptic
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powers and logarithms in the distance to the boundary. For that pur-
pose, Schulze’s notion of asymptotic type for conormal asymptotic ex-
pansions near a conical point is refined. This in turn allows to perform
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of the spectral problem for determining the singular exponents in the
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1 Introduction

In this paper, we study solutions u = u(x) to semilinear elliptic equations of
the form

Au = F (x,B1u, . . . , BKu) on X◦ = X \ ∂X. (1.1)

Here, X is a smooth compact manifold with boundary, ∂X, and of dimension
n + 1, A, B1, . . . , BK are Fuchsian differential operators on X◦, see Defini-
tion 2.1, with real-valued coefficients and of orders µ, µ1, . . . , µK , respectively,
where µJ < µ for 1 ≤ J ≤ K, and F = F (x, ν) : X◦ × RK → R is a smooth
function subject to further conditions as x → ∂X. In case A is elliptic in the
sense of Definition 2.2 (a) we shall prove that bounded solutions u : X◦ → R

to Eq. (1.1) possess complete conormal asymptotic expansion of the form

u(t, y) ∼

∞∑

j=0

mj∑

k=0

t−pj logk t cjk(y) as t → +0. (1.2)

Here, (t, y) ∈ [0, 1) × Y are normal coordinates in a neighborhood U of ∂X,
Y is diffeomorphic to ∂X, and the exponents pj ∈ C appear in conjugated
pairs, Re pj → −∞ as j → ∞, mj ∈ N, and cjk(y) ∈ C∞(Y ). Note that such
conormal asymptotic expansions are typical of solutions u to linear equations
of the form (1.1), i.e., in case F (x) = F (x, ν) is independent of ν ∈ RK .

The general form (1.2) of asymptotics was first thoroughly investigated by
Kondrat’ev in his nowadays classical paper [9]. After that to assign asymp-
totic types to conormal asymptotic expansions of the form (1.2) has proved
to be very fruitful. In its consequence, it provides a functional-analytic frame-
work for treating singular problems, both linear and non-linear ones, of the kind
(1.1). Function spaces with asymptotics will be discussed in Sections 2.4, 3.1.
In its standard setting, going back to Rempel–Schulze [14] in case n = 0
(when Y is always assumed be a point) and Schulze [15] in the general case,
an asymptotic type P for conormal asymptotic expansions of the form (1.2) is
given by a sequence {(pj ,mj , Lj)}

∞
j=0, where pj ∈ C, mj ∈ N are as in (1.2),

and Lj is a finite-dimensional linear subspace of C∞(Y ) to which the coeffi-
cients cjk(y) for 0 ≤ k ≤ mj are required to belong. (In case n = 0, the spaces
Lj = C disappear.) A function u(x) is said to have conormal asymptotics of
type P as x → ∂X if u(x) obeys a conormal asymptotic expansion of the form
(1.2), with the data given by P .
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Semilinear Fuchsian Equations 209

When treating semilinear equations we shall encounter asymptotic types be-
longing to bounded functions u(x), i.e., asymptotic types P for which

{
p0 = 0, m0 = 0, L0 = span{1},

Re pj < 0 for all j ≥ 1,
(1.3)

where 1 ∈ L0 is the function on Y being constant 1.
It turns out that this notion of asymptotic type resolves asymptotics not fine
enough to suit a treatment of semilinear problems. The difficulty with it is
that only the aspect of the production of asymptotics is emphasized — via the
finite-dimensionality of the spaces Lj — but not the aspect of their annihilation.
For semilinear problems, however, the latter affair becomes crucial. Therefore,
in Section 2, we shall introduce a refined notion of asymptotic type, where
additionally linear relations between the various coefficients cjk(y) ∈ Lj , even
for different j, are taken into account.

Let As(Y ) be the set of all these refined asymptotic types, while As♯(Y ) ⊂
As(Y ) denotes the set of asymptotic types belonging to bounded functions
according to (1.3). For R ∈ As(Y ), let C∞

R (X) be the space of smooth functions
u ∈ C∞(X◦) having conormal asymptotic expansions of type R, and C∞

R (X ×
RK) = C∞(RK ;C∞

R (X)), where C∞
R (X) is equipped with its natural (nuclear)

Fréchet topology. In the formulation of Theorem 1.1, below, we will assume
that F ∈ C∞

R (X × RK), where

ω(t)tµ−µ̄−εC∞
R (X) ⊂ L∞(X) (1.4)

for some ε > 0. Here, µ̄ = max1≤J≤K µJ < µ and ω = ω(t) is a cut-off function
supported in U , i.e., ω ∈ C∞(X), suppω ⋐ U . Here and in the sequel, we
always assume that ω = ω(t) depends only on t for 0 < t < 1 and ω(t) = 1
for 0 < t ≤ 1/2. Condition (1.4) means that, given the operator A and then
compared to the operators B1, . . . , BK , functions in C∞

R (X) cannot be too
singular as t → +0.
There is a small difference between the set Asb(Y ) of all bounded asymptotic
types and the set As♯(Y ) of asymptotic types as described by (1.3); As♯(Y ) (

Asb(Y ). The set As♯(Y ) actually appears as the set of multiplicatively closable
asymptotic types, see Lemma 3.4. This shows up in the fact that when only
boundedness is presumed asymptotic types belonging to Asb(Y ) — but not
to As♯(Y ) — need to be excluded from the considerations by the following
non-resonance type condition (1.5), below:
Let H−∞,δ(X) =

⋃
s∈R

Hs,δ(X) for δ ∈ R be the space of distributions u =
u(x) on X◦ having conormal order at least δ. (The weighted Sobolev space
Hs,δ(X), where s ∈ R is Sobolev regularity, is introduced in (2.31).) Note that⋃

δ∈R
H−∞,δ(X) is the space of all extendable distributions on X◦ that in turn

is dual to the space C∞
O (X) of all smooth functions on X vanishing to infinite

order at ∂X. Note also that the conormal order δ for δ → ∞ is the parameter
in which the asymptotics (1.2) are understood.
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Now, fix δ ∈ R and suppose that a real-valued u ∈ H−∞,δ(X) satisfying Au ∈
C∞

O (X) has an asymptotic expansion of the form

u(x) ∼ Re




∞∑

j=0

mj∑

k=0

tl+j+iβ logk t cjk(y)


 as t → +0,

where l ∈ Z, β ∈ R, β 6= 0 (and l > δ − 1/2 provided that c0m0
(y) 6≡ 0 due to

the assumption u ∈ H−∞,δ(X)). Then, for each 1 ≤ J ≤ K, it is additional
required that

BJu = O(1) as t → +0 implies BJu = o(1) as t → +0, (1.5)

where O and o are Landau’s symbols. Condition (1.5) means that there is
no real-valued u ∈ H−∞,δ(X) with Au ∈ C∞

O (X) such that BJu admits an
asymptotic series starting with the term Re(tiβd(y)) for some β ∈ R \ {0},
d(y) ∈ C∞(Y ). This condition is void if δ ≥ 1/2 + µ̄.
Our main theorem states:

Theorem 1.1. Let δ ∈ R and A ∈ Diffµ
Fuchs(X) be elliptic in the sense of

Definition 2.2 (a), BJ ∈ DiffµJ

Fuchs(X) for 1 ≤ J ≤ K, where µJ < µ, and F ∈
C∞

R (X × Rk) for some asymptotic type R ∈ As(Y ) satisfying (1.4). Further,

let the non-resonance type condition (1.5) be satisfied. Then there exists an

asymptotic type P ∈ As(Y ) expressible in terms of A, B1, . . . , BK , R, and δ
such that each solution u ∈ H−∞,δ(X) to Eq. (1.1) satisfying BJu ∈ L∞(X)
for 1 ≤ J ≤ K belongs to the space C∞

P (X).

Under the conditions of Theorem 1.1, interior elliptic regularity already implies
u ∈ C∞(X◦). Thus, the statement concerns the fact that u possesses a com-
plete conormal asymptotic expansion of type P near ∂X. Furthermore, the
asymptotic type P can at least in principle be calculated once A, B1, . . . , BK ,
R, and δ are known.
Some remarks about Theorem 1.1 are in order: First, the solution u is asked
to belong to the space H−∞,δ(X). Thus, if the non-resonance type condition
(1.5) is satisfied for all δ ∈ R — which is generically true — then the foregoing
requirement can be replaced by the requirement for u being an extendable
distribution. In this case, Pδ 4 Pδ′ for δ ≥ δ′ in the natural ordering of
asymptotic types, where Pδ denotes the asymptotic type associated with the
conormal order δ. Moreover, jumps in this relation occur only for a discrete
set of values of δ ∈ R and, generically, Pδ eventually stabilizes as δ → −∞.
Secondly, for a solution u ∈ C∞

P (X) to Eq. (1.1), neither u nor the right-
hand side F (x,B1u(x), . . . , BKu(x)) need be bounded. Unboundedness of u,
however, requires that, up to a certain extent, asymptotics governed by the
elliptic operator A are canceled jointly by the operators B1, . . . , BK . Again,
this is a non-generic situation. Furthermore, in applications one often has that
one of the operators BJ , say B1, is the identity — belonging to Diff0

Fuchs(X) —
i.e., B1u = u for all u. Then this leads to u ∈ L∞(X) and explains the term
“bounded solutions” in the paper’s title.
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Remark 1.2. Theorem 1.1 continues to hold for sectional solutions in vec-
tor bundles over X. Let E0, E1, E2 be smooth vector bundles over X, A ∈
Diffµ

Fuchs(X;E0, E1) be elliptic in the above sense, B ∈ Diffµ−1
Fuchs(X;E0, E2),

and F ∈ C∞
R (X,E2;E1). Then, under the same technical assumptions as

above, each solution u to Au = F (x,Bu) in the class of extendable distribu-
tions with Bu ∈ L∞(X;E2) belongs to the space C∞

P (X;E0) for some resulting
asymptotic type P .

Theorem 1.1 has actually been stated as one, though basic example for a more
general method for deriving — and then justifying — conormal asymptotic
expansions for solutions to semilinear elliptic Fuchsian equations. This method
always works if one has boundedness assumptions as made above, but bound-
edness can often successfully be replaced by structural assumptions on the
nonlinearity. An example is provided in Section 3.4. The proposed method
works indeed not only for elliptic Fuchsian equations, but for other Fuchsian
equations as well. In technical terms, what counts is the invertible of the com-
plete sequence of conormal symbols in the algebra of complete Mellin symbols
under the Mellin translation product, and this is equivalent to the elliptic-
ity of the principal conormal symbol (which, in fact, is a substitute for the
non-characteristic boundary in boundary problems). For elliptic Fuchsian dif-
ferential operator, this latter condition is always fulfilled.

The derivation of conormal asymptotic expansions for solutions to semilinear
Fuchsian equations is a purely algebraic business once the singular exponents
and their multiplicities for the linear part are known. However, a strict justifi-
cation of these conormal asymptotic expansions — in the generality supplied in
this paper — requires the introduction of the refined notion of asymptotic type
and corresponding function spaces with asymptotics. For this reason, from a
technical point of view the main result of this paper is Theorem 2.42 which
states the existence of a complete sequence of holomorphic Mellin symbols
realizing a given proper asymptotic type in the sense of exactly annihilating
asymptotics of that given type. (The term “proper” is introduced in Defini-
tion 2.22.) The construction of such Mellin symbols relies on the factorization
result of Witt [21].

Remark 1.3. Behind part of the linear theory, there is Schulze’s cone pseu-
dodifferential calculus. The interested reader should consult Schulze [15, 16].
We do not go much into the details, since for most of the arguments this is
not needed. Indeed, the algebra of complete Mellin symbols controls the pro-
duction and annihilation of asymptotics, and it is this algebra that is detailed
discussed.

The relation with conical points is as follows: A conical point leads — via blow-
up, i.e., the introduction of polar coordinates — to a manifold with boundary.
Vice versa, each manifold with boundary gives rise to a space with a conical
point — via shrinking the boundary to a point. Since in both situations the
analysis is taken place over the interior of the underlying configuration, i.e.,
away from the conical point and the boundary, respectively, there is no essential
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212 Xiaochun Liu and Ingo Witt

difference between these two situations. Thus, the geometric situation is given
by the kind of degeneracy admitted for, say, differential operators. In the case
considered in this paper, this degeneracy is of Fuchsian type.

The first part of this paper, Section 2, is devoted to the linear theory and the
introduction of the refined notion of asymptotic type. Then, in a second part,
Theorem 1.1 is proved in Section 3.

2 Asymptotic types

In this section, we introduce the notion of discrete asymptotic type. A compar-
ison of this notion with the formerly known notions of weakly discrete asymp-
totic type and strongly discrete asymptotic type, respectively, can be found in
Figure 1. The definition of discrete asymptotic type is modeled on part of the
Gohberg-Sigal theory of the inversion of finitely meromorphic, operator-valued
functions at a point, see Gohberg-Sigal [4]. See also Witt [18] for the corre-
sponding notion of local asymptotic type, i.e., asymptotic types at one singular
exponent p ∈ C in (1.2) only. Finally, in Section 2.4, function spaces with
asymptotics are introduced. The definition of these function spaces relies on
the existence of complete (holomorphic) Mellin symbols realizing a prescribed
proper asymptotic type. The existence of such complete Mellin symbols is
stated and proved in Theorem 2.42.

Added in proof. To keep this article of reasonable length, following the referee’s

advice, proofs of Theorems 2.6, 2.30, and 2.42 and Propositions 2.28 (b), 2.31, 2.32,

2.35, 2.36, 2.40, 2.44, 2.46, 2.47, 2.48, 2.49, and 2.52 are only sketchy or missing at

all. They are available from the second author’s homepage1.

2.1 Fuchsian differential operators

Let X be a compact C∞ manifold with boundary, ∂X. Throughout, we fix a
collar neighborhood U of ∂X and a diffeomorphism χ : U → [0, 1)× Y , with Y
being a closed C∞ manifold diffeomorphic to ∂X. Hence, we work in a fixed
splitting of coordinates (t, y) on U , where t ∈ [0, 1) and y ∈ Y . Let (τ, η) be
the covariables to (t, y). The compressed covariable tτ to t is denoted by τ̃ ,
i.e., (τ̃ , η) is the linear variable in the fiber of the compressed cotangent bundle
T̃ ∗X

∣∣
U
. Finally, let dimX = n + 1.

Definition 2.1. A differential operator A with smooth coefficients of order µ
on X◦ = X \ ∂X is called Fuchsian if

χ∗

(
A

∣∣
U

)
= t−µ

µ∑

k=0

ak(t, y,Dy)
(
−t∂t

)k
, (2.1)

where ak ∈ C∞([0, 1);Diffµ−k(Y )) for 0 ≤ k ≤ µ. The class of all Fuchsian
differential operators of order µ on X◦ is denoted by Diffµ

Fuchs(X).

1 http://www.ma.imperial.ac.uk/̃ ifw/asymptotics.html

Documenta Mathematica 9 (2004) 207–250



Semilinear Fuchsian Equations 213

Weakly discrete
asymptotic types

Singular exponents with multiplicities, (pj , mj), are
prescribed, the coefficients cjk(y) ∈ C∞(Y ) are ar-
bitrary. The general form of asymptotics is ob-
served, cf., e.g., Kondrat’ev (1967), Melrose
(1993), Schulze (1998).

?

Strongly discrete
asymptotic types

Singular exponents with multiplicities, (pj , mj), are
prescribed, cjk(y) ∈ Lj ⊂ C∞(Y ), where dim Lj <

∞. The production of asymptotics is observed,
cf. Rempel–Schulze (1989), Schulze (1991).

?

Discrete
asymptotic types

Linear relation between the various coefficients
cjk(y) ∈ Lj , even for different j, are additionally al-
lowed. Thus the production/annihilation of asymp-
totics is observed, cf. this article.

Figure 1: Schematic overview of asymptotic types

Henceforth, we shall suppress writing the restriction ·
∣∣
U

and the operator push-
forward χ∗ in expressions like (2.1). For A ∈ Diffµ

Fuchs(X), we denote by

σµ
ψ(A)(t, y, τ, η) = t−µ

µ∑

k=0

σµ−k
ψ (ak(t))(y, η)(itτ)k

the principal symbol of A, by σ̃µ
ψ(A)(t, y, τ̃ , η) its compressed principal symbol

related to σµ
ψ(A)(t, y, τ, η) via

σµ
ψ(A)(t, y, τ, η) = t−µσ̃µ

ψ(A)(t, y, tτ, η)

in (T̃ ∗X \ 0)
∣∣
U
, and by σµ

M (A)(z) its principal conormal symbol,

σµ
M (A)(z) =

µ∑

k=0

ak(0)zk, z ∈ C.

Further, we introduce the jth conormal symbol σµ−j
M (A)(z) for j = 1, 2, . . . by

σµ−j
M (A)(z) =

µ∑

k=0

1

j!

∂jak

∂tj
(0)zk, z ∈ C.

Note that σ̃µ
ψ(A)(t, y, τ̃ , η) is smooth up to t = 0 and that σµ−j

M (z) for j =
0, 1, 2, . . . is a holomorphic function in z taking values in Diffµ(Y ). Moreover,
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if A ∈ Diffµ
Fuchs(X), B ∈ Diffν

Fuchs(X), then AB ∈ Diffµ+ν
Fuchs(X),

σµ+ν−l
M (AB)(z) =

∑

j+k=l

σµ−j
M (A)(z + ν − k)σν−k

M (B)(z) (2.2)

for all l = 0, 1, 2, . . . This formula is called the Mellin translation product (due
to the shifts of ν − k in the argument of the first factors).

Definition 2.2. (a) The operator A ∈ Diffµ
Fuchs(X) is called elliptic if A is an

elliptic differential operator on X◦ and

σ̃µ
ψ(A)(t, y, τ̃ , η) 6= 0, (t, y, τ̃ , η) ∈ (T̃ ∗X \ 0)

∣∣
U
. (2.3)

(b) The operator A ∈ Diffµ
Fuchs(X) is called elliptic with respect to the weight

δ ∈ R if A is elliptic in the sense of (a) and, in addition,

σµ
M (A)(z) : Hs(Y ) → Hs−µ(Y ), z ∈ Γ(n+1)/2−δ, (2.4)

is invertible for some s ∈ R (and then for all s ∈ R). Here, Γβ = {z ∈ C; Re z =
β} for β ∈ R.

Under the assumption of interior ellipticity of A, (2.3) can be reformulated as

µ∑

k=0

σµ−k
ψ (ak(0))(y, η)

(
iτ̃

)k
6= 0

for all (0, y, τ̃ , η) ∈ (T̃ ∗X\0)
∣∣

∂U
. This relation implies that σµ

M (A)(z)
∣∣
Γ(n+1)/2−δ

is parameter-dependent elliptic as an element in Lµ
cl

(
Y ; Γ(n+1)/2−δ

)
, where the

latter is the space of classical pseudodifferential operators on Y of order µ with

parameter z varying in Γ(n+1)/2−δ, for

σµ
ψ(σµ

M (A))(y, z, η)
∣∣
z=(n+1)/2−δ−τ̃

= σ̃µ
ψ(A)(0, y, τ̃ , η),

where σµ
ψ(·) on the left-hand side denotes the parameter-dependent principal

symbol. Thus, if (a) is fulfilled, then it follows that σµ
M (A)(z) in (2.4) is

invertible for z ∈ Γ(n+1)/2−δ, |z| large enough.

Lemma 2.3. If A ∈ Diffµ
Fuchs(X) is elliptic, then there exists a discrete set

D ⊂ C with D ∩ {z ∈ C; c0 ≤ Re z ≤ c1} is finite for all −∞ < c0 < c1 < ∞
such that (2.4) is invertible for all z ∈ C \ D. In particular, there is a discrete

set D ⊂ R such that A is elliptic with respect to the weight δ for all δ ∈ R \D;
D = ReD.

Proof. Since σµ
M (A)(z)

∣∣
Γβ

∈ Lµ(Y ; Γβ) is parameter-dependent elliptic for all

β ∈ R, for each c > 0 there is a C > 0 such that σµ
M (A)(z) ∈ Lµ(Y ) is invertible

for all z with |Re z| ≤ c, | Im z| ≥ C. Then the assertion follows from results on
the invertibility of holomorphic operator-valued functions. See Proposition 2.5,
below, or Schulze [16, Theorem 2.4.20].
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Next, we introduce the class of meromorphic functions arising in point-wise
inverting parameter-dependent elliptic conormal symbols σµ

M (A)(z). The fol-
lowing definition is taken from Schulze [16, Definition 2.3.48]:

Definition 2.4. (a) Mµ
O(Y ) for µ ∈ Z∪{−∞} is the space of all holomorphic

functions f(z) on C taking values in Lµ
cl(Y ) such that f(z)

∣∣
z=β+iτ

∈ Lµ
cl(Y ; Rτ )

uniformly in β ∈ [β0, β1] for all −∞ < β0 < β1 < ∞.
(b) M−∞

as (Y ) is the space of all meromorphic functions f(z) on C taking values
in L−∞(Y ) that satisfy the following conditions:
(i) The Laurent expansion around each pole z = p of f(z) has the form

f(z) =
f0

(z − p)ν
+

f1

(z − p)ν−1
+ · · · +

fν−1

z − p
+

∑

j≥0

fν+j(z − p)j , (2.5)

where f0, f1, . . . , fν−1 ∈ L−∞(Y ) are finite-rank operators.
(ii) If the poles of f(z) are numbered someway, p1, p2, . . . , then |Re pj | → ∞
as j → ∞ if the number of poles is infinite.
(iii) For any

⋃
j{pj}-excision function χ(z) ∈ C∞(C), i.e., χ(z) = 0 if

dist(z,
⋃

j{pj}) ≤ 1/2 and χ(z) = 1 if dist(z,
⋃

j{pj}) ≥ 1, we have

χ(z)f(z)
∣∣
z=β+iτ

∈ L−∞(Y ; Rτ ) uniformly in β ∈ [β0, β1] for all −∞ < β0 <

β1 < ∞.
(c) Finally, we set Mµ

as(Y ) = Mµ
O(Y ) + M−∞

as (Y ) for µ ∈ Z. (Note that
Mµ

O(Y ) ∩M−∞
as (Y ) = M−∞

O (Y ).)
Functions f(z) belonging to Mµ

as(Y ) are called Mellin symbols of order µ.
⋃

µ∈Z
Mµ

as(Y ) is a filtered algebra under pointwise multiplication.

For f ∈ Mµ
as(Y ) for µ ∈ Z and f(z) = f0(z) + f1(z), where f0 ∈ Mµ

O(Y ),
f1 ∈ M−∞

as (Y ), the parameter-dependent principal symbol σµ
ψ

(
f0(z)

∣∣
z=β+iτ

)

is independent of the choice of the decomposition of f and also independent of
β ∈ R. It is called the principal symbol of f . The Mellin symbol f ∈ Mµ

as(Y )
is called elliptic if its principal symbol is everywhere invertible.
For the next result, see Schulze [16, Theorem 2.4.20]:

Proposition 2.5. The Mellin symbol f ∈ Mµ
as(Y ) for µ ∈ Z is invertible

in the filtered algebra
⋃

µ∈Z
Mµ

as(Y ), i.e., there is a g ∈ M−µ
as (Y ) such that

(fg)(z) = (gf)(z) = 1 on C, if and only if f is elliptic.

For f ∈ Mµ
as(Y ), p ∈ C, and N ∈ N, we denote by [f(z)]Np the Laurent series

of f(z) around z = p truncated after the term containing (z − p)N , i.e.,

[f(z)]Np =
f−ν

(z − p)ν
+ · · · +

f−1

z − p
+ fν + f1(z − p) + · · · + fN (z − p)N . (2.6)

Furthermore, [f(z)]∗p = [f(z)]−1
p denotes the principal part of the Laurent series

of f(z) around z = p.
In various constructions, it is important to have examples of elliptic Mellin
symbols f ∈ Mµ

as(Y ) of controlled singularity structure:
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Theorem 2.6. Let µ ∈ Z and {pj}j=1,2,... ⊂ C be a sequence obeying the prop-

erty mentioned in Definition 2.4 (b) (ii). Let, for each j = 1, 2, . . . , operators

f j
−νj

, . . . , f j
Nj

in Lµ
cl(Y ), where νj ≥ 0, Nj + νj ≥ 0, be given such that

• f j
−νj

, . . . , f j
min{Nj ,0} ∈ L−∞(Y ) are finite-rank operators,

• there is an elliptic g ∈ Mµ
O(Y ) such that, for all j, 0 ≤ k ≤ Nj ,

f j
k −

1

k!
g(k)(pj) ∈ L−∞(Y ) (2.7)

(in particular, f j
k ∈ Lµ−k

cl (Y ) for 0 ≤ k ≤ Nj and f j
0 ∈ Lµ

cl(Y ) is elliptic

of index zero).

Then there is an elliptic Mellin symbol f(z) ∈ Mµ
as(Y ) such that, for all j,

[f(z)]Nj
pj

=
f j
−νj

(z − pj)νj
+ · · · +

f j
−1

z − pj
+ f j

0 + · · · + f j
Nj

(z − pj)
Nj , (2.8)

while f(q) ∈ Lµ
cl(Y ) is invertible for all q ∈ C \

⋃
j=1,2,...{pj}.

If n = 0, condition (2.7) is void. In case n > 0, however, this condition expresses

several compatibility conditions among the σµ−l
ψ (f j

k), where j = 0, 1, 2, . . . ,
0 ≤ k ≤ Nj , and l ≥ k, and also certain topological obstructions that must be
fulfilled. For instance, for any f ∈ Mµ

O(Y ),

σµ−j
ψ (f(z))(y, η) =

j∑

k=0

(z − p)k

k!
σµ−j

ψ (f (k)(p))(y, η), j = 0, 1, 2, . . .

in local coordinates (y, η) — showing, among others, that σµ−j
ψ (f(z)) is poly-

nomial of degree j with respect to z ∈ C. The point is that we do not assume
g(q) ∈ Lµ

cl(Y ) be invertible for q ∈ C \
⋃

j=1,2,...{pj}.

Proof of Theorem 2.6. This can be proved using the results of Witt [21]. In
particular, the factorization result there gives directly the existence of f(z) if
the sequence {pj} ⊂ C is void.

Now, we are going to introduce the basic object of study — the algebra of

complete conormal symbols. This algebra will enable us to introduce the refined
notion of asymptotic type and to study the behavior of conormal asymptotics
under the action of Fuchsian differential operators.

Definition 2.7. (a) For µ ∈ Z, the space Symbµ
M (Y ) consists of all sequences

Sµ = {sµ−j(z); j ∈ N} ⊂ Mµ
as(Y ).

(b) An element Sµ ∈ Symbµ
M (Y ) is called holomorphic if Sµ = {sµ−j(z);

j ∈ N} ⊂ Mµ
O(Y ).
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(c)
⋃

µ∈Z
Symbµ

M (Y ) is a filtered algebra under the Mellin translation product,

denoted by ♯M . Namely, for Sµ = {sµ−j(z); j ∈ N} ∈ Symbµ
M (Y ), Tν =

{tν−k(z); k ∈ N} ∈ Symbν
M (Y ), we define Uµ+ν = Sµ♯MTν ∈ Symbµ+ν

M (Y ),
where Uµ+ν = {uµ+ν−l(z); l ∈ N}, by

u
µ+ν−l(z) =

∑

j+k=l

s
µ−j(z + ν − k)tν−k(z) (2.9)

for l = 0, 1, 2, . . . See also (2.2).

From Proposition 2.5, we immediately get:

Lemma 2.8. Sµ = {sµ−j(z); j ∈ N} ∈ Symbµ
M (Y ) is invertible in the filtered

algebra
⋃

µ∈Z
Symbµ

M (Y ) if and only if sµ(z) ∈ Mµ
as(Y ) is elliptic.

In the case of the preceding lemma, Sµ ∈ Symbµ
M (Y ) is called elliptic. A

holomorphic elliptic Sµ ∈ Symbµ
M (Y ) is called elliptic with respect to the

weight δ ∈ R if the line Γ(n+1)/2−δ is free of poles of sµ(z)−1. Notice that a
holomorphic elliptic Sµ ∈ Symbµ

M (Y ) is elliptic for all, but a discrete set of
δ ∈ R. The inverse to Sµ with respect to the Mellin translation product is
denoted by (Sµ)−1. The set of elliptic elements of Symbµ

M (Y ) is denoted by
Ell Symbµ

M (Y ).
There is a homomorphism of filtered algebras,

⋃

µ∈N

Diffµ
Fuchs(X) →

⋃

µ∈Z

Symbµ
M (Y ), A 7→

{
σµ−j

M (A)(z); j ∈ N
}
.

By the remark preceding Lemma 2.3,
{
σµ−j

M (A)(z); j ∈ N
}

∈ Symbµ
M (Y ) is

elliptic if A ∈ DiffFuchs(X) is elliptic in the sense of Definition 2.2 (a).

2.2 Definition of asymptotic types

We now start to introduce discrete asymptotic types.

2.2.1 The spaces Eδ(Y ) and EV (Y )

Here, we construct the “coefficient” space Eδ(Y ) =
⋃

V ∈Cδ EV (Y ) that admits
the non-canonical isomorphism (2.13), below,

C∞,δ
as (X)

/
C∞

O (X)
∼=
−→ Eδ(Y ),

where C∞,δ
as (X) is the space of smooth functions on X◦ obeying conormal

asymptotic expansions of the form (1.2) of conormal order at least δ, i.e.,
Re pj < (n + 1)/2 − δ holds for all j (with the condition that the singular
exponents pj appear in conjugated pairs dropped), and C∞

O (X) is the subspace
of all smooth functions on X◦ vanishing to infinite order at ∂X.
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Definition 2.9. A carrier V of asymptotics for distributions of conormal order
δ is a discrete subset of C contained in the half-space {z ∈ C; Re z < (n+1)/2−
δ} such that, for all β0, β1 ∈ R, β0 < β1, the intersection V ∩ {z ∈ C; β0 <
Re z < β1} is finite. The set of all these carriers is denoted by Cδ.

In particular, Vp = p − N for p ∈ C is such a carrier of asymptotics. Note that
Vp ∈ Cδ if and only if Re p < (n + 1)/2 − δ. We set T ̺V = ̺ + V ∈ C−̺+δ for
̺ ∈ R and V ∈ Cδ. We further set C =

⋃
δ∈R

Cδ.
Let [C∞(Y )]∞ =

⋃
m∈N

[C∞(Y )]m be the space of all finite sequences in
C∞(Y ), where the sequences (φ0, . . . , φm−1) and (0, . . . , 0︸ ︷︷ ︸

h times

, φ0, . . . , φm−1) for

h ∈ N are identified. For V ∈ Cδ, we set EV (Y ) =
∏

p∈V [C∞(Y )]∞p , where

[C∞(Y )]∞p is an isomorphic copy of [C∞(Y )]∞, and define Eδ(Y ) to be the

space of all families Φ ∈ EV (Y ) for some V ∈ Cδ depending on Φ. Thereby,
Φ ∈ EV (Y ), Φ′ ∈ EV ′(Y ) for possibly different V, V ′ ∈ Cδ are identified if
Φ(p) = Φ′(p) for p ∈ V ∩ V ′, while Φ(p) = 0 for p ∈ V \ V ′, Φ′(p) = 0 for
p ∈ V ′ \ V . Under this identification,

Eδ(Y ) =
⋃

V ∈Cδ

EV (Y ). (2.10)

Moreover, EV (Y ) ∩ EV ′(Y ) = EV ∩V ′(Y ).
On [C∞(Y )]∞, we define the right shift operator T by

(φ0, . . . , φm−2, φm−1) 7→ (φ0, . . . , φm−2).

On Eδ(Y ), the right shift operator T acts component-wise, i.e., (TΦ)(p) =
T (Φ(p)) for Φ ∈ EV (Y ) and all p ∈ V .

Remark 2.10. To designate different shift operators with the same symbol T ,
once T ̺ for ̺ ∈ R for carriers of asymptotics, once T, T 2, etc. for vectors in
Eδ(Y ) should not confuse the reader.

For Φ ∈ Eδ(Y ), we define c-ord(Φ) = (n + 1)/2 − max{Re p; Φ(p) 6= 0}. In
particular, c-ord(0) = ∞. Note that c-ord(Φ) > δ if Φ ∈ Eδ(Y ). For Φi ∈
Eδ(Y ), αi ∈ C for i = 1, 2, . . . satisfying c-ord(Φi) → ∞ as i → ∞, the sum

Φ =

∞∑

i=1

αiΦi, (2.11)

is defined in Eδ(Y ) in an obvious fashion: Let Φi ∈ EVi
(Y ), where Vi ∈ Cδi ,

δi ≥ δ, and δi → ∞ as i → ∞. Then V =
⋃

i Vi ∈ Cδ, and Φ ∈ EV (Y ) is
defined by Φ(p) =

∑∞
i=1 αiΦi(p) for p ∈ V , where, for each p ∈ V , the sum on

the right-hand side is finite.

Lemma 2.11. Let Φi ∈ Eδ(Y ) for i = 1, 2, . . . , c-ord(Φi) → ∞ as i → ∞. Then

(2.11) holds if and only if

c-ord(Φ −
N∑

i=1

αiΦi) → ∞ as N → ∞. (2.12)
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Note that (2.12) already implies that c-ord(αiΦi) → ∞ as i → ∞.

Definition 2.12. Let Φi, i = 1, 2, . . . , be a sequence in Eδ(Y ) with the prop-
erty that c-ord(Φi) → ∞ as i → ∞. Then this sequence is called linearly

independent if, for all αi ∈ C,

∞∑

i=1

αiΦi = 0

implies that αi = 0 for all i. A linearly independent sequence Φi for i = 1, 2, . . .
in J for a linear subspace J ⊆ Eδ(Y ) is called a basis for J if every vector Φ ∈ J
can be represented in the form (2.11) with certain (then uniquely determined)
coefficients αi ∈ C.

Note that
∑∞

i=1 αiΦi = 0 in Eδ(Y ) if and only if c-ord(
∑N

i=1 αiΦi) → ∞ as
N → ∞ according to Lemma 2.11. We also obtain:

Lemma 2.13. Let Φi, i = 1, 2, . . . , be a sequence in Eδ(Y ) such that

c-ord(Φi) → ∞ as i → ∞. Further, let {δj}
∞
j=1 be a strictly increasing se-

quence such that δj > δ for all j and δj → ∞ as j → ∞. Assume that the

Φi are numbered in such a way that c-ord(Φi) ≤ δj if and only if 1 ≤ i ≤ ej.

Then the sequence Φi, i = 1, 2, . . . , is linearly independent provided that, for

each j = 1, 2, . . . ,

Φ1, . . . ,Φej
are linearly independent over the space Eδj (Y ).

We now introduce the notion of characteristic basis:

Definition 2.14. Let J ⊆ Eδ(Y ) be a linear subspace, TJ ⊆ J , and Φi for
i = 1, 2, . . . be a sequence in J . Then Φi, i = 1, 2, . . . , is called a characteristic

basis of J if there are numbers mi ∈ N∪{∞} such that TmiΦi = 0 if mi < ∞,
while the sequence {T kΦi; i = 1, 2, . . . , 0 ≤ k < mi} forms a basis for J .

Remark 2.15. This notion generalizes a notion of Witt [18]: There, given
a finite-dimensional linear space J and a nilpotent operator T : J → J , the
sequence Φ1, . . . ,Φe in J has been called a characteristic basis, of characteristic
(m1, . . . ,me), if

Φ1, TΦ1, . . . , T
m1−1Φ1, . . . ,Φe, TΦe, . . . , T

me−1Φe,

constitutes a Jordan basis of J . The numbers m1, . . . ,me appear as the sizes of
Jordan blocks; dimJ = m1+· · ·+me. The tuple (m1, . . . ,me) is also called the
characteristic of J (with respect to T ), e is called the length of its characteristic,
and Φ1, . . . ,Φe is sometimes said to be a an (m1, . . . ,me)-characteristic basis

of J . The space {0} has empty characteristic of length e = 0.

The question of the existence of a characteristic basis obeying one more special
property is taken up in Proposition 2.20.
We also need following notion:
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Definition 2.16. Φ ∈ Eδ(Y ) is called a special vector if Φ ∈ Eδ
Vp

(Y ) for some
p ∈ C.

Thus, Φ ∈ EV (Y ) is a special vector if there is a p ∈ C, Re p < (n+1)/2−δ such
that Φ(p′) = 0 for all p′ ∈ V , p′ /∈ p−N. Obviously, if Φ 6= 0, then p is uniquely
determined by Φ, by the additional requirement that Φ(p) 6= 0. We denote this
complex number p by γ(Φ). In particular, c-ord(Φ) = (n + 1)/2 − Re γ(Φ).

2.2.2 First properties of asymptotic types

In the sequel, we fix a splitting of coordinates U → [0, 1) × Y , x 7→ (t, y), near
∂X. Then we have the non-canonical isomorphism

C∞,δ
as (X)

/
C∞

O (X)
∼=
−→ Eδ(Y ), (2.13)

assigning to each formal asymptotic expansion

u(x) ∼
∑

p∈V

∑

k+l=mp−1

(−1)k

k!
t−p logk t φ

(p)
l (y) as t → +0 (2.14)

for some V ∈ Cδ, mp ∈ N, the vector Φ ∈ EV (Y ) given by

Φ(p) =

{(
φ

(p)
0 , φ

(p)
1 , . . . , φ

(p)
mp−1

)
if p ∈ V ,

0 otherwise,

see also (2.30). “Non-canonical” in (2.13) means that the isomorphism depends
explicitly on the chosen splitting of coordinates U → [0, 1)×Y , x 7→ (t, y), near
∂X. Coordinate invariance is discussed in Proposition 2.32.
Note the shift from mp to mp −1 that for notational convenience has appeared
in formula (2.14) compared to formula (1.2).

Definition 2.17. An asymptotic type, P , for distributions as x → ∂X, of
conormal order at least δ, is represented — in the given splitting of coordinates
near ∂X — by a linear subspace J ⊂ EV (Y ) for some V ∈ Cδ such that the
following three conditions are met:
(a) TJ ⊆ J .
(b) dimJδ+j < ∞ for all j ∈ N, where Jδ+j = J/(J ∩ Eδ+j(Y )).
(c) There is a sequence {pj}

M
j=1 ⊂ C, where M ∈ N∪{∞}, Re pj < (n+1)/2−δ,

and Re pj → −∞ as j → ∞ if M = ∞, such that V ⊆
⋃M

j=1 Vpj
and

J =

M⊕

j=1

(
J ∩ EVpj

(Y )
)

. (2.15)

The empty asymptotic type, O, is represented by the trivial subspace {0} ⊂
Eδ(Y ). The set of all asymptotic types of conormal order δ is denoted by
Asδ(Y ).
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Definition 2.18. Let u ∈ C∞,δ
as (X) and P ∈ Asδ(Y ) be represented by J ⊂

EV (Y ). Then u is said to have asymptotics of type P if there is a vector Φ ∈ J
such that

u(x) ∼
∑

p∈V

∑

k+l=mp−1

(−1)k

k!
logk t φ

(p)
l (y) as t → +0, (2.16)

where Φ(p) = (φ
(p)
0 , φ

(p)
1 , . . . , φ

(p)
mp−1) for p ∈ V . The space of all these u is

denoted by C∞
P (X).

Thus, by representation of an asymptotic type it is meant that P that — in
the philosophy of asymptotic algebras, see Witt [20] — is the same as the
linear subspace C∞

P (X)
/
C∞

O (X) ⊂ C∞,δ
as (X)

/
C∞

O (X), is mapped onto J by
the isomorphism (2.13).
For P ∈ Asδ represented by J ⊂ EV (Y ), we introduce

δP = min{c-ord(Φ); Φ ∈ J}, (2.17)

Notice that δP > δ and δP = ∞ if and only if P = O.

Obviously, Asδ(Y ) ⊆ Asδ′

(Y ) if δ ≥ δ′. We likewise set

As(Y ) =
⋃

δ∈R

Asδ(Y ).

On asymptotic types P ∈ Asδ(Y ), we have the shift operation T ̺ for ̺ ∈ R,
namely T ̺P is represented by the space

T ̺J =
{
Φ ∈ E̺+δ

T ̺V (Y ); Φ(p) = Φ̄(p − ̺), p ∈ C, for some Φ̄ ∈ J
}
,

where J ⊂ EV (Y ) represents P .
Furthermore, for J ⊂ EV (Y ) as in Definition 2.17,

Jp = {Φ(p); Φ ∈ J} ⊂ [C∞(Y )]∞

for p ∈ C is the localization of J at p. Note that TJp ⊆ Jp and dimJp < ∞;
thus, Jp is a local asymptotic type in the sense of Witt [18].

We now investigate common properties of linear subspaces J ⊂ EV (Y ) satisfy-
ing (a) to (c) of Definition 2.17. Let Πj : J → Jδ+j be the canonical surjection.

For j′ > j, there is a natural surjective map Πjj′ : Jδ+j′

→ Jδ+j such that
Πjj′′ = Πjj′Πj′j′′ for j′′ > j′ > j and

(
J,Πj

)
= proj lim

j→∞

(
Jδ+j ,Πjj′

)
. (2.18)

Note that T : Jδ+j → Jδ+j is nilpotent, where T denotes the map induced by
T : J → J . Furthermore, for j′ > j, the diagram

Jδ+j′ Πjj′

−−−−→ Jδ+j

T

y
yT

Jδ+j′ Πjj′

−−−−→ Jδ+j

(2.19)
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commutes and the action of T on J is that one induced by (2.18), (2.19).

Proposition 2.19. Let J ⊂ EV (Y ) be a linear subspace for some V ∈ Cδ. Then

there is a sequence Φi for i = 1, 2, . . . of special vectors with c-ord(Φi) → ∞
as i → ∞ such that the vectors T kΦi for i = 1, 2, . . . , k = 0, 1, 2 . . . span J if

and only if J fulfills conditions (a), (b), and (c).

In the situation just described, we write J = 〈Φ1,Φ2, . . . 〉.

Proof. Let J ⊂ EV (Y ) fulfill conditions (a) to (c). Due to (c) we may assume
that V = Vp for some p ∈ C. Suppose that the special vectors Φ1, . . . ,Φe ∈ J
have already been chosen (where e = 0 is possible). Then we choose the vector
Φe+1 among the special vectors Φ ∈ J which do not belong to 〈Φ1, . . . ,Φe〉
such that Re γ(Φe+1) is minimal. We claim that J = 〈Φ1,Φ2, . . . 〉. In fact,
c-ord(Φi) = (n + 1)/2 − Re γ(Φi) → ∞ as i → ∞ and, if Φ is a special vector
in J , then Φ ∈ 〈Φ1, . . . ,Φe〉, where e is such that Re γ(Φe) ≤ Re γ(Φ), while
Re γ(Φe+1) > Re γ(Φ). Otherwise, Φe+1 would not have been chosen in the
(e + 1)th step.
The other direction is obvious.

For j ≥ 1, let (mj
1, . . . ,m

j
ej

) denote the characteristic of the space Jδ+j , see
Remark 2.15

Proposition 2.20. Let J ⊂ EV (Y ) be a linear subspace and assume that the

special vectors Φi for i = 1, 2, . . . , e, where e ∈ N ∪ {∞}, as constructed in

Proposition 2.19, form a characteristic basis of J . Then the following condi-

tions are equivalent:

(a) For each j, ΠjΦ1, . . . ,ΠjΦ
j
ej

is an (mj
1, . . . ,m

j
ej

)-characteristic basis of

Jδ+j;

(b) For each j, Tmj
1−1Φ1, . . . , T

mej
−1Φej

are linearly independent over the

space Eδ+j(Y ), while T kΦi ∈ Eδ+j(Y ) if either 1 ≤ i ≤ ej, k ≥ mj
i or i > ej.

In particular, if (a), (b) are fulfilled, then, for any j′ > j, Πjj′Φj′

1 , . . . ,Πjj′Φj′

ej

is a characteristic basis of Jδ+j, while Πjj′Φj′

ej+1 = · · · = Πjj′Φj′

e′
j

= 0. Here,

Φj′

i = Πj′Φi for 1 ≤ i ≤ ej′ .

Proof. This is a consequence of Lemma 2.13 and Witt [18, Lemma 3.8].

Notice that, for a linear subspace J ⊂ EV (Y ) satisfying conditions (a) to (c)
of Definition 2.17, a characteristic basis possessing the equivalent properties of
Proposition 2.20 need not exist. We provide an example:

Example 2.21. Let the space J = 〈Φ1,Φ2〉 ⊂ EVp
(Y ) for some p ∈ C, Re p <

(n+1)/2−δ, be spanned by two vectors Φ1, Φ2 in the sense of Proposition 2.19.
We further assume that Φ1(p) = (ψ0, ⋆), Φ1(p− 1) = (ψ1, ⋆, ⋆), Φ2(p) = 0, and
Φ2(p−1) = (ψ1, ⋆), where ψ0, ψ1 ∈ C∞(Y ) are not identically zero and ⋆ stands
for arbitrary entries, see Figure 2. Then, the asymptotic type represented
by J is non-proper. In fact, assume that Re p ≥ (n + 1)/2 − δ + 1. Then
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︸ ︷︷ ︸
Φ1

︸ ︷︷ ︸
Φ2

p − 1 p p − 1 p

ψ1

⋆

⋆

ψ0

⋆

ψ1

⋆

Figure 2: Example of a non-proper asymptotic type

Π2Φ1, TΠ2Φ1 − Π2Φ2 is a (3, 1)-characteristic basis of Jδ+2, and any other
characteristic basis of Jδ+2 is, up to a non-zero multiplicative constant, of the
form {

Π2Φ1 + α1TΠ2Φ1 + α2T
2Π2Φ1 + α3Π2Φ2,

β1(TΠ2Φ1 − Π2Φ2) + β2T
2Π2Φ1,

(2.20)

where α1, α2, α3, β1, β2 ∈ C and β1 6= 0. But then the conclusion in Propo-
sition 2.20 is violated, since both vectors in (2.20) have non-zero image under
the projection Π12, while Π1Φ1 is a (2)-characteristic basis of Jδ+1.

Definition 2.22. An asymptotic type P ∈ Asδ(Y ) represented by the lin-
ear subspace J ⊂ EV (Y ) is called proper if J admits a characteristic basis
Φ1, Φ2, . . . satisfying the equivalent conditions in Proposition 2.20. The set of
all proper asymptotic types is denoted by Asδ

prop(Y ) ( Asδ(Y ).

For Φ ∈ Eδ(Y ), p ∈ C, and Φ(p) = (φ
(p)
0 , φ

(p)
1 , . . . , φ

(p)
mp−1) we shall use, for any

q ∈ C, the notation

Φ(p)[z − q] =
φ

(p)
0

(z − q)mp
+

φ
(p)
1

(z − q)mp−1
+ · · · +

φ
(p)
mp−1

z − q
∈ Mq(C

∞(Y )),

where Mq(C
∞(Y )) is the space of germs of meromorphic functions at z = q

taking values in C∞(Y ). Analogously, Aq(C
∞(Y )) is the space of germs of

holomorphic functions at z = p taking values in C∞(Y ).

Definition 2.23. For Sµ = {sµ−j(z); j ∈ N} ∈ Symbµ
M (Y ), the linear space

Lδ
Sµ ⊆ C∞,δ

as (X)
/
C∞

O (X) is represented by the space of Φ ∈ Eδ(Y ) for which

there are functions φ̃ (p)(z) ∈ Ap(C
∞(Y )) for p ∈ C, Re p < (n+1)/2− δ, such

that

[(n+1)/2−δ+µ−Re q]−∑

j=0

s
µ−j(z − µ + j)

(
Φ(q − µ + j)[z − q]

+ φ̃ (q−µ+j)(z − µ + j)

)
∈ Aq(C

∞(Y )) (2.21)
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for all q ∈ C, Re q < (n + 1)/2 − δ + µ. Here, [a]− for a ∈ R is the largest
integer strictly less than a, i.e., [a]− ∈ Z and [a]− < a ≤ [a]− + 1.

Remark 2.24. (a) If Φ ∈ EV (Y ) for V ∈ Cδ, then condition (2.21) is effective
only if

q ∈

[(n+1)/2−δ+µ−Re q]−⋃

j=0

Tµ−jV.

(b) If Φ ∈ Eδ(Y ) belongs to the representing space of Lδ
Sµ , and if u ∈ C∞,δ

as (X)
possesses asymptotics given by the vector Φ according to (2.16), then there is
a v ∈ C∞

O (X) such that

∞∑

j=0

ω(cjt)t
−µ+j op

(n+1)/2−δ
M

(
s
µ−j(z)

)
ω̃(cjt) (u + v) ∈ C∞

O (X).

Here, the numbers cj > 0 are chosen so that cj → ∞ as j → ∞ sufficiently

fast so that the infinite sum converges. For the notation op
(n+1)/2−δ
M (. . . ) see

(2.35), below.

Definition 2.25. For P ∈ Asδ(Y ) being represented by J ⊂ EV (Y ) and Sµ ∈
Symbµ

M (Y ), the push-forward Qδ−µ(P ;Sµ) of P under Sµ is the asymptotic

type in Asδ−µ(Y ) represented by the linear subspace K ⊂ ET−µV (Y ) consisting
of all vectors Ψ ∈ ET−µV (Y ) such that there is a Φ ∈ J and there are functions

φ̃ (p)(z) ∈ Ap(C
∞(Y )) for p ∈ V such that

Ψ(q)[z − q] =

[(n+1)/2−δ+µ−Re q]−∑

j=0
[
s
µ−j(z − µ + j)

(
Φ(q − µ + j)[z − q] + φ̃ (q−µ+j)(z − µ + j)

)]∗
q
, (2.22)

holds for all q ∈ TµV , see (2.6).

Remark 2.26. For a holomorphic Sµ ∈ Symbµ
M (Y ), one needs not to refer to

the holomorphic functions φ̃ (p)(z) ∈ Ap(C
∞(Y )) for p ∈ V in order to define

the push-forward Qδ−µ(P ;Sµ) in (2.22). We then also write Q(P ;Sµ) instead
of Qδ−µ(P ;Sµ).

Extending the notion of push-forward from asymptotic types to arbitrary linear
subspaces of C∞,δ

as (X)
/
C∞

O (X), the space Lδ
Sµ ⊆ C∞,δ

as (X)
/
C∞

O (X) for Sµ ∈

Symbµ
M (Y ) appears as the largest subspace of C∞,δ

as (X)
/
C∞

O (X) for which

Qδ−µ(Lδ
Sµ ;Sµ) = Qδ−µ(O;Sµ). (2.23)

In this sense, it characterizes the amount of asymptotics of conormal order at
least δ annihilated by Sµ ∈ Symbµ

M (Y ).
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Definition 2.27. A partial ordering on Asδ(Y ) is defined by P 4 P ′ for
P, P ′ ∈ Asδ(Y ) if and only if J ⊆ J ′, where J, J ′ ⊂ Eδ(Y ) are the representing
spaces for P and P ′, respectively.

Proposition 2.28. (a) The p.o. set (Asδ(Y ),4) is a lattice in which each

non-empty subset S admits a meet,
∧
S, represented by

⋂
P∈S JP , and each

bounded subset T admits a join,
∨
T , represented by

∑
Q∈T JQ, where JP

and JQ represent the asymptotic types P and Q, respectively. In particular,∧
Asδ(Y ) = O.

(b) For P ∈ Asδ(Y ), Sµ ∈ Symbµ
M (Y ), we have Qδ−µ(P ;Sµ) ∈ Asδ−µ(Y ).

Proof. (a) is immediate from the definition of asymptotic type and (b) can be
checked directly on the level of (2.22).

Remark 2.29. Each element Sµ ∈ Symbµ
M (Y ) induces a natural action

C∞,δ
as (X) → C∞,δ

as (X)
/
C∞

O (X). Its expression in the splitting of coordinates
U → [0, 1) × Y , x 7→ (t, y), is given by (2.22).
In the language of Witt [20], this means that the quadruple(⋃

µ∈Z
Symbµ

M (Y ), C∞,δ
as (X), C∞

O (X),Asδ(Y )
)

is an asymptotic algebra that is
even reduced ; thus providing justification for the above choice of the notion of
asymptotic type.

Theorem 2.30. For a holomorphic Sµ ∈ Ell Symbµ
M (Y ), we have Lδ

Sµ ∈

Asδ
prop(Y ).

Proof. Let Sµ = {sµ−j(z); j ∈ N} ⊂ Mµ
O(Y ). Assume that, for some p ∈ C,

Re p < (n + 1)/2 − δ, Φ0 ∈ Lsµ(z) at z = p, with the obvious meaning, for
this see Witt [18]. (Notice that Lsµ(z) at z = p is contained in the space
[C∞(Y )]∞.) We then successively calculate the sequence Φ0, Φ1, Φ2, . . . from
the relations, at z = p,

s
µ(z − j)Φj [z − p] + s

µ−1(z − j + 1)Φj−1[z − p]

+ · · · + s
µ−j(z)Φ0[z − p] ∈ Ap(C

∞(Y )), j = 0, 1, 2, . . . , (2.24)

see (2.22) and Remark 2.26. In each step, we find Φj ∈ [C∞(Y )]∞ uniquely
determined modulo Lsµ(z) at z = p − j such that (2.24) holds. We obtain the
vector Φ ∈ EVp

(Y ) define by Φ(p− j) = Φj that belongs to the linear subspace
J ⊂ Eδ(Y ) representing Lδ

Sµ .
Conversely, each vector in J is a sum like in (2.11) of vectors Φ obtained in
that way. Thus, upon choosing in each space Lsµ(z) at z = p a characteristic
basis and then, for each characteristic basis vector Φ0 ∈ [C∞(Y )]∞, exactly
one vector Φ ∈ EVp

(Y ) as just constructed, we obtain a characteristic basis of
J in the sense of Definition 2.14 consisting completely of special vectors (since
Lsµ(z) at z = p equals zero for all p ∈ C, Re p < (n + 1)/2 − δ, but a set of p

belonging to Cδ). In particular, J ⊂ EV (Y ) for some V ∈ Cδ and (a) to (c) of
Definition 2.17 are satisfied. By its very construction, this characteristic basis
fulfills condition (b) of Proposition 2.20. Therefore, the asymptotic type Lδ

Sµ

represented by J is proper.
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In conclusion, we obtain:

Proposition 2.31. Let Sµ ∈ Ell Symbµ
M (Y ). Then:

(a) Lδ
Sµ = Qδ(O; (Sµ)−1) and Lδ−µ

(Sµ)−1 = Qδ−µ(O;Sµ).

(b) There is an order-preserving bijection

{
P ∈ Asδ(Y ); P < Lδ

Sµ

}
→

{
Q ∈ Asδ−µ(Y ); Q < Lδ−µ

(Sµ)−1

}
, (2.25)

P 7→ Qδ−µ(P ;Sµ),

with the inverse given by Q 7→ Qδ(Q; (Sµ)−1).

Proof. Using Proposition 2.28 (b), the proof consists of a word-by-word repeti-
tion of the arguments given in the proof of Witt [18, Proposition 2.5].

In its consequence, Proposition 2.31 enables one to perform explicit calculations
on asymptotic types.
We conclude this section with the following basic observation:

Proposition 2.32. The notion of asymptotic type, as introduced above, is

invariant under coordinates changes.

Proof. Let κ : X → X be a C∞ diffeomorphism and let κ∗ : C∞(X◦) →
C∞(X◦) be the corresponding push-forward on the level of functions, i.e.,
(κ∗u)(x) = u(κ−1(x)) for u ∈ C∞(X◦), where κ−1 denotes the inverse C∞ dif-
feomorphism to κ. As is well-known, κ∗ restricts to κ∗ : C∞,δ

as (X) → C∞,δ
as (X)

for any δ ∈ R, see, e.g., Schulze [15, Theorem 1.2.1.11].
We have to prove that, for each P ∈ Asδ(Y ), there is a κ∗P ∈ Asδ(Y ) so that
the push-forward κ∗ restricts further to a linear isomorphism κ∗ : C∞

P (X) →
C∞

κ∗P (X), i.e., we have to show that there is a κ∗P ∈ Asδ(Y ) so that
κ∗(C

∞
P (X)) = C∞

κ∗P (X). Using Proposition 2.19, we eventually have to prove

that, for each u ∈ C∞,δ
as (X) such that

u(x) ∼

∞∑

j=0

∑

k+l=mj−1

(−1)k

k!
logk t φ

(j)
l (y) as t → +0, (2.26)

where Φ ∈ EVp
(Y ) for a certain p ∈ C, Re p < (n + 1)/2 − δ, and Φ(p − j) =

(φ
(j)
0 , φ

(j)
1 , . . . , φ

(j)
mj−1) for all j ∈ N, see (2.16), the push-forward κ∗u is again

of the form (2.26), with some other κ∗Φ ∈ EVp
(Y ) in place of Φ ∈ EVp

(Y ).
But this is immediate from a direct computation.

2.2.3 Characteristics of proper asymptotic types

We introduce the notion of characteristic of a proper asymptotic type. This
will be the main ingredient in the prove of Theorem 2.42.
Let P ∈ Asδ

prop(Y ) be represented by J ⊂ EV (Y ) and let Φ1,Φ2, . . . by a char-

acteristic basis of J according to Definition 2.22. As before, let (mj
1, . . . ,m

j
ej

)
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be the characteristic of the space Jδ+j . From Proposition 2.20, we conclude
that e1 ≤ e2 ≤ . . . In the next lemma, we find a suitable “path through”
the numbers mj

i for j ≥ ji, where ji = min{j; ej ≥ i}, i.e., an appropriate

re-ordering of the tuples (mj
1, . . . ,m

j
ej

).

Lemma 2.33. The numbering within the tuples (mj
1, . . . ,m

j
ej

) can be chosen in

such a way that, for each j ≥ 1, there is a characteristic (mj
1, . . . ,m

j
ej

)-basis

(Φj
1, . . . ,Φ

j
ej

) of Jδ+j such that, for all j′ > j,

Πjj′Φj′

i =

{
Φj

i if 1 ≤ i ≤ ej,

0 if ej + 1 ≤ i ≤ ej′

holds.

Furthermore, the scheme

e1 rows





e2 − e1 rows





e3 − e2 rows




{

m1
1 m2

1 m3
1 m4

1 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
m1

e1
m2

e1
m3

e1
m4

e1
. . .

m2
e1+1 m3

e1+1 m4
e1+1 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .
m2

e2
m3

e2
m4

e2
. . .

m3
e2+1 m4

e2+1 . . .
. . . . . . . . . . . . . . . . .
m3

e3
m4

e3
. . .

...
. . . ,

(2.27)

where in the jth column the characteristic of the space Jδ+j appears, is uniquely

determined up to permutation of the kth and the k′th row, where ej+1 ≤ k, k′ ≤
ej+1 for some j (e0 = 0).

Proof. This is a reformulation of Proposition 2.20 in terms of the character-
istics of the spaces Jδ+j . Notice that one can recover the characteristic basis
Φ1, Φ2, . . . of J , that was initially given, from the property that ΠjΦi = Φj

i

holds for all 1 ≤ i ≤ ej , while ΠjΦi = 0 for i > ej .

Performing the constructions of the foregoing lemma for each space J∩EVpj
(Y )

in (2.15) separately, one sees that the following notion is correctly defined:

Definition 2.34. Let P ∈ Asδ
prop(Y ) and J ⊂ EV (Y ) represent P . If

Φ1,Φ2, . . . is a characteristic basis of J according to Definition 2.22 and if
the tuples (mj

1, . . . ,m
j
ej

) are re-ordered according to Lemma 2.33, then the
sequence

charP =
{(

γ(Φi)
∣∣ mji

i ,mji+1
i ,mji+2

i , . . .
)}e

i=1
(2.28)

is called the characteristic of P .

Documenta Mathematica 9 (2004) 207–250



228 Xiaochun Liu and Ingo Witt

The characteristic char P of an asymptotic type P ∈ Asδ
prop(Y ) is unique up

to permutation of the kth and the k′th entry, where ej + 1 ≤ k, k′ ≤ ej+1 for
some j. So far, it is an invariant associated with the representing space J ; so
it still depends on the splitting of coordinates. However, we have:

Proposition 2.35. The characteristic char P of an asymptotic type P ∈
Asδ

prop(Y ) is independent of the chosen splitting of coordinates U → [0, 1)×Y ,

x 7→ (t, y), near ∂X.

Proof. Follow the proof of Proposition 2.32 to get the assertion.

Now, let
{
(pi |m

ji

i ,mji+1
i , . . . )

}e

i=1
⊂ C×NN be any given sequence, where we

additionally assume that Re pi < (n+1)/2− δ for all i, Re pi → −∞ as i → ∞
when e = ∞, the pi are ordered so that Re pi ≥ (n + 1)/2 − δ − j holds if and
only if i ≤ ej for a certain (then uniquely determined) sequence e1 ≤ e2 ≤ . . .
satisfying e = supj ej , and

1 ≤ mji

i ≤ mji+1
i ≤ mji+2

i ≤ . . . ,

where ji = min{j; ej ≥ i} as above.

Proposition 2.36. Let the characteristic
{(

pi

∣∣ mji

i ,mji+1
i , . . .

)}e

i=1
satisfy the

properties just mentioned. If n = 0, then we assume, in addition, that pi 6= pi′

for i 6= i′ and, for all i, k > 0,

mji+k
i − mji+k−1

i = a > 0 ⇐⇒ pi′ = pi − k for some i′ and m
ji′

i′ = a

(where ji′ = ji + k). Then there exists a holomorphic Sµ ∈ Symbµ
M (Y ) that is

elliptic with respect to the weight δ ∈ R such that Lδ
Sµ ∈ Asδ

prop(Y ) has exactly

this characteristic.

Proof. Multiplying Sµ by an elliptic element T−µ = {t−µ(z), 0, 0, . . . } such
that t−µ(z) ∈ M−µ

O and t−µ(z)−1 ∈ Mµ
O, we can assume µ = 0.

If n = 0, then we choose an elliptic s0(z) ∈ M0
O that has zeros precisely at

z = pi of order mji

i for i = 1, 2, . . . according to Theorem 2.6.
In case dim Y > 0, let {φi}

e
i=1 be an orthonormal set in C∞(Y ) with respect

to a fixed C∞-density dµ on Y . Let Πi for i = 1, . . . , e be the orthogonal
projection in L2(Y, dµ) onto the subspace spanned by φi. We then choose an
elliptic sµ(z) ∈ Mµ

O(Y ) such that, for every p ∈ Vpi
and all i,

[sµ(z)]Np
p =

(
1 −

∑

pi′−k=p

Πi′

)
+

∑

pi′−k=p

(z − p)m
j
i′

+k

i′ Πi′

where the sums are extended over all i′, k such that pi′ − k = p, for some Np

sufficiently large, while sµ(q) ∈ Lµ
cl(Y ) is invertible for all q ∈ C \ V , again

according to Theorem 2.6.
In both cases, we set Sµ = {sµ−j(z)}∞j=0 with sµ−j(z) ≡ 0 for j > 0. Then
Sµ ∈ Symbµ

M (Y ) is elliptic with respect to the weight δ, and the proper asymp-

totic type Lδ
Sµ has characteristic

{
(pi |m

ji

i ,mji+1
i , . . . )

}e

i=1
.
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2.2.4 More properties of asymptotic types

Here, we study further properties of asymptotic types. First, asymptotic types
are composed of elementary building blocks:

Proposition 2.37. (a) An asymptotic type P ∈ Asδ(Y ) is join-irreducible,

i.e., P 6= O and P = P0 ∨ P1 for P0, P1 ∈ Asδ(Y ) implies P = P0 or P = P1,

if and only if there is a Φ ∈ Eδ(Y ), Φ 6= 0, such that the representing space, J ,

for P , in the given splitting of coordinates near ∂X, has characteristic basis Φ,

i.e., J = 〈Φ〉. In particular, every join-irreducible asymptotic type is proper.

(b) The join-irreducible asymptotic types are join-dense in Asδ(Y ).

Proof. (a) Let P 6= O. Assume that, for some j ≥ 1, Jδ+j has characteristic of
length larger 1. Then Jδ+j = K0 + K1 for certain linear subspaces Ki ( Jδ+j

satisfying TKi ⊆ Ki, for i = 0, 1. Setting Ji = {Φ ∈ J ; ΠjΦ ∈ Ki}, we get
that J = J0 + J1, Ji ( J , and TJi ⊆ Ji for i = 0, 1. Since this decomposition
can be chosen compatible with (2.15), we obtain that a necessary condition for
P to be join-irreducible is that each space Jδ+j for j ≥ 1 has characteristic of
length at most 1, i.e., J = 〈Φ〉 for some Φ 6= 0. Vice versa, if J = 〈Φ〉 for some
Φ 6= 0, then P is join-irreducible, since the subspace 〈T kΦ〉 ⊆ J for k ∈ N are
the only subspaces of J that are invariant under the action of T .
(b) This follows directly from Proposition 2.19.

Note that, by the foregoing proposition, also the proper asymptotic types are
join-dense in Asδ(Y ). We will utilize this fact in the definition of cone Sobolev
spaces with asymptotics.
In constructing asymptotic types P ∈ Asδ(Y ) obeying certain properties, one
often encounters a situation in which P is successively constructed on strips
{z ∈ C; (n + 1)/2 − δ − βh ≤ Re z < (n + 1)/2 − δ} of finite width, where the
sequence {βh}

∞
h=0 ⊂ R+ is strictly increasing and βh → ∞ as h → ∞. We will

meet an example in Section 3.3.
To formulate the result, we need one more definition:

Definition 2.38. Let P, P ′ ∈ Asδ(Y ) be represented by J ⊂ EV (Y ) and
J ′ ⊂ EV (Y ), respectively. Then, for ϑ ≥ 0, the asymptotic types P and P ′

are said to be equal up to the conormal order δ + ϑ if ΠϑJ = ΠϑJ ′, where
Πϑ : J → J

/
(J ∩Eδ+ϑ(Y )) is the canonical projection. Similarly, P and P ′ are

said to be equal up to the conormal order δ + ϑ − 0 if they are equal up to the
conormal order δ + ϑ − ǫ, for any ǫ > 0. (Similarly for the order relation 4

instead of equality.)

Proposition 2.39. Let {Pι}ι∈I ⊂ Asδ(Y ) be an increasing net of asymptotic

types. Then the join
∨

ι∈I Pι exists if and only if, for each j ≥ 1, there is an

ιj ∈ I such that Pι = Pι′ up to the conormal order δ + j for all ι, ι′ ≥ ιj.

Proof. The condition is obviously sufficient.
Conversely, suppose that the join

∨
ι∈I Pι exists. Let Pι be represented by the

subspace Jι ⊂ EVι
(Y ) for Vι ∈ Cδ. Since the join

∨
ι∈I Pι exists, the carriers Vι
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can be chosen in such way that
⋃

ι∈I Vι ⊆ V for some V ∈ Cδ. Thus Jι ⊂ EV (Y )

for all ι. Now, for each j ≥ 1, dim
(∑

ι∈I Jδ+j
ι

)
< ∞, otherwise

∨
ι∈I Pι does

not exist. But since the net {Jδ+j
ι }ι∈I is increasing, this already implies that

there is some ιj ∈ I such that Jδ+j
ι = Jδ+j

ι′ for ι, ι′ ≥ ιj , i.e., Pι = Pι′ up to
the conormal order δ + j for ι, ι′ ≥ ιj .

An equivalent condition is that the net {Pι}ι∈I ⊂ Asδ(Y ) of asymptotic types
be bounded on each strip {z ∈ C; (n + 1)/2 − δ − j ≤ Re z < (n + 1)/2 − δ} of
finite width.

2.3 Pseudodifferential theory

Here, we establish an analogue of Witt [18, Theorem 1.2]. We need:

Proposition 2.40. Let P, P0 ∈ Asδ
prop(Y ), Q ∈ Asδ−µ

prop(Y ) for µ ∈ R. Assume

that P ∧ P0 = O. Then there is a holomorphic Sµ ∈ Ell Symbµ
M (Y ) that is

elliptic with respect to the weight δ such that Lδ
Sµ = P0 and Q(P ;Sµ) = Q if

and only if P and Q have the same characteristic shifted by µ, i.e., we have

char P = char Q − µ (with the obvious meaning of char Q − µ).

Proof. It is readily seen that P ∈ Asδ
prop(Y ), Q ∈ Asδ−µ

prop(Y ) have the same
characteristic shifted by µ if there is a holomorphic Sµ ∈ Ell Symbµ

M (Y ) such
that Q(P ;Sµ) = Q.
Suppose that charP = char Q − µ. First, we deal with the case P0 = O. Let
the asymptotic types P, Q be represented by J ⊂ EV (Y ) and K ⊂ ET µV (Y ),
respectively. Let {Φi}

e
i=1 and {Ψi}

e
i=1 be characteristic bases of J and K

corresponding to charP and charQ, respectively.
We have to choose the sequence {sµ−k(z); k ∈ N} ⊂ Mµ

O(Y ). By Theorem 2.6,

it suffices to construct the finite parts [sµ−k(z)]
Np′k

p′ for p′ ∈ V , k ∈ N, and Np′k

sufficiently large appropriately. Thereby, we can assume that V = Vp for some
p ∈ C, Re p < (n + 1)/2 − δ.
Let e1 ≤ e2 ≤ . . . , where e = supj∈N ej , be such that γ(Φi) = γ(Ψi)−µ = p−j

for ej−1 + 1 ≤ i ≤ ej (and e0 = 0). Then the finite parts [sµ−k(z)]m
j+k

p−j for all
j, k must be chosen so that, for each j ∈ N,

Φi(p − j)[s
µ(z)]m

j

p−j + Φi(p − j + 1)[s
µ−1(z)]m

j

p−j+1

+ · · · + Φi(p)[s
µ−j(z)]m

j

p = Ψi(p + µ − j) (2.29)

for 1 ≤ i ≤ ej , where mj = sup1≤i≤ej
mj

i , and Φi(p − k) = 0 if ek + 1 ≤

i ≤ ej . Here, (mj
1, . . . ,m

j
ej

) is the characteristic of Jδ+j and, for Φ =

(φ0, . . . , φm−1), Ψ = (ψ0, . . . , ψm−1) ∈ [C∞(Y )]∞, and s(z) ∈ Mµ
O(Y ), the

relation

Φ[s(z)]mp = Ψ
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stands for the linear system

s(p)φ0 = ψ0,

s(p)φ1 +
s′(p)

1!
φ0 = ψ1,

...

s(p)φm−1 +
s′(p)

1!
φm−2 + · · · +

s(m−1)(p)

(m − 1)!
φ0 = ψm−1.

System (2.29) can successively be solved for [sµ(z − k)]m
j

p−j+k for j = 0, 1, 2, . . .

and 0 ≤ k ≤ j. In fact, this can be done by choosing [sµ−k(z)]m
j

p−j+k for k > 0

arbitrarily. In particular, we may choose sµ−k(z) ≡ 0 for k > 0.
The case P0 6= O can be reduced to the case P0 = O as in the proof of Witt
[18, Lemma 3.16], since the three rules from Witt [18, Lemma 2.3] applied
there continues to hold in the present situation.

Remark 2.41. (a) The proof of Proposition 2.40 shows that the holomorphic
Sµ = {sµ−j ; j ∈ N} ∈ Ell Symbµ

M (Y ) satisfying Lδ
Sµ = P0 and Q(P ;Sµ) = Q

can always be chosen so that sµ−j(z) ≡ 0 for j > 0.
(b) Proposition 2.40 in connection with Theorem 2.30 also shows that
Asδ

prop(Y ) consists precisely of those asymptotic types that are of the form

Lδ
Sµ for some holomorphic Sµ ∈ Ell Symbµ

M (Y ) that is elliptic with respect to
the weight δ. (Choose P = Q = O in Proposition 2.40.)

Now, we reach the final aim of this section:

Theorem 2.42. Let P ∈ Asδ
prop(Y ) and Q ∈ Asδ−µ

prop(Y ). Then there exists a

Sµ ∈ Symbµ
M (Y ) that is elliptic with respect to the weight δ such that Lδ

Sµ = P

and Lδ−µ
(Sµ)−1 = Q always when dim Y > 0 and if and only if P ∧ T−µQ = O

when dimY = 0.

Proof. The condition P ∧ T−µQ = O is obviously necessary if dimY = 0.
In the general case, choose P1 ∈ Asδ

prop(Y ), Q1 ∈ Asδ−µ
prop(Y ) having the same

characteristics as P and Q, respectively, such that P1 ∧ T−µQ1 = O. As in
the proof of Witt [18, Theorem 1.2], it then suffices to construct holomorphic
S0 ∈ Ell Symbµ

M (Y ), T0 ∈ Ell Symb−µ
M (Y ) that are elliptic with respect to the

weight δ such that

Lδ
S0 = P1, Qδ(Q1;S

0) = Q, Lδ
T0 = Q1, Qδ(P1;T

0) = P.

This is achieved by using Proposition 2.40.

2.4 Function spaces with asymptotics

The definition of cone Sobolev spaces with asymptotics is based on the Mellin
transformation. See Schulze [15, Sections 1.2, 2.1] for this idea and also
Remark 2.45. For more details on the Mellin transformation, see Jean-
quartier [5].
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2.4.1 Weighted cone Sobolev spaces

Let Mu(z) = ũ(z) =
∫ ∞

0
tz−1u(t) dt, z ∈ C, be the Mellin transformation, first

defined for u ∈ C∞
0 (R+) and then extended to larger distribution classes. In

particular, u will be allowed to be vector-valued. Recall the following properties
of M :

Mt→z

{
(−t∂t − p)u

}
(z) = (z − p)ũ(z),

Mt→z

{
t−pu

}
(z) = ũ(z − p), p ∈ C,

whenever both sides are defined, M : L2(R+) → L2(Γ1/2; (2πi)−1dz) is an isom-
etry, and

Mt→z

{
(−1)k

k!
t−p logk t χ(0,1)(t)

}
(z) =

1

(z − p)k+1
, (2.30)

where χ(0,1) is the characteristic function of the interval (0, 1). We infer that

h(z) = Mt→z

{
(−1)kω(t)t−p logk t/k!

}
(z) ∈ M−∞

as is a meromorphic function

of z having a pole precisely at z = p, and the principal part of the Lau-
rent expansion around this pole is given by the right-hand side of (2.30), i.e.,
[h(z)]∗p = (z − p)−(k+1). Here, ω(t) is a cut-off function near t = 0.

For s, δ ∈ R, let Hs,δ(X) denote the space of u ∈ Hs
loc(X

◦) such that
Mt→z{ωu}(z) ∈ L2

loc

(
Γ(n+1)/2−δ;H

s(Y )
)

and the expression

‖u‖Hs,δ(X) =

{
1

2πi

∫

Γ(n+1)/2−δ

∥∥Rs(z)Mt→z{ωu}(z)
∥∥2

L2(Y )

}1/2

(2.31)

is finite. Here, Rs(z) ∈ Ls
cl(Y ; Γ(n+1)/2−δ) is an order-reducing family , i.e.,

Rs(z) is parameter-dependent elliptic and Rs(z) : Hr(Y ) → Hr−s(Y ) is an
isomorphism for some r ∈ R (and then for all r ∈ R) and all z ∈ Γ(n+1)/2−δ.
For instance, if f(z) ∈ Ms

O(Y ) is elliptic and the line Γ(n+1)/2−δ is free of poles
of f(z)−1, then f(z) is such an order-reduction. We will employ this observation
in the next section when defining cone Sobolev spaces with asymptotics.

2.4.2 Cone Sobolev spaces with asymptotics

Let s, δ ∈ R, P ∈ Asδ
prop(Y ). By Theorem 2.42, there is an elliptic Mellin

symbol hs
P (z) ∈ Ms

O(Y ) such that the line Γ(n+1)/2−δ is free of poles of hs
P (z)−1

and Lδ
Ss = P for Ss =

{
hs

P (z), 0, 0, . . .
}
∈ Symbs

M (Y ).

Definition 2.43. Let s, δ ∈ R, ϑ ≥ 0, and P ∈ Asδ(Y ).

(a) For P ∈ Asδ
prop(Y ), the space Hs,δ

P,ϑ(X) consists of all functions u ∈ Hs,δ(X)

such that Mt→z{ωu}(z), which is a priori holomorphic in
{
z ∈ C; Re z >

(n + 1)/2 − δ
}

taking values in Hs(Y ), possesses a meromorphic continuation

to the half-space
{
z ∈ C; Re z > (n + 1)/2 − δ − ϑ

}
, moreover,

hs
P (z)Mt→z{ωu}(z) ∈ A

(
{z ∈ C; Re z > (n + 1)/2 − δ − ϑ};L2(Y )

)
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and the expression

sup
δ<δ′<δ+ϑ

{
1

2πi

∫

Γ(n+1)/2−δ′

∥∥hs
P (z)Mt→z{ωu}(z)

∥∥2

L2(Y )
dz

}1/2

(2.32)

is finite.
(b) For a general P ∈ Asδ(Y ), represented as the join P =

∨
ι∈I Pι for a

bounded family {Pι}ι∈I ⊂ Asδ
prop(Y ), we define Hs,δ

P,ϑ(X) =
∑

ι∈I Hs,δ
Pι,ϑ

(X).

It is readily seen that Definition 2.43 (a) is independent of the choice of the
Mellin symbol hs

P (z). Moreover, under the condition that (2.32) is finite the
limit

hs
P (z)Mt→z{ωu}(z)

∣∣
z=(n+1)/2−δ′+iτ

→ w(τ) as δ′ → δ + ϑ − 0

exists in L2(Rτ ;L2(Y )). Thus, Hs,δ
P,ϑ(X) is a Hilbert space with the norm

‖u‖Hs,δ
P,ϑ(X) =

{
‖w‖2

L2(Rτ ;L2(Y )) + ‖u‖2
Hs,δ(X)

}1/2

. (2.33)

Definition 2.43 (b) is justified by Proposition 2.37 (b), since we obviously have

Hs,δ
P,ϑ(X) = Hs,δ+ϑ(X) for P ∈ Asδ

prop(Y ) and δP > δ+ϑ. Again, this definition
is seen to be independent of the choice of the representing family {Pι}ι∈I ⊂

Asδ
prop(Y ), and it also yields a Hilbert space structure for Hs,δ

P,ϑ(X).

Proposition 2.44. Let s, δ ∈ R, ϑ ≥ 0, and P ∈ Asδ
prop(Y ). Further, let Ss =

{ss−j(z) j = 0, 1, 2, . . . } ∈ Symbs
M (Y ) be elliptic with respect to the weight δ

and Lδ
Ss = P , Lδ−s

(Ss)−1 = O. (Condition Lδ−s
(Ss)−1 = O means that the Mellin

symbols ss−j(z) are holomorphic when Re z > (n + 1)/2− δ.) Then a function

u ∈ Hs,δ(X) belongs to the space Hs,δ
P,ϑ(X) if and only if Mt→z{ωu}(z) possesses

a meromorphic continuation to the half-space
{
z ∈ C; Re z > (n+1)/2−δ−ϑ

}
,

M∑

j=0

s
s−j(z − s + j)Mt→z{ωu}(z − s + j)

∈ A
(
{z ∈ C; Re z > (n + 1)/2 − δ + s − ϑ};L2(Y )

)
,

and the expression

sup
δ<δ′<δ+ϑ

{
1

2πi

∫

Γ(n+1)/2−δ′+s

∥∥∥
M∑

j=0

s
s−j(z − s + j)Mt→z{ωu}(z − s + j)

∥∥∥
2

L2(Y )
dz

}1/2

is finite. Here, M is any integer larger than ϑ.
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Proof. This is an application (of an adapted version) of Witt [18, Proposi-
tion 2.6]. Note that ss−j(z − s + j)Mt→z{ωu}(z − s + j) ∈ A

(
{z ∈ C; Re z >

(n + 1)/2− δ + s− j};L2(Y )
)

so that the condition is actually independent of
the choice of the integer M > ϑ.

For s, δ ∈ R, ϑ > 0, and P ∈ Asδ(Y ), we will also employ the spaces

Hs,δ
P,ϑ−0(X) =

⋂

ǫ>0

Hs,δ
P,ϑ−ǫ(X). (2.34)

These space Hs,δ
P,ϑ−0(X) are Fréchet-Hilbert spaces, i.e., Fréchet spaces whose

topology is given by a countable family of Hilbert semi-norms. We will also
use notations like

H∞,δ
P,ϑ (X) =

⋂

s∈R

Hs,δ
P,ϑ(X), H−∞,δ

P,ϑ (X) =
⋃

s∈R

Hs,δ
P,ϑ(X),

Hs,δ
P,ϑ+0(X) =

⋃

ǫ>0

Hs,δ
P,ϑ+ǫ(X), etc.

Remark 2.45. In case P is a strongly discrete asymptotic type, the spaces
Hs,δ

P,ϑ−0(X) are the function spaces introduced by Schulze [15, Section 2.1.1].

There, the notation Hs,δ
P (X)∆ with the half-open interval ∆ = (−ϑ, 0] has been

used. The definition of the function spaces Hs,δ
P (X)∆ refers to fixed splitting

of coordinates near ∂X and is, in general, not coordinate invariant.

2.4.3 Functional-analytic properties

We list some properties of the function spaces Hs,δ
P,ϑ(X):

Proposition 2.46. Let s, s′, δ, δ′ ∈ R, ϑ ≥ 0, P ∈ Asδ(Y ), P ′ ∈ Asδ′

(Y ),
and {Pι}ι∈I ⊂ Asδ(Y ) be a family of asymptotic types. Then:

(a) Hs,δ
P,0(X) = Hs,δ(X).

(b) Hs,δ
P,ϑ(X) = Hs,δ−a

P,ϑ+a(X) for any a > 0.

(c) Hs,δ
O,ϑ(X) = Hs,δ+ϑ(X).

(d) We have

Hs,δ
P,ϑ(X) = Hs,δ

O,ϑ(X)

⊕

{
ω(t)

∑

p∈V,
Re p>(n+1)/2−δ−ϑ

∑

k+l=mp−1

(−1)k

k!
t−p logk t φ

(p)
l (y);

Φ(p) = (φ
(p)
0 , . . . , φ

(p)
mp−1) for some Φ ∈ J

}
,

where J ⊂ EV (Y ) is the linear subspace representing the asymptotic type P ,

provided that Re p 6= (n + 1)/2 − δ − ϑ holds for all p ∈ V .
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(e) We have Hs,δ
P,ϑ(X) ⊆ Hs′,δ′

P ′,ϑ′(X) if and only if s ≥ s′, δ + ϑ ≥ δ′ + ϑ′, and

P 4 P ′ up to the conormal order δ′ + ϑ′.

(f) Hs,δ∧
ι∈I

Pι,ϑ
(X) =

⋂
ι∈I Hs,δ

Pι,ϑ
(X) if the family {Pι}ι∈I is non-empty.

(g) Hs,δ∨
ι∈I

Pι,ϑ
(X) =

∑
ι∈I Hs,δ

Pι,ϑ
(X) if the family {Pι}ι∈I is bounded (where

the sum sign stands for the non-direct sum of Hilbert spaces);

(h) C∞
P (X) =

⋂
s∈R, ϑ≥0 H

s,δ
P,ϑ(X).

(i) C∞
P (X) is dense in Hs,δ

P,ϑ(X).

Proof. The proofs of (a) to (i) are straightforward.

From (e) we get, in particular, Hs,δ
P,ϑ(X) = Hs′,δ′

P ′,ϑ′(X) if and only if s = s′,
δ + ϑ = δ′ + ϑ′, and P = P ′ up to the conormal order δ + ϑ. (b) and also (c),
in view of (a), are special cases.

Proposition 2.47. For δ ∈ R, P ∈ Asδ(Y ), and any a ∈ R, the family{
Hs,δ

P,s−a(X); s ≥ a
}

of Hilbert spaces forms an interpolation scale with respect

to the complex interpolation method.

Proof. This is immediate from the definition.

Proposition 2.48. The spaces Hs,δ
P,ϑ(X) are invariant under coordinate

changes, where this has to be understood in the sense of Proposition 2.32.

Proof. Basically, this follows from the invariance of the spaces C∞
P (X) under

coordinate changes, where the latter is just a reformulation of the fact that the
asymptotic types in Asδ(Y ) are coordinate invariant.

2.4.4 Mapping properties and elliptic regularity

We finally take the step from the algebra of complete conormal symbols to
elliptic Fuchsian differential operators and their parametrices. These paramet-
rices are cone pseudodifferential operators, where for the latter we refer to
Schulze [16, Chapter 2]. While for general cone pseudodifferential operators,
there might be a difference between the conormal asymptotics produced on the
level of complete conormal symbols and operators, respectively — due to the
appearance of so-called singular Green operators — for Fuchsian differential

operators this does not happen.
In cone pseudodifferential calculus, one encounters operators of the form

ω(t)t−µ op
(n+1)/2−δ
M (h) ω̃(t), where h(t, z) ∈ C∞(R+;Mµ

as(Y )). Here,

op
(n+1)/2−δ
M (h(t, z))u =

1

2πi

∫

Γ(n+1)/2−δ

t−zh(t, z)ũ(z) dz (2.35)

is a pseudodifferential operator, whose definition is based on the Mellin trans-
formation instead of the Fourier transformation. The mapping properties of
these operators in the spaces Hs,δ

P,ϑ(X) are as follows:
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Proposition 2.49. Let h(t, z) ∈ C∞(R+;Mµ
as(Y )) and assume that the line

Γ(n+1)/2−δ is free of poles of ∂jh(0, z)
/
∂tj for all j = 0, 1, 2, . . . Then, for all

P ∈ Asδ(Y ), s ∈ R, ϑ ≥ 0,

ω(t)t−µ op
(n+1)/2−δ
M (h) ω̃(t) : Hs,δ

P,ϑ(X) → Hs−µ,δ−µ
Q,ϑ (X),

where ω(t), ω̃(t) are cut-off functions, Sµ =
{

1
j!

∂jh
∂tj (0, z); j = 0, 1, 2, . . .

}
∈

Symbµ
M (Y ), and Q = Qδ−µ(P,Sµ) ∈ Asδ−µ(Y ).

Proof. The previous definitions are made to let this result hold.

Notation. Proposition 2.49 implies that, given a cone pseudodifferential oper-
ator A in Schulze’s cone calculus Cµ(X, (δ, δ − µ, (−∞, 0])), see Schulze [16,
Chapter 2] again, for each P ∈ Asδ(Y ), there is a Q ∈ Asδ−µ(Y ) such that, for
all s ∈ R, ϑ ≥ 0,

A : Hs,δ
P,ϑ(X) → Hs−µ,δ−µ

Q,ϑ (X). (2.36)

Given P ∈ Asδ(Y ), the minimal such asymptotic type Q ∈ Asδ−µ(Y ), that
exists by virtue of Proposition 2.28 (a) and Proposition 2.46 (f), is denoted by
Qδ−µ(P ;A). If A is elliptic, given Q ∈ Asδ−µ(Y ), the minimal asymptotic type

P ∈ Asδ(Y ) such that, for all s ∈ R, ϑ ≥ 0, u ∈ H−∞,δ(X), Au ∈ Hs−µ,δ−µ
Q,ϑ (X)

implies u ∈ Hs,δ
P,ϑ(X) is denoted by Pδ(Q;A).

We shall employ this push-forward notation also if more than one operator A
is involved, i.e., Qδ−µ(P ;A1, . . . , Am) denotes the minimal asymptotic type Q

for which Aj : Hs,δ
P,ϑ(X) → Hs−µ,δ−µ

Q,ϑ (X) for 1 ≤ j ≤ m.

Theorem 2.50. For A ∈ Diffµ
Fuchs(X), P ∈ Asδ(Y ), Q ∈ Asδ−µ(Y ), we

have Qδ−µ(P ;A) = Qδ−µ(P ;Sµ), where Sµ = {σµ−j
M (A)(z); j = 0, 1, . . . } ∈

Symbµ
M (Y ), as well as, in case A is elliptic, Pδ(Q;A) = Qδ(Q; (Sµ)−1).

Proof. In fact, Qδ−µ(P ;A) = Qδ−µ(P ;Sµ) follows from Proposition 2.49.

Furthermore, it is known that formal asymptotic solutions u ∈ C∞
as (X) to the

equation Au = f for f ∈ C∞
R (X) and any R ∈ Asδ−µ(Y ) can be constructed,

see, e.g. Melrose [13, Lemma 5.13]. More precisely, it can be shown that
there is a right parametrix B to A, B : Hs−µ,δ−µ(X) → Hs,δ(X) for all s ∈ R,
such that

AB = I + R, R : H−∞,δ−µ(X) → C∞
O (X),

i.e., R is smoothing over X◦ and flattening to infinite order near ∂X. In fact,
B ∈ C−µ(X, (δ − µ, δ, (−∞, 0])) and, in particular, B ∈ L−µ

cl (X◦).

Now let BA = I + R0. Obviously, R0 is smoothing over X◦ such that
R0 : Hs,δ(X) → H∞,δ−µ(X) for any s ∈ R. Furthermore, A(I + R0) = ABA =
(I + R)A so that

AR0 = RA.
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We conclude that R0 : Hs,δ(X) → C∞
P0

(X), where P0 = Qδ(O; (Sµ)−1). Hence,

for u ∈ H−∞,δ(X), Au = f ∈ Hs−µ,δ−µ
Q,ϑ (X), we get

u = Bf − R0u ∈ Hs,δ
P,ϑ(X),

where P = Qδ(Q; (Sµ)−1). Thus Pδ(Q;A) = Qδ(Q; (Sµ)−1) as claimed. See
also Witt [20, Remark after Proposition 5.5].

Notation. For A ∈ Diffµ
Fuchs(X), Qδ−µ(P ;A) is even independent of δ ∈ R in

view of the holomorphy of the conormal symbols σµ−j
M (A)(z) for j = 0, 1, 2, . . .

In this case, we simply write Q(P ;A) = Qδ−µ(P ;A).

Proposition 2.51. Let A ∈ Diffµ
Fuchs(X) be elliptic. Then there is an order-

preserving bijection

{
P ∈ Asδ(Y ); P < Lδ

Sµ

}
→ Asδ−µ(Y ), P 7→ Q(P ;A), (2.37)

with its inverse given by Q 7→ Pδ(Q;A). In particular, Lδ
Sµ is mapped to the

empty asymptotic type, O.

Proof. This is implied by Proposition 2.31 and Theorem 2.50. Note that
Lδ−µ

(Sµ)−1 = O, since the σµ−j
M (A)(z) for j = 0, 1, 2, . . . are holomorphic.

Eventually, we have the following locality principle:

Proposition 2.52. Let A ∈ Diffµ
Fuchs(X) be elliptic, Q0, Q1 ∈ Asδ−µ(Y ), and

P0 = Pδ(Q0;A), P1 = Pδ(Q1;A). Then, for any ϑ > 0, P0 = P1 up to the

conormal order δ + ϑ if Q0 = Q1 up to the conormal order δ − µ + ϑ.

Proof. This follows from P0 = Qδ(Q0; (S
−µ)−1), P1 = Qδ(Q1; (S

−µ)−1),
where Sµ = {σµ−j

M (A)(z); j ∈ N} ∈ Ell Symbµ
M (Y ).

Remark 2.53. Combined with Theorem 2.30, Theorem 2.50 shows that each so-
lution u ∈ C∞,δ

as (X) to the equation Au = f ∈ C∞
O (X), where A ∈ Diffµ

Fuchs(X)
is elliptic, can be written over finite weight intervals as a finite sum of func-
tions of the form (2.16) modulo the corresponding flat class, where the Φ
are taken from a characteristic basis of the linear subspace of Eδ(Y ) rep-
resenting Pδ(O;A). If Φ(p) = (φ0, . . . , φm−1) for such a vector Φ, where
p = γ(Φ), then we say that A admits an asymptotic series starting with the

term t−p logm−1 t φ0. Since this is then the most singular term (when γ(Φ)
is highest possible), if it coefficient can be shown to vanish, then the whole
series must vanish, up to the next appearance of a starting term for another
asymptotic series.
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3 Applications to semilinear equations

In this section, Theorem 1.1 is proved. To this end, multiplicatively closable and
multiplicatively closed asymptotic types are investigated in Section 3.1. This
allows the derivation of results concerning the action of nonlinear superposition
operators on cone Sobolev spaces with asymptotics. In Section 3.2, the general
scheme for establishing results of the type of Theorem 1.1 is established. This
scheme is specified to multiplicatively closable asymptotic types in Section 3.3,
then completing the proof of Theorem 1.1.

3.1 Multiplicatively closed asymptotic types

Here, we investigate multiplicative properties of asymptotic types and the be-
havior of cone Sobolev spaces Hs,δ

P,ϑ(X) under the action of nonlinear superpo-
sition.

Notation. In connection with pointwise multiplication, it is useful to employ
the following notation:

Hs
P,ϑ(X) =

{
Hs,δ

P,δP −δ+ϑ(X) if ϑ ≥ 0,

Hs,δP +ϑ(X) otherwise,

where P ∈ Asδ(Y ), P 6= O, and δ < δP in the first line. (Proposition 2.46 (b)
shows that this definition is independent of the choice of δ.) Thus, starting
from δP , the conormal order is improved by ϑ upon allowing asymptotics of
type P . Similarly for Hs

P,ϑ−0(X).

Furthermore, we write {ϑ} if we mean either ϑ or ϑ− 0. For instance, {ϑ} ≥ 0
means ϑ ≥ 0 if {ϑ} = ϑ and ϑ > 0 if {ϑ} = ϑ − 0.

3.1.1 Multiplication of asymptotic types

The result admitting nonlinear superposition for function spaces with asymp-
totics is stated first:

Lemma 3.1. Given P ∈ As(Y ), Q ∈ As(Y ), there is a minimal asymptotic

type, P ◦ Q ∈ As(Y ), such that

C∞
P (X) × C∞

Q (X) → C∞
P◦Q(X), (u, v) 7→ uv. (3.1)

Proof. Suppose that the asymptotic types P, Q are represented by subspaces
J ⊂ EV (Y ) and K ⊂ EW (Y ), respectively, for suitable V, W ∈ C. Then the
asymptotic type P ◦Q is carried by the set V +W , and it is represented by the
linear subspace of EV +W (Y ) consisting of all Θ ∈ EV +W (Y ) for which there are
Φ ∈ J , Ψ ∈ K such that Θ(r) =

∑
p+q=r,

p∈V, q∈W
Φ(p)×Ψ(q) holds for all r ∈ V +W .
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Here,

Φ × Ψ =

((
m + n

m

)
φ0ψ0,

(
m + n − 1

m

)
φ0ψ1 +

(
m + n − 1

m − 1

)
φ1ψ0,

(
m + n − 2

m

)
φ0ψ2 +

(
m + n − 2

m − 1

)
φ1ψ1 +

(
m + n − 2

m − 2

)
φ0ψ2,

. . . ,

(
1

1

)
φm−1ψn +

(
1

0

)
φmψn−1,

(
0

0

)
φmψn

)

for Φ = (φ0, φ1, . . . , φm), Ψ = (ψ0, ψ1, . . . , ψn) ∈ [C∞(Y )]∞. For this, see
(2.16). Note that T (Φ × Ψ) = (TΦ) × Ψ + Φ × (TΨ) and, for Φ ∈ EVp

(Y ),
Ψ ∈ EVq

(Y ), we have Φ × Ψ ∈ EVp+q
(Y ) showing that the linear subspace of

EV +W (Y ) described above actually represents an asymptotic type.

The multiplication of asymptotic types possesses a unit, denoted by 1, that is
represented by the space span{(1)} ⊂ E{0}(Y ), where 1 is the function identi-
cally 1 on Y .

Definition 3.2. An asymptotic type Q ∈ As(Y ) is called multiplicatively

closed if Q ◦ Q = Q. An asymptotic type Q ∈ As(Y ) is called multiplica-

tively closable if it is dominated by a multiplicatively closed asymptotic type.
In this case, the minimal multiplicatively closed asymptotic type dominating
Q is called the multiplicative closure of Q and is denoted by Q̃.

From the proof of Lemma 3.1,

δP◦Q ≥ δP + δQ − (n + 1)/2, (3.2)

where equality holds if P = Q or if dimY = 0. Especially, δQ = (n + 1)/2 if Q
is multiplicatively closed and δQ ≥ (n + 1)/2 if Q is multiplicatively closable.
Furthermore, it is also seen Q < 1 for any multiplicatively closed asymptotic
type Q, see also Lemma 3.4 below.

3.1.2 The class As♯(Y ) of multiplicatively closable asymptotic
types

We study the class of asymptotic types that belong to bounded functions.
It turns out that this class is intimately connected to the multiplication of
asymptotic types.

Definition 3.3. (a) The class Asb(Y ) of bounded asymptotic types consists of
all asymptotic types Q ∈ As(Y ) for which δQ ≥ (n + 1)/2. Equivalently, a
bounded asymptotic type Q is represented by a subspace J ⊂ EV (Y ) for some
V ∈ C, where V ⊂ {z ∈ C; Re z ≤ 0}.
(b) The class As♯(Y ) consists of all bounded asymptotic types Q represented
by a subspace J ⊂ E(Y ) such that J0 ⊆ span{(1)} and Jp = {0} for Re p = 0,
p 6= 0.
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Lemma 3.4. For Q ∈ As(Y ), the following conditions are equivalent:

(a) Q is multiplicatively closable;
(b) the join

∨
k≥1 Qk does exist, where Qk = Q ◦ · · · ◦ Q︸ ︷︷ ︸

k times

is the k-fold product ;

(c) Q ∈ As♯(Y ).

In case (a) to (c) are fulfilled, we have Q̃ = 1 ∨
∨

k≥1 Qk.

Proof. (a) and (b) are obviously equivalent. Moreover, (c) implies (b).
It remains to show that (a) also implies (c). If Q is multiplicatively closable,

then Q̃ exists and δQ̃ = (n + 1)/2. In particular, Q̃ ∈ Asb(Y ). Let Q̃ be

represented by J ⊂ EV (Y ) for some V ∈ C, V ⊂ {z ∈ C; Re z ≤ 0}. Suppose
that φ ∈ Jp for p ∈ C, Re p = 0, where φ 6= 0. We immediately get φl ∈ Jlp for
any l ∈ N, l ≥ 1. For p 6= 0, we obtain the contradiction {lp; l ∈ N} ⊆ V ∈ C.
For p = 0 and φ not being constant, we obtain a contradiction to the fact that
dimJ0 < ∞. Thus, Q̃ ∈ As♯(Y ) and, therefore, Q ∈ As♯(Y ).

Lemma 3.5. For each Q ∈ As(Y ), there are asymptotic types Qb ∈ Asb(Y )
and Q♯ ∈ As♯(Y ) which are maximal among all asymptotic types possessing the

property

Qb
4 Q and Q♯

4 Q, (3.3)

respectively. In particular, Q♯ 4 Qb.

Proof. The proof is straightforward.

3.1.3 Nonlinear superposition

We investigate expressions like F (x, v(x)), where F (x, ν) ∈ C∞
R (X×R) for some

R ∈ As(Y ) and v ∈ Hs
Q,ϑ(X) ∩ L∞(X) with s ≥ 0, ϑ > 0, and Q ∈ As♯(Y ).

For later reference, we recall the following facts:

Proposition 3.6. (a) For s > (n + 1)/2, 0 ≤ s′ ≤ s, γ, δ ∈ R, pointwise

multiplication induces a bilinear continuous map

Hs,γ(X) ×Hs′,δ(X) → Hs′,γ+δ−(n+1)/2(X). (3.4)

(b) For s, δ ∈ R, Hs,δ(X) ⊂ L∞(X) if and only if s > (n+1)/2, δ ≥ (n+1)/2.
(c) For s ≥ 0, γ, δ ≥ (n + 1)/2, pointwise multiplication induces a bilinear

continuous map

(
Hs,γ(X) ∩ L∞(X)

)
×

(
Hs,δ(X) ∩ L∞(X)

)
→ Hs,γ+δ−(n+1)/2(X) ∩ L∞(X).

(d) For s ≥ 0, δ ∈ R, p ∈ C, c(y) ∈ C∞(Y ), the multiplication operator

ω(t)t−pc(y) : Hs,δ(X) → Hs,δ−Re p(X),

where ω(t) is a cut-off function, is continuous.
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(e) For s ≥ 0, v1, . . . , vK ∈
(
1 + Hs,(n+1)/2(X)

)
∩ L∞(X), and F ∈ C∞(RK),

we have

F (v1, . . . , vK) ∈
(
1 + Hs,(n+1)/2(X)

)
∩ L∞(X). (3.5)

The map
((

1 + Hs,(n+1)/2(X)
)
∩ L∞(X)

)K
→

(
1 + Hs,(n+1)/2(X)

)
∩ L∞(X)

induced by (3.5) is continuous and sends bounded sets to bounded sets.

Proof. A proof of (3.4) in case s′ = s has been supplied by Witt [19,
Lemma 2.7] using a result of Dauge [2, Theorem (AA.3)]. The other proofs
are similar.

Remark 3.7. Property (d) fails if logarithms appear and has to be replaced by

ω(t)t−p logk t c(y) : Hs,δ(X) → Hs,δ−Re p−0(X)

is continuous when k ∈ N, k ≥ 1.

First, Lemma 3.1 is sharpened:

Proposition 3.8. For s > (n + 1)/2, 0 ≤ s′ ≤ s, ϑ > 0, and P, Q ∈ As(Y ),
pointwise multiplication induces a bilinear continuous map

Hs
P,ϑ−0(X) × Hs′

Q,ϑ−0(X) → Hs′

P◦Q,ϑ−0(X). (3.6)

Proof. Let u ∈ Hs
P,ϑ−0(X), v ∈ Hs′

Q,ϑ−0(X). Then u = u0 + u1, v = v0 + v1,
where

u0 =

M∑

j=0

mj∑

k=0

ω(t)t−pj logk t cjk(y), v0 =

N∑

j′=0

nj′∑

k′=0

ω(t)t−qj′ logk′

t dj′k′(y),

(3.7)
ω(t) is a cut-off function, the sequences {(pj ,mj , cjk)}, {(qj′ , nj′ , dj′k′)} are
given by the asymptotic types P and Q, respectively, according to Def-
inition 2.18, and M , N are chosen so that u1 ∈ Hs,δP +ϑ−0(X), v1 ∈
Hs′,δQ+ϑ−0(X). Since u0 ∈ H∞,δP −0(X), v0 ∈ H∞,δQ−0(X), we obtain

uv = u0v0 + u1v0 + u0v1 + u1v1,

where u1v0 + u0v1 + u1v1 ∈ Hs′,δP◦Q+ϑ−0(X) by (3.4) and

u0v0 =

M,N∑

j,j′=0

mj ,nj′∑

k,k′=0

ω2(t)t−(pj+qj′ ) logk+k′

t cjk(y)dj′k′(y) ∈ H∞
P◦Q,ϑ−0(X),

for ω2(t) is a cut-off function and the sequence

{
(rj′′ , oj′′ ,

∑

pj+qj′=rj′′

∑

k+k′=k′′

cjkdj′k′)
}
,

where oj′′ = max{mj + nj′ ; pj + qj′ = rj′′}, is associated with an asymptotic
type that equals P ◦Q up to the conormal order δP◦Q+ϑ−0. This immediately

gives uv ∈ Hs′

P◦Q,ϑ−0(X).
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The significance of the class Asb(Y ) is uncovered by the next result:

Proposition 3.9. For s ≥ 0, δ ∈ R, δ + {ϑ} ≥ (n + 1)/2, and Q ∈ Asδ(Y ),

Hs,δ
Q,{ϑ}(X) ∩ L∞(X) = Hs,δ

Qb,{ϑ}
(X) ∩ L∞(X). (3.8)

Proof. Let u ∈ Hs,δ
Q,{ϑ}(X) ∩ L∞(X) and write

u(x) =

M∑

j=0

mj∑

k=0

ω(t)t−pj logk t cjk(y) + u1(x),

where the sequences {(pj ,mj , cjk)} is given by the asymptotic type Q and M
is chosen so that u1 ∈ Hs,(n+1)/2−0(X). Since u ∈ L∞(X) ⊂ H0,(n+1)/2−0(X),

we get that
∑M

j=0

∑mj

k=0 ω(t)t−pj logk t cjk(y) ∈ H0,(n+1)/2−0(X) which implies

cjk(y) = 0 for Re pj > 0. Thus u ∈ Hs,δ
Qb,ϑ

(X).

Lemma 3.10. For s ≥ 0, ϑ > 0, and P, Q ∈ Asb(Y ), pointwise multiplication

induces a bilinear continuous map
(
Hs

P,ϑ−0(X) ∩ L∞(X)
)
×

(
Hs

Q,ϑ−0(X) ∩ L∞(X)
)
→ Hs

P◦Q,ϑ−0(X) ∩ L∞(X).

Proof. Represent u = u0 + u1 ∈ Hs
P,ϑ−0(X) ∩ L∞(X), v = v0 + v1 ∈

Hs
Q,ϑ−0(X)∩L∞(X) as in the proof of Proposition 3.8. Since u0, v0 ∈ L∞(X)

due to the assumption P, Q ∈ Asb(Y ), we get that u1 ∈ Hs,δP +ϑ−0(X) ∩
L∞(X), v1 ∈ Hs,δQ+ϑ−0(X) ∩ L∞(X) and, therefore, u1v0 + u0v1 + u1v1 ∈
Hs,δP◦Q+ϑ−0(X) ∩ L∞(X) in view of Proposition 3.6 (c). The assertion fol-
lows.

A more precise statement is possible if P, Q ∈ As♯(Y ):

Lemma 3.11. For s ≥ 0, ϑ ≥ 0, and P, Q ∈ As♯(Y ) satisfying P < 1, Q < 1,

pointwise multiplication induces a bilinear continuous map
(
Hs

P,ϑ(X) ∩ L∞(X)
)
×

(
Hs

Q,ϑ(X) ∩ L∞(X)
)
→ Hs

P◦Q,ϑ(X) ∩ L∞(X). (3.9)

Especially, for s ≥ 0, ϑ ≥ 0, and Q ∈ As♯(Y ) being multiplicatively closed,

Hs
Q,ϑ(X) ∩ L∞(X) is an algebra under pointwise multiplication.

Proof. We may assume that ϑ > 0. Write u = u0 + u1 ∈ Hs
P,ϑ(X) ∩ L∞(X),

v = v0 + v1 ∈ Hs
Q,ϑ(X) ∩ L∞(X) as in the proof of Proposition 3.8, where

u0 = u00 + u01, v0 = v00 + v01, u00 = ω(t)c00, and v00 = ω(t)d00 with c00, d00

being constants and in the expressions for u01, v01 only appear exponents with
Re pj < 0 and Re qj′ < 0, respectively. Then

u1v01 + u01v1 + u1v1 ∈ Hs,(n+1)/2+ϑ+0(X),

u00v ∈ Hs
Q,ϑ(X) ⊆ Hs

P◦Q,ϑ(X), uv00 ∈ Hs
P,ϑ(X) ⊆ Hs

P◦Q,ϑ(X), and

u01v01 ∈ H∞
P◦Q,ϑ+0(X),

which proves the assertion.
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The fact which has actually been used in the last proof is that Proposi-
tion 3.6 (d) applies to the function ω(t)1 (p = 0, c(y) ≡ 1). This is also
used in part (b) of the next result:

Lemma 3.12. (a) Let s ≥ 0, ϑ > 0, and R, Q ∈ As(Y ). Then pointwise

multiplication induces a continuous map

C∞
R (X) × Hs

Q,ϑ−0(X) → Hs
R◦Q,ϑ−0(X). (3.10)

(b) If, in addition, R ∈ As(Y ) is so that the multiplicities of its highest singular

values are one, i.e., Jr ⊆ [C∞(Y )]1 for each r ∈ V , Re r = (n+1)/2−δR, where

J ⊂ EV (Y ) represents R, then pointwise multiplication induces a continuous

map

C∞
R (X) × Hs

Q,ϑ(X) → Hs
R◦Q,ϑ(X).

Proof. (a) is immediate from Proposition 3.8. To get (b), we argue as in the
proof of Lemma 3.11.

Proposition 3.13. Let s ≥ 0, ϑ ≥ 0, and Q ∈ As♯(Y ) be multiplicatively

closed. Then v1, . . . , vK ∈ Hs
Q,ϑ(X) ∩ L∞(X) and F ∈ C∞(RK) implies that

F (v1, . . . , vK) ∈ Hs
Q,ϑ(X) ∩ L∞(X). (3.11)

Proof. We are allowed to assume that ϑ > 0. Then v ∈ Hs
Q,ϑ(X) implies that

v
∣∣
∂X

is a constant, where v
∣∣
∂X

means the factor in front of t0 in the asymptotic

expansion (1.2) (with u replaced with v) of v as t → +0. Let βJ = vJ

∣∣
∂X

for
1 ≤ J ≤ K be these constants. Using Taylor’s formula, we obtain

F (v1, . . . , vK) =
∑

|α|<N

1

α!
(∂αF )(β1, . . . , βK)(v1 − β1)

α1 . . . (vK − βK)αK

+ N
∑

|α|=N

∫ 1

0

(1 − σ)N−1

α!
(∂αF )(β1 + σ(v1 − β1), . . . , βK + σ(vK − βK)) dσ

× (v1 − β1)
α1 . . . (vK − βK)αK . (3.12)

By Lemma 3.11, (v1 − β1)
α1 . . . (vK − βK)αK ∈ Hs

Q,ϑ(X) ∩ L∞(X) for any

α ∈ NK , thus the first summand on the right-hand side of (3.12) belongs
to Hs

Q,ϑ(X) ∩ L∞(X). On the other hand, choosing N sufficiently large, we

can arrange that (v1 − β1)
α1 . . . (vK − βK)αK ∈ Hs,(n+1)/2+ϑ(X) ∩ L∞(X)

for |α| ≥ N , since vJ − βJ ∈ Hs,(n+1)/2+0(X) ∩ L∞(X) for 1 ≤ J ≤ K.
By (3.5),

{
(∂αF )(β1 + σ(v1 − β1), . . . , βK + σ(vK − βK)) dσ; 0 ≤ σ ≤ 1

}

is a bounded set in
(
1 + Hs,(n+1)/2(X)

)
∩ L∞(X) for any α ∈ NK . This

shows that the second summand on the right-hand side of (3.12) belongs to
Hs,(n+1)/2+ϑ(X) ∩ L∞(X).
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Proposition 3.14. (a) Let s ≥ 0, ϑ > 0. Further let Q ∈ As♯(Y ) be multi-

plicatively closed and R ∈ As(Y ). Then v1, . . . , vK ∈ Hs
Q,ϑ−0(X)∩L∞(X) and

F ∈ C∞
R (X × RK) implies that

F (x, v1, . . . , vK) ∈ Hs
R◦Q,ϑ−0(X). (3.13)

(b) If, in addition, R satisfies the assumption of Lemma 3.12 (b), then

v1, . . . , vK ∈ Hs
Q,ϑ(X) ∩ L∞(X) and F ∈ C∞

R (X × RK) implies that

F (x, v1, . . . , vK) ∈ Hs
R◦Q,ϑ(X).

Proof. We prove (a), (b) is analogous. Since C∞
R (X × RK) = C∞

R (X)⊗̂π

C∞(RK), we can write

F (x, υ) =

∞∑

j=0

αj ϕj(x)Fj(υ),

where {αj}
∞
j=0 ∈ l1 and {ϕj}

∞
j=0 ⊂ C∞

R (X) and {Fj}
∞
j=0 ⊂ C∞(RK), respec-

tively, are null sequences. By the preceeding proposition,

Fj(v1, . . . , vK) → 0 as j → ∞ in Hs
Q,ϑ−0(X).

By Lemma 3.12,

ϕj(x)Fj(v1, . . . , vK) → 0 as j → ∞ in Hs
R◦Q,ϑ−0(X).

Thus

F (x, v1, . . . , vK) =

∞∑

j=0

αj ϕj(x)Fj(v1, . . . , vK) ∈ Hs
R◦Q,ϑ−0(X),

where the sum on the right-hand side is absolutely convergent.

3.2 The bootstrapping argument

We consider the equation
Au = Π(u), (3.14)

where A ∈ Diffµ
Fuchs(X) is an elliptic Fuchsian differential operator. Properties

of the nonlinear operator u 7→ Π(u) are discussed below. The method proposed
for deriving elliptic regularity for solutions to (3.14) amounts to balancing two
asymptotic types — one for the left-hand and the other one for the right-hand
side of (3.14).
We assume: There are asymptotic types P̄ ∈ Asδ(Y ), Q̄ ∈ Asδ−µ(Y ), numbers
a, b, s0, ϑ0 ∈ R with

a < µ, b < δQ̄ − δP̄ + µ, s0 ≥ a+, δP̄ + {ϑ0} ≥ δ,
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and a subset U ⊆ Hs0

P̄ ,{ϑ0}
(X) such that the following conditions are met:

(A) A is elliptic with respect to the conormal order δ and P̄ < Pδ(Q̄;A), i.e.,

u ∈ H−∞,δ(X), Au ∈ C∞
Q̄

(X) implies u ∈ C∞
P̄

(X);

(B) For s ≥ s0, ϑ ≥ ϑ0, we have

Π: U ∩ Hs
P̄ ,{ϑ}(X) → Hs−a

Q̄,{ϑ}−b
(X).

Note that {ϑ0} − b + δQ̄ ≥ δ − µ.

Proposition 3.15. Under the conditions (A), (B), each solution u ∈ U ⊆
Hs0

P̄ ,{ϑ0}
(X) to (3.14) belongs to the space C∞

P̄
(X).

Proof. We prove by induction on j that

u ∈ H
s0+j(µ−a)

P̄ ,{ϑ0}+j(µ−b+δQ̄−δP̄ )
(X) (3.15)

for all j ∈ N. Since µ − a > 0, µ − b + δQ̄ − δP̄ > 0, this implies u ∈ C∞
P̄

(X).
By assumption, (3.15) holds for j = 0. Now suppose that (3.15) for
some j has already been proven. From (B) we conclude that Π(u) ∈

H
s0+j(µ−a)−a

Q̄,{ϑ0}+j(µ−b+δQ̄−δP̄ )−b
(X). In view of (A), elliptic regularity gives u ∈

H
s0+(j+1)(µ−a)

P̄ ,{ϑ0}+(j+1)(µ−b+δQ̄−δP̄ )
(X).

Example 3.16. Here, we provide an example for a nonlinearity Π satisfying (B).
Let Π(u) = K0(u)

/
K1(u), where K0, K1 are polynomials of degree m0 and m1,

respectively. Let u ∈ Hs
P,ϑ−0(X), where s > (n+1)/2, δP +ϑ > (n+1)/2, and

ϑ > 0. Further, we assume that the multiplicities of the highest singular values
for P are simple and the coefficient functions for these singular values nowhere
vanish on Y . Then we have K0(u) ∈ Hs

P0,ϑ−0(X), K1(u) ∈ Hs
P1,ϑ−0(X) for re-

sulting asymptotic types P0, P1. In particular, P0 is dominated by 1∨
∨m0

k=1 P k

and P1 is dominated by 1 ∨
∨m1

k=1 P k. Furthermore, it is readily seen that
v ∈ Hs

P1,ϑ−0(X) and v 6= 0 everywhere on X◦ implies that 1/v ∈ Hs
Q1,ϑ′−0(X)

for some resulting asymptotic type Q1. Hence, we are allowed to set P̄ = P ,
Q̄ = P0 ◦ Q1, and

U =
{
u ∈ Hs

P,ϑ−0(X); K1(u) 6= 0 everywhere on X◦
}
.

The condition s > (n + 1)/2 can be replaced by s ≥ 0. Then we additionally
need u ∈ L∞

loc(X
◦).

3.3 Proof of the main theorem

The main step consists in constructing asymptotic types P̄ , Q̄ so that Propo-
sition 3.15 applies. Thereby, upon choosing δ ∈ R even smaller if necessary, we
can assume that

δ ≤ µ̄ + (n + 1)/2

and that A ∈ Diffµ
Fuchs(X) is elliptic with respect to the conormal order δ.

Set ∆ = δR + (µ − µ̄) − (n + 1)/2. By assumption (1.4), ∆ > 0.
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3.3.1 Construction of asymptotic types P , Q

We construct by induction on h sequences {Ph}
∞
h=0 ⊂ Asδ(Y ) and {Qh}

∞
h=0 ⊂

As♯(Y ) of asymptotic types as follows: Set P0 = Pδ(O;A). Suppose that
P0, . . . , Ph and Q0, . . . , Qh−1 for some h have already been constructed. Then

Qh =
(
Q(Ph;B1, . . . , BK)♯

)
,̃ (3.16)

Ph+1 = Pδ(R ◦ Qh;A). (3.17)

Lemma 3.17. For each h ≥ 0,

Ph = Ph+1 up to the conormal order δR + µ + h∆ − 0, (3.18)

Qh = Qh+1 up to the conormal order δR + (µ − µ̄) + h∆ − 0. (3.19)

In particular, the joins P =
∨∞

h=0 Ph and Q =
∨∞

h=0 Qh exist.

Proof. We set Q−1 = O and proceed by induction on h. (3.19) holds for
h = −1, since Q0 ∈ As♯(Y ) and, therefore, Q0 = O up to the conormal order
(n + 1)/2 − 0.

Suppose that Qh−1 = Qh up to the conormal order δR +(µ− µ̄)+ (h− 1)∆− 0
for some h ≥ 0 has already been proved. Then R ◦ Qh−1 = R ◦ Qh up to
the conormal order δR + h∆ − 0 and Ph = Ph+1 up to the conormal order
δR + µ + h∆ − 0, since Ph = Pδ(R ◦ Qh;A), Ph+1 = Pδ(R ◦ Qh+1;A).

Now suppose that Ph = Ph+1 up to the conormal order δR + µ + h∆ − 0.
We obtain Q(Ph;B1, . . . , BK) = Q(Ph+1;B1, . . . , BK) up to the conormal or-
der δR + (µ − µ̄) + h∆ − 0 and, therefore, Qh = Qh+1 up to the conormal
order δR + (µ − µ̄) + h∆ − 0, since Qh =

(
Q(Ph;B1, . . . , BK)♯

)
,̃ Qh+1 =(

Q(Ph+1;B1, . . . , BK)♯
)

.̃

This completes the inductive proof.

Lemma 3.18. The asymptotic types P =
∨∞

h=0 Ph ∈ Asδ(Y ), Q =
∨∞

h=0 Qh ∈

As♯(Y ) satisfy:

(a) Q(P ;B1, . . . , BK)b = Q(P ;B1, . . . , BK)♯ and Q =
(
Q(P ;B1, . . . , BK)♯

)
;̃

(b) P = Pδ(R ◦ Q;A);

(c) Q is multiplicatively closed.

Furthermore, P, Q are minimal among all asymptotic types in Asδ(Y ) and

As♯(Y ), respectively, satisfying (a) to (c).

Proof. The assertions immediately follow from the description of the asymp-
totic types Ph, Qh given in the previous lemma.

Only Q(P ;B1, . . . , BK)b = Q(P ;B1, . . . , BK)♯ needs an argument: But P =
P0 up to the conormal order δR + µ − 0, so we get Q(P ;B1, . . . , BK) =
Q(P0;B1, . . . , BK) up to the conormal order δR+(µ−µ̄)−0 = (n+1)/2+∆−0 >
(n + 1)/2, and Q(P0;B1, . . . , BK)b = Q(P0;B1, . . . , BK)♯ is exactly the non-
resonance condition (1.5).
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Note that, by the non-resonance condition (1.5) and Proposition 3.9,

BJu ∈ Hs−µ̄,δ−µ̄
Q(P ;B1,...,BK),ϑ−0(X) ∩ L∞(X)

⊆ Hs−µ̄,δ−µ̄
Q(P ;B1,...,BK)♯,ϑ−0

(X) ⊆ Hs−µ̄,δ−µ̄
Q,ϑ−0 (X) (3.20)

if u ∈ Hs,δ
P,ϑ−0(X), δ − µ̄ + ϑ > (n + 1)/2, and BJu ∈ L∞(X).

3.3.2 End of the proof of Theorem 1.1

Since BJu ∈ L∞(X) ⊂ H0,(n+1)/2−0(X) for all 1 ≤ J ≤ K, we have
F (x,B1u, . . . , BKu) ∈ H0,δR−0(X) and

u ∈ Hµ
P0,δR+µ−δP −0(X) = Hµ

P,δR+µ−δP −0(X)

by elliptic regularity.
To conclude the proof of Theorem 1.1, we apply Proposition 3.15 with Πu =
F (x,B1u, . . . , BKu), P̄ = P , Q̄ = R ◦Q, where P ∈ Asδ(Y ), Q ∈ As♯(Y ) have
been constructed in Lemmas 3.17, 3.18, s0 = µ, {ϑ0} = δR +µ− δP − 0, a = µ̄,
b = (n + 1)/2 − δP + µ̄, and

U =
{
u ∈ Hµ

P,δR+µ−δP −0(X); BJu ∈ L∞(X), 1 ≤ J ≤ K
}
. (3.21)

Then a < µ, b < δR◦Q − δP + µ for δR◦Q = δR, ∆ > 0, and δP + ϑ0 = δR + µ >
µ̄ + (n + 1)/2 ≥ δ, i.e., δP + {ϑ0} ≥ δ. Moreover, condition (A) is fulfilled.
To check condition (B), note that u ∈ U∩Hs

P,ϑ−0(X) for s ≥ µ, ϑ ≥ δR+µ−δP

implies
F (x,B1u, . . . , BKu) ∈ Hs−µ̄

R◦Q,δP −µ̄−(n+1)/2+ϑ−0(X)

by (3.20) and Proposition 3.14.
Thus Proposition 3.15 applies to yield u ∈ C∞

P (X).

Remark 3.19. From (3.21) it is seen that the asymptotic type P ∈ Asδ(Y )
can be taken smaller, namely instead of P = Pδ(R ◦ Q;A) we can choose the
asymptotic type

∨{
P ′ ∈ Asδ(Y ); P ′

4 Pδ(R ◦ Q;A), Q(P ′;B1, . . . , BK) ∈ As♯(Y )
}
.

In concrete problems, the resulting asymptotic type for u can be even smaller,
e.g., due to nonlinear interaction caused by the special structure of the nonlin-
earity.

3.4 Example: The equation ∆u = Au2 + B(x)u in three space dimensions

Let Ω be a bounded, smooth domain in R3 containing 0. We are going to study
singular solutions to the equation

∆u = Au2 + B(x)u on Ω \ {0}, (3.22)

γ0u = c0, u
∣∣
∂Ω

= φ, (3.23)
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where γ0u = limx→0 |x|u(x), A ∈ R, and B ∈ C∞(Ω) is real-valued. Since the
quadratic polynomial Au2 + B(x)u rather than a general nonlinearity F (x, u)
enters, we may admit complex-valued solutions u to (3.22). In particular,
c0 ∈ C.

Remark 3.20. By results in Véron [17], one expects the limit limx→0 |x|u(x)
exist for the solutions u = u(x) to (3.22).

On Ω\{0}, we introduce polar coordinates (t, y) ∈ R+ ×S2, t = |x|, y = x/|x|.
We further introduce the function spaces

X 2 =
{
c0t

−1 + c11 log t + u0(x); c0, c11 ∈ C, u0 ∈ H2(Ω)
}
,

Y0 =
{
d0t

−2 + v0(x); d0 ∈ C, v0 ∈ L2(Ω)
}
,

the definition of which is suggested by formal asymptotic analysis. On the
space X 2, we have the trace operators γ0, γ1, γ11, where γ11u = limt→+0

(
u(x)−

(γ0u)t−1
)
/ log t, γ1u = limt→+0

(
u(x) − (γ0u)t−1 − (γ11u) log t

)
.

Proposition 3.21. Suppose that B(x) ≥ 0 for all x ∈ Ω. Then, for all c0 ∈ C,

φ ∈ H3/2(∂Ω) with |c0|+‖φ‖H3/2(∂Ω) small enough, the boundary value problem

(3.22), (3.23) admits a unique small solution u ∈ X 2. This solution u = u(x)
obeys a complete conormal asymptotic expansion as x → 0 that can successively

be calculated. Especially,

c11 = Ac2
0, (3.24)

where c11 = γ11u.

Proof. Let us consider the nonlinear operator

Ψ: X 2 → Y0 × C × H3/2(∂Ω), u 7→
(
∆u − Au2 − B(x)u, γ0u, u

∣∣
∂Ω

)
.

It is readily seen that the linearization of Ψ about u = 0 is an isomorphism
between the indicated spaces. Thus, the existence of a unique small solution
u ∈ X 2 to (3.22), (3.23) is implied by the inverse function theorem. (3.24)
likewise follows.
Furthermore, writing this solution in the form u(x) = c0t

−1 + c11 log t + u0(x),
where u0 ∈ H2(Ω), we get that u0 fulfills the equation

c11t
−2 + ∆u0 = A

(
c2
0t

−2 + 2c0c11t
−1 log t + c2

11 log2 t
)

+ 2A
(
c0t

−1 + c11 log t
)
u0 + Au2

0 + B(x)
(
c0t

−1 + c11 log t
)

+ B(x)u0. (3.25)

This can be brought into the form (1.1) with A = ∆,

F (x, ν) =
(
2Ac0c11t

−1 log t + B(x)c0t
−1 + Ac2

11 log2 t + B(x)c11 log t
)

+
(
2Ac0t

−1 + 2Ac11 log t + B(x)
)
ν + Aν2,

since ∆ = t−2
(
(−t∂t)

2 − (−t∂t) + ∆S2

)
∈ Diff2

Fuchs(Ω \ {0}), where 0 ∈ Ω is
considered as conical point with cone base S2 = {x ∈ R3; |x| = 1}, cf. Re-
mark 1.3, and ∆S2 being the Laplace-Beltrami operator on S2. The conditions
(1.4), (1.5) are obviously satisfied.
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Thus, Theorem 1.1 applies to u0 ∈ H2(Ω) ⊂ L∞(Ω) to yield that u0 and,
therefore, u obey a complete conormal asymptotic expansion.

Remark 3.22. (a) Taking for P the asymptotic type in As0(S2) that comes out
of the calculation of the conormal asymptotic expansion for u, i.e., we have
u ∈ C∞

P (Ω \ {0}), and for Q the resulting asymptotic type in As−2(S2) for
the right-hand side of (3.22), we are in a situation in which Proposition 3.15
directly applies without having boundedness assumptions for u.
(b) Allowing more general functions B ∈ C∞

R (Ω\{0}) for some R ∈ As−1/2(S2)
(the conormal order −1/2 ensures that the term Ac2

0t
−2 dominates on the right-

hand side of (3.25)) rather than B ∈ C∞
P0

(Ω \ {0}), where P0 is the asymptotic
type for Taylor asymptotics, one can perform the same analysis as before upon
replacing the space H2(Ω) in the definition of X 2 accordingly.
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