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ABSTRACT. Let p be an odd prime with odd relative class number
h~. In this article we compute the Farrell cohomology of Sp(p—1,7Z),
the first p-rank one case. This allows us to determine the p-period of
the Farrell cohomology of Sp(p—1,Z), which is 2y, where p—1 = 2"y,
y odd. The p-primary part of the Farrell cohomology of Sp(p—1,2Z) is
given by the Farrell cohomology of the normalizers of the subgroups of
order p in Sp(p—1,Z). We use the fact that for odd primes p with A~
odd a relation exists between representations of Z/pZ in Sp(p — 1,7Z)
and some representations of Z/pZ in U((p — 1)/2).
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1 INTRODUCTION

We define a homomorphism
o U(n) — Sp(2n,R)
. A B
X=A4+iB — (—B A) =: ¢(X)

where A and B are real matrices. Then ¢ is injective and maps U(n) on
a maximal compact subgroup of Sp(2n,R). This homomorphism allows to
consider each representation

p:Z/pZ — U((p—1)/2)

as a representation

¢pop:Z/pZ — Sp(p— 1,R).
In an article of Busch [ﬂ] it is determined which properties p has to fulfil for
¢ o p to be conjugate in Sp(p — 1, R) to a representation

p: Z/pZ — Sp(p — 1,7Z).
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240 C. BuscH

Tureorem R.2. Let X € U((p — 1)/2) be of odd prime order p. We define
¢ : Ul{(p—1)/2) — Sp(p — 1,R) as above. Then ¢(X) € Sp(p — 1,R) is
conjugate to' Y € Sp(p — 1,7Z) if and only if the eigenvalues A1, ..., Ap—1y/2 of
X are such that

{)\17 .. ~,)\(p—1)/2’X17 s vx(p—l)/Q}

18 a complete set of primitive p-th roots of unity.

The proof of Theorem @ involves the theory of cyclotomic fields. For the
p-primary component of the Farrell cohomology of Sp(p — 1,Z), the following
holds:
H*(Sp(p ~ 1,2), Z)p = [] B*(N(P). 2)y)
Pep

where P is a set of representatives for the conjugacy classes of subgroups of
order p of Sp(p — 1,Z) and N(P) denotes the normalizer of P € ‘B. This
property also holds if we consider GL(p—1,Z) instead of the symplectic group.
This fact was used by Ash in [[[] to compute the Farrell cohomology of GL(n, Z)
with coefficients in F,, for p — 1 < n < 2p — 2. Moreover, we have

H*(N(P), Z) ) = (ﬁ*(C(P),Z)(p))N(P)/C(P)

where C'(P) is the centralizer of P. We will determine the structure of C'(P) and
of N(P)/C(P). After that we will compute the number of conjugacy classes
of those subgroups for which N(P)/C(P) has a given structure. Here again
arithmetical questions are involved. In the articles of Brown [E] and Sjerve and
Yang [H] is shown that the number of conjugacy classes of elements of order
p in Sp(p — 1,7Z) is 2(P~V/2h~ where h~ denotes the relative class number of
the cyclotomic field Q(€), £ a primitive p-th root of unity. If A~ is odd, each
conjugacy class of matrices of order p in Sp(p — 1, R) that lifts to Sp(p — 1,7Z)
splits into A~ conjugacy classes in Sp(p—1,Z). The main results in this article
are

THEOREM @ Let p be an odd prime for which h™ is odd. Then

—~ E:k
i o0~ 1.2). 20 = ] ([Tt o).

k|lp—1 1
k odd

where /Ek denotes the number of conjugacy classes of subgroups of order p of
Sp(p—1,Z) for which |N/C| = k. Moreover Ky, > Ky, where Ky, is the number
of conjugacy classes of subgroups of U((p —1)/2) with [IN/C|=k. As usual N
denotes the normalizer and C the centralizer of the corresponding subgroup.

THEOREM @ Let p be an odd prime for which h™ is odd and let y be such
that p— 1= 2"y and y is odd. Then the period of H* (Sp(p = 1,7Z),Z) () is 2y.
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THE FARRELL COHOMOLOGY OF SP(p — 1,Z) 241

Corresponding results have been shown for other groups, for example GL(n, Z)
in the p-rank one case [[lll, the mapping class group [f] and the outerautomor-

phism group of the free group in the p-rank one case [ﬂ]

This article presents results of my doctoral thesis, which I wrote at the ETH
Zirich under the supervision of G. Mislin. I thank G. Mislin for the suggestion
of this interesting subject.

2 THE SYMPLECTIC GROUP

2.1 DEFINITION

Let R be a commutative ring with 1. The general linear group GL(n, R) is
defined to be the multiplicative group of invertible nxn-matrices over R.

DEFINITION. The symplectic group Sp(2n, R) over the ring R is the subgroup
of matrices Y € GL(2n, R) that satisfy

T _ o 0 In
YTJY = J = (—In 0

where I,, is the nxn-identity matrix.
It is the group of isometries of the skew-symmetric bilinear form

(,): R™xR™ — R
(z,y) — (z,y) =a"Jy.

It follows from a result of Biirgisser [E} that elements of odd prime order p exist
in Sp(2n,Z) if and only if 2n > p — 1.

PROPOSITION 2.1. The eigenvalues of a matrix Y € Sp(p — 1,Z) of odd prime
order p are the primitive p-th roots of unity, hence the zeros of the polynomial

m(z)=aP 1+ f a4 1.

Proof. If X is an eigenvalue of Y, we have A = 1 or A = £, a primitive p-th root
of unity, and the characteristic polynomial of Y divides P — 1 and has integer
coefficients. Since m(z) is irreducible over Q, the claim follows. O

2.2 A RELATION BETWEEN U(Z;) AND Sp(p — 1,Z)

Let X € U(n), ie., X € GL(n,C) and X*X = I, where X* = X ' and I,, is
the nxn-identity matrix. We can write X = A +iB with A, B € M(n,R), the
ring of real nxmn-matrices. We now define the following map

o U(n) —  Sp(2n,R)
X=A+iB +— (g i) — o(X).

The map ¢ is an injective homomorphism. Moreover, it is well-known that ¢
maps U(n) on a maximal compact subgroup of Sp(2n,R).
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242 C. BuscH

THEOREM 2.2. Let X € U((p — 1)/2) be of odd prime order p. We define
¢ : Ul{p—1)/2) — Sp(p — 1,R) as above. Then ¢(X) € Sp(p — 1,R) is
conjugate to' Y € Sp(p — 1,7Z) if and only if the eigenvalues A1, ..., Ap—1y/2 of
X are such that

{M Aoy 2 A Aoy 2 )

is a complete set of primitive p-th roots of unity.
Proof. See [{] or [H]. d

In the proof of Theorem E we used the following facts. For a primitive p-th
root of unity &, we consider the cyclotomic field Q(§). It is well-known that
Q(¢ + €71) is the maximal real subfield of Q(¢), and that Z[¢] and Z[€ + €71
are the rings of integers of Q(¢) and Q(& + £~1) respectively. Let (a,a) denote
a pair where a C Z[¢] and a € Z[¢] are chosen such that a # 0 is an ideal in Z[¢]
and aa = (a), a principal ideal. Here @ denotes the complex conjugate of a. We
define an equivalence relation on the set of those pairs by (a,a) ~ (b,b) if and
only if A\, u € Z[¢] \ {0} exist such that Aa = pb and AMa = pfib. We denote
by [a, a] the equivalence class of the pair (a,a) and by P the set of equivalence
classes [a, a].

Let S, denote the set of conjugacy classes of elements of order p in Sp(p—1,Z).
Sjerve and Yang have shown in [H] that a bijection exists between P and S,.
If Y € Sp(p — 1,Z) is a matrix of order p, then the equivalence class [a,a] € P
corresponding to the conjugacy class of Y in Sp(p — 1,Z) can be determined
in the following way. Let a = (ag,..., ap_l)T be an eigenvector of Y corres-
ponding to the eigenvalue £ = ™/ that is Ya = £a. Then oy, ... ,0p_1 is a
basis of an ideal a C Z[¢]. Sjerve and Yang [P] proved that this ideal a has the
property [a,a] € P. Let h and h* be the class numbers of Q(¢) and Q(¢ +¢71)
respectively. Then h~ := h/hT denotes the relative class number. Sjerve and
Yang [E] showed that the number of conjugacy classes of matrices of order p in
Sp(p—1,Z) is h~ 2(P=1/2_ The number of conjugacy classes in U((p —1)/2) of
unitary matrices that satisfy the condition in Theorem E is 2(P=1)/2,

Let U, denote the set of conjugacy classes of matrices in U((p—1)/2) that satisfy
the condition on the eigenvalues that is given in Theorem @ A consequence
of Theorem E is that it is possible to define a map

V:S, — U,
and that this map is surjective. Therefore the map
VP —U,

is surjective either.
For a given choice of the ideal a (for example a = Z[¢]), we denote by P, the set
of those classes [a,a] € P, where a corresponds to our choice. If the restriction

w\m i Pa— Uy

DOCUMENTA MATHEMATICA 7 (2002) 239-254



THE FARRELL COHOMOLOGY OF SP(p — 1,Z) 243

is surjective each conjugacy class in U, of matrices that satisfy Theorem E
yields A~ conjugacy classes in Sp(p — 1,Z). In general ¢|p, is not surjective.
It is a result of Busch, [{], [], that ¢|p, is surjective if A~ is odd. If A~ is even
and h* is odd, we have no surjectivity of 1|p,. This happens for example for
the primes 29 and 113.

2.3 SUBGROUPS OF ORDER p IN Sp(p — 1,Z)

It follows from Theorem @ that a mapping exists that sends the conjugacy
classes of matrices Y € Sp(p — 1,Z) of odd prime order p onto the conju-
gacy classes of matrices X in U((p — 1)/2) that satisfy the condition on the
eigenvalues described in Theorem @ This mapping is surjective.

It is clear that det X = e!?™/P for some 1 < 1 < p. If X € U((p — 1)/2)
satisfies the condition on the eigenvalues, then so does X*, k=1,...,p—1. If
det X = €27/ for some 1 <1 < p—1, then

{detX, e ,detprl} = {ei%/p, e ,ei(pfl)%/p}

and the X* are in different conjugacy classes. If det X = 1, it is possible that
some k exists such that X and X% are in the same conjugacy class. In this
section we will analyse when and how many times this happens. The number
of conjugacy classes of matrices X € U((p — 1)/2) that satisfy the condition
required in Theorem @ is 2(P=1)/2 Herewith we will be able to compute the
number of conjugacy classes of subgroups of matrices of order p in U((p—1)/2).
We remember that the number of conjugacy classes of matrices of order p in
Sp(p — 1,Z) is 2P=V/2p=_ If h~ = 1, a bijection exists between the conjugacy
classes of matrices of order p in Sp(p—1, Z) and the conjugacy classes of matrices
of order p in U((p — 1)/2) that satisfy the condition required in Theorem .2
Let X € U((p—1)/2) with X? = 1, X # 1. Then X generates a subgroup
S of order p in U((p — 1)/2). If det X = 1, it is possible that X is conjugate
to X’ € S with X # X’. Two matrices in U((p — 1)/2) are conjugate to each
other if and only if they have the same eigenvalues. The set of eigenvalues of
X is
{eigl%/p, e ,eig(P—1>/22”/p}

where 1 < g; <p—1 forl:l’...,pr1 and foralll #j,l,j=1,...,(p—1)/2,
g1 # p—g; and g; # g;. From now on we consider the g; as elements of (Z/pZ)*.
The matrix X is conjugate to X" for some & if the eigenvalues of X and X"

are the same. This is equivalent to

{91, 9012} = {K91,- -, Kgp—1)/2} C (Z/pZL)*

where g; and kg;, 7 = 1,...,(p — 1)/2, denote the corresponding congruence
classes.
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We introduce some notation that will be used in the whole section. Let

G:= {gla cee 7g(p71)/2} C (Z/pZ)*v
kG = {Kg1,...,kgp-1)/2} C (Z/pZ)*
for some k € (Z/pZ)*. Let x be a generator of the multiplicative cyclic group
(Z/pZ)* and let K be a subgroup of (Z/pZ)* with |K| = k. Then K is cyclic
and k divides p — 1. Let m := (p — 1)/k, then 2™ generates K.
First we prove the following proposition.

PROPOSITION 2.3. Let G C (Z/pZ)* be a subset with |G| = (p — 1)/2. The
following are equivalent.

i) Forall gj,q1 € G, g; # —g1 and k € (Z/pZ)* exists with kG =G, Kk # 1.

ii) An integer h € N, 1 < h < (p—1)/2, and n; € (Z/pZ)*, j =1,...,h,
exist with

h
G= U an
j=1

where

(e}

K C (Z/pZ)* is the subgroup generated by k,
the order of K is odd,

for k' € K and all j,l =1,...,h, n; # —mr/,
and forall j =2,...,h, n; € K.

e}

e}

e}

Then we will analyse the uniqueness of this decomposition of GG. This will
enable us to determine the number of G C (Z/pZ)* with |G| = (p —1)/2 and
G = kG for some 1 # k € (Z/pZ)*. Herewith we will determine the number of
conjugacy classes of subgroups of order p in U((p —1)/2) whose group elements
satisfy the condition of Theorem P.J.

DEFINITION. Let k € (Z/pZ)* and let K be the subgroup of (Z/pZ)* generated
by k. Let G C (Z/pZ)* be a subset with |G| = (p — 1)/2. We say that K
decomposes G if G, k and K fulfil the conditions of Proposition E

So K decomposes G if the order of the group K is odd and G is a disjoint union
of cosets n1 K, ..., np K of K in (Z/pZ)* for which for all n;,n;, j,l=1,...,h,
holds n; K # —n K.

LEMMA 2.4. Let G C (Z/pZ)* with |G| = (p — 1)/2. Then 1 # x € (Z/pZ)*
exists with kG = G if and only if 1 < h < (p—1)/2 and n; € (Z/pZ)*,
j=1,... h, exist with

h
G = U TLjK
j=1

where n; € K for j = 2,...,h, and K is the subgroup of (Z/pZ)* that is
generated by k.
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Proof. <: Let k' € K. Then

h h h
kG = K U n; K = U nj/ilK = U n; K =G.
j=1 j=1 j=1

=: Without loss of generality we assume that 1 € G. If 1 € G, \ € (Z/pZ)*
exists with 1 € AG because (Z/pZ)* is a multiplicative group. Of course
kAG = AG. Moreover, it is easy to see that if AG is a union of cosets of K,
this is also true for G. The equation kG = G implies that KG = G. If 1 € G,
then K C G since KG = G. If K = GG, we have finished the proof. If K # G,
we consider G} = G\ K. For all k! € K we have k! K = K and

K'G =k (G\K)=G\ K =G/.

Now \; € (Z/pZ)* exists with 1 € \;G} =: G1. Then G = K UA['G; and we
can repeat the construction on Gy instead of G. This procedure finishes after
h = (p—1)/2k steps. Let nq := 1 and for j = 2,...,h let n; := nj_l)\j__ll.
Then G = U;;l n; K. O

Let G = {g1,---,9p-1)/2} C (Z/pZ)* with |G| = (p —1)/2 and kG = G for
some k € (Z/pZ)* with k # 1, k¥ = 1. The following lemma will give an
answer to the question when G satisfies the conditions g; # g;, g1 # —g; for all

. . . 1
Jj#lwith j,l=1,... 5=,

LEMMA 2.5. Let G = U?:1 n; K C (Z/pZ)* be defined like in Lemma2.4 Then
for all g;, 91 € G holds g; # —gi if and only if —1 ¢ K and for all x € K and
all j,l =1,...,h holds nj; # —nk.

Proof. =: Suppose —1 € K. Then —1 = &' for some [ and n; = —n;x'. But
then we have found ¢; :=nq € G and ¢5 := n1x! € G with g1 = —gs.

<: Suppose g;,q € G exist with g; = —g;. Let g; = n;x’, g = nyk!. Then
njFLj = —mk!, and we have found x/~! € K with n; = —njfij_l. O

Which subgroups K C (Z/pZ)* satisfy the condition —1 ¢ K?

LEMMA 2.6. Let K C (Z/pZ)* be a subgroup of order k. Then —1 ¢ K if and
only if k is odd.

Proof. The group (Z/pZ)* is cyclic of order p — 1 and K is a cyclic group. Let
x be a generator of K, then 2% = 1. If k is even, k/2 € Z and %2 ¢ K. But
then (2¥/2)2 = 2% = 1 and therefore 2%/2 = —1 € K since —1 is the element of
order 2 in (Z/pZ)*. On the other hand if —1 € K, then K contains an element
of order 2. But then k is even, since the order of any element of K divides the
order of K. O

Proof of Proposition @ A subgroup K decomposes a set G as required in
Lemma E if and only if the order of K is odd. Moreover, the order of K
divides p—1. Now Proposition E follows from Lemma @ and Lemma E O
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We did not yet analyse the uniqueness of the decomposition of a set G. It is
evident that the n; can be permuted and multiplied with any k!l € K, but we
will see that K and h are not uniquely determined. The next lemma states
that if K decomposes G then so does any nontrivial subgroup of K.

LEMMA 2.7. Let G = U;-Lzln-K C (Z/pZ)*, |G| = (p—1)/2, be such that K
decomposes G (Proposition @) Let |K| = k be not a prime and let K' # K
be a nontrivial subgroup of K. Then K’ decomposes G.

Proof. Since K’ is a subgroup of K, K can be written as a union of cosets of
K’ in K. Moreover, G is a union of cosets of K in (Z/pZ)*. Therefore

h h’
G= LLJ an = UTL;K/
j=1 i=1

Since K decomposes G, we have njK # —n;K for all [,57 = 1,...,h. This
implies that nj K’ # —n}K’ for all i,l =1,...,h'. So K’ decomposes G. O

Our next aim is to determine the number of sets G. Therefore we consider for
a given G the group K with |K| maximal and K decomposes G.

LEMMA 2.8. Let K C (Z/pZ)* be a nontrivial subgroup of odd order k. Then
2(p=1)/2k different sets G exist such that K decomposes G and |G| = (p—1)/2.

Proof. The order of K C (Z/pZ)* is odd. Then it follows from Lemma P.§ that
—1 ¢ K. Consider the cosets n;K of K in (Z/pZ)*. Since —1 ¢ K, we have
n; K # —n;K. Son;, j=1,...,(p—1)/2k, exist such that

(p—1)/2k

@/pz)* = |J (nKu-n;K).
j=1

The group K decomposes G if and only if G is a union of cosets of K and
m;K C G implies that —m;K ¢ G for mj; = +n;, j = 1,...,(p — 1)/2k.
Therefore 2(P~1)/2k gets G exist such that K decomposes G. O

DEFINITION. Let K C (Z/pZ)* be a group of odd order k. We define N to
be the number of G C (Z/pZ)* such that K decomposes G but any K’ with
K CK' C (Z/pZ)*, K # K’, does not decompose G.

To determine N}, we have to subtract the number A from 2P~1/2k for each
odd k' # k with k|k’, k'|p— 1. The integer k' is the order of the group K’ with
K C K'. Therefore we get a recursive formula

NkZQ(pil)/Qk— Z Nir.

K odd, k'>k
kK, K'|p—1
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Now it remains to determine N,,. Let y € Z be such that p — 1 = 2"y and y is
odd. Then

N, = o(p=1)/2y _ 92" 71

Let p—1=2"p}" ...p;" be a factorisation of p — 1 into primes where p1,...,p;
are odd and p; # p; for all ¢ # j with 4,5 =1,...,l. Since p—1is even, r > 1.
Let K be of order k = pi* ...p;" where 0 < s; <rjfor j=1,...,1. Let z be a
generator of (Z/pZ)*. Then K is generated by =™, m = 2"p* ™ ... p/' ' If
k' = pﬁl .. .pf’ where s; <t; <r;for j =1,...,[, then K is a proper subgroup
of K’ of order k" if s; < t; for some 1 < j < [. Herewith 71+H3=1(rj —s;+1)
groups K’ exist such that K is a proper subgroup of K’. So the number of sets
G that are decomposed by K and for which no K’ 2 K exists such that K’

decomposes G is

Ny = 2P~ D/2k Z Ny

y€Ty

where
Ty := {y €N| y odd, kl|y, y # k and y|p—1}.

Now we have to determine the number of sets G that satisfy the conditions of
Proposition E Let this be the number Ng. One easily sees that

Ne= Y Ni=) N

KcC(z/pZ)* k[p—1
|K|£1 k#1
|K| odd k odd

Now let G C (Z/pZ)* with |G| = (p — 1)/2, such that for all g;,g9;, € G,
gi # —g;. Let N7 be the number of sets G for which no x € (Z/pZ)*, k # 1,
exists such that kG = G. Then

Ny =200/ £ o 02 S G
1#£k|p—1
k odd

We have seen that each set G corresponds to the set of eigenvalues of a matrix
in U((p —1)/2) that satisfies Theorem [.J.

DEFINITION. We define a matrix Xg € U(”Q;l) with the eigenvalues
{eigl%r/p7 o ,eig(p—l)/22ﬂ'/p}

where G = {g1,...,9(p-1)/2} C (Z/pZ)*. We used the same notation for the
elements of (Z/pZ)* and their representatives in Z.

Let the maximal order of K that decomposes G be k. Then G yields k elements
of the group generated by Xg. As a result we have:
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PROPOSITION 2.9. The number of conjugacy classes of subgroups of order p in
U((p—1)/2) whose group elements satisfy the necessary and sufficient condition

18
= Z kNG

k: odd
klp—

3 THE FARRELL COHOMOLOGY

3.1 AN INTRODUCTION TO FARRELL COHOMOLOGY

An introduction to the Farrell cohomology can be found in the book of Brown
[E] The Farrell cohomology is a complete cohomology for groups with finite
virtual cohomological dimension (ved). It is a generalisation of the Tate coho-
mology for finite groups. If G is finite, the Farrell cohomology and the Tate
cohomology of G coincide. It is well-known that the groups Sp(2n,Z) have
finite ved.

DEFINITION. An elementary abelian p-group of rank r > 0 is a group that is
isomorphic to (Z/pZ)".

It is well-known that I?Ii(G,Z) is a torsion group for every i € Z. We write
Hi(G,Z)(p) for the p-primary part of this torsion group, i.e., the subgroup of
elements of order some power of p. We will use the following theorem.

THEOREM 3.1. Let G be a group such that ved G < oo and let p be a prime.
Suppose that every elementary abelian p-subgroup of G has rank < 1. Then

H (G, Z)) = [ B (N(P), Z))
Pep

where P is a set of representatives for the conjugacy classes of subgroups of G
of order p and N(P) denotes the normalizer of P.

Proof. See Brown’s book [f]. O

We also have R N
i(G,2) = [[8*(G. 2
p

where p ranges over the primes such that G has p-torsion.

A group G of finite virtual cohomological dimension is said to have periodic
cohomology if for some d # 0 there is an element v € H%(G, Z) that is invertible
in the ring I?I*(G7 7). Cup product with u then gives a periodicity isomorphism
H(G, M) = H*4(G, M) for any G-module M and any i € Z. Similarly we
say that G has p-periodic cohomology if the p-primary component ﬁ*(G, Z) (),
which is itself a ring, contains an invertible element of non-zero degree d. Then
we have

H(G, M),y = HHYG, M),
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and the smallest positive d that satisfies this condition is called the p-period of

G.
PROPOSITION 3.2. The following are equivalent:
i) G has p-periodic cohomology.

it) Every elementary abelian p-subgroup of G has rank < 1.

Proof. See Brown’s book [f]. O

3.2 NORMALIZERS OF SUBGROUPS OF ORDER p IN Sp(p — 1,7Z)

In order to use Theorem .1}, we have to analyse the structure of the normalizers
of subgroups of order p in Sp(p — 1,Z). We already analysed the conjugacy
classes of subgroups of order p in Sp(p—1,Z). Let N be the normalizer and let
C be the centralizer of such a subgroup. Then we have a short exact sequence

1 c N N/C 1.

Moreover, it follows from the discussion in the paper of Brown [E] that for p an
odd prime
CXZL/pL X 7)27 = 7/2pZ,

and therefore N is a finite group. We will use the following proposition.

PROPOSITION 3.3. Let

1 U G Q 1

be a short exact sequence with Q a finite group of order prime to p. Then
7% ~ (fr* Q
(G, Z) () = (H (U,Z)(p)>

Proof. See Brown [B], the Hochschild-Serre spectral sequence. O

Applying this to our case, we get

~

. N/C
f*(N, Z) ) = (H*(C, Z)(p))

Therefore we have to determine N/C and its action on C = Z/2pZ. From now
on, if we consider subgroups or elements of order p in U((p — 1)/2), we mean
those that satisfy the condition of Theorem . In what follows we assume
that p is an odd prime for which A~ = 1, because in this case we have a
bijection between the conjugacy classes of subgroups of order p in U((p—1)/2)
and those in Sp(p — 1, Z). Therefore, in order to determine the structure of the
conjugacy classes of subgroups of order p in Sp(p — 1,Z), we can consider the
corresponding conjugacy classes in U((p — 1)/2). We have already seen that
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in a subgroup of U((p — 1)/2) of order p different elements can be in the same
conjugacy class. Let AV, be the number of conjugacy classes of elements of order
p in U((p — 1)/2) where k powers of one element are in the same conjugacy
class. Let K be the number of conjugacy classes of subgroups of U((p —1)/2)
with |[N/C| = k, where N denotes the normalizer and C the centralizer of this
subgroup. Then the number (p) of conjugacy classes of subgroups of order p
inU((p—1)/2) is
K(p) = Z K.

klp—1,
k odd

If IN/C| = E, then
N/C=Z/KZ CZ/(p—1)Z = Aut(Z/2pZ)

where k|p — 1 and k is odd. This means that N/C' is isomorphic to a subgroup
of Aut(Z/pZ). So we get the short exact sequence

1 — 727 N Z/k7 — 1.

Moreover, we have an injection Z/pZ — Z/2pZ — N. Applying the proposi-
tion to this case yields

~

§ . Z/KL
(N, Z) ) = <H (Z/QpZ,Z)(p))

The action of Z/kZ on Z/2pZ is given by the action of Z/kZ as a subgroup of
the group of automorphisms of Z/pZ C Z/2pZ.

LEMMA 3.4. The Farrell cohomology of Z/I7Z is
H*(Z)1Z,Z) = Z)I1Z [z, z "]
where degx = 2, © € H2(Z/1Z,Z), and (z) = Z/IZ.

Proof. See Brown’s book [E] For finite groups the Farrell cohomology and the
Tate cohomology coincide. O

PROPOSITION 3.5. Let p be an odd prime and let k € Z divide p— 1. Then
~ 7./kZ,
(H*(Z/2pz, Z)(p)) ~ 7, /pZz", z ")

where = € H2(Z/2pZ, 7).
Proof. For an odd prime p

H*(2/2pZ,2) ) = (Z/20Zl,27Y)) ) = Z/pZlw, 7).

We have to consider the action of Z/kZ on Z/pZ[z,r~]. We have pz = 0 and
x € H?(Z/2pZ, 7). The action is given by x +— gx with ¢ such that (¢,p) = 1,
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¢® =1 (mod p) and k is the smallest number such that this is fulfilled. The
action of Z/kZ on

H>™(Z/2p, 7)) = ((&™)) 22 Z/plL

is given by

" g™,
The Z/kZ-invariants of H* (Z/2pZ, 7)) are the x™ € ICI27”(Z/2pZ,Z)(p) with
™ +— ™ or equivalently ¢" =1 (mod p). Herewith we get

=, (o Z/kZ _1\Z/KZ
0 (N,2)) = (0"(Z/22.2) ) = (Z/pZlz,a7"))

=~ 7/pZlz"*, x7"].

PROPOSITION 3.6. Let p be an odd prime for which h— = 1. Then

K
H*(Sp(p — 1, Z), Z)(p) = H (H Z/pZ[a?k’ x_k]) ,
klp—1 * 1
k odd
where Ky, is the number of conjugacy classes of subgroups of U((p — 1)/2) with
IN/C| = k. As usual N denotes the normalizer and C the centralizer of this
subgroup.

Proof. Let p be a prime with A~ = 1. Then a bijection exists between the con-
jugacy classes of matrices of order p in U((p — 1)/2) that satisfy the conditions
of Theorem @ and the conjugacy classes of matrices of order p in Sp(p —1,Z).
Now this proposition follows from Theorem . O

Now it remains to determine Ky, the number of conjugacy classes of subgroups
of U((p — 1)/2) of order p with N/C = Z/kZ. Therefore we need Ny, the
number of conjugacy classes of elements X € U((p—1)/2) of order p for which
1=j; < - < jp < p exist such that the X7 [ =1,...,k, are in the same
conjugacy class than X and k is maximal. One such class yields k elements in
a group for which |N/C| = k and therefore

1
p—1

Ki = kN,

We recall the formula for Np:

p—1
Ny =27F — E Nir.
k' odd, K'>k
k|, K |p—1

Now we have everything we need to compute the p-primary part of the Farrell
cohomology of Sp(p — 1,7Z) for some examples of primes with A~ = 1.
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3.3 EXAMPLES WITH 3 < p < 19

p=3: It is Sp(2,Z) = SL(2,Z). One conjugacy class exists with N = C.
Therefore

H*(Sp(2,Z), Z)3) = Z/3Z[x, 2],
and Sp(2,7Z) has 3-period 2.
p =>5: One conjugacy class exists with N = C. Therefore
H*(Sp(4,2), Z)(5) = Z,/5Z[z,x 1],
and Sp(4, Z) has 5-period 2.

p = T7: One conjugacy class exists with N/C = Z/3Z, and one class exists with
N = C'. Therefore

H*(Sp(6,2), 2)(7) = 2/ TZlz" =) x 2/ T2,z ™",
and Sp(6,Z) has 7-period 6.

p = 11: One conjugacy class exists with N/C = Z/5Z and 3 classes exist with
N = C'. Therefore

~ 3
H*(Sp(10,Z),Z) (11) = ZJZ[x®, 275 x [[Z2/11Z]x, 271,
1

and Sp(10,Z) has 11-period 10.

p = 13: One conjugacy class exists with N/C = Z/37 and 5 classes exist with
N = C'. Therefore

~ 5
H*(Sp(12aZ)aZ)(13) = Z/lsz[xgvxig] X HZ/13Z[JS,JL‘71],
1

and Sp(12,7Z) has 13-period 6.

p=17: 16 conjugacy classes exist with N = C. Therefore
~ 16
H*(Sp(16,Z),Z) 17y = [1 Z/17Z[x, z~ 1],
1

and Sp(16,Z) has 17-period 2.

p=19: One conjugacy class exists with N/C = Z/9Z, one class exists with
N/C = 7/37Z, and 28 classes exist with N = C.

H*(Sp(18,2), Z) 10) & Z/19Z[2°, 2] x Z/19Z[z?, 23]
28
x [12/19Z[x, 2~ 1],
1

and Sp(18,Z) has 19-period 18.
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3.4 THE p-PRIMARY PART OF THE FARRELL COHOMOLOGY OF Sp(p — 1,Z)

Let p be an odd prime and let £ be a primitive p-th root of unity. Let A~ be the
relative class number of the cyclotomic field Q(¢). In this section we compute
H*(Sp(p — 1,7Z),7Z)(,) and its period for any odd prime p for which ~~ is odd.

THEOREM 3.7. Let p be an odd prime for which h™ is odd. Then

Kk
i (Sp(p — 1,2), )y = ] (H Z/pZ[xk,xk1),
klp—1 * 1
k odd

where Ky denotes the number of conjugacy classes of subgroups of order p of
Sp(p—1,Z) for which |N/C| = k. Moreover Ky, > Ky, where Ky, is the number
of conjugacy classes of subgroups of U((p —1)/2) with |[N/C| = k. As usual N
denotes the normalizer and C' the centralizer of the corresponding subgroup.

Proof. We have seen in Section @ that if h™~ is odd, a bijection exists between
the conjugacy classes of matrices of order p in U((p — 1)/2) that satisfy the
conditions of Theorem and the conjugacy classes of matrices of order p in
Sp(p — 1,Z) that correspond to the equivalence classes [Z[¢],u] € P. Each
conjugacy class of subgroups of order p in U((p — 1)/2) whose group elements
satisfy the condition required in Theorem @ yields at least one conjugacy class
in Sp(p—1,Z). This implies that the p-primary part of the Farrell cohomology
of Sp(p — 1,2) is a product

kyl,(ﬁ Z/pZ[x’“,ka
k odd

where /Ek denotes the number of conjugacy classes of subgroups of order p of
Sp(p — 1,Z) that satisfy |[N/C| = k. Let Kj be the number of such subgroups
in U((p—1)/2). Because h~ is odd, each such subgroup gives at least one such
subgroup of Sp(p — 1,Z). Therefore, if A~ is odd, K > Ki. If b~ is even, it
may be possible that no subgroup of Sp(p — 1,Z) of order p exists for which
IN/C| = k. O

THEOREM 3.8. Let p be an odd prime for which h™ is odd and let y be such
that p —1 = 2"y and y is odd. Then the period of H*(Sp(p — 1,7Z), 7)) is 2y.

Proof. By Theorem @ we know that the p-primary part of the Farrell coho-
mology of Sp(p — 1,7Z) is

Ky,
H*(Sp(p — 1.2),2) iy =[] <HZ/pZ[z’“,x’“])-
klp—1 > 1
k odd
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Moreover, Kk > 1 and the period of Z/pZ[z*,x~*] is 2k. Herewith the period
of the p-primary part of the Farrell cohomology is 2y. O

If p is a prime for which A~ is even, the p-period of ﬁ*(Sp(p —1,7),Z) is 2z
where z is odd and divides p—1. The period is not necessarily 2y because there
may be no subgroup of order p in which y elements are conjugate in Sp(p—1,7Z)
even if we know that they are conjugate in Sp(p — 1, R).
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