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Abstract. Let p be an odd prime with odd relative class number
h−. In this article we compute the Farrell cohomology of Sp(p−1,Z),
the first p-rank one case. This allows us to determine the p-period of
the Farrell cohomology of Sp(p−1,Z), which is 2y, where p−1 = 2ry,
y odd. The p-primary part of the Farrell cohomology of Sp(p−1,Z) is
given by the Farrell cohomology of the normalizers of the subgroups of
order p in Sp(p−1,Z). We use the fact that for odd primes p with h−

odd a relation exists between representations of Z/pZ in Sp(p− 1,Z)
and some representations of Z/pZ in U((p− 1)/2).
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1 Introduction

We define a homomorphism

φ : U(n) −→ Sp(2n,R)

X = A+ iB 7−→
(

A B
−B A

)
=: φ(X)

where A and B are real matrices. Then φ is injective and maps U(n) on
a maximal compact subgroup of Sp(2n,R). This homomorphism allows to
consider each representation

ρ̃ : Z/pZ −→ U((p− 1)/2)

as a representation
φ ◦ ρ̃ : Z/pZ −→ Sp(p− 1,R).

In an article of Busch [6] it is determined which properties ρ̃ has to fulfil for
φ ◦ ρ̃ to be conjugate in Sp(p− 1,R) to a representation

ρ : Z/pZ −→ Sp(p− 1,Z).
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240 C. Busch

Theorem 2.2. Let X ∈ U((p − 1)/2) be of odd prime order p. We define
φ : U((p − 1)/2) → Sp(p − 1,R) as above. Then φ(X) ∈ Sp(p − 1,R) is
conjugate to Y ∈ Sp(p− 1,Z) if and only if the eigenvalues λ1, . . . , λ(p−1)/2 of
X are such that {

λ1, . . . , λ(p−1)/2, λ1, . . . , λ(p−1)/2

}

is a complete set of primitive p-th roots of unity.

The proof of Theorem 2.2 involves the theory of cyclotomic fields. For the
p-primary component of the Farrell cohomology of Sp(p − 1,Z), the following
holds:

Ĥ∗(Sp(p− 1,Z),Z)(p)
∼=
∏

P∈P

Ĥ∗(N(P ),Z)(p)

where P is a set of representatives for the conjugacy classes of subgroups of
order p of Sp(p − 1,Z) and N(P ) denotes the normalizer of P ∈ P. This
property also holds if we consider GL(p−1,Z) instead of the symplectic group.
This fact was used by Ash in [1] to compute the Farrell cohomology of GL(n,Z)
with coefficients in Fp for p− 1 6 n < 2p− 2. Moreover, we have

Ĥ∗(N(P ),Z)(p)
∼=
(

Ĥ∗(C(P ),Z)(p)

)N(P )/C(P )

where C(P ) is the centralizer of P . We will determine the structure of C(P ) and
of N(P )/C(P ). After that we will compute the number of conjugacy classes
of those subgroups for which N(P )/C(P ) has a given structure. Here again
arithmetical questions are involved. In the articles of Brown [2] and Sjerve and
Yang [9] is shown that the number of conjugacy classes of elements of order
p in Sp(p − 1,Z) is 2(p−1)/2h− where h− denotes the relative class number of
the cyclotomic field Q(ξ), ξ a primitive p-th root of unity. If h− is odd, each
conjugacy class of matrices of order p in Sp(p− 1,R) that lifts to Sp(p− 1,Z)
splits into h− conjugacy classes in Sp(p−1,Z). The main results in this article
are

Theorem 3.7. Let p be an odd prime for which h− is odd. Then

Ĥ∗(Sp(p− 1,Z),Z)(p)
∼=
∏

k|p−1
k odd

( K̃k∏

1

Z/pZ[xk, x−k]

)
,

where K̃k denotes the number of conjugacy classes of subgroups of order p of
Sp(p−1,Z) for which |N/C| = k. Moreover K̃k > Kk, where Kk is the number
of conjugacy classes of subgroups of U((p− 1)/2) with |N/C| = k. As usual N
denotes the normalizer and C the centralizer of the corresponding subgroup.

Theorem 3.8. Let p be an odd prime for which h− is odd and let y be such
that p− 1 = 2ry and y is odd. Then the period of Ĥ∗(Sp(p− 1,Z),Z)(p) is 2y.
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The Farrell Cohomology of SP(p− 1,Z) 241

Corresponding results have been shown for other groups, for example GL(n,Z)
in the p-rank one case [1], the mapping class group [8] and the outerautomor-
phism group of the free group in the p-rank one case [7].
This article presents results of my doctoral thesis, which I wrote at the ETH
Zürich under the supervision of G. Mislin. I thank G. Mislin for the suggestion
of this interesting subject.

2 The symplectic group

2.1 Definition

Let R be a commutative ring with 1. The general linear group GL(n,R) is
defined to be the multiplicative group of invertible n×n-matrices over R.

Definition. The symplectic group Sp(2n,R) over the ring R is the subgroup
of matrices Y ∈ GL(2n,R) that satisfy

Y TJY = J :=

(
0 In

−In 0

)

where In is the n×n-identity matrix.

It is the group of isometries of the skew-symmetric bilinear form

〈 , 〉 : R2n ×R2n −→ R
(x, y) 7−→ 〈x, y〉 := xTJy.

It follows from a result of Bürgisser [4] that elements of odd prime order p exist
in Sp(2n,Z) if and only if 2n > p− 1.

Proposition 2.1. The eigenvalues of a matrix Y ∈ Sp(p− 1,Z) of odd prime
order p are the primitive p-th roots of unity, hence the zeros of the polynomial

m(x) = xp−1 + · · ·+ x+ 1.

Proof. If λ is an eigenvalue of Y , we have λ = 1 or λ = ξ, a primitive p-th root
of unity, and the characteristic polynomial of Y divides xp − 1 and has integer
coefficients. Since m(x) is irreducible over Q, the claim follows.

2.2 A relation between U
(
p−1

2

)
and Sp(p− 1,Z)

Let X ∈ U(n), i.e., X ∈ GL(n,C) and X∗X = In where X∗ = X
T

and In is
the n×n-identity matrix. We can write X = A+ iB with A,B ∈ M(n,R), the
ring of real n×n-matrices. We now define the following map

φ : U(n) −→ Sp(2n,R)

X = A+ iB 7−→
(

A B
−B A

)
=: φ(X).

The map φ is an injective homomorphism. Moreover, it is well-known that φ
maps U(n) on a maximal compact subgroup of Sp(2n,R).
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242 C. Busch

Theorem 2.2. Let X ∈ U((p − 1)/2) be of odd prime order p. We define
φ : U((p − 1)/2) → Sp(p − 1,R) as above. Then φ(X) ∈ Sp(p − 1,R) is
conjugate to Y ∈ Sp(p− 1,Z) if and only if the eigenvalues λ1, . . . , λ(p−1)/2 of
X are such that {

λ1, . . . , λ(p−1)/2, λ1, . . . , λ(p−1)/2

}

is a complete set of primitive p-th roots of unity.

Proof. See [5] or [6].

In the proof of Theorem 2.2 we used the following facts. For a primitive p-th
root of unity ξ, we consider the cyclotomic field Q(ξ). It is well-known that
Q(ξ + ξ−1) is the maximal real subfield of Q(ξ), and that Z[ξ] and Z[ξ + ξ−1]
are the rings of integers of Q(ξ) and Q(ξ + ξ−1) respectively. Let (a, a) denote
a pair where a ⊆ Z[ξ] and a ∈ Z[ξ] are chosen such that a 6= 0 is an ideal in Z[ξ]
and aa = (a), a principal ideal. Here a denotes the complex conjugate of a. We
define an equivalence relation on the set of those pairs by (a, a) ∼ (b, b) if and
only if λ, µ ∈ Z[ξ] \ {0} exist such that λa = µb and λλa = µµb. We denote
by [a, a] the equivalence class of the pair (a, a) and by P the set of equivalence
classes [a, a].
Let Sp denote the set of conjugacy classes of elements of order p in Sp(p−1,Z).
Sjerve and Yang have shown in [9] that a bijection exists between P and Sp.
If Y ∈ Sp(p− 1,Z) is a matrix of order p, then the equivalence class [a, a] ∈ P
corresponding to the conjugacy class of Y in Sp(p − 1,Z) can be determined
in the following way. Let α = (α1, . . . , αp−1)T be an eigenvector of Y corres-
ponding to the eigenvalue ξ = ei2π/p, that is Y α = ξα. Then α1, . . . , αp−1 is a
basis of an ideal a ⊆ Z[ξ]. Sjerve and Yang [9] proved that this ideal a has the
property [a, a] ∈ P. Let h and h+ be the class numbers of Q(ξ) and Q(ξ+ ξ−1)
respectively. Then h− := h/h+ denotes the relative class number. Sjerve and
Yang [9] showed that the number of conjugacy classes of matrices of order p in
Sp(p− 1,Z) is h− 2(p−1)/2. The number of conjugacy classes in U((p− 1)/2) of
unitary matrices that satisfy the condition in Theorem 2.2 is 2(p−1)/2.
Let Up denote the set of conjugacy classes of matrices in U((p−1)/2) that satisfy
the condition on the eigenvalues that is given in Theorem 2.2. A consequence
of Theorem 2.2 is that it is possible to define a map

Ψ : Sp −→ Up

and that this map is surjective. Therefore the map

ψ : P −→ Up

is surjective either.
For a given choice of the ideal a (for example a = Z[ξ]), we denote by Pa the set
of those classes [a, a] ∈ P, where a corresponds to our choice. If the restriction

ψ|Pa
: Pa −→ Up
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The Farrell Cohomology of SP(p− 1,Z) 243

is surjective each conjugacy class in Up of matrices that satisfy Theorem 2.2
yields h− conjugacy classes in Sp(p − 1,Z). In general ψ|Pa

is not surjective.
It is a result of Busch, [5], [6], that ψ|Pa

is surjective if h− is odd. If h− is even
and h+ is odd, we have no surjectivity of ψ|Pa

. This happens for example for
the primes 29 and 113.

2.3 Subgroups of order p in Sp(p− 1,Z)

It follows from Theorem 2.2 that a mapping exists that sends the conjugacy
classes of matrices Y ∈ Sp(p − 1,Z) of odd prime order p onto the conju-
gacy classes of matrices X in U((p − 1)/2) that satisfy the condition on the
eigenvalues described in Theorem 2.2. This mapping is surjective.

It is clear that detX = el2πi/p for some 1 6 l 6 p. If X ∈ U((p − 1)/2)
satisfies the condition on the eigenvalues, then so does Xk, k = 1, . . . , p− 1. If
detX = el2πi/p for some 1 6 l 6 p− 1, then

{
detX, . . . ,detXp−1

}
=
{
ei2π/p, . . . , ei(p−1)2π/p

}

and the Xk are in different conjugacy classes. If detX = 1, it is possible that
some k exists such that X and Xk are in the same conjugacy class. In this
section we will analyse when and how many times this happens. The number
of conjugacy classes of matrices X ∈ U((p − 1)/2) that satisfy the condition
required in Theorem 2.2 is 2(p−1)/2. Herewith we will be able to compute the
number of conjugacy classes of subgroups of matrices of order p in U((p−1)/2).
We remember that the number of conjugacy classes of matrices of order p in
Sp(p− 1,Z) is 2(p−1)/2h−. If h− = 1, a bijection exists between the conjugacy
classes of matrices of order p in Sp(p−1,Z) and the conjugacy classes of matrices
of order p in U((p− 1)/2) that satisfy the condition required in Theorem 2.2.

Let X ∈ U((p − 1)/2) with Xp = 1, X 6= 1. Then X generates a subgroup
S of order p in U((p − 1)/2). If detX = 1, it is possible that X is conjugate
to X ′ ∈ S with X 6= X ′. Two matrices in U((p − 1)/2) are conjugate to each
other if and only if they have the same eigenvalues. The set of eigenvalues of
X is {

eig12π/p, . . . , eig(p−1)/22π/p
}

where 1 6 gl 6 p− 1 for l = 1, . . . , p−1
2 and for all l 6= j, l, j = 1, . . . , (p− 1)/2,

gl 6= p−gj and gl 6= gj . From now on we consider the gj as elements of (Z/pZ)∗.
The matrix X is conjugate to Xκ for some κ if the eigenvalues of X and Xκ

are the same. This is equivalent to

{g1, . . . , g(p−1)/2} = {κg1, . . . , κg(p−1)/2} ⊂ (Z/pZ)∗

where gj and κgj , j = 1, . . . , (p − 1)/2, denote the corresponding congruence
classes.
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244 C. Busch

We introduce some notation that will be used in the whole section. Let

G := {g1, . . . , g(p−1)/2} ⊂ (Z/pZ)∗,

κG := {κg1, . . . , κg(p−1)/2} ⊂ (Z/pZ)∗

for some κ ∈ (Z/pZ)∗. Let x be a generator of the multiplicative cyclic group
(Z/pZ)∗ and let K be a subgroup of (Z/pZ)∗ with |K| = k. Then K is cyclic
and k divides p− 1. Let m := (p− 1)/k, then xm generates K.
First we prove the following proposition.

Proposition 2.3. Let G ⊂ (Z/pZ)∗ be a subset with |G| = (p − 1)/2. The
following are equivalent.

i) For all gj , gl ∈ G, gj 6= −gl and κ ∈ (Z/pZ)∗ exists with κG = G, κ 6= 1.

ii) An integer h ∈ N, 1 6 h 6 (p − 1)/2, and nj ∈ (Z/pZ)∗, j = 1, . . . , h,
exist with

G =

h⋃

j=1

njK

where

◦ K ⊂ (Z/pZ)∗ is the subgroup generated by κ,

◦ the order of K is odd,

◦ for κ′ ∈ K and all j, l = 1, . . . , h, nj 6= −nlκ′,
◦ and for all j = 2, . . . , h, nj 6∈ K.

Then we will analyse the uniqueness of this decomposition of G. This will
enable us to determine the number of G ⊂ (Z/pZ)∗ with |G| = (p − 1)/2 and
G = κG for some 1 6= κ ∈ (Z/pZ)∗. Herewith we will determine the number of
conjugacy classes of subgroups of order p in U((p−1)/2) whose group elements
satisfy the condition of Theorem 2.2.

Definition. Let κ ∈ (Z/pZ)∗ and let K be the subgroup of (Z/pZ)∗ generated
by κ. Let G ⊂ (Z/pZ)∗ be a subset with |G| = (p − 1)/2. We say that K
decomposes G if G, κ and K fulfil the conditions of Proposition 2.3.

So K decomposes G if the order of the group K is odd and G is a disjoint union
of cosets n1K, . . . , nhK of K in (Z/pZ)∗ for which for all nj , nl, j, l = 1, . . . , h,
holds njK 6= −nlK.

Lemma 2.4. Let G ⊂ (Z/pZ)∗ with |G| = (p − 1)/2. Then 1 6= κ ∈ (Z/pZ)∗

exists with κG = G if and only if 1 6 h 6 (p − 1)/2 and nj ∈ (Z/pZ)∗,
j = 1, . . . , h, exist with

G =

h⋃

j=1

njK

where nj 6∈ K for j = 2, . . . , h, and K is the subgroup of (Z/pZ)∗ that is
generated by κ.
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Proof. ⇐: Let κl ∈ K. Then

κlG = κl
h⋃

j=1

njK =

h⋃

j=1

njκ
lK =

h⋃

j=1

njK = G.

⇒: Without loss of generality we assume that 1 ∈ G. If 1 6∈ G, λ ∈ (Z/pZ)∗

exists with 1 ∈ λG because (Z/pZ)∗ is a multiplicative group. Of course
κλG = λG. Moreover, it is easy to see that if λG is a union of cosets of K,
this is also true for G. The equation κG = G implies that KG = G. If 1 ∈ G,
then K ⊆ G since KG = G. If K = G, we have finished the proof. If K 6= G,
we consider G′1 = G \K. For all κl ∈ K we have κlK = K and

κlG′1 = κl(G \K) = G \K = G′1.

Now λ1 ∈ (Z/pZ)∗ exists with 1 ∈ λ1G
′
1 =: G1. Then G = K ∪ λ−1

1 G1 and we
can repeat the construction on G1 instead of G. This procedure finishes after
h := (p − 1)/2k steps. Let n1 := 1 and for j = 2, . . . , h let nj := nj−1λ

−1
j−1.

Then G =
⋃h
j=1 njK.

Let G = {g1, . . . , g(p−1)/2} ⊂ (Z/pZ)∗ with |G| = (p − 1)/2 and κG = G for

some κ ∈ (Z/pZ)∗ with κ 6= 1, κk = 1. The following lemma will give an
answer to the question when G satisfies the conditions gl 6= gj , gl 6= −gj for all
j 6= l with j, l = 1, . . . , p−1

2 .

Lemma 2.5. Let G =
⋃h
j=1 njK ⊂ (Z/pZ)∗ be defined like in Lemma 2.4. Then

for all gj , gl ∈ G holds gj 6= −gl if and only if −1 6∈ K and for all κ ∈ K and
all j, l = 1, . . . , h holds nj 6= −nlκ.

Proof. ⇒: Suppose −1 ∈ K. Then −1 = κl for some l and n1 = −n1κ
l. But

then we have found g1 := n1 ∈ G and g2 := n1κ
l ∈ G with g1 = −g2.

⇐: Suppose gj , gl ∈ G exist with gj = −gl. Let gj = njκ
j , gl = nlκ

l. Then
njκ

j = −nlκl, and we have found κj−l ∈ K with nl = −njκj−l.

Which subgroups K ⊆ (Z/pZ)∗ satisfy the condition −1 6∈ K?

Lemma 2.6. Let K ⊆ (Z/pZ)∗ be a subgroup of order k. Then −1 6∈ K if and
only if k is odd.

Proof. The group (Z/pZ)∗ is cyclic of order p− 1 and K is a cyclic group. Let
x be a generator of K, then xk = 1. If k is even, k/2 ∈ Z and xk/2 ∈ K. But
then (xk/2)2 = xk = 1 and therefore xk/2 = −1 ∈ K since −1 is the element of
order 2 in (Z/pZ)∗. On the other hand if −1 ∈ K, then K contains an element
of order 2. But then k is even, since the order of any element of K divides the
order of K.

Proof of Proposition 2.3. A subgroup K decomposes a set G as required in
Lemma 2.5 if and only if the order of K is odd. Moreover, the order of K
divides p−1. Now Proposition 2.3 follows from Lemma 2.4 and Lemma 2.5.
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We did not yet analyse the uniqueness of the decomposition of a set G. It is
evident that the nj can be permuted and multiplied with any κl ∈ K, but we
will see that K and h are not uniquely determined. The next lemma states
that if K decomposes G then so does any nontrivial subgroup of K.

Lemma 2.7. Let G =
⋃h
j=1 njK ⊂ (Z/pZ)∗, |G| = (p − 1)/2, be such that K

decomposes G (Proposition 2.3). Let |K| = k be not a prime and let K ′ 6= K
be a nontrivial subgroup of K. Then K ′ decomposes G.

Proof. Since K ′ is a subgroup of K, K can be written as a union of cosets of
K ′ in K. Moreover, G is a union of cosets of K in (Z/pZ)∗. Therefore

G =

h⋃

j=1

njK =

h′⋃

i=1

n′iK
′.

Since K decomposes G, we have nlK 6= −njK for all l, j = 1, . . . , h. This
implies that n′lK

′ 6= −n′iK ′ for all i, l = 1, . . . , h′. So K ′ decomposes G.

Our next aim is to determine the number of sets G. Therefore we consider for
a given G the group K with |K| maximal and K decomposes G.

Lemma 2.8. Let K ⊂ (Z/pZ)∗ be a nontrivial subgroup of odd order k. Then
2(p−1)/2k different sets G exist such that K decomposes G and |G| = (p− 1)/2.

Proof. The order of K ⊂ (Z/pZ)∗ is odd. Then it follows from Lemma 2.6 that
−1 6∈ K. Consider the cosets njK of K in (Z/pZ)∗. Since −1 6∈ K, we have
njK 6= −njK. So nj , j = 1, . . . , (p− 1)/2k, exist such that

(Z/pZ)∗ =

(p−1)/2k⋃

j=1

(njK ∪ −njK).

The group K decomposes G if and only if G is a union of cosets of K and
mjK ⊆ G implies that −mjK 6⊆ G for mj = ±nj , j = 1, . . . , (p − 1)/2k.
Therefore 2(p−1)/2k sets G exist such that K decomposes G.

Definition. Let K ⊂ (Z/pZ)∗ be a group of odd order k. We define Nk to
be the number of G ⊂ (Z/pZ)∗ such that K decomposes G but any K ′ with
K ⊂ K ′ ⊂ (Z/pZ)∗, K 6= K ′, does not decompose G.

To determine Nk we have to subtract the number Nk′ from 2(p−1)/2k for each
odd k′ 6= k with k|k′, k′|p− 1. The integer k′ is the order of the group K ′ with
K ⊂ K ′. Therefore we get a recursive formula

Nk = 2(p−1)/2k −
∑

k′ odd, k′>k
k|k′, k′|p−1

Nk′ .
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Now it remains to determine Ny. Let y ∈ Z be such that p− 1 = 2ry and y is
odd. Then

Ny = 2(p−1)/2y = 22r−1

.

Let p− 1 = 2rpr11 . . . prll be a factorisation of p− 1 into primes where p1, . . . , pl
are odd and pi 6= pj for all i 6= j with i, j = 1, . . . , l. Since p− 1 is even, r > 1.
Let K be of order k = ps11 . . . psll where 0 6 sj 6 rj for j = 1, . . . , l. Let x be a
generator of (Z/pZ)∗. Then K is generated by xm, m = 2rpr1−s11 . . . prl−sll . If
k′ = pt11 . . . ptll where sj 6 tj 6 rj for j = 1, . . . , l, then K is a proper subgroup

of K ′ of order k′ if sj < tj for some 1 6 j 6 l. Herewith −1+
∏l
j=1(rj−sj +1)

groups K ′ exist such that K is a proper subgroup of K ′. So the number of sets
G that are decomposed by K and for which no K ′ ) K exists such that K ′

decomposes G is

Nk = 2(p−1)/2k −
∑

y∈Tk
Ny

where

Tk :=
{
y ∈ N

∣∣ y odd, k|y, y 6= k and y|p− 1
}
.

Now we have to determine the number of sets G that satisfy the conditions of
Proposition 2.3. Let this be the number NG. One easily sees that

NG =
∑

K⊂(Z/pZ)∗

|K|6=1
|K| odd

N|K| =
∑

k|p−1
k 6=1
k odd

Nk.

Now let G ⊂ (Z/pZ)∗ with |G| = (p − 1)/2, such that for all gi, gj ∈ G,
gi 6= −gj . Let N1 be the number of sets G for which no κ ∈ (Z/pZ)∗, κ 6= 1,
exists such that κG = G. Then

N1 = 2(p−1)/2 −NG = 2(p−1)/2 −
∑

16=k| p−1
k odd

Nk.

We have seen that each set G corresponds to the set of eigenvalues of a matrix
in U((p− 1)/2) that satisfies Theorem 2.2.

Definition. We define a matrix XG ∈ U
(
p−1

2

)
with the eigenvalues

{
eig12π/p, . . . , eig(p−1)/22π/p

}

where G = {g1, . . . , g(p−1)/2} ⊂ (Z/pZ)∗. We used the same notation for the
elements of (Z/pZ)∗ and their representatives in Z.

Let the maximal order of K that decomposes G be k. Then G yields k elements
of the group generated by XG. As a result we have:
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Proposition 2.9. The number of conjugacy classes of subgroups of order p in
U((p−1)/2) whose group elements satisfy the necessary and sufficient condition
is

K(p) =
1

p− 1

∑

k odd
k|p−1

kNk.

3 The Farrell cohomology

3.1 An introduction to Farrell cohomology

An introduction to the Farrell cohomology can be found in the book of Brown
[3]. The Farrell cohomology is a complete cohomology for groups with finite
virtual cohomological dimension (vcd). It is a generalisation of the Tate coho-
mology for finite groups. If G is finite, the Farrell cohomology and the Tate
cohomology of G coincide. It is well-known that the groups Sp(2n,Z) have
finite vcd.

Definition. An elementary abelian p-group of rank r > 0 is a group that is
isomorphic to (Z/pZ)r.

It is well-known that Ĥi(G,Z) is a torsion group for every i ∈ Z. We write

Ĥi(G,Z)(p) for the p-primary part of this torsion group, i.e., the subgroup of
elements of order some power of p. We will use the following theorem.

Theorem 3.1. Let G be a group such that vcdG < ∞ and let p be a prime.
Suppose that every elementary abelian p-subgroup of G has rank 6 1. Then

Ĥ∗(G,Z)(p)
∼=
∏

P∈P

Ĥ∗(N(P ),Z)(p)

where P is a set of representatives for the conjugacy classes of subgroups of G
of order p and N(P ) denotes the normalizer of P .

Proof. See Brown’s book [3].

We also have
Ĥ∗(G,Z) ∼=

∏

p

Ĥ∗(G,Z)(p)

where p ranges over the primes such that G has p-torsion.
A group G of finite virtual cohomological dimension is said to have periodic
cohomology if for some d 6= 0 there is an element u ∈ Ĥd(G,Z) that is invertible

in the ring Ĥ∗(G,Z). Cup product with u then gives a periodicity isomorphism

Ĥi(G,M) ∼= Ĥi+d(G,M) for any G-module M and any i ∈ Z. Similarly we

say that G has p-periodic cohomology if the p-primary component Ĥ∗(G,Z)(p),
which is itself a ring, contains an invertible element of non-zero degree d. Then
we have

Ĥi(G,M)(p)
∼= Ĥi+d(G,M)(p),
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and the smallest positive d that satisfies this condition is called the p-period of
G.

Proposition 3.2. The following are equivalent:

i) G has p-periodic cohomology.

ii) Every elementary abelian p-subgroup of G has rank 6 1.

Proof. See Brown’s book [3].

3.2 Normalizers of subgroups of order p in Sp(p− 1,Z)

In order to use Theorem 3.1, we have to analyse the structure of the normalizers
of subgroups of order p in Sp(p − 1,Z). We already analysed the conjugacy
classes of subgroups of order p in Sp(p−1,Z). Let N be the normalizer and let
C be the centralizer of such a subgroup. Then we have a short exact sequence

1 −−−−→ C −−−−→ N −−−−→ N/C −−−−→ 1.

Moreover, it follows from the discussion in the paper of Brown [2] that for p an
odd prime

C ∼= Z/pZ× Z/2Z ∼= Z/2pZ,

and therefore N is a finite group. We will use the following proposition.

Proposition 3.3. Let

1 −−−−→ U −−−−→ G −−−−→ Q −−−−→ 1

be a short exact sequence with Q a finite group of order prime to p. Then

Ĥ∗(G,Z)(p)
∼=
(

Ĥ∗(U,Z)(p)

)Q
.

Proof. See Brown [3], the Hochschild-Serre spectral sequence.

Applying this to our case, we get

Ĥ∗(N,Z)(p)
∼=
(

Ĥ∗(C,Z)(p)

)N/C
.

Therefore we have to determine N/C and its action on C ∼= Z/2pZ. From now
on, if we consider subgroups or elements of order p in U((p − 1)/2), we mean
those that satisfy the condition of Theorem 2.2. In what follows we assume
that p is an odd prime for which h− = 1, because in this case we have a
bijection between the conjugacy classes of subgroups of order p in U((p− 1)/2)
and those in Sp(p−1,Z). Therefore, in order to determine the structure of the
conjugacy classes of subgroups of order p in Sp(p − 1,Z), we can consider the
corresponding conjugacy classes in U((p − 1)/2). We have already seen that
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in a subgroup of U((p− 1)/2) of order p different elements can be in the same
conjugacy class. Let Nk be the number of conjugacy classes of elements of order
p in U((p − 1)/2) where k powers of one element are in the same conjugacy
class. Let Kk be the number of conjugacy classes of subgroups of U((p− 1)/2)
with |N/C| = k, where N denotes the normalizer and C the centralizer of this
subgroup. Then the number K(p) of conjugacy classes of subgroups of order p
in U((p− 1)/2) is

K(p) =
∑

k|p−1,
k odd

Kk.

If |N/C| = k, then

N/C ∼= Z/kZ ⊆ Z/(p− 1)Z ∼= Aut(Z/2pZ)

where k|p− 1 and k is odd. This means that N/C is isomorphic to a subgroup
of Aut(Z/pZ). So we get the short exact sequence

1 −−−−→ Z/2pZ −−−−→ N −−−−→ Z/kZ −−−−→ 1.

Moreover, we have an injection Z/pZ ↪→ Z/2pZ ↪→ N . Applying the proposi-
tion to this case yields

Ĥ∗(N,Z)(p)
∼=
(

Ĥ∗(Z/2pZ,Z)(p)

)Z/kZ
.

The action of Z/kZ on Z/2pZ is given by the action of Z/kZ as a subgroup of
the group of automorphisms of Z/pZ ⊂ Z/2pZ.

Lemma 3.4. The Farrell cohomology of Z/lZ is

Ĥ∗(Z/lZ,Z) = Z/lZ [x, x−1]

where deg x = 2, x ∈ Ĥ2(Z/lZ,Z), and 〈x〉 ∼= Z/lZ.

Proof. See Brown’s book [3]. For finite groups the Farrell cohomology and the
Tate cohomology coincide.

Proposition 3.5. Let p be an odd prime and let k ∈ Z divide p− 1. Then

(
Ĥ∗(Z/2pZ,Z)(p)

)Z/kZ ∼= Z/pZ[xk, x−k]

where x ∈ Ĥ2(Z/2pZ,Z).

Proof. For an odd prime p

Ĥ∗(Z/2pZ,Z)(p) =
(
Z/2pZ[x, x−1]

)
(p)

= Z/pZ[x, x−1].

We have to consider the action of Z/kZ on Z/pZ[x, x−1]. We have px = 0 and

x ∈ Ĥ2(Z/2pZ,Z). The action is given by x 7→ qx with q such that (q, p) = 1,
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qk ≡ 1 (mod p) and k is the smallest number such that this is fulfilled. The
action of Z/kZ on

Ĥ2m(Z/2pZ,Z)(p)
∼= (〈xm〉) ∼= Z/pZ

is given by
xm 7→ qmxm.

The Z/kZ-invariants of Ĥ∗(Z/2pZ,Z)(p) are the xm ∈ Ĥ2m(Z/2pZ,Z)(p) with
xm 7→ xm, or equivalently qm ≡ 1 (mod p). Herewith we get

Ĥ∗(N,Z)(p)
∼=
(

Ĥ∗(Z/2pZ,Z)(p)

)Z/kZ ∼=
(
Z/pZ[x, x−1]

)Z/kZ

∼= Z/pZ[xk, x−k].

Proposition 3.6. Let p be an odd prime for which h− = 1. Then

Ĥ∗(Sp(p− 1,Z),Z)(p)
∼=
∏

k|p−1
k odd

(Kk∏

1

Z/pZ[xk, x−k]

)
,

where Kk is the number of conjugacy classes of subgroups of U((p− 1)/2) with
|N/C| = k. As usual N denotes the normalizer and C the centralizer of this
subgroup.

Proof. Let p be a prime with h− = 1. Then a bijection exists between the con-
jugacy classes of matrices of order p in U((p− 1)/2) that satisfy the conditions
of Theorem 2.2 and the conjugacy classes of matrices of order p in Sp(p−1,Z).
Now this proposition follows from Theorem 3.1.

Now it remains to determine Kk, the number of conjugacy classes of subgroups
of U((p − 1)/2) of order p with N/C ∼= Z/kZ. Therefore we need Nk, the
number of conjugacy classes of elements X ∈ U((p− 1)/2) of order p for which
1 = j1 < · · · < jk < p exist such that the Xjl , l = 1, . . . , k, are in the same
conjugacy class than X and k is maximal. One such class yields k elements in
a group for which |N/C| = k and therefore

Kk = kNk
1

p− 1
.

We recall the formula for Nk:

Nk = 2
p−1
2k −

∑

k′ odd, k′>k
k|k′, k′|p−1

Nk′ .

Now we have everything we need to compute the p-primary part of the Farrell
cohomology of Sp(p− 1,Z) for some examples of primes with h− = 1.
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3.3 Examples with 3 6 p 6 19

p = 3 : It is Sp(2,Z) = SL(2,Z). One conjugacy class exists with N = C.
Therefore

Ĥ∗(Sp(2,Z),Z)(3)
∼= Z/3Z[x, x−1],

and Sp(2,Z) has 3-period 2.

p = 5 : One conjugacy class exists with N = C. Therefore

Ĥ∗(Sp(4,Z),Z)(5)
∼= Z/5Z[x, x−1],

and Sp(4,Z) has 5-period 2.

p = 7 : One conjugacy class exists with N/C ∼= Z/3Z, and one class exists with
N = C. Therefore

Ĥ∗(Sp(6,Z),Z)(7)
∼= Z/7Z[x3, x−3]× Z/7Z[x, x−1],

and Sp(6,Z) has 7-period 6.

p = 11 : One conjugacy class exists with N/C ∼= Z/5Z and 3 classes exist with
N = C. Therefore

Ĥ∗(Sp(10,Z),Z)(11)
∼= Z/11Z[x5, x−5]×

3∏
1
Z/11Z[x, x−1],

and Sp(10,Z) has 11-period 10.

p = 13 : One conjugacy class exists with N/C ∼= Z/3Z and 5 classes exist with
N = C. Therefore

Ĥ∗(Sp(12,Z),Z)(13)
∼= Z/13Z[x3, x−3]×

5∏
1
Z/13Z[x, x−1],

and Sp(12,Z) has 13-period 6.

p = 17 : 16 conjugacy classes exist with N = C. Therefore

Ĥ∗(Sp(16,Z),Z)(17)
∼=

16∏
1
Z/17Z[x, x−1],

and Sp(16,Z) has 17-period 2.

p = 19 : One conjugacy class exists with N/C ∼= Z/9Z, one class exists with
N/C ∼= Z/3Z, and 28 classes exist with N = C.

Ĥ∗(Sp(18,Z),Z)(19)
∼= Z/19Z[x9, x−9]× Z/19Z[x3, x−3]

×
28∏
1
Z/19Z[x, x−1],

and Sp(18,Z) has 19-period 18.
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3.4 The p-primary part of the Farrell cohomology of Sp(p− 1,Z)

Let p be an odd prime and let ξ be a primitive p-th root of unity. Let h− be the
relative class number of the cyclotomic field Q(ξ). In this section we compute

Ĥ∗(Sp(p− 1,Z),Z)(p) and its period for any odd prime p for which h− is odd.

Theorem 3.7. Let p be an odd prime for which h− is odd. Then

Ĥ∗(Sp(p− 1,Z),Z)(p)
∼=
∏

k|p−1
k odd

( K̃k∏

1

Z/pZ[xk, x−k]

)
,

where K̃k denotes the number of conjugacy classes of subgroups of order p of
Sp(p−1,Z) for which |N/C| = k. Moreover K̃k > Kk, where Kk is the number
of conjugacy classes of subgroups of U((p− 1)/2) with |N/C| = k. As usual N
denotes the normalizer and C the centralizer of the corresponding subgroup.

Proof. We have seen in Section 2.2 that if h− is odd, a bijection exists between
the conjugacy classes of matrices of order p in U((p − 1)/2) that satisfy the
conditions of Theorem 2.2 and the conjugacy classes of matrices of order p in
Sp(p − 1,Z) that correspond to the equivalence classes [Z[ξ], u] ∈ P. Each
conjugacy class of subgroups of order p in U((p− 1)/2) whose group elements
satisfy the condition required in Theorem 2.2 yields at least one conjugacy class
in Sp(p−1,Z). This implies that the p-primary part of the Farrell cohomology
of Sp(p− 1,Z) is a product

∏

k|p−1,
k odd

( K̃k∏

1

Z/pZ[xk, x−k]

)

where K̃k denotes the number of conjugacy classes of subgroups of order p of
Sp(p− 1,Z) that satisfy |N/C| = k. Let Kk be the number of such subgroups
in U((p− 1)/2). Because h− is odd, each such subgroup gives at least one such

subgroup of Sp(p − 1,Z). Therefore, if h− is odd, K̃k > Kk. If h− is even, it
may be possible that no subgroup of Sp(p − 1,Z) of order p exists for which
|N/C| = k.

Theorem 3.8. Let p be an odd prime for which h− is odd and let y be such
that p− 1 = 2ry and y is odd. Then the period of Ĥ∗(Sp(p− 1,Z),Z)(p) is 2y.

Proof. By Theorem 3.7 we know that the p-primary part of the Farrell coho-
mology of Sp(p− 1,Z) is

Ĥ∗(Sp(p− 1,Z),Z)(p)
∼=
∏

k|p−1
k odd

( K̃k∏

1

Z/pZ[xk, x−k]

)
.
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Moreover, K̃k > 1 and the period of Z/pZ[xk, x−k] is 2k. Herewith the period
of the p-primary part of the Farrell cohomology is 2y.

If p is a prime for which h− is even, the p-period of Ĥ∗(Sp(p − 1,Z),Z) is 2z
where z is odd and divides p−1. The period is not necessarily 2y because there
may be no subgroup of order p in which y elements are conjugate in Sp(p−1,Z)
even if we know that they are conjugate in Sp(p− 1,R).
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