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Formules de Représentation Intégrale

pour les Domaines de Cartan

Atallah Affane

Received: May 31, 1999

Communicated by Joachim Cuntz

Abstract. For a bounded, symmetric and circled domain D in
Cn, considered as the unit ball of some Jordan triple system V , we
give Koppelman-Leray and Cauchy-Leray formulas. These formulas
supply us integral operators for solving the equation ∂u = f when
f is a closed (0, q) form with coefficients in C0(D). These operators,
constructed by the help of the generic norm of V , are invariant by
some Lie subgroup in the group of biholomorphic transformations of
D and the solutions obtained satisfy an estimation of growth at the
boundary.

2000 Mathematics Subject Classification: 32M15, 32F20.
Keywords and Phrases: ∂-problem, bounded symmetric domains.

1. introduction.

Nous appellerons domaine de Cartan tout ouvert borné D de Cn qui soit

• symétrique, c’est à dire que pour tout z de D, il existe une transformation
biholomorphe involutive ϕ ∈ Aut(D) dont z est un point fixe isolé.

• cerclé, c’est à dire qu’il contient l’origine et qu’il est stable par les trans-
formations du type z −→ eitz, t ∈ R.

Un domaine de Cartan est dit irréductible s’il n’est pas produit de deux
autres domaines. La classification de tels domaines fournit quatre classes
dénombrables et deux domaines exceptionnels, le premier dans C16, le second
dans C27. Pour la classe des boules de Lie et le premier domaine exceptionnel,
des formules de représentation intégrale ont été établies par Roos [7]. Plus tard,
Hachaichi [2] a donné, pour la classe du disque généralisé, une formule permet-

tant de résoudre le ∂-problème avec une estimation de croissance au bord. Dans
ce travail, nous mettons à profit une approche algébrique, approche développée
dans [5] et qui consiste à considérer un domaine de Cartan D comme la boule
unité d’un système triple de Jordan V (associé canoniquement) pour obtenir
deux formules générales, la première du type Koppelman-Leray, la seconde du

Documenta Mathematica 5 (2000) 1–13



2 Atallah Affane

type Cauchy-Leray. Ces formules, construites à l’aide de la norme générique
de V , fournissent des opérateurs de résolution f −→ Tf du ∂-problème avec
une donnée dans C0(D) et vérifiant des estimations de la forme:

sup
z∈D
| Tf(z)d(z, ∂D)N |≤ C sup

z∈D
| f(z) |

où d est la distance usuelle et N un entier positif fonction de la dimension, du
rang et du genre de V . Il s’avère que T est invariant par un certain sous groupe
de Lie H du groupe des automorphismes de V , c’est à dire:

T (h∗f) = h∗(Tf) ∀h ∈ H.
Lorsque D est irréductible, H n’est autre que le stabilisateur de l’ origine
dans Aut(D). Dans la seconde section, nous rappellons certains éléments de la
théorie des systèmes triples de Jordan qui permettent d’une part de prouver
que les domaines de Cartan sont à pseudo-bord, de l’autre de construire de
manière naturelle des sections de Leray. Dans les sections suivantes, nous
donnons les formules annoncées et comme tous les éléments intervenant dans
leur élaboration sont invariants par le stabilisateur de l’origine dans Aut(D),
l’invariance des opérateurs de résolution sera assurée.

2. Les domaines de Cartan et les systèmes triples de Jordan.

La référence pour toutes les notions introduites dans cette section est [4], [5]
et [6]. Nous appellerons système triple de Jordan (en abrégé STJ) un espace
vectoriel V de dimension finie sur C muni d’ un triple produit

V × V × V −→ V
x y z −→ { x y z }

C-bilinéaire et symétrique en (x, y), C-antilinéaire en z et vérifiant l’identité

{xy{uvz}}− {uv{xyz}} = {x{yuv}z}− {{uvx}yz}.
Dans la suite, nous utiliserons les notations suivantes:

{xyz} = D(x, y)z = Q(x, z)y ; Q(x) =
1

2
Q(x, x)

B(x, y) = 1−D(x, y) +Q(x)Q(y)

et nous désignerons par Aut(V ) le groupe des isomorphismes h de V tels que:

h({xyz}) = {h(x)h(y)h(z)} ∀x, y, z ∈ V.
Un sous-système de V est un sous espace-vectoriel W tel que {WWW} ⊆ W.
Un idéal est un sous-espace vectoriel I tel que {IV V } + {V IV } ⊆ I et nous
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Représentation Intégrale pour les Domaines de Cartan 3

dirons que V est simple s’il ne possède pas d’idéal propre, semi simple s’il est
somme d’idéaux simples. Un STJ est dit hermitien positif (en abrégé STJHP )
si la forme hermitienne 〈u | v〉 = trD(u, v) est définie positive. En fait, tout
STJHP est semi-simple. Pour tout ce qui suit, V désigne un STJHP de
dimension n et 〈. | .〉 son produit hermitien.
Un élément e de V est dit tripotent si Q(e)e = e. Lorsque deux tripotents e et
e′ vérifient l’une des propriétés équivalentes suivantes:

D(e, e′) = 0 ; D(e′, e) = 0 ; {eee′} = 0 ; {e′e′e} = 0

nous dirons qu’ils sont fortement orthogonaux. A tout tripotent e correspond
une décomposition de V dite de Pierce. De fait, D(e, e) est un endomorphisme
de V auto-adjoint pour la forme hermitienne 〈. | .〉 et ne peut admettre comme
valeurs propres que 0, 1 et 2. D’où la décomposition orthogonale

V = V0 ⊕ V1 ⊕ V2

Vi(e) étant le sous espace propre associé à la valeur propre i. Chacun des
Vi(e) est un sous système de V et on a la formule:

{V0V2V } = {V2V0V } = 0.(1)

Un tripotent e 6= 0 est dit minimal si V2(e) = Ce. Un repère est une famille
maximale {ei}i=1,...,r de tripotents minimaux fortement orthogonaux deux à
deux. Comme deux repères sont conjugués par Aut(V ), tous les repères ont
même cardinal que nous appellerons rang de V et noterons r. La hauteur d’un
tripotent e sera par définition le rang du sous système V2(e) qui est aussi le
nombre d’éléments d’une décomposition de e en somme de tripotents minimaux
fortement orthogonaux deux à deux. Voici maintenant trois résultats de la
théorie des STJ qui nous serons utiles.

Théorème 2.1. Un élément x de V s’écrit de manière unique

x = λ1e1 + ...+ λses

où {ei}i=1,...,s est une famille de tripotents fortement orthogonaux deux à deux
et 0 ≤ λ1 < · · · < λs des nombres réels. Cette écriture s’appelle décomposition
spectrale de x. De plus, la fonction x −→| x |= λs est une norme que nous
appellerons norme spectrale de V . La distance associée sera appellée distance
spectrale et notée δ.

Théorème 2.2. i) La boule unité pour la norme spectrale d’un STJHP est un
domaine de Cartan, irréductible si et seulement si V est simple.
ii) Un domaine de Cartan est de manière canonique la boule unité d’un STJHP
V . De plus, V est simple si et seulement si D est irréductible. Le stabilisateur
de l’origine dans Aut(D) est alors exactement Aut(V ).

Documenta Mathematica 5 (2000) 1–13



4 Atallah Affane

Pour tout tripotent e le sous-système V0(e) est un STJHP et nous noterons
De sa boule unité ouverte pour la norme spectrale. Comme conséquence de
l’unicité de la décomposition spectrale, les sous ensembles e+De sont disjoints
deux à deux.

Théorème 2.3. Soit pour j = 1, ..., r
Mj l’ensemble des tripotents de hauteur j,
Dj = {e+ y; e ∈Mj et y ∈ De},
pj : Dj −→ Mj l’application qui à x ∈ Dj associe l’unique e ∈ Mj tel que
x ∈ De.
Alors
-Les Mj et les Dj sont des sous variétés analytiques réelles localement fermées
de V et les pj : Dj −→Mj sont des fibrés analytiques localement triviaux. Les
Mj sont compacts. La frontière ∂D est la réunion des Dj.

-La codimension de Dj est la dimension complexe de V2(e), e étant un point
quelconque de Mj .
-Mr est la frontière de Shilov de D.
-Aut(V ) est un groupe de Lie compact opérant sur chaque Dj .

Lemme 2.1. Posons Dj = Dj ∪ ... ∪ Dr pour j = 1, ..., r. Alors Dj est un
ouvert dense de Dj .

Preuve:
i) Montrons que Dj+1 est fermé dans Dj . Soit s > j et {xl}l≥1 une suite dans
Ds convergente vers x ∈ Dj . Puisque Ms est compact, nous pouvons supposer
que xl = yl + el où les el convergent vers e dans Ms, yl ∈ V0(el) et | yl |< 1. A
la limite, il vient x = y + e avec y ∈ V0(e) et | y |≤ 1. Si | y |< 1, alors
x ∈ Ds. Sinon, le théorème 2.1 appliqué à y comme élément du sous-système
V0(e) donne y = λ1ε1 + ... + λtεt + εt+1. Puisque εt+1 ∈ V0(e), on vérifie à
l’aide de la formule (1) que e+ εt+1 est un tripotent et que V2(e) ⊆ V2(e+
εt+1); alors x ∈ Dτ , τ ≥ s étant la hauteur de e+ εt+1. Ainsi, Dj est ouvert
dans Dj .
ii) Soit s > j, x ∈ Ds et λ1ε1 + · · · + λtεt + εt+1 sa décomposition spectrale;
comme la hauteur de εt+1est aussi sa hauteur dans le sous-système V2(εt+1), il
possède une décomposition εt+1 = σ1 + · · ·+ σs en tripotents minimaux forte-
ment orthogonaux deux à deux choisis dans V2(εt+1). D’autre part, la formule
(1) entraine que les εi et les σj sont fortement orthogonaux deux à deux pour
1 ≤ i ≤ t et 1 ≤ j ≤ s. Soit xl = λ1ε1+· · ·+λtεt+αl(σj+1+· · ·+σs)+σ1+· · ·+
σj où 0 < αl < et lim αl = 1. Par construction, xl ∈ Dj et lim xl = x. Ceci

prouve que Dj ⊆ Dj .

Ce lemme et le théorème 2.3 assurent que D est à pseudo-bord au sens de [8]
et que la formule de Stokes y est donc valable.

Dans tout ce qui suit, V sera identifié à Cn par le choix d’une base orthonormale
pour le produit hermitien 〈. | .〉 . Alors detB(x, y) est un polynome holomorphe
en x, antiholomorphe en y et relié au noyau de Bergman k(x, y) de D par la
formule:

Documenta Mathematica 5 (2000) 1–13



Représentation Intégrale pour les Domaines de Cartan 5

detB(x, y) = (volD)−1k(x, y)−1 ∀x ∈ D, ∀y ∈ D.(2)

Rappellons aussi la formule de transformation:

k(x, y) = Jϕ(x)k(ϕ(x), ϕ(y))Jϕ(y) ∀ϕ ∈ Aut(D)(3)

(Ici Jϕ désigne le jacobien de ϕ et Jϕ son conjugué).

Une propriété particulière des domaines de Cartan est que:

k(0, z) = k(z, 0) = k(0, 0) ∀z ∈ D.

Par ailleurs, lorsque V est simple, il existe un entier positif g et un polynome
irréductible N(x, y) tel que:

N(0, 0) = 1 et detB(x, y) = N(x, y)g .

N(x, y) s’appelle la norme générique et g le genre. Par construction, N(x, y)
est holomorphe en x, antiholomorphe en y et vérifie:

N(x, y) = N(y, x) et N(x, 0) = N(0, x) = 1(4)

Si V = V1 ⊕ ... ⊕ Vm où chaque Vi est un idéal simple de norme générique
Ni(xi, yi), nous poserons:

N((x1, ..., xm), (y1, ..., ym)) = Π
1≤i≤m

Ni(xi, yi),

L(x, y) = N(x, y)N(y, x) −N(x, x)N(y, y).

Nous introduisons aussi le groupe de Lie:

Aut′(V ) = {h = (h1, ..., hm); hi ∈ Aut(Vi)}.

Etant donné un repère {ei}i=1,...,r et xj = a1
je1 + ...+ arjer pour j = 1, 2 nous

avons la formule:

N(x1, x2) = (1− a1
1a

1
2)...(1− ar1ar2).(5)

Proposition 2.1. i) N(x, y) 6= 0 ∀x ∈ D, ∀y ∈ D.
ii) N(y, y) = 0 ∀y ∈ ∂D.
iii) ∀x ∈ D, ∀y ∈ D, L(x, y) ≥ 0 avec égalité si et seulement si x = y.

Documenta Mathematica 5 (2000) 1–13



6 Atallah Affane

Preuve:
Il suffit de l’établir dans le cas où le système V est simple.
i) On a d’après la définition de B(x, y), B(x,λy) = B(λx, y) pour tout λ dans
R ce qui donne:

N(x, λy) = N(λx, y) ∀λ ∈ R, ∀x ∈ V, ∀y ∈ V.(6)

Soit x ∈ D et y ∈ D; puisque D est une boule centrée en l’origine, il existe
λ ∈ R, y′ ∈ D tels que λx ∈ D et y = λy′. Nous aurons donc N(x, y) =
N(x, λy′) = N(λx, y′). Or d’après (2), N(λx, y′) 6= 0.
ii) C’est une application de la formule (5) en observant que l’un des facteurs
du terme de droite est nul.
iii) Soit 〈., .〉 le produit hermitien usuel de l2(N), {ϕp}p∈N une base hilberti-
enne de l’espace des fonctions holomorphes de carré intégrables et Φ : D −→
l2(N) définie par Φ(x) = {ϕp(x)}p∈N. On sait que:

k(x, y) = 〈Φ(x),Φ(y)〉 ∀x ∈ D, ∀y ∈ D.
L’inégalité à établir n’est autre que celle de Cauchy-Schwartz et l’égalité n’a
lieu que si Φ(x) et Φ(y) sont colinéaires, ce qui exige x = y. Enfin, pour x ∈ D
et y ∈ ∂D, d’après les points i) et ii), on a L(x, y) > 0.

Lemme 2.2. On a l’inégalité:

inf
y∈D
| N(x, y) |≥ δ(x, ∂D)r ∀x ∈ D.

Preuve:
Soit x un point de D. Si x = 0, il suffit d’appliquer la formule (4). Soit donc
x 6= 0 et considérons sur D×D la fonction Ψ(u, y) = N(| x | u, y)−1. C’est une
fonction holomorphe en u, antiholomorphe en y et continue sur D ×D d’après
le i) de la proposition 2.1. Pour u fixé dans D, le principe du maximum donne
un point t dans Mr tel que:

| Ψ(u, y) |≤| Ψ(u, t) | ∀y ∈ D.
Toujours, par le principe du maximum appliqué maintenant à la fonction
w −→ Ψ(w, t), il existe un point s ∈Mr tel que | Ψ(u, y) |≤| Ψ(s, t) | . Mais en
combinant la formule (6) et le iii) de la proposition 2.1, on obtient:

| Ψ(s, t) |≤ (N(| x | 12 s, | x | 12 s)N(| x | 12 t, | x | 12 t))− 1
2 .

Or, d’après la formule (5), le terme de droite de cette inégalité vaut

(1− | x |)−r. Pour conclure, il suffit de prendre u =
x

| x | et de remarquer que

D étant la boule unité, l’inégalité 1− | x |≥ δ(x, ∂D) a lieu.
Nous adopterons la notation suivante:

Documenta Mathematica 5 (2000) 1–13



Représentation Intégrale pour les Domaines de Cartan 7

(u, v) =
∑

1≤j≤n
ujvj ; 〈u | v〉 = (u, v) pour u et v dans Cn

et µ désignera la forme de Cauchy-Leray:

µ(u, v) =
(n− 1)!

(2iπ)n

∑

1≤j≤n
(−1)j+1 uj

(u, v)n
Λ
m6=j

dum Λ
1≤k≤n

dvk

définie sur {(u, v) 6= 0}. On sait que µ est fermée.
Nous terminerons cette section par le fait que toutes les notions qui y sont
introduites1 sont invariantes par le groupe Aut′(V ).

3. La formule de Koppelman-Leray.

Dans cette section, nous adaptons aux domaines de Cartan qui en général ne
sont ni strictement pseudo-convexes, ni de classe C1 par morceaux la démarche
de [3]. Le développement de Taylor du polynome holomorphe u −→ N(u, t) au
point u = v s’écrit

N(u, t) = N(v, t) + (α(u, v, t), (v − u))(7)

où

αk(u, v, t) = −
1∫

0

∂N

∂xk
(u+ s(v − u), t)ds.

Les αk(u, v, t) sont des polynomes holomorphes en (u, v) et antiholomorphes
en t. Posons alors ω(z, ξ) = α(z, ξ, ξ); par construction et d’après les points
i) et ii) de la proposition 2.1, ω est une section de Leray pour le domaine D
holomorphe en z c’est à dire ( ω(z, ξ), ξ − z) 6= 0 pour tout z dans D et ξ dans
∂D. On introduit la section de Bochner-Martinelli σ(z, ξ) = ξ − z et la section
d’homotopie:

η(z, ξ, λ) = (1− λ) ω(z, ξ)

(ω(z, ξ), ξ − z) + λ
σ(z, ξ)

(σ(z, ξ), ξ − z)
définie pour ξ 6= z, (ω(z, ξ), ξ − z) 6= 0 et 0 ≤ λ ≤ 1. A l’aide de ces sections,
on construit les formes différentielles:

Ω =
(n− 1)!

(2iπ)n

∑

1≤j≤n
(−1)j+1 ξ

j − zj
(σ(z, ξ), ξ − z)n Λ

m6=j
(dξ

m − dzm) Λ
1≤k≤n

dξk

1norme spectrale, produit hermitien, norme générique, composantes Dj etc..
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8 Atallah Affane

Ω =
(n− 1)!

(2iπ)n

∑

1≤j≤n
(−1)j+1ηj(z, ξ, λ) Λ

m6=j
(∂z,ξ + dλ)η

m(z, ξ, λ) Λ
1≤k≤n

dξk.

Remarque 3.1. Pour une transformation h ∈ Aut′(V ), une section
ρ(z, ξ) telle que ρ(h(z), h(ξ)) = h(ρ(z, ξ)) et une section ρ′(z, ξ) vérifiant
ρ′(h(z), h(ξ)) = h(ρ′(z, ξ)), la forme différentielle

∑

1≤j≤n
(−1)j+1ρj(z, ξ) Λ

m6=j
dρm Λ

1≤k≤n
dρ′k

est invariante par la transformation h̃(z, ξ) = (h(z), h(ξ)).

Ceci provient seulement du fait que si h ∈ Aut′(V ) alors | det h |= 1. D’autre
part, pour h ∈ Aut′(V ) l’identité N(h(z), h(ξ)) = N(z, ξ) donne après calcul
direct:

α(h(z), h(ξ), h(t)) = h(α(z, ξ, t)).(8)

Etant donnée une (0, q) forme f à coefficients continus sur D, on définit par
intégration partielle par rapport à ξ les formes différentielles:

BDf(z) =

∫

ξ∈D

f(ξ)ΛΩ(z, ξ) Rω∂Df(z) =

1∫

0

dλ

∫

ξ∈∂D

f(ξ)ΛΩ(z, ξ, λ)

Tf = (−1)q(BDf +Rω∂Df).

Pour q = 0, on a BDf = 0 et Rω∂Df = 0 tandis que pour q ≥ 1, on obtient des
formes de type (0, q − 1) en z.

Lemme 3.1. Les opérateurs BD et Rω∂D sont invariants par Aut′(V ) c’est à
dire:

h∗BDf = BDh
∗f et h∗Rω∂Df = Rω∂Dh

∗f ∀h ∈ Aut′(V ).

Preuve:
Pour h ∈ Aut′(V ), notons h̃ l’endomorphisme de V × V défini par h̃(z, ξ) =
(h(z), h(ξ)). Il est trivial que la remarque 3.1 s’applique aux sections ρ(z, ξ) =
σ(z, ξ) et ρ′(z, ξ) = ξ. D’après la formule (8), elle est également applicable pour

ρ = η et ρ′ = ξ; on obtient ainsi h̃∗Ω = Ω et h̃∗Ω = Ω. Il suffit donc, d’effectuer
dans les intégrales définissant BDh

∗f et Rω∂Dh
∗f le changement de variable

h(ξ) = τ pour retrouver h∗BDf et h∗Rω∂Df.

Théorème 3.1. Etant donnée une (0, q) forme (q = 1, ..., n) f continue sur D
telle que ∂f soit aussi continue sur D on a:
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Représentation Intégrale pour les Domaines de Cartan 9

f = T∂f + ∂Tf.

En particulier, pour q = 1, ..., n et si ∂f = 0, Tf est solution de l’équation
∂u = f. De plus, cet opérateur de résolution T vérifie:

Th∗f = h∗Tf ∀h ∈ Aut′(V ).

Enfin, il existe C > 0 tel que

sup
z∈D
| Tf(z)δ(z, ∂D)r(n−1) |≤ C sup

z∈D
| f(z) | .

Preuve:
Du moment que l’on a construit ci-dessus une section de Leray holomorphe en
z et que la formule de Stokes est applicable, il suffit de reprendre mutadis mu-
tandis les paragraphes [1.6]-[1.12] de [3] pour avoir la formule de représentation
intégrale annoncée.
La propriété d’invariance de T résulte directement du lemme 3.1.
Pour l’estimation de croissance au bord, toujours suivant [3], on n’a besoin
de l’établir que pour l’opérateur Rω∂D . Or d’après les calculs effectués dans le
paragraphe [2.2] de [3], les coefficients de Rω∂Df sont des combinaisons linéaires
d’ intégrales de la forme:

E(z) =

∫

ξ∈∂D

fI(ξ)Γ(z, ξ)

N(z, ξ)n−s−1 〈z − ξ | z − ξ〉(s+1)
Λ
m6=j

dξ
m

Λ
1≤k≤n

dξk

où 0 ≤ s ≤ n− 2, 1 ≤ m ≤ n, fI est un coefficient de f et Γ une expression ne
dépendant que de la section ω et vérifiant une inégalité du type

| Γ(z, ξ) |≤ C | z − ξ | ∀z ∈ D, ∀ξ ∈ D.
Appliquons le lemme 2.2, il vient:

δ(z, ∂D)r(n−1) | E(z) |≤ C sup
z∈D
| f(z) |

∫

ξ∈∂D

| z − ξ |−(2n−3) ∀z ∈ D.

Mais par la formule de Stokes, cette dernière intégrale se majore par∫
ξ∈D
| z − ξ |−(2n−2) qui est bornée en z.

4. La formule de Cauchy-Leray.

Appliquons l’identité (7) pour u = z, v = ξ, t = ξ, puis pour u = z, v = ξ,
t = z, il vient:
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N(z, ξ) = N(ξ, ξ) + (α(z, ξ, ξ), ξ − z) ; N(z, z) = N(ξ, z) + (α(z, ξ, z), ξ − z).
On aura alors L(z, ξ) = (s(ξ, z), ξ − z) avec

s(ξ, z) = N(ξ, z)α(z, ξ, ξ)−N(ξ, ξ)α(z, ξ, z).

Il est évident que s(z, z) = 0 et donc il existe C > 0 tel que:

| s(ξ, z) |≤ C | ξ − z | ∀z, ξ ∈ D.(9)

Sur l’ouvert { L(z, ξ) 6= 0}, considérons la forme différentielle:

K(ξ, z) =
(n− 1)!

(2iπ)n

∑

1≤j≤n
(−1)j+1 sj(ξ, z)

(s(ξ, z), ξ − z)n Λ
m6=j

dsm Λ
1≤k≤n

(dξk − dzk).

C’est l’image réciproque de µ par l’application qui à (z, ξ) associe (s(ξ, z), ξ−z);
elle est donc fermée. Pour 1 ≤ q ≤ n, on note Kq la composante de bidegré
(n, n− q) en ξ et de bidegré (0, q − 1) en z.

Lemme 4.1. Soit des STJHP simples Vi, de boule unité ∆i pour i =
1, ...,m, V = ⊕ Vi et D la boule unité de V. Notons Aut′(D) = {ϕ =
(ϕ1, ..., ϕm); ϕi ∈ Aut(∆i) ∀i = 1, ...,m.}. Pour un point z de D et ϕ dans
Aut′(D) telle ϕ(0) = z, on a

L(z, ξ) =| N(z, ξ) |2 L(0, ϕ−1(ξ)) ∀ξ ∈ D.
Preuve:
Il s’agit d’appliquer plusieurs fois la formule (3) à chacun des systèmes simples
Vi.

Lemme 4.2. i) On a l’inégalité

L(0, τ) ≥| τ |2 ∀τ ∈ D.
ii) Pour tout point z ∈ D, il existe Cz > 0 et un voisinage Uz tels que:

L(z, ξ) ≥ Cz | z − ξ |2 ∀ξ ∈ Uz.
Preuve:
i) Par la formule (4) on a L(0, τ) = 1 − N(τ, τ) pour tout τ dans D. Or, la
décomposition spectrale d’un point τ ∈ D s’écrit τ = λ1e1 + ... + λrer où
les ei constituent un repère et | τ |= sup λi; d’après l’identité (5) on aura
N(τ, τ) ≤ 1− | τ |2 ce qui suffit.
ii) Soit z ∈ D, puisque Aut′(D) opère transitivement sur D, choisissons ϕ ∈
Aut′(D) tel que ϕ(0) = z. D’après le théorème des accroissements finis, il existe
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un voisinageW de z et une constante C > 0 tels que | ϕ−1(ξ) |≥ C | z−ξ | pour
tout ξ dans W. On conclut alors en utilisant le lemme 4.1 et le point i).

Ainsi, pour z ∈ D fixé et tenant compte de l’inégalité (9), la fonction
s(ξ, z)/L(z, ξ)n est intégrable sur D. On peut donc définir pour toute forme
différentelle u de type (0, q − 1), (2 ≤ q ≤ n+ 1), la (0, q − 2) forme:

Tu(z) = (−1)q
∫

ξ∈D

u(ξ)ΛKq−1(ξ, z).

Lemme 4.3. i) ∂ξK
1(ξ, z) = 0 et pour q ≥ 2, on a ∂ξK

q(ξ, z) =

−∂zKq−1(ξ, z).
ii) Pour q ≥ 2, on a Kq(ξ, z) = 0 lorsque z ∈ D et ξ ∈ ∂D.
Preuve:
i) Provient du fait que la forme différentielle K est fermée.
ii) En reprenant l’expression de K, on constate que Kq provient de la somme:

∑

1≤j≤n
(−1)j+1 sj(ξ, z)

(s(ξ, z), ξ − z)n Λ
m6=j

∂sm Λ
1≤k≤n

dξk.

D’autre part, un calcul direct donne:

∂zs
i(ξ, z)Λ∂zs

j(ξ, z) = 0 ∀z ∈ D, ξ ∈ ∂D et 1 ≤ i, j ≤ n.
Ceci assure le lemme pour q ≥ 3. Pour q = 2, on constate après calcul que
K2 est multiple de

∑

i≺j
(−1)j+i(si∂zs

j − sj∂zsi) Λ
k 6=i,j

∂ξs
k

et on vérifie que sur {z ∈ D, ξ ∈ ∂D}, on a si∂zs
j − sj∂zsi = 0 ∀ 1 ≤ i, j ≤ n.

Lemme 4.4. Il existe C > 0 telle que:

| ϕ(τ) − ϕ(0) |≤ C | τ | ∀ϕ ∈ Aut(D), ∀τ ∈ D
Preuve:
Comme D est la boule unité, on a | ϕ(τ) |≤ 1 pour tout τ dans D et ϕ dans
Aut(D). D’après la formule de Cauchy pour les polydisques, il existe C > 0
telle que:

sup
ϕ∈Aut(D), |τ |≤1

2

| Dτϕ |≤ C.

Le théorème des accroissements finis donne alors le lemme sur {| τ |≤ 1
2}. Sur

le complémentaire {| τ |≥ 1
2} l’inégalité à établir est triviale.
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Théorème 4.1. Soit pour 1 ≤ q ≤ n + 1 une (0, q − 1) forme u continue sur
D telle que ∂u soit aussi continue sur D, alors:
i) si q ≥ 2, on a u = (−1)qT ∂u+ ∂zTu.
ii) pour q = 1, on a u(z) =

∫
ξ∈∂D

u(ξ)K1(z, ξ) − T ∂u(z) ∀z ∈ D.

iii) T (h∗u) = h∗(Tu) ∀h ∈ Aut′(V ).
iv) On suppose V = ⊕

1≤i≤m
Vi et pour tout i, soit ki, gi, ri, δi, ∆i les noyaux

de Bergman, genres, rangs, distances spectrales et boules unité de chacun des
STJHP simples Vi. Posons N(i) = ri(2n− gi); alors il existe C > 0 telle que:

sup
(z1,...,zm)∈D

Π
1≤i≤m

δi(zi, ∂∆i)
N(i) | Tu(z1, ..., zm) |≤ C sup

z∈D
| u(z) | .

Preuve:
Grace au lemme 4.3, on peut reprendre le raisonnement du paragraphe 1 de[1]
et obtenir ainsi les points i) et ii).
iii) Par ailleurs la formule (8) assure que la remarque 3.1 est applicable pour

les sections ρ = s et ρ′(z, ξ) = ξ − z; on aura ainsi h̃∗K = K pour tout h
dans Aut′(V ) et après le changement de variables ξ′ = h(ξ) dans l’intégrale qui

définit T (h∗u), on retrouve h∗(Tu).
iv) Les coefficients de Tu(z)sont des combinaisons linéaires d’intégrales de la
forme:

F (z) =

∫

ξ∈D

RI(z, ξ)uI(ξ)s
j(ξ, z)

L(z, ξ)n

où uI est un coefficient de u, RI un polynome et j = 1, ..., n. Soit ϕ ∈
Aut′(D) telle que ϕ(0) = z; on aura à l’aide du lemme 4.1 et du i) du lemme
4.2 l’inégalité:

| Tu(z) |≤ Csup
t∈D
| u(t) |

∫

ξ∈D

| s(ξ, z) |
| ϕ−1(ξ) |2n| N(z, ξ) |2n

Effectuons le changement de variable ξ = ϕ(τ) puis utilisons le lemme 4.4 et la
formule (9), cette intégrale sera majorée par:

∫

τ∈D

| Jϕ(τ) |2| τ |1−2n| N(z, ϕ(τ) |−2n .

Mais la formule (3) donne:

| Jϕi(τi) |2= ki(0, 0)ki(zi, zi) | ki(zi, ϕi(τi)) |−2

et on conclut alors en appliquant le lemme 2.2 à chaque Vi.
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U.S.T.H.B, B.P. 32 El Alia
Bab Ezzouar
Algiers, Algeria.
atallahaffane@hotmail.com

Documenta Mathematica 5 (2000) 1–13



14

Documenta Mathematica 5 (2000)



Documenta Math. 15

Zur Bewegung einer Kugel
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Abstract. In dieser Arbeit untersuchen wir die Bewegung einer Fest-
kugel im beschränkten Gebiet, das mit einer inkompressiblen zähen
Flüssigkeit gefüllt ist. Wir beweisen, dass die Festkugel die Wand des
Behälters mit der Geschwindigkeit Null erreicht. Als eine Folgerung
wird die Lösbarkeit der Aufgabe gezeigt.

1991 Mathematics Subject Classification: 35Q30

1 Einführung und Hauptergebnisse.

Es sei Ω ein Gebiet im R3 mit Rand ∂Ω. Wir nehmen an, daß Ω mit einer
inkompressiblen Flüssigkeit gefüllt ist, und ein Festkörper darin schwimmt.
Das Ziel dieser Arbeit ist es, diese Bewegung zu beschreiben.
Die Hauptschwierigkeit der Aufgabe besteht darin, daß der Körper an die Wand
des Behälters stoßen kann. Es ist nicht ganz klar, welche Bedingungen man in
diesem Moment erhält. Daher wurde das Problem bisher mathematisch nur für
solche Gebiete betrachtet, die mit dem ganzen Raum übereinstimmen ([1], [2]).
Eine Übersicht über mechanische und numerische Behandlungen des Problems
kann man in [3] finden. In [4] haben wir für den zweidimensionalen Fall bewie-
sen, daß der Körper die Wand mit der Geschwindigkeit Null erreicht, wenn sein
Rand und der Rand des Gebietes zur Klasse C2 gehören. Als eine Folgerung
wurde die Lösbarkeit der Aufgabe gezeigt. Jetzt wird dieses Ergebnis auf den
dreidimensionalen Fall erweitert werden. Wir setzen einschränkend voraus, daß
das Gebiet Ω und der Körper Kugeln sind. Die Ergebnisse gelten aber auch,
wenn man mehrere Kugeln im Gebiet betrachtet. Diese Voraussetzung wird ei-
gentlich nur im Satz 2 benutzt. Um die Berechnungen zu vereinfachen, nehmen
wir außerdem an, daß die Dichten der Flüssigkeit und des Körpers beide gleich
eins sind, und keine Volumenkräfte vorhanden sind.
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16 K.-H. Hoffmann, V.N. Starovoitov

Es seien V (t) das Gebiet, das der Festkörper einnimmt, und Γ(t) sein Rand
zur Zeit t. Es ist die Aufgabe, das Geschwindigkeitsfeld v̄ der Flüssigkeit, die
Geschwindigkeit ū∗ = dx̄∗/dt des Schwerpunktes x̄∗ des Festkörpers (des Mit-
telpunktes der Kugel V ) und seine Winkelgeschwindigkeit ω̄ zu finden, die den
Gleichungen

v̄t + (v̄ · ∇)v̄ = divP,
divv̄ = 0,
P = −pI +D(v̄),

x̄ ∈ Ω\V (t) (1.1)

mdū∗

dt =
∫

Γ(t)

P < n̄ > ds,

J∗
dω̄
dt =

∫
Γ(t)

(x̄− x̄∗)× P < n̄ > ds, (1.2)

genügen. Hier sind m die Masse des Körpers, J∗ der Tensor des Inertiamomen-
tes des Körpers bezüglich seines Schwerpunktes, P der Spannungstensor, p der
Druck und D(v̄) der Deformationsgeschwindigkeitstensor mit den Komponen-
ten

Dij(v̄) =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
.

Für das Gleichungssystem (1.1)–(1.2) stellen wir folgende Rand- und Anfangs-
bedingungen

t = 0 : v̄ = v̄0, ū∗ = ū0
∗, ω̄ = ω̄0, V = V0, (1.3)

Γ(t) : v̄(x̄, t) = ū∗(t) + ω̄(t)× (x̄− x̄∗(t)), (1.4)

∂Ω : v̄ = 0. (1.5)

Wir nennen (1.1)–(1.5) Aufgabe A.
Nun definieren wir den Begriff der verallgemeinerten Lösung der Aufgabe A.
Es seien

ϕ(x̄, t) =

{
1, x̄ ∈ V (t),
0, x̄ ∈ Ω \ V (t),

K(χ) = {ψ̄ ∈ H1
0 (Ω) | D(ψ̄)(x̄) = 0 für x̄ ∈ S(χ), divψ̄ = 0},

wobei χ die charakteristische Funktion einer Teilmenge von Ω ist, und S(χ) die
Menge der Punkte mit χ = 1 bezeichnet. Mit Lp(0, T ;K(χ)), p ≥ 1, bezeichnen
wir die Menge der Funktionen aus Lp(0, T ;H1

0(Ω)), die für fast alle t ∈ [0, T ]
zu K(χ) gehören.
Es seien Char(E) die Klasse der charakteristischen Funktionen aller Teilmen-
gen einer Menge E und Q = [0, T ]× Ω für T <∞.

Definition 1. Ein Paar von Funktionen

v̄ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;K(ϕ)),

ϕ ∈ Char(Q) ∩ C1/p(0, T ;Lp(Ω)), 1 < p <∞,
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heißt verallgemeinerte Lösung der Aufgabe A, wenn die Integralidentitäten

∫

Q

{v̄(ψ̄t + (v̄ · ∇)ψ̄)−D(v̄) : D(ψ̄)}dx̄dt = −
∫

Ω

v̄0 · ψ̄0dx̄, (1.6)

∫

Q

ϕ(ηt + v̄ · ∇η)dx̄dt = −
∫

Ω

ϕ0η0dx̄ (1.7)

für beliebige Funktionen η ∈ C1(Q), η(T ) = 0, ψ̄ ∈ H1(Q) ∩ L2(0, T ;K(ϕ)),
ψ̄(T ) = 0 gelten.

Bemerkung. Wir charakterisieren den Festkörper durch die Bedingung, daß
D(v̄)(x̄) = 0 für x̄ ∈ S(ϕ). Das ist folgendermaßen motiviert. Der Kern des
Operators D besteht aus Funktionen, die die Form v̄ = ā + ω̄ × x̄, ā, ω̄ ∈ R3,
haben ([5], S.18). Damit bewegt sich die Flüssigkeit wie ein Festkörper. Deshalb
nennen wir solche Funktionen auch “starre” Funktionen.
Das Hauptergebnis dieser Arbeit ist der folgende Satz.

Satz 1. Sei v̄0 ∈ L2(Ω). Wenn Ω und S(ϕ0) Kugeln in R3 sind, hat die Auf-
gabe A mindestens eine verallgemeinerte Lösung.
Außerdem gelten:
1. Es gibt eine Familie von Abbildungen As,t : R3 → R3, s, t ∈ [0, T ], so daß
S(ϕ(t)) = As,t(S(ϕ(s))) (und S(ϕ(t)) = A0,t(S(ϕ0))), As,t(x̄) ist “starr” (im
Sinne obiger Bemerkung), und As,t Lipschitz-stetig bezüglich s und t ist.
2. Wenn h(t) = dist(∂Ω, S(ϕ(t))) und h(t0) = 0 für t0 ∈ [0, T ], so gilt
lim
t→t0

h(t)|t− t0|−1 = 0.

3. Für fast alle t ∈ {t ∈ [0, T ] | h(t) = 0} weist ω̄(t) in Richtung von n̄M , und es
gilt v̄M = 0. Ferner sind M = ∂Ω∩∂S(ϕ(t)) ein Punkt, v̄M die Geschwindigkeit
des Punktes des Körpers, der mit M übereinstimmt, und n̄M die Normale der
Fläche ∂S(ϕ(t)) (und ∂Ω) in M .

Bemerkung. Die zweite Behauptung des Satzes bedeutet, daß der Festkörper
die Wand mit Geschwindigkeit Null erreicht.

2 Der Raum K(χ).

Hier untersuchen wir Eigenschaften der Funktionen, die zum Raum K(χ)
gehören. Es wird immer angenommen, daß Ω und S(χ) Kugeln sind, und 0
der Mittelpunkt von Ω ist.
Es sei {As} eine Familie von Abbildungen As : R3 → R3, die die Form

As(x̄) = ā(s) +B(s) < x̄ > (2.1)

haben, wobei ā : R → R3, B : R → R3 × R3 glatte Funktionen sind, B(s) für
jedes s eine lineare orthogonale Abbildung ist, und ā(0) = 0, B(0) = I gilt.
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Satz 2. Es seien χ die charakteristische Funktion einer Kugel S(χ) ⊂ Ω und
χs(x̄) = χ(A−1

s (x̄)), s ≥ 0, d.h. S(χs) = A(S(χ)). Wenn S(χs) ⊂ Ω für jedes
s ∈ [0, s0], s0 > 0, gilt, dann konvergiert K(χs) → K(χ) für s → 0 in H1

0 (Ω),
d.h. für jede Funktion ψ̄ ∈ K(χ) gibt es eine Folge von Funktionen ψ̄s ∈ K(χs)
mit ψ̄s → ψ̄ in H1

0 (Ω).

Beweis. Weil S(χ) eine Kugel ist, gibt es viele Abbildungen der Art (2.1), die
S(χ) auf S(χs) abbilden. Wir nehmen ein solches As, so daß |ā(s)| minimal ist.
Es sei ψ̄ eine Funktion aus K(χ). Wir müssen eine Folge von Funktionen ψ̄s ∈
K(χs) konstruieren, die gegen ψ̄ in H1

0 (Ω) konvergiert. Zuerst konstruieren wir
eine Folge von Funktionen ζ̄s = B(s) < ψ̄(B−1(s) < x̄ >) >. Es ist klar,
daß ζ̄s ∈ K(ηs) ist, und ζ̄s gegen ψ̄ in H1

0 (Ω) für s → 0 konvergiert, wobei
ηs(x̄) = χ(B−1(s) < x̄ >) ist. Jetzt haben wir nur zu beweisen, daß eine Folge
von Funktionen ξ̄s ∈ K(µs) existiert, wobei µs(x̄) = χ(x̄− ā(s)), die gegen ψ̄ in
H1

0 (Ω) konvergiert. Wir merken an, daß der Vektor ā in Richtung des Radius
von Ω zeigt.
Es sei ū die “starre” Funktion, die mit ψ̄ in S(χ) übereinstimmt. Wir nehmen
ξ̄s als die Lösung der folgenden Aufgabe:

∆ξ̄s = ∇qs + ∆ψ̄,
divξ̄s = 0,

x̄ ∈ Ω \ S(µs)

ξ̄s(x̄) =

{
0, x̄ ∈ ∂Ω,
ū(x̄), x̄ ∈ ∂S(µs).

Es ist nicht schwer zu sehen, daß ξ̄s gegen ψ̄ in H1
0 (Ω) konvergiert. Wenn

nämlich |ā(s)| 6= 0, haben wir [6]:

‖ψ̄ − ξ̄s‖H1(Ω\S(µs)) ≤ C‖ψ̄ − ū‖H1/2(∂S(µs)). (2.2)

Aber mit dem Spursatz ([6], [7]) gilt die Abschätzung

‖ψ̄ − ū‖H1/2(∂S(µs)) ≤ C‖ψ̄ − ū‖H1(S(µs)) = C‖ψ̄ − ū‖H1(S(µs)\S(χ))

mit einer von s unabhängingen Konstante C. Somit,

‖ψ̄ − ξ̄s‖H1(Ω) = ‖ψ̄ − ξ̄s‖H1(Ω\(S(µs)∩S(χ)) ≤

≤ ‖ψ̄ − ξ̄s‖H1(Ω\S(µs)) + ‖ψ̄ − ξ̄s‖H1(S(µs)\S(χ)) ≤

≤ C‖ψ̄ − ξ̄s‖H1(S(µs)\S(χ)).

Die rechte Seite dieser Ungleichung konvergiert aber für s→ 0 gegen Null, weil
|S(µs) \ S(χ)| → 0 gilt.
Damit ist der Satz bewiesen.
Jetzt untersuchen wir Eigenschaften der Funktionen aus K(χ), wenn der
Festkörper (die Festkugel) die Wand berührt.
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Satz 3. Es seien ψ̄ ∈ K(χ) und ∂S(χ) ∩ ∂Ω 6= ∅. Dann gelten
1. ψ̄(M) = 0, wobei M der Punkt des Körpers ist, der mit ∂S(χ) ∩ ∂Ω über-
einstimmt.
2. ψ̄(x̄) ist ortogonal zu n̄M für alle x̄ ∈ S(χ), wobei n̄M die Normale an ∂Ω
im Punkt M ist.

Bemerkung. Der erste Punkt des Satzes kann schärfer formuliert werden.
Nämlich, es gilt

lim
ρ→0
|Rρ|−1

∫

Rρ

|ψ̄(x̄)|dx̄ = 0,

wobei Rρ = {x̄ ∈ S(χ) | dist(x̄,M) ≤ ρ}.
Beweis des Satzes 3. Es sei ξ̄ = (ξ1, ξ2, ξ3) ein solches orthogonales Koor-
dinatensystem, so daß (0, 0, 0) = M , und der Vektor (0, 0, 1) in Richtung von
n̄M zeigt. Nehmen wir an, daß ∂Ω bzw. ∂S(χ) durch Funktionen g bzw. f
beschrieben werden, d.h.

∂Ω = {ξ̄ ∈ R3 | ξ3 = g(ξ1, ξ2)},

bzw.
∂S(χ) = {ξ̄ ∈ R3 | ξ3 = f(ξ1, ξ2)}.

Es sei Lρ = {(ξ1, ξ2) ∈ R2 | f(ξ1, ξ2) ≤ ρ}. Dann gilt:

∫

Lρ

|ψ̄(ξ1, ξ2, ρ)|2dξ1dξ2 =

∫

Lρ

|ψ̄(ξ1, ξ2, ρ)− ψ̄(ξ1, ξ2, 0)|2dξ1dξ2 =

=

∫

Lρ

∣∣∣∣∣∣

ρ∫

0

∂ψ̄

∂ξ3
dξ3

∣∣∣∣∣∣

2

dξ1dξ2 ≤ Cρ
ρ∫

0

∫

Lρ

|∇ψ̄|2dξ1dξ2dξ3,

wobei ψ̄ mit Null außerhalb Ω fortgesetzt wird. Es gilt aber |Lρ| ≥ Cρ. Daher
erhalten wir die Beziehung

lim
ρ→0
|Lρ|−1

∫

Lρ

|ψ̄|2dξ1dξ2 ≤ C lim
ρ→0

ρ∫

0

∫

Lρ

|∇ψ̄|2dξ1dξ2dξ3 = 0,

und der erste Punkt des Satzes ist bewiesen.
Nun seien Gαρ = {ξ̄ ∈ R3|(ξ1, ξ2) ∈ Lρ, g(ξ1, ξ2) ≤ ξ3 ≤ f(ξ1, ξ2), ξ1 ≤ αξ2}
für α ∈ R, Fαρ = ∂Gαρ ∩ ∂S(χ), Wα

ρ = ∂Gαρ ∩ ∂Ω und V αρ = ∂Gαρ \ (Fαρ ∪Wα
ρ ).

Weil divψ̄ = 0 ist, haben wir

∫

∂Gαρ

ψ̄ · n̄ds = 0,
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und folglich ∫

Fαρ

ψ̄ · n̄ds+

∫

V αρ

ψ̄ · n̄ds = 0.

Aber ψ̄ hat die Darstellung
ψ̄(ξ̄) = ω̄ × ξ̄

für ξ̄ ∈ S(χ), wobei ω̄ ein von ξ̄ unabhängiger Vektor ist. Deshalb gilt

|ω̄ ·
∫

Fαρ

ξ̄ × n̄ds| ≤
∫

V αρ

|ψ̄|ds. (2.3)

Wir merken an, daß
∫
Fαρ

ξ̄ × n̄ds = k(ρ)τ̄α ist, wobei τ̄α ein von ρ unabhängiger

Tangentialvektor an die Fläche ∂Ω im Punkt M ist, und k(ρ) ≥ Cρ3/2 gilt.
Die Integration der Ungleichung (2.3) von 0 bis σ > 0 bezüglich ρ ergibt

σ5/2|ω̄ · τ̄α| ≤
∫

Gασ

|ψ̄|dξ̄ ≤ |Gασ |1/2


∫

Gασ

|ψ̄|2dξ̄




1/2

=

= |Gασ |1/2



σ∫

0

∫

Gασ (ξ3)

|ψ̄|2dξ1dξ2dξ3




1/2

, (2.4)

wobei Gασ(s) die Menge {ξ̄ ∈ Gασ | ξ3 = s} bezeichnet. Aber es ist |Gασ | ≤ Cσ2,
und, weil ψ̄ gleich Null auf ∂Ω ist, gilt die Abschätzung

∫

Gασ (ξ3)

|ψ̄|2dξ1dξ2 ≤ C‖∇ψ̄‖2L2(Ω)|ξ3|.

So erhalten wir aus (2.4):
|ω̄ · τ̄α| ≤ Cσ1/2.

Weil σ eine beliebige Zahl war, ist ω̄ · τ̄α = 0 für alle α ∈ R, und folglich zeigt
ω̄ in Richtung von n̄M .
Damit ist der Satz bewiesen.

3 Beweis des Satzes 1.

Die Lösbarkeit der Aufgabe A und die erste Behauptung des Satzes können
genau wie in [4] bewiesen werden. Für die Lösung gilt die folgende Abschätzung:

∫

Ω

|v̄(x̄, t)|2dx̄ +

t∫

0

∫

Ω

|∇v̄(x̄, s)|2dx̄ds ≤
∫

Ω

|v̄0(x̄)|2dx̄. (3.1)
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Das heißt v̄ ∈ H1
0 (Ω) für fast alle t ∈ [0, T ], und die Behauptung 3 des Satzes

ergibt sich aus dem Satz 3. Es bleibt noch die Behauptung 2 zu beweisen.
Wie in [4] (Aussage 3.4) können wir die Abschätzung

∣∣∣∣
dh(t)

dt

∣∣∣∣ ≤ Ch1/2(t)(z(t) + 1)

herleiten, wobei z(t) = ‖∇v̄(t)‖L2(Ω) ist. Wenn h(t0) = 0 für ein t0 ∈ [0, T ] ist,
gibt uns die Integration dieser Ungleichung:

h1/2(t) ≤ C

∣∣∣∣∣∣

t∫

t0

(z(s) + 1)ds

∣∣∣∣∣∣
≤ C|t− t0|1/2




t∫

t0

(z(s) + 1)2ds




1/2

.

Weil die Funktion z zu L2(0, T ) gehört, ist die Behauptung bewiesen.
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Abstract. The Abel–Jacobi maps of the families of elliptic quintics
and rational quartics lying on a smooth cubic threefold are studied. It
is proved that their generic fiber is the 5-dimensional projective space
for quintics, and a smooth 3-dimensional variety birational to the
cubic itself for quartics. The paper is a continuation of the recent work
of Markushevich–Tikhomirov, who showed that the first Abel–Jacobi
map factors through the moduli component of stable rank 2 vector
bundles on the cubic threefold with Chern numbers c1 = 0, c2 = 2
obtained by Serre’s construction from elliptic quintics, and that the
factorizing map from the moduli space to the intermediate Jacobian
is étale. The above result implies that the degree of the étale map is
1, hence the moduli component of vector bundles is birational to the
intermediate Jacobian. As an application, it is shown that the generic
fiber of the period map of Fano varieties of degree 14 is birational to
the intermediate Jacobian of the associated cubic threefold.

1991 Mathematics Subject Classification: 14J30,14J60,14J45

Introduction

Clemens and Griffiths studied in [CG] the Abel–Jacobi map of the family of
lines on a cubic threefold X . They represented its intermediate Jacobian J 2(X)
as the Albanese variety AlbF (X) of the Fano surface F (X) parametrizing lines
on X and described its theta divisor. From this description, they deduced the
Torelli Theorem and the non-rationality of X . Similar results were obtained
by Tyurin [Tyu] and Beauville [B].
One can easily understand the structure of the Abel–Jacobi maps of some
other familes of curves of low degree on X (conics, cubics or elliptic quartics),
in reducing the problem to the results of Clemens–Griffiths and Tyurin. The
first non trivial cases are those of rational normal quartics and of elliptic normal
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quintics. We determine the fibers of the Abel–Jacobi maps of these families of
curves, in continuing the work started in [MT].
Our result on elliptic quintics implies that the moduli space of instanton vector
bundles of charge 2 on X has a component, birational to J2(X). We con-
jecture that the moduli space is irreducible, but the problem of irreducibility
stays beyond the scope of the present article. As far as we know, this is the
first example of a moduli space of vector bundles which is birational to an
abelian variety, different from the Picard or Albanese variety of the base. The
situation is also quite different from the known cases where the base is P3 or
the 3-dimensional quadric. In these cases, the instanton moduli space is ir-
reducible and rational at least for small charges, see [Barth], [ES], [H], [LP],
[OS]. Remark, that for the cubic X , two is the smallest possible charge, but
the moduli space is not even unirational. There are no papers on the geome-
try of particular moduli spaces of vector bundles for other 3-dimensional Fano
varieties (for some constructions of vector bundles on such varieties, see [G1],
[G2], [B-MR1], [B-MR2], [SW], [AC]).
The authors of [MT] proved that the Abel–Jacobi map Φ of the family of elliptic
quintics lying on a general cubic threefold X factors through a 5-dimensional
moduli component MX of stable rank 2 vector bundles E on X with Chern
numbers c1 = 0, c2 = 2. The factorizing map φ sends an elliptic quintic C ⊂ X
to the vector bundle E obtained by Serre’s construction from C (see Sect. 2).
The fiber φ−1([E ]) is a 5-dimensional projective space in the Hilbert scheme

Hilb5n
X , and the map Ψ from the moduli space to the intermediate Jacobian

J2(X), defined by Φ = Ψ ◦ φ, is étale on the open set representing (smooth)
elliptic quintics which are not contained in a hyperplane (Theorem 2.1).
We improve the result of [MT] in showing that the degree of the above étale
map is 1. Hence MX is birational to J2(X) and the generic fiber of Φ is just
one copy of P5 (see Theorem 3.2 and Corollary 3.3). The behavior of the Abel–
Jacobi map of elliptic quintics is thus quite similar to that of the Abel–Jacobi
map of divisors on a curve, where all the fibers are projective spaces. But we
prove that the situation is very different in the case of rational normal quartics,
where the fiber of the Abel–Jacobi map is a non-rational 3-dimensional variety:
it is birationally equivalent to the cubic X itself (Theorem 5.2).
The first new ingredient of our proofs, comparing to [MT], is another interpre-
tation of the vector bundles E from MX . We represent the cubic X as a linear
section of the Pfaffian cubic in P14, parametrizing 6× 6 matrices M of rank 4,
and realize E∨(−1) as the restriction of the kernel bundle M 7→ kerM ⊂ C6

(Theorem 2.2). The kernel bundle has been investigated by A. Adler in his Ap-
pendix to [AR]. We prove that it embedsX into the GrassmannianG = G(2, 6),
and the quintics C ∈ φ−1([E ]) become the sections of X by the Schubert vari-
eties σ11(L) for all hyperplanes L ⊂ C6. We deduce that for any line l ⊂ X ,
each fiber of φ contains precisely one pencil P1 of reducible curves of the form
C ′ + l (Lemma 3.4). Next we use the techniques of Hartshorne–Hirschowitz
[HH] for smoothing the curves of the type “a rational normal quartic plus one
of its chords in X” (see Sect. 4) to show that there is a 3-dimensional family
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of such curves in a generic fiber of φ and that the above pencil P1 for a generic
l contains curves C ′ + l of this type (Lemma 4.6, Corollary 4.7).
The other main ingredient is the parametrization of J2(X) by minimal sec-
tions of the 2-dimensional conic bundles of the form Y (C2) = π−1

l (C2), where
πl : Blowupl(X)−→P2 is the conic bundle obtained by projectingX from a fixed
line l, and C2 is a generic conic in P2 (see Sect. 3). The standard Wirtinger
approach [B] parametrizes J2(X) by reducible curves which are sums of compo-
nents of reducible fibers of πl. Our approach, developed in [I] in a more general
form, replaces the degree 10 sums of components of the reducible fibers of the
surfaces Y (C2) by the irreducible curves which are sections of the projection
Y (C2)−→C2 with a certain minimality condition. This gives a parametriza-
tion of J2(X) by a family of rational curves, each one of which is projected
isomorphically onto some conic in P2. It turns out, that these rational curves
are normal quartics meeting l at two points. They form a unique pencil P1 in
each fiber of the Abel–Jacobi map of rational normal quartics. Combining this
with the above, we conclude that the curves of type C ′+ l form a unique pencil
in each fiber of Φ, hence the fiber is one copy of P5.
In conclusion, we provide a description of the moduli space of Fano varieties
V14 as a birationally fibered space over the moduli space of cubic 3-folds with
the intermediate Jacobian as a fiber (see Theorem 5.8). The interplay between
cubics and varieties V14 is exploited several times in the paper. We use the
Fano–Iskovskikh birationality between X and V14 to prove Theorem 2.2 on
kernel bundles, and the Tregub–Takeuchi one (see Sect. 1) to study the fiber
of the Abel–Jacobi map of the family of rational quartics (Theorem 5.2) and
the relation of this family to that of normal elliptic quintics (Proposition 5.6).

Acknowledgements. The authors are grateful to the referee for his remarks
which allowed to improve the exposition. The second author acknowledges
with pleasure the hospitality of the MPIM at Bonn, where he completed the
work on the paper.

1. Birational isomorphisms between V3 and V14

There are two constructions of birational isomorphisms between a nonsingular
cubic threefold V3 ⊂ P4 and the Fano variety V14 of degree 14 and of index 1,
which is a nonsingular section of the Grassmannian G(2, 6) ⊂ P14 by a linear
subspace of codimension 5. The first one is that of Fano–Iskovskikh, and it
gives a birational isomorphism whose indeterminacy locus in both varieties
is an elliptic curve together with some 25 lines; the other is due to Tregub–
Takeuchi, and its indeterminacy locus is a rational quartic plus 16 lines on the
side of V3, and 16 conics passing through one point on the side of V14. We will
sketch both of them.

Theorem 1.1 (Fano–Iskovskikh). Let X = V3 be a smooth cubic threefold.
Then X contains a smooth projectively normal elliptic quintic curve. Let C be
such a curve. Then C has exactly 25 bisecant lines li ⊂ X, i = 1, ..., 25, and
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there is a unique effective divisor M ∈| OX (5− 3C) | on X, which is a reduced
surface containing the li. The following assertions hold:
(i) The non-complete linear system | OX(7 − 4C) | defines a birational map
ρ : X → V where V = V14 is a Fano 3-fold of index 1 and of degree 14.
Moreover ρ = σ ◦ κ ◦ τ where σ : X ′ → X is the blow-up of C, κ : X ′ → X+ is
a flop over the proper transforms l′i ⊂ X ′ of the li, i = 1, ..., 25, and τ : X+ → V
is a blowdown of the proper transform M+ ⊂ X+ of M onto an elliptic quintic
B ⊂ V . The map τ sends the transforms l+i ⊂ X+ of li to the 25 secant lines
mi ⊂ V , i = 1, ..., 25 of the curve B.
(ii) The inverse map ρ−1 is defined by the system | OV (3− 4B) |. The excep-
tional divisor E′ = σ−1(C) ⊂ X ′ is the proper transform of the unique effective
divisor N ∈| OV (2− 3B) |.

For a proof , see [Isk1], [F], or [Isk-P], Ch. 4.

Theorem 1.2 (Tregub–Takeuchi). Let X be a smooth cubic threefold. Then
X contains a rational projectively normal quartic curve. Let Γ be such a curve.
Then Γ has exactly 16 bisecant lines li ⊂ X, i = 1, ..., 16,and there is a unique
effective divisor M ∈| OX(3−2Γ) | on X, which is a reduced surface containing
the li. The following assertions hold:
(i) The non-complete linear system | OX (8 − 5Γ) | defines a birational map
χ : X → V where V is a Fano 3-fold of index 1 and of degree 14. Moreover
χ = σ ◦ κ ◦ τ , where σ : X ′ → X is the blowup of Γ, κ : X ′ → X+ is a flop
over the proper transforms l′i ⊂ X ′ of li, i = 1, ..., 16, and τ : X+ → V is a
blowdown of the proper transform M+ ⊂ X+ of M to a point P ∈ V . The
map τ sends the transforms l+i ⊂ X+ of li to the 16 conics qi ⊂ V , i = 1, ..., 16
which pass through the point P .
(ii) The inverse map χ−1 is defined by the system | OV (2− 5P ) |. The excep-
tional divisor E′ = σ−1(Γ) ⊂ X ′ is the proper transform of the unique effective
divisor N ∈| OV (3− 8P ) |.
(iii) For a generic point P on any nonsingular V14, this linear system defines
a birational isomorphism of type χ−1.

Proof. For (i), (ii), see [Tak], Theorem 3.1, and [Tre]. For (iii), see [Tak],
Theorem 2.1, (iv). See also [Isk-P], Ch. 4.

1.3. Geometric description. We will briefly describe the geometry of the
first birational isomorphism between V3 and V14 following [P].
Let E be a 6-dimensional vector space over C. Fix a basis e0, . . . , e5 for E,
then ei ∧ ej for 0 ≤ i < j ≤ 5 form a basis for the Plücker space of 2-spaces
in E, or equivalently, of lines in P5 = P(E). With Plücker coordinates xij , the
embedding of the Grassmannian G = G(2, E) in P14 = P(∧2E) is precisely the
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locus of rank 2 skew symmetric 6× 6 matrices

M =




0 x01 x02 x03 x04 x05

−x01 0 x12 x13 x14 x15

−x02 −x12 0 x23 x24 x25

−x03 −x13 −x23 0 x34 x35

−x04 −x14 −x24 −x34 0 x45

−x05 −x15 −x25 −x35 −x45 0



.

There are two ways to associate to these data a 13-dimensional cubic. The
Pfaffian cubic hypersurface Ξ ⊂ P14 is defined as the zero locus of the 6 × 6
Pfaffian of this matrix; it can be identified with the secant variety of G(2, E),
or else, it is the locus where M has rank 4. The other way is to consider the
dual variety Ξ′ = G∨ ⊂ P14∨ of G; it is also a cubic hypersurface, which is
nothing other than the secant variety of the Grassmannian G′ = G(2, E∨) ⊂
P(∧2E∨) = P14∨.
As it is classically known, the generic cubic threefold X can be represented as
a section of the Pfaffian cubic by a linear subspace of codimension 10; see also
a recent proof in [AR], Theorem 47.3. There are ∞5 essentially different ways
to do this. Beauville and Donagi [BD] have used this idea for introducing the
symplectic structure on the Fano 4-fold (parametrizing lines) of a cubic 4-fold.
In their case, only special cubics (a divisorial family) are sections of the Pfaffian
cubic, so they introduced the symplectic structure on the Fano 4-folds of these
special cubics, and obtained the existence of such a structure on the generic
one by deformation arguments.
For any hyperplane section H ∩G of G, we can define rkH as the rank of the
antisymmetric matrix (αij), where

∑
αijxij = 0 is the equation of H . So, rkH

may take the values 2,4 or 6. If rkH = 6, then H ∩ G is nonsingular and for
any p ∈ P5 = P(E), there is the unique hyperplane Lp ⊂ P5 = P(E), such that
q ∈ H ∩ G, p ∈ lq ⇐⇒ lq ⊂ Lp. Here lq denotes the line in P5 represented by
q ∈ G. (This is a way to see that the base of the family of 3-dimensional planes
on the 7-fold H ∩G is P5.)
The rank of H is 4 if and only if H is tangent to G at exactly one point z, and
in this case, the hyperplane Lp is not defined for any p ∈ lz: we have for such
p the equivalence p ∈ lx ⇐⇒ x ∈ H . Following Puts, we call the line lz the
center of H ; it will be denoted cH .
In the third case, when rkH = 2, H ∩ G is singular along the whole Grass-
mannian subvariety G(2, 4) = G(2, EH), where EH = ker(αij) is of dimension
4. We have x ∈ H ⇐⇒ lx ∩ P(EH) 6= ∅.
This description identifies the dual of G with Ξ′ = {H | rkH ≤ 4} = {H |
Pf((αij)) = 0}, and its singular locus with {EH}rkH=2 = G(4, E).
Now, associate to any nonsingular V14 = G ∩ Λ, where Λ = H1 ∩ H2 ∩ H3 ∩
H4 ∩H5, the cubic 3-fold V3 by the following rule:

V14 = G ∩ Λ 7→ V3 = Ξ′ ∩ Λ∨,(1)
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where Λ∨ =< H∨
1 , H

∨
2 , H

∨
3 , H

∨
4 , H

∨
5 >, H∨

i denotes the orthogonal complement
of Hi in P14∨, and the angular brackets the linear span. One can prove that V3

is also nonsingular.
According to Fano, the lines lx represented by points x ∈ V14 sweep out an
irreducible quartic hypersurface W , which Fano calls the quartic da Palatini.
W coincides with the union of centers of all H ∈ V3. One can see, that W is
singular along the locus of foci p of Schubert pencils of lines on G

σ43(p, h) = {x ∈ G | p ∈ lx ⊂ h}
which lie entirely in V14, where h denotes a plane in P5(depending on p). The
pencils σ43 are exactly the lines on V14, so SingW is identified with the base of
the family of lines on V14, which is known to be a nonsingular curve of genus
26 for generic V14 (see, e. g. [M] for the study of the curve of lines on V14,
and Sections 50, 51 of [AR] for the study of SingW without any connection to
V14).
The construction of the birational isomorphism ηL : V14 99K V3 depends on the
choice of a hyperplane L ⊂ P5. Let

φ : V14 99K W ∩ L, x 7→ L ∩ lx , ψ : V3 99K W ∩ L, H∨ 7→ L ∩ cH .
These two maps are birational, and ηL is defined by

ηL = ψ−1 ◦ φ.(2)

The locus, on which ηL is not an isomorphism, consists of points where either φ
or ψ is not defined or is not one-to-one. The indeterminacy locus B of φ consists
of all the points x such that lx ⊂ L, that is, B = G(2, L) ∩ H1 ∩ . . . ∩ H5.
For generic L, it is obviously a smooth elliptic quintic curve in V14, and it
is this curve that was denoted in Theorem 1.1 by the same symbol B. The
indeterminacy locus of ψ is described in a similar way. We summarize the
above in the following statement.

Proposition 1.4. Any nonsingular variety V14 determines a unique nonsin-
gular cubic V3 by the rule (1). Conversely, a generic cubic V3 can be obtained
in this way from ∞5 many varieties V14.
For each pair (V14, V3) related by (1), there is a family of birational maps ηL :
V14 99K V3, defined by (2) and parametrized by points of the dual projective
space P5∨, and the structure of ηL for generic L is described by Theorem 1.1.
The smooth elliptic quintic curve B (resp. C) of Theorem 1.1 is the locus of
points x ∈ V14 such that lx ⊂ L (resp. H∨ ∈ V3 such that cH ⊂ L).

Definition 1.5. We will call two varieties V3, V14 associated (to each other),
if V3 can be obtained from V14 by the construction (1).

1.6. Intermediate Jacobians of V3, V14. Both constructions of birational
isomorphisms give the isomorphism of the intermediate Jacobians of generic
varieties V3, V14, associated to each other. This is completely obvious for the
second construction: it gives a birational isomorphism, which is a composi-
tion of blowups and blowdowns with centers in nonsingular rational curves or

Documenta Mathematica 5 (2000) 23–47



The Abel–Jacobi Map for a Cubic Threefold . . . 29

points. According to [CG], a blowup σ : X̃−→X of a threefold X with a
nonsingular center Z can change its intermediate Jacobian only in the case
when Z is a curve of genus ≥ 1, and in this case J2(X̃) ' J2(X) × J(Z) as
principally polarized abelian varieties, where J2 (resp. J) stands for the in-
termediate Jacobian of a threefold (resp. for the Jacobian of a curve). Thus,
the Tregub–Takeuchi birational isomorphism does not change the intermediate
Jacobian. Similar argument works for the Fano–Iskovskikh construction. It
factors through blowups and blowdowns with centers in rational curves, and
contains in its factorization exactly one blowup and one blowdown with nonra-
tional centers, which are elliptic curves. So, we have J2(V3)×C ' J2(V14)×B
for some elliptic curves C,B. According to Clemens–Griffiths, J2(V3) is irre-
ducible for every nonsingular V3, so we can simplify the above isomorphism1

to obtain J2(V3) ' J2(V14); we also obtain, as a by-product, the isomorphism
C ' B.

Proposition 1.7. Let V = V14, X = V3 be a pair of smooth Fano varieties
related by either of the two birational isomorphisms of Fano–Iskovskikh or of
Tregub–Takeuchi. Then J2(X) ' J2(V ), V,X are associated to each other and
related by a birational isomorphism of the other type as well.

Proof. The isomorphism of the intermediate Jacobians was proved in the pre-
vious paragraph. Let J2(V ′) = J2(V ′′) = J . By Clemens-Griffiths [CG] or
Tyurin [Tyu], the global Torelli Theorem holds for smooth 3-dimensional cu-
bics, so there exists the unique cubic threefold X such that J2(X) = J as
p.p.a.v. Let X ′ and X ′′ be the unique cubics associated to V ′ and V ′′. Since
J2(X ′) = J2(V ′) = J = J2(V ′′) = J2(X ′′), then X ′ ' X ' X ′′.
Let now V ′ and V ′′ be associated to the same cubic threefold X , and let
J2(X) = J . Then by the above J2(V ′) = J2(X) = J2(V ′′).
Let X , V be related by, say, a Tregub–Takeuchi birational isomorphism. By
Proposition 1.4, V contains a smooth elliptiic quintic curve and admits a bi-
rational isomorphism of Fano–Iskovskikh type with some cubic X ′. Then, as
above, X ' X ′ by Global Torelli, and X , V are associated to each other by
the definition of the Fano–Iskovskikh birational isomorphism. Conversely, if
we start from the hypothesis that X , V are related by a Fano–Iskovskikh bi-
rational isomorphism, then the existence of a Tregub–Takeuchi one from V to
some cubic X ′ is affirmed by Theorem 1.2, (iii). Hence, again by Global Torelli,
X ' X ′ and we are done.

1It is an easy exercise to see that if an abelian variety decomposes into the direct product of
two irreducible abelian varieties of different dimensions, then such a decomposition is unique
up to isomorphism. The referee pointed out to us the reference to Shioda’s counterexample
[Fac. Sc. Univ. Tokio 24, 11-21(1977)] of three nonisomorphic elliptic curves C1, C2, C3

such that C1 × C2 ' C1 × C3, which shows that the assumption of different dimensions is
essential.
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2. Abel–Jacobi map and vector bundles on a cubic threefold

Let X be a smooth cubic threefold. The authors of [MT] have associated to
every normal elliptic quintic curve C ⊂ X a stable rank 2 vector bundle E = EC ,
unique up to isomorphism. It is defined by Serre’s construction:

0−→OX−→E(1)−→IC(2)−→0 ,(3)

where IC = IC,X is the ideal sheaf of C in X . Since the class of C modulo
algebraic equivalence is 5l, where l is the class of a line, the sequence (3) implies
that c1(E) = 0, c2(E) = 2l. One sees immediately from (3) that det E is trivial,
and hence E is self-dual as soon as it is a vector bundle (that is, E∨ ' E). See
[MT, Sect. 2] for further details on this construction.

Let H∗ ⊂ Hilb5n
X be the open set of the Hilbert scheme parametrizing normal

elliptic quintic curves in X , and M ⊂MX(2; 0, 2) the open subset in the moduli
space of vector bundles on X parametrizing those stable rank 2 vector bundles
which arise via Serre’s construction from normal elliptic quintic curves. Let
φ∗ : H∗−→M be the natural map. For any reference curve C0 of degree 5
in X , let Φ∗ : H∗−→J2(X), [C] 7→ [C − C0], be the Abel–Jacobi map. The
following result is proved in [MT].

Theorem 2.1. H∗ and M are smooth of dimensions 10 and 5 respectively.
They are also irreducible for generic X. There exist a bigger open subset H ⊂
Hilb5n

X in the nonsingular locus of Hilb5n
X containing H∗ as a dense subset and

extensions of φ∗,Φ∗ to morphisms φ,Φ respectively, defined on the whole of H,
such that the following properties are verified:
(i) φ is a locally trivial fiber bundle in the étale topology with fiber P5. For
every [E ] ∈ M , we have h0(E(1)) = 6, and φ−1([E ]) ⊂ H is nothing but the P5

of zero loci of all the sections of E(1).
(ii) The fibers of Φ are finite unions of those of φ, and the map Ψ : M−→J 2(X)
in the natural factorization Φ = Ψ ◦ φ is a quasi-finite étale morphism.

Now, we will give another interpretation of the vector bundles EC . Let us
represent the cubic X = V3 as a section of the Pfaffian cubic Ξ′ ⊂ P14∨

and
keep the notation of 1.3. Let K be the kernel bundle on X whose fiber at
M ∈ X is kerH . Thus K is a rank 2 vector subbundle of the trivial rank 6
vector bundle EX = E ⊗C OX . Let i : X−→P14 be the composition Pl ◦Cl,
where Cl : X−→G(2, E) is the classifying map of K ⊂ EX , and Pl : G(2, E) ↪→
P(∧2E) = P14 the Plücker embedding.

Theorem 2.2. For any vector bundle E obtained by Serre’s construction start-
ing from a normal elliptic quintic C ⊂ X, there exists a representation of X as
a linear section of Ξ′ such that E(1) ' K∨ and all the global sections of E(1) are
the images of the constant sections of E∨

X via the natural map E∨

X−→K∨. For
generic X, E, such a representation is unique modulo the action of PGL(6) and
the map i can be identified with the restriction v2|X of the Veronese embedding
v2 : P4−→P14 of degree 2.
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Proof. Let C ⊂ X be a normal elliptic quintic. By Theorem 1.1, there exists
a V14 = G ∩ Λ together with a birational isomorphism X 99K V14. Proposition
1.7 implies that X and V14 are associated to each other. By Proposition 1.4,
we have C = {H∨ ∈ X | cH ⊂ L} = Cl−1(σ11(L)), where σ11(L) denotes
the Schubert variety in G parametrizing the lines c ⊂ P(E) contained in L.
It is standard that σ11(L) is the scheme of zeros of a section of the dualized
universal rank 2 vector bundle S∨ on G. Hence C is the scheme of zeros of a
section of K∨ = Cl∗(S∨). Hence K∨ can be obtained by Serre’s construction
from C, and by uniqueness, K∨ ' EC(1).
By Lemma 2.1, c) of [MT], h0(EC(1)) = 6, so, to prove the assertion about
global sections, it is enough to show the injectivity of the natural map E∨ =
H0(E∨

X )−→H0(K∨). The latter is obvious, because the quartic da Palatini is
not contained in a hyperplane. Thus we have E∨ = H0(K∨).
For the identification of i with v2|X , it is sufficient to show that
i is defined by the sections of O(2) in the image of the map ev :
Λ2H0(E(1))−→H0(det(E(1))) = H0(O(2)) and that ev is an isomorphism.
This is proved in the next lemmas. The uniqueness modulo PGL(6) is proved
in Lemma 2.7.

Lemma 2.3. Let Pf2 : P14 99K P14 be the Pfaffian map, sending a skew-
symmetric 6× 6 matrix M to the collection of its 15 quadratic Pfaffians. Then
Pf22 = idP14 , the restriction of Pf2 to P14 \ Ξ is an isomorphism onto P14 \G,
and i = Pf2 |X .

Thus Pf2 is an example of a Cremona quadratic transformation. Such trans-
formations were studied in [E-SB].

Proof. Let (ei), (εi) be dual bases of E,E∨ respectively, and (eij = ei∧ej), (εij)
the corresponding bases of ∧2E, ∧2E∨. Identify M in the source of Pf2 with a
2-formM =

∑
aijεij . Then Pf2 can be given by the formula Pf2(M) = 1

2!4!M∧
M e123456, where e123456 = e1 ∧ . . . ∧ e6, and stands for the contraction of
tensors. Notice that Pf2 sends 2-forms of rank 6,4, resp. 2 to bivectors of rank
6,2, resp. 0. Hence Pf2 is not defined on G′ and contracts Ξ′ \G′ into G. In
fact, the Pfaffians of a 2-form M of rank 4 are exactly the Plücker coordinates
of kerM , which implies i = Pf2 |X .
In order to iterate Pf2, we have to identify its source P(∧2E∨) with its target
P(∧2E). We do it in using the above bases: εij 7→ eij . Let N = Pf22(M) =∑
bijεij . Then each matrix element bij = bij(M) is a polynomial of degree 4

in (akl), vanishing on Ξ′. Hence it is divisible by the equation of Ξ′, which is

the cubic Pfaffian Pf(M). We can write bij = b̃ij Pf(M), where b̃ij are some
linear forms in (akl). Testing them on a collection of simple matrices with only
one variable matrix element, we find the answer: Pf2(M) = Pf(M)M . Hence
Pf2 is a birational involution.
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Lemma 2.4. Let l ⊂ V3 be a line. Then i(l) is a conic in P14, and the lines of
P5 parametrized by the points of i(l) sweep out a quadric surface of rank 3 or
4.

Proof. The restriction of Cl to the lines in V3 is written out in [AR] on pages
170 (for a non-jumping line of K, formula (49.5)) and 171 (for a jumping line).
These formulas imply the assertion; in fact, the quadric surface has rank 4 for
a non-jumping line, and rank 3 for a jumping one.

Lemma 2.5. The map i is injective.

Proof. Let Ξ̃ be the natural desingularization of Ξ′ parametrizing pairs (M, l),
where M is a skew-symmetric 6× 6 matrix and l is a line in the projectivized
kernel of M . We have Ξ̃ = P(∧2(EX/S)), where S is the tautological rank 2

vector bundle on G = G(2, 6). Ξ̃ has two natural projections p : Ξ̃−→G ⊂ P14

and q : Ξ̃−→Ξ′ ⊂ P14∨. The classifying map of K is just Cl = pq−1. q is
isomorphic over the alternating forms of rank 4, so q−1(V3) ' V3. p is at least
bijective on q−1(V3). In fact, it is easy to see that the fibers of p can only
be linear subspaces of P14. Indeed, the fiber of p is nothing but the family of
matrices M whose kernel contains a fixed plane, hence it is a linear subspace P5

of P14∨
, and the fibers of p|q−1(V3) are P5 ∩ V3. As V3 does not contain planes,

the only possible fibers are points or lines. By the previous lemma, they can
be only points, so i is injective.

Lemma 2.6. i is defined by the image of the map ev : Λ2H0(E(1)) −→
H0(det(E(1))) = H0(O(2)) considered as a linear subsystem of |O(2)|.
Proof. Let (xi = εi) be the coordinate functions on E, dual to the basis (ei).
The xi can be considered as sections of K∨. Then xi ∧ xj can be considered
either as an element xij of ∧2E∨ = ∧2H0(K∨), or as a section sij of ∧2K∨. For
a point x ∈ V3, the Plücker coordinates of the corresponding plane Kx ⊂ E are
xij(ν) for a non zero bivector ν ∈ ∧2Kx. By construction, this is the same as
sij(x)(ν). This proves the assertion.

Lemma 2.7. Let X−̃→Ξ′ ∩ Λ1, X−̃→Ξ′ ∩ Λ2 be two representations of X as
linear sections of Ξ′, K1,K2 the corresponding kernel bundles on X. Assume
that K1 ' K2. Then there exists a linear transformation A ∈ GL(E∨) = GL6

such that Ξ′ ∩∧2A(Λ1) and Ξ′ ∩Λ2 have the same image under the classifying
maps into G. The family of linear sections Ξ′∩Λ of the Pfaffian cubic with the
same image in G is a rationally 1-connected subvariety of G(5, 15), generically
of dimension 0.

Proof. The representationsX−̃→Ξ′∩Λ1, X−̃→Ξ′∩Λ2 define two isomorphisms
f1 : E∨−→H0(K1), f2 : E∨−→H0(K2). Identifying K1,K2, define A = f−1

2 ◦f1.
Assume that Λ = ∧2A(Λ1) 6= Λ2. Then the two 3-dimensional cubics Ξ′ ∩ Λ
and Ξ′ ∩ Λ2 are isomorphic by virtue of the map f = f2 ◦ f−1

1 ◦ (∧2A)−1. By
construction, we have kerM = ker f(M) for any M ∈ Ξ′∩Λ. Hence Ξ′∩Λ and
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Ξ′ ∩ Λ2 represent two cross-sections of the map pq−1 defined in the proof of
Lemma 2.5 over their common image Y = pq−1(Ξ′ ∩ Λ) = pq−1(Ξ′ ∩ Λ2), and
f is a morphism over Y . These cross-sections do not meet the indeterminacy
locus G′ ⊂ Ξ′ of pq−1, because it is at the same time the singular locus of Ξ′

and both 3-dimensional cubics are nonsingular. The fibers of pq−1 being linear
subspaces of P14∨

, the generic element of a linear pencil Xλ:µ = Ξ′∩(λΛ+µΛ2)
represents also a cross-section of pq−1 that does not meet G′. So there is a one-
dimensional family of representations of X as a linear section of the Pfaffian
cubic which are not equivalent under the action of PGL(6) but induce the same
vector bundle K. This family joins Ξ′ ∩ Λ and Ξ′ ∩ Λ2 and its base is an open
subset of P1. This cannot happen for generic X, E , because both the family of
vector bundles E and that of representations of X as a linear section of Ξ′ are
5 dimensional for generic X (Theorem 2.1 and Proposition 1.4).

Lemma 2.8. For a generic 3-dimensional linear section V3 of Ξ′, the 15 qua-
dratic Pfaffians of M ∈ V3 are linearly independent in |OV3(2)|.
The authors of [IR] solve a similar problem: they describe the structure of the
restriction of Pf2 to a 4-dimensional linear section of the Pfaffian cubic.

Proof. It is sufficient to verify this property for a special V3. Take Klein’s cubic

v2w + w2x+ x2y + y2z + z2v = 0.

Adler ([AR], Lemma (47.2)) gives the representation of this cubic as the Pfaffian
of the following matrix:

M =




0 v w x y z
−v 0 0 z −x 0
−w 0 0 0 v −y
−x −z 0 0 0 w
−y x −v 0 0 0
−z 0 y −w 0 0



.

Its quadratic Pfaffians are given by

cij = (−1)i+j+1(apqars − apraqs + apsaqr),

where p < q < r < s, (pqrsij) is a permutation of (123456), and (−1)i+j+1

is nothing but its sign. A direct computation shows that the 15 quadratic
Pfaffians are linearly independent.

This ends the proof of Theorem 2.2.

3. Minimal sections of 2-dimensional conic bundle

Let X be a generic cubic threefold. To prove the irreducibility of the fibers of
the Abel-Jacobi map Φ of Theorem 2.1, we will use other Abel–Jacobi maps.
Let us fix a line l0 in X , and denote by Φd,g the Abel–Jacobi map of the family
Hd,g of curves of degree d and of arithmetic genus g in X having dl0 as reference
curve. The precise domain of definition of Φd,g will be specified in the context
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in each particular case. So, Φ5,1 will be exactly the above map Φ defined on
H.
We will provide a description of Φ4,0, obtained by an application of the te-
chiniques of [I]. This map is defined on the family of normal rational quartics
in X . For completeness, we will mention a similar description of Φ3,0, the
Abel–Jacobi map of twisted rational cubics in X . As was proved in [MT],
these families of curves are irreducible for a generic X .
Let L0 ⊂ X be a generic line, p : X̃−→P2 the projection from L0, giving to
X̃ = BlowupL0

(X) a structure of a conic bundle. Let C ⊂ P2 be a generic conic,

then Y = p−1(C) is a 2-dimensional conic bundle, and pY = p|Y : Y−→C is the
conic bundle structure map. It is well known (see [B]), that the discriminant
curve ∆ ⊂ P2 of p is a smooth quintic, and the components of the reducible
conics P1∨P1 over points of ∆ are parametrized by a non-ramified two-sheeted
covering π : ∆̃−→∆. As C is generic, there are 10 distinct points in ∆ ∩ C,
giving us 10 pairs of lines {l1 ∪ l′1 ∪ . . . ∪ l10 ∪ l′10} = p−1(∆ ∩ C). We will

identify the components l of reducible fibers of p with points of ∆̃, so that
{l1, l′1, . . . , l10, l′10} = π−1(∆ ∩ C) ⊂ ∆̃. Let pα : Yα−→C be any of the 210

ruled surfaces obtained by contracting the l′i with i ∈ α and the lj with j 6∈ α,
where α runs over the subsets of {1, 2, . . . , 10}. Then the Yα are divided into
two classes: even and odd surfaces, according to the parity of the integer n ≥ 0
such that Yα ' Fn = P(OP1 ⊕ OP1(−n)). Remark, that the surfaces Yα are
in a natural one-to-one correspondence with effective divisors D of degree 10
on ∆̃ such that π∗D = ∆ ∩ C. The 10 points of such a divisor correspond to
lines (li or l′i) which are not contracted by the map Y−→Yα. For a surface Yα,
associated to an effective divisor D of degree 10, we will use the alternative
notation YD .
The next theorem is a particular case of the result of [I].

Theorem 3.1. Let X be a generic cubic threefold, C ⊂ P2 a generic conic.
Then, in the above notation, the following assertions hold:
(i) There are only two isomorphism classes of surfaces among the Yα: Yodd ' F1

and Yeven ' F0 ' P1 × P1.
(ii) The family C− of the proper transforms in X of (−1)-curves in each one of
the odd surfaces Yα ' F1 over all sufficiently generic conics C ⊂ P2 is identified
with a dense open subset in the family of twisted rational cubic curves C3 ⊂ X
meeting L0 at one point.
(iii) Let Φ3,0 be the Abel–Jacobi map of the family of rational twisted cubics.
Let Φ− = Φ3|C− be its restriction. Then Φ− is onto an open subset of the
theta divisor of J2(X). For generic C3 ∈ C−, which is a proper transform of
the (−1)-curve in the ruled surface Yα associated to an effective divisor Dα of

degree 10 on ∆̃, the fiber Φ−1
− Φ−(C3) can be identified with an open subset of

P1 = |Dα| by the following rule:

D ∈ |Dα| 7→
∣∣∣the proper transform in X of the (−1)-curve in YD if

YD ' F1
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(iv) Let C+ be the family of the proper transforms in X of the curves in the
second ruling on any one of the even surfaces Yα ' P1 × P1 for all sufficiently
generic conics C; the second ruling means the one which is different from that
consisting of fibers of πα. Then C+ is identified with a dense open subset in the
family of normal rational quartic curves C4 ⊂ X meeting L0 at two points.
(v) Let Φ4,0 be the Abel–Jacobi map of the family of rational normal quartics.
Let Φ+ = Φ4,0|C+ be its restriction. Then Φ+ is onto an open subset of J2(X).
For generic C4 ∈ C+ which is the proper transform of a curve on the ruled

surface Yα associated to an effective divisor Dα of degree 10 on ∆̃, we have
dim |Dα| = 0 and the fiber Φ−1

+ Φ+(C4) ' P1 consists of the proper transforms
of all the curves of the second ruling on Yα.

The irreducibility of Φ−1
+ Φ+(C4) in the above statement is an essential ingre-

dient of the proof of the following theorem, which is the main result of the
paper.

Theorem 3.2. Let X be a nonsingular cubic threefold. Then the degree of the
étale map Ψ from Theorem 2.1 is 1. Equivalently, all the fibers of the Abel–
Jacobi map Φ are isomorphic to P5.

This obviously implies:

Corollary 3.3. The open set M ⊂MX(2; 0, 2) in the moduli space of vector
bundles on X parametrizing those stable rank 2 vector bundles which arise via
Serre’s construction from normal elliptic quintics is isomorphic to an open
subset in the intermediate Jacobian of X.

We will start by the following lemma.

Lemma 3.4. Let X be a generic cubic threefold. Let z ∈ J 2(X) be a generic
point, Hi(z) ' P5 any component of Φ−1(z). Then, for any line l ⊂ X3, the
family
Hl;i(z) := {C ∈ Hi(z) : C = l + C ′, where C ′ is a curve of degree 4 }
is isomorphic to P1.

Proof. By Theorem 2.1, the curve C represented by the generic point ofHi(z) is
a (smooth) normal elliptic quintic. Let E = EC be the associated vector bundle,
represented by the point φ([C]) ∈ M . Choose any representation of X as a
linear section of the Pfaffian cubic Ξ′ as in Theorem 2.2, so that E(1) ' K∨.
The projective space Hi(z) is naturally identified with P5∨ = P(E∨). This
follows from the proof of Theorem 2.2. Indeed, the curves C represented by
points of Hi(z) are exactly the zero loci of the sections of E(1), and the latter
are induced by linear forms on E via the natural surjection EX−→K∨. The
zero loci of these sections are of the form Cl−1(σ11(L)), where L ∈ P5∨ runs
over all the hyperplanes in P5.
Let l be a line in X . By Lemma 2.4, the quadratic pencil of lines with base
Cl(l) sweeps out a quadric surface Q(l) of rank 3 or 4. Let <Q(l)>' P3 be

the linear span of Q(l) in P5. Then l is a component of Cl−1(σ11(L)) if and
only if <Q(l)>⊂ L. Such hyperplanes L form the pencil <Q(l)>∨' P1 in
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P5∨. Obviously, the pencil {Cl−1(σ11(L)) | L ∈< Q(l) >∨} contains exactly
all the curves, represented by points of Hi(z) and having l as an irreducible
component.

Now our aim is to show that the generic member of Hl;i(z) is a rational nor-
mal quartic having l as one of its chords. Then we will be able to apply the
description of such curves given by Theorem 3.1, (iv), (v).

4. Smoothing C ′ + l

Let X be a nonsingular cubic threefold, C = C ′ + l ⊂ X a rational nor-
mal quartic plus one of its chords. Then one can apply Serre’s construction
(3) to C to obtain a self-dual rank 2 vector bundle E = EC in MX(2; 0, 2)
like it was done in [MT] for a nonsingular C. One proves directly that E
possesses all the essential properties of the vector bundles constructed from
normal elliptic quintics. First of all, our C is a locally complete intersection in
X with trivial canonical sheaf ωC , and this implies (see the proofs of Lemma
2.1 and Corollary 2.2 in loc. cit.) that Ext1(IC(2),OX) ' H0(C, ωC) ' C
and that Ext1OX (IC(2),OX) = Ext2OX (OC , ωX) = ωC ,so that E is uniquely
determined up to isomorphism and is locally free. One can also easily show
that h0(IC(1)) = h1(IC(1)) = h2(IC(1)) = 0, and this implies (see the proofs
of Corollary 2.4, Proposition 2.6 and Lemma 2.8 in loc. cit.) the stability
of E and the fact that the zero loci of nonproportional sections of E(1) are
distinct complete intersection linearly normal quintic curves. Further, remark
that h0(IC(2)) = 5 (the basis of H0(IC(2)) is given in appropriate coordinates
in (10) below); the restriction exact sequence

0−→IC(k)−→OX(k)−→OC(k)−→0(4)

with k = 2 implies also hi(IC(2)) = 0 for i > 0. One deduces from here
h0(E(1)) = 6, hi(E(1)) = 0 for i > 0. Hence the sections of E(1) define a P5 in

Hilb5n
X .

We are going to show that this P5 is of the form Hi(z), that is E(1) has a
section whose zero locus is a (smooth) normal elliptic quintic.

Lemma 4.1. E(1) is globally generated.

Proof. The vanishing

h1(IC(2)) = h2(IC(1)) = h3(IC) = 0,(5)

implies the Castelnuovo–Mumford regularity condition for F = E(1):

H i(X,F (−i)) = 0 , i = 1, 2, . . . , dimX.

By 2.4 of [AC], the Castelnuovo–Mumford regularity implies that F is generated
by global sections.

Corollary 4.2. The zero locus of a generic section of E(1) is a normal elliptic
quintic curve.
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Proof. The Bertini–Sard Theorem yields the smoothness of the zero locus Cs
of a generic section s. Moreover, Cs spans P4, because C does, and by flatness,
it is an elliptic quintic.

Next, we will show that the locus of the curves of type ‘normal rational quartic
plus its chord’ inside the P5 = P(H0(X, E(1))) has at least one 3-dimensional
component. By a standard dimension count, this will imply that all the compo-
nents of this locus are 3-dimensional for generic (X, E), and thatHi(z) contains,
for generic z, a purely 3-dimensional locus of curves of type ‘normal rational
quartic plus its chord’.

Lemma 4.3. Let X be a nonsingular cubic threefold, C = C ′+ l ⊂ X a rational
normal quartic plus one of its chords. Then h0(NC/X) = 10, h1(NC/X ) = 0,

hence Hilb5n
X is smooth of dimension 10 at [C].

Assume now that X, C are generic. Then the deformation C−→U of C over
a sufficiently small open subset U ⊂ Hilb5n

X parametrizes curves of only the
following three types: (a) for u in a dense open subset of U , Cu is a normal
elliptic quintic; (b) over on open subset of a divisor ∆1 ⊂ U , Cu is a linearly
normal rational curve with only one node as singularity; (c) over a closed
subvariety of pure codimension 2 ∆2 ⊂ U , Cu is of the same type as C, that is
a normal rational quartic plus one of its chords.

Proof. As concerns the numerical values for the hi, the proof goes exactly as
that of Lemma 2.7 in [MT] with only one modification: the authors used there
the property of a normal elliptic quintic h0(NC/P4(−2)) = 0, proved in Propo-
sition V.2.1 of [Hu]. Here we should verify directly this property for our curve
C = C ′ + l. This is an easy exercise using the techniques, developed in [HH]
for the study of deformations of nodal curves2. One can use the identifications
of the normal bundles of C ′, l

NC′/P4 ' 3OP1(6) , Nl/P4 ' 3OP1(1)(6)

and the three natural exact sequences

0−→NC/W−→NC/W |C′ ⊕NC/W |l−→NC/W ⊗ CS−→0,(7)

0−→NC′/W−→NC/W |C′−→T 1
S−→0,(8)

0−→Nl/W−→NC/W |l−→T 1
S−→0,(9)

where S = {P1, P2} = C ′ ∩ l, CS = CP1 ⊕CP2 is the sky-scraper sheaf with the
only nonzero stalks at P1, P2 equal to C, W = P4, and T 1

S denotes Schlesinger’s
T 1 of a singularity; we have T 1

S ' CS for nodal curves.
For the last assertion of the lemma, we need the surjectivity of the Schlesinger
map δ : T[C]Hilb5n

X = H0(NC/X)−→T 1
S . Then the natural maps δi :

H0(NC/X )−→T 1
Pi
C = CPi are surjective. Hence the discriminant divisor

2Hartshorne–Hirschowitz formulated all the results for nodal curves in P3, but the tech-
niques of the paper remain valid if one replaces P3 by any nonsingular projective variety; see
Remark 4.1.1 in [HH].
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∆1 ⊂ U has locally analytically two nonsingular branches with tangent spaces
ker δi ⊂ H0(NC/X ) = T[C]Hilb5n

X , each unfolding only one of the two singular
points of C, and their transversal intersection ∆2 parametrizes the deforma-
tions preserving the two singular points.
The surjectivity of δ for a particular pair (X,C) follows from the next lemma,
where even a stronger assertion is proved, hence it holds for a generic pair
(X,C).

Lemma 4.4. There exists a pair (X,C), consisting of a nonsingular cubic three-
fold X and a curve C = C ′+ l ⊂ X, where C ′ is a rational normal quartic and
l its chord, such that the following property is verified:
Let E be the vector bundle on X defined by C and HE ⊂ Hilb5n

X the P5 of
zero loci of sections of E(1). Let δE : T[C]HE−→T 1

S be the restriction of the
Schlesinger map δ to the tangent space of HE at [C]. Then δE is surjective.

Proof. Choose a curve C of type C ′ + l in P4, then a cubic X passing through
C. Take, for example, the closures of the following affine curves:

C ′ = {x1 = t, x2 = t2, x3 = t3, x4 = t4} , l = {x1 = x2 = x3 = 0} .

The family of quadrics passing through C is 5-dimensional with generators

(10) Q1 = x2 − x2
1, Q2 = x3 − x1x2, Q3 = x1x3 − x2

2,

Q4 = x1x4 − x2x3, Q5 = x2x4 − x2
3 .

The cubic hypersurface in P4 with equation
∑
αi(x)Qi is nonsingular for

generic linear forms αi(x), so we can choose X to be of this form. We verified,
in using the Macaulay program [BS], that the choice α1 = 0, α2 = −1, α3 =
x2, α4 = −x1, α5 = x4 yields a nonsingular X = {x1x2 − x3

2 − x3 + 2x1x2x3 −
x2

1x4 − x2
3x4 + x2x

2
4 = 0}.

Look at the following commutative diagram with exact rows and columns,
where the first row is the restriction of (3) to the subsheaf of the sections of
E(1) vanishing along C.
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0 0
y

y

0 −−−−→ OX −−−−→ E(1)⊗ IC −−−−→ I2
C(2) −−−−→ 0

∥∥∥
y

y

0 −−−−→ OX −−−−→ E(1) −−−−→ IC(2) −−−−→ 0
y

y

NC/X N ∨

C/X(2)
y

y

0 0

(11)

It allows to identify the tangent space T[E]HE = H0(E(1))/H0(E(1)⊗IC) with

the image of H0(IC(2)) in H0(NC/X) = H0(IC(2)/I2
C(2)). So, we have to

show that the derivative d : H0(IC(2))−→T 1
SC is surjective. Using the basis

(10) of H0(IC(2)), we easily verify that this is the case (in fact, dQ1, dQ2

generate T 1
SC).

The following assertion is an obvious consequence of the lemma:

Corollary 4.5. Let X be a generic cubic threefold, C = C ′+ l ⊂ X a generic
rational normal quartic plus one of its chords, E the vector bundle defined by
C. Let HE ⊂ Hilb5n

X be the P5 of zero loci of sections of E(1). Then, with the
notations of Lemma 4.3, dim ∆i ∩HE = 5− i for i = 1, 2.

Lemma 4.6. With the hypotheses of Lemma 3.4, the family Ci(z) of curves of
the form C ′ + l in Hi(z), where C ′ is a rational normal quartic and l one of
its chords, is non-empty and equidimensional of dimension 3.

Proof. According to [MT], the family of rational normal quartics in a nonsin-
gular cubic threefold X has dimension 8, and is irreducible for generic X . By
Theorem 1.2, each rational normal quartic C ′ has exactly 16 chords l in X , so
the family ∆2 = ∆2(X) of pairs C ′ + l is equidimensional of dimension 8. It
suffices to verify that one of the components of ∆2, say ∆2,0, meets Hi(z) at
some point b with local dimension dimb ∆2,0 ∩ Hi(z) = 3 for one special cubic
threefold X , for one special z and for at least one i. But this is asserted by
Corollary 4.5. Indeed, the fact that C can be smoothed inside HE implies that
E ∈ H, hence HE = Hi(z) for some i, z. The assertion for general X, z follows
by the relativization over the family of cubic threefolds and the standard count
of dimensions.

Corollary 4.7. With the hypotheses of Lemma 3.4, let l be a generic line in
X. Then the generic member of the pencil Hl;i(z) is a rational normal quartic
plus one of its chords.
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Proof. We know already that the family Di(z) of pairs C ′ + l ∈ Ci(z) is 3-
dimensional. Now we are to show that the second components l of these pairs
move in a dense open subset in the Fano surface F (X) of X . This is obvi-
ously true, since, by Lemma 3.4, the dimension of the fibers of the projection
Di(z)−→F (X) is at most 1.

5. Fibers of Φ4,0,Φ5,1 and periods of varieties V14

Now we are able to prove Theorem 3.2. Let X be a generic cubic threefold. Let
Φ1,0, Φ4,0, resp. Φ∗ = Φ∗5,1 be the Abel–Jacobi map of lines, rational normal
quartics, resp. elliptic normal quintics. We will use the notation Φ, or Φ5,1 for
the extension of Φ∗ defined in the statement of Theorem 2.1. By Lemma 4.5,
the generic curves of the form C ′+ l, where C ′ is a rational normal quartic and
l one of its chords, are elements of H, the domain of Φ.

Proof of Theorem 3.2. Let z ∈ J2(X) be a generic point, Hi(z) ' P5 any
component of Φ−1(z). Choose a generic line l on X . In the notations of Lemma
3.4, the number of pencils Hl;i(z) ' P1 with generic member C ′i+ l, where C ′i is
a rational normal quartic meeting l quasi-transversely at 2 points, and mapped
to the same point z of the intermediate Jacobian, is equal to the degree d of Ψ.
Now look at the images of the curves C ′i arising in these pencils under the Abel–
Jacobi map Φ4,0. Denoting AJ the Abel–Jacobi map on the algebraic 1-cycles
homologous to 0, we have AJ((C ′i + l)− (C ′j + l)) = AJ(C ′i −C ′j) = z − z = 0.

Hence Φ4,0(C
′
i) = Φ4,0(C

′
j) is a constant point z′ ∈ J2(X). According to

Theorem 3.1, the family of the normal rational quartics in a generic fiber of
Φ4,0 meeting a generic line at two points is irreducible and is parametrized
by (an open subset of) a P1. The point z′ is a generic one, because Φ4,0 is
dominant, and every rational normal quartic has at least one chord. Hence
d = 1 and we are done.

Corollary 5.1. M,H are irreducible and the degree of Ψ is 1 not only for a
generic cubic X, but also for every nonsingular one.

Proof. One can easily relativize the constructions of H,M,Φ, φ,Ψ, etc. over a
small analytic (or étale) connected open set U in the parameter space P34 of
3-dimensional cubics, over which all the cubics Xu are nonsingular. We have
to restrict ourselves to a “small” open set, because we need a local section of
the family {Hu} in order to define the maps Φ,Ψ.
The fibers Hu,Mu are equidimensional and nonsingular of dimensions 10, 5
respectively. Moreover, it is easy to see that a normal elliptic quintic C0 in a
special fiber Xu0 can be deformed to the neighboring fibers Xu. Indeed, one
can embed the pencil λXu0 +µXu into the linear system of hyperplane sections
of a 4-dimensional cubic Y and show that the local dimension of the Hilbert
scheme of Y at [C0] is 15, which implies that C0 deforms to all the nearby and
hence to all the nonsingular hyperplane sections of Y .
Hence the families {Hu}, {Mu} are irreducible, flat of relative dimensions 10,
resp. 5 over U , and the degree of Ψ is constant over U . If there is a reducible
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fiber Mu, then the degree sums up over its irreducible components, so it has
to be strictly greater than 1. But we know, that d is 1 over the generic fiber,
hence all the fibers are irreducible and d = 1 for all u.

We are going to relate the Abel–Jacobi mapping of elliptic normal quintics
with that of rational normal quartics. With our convention for the choice of
reference curves in the form dl0 for a line l0, fixed once and forever, we have
the identity

Φ5,1(C
′ + l) = Φ4,0(C

′) + Φ1,0(l) .

Theorem 5.2. Let X be a generic cubic threefold, z ∈ J2(X) a generic point.
Then the corresponding fiber Φ−1

4,0(z) is an irreducible nonsingular variety of
dimension 3, birationally equivalent to X.

Proof. As we have already mentioned in the proof of Lemma 4.6, the fam-
ily H4,0 of rational normal quartics in X is irreducible of dimension 8. The
nonsingularity of H4,0 follows from the evaluation of the normal bundle of
a rational normal quartic in the proof of Lemma 4.3. We saw also that
Φ4,0 : H4,0−→J2(X) is dominant, so the generic fiber is equidimensional of
dimension 3 and we have to prove its irreducibility.
Let π : Ũ−→U be the quasi-finite covering of U = Φ(H) parametrizing the
irreducible components of the fibers of Φ4,0 over points of U . Let z ∈ U be
generic, and Hz ' P5 the fiber of Φ. By Corollary 4.7,for a generic line l, we
can represent z as Φ4,0(C

′) + Φ1,0(l) for a rational normal quartic C ′ having

l as one of its chords. Let κ : U 99K Ũ be the rational map sending z to the
component of Φ−1

4,0Φ4,0(C
′) containing C ′. Let λ = π ◦ κ. Theorem 3.1 implies

that λ is dominant. Hence it is generically finite. Then κ is also generically
finite, and we have for their degrees deg λ = (deg π)(deg κ).
Let us show that degλ = 1. Let z, z′ be two distinct points in a generic fiber
of λ. By Theorem 3.1, Φ−1

4,0Φ4,0(C
′) contains only one pencil of curves of type

C ′′ + l, where l is a fixed chord of C ′, and C ′′ is a rational normal quartic
meeting l in 2 points. But Lemma 3.4 and Corollary 4.7 imply that both Hz
and Hz′ contain such a pencil. This is a contradiction. Hence degλ = deg π =
deg κ = 1.
Now, choose a generic rational normal quartic C ′ in X . We are going to show
that Φ−1

4,0Φ4,0(C
′) is birational to some V14, associated to X , and hence bi-

rational to X itself. Namely, take the V14 obtained by the Tregub–Takeuchi
transformation χ from X with center C ′. Let x ∈ V14 be the indeterminacy
point of χ−1. The pair (x, V14) is determined by (C ′, X) uniquely up to iso-
morphism, because V14 is the image of X under the map defined by the linear
system |OX (8) − 5C ′| and x is the image of the unique divisor of the linear
system |OX(3− 2C ′)|.
By Theorem 1.2, (iii), a generic ξ ∈ V14 defines an inverse map of Tregub–
Takeuchi type from V14 to the same cubicX . AsX is generic, it has no biregular
automorphisms, and hence this map defines a rational normal quartic Γ in X .
We obtain the rational map α : V14 99K H4,0, ξ 7→ [Γ], whose image contains
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[C ′]. As h1,0(V14) = 0, the whole image α(V14) is contracted to a point by the
Abel–Jacobi map. Hence, to show that Φ−1

4,0Φ4,0(C
′) is birationally equivalent

to V14, it suffices to see that α is generically injective. This follows from the
following two facts: first, the pair (ξ, V14) is determined by (Γ, X) uniqueley
up to isomorphism, and second, a generic V14 has no biregular automorphisms.
If there were two points ξ, ξ′ ∈ V14 giving the same Γ, then there would exist
an automorphism of V14 sending ξ to ξ′, and hence ξ = ξ′. Another proof of
the generic injectivity of α is given in Proposition 5.6.
We did not find an appropriate reference for the second fact, so we prove it in
the next lemma.

Lemma 5.3. A generic variety V14 has no nontrivial biregular automorphisms.

Proof. As V14 is embedded in P9 by the anticanonical system, any biregular au-
tomorphism g of V14 is induced by a linear automorphism of P9. Hence it sends
conics to conics, and thus defines an automorphism F (g) : F (V14)−→F (V14)
of the Fano surface F (V14), parametrizing conics on V14. In [BD], the au-

thors prove that the Hilbert scheme Hilb2(S) = S[2] parametrizing pairs of
points on the K3 surface S of degree 14 in P8 is isomorphic to the Fano 4-fold
F (V 4

3 ) parametrizing lines on V 4
3 , where V 4

3 is the 4-dimensional linear section
of the Pfaffian cubic in P14 associated to S. The same argument shows that
F (V14) ' F (X), where X is the cubic 3-fold associated to V14, and F (X) is
the Fano surface parametrizing lines on X .
Hence g induces an automorphism f of F (X). Let f ∗ be the induced linear
automorphism of Alb(F (X)) = J2(X), and T0f

∗ its differential at the origin.
By [Tyu], the projectivized tangent cone of the theta divisor of J 2(X) at 0 is
isomorphic to X , so T0f

∗ induces an automorphism of X . V14 being generic,
X is also generic, so Aut(X) = {1}. Hence f ∗ = id. By the Tangent Theorem
for F (X) [CG], Ω1

F (X) is identified with the restriction of the universal rank 2

quotient bundle Q on G(2, 5), and all the global sections of Ω1
F (X) are induced

by linear forms L on P4 via the natural map H0(P4,OP4(1)) ⊗ OG(2,5) � Q.

Hence the fact that f acts trivially on H0(Ω1
F (X)) = T ∗0 J

2(X) implies that

f permutes the lines l ⊂ {L = 0} ∩ X lying in one hyperplane section of
X . For general L, there are 27 lines l, and in taking two hyperplane sections
{L1 = 0}, {L2 = 0} which have only one common line, we conclude that f fixes
the generic point of F (X). Hence F (g) is the identity. This implies that every
conic on V14 is transformed by g into itself.
By Theorem 1.2, we have 16 different conics C1, . . . , C16 passing through the
generic point x ∈ V14, which are transforms of the 16 chords of C ′ in X . Two
different conics Ci, Cj cannot meet at a point y, different from x. Indeed, their
proper transforms in X+ (we are using the notations of Theorem 1.2) are the
results l+i , l

+
j of the floppings of two distinct chords li, lj of C ′. Two distinct

chords of C ′ are disjoint, because otherwise the 4 points (li ∩ lj) ∩ C ′ would
be coplanar, which would contradict the linear normality of C ′. Hence l+i , l

+
j

are disjoint. They meet the exceptional divisor M+ of X+−→V14 at one point
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each, hence Ci ∩ Cj = {x}. As g(Ci) = Ci and g(Cj) = Cj , this implies
g(x) = x. This ends the proof.

5.4. Two correspondences between H4,0, H5,1. This subsection contains
some complementary information on the relations between the families of ra-
tional normal quartics and of elliptic normal quintics on X which can be easily
deduced from the above results.
For a generic cubic 3-fold X and any point c ∈ J2(X), the Abel–Jacobi maps
Φ4,0,Φ5,1 define a correspondence Z1(c) between H4,0, H5,1 with generic fibers
over H5,1, H4,0 of dimensions 3, respectively 5:

Z1(c) = {(Γ, C) ∈ H4,0 ×H5,1 | Φ4,0(Γ) + Φ5,1(C) = c} .
The structure of the fibers is given by Theorems 3.2 and 5.2: they are, respec-
tiveley, birational to X and isomorphic to P5.
There is another correspondence, defined in [MT]:

Z2 = {(Γ, C) ∈ H4,0 ×H5,1 | C + Γ = F1 ∩X for a rational

normal scroll F1 ⊂ P4} .
It is proved in [MT] that the fiber over a generic C ∈ H5,1 is isomorphic to C,
and the one over Γ ∈ H4,0 is a rational 3-dimensional variety. In fact, we have
the following description for the latter:

Lemma 5.5. For any rational normal quartic Γ ⊂ X, we have Z2(Γ) '
PGL(2).

Proof. Let Γ ⊂ P4 be a rational normal quartic. Then there exists a unique
PGL(2)-orbit PGL(2)·g ⊂ PGL(5) transforming Γ to the normal form

{(s4, s3t, . . . , t4)}(s:t)∈P1 = {(x0, . . . , x4) | rk
(
x0 x1 x2 x3

x1 x2 x3 x4

)
≤ 1}.

There is one particularly simple rational normal scroll S containing Γ:

S = {(us2, ust, ut2, vs, vt)} = {(x0, . . . , x4) | rk
(
x0 x1 x3

x1 x2 x4

)
≤ 1}.

Geometrically, S is the union of lines which join the corresponding points of the
line l = {(0, 0, 0, s, t)} and of the conic C2 = {(s2, st, t2, 0, 0)}. Conversely, any
rational normal scroll can be obtained in this way from a pair (l, C) whose linear
span is the whole P4. Remark that (s : t) 7→ (s : t) is the only correspondence
from l to C such that the resulting scroll contains Γ.
Now, it is easy to describe all the scrolls containing Γ: they are obtained from
S by the action of PGL(2). Each non-identical transformation from PGL(2)
leaves invariant Γ, but moves both l and C, and hence moves S.

As the rational normal scrolls in P4 are parametrized by a rational variety, the
Abel–Jacobi image of C + Γ is a constant c ∈ J2(X) for all pairs (Γ, C) such
that C ∈ Z2(Γ). Hence we have identically Φ4,0(Γ) + Φ5,1(C) = c on Z2, so
that Z2(Γ) ⊂ Z1(c)(Γ).
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We can obtain another birational description of Z2(Γ) for generic Γ in applying
to all the C ∈ Z2(Γ) the Tregub–Takeuchi transformation χ, centered at Γ. Let
ξ ∈ V14 be the indeterminacy point of χ−1.

Proposition 5.6. On a generic V14, the family of elliptic quintic curves is
irreducible. It is parametrized by an open subset of a component B of Hilb5n

V14

isomorphic to P5, and all the curves represented by points of B are l. c. i. of
pure dimension 1.
For any x ∈ V14, the family of curves from B = P5 passing through x is a
linear 3-dimensional subspace P3

x ⊂ P5. For generic rational normal quartic Γ
as above, χ maps Z2(Γ) birationally onto P3

ξ.

Proof. Gushel constructs in [G2] for any elliptic quintic curve B on V14 a rank
two vector bundle G such that h0(G) = 6, detG = O(1), c2(G) = B, and proves
that the map from V14 to G = G(2, 6) given by the sections of G and composed
with the Plücker embedding is the standard embedding of V14 into P14. Hence
G is isomorphic to the restriction of the universal rank 2 quotient bundle on G
(in particular, it has no moduli), and the zero loci of its sections are precisely
the sections of V14 by the Schubert varieties σ11(L) over all hyperplanes L ⊂
C6 = H0(G)∨. These zero loci are l. c. i. of pure dimension 1. Indeed, assume
the contrary. Assume that D = σ11(L) ∩ V14 has a component of dimension
> 1. Anyway, degD = deg σ11(L) = 5, hence if dimD = 2, then V14 has a
divisor of degree ≤ 5 < 14 = degV14. This contradicts the fact that V14 has
index 1 and Picard number 1. One cannot have dimD > 2, because otherwise
V14 would be reducible. Hence dimD ≤ 1, and it is l. c. i. of pure dimension
1 as the zero locus of a section of a rank 2 vector bundle. All the zero loci B
of sections of G form a component B of the Hilbert scheme of V14 isomorphic
to P5.
The curves B from B passing through x are the sections of V14 by the Schubert
varieties σ11(L) for all L containing the 2-plane Sx represented by the point
x ∈ G(2, 6), and hence form a linear subspace P3 in P5.
Now, let us prove the last assertion. Let C ∈ Z2(Γ) be generic. We have
(C · Γ)F1 = 7, therefore the map χ, given by the linear system |O(8) − 5Γ)|,
sends it to a curve C̃ of degree 8·5−5·7 = 5. So, the image is a quintic of genus 1.
Let k = multξ C̃. The inverse χ−1 being given by the linear system |O(2)−5ξ|,
we have for the degree of C = χ−1(C̃): 5 = 2 deg C̃ − 5k = 10 − 5k,

hence k = 1, that is, ξ is a simple point of C̃ . Thus the generic C ∈ Z2(Γ) is

transformed into a smooth elliptic quintic C̃ ⊂ V14 passing through ξ. By the
above, such curves form a P3 in the Hilbert scheme, and this ends the proof.

5.7. Period map of varieties V14. We have seen that one can associate to
any Fano variety V14 a unique cubic 3-fold X , but to any cubic 3-fold X a
5-dimensional family of varieties V14. Now we are going to determine this 5-
dimensional family. This will give also some information on the period map of
varieties V14. Let Ag denote the moduli space of principally polarized abelian
varieties of dimension g.
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Theorem 5.8. Let V14 be the moduli space of smooth Fano 3-folds of degree
14, and let Π : V14 → A5 be the period map on V14. Then the image Π(V14)
coincides with the 10-dimensional locus J5 of intermediate jacobians of cubic
threefolds. fiber Π−1(J), J ∈ J5, is isomorphic to the family V(X) of the V14

which are associated to the same cubic threefold X, and birational to J 2(X).

Proof. For the construction of V14 and for the fact that dimV14 = 15, see
Theorem 0.9 in [Muk].
According to Theorem 2.2, there exists a 5-dimensional family of varieties V14,
associated to a fixed generic cubic 3-fold X , which is birationally parametrized
by the set M of isomorphism classes of vector bundle E obtained by Serre’s
construction starting from normal elliptic quintics C ⊂ X . By Corollary 3.3,
M is an open subset of J2(X). Hence all the assertions follow from Proposition
1.7.
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Abstract. Starting from Kirchberg’s theorems announced at the
operator algebra conference in Genève in 1994, namely O2 ⊗A ∼= O2

for separable unital nuclear simple A and O∞ ⊗ A ∼= A for separable
unital nuclear purely infinite simple A, we prove that KK-equivalence
implies isomorphism for nonunital separable nuclear purely infinite
simple C∗-algebras. It follows that if A and B are unital separable
nuclear purely infinite simple C∗-algebras which satisfy the Universal
Coefficient Theorem, and if there is a graded isomorphism fromK∗(A)
to K∗(B) which preserves the K0-class of the identity, then A ∼= B.

Our main technical results are, we believe, of independent in-
terest. We say that two asymptotic morphisms t 7→ ϕt and t 7→ ψt
from A to B are asymptotically unitarily equivalent if there exists
a continuous unitary path t 7→ ut in the unitization B+ such that
‖utϕt(a)u∗t − ψt(a)‖ → 0 for all a in A. We prove the following two
results on deformations and unitary equivalence. Let A be separable,
nuclear, unital, and simple, and let D be unital. Then any asymptotic
morphism from A to K ⊗O∞ ⊗D is asymptotically unitarily equiv-
alent to a homomorphism, and two homotopic homomorphisms from
A to K⊗O∞⊗D are necessarily asymptotically unitarily equivalent.
We also give some nonclassification results for the nonnuclear case.

1991 Mathematics Subject Classification: Primary 46L35; Secondary
19K99, 46L80.

0 Introduction

We prove that the isomorphism class of a separable nuclear unital purely infi-
nite simple C∗-algebra satisfying the Rosenberg-Schochet Universal Coefficient
Theorem is completely determined by its K-theory. More precisely, let A and
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B be separable nuclear unital purely infinite simple C∗-algebras which satisfy
the Universal Coefficient Theorem, and suppose that there is a graded isomor-
phism α : K∗(A) → K∗(B) such that α([1A]) = [1B] in K0(B). Then there
is an isomorphism ϕ : A → B such that ϕ∗ = α. This theorem follows from
a result asserting that whenever A and B are separable nuclear unital purely
infinite simple C∗-algebras (not necessarily satisfying the Universal Coefficient
Theorem) which are KK-equivalent via a class in KK-theory which respects
the classes of the identities, then there is an isomorphism from A to B whose
class in KK-theory is the given one.

As intermediate results, we prove some striking facts about homomor-
phisms and asymptotic morphisms from a separable nuclear unital simple C∗-
algebra to the tensor product of a unital C∗-algebra and the Cuntz algebra
O∞. If A and D are any two C∗-algebras, we say that two homomorphisms
ϕ, ψ : A → D are asymptotically unitarily equivalent if there is a continuous
unitary path t 7→ ut in D̃ such that limt→∞ utϕ(a)ut∗ = ψ(a) for all a ∈ A.
(Here D̃ = D if D is unital, and D̃ is the unitization D+ if D is not unital.)
Note that asymptotic unitary equivalence is a slightly strengthened form of
approximate unitary equivalence, and is an approximate form of unitary equiv-
alence. Our results show that if A is separable, nuclear, unital, and simple,
and D is separable and unital, then KK0(A,D) can be computed as the set
of asymptotic unitary equivalence classes of full homomorphisms from A to
K ⊗ O∞ ⊗D, with direct sum as the operation. Note that we use something
close to unitary equivalence, and that there is no need to use asymptotic mor-
phisms, no need to take suspensions, and (essentially because O∞ is purely
infinite) no need to form formal differences of classes. We can furthermore
replace A by K ⊗ O∞ ⊗ A, in which case the Kasparov product reduces ex-
actly to composition of homomorphisms. These results can be thought of as
a form of unsuspended E-theory. (Compare with [16], but note that we don’t
even need to use asymptotic morphisms.) There are also perturbation results:
any asymptotic morphism is in fact asymptotically unitarily equivalent (with
a suitable definition) to a homomorphism.

We also present what is now known about how badly the classification fails
in the nonnuclear case. There are separable purely infinite simple C∗-algebrasA
with O∞⊗A 6∼= A (Dykema–Rørdam), there are infinitely many nonisomorphic
separable exact purely infinite simple C∗-algebras A with O∞ ⊗ A ∼= A and
K∗(A) = 0 (easily obtained from results of Haagerup and Cowling–Haagerup),
and for given K-theory there are uncountably many nonisomorphic separable
nonexact purely infinite simple C∗-algebras with that K-theory.

Classification of C∗-algebras started with Elliott’s classification [19] of AF
algebras up to isomorphism by their K-theory. It received new impetus with
his successful classification of certain C∗-algebras of real rank zero with non-
trivial K1-groups. We refer to [21] for a recent comprehensive list of work in
this area. The initial step toward classification in the infinite case was taken in
[8], and was quickly followed by a number of papers [48], [49], [33], [34], [22],
[50], [35], [7], [51], [32], [36]. In July 1994, Kirchberg announced [27] a break-
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through: proofs that if A is a separable nuclear unital purely infinite simple
C∗-algebra, then O2⊗A ∼= O2 and O∞⊗A ∼= A. (The proofs, closely following
Kirchberg’s original methods, are in [29].) This quickly led to two more papers
[44], [52]. Here, we use Kirchberg’s results to nearly solve the classification
problem for separable nuclear unital purely infinite simple C∗-algebras; the
only difficulty that remains is the Universal Coefficient Theorem. The method
is a great generalization of that of [44], in which we replace homomorphisms
by asymptotic morphisms and approximate unitary equivalence by asymptotic
unitary equivalence. We also need a form of unsuspended E-theory, as alluded
to above. The most crucial step is done in Section 2, where we show that, in
a particular context, homotopy implies asymptotic unitary equivalence. We
suggest reading [44] to understand the basic structure of Section 2.

Kirchberg has in [28] independently derived the same classification theorem
we have. His methods are somewhat different, and mostly independent of the
proofs in [29]. He proves that homotopy implies a form of unitary equivalence
in a different context, and does so by eventually reducing the problem to a
theorem of this type in Kasparov’s paper [26]. By contrast, the main machinery
in our proof is simply the repeated use of Kirchberg’s earlier results as described
above.

This paper is organized as follows. In Section 1, we present some im-
portant facts about asymptotic morphisms, and introduce asymptotic unitary
equivalence. In Section 2, we prove our main technical results: under suit-
able conditions, homotopic asymptotic morphisms are asymptotically unitarily
equivalent and asymptotic morphisms are asymptotically unitarily equivalent
to homomorphisms. These results are given at the end of the section. In
Section 3, we prove the basic form (still using asymptotic morphisms) of our
version of unsuspended E-theory. Finally, Section 4 contains the classification
theorem and some corollaries, as well as the nicest forms of the intermediate
results discussed above. It also contains the nonclassification results.

Most of this work was done during a visit to the Fields Institute for Re-
search in Mathematical Sciences during Fall 1994, and I would like to thank
the Institute for its support and for the stimulating research environment it
provided. I would also like to thank a number of people for useful discussions,
either in person or by electronic mail, including Marius Dǎdǎrlat, George El-
liott, Uffe Haagerup, Eberhard Kirchberg, Alex Kumjian, Huaxin Lin, Mikael
Rørdam, Jonathan Samuel, Claude Schochet, and Shuang Zhang. These discus-
sions have led me to considerable simplification of the arguments and improve-
ment of the terminology. I am also grateful to the referee for a careful reading
of the paper and useful suggestions. In addition, the participants of a semi-
nar on an earlier version, including Siegfried Echterhof, Ralf Meyer, Bernhard
Neubüser, Christian Valqui, and Wilhelm Winter, made a number of helpful
comments.

Throughout this paper, U(D) denotes the unitary group of a unital C∗-
algebra D, and U0(D) denotes the connected component of U(D) contain-
ing 1. We will use repeatedly and without comment Cuntz’s result that
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K1(D) = U(D)/U0(D) for a unital purely infinite simple C∗-algebra D, as
well as his corresponding result that K0(D) is the set of Murray-von Neumann
equivalence classes of nonzero projections [14]. We similarly use Kasparov’s
KK-theory [26], and we recall here (and do not mention again) that every
separable nonunital purely infinite simple C∗-algebra has the form K ⊗D for
a unital purely infinite simple C∗-algebra D [61].

1 Asymptotic morphisms and asymptotic unitary equivalence

The basic objects we work with in this paper are asymptotic morphisms. In
the first subsection, we state for convenient reference some of the facts we need
about asymptotic morphisms, and establish notation concerning them. In the
second subsection, we define and discuss full asymptotic morphisms; fullness
is used as a nontriviality condition later in the paper. In the third subsection,
we introduce asymptotic unitary equivalence of asymptotic morphisms. This
relation is the appropriate version of unitary equivalence in the context of
asymptotic morphisms, and will play a fundamental role in Sections 2 and 3.

1.1 Asymptotic morphisms and asymptotic unitary equivalence

Asymptotic morphisms were introduced by Connes and Higson [11] for the
purpose of defining E-theory, a simple construction of KK-theory (at least if
the first variable is nuclear). In this subsection, we recall the definition and
some of the basic results on asymptotic morphisms, partly to establish our
notation and partly for ease of reference. We also prove a few facts that are
well known but seem not to have been published. We refer to [11], and the
much more detailed paper [54], for the details of the rest of the development of
E-theory.

IfX is a compact Hausdorff Hausdorff space, then C(X,D) denotes the C∗-
algebra of all continuous functions from X to D, while if X is locally compact
Hausdorff Hausdorff, then C0(X,D) denotes the C∗-algebra of all continuous
functions from X to D which vanish at infinity, and Cb(X,D) denote the C∗-
algebra of all bounded continuous functions from X to D.

We begin by recalling the definition of an asymptotic morphism.

1.1.1 Definition. Let A and D be C∗-algebras, with A separable. An asymp-
totic morphism ϕ : A→ D is a family t→ ϕt of functions from A to D, defined
for t ∈ [0,∞), satisfying the following conditions:

(1) For every a ∈ A, the function t 7→ ϕt(a) is continuous from [0,∞) to D.

(2) For every a, b ∈ A and α, β ∈ C, the limits

lim
t→∞

(ϕt(αa+ βb)− αϕt(a)− βϕt(b)),
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lim
t→∞

(ϕt(ab)− ϕt(a)ϕt(b)), and lim
t→∞

(ϕt(a
∗)− ϕt(a)∗)

are all zero.

1.1.2 Definition. ([11]) Let ϕ and ψ be asymptotic morphisms from A to D.
(1) We say that ϕ and ψ are asymptotically equal (called “equivalent” in

[11]) if for all a ∈ A, we have limt→∞(ϕt(a)− ψt(a)) = 0.
(2) We say that ϕ and ψ are homotopic if there is an asymptotic morphism

ρ : A→ C([0, 1], D) whose restrictions to {0} and {1} are ϕ and ψ respectively.
In this case, we refer to α 7→ ρ(α) = evα ◦ ρ (where evα : C([0, 1], D) → D
is evaluation at α) as a homotopy from ϕ to ψ, or as a continuous path of
asymptotic morphisms from ϕ to ψ.

The set of homotopy classes of asymptotic morphisms from A to D is de-
noted [[A,D]], and the homotopy class of an asymptotic morphism ϕ is denoted
[[ϕ]].

It is easy to check that asymptotic equality implies homotopy ([54], Re-
mark 1.11).

1.1.3 Definition. Let ϕ, ψ : A→ K⊗D be asymptotic morphisms. The direct
sum ϕ⊕ψ, well defined up to unitary equivalence (via unitaries in M(K⊗D)),
is defined as follows. Choose any isomorphism δ : M2(K)→ K, let δ : M2(K⊗
D)→ K ⊗D be the induced map, and define

(ϕ⊕ ψ)t(a) = δ

((
ϕt(a) 0

0 ψt(a)

))
.

Note that any two choices for δ are unitarily equivalent (and hence homotopic).

The individual maps ϕt of an asymptotic morphism are not assumed
bounded or even linear.

1.1.4 Definition. Let ϕ : A→ D be an asymptotic morphism.
(1) We say that ϕ is completely positive contractive if each ϕt is a linear

completely positive contraction.
(2) We say that ϕ is bounded if each ϕt is linear and supt ‖ϕt‖ is finite.
(3) We say that ϕ is selfadjoint if ϕt(a

∗) = ϕt(a)
∗ for all t and a.

Unless otherwise specified, homotopies of asymptotic morphisms from A
to D satisfying one or more of these conditions will be assumed to satisfy the
same conditions as asymptotic morphisms from A to C([0, 1], D).

Note that if ϕ is bounded, then the formula ψt(a) = 1
2 (ϕt(a) + ϕt(a

∗)∗)
defines a selfadjoint bounded asymptotic morphism which is asymptotically
equal to ϕ. We omit the easy verification that ψ is in fact an asymptotic
morphism.

1.1.5 Lemma. ([54], Lemma 1.6.) Let A and D be C∗-algebras, with A sepa-
rable and nuclear. Then every asymptotic morphism from A to D is asymptot-
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ically equal to a completely positive contractive asymptotic morphism. More-
over, the obvious map defines a bijection between the sets of homotopy classes
of completely positive contractive asymptotic morphisms and arbitrary asymp-
totic morphisms. (Homotopy classes are as in the convention in Definition
1.1.4.)

1.1.6 Lemma. Let ϕ : A→ D be an asymptotic morphism. Define ϕ+ : A+ →
D+ by ϕt(a + λ · 1) = ϕt(a) + λ · 1 for a ∈ A and λ ∈ C. Then ϕ+ is an
asymptotic morphism from A+ to D+, and is completely positive contractive,
bounded, or selfadjoint whenever ϕ is.

The proof of this is straightforward, and is omitted.
The following result is certainly known, but we know of no reference.

1.1.7 Proposition. Let A be a C∗-algebra which is given by exactly stable
(in the sense of Loring [37]) generators and relations (G,R), with both G and
R finite. Let D be a C∗-algebra. Then any asymptotic morphism from A to
D is asymptotically equal to a continuous family of homomorphisms from A
to D (parametrized by [0,∞)). Moreover, if ϕ(0) and ϕ(1) are two homotopic

asymptotic morphisms from A to D, such that each ϕ
(0)
t and each ϕ

(1)
t is a

homomorphism, then there is a homotopy α 7→ ϕ(α) which is asymptotically

equal to the given homotopy and such that each ϕ
(α)
t is a homomorphism.

Note that it follows from Theorem 2.6 of [38] that exact stability of (G,R)
depends only on A, not on the specific choices of G and R.

Proof of Proposition 1.1.7: Theorem 2.6 of [38] implies that the algebra A is
semiprojective in the sense of Blackadar [4]. (Also see Definition 2.3 of [38].)
We will use semiprojectivity instead of exact stability.

We prove the first statement. Let ϕ : A→ D be an asymptotic morphism.
Then ϕ defines in a standard way (see Section 1.2 of [54]) a homomorphism
ψ : A→ Cb([0,∞), D)/C0([0,∞), D). Let

In(D) = {f ∈ Cb([0,∞), D) : f(t) = 0 for t ≥ n}.

Then C0([0,∞), D) =
⋃∞
n=1 In(D). Semiprojectivity of A provides an n and

a homomorphism σ : A → Cb([0,∞), D)/In(D) such that the composite of σ
and the quotient map

Cb([0,∞), D)/In(D)→ Cb([0,∞), D)/C0([0,∞), D)

is ψ. Now σ can be viewed as a continuous family of homomorphisms σt from
A to D, parametrized by [n,∞). Define σt = σn for 0 ≤ t ≤ n. This gives the
required continuous family of homomorphisms.

The proof of the statement about homotopies is essentially the same. We
use Cb([0, 1]× [0,∞), D) in place of Cb([0,∞), D),

J = {f ∈ C0([0, 1]× [0,∞), D) : f(α, t) = 0 for α = 0, 1}

Documenta Mathematica 5 (2000) 49–114



Nuclear Purely Infinite Simple C∗-Algebras 55

in place of C0([0,∞), D), and J ∩ In([0, 1], D) in place of In(D). We obtain

ϕ
(α)
t for all t greater than or equal to some t0, and for all t when α = 0 or 1.

We then extend over (0, 1)× [0, t0) via a continuous retraction

[0, 1]× [0,∞)→ ([0, 1]× [t0,∞)) ∪ ({0} × [0,∞)) ∪ ({1} × [0,∞)).

We refer to [11] (and to [54] for more detailed proofs) for the definition
of E(A,B) as the abelian group of homotopy classes of asymptotic morphisms
from K⊗SA to K⊗SB, for the construction of the composition of asymptotic
morphisms (well defined up to homotopy), and for the construction of the
natural map KK0(A,B) → E(A,B) and the fact that it is an isomorphism if
A is nuclear. We do state here for reference the existence of the tensor product
of asymptotic morphisms. For the proof, see Section 2.2 of [54].

1.1.8 Proposition. ([11]) Let A1, A2, B1, and B2 be separable C∗-algebras,
and let ϕ(i) : Ai → Bi be asymptotic morphisms. Then there exists an asymp-
totic morphism ψ : A1 ⊗ A2 → B1 ⊗ B2 (maximal tensor products) such that

ψt(a1 ⊗ a2) − ϕ(1)
t (a1) ⊗ ϕ(2)

t (a2) → 0 as t → ∞, for all a1 ∈ A1 and a2 ∈ A2.
Moreover, ψ is unique up to asymptotic equality.

1.2 Full asymptotic morphisms

In this subsection, we define full asymptotic morphisms. Fullness will be used
as a nontriviality condition on asymptotic morphisms in Section 3. It will also
be convenient (although not, strictly speaking, necessary) in Section 2.

We make our definitions in terms of projections, because the behavior of
asymptotic morphisms on projections can be reasonably well controlled. We
do not want to let the asymptotic morphism ϕ : C0(R) → C0(R), defined by
ϕt(f) = tf, be considered to be full, since it is asymptotically equal to the zero
asymptotic morphism, but in the absence of projections it is not so clear how
to rule it out. Fortunately, in the present paper this issue does not arise.

We start with a useful definition and some observations related to the
evaluation of asymptotic morphisms on projections.

1.2.1 Definition. Let A and D be C∗-algebras, with A separable. Let p ∈ A
be a projection, and let ϕ : A → D be an asymptotic morphism. A tail
projection for ϕ(p) is a continuous function t 7→ qt from [0,∞) to the projections
in D which, thought of as an asymptotic morphism ψ : C→ D via ψt(λ) = λqt,
is asymptotically equal to the asymptotic morphism ψ′t(λ) = λϕt(p).

1.2.2 Remark. (1) Tail projections always exist: Choose a suitable t0, apply
functional calculus to 1

2 (ϕt(p) + ϕt(p)
∗) for t ≥ t0, and take the value at t for

t ≤ t0 to be the value at t0. (Or use Proposition 1.1.7.)
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(2) If ϕ is an asymptotic morphism from A to D, then a tail projection for
ϕ(p), regarded as an asymptotic morphism from C to D, is a representative of
the product homotopy class of ϕ and the asymptotic morphism from C to A
given by p.

(3) A homotopy of tail projections is defined in the obvious way: it is a

continuous family of projections (α, t) → q
(α)
t with given values at α = 0 and

α = 1.
(4) If ϕ is an asymptotic morphism, then it makes sense to say that a tail

projection is (or is not) full (that is, generates a full hereditary subalgebra),
since fullness depends only on the homotopy class of a projection.

1.2.3 Lemma. Let A and D be C∗-algebras, with A separable. Let ϕ : A →
D be an asymptotic morphism, and let p1 and p2 be projections in A. If
p1 is Murray-von Neumann equivalent to a subprojection of p2, then a tail
projection for ϕ(p1) is Murray-von Neumann equivalent to a subprojection of
a tail projection for ϕ(p2).

Proof: Let t 7→ q
(1)
t and t 7→ q

(2)
t be tail projections for ϕ(p1) and ϕ(p2)

respectively. Let v be a partial isometry with v∗v = p1 and vv∗ ≤ p2. Using
asymptotic multiplicativity and the definition of a tail projection, we have

lim
t→∞

(
ϕt(v)

∗ϕt(v)− q(1)t

)
= 0 and lim

t→∞

(
q
(2)
t ϕt(v)ϕt(v)

∗q(2)t − q(2)t

)
= 0.

It follows that for t sufficiently large, q
(1)
t is Murray-von Neumann equivalent to

a subprojection of q
(2)
t , with the Murray-von Neumann equivalence depending

continuously on t. It is easy to extend it from an interval [t0,∞) to [0,∞).

1.2.4 Lemma. Let A and D be as in Definition 1.2.1, let α 7→ ϕ(α) be a
homotopy of asymptotic morphisms from A to D, and let p0, p1 ∈ A be homo-
topic projections. Let q(0) and q(1) be tail projections for ϕ(0)(p0) and ϕ(1)(p1)
respectively. Then q(0) is homotopic to q(1) in the sense of Remark 1.2.1 (3).

Proof: This can be proved directly, but also follows by combining Remark
1.2.2 (2), Proposition 1.1.7, and the fact that products of homotopy classes of
asymptotic morphisms are well defined.

1.2.5 Definition. Let A be a separable C∗-algebra which contains a full
projection, and let D be any C∗-algebra. Then an asymptotic morphism ϕ :
A → D is full if there is a full projection p ∈ A such that some (equivalently,
any) tail projection for ϕ(p) is full in D.

This definition rejects, not only the identity map of C0(R), but also the
identity map of C0(Z). (The algebra C0(Z) has no full projections.) However,
it will do for our purposes.

Note that, by Lemma 1.2.3, if a tail projection for ϕ(p) is full, then so is
a tail projection for ϕ(q) whenever p is Murray-von Neumann equivalent to a
subprojection of q.
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We now list the relevant properties of full asymptotic morphisms. We
omit the proofs; they are mostly either immediate or variations on the proof of
Lemma 1.2.3.

1.2.6 Lemma. (1) Fullness of an asymptotic morphism depends only on its
homotopy class.

(2) If ϕ, ψ : A→ D are asymptotic morphisms, and if ϕ is full, then so is
the asymptotic morphism ϕ⊕ ψ : A→M2(D).

(3) Let B be separable, and have a full projection, and further assume
that given two full projections in B, each is Murray-von Neumann equivalent
to a subprojection of the other. Then any asymptotic morphism representing
the product of full asymptotic morphisms from A to B and from B to D is
again full.

The extra assumption in part (3) is annoying, but we don’t see an easy
way to avoid it. This suggests that we don’t quite have the right definition.
However, in this paper B will almost always have the form K ⊗O∞ ⊗D with
D unital. Lemma 2.1.8 (1) below will ensure that the assumption holds in this
case.

1.3 Asymptotic unitary equivalence

Approximately unitarily equivalent homomorphisms have the same class in
Rørdam’sKL-theory (Proposition 5.4 of [51]), but need not have the same class
in KK-theory. (See Theorem 6.12 of [51], and note that KL(A,B) is in general
a proper quotient of KK0(A,B).) Since the theorems we prove in Section 3
give information about KK-theory rather than about Rørdam’s KL-theory, we
introduce and use the notion of asymptotic unitary equivalence instead. We
give the definition for asymptotic morphisms because we will make extensive
technical use of it in this context, but, for reasons to be explained below, it is
best suited to homomorphisms.

1.3.1 Definition. Let A and D be C∗-algebras, with A separable. Let ϕ, ψ :
A → D be two asymptotic morphisms. Then ϕ is asymptotically unitarily
equivalent to ψ if there is a continuous family of unitaries t 7→ ut in D̃, defined
for t ∈ [0,∞), such that

lim
t→∞

‖utϕt(a)u∗t − ψt(a)‖ = 0

for all a ∈ A. We say that two homomorphisms ϕ, ψ : A→ D are asymptotically
unitarily equivalent if the corresponding constant asymptotic morphisms with
ϕt = ϕ and ψt = ψ are asymptotically unitarily equivalent.

1.3.2 Lemma. Asymptotic unitary equivalence is the equivalence relation on
asymptotic morphisms generated by asymptotic equality and unitary equiva-
lence in the exact sense (that is, utϕt(a)u

∗
t = ψt(a) for all a ∈ A).
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Proof: The only point needing any work at all is transitivity of asymptotic
unitary equivalence, and this is easy.

1.3.3 Lemma. Let A and D be C∗-algebras, with A separable.

(1) Let ϕ, ψ : A → K ⊗D be asymptotically unitarily equivalent asymp-
totic morphisms. Then ϕ is homotopic to ψ.

(2) Let ϕ, ψ : A → K ⊗ D be asymptotically unitarily equivalent homo-
morphisms. Then ϕ is homotopic to ψ via a path of homomorphisms.

Proof: (1) Let t 7→ ut ∈ (K ⊗ D)+ be an asymptotic unitary equivalence.
Modulo the usual isomorphism M2(K) ∼= K, the asymptotic morphisms ϕ and
ψ are homotopic to the asymptotic morphisms ϕ ⊕ 0 and ψ ⊕ 0 from A to
M2(K ⊗ D). Choose a continuous function (α, t) 7→ vα,t from [0, 1] × [0,∞)
to U(M2((K ⊗ D)+)) such that v0,t = 1 and v1,t = ut ⊕ u∗t for all t. Define

a homotopy of asymptotic morphisms by ρ
(α)
t (a) = vα,t(ϕt(a) ⊕ 0)v∗α,t. Then

ρ(0) = ϕ⊕ 0 and ρ(1) is asymptotically equal to ψ⊕ 0. So ϕ is homotopic to ψ.

(2) Apply the proof of part (1) to the constant paths t 7→ ϕ and t 7→ ψ.

Putting t = 0 gives homotopies of homomorphisms from ϕ to ρ
(1)
0 and from

ψ to ψ ⊕ 0. The remaining piece of our homotopy is taken to be defined for

t ∈ [0,∞], and is given by t 7→ ρ
(1)
t for t ∈ [0,∞) and ∞ 7→ ψ ⊕ 0.

1.3.4 Corollary. Two asymptotically unitarily equivalent asymptotic mor-
phisms define the same class in E-theory.

If the domain is nuclear, this corollary shows that asymptotically uni-
tarily equivalent asymptotic morphisms define the same class in KK-theory.
Asymptotic unitary equivalence thus rectifies the most important disadvantage
of approximate unitary equivalence for homomorphisms. Asymptotic unitary
equivalence, however, also has its problems, connected with the extension to
asymptotic morphisms. The construction of the product of asymptotic mor-
phisms requires reparametrization of asymptotic morphisms, as in the following
definition.

1.3.5 Definition. Let A and D be C∗-algebras, and let ϕ : A → D be an
asymptotic morphism. A reparametrization of ϕ is an asymptotic morphism
from A to D of the form t 7→ ϕf(t) for some continuous nondecreasing function
f : [0,∞)→ [0,∞) such that limt→∞ f(t) =∞.

Other versions are possible: one could replace “nondecreasing” by “strictly
increasing”, or omit this condition entirely. The version we give is the most
convenient for our purposes.

It is not in general true that an asymptotic morphism is asymptotically uni-
tarily equivalent to its reparametrizations. (Consider, for example, the asymp-
totic morphism ϕ : C(S1) → C given by ϕt(f) = f(exp(it)).) The product
is thus not defined on asymptotic unitary equivalence classes of asymptotic
morphisms. (The product is defined on asymptotic unitary equivalence classes
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when one factor is a homomorphism. We don’t prove this fact because we don’t
need it, but see the last part of the proof of Lemma 2.3.5.) In fact, if an asymp-
totic morphism is asymptotically unitarily equivalent to its reparametrizations,
then it is asymptotically unitarily equivalent to a homomorphism, and this will
play an important role in our proof. The observation that this is true is due
to Kirchberg. It replaces a more complicated argument in the earlier version
of this paper, which involved the use throughout of “local asymptotic mor-
phisms”, a generalization of asymptotic morphisms in which there is another
parameter. We start the proof with a lemma.

1.3.6 Lemma. Let A and D be C∗-algebras, and let ϕ : A → D be an
asymptotic morphism. Suppose ϕ is asymptotically unitarily equivalent to all
its reparametrizations. Then for any ε > 0 and any finite set F ⊂ A there
is M ∈ [0,∞) such that for any compact interval I ⊂ R and any continuous
nondecreasing functions f, g : I → [M,∞), there is a continuous unitary path

t 7→ vt in D̃ satisfying ‖vtϕf(t)(a)v
∗
t − ϕg(t)(a)‖ < ε for all t ∈ I and a ∈ F.

Proof: Suppose the lemma is false. We can obviously change I at will by
reparametrizing, so there are ε > 0 and F ⊂ A finite such that for all M ∈
[0,∞) and all compact intervals I ⊂ R there are continuous nondecreasing
functions f, g : I → [M,∞) for which no continuous unitary path t 7→ vt
in D̃ gives ‖vtϕf(t)(a)v

∗
t − ϕg(t)(a)‖ < ε for t ∈ I and a ∈ F. Choose f1

and g1 for M = M1 = 1 and I = I1 = [1, 1 + 1
2 ]. Given fn and gn, choose

fn+1 and gn+1 as above for M = Mn+1 = 1 + max(fn(n + 1
2 ), gn(n+ 1

2 )) and
I = In+1 = [n + 1, n + 1 + 1

2 ]. By induction, we have Mn ≥ n. Let f, g :
[0,∞) → [0,∞) be the unique continuous functions which are linear on the
intervals [n+ 1

2 , n+1] and satisfy f |[n,n+ 1
2 ] = fn and g|[n,n+ 1

2 ] = gn. Since f and

g are nondecreasing and satisfy f(t), g(t) ≥ n for t ≥ n, the functions t 7→ ϕf(t)

and t 7→ ϕg(t) are asymptotic morphisms which are reparametrizations of ϕ. By
hypothesis, both are asymptotically unitarily equivalent to ϕ, and are therefore
also asymptotically unitarily equivalent to each other. Let t 7→ vt be a unitary
path in D̃ which implements this asymptotic unitary equivalence. Choose T
such that for a ∈ F and t > T we have ‖vtϕf(t)(a)v

∗
t − ϕg(t)(a)‖ < ε/2.

Restricting to [n, n+ 1
2 ] for some n > T gives a contradiction to the choice of

M and ε. This proves the lemma.

1.3.7 Proposition. Let A be a separable C∗-algebra, and let ϕ : A → D be
a bounded asymptotic morphism. Suppose that ϕ is asymptotically unitarily
equivalent to all its reparametrizations. Then ϕ is asymptotically unitarily
equivalent to a homomorphism. That is, there exist a homomorphism ω : A→
D and a continuous path t 7→ vt of unitaries in D̃ such that for every a ∈ A,
we have limt→∞ vtϕt(a)v

∗
t = ω(a).

Recall from Definition 1.1.4 (2) that bounded asymptotic morphisms are
assumed in particular to be linear.

Documenta Mathematica 5 (2000) 49–114



60 N. Christopher Phillips

Proof of Proposition 1.3.7: Choose finite sets F0 ⊂ F1 ⊂ · · · ⊂ A whose union
is dense in A. Choose a sequence t0 < t1 < · · · , with tn →∞, such that

‖ϕt(ab)− ϕt(a)ϕt(b)‖, ‖ϕt(a∗)− ϕt(a)∗‖ < 1/2n

for a, b ∈ Fn and t ≥ tn, and also such that, as in the previous lemma, for any
compact interval I ⊂ R and any continuous nondecreasing functions f, g : I →
[tn,∞), there is a continuous unitary path t 7→ vt in D̃ satisfying ‖vtϕf(t)(a)v

∗
t−

ϕg(t)(a)‖ < 2−n−1 for all t ∈ I and a ∈ Fn. For n ≥ 0 let t 7→ u
(n)
t be the unitary

path associated with the particular choices I = [tn, tn+1], f(t) = t, and g(t) =

tn. Set ũ
(n)
t = (u

(n)
tn )∗u(n)

t . We have ‖(u(n)
tn )∗ϕtn(a)u

(n)
tn − ϕtn(a)‖ < 2−n−1 for

a ∈ Fn, so ‖ũ(n)
t ϕt(a)(ũ

(n)
t )∗ − ϕtn(a)‖ < 2−n for t ∈ [tn, tn+1] and a ∈ Fn.

Also note that ũ
(n)
tn = 1. Now define a continuous unitary function [0,∞)→ D̃

by

vt = ũ
(0)
t1 · ũ

(1)
t2 · · · ũ

(n−1)
tn · ũ(n)

t

for tn ≤ t ≤ tn+1.
We claim that ω(a) = limt→∞ vtϕt(a)v

∗
t exists for all a ∈ A. Since

supt∈[0,∞) ‖ϕt‖ < ∞, it suffices to check this on the dense subset
⋃∞
k=0 Fk.

So let a ∈ Fk. We prove that the net t 7→ vtϕt(a)v
∗
t is Cauchy. Let m ≥ k, and

let t ≥ tm. Choose n such that tn ≤ t ≤ tn+1. Then

‖vtϕt(a)v∗t − vtmϕtm(a)v∗tm‖
=

∥∥∥
[
ũ

(m)
tm+1

· ũ(m+1)
tm+2

· · · ũ(n−1)
tn · ũ(n)

t

]

ϕt(a)
[
ũ

(m)
tm+1

· ũ(m+1)
tm+2

· · · ũ(n−1)
tn · ũ(n)

t

]∗
− ϕtm(a)

∥∥∥

≤
∥∥∥
(
ũ

(n)
t

)
ϕt(a)

(
ũ

(n)
t

)∗
− ϕtn(a)

∥∥∥

+

n−1∑

j=m

∥∥∥
(
ũ

(j)
tj+1

)
ϕtj+1 (a)

(
ũ

(j)
tj+1

)∗
− ϕtj (a)

∥∥∥

≤
n∑

j=m

1

2j
<

1

2m−1
.

Therefore, if r, t ≥ tm, we obtain

‖vrϕr(a)v∗r − vtϕt(a)v∗t ‖ < 1/2m−2.

So we have a Cauchy net, which must converge. The claim is now proved.
Since ϕt is multiplicative and *-preserving to within 2−n on Fn for t ≥ tn,

it follows that ω is exactly multiplicative and *-preserving on each Fn. Since
‖ω‖ ≤ supt∈[0,∞) ‖ϕt‖ <∞, it follows that ω is a homomorphism.

In the rest of this section, we prove some useful facts about asymptotic
unitary equivalence.
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1.3.8 Lemma. Let ϕ : A → D be an asymptotic morphism, with A unital.
Then there is a projection p ∈ D and an asymptotic morphism ψ : A → D
which is asymptotically unitarily equivalent to ϕ and satisfies ψt(1) = p and
ψt(a) ∈ pDp for all t ∈ [0,∞) and and a ∈ A.

Proof: Let t 7→ qt be a tail projection for ϕ(1), as in Definition 1.2.1. Standard

results yield a continuous family of unitaries t 7→ ut in D̃ such that u0 = 1 and
utqtu

∗
t = q0 for all t ∈ [0,∞). Define p = q0 and define ρt(a) = utqtϕt(a)qtu

∗
t

for t ∈ [0,∞) and a ∈ A. Note that the definition of an asymptotic morphism
implies that (t, a) 7→ qtϕt(a)qt is asymptotically equal to ϕ, and hence is an
asymptotic morphism. Thus ρ is an asymptotic morphism which is asymptot-
ically unitarily equivalent to ϕ.

The only problem is that ρt(1) might not be equal to p. We do know that
ρt(1)→ p as t→∞. Choose a closed subspace A0 of A which is complementary
to C · 1, and for a ∈ A0 and λ ∈ C define ψt(a+ λ · 1) = ρt(a) + λp.

1.3.9 Lemma. Let ϕ, ψ : A → K ⊗D be asymptotic morphisms, with A and
D unital. Suppose that there is a continuous family of unitaries t 7→ ut in the
multiplier algebra M(K⊗D) such that limt→∞ ‖utϕt(a)u∗t −ψt(a)‖ = 0 for all
a ∈ A. Then ϕ is asymptotically unitarily equivalent to ψ.

Proof: We have to show that ut can be replaced by vt ∈ (K ⊗D)+.
Applying the previous lemma twice, and making the corresponding mod-

ifications to the given ut, we may assume that ϕt(1) and ψt(1) are projec-
tions p and q not depending on t, and that we always have ϕt(a) ∈ pDp and
ψt(a) ∈ qDq.

We now want to reduce to the case p = q. The hypothesis implies that
there is t0 such that ‖ut0pu∗t0 − q‖ < 1/2. Therefore there is a unitary w in
(K ⊗ D)+ such that wut0pu

∗
t0w
∗ = q. Now if p, q ∈ K ⊗ D are projections

which are unitarily equivalent in M(K ⊗ D), then standard arguments show
they are unitarily equivalent in (K ⊗ D)+. Therefore conjugating ϕ by wut0
changes neither its asymptotic unitary equivalence class nor the validity of the
hypotheses. We may thus assume without loss of generality that p = q.

Now choose t1 such that t ≥ t1 implies ‖utpu∗t−p‖ < 1. Define a continuous
family of unitaries by

ct = 1− p+ putp(pu
∗
tputp)

−1/2 ∈ (K ⊗D)+

for t ≥ t1. (Functional calculus is evaluated in p(K ⊗ D)p.) For any d ∈
p(K ⊗D)p, we have

‖ctdc∗t − utdu∗t ‖ = ‖pdp− c∗tutpdpu∗t ct‖
≤ 2‖d‖ ‖p− c∗tutp‖ ≤ 2‖d‖(‖utp− put‖+ ‖p− c∗t putp‖).

The first summand in the last factor goes to 0 as t → ∞. Substituting defini-
tions, the second summand becomes ‖p− (pu∗t putp)

1/2‖, which does the same.
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Since ϕt(a) ∈ p(K ⊗D)p for all a ∈ A, and since (using Lemma 1.2 of [54] for
the first)

lim sup
t→∞

‖ϕt(a)‖ ≤ ‖a‖ and lim
t→∞

‖utϕt(a)u∗t − ψt(a)‖ = 0,

it follows that limt→∞ ‖ctϕt(a)c∗t − ψt(a)‖ = 0 as well. This is the desired
asymptotic unitary equivalence.

2 Asymptotic morphisms to tensor products with O∞.

The purpose of this section is to prove two things about asymptotic morphisms
from a separable nuclear unital simple C∗-algebraA to a C∗-algebra of the form
K⊗O∞⊗D with D unital: homotopy implies asymptotic unitary equivalence,
and each such asymptotic morphism is asymptotically unitarily equivalent to
a homomorphism. The basic method is the absorption technique used in [35]
and [44], and in fact this section is really just the generalization of [44] from ho-
momorphisms and approximate unitary equivalence to asymptotic morphisms
and asymptotic unitary equivalence.

There are three subsections. In the first, we collect for reference various
known results involving Cuntz algebras (including in particular Kirchberg’s
theorems on tensor products) and derive some easy consequences. In the second
subsection, we replace approximate unitary equivalence by asymptotic unitary
equivalence in the results of [48] and [35]. In the third, we carry out the
absorption argument and derive its consequences.

The arguments involving asymptotic unitary equivalence instead of ap-
proximate unitary equivalence are sometimes somewhat technical. However,
the essential outline of the proof is the same as in the much easier to read
paper [44].

2.1 Preliminaries: Cuntz algebras and Kirchberg’s stability the-
orems

In this subsection, we collect for convenient reference various results related to
Cuntz algebras. Besides Rørdam’s results on approximate unitary equivalence
and Kirchberg’s basic results on tensor products, we need material on unstable
K-theory and hereditary subalgebras of tensor products with O∞ and on exact
stability of generating relations of Cuntz algebras.

We start with Rørdam’s work [48]; we also use this opportunity to establish
our notation. The first definition is used implicitly by Rørdam, and appears
explicitly in the work of Ringrose.

We will generally let s1, s2, . . . , sm be the standard generators of Om, and
analogously for O∞.
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2.1.1 Definition. ([47], [46]) Let A be a unital C∗-algebra. Then its (C∗)
exponential length cel(A) is

sup
u∈U0(A)

inf

{
n∑

k=1

‖hk‖ : n ∈ N, h1, . . . , hn ∈ A selfadjoint,

u = exp(ih1) exp(ih2) · · · exp(ihn)

}
.

In preparation for the following theorem, and to establish notation, we
make the following remark, most of which is in [48], 3.3.

2.1.2 Remark. Let B be a unital C∗-algebra, and let m ≥ 2.
(1) If ϕ, ψ : Om → B are unital homomorphisms, then the element u =∑m

j=1 ψ(sj)ϕ(sj)
∗ is a unitary in B such that uϕ(sj) = ψ(sj) for 1 ≤ j ≤ m.

(2) If ϕ : Om → B is a unital homomorphism, then the formula

λϕ(a) =

m∑

j=1

ϕ(sj)aϕ(sj)
∗

defines a unital endomorphism λϕ (or just λ when ϕ is understood) of B.
(3) If ϕ and λ are as in (2), and if u ∈ B has the form u = vλ(v∗) for some

unitary v ∈ B, then vϕ(sj)v
∗ = uϕ(sj) for 1 ≤ j ≤ m.

2.1.3 Theorem. Let B be a unital C∗-algebra such that cel(B) is finite and
such that the canonical map U(B)/U0(B) → K1(B) is an isomorphism. Let
m ≥ 2, and let ϕ, ψ : Om → B, λ : B → B, and u ∈ U(B) be as in Remark
2.1.2 (1) and (2). Then the following are equivalent:

(1) [u] ∈ (m− 1)K1(B).

(2) For every ε > 0 there is v ∈ U(B) such that ‖u− vλ(v∗)‖ < ε.

(3) [ϕ] = [ψ] in KK0(Om, B).

(4) The maps ϕ and ψ are approximately unitarily equivalent.

Proof: For m even, this is Theorem 3.6 of [48]. In Section 3 of [48], it is also
proved that (1) is equivalent to (3) and (2) is equivalent to (4) for arbitrary m,
and Theorem 4.2 of [44] implies that (3) is equivalent to (4) for arbitrary m.

We will not actually need to use the equivalence of (3) and (4) for odd m.
That cel(D) is finite for purely infinite simple C∗-algebras D was first

proved in [42]. We will, however, apply this theorem to algebras D of the form
O∞ ⊗ B with B an arbitrary unital C∗-algebra. Such algebras are shown in
Lemma 2.1.7 (2) below to have finite exponential length. Actually, to prove
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the classification theorem, it suffices to know that there is a universal upper
bound on cel(C(X) ⊗ B) for B purely infinite and simple. This follows from
Theorem 1.2 of [62].

We now state the fundamental results of Kirchberg on which our work
depends. These were stated in [27]; proofs appear in [29].

2.1.4 Theorem. ([27]; [29], Theorem 3.8) Let A be a separable nuclear unital
simple C∗-algebra. Then O2 ⊗A ∼= O2.

2.1.5 Theorem. ([27]; [29], Theorem 3.15) Let A be a separable nuclear unital
purely infinite simple C∗-algebra. Then O∞ ⊗A ∼= A.

We now derive some consequences of Kirchberg’s results.

2.1.6 Corollary. Every separable nuclear unital purely infinite simple C∗-
algebra is approximately divisible in the sense of [6].

Proof: It suffices to show that O∞ is approximately divisible. Let ϕ : O∞ ⊗
O∞ → O∞ be an isomorphism, as in the previous theorem. Define ψ : O∞ →
O∞ by ψ(a) = ϕ(1⊗a). Then ψ is approximately unitarily equivalent to idO∞

by Theorem 3.3 of [35]. That is, there are unitaries un ∈ O∞ such that unϕ(1⊗
a)u∗n → a for all a ∈ O∞. Let B ⊂ O∞ be a unital copy of M2 ⊕M3. Then for
large enough n, the subalgebra unϕ(B⊗1)u∗n of O∞ commutes arbitrarily well
with any finite subset of O∞.

2.1.7 Lemma. Let D be any unital C∗-algebra. Then:
(1) The canonical map U(O∞ ⊗ D)/U0(O∞ ⊗ D) → K1(O∞ ⊗ D) is an

isomorphism.
(2) cel(O∞ ⊗D) ≤ 3π.

Proof: We first prove surjectivity in (1). Let η ∈ K1(O∞ ⊗D). Choose n and
u ∈ U(Mn ⊗O∞ ⊗D) such that [u] = η. Let eij be the standard matrix units
in Mn. Define (nonunital) homomorphisms

ϕ : O∞ ⊗D →Mn ⊗O∞ ⊗D and ψ : Mn ⊗O∞ ⊗D → O∞ ⊗D

by
ϕ(a) = e11 ⊗ a and ψ(eij ⊗ b) = (si ⊗ 1)b(s∗j ⊗ 1).

Then ϕ∗ is the standard stability isomorphism

K1(O∞ ⊗D)→ K1(Mn ⊗O∞ ⊗D).

Also, ψ ◦ϕ(a) = (s1 ⊗ 1)a(s∗1 ⊗ 1) for a ∈ O∞⊗D. Since s1⊗ 1 is an isometry,
this implies that ψ ◦ ϕ is the identity on K-theory. Therefore ψ∗ = ϕ−1

∗ .
Consequently

η = ϕ−1
∗ ([u]) = ψ∗([u]) = [ψ(u) + 1− ψ(1)],

showing that η is the class of a unitary in O∞ ⊗D.
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Now let u ∈ U(O∞ ⊗D) satisfy [u] = 0 in K1(O∞ ⊗D). We prove that u
can be connected to the identity by a path of length at most 3π + ε. This will
simultaneously prove (2) and injectivity in (1).

Using approximate divisibility of O∞ and approximating u by finite sums
of elementary tensors, we can find nontrivial projections e ∈ O∞ with ‖u(e⊗
1) − (e ⊗ 1)u‖ arbitrarily small. If this norm is small enough, we can find a
unitary v ∈ K ⊗O∞⊗D which commutes with e⊗ 1 and is connected to u by
a unitary path of length less than ε/2. Write v = v1 + v2 with

v1 ∈ U(eO∞e⊗D) and v2 ∈ U((1− e)O∞(1− e)⊗D).

Choose a partial isometry s ∈ O∞ with s∗s = 1− e and ss∗ ≤ e. The proof of
Corollary 5 of [42] shows that v can be connected to the unitary

w = v

[
(e− ss∗)⊗ 1 + (s⊗ 1)v2(s⊗ 1)∗ + v∗2

]

= 1− e⊗ 1 + v1

[
(s⊗ 1)v2(s⊗ 1)∗ + (e− ss∗)⊗ 1

]

by a path of length π.
Since O∞ is purely infinite, there is an embedding of K ⊗ eO∞e in O∞

which extends the obvious identification of e11 ⊗ eO∞e with eO∞e. It extends
to a unital homomorphism ϕ : (K ⊗ eO∞e ⊗ D)+ → O∞ ⊗ D whose range
contains w, and such that [ϕ−1(w)] = 0 in K1(K⊗eO∞e⊗D). Thus ϕ−1(w) ∈
U0((K ⊗ eO∞e ⊗ D)+). Theorem 3.8 of [43] shows that the C∗ exponential
rank of any stable C∗-algebra is at most 2 + ε. An examination of the proof,
and of the length of the path used in the proof of Corollary 5 of [42], shows
that in fact any stable C∗-algebra has exponential length at most 2π. Thus, in
particular, ϕ−1(w) can be connected to 1 by a unitary path of length 2π+ ε/2.
It follows that u can be connected to 1 by a unitary path of length at most
3π + ε.

A somewhat more complicated argument shows that in fact cel(O∞⊗D) ≤
2π. Details will appear elsewhere [45].

2.1.8 Lemma. Let D be a unital C∗-algebra. Then:
(1) Given two full projections inK⊗O∞⊗D, each is Murray-von Neumann

equivalent to a subprojection of the other.
(2) If two full projections in K ⊗ O∞ ⊗ D have the same K0-class, then

they are homotopic.

Proof: Taking direct limits, we reduce to the case that D is separable. Then
O∞ ⊗D is approximately divisible by Corollary 2.1.6. It follows from Propo-
sition 3.10 of [6] that two full projections in K ⊗ O∞ ⊗ D with the same
K0-class are Murray-von Neumann equivalent. Now (2) follows from the fact
that Murray-von Neumann equivalence implies homotopy in the stabilization
of a unital C∗-algebra.
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Part (1) requires slightly more work. Let P be the set of all projections
p ∈ O∞ ⊗ D such that there are two orthogonal projections q1, q2 ≤ p, both
Murray-von Neumann equivalent to 1. One readily verifies that P is nonempty
and satisfies the conditions (Π1)-(Π4) on page 184 of [14]. Therefore, by [14],
the group K0(O∞⊗D) is exactly the set of Murray-von Neumann equivalence
classes of projections in P . Since projections in P are full, Proposition 3.10
of [6] now implies that every full projection is in P . Clearly (1) holds for
projections in P . We obtain (1) in general by using the pure infiniteness of
O∞ to show that every full projection in K⊗O∞⊗D is Murray-von Neumann
equivalent to a (necessarily full) projection in O∞ ⊗D.

Next, we turn to exact stability. For Om, we need only the following
standard result:

2.1.9 Proposition. ([35], Lemma 1.3 (1)) For any integer m, the defining
relations for Om, namely s∗jsj = 1 and

∑m
k=1 sks

∗
k = 1 for 1 ≤ j ≤ m, are

exactly stable.

We will also need to know about the standard extension Em of Om by the
compact operators. Recall from [13] that Em is the universal C∗-algebra on
generators t1, . . . , tm with relations t∗j tj = 1 and (tjt

∗
j )(tkt

∗
k) = 0 for 1 ≤ j, k ≤

m, j 6= k. Its properties are summarized in [35], 1.1. In particular, we have
lim
−→

Em ∼= O∞ using the standard inclusions.

Exact stability of the generating relations for Em is known, but we need the
following stronger result, which can be thought of as a finite version of exact
stability for O∞. Essentially, it says that if elements approximately satisfy
the defining relations for Em, then they can be perturbed in a functorial way
to exactly satisfy these relations, and that the way the first k elements are
perturbed does not depend on the remaining m− k elements.

Recently, Blackadar has proved that in fact O∞ is semiprojective in the
usual sense [5].

2.1.10 Proposition. For each δ ≥ 0 and m ≥ 2, let Em(δ) be the universal

unital C∗-algebra on generators t
(m)
j,δ for 1 ≤ j ≤ m and relations

‖(t(m)
j,δ )∗t(m)

j,δ − 1‖ ≤ δ and

∥∥∥∥
(
t
(m)
j,δ (t

(m)
j,δ )∗

)(
t
(m)
k,δ (t

(m)
k,δ )∗

)∥∥∥∥ ≤ δ

for j 6= k, and let κ
(m)
δ : Em(δ) → Em be the homomorphism given by send-

ing t
(m)
j,δ to the corresponding standard generator t

(m)
j of Em. Then there are

δ(2) ≥ δ(3) ≥ · · · > 0, nondecreasing functions fm : [0, δ(m)] → [0,∞) with

limδ→0 fm(δ) = 0 for each m, and homomorphisms ϕ
(m)
δ : Em → Em(δ) for

0 ≤ δ ≤ δ(m), satisfying the following properties:

(1) κ
(m)
δ ◦ ϕ(m)

δ = idEm .

(2) ‖ϕ(m)
δ (t

(m)
j )− t(m)

j,δ ‖ ≤ fm(δ).
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(3) If 0 ≤ δ ≤ δ′ ≤ δ(m), then the composite of ϕ
(m)
δ′ with the canonical map

from Em(δ′) to Em(δ) is ϕ
(m)
δ .

(4) Let ι
(m)
δ : Em(δ) → Em+1(δ) be the map given by ι

(m)
δ (t

(m)
j,δ ) = t

(m+1)
j,δ

for 1 ≤ j ≤ m. Then for 0 ≤ δ ≤ δ(m + 1) and 1 ≤ j ≤ m, we have

ι
(m)
δ (ϕ

(m)
δ (t

(m)
j )) = ϕ

(m+1)
δ (t

(m+1)
j ).

Proof: The proof of exact stability of Em, as sketched in the proof of Lemma
1.3 (2) of [35], is easily seen to yield homomorphisms satisfying the conditions
demanded here.

2.1.11 Proposition. Let D be a unital purely infinite simple C∗-algebra.
Then any two unital homomorphisms from O∞ to D are homotopic. Moreover,
if ϕ, ψ : O∞ → D are unital homomorphisms such that ϕ(sj) = ψ(sj) for
1 ≤ j ≤ m, then there is a homotopy t 7→ ρt such that ρt(sj) = ϕ(sj) for
1 ≤ j ≤ m and all t.

Proof: We prove the second statement; the first is the special case m = 0.
We construct a continuous path t 7→ ρt of unital homomorphisms from

O∞ to D, defined for t ∈ [m,∞) and satisfying the following conditions:

(1) For k ≥ m, for t ∈ [k,∞), and for 1 ≤ j ≤ k, we have ρt(sj) = ψ(sj).

(2) ρm = ϕ.

Given such a path, ρt(sj) → ψ(sj) for all j. Since the sj generate O∞ as a
C∗-algebra, standard arguments show that ρt(a) → ψ(a) for all a ∈ O∞. We
have therefore constructed the required homotopy.

It remains to carry out the construction. We construct the paths t 7→ ρt,
for t ∈ [m,n], by induction on n. The initial step is thus simply to take ρm = ϕ.
For the induction step, it suffices to do the following. Assume we are given
t 7→ ρt, for t ∈ [m,n], and satisfying ρn(sj) = ψ(sj) for 1 ≤ j ≤ n. We then
extend t 7→ ρt over t ∈ [n, n + 1] so that ρt(sj) = ψ(sj) for 1 ≤ j ≤ n and
t ∈ [n, n+ 1], and in addition ρn+1(sn+1) = ψ(sn+1).

Let p =
∑n

j=1 ρn(sj)ρn(sj)
∗, which is a projection in D. Then define

e0 = ρn(sn+1)ρn(sn+1)
∗ and e1 = ψ(sn+1)ψ(sn+1)

∗.

Both e0 and e1 are proper projections in the purely infinite simple C∗-algebra
(1− p)D(1− p) with K0-class equal to [1D], so they are homotopic. It follows
that there is a unitary path s 7→ us in (1 − p)D(1 − p) such that u0 = 1 − p
and u1e0u

∗
1 = e1. For s ∈ [0, 1/3], define ρn+s(sj) = ρn(sj) for 1 ≤ j ≤ n

and ρn+s(sj) = u3sρn(sj) for j ≥ n + 1. This yields a homotopy of homomor-
phisms ρn+s : O∞ → D, with ρn as already given, and such that the isometries
ρn+1/3(sn+1) and ψ(sn+1) have the same range projection, namely e1, although
they themselves are probably not equal.
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By a similar argument, we extend the homotopy over [n+ 1/3, n+ 2/3] in
such a way that ρn+s(sj) is constant for s ∈ [n+1/3, n+2/3] and 1 ≤ j ≤ n+1,
and so that ρn+2/3(sn+2) and ψ(sn+2) also have the same range projection,
say f.

Now e1 and f are Murray-von Neumann equivalent, so we can identify
(e1 + f)D(e1 + f) with M2(e1De1). Since

w1 =

(
ψ(sn+1)ρn+2/3(sn+1)

∗ 0
0 [ψ(sn+1)ρn+2/3(sn+1)

∗]∗

)
∈ U0(M2(e1De1)),

there is a continuous path of unitaries s 7→ ws in M2(e1De1), with w0 = 1
and w1 as given. For s ∈ [2/3, 1], we now define ρn+s(sj) = ρn(sj) for j 6=
n+1, n+2, and ρn+s(sj) = w3s−2ρn+2/3(sj) for j = n+1, n+2. This is again
a homotopy, and gives ρn+1(sj) = ψ(sj) for 1 ≤ j ≤ n + 1, as desired. The
induction step is complete.

2.1.12 Corollary. Let D be any unital C∗-algebra, and let p ∈ K⊗O∞⊗D
be a projection. Then O∞ ⊗ p(K ⊗O∞ ⊗D)p ∼= p(K ⊗O∞ ⊗D)p.

Proof: We may replace p by any Murray-von Neumann equivalent projection.
So without loss of generality p ≤ e⊗1⊗1 for some projection e ∈ K. Using the
pure infiniteness of O∞, we can in fact require that e be a rank one projection.
That is, we may assume p ∈ O∞ ⊗D.

By Theorem 2.1.5, there is an isomorphism δ : O∞⊗O∞ → O∞. Using it,
we need only consider projections p ∈ O∞⊗O∞ ⊗D. By the previous proposi-
tion and Theorem 2.1.5, a 7→ 1⊗δ(a) is homotopic to idO∞⊗O∞ . Therefore such
a projection p is homotopic to q = 1⊗ (δ⊗ idD)(p), and hence also Murray-von
Neumann equivalent to q. Now

q(O∞ ⊗O∞ ⊗D)q ∼= O∞ ⊗ [(δ ⊗ idD)(p)][O∞ ⊗D][(δ ⊗ idD)(p)],

which is unchanged by tensoring with O∞ by Theorem 2.1.5.

2.1.13 Corollary. Let D be a unital C∗-algebra. Then the hypotheses on
B in Theorem 2.1.3 are satisfied for any unital corner of K ⊗O∞ ⊗D.
Proof: Combine the previous corollary and Lemma 2.1.7.

2.2 Asymptotic unitary equivalence of homomorphisms from
Cuntz algebras

In this subsection, we strengthen the main technical theorems of [48] (restated
here as Theorem 2.1.3) and of [35], replacing approximate unitary equivalence
by asymptotic unitary equivalence in the conclusions. We use the strong ver-
sions to obtain variants of several other known results in which we replace
sequences of homomorphisms by continuous paths.
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The first lemma contains the essential point in the strengthening of Theo-
rem 2.1.3. Its proof uses the original theorem in a sort of bootstrap argument.
The remaining results lead up to the strengthening of the main theorem of [35].
They are proved by modifying the proofs there.

The first two lemmas are stated together, because the proofs are very
similar.

2.2.1 Lemma. (Compare with Theorem 2.1.3.) Let D0 be a unital C∗-algebra,
and let D = O∞ ⊗D0. Let m ≥ 2, and let t 7→ ϕt and t 7→ ψt, for t ∈ [0,∞),
be two continuous paths of unital homomorphisms from Om to D. Suppose
that the unitary u0 =

∑m
j=1 ψ0(sj)ϕ0(sj)

∗ satisfies [u0] ∈ (m− 1)K1(D). Then
ϕ and ψ are asymptotically unitarily equivalent.

2.2.2 Lemma. (Compare with Proposition 1.7 of [35].) Let D be a unital
purely infinite simple C∗-algebra, with [1] = 0 in K0(D). Let t 7→ ϕt and
t 7→ ψt, for t ∈ [0,∞), be two continuous paths of unital homomorphisms from
O∞ to D. Then t 7→ ϕt and t 7→ ψt are asymptotically unitarily equivalent.

We will actually only need Lemma 2.2.1 for m = 2.

The two lemmas are actually valid for unital asymptotic morphisms (with
a suitable modification of the definition of u0 in Lemma 2.2.2), as can be seen
by applying Proposition 1.1.7. We don’t need this generality, so we don’t state
it formally.

The proofs of the two lemmas are rather technical. We do the first (which
is easier) in detail, and then describe the modifications needed for the second.
Before proving them, we outline the basic idea. Given two continuous paths as
in Lemma 2.2.1, we can start by applying Theorem 2.1.3 to the homomorphisms
from Om to C([0, 1]) ⊗D obtained by restricting the paths to t ∈ [0, 1], with

a certain error tolerance. The result is a continuous unitary path t 7→ v
(1)
t ,

for t ∈ [0, 1], such that (v
(n)
t )∗ψt(sj)v

(n)
t is close to ϕt(sj). Extend t 7→ v

(1)
t

over [0,∞) by taking it to be constant on [1,∞). Now replace t 7→ ψt by

t 7→ γ
(1)
t = (v

(1)
t )∗ψt(·)v(1)

t . Next, we want to repeat this over [1, 2], with a
smaller error tolerance. Because there will be infinitely many steps, requiring in
the end a product of infinitely many unitaries, there is a potential convergence

problem. Thus, we insist here that the new unitary v
(1)
t be equal to 1 for

t ∈ [0, 1]. In order to arrange this, we must have homomorphisms from Om
to C([1, 2]) ⊗ D which agree when restricted to {1} ⊂ [1, 2]. But γ

(1)
1 is only

close to ϕ1. However, if γ
(1)
1 is close enough to ϕ1 on the generators, then

we can use exact stability of the relations to construct a new homomorphism

σ : Om → C([1, 2])⊗D which is close to t 7→ γ
(1)
t for t ∈ [1, 2] and does agree

with ϕ1 at t = 1. We apply Theorem 2.1.3 to this homomorphism, and proceed
as before. Now repeat on [2, 3], etc.

In the actual proof, it is technically convenient to reduce to the case in
which t 7→ ϕt is constant, and to start over {0} rather than over [0, 1].
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The proof of Lemma 2.2.2 is essentially the same, but it is complicated by
the fact that there are infinitely many generators. We deal with only finitely
many of them over each interval [n, n+ 1], but more and more as n increases.

Proof of Lemma 2.2.1: Corollary 2.1.13 shows that both D and C([0, 1], D)
satisfy the hypotheses of Theorem 2.1.3.

By transitivity of asymptotic unitary equivalence, it suffices to show that
t 7→ ϕt and t 7→ ψt are both asymptotically unitarily equivalent to some con-
stant path. Thus, without loss of generality t 7→ ϕt is a constant path ϕt = ϕ
for all t. Let λ : D → D be λϕ as in Remark 2.1.2 (2).

Let f : [0, δ]→ [0,∞) be a function associated with the exact stability of
Om (Proposition 2.1.9) in the same way the functions fm of Proposition 2.1.10
are associated with the exact stability of Em.

Choose ε′0 > 0 with f(ε′0) < 1. Choose ε0 > 0 with ε0 < 1/2, and also
so small that if ω : Om → A is a unital homomorphism, and a1, . . . , am ∈ A
satisfy ‖aj −ω(sj)‖ < ε0, then the aj satisfy the relations for Om to within ε′0,
that is,

‖a∗jaj − 1‖ < ε′0 and

∥∥∥∥∥
m∑

k=1

aka
∗
k − 1

∥∥∥∥∥ < ε′0

for 1 ≤ j ≤ m. Set u0 =
∑m
j=1 ψ0(sj)ϕ(sj)

∗; this is the same as the u0 in the
statement of the lemma, so its K1-class is in (m − 1)K1(D). Theorem 2.1.3

therefore yields a unitary v
(0)
0 ∈ D such that ‖u0 − v(0)

0 λ(v
(0)
0 )∗‖ < ε0. Define

v
(0)
t = v

(0)
0 for all t, and define γ

(0)
t : Om → D by γ

(0)
t (a) = (v

(0)
t )∗ψt(a)v

(0)
t .

Using Remark 2.1.2, we calculate:

‖ϕ(sj)− γ(0)
0 (sj)‖ = ‖v(0)

0 ϕ(sj)(v
(0)
0 )∗ − ψ0(sj)‖

= ‖v(0)
0 λ(v

(0)
0 )∗ϕ(sj)− u0ϕ(sj)‖ < ε0

for 1 ≤ j ≤ m.
We now construct, by induction on n, numbers εn, ε

′
n > 0 and continuous

paths t 7→ v
(n)
t of unitaries in D and t 7→ γ

(n)
t of unital homomorphisms from

Om to D, for t ∈ [0,∞), such that ε0, ε
′
0, v

(0)
t , and γ

(0)
t are as already chosen,

and:

(1) γ
(n)
t (a) = (v

(n)
t )∗γ(n−1)

t (a)v
(n)
t for a ∈ Om and t ∈ [0,∞).

(2) If n ≥ 1, then v
(n)
t = 1 for t ≤ n− 1.

(3) If n ≥ 1, then ‖ϕ(sj)− γ(n)
t (sj)‖ < 2−n+1 for t ∈ [n− 1, n], and if n ≥ 0

then ‖ϕ(sj)− γ(n)
t (sj)‖ < εn for t = n.

(4) f(ε′n) < 2−n.

(5) Whenever ω : Om → A is a unital homomorphism, and a1, . . . , am ∈ A
satisfy ‖aj − ω(sj)‖ < εn, then the aj satisfy the relations for Om to
within ε′n.
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(6) εn < 2−(n+1).

Suppose that εn, ε
′
n, v

(n)
t , and γ

(n)
t have been chosen. Choose ε′n+1 and

then εn+1 as in (4), (5), and (6).
For α ∈ [0, 1], define

aj(α) = (1− α)(ϕ(sj )− γ(n)
n (sj)) + γ

(n)
n+α(sj).

Then ‖aj(α)−γ(n)
n+α(sj)‖ < εn for 1 ≤ j ≤ m and α ∈ [0, 1]. Conditions (4) and

(5), and the choice of f, provide a unital homomorphism σ : Om → C([0, 1], D)
such that ‖σ(sj) − aj‖ < 2−n for 1 ≤ j ≤ m. Define σα : Om → D by
σα(a) = σ(a)(α) for α ∈ [0, 1] and a ∈ Om. Then

‖σα(sj)− γ(n)
n+α(sj)‖ < εn + 2−n.

Functoriality of the approximating homomorphisms (the analog of (3) of Propo-

sition 2.1.10) guarantees that σ0 = ϕ and σ1 = γ
(n)
n+1.

Define a unitary z ∈ C([0, 1], D) by zα =
∑m
j=1 σα(sj)ϕ(sj)

∗ for α ∈ [0, 1].
Note that z0 = 1, so z ∈ U0(C([0, 1], D)). Theorem 2.1.3 provides a unitary
α 7→ yα in C([0, 1], D) such that ‖zα − yαλ(yα)∗‖ < εn+1/2 for α ∈ [0, 1].
Putting α = 0, using z0 = 1, and rearranging terms, we obtain ‖y∗0λ(y0)−1‖ <
εn+1/2. Now define

v
(n+1)
t =





1 t ≤ n
yt−ny∗0 n ≤ t ≤ n+ 1
y1y
∗
0 n+ 1 ≤ t

and define γ
(n+1)
t (a) = (v

(n+1)
t )∗γ(n)

t (a)v
(n+1)
t .

It remains only to verify condition (3) in the induction hypothesis. For
α ∈ [0, 1],

‖zα − v(n+1)
n+α λ(v

(n+1)
n+α )∗‖ ≤ ‖zα − yαλ(yα)∗‖+ ‖yα‖ ‖1− y∗0λ(y0)‖ ‖λ(yα)∗‖

< εn+1/2 + εn+1/2 = εn+1.

Therefore, for t ∈ [n, n+ 1], Remark 2.1.2 yields

‖ϕ(sj)− γ(n+1)
t (sj)‖ = ‖v(n+1)

t ϕ(sj)(v
(n+1)
t )∗ − γ(n)

t (sj)‖
≤ ‖v(n+1)

t λ(v
(n+1)
t )∗ϕ(sj)− zt−nϕ(sj)‖+ ‖σt−n(sj)− γ(n)

t (sj)‖
< εn+1 + εn + 2−n < 2−(n+2) + 2−(n+1) + 2−n < 2−n+1.

Furthermore, if t = n + 1, then actually σt−n(sj) = γ
(n)
t (sj), and we obtain

‖ϕ(sj)− γ(n+1)
t (sj)‖ < εn+1. This completes the induction.

To complete the proof, we now define vt = limn→∞ v
(0)
t v

(1)
t · · · v(n)

t for
t ∈ [0,∞). Note that the limit exists and defines a continuous unitary path
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t 7→ vt, since v
(n+1)
t , v

(n+2)
t , . . . are all equal to 1 on [0, n). Furthermore, for

t ∈ [n, n+ 1], we have

‖ϕ(sj)− v∗tψt(sj)vt‖ = ‖ϕ(sj)− γ(n+1)
t (sj)‖ < 2−n+1.

This implies that ϕ and t 7→ ψt are asymptotically unitarily equivalent.

For the proof of Lemma 2.2.2, we need the following lemma.

2.2.3 Lemma. Let D be a unital purely infinite simple C∗-algebra with [1] = 0
in K0(D). Let m < n, and identify Em with the subalgebra of On generated by
s1, . . . , sm. Let ϕ : Em → D be an injective unital homomorphism. Then there
exists a unital homomorphism ϕ̃ : On → D such that ϕ̃|Em = ϕ. Moreover,
if we are already given a unital homomorphism ψ : On → D, then ϕ̃ can be
chosen to satisfy [ϕ̃] = [ψ] in KK0(On, D).

Proof: This is essentially contained in the proof of Proposition 1.7 of [35], using
the equivalence of conditions (1) and (3) in Theorem 2.1.3.

Proof of Lemma 2.2.2: We describe how to modify the proof of Lemma 2.2.1
to obtain this result.

First, note that U(D)/U0(D) → K1(D) is an isomorphism because D is
purely infinite simple. Furthermore, cel(C([0, 1], D)) ≤ 5π/2 <∞ by Theorem
1.2 of [62]. (It turns out that we only need this result for D = O∞, so we could
use Corollary 2.1.13 here instead.) Thus, the conditions on D in Lemma 2.2.1
are satisfied.

As in the proof of Lemma 2.2.1, we may assume that t 7→ ϕt is a constant
path ϕt = ϕ for all t.

Let the functions fm be the ones associated with the exact stability of Em
as in Proposition 2.1.10.

The proof uses an induction argument similar to that of the proof of
Lemma 2.2.1, except that at the n-th stage we work with extensions to O2n of
ϕ|En and ψt|En . To avoid confusion, we let s1, s2, . . . be the standard genera-

tors of O∞, with the first n of them generating En, and we let s
(2n)
1 , . . . , s

(2n)
2n

be the standard generators of O2n, with Ek, for k < 2n, being identified with
the subalgebra generated by the first k of them.

We start the construction at n = 2 so as not to have to worry about E0

and E1.
In the preliminary step, we choose ε2 > 0 and ε′2 > 0 so that ε2 < 1/8,

f4(ε
′
2) < 1/4, and whenever ω : E2 → A is a unital homomorphism, and

a1, a2 ∈ A satisfy ‖aj − ω(sj)‖ < ε2, then the aj satisfy the relations for E2

to within ε′2. Use Lemma 2.2.3 to choose unital homomorphisms ϕ̃(2), ψ̃
(2)
2 :

O4 → D such that ϕ̃(2)|E2 = ϕ|E2 , ψ̃
(2)
2 |E2 = ψ2|E2 , and [ϕ̃(2)] = [ψ̃

(2)
2 ] in

KK0(O4, D). Set

u =

4∑

j=1

ψ̃
(2)
2 (s

(4)
j )ϕ̃(2)(s

(4)
j )∗.
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From (2) implies (3) in Theorem 2.1.3, we obtain a unitary v
(2)
2 ∈ D such that

‖u− v(2)
2 λϕ(2) (v

(2)
2 )∗‖ < ε2.

Define v
(2)
t = v

(2)
2 for t ∈ [2,∞), and define γ

(2)
t : O∞ → D by γ

(2)
t (a) =

(v
(2)
t )∗ψt(a)v

(2)
t . As in the proof of Lemma 2.2.1, a calculation shows that

‖ϕ̃(2)(s
(4)
j )− (v

(2)
2 )∗ψ̃(2)

2 (s
(4)
j )v

(2)
2 ‖ < ε2

for 1 ≤ j ≤ 4. It follows that

‖ϕ(sj)− γ(2)
2 (sj)‖ < ε2

for 1 ≤ j ≤ 2.

In the induction step, we now require that t ∈ [2,∞), that ε2, ε
′
2, γ

(2)
t , and

v
(2)
t be as already given, that γ

(n)
t : O∞ → D, and that:

(1) γ
(n)
t (a) = (v

(n)
t )∗γ(n−1)

t (a)v
(n)
t for a ∈ O∞ and t ∈ [2,∞).

(2) If n ≥ 3, then v
(n)
t = 1 for t ≤ n.

(3) If n ≥ 3, then ‖ϕ(sj) − γ(n)
t (sj)‖ < 2−n+1 for t ∈ [n− 1, n] and 1 ≤ j ≤

n− 1, and if n ≥ 2 then ‖ϕ(sj)− γ(n)
t (sj)‖ < εn for t = n and 1 ≤ j ≤ n.

(4) fn(ε
′
n) < 2−n.

(5) Whenever ω : En → A is a unital homomorphism, and a1, . . . , an ∈ A
satisfy ‖aj − ω(sj)‖ < εn, then the aj satisfy the relations for En to
within ε′n.

(6) εn < 2−(n+1).

For the proof of the inductive step, we first choose ε′n+1 and εn+1 to satisfy
(4), (5), and (6). Then construct, as in the proof of Lemma 2.2.1, a continuous

path of homomorphisms σα : En → D such that σ0 = ϕ|En , σ1 = γ
(n)
n+1|En , and

‖σα(sj)− γ(n)
n+α(sj)‖ < εn + 2−n

for 1 ≤ j ≤ n.
We now claim that there is a unitary path α 7→ wα in D such that w0 =

1, wασα(sj) = σ0(sj) for α ∈ [0, 1] and 1 ≤ j ≤ n, and w1γ
(n)
n+1(sn+1) =

ϕ(sn+1). To prove this, start by defining qα =
∑n
j=1 σα(sj)σα(sj)

∗. Then set

w′α =
∑n

j=1 σ0(sj)σα(sj)
∗, which is a partial isometry from qα to q0 such that

w′ασα(sj) = σ0(sj) for 1 ≤ j ≤ n. Next, define

p1 = γ
(n)
n+1(sn+1)γ

(n)
n+1(sn+1)

∗ and p0 = ϕ(sn+1)ϕ(sn+1)
∗.
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Since γ
(n)
n+1|En = σ1 and ϕ|En = σ0, we see that p1 and p0 are proper subpro-

jections of 1 − q1 and 1 − q0 respectively, both with the same class (namely
[1] = 0) in K0(D). Standard methods therefore yield a unitary path α 7→ cα in

D such that c0 = 1, cαqαc
∗
α = q0, and c1p1c

∗
1 = p0. Then ϕ(sn+1)γ

(n)
n+1(sn+1)

∗c∗1
is a unitary in p0Dp0, so there is a unitary d ∈ (1− q0− p0)D(1− q0− p0) such
that

ϕ(sn+1)γ
(n)
n+1(sn+1)

∗c∗1 + d ∈ U0((1− q0)D(1− q0)),
and a unitary path α 7→ w′′α in (1− q0)D(1− q0) such that

w′′0 = 1 and w′′1 = ϕ(sn+1)γ
(n)
n+1(sn+1)

∗c∗1 + d.

Set wα = w′α + w′′αcα; this is the path that proves the claim.
Use Lemma 2.2.3 to choose a unital homomorphism ϕ̃(n+1) : O2n+2 → D

such that ϕ̃(n+1)|En+1 = ϕ|En+1 . Define unital homomorphisms σ̃α : O2n+2 →
D by

σ̃α(s
(2n+2)
j ) = w∗αϕ̃

(n+1)(s
(2n+2)
j )

for 1 ≤ j ≤ 2n+ 2. Then

σ̃0 = ϕ̃(n+1), σ̃α|En = σα, and σ̃1|En+1 = γ
(n)
n+1|En+1 .

Define z and choose y as in the proof of Lemma 2.2.1, using O2n+2 in place

of Om, σ̃ in place of σ, ϕ̃(n+1) in place of ϕ, and λ = λ
ϕ̃(n+1) . Define v

(n+1)
t and

γ
(n+1)
t as there. The same computations as there show that

‖ϕ(sj)− γ(n+1)
t (sj)‖

= ‖ϕ̃(n+1)(s
(2n+2)
j )− (v

(n+1)
t )∗σ̃t−n(s

(2n+2)
j )v

(n+1)
t ‖ < 2−n+1

for 1 ≤ j ≤ n and t ∈ [n, n+ 1], and

‖ϕ(sj)− γ(n+1)
n+1 (sj)‖ = ‖ϕ̃(n+1)(s

(2n+2)
j )− (v

(n+1)
t )∗σ̃1(s

(2n+2)
j )v

(n+1)
t ‖ < εn+1

for 1 ≤ j ≤ n+ 1. This completes the induction step.

Define vt = limn→∞ v
(2)
t v

(3)
t · · · v(n)

t . Calculations analogous to those in the
proof of Lemma 2.2.1 show that t 7→ vt is a continuous unitary path in D, and
that for n ≥ 2 we have

‖ϕ(sj)− v∗tψt(sj)vt‖ < 2−n+1

for t ∈ [n, n+ 1] and 1 ≤ j ≤ n. This implies that

lim
t→∞

(
ϕ(a)− v∗tψt(a)vt

)
= 0

for all a ∈ O∞.
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2.2.4 Lemma. There exists a continuous family t 7→ ϕt of unital endomor-
phisms of O∞, for t ∈ [0,∞), which is asymptotically central in the sense that

lim
t→∞

(
ϕt(b)a− aϕt(b)

)
= 0

for all a, b ∈ O∞.
Proof: Let An be the tensor product of n copies of O∞, and define µn : An →
An+1 by µn(a) = a⊗ 1. Set A = lim

−→
An, which is just

⊗∞
1 O∞. Theorem 2.1.5

implies that An ∼= O∞, so Theorem 3.5 of [35] implies that A ∼= O∞. (Actually,
that A ∼= O∞ is shown in the course of the proof of Theorem 2.1.5. See [29].)
It therefore suffices to construct a continuous asymptotically central inclusion
of O∞ in A rather than in O∞.

Let νn : An → A be the inclusion. Proposition 2.1.11 provides a homotopy
α 7→ ψα of unital homomorphisms ψα : O∞ → O∞⊗O∞ such that ψ0(a) = a⊗1
and ψ1(a) = 1⊗ a. For n ≥ 1 and t ∈ [n, n+ 1], we write t = n+ α and define

ϕt(a) = νn+2(1⊗ 1⊗ · · · ⊗ 1⊗ ψα(a)),

where the factor 1 appears n times in the tensor product. The two
definitions of ϕn(a) agree, so t 7→ ϕt is continuous. We clearly have
limt→∞ (ϕt(b)a− aϕt(b)) = 0 for b ∈ O∞ and a ∈ ⋃∞n=1 νn(An), and a stan-
dard argument then shows this is true for all a ∈ A.

The notation introduced in the following definition is the same as in [34],
[35], and [44].

2.2.5 Definition. Let A be any unital C∗-algebra, and let D be a purely
infinite simple C∗-algebra. Let ϕ, ψ : A → D be two homomorphisms, and
assume that ϕ(1) 6= 0 and [ψ(1)] = 0 in K0(D). We define a homomorphism
ϕ⊕̃ψ : A → D, well defined up to unitary equivalence, by the following con-
struction. Choose a projection q ∈ D such that 0 < q < ϕ(1) and [q] = 0 in
K0(D). Since D is purely infinite and simple, there are partial isometries v and
w such that

vv∗ = ϕ(1)− q, v∗v = ϕ(1), ww∗ = q, and w∗w = ψ(1).

Now define (ϕ⊕̃ψ)(a) = vϕ(a)v∗ + wψ(a)w∗ for a ∈ A.

The proof of the following lemma could be simplified considerably by using
semiprojectivity of O∞ ([5]) and Proposition 1.1.7. Since [5] remains (to our
knowledge) unpublished, we retain the original proof.

2.2.6 Lemma. (Compare with Proposition 2.3 of [35].) Let D be a unital
purely infinite simple C∗-algebra, and let q ∈ D be a projection with [q] = 0 in
K0(D). Let ϕ : O∞ → D and ψ : O∞ → qDq be unital homomorphisms. Then
ϕ is asymptotically unitarily equivalent to ϕ⊕̃ψ.
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Proof: Let t 7→ γt be a continuously parametrized asymptotically central in-
clusion of O∞ in O∞, as in Lemma 2.2.4. Let e ∈ O∞ be a nonzero projection
with [e] = 0 in K0(O∞), and set et = γt(e). Choose a continuous unitary path
t 7→ ut such that utetu

∗
t = e0.

Let the functions fm : [0, δ(m)] → [0,∞) be as in Proposition 2.1.10.
Choose numbers ε2 > ε3 > · · · 0 and ε′2 > ε′3 > · · · 0 such that:

(1) ε′m < δ(m) and fm(ε′m) < 1/m.

(2) Whenever ω : Em → A is a unital homomorphism, and a1, . . . , am ∈ A
satisfy ‖aj − ω(sj)‖ < εm, then the aj satisfy the relations for Em to
within ε′m.

(3) εm < 1/m.

Next, use the asymptotic centrality of t 7→ et to choose t2 < t3 < · · · , with
tm →∞ as m→∞, such that

∥∥∥sj −
[
etsjet + (1− et)sj(1− et)

]∥∥∥ < εm

for 1 ≤ j ≤ m and t ≥ tm. Define

aj(t) = ut

[
etsjet + (1− et)sj(1− et)

]
u∗t ∈ e0O∞e0 ⊕ (1− e0)O∞(1− e0).

Conditions (1) and (2), and Proposition 2.1.10, then yield continuous paths

t 7→ σ
(m)
t of homomorphisms from Em to e0O∞e0⊕ (1−e0)O∞(1−e0), defined

for t ≥ tm, such that ‖σ(m)
t (sj)−aj(t)‖ < 1/m for 1 ≤ j ≤ m, and σ

(m+1)
t |Em =

σ
(m)
t for t ≥ tm+1.

Define

α
(m)
t : Em → e0O∞e0 and β

(m)
t : Em → (1− e0)O∞(1− e0)

by

α
(m)
t (a) = e0σ

(m)
t (a)e0 and β

(m)
t (a) = (1− e0)σ(m)

t (a)(1− e0).

Note that α
(m)
tm is homotopic to α

(m+1)
tm+1

|Em ; since α
(m+1)
tm+1

|Em is injective, it

follows that α
(m)
tm is injective. Since e0O∞e0 is purely infinite simple, it is easy

to extend α
(m)
tm to a homomorphism αtm : O∞ → e0O∞e0. Proposition 2.1.11

provides homotopies t 7→ αt of homomorphisms from O∞ to e0O∞e0, defined

for t ∈ [tm, tm+1], such that αt|Em = α
(m)
t and such that αtm and αtm+1 are

as already given. Putting these homotopies together, and defining αt = αt2
for t ∈ [0, t2], we obtain a continuous path t 7→ αt of unital homomorphisms

from O∞ to e0O∞e0, defined for t ∈ [0,∞), such that αt|Em = α
(m)
t whenever

t ≥ tm. Similarly, there is a continuous path t 7→ βt of unital homomorphisms
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from O∞ to (1− e0)O∞(1− e0), defined for t ∈ [0,∞), such that βt|Em = β
(m)
t

whenever t ≥ tm. Define σt : O∞ → O∞ by σt(a) = αt(a) + βt(a).

For t ≥ tm and 1 ≤ j ≤ m, we have u∗tσt(sj)ut = u∗tσ
(m)
t (sj)ut, and

‖u∗tσ(m)
t (sj)ut−sj‖ ≤ ‖σ(m)

t (sj)−aj(t)‖+‖u∗taj(t)ut−sj‖ < 1/m+εm < 2/m.

Therefore limt→∞ ‖u∗tσ(m)
t (sj)ut − sj‖ = 0 for all j. Thus t 7→ σt is asymptoti-

cally unitarily equivalent to idO∞ . So ϕ is asymptotically unitarily equivalent
to t 7→ ϕ ◦ σt.

Let f < ϕ(e0) be a nonzero projection with [f ] = 0 in K0(D). Let w1, w2 ∈
D be partial isometries satisfying

w∗1w1 = 1, w1w
∗
1 = 1− f, and w1(1− ϕ(e0)) = (1− ϕ(e0))w1 = 1− ϕ(e0)

and
w∗2w2 = q and w2w

∗
2 = f.

The homomorphism ϕ⊕̃ψ is only defined up to unitary equivalence, and we can
take it to be

(ϕ⊕̃ψ)(x) = w1ϕ(x)w∗1 + w2ψ(x)w∗2 .

We make the same choices when defining (ϕ ◦σt)⊕̃ψ. Writing ϕ ◦σt = ϕ ◦αt+
ϕ ◦ βt, with

ϕ ◦ αt : O∞ → ϕ(e0)Dϕ(e0) and ϕ ◦ βt : O∞ → ϕ(1− e0)Dϕ(1− e0),

this choice gives
(ϕ ◦ σt)⊕̃ψ = [(ϕ ◦ αt)⊕̃ψ] + ϕ ◦ βt.

By Lemma 2.2.2, t 7→ (ϕ◦αt)⊕̃ψ is asymptotically unitarily equivalent to ϕ◦αt.
Therefore, with ∼ denoting asymptotic unitary equivalence, we have

ϕ⊕̃ψ ∼ (ϕ ◦ αt)⊕̃ψ + ϕ ◦ βt ∼ ϕ ◦ αt + ϕ ◦ βt ∼ ϕ.

This is the desired result.

2.2.7 Proposition. (Compare with Theorem 3.3 of [35].) Let D be a uni-
tal purely infinite simple C∗-algebra, and let ϕ, ψ : O∞ → D be two unital
homomorphisms. Then ϕ is asymptotically unitarily equivalent to ψ.

Proof: Let e = 1 − s1s
∗
1 − s2s

∗
2 ∈ O∞, and let f = ϕ(e) ∈ D. Define ϕ :

O∞ → fDf by ϕ(sj) = ϕ(sj+2)f. Let w ∈ M2(D) be a partial isometry with
w∗w = 1⊕ f and ww∗ = q⊕ 0 for some q ∈ D. We regard w(ϕ⊕ϕ)(−)w∗ and
w(ψ ⊕ ϕ)(−)w∗ as homomorphisms from O∞ to qDq. Furthermore, [q] = 0 in
K0(D), so

ϕ⊕̃w(ψ ⊕ ϕ)(−)w∗ and ψ⊕̃w(ϕ ⊕ ϕ)(−)w∗

are defined; they are easily seen to be unitarily equivalent. Using Lemma 2.2.6
for the other two steps, we therefore obtain asymptotic unitary equivalences

ϕ ∼ ϕ⊕̃w(ψ ⊕ ϕ)(−)w∗ ∼ ψ⊕̃w(ϕ⊕ ϕ)(−)w∗ ∼ ψ.
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2.2.8 Corollary. Let A be any unital C∗-algebra such that O∞ ⊗ A ∼= A.
Then there exists an isomorphism β : O∞ ⊗ A → A such that the homomor-
phism a 7→ β(1⊗ a) is asymptotically unitarily equivalent to idA.

Proof: We first prove this for A = O∞. Theorem 2.1.5 implies that O∞⊗O∞ ∼=
O∞; let β0 : O∞⊗O∞ → O∞ be an isomorphism. Then a 7→ β0(1⊗a) and idO∞

are two unital homomorphisms from O∞ to O∞, so they are asymptotically
unitarily equivalent by Proposition 2.2.7. Let t 7→ ut be a unitary path such
that limt→∞(β0(1⊗ a)− utau∗t ) = 0 for all a ∈ O∞.

Now let A be as in the hypotheses. We may as well prove the result for
O∞ ⊗A instead of A. Take β = β0 ⊗ idA; then a 7→ β(1⊗ a) is asymptotically
unitarily equivalent to idO∞⊗A via the unitary path t 7→ ut ⊗ 1.

2.3 When homotopy implies asymptotic unitary equivalence

In this subsection, we will prove that if A is a separable nuclear unital simple
C∗-algebra and D0 is unital, then two homotopic asymptotic morphisms from
A to K⊗O∞⊗D0 are asymptotically unitarily equivalent. We will furthermore
prove that an asymptotic morphism from A to K⊗O∞⊗D0 is asymptotically
unitarily equivalent to a homomorphism. The method of proof of the first
statement will generalize the methods of [44]. We will obtain the second via a
trick.

The following two definitions will be convenient. The first is used, both
here and in Section 3, to simplify terminology, and the second is the analog of
Definition 2.1 of [44].

2.3.1 Definition. Let A, D, and Q be C∗-algebras, with A and Q separable
and withQ also unital and nuclear. Let ϕ : A→ D be an asymptotic morphism.
A standard factorization of ϕ through Q ⊗ A is an asymptotic morphism ψ :
Q⊗A→ D such that ϕt(a) = ψt(1⊗ a) for all t and all a ∈ A. An asymptotic
standard factorization of ϕ through Q ⊗ A is an asymptotic morphism ψ :
Q⊗A→ D such that ϕ is asymptotically unitarily equivalent to the asymptotic
morphism (t, a) 7→ ψt(1⊗ a).
2.3.2 Definition. Let A, D, and ϕ be as in the previous definition. An
(asymptotically) trivializing factorization of ϕ is a (asymptotic) standard fac-
torization with Q = O2. In this case, we say that ϕ is (asymptotically) trivially
factorizable.

2.3.3 Lemma. (Compare [44], Lemma 2.2.) Let A be separable, nuclear, unital,
and simple, let D0 be a unital C∗-algebra, and let D = O∞ ⊗D0. Then any
two full asymptotically trivially factorizable asymptotic morphisms from A to
K ⊗D are asymptotically unitarily equivalent.

Proof: It suffices to prove this for full asymptotic morphisms ϕ, ψ : A→ K⊗D
with trivializing factorizations ϕ′, ψ′ : O2⊗A→ K⊗D. Note that ϕ′ and ψ′ are
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again full, and it suffices to prove that ϕ′ is asymptotically unitarily equivalent
to ψ′. By Theorem 2.1.4, we have O2 ⊗ A ∼= O2, and Proposition 1.1.7 then
implies that ϕ′ and ψ′ are asymptotically equal to continuous families ϕ′′ and
ψ′′ of homomorphisms.

We now have two continuous families of full projections t 7→ ϕ′′t (1) and
t 7→ ψ′′t (1) in K ⊗ D, parametrized by [0,∞). Standard methods show that
each family is unitarily equivalent to a constant projection. Moreover, the pro-
jections ϕ′′0 (1) and ψ′′0 (1) have trivial K0 classes, so are homotopic by Lemma
2.1.8 (2). Therefore they are unitarily equivalent. Combining the unitaries in-
volved and conjugating by the result, we can assume ϕ′′t (1) and ψ′′t (1) are both
equal to the constant family t 7→ p for a suitable full projection p. Now replace
K ⊗D by p(K ⊗D)p, and apply Lemma 2.2.1; its hypotheses are satisfied by
Corollary 2.1.12.

2.3.4 Corollary. (Compare [44], Lemma 2.3.) Under the hypotheses of
Lemma 2.3.3, the direct sum of two full asymptotically trivially factorizable
asymptotic morphisms ϕ, ψ : A → K ⊗ D is again full and asymptotically
trivially factorizable.

Proof: Since asymptotic unitary equivalence respects direct sums, the previous
lemma implies we may assume ϕ = ψ. We may further assume that ϕ actually
has a trivializing factorization ϕ′ : O2 ⊗ A → K ⊗ D. Then ϕ ⊕ ψ has the
standard factorization idM2⊗ϕ′ through (M2⊗O2)⊗A, and this is a trivializing
factorization because M2 ⊗O2

∼= O2.

Fullness follows from Lemma 1.2.6 (2).

We also need asymptotically standard factorizations through O∞⊗A. The
special properties required in the following lemma will be used in the proof of
Theorem 2.3.7.

2.3.5 Lemma. Let A be a separable unital nuclear C∗-algebra, let D0 be
unital, and let D = O∞⊗D0. Let ϕ : A→ K⊗D be an asymptotic morphism.
Then ϕ has an asymptotic standard factorization through O∞ ⊗A. In fact, ϕ
is asymptotically unitarily equivalent to an asymptotic morphism of the form
ψt(a) = δ ◦ (idO∞ ⊗ ϕ̃t)(1 ⊗ a), in which δ : O∞ ⊗ K ⊗D → K ⊗ D is an
isomorphism, ϕ̃ is completely positive contractive and asymptotically equal to
ϕ, and idO∞ ⊗ ϕ̃t is defined to be the tensor product of completely positive
maps and is again completely positive contractive.

Proof: Lemma 1.1.5 provides a completely positive contractive asymptotic mor-
phism ϕ̃ which is asymptotically equal to ϕ. Then idO∞⊗ϕ̃t is the minimal ten-
sor product of two completely positive contractive linear maps, and is therefore
bounded and completely positive by Proposition IV.4.23 (i) of [58]. Looking
at the proof of that proposition and of Theorem IV.3.6 of [58], we see that
such a tensor product is in fact contractive. Thus, ‖idO∞ ⊗ ϕ̃t‖ ≤ 1 for all t.
One checks that t 7→ (idO∞ ⊗ ϕ̃t)(b) is continuous for b in the algebraic tensor
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product of O∞ and A. It follows that continuity holds for all b ∈ O∞ ⊗ A.
Similarly, one checks that t 7→ idO∞ ⊗ ϕ̃t is asymptotically multiplicative, so is
an asymptotic morphism.

Use Corollary 2.2.8 to find an isomorphism δ0 : O∞ ⊗D → D such that
d 7→ δ0(1 ⊗ d) is asymptotically unitarily equivalent to idD. This induces an

isomorphism δ : O∞ ⊗ K ⊗D → K ⊗ D, and a unitary path t 7→ u
(0)
t ∈

M(K⊗D) such that ‖u(0)
t δ(1⊗d)(u(0)

t )∗−d‖ → 0 for all d ∈ K⊗D. By Lemma
1.3.9, there is a unitary path t 7→ ut ∈ (K⊗D)+ such that ‖utδ(1⊗d)u∗t−d‖ → 0
for all d ∈ K ⊗D.

We prove that the ψ that results from these choices is in fact asymptotically
unitarily equivalent to ϕ̃; this will prove the lemma. Choose finite subsets
F1 ⊂ F2 ⊂ · · · whose union is dense in A. For each n, note that the set
Sn = {ϕ̃t(a) : a ∈ Fn, t ∈ [0, n]} is compact in D, so that there is rn with
‖utδ(1 ⊗ d)u∗t − d‖ < 2−n for all d ∈ Sn and t ≥ rn. For α ∈ [0, 1] define
f(n+α) = (1−α)rn+αrn+1. Then define unitaries vt ∈ (K⊗D)+ by vt = uf(t).
For t ∈ [n, n+ 1] and a ∈ Fn, this gives (using f(t) ≥ rn)

‖vtψt(a)v∗t − ϕ̃t(a)‖ = ‖uf(t)δ(1⊗ ϕ̃t(a))u∗f(t) − ϕ̃t(a)‖ < 2−n.

Thus ψ is in fact asymptotically unitarily equivalent to ϕ̃.

2.3.6 Lemma. (Compare [44], Proposition 3.3.) Assume the hypotheses of
Lemma 2.3.3. Let ϕ, ψ : A → K ⊗ D be full asymptotic morphisms with ψ
asymptotically trivially factorizable. Then ϕ ⊕ ψ is asymptotically unitarily
equivalent to ϕ.

Proof: By Lemma 2.3.5, we may assume that ϕ has a standard factorization
through O∞⊗A, say ϕ′ : O∞⊗A→ K ⊗D. Using Lemma 1.3.8 on ϕ′ and on
an asymptotically trivializing factorization for ψ, we may assume without loss
of generality that there are projections p, q ∈ K ⊗ D such that ϕ′ is a unital
asymptotic morphism from A to p(K⊗D)p and ψ is an asymptotically trivially
factorizable unital asymptotic morphism from A to q(K ⊗D)q.

Choose a nonzero projection e ∈ O∞ with trivial K0 class. Let t 7→ ft
be a tail projection for ϕ′(e ⊗ 1). Choose a continuous unitary family t 7→ ut
in p(K ⊗ D)p such that utftu

∗
t = f0 for all t. Define bounded asymptotic

morphisms

σ : (1− e)O∞(1− e)⊗A→ (p− f0)(K ⊗D)(p− f0)

and
τ : eO∞e⊗A→ f0(K ⊗D)f0

by
σt(x) = ut(p− ft)ϕ′t(x)(p − ft)u∗t and τt(x) = utftϕ

′
t(x)ftu

∗
t .

These are in fact asymptotic morphisms, because limt→∞ ‖ft−ϕ′t(e⊗ 1)‖ = 0.
Then define asymptotic morphisms

σ̃ : A→ (p− f0)(K ⊗D)(p− f0) and τ̃ : A→ f0(K ⊗D)f0
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by

σ̃t(a) = σt((1− e)⊗ a)) and τ̃t(a) = τt(e⊗ a).
It follows that

lim
t→∞

‖utϕ′t(1⊗ a)u∗t − σ̃t(a)− τ̃t(a)‖ = 0

for all a ∈ A, so ϕ is asymptotically unitarily equivalent to σ̃⊕ τ̃ . Since [e] = 0
in K0(O∞), there is a unital homomorphism ν : O2 → eO∞e, and the formula
τ̃t(a) = (τt ◦ (ν⊗ idA))(1⊗a) shows that τ̃ has a trivializing factorization. Fur-
thermore, τ̃ is full because ϕ′ is. So τ̃ ⊕ ψ is full and asymptotically trivially
factorizable by Corollary 2.3.4, and therefore asymptotically unitarily equiva-
lent to τ̃ by Lemma 2.3.3. The asymptotic unitary equivalence of ϕ and σ̃ ⊕ τ̃
now implies that ϕ⊕ ψ is asymptotically unitarily equivalent to ϕ.

We now come to the main technical theorem of this section.

2.3.7 Theorem. Let A be separable, nuclear, unital, and simple. Let D0 be a
unital C∗-algebra, and let D = O∞⊗D0. Then two full asymptotic morphisms
from A to K⊗D are asymptotically unitarily equivalent if and only if they are
homotopic.

This result is a continuous analog of Theorem 3.4 of [44], which gives a
similar result for approximate unitary equivalence. In the proof of that theo-
rem, to get approximate unitary equivalence to within ε on a finite set F, it
was necessary to approximately absorb a large direct sum of asymptotically
trivially factorizable homomorphisms—a direct sum which had to be larger for
smaller ε and larger F. In the proof of the theorem stated here, we must con-
tinuously interpolate between approximate absorption of ever larger numbers
of asymptotic morphisms. The resulting argument is rather messy. We try
to make it easier to follow by isolating two pieces as lemmas. For the first of
these, recall from Definition 1.1.4 (2) that bounded asymptotic morphisms are
assumed in particular to be linear.

2.3.8 Lemma. Let A and D be C∗-algebras, with A separable. Let α 7→ ϕ(α)

be a bounded homotopy of asymptotic morphisms from A to D. Then there
exists a continuous function f : [0,∞)→ (0,∞) such that for every a ∈ A, we
have

lim
t→∞

(
sup

|α1−α2|≤1/f(t)

‖ϕ(α1)
t (a)− ϕ(α2)

t (a)‖
)

= 0.

Proof: Choose finite sets F0 ⊂ F1 ⊂ · · · ⊂ A whose union is dense in A.

For each n and each fixed a ∈ A, the map (t, α) 7→ ϕ
(α)
t (a) is uniformly

continuous on [0, n]× [0, 1]. So there is δn > 0 such that

sup{‖ϕ(α1)
t (a)− ϕ(α2)

t (a)‖ : t ∈ [0, n], |α1 − α2| ≤ δn, a ∈ Fn} < 2−n.
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We may clearly assume δ1 ≥ δ2 ≥ · · · . Let t 7→ δ(t) be a continuous function
such that 0 < δ(t) ≤ δn for t ∈ [n− 1, n].

We claim that if a ∈ ⋃∞n=0 Fn, then

lim
t→∞

(
sup

|α1−α2|≤δ(t)
‖ϕ(α1)

t (a)− ϕ(α2)
t (a)‖

)
= 0.

To see this, let a ∈ Fm. For n ≥ m+ 1, t ∈ [n− 1, n], and |α1 − α2| ≤ δ(t), we

have in particular |α1 − α2| ≤ δn, so that ‖ϕ(α1)
t (a)− ϕ(α2)

t (a)‖ ≤ 2−n.
The statement of the lemma, using f(t) = 1/δ(t), follows from the claim

by a standard argument, since ϕ is bounded and
⋃∞
n=0 Fn is dense in A.

2.3.9 Lemma. Let A and Q be C∗-algebras, with Q unital and nuclear. Let
N ≥ 2, let e0, e1, . . . , eN ∈ Q be mutually orthogonal projections which sum to
1, and let w ∈ Q be a unitary such that we0w

∗ ≤ e1, wejw
∗ ≤ ej + ej+1 for

1 ≤ j ≤ N − 1, and weNw
∗ ≤ eN + e0. Let a0, . . . , aN , b0, . . . , bN ∈ A. Then in

Q⊗A we have

∥∥∥∥∥∥
(w ⊗ 1)




N∑

j=0

ej ⊗ aj


 (w ⊗ 1)∗ −

N∑

j=0

ej ⊗ bj

∥∥∥∥∥∥
≤ max{‖aN − b0‖, ‖a0 − b1‖+ ‖a1 − b1‖, ‖a1 − b2‖+ ‖a2 − b2‖,

. . . , ‖aN−1 − bN‖+ ‖aN − bN‖}.

Proof: Let

x = (w ⊗ 1)




N∑

j=0

ej ⊗ aj


 (w ⊗ 1)∗ =

N∑

j=0

wejw
∗ ⊗ aj and y =

N∑

j=0

ej ⊗ bj .

Observe that if we take the indices mod N +1, then ek is orthogonal to wejw
∗

whenever k 6= j, j + 1, and also if j = k = 0. Therefore we can calculate

x− y =

(
N∑

i=0

ei ⊗ 1

)
(x− y)

(
N∑

k=0

ek ⊗ 1

)

=
N∑

j=0

[
(ej ⊗ 1)(wejw

∗ ⊗ aj + wej−1w
∗ ⊗ aj−1)(ej ⊗ 1)− ej ⊗ bj

]

+

N∑

j=0

[
ej(wejw

∗)ej+1 + ej+1(wejw
∗)ej

]
⊗ bj .

We now claim that the second term in the last expression is zero. The
projections wekw

∗ are orthogonal and add up to 1, and ej+1 is orthogonal to
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all of them except for k = j and k = j+1. Therefore ej+1 ≤ wejw∗+wej+1w
∗.

Also, ejwej+1w
∗ = 0, so we obtain

ej(wejw
∗)ej+1 = ej(wejw

∗ + wej+1w
∗)ej+1 = ejej+1 = 0.

Similarly, ej+1(wejw
∗)ej = 0. So the claim is proved.

It remains to estimate the first term. Since the summands are orthogo-
nal, the norm of this term is bounded by the maximum of the norms of the
summands. Using again ej ≤ wej−1w

∗ + wejw
∗, we obtain

‖(ej ⊗ 1)(wejw
∗ ⊗ aj + wej−1w

∗ ⊗ aj−1)(ej ⊗ 1)− ej ⊗ bj‖
≤ ‖aj−1 − aj‖+ ‖(ej ⊗ 1)(wejw

∗ ⊗ aj + wej−1w
∗ ⊗ aj)(ej ⊗ 1)− ej ⊗ bj‖

= ‖aj−1 − aj‖+ ‖ej ⊗ (aj − bj)‖ ≤ ‖aj−1 − aj‖+ ‖aj − bj‖.

If j = 0, then j − 1 = N. We then have also e0we0w
∗ = 0, so e0 ≤ weNw

∗,
whence

‖(e0 ⊗ 1)(we0w
∗ ⊗ a0 + weNw

∗ ⊗ aN )(e0 ⊗ 1)− e0 ⊗ b0‖
= ‖e0 ⊗ (aN − b0)‖ ≤ ‖aN − b0‖.

This proves the lemma.

Proof of Theorem 2.3.7: That asymptotic unitary equivalence implies homo-
topy is Lemma 1.3.3 (1). We therefore prove the reverse implication.

Using Lemma 2.3.5, we may without loss of generality assume our homo-

topy has the form ϕ̃
(α)
t (a) = δ(1O∞⊗ϕ(α)

t (a)), where δ : O∞⊗K ⊗D → K⊗D
is a homomorphism and ϕ is a completely positive contractive asymptotic mor-
phism from A to C([0, 1],K ⊗ D). It then suffices to prove the theorem for
the homotopy of asymptotic morphisms from A to O∞ ⊗ K ⊗D given by

ϕ
(α)
t (a) = 1⊗ ϕ(α)

t (a). (We get an asymptotic unitary equivalence of ϕ̃(0) and
ϕ̃(1) by applying δ.)

The next step is to do some constructions in O∞ and O2. Choose a pro-
jection e ∈ O∞ with e 6= 1 and [e] = [1] in K0(O∞). Choose a unital homomor-
phism γ : O2 → (1−e)O∞(1−e). Define isometries s̃j ∈ O∞ by s̃j = γ(sj). Let
λ : O2 → O2 be the standard shift λ(c) = s1cs

∗
1+s2cs

∗
2. Since any two unital en-

domorphisms of O2 are homotopic (by Remark 2.1.2 (1) and the connectedness
of the unitary group of O2), there is a homotopy α 7→ ωα of endomorphisms of
O2 with ω0 = idO2 and ω1 = λ.

We will now suppose that we are given continuous functions

αn : [n− 1,∞)→ [0, 1]

for n ≥ 1 such that

αn+1(n) = αn(n) (1)

for all n, and a continuous function F : [0,∞)→ (0,∞). (These will be chosen
below.) Then we define ψt : O2 ⊗A→ O∞ ⊗K ⊗D by
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ψt(c⊗ a) =

n∑

k=1

s̃k−1
2 s̃1γ(c)(s̃

k−1
2 s̃1)

∗ ⊗ ϕ(αk◦F (t))
t (a)

+ s̃n2γ(ωF (t)−n(c))(s̃
n
2 )∗ ⊗ ϕ(αn+1◦F (t))

t (a) for F (t) ∈ [n, n+ 1]. (2)

(This is an orthogonal sum since the projections

s̃1s̃
∗
1, s̃2s̃1(s̃2s̃1)

∗, . . . , s̃n−1
2 s̃1(s̃

n−1
2 s̃1)

∗, s̃n2 (s̃n2 )∗

are mutually orthogonal.) As in the proof of Lemma 2.3.5, each ψt is well
defined, linear, and contractive, and t 7→ ψt(b) is continuous for b in the alge-
braic tensor product of O2 and A (using (1) when F (t) ∈ N), and so for all
b ∈ O2 ⊗A.

We now claim that ψ, as defined by (2), is actually an asymptotic mor-
phism from O2 ⊗ A to O∞ ⊗ K ⊗D. It only remains to prove asymptotic
multiplicativity. By linearity and finiteness of supt ‖ψt‖, it suffices to do this
on elementary tensors. Since γ, ωα, and the maps c 7→ s̃k−1

2 s̃1c(s̃
k−1
2 s̃1)

∗ and
c 7→ s̃n2 c(s̃

n
2 )∗ are homomorphisms (and so contractive), a calculation gives, for

F (t) ∈ [n, n+ 1],

lim
t→∞

‖ψt((c1 ⊗ a1)(c2 ⊗ a2))− ψt(c1 ⊗ a1)ψt(c2 ⊗ a2)‖

≤ lim
t→∞

‖c1c2‖
(

sup
α∈[0,1]

∥∥∥ϕ(α)
t (a1a2)− ϕ(α)

t (a1)ϕ
(α)
t (a2)

∥∥∥
)

= 0.

Define ι : A→ O2⊗A by ι(a) = 1⊗a. Then ψ◦ι is an asymptotic morphism
from A to O∞ ⊗ K ⊗D. By definition, it has a trivializing factorization, so
Lemma 2.3.6 implies that ϕ(α) ⊕ (ψ ◦ ι) is asymptotically unitarily equivalent
to ϕ(α). The theorem will therefore be proved if we can choose the functions F
and αn in such a way that ϕ(0) ⊕ (ψ ◦ ι) is asymptotically unitarily equivalent
to ϕ(1) ⊕ (ψ ◦ ι).

Before actually choosing F and the αn, we construct, in terms of F, the
unitary path we will use for the desired asymptotic unitary equivalence. Let
τ be an automorphism of M2(O∞) which sends 1 ⊕ 0 to e ⊕ 0 and 0 ⊕ c to
c⊕ 0 for all c ∈ (1− e)O∞(1− e). Let τ̃ be the obvious induced automorphism
of M2(O∞ ⊗ K ⊗D). It suffices to prove asymptotic unitary equivalence of
τ̃ ◦ (ϕ(0) ⊕ (ψ ◦ ι)) and τ̃ ◦ (ϕ(1) ⊕ (ψ ◦ ι)). Furthermore, these two asymptotic
morphisms take values in O∞ ⊗K ⊗D, embedded as the upper left corner, so
we only work there. This results in the identification

τ̃ ◦ (ϕ(α) ⊕ (ψ ◦ ι)) = e⊗ ϕ(α)(−) + (ψ ◦ ι).

We further note that, by Lemma 1.3.9, it suffices to construct a continuous
family of unitaries in the multiplier algebra M(O∞ ⊗K ⊗D).
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With these identifications and reductions, our unitary path will take the
form ut = v(F (t)) ⊗ 1 for a suitable unitary path r 7→ v(r) in O∞, defined for
r ∈ [0,∞). The construction of v requires further notation.

Define projections in O∞ by pk = s̃k−1
2 s̃1(s̃

k−1
2 s̃1)

∗ and qn = s̃n2 (s̃n2 )∗.
Then

p1 + p2 + · · ·+ pn + qn + e = 1 and pn+1 + qn+1 = qn.

Choose projections fk < pk with [fk] = 1 in K0(O∞). Note that fn+1 < qn.
Then there are partial isometries vk with

v∗0v0 = e, v0v
∗
0 = f1, v∗kvk = fk, and vkv

∗
k = fk+1,

and wn with

w∗nwn = fn+1 and wnw
∗
n = e.

Using the connectedness of the unitary group of (fn+1+fn+2)O∞(fn+1+fn+2),
choose a continuous path α 7→ yn(α) of partial isometries from fn+1 + fn+2 to
fn+2 + e such that yn(0) = wn + fn+2 and yn(1) = vn+1 + wn+1. Then define

v(n+α) = (p1−f1)+· · ·+(pn+1−fn+1)+(qn+1−fn+2)+v0+v1+· · ·+vn+yn(α)

for n ∈ N and α ∈ [0, 1]. There are two definitions at each integer, but they
agree, so v is a continuous path of unitaries. Furthermore, one immediately
verifies that for fixed r ∈ [n, n + 1], the unitary w = v(r) and sequence of
projections

e0 = e, e1 = p1, e2 = p2, . . . , en = pn, en+1 = qn (3)

satisfy the hypotheses in Lemma 2.3.9.
Now take f to be as in Lemma 2.3.8, and set F (t) = f(t) + 2. Define

α0 : [0,∞) → [0, 1] by α0(r) = 0 for all r, and choose the functions αn :
[n− 1,∞)→ [0, 1] to be continuous, to satisfy (1), and such that αn+1(r) = 1
for r ∈ [n, n+ 1] and

|αk+1(r) − αk(r)| ≤ 1/(n− 1) for r ∈ [n, n+ 1] and 0 ≤ k ≤ n.

Take ψ and u to be defined using these choices of F and the αn. Let
t ∈ [0,∞). Set r = F (t) and choose n ∈ N such that r ∈ [n, n + 1]. Let
w = v(r) and let e0, . . . , en+1 be as in (3). For a ∈ A, we then have

∥∥∥ut
[
e⊗ ϕ(0)(a) + ψt(1⊗ a)

]
u∗t −

[
e⊗ ϕ(1)(a) + ψt(1⊗ a)

]∥∥∥

=

∥∥∥∥∥(w ⊗ 1)

[
n+1∑

k=0

ek ⊗ ϕ(αk(r))
t (a)

]
(w ⊗ 1)∗

−
[
e0 ⊗ ϕ(1)

t (a) +

n+1∑

k=1

ek ⊗ ϕ(αk(r))
t (a)

]∥∥∥∥∥ .
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Apply Lemma 2.3.9 with ak = bk = ϕ
(αk(r))
t (a) for 1 ≤ k ≤ n + 1, and with

a0 = ϕ
(α0(r))
t (a) and b0 = ϕ

(1)
t (a) = ϕ

(αn+1(r))
t (a) = an+1. It follows that the

expression above is at most

max(0, ‖a0 − a1‖, . . . , ‖an − an+1‖)
= max{‖ϕ(αk(r))

t (a)− ϕ(αk+1(r))
t (a)‖ : 0 ≤ k ≤ n}

≤ sup{‖ϕ(α1)
t − ϕ(α2)

t ‖ : |α1 − α2| ≤ 1/(n− 1)}.

Since n−1 ≥ r−2 = f(t), we have 1/(n−1) ≤ 1/f(t), and this last expression
converges to 0 as t→∞. Thus we have shown that

e⊗ ϕ(0)(−) + (ψ ◦ ι) and e⊗ ϕ(1)(−) + (ψ ◦ ι)

are asymptotically unitarily equivalent. This completes the proof.

2.3.10 Corollary. Let A be separable, nuclear, unital, and simple, let D0

be unital, and let D = O∞ ⊗D0. Then any full asymptotic morphism ϕ : A→
K ⊗D is asymptotically unitarily equivalent to a homomorphism.

Proof: It is obvious that an asymptotic morphism is homotopic to all of
its reparametrizations. The result therefore follows from Theorem 2.3.7 and
Proposition 1.3.7.

2.3.11 Remark. The hypothesis of fullness can be removed in Theorem 2.3.7
(and in Corollary 2.3.10) in the following way. Let α 7→ ϕ(α) be a homotopy of
asymptotic morphisms from A to K⊗D, with D = O∞⊗D0. Applying Lemma
1.3.8, we can assume α 7→ ϕ(α) is a homotopy of unital (hence full) asymptotic
morphisms from A to D′ = p(K ⊗D)p for a suitable projection p. The algebra
D′ is stable under tensoring with O∞ by Corollary 2.1.12. So we can apply
the result already proved to asymptotic morphisms from A to K ⊗D′. Then
embed K ⊗D′ in K ⊗D.

3 Unsuspended E-theory for simple nuclear C∗-algebras

In [16], Dǎdǎrlat and Loring proved that for certain C∗-algebras A, one can
obtain the groups KK0(A,B) via “unsuspended E-theory”: KK0(A,B) ∼=
[[K ⊗A,K ⊗B]] (notation from Definition 1.1.2) for all separable B. The ter-
minology comes from the omission of the suspension that is normally required.
The conditions on A are quite restrictive, and in particular fail for trivial rea-
sons as soon as A has even one nonzero projection.

In this section, we want to take A to be separable, nuclear, unital, and
simple. To make enough room, we assume B is a tensor product O∞⊗D with
D unital. We then discard the class of the zero asymptotic morphism (the
source of the difficulty with projections). We are able to prove, with the help
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of Kirchberg’s results as stated in Section 2.1 and also using Theorem 2.3.7,
that we do in fact get KK0(A,B) as a set of suitable homotopy classes of
asymptotic morphisms from K⊗A to K⊗B. (Corollary 2.3.10 implies that we
can even use asymptotic unitary equivalence classes of homomorphisms. See
Section 4.1.)

In the first subsection, we construct for fixed A a middle exact homotopy
invariant functor from separable C∗-algebras to abelian groups in a manner
analogous to the definition of K0(D), but using asymptotic morphisms from A
to K ⊗O∞ ⊗D+ in place of projections in K ⊗D+. The fact that the target
algebra is infinite means that, as for K0 of a purely infinite simple C∗-algebra,
we do not need to take formal differences of classes. We do, however, need to
introduce the unitization of the target algebra for essentially the same reason
that it is necessary in the definition of K0. In the second subsection, we then
show that this functor is naturally isomorphic to KK0(A,−).

3.1 The groups [[A,K ⊗O∞ ⊗D]]+ and ẼA(D)

Let A be separable, nuclear, unital, and simple. In this subsection we construct
a functor [[A,K ⊗ O∞ ⊗ −]]+ on unital C∗-algebras and the corresponding

functor ẼA(−) on general C∗-algebras (obtained via the unitization). We then

prove that ẼA is a cohomology theory on separable C∗-algebras in the usual
sense. This information is needed in order to apply the uniqueness theorems
for KK-theory in the next subsection.

3.1.1 Definition. Let A be separable and unital, and assume each ideal of
A is generated by its projections. Let B have an approximate identity of pro-
jections. Then [[A,B]]+ denotes the set of homotopy classes of full asymptotic
morphisms from A to B.

3.1.2 Proposition. Let A be simple, separable, unital, and nuclear. For any
unital C∗-algebra D, give [[A,K ⊗ O∞ ⊗ D]]+ the addition operation that it
receives from being a subset of [[A,K ⊗O∞ ⊗D]]. Then [[A,K ⊗O∞ ⊗−]]+
is a functor from separable unital C∗-algebras and homotopy classes of unital
asymptotic morphisms to abelian groups. The zero element is the class of any
full asymptotic morphism from A to K⊗O∞⊗D with a standard factorization
(see Definition 2.3.1) through O2 ⊗A.

Proof: Lemma 1.2.6 (2) shows that [[A,K ⊗ O∞ ⊗ D]]+ is closed under the
addition in [[A,K ⊗ O∞ ⊗ D]]. Therefore [[A,K ⊗ O∞ ⊗ D]]+ is an abelian
semigroup, provided it is not empty.

According to Theorem 2.3.7, homotopy is the same relation as asymptotic
unitary equivalence in this set. So we can use them interchangeably.

For functoriality, let E be another unital C∗-algebra, and let ϕ : D → E
be a unital asymptotic morphism. Let ϕ = idK⊗O∞⊗ϕ (see Proposition 1.1.8)
be the induced asymptotic morphism from K ⊗ O∞ ⊗D to K ⊗ O∞ ⊗ E. It
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is full because if e ∈ K is any nonzero projection, then e ⊗ 1 ⊗ 1 is a full
projection in K ⊗ O∞ ⊗ D which is sent to the full projection e ⊗ 1 ⊗ 1 in
K⊗O∞⊗E. Lemmas 1.2.6 (2) and 2.1.8 (1) now imply that η 7→ [[ϕ]] ·η sends
full asymptotic morphisms to full asymptotic morphisms.

We now construct an identity element. Theorem 2.1.4 provides an isomor-
phism ν : O2 ⊗ A → O2. Let τ : O2 → O∞ be an injective homomorphism
(sending 1 to a nonzero projection in O∞ with trivial K0-class), and define a
full homomorphism ζ : A → O∞ by ζ(a) = (τ ◦ ν)(1 ⊗ a). Composing it with
the full homomorphism x 7→ e⊗ x⊗ 1 from O∞ to K ⊗O∞ ⊗D, where e ∈ K
is any nonzero projection, we obtain a full asymptotic morphism from A to
K ⊗O∞ ⊗D which has a standard factorization through O2 ⊗A.

Lemma 2.3.3 implies that any other full asymptotic morphism with a triv-
ializing factorization is asymptotically unitarily equivalent to ζ. This class acts
as the identity by Lemma 2.3.6.

Finally, we must construct additive inverses. Let η ∈ [[A,K⊗O∞⊗D]]+.
By Lemma 2.3.5, we can take η = [[ϕ]], where ϕ has a standard factorization
through O∞ ⊗ A, say ϕt(a) = ψt(1 ⊗ a) for some asymptotic morphism ψ :
O∞⊗A→ K⊗O∞⊗D. Choose a projection f ∈ O∞ with [f ] = −1 inK0(O∞).
Define ψt = ψt|fO∞f⊗A, and define ϕ : A→ K⊗O∞⊗D by ϕt(a) = ϕt(f⊗a).
Choose a unital homomorphism

ν : O2 →
(

1 0
0 f

)
M2(O∞)

(
1 0
0 f

)
.

Then (idM2 ⊗ψ)◦ν provides a standard factorization of ϕ⊕ϕ through O2⊗A.
Note that ϕ⊕ϕ is full because ϕ is, so it is asymptotically unitarily equivalent
to ζ by Lemma 2.3.3. This shows that [[ϕ]] is the inverse of η.

3.1.3 Definition. If D is any C∗-algebra, then we denote by D# the C∗-
algebra K ⊗ O∞ ⊗ D+. We use the analogous notation for homomorphisms.
If D is separable, we define ẼA(D) to be the kernel of the map [[A,D#]]+ →
[[A,K ⊗O∞]]+ induced by the unitization map D+ → C.

3.1.4 Proposition. Let A be separable, nuclear, unital, and simple. Then
ẼA is a functor from separable C∗-algebras and homotopy classes of asymptotic
morphisms to abelian groups.

Proof: This follows from Proposition 3.1.2 and the fact that unitizations and
tensor products of asymptotic morphisms are well defined (Lemma 1.1.6 and
Proposition 1.1.8).

3.1.5 Remark. It is obvious that if D1 and D2 are unital, then there is a
natural isomorphism

[[A,K ⊗O∞ ⊗ (D1 ⊕D2)]]+ ∼= [[A,K ⊗O∞ ⊗D1]]+ ⊕ [[A,K ⊗O∞ ⊗D2)]]+.

It follows that for unital D, there is a natural isomorphism

ẼA(D) ∼= [[A,K ⊗O∞ ⊗D]]+.
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We will sometimes denote by ϕ∗ the map [[A,D1]]+ → [[A,D2]]+ or the

map ẼA(D1)→ ẼA(D2) induced by a (full) homomorphism ϕ : D1 → D2.

3.1.6 Lemma. Let A be separable, nuclear, unital, and simple. Let

0 −→ J
µ−→ D

π−→ D/J −→ 0

be a short exact sequence of separable C∗-algebras. Then the sequence

ẼA(J)
µ∗−→ ẼA(D)

π∗−→ ẼA(D/J)

is exact in the middle.

Proof: It is immediate that π∗ ◦ µ∗ = 0.
For the other half, we introduce the maps χD : D# → K ⊗ O∞ and

ιD : K ⊗ O∞ → D# associated with the unitization maps D+ → C and
C → D+. Define χD/J , ιD/J , etc. similarly. Now let η ∈ ker(π∗), and choose

a full asymptotic morphism ϕ : A → D# whose class is η. By definition, we
have [[π# ◦ ϕ]] = 0 in [[A, (D/J)#]]+. Choose a full homomorphism ζ : A →
K ⊗ O∞ with a standard factorization through O2 ⊗ A, as in the proof of
Proposition 3.1.2. Theorem 2.3.7 then implies that π# ◦ ϕ is asymptotically
unitarily equivalent to ιD/J ◦ ζ, so there is a unitary path t→ ut in ((D/J)#)+

such that ut(π
# ◦ ϕt)(a)u∗t → (ιD/J ◦ ζ)(a) for all a ∈ A.

Without changing homotopy classes, we may replace ϕ by ϕ⊕ 0 and ζ by
ζ ⊕ 0. This also replaces π# ◦ϕ and ιD/J ◦ ζ by their direct sums with the zero
asymptotic morphism. We then replace ut by ut ⊕ u∗t . We may thus assume
without loss of generality that u is in the identity component of the unitary
group of Cb([0,∞), ((D/J)#)+). Therefore there is v ∈ U0(Cb([0,∞), (D#)+))
whose image is u. Then π#(vt) = ut for all t, whence

lim
t→0

π#(vtϕt(a)v
∗
t − (ιD ◦ ζ)(a)) = 0

for all a ∈ A.
Let σ : (D/J)# → D# be a continuous (nonlinear) cross section for π#

satisfying σ(0) = 0. (See [1].) Define ψt : A→ D# by

ψt(a) = vtϕt(a)v
∗
t − (σ ◦ π#)

(
vtϕt(a)v

∗
t − (ιD ◦ ζ)(a)

)
.

This yields an asymptotic morphism asymptotically equal to t 7→ vtϕt(−)v∗t ,
and hence asymptotically unitarily equivalent to ϕ. Furthermore,
π#(ψt(a) − (ιD ◦ ζ)(a)) = 0 for all t and a. It follows that ψt(a) ∈ J#

and that χJ (ψt(a)) = ζ(a). So ψ is in fact a full asymptotic morphism from
A to J# such that [[χJ ◦ ψ]] = 0, from which it follows that ψ defines a class

[[ψ]] ∈ ẼA(J). Clearly µ∗([[ψ]]) = η. This shows that ker(π∗) ⊂ Im(µ∗).

3.1.7 Corollary. Let A be separable, nuclear, unital, and simple. Let

0 −→ J
µ−→ D

π−→ D/J −→ 0
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be a split short exact sequence of separable C∗-algebras. Then there is a natural
split exact sequence

0−→ẼA(J)
µ∗−→ ẼA(D)

π∗−→ ẼA(D/J) −→ 0.

Proof: This is Proposition 4.1 (b) of [15], noting that the proof of Part (b) there

doesn’t use stability. Indeed, since ẼA is middle exact (the previous lemma)
and homotopy invariant, Lemma 5 in Section 7 of [26] provides a long exact
sequence

· · · (Sµ)∗−→ ẼA(SD)
(Sπ)∗−→ ẼA(S(D/J))−→ẼA(J)

µ∗−→ ẼA(D)
π∗−→ ẼA(D/J).

The desired conclusion can now be immediately obtained using the splitting
map.

3.1.8 Remark. It should be pointed out that we need much less than the
full strength of Theorem 2.3.7 here. Only knowing that homotopy implies
asymptotic unitary equivalence for full asymptotic morphisms from A to K ⊗
O∞ ⊗C([0, 1]), it is possible to prove middle exactness in the first stage of the
Puppe sequence, namely

ẼA(Cπ) −→ ẼA(D) −→ ẼA(D/J).

This sequence can be extended to the left as in the proof of Proposition 2.6 of
[56]. Proposition 3.2 of [16] can then be used to show that ẼA is split exact.

We now prove stability of ẼA under formation of tensor products with
both K and O∞.
3.1.9 Lemma. Let A be separable, nuclear, unital, and simple, and let D be a
separable C∗-algebra. Then the map d 7→ 1⊗ d, from D to O∞ ⊗D, induces
an isomorphism ẼA(D)→ ẼA(O∞ ⊗D).

Proof: By naturality, Proposition 3.1.7, and the Five Lemma, it suffices to
prove this for unital D. By Remark 3.1.5, we have to prove that d 7→ 1 ⊗ d
induces an isomorphism [[A,K ⊗ O∞ ⊗ D]]+ → [[A,K ⊗ O∞ ⊗ O∞ ⊗D]]+.
This follows from Theorem 2.1.5 and Proposition 2.1.11, since these results
imply that the map x 7→ x ⊗ 1, from O∞ to O∞ ⊗ O∞, is homotopic to an
isomorphism.

The other stability result requires the following lemma. We really want
an increasing continuously parametrized approximate identity of projections,
but of course such a thing does not exist. The quasiincreasing version in the
lemma is good enough.

3.1.10 Lemma. Let D be a unital purely infinite simple C∗-algebra, and let
e0 ∈ K ⊗ D be a nonzero projection. Then there exists a continuous family
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t 7→ et of projections in K ⊗D such that, for every b ∈ K ⊗D, we have

lim
t→∞

(etb− b) = lim
t→∞

(bet − b) = lim
t→∞

(etbet − b) = 0,

such that e0 is the given projection, and such that es ≥ et for s ≥ t+ 1.

Proof: Choose a nonzero projection p ∈ K⊗D such that [p] = 0 in K0(D). We
start by constructing a family t 7→ ft in K ⊗ pDp. Note that

[diag(1pDp, 0, 0)] = [diag(1pDp, 1pDp, 0)] = 0

in K0(M3(pDp)). Therefore there is a homotopy t 7→ qt of projections in
M3(pDp) such that

q0 = diag(1, 0, 0) and q1 = diag(1, 1, 0).

Now define
fn+s = 1Mn+1(pDp) ⊕ qs ⊕ 0 ∈ K ⊗ pDp

for n = 0, 1, . . . and s ∈ [0, 1]. The family ft is clearly continuous. It satisfies
f0 = p⊕p.We have ft ≥ 1Mn+1(pDp) for t ≥ n, so t 7→ ft really is an approximate
identity. Finally, ft ≤ 1Mn+3(pDp) for t ≤ n, so fs ≥ ft for s ≥ t + 4. We can
replace 4 by 1 in this last statement by a reparametrization.

To get the general case, choose a projection r ∈ pDp with [r] = −[e0] in
K0(D). Then ft ≥ p ≥ r for all t, so t 7→ ft − r is a continuously parametrized
approximate identity of projections for (1− r)(K ⊗ pDp)(1− r). (Here 1 is the
identity of (K ⊗ pDp)+.) There is an isomorphism

ϕ : K ⊗D → (1− r)(K ⊗ pDp)(1− r),

and since [f0− r] = [e0] in K0(D), we can require that ϕ(e0) = f0− r. Now set
et = ϕ−1(ft − r). Then clearly etb− b, bet − b→ 0 as t→∞. It follows that

‖etbet − b‖ ≤ ‖etb− b‖ ‖et‖+ ‖bet − b‖ → 0

as well.

3.1.11 Lemma. Let A be separable, nuclear, unital, and simple, let D be
separable, and let e ∈ K be a rank one projection. Then the map d 7→ e⊗ d,
from D to K ⊗D, induces an isomorphism ẼA(D)→ ẼA(K ⊗D).

Proof: By Lemma 3.1.9, we may use O∞⊗D in place of D, and as in its proof
we may assume D is unital.

Let s ∈ O∞ be a proper isometry, and define γ : O∞ ⊗ D → O∞ ⊗ D
by γ(a) = (s ⊗ 1)a(s ⊗ 1)∗. We claim that γ∗ : ẼA(O∞ ⊗ D) → ẼA(O∞ ⊗
D) is an isomorphism. It follows from Remark 3.1.5 and Definition 3.1.3
that this map can be thought of as composition with idK⊗O∞ ⊗ γ from
[[A,K ⊗O∞ ⊗O∞ ⊗D]]+ to itself, even though γ is not unital. (The discrep-
ancy is an orthogonal sum with an asymptotic morphism which up to homotopy
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has a trivializing factorization. Note that the composition with γ is still full.)
Now K ⊗ ss∗O∞ss∗ and K ⊗ (1 − ss∗)O∞(1 − ss∗) are both isomorphic to
K ⊗O∞, so we may as well consider the map from [[A,K ⊗O∞ ⊗O∞ ⊗D]]+
to [[A,M2(K ⊗O∞⊗O∞ ⊗D)]]+ induced by inclusion in the upper right cor-
ner. Let τ : M2(K)→ K be an isomorphism. Then a 7→ τ(a⊕ 0) is homotopic
to idK and b 7→ τ(b) ⊕ 0 is homotopic to idM2(K). So our map has an inverse
given by composition with τ ⊗ idO∞⊗O∞⊗D.

We next require a construction involving O∞ and K ⊗ O∞. Define ϕ :
O∞ → K ⊗ O∞ by ϕ(x) = e⊗ x. Let t 7→ et be a continuously parametrized
approximate identity for K⊗O∞ which satisfies the properties of the previous
lemma and has e0 = e ⊗ 1. Let t 7→ ut be a continuous family of unitaries

in (K ⊗ O∞)+ such that u0 = 1 and utetu
∗
t = e0 for all t. Define ψ

(0)
t :

K⊗O∞ → K⊗O∞ by ψ
(0)
t (a) = utetaetu

∗
t . One immediately checks that ψ(0)

is an asymptotic morphism whose values are in (e ⊗ 1)(K ⊗ O∞)(e ⊗ 1), so
that there is an asymptotic morphism t 7→ ψt from K ⊗O∞ to O∞ such that

ϕ ◦ ψt = ψ
(0)
t for all t.

The composite asymptotic morphisms ϕ ◦ ψ and ψ ◦ ϕ can be computed
without reparametrization, because ϕ is a homomorphism. Now ϕ ◦ ψ = ψ(0),
which is asymptotically unitarily equivalent to (t, a) 7→ etaet, which in turn
is asymptotically equal to idK⊗O∞ . So ϕ ◦ ψ is homotopic to idK⊗O∞ . Also,
ψ ◦ϕ is clearly homotopic to a map of the form x 7→ sxs∗ for a proper isometry
s ∈ O∞.

We now observe that idK⊗O∞ ⊗ (ϕ ⊗ idD)+ and idK⊗O∞ ⊗ (ψ ⊗ idD)+

define full asymptotic morphisms from (O∞ ⊗ D)# to (K ⊗ O∞ ⊗ D)# and
back. The composite from (K⊗O∞⊗D)# to itself is homotopic to the identity,

and therefore induces the identity map on ẼA(K ⊗O∞ ⊗D). Composition on
the right with the composite from (O∞⊗D)# to itself is a map of the form γ∗
as considered at the beginning of the proof, and is thus an isomorphism from
ẼA(O∞ ⊗D) to itself. It follows that ϕ∗ is an isomorphism.

3.2 The isomorphism with KK-theory

In this subsection, we prove that if A is separable, nuclear, unital, and simple,
and D is separable, then the natural map from ẼA(D) to KK0(A,D) is an
isomorphism. Combined with Remark 3.1.5, this gives for unital D a form of
“unsuspended E-theory” as in [16], in which we need only discard the zero
asymptotic morphism.

We will use the universal property of KK-theory with respect to split
exact, stable, and homotopy invariant functors on separable C∗-algebras [24].
(We use this instead of the related property of E-theory because it is more
convenient for the proof of Lemma 3.2.3 below.)

3.2.1 Notation. In this subsection, we denote by S the category of sep-
arable C∗-algebras and homomorphisms and by KK the category of sepa-
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rable C∗-algebras with morphisms KK0(A,B) for C∗-algebras A and B. If
η ∈ KK0(A,B) and λ ∈ KK0(B,C), we denote their product by λ × η ∈
KK0(A,C). We further denote by k the functor from S to KK which sends a
homomorphism to the class it defines in KK-theory.

3.2.2 Lemma. Let A be separable, nuclear, unital, and simple. Then there is a
functor ÊA from KK to the category of abelian groups such that ÊA ◦ k = ẼA.

This simply means that one can make sense of ẼA(η) : ẼA(D) → ẼA(F )
not only when η is an asymptotic morphism from D to F , but also when η is
merely an element of KK0(D,F ).

Proof of Lemma 3.2.2: The result is immediate from Theorem 4.5 of [24], since

ẼA is a stable (Lemma 3.1.11), split exact (Corollary 3.1.7), and homotopy
invariant (Proposition 3.1.4) functor from separable C∗-algebras to abelian
groups.

We want to show that ẼA(D) is naturally isomorphic to KK0(A,D). Our
argument is based on an alternate proof of the main theorem of [16] suggested
by the referee of that paper; we are grateful to Marius Dǎdǎrlat for telling us
about it. The argument requires the construction of certain natural transfor-
mations. (The argument used in Section 4 of [16] presumably also works.)

Before starting the construction, we prove a lemma on the functors F̂ of
Higson [24] (as used in the previous lemma).

3.2.3 Lemma. Let F and G be stable, split exact, and homotopy invariant
functors from S to the category of abelian groups, and let F̂ and Ĝ be the
unique extensions to functors from KK of Theorem 4.5 of [24]. (In particular,

F or G could be ẼA and F̂ or Ĝ could be ÊA, as in Lemma 3.2.2.) If α is a
natural transformation from F to G, then α is also a natural transformation
from F̂ to Ĝ.

Proof: Let µ ∈ KK0(A,B). By Lemma 3.6 of [24], we can choose a represen-
tative cycle (in the sense of Definition 2.1 of [24]) of the form Φ = (ϕ+, ϕ−, 1),
where ϕ+, ϕ− : A→M(K⊗B) are homomorphisms such that ϕ+(a)−ϕ−(a) ∈
K ⊗B for a ∈ A. The homomorphism F̂ (µ) is then the composite

F (A)
F (ϕ̂+)−F (ϕ̂−)−→ F (AΦ)

F (π)−→ F (K ⊗B)
F (ε)−1

−→ F (B),

for a certain C∗-algebra AΦ, certain homomorphisms π, ϕ̂+, and ϕ̂−, and with
ε(a) = 1 ⊗ a. (See Definition 3.4 and the proofs of Theorems 3.7 and 4.5
in [24].) From this expression, it is obvious that naturality with respect to
homomorphisms implies naturality with respect to classes in KK-theory.

3.2.4 Definition. Let A be separable, nuclear, unital, and simple. We regard
KK0(A,−) and ÊA as functors from KK to abelian groups. (On morphisms,
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the first of these sends η ∈ KK0(D1, D2) to Kasparov product with η.) We
now define natural transformations

α : KK0(A,−)→ ÊA and β : ÊA → KK0(A,−).

To define αD, let e ∈ K be a rank one projection, let ιA : A→ K⊗O∞⊗A
be the map ιA(a) = e ⊗ 1 ⊗ a, and let [[ιA]] ∈ ẼA(A) denote its class in

[[A,K ⊗ O∞ ⊗ A]]+ ∼= ẼA(A). (Recall that A is unital, so that Remark 3.1.5

applies.) Now let η ∈ KK0(A,D). Then ÊA(η) is a homomorphism from

ẼA(A) to ẼA(D). Define

αD(η) = ÊA(η)([[ιA]]) ∈ ẼA(D).

To define βD, let χD : D# → K⊗O∞ be the standard map (as in the proof

of Lemma 3.1.6). Starting with η ∈ ẼA(D) ⊂ [[A,D#]], choose a full asymp-
totic morphism ϕ : A → D# with [[χD]] · [[ϕ]] = 0 which represents η. Now
recall (Corollary 9 (b) of [11]; Section 5 of [54]) that for A and B separable and
A (K-)nuclear, there is a canonical isomorphism E(A,B) ∼= KK0(A,B). Fur-
ther recall that there is a canonical isomorphism KK0(SA, SB) ∼= KK0(A,B)
(Theorem 7 of Section 5 of [26]). Form the second suspension

[[S2ϕ]] ∈ [[S2A,S2D#]] = E(SA, SD#)
∼= KK0(SA, SD#) ∼= KK0(A,O∞ ⊗D+),

and regard [[S2ϕ]] as an element ofKK0(A,O∞⊗D+). Since [[S2χD]]·[[S2ϕ]] =
0, split exactness ofKK0(A,−) implies that [[S2ϕ]] is actually inKK0(A,O∞⊗
D). In this last expression, we can use the KK-equivalence of O∞ and C,
given by the unital homomorphism C→ O∞, to drop O∞. We thus obtain an
element βD(η) ∈ KK0(A,D).

3.2.5 Lemma. The maps αD and βD of the previous definition are in fact
natural transformations.

Proof: It is easy to check that both α and β are natural with respect to ho-
momorphisms, so naturality with respect to classes in KK-theory follows from
Lemma 3.2.3.

3.2.6 Theorem. Let A be separable, nuclear, unital, and simple. Then for
every separableD, the maps αD and βD of Definition 3.2.4 are mutually inverse
isomorphisms.

Proof: It is convenient to prove this first under the assumptions that O∞⊗A ∼=
A and O∞ ⊗ D ∼= D. It then follows that the map a 7→ 1 ⊗ a from A to
O∞ ⊗ A is homotopic to an isomorphism, and similarly for D. (This is true
for O∞ by Theorem 2.1.5 and Proposition 2.1.11. Therefore it is true for
O∞⊗A and O∞⊗D, hence for A and D.) Thus, A and O∞⊗A are naturally
homotopy equivalent, and therefore also naturally equivalent in KK as well.
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Similar considerations apply to D. Thus, ẼA(D) becomes just [[A,K ⊗D]]+.
The natural transformations above are then given by

αD(η) = ÊA(η)([[idA]])

(with idA being the obvious map from A to K ⊗A), and

βD([[ϕ]]) = [[S2ϕ]] ∈ [[S2A,K ⊗ S2D]] ∼= KK0(A,D).

Letting 1A denote the class in KK0(A,A) of the identity map, we then imme-
diately verify that

αA(1A) = [[idA]] and βA([[idA]]) = 1A.

We now show that these two facts imply the theorem for unital D. Let
η ∈ KK0(A,D). Then η = 1A × η, and naturality implies that

βD(αD(1A × η)) = βD(ÊA(η)(αA(1A))) = βA(αA(1A))× η = 1A × η.

So βD ◦ αD = id. For the other direction, let µ ∈ ÊA(D). Using Corollary
2.3.10, represent µ as the class of a full homomorphism ϕ : A → K ⊗ D. Let
η = [[S2ϕ]] be the KK-class determined by [[ϕ]]. Then, identifying K⊗K with
K as necessary, we have

µ = ϕ∗([[idA]]) = ÊA(η)([[idA]]).

The same argument as above now shows that

(αD ◦ βD)

(
ÊA(η)([[idA]])

)
= ÊA(η)([[idA]]).

So αD ◦ βD = id also.
The result for nonunital algebras follows from naturality, split exactness,

and the Five Lemma.
To remove the assumption that O∞ ⊗D ∼= D, use Lemma 3.1.9.
Finally, we remove the assumption that O∞⊗A ∼= A. Let δ0 : O∞⊗O∞ →

O∞ be an isomorphism (from Theorem 2.1.5), and let δ : O∞ ⊗K ⊗O∞ →
K⊗O∞ be the obvious corresponding map. Define iD : ẼA(D)→ ẼO∞⊗A(D)
by

iD([[η]]) = [[δ ⊗ idD+ ]] · [[idO∞ ⊗ η]].
Let jD : KK0(A,D) → KK0(O∞ ⊗ A,D) be the isomorphism induced by
the KK-equivalence of C and O∞. Both i and j are natural transformations.
Using Theorem 2.1.5 and Proposition 2.1.11, we can rewrite jO∞⊗D(µ) as (δ0⊗
idD)∗(1O∞ ⊗µ). This formula and Remark 3.1.5 imply that iD ◦αD = αD ◦ jD
when D is unital and O∞⊗D ∼= D. The previous paragraph and the definition
of ẼA(D) in terms of [[A,D#]]+ now imply that iD ◦ αD = αD ◦ jD for all D.
A related argument shows that also jD ◦ βD = βD ◦ iD for all D.
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It now suffices to prove that iD is an isomorphism for all D. By naturality,
split exactness, and the Five Lemma, it suffices to do so for unital D. In this
case, we have

iD : [[A,K ⊗O∞ ⊗D]]+ → [[O∞ ⊗A,K ⊗O∞ ⊗D]]+

given by iD([[η]]) = [[δ ⊗ idD ]] · [[idO∞ ⊗ η]]. Define a map kD in the opposite
direction by restriction to 1⊗A ⊂ O∞ ⊗A. We prove that kD = i−1

D .

Let δ̃(x) = δ(1 ⊗ x). Proposition 2.1.11 implies that there is a homotopy

δ̃ ' idK⊗O∞ . It is easy to check directly that kD◦iD sends [[η]] to [[(δ̃⊗idD)◦η]],
so kD ◦ iD is the identity. For the reverse composition, let τA be the inclusion
of A = 1 ⊗ A in O∞ ⊗ A, and let ϕ : O∞ ⊗ O∞ → O∞ ⊗ O∞ be the flip
ϕ(x ⊗ y) = y ⊗ x. Then ϕ ' idO∞⊗O∞ by Proposition 2.1.11 and Theorem
2.1.5. Therefore, for [[η]] ∈ [[O∞ ⊗A,K ⊗O∞ ⊗D]]+, we have

(δ ⊗ idD) ◦ (idO∞ ⊗ (η ◦ τA))

' (δ ⊗ idD) ◦ (idO∞ ⊗ η) ◦ (ϕ ⊗ idA) ◦ (idO∞ ⊗ τA) = (δ̃ ⊗ idD) ◦ η ' η.

This shows that iD ◦ kD is the identity.

3.2.7 Remark. We used Corollary 2.3.10 in this proof because we had it
available. It is, however, not necessary for the argument. Using methods
similar to, but a bit more complicated than, the proof of Lemma 3.2.3, one can
show that if F as there is in fact a functor on homotopy classes of asymptotic
morphisms, then F ([[ϕ]]) is equal to F̂ applied to the KK-theory class given
by ϕ.

3.2.8 Theorem. Let A be a separable unital nuclear simple C∗-algebra. Then
for separable unital C∗-algebras D, the set of homotopy classes of full asymp-
totic morphisms from A to K⊗O∞⊗D is naturally isomorphic to KK0(A,D)
via the map sending an asymptotic morphism to the KK-class it determines.

Proof: This follows from Theorem 3.2.6 and Remark 3.1.5.

4 Theorems on KK-theory and classification

In this section, we present our main results. The first subsection contains the
alternate descriptions of KK-theory in terms of homotopy classes and asymp-
totic unitary equivalence classes of homomorphisms, in case the first variable
is separable, nuclear, unital, and simple. We also give here a proof that homo-
topies of automorphisms of separable nuclear unital purely infinite simple C∗-
algebras can in fact be chosen to be isotopies. The second subsection contains
the classification theorem and its corollaries. The third subsection contains the
nonclassification results.
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4.1 Descriptions of KK-theory

Probably the most striking of our descriptions of KK-theory is the following:

4.1.1 Theorem. For a separable unital nuclear simple C∗-algebra A and a
separable unital C∗-algebra D, the obvious maps define natural isomorphisms
of abelian groups between the following three objects:

(1) The set of asymptotic unitary equivalence classes of full homomorphisms
from A toK⊗O∞⊗D, with the operation given by direct sum (Definition
1.1.3).

(2) The set of homotopy classes of full homomorphisms from A to K⊗O∞⊗
D, with the operation given by direct sum as above.

(3) The group KK0(A,D).

Proof: For the purposes of this proof, denote the set in (1) by KU(A,D) and
the set in (2) by KH(A,D). The map from KH(A,D) to KK0(A,D) is the
one from Theorem 3.2.8. By this theorem, we can use [[A,K ⊗O∞ ⊗D]]+ in
place of KK0(A,D).

Lemma 1.3.3 (2) implies that the map fromKU(A,D) toKH(A,D) is well
defined, and it is then clearly surjective. Injectivity is immediate from Theorem
2.3.7. Thus this map is an isomorphism. Theorem 3.2.8 implies that the map
fromKH(A,D) to [[A,K⊗O∞⊗D]]+ is injective, while Corollary 2.3.10 implies
that the map from KU(A,D) to [[A,K ⊗ O∞ ⊗D]]+ is surjective. Therefore
these maps are in fact both isomorphisms. It now follows that KU(A,D) and
KH(A,D) are both abelian groups.

We now want to give a stable version of this theorem, in which the Kas-
parov product will reduce exactly to composition of homomorphisms. We need
the following lemma. The hypotheses allow one continuous path of homomor-
phisms, and require unitaries in U0((K ⊗D)+), for use in the next subsection.

4.1.2 Lemma. Let A be separable, nuclear, unital, and simple, let D0 be
separable and unital, and let D = O∞ ⊗ D0. Let t 7→ ϕt, for t ∈ [0,∞),
be a continuous path of full homomorphisms from K ⊗ A to K ⊗D, and let
ψ : K ⊗ A → K ⊗ D be a full homomorphism. Assume that [ϕ0] = [ψ] in
KK0(A,D). Then there is an asymptotic unitary equivalence from ϕ to ψ
which consists of unitaries in U0((K ⊗D)+).

Proof: Let {eij} be a system of matrix units for K. Identify A with the subalge-

bra e11⊗A of K⊗A. Define ϕ
(0)
t and ψ(0) to be the restrictions of ϕt and ψ to

A. Then [ϕ
(0)
0 ] = [ψ(0)] in KK0(A,D). It follows from Theorem 4.1.1 that ϕ

(0)
0

is homotopic to ψ(0). Therefore ϕ(0) and ψ(0) are homotopic as asymptotic mor-
phisms, and Theorem 2.3.7 provides an asymptotic unitary equivalence t 7→ ut
in U((K ⊗ D)+) from ϕ(0) to ψ(0). Let c ∈ U((K ⊗ D)+) be a unitary with
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cψ(0)(1) = ψ(0)(1)c = ψ(0)(1) and such that c is homotopic to u−1
0 . Then c

commutes with every ψ(0)(a). Replacing ut by cut, we obtain an asymptotic
unitary equivalence, which we again call t 7→ ut, from ϕ(0) to ψ(0) which is in
U0((K ⊗D)+).

Define eij = eij ⊗ 1. Then in particular utϕt(e11)u
∗
t → ψ(e11) as

t → ∞. Therefore there is a continuous path t → z
(1)
t ∈ U0((K ⊗ D)+)

such that z
(1)
t → 1 and z

(1)
t utϕt(e11)u

∗
t (z

(1)
t )∗ = ψ(e11) for all t. We still have

z
(1)
t utϕt(e11 ⊗ a)u∗t (z(1)

t )∗ → ψ(e11 ⊗ a) for a ∈ A.
For convenience, set fijt = z

(1)
t utϕt(eij)u

∗
t (z

(1)
t )∗, for all t and for 1 ≤

i, j ≤ 2. For each fixed t, the fijt are matrix units, and f11t = ψ(e11). Set wt =
ψ(e21)f12t + 1− f22t ∈ U((K ⊗D)+). Then one checks that wtfijtw

∗
t = ψ(eij)

for all t and for 1 ≤ i, j ≤ 2. Choose c ∈ U((K ⊗D)+) with

cψ(e11 + e22) = ψ(e11 + e22)c = ψ(e11 + e22) and cw1 ∈ U0((K ⊗D)+).

Set z
(2)
t = cwt for t ≥ 1 and extend z

(2)
t over [0, 1] to be continuous, unitary, and

satisfy z
(2)
0 = 1. This gives z

(2)
t = 1 for t = 0, z

(2)
t ψ(e11) = ψ(e11)z

(2)
t = ψ(e11)

for all t, and

z
(2)
t

[
z
(1)
t utϕt(eij)u

∗
t (z

(1)
t )∗

]
(z

(2)
t )∗ = ψ(eij)

for t ≥ 1 and 1 ≤ i, j ≤ 2.
We continue inductively, obtaining by the same method a sequence of

continuous paths t 7→ z
(n)
t such that z

(n+1)
t = 1 for t ≤ n− 1,

z
(n+1)
t




n∑

j=1

ψ(ejj)


 =




n∑

j=1

ψ(ejj)


 z

(n+1)
t =

n∑

j=1

ψ(ejj)

for all t, and

z
(n+1)
t

[(
z
(1)
t z

(2)
t · · · z(n)

t

)
utϕt(eij)u

∗
t

(
z
(1)
t z

(2)
t · · · z(n)

t

)∗]
(z

(n+1)
t )∗ = ψ(eij)

for t ≥ n and 1 ≤ i, j ≤ n+ 1.
Now define

zt =
(

lim
n→∞

z
(1)
t z

(2)
t · · · z(n)

t

)
ut.

In a neighborhood of each t, all but finitely many of the z
(k)
t are equal to 1, so

this limit of products yields a continuous path of unitaries in U0((K ⊗D)+).
Moreover, ztϕt(eij)z

∗
t = ψ(eij) whenever t ≥ i, j, so that limt→∞ ztϕt(eij)z

∗
t =

ψ(eij) for all i and j, while

lim
t→∞

ztϕt(e11 ⊗ a)z∗t = lim
t→∞

z
(1)
t utϕt(e11 ⊗ a)u∗t (z(1)

t )∗ = ψ(e11 ⊗ a)

for all a ∈ A. Since the eij and e11 ⊗ a generate K ⊗A, this shows that t 7→ zt
is an asymptotic unitary equivalence.
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4.1.3 Theorem. For a separable unital nuclear simple C∗-algebra A and
a separable unital C∗-algebra D, the obvious maps and the isomorphism
KK0(A,D)→ KK0(K ⊗O∞ ⊗A,K ⊗O∞ ⊗D) define natural isomorphisms
of abelian groups between the following three objects:

(1) The set of asymptotic unitary equivalence classes of full homomorphisms
from K ⊗ O∞ ⊗ A to K ⊗ O∞ ⊗D, with the operation given by direct
sum (as in Theorem 4.1.1).

(2) The set of homotopy classes of full homomorphisms from K ⊗ O∞ ⊗ A
to K ⊗O∞ ⊗D, with the operation given by direct sum as above.

(3) The group KK0(A,D).

Moreover, if B is another a separable unital nuclear simple C∗-algebra, then
the Kasparov product KK0(A,B)×KK0(B,D)→ KK0(A,D) is given in the
groups in (1) and (2) by composition of homomorphisms.

Proof: The last statement will follow immediately from the rest of the theorem,
since if two KK-classes are represented by homomorphisms, then their product
is represented by the composition.

For the rest of the theorem, first note that the map KK0(A,D) →
KK0(K⊗O∞⊗A,K⊗O∞⊗D) is a natural isomorphism because it is induced
by the KK-equivalence C → K ⊗ O∞, given by 1 7→ e⊗ 1 for some rank one
projection e ∈ K, in each variable.

Now observe that the previous lemma implies that the map from the set
in (1) to KK0(A,D) is injective. Moreover, the map from the set in (1) to the
set in (2) is well defined by Lemma 1.3.3 (2), and is then obviously surjective.
It therefore suffices to prove that the map from the set in (2) to KK0(A,D) is
surjective, that is, that every class in KK0(A,D) is represented by a homomor-
phism from K ⊗O∞ ⊗A to K ⊗O∞ ⊗D. It follows from Theorem 4.1.1 that
every such class is represented by a homomorphism from A to K⊗O∞⊗D, and
we obtain a homomorphism from K⊗O∞⊗A to K⊗O∞⊗D by tensoring with
idK⊗O∞ and composing with the tensor product of idD and an isomorphism
K ⊗O∞ ⊗K ⊗O∞ → K ⊗O∞ which is the identity on K-theory.

We finish this section with one other application. Following terminology
from differential topology, we define an isotopy to be a homotopy t 7→ ϕt in
which each ϕt is an isomorphism.

4.1.4 Theorem. Let A be a separable nuclear unital purely infinite simple
C∗-algebra.

(1) If U(A) is connected, then two automorphisms of A with the same
class in KK0(A,A) are isotopic.

(2) Any two automorphisms of K ⊗A with the same class in KK0(A,A)
are isotopic.
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Proof: For (2), take D = A in Lemma 4.1.2, note that O∞ ⊗ A ∼= A (Theo-
rem 2.1.5), and note that an asymptotic unitary equivalence with unitaries in
U0((K ⊗A)+) gives an isotopy, not just a homotopy.

For (1), let ϕ and ψ be automorphisms of A with the same class in
KK0(A,A). Let e ∈ K be a rank one projection. Apply (2) to idK ⊗ ϕ
and idK ⊗ ψ. Thus, there is a unitary path t 7→ ut in (K ⊗ A)+ with
utϕ(e ⊗ a)u∗t → ψ(e ⊗ a) for a ∈ A. In particular, ut(e ⊗ 1)u∗t → (e ⊗ 1).
Replacing ut by vtut for a suitable unitary path t 7→ vt, we may therefore as-
sume that ut(e ⊗ 1)u∗t = e⊗ 1 for all t. Cut down by e ⊗ 1, and observe that
the hypotheses imply that (e⊗ 1)u0(e⊗ 1) is homotopic to 1. Now finish as in
the proof of (2).

4.2 The classification theorem

The following theorem is the stable version of the main classification theorem.
Everything else will be an essentially immediate corollary.

In the proof, it is easy to get the existence of the isomorphism; this is just
the by now well known Elliott approximate intertwining argument. We need a
more complicated version of this argument to make sure that the isomorphism
we construct has the right class in KK-theory: we construct a suitable homo-
topy at the same time that we construct the isomorphism. One might hope
to prove that if A and B are separable C∗-algebras, and if ϕ0 : A → B and
ψ0 : B → A are homomorphisms such that ψ0 ◦ ϕ0 is asymptotically unitarily
equivalent to idA and ϕ0◦ψ0 is asymptotically unitarily equivalent to idB , then
there is an isomorphism ϕ : A→ B which is asymptotically unitarily equivalent
to ϕ0, or at least is homotopic to ϕ0. Unfortunately, we have not been able to
prove this; the arguments in the proof below don’t seem to quite give such a
result.

4.2.1 Theorem. Let A and B be separable nuclear unital purely infinite simple
C∗-algebras, and suppose that there is an invertible element η ∈ KK0(A,B).
Then there is an isomorphism ϕ : K⊗A→ K⊗B such [ϕ] = η in KK0(A,B).

Proof: Theorems 3.2.8 and 2.1.5 provide a full asymptotic morphism α : A →
K ⊗B whose class in KK0(A,B) is η. By Corollary 2.3.10, we may in fact take
α to be a homomorphism. Let µ : K ⊗K → K be an isomorphism, and set
ϕ0 = (µ⊗ idB) ◦ (idK ⊗ α). Then ϕ0 is a nonzero (hence full) homomorphism
from K ⊗ A to K ⊗B whose class in KK0(A,B) is also η. Similarly, there is
a full homomorphism ψ0 : K ⊗B → K ⊗A whose class in KK0(B,A) is η−1.
It follows from Theorems 4.1.3 and 2.1.5 that ψ0 ◦ ϕ0 is homotopic to idK⊗A
and ϕ0 ◦ ψ0 is homotopic to idK⊗B.

We now construct homomorphisms ϕ(n) : K⊗A→ K⊗B, ψ(n) : K⊗B →
K⊗A, homotopies α 7→ ϕ̃

(n)
α (for α ∈ [0, 1]) of homomorphisms from K⊗A to

K⊗B, and finite subsets Fn ⊂ K⊗A and Gn ⊂ K⊗B such that the following
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conditions are satisfied:

(1) ϕ(0) = ϕ0.

(2) Each ϕ(n) is of the form a 7→ vϕ0(a)v
∗ for some suitable v ∈ U0((K ⊗

B)+), and similarly each ψ(n) is of the form b 7→ uϕ0(b)u
∗ for some

suitable u ∈ U0((K ⊗A)+).

(3) F0 ⊂ F1 ⊂ · · · and
⋃∞
n=0 Fn is dense in K ⊗A, and similarly

G0 ⊂ G1 ⊂ · · · and
⋃∞
n=0Gn is dense in K ⊗B.

(4) ϕ(n)(Fn) ⊂ Gn and ψ(n)(Gn) ⊂ Fn+1.

(5) ‖ψ(n) ◦ ϕ(n)(a) − a‖ < 2−n for a ∈ Fn and ‖ϕ(n+1) ◦ ψ(n)(b) − b‖ < 2−n

for b ∈ Gn.

(6) ‖ϕ̃(n+1)
α (a)− ϕ̃(n)

α (a)‖ < 2−n for a ∈ Fn and α ∈ [0, 1].

(7) ϕ̃
(n)
α = ϕ0 for α ≥ 1− 2−n and ϕ̃

(n)
0 = ϕ(n).

This will yield the following approximately commutative diagram:

A A A A

B B B B

- - · · · - - -

- - · · · - - -

idA idA idA idA idA

idB idB idB idB idB

? ? ? ?

ϕ(0)

ϕ(1)

ϕ(n−1)

ϕ(n)

�
�

�
�

�
��7

�
�

�
�

�
�7

�
�

�
�

�
�7

�
�

�
�

�
��7

�
�

�
�

�
�7

ψ(0) ψ(1) ψ(n−2)

ψ(n−1)

∩

∪

∩

∪

∩

∪

∩

∪

F0

G0

F1

G1

Fn−1

Gn−1

Fn

Gn

The diagram will remain approximately commutative if we replace each ϕ(n)

by ϕ̃
(n)
α (with α ∈ [0, 1] fixed) and delete the diagonal arrows.
The proof is by induction on n. We start by choosing finite sets

F
(0)
0 ⊂ F (0)

1 ⊂ · · · ⊂ K ⊗A and G
(0)
0 ⊂ G(0)

1 ⊂ · · · ⊂ K ⊗B

such that
⋃∞
n=0 F

(0)
n = K ⊗ A and

⋃∞
n=0G

(0)
n = K ⊗B. For the initial step of

the induction, we take F0 = F
(0)
0 , ϕ(0) = ϕ̃

(0)
α = ϕ0, and G0 = G

(0)
0 ∪ ϕ(0)(F0).

We then assume we are given Fk, ϕ
(k), Gk, and ϕ

(k)
α for 0 ≤ k ≤ n and ψ(k) for

0 ≤ k ≤ n − 1, and we construct ψ(n), Fn+1, ϕ
(n+1), Gn+1, and α 7→ ϕ̃

(n+1)
α .

That is, we are given the diagram above through the column containing Fn
and Gn, as well as the corresponding homotopies ϕ̃(k), and we construct the
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next rectangle (consisting of two triangles) and the corresponding homotopy
ϕ̃(n+1).

Define σ : K⊗A→ C([0, 1])⊗K⊗A by σ(a)(α) = ψ0(ϕ̃
(n)
α (a)). Note that

σ is homotopic to a 7→ 1⊗ψ0(ϕ0(a)), and so has the same class in KK-theory as
a 7→ 1⊗ a. Lemma 4.1.2 provides a unitary path (α, t) 7→ uα,t ∈ U0((K ⊗A)+)
such that

lim
t→∞

sup
α∈[0,1]

‖uα,tψ0(ϕ̃
(n)
α (a))u∗α,t − a‖ = 0

for all a ∈ K ⊗ A. Next, define an asymptotic morphism τ from K ⊗ B to
C([0, 1]) ⊗ K ⊗ B by τt(b)(α) = ϕ0(uα,tψ0(b)u

∗
α,t). Then τ is homotopic to

b 7→ 1⊗ϕ0(ψ0(b)), and so has the same class in KK-theory as b 7→ 1⊗b. Again
by Lemma 4.1.2, there is a unitary path (α, t) 7→ vα,t ∈ U0((K ⊗ B)+) such
that

lim
t→∞

sup
α∈[0,1]

‖vα,tϕ0(uα,tψ0(b)u
∗
α,t)v

∗
α,t − b‖ = 0

for all b ∈ K ⊗B.
Since G̃ = Gn ∪

⋃
α∈[0,1] ϕ̃

(n)
α (Fn) is a compact subset of K ⊗ B, we can

choose T so large that

‖vα,tϕ0(uα,tψ0(b)u
∗
α,t)v

∗
α,t − b‖ < 2−(n+1)

for all b ∈ G̃ and t ≥ T. Increasing T if necessary, we can also require

‖uα,tψ0(ϕ̃
(n)
α (a))u∗α,t − a‖ < 2−(n+1)

for all a ∈ Fn and t ≥ T. Now define

ψ(n)(b) = u0,Tψ0(b)u
∗
0,T and ϕ(n+1)(a) = v0,Tϕ0(a)v

∗
0,T ,

and

Fn+1 = F
(0)
n+1 ∪ Fn ∪ ψ(n)(Gn) and Gn+1 = G

(0)
n+1 ∪Gn ∪ ϕ(n+1)(Fn+1).

The relevant parts of conditions (2)–(4) are then certainly satisfied. For (5),
we have in fact

‖ψ(n) ◦ ϕ(n)(a)− a‖ = ‖u0,Tψ0(ϕ̃
(n)
0 (a))u∗0,T − a‖ < 2−(n+1)

for a ∈ Fn by the choice of T, and similarly

‖ϕ(n+1) ◦ ψ(n)(b)− b‖ = ‖v0,Tϕ0(u0,Tψ0(b)u
∗
0,T )v∗0,T − b‖ < 2−(n+1)

for b ∈ Gn.
Now choose a continuous function f : [0, 1− 2−(n+1)) → [T,∞) such that

f(α) = T for 0 ≤ α ≤ 1 − 2−n and f(α) → ∞ as α → 1 − 2−(n+1). Define

α 7→ ϕ̃
(n+1)
α by

ϕ̃(n+1)
α (a) =

{
vα,f(α)ϕ0(a)v

∗
α,f(α) 0 ≤ α < 1− 2−(n+1)

ϕ0(a) 1− 2−(n+1) ≤ α ≤ 1.
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We first have to show that the functions α 7→ ϕ̃
(n+1)
α (a) are continuous at

1−2−(n+1) for a ∈ K⊗A. Set α0 = 1−2−(n+1), and consider α with 1−2−n ≤
α < 1− 2−(n+1). By the induction hypothesis, we then have ϕ̃

(n)
α (a) = ϕ0(a).

For a ∈ K ⊗A, set b = ϕ0(a); then

‖ϕ̃(n+1)
α (a)− ϕ̃(n+1)

α0
(a)‖

≤ ‖a− uα,f(α)ψ0(ϕ̃
(n)
α (a))u∗α,f(α)‖

+ ‖vα,f(α)ϕ0(uα,f(α)ψ0(b)u
∗
α,f(α))v

∗
α,f(α) − b‖.

The requirement that f(α)→∞ as α→ 1− 2−(n+1), together with the condi-
tion of uniformity in α in the limits used in the choices of uα,t and vα,t, implies
that both terms on the right converge to 0. So the required continuity holds.

The relevant part of condition (7) is satisfied by definition, so it remains
only to check (6). We may assume α < 1 − 2−(n+1). So let a ∈ Fn. Then

b = ϕ̃
(n)
α (a) ∈ G̃. So

‖ϕ̃(n+1)
α (a)− ϕ̃(n)

α (a)‖
≤ sup

α∈[0,1],t≥T
‖vα,tϕ0(a)v

∗
α,t − ϕ̃(n)

α (a)‖

≤ sup
α∈[0,1],t≥T

‖a− uα,tψ0(ϕ̃
(n)
α (a))u∗α,t‖

+ sup
α∈[0,1],t≥T

‖vα,tϕ0(uα,tψ0(b)u
∗
α,t)v

∗
α,t − b‖

< 2−(n+1) + 2−(n+1) = 2−n.

This proves (6), and finishes the inductive construction. Note that the set⋃∞
n=0 Fn is dense in K⊗A because it contains the dense subset

⋃∞
n=0 F

(0)
n , and

similarly
⋃∞
n=0Gn is dense in K ⊗B.

We now define ϕ : K ⊗ A → K ⊗ B by ϕ(a) = limn→∞ ϕ(n)(a), and
define ψ : K ⊗ B → K ⊗ A and the homotopy ϕ̃ : K ⊗ A → C([0, 1]) ⊗
K ⊗ B analogously. As in Section 2 of [20], these limits all exist and define
homomorphisms; moreover, ψ ◦ ϕ = idK⊗A, ϕ ◦ ψ = idK⊗B , ϕ̃0 = ϕ, and
ϕ̃1 = ϕ0. So ϕ is an isomorphism from K ⊗A to K ⊗B which is homotopic to
ϕ0 and therefore satisfies [ϕ] = η in KK0(A,B).

4.2.2 Corollary. Let A and B be separable nuclear unital purely infinite sim-
ple C∗-algebras, and suppose that there is an invertible element η ∈ KK0(A,B)
such that [1A]×η = [1B ]. Then there is an isomorphism ϕ : A→ B such [ϕ] = η
in KK0(A,B).

Proof: The previous theorem provides an isomorphism α : K ⊗ A → K ⊗
B such that [α] = η in KK0(A,B). Choose a rank one projection e ∈ K.
Then [α(e ⊗ 1A)] = [1A] × η = [e ⊗ 1B] in K0(B). Since K ⊗ B is purely
infinite simple, it follows that there is a unitary u ∈ (K ⊗ B)+ such that
uα(e⊗ 1A)u∗ = e⊗ 1B . Define ϕ(a) = uα(e⊗ a)u∗, regarded as an element of
(e⊗ 1B)(K ⊗B)(e⊗ 1B) = B.
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The remaining corollaries require some hypotheses on the Universal Coef-
ficient Theorem. (See [53].) The following terminology is convenient.

4.2.3 Definition. Let A and D be separable nuclear C∗-algebras. We say
that the pair (A,D) satisfies the Universal Coefficient Theorem if the sequence

0 −→ ExtZ1 (K∗(A),K∗(D)) −→ KK0(A,D) −→ Hom(K∗(A),K∗(D)) −→ 0

of Theorem 1.17 of [53] is defined and exact. (Note that the second map
is always defined, and the first map is the inverse of a map that is always
defined.) We further say that A satisfies the Universal Coefficient Theorem if
(A,D) does for every separable C∗-algebra D.

4.2.4 Theorem. Let A and B be separable nuclear purely infinite simple C∗-
algebras which satisfy the Universal Coefficient Theorem. Assume that A and
B are either both unital or both nonunital. If there is a graded isomorphism
α : K∗(A) → K∗(B) which (in the unital case) satisfies α∗([1A]) = [1B ], then
there is an isomorphism ϕ : A→ B such that ϕ∗ = α.

Proof: The proof of Proposition 7.3 of [53] shows that there is aKK-equivalence
η ∈ KK0(A,B) which induces α. Now use Theorem 4.2.1 or Corollary 4.2.2 as
appropriate.

This theorem gives all the classification results of [48], [49], [34], [22], [35],
[51], [36], [44], and [52]. Of course, we have used the main technical theorem of
[48], as well as substantial material from [35], in the proof. We do not obtain
anything new about the Rokhlin property of [8]; indeed, our results show that
the C∗-algebras of [51] are classifiable as long as they are purely infinite and
simple, regardless of whether the Rokhlin property is satisfied. On the other
hand, the Rokhlin property has been verified in many cases; see [30] and [31].

We finish this section by giving some further corollaries. Let C be the
“classifiable class” given in Definition 5.1 of [22], and letN denote the bootstrap
category of [53], for which the Universal Coefficient Theorem was shown to hold
(Theorem 1.17 of [53]).

4.2.5 Theorem. Let G0 and G1 be countable abelian groups, and let g ∈ G0.
Then:

(1) There is a separable nuclear unital purely infinite simple C∗-algebra
algebra A ∈ N such that

(K0(A), [1A],K1(A)) ∼= (G0, g, G1).

(2) There is a separable nuclear nonunital purely infinite simple C∗-algebra
A ∈ N such that

(K0(A),K1(A)) ∼= (G0, G1).

Proof: The construction of Theorem 5.6 of [22] gives algebras which are easily
seen to be in N .
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4.2.6 Corollary. Every C∗-algebra in C is in N . Every purely infinite simple
C∗-algebra in N , and more generally every separable nuclear purely infinite
simple C∗-algebra satisfying the Universal Coefficient Theorem, is in C.

Proof: The first part follows immediately from the previous theorem, since it
follows from the definition of C that any A ∈ C must be isomorphic to the
C∗-algebra of that theorem with the same K-theory. The second part follows
from Theorem 4.2.4, since Theorem 1.17 of [53] states that every C∗-algebra in
N satisfies the Universal Coefficient Theorem.

4.2.7 Corollary. Let A ∈ C, and let B be a separable nuclear unital simple
C∗-algebra which satisfies the Universal Coefficient Theorem. (In particular,
B could be a unital simple C∗-algebra in N .) Then A⊗B ∈ C.

Proof: The C∗-algebra A ⊗ B is separable, nuclear, unital, and simple, and
Theorem 7.7 of [53] (and the remark after this theorem) shows that it satisfies
the Universal Coefficient Theorem. Furthermore, A is approximately divisible
by Corollary 2.1.6, and it follows from the remark after Theorem 1.4 of [6]
that A⊗B is approximately divisible. Clearly A⊗B is infinite, so it is purely
infinite by Theorem 1.4 (a) of [6]. The result now follows from the previous
corollary.

4.2.8 Corollary. The class C is closed under tensor products.

4.2.9 Corollary. For any m, n ≥ 2, we have Om ⊗On ∈ C. In particular, if
m− 1 and n− 1 are relatively prime, then Om ⊗On ∼= O2.

4.2.10 Corollary. Let A1 and A2 be two higher dimensional noncommu-
tative toruses of the same dimension, and let B be any simple Cuntz-Krieger
algebra. Then A1 ⊗B ∼= A2 ⊗B.

Proof: The Künneth formula [55] shows that A1⊗B and A2⊗B have the same
K-theory.

4.2.11 Theorem. Let A be a separable nuclear unital purely infinite simple
C∗-algebra satisfying the Universal Coefficient Theorem. Let Aop be the oppo-
site algebra, that is, A with the multiplication reversed but all other operations
the same. Then A ∼= Aop.

Proof: The identity map from A to Aop is an antiisomorphism which induces
an isomorphism on K-theory sending [1A] to [1Aop ]. Also, the pair (Aop, B) (for
any separable B) always satisfies the Universal Coefficient Theorem, because
(A,Bop) does.

By way of contrast, we note that Connes has shown [10] that there is a type
III factor not isomorphic to its opposite algebra. It is also known (although
apparently not published) that there are nonsimple separable nuclear (even
type I) C∗-algebras not isomorphic to their opposite algebras.
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4.3 Nonclassification

In this subsection, we give some results which show how badly the classifica-
tion theorem fails if the algebras are not nuclear. The results are mostly either
proved elsewhere or follow fairly easily from results proved by other people.
There are three main results. First, nonnuclear separable purely infinite simple
C∗-algebras need not be approximately divisible in the sense of [6], but when-
ever A is a purely infinite simple C∗-algebra, then O∞⊗A is an approximately
divisible purely infinite simple C∗-algebra with exactly the same K-theoretic
invariants. Second, there are infinitely many mutually nonisomorphic approx-
imately divisible separable exact unital purely infinite simple C∗-algebras A
satisfying K∗(A) = 0. Finally, given arbitrary countable abelian groups G0 and
G1, and g ∈ G0, there are uncountably many mutually nonisomorphic approxi-
mately divisible separable unital purely infinite simple C∗-algebras A satisfying
Kj(A) ∼= Gj with [1] 7→ g0. Unfortunately these algebras are not exact, and it
remains unknown whether the same is true with the additional requirement of
exactness.

The first result is taken straight from a paper of Dykema and Rørdam.

4.3.1 Theorem. ([18], Theorem 1.4) There exists a separable unital purely
infinite simple C∗-algebra which is not approximately divisible.

4.3.2 Remark. In fact, there exists a separable unital purely infinite simple
C∗-algebra A which is not approximately divisible and such that K∗(A) = 0.

One way to see this is to modify the proof of Proposition 1.3 of [18] so as
to ensure that K∗(An) → K∗(B) is injective for all n. This is done by enlarg-
ing the set Xn+1 in the proof so as to include appropriate partial isometries
(implementing equivalences between projections) and paths of unitaries (im-
plementing triviality of classes of unitaries in K1). See the proof of Theorem
4.3.11 below for this argument in a related context.

The second result is a fairly easy consequence of a computation of Cowl-
ing and Haagerup and of unpublished work of Haagerup. The key invariant
is described in the following definition. I am grateful to Uffe Haagerup for
explaining the properties of this invariant and where to find proofs of them.

4.3.3 Definition. (Haagerup [23]; also see Section 6 of [12].) Let A be a
C∗-algebra. Define Λ(A) to be the infimum of numbers C such that there is
a net of finite rank operators Tα : A → A for which ‖Tα(a) − a‖ → 0 for
all a ∈ A and the completely bounded norms satisfy supα ‖Tα‖cb ≤ C. Note
that Λ(A) =∞ if no such C exists, that is, if A does not have the completely
bounded approximation property.

There is a similar definition for von Neumann algebras, in which Tα(a) is
required to converge to a in the weak operator topology. (See [23] and Section
6 of [12].) There is also a definition of Λ(G) for a locally compact group
G, using completely bounded norms of multipliers of G which converge to 1
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uniformly on compact sets; see [23] and Section 1 of [12]. We do not formally
state the definitions, but we recall the following theorems from [23] (restated
as Propositions 6.1 and 6.2 of [12]):

4.3.4 Theorem. Let Γ be a discrete group, and let C∗r (Γ) and W ∗(Γ) be
its reduced C∗-algebra and von Neumann algebra respectively. Then Λ(Γ) =
Λ(C∗r (Γ)) = Λ(W ∗(Γ)).

4.3.5 Theorem. Let G be a second countable locally compact group, and let
Γ be a lattice in G. Then Λ(Γ) = Λ(G).

In Section 6 of [12], Cowling and Haagerup exhibit type II1 factors Mn

with Λ(Mn) = 2n − 1. Using the same results on groups, we exhibit simple
C∗-algebras with the same values of Λ.

4.3.6 Proposition. Let Γ0
n be as in Corollary 6.6 of [12]. Then An = C∗r (Γ0

n)
is a simple separable unital C∗-algebra which satisfies Λ(An) = 2n− 1.

We recall that Γ0
n is the quotient by its center of a particular lattice Γn in

the simple Lie group Sp(n, 1).

Proof of Proposition 4.3.6: It is shown in the proof of Corollary 6.6 of [12] that
Λ(Γ0

n) = 2n−1. (This follows from the computation Λ(Sp(n, 1)) = 2n−1, which
is the main result of [12], together with Theorem 4.3.5 above and Proposition
1.3 (c) of [12].) Therefore Λ(An) = 2n − 1 by Theorem 4.3.4. Clearly An is
separable and unital. Simplicity of An follows from Theorem 1 of [2], applied to
the quotient of Sp(n, 1) by its center, because (as observed in the introduction
to [2]) lattices satisfy the density hypothesis of that theorem.

The algebras An are not purely infinite, and their K-theory seems to be
unknown. So we will tensor them with O2. For this, we need the following
result.

4.3.7. Lemma. Let A be any C∗-algebra, and let B be unital and nuclear.
Then Λ(A⊗B) = Λ(A).

For von Neumann algebras, it is known [57] that Λ(M⊗N) = Λ(M)Λ(N).
We presume, especially in view of Remark 3.5 of [57], that the analogous state-
ment is true for C∗-algebras as well. However, the special case in the lemma is
sufficient here.

Proof of Lemma 4.3.7: If S : A1 → A2 and T : B1 → B2 are completely
bounded, then the map S ⊗min T : A1 ⊗min B1 → A2 ⊗min B2 is completely
bounded, and satisfies ‖S⊗minT‖cb = ‖S‖cb‖T‖cb by Theorem 10.3 of [40]. In
Definition 4.3.3, one need only consider elements a of a dense subset, and so
it follows that Λ(A⊗min B) ≤ Λ(A)Λ(B) for any C∗-algebras A and B. For B
nuclear, we have Λ(B) = 1, so Λ(A⊗B) ≤ Λ(A).

For the reverse inequality, let Rα : A⊗B → A⊗B be finite rank operators
such that ‖Rα(x) − x‖ → 0 for all x ∈ A ⊗ B. Choose any state ω on B, and
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define Tα : A → A by Tα(a) = (idB ⊗ ω) ◦ Rα(a ⊗ 1). Theorem 10.3 of [40]
implies that ‖Tα‖cb ≤ ‖Rα‖cb. Also, clearly ‖Tα(a)− a‖ → 0 for all a ∈ A. So
Λ(A) ≤ Λ(A⊗B).

4.3.8 Theorem. There exist infinitely many mutually nonisomorphic separa-
ble exact unital purely infinite simple C∗-algebras B satisfying K∗(B) = 0 and
O∞ ⊗ B ∼= B. In particular, these algebras are approximately divisible in the
sense of [6].

Proof: Let An = C∗r (Γ0
n) as in Proposition 4.3.6. Set Bn = O2 ⊗ An. Clearly

Bn is separable and unital. Furthermore, Bn is purely infinite simple by the
proof of Corollary 4.2.7. We have O∞ ⊗ Bn ∼= Bn because O∞ ⊗ O2

∼= O2.
The algebras Bn are mutually nonisomorphic because Λ(Bn) = 2n− 1, by the
previous lemma and Proposition 4.3.6.

It remains to check exactness. The proof of Corollary 3.12 of [17] shows
that if Λ(A) is finite, then A has the slice map property (as defined, for example,
in Remark 9 of [59], where it is called Property S), and this property implies
exactness (see, for example, Section 2.5 of [60]).

Our third result is based on the theorem of Junge and Pisier that for
n ≥ 3 the collection of n-dimensional operator spaces is not separable in the
completely bounded analog of the Banach-Mazur distance.

4.3.9 Definition. ([25]) Let E and F be operator spaces of the same finite
dimension. Then

dcb(E,F ) = inf{‖T‖cb‖T−1‖cb : T is a linear bijection from E to F},

and δcb(E,F ) = log(dcb(E,F )).

4.3.10 Theorem. (Theorem 2.3 of [25]) Let OSn be the set of all complete
isometry classes of n-dimensional operator spaces. Let n ≥ 3. Then (OSn, δcb)
is an inseparable metric space.

4.3.11 Theorem. Let G0 and G1 be countable abelian groups, and let g ∈ G0.
Then there exist uncountable many mutually nonisomorphic separable unital
purely infinite simple C∗-algebras A, each with K0(A) ∼= G0 in such a way that
[1] 7→ g and K1(A) ∼= G1, and each satisfying O∞ ⊗A ∼= A.

Proof: If A is a separable C∗-algebra, then the set of (complete isometry classes
of) n-dimensional operator subspaces of A is separable (by Proposition 2.6 (a)
of [25]). By the previous theorem, it therefore suffices to show that if E is a
finite dimensional operator space then there exists a C∗-algebra B having the
properties claimed in the theorem and such that E is completely isometric to
a subspace of B.

Since E is a finite dimensional operator space, it is a subspace of a sepa-
rable C∗-algebra A. Represent A on a separable Hilbert space H with infinite
multiplicity, and follow this representation with the quotient map from L(H)
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to the Calkin algebra Q. This gives a completely isometric embedding of E in
Q. For convenience, we identify E with its image. Let u ∈ Q be the image of
the unilateral shift; note that [u] generates K1(Q) and that K0(Q) = 0. Let
B0 = C∗(E, 1, u) ⊂ Q. We now construct by induction an increasing sequence
B0 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ Q of separable C∗-algebras such that B2n+1 is sim-
ple and such that every nonzero projection in B2n−1 is Murray-von Neumann
equivalent to 1 in B2n, every selfadjoint element of B2n−1 is a limit of selfadjoint
elements of B2n with finite spectrum, and every unitary in U(B2n−1) ∩ U0(Q)
is homotopic to 1 in B2n.

Given B2n, we choose B2n+1 to be any separable simple C∗-algebra with
B2n ⊂ B2n+1 ⊂ Q. Such a subalgebra exists by Proposition 2.2 of [3] and
the simplicity of Q. Given B2n−1, we note that it suffices to have the required
elements of B2n only for countable dense subsets S1 of the nonzero projections
in B2n−1, S2 of the selfadjoint elements in B2n−1, and S3 of the unitaries in
U(B2n−1)∩U0(Q). For each p ∈ S1, since p is Murray-von Neumann equivalent
to 1 in Q, we can choose an isometry v ∈ Q such that v∗v = 1 and vv∗ = p. Let
T1 be the set of all these as p runs through S1. For each a ∈ S2, since Q has
real rank zero, there is a sequence (bn) in Q consisting of selfadjoint elements
with finite spectrum such that bn → a. Let T2 be the set of all terms of all
such sequences as a runs through S2. For each u ∈ S3, since u ∈ U0(Q), there
is a unitary path t 7→ v(t) in Q with v(0) = 1 and v(1) = u. Let T3 consist
of all v(t) for t ∈ [0, 1] ∩ Q as u runs through S3. Then take B2n to be the
C*-subalgebra of Q generated by B2n−1 and T1 ∪ T2 ∪ T3. This subalgebra is
separable because B2n−1 is separable and T1 ∪ T2 ∪ T3 is countable.

Now set B =
⋃∞
n=0Bn. Then B is simple because it is the direct limit of

the simple C∗-algebras B2n+1. From the construction of B2n, it is clear that B
is unital and separable, contains the operator space E, has real rank zero, that
all nonzero projections in B are Murray-von Neumann equivalent to 1, and
that U(B) ∩ U0(Q) ⊂ U0(B). The third and fourth properties imply that B is
purely infinite and K0(B) = 0. The last property implies that K1(B)→ K1(Q)
is injective. But this map is also surjective, since B0 contains a unitary whose
class generates K1(Q). So K1(B) ∼= Z.

Taking A = O∞ ⊗ B (which has the same K-theory by the Künneth
formula [55]), we obtain the statement of the theorem for the special case
G0 = 0, g = 0, and G1 = Z. For the general case, choose (by Theorem 4.2.5)
a separable nuclear unital purely infinite simple C∗-algebra D satisfying the
Universal Coefficient Theorem and such that K0(D) ∼= G1 and K1(D) ∼= G0.
(We don’t actually need D to be purely infinite here, but it must be in the
bootstrap category of [55].) Then D ⊗ B is purely infinite and simple, and
has the right K-theory by the Künneth formula, except that [1] = 0. Choose a
projection p ∈ D⊗B such that the isomorphism K0(D⊗B) ∼= G0 sends [p] to
g. Then the C∗-algebra A = O∞⊗ p(D ⊗B)p satisfies all the conditions of the
theorem and contains the given operator space E.
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4.3.12 Remark. Simplicity and pure infiniteness of
⋃∞
n=0Bn in the proof

above can also be arranged by the method of the proof of Proposition 1.3 of
[18]. Versions of the construction here have been used many times before.

4.3.13 Remark. The invariant used here, the set of finite dimensional operator
spaces contained in A, does not distinguish between any two separable exact
purely infinite simple C∗-algebras. (Any separable exact C∗-algebra embeds
in O2 by Theorem 2.8 of [29], and O2 embeds in any purely infinite simple
C∗-algebra.) Therefore, for given K-theory, at most one of the C∗-algebras
proved above to be nonisomorphic can be exact.
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Abstract. We compute the cohomology algebras of spaces of or-
dered point configurations on spheres, F (Sk, n), with integer coeffi-
cients. For k = 2 we describe a product structure that splits F (S2, n)
into well-studied spaces. For k > 2 we analyze the spectral sequence
associated to a classical fiber map on the configuration space. In both
cases we obtain a complete and explicit description of the integer co-
homology algebra of F (Sk, n) in terms of generators, relations and
linear bases. There is 2-torsion occuring if and only if k is even. We
explain this phenomenon by relating it to the Euler classes of spheres.

Our rather classical methods uncover combinatorial structures at the
core of the problem.
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1 Introduction

The space of configurations of n pairwise distinct labelled points in a topological
space X ,

F (X,n) := {(x1, . . . , xn) ∈ Xn |xi 6= xj for i 6= j} ⊆ Xn ,

is called the n-th (ordered) configuration space of X .
A systematic study of these spaces started with work by Fadell & Neu-
wirth [FaN] and Fadell [Fa] in the sixties. They introduced sequences of
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fibrations for configuration spaces and mainly concentrated on describing their
homotopy groups for various instances of X . In 1969 Arnol′d [Ar] derived the
integer cohomology algebra of F (C, n) — the group cohomology of the colored
braid group — and thereby initiated still ongoing research on the cohomology
algebras of complements of linear subspace arrangements.
Broader interest in the cohomology algebras of configuration spaces came up
in the seventies: The cohomology of F (X,n) for a manifold X appeared as
a basic ingredient in the E2-terms of spectral sequences for the Gelfand-Fuks
cohomology of the manifold [GF] and for the homology of certain function
spaces [An]. Cohen [C1, C2] studied various aspects of the cohomology of
configuration spaces of Euclidean spaces in view of its relation to homology op-
erations for iterated loop spaces [C3]. Cohen & Taylor [CT1, CT2] described
the cohomology algebras of configuration spaces of spheres with coefficients in
a field of characteristic different from 2. Recently, compactifications of con-
figuration spaces of algebraic varieties have been constructed by Fulton and
MacPherson [FM]. As an application, they determine the rational homotopy
type of configuration spaces of non-singular compact complex algebraic vari-
eties F (X,n) in terms of invariants of X. Compare also work of Kriz [Kr] and
Totaro [T], where alternative minimal models for F (X,n) are used.
In contrast to these results on the rational homotopy type of configuration
spaces, it seems that so far Arnol′d’s computation of the integer cohomology
algebra of F (C, n) remained the only instance where the integer cohomology
algebra of an ordered configuration space was fully described.

Recently, Raoul Bott asked about the integer cohomology algebra of the ordered
configuration space of the 2-sphere. We are able to answer his question by
describing a product decomposition for F (S2, n):

F (S2, n) ∼= PSL(2,C) × M0,n,

where M0,n, the moduli space of n-punctured complex projective lines, is ho-
motopy equivalent to the complement of an affine complex hyperplane arrange-
ment. We deduce that H∗(F (S2, n),Z) has (only) 2-torsion that can be traced
back to H2(PSL(2,C),Z) ∼= Z2 (Section 2).
For spheres of higher dimension we use spectral sequences to obtain an analo-
gous decomposition on the level of cohomology algebras:

H∗(F (Sk, n),Z) ∼= (Z⊕ Z) ⊗ H∗(M(A(k)
n−2),Z) for odd k ,

H∗(F (Sk, n),Z) ∼= (Z⊕ Z2 ⊕ Z) ⊗ H∗(M(AΠ3),Z) for even k ,

where M(A(k)
n−2) is the complement of a certain arrangement of real linear

subspaces A(k)
n−2 and M(AΠ3) is the complement of an arrangement of affine

subspaces that is naturally related to the linear arrangement A(k)
n−2. For both

arrangement complements the integer cohomology algebra is torsion-free and
we have explicit descriptions in terms of generators, relations and linear bases.
In the following all (co)homology is taken with Z-coefficients.
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The key for our approach is a family of locally trivial fiber maps on configuration
spaces that appears already in the work by Fadell & Neuwirth [FaN] and
Fadell [Fa]. The maps are given by “projection to the last r points” of a
configuration. For configuration spaces of spheres F (Sk, n) and 1 ≤ r < n the
projection Πr reads as follows:

Πr = Πr(S
k, n) : F (Sk, n) −→ F (Sk, r)

(x1, . . . , xn) 7−→ (xn−r+1, . . . , xn) .

We derive the integer cohomology algebra of F (Sk, n) for k > 2 by a complete
discussion of the Leray-Serre spectral sequence associated to the fiber map
Π1(S

k, n). Our success with this rather classical approach depends on the fact
that the fibers of Π1(S

k, n) are complements of linear subspace arrangements.
Their cohomology algebras are well-studied objects both from topological and
combinatorial viewpoints [GM, BZ, Bj, DP]. The fibers of Π1(S

k, n) are in fact
the complements of codimension k versions of the classical braid arrangements,
and thus they are particularly prominent examples of arrangement comple-
ments. This paves the way for a complete discussion of the associated spectral
sequence (Section 3).
A distinction between the configuration spaces of spheres of odd and even
dimension emerges from the only possibly non-trivial differential of the spectral
sequence. We present two methods to compute this differential (Section 4).

(1) It can be derived from one particular cohomology group of F (Sk, n). To
obtain the latter we use an independent, rather elementary approach to
the cohomology of configuration spaces, which may be of interest on its
own right.

(2) We show that the differential can be interpreted as a map that is induced
by “multiplication with the Euler class of Sk.” It is well-known that the
Euler class depends on the parity of k.

To get the final tableau of the spectral sequence, and to derive the integer
cohomology algebra of the configuration space F (Sk, n), we use combinatorially
constructed Z-linear bases for the cohomology of the fiber (Section 5).
In the last section of this paper we consider the bundle structures on F (Sk, n)
given by the fiber maps Πr(S

k, n), 1 < r < n. We show that the associated
spectral sequences collapse in their second terms unless k is even and r equals 1
or 2. For some parameters we can decide the triviality of the bundle structure,
which in general is a difficult question.

For configuration spaces of closed manifolds other than spheres, in principle
one can attempt to follow the approach taken in this paper. However, with
the cohomology of the manifold (i.e., of the base space of the considered fiber
map) getting more complicated, the corresponding spectral sequence will be
less sparse, and thus more non-trivial differentials will have to be considered.
Even more importantly, if the manifold is not simply connected, then it is not
straightforward, and not true in general, that the system of local coefficients
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on the manifold induced by the fiber map is simple. Already the entries of the
second sequence tableau thus will be much harder to compute.

Acknowledgment: We are grateful for discussions with Ezra Getzler that
influenced the course of these investigations. Also, we wish to thank Raoul
Bott who asked us about connections to the Euler classes of spheres.

2 Configuration spaces of the 2-sphere

We first comment on some special cases for small values of n and on the con-
figuration space of the 1-sphere. For n = 1, we see from the definition that
F (X, 1) = X for all spaces X . For n = 2, we consider the projection Π1, send-
ing a configuration in F (Sk, 2) to its second point. We obtain a fiber bundle
with contractible fiber Π−1

1 (x2) = F (Sk \{x2}, 1) ∼= Rk, hence F (Sk, 2) ' Sk.
In fact, F (Sk, 2) is equivalent to the tangent bundle over Sk.
For the configuration space of the 1-sphere, F (S1, n), we state an explicit triv-
ialization of the fiber bundle given by Π1, the projection to the last point of
a configuration. Using the group structure on S1 we define a homeomorphism
which shows that Π1(S

1, n) is a trivial fiber map:

ϕ1 : F (S1 \ {e}, n− 1)× S1 −→ F (S1, n)

((x1, . . . , xn−1) , y) 7−→ (yx1, . . . , yxn−1, y) .

For r > 1, the fiber of Πr(S
1, n) is homeomorphic to the space of configura-

tions of n − r points on r disjoint copies of the unit interval. We obtain a
homeomorphism

ϕr : F (
⊎
r (0, 1) , n− r) × F (S1, r) −→ F (S1, n)

that trivializes the bundle by “inserting” the points x1, . . . , xn−r from
⊎
r (0, 1)

into the r open segments in which the points of the configuration (y1, . . . , yr)
in F (S1, r) separate S1.

Compared to configuration spaces of higher dimensional spheres we gain the
main structural advantage for the 2-dimensional case from the fact that the
2-sphere S2 is homeomorphic to the complex projective line CP 1. We will
freely switch between the resulting two viewpoints on the configuration space
in question.
The group of projective automorphisms PSL(2,C) of CP 1 acts freely on
the configuration space F (CP 1, n) by coordinatewise action, thus exhibiting
F (CP 1, n) as the total space of a principal PSL(2,C)-bundle for n ≥ 3 [Ge].
We identify the base space — the space of n-tuples of distinct points on the com-
plex projective line modulo projective automorphisms — as the moduli space
M0,n of n-punctured complex projective lines. Compactifications of M0,n and
their cohomology algebras are the focus of recent research; for a brief account
and further references see [FM, p.189].
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Theorem 2.1 The configuration space F (CP 1, n) of the complex projective
line is the total space of a trivial PSL(2,C)-bundle over M0,n for n ≥ 3; hence
there is a homeomorphism

F (CP 1, n) ∼= PSL(2,C) × M0,n .

Proof. The automorphism group PSL(2,C) acts sharply 3-transitive on CP 1.
In particular, we obtain a homeomorphism between the configuration space of
three distinct points on CP 1 and the automorphism group PSL(2,C):

φ : F (CP 1, 3) −→ PSL(2,C) .

Here (x1, x2, x3) ∈ F (CP 1, 3) is mapped to the unique automorphism that
transforms x1 to

(
1
0

)
, x2 to

(
0
1

)
, and x3 to

(
1
1

)
, i.e., to the “standard projective

basis” of CP 1.
Given a configuration x = (x1, . . . , xn) of n distinct points on CP 1, the group
element φ(x1, x2, x3) transforms x to a configuration on CP 1 that has the
standard projective basis in its first three entries. We describe the resulting
configuration by the columns of a (2× n)-matrix:

φ(x1, x2, x3) ◦ x =

(
1 0 1 z3 . . . zn−1

0 1 1 1 . . . 1

)

,

where zi ∈ C\{0, 1} for 3 ≤ i ≤ n − 1, zi 6= zj for 3 ≤ i < j ≤ n− 1, and the
columns are understood as vectors in C2\{0} that represent elements in CP 1.
Lifting an element x̄ ∈M0,n to its “normal form” φ(x1, x2, x3) ◦ x in the total
space F (CP 1, n) defines a section for the PSL(2,C)-bundle. Hence, the princi-
pal bundle is trivial [St, Part I, Thm. 8.3]. The resulting product decomposition
on F (CP 1, n) can be described explicitly by the homeomorphism

Φ : F (CP 1, n) −→ PSL(2,C) × M0,n

(x1, . . . , xn) 7−→ (φ(x1, x2, x3) , x̄ ) . 2

Remark 2.2 An analogous argument is not possible for S4, since there are no
sharply 3-transitive group actions in the case of a non-commutative field such
as H. The structural reason for this can be traced back to a theorem by von
Staudt, see [P, Kap. 5.1.4].

In view of a description of the integer cohomology algebra of F (CP 1, n) we use
the intimate relation of the base space M0,n to a complex hyperplane arrange-
ment — the complex braid arrangement AC

n−2 of rank n− 2 in Cn−1 given by
the hyperplanes

zj − zi = 0 for 1 ≤ i < j ≤ n− 1 .

This arrangement is a key example in the theory of hyperplane arrange-
ments and initiated much of its development [Ar, OT]. Its complement,
M(AC

n−2) := Cn−1\⋃AC
n−2, coincides with F (C, n − 1), the configuration

space of the complex plane.
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The base space M0,n is homotopy equivalent to the complement of the affine
arrangement affAC

n−2, which is obtained from AC
n−2 by restriction to the affine

hyperplane {z2 − z1 = 1} ∼= Cn−2. A complete description of the integer
cohomology algebra of the complement M(affAC

n−2) := Cn−2\⋃ affAC
n−2 is pro-

vided by general theory on the topology of complex hyperplane arrangements
[OS, BZ, OT]. The description depends only on combinatorial data of the
arrangement, i.e., on the semi-lattice of intersections L(affAC

n−2) which is cus-
tomarily ordered by reverse inclusion.

Proposition 2.3 The base space M0,n is homotopy equivalent to the comple-
ment of the affine complex braid arrangement of rank n− 2, since

M0,n × C ∼= M(affAC
n−2) .

Its integer cohomology algebra is torsion-free. It is generated by one-dimen-
sional classes ei,j for 1 ≤ i < j ≤ n− 1, (i, j) 6= (1, 2), and has a presentation
as a quotient of the exterior algebra on these generators:

H∗(M(affAC
n−2))

∼= Λ∗ Z(n−1
2 )−1 / I ,

where I is the ideal generated by elements of the form

ei,l ∧ ej,l − ei,j ∧ ej,l + ei,j ∧ ei,l for 1 ≤ i < j < l ≤ n− 1, (i, j) 6= (1, 2) ,

e1,i ∧ e2,i for 2 < i ≤ n− 1 .

Proof. We consider the homeomorphic image of M0,n under the section de-
fined in the proof of Proposition 2.1:

M0,n
∼=
{(

1 0 1 z3 . . . zn−1

0 1 1 1 . . . 1

) ∣∣∣∣∣ zi ∈ C\{0, 1}, zi 6= zj for i 6= j

}

∼= { (z1, . . . , zn−1) | zi ∈ C, zi 6= zj for i 6= j, z1 = 0, z2 − z1 = 1} .

From this description we see that M0,n is homeomorphic to the complement
of the affine braid arrangement affAC

n−2 intersected with the hyperplane {z1 =
0}. This intersection operation is equivalent to a projection parallel to the
intersection of all the hyperplanes in AC

n−2,
⋂AC

n−2 = {z1 = . . . = zn−1}. The
fibers of this projection map are contractible: they are translates of

⋂AC
n−2.

Hence the projection does not alter the homotopy type, and we conclude that
M0,n is homotopy equivalent toM(affAC

n−2).
The presentation of the integer cohomology algebra follows from general re-
sults on the topology of the complements of complex hyperplane arrangements
(compare [OT]). 2

We have seen that the fiber PSL(2,C) is homeomorphic to F (CP 1, 3), resp.
F (S2, 3). By a result of Fadell [Fa, Thm. 2.4] there is a fiber homotopy
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equivalence between F (Sk, 3) and Vk+1,2, the Stiefel manifold of orthogonal
2-frames in Rk+1. The cohomology of the latter is well-known, see [Bd, Ch.
IV, Exp. 13.5].

Combining the product structure on F (CP 1, n) obtained in Theorem 2.1 with
the information on the cohomology algebras of base space and fiber we conclude:

Theorem 2.4 The cohomology algebra of F (S2, n) with integer coefficients is
given by

H∗(F (S2, n)) ∼= H∗(F (S2, 3)) ⊗ H∗(M(affAC
n−2))

∼=
(

Z(0)⊕ Z2(2)⊕ Z(3)
)
⊗ Λ∗

⊕

(n−1
2 )−1

Z(1) / I ,

where G(i) denotes a direct summand G in dimension i, and I is the ideal of
relations described in Proposition 2.3.

3 A spectral sequence for H∗(F (Sk, n))

Our approach for k > 2 uses the Leray-Serre spectral sequence associated with
the projection Π1:

Π1 : F (Sk, n) −→ Sk

(x1, . . . , xn) 7−→ xn .

For the construction and special features of Leray-Serre spectral sequences we
refer to Borel [Bo2, Sect. 2]. Since the base space of the considered fiber
bundle is a sphere we could equally work with the Wang sequence [Wh, Ch.
VII, Sect. 3], a long exact sequence connecting the cohomology of the total space
and of the fiber. However, the derivation of the multiplicative structure of the
cohomology algebra gets more transparent with spectral sequence tableaux.
Moreover, this approach extends to projections Πr for r > 1 (see Section 6).

We meet especially favorable conditions in the second tableau of the Leray-Serre
spectral sequence associated to the fiber map Π1(S

k, n): The base space Sk is
simply connected for k ≥ 2, hence the system of local coefficients on Sk induced
by Π1 for k ≥ 2 is simple. As the fiber over xn ∈ Sk we obtain:

Π−1
1 (xn) = {(x1, . . . , xn−1) ∈ (Sk)n−1 |xi 6= xj for i 6= j,

xi 6= xn for i = 1, . . . , n−1}
∼= {(x1, . . . , xn−1) ∈ (Rk)n−1 | xi 6= xj for i 6= j} .

This is the complement of the real k-braid arrangement A(k)
n−2 of rank n−2

which is formed by linear subspaces Ui,j in (Rk)n−1, 1 ≤ i < j ≤ n−1,

Ui,j = {(x1, . . . , xn−1) ∈ (Rk)n−1 |xi1 = xj1 , . . . , xik = xjk} .
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This arrangement, a direct generalization of the real and complex braid arrange-
ments, is a k-arrangement in the sense of Goresky & MacPherson [GM,
Part III, p. 239]: the subspaces have codimension k, and the codimensions of
their intersections are multiples of k. Such arrangements have combinatorial
properties analogous to those of complex hyperplane arrangements, which is
reflected by strong similarities in their topological properties: The cohomol-
ogy algebras of real k-arrangements are torsion-free [GM, Part III, Thm. B];
they are generated in dimension k − 1 by cohomology classes that naturally
correspond to the subspaces of the arrangement [BZ, Sect. 9].

The complement of the real k-braid arrangement A(k)
n−2 is an ordered configu-

ration space: the space F (Rk, n−1) of configurations of n−1 pairwise distinct
points in Rk. The following thus complements work by Cohen [C1, C2], who
discussed the cohomology of F (Rk, n− 1) in connection with homology opera-
tions for iterated loop spaces.

Proposition 3.1 The integer cohomology algebra of M(A(k)
n−2) is generated

by (k − 1)-dimensional cohomology classes ci,j , 1 ≤ i < j ≤ n − 1. It has a
presentation as a quotient of the exterior algebra on these generators:

H∗(M(A(k)
n−2))

∼= Λ∗ Z(n−1
2 ) / I ,

where I is the ideal generated by the elements

(ci,l∧cj,l) + (−1)k+1(ci,j∧cj,l) + (ci,j∧ci,l) for 1 ≤ i < j < l ≤ n−1 .

Remark 3.2 The generating cohomology classes ci,j , 1≤ i< j≤n−1, are de-
fined by restricting cohomology generators ĉi,j for the subspace complements
M({Ui,j}) ' Sk−1 to the complement of the arrangement. A canonical choice
of the generators ĉi,j results from fixing the natural “frame of hyperplanes” in
the sense of [BZ, Sect. 9].

Proof. Björner & Ziegler [BZ, Sect. 9] derived a presentation for the
cohomology algebras of real k-arrangements up to the signs in the relations.
For the real k-braid arrangement their presentation specializes up to signs to
the one stated above.
Consider the relation for a triple 1 ≤ i < j < l ≤ n− 1:

ε1(ci,l ∧ cj,l) + ε2(ci,j ∧ cj,l) + ε3(ci,j ∧ ci,l) = 0 , εr ∈ {±1} for r = 1, 2, 3 .

Transpositions of (i, j) and (i, l) and of (i, l) and (j, l) in the linear (lexico-

graphic) order of the subspaces in A(k)
n−2 lead to similar relations among the

cohomology classes ci,l ∧ cj,l, ci,j ∧ cj,l, and ci,j ∧ ci,l:

ε1(ci,j ∧ cj,l) + ε2(ci,l ∧ cj,l) + ε3(ci,l ∧ ci,j) = 0

ε1(cj,l ∧ ci,l) + ε2(ci,j ∧ ci,l) + ε3(ci,j ∧ cj,l) = 0 .

Anti-commutativity of the exterior product yields the signs in the relations.
2
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We obtain the following tensor product decomposition on the E2-tableau of
the Leray-Serre spectral sequence associated with the fiber map Π1(S

k, n):

k − 1

0

0 k

H∗(M(A(k)
n−2))

E∗,∗2
3k − 3

2k − 2

dk

Ep,q2
∼= Hp(Sk) ⊗ Hq(M(A(k)

n−2)) ,

p, q ≥ 0 .

The location of non-zero entries shows that there is only one possibly non-trivial
differential on stage k of the sequence.

4 The k-th differential

The tableaux of a cohomological spectral sequence are bigraded algebras. The
differentials respect their multiplicative structure. In particular, the differen-
tials are determined by their action on multiplicative generators of the sequence
tableaux. Thus, it suffices in our case to describe dk on the multiplicative gen-

erators ci,j , 1 ≤ i < j ≤ n− 1, of E0,∗
k
∼= H∗(M(A(k)

n−2)) in dimension k − 1.

Actually, we can restrict our attention even further to the action of dk on one
single generator, say on c1,2: The permutation of the first n − 1 points of a
configuration in F (Sk, n) by Sn−1 gives a group action on the considered fiber
bundle and hence induces a Sn−1-action on the spectral sequence. The group
Sn−1 acts transitively on the generators ci,j of E0,k−1

k , whereas it keeps Ek,0k

fixed. We conclude that

dk(ci,j) = dk(c1,2) for 1 ≤ i < j ≤ n− 1 .

In the following we provide two independent ways to evaluate dk.

4.1 . . . via a homology group of the discriminant.

Here the key observation is that knowing Hk(F (Sk, n)) is sufficient to deter-
mine dk. To obtain this specific group, we use a “Vassiliev type” argument
that allows one to compute, in favorable situations, some cohomology groups
of configuration spaces. Using a smooth compactification, in our case given by
F (Sk, n) ⊆ (Sk)n, we set

F (Sk, n) = (Sk)n \ Γn = (Sk)n \
⋃

1≤i<j≤n
(Γn)i,j ,
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where

(Γn)i,j = {(x1, . . . , xn) ∈ (Sk)n |xi = xj} for 1 ≤ i < j ≤ n .
The idea is to use duality theorems in (Sk)n for transferring homology infor-
mation about the discriminant Γn to the cohomology of F (Sk, n). For this, we
proceed in three steps.

Step 1. Determine H∗(Γn) in dimensions (n− 1)k and (n− 1)k − 1.

The spaces (Γn)i,j are homeomorphic to (Sk)n−1; they intersect in spaces home-
omorphic to (Sk)n−2, hence in dimension k(n− 2). By a Mayer-Vietoris argu-
ment we obtain the top two homology groups of the discriminant:

H(n−1)k (Γn) ∼=
⊕

1≤i<j≤n
H(n−1)k((Γn)i,j) ∼= Z(n2)

H(n−1)k−1 (Γn) = 0 .

Step 2. Determine the relative homologyH∗((Sk)n,Γn) in dimension (n−1)k.

The relevant part of the long exact sequence in homology for the pair
((Sk)n,Γn) is the following:

→ H(n−1)k (Γn)
i∗→ H(n−1)k ((Sk)n) → H(n−1)k ((Sk)n

, Γn) → H(n−1)k−1 (Γn) →

We had computed that the last group is zero, and thus

H(n−1)k ((Sk)n,Γn) ∼= coker i∗ ,

where i∗ is induced by the inclusion i : Γn ↪→ (Sk)n. We intend to write i∗
as a (n ×

(
n
2

)
)-matrix over Z and to read the cokernel from its Smith normal

form [Mu, § 11]. For this we choose Z-bases for the homology groups that are
involved, and determine i∗ in terms of these bases.
According to the Künneth Theorem, H(n−1)k((S

k)n) has a basis that consists
of tensor products of k-dimensional classes ωj , j = 1, . . . , n, of the form

νi = ω1 ⊗ . . .⊗ ω̂i ⊗ . . .⊗ ωn , i = 1, . . . , n ,

where ωj is an orientation class for the j-th factor in (Sk)n, and ω̂i denotes
that we omit the i-th class.
Generating homology classes of Γn in dimension (n− 1)k are given by the

(
n
2

)

generating homology classes for the spaces (Γn)i,j , 1 ≤ i < j ≤ n. These spaces
are products of k-spheres,

(Γn)i,j ∼= Si,j × S1 × . . .× Ŝi × . . .× Ŝj × . . .× Sn ,
with Sl denoting the l-th k-sphere appearing as a factor in (Sk)n, whereas Si,j
denotes the k-sphere diagonally embedded in the i-th and j-th k-sphere. A
generating homology class for (Γn)i,j in dimension (n − 1)k can be described
as

νij = ωij ⊗ ω1 ⊗ . . .⊗ ω̂i ⊗ . . .⊗ ω̂j ⊗ . . .⊗ ωn , 1 ≤ i < j ≤ n ,
where ωij is a homology generator for Si,j in dimension k.
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To understand how i∗ maps such generators νij we use the following lemma.
It tells how to describe the homology generator of the diagonal in Si × Sj in
terms of homology classes of the product.

Lemma 4.1 Let ω denote a generating homology class in dimension k for the
k-sphere. Under the diagonal map ∆ : Sk → Sk×Sk, ∆(x) = (x, x) for x ∈ Sk,
the homology class ω is mapped to

∆∗(w) = ω ⊗ 1 + 1⊗ ω .
Proof. By the Künneth Theorem the two summands form a basis of
Hk(S

k × Sk), so ∆∗(ω) is a Z-linear combination of those. Moreover, the di-
agonal map combined with one of the projections pri to the respective factor
is the identity map on Sk. Hence the result follows from (pri)∗ ◦ ∆∗(ω) = ω
for i = 1, 2. 2

We conclude that

i∗(νij) =
(
(ωi ⊗ 1) + (1⊗ ωj)

)
⊗

n⊗

l=1
l6=i,j

ωl , 1 ≤ i < j ≤ n .

To write this in terms of the generators νi for H(n−1)k ((Sk)n) we have to
permute the factors of the underlying product space to the order used above
in the definition of the classes νi. The tensor product of homology classes
is anti-commutative [FFG, Ch. II, §16]; i.e., under the transposition map τ :
X ×X −→ X ×X , (x1, x2) 7→ (x2, x1), a product of homology classes α ⊗ β,
α, β ∈ H∗(X), is mapped to

τ∗(α ⊗ β) = (−1)deg(α) deg(β)β ⊗ α.
This is the point where the distinction between odd and even dimensions comes
up:

i∗(νij) =

{
(−1)i−1νj + (−1)j−2νi for odd k ,
νj + νi for even k

(1 ≤ i < j ≤ n).

Writing i∗ as a (n ×
(
n
2

)
)-matrix M(n) we obtain the (unsigned) incidence

matrix of 2-element subsets of an n-set for even k, whereas for odd k a certain
sign pattern occurs on the matrix entries. For example,

M(3) =




12 13 23

1 1 (−1)k 0
2 1 0 (−1)k

3 0 1 (−1)k


 ,

M(4) =




12 13 14 23 24 34

1 1 (−1)k 1 0 0 0
2 1 0 0 (−1)k 1 0
3 0 1 0 (−1)k 0 1
4 0 0 1 0 (−1)k 1


 .
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We now derive the Smith normal forms of the matrices M(n) by describing
elementary row and column operations. Ordering the columns of M(n) – cor-
responding to the 2-element subsets of {1, . . . , n} – lexicographically, we see
that

M(n) =




1 · · · · · · · · · 1 0 · · · · · · · · · · · · · · · · · · 0
1

. . .
. . . M(n−1)

1




for even k, and

M(n) =




1 −1 · · · (−1)n 0 · · · · · · · · · · · · · · · · · · 0
1

. . .
. . . −M(n−1)

1




for odd k .

For even k, we subtract the i-th row from the first row for i = 2, . . . , n, and
thus create 0-entries in the left part of the first row and entries −2 on top of
the submatrix M(n−1). Note that the column sum in M(n−1) is 2.
Adding multiples of the first n−1 columns to the rest of the matrix, we trans-
form M(n−1) to 0. The remaining entries in the first row can be reduced to one
single entry 2, and after switching rows and columns we obtain the following
Smith normal form:

SNF(M(n) ) =




1
. . . 0

1
2


 for even k.

For odd k, we add the t-th row multiplied with (−1)t−1 to the first row for
i = 2, . . . , n. This creates 0-entries in the first row. This is obvious for the first
n−1 columns. For an entry on top of a column of the submatrix −M(n−1)
which contains entries in its i-th and j-th rows, we obtain

(−1)i · (−(−1)j−2) + (−1)j · (−(−1)i−1) = 0 .

As before, we transform the submatrix −M(n−1) to 0 by adding multiples of
the first n−1 columns. Thus, after switching rows, we obtain:

SNF(M(n) ) =




1
. . . 0

1
0


 for odd k.

We read off the cokernel of i∗ as

H(n−1)k ((Sk)n,Γn) ∼=
{

Z for odd k ,
Z2 for even k .
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Step 3. Apply Poincaré-Lefschetz duality between relative homology of the
pair ((Sk)n,Γn) and cohomology of F (Sk, n).

Proposition 4.2 The k-th cohomology group of F (Sk, n), k > 2, n > 2, is
given by

Hk(F (Sk, n)) ∼=
{

Z for odd k ,
Z2 for even k .

Remark 4.3 In principle, the discriminant approach can be used to determine
the cohomology of F (Sk, n) as a graded group. However, to compute H∗(Γn)
is difficult and requires extra tools (interpretation of Γn as a homotopy limit of
a diagram of spaces, study of a spectral sequence converging to the homology
of a homotopy limit [ZŽ, Sect. 3(e)]). Also, the study of the pair sequence gets
considerably more involved. Moreover, because of the use of Poincaré-Lefschetz
duality the multiplicative structure of H∗(F (Sk, n)) seems out of reach for this
approach.

The partial result of Proposition 4.2 allows us to determine the differential in
the spectral sequence associated to Π1(S

k, n). Taking cohomology of E∗,∗k with
respect to the differential dk leads to the final sequence tableau E∗,∗k+1:

0

0

0

k

ν

Hk(F (Sk, n))

E∗,∗k+1

k − 1

dk

E∗,∗k 0

0 k

ci,j ker dkk − 1

coker dk

Since there is only one non-zero entry on the k-th diagonal for k > 2,
Hk(F (Sk, n)) can be read from E∗,∗k+1:

Hk(F (Sk, n)) ∼= cokerdk .

Our result on Hk(F (Sk, n)) in Proposition 4.2 implies that

dk(c1,2) = dk(ci,j) =

{
0 for odd k
2ν for even k ,

where ν is a generator of Hk(Sk).
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4.2 . . . via an interpretation in terms of the Euler class.

Our second approach to the differential dk stays within the setting of fiber
bundles. We study an inclusion of fiber bundles and transfer information on
the differentials via the induced homomorphism of spectral sequences. We will
find that the differential is determined by the Euler class of the base space Sk,
which depends on the parity of k.

Consider, for n ≥ 3, the following space of point configurations on Sk, k > 2:

F̂ := {(x1, . . . , xn) ∈ (Sk)n |x1 6= x2, xj 6= xn for j = 1, . . . , n− 1} .

Projection of a configuration to its last point, Π̂ : F̂ → Sk, makes it the total
space of a fiber bundle with spherical fiber: the complement of the codimension
k subspace U1,2 in (Rk)n−1,

Π̂−1(xn) = {(x1, . . . , xn−1) ∈ (Sk)n−1 |x1 6= x2, xj 6= xn for 1 ≤ j ≤ n−1}
∼= {(x1, . . . , xn−1) ∈ (Rk)n−1 | x1 6= x2}
= M({U1,2}) .

The spectral sequence Ê∗ associated to Π̂ has an Ê2-tableau of the form

Êp,q2
∼= Hp(Sk) ⊗ Hq(M({U1,2})) ,

p, q ≥ 0 .

k − 1

0

k0

Ê∗,∗2

d̂k

From the location of non-zero entries in Ê∗,∗2 we easily see that there is only

one possibly non-trivial differential d̂k on stage k of the sequence.
The inclusion of F (Sk, n) into F̂ is a map of fiber bundles.

F̂

Sk

F (Sk, n)

Sk

M(A(k)
n−2)

M( {U1,2} )

The homomorphism of spectral sequences induced by the inclusion of the fiber
bundles factors on the Êk-tableau into the induced map between the cohomol-
ogy of the fibers and the identity on the cohomology of the base space [Bo1,
Exp. VIII, Thm. 4]. The map i∗ between the cohomology of the fibers maps

Documenta Mathematica 5 (2000) 115–139



Cohomology Algebras of Configuration Spaces . . . 129

the generator ĉ1,2 of Hk−1(M({U1,2})) to c1,2 in Hk−1(M(A(k)
n−2)) (compare

Remark 3.2). Hence, we are left to determine the action of the k-th differential

on Ê0,k−1
k :

dk

i∗k

Ê∗,∗kE∗,∗k

c1,2 id∗

ĉ1,2 d̂k

dk(c1,2) = dk(i
∗(ĉ1,2)) = d̂k(ĉ1,2) .

Proposition 4.4 The fiber bundle F̂ over Sk is fiber homotopy equivalent to
Vk+1,2, the Stiefel manifold of orthogonal 2-frames in Rk+1, considered as fiber
bundle over Sk.

Proof. F̂ is fiber homotopy equivalent to F (Sk, 3), both spaces considered
as fiber bundles over Sk. The fiber homotopy equivalence is realized by the
projection of configurations in F̂ to their first, second and last points. In
turn, F (Sk, 3) is fiber homotopy equivalent to the Stiefel manifold Vk+1,2 [Fa,
Thm. 2.4]. 2

For a simply connected, k-dimensional, orientable manifoldM the only possibly
non-trivial differential in the spectral sequence associated to the unit tangent
bundle can be described as a cup product multiplication with the Euler class
of the manifold:

dk(x⊗ µ) = dk(µ) ^ x = χM ^ x ,

where µ is a generator of Hk−1(Sk−1), x ∈ H∗(M), and χM denotes the Euler
class of the manifold (compare [MS, Thm. 12.2]).
The Stiefel manifold Vk+1,2 coincides with the unit tangent bundle on Sk.
Given an orientation on Sk and a generator ν of Hk(Sk) that evaluates to 1
on the orientation class, the Euler class of Sk is given by

χSk =

{
0 for odd k ,
2ν for even k .

We conclude that in the spectral sequence for F̂ the differential d̂k maps the
generator ĉ1,2 of Hk−1(M({U1,2})) to the Euler class χ of the base space, once
an orientation for the base Sk and with it the Euler class have been chosen
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appropriately. In particular, d̂k is the zero-map for odd k. For our initial fiber
bundle we thus derive

dk(ci,j) = dk(c1,2) =

{
0 for odd k ,
2ν for even k ,

where 2ν is the Euler class of the k-sphere under appropriate orientation.

5 Recovering H∗(F (Sk, n)) from the spectral sequence

For configuration spaces of odd-dimensional spheres we now have enough in-
formation to derive a complete description of the integer cohomology algebra.
In the previous section we showed that the k-th differential is trivial on multi-
plicative generators of the sequence tableau E∗,∗k , therefore it is trivial on all of
E∗,∗k . The spectral sequence collapses in its second term; a favorable location of
non-zero tableau entries allows us to get both the linear and the multiplicative
structure of H∗(F (Sk, n)) directly from the second tableau:

Theorem 5.1 For a sphere Sk of odd dimension k ≥ 3, and n ≥ 3, the integer
cohomology algebra of F (Sk, n) is given by

H∗(F (Sk, n)) ∼= H∗(Sk) ⊗ H∗(M(A(k)
n−2))

∼= ( Z(0)⊕ Z(k) ) ⊗ Λ∗
⊕

(n−1
2 )

Z(k − 1) / I ,

where I is the ideal described in Proposition 3.1. In particular, the cohomology
is free.

For the case of even-dimensional spheres the considerations in the previous
section show that the k-th differential is non-zero. We have to describe the
kernel and cokernel of that differential and with it the final sequence tableau
E∗,∗k+1 in a manageable form.
The cohomology algebra of the fiber, hence of the left-most column of the sec-
ond, resp. k-th tableau, is given by Proposition 3.1. A linear basis for this
algebra is given by the products of (k − 1)-dimensional classes ci,j associated
with the faces of the broken circuit complex BC(L) of the intersection lat-

tice L = L(A(k)
n−2) [BZ, Sect. 9]:

BBC = {cα1 ∧ . . . ∧ cαt | {α1, . . . , αt} ∈ BC(L)} .

Here is a different basis which enables us to describe the kernel of dk both as
a direct summand and as a subalgebra of H∗(M(A(k)

n−2)):

Proposition 5.2 The following set is a Z-linear basis for H∗(M(A(k)
n−2)) :

B′ = {c1,2 ∧ (cα1 − c1,2) ∧ . . . ∧ (cαt − c1,2) | {α1, . . . , αt} ∈ BC(L), αi 6= (1, 2)}

∪ {(cα1 − c1,2) ∧ . . . ∧ (cαt − c1,2) | {α1, . . . , αt} ∈ BC(L), αi 6= (1, 2)} .
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Proof. Each element in BBC can be written as a linear combination of el-
ements in B′. This is true for each element having c1,2 as a factor because
those are themselves elements in B′. For cα1 ∧ . . .∧ cαt , {α1, . . . , αt} ∈ BC(L),
αi 6= (1, 2),

(cα1 − c1,2) ∧ . . . ∧ (cαt − c1,2) = cα1 ∧ . . . ∧ cαt + β ,

where β is a linear combination of products containing c1,2, hence of elements
in B′. Thus cα1 ∧ . . . ∧ cαt can be written as a linear combination of those. 2

Let T • denote the submodule of H∗(M(A(k)
n−2)) generated by those elements of

B′ that contain c1,2 as a factor, whereas T ◦ denotes the submodule generated
by all other elements of B′:

H∗(M(A(k)
n−2))

∼= T ◦ ⊕ T • .

Obviously, multiplication within T • is trivial, whereas for T ◦ we can state the
following:

Proposition 5.3 The submodule T ◦ is a subalgebra of H∗(M(A(k)
n−2)) gener-

ated by the elements c̄i,j := (ci,j − c1,2) in dimension k − 1, 1 ≤ i < j ≤ n− 1,
(i, j) 6= (1, 2). It has a presentation as a quotient of the exterior algebra on
these generators:

T ◦ ∼= Λ∗Z(n−1
2 )−1 / J ,

where J is the ideal generated by elements of the form

(c̄i,l ∧ c̄j,l) + (−1)k+1(c̄i,j ∧ c̄j,l) + (c̄i,j ∧ c̄i,l) , 1 ≤ i < j < l ≤ n−1 ,
(i, j) 6= (1, 2) ,

(c̄1,i ∧ c̄2,i) , 2 < i ≤ n−1 .

Proof. It is clear that T ◦ has a presentation as a quotient of the exterior
algebra on the generators c̄i,j = (ci,j − c1,2), 1 ≤ i < j ≤ n− 1, (i, j) 6= (1, 2).

Moreover, it is easy to check that the proposed relations hold in H∗(M(A(k)
n−2)).

To see that they generate the ideal for a presentation of T ◦ note that they allow
one to write each product in the generators c̄i,j as a linear combination of
elements from the linear basis for T ◦: Assume that for a product of generators

c̄α1 ∧ . . . ∧ c̄αt
all products with lexicographically smaller index set can be written as a linear
combination of basis elements from T ◦. If this product is not itself a basis

element then {α1, . . . , αt} contains a broken circuit of L(A(k)
n−2). In case (1, 2)

extends it to a circuit the product is zero by a relation of the second type.
Otherwise, a relation of the first type allows to write it as a linear combination
of products with lexicographically smaller index set, and hence as a linear
combination of basis elements. 2
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Our results on dk now read as follows:

dk(c1,2) = 2 ν

dk(ci,j − c1,2) = 0 for 1 ≤ i < j ≤ n− 1 ,

where ν is a generator of Hk(Sk). Evaluating dk by the Leibniz rule on the
basis elements of B′ we exhibit T ◦ as the kernel of dk, whereas im dk = 2 T ◦,
and hence coker dk ∼= T ◦/2T ◦ ⊕ T • . We thus obtain the final sequence

tableau E∗,∗k+1 with entries E0,∗
k+1 = T ◦ and Ek,∗k+1 = T ◦/2T ◦ ⊕ T • .

From the sequence tableau E∗,∗k+1 we can read the cohomology algebra of

F (Sk, n): Free generators for T ◦ = E0,∗
k+1 are located in E0,0

k+1 and E0,k−1
k+1 .

Together with the free generator in Ek,k−1
k+1 and the generator of order two in

Ek,0k+1 they generate T ◦/2T ◦ ⊕ T • = Ek,∗k+1.

T ◦

E∗,∗k+1

T ◦/2T ◦ ⊕ T •
2k − 2

0

k − 1

3k − 3

0 k

ν/2ν1

0

c1,2

0

k − 1 ci,j − c1,2

k

Linearly, the cohomology of F (Sk, n) is isomorphic to a tensor product of two
free generators in dimension 0 and 2k− 1 and a generator of order 2 in dimen-
sion k − 1 with the algebra T ◦:

H∗(F (Sk, n)) ∼= (Z(0)⊕ Z2(k)⊕ Z(2k − 1)) ⊗ T ◦ .

This isomorphism is an algebra isomorphism: This is obvious for multiplication
among elements represented by entries in the left-most column E0,∗

k+1. Also,

multiplication between entries of E0,∗
k+1 and Ek,∗k+1 is correctly described in the

proposed tensor product. Moreover, the trivial multiplication among entries in
Ek,∗k+1 has its correspondence in the tensor algebra since multiplication within
the left-hand factor is trivial. We conclude:

Theorem 5.4 For a sphere Sk of even dimension, k ≥ 4, the integer cohomol-
ogy algebra of F (Sk, n), n ≥ 3, is given by

H∗(F (Sk, n)) ∼= (Z(0)⊕ Z2(k)⊕ Z(2k − 1)) ⊗ T ◦
∼= (Z(0)⊕ Z2(k)⊕ Z(2k − 1)) ⊗ Λ∗

⊕

(n−1
2 )−1

Z(k − 1) / J ,

where J is the ideal described in Proposition 5.3.
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In the next section we will give a topological interpretation for this product
decomposition of the cohomology algebra (see Remark 6.1).

6 A family of fiber bundles

The bundle structure on F (Sk, n) given by the projection Π1 was the key to
determine the integer cohomology algebra of F (Sk, n). This projection Π1 is
one instance from a family of fiber maps Πr = Πr(S

k, n), 1 ≤ r < n, that are
given by projection of a configuration in F (Sk, n) to its last r points. In this
section we will have a closer look at these fiber maps, at their spectral sequences,
and at the question whether the induced bundle structures are trivial.

For the fiber map Πr(S
k, n), 1 ≤ r < n, we obtain the following space as the

fiber over a point configuration q = (q1, . . . , qr) on Sk:

Π−1
r (q) = {(x1, . . . , xn−r) ∈ (Sk)n−r |xi 6= xj for i 6= j, xi 6= qt

for i = 1, . . . , n− r, t = 1, . . . , r} .

This space is again a configuration space:

Π−1
r (q) = F (Sk \ {q1, . . . , qr}, n− r ) .

Configurations on Sk that avoid r ≥ 1 (fixed) points q1, . . . , qr are equivalent
to configurations in Rk that avoid r−1 points q1, . . . , qr−1. Thus the fiber of Πr

is homeomorphic to the complement of the arrangement AΠr(Sk,n) of (affine)

subspaces in Rk(n−r) given by

Ui,j = {(x1, . . . , xn−r) ∈ (Rk)n−r | xi = xj }, 1 ≤ i < j ≤ n− r,
U ti = {(x1, . . . , xn−r) ∈ (Rk)n−r | xi = t · (1, 0, . . . , 0)T },

1 ≤ i ≤ n− r, 0 ≤ t ≤ r − 2 .

For r = 1, the arrangement AΠ1(Sk,n) coincides with the k-braid arrangement

A(k)
n−2 — a fact that we used extensively in the previous sections. For r > 2,
AΠr(Sk,n) contains affine subspaces, the subspaces U ti for 0 < t ≤ r − 2. In
the complex case, for k = 2, these arrangements were extensively studied by
Welker [We].

6.1 The spectral sequences

We proved in the previous sections that the spectral sequence E∗(Π1) associated
to the fiber map Π1(S

k, n) collapses in E2 for odd k, and in Ek+1 for even k.
We obtain a similar picture for the spectral sequence E∗(Π2) associated to the
fiber map Π2(S

k, n): The base space F (Sk, 2) is homotopy equivalent to Sk.
Hence, it is simply connected for k ≥ 2, and the system of local coefficients on
Sk induced by Π2 is simple. The fiber M(AΠ2(Sk,n)) is homotopy equivalent

to the complement of the k-braid arrangement A(k)
n−2. In fact, the homotopy
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equivalence is realized by projection of M(A(k)
n−2) along

⋂A(k)
n−2 on the linear

subspace

U0
n−1 = { (x1, . . . , xn−1) ∈ (Rk)n−1 |xn−1 = 0 } .

Thus, the E2-tableaux of the spectral sequences induced by Π1 and Π2 coincide.
For dimensional reasons, the collapsing results onE∗(Π1) translate to analogous
collapsing results on E∗(Π2).

The picture changes for the spectral sequences E∗(Π3) associated to Π3(S
k, n).

In fact, we have all arguments at hand to discuss them briefly: The base
space F (Sk, 3) of the fiber map Π3(S

k, n) is homotopy equivalent to the Stiefel
manifold Vk+1,2 of orthogonal 2-frames in Rk+1 [Fa, Thm. 2.4], hence it is
simply connected for k ≥ 2. We conclude that the system of local coeffi-
cients on F (Sk, 3) induced by Π3 is simple. We have seen above that the fiber
of Π3 is homeomorphic to the complement of the (affine) subspace arrange-
ment AΠ3(Sk,n). Comparison to the complement of the k-braid arrangement

A(k)
n−2 yields a homotopy equivalence,

M(AΠ3(Sk,n)) 'M(A(k)
n−2dU ) ,

where A(k)
n−2dU denotes the restriction of the k-braid arrangement to the affine

subspace

U = {(x1, . . . , xn−1) ∈ (Rk)n−1 |xn−2 − xn−1 = (1, 0, . . . , 0)T } .

The homotopy equivalence is realized by projection of M(A(k)
n−2dU ) along the

intersection
⋂A(k)

n−2 to the linear subspace

U0
n−1 = {(x1, . . . , xn−1) ∈ (Rk)n−1 |xn−1 = 0 } .

The affine arrangement A(k)
n−2dU is associated to the k-braid arrangement in the

same way as we associated before an affine complex hyperplane arrangement
to the complex braid arrangement (compare Section 2). This analogy allows
one to state a presentation for its cohomology algebra in terms of generators
and relations. In fact, one obtains an algebra presentation that coincides with
the one that we stated for T ◦ in Proposition 5.3:

H∗(M(A(k)
n−2dU )) ∼= T ◦ .

In particular, H∗(M(A(k)
n−2dU )) is torsion-free and it is generated in dimension

k − 1 by cohomology classes that are in one-to-one correspondence with the
inclusion maximal subspaces of the arrangement.
For both odd and even k the E2-tableaux of the spectral sequences associated
to Π3(S

k, n) carry the structure of tensor products. We content ourselves with
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discussing the spectral sequences for k ≥ 3; for k = 2, we already showed in
Section 2 that the bundle structure induced by Π3 is trivial.

0

T ◦ T ◦ T ◦ T ◦

0

dk−1

dk

E∗,∗2 (Π3)
k odd

3k − 3

2k − 2

k − 1

kk−1 2k−1 0

T ◦ T ◦T ◦ ⊗ Z2

E∗,∗2 (Π3)
k even

dk dk−1

3k − 3

2k − 2

k − 1

0

2k−1k

Ep,q2 (Π3) ∼= Hp(Vk+1,2) ⊗ Hq(M(A(k)
n−2dU )) , p, q ≥ 0 .

It is easy to see that E∗(Π3) collapses in its second term for both odd and
even k: The location of non-zero entries in the respective tableaux suffices to
see the triviality of differentials dr with r 6= k. The k-th cohomology group of
F (Sk, n) can be read already from the k-th diagonal in Ek+1(Π3). Our results
on Hk(F (Sk, n)) (Proposition 4.2) allow to deduce triviality of the differen-
tial dk as we did in Section 4.1.

Remark 6.1 There is a topological explanation for the product decomposition
of the integer cohomology algebra of F (Sk, n) for even k that we obtained in
Theorem 5.4: The factors are the cohomology algebras of base space and fiber
for the fiber bundle structure on F (Sk, n) given by Π3. We showed above that
the associated spectral sequence E∗(Π3) collapses in its second term, which
explains the product structure in cohomology.
The collapsing result on E∗(Π3) extends to the spectral sequences associated
to the fiber maps Πr for r > 3, and we can summarize as follows:

Proposition 6.2 The spectral sequence E∗(Πr) of the fiber map Πr(S
k, n)

on the configuration space F (Sk, n) collapses in its second term unless k is
even and r equals 1 or 2. For those parameters the spectral sequence collapses
in Ek+1.

Proof. We are left to show the triviality of the spectral sequence E∗(Πr)
for r > 3. This we will derive from the triviality of E∗(Π3), thereby involving
several applications of the following Lemma.

Lemma 6.3 [Bo2, Ch. II, Thm. 14.1] Let F
i
↪→ E

Π→ B be a fiber bundle
with path-connected base B and assume that the cohomology of the base or
the cohomology of the fiber is torsion-free. Then the following assertions are
equivalent:
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(1) The system of local coefficients on B induced by Π is simple and the
associated spectral sequence with integer coefficients collapses in its second
term.

(2) The induced map i∗ : H∗(E)→ H∗(F ) is surjective.

Consider the map of fiber bundles between Πr(S
k, n) and Π3(S

k, n) given by
(id,Π3(S

k, r)). For simplicity of notation we denote with Qt a fixed set of
pairwise distinct points {q1, . . . , qt} in Sk and thus write F (Sk\Qt, n − t) for
the respective fibers. The fibers are complements of affine k-arrangements, thus
their cohomology algebras are torsion-free.

F (Sk, n)

Πr

F (Sk \Qr, n− r)
idi

F (Sk, r)

F (Sk \Q3, n− 3)
iΠ3

iΠr

F (Sk, n)

Π3

F (Sk, 3)

Π3

The configuration space F (Sk, 3) is simply connected for k ≥ 2, due to the
homotopy equivalence with the Stiefel manifold Vk+1,2. With the collapsing
result on E∗(Π3) we deduce that i∗Π3

is surjective by the equivalence stated
above. We are left to show that the inclusion i between the fibers induces a
surjective homomorphism in cohomology. Then i∗Πr = i∗ ◦ i∗Π3

is surjective, and
another application of Lemma 6.3 yields the collapsing result on E∗(Πr).
To see that i∗ is surjective we interpret i as a concatenation of inclusions in
a sequence of fiber maps. Namely, we consider the sequence of fiber maps
obtained by successively projecting F (Sk \Q1, n−1) to its last coordinate. We
picture the part of this sequence which is relevant to our investigation:

F (Sk\Qr, n − r)
jr−1
−→ . . .

j4−→ F (Sk\Q4, n − 4)
j3−→ F (Sk\Q3, n − 3)

y
p4

y
p3

Sk \ Q4 Sk \ Q3

The base spaces of the fiber bundles given by pt, 1 ≤ t ≤ n − 2, are simply
connected for k > 2, thus the systems of local coefficients are simple. The same
holds for k = 2, which is a result of Cohen [C2, Lemma 6.3]. The fibers are
complements of affine k-arrangements, thus their cohomology groups are non-
trivial only in dimensions that are multiples of k − 1 [GM, Part III, Thm. B].
For dimensional reasons, the associated spectral sequences E∗(pt) collapse in
their second terms and we conclude by Lemma 6.3 that the j∗t are surjective
for 1 ≤ t ≤ n−2. Thus, i∗ = j∗r−1 ◦ . . .◦j∗3 is a surjective map, which concludes
our proof. 2
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6.2 Triviality of the fiber bundles

The fiber bundle structure induced by Π3 on F (S2, n) for n ≥ 3 is trivial
(Theorem 2.1). One is led to ask: For which parameters do the fiber maps Πr

induce a trivial fiber bundle structure on F (Sk, n)?

We observed in Section 2 that the bundle structure on F (Sk, 2) given by Π1

is equivalent to the tangent bundle over Sk. Thus, Π1(S
k, 2) is a trivial fiber

map if and only if Sk is parallelizable (see Hirzebruch [H]). This indicates
that the triviality question for the fiber maps Πr is difficult in general.
Our results on the cohomology algebra of F (Sk, n) for even k, k ≥ 2, exclude
a trivial bundle structure on F (Sk, n) induced by Π1: There is 2-torsion in
H∗(F (Sk, n)) while the cohomology algebra of the cartesian product of base
space and fiber is torsion-free. However, the cohomology algebra of F (Sk, n)
for odd k coincides with the cohomology algebra of the cartesian product of
base space and fiber. Such product decomposition might as well hold beyond
the level of cohomology.
Recall from previous arguments that F (Sk, 3) is fiber homotopy equivalent to
the Stiefel manifold Vk+1,2 of orthogonal 2-frames in Rk+1, both considered as
fiber bundles over Sk. Fiber bundles are trivial if and only if their associated
principal bundles are trivial [St, Part I, Cor. 8.4]. Hence, Vk+1,2 is a trivial
fiber bundle if and only if O(k+1), considered as a fiber bundle over Sk, admits
a section — which again is the case iff k = 1, 3 or 7. Moreover, Vk+1,2 is fiber
homotopy equivalent to a trivial bundle if and only if it is trivial itself, hence
iff k = 1, 3 or 7 [Ja, Thm. 1.11]. We conclude that F (Sk, 3) is a non-trivial
fiber bundle over Sk for k 6= 1, 3 or 7.
For the 1-sphere we have shown triviality of F (S1, n) as a fiber bundle over S1 in
Section 2. Analogously, we obtain a trivialization of the fiber bundle structure
on F (S3, n) given by Π1, using the group structure of S3. The 7-sphere does
not carry the structure of a topological group [Bd, VI, Cor. 15.21]. However,
one can establish an explicit equivalence of fiber bundles between F (S7, 3) and
V8,2 × R7 × R, both considered as fiber bundles over S7 in the natural way.
As mentioned above, V8,2 is a trivial fiber bundle over S7, and we can thus
conclude triviality of F (S7, 3) over S7.
Thus it remains to decide whether the bundle structure on F (Sk, n) induced
by Π1 is trivial for n > 3 and odd k ≥ 5.

We have seen in Section 2 that Π3 induces a trivial bundle structure on
F (S2, n). Our collapsing results on the spectral sequences E∗(Π3(S

k, n)) for
both odd and even k would be consistent with triviality of the fiber bundle
structure given by Π3. However, except for k = 2 this leaves us with an open
question.

Remark 6.4 After completion of this paper, we learned about recent work
by Fadell & Husseini [FaH] which addresses the question of configuration
space bundles being (fiber-homotopically) trivial. The paper is mostly con-
cerned with configuration spaces of Euclidean spaces; a complete discussion for
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configuration spaces of spheres is announced, but the results are stated only
for spheres of odd dimension.
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Introduction

In this Note, we say that a compact complex manifoldX is a Fano-like manifold
if it becomes Fano after a finite sequence of blow-ups along smooth connected
centers, i.e if there exist a Fano manifold X̃ and a finite sequence of blow-
ups along smooth connected centers π : X̃ → X . We say that a Fano-like
manifold X is simple if there exists a smooth submanifold Y of X (Y may not
be connected) such that the blow-up of X along Y is Fano. If Z is a projective
manifold, we call smooth blow-down of Z (with an s-dimensional center) a map
π and a manifold Z ′ such that π : Z → Z ′ is the blow-up of Z ′ along a smooth
connected submanifold (of dimension s). We say that a smooth blow-down of
Z is projective (resp. non projective) if Z ′ is projective (resp. non projective).

It is well-known that any Moishezon manifold becomes projective after a finite
sequence of blow-ups along smooth centers. Our aim is to bound the geometry
of Moishezon manifolds becoming Fano after one blow-up along a smooth center,
i.e the geometry of simple non projective Fano-like manifolds.

Our results in this direction are the following, the simple proof of Theorem 1
has been communicated to us by Daniel Huybrechts.

Theorem 1. Let Z be a Fano manifold of dimension n. Then, there is only a
finite number of smooth blow-downs of Z.
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Let us recall here that the assumption Z Fano is essential : there are projective
smooth surfaces with infinitely many −1 rational curves, hence with infinitely
many smooth blow-downs.

Since there is only a finite number of deformation types of Fano manifolds of
dimension n (see [KMM92] and also [Deb97] for a recent survey on Fano mani-
folds) and since smooth blow-downs are stable under deformations [Kod63], we
get the following corollary (see section 1 for a detailed proof) :

Corollary 1. There is only a finite number of deformation types of simple
Fano-like manifolds of dimension n.

The next result is essentially due to Wísniewski ([Wis91], prop. (3.4) and (3.5)).
Before stating it, let us define

dn = max{(−KZ)n |Z is a Fano manifold of dimensionn}
and

ρn = max{ρ(Z) := rk(Pic(Z)/Pic0(Z)) |Z is a Fano manifold of dimensionn}.
The number ρn is well defined since there is only a finite number of deformation
types of Fano manifolds of dimension n and we refer to [Deb97] for an explicit
bound for dn.

Theorem 2. Let X be an n-dimensional simple non projective Fano-like mani-
fold, Y a smooth submanifold such that the blow-up π : X̃ → X of X along Y
is Fano, and E the exceptional divisor of π. Then

(i) if each component of Y has Picard number equal to one, then each com-
ponent of Y has ample conormal bundle in X and is Fano. Moreover

deg−KX̃ (E) := (−KX̃|E′)
n−1 ≤ (ρn − 1)dn−1;

(ii) if Y is a curve, then (each component of) Y is a smooth rational curve
with normal bundle OP1(−1)⊕n−1.

Finally, we prove here the following result :

Theorem 3. Let Z be a Fano manifold of dimension n and index r. Suppose
there is a non projective smooth blow-down of Z with an s-dimensional center.
Then

r ≤ (n− 1)/2 and s ≥ r.
Moreover,

(i) if r > (n− 1)/3, then s = n− 1− r ;
(ii) if r < (n− 1)/2 and s = r, then Y ' Pr.

Recall that the index of a Fano manifold Z is the largest integer m such that
−KZ = mL for L in the Picard group of Z.

Remarks.

a) For a Fano manifold X of dimension n and index r with second Betti
number greater than or equal to 2, it is known that 2r ≤ n+ 2 [Wi91],
with equality if and only if X ' Pr−1 × Pr−1.
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b) Fano manifolds of even dimension (resp. odd dimension n) and middle
index (resp. index (n+ 1)/2) with b2 ≥ 2 have been intensively studied,
see for example [Wis93]. Our Theorem 3 shows that there are no non
projective smooth blow-down of such a Fano manifold, without using any
explicit classification.

c) The assumption that there is a non projective smooth blow-down of Z is
essential in Theorem 3 (i) : the Fano manifold obtained by blowing-up
P2r−1 along a Pr−2 has index r.

1. Proof of Theorem 1 and Corollary 1. An example.

1.1. Proof of Theorem 1. Thanks to D. Huybrechts for the following proof.
Let Z be a Fano manifold and π : Z → Z ′ a smooth blow-down of Z with an s-
dimensional connected center. Let f be a line contained in a non trivial fiber of
π. Then, the Hilbert polynomial P−KZ (m) := χ(f,m(−KZ)|f ) is determined
by s and n since−KZ ·f = n−s−1 and f is a smooth rational curve. Since−KZ

is ample, the Hilbert scheme Hilb−KZ of curves in Z having P−KZ as Hilbert
polynomial is a projective scheme, hence has a finite number of irreducible
components. Since each curve being in the componentH of Hilb−KZ containing
f is contracted by π, there is only a finite number of smooth blow-downs of Z
with an s-dimensional center.

1.2. Proof of Corollary 1. Let us first recall ([Deb97] section 5.2) that
there exists an integer δ(n) such that every Fano n-fold can be realized as a
smooth submanifold of P2n+1 of degree at most δ(n). Let us denote by T
a closed irreducible subvariety of the disjoint union of Chow varieties of n-
dimensional subvarieties of P2n+1 of degree at most δ(n), and by π : XT → T
the universal family.
Step 1 : Stability of smooth blow-downs. Fix t0 in the smooth locus Tsmooth
of T and suppose that Xt0 := π−1(t0) is a Fano n-fold and there exists a
smooth blow-down of Xt0 (denote by Et0 the exceptional divisor, P its Hilbert
polynomial with respect to OP2n+1(1)). Let S be the component of the Hilbert
scheme of (n− 1)-dimensional subschemes of P2n+1 with Hilbert polynomial P
and u : ES → S the universal family. Finally, let I be the following subscheme
of T × S :

I = {(t, s) |u−1(s) ⊂ Xt}
and p : I → T the proper algebraic map induced by the first projection.
Thanks to the analytic stability of smooth blow-downs due to Kodaira (see
[Kod63], Theorem 5), the image p(I) contains an analytic open neighbour-
hood of t0 hence it also contains a Zariski neighbourhood of t0. Moreover,
since exceptional divisors are rigid, the fiber p−1(t) is a single point for t in
a Zariski neighbourhood of t0. Finally, we get algebraic stability of smooth
blow-downs (the Pr-fibered structure of exceptional divisor is also analytically
stable - [Kod63], Theorem 4 - hence algebraically stable by the same kind of
argument).
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Step 2 : Stratification of T by the number of smooth blow-downs. For any
integer k ≥ 0, let us define

Uk(T ) = {t ∈ Tsmooth |Xt is a Fano manifold and there exists at least
k smooth blow-downs of Xt};

and U−1(T ) = Tsmooth. Thanks to Step 1, Uk(T ) is Zariski open in T , and
thanks to Theorem 1, ⋂

k≥−1

Uk(T ) = ∅.

Since {Uk(T )}k≥−1 is a decreasing sequence of Zariski open sets, by noetherian
induction, we get that there exists an integer k such that Uk(T ) = ∅ and we
can thus define

k(T ) := max{k ≥ −1 |Uk(T ) 6= ∅}, U(T ) := Uk(T )(T ).

Finally, we have proved that U(T ) is a non empty Zariski open set of Tsmooth
such that for every t ∈ U(T ), Zt is a Fano n-fold with exactly k(T ) smooth
blow-downs (k(T ) = −1 means that for every t ∈ Tsmooth, Xt is not a Fano
manifold).
Now let T0 = T , and T1 be any closed irreducible component of T0 \ U(T0).
We get U(T1) as before and denote by T2 any closed irreducible component of
T1 \U(T1), and so-on. Again by noetherian induction, this process terminates
after finitely many steps and we get a finite stratification of T such that each
strata corresponds to an algebraic family of Fano n-folds with the same number
of smooth blow-downs.

Step 3 : Conclusion. Since there is only a finite number of irreducible com-
ponents in the Chow variety of Fano n-folds, each being finitely stratified by
Step 2, we get a finite number of deformation types of simple Fano-like n-folds.

As it has been noticed by Kodaira, it is essential to consider only smooth blow-
downs. A −2 rational smooth curve on a surface is, in general, not stable under
deformations of the surface.

1.3. An example. Before going further, let us recall the following well known
example. Let Z be the projective 3-fold obtained by blowing-up P3 along a
smooth curve of type (3, 3) contained in a smooth quadric Q of P3. Let π
denotes the blow-up Z → P3. Then Z is a Fano manifold of index one and
there are at least three smooth blow-downs of Z : π, which is projective,
and two non projective smooth blow-downs consisting in contracting the strict
transform Q′ of the quadric Q along one of its two rulings (the normal bundle
of Q′ in Z is O(−1,−1)).

Lemma 1. There are exactly three smooth blow-downs of Z.

Proof : the Mori cone NE(Z) is a 2-dimensional closed cone, one of its two
extremal rays being generated by the class of a line fπ contained in a non trivial
fiber of π, the other one, denoted by [R], by the class of one of the two rulings
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of Q′ (the two rulings are numerically equivalent, the corresponding extremal
contraction consists in contractingQ′ to a singular point in a projective variety,
hence is not a smooth blow-down). If E is the exceptional divisor of π, we have

E · [fπ] = −1, E · [R] = 3, Q′ · [fπ] = 1, Q′ · [R] = −1.

Now suppose there exists a smooth blow-down τ of Z with a 1-dimensional
center, which is not one of the three previously described. Let L be a line
contained in a non trivial fiber of τ , then since −KZ · [L] = 1, we have [L] =
a[fπ] + b[R] for some strictly positive numbers such that a + b = 1. Since we
have moreover

Q′ · [L] = a− b = 2a− 1 ∈ Z and E · [L] = 3b− a = 3− 4a,

we get a = b = 1/2. Therefore Q′ · [L] = 0 hence L is disjoint from Q′ (it can
not be contained in Q′ since Q′|Q′ = O(−1,−1)). It implies that there are two

smooth blow-downs of Z with disjoint exceptional divisors, which is impossible
since ρ(Z) = 2.
Finally, if there is a smooth blow-down τ : Z → Z ′ of Z with a 0-dimensional
center, then Z ′ is projective and τ is a Mori extremal contraction, which is
again impossible since we already met the two Mori extremal contractions on
Z.

2. Non projective smooth blow-downs on a center with Picard
number 1. Proof of Theorem 2.

The proof of Theorem 2 we will give is close to Wísniewski’s one but we give
two intermediate results of independant interest.

2.1. On the normal bundle of the center. Let us recall that a smooth
submanifold A in a complex manifold W is contractible to a point (i.e. there
exists a complex space W ′ and a map µ : W → W ′ which is an isomorphism
outside A and such that µ(A) is a point) if and only ifN ∗A/W is ample (Grauert’s

criterion [Gra62]).
The following proposition was proved by Campana [Cam89] in the case where
Y is a curve and dim(X) = 3.

Proposition 1. Let X be a non projective manifold, Y a smooth submanifold
of X such that the blow-up π : X̃ → X of X along Y is projective. Then, for
each connected component Y ′ of Y with ρ(Y ′) = 1, the conormal bundle N∗Y ′/X

is ample.

Before the proof, let us remark that Y is projective since the exceptional divisor
of π is.

Proof of Proposition 1 : (following Campana) we can suppose that Y is
connected. Let E be the exceptional divisor of π and f a line contained in a non
trivial fiber of π. Since E ·f = −1, there is an extremal ray R of the Mori cone
NE(X̃) such that E ·R < 0. Since E ·R < 0, R defines an extremal ray of the
Mori cone NE(E) which we still denote by R (even if NE(E) is not a subcone
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of NE(X̃) in general !). Since ρ(Y ) = 1, we have ρ(E) = 2, hence NE(E) is a
2-dimensional closed cone, one of its two extremal rays being generated by f .
Then :

- either R is not generated by f and E|E is strictly negative on NE(E)\{0}.
In that case, −E|E = OE(1) is ample by Kleiman’s criterion, which means
that N∗Y/X is ample.

- or, R is generated by f . In that case, the Mori contraction ϕR : X̃ → Z
factorizes through π :

X̃

π

��

ϕR // Z

X

ψ

??��������

where ψ : X → Z is an isomorphism outside Y . Since the variety Z is
projective and X is not, ψ is not an isomorphism and since ρ(Y ) = 1, Y is
contracted to a point by ψ, hence N∗Y/X is ample by Grauert’s criterion.

Let us prove the following consequence of Proposition 1:

Proposition 2. Let X be a non projective manifold, Y a smooth submanifold
of X such that the blow-up π : X̃ → X of X along Y is projective with −KX̃

numerically effective (nef). Then, each connected component Y ′ of Y with
ρ(Y ′) = 1 is a Fano manifold.

Proof : we can suppose that Y is connected. Let E be the exceptional
divisor of π. Since −E|E is ample by Proposition 1, the adjunction formula
−KE = −KX̃|E −E|E shows that −KE is ample, hence E is Fano. By a result

of Szurek and Wísniewski [SzW90], Y is itself Fano.

2.2. Proof of Theorem 2. For the first assertion, we only have to prove
that

deg−KX̃ (E) ≤ (ρn − 1)dn−1.

Let Y ′ be a connected component of Y and E ′ = π−1(Y ′). Then, since −E|E′

is ample :

deg−KX̃ (E′) = (−KX̃|E′)
n−1 = (−KE′ +E|E′)n−1 ≤ (−KE′)n−1 ≤ dn−1.

Now, if m is the number of connected components of Y , then

ρn ≥ ρ(X̃) = m+ ρ(X) ≥ m+ 1.

Putting all together, we get

deg−KX̃ (E) ≤ (ρn − 1)dn−1,

which ends the proof of the first point.
We refer to [Wis91] prop. (3.5) for the second point.
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3. On the dimension of the center of non projective smooth
blow-downs. Proof of Theorem 3.

Theorem 3 is a by-product of the more precise following statement and of
Proposition 3 below :

Theorem 4. Let Z be a Fano manifold of dimension n and index r, π : Z →
Z ′ be a non projective smooth blow-down of Z, Y ⊂ Z ′ the center of π. Let f
be a line contained in a non trivial fiber of π, then

(i) if f generates an extremal ray of NE(Z), then dim(Y ) ≥ (n− 1)/2.
(ii) if f does not generate an extremal ray of NE(Z), then dim(Y ) ≥ r.

Moreover, if dim(Y ) = r, then Y is isomorphic to Pr.

In both cases (i) and (ii), Y contains a rational curve.

The proof relies on Wísniewski’s inequality (see [Wis91] and [AnW95]), which
we recall now for the reader’s convenience : let ϕ : X → Y be a Fano-
Mori contraction (i.e −KX is ϕ-ample) on a projective manifold X , Exc(ϕ) its
exceptional locus and

l(ϕ) := min{−KX · C ; C rational curve contained in Exc(ϕ)}
its length, then for every non trivial fiber F :

dim Exc(ϕ) + dim(F ) ≥ dim(X)− 1 + l(ϕ).

Proof of Theorem 4. The method of proof is taken from Andreatta’s recent
paper [And99] (see also [Bon96]).
First case : suppose that a line f contained in a non trivial fiber of π generates
an extremal ray R of NE(Z). Then the Mori contraction ϕR : Z → W facto-
rizes through π :

Z

π

��

ϕR // W

Z ′
ψ

>>||||||||

where ψ is an isomorphism outside Y . In particular, the exceptional locus E
of π is equal to the exceptional locus of the extremal contraction ϕR.
Let us now denote by ψY the restriction of ψ to Y , s = dim(Y ), πE and ϕR,E
the restriction of π and ϕR to E. Since Z ′ is not projective, ψY is not a finite
map. Since ϕR is birational, W is Q-Gorenstein, hence KW is Q-Cartier and
KZ′ = ψ∗KW . Therefore, KZ′ is ψ-trivial, hence KY +detN∗Y/Z′ is ψY -trivial.

Moreover, OE(1) = −E|E is ϕR,E-ample by Kleiman’s criterion, hence N∗Y/Z′

is ψY -ample. Finally, ψY is a Fano-Mori contraction, of length greater or equal
to n− s = rk(N∗Y/Z′ ). Together with Wísniewski’s inequality applied on Y , we

get that for every non trivial fiber F of ψY

2s ≥ dim(F ) + dim Exc(ψY ) ≥ n− s+ s− 1

hence 2s ≥ n − 1. Moreover, Exc(ψY ) is covered by rational curves, hence Y
contains a rational curve.
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Second case : suppose that a line f contained in a non trivial fiber of π does not
generate an extremal ray R of NE(Z). In that case, since E · f = −1, there is
an extremal ray R of NE(Z) such that E ·R < 0. In particular, the exceptional
locus Exc(R) of the extremal contraction ϕR is contained in E, and since f is
not on R, we get for any fiber F of ϕR :

dim(F ) ≤ s = dim(Y ).

By the adjunction formula, −KE = −KZ|E−E|E , the length lE(R) of R as an
extremal ray of E satisfies

lE(R) ≥ r + 1,

where r is the index of Z. Together with Wísniewski’s inequality applied on
E, we get :

r + 1 + (n− 1)− 1 ≤ s+ dim(Exc(R)) ≤ s+ n− 1.

Finally, we get r ≤ s, and since the fibers of ϕR are covered by rational curves,
there is a rational curve in Y . Suppose now (up to the end) that r = s. Then
E is the exceptional locus of the Mori extremal contraction ϕR. Moreover,
KZ+r(−E) is a good supporting divisor for ϕR, and since every non trivial fiber
of ϕR has dimension r, ϕR is a smooth projective blow-down. In particular,
the restriction of π to a non trivial fiber F ' Pr induces a finite surjective map
π : F ' Pr → Y hence Y ' Pr by a result of Lazarsfeld [Laz83].
This ends the proof of Theorem 4.

The proof of Theorem 4 does not use the hypothesis Z Fano in the first case.
We therefore have the following :

Corollary 2. Let Z be a projective manifold of dimension n, π : Z → Z ′ be
a non projective smooth blow-down of Z, Y ⊂ Z ′ the center of π. Let f be a
line contained in a non trivial fiber of π and suppose f generates an extremal
ray of NE(Z). Then dim(Y ) ≥ (n − 1)/2. Moreover, if dim(Y ) = (n − 1)/2,
then Y is contractible on a point.

We finish this section by the following easy proposition, which combined with
Theorem 4 implies Theorem 3 of the Introduction :

Proposition 3. Let Z be a Fano manifold of dimension n and index r, π :
Z → Z ′ be a smooth blow-down of Z, Y ⊂ Z ′ the center of π. Then n − 1 −
dim(Y ) is a multiple of r.

Proof. Write

−KZ = rL and −KZ = −π∗KZ′ − (n− 1− dim(Y ))E

where E is the exceptional divisor of π. Let f be a line contained in a fiber of
π. Then rL · f = n− 1− dim(Y ), which ends the proof.

Proof of Theorem 3. Let Z be a Fano manifold of dimension n and index
r and suppose there is a non projective smooth blow-down of Z with an s-
dimensional center. By Proposition 3, there is a strictly positive integer k
such that n − 1 − kr = s. By Theorem 4, either n − 1 − kr ≥ (n − 1)/2 or
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n−1−kr ≥ r. In both cases, it implies that r ≤ (n−1)/2 and therefore s ≥ r.
If r > (n − 1)/3, since n− 1 ≥ (k + 1)r > (k + 1)(n− 1)/3, we get k = 1 and
s = n− 1− r.

4. Rational curves on simple Moishezon manifolds.

The arguments of the previous section can be used to deal with the following
well-known question : does every non projective Moishezon manifold contain
a rational curve ? The answer is positive in dimension three (it is due to
Peternell [Pet86], see also [CKM88] p. 49 for a proof using the completion of
Mori’s program in dimension three).

Proposition 4. Let Z be a projective manifold, π : Z → Z ′ be a non projective
smooth blow-down of Z. Then Z ′ contains a rational curve.

Proof. With the notations of the previous section, it is clear in the first case
where a line f contained in a non trivial fiber of π generates an extremal ray R
of NE(Z) (in that case, the center of π contains a rational curve). In the second
case, since f is not extremal and KZ is not nef, there is a Mori contraction ϕ
on Z such that any rational curve contained in a fiber of ϕ is mapped by π to
a non constant rational curve in Z ′.
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Abstract. For a discrete valuation field K, the unit group K× of
K has a natural decreasing filtration with respect to the valuation,
and the graded quotients of this filtration are given in terms of the
residue field. The Milnor K-group KM

q (K) is a generalization of the
unit group, and it also has a natural decreasing filtration. However, if
K is of mixed characteristics and has an absolute ramification index
greater than one, the graded quotients of this filtration are not yet
known except in some special cases.

The aim of this paper is to determine them when K is absolutely
tamely ramified discrete valuation field of mixed characteristics (0, p >
2) with possibly imperfect residue field.

Furthermore, we determine the kernel of the Kurihara’s KM
q -

exponential homomorphism from the differential module to the Milnor
K-group for such a field.

1991 Mathematics Subject Classification: 19D45, 11S70
Keywords and Phrases: The Milnor K-group, Complete Discrete Val-
uation Field, Higher Local Class Field Theory

1 Introduction

For a ring R, the Milnor K-group of R is defined as follows. We denote the unit
group of R by R×. Let J(R) be the subgroup of the q-fold tensor product of
R× overZ generated by the elements a1⊗· · ·⊗aq , where a1, . . . , aq are elements
of R× such that ai + aj = 0 or 1 for some i 6= j. Define

KM

q (R) = (R× ⊗Z · · · ⊗Z R
×)/J(R).
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We denotes the image of a1 ⊗ · · · ⊗ aq by {a1, . . . , aq}.
Now we assume K is a discrete valuation field. Let vK be the normalized

valuation of K. Let OK , F and mK be the valuation ring, the residue field
and the valuation ideal of K, respectively. There is a natural filtration on K×

defined by

U iK =

{
O×K for i = 0

1 + mi
K for i ≥ 1.

We know that the graded quotients U iK/U
i+1
K are isomorphic to F× if i = 0

and F if i ≥ 1. Similarly, there is a natural filtration on KM
q (K) defined by

U iKM

q (K) =
{
{x1, . . . , xq} ∈ KM

q (K)
∣∣∣ x1 ∈ U iK , x2, . . . , xq ∈ K×

}
.

Let griKM
q (K) = U iKM

q (K)/U i+1KM
q (K) for i ≥ 0. griKM

q (K) are deter-
mined in the case that the characteristics of K and F are both equal to 0
in [5], and in the case that they are both nonzero in [2] and [9]. If K is
of mixed characteristics (0, p), griKM

q (K) is determined in [3] in the range

0 ≤ i ≤ eKp/(p − 1), where eK = vK(p). However, griKM
q (K) still remains

mysterious for i > ep/(p− 1). In [16], Kurihara determined griKM
q (K) for all

i if K is absolutely unramified, i.e., vK(p) = 1. In [13] and [19], griKM
q (K) is

determined for some K with absolute ramification index greater than one.
The purpose of this paper is to determine griKM

q (K) for all i and a discrete
valuation field K of mixed characteristics (0, p), where p is an odd prime and
p - eK . We do not assume F to be perfect. Note that the graded quotient
griKM

q (K) is equal to griKM
q (K̂), where K̂ is the completion of K with respect

to the valuation, thus we may assume that K is complete under the valuation.
Let F be a field of positive characteristic. Let Ω1

F = Ω1
F/Z

be the module

of absolute differentials and ΩqF the q-th exterior power of Ω1
F over F . As in

[7], we define the following subgroups of ΩqF . Zq1 = Z1Ω
q
F denotes the kernel of

d : ΩqF → Ωq+1
F and Bq1 = B1Ω

q
F denotes the image of d : Ωq−1

F → ΩqF . Then
there is an exact sequence

0 −→ Bq1 −→ Zq1
C−→ ΩqF −→ 0,

where C is the Cartier operator defined by

xp
dy1
y1
∧ . . . dyq

yq
7−→ x

dy1
y1
∧ . . . dyq

yq
,

Bq1 → 0.

The inverse of C induces the isomorphism

C−1 : ΩqF
∼=−→ Zq1/B

q
1

x
dy1
y1
∧ . . . ∧ dyq

yq
7−→ xp

dy1
y1
∧ . . . ∧ dyq

yq

(1)
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for x ∈ F and y1, . . . , yq ∈ F×. For i ≥ 2, let Bqi = BiΩ
q
F (resp. Zqi = ZiΩ

q
F )

be the subgroup of ΩqF defined inductively by

Bqi ⊃ Bqi−1, C−1 : Bqi−1

∼=−→ Bqi /B
q
1

(resp. Zqi ⊂ Zqi−1, C−1 : Zqi−1

∼=−→ Zqi /B
q
1).

Let Zq∞ be the intersection of all Zqi for i ≥ 1. We denote Zqi = ΩqF for i ≤ 0.
The main result of this paper is the following

Theorem 1.1. Let K be a discrete valuation field of characteristic zero, and
F the residue field of K. Assume that p = char(F ) is an odd prime and
e = eK = vK(p) is prime to p. For i > ep/(p− 1), let n be the maximal integer
which satisfies i− ne ≥ e/(p− 1) and let s = vp(i− ne), where vp is the p-adic
order. Then

griKM

q (K) ∼= Ωq−1
F /Bq−1

s+n.

Corollary 1.2. Let U i(KM
q (K)/pm) be the image of U iKM

q (K)

in KM
q (K)/pmKM

q (K) for m ≥ 1 and gri(KM
q (K)/pm) =

U i(KM
q (K)/pm)/U i+1(KM

q (K)/pm). Then

gri(KM

q (K)/pm) ∼=





Ωq−1
F /Bq−1

s+n ( if m > s+ n)

Ωq−1
F /Zq−1

m−n ( if m ≤ s+ n, i− en 6= e
p−1 )

Ωq−1
F /(1 + aC)Zq−1

m−n+1 ( if m ≤ s+ n, i− en = e
p−1 )

where a is the residue class of p/πe for a fixed prime element π of K.

Remark 1.3. If 0 ≤ i ≤ ep/(p− 1), griKM
q (K) is known by [3].

To show (1.1), we use the (truncated) syntomic complexes with respect to
OK and OK/pOK , which were introduced in [11]. In [12], it was proved that
there exists an isomorphism between some subgroup of the q-th cohomology
group of the syntomic complex with respect to OK and some subgroup of
KM
q (K )̂ which includes the image of U 1KM

q (K) (cf. (2.1)). On the other hand,
the cohomology groups of the syntomic complex with respect to OK/pOK can
be calculated easily because OK/pOK depends only on F and e. Comparing
these two complexes, we have the exact sequence (2.4)

H1(Sq) −→ Ω̂q−1
A/Z

/pdΩ̂q−2
A/Z

expp−−−→ KM

q (K )̂

as an long exact sequence of syntomic complexes, where Sq is the truncated
translated syntomic complex with respect to OK/pOK , hat means the p-adic
completion, and expp is the Kurihara’s KM

q -exponential homomorphism with
respect to p. For more details, see Section 2. The left hand side of this exact
sequence is determined in (2.6), and we have (1.1) by calculating these groups
and the relations explicitly.
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In Section 2, we see the relations between the syntomic complexes mentioned
above, the Milnor K-groups, and the differential modules. The method of the
proof of (1.1) is mentioned here. Note that we do not assume p - e in this section
and we get the explicit description of the cohomology group of the syntomic
complex with respect to OK/pOK which was used in the proof of (1.1) without
the assumption p - e. In Section 3, we calculate differential module of OK .
We calculate the kernel of the KM

q -exponential homomorphism (4) explicitly in
Section 4, 5, 6 and 7. In Section 8, we show Theorem 1.1 and Corollary 1.2.
In Section 9, we have an application related to higher local class field theory.

Notations and Definitions. All rings are commutative with 1. For an element
x of a discrete valuation ring, x̄ means the residue class of x in the residue field.
For an abelian group M and positive integer n, we denote M/pn = M/pnM
and M̂ = lim←− nM/pn. For a subset N of M , 〈N〉 means the subgroup of M

generated by N . For a ring R, let Ω1
R = Ω1

R/Z
be the absolute differentials of

R and ΩqR the q-th exterior power of Ω1
R over R for q ≥ 2. We denote Ω0

R = R
and ΩqR = 0 for negative q. If R is of characteristic zero, let

ZnΩ̂
q
R = Ker

(
Ω̂qR

d−→ Ω̂q+1
R /pn

)

for positive n. For an element ω ∈ Ω̂qR, let vp(ω) be the maximal n which

satisfies ω ∈ ZnΩ̂qR. For n ≤ 0, let ZnΩ̂
q
R = Ω̂qR. Let Z∞Ω̂qR be the intersection

of ZnΩ̂
q
R of all n ≥ 0. All complexes are cochain complexes. For a morphism

of non-negative complexes f : C · → D·, [f : C · → D·] and



C0 d−−−−→ C1 d−−−−→ C2 d−−−−→ . . .
yf

yf
yf

D0 d−−−−→ D1 d−−−−→ D2 d−−−−→ . . .




both denote the mapping fiber complex with respect to the morphism f ,
namely, the complex

(C0 d−→ C1 ⊕D0 d−→ C2 ⊕D1 d−→ . . . ),

where the leftmost term is the degree-0 part and where the differentials are
defined by

Ci ⊕Di−1 −→ Ci+1 ⊕Di

(a, b) 7−→ (da, f(a)− db).
Acknowledgements. I would like to express my gratitude to Professor Kazuya

Kato, Professor Masato Kurihara and Professor Ivan Fesenko for their valuable
advice. I also wish to thank Takao Yamazaki for many helpful comments.

In [20], I.Zhukov calculated the Milnor K-groups of multidimensional com-
plete fields in a different way. He gives an explicit description by using topo-
logical generators. In [8], B.Kahn also calculated K2(K) of local fields with
perfect residue fields without an assumption p - eK .
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2 Exponential homomorphism and syntomic cohomology

Let K be a complete discrete valuation field of mixed characteristics (0, p).
Assume that p is an odd prime. Let A = OK be the ring of integers of K
and F the residue field of K. Let A0 be the Cohen subring of A with respect
to F , namely, A0 is a complete discrete valuation ring under the restriction
of the valuation of A with the residue field F and p is a prime element of A0

(cf. [4], IX, Section 2). Let K0 be the fraction field of A0. Then K/K0 is
finite and totally ramified extension of extension degree e = eK . We denote
e′ = ep/(p− 1). Let π be a prime element of K and fix it. We further assume
that F has a finite p-base and fix their liftings T ⊂ A0. We can take the
frobenius endomorphism f of A0 such that f(T ) = T p for T ∈ T (cf. [12] or
[17]). Let U iKM

q (A) be the subgroup defined by the same way of U iKM
q (K),

namely,

U iKM

q (A) =
〈
{x1, . . . , xq} ∈ KM

q (A)
∣∣∣ x1 ∈ U iK , x2, . . . , xq ∈ A×

〉
.

Let U iKM
q (K )̂ (resp. U iKM

q (A)̂ ) be the closure of the image of U iKM
q (K) (resp.

U iKM
q (A)) in KM

q (K )̂ (resp. KM
q (A)̂ ). Note that griKM

q (K) ∼= griKM
q (K )̂ for

i > 0.
At first, we introduce an isomorphism between U 1KM

q (K )̂ and a subgroup of
the cohomology group of the syntomic complex with respect to A. For further
details, see [12]. Let B = A0[[X ]], where X is an indeterminate. We extend
the operation of the frobenius f on B by f(X) = Xp. We define I and J as
follows.

J = Ker
(
B

X 7→π−−−→ A
)

I = Ker
(
B

X 7→π−−−→ A
mod p−−−−−→ A/p

)
= J + pB.

Let D and J ⊂ D be the PD-envelope and the PD-ideal with respect to B → A,
respectively ([1],Section 3). Let I ⊂ D be the PD-ideal with respect to B →
A/p. D is also the PD-envelope with respect to B → A/p. Let J [q] and I [q] be
their q-th divided powers. Notice that I [1] = I , J [1] = J and I [0] = J [0] = D.
If q is an negative integer, we denote J [q] = I [q] = D. We define the complexes
J[q] and I[q] as

J[q] =

(
J [q] d→ J [q−1] ⊗

B
Ω̂1
B

d→ J [q−2] ⊗
B

Ω̂2
B −→ · · ·

)

I[q] =

(
I [q] d→ I [q−1] ⊗

B
Ω̂1
B

d→ I [q−2] ⊗
B

Ω̂2
B −→ · · ·

)
,

where Ω̂qB is the p-adic completion of ΩqB . The leftmost term of each complex
is the degree 0 part. We define D = I[0] = J[0]. For 1 ≤ q < p, let S(A,B)(q)
and S ′(A,B)(q) be the mapping fibers of

J[q] 1−fq−→ D

I[q]
1−fq−→ D,
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respectively, where fq = f/pq. S(A,B)(q) is called the syntomic complex of A
with respect to B, and S ′(A,B)(q) is also called the syntomic complex of A/p
with respect to B (cf. [11]). We notice that

Hq(S(A,B)(q))

=
Ker

(
(D⊗Ω̂qB)⊕ (D⊗Ω̂q−1

B )→ (D⊗Ω̂q+1
B )⊕ (D⊗Ω̂qB)

)

Im
(
(J⊗Ω̂q−1

B )⊕ (D⊗Ω̂q−2
B )→ (D⊗Ω̂qB)⊕ (D⊗Ω̂q−1

B )
) ,

(2)

where the maps are the differentials of the mapping fiber. If q ≥ p, we cannot
define the map 1− fq on J[q] and I[q], but we define Hq(S(A,B)(q)) by using
(2) in this case. This is equal to the cohomology of the mapping fiber of

σ>q−3J[q] 1−fq−→ σ>q−3D,

where σ>nC
· means the brutal truncation for a complex C ·, i.e., (σ>nC

·)i is
Ci if i > n and 0 if i ≤ n. Let U1(D ⊗ Ω̂q−1

B ) be the subgroup of D ⊗ Ω̂q−1
B

generated by XD⊗ Ω̂q−1
B , (Xe)[m]D⊗ Ω̂q−1

B for all m ≥ 1 and D⊗ Ω̂q−2
B ∧ dX .

Let U1Hq(S(A,B)(q)) be the subgroup of Hq(S(A,B)(q)) generated by the
image of (D ⊗ Ω̂qB)⊕ U1(D ⊗ Ω̂q−1

B ). Then there is a result of Kurihara:

Theorem 2.1 (Kurihara, [12]). A and B are as above. Then

U1Hq(S(A,B)(q)) ∼= U1KM

q (A)̂ .

Furthermore, we have the following

Lemma 2.2. A and K are as above. Assume that A has the primitive p-th
roots of unity. Then

(i) The natural map KM
q (A)̂ → KM

q (K )̂ is an injection.

(ii) U1Hq(S(A,B)(q)) ∼= U1KM
q (A)̂ ∼= U1KM

q (K )̂ .

Remark 2.3. When F is separably closed, this lemma is also the consequence
of the result of Kurihara [14]. But even if F is not separably closed, calculation
goes similarly to [14].

Proof of Lemma 2.2. The first isomorphism of (ii) is (2.1). The natural map

U1KM

q (A)̂ → U1KM

q (K )̂

is a surjection by the definition of the filtrations and the fact that we can define
an element {1+πia1, a2, . . . , aq−1, π} as an element of KM

q (A)̂ by using Dennis-
Stain Symbols, see [17]. Thus we only have to show (i). Let ζp be a primitive
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p-th root of unity and fix it. Let µp be the subgroup of A× generated by ζp.
For n ≥ 2, see the following commutative diagram.

KM
q−1(K)/p

{∗,ζp}−−−−→ KM
q (A)/pn−1 p−−−−→ KM

q (A)/pn

=

y
y

y

KM
q−1(K)/p

{∗,ζp}−−−−→ KM
q (K)/pn−1 p−−−−→ KM

q (K)/pn

−−−−→ KM
q (A)/p −−−−→ 0
y

−−−−→ KM
q (K)/p −−−−→ 0.

(3)

The bottom row are exact by using Galois cohomology long exact sequence
with respect to the Bockstein

· · · → Hq−1(K,Z/p(q))→ Hq(K,Z/pn−1(q))→ Hq(K,Z/pn(q))→ . . .

and

KM

q (K)/pn ∼= Hq(K,Z/pn(q))

by [3]. The map {∗, ζp} in the top row is well-defined if KM
q (A)/pn−1 →

KM
q (K)/pn−1 is injective, and the top row are exact except at KM

q (A)/pn−1.
Using the induction on n, we only have to show the injectivity of KM

q (A)/p→
KM
q (K)/p. We know the subquotients of the filtration of KM

q (K)/p by [3]
and we also know the subquotients of the filtration of KM

q (A)/p using the iso-
morphism U1Hq(S(A,B)(q)) ∼= U1KM

q (A)̂ in [12] and the explicit calculation
of Hq(S(A,B)(q)) by [14] except gr0(KM

q (A)/p). Natural map preserves fil-
trations and induces isomorphisms of subquotients. Thus U 1(KM

q (A)/p) →
U1(KM

q (K)/p) is an injection. Lastly, the composite map of the natural maps

KM

q (F )/p � gr0(KM

q (A)/p)→ gr0(KM

q (K)/p)
∼=→ KM

q (F )/p⊕KM

q−1(F )/p

is also an injection. Hence KM
q (A)/p→ KM

q (K)/p is injective.

Next, we introduce KM
q -exponential homomorphism and consider the kernel.

By [17], there is the KM
q -exponential homomorphism with respect to η for q ≥ 2

and η ∈ K such that vK(η) ≥ 2e/(p− 1) defined by

expη : Ω̂q−1
A −→ KM

q (K )̂

a
db1
b1
∧ · · · ∧ dbq−1

bq−1
7−→ {exp(ηa), b1, . . . , bq−1}

(4)

for a ∈ A, b1, . . . , bq−1 ∈ A×. Here exp is

exp(X) =
∞∑

n=0

Xn

n!
.
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We use this KM
q -exponential homomorphism only in the case η = p in this

paper. On the other hand, there exists an exact sequence of complexes

0→



σ>q−3J[q]

↓ 1−fq

σ>q−3D


→



σ>q−3I[q]

↓ 1−fq

σ>q−3D


→



σ>q−3I[q]/σ>q−3J[q]

↓
0


→ 0. (5)

[σ>q−3I[q]/σ>q−3J[q] → 0] is none other than the complex σ>q−3I[q]/σ>q−3J[q].

We denote the complex [σ>q−3I[q]
1−fq→ σ>q−3D][q − 2] by Sq . It is the map-

ping fiber complex




I [2] ⊗ Ω̂q−2
B

d−−−−→ I ⊗ Ω̂q−1
B

d−−−−→ D ⊗ Ω̂qB
d−−−−→ . . .

y1−fq
y1−fq

y1−fq

D ⊗ Ω̂q−2
B

d−−−−→ D ⊗ Ω̂q−1
B

d−−−−→ D ⊗ Ω̂qB
d−−−−→ . . .


 . (6)

Taking cohomology, we have the following

Proposition 2.4. A, B and K are as above. Then KM
q -exponential homo-

morphism with respect to p factors through Ω̂q−1
A /pdΩq−2

A and there is an exact
sequence

H1(Sq)
ψ−→ Ω̂q−1

A /pdΩ̂q−2
A

expp−−−→ KM

q (K )̂ .

Proof. See the cohomological long exact sequence with respect to the exact
sequence (5). The q-th cohomology group of the left complex of (5) is equal to
Hq(S(A,B)(q)), thus the sequence

H1(Sq)
ψ→ H1((σ>q−3I[q]/σ>q−3J[q])[q − 2])→ Hq(S(A,B)(q))

is exact. Here we denote the first map by ψ. The complex
(σ>q−3I[2]/σ>q−3J[2])[q − 2] is

(
(I [2] ⊗ Ω̂q−2

B )/(J [2] ⊗ Ω̂q−2
B )→ (I ⊗ Ω̂q−1

B )/(J ⊗ Ω̂q−1
B )→ 0→ · · ·

)
.

(I ⊗ Ω̂q−1
B )/(J ⊗ Ω̂q−1

B ) is the subgroup of (D⊗ Ω̂q−1
B )/(J ⊗ Ω̂q−1

B ) = A⊗ Ω̂q−1
B .

The image of I⊗Ω̂q−1
B in A⊗Ω̂q−1

B is equal to pA⊗Ω̂q−1
B . Thus (I⊗Ω̂q−1

B )/(J⊗
Ω̂q−1
B ) = pA⊗ Ω̂q−1

B . The image of

(I [2] ⊗ Ω̂q−2
B )/(J [2] ⊗ Ω̂q−2

B )
d−→ pA⊗ Ω̂q−1

B

is equal to the image of I2 ⊗ Ω̂q−2
B . By I = (p) + J , d(I2 ⊗ Ω̂q−2

B ) is equal to

d(J 2 ⊗ Ω̂q−2
B ) + pd(J ⊗ Ω̂q−2

B ) + p2d(Ω̂q−2
B ). By the exact sequence

0 −→ J −→ B −→ A −→ 0,
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we have an exact sequence

(J /J 2)⊗ Ω̂q−2
B

d−→ A⊗ Ω̂q−1
B −→ Ω̂q−1

A −→ 0. (7)

Thus the image of d(J 2 ⊗ Ω̂q−2
B ) in A⊗ Ω̂q−1

B is zero. A⊗ Ω̂q−1
B is torsion free,

thus

pA⊗ Ω̂q−1
B

pd(J ⊗ Ω̂q−2
B ) + p2dΩ̂q−2

B

p−1

∼= A⊗ Ω̂q−1
B

d(J ⊗ Ω̂q−2
B ) + pdΩ̂q−2

B

∼= Ω̂q−1
A /pdΩ̂q−2

A . (8)

Hence we have H1((σ>q−3I[2]/σ>q−3J[2])[q − 2]) ∼= Ω̂q−1
A /pdΩ̂q−2

A . By chasing

the connecting homomorphism Ω̂q−1
A /pdΩ̂q−2

A → Hq(S(A,B)(q)), we can show
that the image is contained by U 1Hq(S(A,B)(q)) and the composite map

Ω̂q−1
A → Ω̂q−1

A /pdΩ̂q−2
A → U1Hq(S(A,B)(q))

∼=→ U1KM

q (K )̂

is equal to expp. We got the desired exact sequence.

Remark 2.5. By [3], there exist surjections

Ωq−2
F ⊕ Ωq−1

F −→ griKM

q (K)
(
x
dy1
y1
∧ · · · ∧ dyq−2

fq−2
, 0

)
7−→ {1 + πix̃, ỹ1, . . . , ỹq−2, π}

(
0, x

dy1
y1
∧ · · · ∧ dyq−1

fq−1

)
7−→ {1 + πix̃, ỹ1, . . . , ỹq−1}

(9)

for i ≥ 1, where x ∈ F , y1, . . . , yq−1 ∈ F× and where x̃, ỹ1, . . . , ỹq−1 are their
liftings to A. If i ≥ e+ 1, then we can construct all elements of griKM

q (K) as
the image of expp, namely,

{
ω ∈ Ω̂q−1

A /pdΩ̂q−2
A

∣∣ expp(ω) ∈ U iKM

q (K )̂
} expp−→ griKM

q (K)

πi−1

p
a
db1
b1
∧ · · · ∧ dbq−2

bq−2
∧ dπ 7−→ {exp(πia), b1, . . . , bq−2, π}

= {1 + πia, b1, . . . , bq−2, π}
πi

p
a
db1
b1
∧ · · · ∧ dbq−1

bq−1
7−→ {exp(πia), b1, . . . , bq−1}

= {1 + πia, b1, . . . , bq−1}.

Thus Ue+1KM
q (K )̂ is contained by the image of expp. On the other hand, (2.4)

says the kernel of the KM
q -exponential homomorphism is ψ(H1(Sq)). Recall

that the aim of this paper is to determine griKM
q (K) for all i, but we already

know them in the range 0 ≤ i ≤ e′ in [3]. Thus if we want to know griKM
q (K)

for all i, we only have to know ψ(H1(Sq)). We determine H1(Sq) in the rest of
this section, and ψ(H1(Sq)) in Section 4, 5, 6 and 7.
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To determine H1(Sq), we introduce a filtration into it. Let 0 ≤ r < p
and s ≥ 0 be integers. Recall that B = A0[[X ]]. For i ≥ 0 and s ≥ 0, let
fili(I [r] ⊗ Ω̂sB) be the subgroup of I [r] ⊗ Ω̂sB generated by the elements

{
Xn(Xe)[j]ω

∣∣ n+ ej ≥ i, n ≥ 0, j ≥ r, ω ∈ D ⊗ Ω̂sB

}

∪
{
Xn−1(Xe)[j]ω ∧ dX

∣∣ n+ ej ≥ i, n ≥ 1, j ≥ r, ω ∈ D ⊗ Ω̂s−1
B

}
.

The homomorphism 1− fr+s : I [r]⊗ Ω̂sB → D⊗ Ω̂sB preserves filtrations. Thus
we can define the following complexes

fili(σ>q−3I[q])[q − 2]

=
(
fili (I [2] ⊗ Ω̂q−2

B )→ fili(I ⊗ Ω̂q−1
B )→ fili(D ⊗ Ω̂qB)→ . . .

)

fili(σ>q−3D)[q − 2]

=
(
fili (D ⊗ Ω̂q−2

B )→ fili(D ⊗ Ω̂q−1
B )→ fili(D ⊗ Ω̂qB)→ . . .

)

fili Sq =

[
fili(σ>q−3I[q])[q − 2]

1−fq−→ fili(σ>q−3D)[q − 2]

]

gri(σ>q−3I[r])[q − 2] =
fili(σ>q−3I[r])[q − 2]

fili+1(σ>q−3I[r])[q − 2]
for r = 0, q

gri Sq =

[
gri(σ>q−3I[q])[q − 2]

1−fq−→ gri(σ>q−3D)[q − 2]

]
.

Note that if i ≥ 1, 1 − fq: gri(σ>q−3I[q])[q − 2] → gri(σ>q−3D)[q − 2] is none
other than 1 because fq takes the elements to the higher filters. fili Sq forms
the filtration of Sq and we have the exact sequences

0 −→ fili+1 Sq −→ fili Sq −→ gri Sq −→ 0

for i ≥ 0. This exact sequence of complexes give a long exact sequence

· · · → Hn(fili+1 Sq)→ Hn(fili Sq)→ Hn(gri Sq)→ Hn+1(fili+1 Sq)→ . . . (10)

Furthermore, we have the following

Proposition 2.6. {H1(fili Sq)}i forms the finite decreasing filtra-
tion of H1(Sq). Denote filiH1(Sq) = H1(fili Sq) and griH1(Sq) =
filiH1(Sq)/ fili+1H1(Sq). Then
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griH1(Sq) =



0 ( if i > 2e)

X2e−1dX ∧
(
Ω̂q−3
A0

/p
)

( if i = 2e)

X i
(
Ω̂q−2
A0

/p
)
⊕X i−1dX ∧ (Ω̂q−3

A0
/p) ( if e < i < 2e)

Xe
(
Ω̂q−2
A0

/p
)
⊕Xe−1dX ∧

(
Z1Ω̂

q−3
A0

/
p2Ω̂q−3

A0

)
( if i = e, p | e)

Xe−1dX ∧
(
Z1Ω̂

q−3
A0

/
p2Ω̂q−3

A0

)
( if i = e, p - e)


X i

(
pMax(η′i−vp(i),0)Ω̂q−2

A0
∩ ZηiΩ̂

q−2
A0

)
+ p2Ω̂q−2

A0

p2Ω̂q−2
A0




⊕
(
X i−1dX ∧

Zηi Ω̂
q−3
A0

+ p2Ω̂q−3
A0

p2Ω̂q−3
A0

) ( if 1 ≤ i < e)

0 ( if i = 0),

where ηi and η′i be the integers which satisfy pηi−1i < e ≤ pηi i and pη
′
i−1i−1 <

e ≤ pη′ii− 1 for each i.

To prove (2.6), we need the following lemmas.

Lemma 2.7. For ω ∈ D ⊗ Ω̂qB and n ≥ 0,

vp(f
n(ω)) ≥ vp(ω) + nq. (11)

In particular, if ω ∈ Ω̂qA0
, then

vp(f
n(ω)) = vp(ω) + nq. (12)

Proof. ω ∈ D ⊗ Ω̂qB can be rewrite as ω =
∑

i aiωi, where ai ∈ D and ωi are

the canonical generators of Ω̂qB , which are

ωi =
dT1

T1
∧ · · · ∧ dTq

Tq

for T1, . . . , Tq ∈ T∪{X}. Canonical generators have the property f(ωi) = pqωi,

thus we have (11). Furthermore, if ω ∈ Ω̂qA0
, then ai ∈ A0 and we have

vp(f(ai)) = vp(ai). Thus (12) follows.

Lemma 2.8. If 1 ≤ r < p, s ≥ 0 and i > er, then there exists a homomorphism

∞∑

m=0

fmr+s : fili(D ⊗ Ω̂sB) −→ fili(I [r] ⊗B Ω̂sB)

This is the inverse map of 1−fr+s, hence 1−fr+s : fili(I [r]⊗Ω̂sB)→ fili(D⊗Ω̂sB)
is an isomorphism.
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Proof. By i > er, fili(I [r] ⊗ Ω̂sB) = fili(D ⊗ Ω̂sB) because X i = r!X i−er(Xe)[r].

All elements of filiD ⊗ Ω̂sB can be written as the sum of the elements of the

form Xn(Xe)[j]ω, where ω ∈ D ⊗ Ω̂sB and n + ej ≥ i. Now r < p, thus
(Xe)[r] = Xer/r! in D, hence we may assume j ≥ r. The image of Xn(Xe)[j]ω
is

∞∑

m=0

fmr+s(X
n(Xe)[j]ω) =

∞∑

m=0

(pmj)!

prm(j!)
Xnpm(Xe)[p

mj] f
m(ω)

psm
.

Here, fm(ω) is divisible by psm by (11). The coefficients (pmj)!/prm(j!) are
p-integers for all m and if j ≥ 1 then the sum converges p-adically. If j = r = 0,
n ≥ 1 says that the order of the power of X is increasing. This also means the
sum converges p-adically in D⊗B Ω̂sB . The image is in fili(I [r]⊗B Ω̂sB) because
pmj ≥ r for all m, thus the map is well-defined. Obviously,

∑∞
m=0 f

m
r+s is the

inverse map of 1− fr+s.

Lemma 2.9. Let i ≥ 1 and e ≥ 1 be integers. For each n ≥ 0, let mn (resp.
m′n) be the maximal integer which satisfies ipn ≥ mne (resp. ipn − 1 ≥ m′ne).
Then

Min {vp(mn!) +mn − n}n
=

{
1− ηi ≤ 0 ( when n = ηi − 1, if ηi ≥ 1)

vp(m0!) +m0 ≥ 1 ( when n = 0, if ηi = 0)

Min {vp(m′n!) +m′n − n}n
=

{
1− η′i ≤ 0 ( when n = η′i − 1, if η′i ≥ 1)

vp(m
′
0!) +m′0 ≥ 1 ( when n = 0, if η′i = 0),

where ηi and η′i are as in (2.6).

Proof. By the definition of {mn}n, mn+1 is greater than or equal to pmn. Thus
vp(m

′
n+1!) ≥ vp(pm′n!) and

vp(mn+1!) +mn+1 − (n+ 1)− (vp(mn!) +mn − n)

= vp(mn+1!)− vp(mn!) +mn+1 −mn − 1
(13)

is greater than zero if mn > 0. On the other hand, ηi is the number which has
the property that if n < ηi, then mn = 0 and mηi ≥ 1. Thus the value of (13)
is less than zero if and only if n < ηi. Hence the minimum of vp(mn!)+mn−n
is the value when n = ηi − 1 if η > 0 and n = 0 if ηi = 0. The rest of the
desired equation comes from the same way.
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Proof of Proposition 2.6. At first, we show that {H1(fili Sq)}i forms the finite
decreasing filtration of H1(Sq). See

gri Sq =



gri I [2] ⊗ Ω̂q−2
B

d−−−−→ gri I ⊗ Ω̂q−1
B

d−−−−→ griD ⊗ Ω̂qB
d−−−−→ · · ·

y1−fq
y1−fq

y1−fq

griD ⊗ Ω̂q−2
B

d−−−−→ griD ⊗ Ω̂q−1
B

d−−−−→ griD ⊗ Ω̂qB
d−−−−→ · · ·


 .

(14)

If i ≥ 1, all vertical arrows of (14) are equal to 1. Thus they are injections by
the definition of the filtration. Especially, the injectivity of the first vertical
arrow gives H0(gri Sq) = 0, this means

0 −→ H1(fili+1 Sq) −→ H1(fili Sq) −→ H1(gri Sq) (15)

is exact. If i = 0, the first vertical arrow of (14) is 1−fq: p2Ω̂q−2
A0
→ Ω̂q−2

A0
. This

is also injective because of the invariance of the valuation of A0 by the action of
f . Thus the exact sequence (15) also follows when i = 0. Hence {H1(fili Sq)}i
forms a decreasing filtration of H1(Sq).

Next we calculate H1(gri Sq). If i > 2e, fili Sq is acyclic by (2.8). Thus we
only consider the case i ≤ 2e. Furthermore, if i ≥ 1, we may consider that
H1(gri Sq) is the subgroup of griD ⊗ Ω̂q−2

B because of the injectivity of the
vertical arrows of (14).

Let i = 2e. Then gr2e Sq is




X2eΩ̂q−2
A0
⊕ pX2e−1dX ∧ Ω̂q−3

A0

d−−−−→X2eΩ̂q−1
A0
⊕X2e−1dX ∧ Ω̂q−2

A0

d−−−−→· · ·
y1

y1

X2eΩ̂q−2
A0
⊕X2e−1dX ∧ Ω̂q−3

A0

d−−−−→X2eΩ̂q−1
A0
⊕X2e−1dX ∧ Ω̂q−2

A0

d−−−−→· · ·


 .

The second vertical arrow is a surjection, thus

H1(gr2e Sq) ∼= X2e−1dX ∧ (Ω̂q−3
A0

/p). (16)

Let e < i < 2e. Then gr2e Sq is




pX iΩ̂q−2
A0
⊕ pX i−1dX ∧ Ω̂q−3

A0

d−−−−→X iΩ̂q−1
A0
⊕X i−1dX ∧ Ω̂q−2

A0

d−−−−→· · ·
y1

y1

X iΩ̂q−2
A0
⊕X i−1dX ∧ Ω̂q−3

A0

d−−−−→X iΩ̂q−1
A0
⊕X i−1dX ∧ Ω̂q−2

A0

d−−−−→· · ·


 .

The second vertical arrow is also a surjection, thus

H1(gri Sq) ∼= X i(Ω̂q−2
A0

/p)⊕X i−1dX ∧ (Ω̂q−3
A0

/p). (17)
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Let i = e. Then gre Sq is



pXeΩ̂q−2
A0
⊕ p2Xe−1dX ∧ Ω̂q−3

A0

d−−−−→XeΩ̂q−1
A0
⊕ pXe−1dX ∧ Ω̂q−2

A0

d−−−−→· · ·
y1

y1

XeΩ̂q−2
A0
⊕Xe−1dX ∧ Ω̂q−3

A0

d−−−−→XeΩ̂q−1
A0
⊕Xe−1dX ∧ Ω̂q−2

A0

d−−−−→· · ·


 .

The second vertical arrow is not a surjection. For an element Xeω ∈ XeΩ̂q−2
A0

,

d(Xeω) is included in XeΩ̂q−1
A0
⊕ pXe−1dX ∧ Ω̂q−2

A0
if and only if p | e or p | ω.

For an element Xe−1ω ∧ dX ∈ Xe−1dX ∧ Ω̂q−3
A0

, d(Xe−1ω ∧ dX) is included in

XeΩ̂q−1
A0
⊕ pXe−1dX ∧ Ω̂q−2

A0
if and only if p | dω. Thus we have

H1(gre Sq) ∼=




Xe(Ω̂q−2

A0
/p)⊕Xe−1dX ∧

(
Z1Ω̂

q−3
A0

/p2Ω̂q−3
A0

)
( if p | e)

Xe−1dX ∧
(
Z1Ω̂

q−3
A0

/p2Ω̂q−3
A0

)
( if p - e).

(18)

Let 1 ≤ i < e. Then gri Sq is



p2X iΩ̂q−2
A0
⊕ p2X i−1dX ∧ Ω̂q−3

A0

d−−−−→pX iΩ̂q−1
A0
⊕ pX i−1dX ∧ Ω̂q−2

A0

d−−−−→· · ·
y1

y1

X iΩ̂q−2
A0
⊕X i−1dX ∧ Ω̂q−3

A0

d−−−−→ X iΩ̂q−1
A0
⊕X i−1dX ∧ Ω̂q−2

A0

d−−−−→· · ·


.

The image of X iω ∈ X iΩ̂q−2
A0

is included in pX iΩ̂q−1
A0
⊕ pX i−1dX ∧ Ω̂q−2

A0
if and

only if p | iω and p | dω, and the image of X i−1dX ∧ ω ∈ X i−1dX ∧ Ω̂q−3
A0

is

included in pX iΩ̂q−1
A0
⊕ pX i−1dX ∧ Ω̂q−2

A0
if and only if p | dω. Thus

H1(gri Sq) ∼=


X i
(
Z1Ω̂

q−2
A0

/p2Ω̂q−2
A0

)
⊕X i−1dX ∧

(
Z1Ω̂

q−3
A0

/p2Ω̂q−3
A0

)
( if p | i)

X i(pΩ̂q−2
A0

/p2Ω̂q−2
A0

)⊕X i−1dX ∧
(
Z1Ω̂

q−3
A0

/p2Ω̂q−3
A0

)
( if p - i).

(19)

If i = 0, we need more calculation. The complex gr0 Sq is



p2Ω̂q−2
A0

d−−−−→ pΩ̂q−1
A0

d−−−−→ Ω̂qA0

d−−−−→ · · ·
y1−fq

y1−fq
y1−fq

Ω̂q−2
A0

d−−−−→ Ω̂q−1
A0

d−−−−→ Ω̂qA0

d−−−−→ · · ·


 .

We introduce a p-adic filtration to gr0 Sq as follows.

filmp (gr0 Sq) =




p2+mΩ̂q−2
A0

d−−−−→ p1+mΩ̂q−1
A0

d−−−−→ pmΩ̂qA0

d−−−−→ · · ·
y1−fq

y1−fq
y1−fq

pmΩ̂q−2
A0

d−−−−→ pmΩ̂q−1
A0

d−−−−→ pmΩ̂qA0

d−−−−→ · · ·


 .
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Then, for all m ≥ 0,

grmp (gr0 Sq) =




Ωq−2
F

0−−−−→ Ωq−1
F

0−−−−→ ΩqF −−−−→ · · ·y−C−1

y−C−1

y1−C−1

Ωq−2
F

d−−−−→ Ωq−1
F

d−−−−→ ΩqF −−−−→ · · ·


 . (20)

The injectivity of the leftmost vertical arrow of (20) says that

H0(grmp (gr0 Sq)) = 0

for all m ≥ 0. Thus {H1(filmp (gr0 Sq))}m is a decreasing filtration of H1(gr0 Sq).
On the other hand, the intersection of the image of −C−1 : Ωq−1

F → Ωq−1
F and

the image of d: Ωq−2
F → Ωq−1

F = Bq−1
1 is {0} by (1). Thus we also have

H1(grmp (gr0 Sq)) = 0 for all m ≥ 0. Hence we have H1(gr0 Sq) = 0.

We already have known H1(gri Sq) for all i ≥ 0, but the third arrow of
(15) is not surjective in general. So we must know the image of H1(fili Sq) →
H1(gri Sq). Let i ≥ 1 and let x be an element of filiD⊗ Ω̂q−2

B which represents

an element of H1(gri Sq). H1(fili Sq) is

H1




fili I [2] ⊗ Ω̂q−2
B

d−−−−→ fili I ⊗ Ω̂q−1
B

d−−−−→ filiD ⊗ Ω̂qB
d−−−−→ · · ·

y1−fq
y1−fq

y1−fq

filiD ⊗ Ω̂q−2
B

d−−−−→ filiD ⊗ Ω̂q−1
B

d−−−−→ filiD ⊗ Ω̂qB
d−−−−→ · · ·


 .

Now the second vertical arrow is an injection. Thus x also represents the
element of H1(fili Sq) if and only if

∞∑

n=0

fnq (dx) ∈ fili I ⊗ Ω̂q−1
B . (21)

The elements of H1(gri Sq) are represented by two types of the elements of

D ⊗ Ω̂q−2
B , these are X iω for ω ∈ Ω̂q−2

A0
and X i−1dX ∧ ω for ω ∈ Ω̂q−3

A0
. Thus

we must know the condition when (21) follows for these elements.
At first, we calculate X iω for ω ∈ Ω̂q−2

A0
.

∞∑

n=0

fnq (dX iω)

=

∞∑

n=0

fnq (X idω + iX i−1dX ∧ ω)

=

∞∑

n=0

(
1

pnq
X ipnfn(dω) +

ipn

pnq
X ipn−1dX ∧ fn(ω)

)

=

∞∑

n=0

(
mn!

pn
X ipn−mne(Xe)[mn] f

n(dω)

pn(q−1)

+
i(m′n!)

pn
X ipn−1−m′

ne(Xe)[m
′
n]dX ∧ fn(ω)

pn(q−2)

)
.
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Here mn and m′n be the maximal integers which satisfy ipn − mne ≥ 0 and
ipn− 1−m′ne ≥ 0. Note that fn(dω) and fn(ω) can be divided by pn(q−1) and
pn(q−2), respectively, by (11). Furthermore, vp(f

n(dω)/pn(q−1)) = vp(dω) and

vp(f
n(ω)/pn(q−2)) = vp(ω) by (12). To be included in I ⊗ Ω̂q−1

B , the sum of
the p-adic order and divided power degree must be greater than or equal to 1,
i.e., vp(mn!)− n+mn + vp(dω) ≥ 1 and vp(i) + vp(m

′
n!)− n+m′n + vp(ω) ≥ 1

must be satisfied for all n. We already know the minimal of vp(mn!)− n+mn

and vp(m
′
n!)− n+m′n by (2.9), thus

∑∞
n=0 f

n
q (dX iω) belongs to I⊗q−1

B if and
only if





no condition ( if e+ 1 ≤ i)
vp(i) + vp(ω) ≥ 1 ( if e = i)

vp(dω) ≥ ηi and vp(i) + vp(ω) ≥ η′i ( if 1 ≤ i < e).

(22)

Next, we calculate X i−1dX ∧ ω for ω ∈ Ω̂q−3
A0

.

∞∑

n=0

fnq (dX i−1dX ∧ ω)

=
∞∑

n=0

fnq (X i−1dX ∧ dω)

=

∞∑

n=0

(
pn

pnq
X ipn−1dX ∧ fn(dω)

)

=

∞∑

n=0

(
(m′n!)

pn
X ipn−1−m′

ne(Xe)[m
′
n]dX ∧ f

n(dω)

pn(q−2)

)
.

To be included in I ⊗ Ω̂q−1
B , vp(m

′
n!)− n+m′n + vp(dω) ≥ 1 must be satisfied

for all n. As the same way as above,
∑∞

n=0 f
n
q (X i−1dX ∧ ω) belongs to I⊗q−1

B

if and only if

{
no condition ( if e+ 1 ≤ i)
vp(dω) ≥ η′i ( if 1 ≤ i ≤ e). (23)

For ω ∈ Ω̂q−1
A0

, the condition vp(ω) ≥ n means ω ∈ pnΩ̂q−1
A0

and vp(dω) ≥ n

means ω ∈ ZnΩ̂
q−1
A0

. Thus, by (16), (17), (18), (19), (22) and (23), we get
(2.6).

3 Differential modules and filtrations

Let K, A, A0, K0 and B are as in Section 2. We assume that p - e = eK , i.e.,
K/K0 is tamely totally ramified extension from here. Let k be the constant
field of K (cf. [18]), i.e., k is the complete discrete valuation subfield of K
with the restriction of the valuation of K, algebraically closed in K, and the
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residue field of k is the maximal perfect subfield of F . Then there exists a
prime element of K such that π is the element of k. Let k0 = K0 ∩ k. Then π
is algebraic over k0 and we get Ω̂1

Ok0 = 0, where Ok0 is the ring of integers of

k0. Thus πe−1dπ = 0 in Ω̂1
A by taking the differential of the minimal equation

of π over k0.
By the equation πe−1dπ = 0 in Ω̂1

A, we have

Ω̂qA
∼=


 ⊕

i1<i2<···<iq
A
dTi1
Ti1
∧ · · · ∧ dTiq

Tiq




⊕


 ⊕

i1<i2<···<iq−1

A/(πe−1)
dTi1
Ti1
∧ · · · ∧ dTiq−1

Tiq−1

∧ dπ


 ,

(24)

where {Ti} = T. We introduce a filtration on Ω̂qA as follows. Let

fili Ω̂qA =

{
Ω̂qA ( if i = 0)

πiΩ̂qA + πi−1dπ ∧ Ω̂q−1
A ( if i ≥ 1).

The subquotients are

gri Ω̂qA = fili Ω̂qA/ fili+1 Ω̂qA

=

{
ΩqF ( if i = 0 or i ≥ e)
ΩqF ⊕ Ωq−1

F ( if 1 ≤ i < e),

where the map is

πiΩ̂qA 3 πiω 7−→ ω̄ ∈ ΩqF
πi−1dπ ∧ Ω̂q−1

A 3 πi−1dπ ∧ ω 7−→ ω̄ ∈ Ωq−1
F .

Let fili(Ω̂qA/pdΩ̂
q−1
A ) be the image of fili Ω̂qA in Ω̂qA/pdΩ̂

q−1
A . Then we have the

following

Proposition 3.1. For j ≥ 0,

grj
(
Ω̂qA/pdΩ̂

q−1
A

)
=





ΩqF (j = 0)

ΩqF ⊕ Ωq−1
F (1 ≤ j < e)

ΩqF /B
q
l (e ≤ j),

where l be the maximal integer which satisfies j − le ≥ 0.

Proof. If 1 ≤ j < e, grj Ω̂qA = grj(Ω̂qA/pdΩ̂
q−1
A ) because pdΩ̂q−1

A ⊂ file Ω̂qA.

Assume that j ≥ e and let l as above. By (24) and piedπ = 0, Ω̂q−1
A is

generated by the elements pπidω for 0 ≤ i < e and ω ∈ Ω̂q−1
A0

. By [7] (Cor.

2.3.14), pπidω ∈ file(1+n)+i Ω̂qA if and only if the residue class of p−ndω belongs

to Bn+1. Thus grj(Ω̂qA/pdΩ̂
q−1
A ) ∼= ΩqF /B

q
l .
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We need the lemma in the following sections.

Lemma 3.2. (i) For n ≥ 0, there exist maps

fnq =
fn

pnq
: Ω̂qA0

−→ ZnΩ̂
q
A0
.

(ii) For n ≥ 1,

ZnΩ̂
q
A0

=

(
n−1∑

l=0

plfn−lq Ω̂qA0

)
+ pnΩ̂qA0

+ Z∞Ω̂qA0
.

(iii) For n ≥ 1,

n−1⊕

i=0

d

pi
◦ f iq−1 :

(
Ω̂q−1
A0

/Z1Ω̂
q−1
A0

)⊕n
−→ Ω̂qA0

/p ∼= ΩqF

is injective and the image is BnΩ
q
F .

(iv) For any n ≥ 0,

Ω̂qA0
/Z1Ω̂

q
A0

fnq−→ ZnΩ̂
q
A0
/(Zn+1Ω̂

q
A0

+ ZnΩ̂
q
A0
∩ pΩ̂qA0

)

is an isomorphism.

(v) For any n ≥ 0,

(
Ω̂qA0

/p
)
⊕
(
Ω̂q−1
A0

/Z1Ω̂
q−1
A0

)⊕n fnq ⊕
⊕n−1
i=0

d

pi
◦f iq−1−−−−−−−−−−−−→

ZnΩ̂
q
A0

ZnΩ̂
q
A0
∩ pΩ̂qA0

is an isomorphism.

Proof. (i) By (12), fn(ω) belongs to pnqΩ̂qA0
. Ω̂qA0

is p-torsion free, thus fnq is

well-defined as the map to Ω̂qA0
. Furthermore,

d(fnq (ω)) =
1

pnq
fn(dω) = pnfnq+1(dω),

thus fnq (ω) ∈ ZnΩ̂
q
A0

.
(ii) For 0 ≤ l ≤ n− 1, the image of the natural injection

ZnΩ̂
q
A0
∩ plΩ̂qA0

(ZnΩ̂
q
A0
∩ pl+1Ω̂qA0

) + (Z∞Ω̂qA0
∩ plΩ̂qA0

)

−→
plΩ̂qA0

pl+1Ω̂qA0
+ (Z∞Ω̂qA0

∩ plΩ̂qA0
)
∼= ΩqF /Z∞ΩqF
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is coincide with Zn−lΩ
q
F /Z∞ΩqF by [7] (Cor. 3.2.14). The image of plfn−lq Ω̂qA0

is also Zn−lΩ
q
F /Z∞ΩqF for all l, thus the natural projection

(
n−1∑

l=0

plfn−lq Ω̂qA0

)
−→

ZnΩ̂
q
A0

pnΩ̂qA0
+ Z∞Ω̂qA0

is surjective. Hence we have (ii).
(iii) The following diagram commute

(
Ω̂q−1
A0

/Z1Ω̂
q−1
A0

)⊕n ⊕n−1
i=0

d
pi
◦f iq−1−−−−−−−−−→ Ω̂qA0

/p

∼=
y ∼=

y
(
Ωq−1
F /Zq−1

1

)⊕n ⊕n−1
i=0 C−i d−−−−−−−−→ ΩqF .

The image of the bottom arrow is Bqn.
(iv) The image of ZnΩ̂

q
A0
/(ZnΩ̂

q
A0
∩ pΩ̂qA0

) under the isomorphism Ω̂qA0
/p→

ΩqF is Zqn by [7] (Cor. 3.2.14). (iv) follows from the diagram

Ω̂qA0
/Z1Ω̂

q
A0

fnq−−−−→ ZlΩ̂
q
A0
/(Zn+1Ω̂

q
A0

+ ZnΩ̂
q
A0
∩ pΩ̂qA0

)

∼=
y ∼=

y

ΩqF /Z
q
1

C−n

−−−−→ Zqn/Z
q
n+1.

(v) The image of

(
Ω̂q−1
A0

/Z1Ω̂
q−1
A0

)⊕n ⊕n−1
i=0

d

pi
◦f iq−1−−−−−−−−−→ Ω̂qA0

/p ∼= ΩqF

is Bqn by (iii), and the image of the composite

Ω̂qA0
/p

fnq−→ Ω̂qA0
/p ∼= ΩqF → ΩqF /B

q
n

is Zqn/B
q
n. Hence we get (v).

4 The image of H1(Sq)

We assume p - e. We further assume that there exists the prime element π of

K such that πe = p. If there does not exist such π, we replace K by K(p
1
e ).

Note that the extension K(p
1
e )/K is unramified of degree prime to p. In this

section, we calculate ψ(H1(Sq)) explicitly. We need some preparations.

Let N q
0 be the subset of Ω̂qA0

such that the canonical map N q
0 → ΩqF \ Z

q
1 is

an injection, the image generates ΩqF /Z
q
1 and have the property

If ω̄ + C−1ω̄ = 0, then dω = 0. (25)

We can take such N q
0 because of the following
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Lemma 4.1. Take x ∈ Ω̂qF . If x + C−1 x = 0 then there exists ω ∈ Ω̂qA0
such

that ω̄ = x and dω = 0.

Proof. x can be written as

x =
∑

τ

xτ τ,

where τ runs through the canonical generators (cf. in the proof of (2.7)) and
xτ ∈ F . The assumption x+ C−1 x = 0 means that xτ + xpτ = 0 for all τ , thus
xτ ∈ E for all τ , where E is the maximal perfect subfield of F . The canonical
generators have the fixed lifts denoted by τ̃ , and we can take lifts of xτ , denoted
by x̃τ , in the ring of Witt vectors with coefficients in E, denotes W (E). Fix
an inclusion W (E)→ A0. Let

ω =
∑

τ

x̃τ τ̃ .

Then dω = 0 in Ω̂qA0
because dx̃τ = 0 in Ω̂qA0

and ω̄ = x. This ω is the desired
one.

For any q, l ≥ 0, let N q
l = f lq(N

q
0 ) as a subset of Ω̂qA0

and let

N q
∞ = Z∞Ω̂qA0

\ (Z∞Ω̂qA0
∩ pΩ̂qA0

),

N q
f =

⋃

l≥0

N q
l , N

q = N q
f ∪N q

∞.

Then, by (3.2,iv), N q generates Ω̂qA0
/p and ω 6= 0 in Ω̂qA0

/p for all ω ∈ N q .
Furthermore, by using (3.2,v) and the isomorphism

Zn−1Ω̂
q
A0

Zn−1Ω̂
q
A0
∩ pΩ̂qA0

p−→
ZnΩ̂qA0

∩ pΩ̂qA0

ZnΩ̂
q
A0
∩ p2Ω̂qA0

,

we have

〈
fnq N

q ∪
n−1⋃

m=0

d

pm
fmq−1N

q−1
0

〉
=

ZnΩ̂
q
A0

ZnΩ̂
q
A0
∩ pΩ̂qA0

,

〈
pfn−1
q N q ∪

n−2⋃

m=0

p
d

pm
fmq−1N

q−1
0

〉
=

ZnΩ̂
q
A0
∩ pΩ̂qA0

ZnΩ̂
q
A0
∩ p2Ω̂qA0

.

(26)

Thus the union of the sets of the left hand side of (26) generates
ZnΩ̂

q
A0
/(ZnΩ̂

q
A0
∩ p2Ω̂qA0

). If q < 0 then let N q
l = ∅.
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Let S0
i,1, S

1
i,1, S

0
i,2 and S1

i,2 be the subsets of D ⊗ Ω̂q−2
B defined as follows.

S0
i,1 =





∅ (i = 0, e or i ≥ 2e)

X iN q−2 (if e < i < 2e)

∅ (if 1 ≤ i < e, ηi − vp(i) ≥ 1)

X i
(
fηiq−2N

q−2 ∪⋃ηi−1
m=0

d
pm f

m
q−3N

q−3
0

)
(if 1 ≤ i < e, ηi − vp(i) ≤ 0),

S1
i,1 =





∅ (i = 0 or i ≥ e )

∅ (1 ≤ i < e, ηi − vp(i) ≥ 2)

X i
(
pfηi−1
q−2 N q−2 ∪⋃ηi−2

m=0 p
d
pm f

m
q−3N

q−3
0

)
(1 ≤ i < e, ηi − vp(i) ≤ 1),

S0
i,2 =





∅ (i = 0 or i > 2e)

X i−1dX ∧N q−3 (e < i ≤ 2e)

Xe−1dX ∧
(
f1
q−3N

q−3 ∪ dN q−4
0

)
(i = e)

X i−1dX ∧
(
fηiq−3N

q−3 ∪⋃ηi−1
m=0

d
pm f

m
q−4N

q−4
0

)
(1 ≤ i < e),

S1
i,2 =





∅ (i = 0 or i > e)

Xe−1dX ∧ pN q (if i = e)

X i−1dX ∧
(
pfηi−1
q−3 N q−3 ∪⋃ηi−2

m=0 p
d
pm f

m
q−4N

q−4
0

)
(if 1 ≤ i < e).

Let Si,1 = S0
i,1∪S1

i,1, Si,2 = S0
i,2∪S1

i,2, Si = Si,1∪Si,2 and S the union of all Si.

By the above definitions, Si generates griH1(Sq), hence S generates H1(Sq).
The following lemma is useful to calculate ψ.

Lemma 4.2. If 1 ≤ i < e then the minimal value of vK(πip
n

/pn+1) = ipn −
e(n+ 1) is





ipηi−1 − eηi ( when n = ηi − 1; if e′ < ipηi < ep)

ipηi − e(ηi + 1) ( when n = ηi; if e < ipηi < e′)

ipηi−1 − eηi ( when n = ηi − 1, ηi; if < ipηi = e′)

and if e < i then the minimal value of vK(πip
n

/pn+1) is i− e.

Proof. Lemma follows from the definition of ηi.

Remark 4.3. Method of calculation of ψ. In (2.6) and in the definition of S,
we use elements of D ⊗ Ω̂q−2

B , which is the degree zero part of the complex
σ>q−3D[q − 2], to represent elements of H1(Sq). Chasing the complex (6) and
the map (8), ψ is the composite of

D ⊗ Ω̂q−2
B

d−→ D ⊗ Ω̂q−1
B

∑
n≥0 f

n
q−−−−−−→ I ⊗ Ω̂q−1

B

I→pA−−−−→ pA⊗ Ω̂q−1
B

p−1

−−→ A⊗ Ω̂q−1
B

dX=dπ−−−−→ Ω̂q−1
A /pdΩ̂q−2

A .
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Thus, for ω ∈ Ω̂q−2
A0

(resp. ω ∈ Ω̂q−3
A0

) and i ≥ 1,

ψ(X iω) =
∑

n≥0

(
i

pn+1
πip

n dπ

π
∧ fnq−2(ω) +

1

pn+1
πip

n

fnq−1(dω)

)


resp. ψ

(
X i dX

X
∧ ω
)

=
∑

n≥0

1

pn+1
πip

n dπ

π
∧ fnq−2(dω)


 .

(27)

Here, to avoid the complication of notations, we use

X i dX

X

(
resp. πi

dπ

π

)

which only denotes the meaning of X i−1dX (resp. πi−1dπ) when i ≥ 1. By
using (4.2), n = ηi − 1 or n = ηi is the number at which the value vK of the
coefficients of dπ in (27) is the minimal. If X iω ∈ S (resp. X i−1dX∧ω ∈ S) for
ω ∈ Ω̂q−2

A0
(resp. ω ∈ Ω̂q−3

A0
), then ω has the property (22) (resp. (23)). Under

this condition, the right hand side of (27) belongs to Ω̂q−1
A . Furthermore, by

πe−1π = 0, if ηi ≥ 1 then

ψ(X iω) =
i

pηi
πip

ηi−1 dπ

π
∧ fηi−1

q−2 (ω) +
i

pηi+1
πip

ηi dπ

π
∧ fηiq−2(ω)

+
∑

n≥0

(
1

pn+1
πip

n

fnq−1(dω)

)
,

ψ(X i dX

X
∧ ω) =

1

pηi
πip

ηi−1 dπ

π
∧ fηi−1

q−2 (dω)
1

pηi+1
πip

ηi dπ

π
∧ fηiq−2(dω),

and if ηi = 0 then

ψ(X iω) =
i

p
πi
dπ

π
∧ ω +

∑

n≥0

(
1

pn+1
πip

n

fnq−1(dω)

)
,

ψ(X i dX

X
∧ ω) =

1

p
πi
dπ

π
∧ dω.

Note that if ηi ≥ 1,

vK

(
1

pηi
πip

ηi−1

)
− vK

(
1

pηi+1
πip

ηi

)




< 0 ( if e′ < ipηi < ep)

> 0 ( if e < ipηi < e′)

= 0 ( if ipηi = e′).

(28)

By the definition, S generates H1(Sq). But ψ : H1(Sq)→ Ω̂q−1
A /pdΩ̂q−2

A has
the kernel in general. The following lemma compute some subset of this kernel.

Documenta Mathematica 5 (2000) 151–200



The Milnor K-Groups 173

Lemma 4.4. (i) S2e, Se ⊂ Kerψ.

(ii) If e < i < 2e then ψ(S0
i,2 \ (X i−1dX ∧ N q−3

0 )) = 0. If 1 ≤ i < e

then ψ(S0
i,2 \ (X i−1dX ∧ fηiq−3N

q−3
0 )) = 0 and ψ(S1

i,2 \ (X i−1dX ∧
pfηi−1
q−3 N q−3

0 )) = 0.

(iii) If e < i < 2e and p - i, then ψ(Si,2) ⊂ 〈ψ(Si,1)〉.

(iv) If e′ < i < 2e and p | i, then

ψ(Si,2) ⊂
〈
ψ


 ⋃

1≤j<e
S1
j,1



〉
.

(v) Let 1 ≤ i < e, s = ηi + vp(i) and i0 = i/pvp(i). If e′ < ipηi < ep and
s ≥ 2, then

ψ(Si,2) ⊂
〈
 ⋃

1≤j<e
Sj,1


 ∪ Sipηi−e,1

〉
.

Furthermore, let

j =

{
i0p

s
2 ( if s is even ),

i0p
s−1
2 ( if s is odd ).

Then

ψ(S0
i,2) ⊂ 〈ψ(Sj,1)〉 if 3ηi ≥ vp(i),

ψ(S1
i,2) ⊂ 〈ψ(Sj,1)〉 if 3ηi ≥ vp(i) + 2.

Proof. (i) Take X2e−1dX ∧ ω ∈ S2e,2. Then

ψ

(
X2e dX

X
∧ ω
)

=
1

p
π2e dπ

π
∧ dω = 0

by (4.3). Next, take Xe−1dX ∧ ω ∈ Se,2. By the definition of Se,2, such an ω
can be divided by p. Thus, by using (4.3), we get

ψ

(
Xe dX

X
∧ ω
)

=
1

p
πe
dπ

π
∧ pdω

p
= 0.

(ii) At first, let e < i < 2e. When we take X i−1dX∧ω from S0
i,2 \(X i−1dX∧

N q−3
0 ), then ω has the property vp(dω) ≥ 1. Thus by using (4.3),

ψ

(
X i dX

X
∧ ω
)

=
1

p
πi
dπ

π
∧ pdω

p
= 0.
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Next let 1 ≤ i < e. When we take X i−1dX ∧ ω from
(
S0
i,2 \

(
X i dX

X
∧ fηiq−3N

q−3
0

))
∪
(
S1
i,2 \

(
X i dX

X
∧ pfηi−1

q−3 N q−3
0

))
,

ω has the property vp(dω) ≥ ηi + 1. Thus ψ(X i−1dX ∧ ω) = 0 by using (4.3).
(iii) In this case, Si,2 = X i−1dX ∧N q−3 and Si,1 = X iN q−2. For an element

X i−1dX ∧ ω ∈ Si,2 with ω ∈ N q−3, there exists X idω ∈ Si,1 because dω ∈
N q−2
∞ , and

d

(
X i dX

X
∧ ω
)

= d

(
X idω

i

)
.

This means ψ(X i−1dX ∧ ω) = ψ(X idω)/i. Thus ψ(Si,2) ⊂ 〈ψ(Si,1)〉.
(iv) Take an element X i−1dX ∧ ω ∈ Si,2 with ω ∈ N q−3. Let j = j0 = i− e

and jl = jl−1p− e for j ≥ 1. Then, {jl}l have the property

p - jl,
e

p− 1
< j0 < j1 < j2 < . . .

by p | i and i > e′. Let L be the minimal integer such that jL ≥ 2e/p. Then
ηjl = 1 for all 0 ≤ l ≤ L. There exist the elements X jlpf lq−2(dω) ∈ S1

jl,1

because S1
jl,1

= XjlN q−2 and pf lq−2(dω) ∈ N q−2
∞ . Thus the element, denoted

by Y ,

Y =

L∑

l=0

(−1)l

jl
Xjlpf lq−2(dω)

exists in 〈⋃e−1
k=1 S

1
k,1〉. By (4.3), ψ(X i−1dX∧ω) = πi−e−1dπ∧dω. On the other

hand,

ψ(Y ) =

L∑

l=0

(
(−1)lπjl

dπ

π
∧ f lq−2(dω) + (−1)l

1

p
πjlp

dπ

π
∧ f l+1

q−2(dω)

)

=

L∑

l=0

(
(−1)lπjl

dπ

π
∧ f lq−2(dω) + (−1)lπjl+1

dπ

π
∧ f l+1

q−2(dω)

)

= πj0
dπ

π
∧ dω.

The third equation follows from jL+1−1 ≥ e−1. Hence ψ(X i−1dX∧ω) = ψ(Y )
because j0 = i− e, and we get (iv).

(v) Now S0
i,2 and S1

i,2 are

S0
i,2 = X i dX

X
∧
(
fηiq−3N

q−3 ∪
ηi−1⋃

m=0

d

pm
fmq−4N

q−4
0

)
,

S1
i,2 = X i dX

X
∧
(
pfηi−1
q−3 N q−3 ∪

ηi−2⋃

m=0

p
d

pm
fmq−4N

q−4
0

)
.
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By (ii), we only have to calculate the element of

X i dX

X
∧ fηiq−3N

q−3
0 , X i dX

X
∧ pfηi−1

q−3 N q−3
0

to show (v). If e′ < ipηi < ep and s ≥ 2, then

X i dX

X
∧ fηiq−3ω = πip

ηi−1 dπ

π
∧ f2ηi−1

q−2 (dω)

+ πip
ηi−e dπ

π
∧ f2ηi

q−2(dω),

X i dX

X
∧ pfηi−1

q−3 ω = πip
ηi−1 dπ

π
∧ f2ηi−2

q−2 (dω)

+ πip
ηi−e dπ

π
∧ f2ηi−1

q−2 (dω).

The first terms of the right hand side come from

Sipηi−1+e,1 ⊃X ipηi−1+eN q−2
∞

3 X ipηi−1+ef2ηi−1
q−2 (dω)

ψ−→ eπip
ηi−1 dπ

π
∧ f2ηi−1

q−2 (dω),

Sipηi−1+e,1 ⊃X ipηi−1+eN q−2
∞

3 X ipηi−1+ef2ηi−2
q−2 (dω)

ψ−→ eπip
ηi−1 dπ

π
∧ f2ηi−2

q−2 (dω).

On the other hand, the second terms of the right hand side are, if ipηi ≥ 2e
then vanished. If ipηi < 2e, then by using the same argument of (iv) with
j0 = ipηi − e and

Y =

{∑L
l=0

(−1)l

jl
Xjlpf lq−2(f

2ηi
q−2(dω)) ( the first case )

∑L
l=0

(−1)l

jl
Xjlpf lq−2(f

2ηi−1
q−2 (dω)) ( the second case ),

we get

ψ(Si,2) ⊂
〈
 ⋃

1≤j<e
Sj,1


 ∪ Sipηi−e,1

〉
.

Next, we do not assume e < ipηi < e′ and s ≥ 2. In this case, we have to
show

ψ

(
X i dX

X
∧ fηiq−3N

q−3
0

)
⊂ ψ(Sj,1) if 3ηi ≥ vp(i),

ψ

(
X i dX

X
∧ pfηi−1

q−3 N q−3
0

)
⊂ ψ(Sj,1) if 3ηi ≥ vp(i) + 2.
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Take ω ∈ N q−3
0 . Then, by (4.3),

ψ

(
X i dX

X
∧ fηiq−3(ω)

)

= πip
ηi−1 dπ

π
∧ f2ηi−1

q−2 (dω) + πip
ηi−e dπ

π
∧ f2ηi

q−2 (dω) ,

ψ

(
X i dX

X
∧ pfηi−1

q−3 (ω)

)

= πip
ηi−1 dπ

π
∧ f2ηi−2

q−2 (dω) + πip
ηi−e dπ

π
∧ f2ηi−1

q−2 (dω) .

On the other hand, there exist elements

ω′1 = f
2ηi− s2
q−2 (dω) ( if s is even and 3ηi ≥ vp(i)),

ω′2 = pf
2ηi− s+1

2
q−2 (dω) ( if s is odd and 3ηi ≥ vp(i)),

ω′3 = f
2ηi− s2−1
q−2 (dω) ( if s is even and 3ηi ≥ vp(i) + 2),

ω′4 = pf
2ηi− s+1

2 −1
q−2 (dω) ( if s is odd and 3ηi ≥ vp(i) + 2)

in Ω̂q−2
A0

because the conditions are, 2ηi ≥ s/2 if and only if 3ηi ≥ vp(i) when
s is even, 2ηi ≥ (s+1)/2 if and only if 3ηi ≥ vp(i) when s is odd, 2ηi ≥ (s/2)+1
if and only if 3ηi ≥ vp(i) + 2 when s is even, and 2ηi ≥ ((s + 1)/2) + 1 if and
only if 3ηi ≥ vp(i) + 2 when s is odd. The image of ψ of an each element is

ψ(Xjω′1) = i0π
i0p

s−1 dπ

π
∧ f

s
2−1
q−2 (ω′1) +

i0
p
πi0p

s dπ

π
∧ f

s
2
q−2(ω

′
1)

= i0π
ipηi−1 dπ

π
∧ f2ηi−1

q−2 (dω) + i0π
ipηi−e dπ

π
∧ f2ηi

q−2(dω)

= i0ψ

(
X i dX

X
∧ fηiq−3(ω)

)
,

ψ(Xjω′2) =
i0
p
πi0p

s−1 dπ

π
∧ f

s−1
2

q−2 (ω′2) +
i0
p2
πi0p

s dπ

π
∧ f

s+1
2

q−2 (ω′2)

= i0π
ipηi−1 dπ

π
∧ f2ηi−1

q−2 (dω) + i0π
ipηi−e dπ

π
∧ f2ηi

q−2(dω)

= i0ψ

(
X i dX

X
∧ fηiq−3(ω)

)
,

ψ(Xjω′3) = i0π
i0p

s−1 dπ

π
∧ f

s
2−1
q−2 (ω′3) +

i0
p
πi0p

s dπ

π
∧ f

s
2
q−2(ω

′
3)

= i0π
ipηi−1 dπ

π
∧ f2ηi−2

q−2 (dω) + i0π
ipηi−e dπ

π
∧ f2ηi−1

q−2 (dω)

= i0ψ

(
X i dX

X
∧ pfηi−1

q−3 (ω)

)
,
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ψ(Xjω′4) =
i0
p
πi0p

s−1 dπ

π
∧ f

s−1
2

q−2 (ω′4) +
i0
p2
πi0p

s dπ

π
∧ f

s+1
2

q−2 (ω′4)

= i0π
ipηi−1 dπ

π
∧ f2ηi−2

q−2 (dω) + i0π
ipηi−e dπ

π
∧ f2ηi−1

q−2 (dω)

= i0ψ

(
X i dX

X
∧ pfηi−1

q−3 (ω)

)
.

Compare the definition of Sj,1 with the condition of ω′1, . . . , ω
′
4. If s is even and

3ηi ≥ vp(i) then

Xjω′1 =

{
Xj d

p2ηi−
s
2
f

2ηi− s2
q−2 (dω) ∈ Xj d

p2ηi−
s
2
f

2ηi− s2
q−2 N q−3

0

(
if ηi − s

2 ≤ ηj − 1
)
,

Xjf
ηj
q−2f

2ηi− s2−ηj
q−2 (dω) ∈ Xjf

ηj
q−2N

q−2
∞

(
if ηi − s

2 ≥ ηj
)
.

Thus Xjω′1 ∈ S0
i,1. By the similar way, we have

Xjω′2 ∈ S1
j,1 ( if s is odd and 3ηi ≥ vp(i)),

Xjω′3 ∈ S0
j,1 ( if s is even and 3ηi ≥ vp(i) + 2),

Xjω′4 ∈ S1
j,1 ( if s is odd and 3ηi ≥ vp(i) + 2).

The claim (v) was proved.

Remark 4.5. Let S
′0
i,2 (resp. S

′1
i,2) be the subset of S0

i,2 (resp. S1
i,2 ) defined as

follows.

S
′0
i,2 =





X i dX
X ∧N

q−3
0 (e < i ≤ e′, p | i)

X i dX
X ∧ f

ηi
q−3N

q−3
0 1 ≤ i < e, e < ipηi ≤ e′, 3ηi < vp(i))

∅ ( otherwise ),

S
′1
i,2 =

{
X i dX

X ∧ pf
ηi−1
q−3 N q−3

0 (1 ≤ i < e, e < ipηi ≤ e′, 3ηi < vp(i) + 2)

∅ ( otherwise ).

Remark that if 1 ≤ i < e satisfies vp(i) + ηi = 1 and e′ < ipηi < ep, then
vp(i) = 0, e/(p − 1) < i < e and ηi = 1. Thus this i satisfies neither 3ηi <

vp(i) + 2 nor 3ηi < vp(i). Let S′i,2 = S
′0
i,2 ∪ S

′1
i,2. Then by (4.4), ψ(H1(Sq)) is

generated by


 ⋃

1≤i<2e

Si,1


 ∪


 ⋃

1≤i<2e

S′i,2


 .

We need some modification of generators of ψ(H1(Sq)) as follows.
Let the index sets Λ0 and Λ1 be

Λ0 = {i ; 1 ≤ i < e, e′ < ipηi < 2e, ηi = vp(i)} , (29)
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Λ1 = {i ; 1 ≤ i < e, e′ < ipηi < 2e, ηi = vp(i) + 1, p - (i+ e)} . (30)

Let Λ = Λ0 ∪ Λ1. For i ∈ Λ, let

s = ηi + vp(i),

i′ = i/pvp(i),

i0 = i′ps−1,

il = il−1p− e for l ≥ 1,

L = Min{l ; il ≥ 2e/p}.

(31)

{il}l are monotonely increasing, thus we can take such L. Note that p - i′,
ηil = 1 for 0 ≤ l ≤ L and p - il for l ≥ 1. If i ∈ Λ0 then let gi,0 be

gi,0(X
iω) =

1

i′
X iω − 1

i0 + e
X i0+efηi−1

q−2 (ω) +

L−1∑

l=1

(−1)l

il
pX ilfηi+l−1

q−2 (ω)

for ω ∈ ZηiΩ̂
q−2
A0

. This function satisfies gi,0(ω) ≡ (1/i′)X iω modulo

fili+1 H1(Sq), thus we can replace S0
i,1 by gi,0(S

0
i,1) to generate ψ(H1(Sq)).

When i ∈ Λ1, then let gi,1 be

gi,1(X
ipω) =

1

i′
X ipω − 1

i0 + e
X i0+efηi−1

q−2 (ω) +

L−1∑

l=1

(−1)l

il
pX ilfηi+l−1

q−2 (ω)

for pω ∈ pΩ̂q−2
A0
∩Zηi Ω̂

q−2
A0

. This function satisfies gi,1(pω) ≡ (1/i′)X ipω modulo

fili+1 H1(Sq), thus we can replace S1
i,1 by gi,1(S

1
i,1) to generate ψ(H1(Sq)).

5 Explicit Calculation, Case (a)

We compute ψ(Si,1), ψ(S′i,2), ψ(gi,0S
0
i,1) and ψ(gi,1S

1
i,1) explicitly in Section 5,

6 and 7.
Define the index sets as

Γa =

{
i
∣∣∣ 1 ≤ i < e,

e

p− 1
< ipηi−1 < e

}
∪
{
i
∣∣∣ e′ < i < 2e

}
,

Γb =
{
i
∣∣∣ 1 ≤ i < e, e < ipηi < e′

}
∪
{
i
∣∣∣ e < i < e′

}
,

Γc =

{
e

p− 1
, e′
}
.

These sets are disjoint to each other, and Γa ∪ Γb ∪ Γc is coincide with {i; 1 ≤
i < 2e, i 6= e}. Λ is the subset of Γa. In this section, we compute ψ(Si,1 ∪ S′i,2)
for i ∈ Γa \ Λ, ψ(gi,0(S

0
i,1) ∪ S1

i,1 ∪ S′i,2) for i ∈ Λ0 and ψ(gi,1(S
1
i,1) ∪ S′i,2) for

i ∈ Λ1. We compute ψ(Si,1 ∪ S′i,2) when i ∈ Γb in Section 6 and when i ∈ Γc
in Section 7.
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At first, we compute ψ when i ∈ Γa and 1 ≤ i < e. Let e/(p − 1) < j < e,
s = vp(j)+1 and j0 = j/ps−1. Then the integers i which satisfy ipηi−1 = j are

(i, ηi) = (j0, s), (j0p, s− 1), . . . , (j0p
s−1, 1).

Let i = j0p
t. Then i ∈ Γa for all t. Notice that if i ∈ Γa and i < e then there

exists e/(p− 1) < j < e such that ipηi−1 = j.

If t < s−1
2 then Si,1 = ∅.

If t = (s− 1)/2 and p | (j + e), then i ∈ Λ1, S
0
i,1 = ∅ and

S1
i,1 = X i

(
pfηi−1
q−2 N q−2 ∪

ηi−2⋃

m=0

p
d

pm
fmq−3N

q−3
0

)
.

For X ipω ∈ S1
i,1, ψ(gi,1(X

ipω)) is

ψ(gi,1(X
ipω)) =

∑

n≥0

pπip
n

i′pn+1
fnq−1(dω)

−
∑

n≥0

pηi−1

(i0 + e)pn+1
π(i0+e)pnfηi+n−1

q−1 (dω)

+

L−1∑

l=1

∑

n≥0

(−1)lpηi+l−1

ilpn
πilp

n

fηi+l+n−1
q−1 (dω)

(32)

by using (4.3) and the same kind of calculation in (4.4,iv) with the nota-
tion (31). If pω ∈ pfηi−1

q−2 N q−2
∞ or pω ∈ p d

pm f
m
q−3N

q−3
0 for some m, then

ψ(g′i(X
ipω)) = 0 by (32). If pω ∈ pfηi−1

q−2 N q−2
f , then take l ≥ 0 and

f lq−2ω
′ ∈ N q−2

l for ω′ ∈ N q−2
0 such that ω = fηi+l−1

q−2 (ω′). For this ω′, we
have

ψ(gi,1(X
ipfηi+l−1

q−2 (ω′))) ≡
{
pl

i′ π
ipηi−1

f2ηi+l−2
q−1 (dω′) ( if ηi 6= 1)

epl

i(i+e)π
if lq−1(dω

′) ( if ηi = 1)

mod filip
ηi−1+el+1(Ω̂q−1

A /pdΩ̂q−2
A ).

Now ipηi−1 = j and ηi = s− t = (s+ 1)/2,

ψ(gi,1(X
ipfηi+l−1

q−2 (ω′))) ≡
{
pl

i′ π
jfs+l−1
q−1 (dω′) ( if s− t > 1)

epl

i(i+e)π
jf lq−1(dω

′) ( if t = 0, s = 1)

mod filj+el+1(Ω̂q−1
A /pdΩ̂q−2

A ).

(33)

If s = 1 and p | (j + e), then t can be taken only 0. S0
i,1 = ∅. This i is

not in Λ1, hence we compute S1
i,1 without gi,1. Now S1

i,1 = X ipN q−2. For
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X ipω ∈ X ipN q−2,

ψ(X ipω) = iπi−1dπ ∧ ω + iπip−e−1dπ ∧ fq−2(ω)

+
∑

n≥0

1

pn
πip

n ∧ fnq−1(dω)

≡ iπi−1dπ ∧ ω + πi ∧ dω
mod fili+1(Ω̂q−1

A /pdΩ̂q−2
A ).

(34)

If t = s/2, then i ∈ Λ0 and

S0
i,1 = X i

(
fηiq−2N

q−2 ∪
ηi−1⋃

m=0

p
d

pm
fmq−3N

q−3
0

)
.

For X iω ∈ S0
i,1, ψ(gi,0(X

iω)) is

ψ(gi,0(X
iω)) =

∑

n≥0

πip
n

i′pn+1
fnq−1(dω)

−
∑

n≥0

1

(i0 + e)pn+1
π(i0+e)pnfnq−1(df

ηi−1
q−2 (ω))

+
L−1∑

l=1

∑

n≥0

(−1)lpηi+l−1

ilpn
πilp

n

fηi+l+n−1
q−1 (dω).

(35)

If ω ∈ fηiq−2N
q−2
∞ or ω ∈ d

pm f
m
q−3N

q−3
0 for some m, then ψ(gi,0(X

iω)) = 0 by

(35). If ω ∈ fηiq−2N
q−2
f , then take l ≥ 0 and f lq−2ω

′ ∈ N q−2
l for ω′ ∈ N q−2

0 such

that ω = fηi+lq−2 (ω′). For this ω′, we have

ψ(gi,0(X
ifηi+lq−2 (ω′))) ≡ pl

i′
πip

ηi−1

f2ηi+l−1
q−1 (dω′)

≡ pl

i′
πjfs+l−1

q−1 (dω′)

mod filj+el+1(Ω̂q−1
A /pdΩ̂q−2

A ).

(36)

S1
i,1 is

S1
i,1 = X i

(
pfηi−1
q−2 N q−2 ∪

ηi−2⋃

m=0

p
d

pm
fmq−3N

q−3
0

)
.

For X ipω ∈ S1
i,1, ψ(X ipω) is

ψ(X ipω) =
∑

n≥0

pηi−1

pn
πip

n

fnq−1

(
dω

pηi−1

)
. (37)
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Thus if ω ∈ fηi−1
q−2 N q−2

∞ or ω ∈ d
pm f

m
q−3N

q−3
0 for some m, then ψ(X ipω) = 0.

If ω ∈ fηi−1
q−2 N q−2

f , let l ≥ 0 and f lq−2ω
′ ∈ N q−2

l for ω′ ∈ N q−2
0 such that

ω = fηi+lq−2 (ω′). For this ω′, we have

ψ(X ipfηi+l−1
q−2 (ω′)) ≡ plπipηi−1

f2ηi+l−2
q−1 (dω′)

≡ plπjfs+l−2
q−1 (dω′)

mod filj+el+1(Ω̂q−1
A /pdΩ̂q−2

A ).

(38)

If t > s/2, then i 6∈ Λ and

S0
i,1 = X i

(
fηiq−2N

q−2 ∪
ηi−1⋃

m=0

p
d

pm
fmq−3N

q−3
0

)
.

For X iω ∈ S0
i,1, ψ(X iω) is

ψ(X iω) =
∑

n≥0

pηi

pn+1
πip

n

fnq−1

(
dω

pηi

)
. (39)

If ω ∈ fηiq−2N
q−2
∞ or ω ∈ d

pm f
m
q−3N

q−3
0 for some m, then ψ(X iω) = 0. If

ω ∈ fηiq−2N
q−2
f , then take l ≥ 0 and f lq−2ω

′ ∈ N q−2
l for ω′ ∈ N q−2

0 such that

ω = fηi+lq−2 (ω′). For this ω′, we have

ψ(X ifηi+lq−2 (ω′)) ≡ plπipηi−1

f2ηi+l−1
q−1 (dω′)

≡ plπjf2s−2t+l−1
q−1 (dω′)

mod filj+el+1(Ω̂q−1
A /pdΩ̂q−2

A ).

(40)

When we take X ipω ∈ S1
i,1, by the same calculation of the case t = s/2, we

have

ψ(X ipfηi+l−1
q−2 (ω′)) ≡ plπipηi−1

f2ηi+l−2
q−1 (dω′)

≡ plπjf2s−2t+l−2
q−1 (dω′)

mod filj+el+1(Ω̂q−1
A /pdΩ̂q−2

A ).

(41)

When i ∈ Γa and i < e then S′i,2 = ∅.
Next, we compute i ∈ Γa and e < i. In this case S′i,2 = ∅, thus we only have

to compute Si,1. Let e/(p − 1) < j < e and i = j + e. Then S1
i,1 = ∅ and

S0
i,1 = X iN q−2. For an element X iω ∈ S0

i,1,

ψ(X iω) = iπi−e
dπ

π
∧ ω +

∑

n≥0

1

pn+1
πip

n

fnq−1(dω).

Documenta Mathematica 5 (2000) 151–200



182 Jinya Nakamura

If p | i, then the first term of the right hand side is zero. Hence if ω = f lq−2(ω
′)

then

ψ(X iω) ≡ plπi−ef lq−1(dω
′)

mod filj+el+1(Ω̂q−1
A /pdΩ̂q−2

A )
(42)

and if ω ∈ N q−2
∞ then ψ(X iω) = 0. If p - i, then

ψ(X iω) ≡ iπi−e dπ
π
∧ ω + πi−edω

mod filj+1(Ω̂q−1
A /pdΩ̂q−2

A ).

(43)

We have computed all Si or substitutes of Si for i ∈ Γa as above. Next,
we construct the sets {M j}j≥0 which are rearrangements of the generators of
ψ(H1(Sq)). The law of rearrangement is, for example, as follows. See (33). For

an element gi,1(X
ipfηi+l−1

q−2 (ω′)), the image of ψ is

ψ(gi,1(X
ipfηi+l−1

q−2 (ω′))) ≡ pl

i′
πjfs+l−1

q−1 (dω′)

mod filj+el+1(Ω̂q−1
A /pdΩ̂q−2

A )

when s − t > 1. Thus this element goes to grj+el(Ω̂q−1
A /pdΩ̂q−2

A ) and it seems

non-zero. So we put gi,1(X
ipfηi+l−1

q−2 (ω′)) into M j+el. We will know its image
is really non-zero in Section 8 but now we do not know it is true or not. We
construct the set M j+el by, roughly speaking, the set of the elements which
come to grj+el(Ω̂q−1

A /pdΩ̂q−2
A ) and seem non-zero. The real definition of M ∗ is

as follows.

Use (33), (34), (36), (38), (40), (41), (42) and (43) to define M j+el for
e/(p− 1) < j < e and l ≥ 0. Let e/(p− 1) < j < e, s = vp(j) + 1 and l ≥ 0. If
s = 1 then let

M j+el =




gj,1(X
jpN q−2

0 ) ∪Xj+eN q−2 (p - (j + e) and l = 0) . . . (33),(43)

gj,1(X
jpf lq−2N

q−2
0 ) (p - (j + e) and l ≥ 1) . . . (33)

XjpN q−2 ∪Xj+eN q−2
0 (p | (j + e) and l = 0) . . . (34),(42)

Xj+ef lq−2N
q−2
0 (p | (j + e) and l ≥ 1) . . . (42).

(44)

By (3.1), grj(Ω̂q−1
A /pdΩ̂q−2

A ) ∼= Ωq−1
F ⊕ Ωq−2

F and grj+el(Ω̂q−1
A /pdΩ̂q−2

A ) ∼=
Ωq−1
F /Bq−1

l for l ≥ 1. The image of M j is, if p - (j + e),

Ωq−2
F /Zq−2

1

ψ◦gj,1Xjp−−−−−−→ grj(Ω̂q−1
A /pdΩ̂q−2

A )
∼=−→ Ωq−1

F ⊕ Ωq−2
F

ω 7−→ ψ ◦ gj,1Xjpω =
e

j + e
πjdω 7−→

(
e

j + e
dω̄, 0

)
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and

Ωq−2
F

ψXj+e−−−−→ grj(Ω̂q−1
A /pdΩ̂q−2

A )
∼=−→ Ωq−1

F ⊕ Ωq−2
F

ω 7−→ ψ ◦Xj+eω = πjdω + (j + e)πj
dπ

π
∧ ω 7−→ (dω̄, iω̄).

Thus we get

ψ(x) 6= 0 for x ∈M j in grj(Ω̂q−1
A /pdΩ̂q−2

A ),

grj(Ω̂q−1
A /pdΩ̂q−2

A )/〈ψ(M j)〉 ∼= Ωq−1
F /Bq−1

1 .
(45)

The case s = 1 and p | (j + e) goes similarly to the case above. If l ≥ 1, the
image of M l+el in grj+el(Ω̂q−1

A /pdΩ̂q−2
A ) ∼= Ωq−1

F /Bq−1
l is

Ωq−2
F /Zq−2

1 3 x 7−→ C−l dx ∈ Ωq−1
F /Bq−1

l

and hence non-zero. Thus

ψ(x) 6= 0 for x ∈M j+el in grj+el(Ω̂q−1
A /pdΩ̂q−2

A ),

grj+el(Ω̂q−1
A /pdΩ̂q−2

A )/〈ψ(M j+el)〉 ∼= Ωq−1
F /Bq−1

l+1 .
(46)

If s is even and s ≥ 2, let

M j =Xj+eN q−2 . . . (43)

∪ g
j0p

s
2 ,0

(
Xj0p

s
2 f

s
2
q−2N

q−2
0

)
. . . (36)

∪Xj0p
s
2 pf

s
2−1
q−2 N

q−2
0 . . . (38)

∪


 ⋃

s/2<t≤s−1

Xj0p
t

fs−tq−2N
q−2
0 ∪Xj0p

t

pfs−t−1
q−2 N q−2

0


 . . . (40),(41),

(47)

and

M j+el =

g
j0p

s
2 ,0

(
Xj0p

s
2 f

s
2+l
q−2N

q−2
0

)
. . . (36)

∪Xj0p
s
2 pf

s
2 +l−1
q−2 N q−2

0 . . . (38)

∪


 ⋃

s/2<t≤s−1

Xj0p
t

fs−t+lq−2 N q−2
0 ∪Xj0p

t

pfs−t+l−1
q−2 N q−2

0


 . . . (40),(41)

(48)

for l ≥ 1. The image of (43) is the image of

Ωq−1
F 3 x (d,i)7−→ (dx, ix) ∈ Ωq−1

F ⊕ Ωq−2
F
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and the image of (36), (38) and (40) is

Ωq−1
F /Zq−1

1 ⊕ Ωq−1
F /Zq−1

1 ⊕
⊕

s/2<t≤s−1

(Ωq−1
F /Zq−1

1 ⊕ Ωq−1
F /Zq−1

1 )

C−(s−1)d ⊕C−(s−2)d ⊕⊕s/2<t≤s−1(C
−(2s−2t−1) d⊕C−(2s−2t−2))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Bq−1
s ⊕ 0 ⊂ Ωq−1

F ⊕ Ωq−2
F .

Thus we get

ψ(x) 6= 0 for x ∈M j in grj(Ω̂q−1
A /pdΩ̂q−2

A ),

grj(Ω̂q−1
A /pdΩ̂q−2

A )/〈ψ(M j)〉 ∼= Ωq−1
F /Bq−1

s .
(49)

If l ≥ 1, the image of M j+el is

Ωq−1
F /Zq−1

1 ⊕ Ωq−1
F /Zq−1

1 ⊕
⊕

s/2<t≤s−1

(Ωq−1
F /Zq−1

1 ⊕ Ωq−1
F /Zq−1

1 )

C−(s+l−1) d⊕C−(s+l−2) ⊕⊕s/2<t≤s−1(C
−(2s−2t+l−1) ⊕C−(2s−2t+l−2))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Bq−1
s+l /B

q−1
l ⊂ Ωq−1

F /Bq−1
l .

Thus we get

ψ(x) 6= 0 for x ∈M j+el in grj+el(Ω̂q−1
A /pdΩ̂q−2

A ),

grj+el(Ω̂q−1
A /pdΩ̂q−2

A )/〈ψ(M j+el)〉 ∼= Ωq−1
F /Bq−1

s+l .
(50)

If s is odd and s ≥ 3, let

M j =Xj+eN q−2 . . . (43)

∪ g
j0p

s−1
2 ,1

(
Xj0p

s−1
2 pf

s−1
2 −1

q−2 N q−2
0

)
. . . (33)

∪


 ⋃

s/2<t≤s−1

Xj0p
t

fs−tq−2N
q−2
0 ∪Xj0p

t

pfs−t−1
q−2 N q−2

0


 . . . (40),(41),

(51)

and

M j+el =

g
j0p

s−1
2 ,1

(
Xj0p

s−1
2 pf

s−1
2 +l−1

q−2 N q−2
0

)
. . . (33)

∪


 ⋃

s/2<t≤s−1

Xj0p
t

fs−t+lq−2 N q−2
0 ∪Xj0p

t

pfs−t+l−1
q−2 N q−2

0


 . . . (40),(41)

(52)

Documenta Mathematica 5 (2000) 151–200



The Milnor K-Groups 185

for l ≥ 1. By the similar calculation as the case s is even, we get the same
results (49) and (50).

By the definition of M j+el,

 ⋃

i∈Γa\Λ
S0
i,1 ∪ S1

i,1


 ∪

( ⋃

i∈Λ0

gi,0S
0
i,1 ∪ S1

i,1

)
∪
( ⋃

i∈Λ1

gi,1S
1
i,1

)
∪
( ⋃

i∈Γa

S′i,2

)

is equal to the union of M j+el for all e/(p− 1) < j < e and all l ≥ 0.

6 Explicit Calculation, Case (b)

In this section, we compute ψ(Si,1) and ψ(S′i,2) for i ∈ Γb.
At first, we compute ψ when i ∈ Γb and 1 ≤ i < e. Let e < j < e′, s = vp(j)

and j0 = j/ps. Then the integers i which satisfy ipηi = j are

(i, ηi) = (j0, s), (j0p, s− 1), . . . , (j0p
s−1, 1).

Let i = j0p
t. Then i ∈ Γb for all t. Notice that if i ∈ Γb and i < e then there

exists e < j < e′ such that ipηi = j. But if s = 0 then there is no i ∈ Γb such
that i < e and ipηi = j. Thus we assume s ≥ 1 to calculate when i < e.

If t < s−1
2 then Si,1 = ∅.

If t = (s− 1)/2, then S0
i,1 = ∅ and

S1
i,1 = X i

(
pfηi−1
q−2 N q−2 ∪

ηi−2⋃

m=0

p
d

pm
fmq−3N

q−3
0

)
.

For X ipω ∈ S1
i,1, ψ(X ipω) is

ψ(X ipω) = j0π
j0p

s−1 dπ

π
∧ f

s−1
2

q−2 (ω) + j0π
j−e dπ

π
∧ f

s+1
2

q−2 (ω)

+
∑

n≥0

1

pn
πip

n

fnq−1(dω)

≡ j0πj−e
dπ

π
∧ f

s+1
2

q−2 (ω) + πj−ef
s+1
2

q−2

(
dω

p
s−1
2

)

mod filj−e+1(Ω̂q−1
A /pdΩ̂q−2

A ).

(53)

Note that if X ipω ∈ S1
i,1 then ω ∈ Zηi−1Ω̂

q−2
A0

.
If t = s/2, then

S0
i,1 = X i

(
fηiq−2N

q−2 ∪
ηi−1⋃

m=0

d

pm
fmq−3N

q−3
0

)

and

S1
i,1 = X i

(
pfηi−1
q−2 N q−2 ∪

ηi−2⋃

m=0

p
d

pm
fmq−3N

q−3
0

)
.
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For X iω ∈ S0
i,1, ψ(X iω) is

ψ(X iω) ≡ j0πj−e
dπ

π
∧ f

s
2
q−2(ω) + πj−ef

s
2
q−1

(
dω

p
s
2

)

mod filj−e+1(Ω̂q−1
A /pdΩ̂q−2

A ).

(54)

For X ipω ∈ S1
i,1, ψ(X ipω) is

ψ(X ipω) =
∑

n≥0

1

pn
πip

n

fnq−2(dω).

Thus if X ipω ∈ S1
i,1 \X ipfηi−1

q−2 N q−2
f then ψ(X ipω) = 0. Take ω′ ∈ N q−2

0 such

that ω = fηi−1
q−2 f lq−2ω

′. Then

ψ(X ipω) ≡ plπj−efs−1+l
q−1 dω′

mod filj−e+el+1(Ω̂q−1
A /pdΩ̂q−2

A ).
(55)

If t > s/2, then

S0
i,1 = X i

(
fηiq−2N

q−2 ∪
ηi−1⋃

m=0

p
d

pm
fmq−3N

q−3
0

)

and

S1
i,1 = X i

(
pfηi−1
q−2 N q−2 ∪

ηi−2⋃

m=0

p
d

pm
fmq−3N

q−3
0

)
.

For X iω ∈ S0
i,1, ψ(X iω) is

ψ(X iω) =
∑

n≥0

1

pn+1
πip

n

fnq−2(dω).

Thus if X iω ∈ S0
i,1 \X ifηiq−2N

q−2
f then ψ(X iω) = 0. Take ω′ ∈ N q−2

0 such that

ω = fηiq−2f
l
q−2ω

′. Then

ψ(X iω) ≡ plπj−ef2s−2t+l
q−1 dω′

mod filj−e+el+1(Ω̂q−1
A /pdΩ̂q−2

A ).
(56)

For X ipω ∈ S1
i,1, by the same calculation as in the case t = s/2,

ψ(X ipω) ≡ plπj−ef2s−2t+l−1
q−1 dω′

mod filj−e+el+1(Ω̂q−1
A /pdΩ̂q−2

A ).
(57)
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Next, we compute S′i,2 in the case i ∈ Γb and i < e. By (4.5), S
′0
i,2 (resp.

S
′1
i,2) exists when 3s/4 < t (resp. (3s− 2)/4 < t). If 3s/4 < t,

S
′0
i,2 = X i dX

X
∧ fηiq−3N

q−3
0 3 X i dX

X
∧ fηiq−3(ω)

7−→ ψ(X i dX

X
∧ fηiq−3(ω))

= πip
ηi−1 dπ

π
∧ f2ηi−1

q−2 (dω) +
1

p
πip

ηi dπ

π
∧ f2ηi

q−2(dω)

≡ πj−e dπ
π
∧ f2s−2t

q−2 (dω)

mod filj−e+1(Ω̂q−1
A /pdΩ̂q−2

A ).

(58)

If (3s− 2)/4 < t,

S
′1
i,2 = X i dX

X
∧ pfηi−1

q−3 N q−3
0 3 X i dX

X
∧ pfηi−1

q−3 (ω)

7−→ ψ(X i dX

X
∧ fηi−1

q−3 (ω))

= πip
ηi−1 dπ

π
∧ f2ηi−2

q−2 (dω) +
1

p
πip

ηi dπ

π
∧ f2ηi−1

q−2 (dω)

≡ πj−e dπ
π
∧ f2s−2t−1

q−2 (dω)

mod filj−e+1(Ω̂q−1
A /pdΩ̂q−2

A ).

(59)

Next, we compute Si,1 for i ∈ Γb and i > e. Let j = i. Now S1
i,1 = ∅ and

S0
i,1 = X iN q−2. For an element X iω ∈ S0

i,1,

ψ(X iω) = iπi−e−1dπ ∧ ω +
∑

n≥0

1

pn+1
πip

n

fnq−1(dω).

If p | i, then the first term of the right hand side is zero. Hence if ω = f lq−2(ω
′)

then

ψ(X iω) ≡ plπi−ef lq−1(dω
′)

mod filj−e+el+1(Ω̂q−1
A /pdΩ̂q−2

A )
(60)

and if ω ∈ N q−2
∞ then ψ(X iω) = 0. If p - i, then

ψ(X iω) ≡ iπi−e dπ
π
∧ ω + πi−edω

mod filj−e+1(Ω̂q−1
A /pdΩ̂q−2

A ).

(61)

For i ∈ Γb and i > e, S′i,2 is empty if p - i. So assume p | i. Then, for
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X i−1dX ∧ ω ∈ X i−1dX ∧N q−3
0 = S′i,2 = S

′0
i,2,

X i dX

X
∧ ω = πi−e

dπ

π
∧ dω

≡ πj−e dπ
π
∧ dω mod filj−e+1(Ω̂q−1

A /pdΩ̂q−2
A ).

(62)

Use (53), (54), (55), (56), (57), (58), (59), (60), (61) and (62) to define M j+el

for e < j < e′ and l ≥ 0. Let e < j < e′, s = vp(j). By (3.1),

grj−e+el(Ω̂q−1
A /pdΩ̂q−2

A ) ∼=
{

Ω̂q−1
F ⊕ Ωq−2

F (l = 0)

Ω̂q−1
F /Bq−1

l (l ≥ 1).

If s = 0 then let

M j−e = XjN q−2, . . . (61)

M j−e+el = ∅
(63)

for all l ≥ 0. The image of M j−e is the image of

Ωq−2
F 3 x 7−→ (dx, jx) ∈ Ωq−1

F ⊕ Ωq−2
F ,

hence we get

ψ(x) 6= 0 for x ∈M j−e in grj−e(Ω̂q−1
A /pdΩ̂q−2

A ),

grj−e(Ω̂q−1
A /pdΩ̂q−2

A )/〈ψ(M j−e)〉
∼= Coker

(
Ωq−2
F 3 x 7−→ (dx, jx) ∈ Ωq−1

F ⊕ Ωq−2
F

) (64)

and

ψ(x) 6= 0 for x ∈M j−e+el in grj−e+el(Ω̂q−1
A /pdΩ̂q−2

A ),

grj−e+el(Ω̂q−1
A /pdΩ̂q−2

A )/〈ψ(M j−e+el)〉 ∼= Ωq−1
F /Bq−1

l

(65)

for l ≥ 1 because M j−e+el = ∅.
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If s is even and s ≥ 2, let

M j−e =

Xj0p
s
2


f

s
2
q−2N

q−2 ∪
(s/2)−1⋃

m=0

d

pm
fmq−3N

q−3
0


 . . . (54)

∪Xj0p
s
2 pf

(s/2)−1
q−2 N q−2

0 . . . (55)

∪
⋃

s
2<t≤s−1

(
Xj0p

t

fs−tq−2N
q−2
0 ∪Xj0p

t

fs−t−1
q−2 N q−2

0

)
. . . (56),(57)

∪
⋃

3s
4 <t≤s−1

(
Xj0p

t dX

X
fs−tq−3N

q−3
0

)
. . . (58)

∪
⋃

3s−2
4 <t≤s−1

(
Xj0p

t dX

X
pfs−t−1
q−3 N q−3

0

)
. . . (59)

∪XjN q−2
0 . . . (60)

∪Xj dX

X
N q−3

0 . . . (62)

(66)

and

M j−e+el =

Xj0p
s
2 pf

(s/2)−1
q−2 N q−2

l . . . (55)

∪
⋃

s
2<t≤s−1

(
Xj0p

t

fs−tq−2N
q−2
l ∪Xj0p

t

fs−t−1
q−2 N q−2

l

)
. . . (56),(57)

∪XjN q−2
l . . . (60)

(67)

for l ≥ 1. When l = 0, the image of (58), (59) and (62) is

 ⊕

3s/4<t≤s−1

Ωq−3
F /Zq−3

1


⊕


 ⊕

3s/4<t≤s−1

Ωq−3
F /Zq−3

1


⊕ Ωq−3

F /Zq−3
1

(
⊕

3s/4<t≤s−1 C−(2s−2t) d)⊕(
⊕

(3s−2)/4<t≤s−1 C−(2s−2t−1) d)⊕d−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
0⊕Bq−2

s
2
⊂ Ωq−1

F ⊕ Ωq−2
F ,

the image of (55), (56), (57) and (60) is

Ωq−2
F /Zq−2

1 ⊕


 ⊕

s
2<t≤s−1

Ωq−2
F /Zq−2

1 ⊕ Ωq−2
F /Zq−2

1


⊕ Ωq−2

F /Zq−2
1

C−(s−1) d⊕
(⊕

s
2
<t≤s−1 C−(2s−2t) d⊕C−(2s−2t−1)

)
⊕d

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Bq−1
s ⊕ 0 ⊂ Ωq−1

F ⊕ Ωq−2
F .
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Furthermore, the image of (54) modulo the image of the group generated by
the other generators of M j is

Ωq−2
F ⊕


 ⊕

0≤m< s
2

Ωq−3
F /Zq−3

1


 (C−s d,j0 C−s)⊕

(⊕
0≤m<s

2
C−( s

2
+m) d

)

−−−−−−−−−−−−−−−−−−−−−−−−−−→

(C−s d, j0 C−s)Ωq−2
F +Bq−2

s /Bq−2
s
2
⊂ Ωq−1

F /Bq−1
s ⊕ Ωq−2

F /Bq−2
s
2

.

Hence we get

ψ(x) 6= 0 for x ∈M j−e in grj−e(Ω̂q−1
A /pdΩ̂q−2

A ),

grj−e(Ω̂q−1
A /pdΩ̂q−2

A )/〈ψ(M j−e)〉
∼= Coker

(
Ωq−2
F 3 x 7−→ (C−s dx, j0 C−s x) ∈ Ωq−1

F /Bq−1
s ⊕ Ωq−2

F /Bq−2
s

)
.

(68)

When l ≥ 1, the image of M j−e+el is

Ωq−2
F /Zq−2

1 ⊕


 ⊕

s
2<t≤s−1

Ωq−2
F /Zq−2

1 ⊕ Ωq−2
F /Zq−2

1


⊕ Ωq−2

F /Zq−2
1

C−(s+l−1) d⊕
(⊕

s
2
<t≤s−1 C−(2s−2t+l) d⊕C−(2s−2t+l−1)

)
⊕C−l d

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Bq−1
s+l /B

q−1
l ⊂ Ωq−1

F /Bq−1
l .

Hence we get

ψ(x) 6= 0 for x ∈M j−e+el in grj−e+el(Ω̂q−1
A /pdΩ̂q−2

A ),

grj−e+el(Ω̂q−1
A /pdΩ̂q−2

A )/〈ψ(M j−e+el)〉 ∼= Ωq−1
F /Bq−1

s+l .
(69)

If s is odd and s ≥ 1, let

M j−e = Xj0p
s−1
2


pf

s−1
2

q−2N
q−2 ∪

((s−1)/2)−1⋃

m=0

p
d

pm
fmq−3N

q−3
0


 . . . (53)

∪
⋃

s
2<t≤s−1

(
Xj0p

t

fs−tq−2N
q−2
0 ∪Xj0p

t

fs−t−1
q−2 N q−2

0

)
. . . (56), (57)

∪
⋃

3s
4 <t≤s−1

(
Xj0p

t dX

X
fs−tq−3N

q−3
0

)
. . . (58)

∪
⋃

3s−2
4 <t≤s−1

(
Xj0p

t dX

X
pfs−t−1
q−3 N q−3

0

)
. . . (59)

∪XjN q−2
0 . . . (60)

∪Xj dX

X
N q−3

0 . . . (62)

(70)
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and

M j−e+el =
⋃

s
2<t≤s−1

(
Xj0p

t

fs−tq−2N
q−2
l ∪Xj0p

t

fs−t−1
q−2 N q−2

l

)
. . . (56), (57)

∪XjN q−2
l . . . (60)

(71)

for l ≥ 1. By the similar calculation to the case s is even, we get the same
result (68) and (69).

By the definition of M j+el,
( ⋃

i∈Γb

S0
i,1 ∪ S1

i,1

)
∪
( ⋃

i∈Γb

S′i,2

)

is equal to the union of M j−e+el for all e < j < e′ and all l ≥ 0.

7 Explicit Calculation, Case (c)

In this section, we compute ψ(Si,1) and ψ(S′i,2) for i ∈ Γc.
Γc has only two elements, e/(p− 1) and e′. At first let i = e/(p− 1). Then

S0
i,1 = ∅, S′i,2 = ∅ and

S1
i,1 = X ipN q−2.

Note that this i has the property i = ip− e. Take X ipω ∈ X ipN q−2, then

ψ(X ipω) = iπi
dπ

π
∧ (ω + fq−2(ω)) + πi(dω + fq−1(dω))

+
∑

n≥2

1

pn
πip

n

fnq−1(dω).

If ω+fq−2(ω) ≡ 0 mod p then the leftmost term of the right hand side vanishes.

But ω + fq−2(ω) ≡ 0 means ω̄ + C−1ω̄ = 0 in Ω̂q−2
F , thus dω = 0 hence

ψ(X ipω) = 0 by the property of N q−2
0 , see (25). So we get

ψ(X ipω)





≡ iπi dππ ∧ (ω + fq−2(ω)) + πi(dω + fq−1(dω))

mod fili+1(Ω̂q−1
A /pdΩ̂q−2

A )

( if ω + fq−2(ω) 6≡ 0 mod p)

= 0 ( if ω + fq−2(ω) ≡ 0 mod p)

(72)

Next, let i = e′. Then S0
i,1 = X iNq−2, S

′0
i,2 = X i−1dX ∧ N q−3

0 and S1
i,1 =

S
′1
i,2 = ∅. For X iω ∈ X iNq−2,

ψ(X iω) =
∑

n≥0

1

pn+1
πip

n

fnq−1(dω).
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Thus if ω ∈ N q−2
∞ then ψ(X iω) = 0 and if ω = f lq−2ω

′ for ω′ ∈ N q−2
0 then

ψ(X if lq−2ω
′) ≡ plπi−ef lq−1(dω

′) mod fili−e+el+1(Ω̂q−1
A /pdΩ̂q−2

A ). (73)

For X i−1dX ∧ ω ∈ X i−1dX ∧N q−3
0 ,

ψ(X i−1dX ∧ ω) = πi−e
dπ

π
∧ dω. (74)

Use (72), (73) and (74) to define M j+el for j = e/(p− 1) and l ≥ 0.

M
e
p−1 =X

e
p−1 pN q−2 \

{
ω
∣∣∣ω + fq−2ω ≡ 0 mod p

}
. . . (72)

∪Xe′N q−2
0 . . . (73)

∪Xe′ dX

X
∧N q−3

0 . . . (74)

and let

M
e
p−1+el = Xe′N q−2

l . . . (73).

By (3.1),

gre/(p−1)+el Ω̂q−1
A /pdΩ̂q−2

A
∼=
{

Ωq−1
F ⊕ Ωq−2

F ( if l = 0)

Ωq−1
F /Bq−1

l ( if l ≥ 1).

When l = 0, the image of (73) and (74) is

Ωq−2
F /Zq−2

1 ⊕ Ωq−3
F /Zq−3

1
d⊕d−−→ Ωq−1

F ⊕ Ωq−2
F

and the image of (72) modulo the subgroup generated by (73) and (74) is

Ωq−2
F /Zq−2

1

((1+C−1)d, e
p−1 (1+C−1))−−−−−−−−−−−−−−−−→

Ωq−1
F /Bq−1

1 ⊕ Ωq−2
F /Bq−2

1
∼= Ωq−1

F /(1 + C)Bq−1
1 ⊕ Ωq−2

F /(1 + C)Bq−2
1 .

Here Ωq−1
F /Bq−1

1
∼= Ωq−1

F /(1 + C)Bq−1
1 follows from C(Bq−1

1 ) = 0. Hence we
get

ψ(x) 6= 0 for x ∈M e/(p−1) in gre/(p−1)(Ω̂q−1
A /pdΩ̂q−2

A ),

gre/(p−1)(Ω̂q−1
A /pdΩ̂q−2

A )/〈ψ(Me/(p−1))〉

∼= Coker




Ωq−2
F −→ Ωq−1

F /(1 + C)Bq−1
1 ⊕ Ωq−2

F /(a+ C)Bq−2
1

x 7−→
(

(1 + C)C−1dx,
e

p− 1
(1 + C) C−1 x

)

 .

(75)

When l ≥ 1, the image of (73) is

Ωq−2
F /Zq−2

1
C−l d−−−→ Bq−1

l+1 /B
q−1
l ⊂ Ωq−1

F /Bq−1
l .
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Hence we get

ψ(x) 6= 0 for x ∈M e/(p−1)+el in gre/(p−1)+el(Ω̂q−1
A /pdΩ̂q−2

A ),

gre/(p−1)+el(Ω̂q−1
A /pdΩ̂q−2

A )/〈ψ(Me/(p−1)+el)〉 ∼= Ωq−1
F /Bq−1

l+1 .
(76)

By the definition of M e/(p−1)+el,

( ⋃

i∈Γc

S0
i,1 ∪ S1

i,1

)
∪
(⋃

i∈Γb

S′i,2

)

is equal to the union of M e/(p−1)+el for all l ≥ 0.

8 The structure of the Milnor K-group

Proof of Theorem 1.1. At first, assume ζp ∈ K, there exists a prime element
π of K such that πe = p and the residue field F has a finite p-base. By
the definition of Mn, the union of all Mn for n ≥ 1 and n/e 6∈ Z generates
ψ(H1(Sq)). Mel for l ≥ 0 is not defined yet, so let M el = ∅. Then Mn is
defined for all n ≥ 1. There is map

〈⋃

n≥i
ψ(Mn)

〉/〈 ⋃

n≥i+1

ψ(Mn)

〉
−→ gri(Ω̂q−1

A /pdΩ̂q−2
A ) (77)

for each i ≥ 0. By the exact sequence of (2.4), if (77) are injective for all i ≥ 0
then

〈
ψ(M i)

〉
−→ gri(Ω̂q−1

A /pdΩ̂q−2
A )

expp−−−→ gri+eKM

q (K)

are also exact for all i ≥ 0. We already know ψ(x) 6= 0 for x ∈ M i in
gri(Ω̂q−1

A /pdΩ̂q−2
A ) and what is the group 〈ψ(M i)〉 in gri(Ω̂q−1

A /pdΩ̂q−2
A ) for

all i ≥ 0 by (45), (46), (49), (50), (64), (65), (68), (69), (75) and (76). The
results are as follows:

grj+el(Ω̂q−1
A pdΩ̂q−2

A )/〈ψ(M j+el)〉 ∼= Ωq−1
F /Bq−1

s+l ( if
e

p− 1
< j < e, l ≥ 0),

(78)

where s = vp(j) + 1.

grj−e+el(Ω̂q−1
A pdΩ̂q−2

A )/〈ψ(M j+el)〉

∼=





Coker

(
Ωq−2
F → Ωq−1

F /Bq−1
s ⊕ Ωq−2

F /Bq−2
s

x 7→ (C−s dx, j0 C−s x)

)
( if e < j < e′, l = 0)

Ωq−1
F /Bq−1

s+l ( if e < j < e′, l ≥ 1),

(79)
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where s = vp(j) and j0 = j/ps.

gre/(p−1)+el(Ω̂q−1
A pdΩ̂q−2

A )/〈ψ(Me/(p−1)+el)〉

∼=





Coker

(
Ωq−2
F → Ωq−1

F /(1 + C)Bq−1
1 ⊕ Ωq−2

F /(1 + C)Bq−2
1

x 7→ ((1 + C) C−1 dx,
e

p− 1
(1 + C) C−1 x)

)
( if l = 0)

Ωq−1
F /Bq−1

1+l ( if l ≥ 1).

(80)

grel(Ω̂q−1
A pdΩ̂q−2

A )/〈ψ(Mel)〉 ∼= grel(Ω̂q−1
A pdΩ̂q−2

A ) ∼= Ωq−1
F /Bq−1

l ( for l ≥ 0).
(81)

Let n ≥ 1 and k be the integer which satisfies e/(p − 1) ≤ n − ke < e′. If
1 ≤ n ≤ e/(p − 1), then the results of (79) with l = 0 and (80) with l = 0 is
coincide with the result of [3] by grn+eKM

q (K) ∼= grn(Ω̂q−1
A /pdΩ̂q−2

A )/〈ψ(Mn)〉.
Let n > e/(p− 1). Then (78), (79), (80) and (81) say

grn(Ω̂q−1
A pdΩ̂q−2

A )/〈ψ(Mn)〉 ∼= Ωq−1
F /Bq−1

s′+1+k,

where s′ = vp(n− ke). Hence we have

grn+eKM

q (K) ∼= Ωq−1
F /Bq−1

s′+1+k

and we get Theorem (1.1) by shifting degrees.
We prove Theorem (1.1) in the case K does not contain primitive p-th roots

of unity ζp orK does not contain a prime element π such that πe = p as follows.
Let L = K(ζp, e

√
p) and let m = [L : K]. Then p - m and the extention L/K is

unramified. By using standard norm argument, the composite map

griKM

q (K) −→ grimKM

q (L)
Norm−−−→ griKM

q (K)

is the multiplication by m, hence injective. Furthermore, FL/FK is a finite
separable extension, where FL (resp. FK) is the residue field of L (resp. K),
we get Ωq−1

FL
/BlΩ

q−1
FL
∼= Ωq−1

FK
/BlΩ

q−1
FK
⊗
Fp

l

K

FL. Thus Theorem (1.1) follows

even if ζp 6∈ K.
Lastly, do not assume that the residue field of K has a finite p-base. Then

an inductive system of complete discrete valuation fields whose residue fields
has a finite p-base and its limit is isomorphic to K exists by [9] Section 1.5. On
the other hand, for a purely transcendental extension or a separable extension
F ′/F ,

ΩqF /BlΩ
q
F −→ ΩqF ′/BlΩ

q
F ′

are injective for all q and l because, if F ′/F is separable extension, then ΩqF ′ =
F ′ ⊗F ΩqF and if F ′/F is purely transcendental extension F ′ = F (T ) then

ΩqF ′ = (F ′⊗F ΩqF )⊕ (F ′⊗F Ωq−1
F ∧dT ). Hence we get Theorem (1.1) by taking

inductive limit.
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To prove Corollary (1.2), we need the following

Lemma 8.1. Assume ζp ∈ K. Let V = Im({ζp, ∗} : KM
q−1(K)/p → KM

q (K )̂ ).
Then the sequence

0 −→ V ∩ U iKM

q (K )̂ ∩ pnKM

q (K )̂ −→ U iKM

q (K )̂ ∩ pnKM

q (K )̂

−→ U i+eKM

q (K )̂ ∩ pn+1KM

q (K )̂ −→ 0

is exact for i > e/(p− 1).

Proof. Restricting the bottom row of (3) to the filtration of KM
q (K), we have

the exact sequence

0 −→ V ∩ U iKM

q (K )̂ −→ U iKM

q (K )̂
p−→ U i+eKM

q (K )̂ −→ 0

and hence we get the exact sequence

0 −→ V ∩ U iKM

q (K )̂ ∩ pnKM

q (K )̂ −→ U iKM

q (K )̂ ∩ pnKM

q (K )̂

−→ U i+eKM

q (K )̂ ∩ pn+1KM

q (K )̂ .
(82)

We only have to show the surjectivity of the last arrow of (82). Take pn+1x ∈
U i+eKM

q (K )̂ ∩ pn+1KM
q (K )̂ . By the surjectivity of the multiplication by p

map U iKM
q (K )̂ → U i+eKM

q (K), there exists y ∈ U iKM
q (K )̂ such that p(y −

pnx) = 0. This y − pnx is a p-torsion element of KM
q (K )̂ , thus y − pnx ∈ V ⊂

Ue/(p−1)KM
q (K )̂ . Hence pnx ∈ Ue/(p−1)KM

q (K )̂ because y ∈ U iKM
q (K )̂ . Now

e/(p− 1) is prime to p, thus gre/(p−1) KM
q (K )̂ ∼= gre/(p−1)(KM

q (K)/pn) by [3],

and pnx goes to zero on this map. Hence we get pnx ∈ Ue/(p−1)+1KM
q (K )̂ . Let

j = (e/(p − 1)) + 1. By the definition, all rows and columns in the following
commutative diagram are exact:

0 0
y

y

0 −−−−→ V ∩Uj∞∩(pn)
V ∩Ui∞∩(pn) −−−−→

Uj∞∩(pn)
Ui∞∩(pn)

p−−−−→ Uj+e∞ ∩(pn+1)

Ui+e∞ ∩(pn+1)y
y

y

0 −−−−→ V ∩Uj∞
V ∩Ui∞

−−−−→ Uj∞
Ui∞

p−−−−→ Uj+e∞

Ui+e∞
−−−−→ 0

y
y

y

0 −−−−→ Vpn∩Ujpn
Vpn∩Uipn

−−−−→ Uj
pn

Ui
pn

p−−−−→
Uj+e
pn+1

Ui+e
pn+1

−−−−→ 0
y

y

0 0

where we denote Vpn = Im(V → KM
q (K)/pn), Um∞ = UmKM

q (K )̂ , Unpn =
Un(KM

q (K)/pn) and (pn) = pnKM
q (K )̂ only in this diagram. pnx is in the
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middle group of the top row and goes to zero by multiplication by p. Thus there
exists z ∈ V ∩U jKM

q (K )̂ ∩pnKM
q (K )̂ such that pnx−z ≡ 0 modulo U iKM

q (K )̂ .

Furthermore, z ∈ pnKM
q (K )̂ implies pnx− z ∈ U iKM

q (K )̂ ∩ pnKM
q (K )̂ , thus

U iKM

q (K )̂ ∩ pnKM

q (K )̂
p−→ U i+eKM

q (K )̂ ∩ pn+1KM

q (K )̂

pnx− z 7−→ pn+1x− pz = pn+1x.

Hence surjectivity of the last arrow of (82) follows.

Corollary 8.2. All rows and columns are exact in the following commutative
diagram :

0 0
y

y
UiKMq (K )̂ ∩pnKMq (K )̂

Ui+1KMq (K )̂ ∩pnKMq (K )̂ −−−−→
Ui+eKMq (K )̂ ∩pn+1KMq (K )̂

Ui+e+1KMq (K )̂ ∩pn+1KMq (K )̂ −−−−→ 0
y

y

griKM
q (K )̂

p−−−−→ gri+eKM
q (K )̂ −−−−→ 0

y
y

gri(KM
q (K)/pn)

p−−−−→ gri+e(KM
q (K)/pn+1) −−−−→ 0

y
y

0 0.

(83)

Proof. Exactness of the top row comes from (8.1).

Proof of Corollary 1.2. Denote Ker(griKM
q (K )̂ → griKM

q (K)/pn+1) by
Gi,n+1. At first, we prove Corollary (1.2) for e′ < i ≤ e′ + e. Let s = vp(i− e)
and i0 = (i− e)/ps. Then we know all gri−eKM

q (K )̂ and gri−e(KM
q (K)/pn) by

[3], thus (83) is, if n ≤ s and i 6= e′ + e then

0
y

Zq−1
n ⊕ Zq−2

n −−−−→ Gi,n+1 −−−−→ 0
y

y
Ωq−1
F /Bq−1

s ⊕Ωq−2
F /Bq−2

s

(C−s d,i0 C−s)Ωq−2
F

−−−−→ Ωq−1
F /Bq−1

s+1 −−−−→ 0
y

y
Ωq−1
F

Zq−1
n
⊕ Ωq−2

F

Zq−2
n

−−−−→ gri(KM
q (K)/pn+1) −−−−→ 0

y
y

0 0
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here all maps are natural maps, and if n ≤ s and i = e′ + e then

0
y

(1 + aC)Zq−1
n ⊕ (1 + aC)Zq−2

n −−−−→ Gi,n+1 −−−−→ 0
y

y
Ωq−1
F /(1+aC)Bq−1

s ⊕Ωq−2
F /(1+aC)Bq−2

s

((1+aC) C−s d,i0(1+aC) C−s)Ωq−2
F

−−−−→ Ωq−1
F /Bq−1

s+1 −−−−→ 0
y

y
Ωq−1
F

(1+aC)Zq−1
n
⊕ Ωq−2

F

(1+aC)Zq−2
n

−−−−→ gri(KM
q (K)/pn+1) −−−−→ 0

y
y

0 0

where a is the residue class of p/πe. We get (1.2) in this case by these dia-
grams. If n > s then griKM

q (K )̂ → gri(KM
q (K)/pn) is an isomorphism, thus

gri+eKM
q (K )̂ → gri+e(KM

q (K)/pn+1) is also an isomorphism.
By induction on i and calculating the diagram (83) for each case, we get

(1.2).

9 An application

Theorem 9.1. Let K be a Henselian discrete valuation field of mixed charac-
teristics (0, p > 2) with the residue field F . Assume p - e and [F : F p] = pq−1,
where e = vK(p). Let L/K be a ferociously ramified cyclic extention of order
pn (i.e., the extention of the residue fields is inseparable of order pn). Then
pn ≤ e′, where e′ = ep/(p− 1).

Remark 9.2. In [15] and [6], they give the upper bounds of such extensions. If
K has the property p - e, our bound is stricter than them (or equal to [6] if e
is small).

Proof. We use the notation U ipn = U i(KM
q (K)/pn) for simplicity. The

proof goes similarly to the argument of [15] Section 3. By the limit argu-
ment, we may assume F is a field of transcendental degree q − 1 over Fp.
Then Hq+1(K,Z/p(q)) is non zero by [10] and furthermore we know that
Hq+1(K,Z/pn(q)) has an elements of order pn by using Bockstein.

Let L/K be a cyclic extension of order pn and let χ ∈ H1(K,Z/pn) be the
character which coincide with L/K. Let φχ be the homomorphism

φχ : KM

q (K)/pn −→ Hq+1(K,Z/pn(q))
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which is induced by the pairing

H1(K,Z/pn)×KM

q (K)/pn −→ Hq+1(K,Z/pn(q))

by using KM
q (K)/pn ∼= Hq(K,Z/pn(q)). If L/K is ferociously ramified, by [15]

Section 3, we know

φχ : U1
pn −→ Hq+1(K,Z/pn(q))

is surjective and

φχ({1 + πix, y1, . . . , yq−1}) ∈ φχ(U i+1
pn ) (84)

for any x, y1, . . . , yq−1 ∈ O×K and i ≥ 1. Theorem (1.1) says that U e
′+1
pn is

generated by the elements of the form of the left hand side of (84), thus we get

φχ : Uppn/U
e′+1
pn −→ Hq+1(K,Z/pn(q))

is defined and surjective. Furthermore, for any element {1 +
πix, y1, . . . , yq−2, π} ∈ U1

pn for x, y1, . . . , yq−2 ∈ O×K and i ≥ p, its order

modulo Ue
′+1
pn is less than or equal to pl by [3] Theorem 1.4, where l be

the maximal integer which satisfies pl ≤ e′. Thus he maximal order of the

elements of Uppn modulo Ue
′+1
pn is less than or equal to pl. On the other hand,

Hq+1(K,Z/pn(q)) has a element of order pn, thus n ≤ l. This is the inequality
which we desired.

Note that there exists elements of U ppn/U
e′+1
pn of order pn, for example, {1 +

πpT1, T2, . . . , Tq−1, π}, where {T1, . . . , Tq−1} are the liftings of a p-base of F .

Thus the maximal order of the elements of U ppn/U
e′+1
pn is pl.
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Abstract. Gabor and wavelet methods are preferred to classical
Fourier methods, whenever the time dependence of the analyzed sig-
nal is of the same importance as its frequency dependence. However,
there exist strict limits to the maximal time-frequency resolution of
these both transforms, similar to Heisenberg’s uncertainty principle in
Fourier analysis. Results of this type are the subject of the following
article. Among else, the following will be shown: if ψ is a window
function, f ∈ L2(R) \ {0} an arbitrary signal and Gψf(ω, t) the con-
tinuous Gabor transform of f with respect to ψ, then the support of
Gψf(ω, t) considered as a subset of the time-frequency-plane R2 can-
not possess finite Lebesgue measure. The proof of this statement, as
well as the proof of its wavelet counterpart, relies heavily on the well
known fact that the ranges of the continuous transforms are reproduc-
ing kernel Hilbert spaces, showing some kind of shift-invariance. The
last point prohibits the extension of results of this type to discrete
theory.

1991 Mathematics Subject Classification: 26D10, 43A32, 46C05,
46E22, 81R30, 81S30, 94A12
Keywords and Phrases: uncertainty principles, wavelets, reproducing
kernel Hilbert spaces, phase space

1 Introduction

One of the basic principles in classical Fourier analysis is the impossibility
to find a function f being arbitrarily well localized together with its Fourier
transform f̂ . There are many ways to get this statement precise. The most
famous of them is the so called Heisenberg uncertainty principle [Heis27], a
consequence of Cauchy-Schwarz’s inequality (c.f. [Chan89], for example):
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202 Elke Wilczok

Given f ∈ L2(R) \ {0} arbitrary, one has



∞∫

−∞

x2|f(x)|2dx




1/2

∞∫

−∞

ξ2|f̂(ξ)|2dξ




1/2

≥
‖f‖2L2(R)

2
, (1)

where equality holds if and only if there exist some constants C ∈ C, k > 0
such that f(x) = Ce−kx

2

.

Completely different techniques lead to further restrictions of this type, e.g.
methods of complex analysis to the theorems of Paley-Wiener and Hardy
[Chan89, Hard33], and a study of the spectral properties of compact oper-
ators to the work of Slepian, Pollak and Landau [Slep65, LaWi80, Slep83].
The uncertainty principles of Lenard, Amrein, Berthier and Jauch [Lena72,
BeJa76, AmBe77] are mainly consequences of the geometric properties of ab-
stract Hilbert spaces. Additional considerations provide the articles of Cowling-
Price [CoPr84] and Donoho-Stark [DoSt89]. And those are just a few aspects
of uncertainty in harmonic analysis. Deeper insight can be won from the book
of Havin and Jöricke [HaJo94].

The representation of f as a function of x is usually called its time-represen-
tation, while frequency-representation is another name for the Fourier trans-
form f̂(ξ). For applications, one often needs information about the frequency-
behaviour of a signal at a certain time (resp. the time-behaviour of a certain
frequency-component of the signal). This lead to the construction of several
joint time-frequency representations, among those the Gabor transform (3).
The motivation for the wavelet transform (12) was of similar nature. However,
the latter should preferably be called a joint time-scale representation, since the
parameter a in (12) cannot completely be identified with an inverse frequency,
as it is often done in the literature.

Bearing in mind the limits of classical Fourier transform, one cannot expect to
achieve perfect phase-space resolution by using such joint representations. Even
worse, additional perturbations of the original signal may be introduced by the
window (resp. wavelet) function ψ. Precise estimates tackling exactly that
point are rare in literature. Usually, the time-frequency-resolution of a Gabor
(resp. wavelet) transform is identified with the time-frequency localization of
the function ψ [Chui92]. This can be seen even more clearly from the discrete
transforms: the famous uncertainty principles of Balian-Low for the discrete
Gabor transform [Bali81, Daub90] and Battle for the discrete wavelet transform
[Batt89, Batt97] just estimate the maximal time-frequency resolution of the
window (resp. wavelet) function ψ under the restriction that the daughter
functions of ψ span a frame (resp. an – in some suitable sense – orthogonal
set). As for the continuous wavelet transform, Dahlke and Maaß [DaMa95]
proved a Heisenberg-like inequality related to the affine group. It is not so
obvious, however, what consequences for the phase-space localization of Wψf
follow from this result. Presumably, Daubechies [Daub88, Daub92] was the
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first to analyze the energy content of Gψf (resp. Wψf) restricted to a proper
subset M of phase-space. But she considered only very special functions ψ and
subsets M of very special geometry, chosen in such a way that the arguments
of Slepian, Pollak and Landau could widely be transferred.

In section 4 of this article, a similar investigation will be performed for quite
general functions ψ and almost arbitrary subsets M of phase-space. By this,
one cannot expect to get such precise results as Daubechies did. While she
computed the whole spectrum of a suitably constructed compact operator,
we just derive an upper bound for its eigenvalues. This suffices, however, to
estimate the maximal energy content of Gψf (resp. Wψf) in M . Before doing
so, we show in section 3 that if M is a set of finite Lebesgue (resp. affine)
measure, there is no f ∈ L2(R) such that suppGψf ⊆ M (resp. suppWψf ⊆
M). Here, supph denotes the support of a given function h. We finish this
article with some conclusions following from Heisenberg’s uncertainty principle.

The results presented here are part of the author’s PhD thesis [Wilc97].

2 Prerequisites from the Theory of Gabor and Wavelet Trans-
forms

This section shall serve as a reference. It provides some of the most important
definitions and theorems from the theory of (continuous) Gabor and wavelet
transforms. Further introductory information, and especially the proofs of the
results presented here, can be found, e.g., in [Chui92, Daub92, Koel94].

In the following, we denote by λ(n) n-dimensional Lebesgue measure, by R∗

the set of real numbers without zero and by χM the characteristic function
of the set M . The Fourier-Plancherel transform of a function f ∈ L2(R) is
normalized by

(Ff)(ξ) := f̂(ξ) :=
1√
2π

∞∫

−∞

f(x)e−iξxdx (ξ ∈ R).

2.1 Basic Gabor Theory

Definition 2.1 (Gabor transform)
1. A window function is a function ψ ∈ L2(R) \ {0}.
2. Given a window function ψ and (ω, t) ∈ R2, we define the daughter function
ψωt of ψ by

ψωt(x) :=
1√
2π
ψ(x− t)eiωx. (2)
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3. The Gabor transform (GT) of a function f ∈ L2(R) with respect to the
window function ψ is defined by

Gψf : R2 → C, where

Gψf(ω, t) :=

∞∫

−∞

f(x)ψωt(x)dx. (3)

4. Given a window function ψ, we define an operator Gψ acting on L2(R) by

Gψ : f 7→ Gψf.

Gψ is called the operator of the Gabor transform or, shorter, the Gabor trans-
form with respect to ψ.

Remark 2.2
1. Other names of the Gabor transform frequently used in the literature
are Weyl-Heisenberg transform, short time Fourier transform and windowed
Fourier transform.
2. If there is no danger of confusion, we drop the attribute with respect to ψ
in the following.
3. From Plancherel’s formula we get the Fourier representations of Gψf :

Gψf(ω, t) = F(f(x)ψ(x − t))(ω) = e−itωF(f̂(ξ)ψ̂(ξ − ω))(−t). (4)

Denoting by Cb(R
2) the vector space of bounded continuous functions mapping

R2 into C, equipped with the maximum norm, we have

Theorem 2.3 (Covariance properties) Let ψ be a window function. The
Gabor transform Gψ is a bounded linear operator from L2(R) to Cb(R

2)
possessing the following covariance properties:

for f ∈ L2(R) and (ω, t) ∈ R2 arbitrary

[Gψf(· − x0)] (ω, t) = e−iωx0Gψf(ω, t− x0) (x0 ∈ R), (5)

[
Gψ(eiω0·f(·))

]
(ω, t) = Gψf(ω − ω0, t) (ω0 ∈ R). (6)

Theorem 2.4 (Orthogonality relation) Let ψ be a window function and f, g ∈
L2(R) arbitrary. Then we have

∞∫

−∞

Gψf(ω, t)Gψg(ω, t)dωdt = ‖ψ‖2L2(R)(f, g)L2(R). (7)
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Corollary 2.5 (Isometry) Let ψ be a window function. The normalized
Gabor transform 1

‖ψ‖L2(R)
Gψ is an isometry from L2(R) into a subspace of

L2(R2).

Corollary 2.6 (Reproducing kernel) Let ψ be a window function. Then
Gψ(L2(R)) is a reproducing kernel Hilbert space (r.k.H.s.) in L2(R2) with
kernel function

Kψ(ω′, t′;ω, t) :=
1

‖ψ‖2L2(R)

(ψωt, ψω′t′)L2(R). (8)

The kernel is pointwise bounded:

|Kψ(ω′, t′;ω, t)| ≤ 1 ∀ (ω′, t′), (ω, t) ∈ R2. (9)

2.2 Basic Wavelet Theory

Definition 2.7 (Wavelet transform)
1. A function ψ ∈ L2(R) \ {0} satisfying the admissibility condition

cψ := 2π

∞∫

−∞

|ψ̂(ξ)|2 dξ|ξ| <∞ (10)

is called a mother wavelet.
2. Given a mother wavelet ψ and (a, b) ∈ R∗ × R, we define the daughter
wavelet ψab of ψ by

ψab(x) :=
1√
|a|
ψ

(
x− b
a

)
. (11)

3. The wavelet transform (WT) of a function f ∈ L2(R) with respect to the
mother wavelet ψ is defined by

Wψf : R∗ ×R→ C, where

Wψf(a, b) :=

∞∫

−∞

f(x)ψab(x)dx. (12)

4. Given a mother wavelet ψ, we define an operator Wψ acting on L2(R) by

Wψ : f 7→Wψf.

Wψ is called the operator of the wavelet transform or, shorter, the wavelet
transform with respect to ψ.
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Remark 2.8
From Plancherel’s formula we get the Fourier representation

Wψf(a, b) = F−1(
√

2πf̂(ξ)
√
|a|ψ̂(aξ))(b). (13)

Denoting by Cb(R
∗ × R) the vector space of bounded continuous functions

mapping R2 into C, equipped with the maximum norm, we have

Theorem 2.9 (Covariance properties) Let ψ be a mother wavelet. The
wavelet transform Wψ is a bounded linear operator from L2(R) to Cb(R

∗×R)
possessing the following covariance properties:

for f ∈ L2(R) and (a, b) ∈ R∗ ×R arbitrary

[Wψf(· − x0)](a, b) = Wψf(a, b− x0) (x0 ∈ R), (14)

[
Wψ

(
1√
|c|
f
( ·
c

))]
(a, b) = Wψf

(
a

c
,
b

c

)
(c ∈ R∗). (15)

Theorem 2.10 (Orthogonality relation) Let ψ be a mother wavelet and f, g ∈
L2(R) arbitrary. Then we have

∞∫

−∞

Wψf(a, b)Wψg(a, b)
dadb

a2
= cψ(f, g)L2(R). (16)

Corollary 2.11 (Isometry) Let ψ be a mother wavelet. The normalized
wavelet transform 1√

cψ
Wψ is an isometry from L2(R) into a subspace of

L2(R∗ ×R, dµaff ), where dµaff := dadb
a2 denotes the so-called affine measure.

Corollary 2.12 (Reproducing kernel) Let ψ be a mother wavelet. Then
Wψ(L2(R)) is a r.k.H.s. in L2(R∗ ×R, dµaff ) with kernel function

Kψ(a′, b′; a, b) :=
1

cψ
(ψab, ψa′b′)L2(R). (17)

The kernel is pointwise bounded:

|Kψ(a′, b′; a, b)| ≤
‖ψ‖2L2(R)

cψ
∀ (a′, b′), (a, b) ∈ R∗ ×R. (18)

2.3 Group theoretical background

The parallel structures of the two foregoing sections suggest that Gabor and
wavelet transform originate from a common root. As it is widely known, this
root can be found in the theory of unitary representations of locally compact
groups. Using the terminology of e.g. [GrMo85, HeWa89] we state one of the
central results in that context:
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Theorem 2.13 (Orthogonality relation) Let G be a locally compact group with
left Haar measure µL, H a complex Hilbert space and U a square integrable,
irreducible, unitary representation of G on H. Define

AU := {ψ ∈ H : ψ is U − admissible}, (19)

where U-admissibility of ψ ∈ H means

0 < cUψ :=

∫

G

|(ψ,U(g)ψ)H|2dµL(g) <∞. (20)

Then AU is dense in H, and there exists a unique positive operator CU : AU →
H such that for all ψ,Ψ ∈ AU and for all f1, f2 ∈ H

∫

G

(f1, U(g)ψ)H(f2, U(g)Ψ)HdµL(g) = (CUΨ, CUψ)H(f1, f2)H. (21)

If G is unimodular, then CU is a multiple of the identity operator.

Remark 2.14 Gabor transform is induced by a square-integrable, unitary, ir-
reducible representationUWH of the so called Weyl-Heisenberg group on L2(R).
Here, UWH -admissibility poses no additional restrictions: AUWH = L2(R).
Similarily, wavelet transform results from a representation Uaff of the affine
(”ax+b”-) group on L2(R). In this case, Uaff -admissibility of a function ψ ∈
L2(R) corresponds to admissibility in the sense of 10.
By this, covariance properties 5,6,14 and 15, as well as the orthogonality rela-
tions 7,16 with corollaries are immediate consequences of group theory.
A helpful reference in the context of time-frequency distributions and group
theory is the survey article of Miller [Mill91].

3 Restrictions on the Supports of Gabor and Wavelet Trans-
forms

In 1977, Amrein and Berthier ([AmBe77], see also [HaJo94]) proved that the
support of a function f ∈ L2(R) \ {0} and the support of its Fourier transform

f̂ cannot both be sets of finite Lebesgue measure. Using the same techniques,
we will show now that for any window function (resp. wavelet) ψ and any
f ∈ L2(R) \ {0} the support of the Gabor transform Gψf (resp. wavelet
transform Wψf) is a set of infinite Lebesgue (resp. affine) measure. As a
preparation we need

Lemma 3.1 (Dimension of certain subspaces of a r.k.H.s.)
Let (Y,ΣY , µY ) be a σ-finite measure space, M a subset of Y with µY (M) <∞,
and H ⊂ L2(Y, dµY ) a r.k.H.s. with kernel K. Assuming that

sup
y′,y∈Y

|K(y′, y)| <∞, (22)
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and defining

HM := {F ∈ H : F = χM · F}, (23)

the following estimate holds:

dim HM ≤
(

sup
y′,y∈Y

|K(y′, y)|
)2

µY (M)2 <∞. (24)

Proof: Using (22) and the finiteness of µY (M) we get

∫

M

∫

M

|K(y′, y)|2dµY (y′)dµY (y) ≤
(

sup
y′,y∈Y

|K(y′, y)|
)2

µY (M)2 <∞, (25)

hence, in particular, K ∈ L2(M ×M,d2µY ). Let (en)Nn=1 (N ∈ N) be an
arbitrary orthonormal family in HM , and define

En(y′, y) := en(y
′)en(y) (n ∈ {1, . . . , N}).

Then for m,n ∈ {1, . . . , N}
∫
M

∫
M

Em(y′, y)En(y′, y)dµY (y′)dµY (y)

=
∫
M

∫
M

em(y′)em(y)en(y′)en(y)dµY (y′)dµY (y) = δmn,

hence, (En)Nn=1 is an orthonormal family in L2(M ×M,d2µY ). Since we have
shown that K ∈ L2(M × M,d2µY ), Bessel’s inequality, combined with the
reproducing property of K, leads to

‖K‖2L2(M×M,d2µY ) ≥
N∑

n=1

|(En,K)L2(M×M,d2µY )|2

=
N∑

n=1

|
∫

M

∫

M

en(y
′)en(y)K(y′, y)dµY (y)dµY (y′)|2

=

N∑

n=1

|
∫

M

en(y
′)en(y′)dµY (y′)|2 = N.

So, finally, (25) implies

N ≤
(

sup
y′,y∈Y

|K(y′, y)|
)2

µY (M)2 <∞,

and therefore each orthonormal set of HM is finite.
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Now, choose M as a subset of R2 (resp. R∗ × R) and H = Gψ(L2(R)) ⊂
L2(R2) (resp. Wψ(L2(R)) ⊂ L2

(
R∗ ×R, dadba2

)
). From section 2 we know

that these two ranges are r.k.h.s with bounded kernels. Assuming, there exists
at least one non-trivial function F ∈ HM , we will construct an infinite sequence
of functions in H being linearly independent and supported in a set of finite
measure. Since this is a contradicition to lemma 3.1, HM must be zero space.

In the Gabor case, the construction is based on

Lemma 3.2 (Shifting lemma) Let M, M0 be two subsets of R2, M0 ⊆ M ,
λ(2)(M0) > 0 and λ(2)(M) <∞. For ω0 ∈ R define

M0 − ω0 := {(ω, t) ∈ R2 : (ω + ω0, t) ∈M0}.
Then for each ε ∈]0, λ(2)(M0)[, there exists a real number ωε ∈ R such that

λ(2)(M) < λ(2)(M ∪ (M0 − ωε)) < λ(2)(M) + ε. (26)

Proof: Consider the function

v : R→ R, ω 7→ λ(2)(M ∪ (M0 − ω)).

This function is continuous, since

v(ω) = λ(2)(M) + λ(2)(M0)− λ(2)(M ∩ (M0 − ω))

= λ(2)(M) + λ(2)(M0)−
∞∫

−∞

∞∫

−∞

χM (ω̃, t) · χM0−ω(ω̃, t)dω̃dt

= λ(2)(M) + λ(2)(M0)−
∫ ∫

M

χM0(ω̃ + ω, t)dω̃dt

= const.− ‖χM0(·+ ω, ·)‖L1(M),

and lim|h|→0 ‖f(·+ h, ·)− f(·, ·)‖L1(M) = 0 for every f ∈ L1(M) (cf. [Okik71],
3.6). Hence, evaluating v at two suitably chosen points and using the mean
value theorem leads to assertion (26). Such points shall be constructed in the
following.
From M0 ⊆ M , one gets v(0) = λ(2)(M), and therefore the lower bound in
relation (26).
Since λ(2)(M) < ∞, given δ > 0, there exists a bounded measurable subset
M δ of M such that λ(2)(M \M δ) < δ (cf. [EvGa92]). Choose Kδ > 0 such
that M δ lies completely in the ball of radius Kδ centered at the origin. Put
ωδ := 3Kδ. Then M δ ∩ (M δ + ωδ) = ∅, and

∫ ∫

M

χM0(ω + ωδ, t)dωdt ≤
∫ ∫

Mδ

χM0(ω + ωδ, t)dωdt+ δ

=

∫ ∫

Mδ+ωδ

χM0(ω̃, t)dω̃dt+ δ ≤
∫ ∫

Rn\Mδ

χM (ω̃, t)dω̃dt+ δ ≤ 2δ,
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hence, as before,

v(ωδ) ≥ λ(2)(M) + λ(2)(M0)− 2δ.

Now the mean value theorem shows that v takes all values between λ(2)(M) and
λ(2)(M) + λ(2)(M0)− 2δ with δ arbitrarily small. This proves the assertion.

Theorem 3.3 For any window function ψ and any set M ⊂ R2 of finite
Lebesgue measure, we have

Gψ(L2(R)) ∩ {F ∈ L2(R2) : F = χM · F} = {0}. (27)

Proof: Let us assume, there exists a non-trivial function F0 satisfying

F0 ∈ Gψ(L2(R)) ∩ {F ∈ L2(R2) : F = χM · F}. (28)

Let M0 ⊆M denote the support of F0, and choose ε ∈]0, 2λ(2)(M0)[ arbitrary.
Using the notation of lemma 3.2 we define

M1 := M,

M2 := M1 ∪ (M0 − ω1),

where ω1 ∈ R is chosen such that

λ(2)(M1) < λ(2)(M2) < λ(2)(M1) + ε · 2−1,

and correspondingly for k > 2

Mk := Mk−1 ∪ (M0 − ω1 − · · · − ωk−1),

where ωk−1 ∈ R satisfies

λ(2)(Mk−1) < λ(2)(Mk) < λ(2)(Mk−1) + ε · 2−k+1.

The existence of suitable translations ωk−1 ∈ R is guaranteed by lemma 3.2,
since M0 ⊆ M1 ⊂ M2 ⊂ · · · ⊂ Mk−2 ⊂ Mk−1. Let M∗ :=

⋃∞
k=1 Mk. By

construction

λ(2)(M∗) ≤ λ(2)(M) + ε

∞∑

k=1

2−k = λ(2)(M) + ε.

Hence, λ(2)(M∗) < ∞ for λ(2)(M) < ∞. Let F1(ω, t) := F0(ω, t), Fk(ω, t) :=
Fk−1(ω + ωk−1, t) (k ∈ N, k > 1). Using the invariance property (6) of the
Gabor transform, we see that Fk ∈ Gψ(L2(R)) (k ∈ N, k > 1), and

supp Fk = supp Fk−1 − ωk−1

= supp F1 − ω1 − · · · − ωk−1

= M0 − ω1 − · · · − ωk−1 ⊆Mk ⊂M∗.
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We now show the linear independence of the family (Fk)k≥2. Let us assume,
there exists a k > 2 such that

Fk =

k−1∑

k̃=2

ak̃Fk̃ (29)

for some suitably chosen coefficients a2, a3, . . . , ak−1 ∈ R. Then,

supp Fk ⊆
k−1⋃

k̃=2

supp Fk̃,

and hence

M0 − ω1 − · · · − ωk−1

⊆ {(M0 − ω1) ∪ (M0 − ω1 − ω2) ∪ · · · ∪ (M0 − ω1 − ω2 − · · · − ωk−2)}
⊆Mk−1.

On the other hand, λ(2)(Mk) > λ(2)(Mk−1) implies that Mk = Mk−1 ∪ (M0 −
ω1 − · · · − ωk−1) is a real superset of Mk−1. So, M0 − ω1 − · · · − ωk−1 cannot
be a subset of Mk−1. Therefore, a linear combination of type (29) is not
possible, and hence (Fk)k≥2 is an infinite set of linearly independent functions
with supp Fk ⊂ M∗, where λ(2)(M∗) < ∞. From section 2 we know that
Gψ(L2(R)) is a r.k.H.s. with pointwise bounded kernel. Hence, following
lemma 3.1, each subspace of Gψ(L2(R)) consisting of functions supported on a
set of finite measure must be of finite dimension. This shows that assumption
(28) was wrong.

From theorem 3.3 we get immediately

Corollary 3.4 (The support of a GT has infinite measure)
Let ψ be a window function. Then, for f ∈ L2(R) \ {0} arbitrary, the support
of Gψf is a set of infinite Lebesgue measure.

Remark 3.5
Recalling the definition of the cross-ambiguity function of f, g ∈ L2(R)

A(f, g)(ω, t) :=
1√
2π

∞∫

−∞

eiωx̃f

(
x̃+

t

2

)
g

(
x̃− t

2

)
dx̃, (30)

and rewriting (30) by

A(f, g)(ω, t) = e−
iωt
2 Ggf(−ω, t), (31)

we may conclude that suppA(f, g) is of infinite measure, unless f = 0 or g = 0.
This answers a question posed by Folland and Sitaram [FoSi97] which has been
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considered independently by Jaming [Jami98] and Janssen [Jans98]. Their
proofs are based on the Fourier uncertainty principle of Benedicks [Bene85].
Using the same principle, Janssen disproved the existence of an half-space
in R2 containing a finitely measured part of suppA(f, g) unless f = 0 or
g = 0. Assuming f, g to be real-valued, this is a corollary to theorem 3.3,
for λ(2)(suppGψf(ω, t)|ω<0) < ∞ implies λ(2)(suppGψf(ω, t)|ω<0) < ∞, and
therefore λ(2)(suppGψf(ω, t)|ω>0) < ∞, hence λ(2)(suppGψf(ω, t)) < ∞,
where {(ω, t) ∈ R2 : ω < 0} is representative for any subspace of R2 (cf.
[Jans98]). In case f = g, complex values are admissible, as well.

Looking more closely at the proof of theorem 3.3 we find as its main ingredients

• a r.k.H.s. in an L2-space with a pointwise bounded reproducing kernel,

• translation invariance in at least one fixed direction.

Consequently, results of this type hold in a much wider sense:

Theorem 3.6 (Abstract version) Let H be a r.k.H.s. consisting of functions
on Rn which are square-integrable with respect to Lebesgue measure. Assume,
the reproducing kernel K of H is bounded. Let U 6= {0} be a subspace of Rn

such that F ∈ H, u ∈ U imply F (· − u) ∈ H. Then, for each F ∈ H, one has
λ(n)(suppF ) =∞.

To obtain a corresponding result for the wavelet transform, we need an affine
version of the shifting lemma 3.2. Using µaff instead of Lebesgue measure, we
find analogously:

Lemma 3.7 (Affine shifting lemma) Let M, M0 be two subsets of R∗ × R,
M0 ⊆M , µaff (M0) > 0 and µaff (M) <∞. For b0 ∈ R define

M0 − b0 := {(a, b) ∈ R∗ ×R : (a, b+ b0) ∈M0}.

Then, for each ε ∈]0, µaff (M0)[, there exists a number bε ∈ R such that

µaff (M) < µaff (M ∪ (M0 − bε)) < µaff (M) + ε. (32)

Hence, using (14) we can conclude as before

Theorem 3.8 For any wavelet ψ and any set M ⊂ R∗ × R of finite affine
measure, we have

Wψ(L2(R)) ∩ {F ∈ L2(R∗ ×R, dµaff ) : F = χM · F} = {0}. (33)

Corollary 3.9 (The support of a WT has infinite measure)
Let ψ be a wavelet. Then, for f ∈ L2(R) \ {0} arbitrary, the support of Wψf
is a set of infinite affine measure.
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Remark 3.10 There is no such result for discrete Gabor resp. wavelet trans-
forms related to orthonormal bases 1:
Let (ψjk)j,k∈Z be an orthonormal wavelet basis in L2(R) and f = ψ = ψ00.
Then

f =
∑

j,k∈Z
(f, ψjk)L2(R)ψjk =

∑

j.k∈Z
δjkψjk ,

hence, there is just one non-vanishing wavelet coefficient.
This is a consequence of the fact that there is no translation invariance in the
discrete setting.

4 Approximative Concentration of Gabor and Wavelet Trans-
forms

From the foregoing section we know that the Gabor transformGψf of a function
f ∈ L2(R) \ {0} cannot possess a support of finite Lebesgue measure. In the
following we will show that the portion ofGψf lying outside some setM of finite
Lebesgue measure cannot be arbitrarily small, either. For sufficiently small M ,
this can be seen immediately by estimating the Hilbert-Schmidt norm of a
suitably defined operator. Taking into account some geometric properties of
abstract Hilbert spaces, we find that restrictions of this kind hold for arbitrary
sets of finite Lebesgue measure. More precise results going in that direction
can be found by Daubechies [Daub88, Daub92], but only for special window
functions ψ and special sets M .
The wavelet transform is treated in an analogous manner.

Theorem 4.1 (Concentration of Gψf in small sets) Let ψ be a window func-
tion and M ⊂ R2 with λ(2)(M) < 1. Then, for f ∈ L2(R) arbitrary,

‖Gψf − χM ·Gψf‖L2(R2) ≥ ‖ψ‖L2(R)(1− λ(2)(M)1/2)‖f‖L2(R). (34)

Proof: Define PR : L2(R2)→ L2(R2) as the orthogonal projection from L2(R2)
onto Gψ(L2(R)), and PM : L2(R2) → L2(R2) as the orthogonal projection
from L2(R2) onto the subspace of functions supported in M . From corollary
2.5 we obtain

1

‖ψ‖L2(R)
‖Gψf − χM ·Gψf‖L2(R2)

=
1

‖ψ‖L2(R)
‖Gψf − PMPR(Gψf)‖L2(R2)

≥ (1− ‖PMPR‖)‖f‖L2(R),

hence

‖Gψf − χM ·Gψf‖L2(R2) ≥ ‖ψ‖L2(R)(1− ‖PMPR‖)‖f‖L2(R). (35)

1For definitions see e.g. [Daub92].
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Being the projection onto a r.k.H.s., PR can be represented by [Sait88]

PR : F 7→ PRF (ω, t) = (F (ω′, t′),Kψ(ω′, t′;ω, t))L2(R2)

with Kψ defined by (8). Hence, for F ∈ L2(R2) arbitrary, we have

PMPRF (ω, t) =

∞∫

−∞

∞∫

−∞

χM (ω, t)Kψ(ω′, t′;ω, t)F (ω′, t′)dω′d′t

Therefore, the operator norm ‖PMPR‖ can be estimated by the Hilbert-
Schmidt norm ‖PMPR‖HS (cf. [HaSu78]), using the fact that 1

‖ψ‖L2(R)
Gψ is

an isometry:

‖PMPR‖2HS

=

∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

−∞

|χM (ω, t)Kψ(ω′, t′;ω, t)|2dω′dt′dωdt

=

∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

−∞

∣∣∣∣∣χM (ω, t)
1

‖ψ‖2L2(R)

(ψωt, ψω′t′)L2(R)

∣∣∣∣∣

2

dω′dt′dωdt

=

∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

−∞

∣∣∣∣∣χM (ω, t)
1

‖ψ‖2L2(R)

Gψψωt(ω
′, t′)

∣∣∣∣∣

2

dω′dt′dωdt

=
1

‖ψ‖2L2(R)

∞∫

−∞

∞∫

−∞

∫ ∫

M

∣∣∣∣
1

‖ψ‖L2(R)
Gψψωt(ω

′, t′)

∣∣∣∣
2

dω′dt′dωdt

=
1

‖ψ‖2L2(R)

∫ ∫

M



∞∫

−∞

|ψωt(x)|2dx


 dωdt

≤ 1

‖ψ‖2L2(R)

‖ψ‖2L2(R)λ
(2)(M) = λ(2)(M).

Putting this into (35) proves the assertion.

Remark 4.2 Notice that the lower bound for ‖Gψf−χM ·Gψf‖L2(R2) in (34)

is the bigger the smaller λ(2)(M) is. This is in accordance with the philosophy
of uncertainty.

Remark 4.3 Using mean value theorem and Cauchy-Schwarz’s inequality, one
gets immediately the related result

‖χM ·Gψf‖L2(R2) ≤ λ(2)(M)1/2‖Gψf‖L∞(R)

≤ ‖ψ‖L2(R)λ
(2)(M)1/2‖f‖L2(R)

(cf. [FoSi97]). The use of the projections PR and PM in the proof of theorem
4.1 leads to further conclusions, however:
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Remark 4.4 (Stable reconstruction from incomplete noisy data)
Let ψ be a window function, M ⊂ R2 with λ(2)(M) < 1 and PM the orthogonal
projection from L2(R2) onto the subspace of functions supported on M . Then
there exists a linear operator Rψ,M : L2(R2)→ L2(R2), as well as a constant
KG
ψ,M > 0 such that for all F ∈ Gψ(L2(R)), for all n ∈ L2(R2) and

F̃ := (1− PM )F + n (36)

we have

‖F −Rψ,M F̃‖L2(R2) ≤ KG
ψ,M‖n‖L2(R2). (37)

Interpretation:
The original signal F can be stably reconstructed from the measured signal
F̃ affected with noise n using exclusively data from the complement of M .
Here, stability has to be understood in the sense that the reconstruction error
is proportional to the L2(R2)-norm of the noise. If there is no noise at all
(n = 0) , perfect reconstruction of F from F̃ := (1− PM )F is possible.
An upper bound for the constant KG

ψ,M in (37) is given by

KG
ψ,M ≤

1

1− λ(2)(M)1/2
. (38)

The connection between this result and Gerchberg-Papoulis’
algorithm[ByWe85, DoSt89] for the reconstruction of incomplete Fourier
data will be treated elsewhere.

Proof of (37):
Choose Rψ,M := (1 − PMPR)−1 with PR defined as in the proof of theorem
4.1. From there we know that ‖PMPR‖2 ≤ λ(2)(M) < 1, showing that the
Neumann series

∑∞
n=0(PMPR)n is convergent. Hence, (1 − PMPR)−1 is well-

defined. Now,

‖F −Rψ,M F̃‖L2(R2) = ‖F −Rψ,M (1− PM )F −Rψ,Mn‖L2(R2)

= ‖F −Rψ,M (1− PMPR)F −Rψ,Mn‖L2(R2)

= ‖F − F −Rψ,Mn‖L2(R2) ≤ ‖Rψ,M‖ · ‖n‖L2(R2),

where

‖Rψ,M‖ = ‖1− PMPR‖−1

≤ (1− ‖PMPR‖)−1

≤ (1− λ(2)(M)1/2)−1.

Correspondingly, we obtain for the wavelet transform:
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Theorem 4.5 (Concentration of Wψf in small sets) Let ψ be a mother
wavelet and M ⊂ R∗ ×R with

‖ψ‖L2(R)√
cψ

µaff (M)1/2 < 1.

Then for f ∈ L2(R) arbitrary,

‖Wψf − χM ·Wψf‖L2(R∗×R, dadb
a2

)

≥ √cψ
(

1− ‖ψ‖L2(R)√
cψ

µaff (M)1/2
)
‖f‖L2(R).

(39)

Remark 4.6 Assuming ‖ψ‖L2(R) = 1 we find (34) independent of ψ, while√
cψ cannot be eliminated from (39).

Analogously, the following abstract version of theorems 4.1, 4.5 can be proved:

Theorem 4.7 (Abstract concentration theorem for small sets) Let G be a lo-
cally compact group with left Haar measure µL, H a complex Hilbert space, U
a square integrable, irreducible, unitary representation of G on H and CU the
operator from theorem 21. For ψ ∈ H U-admissible we define an operator

Tψ : H → L2(G,µL), f 7→ Tψf,

setting
Tψf(g) := (f, U(g)ψ)H (g ∈ G).

Then, for M ⊂ G with ‖ψ‖H
‖CUψ‖HµL(M)1/2 < 1 and f ∈ H arbitrary,

‖Tψf − χM · Tψf‖L2(G,dµL) ≥ ‖CUψ‖H
(

1− ‖ψ‖H
‖CUψ‖H

µL(M)1/2
)
‖f‖H.

(40)

Question 4.8 Are there restrictions similar to (34) (resp. (39)) for ’bigger’
sets, as well? More precisely: given an arbitrary set M of finite Lebesgue (resp.
affine) measure – do there exist any constants CGψ,M (resp. CWψ,M )> 0 such that

for f ∈ L2(R) arbitrary

‖Gψf − χM ·Gψf‖L2(R2) ≥ CGψ,M‖f‖L2(R) (41)

(resp. ‖Wψf − χM ·Wψf‖L2(R2) ≥ CWψ,M‖f‖L2(R)) ? (42)

Using an abstract result of Havin and Jöricke [HaJo94] we will see that the
answer to this question is ’yes’. We will not be able to give an estimate for
CGψ,M , C

W
ψ,M by the measure of M , however.
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Lemma 4.9 (Havin-Jöricke) Let H1,H2 be two closed subspaces of a Hilbert
space H satisfying

H1 ∩H2 = {0}. (43)

Let PH1 , PH2 denote the corresponding orthogonal projections, and assume the
product PH1PH2 to be a compact operator. Then, there exists a constant C > 0
such that for all f ∈ H

‖PH⊥
1
f‖H + ‖PH⊥

2
f‖H ≥ C‖f‖H. (44)

Proof: Cf. [HaJo94] I.3 §1.2

Remark 4.10 Subspaces H1,H2 satisfying (43) are said to form an annihi-
lating pair or, shorter, an a-pair. Subspaces satisfying the harder condition
(44) are said to form a strongly annihilating pair or, shorter, strong a-pair, cf.
[HaJo94]. From the same reference we know that condition (44) is equivalent
to

α(H1,H2) > 0,

where α(H1,H2) denotes the angle 2 between H1 and H2, defined as the real
number in [0, π2 ] satisfying

cos(α(H1,H2)) = sup{|(f, g)H| : f ∈ H1, ‖f‖H ≤ 1, g ∈ H2, ‖g‖H ≤ 1}.

The angle α(H1,H2) is related to the projections PH1 , PH2 according to:

cos(α(H1,H2)) = ‖PH1PH2‖, (45)

cf. [HaJo94], I.3 §1.1. The optimal constant C in (44) is as a function of
α(H1,H2).

Theorem 4.11 (Concentration of Gψf in arbitrary sets of finite measure)
Let ψ be a window function and M ⊂ R2 with λ(2)(M) < ∞. Then there
exists a constant CGψ,M > 0 such that for f ∈ L2(R) arbitrary (41) holds.

Proof: Defining PM ,PR as in the proof of theorem 4.1 and H1,H2 by

H1 := PM (L2(R2)), (46)

H2 := PR(L2(R2)), (47)

we conclude from theorem 3.3 that H1 and H2 form an a-pair. The proof of
theorem 4.1 implies that for M ⊆ R2 arbitrary with λ(2)(M) <∞

‖PMPR‖HS ≤ (λ(2)(M))1/2 <∞.
2Cf. [Deut95] for more information on that subject.
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Hence, PMPR is a Hilbert-Schmidt operator and therefore compact, which
means that H1, H2 form a strong a-pair. Now lemma 4.9 implies the existence
of a constant C > 0 such that (44) holds for PH1 := PM and PH2 := PR. Since
PH⊥

1
(Gψf) = (1− PR)Gψf = 0, this leads to (41).

Again, theorem 4.11 can be generalized to a wider class of transforms. Espe-
cially, we have the following wavelet counterpart:

Theorem 4.12 (Concentration of Wψf in arbitrary sets of finite measure)
Let ψ be a mother wavelet and M ⊂ R∗ ×R with µaff (M) < ∞. Then there
exists a constant CWψ,M > 0 such that for f ∈ L2(R) arbitrary (42) holds.

The abstract version of theorem 4.11 is

Theorem 4.13 (Abstract concentration theorem for arbitrary sets) Allowing
M ⊂ G with µL(M) <∞ arbitrary in the situation of theorem 4.7, there exists
a constant CTψ,M > 0 such that for all f ∈ H

‖Tψf − χM · Tψf‖L2(G,dµL) ≥ CTψ,M‖f‖H. (48)

5 Uncertainty Principles of Heisenberg Type

Up to now, we analyzed the concentration of Gψf (resp. Wψf) as a function on
two-dimensional phase-space. A different class of uncertainty principles results
from comparing the localization of f (resp. f̂) with the localization of its Gabor
or wavelet transform regarded as function of one2 variable. Some results of that
type, originating from an idea of Singer in the wavelet case [Sing92], will be
presented in this final section.

Theorem 5.1 (UP of Heisenberg type for GT in ω) Let ψ be a window func-
tion. Then, for f ∈ L2(R) arbitrary, the following inequality holds



∞∫

−∞

ω2|Gψf(ω, t)|2dωdt




1/2

∞∫

−∞

x2|f(x)|2dx




1/2

≥ 1

2
‖ψ‖L2(R)‖f‖2L2(R). (49)

Proof: Let us assume the non-trivial case that both integrals on the left hand
side of (49) are finite. By translation invariance of Lebesgue integral we get

‖ψ‖2L2(R)

∞∫

−∞

x2|f(x)|2dx =

∞∫

−∞

∞∫

−∞

x2|ψ(x− t)|2|f(x)|2dxdt

=

∞∫

−∞

∞∫

−∞

x2|F−1
ω (Gψf(ω, t))(x)|2dxdt,
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where Fω denotes Fourier transform with respect to the variable ω. Fixing
t ∈ R arbitrary, Heisenberg’s inequality implies



∞∫

−∞

ω2|Gψf(ω, t)|2dω




1/2 (
∞∫
−∞

x2|F−1
ω (Gψf(ω, t))(x)|2dx

)1/2

≥ 1
2

∞∫
−∞
|Gψf(ω, t)|2dω.

Integrating over t and using the inequality of Cauchy-Schwarz, as well as the
isometry property of 1

‖ψ‖L2(R)
Gψ, results in



∞∫

−∞

∞∫

−∞

ω2|Gψf(ω, t)|2dωdt




1/2

‖ψ‖L2(R)



∞∫

−∞

x2|f(x)|2dx




1/2

=



∞∫

−∞

∞∫

−∞

ω2|Gψf(ω, t)|2dωdt




1/2

∞∫

−∞

∞∫

−∞

x2|F−1
ω (Gψf(ω, t))(x)|2dxdt




1/2

≥
∞∫

−∞



∞∫

−∞

ω2|Gψf(ω, t)|2dω




1/2

∞∫

−∞

x2|F−1
ω (Gψf(ω, t))(x)|2dx




1/2

dt

≥1

2

∞∫

−∞

∞∫

−∞

|Gψf(ω, t)|2dωdt =
1

2
‖ψ‖2L2(R)‖f‖2L2(R).

Dividing by ‖ψ‖L2(R) leads to (49).

Remark 5.2 Note that the localization of ψ has no influence on (49).

Theorem 5.3 (UP of Heisenberg type for GT in t) Let ψ be a window func-
tion. Then, for f ∈ L2(R) arbitrary, the following inequality holds



∞∫

−∞

t2|Gψf(ω, t)|2dωdt




1/2

∞∫

−∞

ξ2|f̂(ξ)|2dξ




1/2

≥ 1

2
‖ψ‖L2(R)‖f‖2L2(R).

(50)

Proof: Similiar to the proof of theorem 5.1 using the Fourier representation of
Gψf.
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Corollary 5.4 (Phase space uncertainty of GT) For ψ a window function,
and f ∈ L2(R) arbitrary, we have



∞∫

−∞

∞∫

−∞

t2|Gψf(ω, t)|2dωdt




1/2

∞∫

−∞

∞∫

−∞

ω2|Gψf(ω, t)|2dωdt




1/2

·

·



∞∫

−∞

x2|f(x)|2dx




1/2

∞∫

−∞

ξ2|f̂(ξ)|2dξ


 ≥ 1

4
‖ψ‖L2(R)‖f‖4L2(R).

Remark 5.5 Above corollary may be interpreted as follows: The better the
phase space localization of the pair (f, f̂), the worse is the phase space local-
ization of the Gabor transform Gψf(ω, t).

Remark 5.6 The symmetry between f and ψ in the definition of Gabor trans-
form leads to similar relations between Gψf and ψ (resp. ψ̂):



∞∫

−∞

ω2|Gψf(ω, t)|2dωdt




1/2

∞∫

−∞

x2|ψ(x)|2dx




1/2

≥ 1

2
‖f‖L2(R)‖ψ‖2L2(R),



∞∫

−∞

t2|Gψf(ω, t)|2dωdt




1/2

∞∫

−∞

ξ2|ψ̂(ξ)|2dξ




1/2

≥ 1

2
‖f‖L2(R)‖ψ‖2L2(R).

Theorem 5.7 (UP of Heisenberg type for the WT in b) Let ψ be a mother
wavelet. Then, for f ∈ L2(R) arbitrary,



∞∫

−∞

∞∫

−∞

b2|Wψf(a, b)|2 dadb
a2




1/2

∞∫

−∞

ξ2|f̂(ξ)|2dξ




1/2

≥
√
cψ
2
‖f‖2L2(R). (51)

Proof: Similar to the proof of theorem 5.1. Assuming the existence of both
integrals on the left hand side of (51), we get from the admissibilty condition
(10) for ψ

2π

∞∫

−∞

∞∫

−∞

ξ2|ψ̂(aξ)|2|f̂(ξ)|2 da|a|dξ = cψ

∞∫

−∞

ξ2|f̂(ξ)|2dξ.

Using the Fourier representation of the wavelet transform (13), this implies

∞∫

−∞

ξ2|Fb(Wψf(a, b))(ξ)|2 da
a2
dξ = cψ

∞∫

−∞

ξ2|f̂(ξ)|2dξ. (52)
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On the other hand, Heisenberg’s inequality leads to



∞∫

−∞

b|Wψf(a, b)|2db




1/2

∞∫

−∞

ξ2|Fb(Wψf(a, b))(ξ)|2dξ




1/2

≥ 1

2

∞∫

−∞

|Wψf(a, b)|2db

for all a ∈ R∗. Integrating with respect to da
a2 gives

∞∫

−∞






∞∫

−∞

b2|Wψf(a, b)|2db




1/2

∞∫

−∞

ξ2|Fb(Wψf(a, b))(ξ)|2dξ




1/2

 da
a2

≥1

2

∞∫

−∞

∞∫

−∞

|Wψf(a, b)|2 da
a2
db.

The left hand side of this inequality may be estimated from above using Cauchy-
Schwarz’s inequality. The right hand side can be rewritten by the isometry of

1√
cψ
Wψ. From (52) we therefore get



∞∫

−∞

∞∫

−∞

b2|Wψf(a, b)|2dbda
a2




1/2

∞∫

−∞

ξ2|Fb(Wψf(a, b))(ξ)|2dξ da
a2




1/2

=



∞∫

−∞

∞∫

−∞

b2|Wψf(a, b)|2dbda
a2




1/2

√
cψ



∞∫

−∞

ξ2|f̂(ξ)|2dξ




1/2

≥1

2
cψ‖f‖2L2(R).

Remark 5.8 There is not so much symmetry between the parameters a and
b of the wavelet transform as there is symmetry between ω and t in the Ga-
bor case. An uncertainty relation between Wψf as a function of a and f
as a function of x will be derived in the following using a slightly modified
definition of wavelet transform. Making use of Kaiser’s observation [Kais95]

that ”frequency filters” f̂(ξ) 7→ wf (ξ)f̂(ξ) often correspond to ”scale filters”
Wψf(a, b) 7→ wS(a)Wψf(a, b). Here, wF , wS denote some suitable filter func-
tions.

Theorem 5.9 (UP of Heisenberg type for WT in a) Let ψ be a mother

wavelet, ψ̂(ξ) = 0 for ξ < 0 and f ∈ L2(R) \ {0} arbitrary. Consider
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the following modified definition of wavelet transform:

W̃ψ : f 7→ W̃ψf(a, b) :=

∞∫

−∞

f(x)ψ(ax − b)dx ((a, b) ∈ R+ ×R). (53)

Then

∞∫

0

∞∫

−∞

a2|W̃ψf(a, b)|2dadb ·
∞∫

−∞

x2|f(x)|2dx ≥ π(M(|ψ̂|2))(2)‖f‖2L2(R). (54)

Here, M : f 7→ (Mf)(σ) :=
∞∫
0

f(x)x−σ dxx denotes classical Mellin transform.

We have equality in (54), if there exist some constants C ∈ C and k > 0 such

that f(x) = Ce−k
x2

2 .

Proof: In the following we assume that
∞∫
0

∞∫
−∞

a2|Wψf(a, b)|2dadb < ∞ and

∞∫
−∞

x2|f(x)|2dx < ∞. Otherwise, (54) is trivially satisfied. The Fourier repre-

sentation of W̃ψ is given by

W̃ψf(a, b) =
√

2πF−1(f̂(aξ)ψ̂(ξ))(b),

what can be seen by replacing ψ by F−1(ψ̂). Using Plancherel’s identity, we
get

∞∫

−∞

|W̃ψf(a, b)|2db = 2π

∞∫

−∞

|f̂(aξ)|2|ψ̂(ξ)|2dξ

= 2π

∞∫

−∞

|f̂(u)|2
∣∣∣ψ̂
(u
a

)∣∣∣
2 du

a
.

Integrating by a2da leads to

∞∫

0

∞∫

−∞

a2|W̃ψf(a, b)|2dadb =

∞∫

0

a22π



∞∫

−∞

|f̂(u)|2
∣∣∣ψ̂
(u
a

)∣∣∣
2 du

a


 da

=

∞∫

−∞

|f̂(u)|2

2π

∞∫

0

a
∣∣∣ψ̂
(u
a

)∣∣∣
2

da


 du

=

∞∫

0

K(u)|f̂(u)|2du
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with

K(u) := 2π

∞∫

−∞

∣∣∣ψ̂
(u
a

)∣∣∣
2 du

a
. (55)

(This is the previously mentioned correspondence between ”scale” and ”fre-
quency filters”.) Introducing Mellin transform, we see that K(u) is just a
function of u2:

K(u) = 2π

∞∫

0

u

v
|ψ̂(v)|2udv

v2

= 2πu2

∞∫

0

|ψ̂(v)|2v−2 dv

v

= 2πu2M(|ψ̂|2)(2).

Now, the remainder follows from Heisenberg’s uncertainty principle.

Remark 5.10 Estimates for the variance of Wψf(a, b) in both a and b were
proved by Flandrin [Flan98].
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Abstract. We consider G-equivariant semilinear parabolic equa-
tions where G is a finite-dimensional possibly non-compact symmetry
group. We treat periodic forcing of relative equilibria and resonant
periodic forcing of relative periodic orbits as well as Hopf bifurcation
from relative equilibria to relative periodic orbits using Lyapunov-
Schmidt reduction. Our main interest are drift phenomena caused by
resonance. In comparison to a center manifold approach Lyapunov-
Schmidt reduction is technically easier. We discuss impacts of our
results on spiral wave dynamics.
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noncompact groups.

1 Introduction

1.1 Spiral wave dynamics

Relative equilibria and relative periodic solutions are ubiquitous in systems
with continuous symmetry. Examples of relative equilibria and relative periodic
solutions are spiral waves. Spiral waves have been observed in various chemical
and biological systems, for example in the Belousov-Zhabotinsky reaction [5],
[26], [35], and in catalysis on platinum surfaces [16].
The spiral tip of a rigidly rotating spiral wave moves on a circle. In mathemat-
ical terms rigidly rotating spiral waves are rotating waves. Rotating waves are
stationary in a corotating frame and therefore examples of relative equilibria.
Meandering spiral waves are modulated rotating waves, i.e., they are periodic in
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Figure 1: Meandering spiral wave in the Belousov Zhabotinsky reaction, from
Steinbock et al. [27], with kind permission of Nature. The tip trajectory is
overlaid with a white curve.

a corotating frame. In this case the spiral tip performs a quasiperiodic motion,
which is called meandering, see Fig. 1.
Meandering spiral waves are generated by external periodic forcing of rigidly
rotating spiral waves [16]. Let ωext be the frequency of the external forcing
and let µext be its amplitude. If the periodic forcing is resonant, i.e., if the
rotation frequency ω∗rot of the rigidly rotating wave at µext = 0 is a multiple
of the external frequency ωext of the system then a curve of drifting spiral
waves in the (ωext, µext)-plane is observed which separates modulated rotating
wave states with inward petals and outward petals, cf. [16]. This phenomenon
is called resonance drift. Drifting spiral waves, see Fig. 2, are modulated

Figure 2: Drifting Spiral Waves in the CO-Oxidation on Pt(110), courtesy of
[16]. The cross is always at the same position. So we see that the spiral wave
drifts away from the cross.
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travelling waves, i.e., they are periodic in a comoving frame. Both, meandering
and drifting spiral waves are examples of relative periodic orbits.

In experiments also meandering spiral waves have been forced periodically [35].
Here invariant 3-tori are found and frequency locking between the period of the
relative periodic orbits and the period of the external forcing occurs. Further-
more for certain external periods modulated travelling waves are generated.
Experimentalists call this phenomenon generalized resonance drift [35].

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 3: Phase diagram for the spiral wave dynamics depending on the param-
eters a, b; courtesy of Barkley [4]. Shown are regions containing N: no spiral
waves, RW: stable rigidly rotating waves, MRW: modulated rotating waves,
MTW: modulated travelling waves (dashed curve). Spiral tip paths illustrate
states at 6 points. Small portions of spiral waves are shown for the two rotating
wave cases.

Meandering spiral waves can also emanate from rigidly rotating spiral waves
by a spontaneous bifurcation in autonomous systems, see [26], [32]. Barkley
found in numerical simulations [3], see Fig. 3, that this transition is a Hopf
bifurcation in the corotating frame. Hopf-bifurcation in autonomous systems
leads to analogous drifting phenomena as periodic forcing of rigidly rotating
waves.

The media in which spiral waves occur can be modelled by reaction-diffusion
systems of the form

∂ui
∂t

= δi∆ui + fi(u, t, µ), i = 1, . . . ,M. (1.1)
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Here u = (u1, . . . , uM ) is a vector of concentrations of chemical species, the
functions ui, i = 1, . . . ,M , map the plane R2 to R, the constants δi ≥ 0,
i = 1, . . . ,M , are diffusion coefficients, µ ∈ Rp is a parameter, and the functions
fi, i = 1, . . . ,M , are reaction-terms which are autonomous or time-periodic.
Barkley [4] was the first to notice the importance of the Euclidean symmetry
for spiral wave dynamics. The Euclidean group E(2) = O(2) n R2 of rotations,
translations and reflections on the plane acts on the functions u(x), x ∈ R2,
via

(ρ(R,a)u)(x) = u(R−1(x− a)), where R ∈ O(2), a ∈ R2. (1.2)

System (1.1) is equivariant with respect to the symmetry group E(2).
In this article we want to study the transition from rigidly rotating to mean-
dering spiral waves on the infinitely extended plane R2. More generally the
aim of the paper is to understand the transition from relative equilibria to rel-
ative periodic orbits in equivariant systems. Furthermore we want to explain
the drift and resonance effects which we just described for general symmetry
groups. We will discuss implications of our results on spiral wave dynamics in
the plane and on the sphere (for simulations of spiral waves on the sphere see
[36]). Further we want to apply our results to the evolution of scroll-waves in
three-dimensional excitable media. Scroll waves have been studied numerically
for example in [15], [18].

1.2 Related literature

In the thesis [33] the first results on bifurcations from rotating waves in systems
with a non-compact, non-commutative symmetry group have been obtained.
This paper is based on the dissertation [33]; but whereas in [33] we restricted
attention to the symmetry group E(2) and applications in spiral wave dynamics
in this article we treat arbitrary symmetry groups. As in [33] we study the
transition from relative equilibria to relative periodic orbits using Lyapunov-
Schmidt reduction.
Shortly after [33] was finished a whole bunch of papers on spiral wave dynamics
and non-compact symmetry groups appeared:
Golubitsky et al. [10] used a formal center-bundle construction to derive ordi-
nary differential equations describing bifurcations near `-armed planar spiral
waves of autonomous reaction-diffusion systems and derived new conditions for
drifting. In [1] the drift of relative equilibria and periodic orbits along their
group orbit is analyzed for general non-compact groups. Fiedler et al. [7] clar-
ified the structure of the autonomous ordinary differential equations near rela-
tive equilibria with compact isotropy for general non-compact groups and gave
conditions for drifting. In [21], [22] we presented a center-manifold reduction
near relative equilibria and derived rigorously the ordinary differential equa-
tions on the center-manifold which were already guessed in [4] and formally
derived in [10]. In [23] we extended these results to relative periodic orbits.
In [8] normal forms near relative equilibria of non-compact group actions are
computed. In [34] bifurcations from relative periodic orbits are treated.
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Scheel [24], [25] proved the existence of rotating waves in unbounded domains.

The thesis [33] was inspired by work of Renardy on bifurcations from rotating
waves [19]. Renardy also studied bifurcations from rotating waves of semilinear
differential equations using Lyapunov-Schmidt reduction and applied his results
to the Laser equations [20]. But his results for partial differential equations are
restricted to compact symmetry groups.

1.3 Lyapunov-Schmidt-reduction versus center-manifold theory

To analyze bifurcations there are mainly two reduction methods: center-
manifold reduction and Lyapunov-Schmidt reduction. Both have advantages
and disadvantages. Here we will use Lyapunov-Schmidt reduction as tool for
the analysis of bifurcations; for a center-manifold approach see [21], [22]. The
advantage of Lyapunov-Schmidt reduction versus center-manifold theory is that
we obtain C∞-paths of relative periodic orbits if the nonlinearity in (1.1) is C∞

whereas we only obtain a Ck-smooth center-manifold, k <∞. Besides this we
do not need the assumptions that the group action is isometric and that the
group orbit of the relative equilibrium is an embedded manifold which are nec-
essary for the center-manifold reduction. Finally the proofs are simpler since
they do not rely upon the highly developed invariant manifold machinery. On
the other hand the Lyapunov-Schmidt method is limited to relative equilibria
and relative periodic orbits – we cannot handle more complicated dynamics.
But for our purposes this is sufficient.

1.4 Organization of the paper

The paper is organized as follows.

First, in subsections 1.5 and 1.6 we study the functional-analytic framework of
spiral wave dynamics and show some of the difficulties arising in the mathe-
matical treatment of spiral waves. In subsection 1.7 we define an appropriate
abstract setting which covers the reaction-diffusion system (1.1) modelling spi-
ral wave dynamics. In this abstract setting we henceforth work. In section 2 we
study periodic forcing of relative equilibria and relative periodic orbits. First, in
subsection 2.1 we consider periodic forcing of relative equilibria and resonance
drift. In subsection 2.3 we study the scaling of the drift velocity. As exam-
ple we consider periodic forcing of rotating waves in E(2)-equivariant systems
which lead to modulated rotating waves or, in the resonance case, to modulated
travelling waves. This explains the experiments described in subsection 1.1. In
subsection 2.4 we consider resonant periodic forcing of relative periodic orbits
and discuss conditions for generalized resonance drift. The results apply to pe-
riodic forcing of meandering spiral waves as investigated experimentally by [35],
see also subsection 1.1. In section 3 we discuss Hopf bifurcation from relative
equilibria, resonances, scaling of drift velocity and effects of spatial isotropy of
the relative equilibrium. As an example we study the Hopf bifurcation from
multi-armed spiral waves. Section 4 is devoted to the proof of the main results.
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1.5 Functional-analytic framework

To describe spiral wave dynamics we consider reaction-diffusion systems of the
form (1.1) on a domain Ω ⊂ R3 to R, where Ω is a C∞-manifold without
boundary, for example R2, the unit sphere S2 in R3 or R3 itself. The reaction-
terms fi, i = 1, . . . ,M , are assumed to be Ck-smooth functions where k ∈ N.
The domain Ω is invariant under some subgroup G of the Euclidean group E(3)
of motions in three-dimensional space consisting of rotations, reflections and
translations. The group E(3) = O(3) n R3 acts on the functions u(x), x ∈ R3,
via (1.2), i.e.,

(ρ(R,a)u)(x) = u(R−1(x− a)), where R ∈ O(3), a ∈ R3.

System (1.1) is equivariant with respect to the group G. If G = E(2) is the
Euclidean group of motions in the plane we write (φ, a) for (Rφ, a) where Rφ
is a rotation with angle φ and a ∈ R2.

We consider (1.1) in the space of bounded uniformly continuous functions X =
BCunif(Ω,RM ) or in the space X = L2(Ω,RM ).

In X = BCunif we get a time-evolution Φt,t0 of (1.1) on Y = X ; if X = L2 we
obtain a time-evolution on Y = Xα, α > 1/2 without any growth conditions
on f provided that f(0, t, µ) = 0 for all t, µ and δi > 0, i = 1, . . . ,M . If δi = 0
for some i we still obtain a semiflow on X = H2 provided that f(0, t, µ) ≡ 0.

Note that the group action is not smooth on the whole function space X . If the
domain is Ω = R2 and we choose X = BCunif(R2,RM ) then the E(2)-action
is even not strongly continuous because on the function u(x1, x2) = cosx1 the
rotation acts discontinuously: For large radius r the term |(ρ(φ,0)u)(x)− u(x)|
can become equal to 2 even for arbitrarily small φ. We encounter the same
problem if Ω = R3. Since we want to have a strongly continuous group action on
our base space X we consider the reaction-diffusion system (1.1) on a subspace
of BCunif which is invariant under the semiflow and where the group acts in a
strongly continuous way:

We define BCEucl(RN ,RM ) as the subspace of BCunif(RN ,RM ) on which E(N)
acts continuously, N = 2, 3. The Laplacian is sectorial on X = BCunif and
on L2, see [13]. We will now show that the Laplacian is also sectorial on
X = BCEucl(RN ,RM ): let Y be any Banach space with a group G acting on it
by a (not necessarily strongly continuous) representation ρg , g ∈ G. Let Y0 be
the subspace of Y on which G acts strongly continuously. If A is sectorial on Y
and Aρg = ρgA for all g ∈ G then A is sectorial in Y0: from ρge

−At = e−Atρg we
deduce that (e−At)t≥0 is a C0-semigroup from Y0 to Y0; furthermore e−Aty is
complex differentiable in t for y ∈ Y , t > 0, with derivative Ae−Aty ∈ Y . Since
ρgAe−At = Ae−Atρg and therefore Ae−AtY0 ⊂ Y0 we conclude that (e−At)t≥0

is an analytic semigroup on Y0. Since (λ − A)−1u ∈ Y0 for u ∈ Y0, λ ∈ C,
λ /∈ specY (A), the spectrum of A on Y0 is contained in the spectrum of A
on Y . Especially the Laplacian is sectorial on BCEucl, and its spectrum is
contained in the spectrum of the Laplacian defined on BCunif .
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We also get a time-evolution of (1.1) in BCEucl(RN ,RM ) because we have
ρgΦt,t0(u) = Φt,t0(ρgu) and therefore Φt,t0 maps Y0 into itself.
Now we have a C0-group action on X = BCEucl, but if Ω = R2,R3 the semi-
flow does not smoothen the group-action even if all diffusion coefficients δi are
positive. We demonstrate this for Ω = R2 and for the heat equation where the
nonlinearity f is zero.
We will show that on R2 the operator ∂

∂φ is not bounded w.r.t. the Laplacian

∆ and to the semiflow (e∆t)t≥0:

Remark 1.1 The operator ∂
∂φ is not bounded relatively to the Laplacian ∆ or

relatively to the semiflow e∆t, t ≥ 0, on BCunif(R2,R) and BCEucl(R2,R).

Proof. The functions w`,b(x) := J`(b|x|)ei`arg(x) where b ≥ 0 and J` is the `-th
Bessel function of the first kind are elements of BCEucl(R2,R) ⊂ BCunif(R2,R)
and they are eigenfunctions of the Laplacian ∆ and of the angle derivative ∂

∂φ :

∂

∂φ
w`,b = i`w`,b, ∆w`,b = −b2w`,b.

Since i`(1 + b2)−1 and i`e−b
2t are not bounded for arbitrary b ∈ R, ` ∈

N0, we conclude that ∂
∂φ is not bounded relatively to ∆ on BCEucl(R2,R),

BCunif(R2,R) and that ∂
∂φe∆t is not a bounded operator on BCEucl(R2,R),

BCunif(R2,R) for t ≥ 0.

Remark 1.2 Also on L2(R2,R) the angle-derivative ∂
∂φ is not bounded rela-

tively to ∆ or e∆t, t ≥ 0.

Proof. By direct computation we see that F( ∂
∂φu) = ∂

∂φF(u). Here F(u)

denotes the Fourier transform of u. From this formula and from F(∆u)(x) =
−|x|2F(u)(x) we deduce that ∂

∂φ is not bounded with respect to ∆. Fur-

thermore the operator ∂
∂φ is not bounded relatively to e∆t in L2(R2,R) since

(F( ∂
∂φe∆tu))(x) = ∂

∂φe−|x|
2t(F(u))(x) is not defined for all u ∈ L2(R2,R).

Therefore we cannot simply change coordinates into a corotating frame to deal
with the meandering transition.

1.6 Representations of E(N)

The function spaces Y = BCEucl(RN ,R), L2(RN ,R), N = 2, 3, do not contain
finite-dimensional subspaces which are E(N)-invariant and in which the E(N)-
action is non-trivial. Again we will demonstrate this in the case Ω = R2,
G = E(2):

Lemma 1.3 Let the action of E(2) on the spaces X = BCEucl(R2,R), X =
L2(R2,R) be given by (1.2). Then the function spaces BCEucl, L

2 do not con-
tain finite-dimensional E(2)-invariant subspaces with nontrivial E(2)-action.
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In Greenleaf [12] a general theory on the action of topological groups on function
spaces is developed.
If we allow polynomial growth in our function space then the polynomials of
degree ≤ j are finite-dimensional representations of E(2).
Proof of Lemma 1.3. Let Vj = span(e1, . . . , ej) be a j-dimensional repre-
sentation of E(2) in BCunif or L2. Then the translations act as a C0-group
of isometries on Vj since they act in such a way on BCunif , L

2. Since Vj is

finite-dimensional, we know that ρ(0,(a1,a2))ei =
∑j

i=1(e
η1a1+η2a2)ijej where

η1 = ∂
∂x1
|Vj , η2 = ∂

∂x2
|Vj are (j, j)-matrices. Since ρ(0,a) is an isometry we con-

clude that Re spec(η1) = Re spec(η2) = 0 and that η1, η2 do not contain Jordan
blocks. After simultaneous diagonalization of η1, η2 (note that [η1, η2] = 0)
we see that the eigenfunctions of η1, η2 are of the form eibx, b, x ∈ R2. These
functions are not elements of X = L2(R2,R). So the proof is finished for the
function space L2. If we choose b = 0 we obtain an E(2)-invariant subspace of
X = BCunif(R2,R) which consists of all constant functions. The E(2)-action
on this space is trivial. The action of the rotation is not continuous on the
functions eibx, b 6= 0, with respect to the norm ‖ · ‖BCunif(R2,R). Therefore

the functions eibx do not span a finite-dimensional E(2)-invariant subspace of
BCEucl(R2,R) for b 6= 0.
Of course, the same considerations apply for x ∈ R3, G = E(3) instead of
x ∈ R2, G = E(2).
Especially for an E(2)-invariant steady state the eigenspace to each eigenvalue
is E(2)-invariant and therefore infinite-dimensional. This makes the study of
bifurcations from E(2)-invariant equilibria for an abstract equivariant parabolic
equation very difficult. We will not attack this problem and rather study bi-
furcations from relative equilibria where these difficulties do not occur. Bifur-
cations from homogeneous steady states of reaction diffusion equations have
been studied by Scheel [24], [25] using spatial dynamics.

1.7 Abstract Setting

In this paper we study semilinear parabolic equations

du

dt
= −Au+ f(u, ωextt, µ) (1.3)

on some Banach space X which are equivariant under a m-dimensional Lie
group G which may be non-compact. We assume that A is sectorial (for a
definition see [13]) and that f is Ck-smooth from Y ×R×Rp to X . Here k ∈ N
or k =∞, µ ∈ Rp and Y = Xα for 0 ≤ α < 1.
By [13] there exists a time-evolution Φt,t0(·;µ) of (1.3) on Y , and Φt,t0(u;µ) is
Ck-smooth in u, µ for t ≥ t0 and in u, µ, t, t0 for t > t0. We assume that the
group G acts on Y by the linear strongly continuous representation ρg ∈ L(Y ),
g ∈ G and that (1.3) is G-equivariant, i.e.,

∀ g ∈ G ρgA = Aρg, f(ρgu, t, µ) = ρgf(u, t, µ)
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This implies that ρgΦt,t0(·;µ) = Φt,t0(ρg ·;µ) for all g ∈ G.
Assume that f in (1.3) is time-independent. Then a group orbit Gu∗ is called a
relative equilibrium of (1.3) if Φt(u

∗) = ρexp(ξ∗t)u
∗ for some ξ∗ ∈ alg(G). Here

alg(G) denotes the Lie algebra of G. Sometimes we denote u∗ itself as relative
equilibrium.
A point u∗ lies on a relative periodic orbit

O∗ = {ρgΦt,0(u∗) | g ∈ G, t ∈ R}

if ΦT∗,0(u
∗) = ρg∗u

∗ for some T ∗ > 0, g∗ ∈ G. In this case we suppose that
f(u, ωextt, µ) is independent of time or time-periodic with frequency ωext =
2πj/T ∗, j ∈ N. Sometimes we sloppily denote u∗ itself as relative periodic
orbit. We call T ∗ the relative period of the relative periodic orbit.
The aim of this article is to study transitions from relative equilibria to relative
periodic orbits of (1.3).

2 Periodically forced G-equivariant systems

This section deals with the effects of periodic forcing on relative equilibria
and relative periodic orbits. In particular, we will investigate drift phenom-
ena caused by resonant periodic forcing. We will apply our results to spiral
wave dynamics. This helps to understand the experiments mentioned in the
introduction. Proofs of the main theorems are postponed to section 4.
In this section we assume that the nonlinearity f of (1.3) is of the form

f(u, t, µ) = f̂(u, µ̂) + µextfext(u, ωextt, µ).

Here fext(u, τ, µ) is 2π-periodic in τ ; ωext is the frequency of the periodic
forcing, Text = 2π

ωext
is its period, µext is its amplitude and we decompose

µ = (µext, µ̂), where µext ∈ R, µ̂ ∈ Rp−1. So we consider the periodically
forced differential equation

du

dt
= −Au+ f̂(u, µ̂) + µextfext(u, ωextt, µ). (2.1)

A typical example of the abstract semilinear differential equation (2.1) is a
periodically forced reaction-diffusion system on the domain Ω ⊂ RN , N = 2, 3,
cf. (1.1):

∂ui
∂t

= δi∆ui + f̂i(u, µ̂) + µextfext,i(u, ωextt, µ), i = 1, . . . ,M. (2.2)

2.1 Periodic forcing of relative equilibria

This subsection deals with effects of periodic forcing on relative equilibria.
First we state two general theorems, then we study examples in spiral wave
dynamics.
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Consider system (2.1) without periodic forcing, i.e., at µext = 0. Assume
that u∗ is a relative equilibrium of the unforced system for the parameter
µ̂ = µ̂∗ = 0. Then u∗ satisfies

Φt(u
∗) = ρetξ∗u

∗

for some ξ∗ ∈ alg(G). Since Φt(·) is equivariant and Ck-smooth in t for t > 0
we conclude that etξ

∗

u∗ is Ck-smooth in t for all t ∈ R.
We will write ξu for d

dtρetξu|t=0. Furthermore denote by

Adg ξ := gξg−1 =
d

dt
(g exp(ξt)g−1)

∣∣∣
t=0
∈ alg(G)

the adjoint action of G on alg(G) and by

K = {g ∈ G | ρgu∗ = u∗}

the isotropy group of u∗. We assume that K is compact. Let G0 denote
the identity component of G. We have ξ∗ ∈ alg(N(K)) where N(K) is the
normalizer of the isotropy group K of u∗ because for g ∈ K, t ∈ R,

ρgρexp(tξ∗)u
∗ = ρgΦt(u

∗) = Φt(ρgu
∗) = Φt(u

∗) = ρexp(tξ∗)u
∗

and therefore g exp(tξ∗) ∈ exp(tξ∗)K. Similarly the pull-back element g∗ of a
relative periodic orbit u∗ = ρ−1

g∗ ΦText,0(u
∗) lies in the normalizer of the isotropy

K of u∗. Actually for a relative equilibrium the drift velocity ξ∗ lies in the Lie
algebra of the centralizer Z(K) of K, which follows from the formula N(K)0 =
K0Z(K)0, see [9].
Since by periodic forcing isotropy is not changed we assume without loss of
generality in the whole section that K = {id}. Otherwise we change the space
Y to the fixed point space Fix(K) = {g ∈ G, ρgu

∗ = u∗} of K and the
symmetry group G to N(K)/K.

Let u∗ be a relative equilibrium, i.e., −Au∗ + f̂(u∗) = ξ∗u∗, and let

L∗ = −A+ Duf̂(u∗)− ξ∗

be the linearization at the relative equilibrium in the comoving frame. Assume
that ρgu

∗ is C1 in g ∈ G. We compute that for ξ ∈ alg(G)

L∗ξu∗ = (−A+ Duf̂(u∗)− ξ∗)ξu∗
= −ξAu∗ + Duf̂(u∗)ξu∗ − ξ∗ξu∗
= ξ(−A+ f̂(u∗))− ξ∗ξu∗
= (ξξ∗ − ξ∗ξ)u∗
= [ξ, ξ∗]u∗ = −adξ∗u

∗.

(2.3)

Here [·, ·] denotes the commutator, adξ∗(ξ) = [ξ∗, ξ] and we used that gf̂(u) =

f̂(gu) and therefore Duf̂(u∗)ξ = ξf̂(u). From (2.3) we see that L∗ maps
Tu∗Gu∗ = alg(G)u∗ into itself.
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Example 2.1 Let u∗ be a rotating wave of the unforced system (2.1), e.g a
rigidly rotating spiral wave of the reaction-diffusion system (2.2) on Ω = R2

at µext = 0. Then the symmetry group is G = E(2). We write g = (φ, a) ∈
SO(2) n R2 = SE(2). Let ξ1 denote the generator of the rotation and ξ2, ξ3
denote the generators of the translation. Then ξ∗ = ω∗rotξ1 where ω∗rot is the
rotation frequency of the spiral, and we compute

L∗ξ1u
∗ = 0, L∗(ξ2 + iξ3)u

∗ = ω∗rot[ξ2 + iξ3, ξ1]u
∗ = iω∗rot(ξ2 + iξ3)u

∗.

Therefore the linearization L∗ of the rotating wave in the rotating frame has
always eigenvalues on the imaginary axis.

For a relative periodic orbit u∗ = ρ−1
g∗ ΦT∗,0(u

∗) with ρgu
∗ C1 in g we get

ρ−1
g∗ DΦT∗,0(u

∗)ξu∗ = (Ad−1
g∗ ξ)u

∗, ξ ∈ alg(G).

If u∗ is a relative equilibrium then the linearization of the time-T -map in the
comoving frame ξ∗ is given by

eL
∗T = ρ−1

g∗ DΦT (u∗)

where g∗ = eTξ
∗

.
For the groups relevant in applications (compact and Euclidean groups) the
eigenvalues of the linear maps [ξ, ·], ξ ∈ alg(G), on alg(G) are purely imaginary
and similarly the spectrum of the maps Adg , g ∈ G, on alg(G) lies on the unit
circle. We will restrict our attention to these groups in this article. So we make
the overall hypothesis

Overall Hypothesis The spectra of the linear maps Adg, g ∈ G, are subsets
of the unit circle {λ ∈ C; |λ| = 1}.

Therefore in the case of continuous symmetry where alg(G) is nontrivial the
linearization L∗ at a relative equilibrium always has eigenvalues on the imag-
inary axis and similarly the linearization ρ−1

g∗ DΦT (u∗) of a relative periodic

orbit u∗ = ρ−1
g∗ ΦT (u∗) of (2.1) has always center-eigenvalues on the unit circle.

If u∗ is a relative equilibrium fix some T > 0. In the case of a relative periodic
orbit take T = T ∗. We need the following assumption on the spectrum:

Hypothesis (S) The set {λ ∈ C; |λ| ≥ 1} is a spectral set for the spectrum
spec(B∗) of the operator

B∗ := ρ−1
g∗ DΦT (u∗) ∈ L(Y ) (2.4)

(called center-unstable spectral set) with associated spectral projection P ∈ L(Y )
and the corresponding generalized eigenspace Ecu := R(P ) (the center-unstable
eigenspace) is finite-dimensional.

We will show in Section 4 below that Hypothesis (S) implies that ρgu
∗ is Ck

in g. Let Gu∗ = {ρgu∗; g ∈ G} denote the group orbit at u∗. Frequently we
employ the following notion:
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Definition 2.2 We say that a relative periodic orbit or a relative equilibrium
u∗ of (2.1) is non-critical if ρgu

∗ is C1 in g and if the operator B∗ from (2.4)
satisfies Hypothesis (S) and if the center-eigenspace

Ec = Tu∗Gu∗ + span(∂tΦt(u
∗)|t=0)

only consists of eigenvectors which are forced by G-symmetry or time-shift sym-
metry (in the case of relative periodic orbits of autonomous systems).

Denote the dual space of Y by Y ?, let m = dim(G) and assume that ρgu
∗ is

C1 in g. Choose li ∈ Y ?, i = 1, . . . ,m, such that the equations li(u− u∗) = 0,
, i = 1, . . . ,m, define a section Sl = u∗ + Ŝl transverse to the group orbit
Gu∗ of the relative equilibrium at u∗. If u∗ is non-critical we can choose the
functionals li as left center-eigenvectors of L∗.
The following theorem essentially states that external periodic forcing leads to
a transition from relative equilibria to relative periodic orbits.

Theorem 2.3 Let u∗ = ρe−tξ∗Φt(u
∗) be a relative equilibrium of the unforced

system (2.1), i.e., for the parameter µ = 0. Compute B∗ = eT
∗
extL

∗

as in (2.4)
and assume that u∗ satisfies assumption (S). Then ρgu

∗ is Ck in g.
If the generalized eigenspace of B∗ to the eigenvalue 1 lies in alg(G)u∗ then for
each small amplitude µext of the periodic forcing, each frequency ωext ≈ ω∗ext

of the forcing and each small µ̂ there is exactly one relative periodic orbit u =
u(ωext, µ), of (2.1) satisfying

u = ρ−1
g ΦText,0(u, µ) and u ∈ Sl, (2.5)

for some g = g(ωext, µ). Furthermore ρgu(ωext, µ) is Ck in g ∈ G, ωext and µ,
g(ωext, µ) is Ck in (ωext, µ) and u(ωext, 0) = u∗, g(ωext, 0) = g∗.

Often we need not use the full symmetry G of (3.1) to prove Theorem 2.3.
If L∗ does not have eigenvalues ijω∗ext, j ∈ Z, forced by symmetry then the
symmetry group is discrete and we need not take it into account to prove the
theorem. If [·, ξ∗] has eigenvalues in iω∗extZ, then the corresponding (gener-
alized) eigenvectors form a Lie-subalgebra of alg(G) as can be seen from the
Jacobi-identity.
We call the Lie group generated by the generalized eigenvectors of [·, ξ∗] to the
spectral set iω∗extZ the minimal symmetry group for the forcing frequency ω∗ext

that we consider.

2.2 Resonance drift

Now we deal with the effects of resonant periodic forcing. We need the following
notion:

Definition 2.4 Let g ∈ G. If gn = exp(ξn) for some ξ ∈ alg(G) with Adg ξ =
ξ and n ∈ N then we call ξ average velocity of g.
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There may be many average velocities for each group element g; for example if
G = SO(2) then for g∗ = φ∗ the set {ξ∗ = φ∗+ j2π | j ∈ Z} consists of average
velocities for g∗. If u = ρ−1

g ΦT,0(u) is a relative periodic orbit of (2.1) and
ξ is an average velocity of g then we call ξ/T average velocity of the relative
periodic orbit.

Definition 2.5 If exp(·) is not locally surjective near ξ∗ ∈ alg(G) then there
are elements g ∈ G close to exp(ξ∗) which have (if any) only average velocities
ξ which are far away from ξ∗. We call this phenomenon resonance drift.

Similarly, let u∗ be a non-critical relative equilibrium of the unperturbed system
(2.1) which travels with velocity ξ∗. If the period of the external forcing T ∗ext

is such that exp(·) is not locally surjective near ξ = ξ∗T ∗ext then it may happen
that relative periodic orbits of (2.1) which are generated by external periodic
forcing, see Theorem 2.3, drift with an average velocity completely different to
the drift velocity ξ∗ of the relative equilibrium at µext = 0. We also call this
effect resonance drift.
Due to [31, Theorem 2.14.2] we know that the map (D exp(ξ∗))exp(−ξ∗) :
alg(G)→ alg(G) is given as

(D exp(ξ∗))exp(−ξ∗) =
∑∞

n=0
(−1)n

(n+1)! (adξ∗)
n

= (−adξ∗)
−1(exp(−adξ∗)− id)

(2.6)

where adξ∗(ξ) = [ξ∗, ξ]. Hence exp(·) is not locally surjective at ξ∗ iff adξ∗

has eigenvalues in 2πiZ \ {0}. Consequently, for resonance drift to occur it is
necessary that the periodic forcing is resonant, i.e., that the linearization L∗ of
the relative equilibrium in the comoving frame has a symmetry eigenvalue in
iω∗extZ \ {0}. Otherwise exp(·) would be surjective near T ∗extξ

∗ and the relative
periodic orbits u(µ) generated by periodic forcing would drift with velocity
ξ(µ) ≈ ξ∗.
As we mentioned in the introduction even a transition from compact to non-
compact drift may take place. We will deal with this in the following example:

Example 2.6 Consider Example 2.1 again: Let the symmetry group be G =
E(2), write g = (φ, a) ∈ SO(2)nR2 = SE(2) and let u∗ be a non-critical rotating
wave u∗ = ρ(−ω∗

rott,0)
Φt(u

∗) of the unforced system (2.1), ie. for µext = 0. For
example u∗ could be a rigidly rotating spiral wave of the reaction-diffusion
system (2.2) on Ω = R2. By Theorem 2.3 for each small forcing amplitude
µext ≈ 0 and each forcing frequency ωext there is a relative periodic orbit
u(ωext, µext) ≈ u∗.
If ω∗rot/ω

∗
ext /∈ Z then the forcing is non-resonant and the relative periodic

orbits u(µext, ωext) with ωext ≈ ω∗ext are modulated rotating waves of (2.1)
(called meandering spiral waves in the example (2.2)).
If ω∗rot/ω

∗
ext = j ∈ Z then we see from (2.6) that D exp(2πξ∗/ω∗ext) has rank

defect 2. We talk of a j : 1-resonance. In this case modulated travelling waves
(called drifting spiral waves of (2.2)) are generated as the following proposition
shows:
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Proposition 2.7 If a rotating wave of an E(2)-equivariant system (2.1) is
subject to j : 1-resonant periodic forcing then there is a Ck-smooth path u(µext),
a(µext), ωext(µext), of modulated travelling waves satisfying

Φ2π/ωext(µext)(u(µext)) = ρ(0,a(µext))u(µext)

such that u(0) = u∗, a(0) = 0, ωext(0) = ω∗ext.

Proof. By Theorem 2.3 we get a surface u(ωext, µext) of relative periodic
orbits satisfying (2.5) where g(ωext, µext) = (φ(ωext, µext), a(ωext, µext)). To
obtain modulated travelling waves we need to solve the equation

φ(ωext, µext) = 0 mod 2π.

We have ∂ωextφ(ωext, µext)|(ωext,µext)=(ω∗
ext,0)

6= 0. This can be seen as follows:
Let ξ1 be the generator of the rotation, and ξ2, ξ3 be the generators of the
translation. Computing the derivative w.r.t. ωext of (2.5) in (ωext, µext) =
(ω∗ext, 0) we get

− 2πω∗
rot

(ω∗
ext)

2 ξ1u
∗ + (DΦT∗

ext ,0(u
∗)− 1)∂ωextu(ω

∗
ext, 0)

= (∂ωextφ(ω∗ext, 0)ξ1 + ∂ωexta1(ω
∗
ext, 0)ξ2 + ∂ωexta2(ω

∗
ext, 0)ξ3)u

∗.
(2.7)

Here we used that

∂ωextΦ2π/ω∗
ext

(u∗) = − 2π

(ω∗ext)
2
∂tΦt(u

∗)t=2π/ω∗
ext

= − 2πω∗rot
(ω∗ext)

2
ξ1u
∗.

If we choose the li in (2.5) as left center-eigenvectors of L∗ then

li((DΦT∗
ext ,0(u

∗)− 1)∂ωextu(ω
∗
ext, 0)) = 0, i = 1, 2, 3.

Applying the functionals li, i = 1, 2, 3, onto (2.7) we conclude that

∂ωextφ(ω∗ext, 0) = −2πω∗rot/(ω
∗
ext)

2 6= 0.

Hence we can apply the implicit function theorem to get a smooth path
µext(ωext) parametrizing modulated travelling waves.

A transition from rotating waves to modulated travelling waves has been ob-
served in experiments [16] in the case of 1 : 1-resonance and 2 : 1-resonance.
Ashwin and Melbourne [2] talk of drift bifurcation of relative equilibria if a
rotating wave of an E(2)-equivariant system becomes a travelling wave in the
limit ωrot → 0. So their drift bifurcation and our resonance drift are related.
But in our case the resonance drift is enforced by periodic forcing.

Example 2.8 Consider the reaction-diffusion system (2.2) on the sphere Ω =
S2. Then the symmetry group is G = O(3). We will show that a wave u∗ rotat-
ing around the x3-axis starts meandering around some vector in the (x1, x2)-
plane if it is subject to resonant periodic forcing.
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Let ξi denote the generators of the rotation around the unit vectors ei ∈ R3, i =
1, 2, 3, and write g ∈ SO(3) as g = exp(

∑3
i=1 φiξi). Let u∗ = ρexp(−ξ∗t)Φt(u

∗)
be a non-critical wave of the unforced system (2.2), µext = 0, rotating around
the x1-axis, i.e., ξ∗ = ω∗rotξ1. As in (2.3) we compute

L∗(ξ2 + iξ3)u
∗ = iω∗rot(ξ2 + iξ3)u

∗.

If we switch on resonant periodic forcing with ω∗ext = ω∗rot/j, j ∈ Z, then there
is a smooth path u(µext), ωext(µext) of waves meandering around some vector
in the (x2, x3)-plane:

ΦText(µext),0(u(µext)) = ρexp(φ2(µext)ξ2+φ3(µext)ξ3)u(µext)

where φ2(0) = 0, φ3(0) = 0, ωext(0) = ω∗ext, u(0) = u∗. This can be seen as in
Example 2.6.
For numerical simulations of rotating waves on the sphere S2 see [36].

In the last two examples of resonant forcing the relative equilibria were always
rotating waves. But also for nonperiodic relative equilibria resonance drift
occurs:

Example 2.9 Consider the reaction-diffusion system (2.2) in three space Ω =
R3. Then the symmetry group is the Euclidean group E(3).
Let u∗ be a twisted scroll ring of the unforced system (2.2). Such a wave
consists of a circular filament in the (x2, x3)-plane along which vertical spiral
waves are located and an additional infinitely extended vertical filament [18].
It is a relative equilibrium which translates along its vertical filament and
simultaneously rotates around it.
Because of the vertical filament only translations a ∈ R3 and rotations around
the x3-axis act continuously on u∗ in the space BCunif . So the effective sym-
metry group is in this case G = E(2) × R. cf. [23]. We write g = (φ, a) for
the elements of E(2)×R where φ is the rotation angle around the x1-axis and
a ∈ R3 is a translation vector.
The time-evolution of the twisted scroll ring is given by Φt(u

∗) = ρexp(ξ∗t)u
∗

where ξ∗ = (ω∗rot, v
∗e1).

If the twisted scroll ring is forced periodically with frequency ωext it will typi-
cally start meandering in the (x2, x3)-plane:

ΦText,0(u(µext)) = ρ(φ(µext),a(µext))u(µext), a(µext) = v(µext)Texte1.

But by resonant periodic forcing, i.e., if ω∗rot/ω
∗
ext ∈ Z, we can achieve that the

scroll ring drifts away in another direction than the x1-axis as the following
proposition shows:

Proposition 2.10 If the twisted scroll ring of (2.2) is noncritical and forced
periodically such that ω∗rot/ω

∗
ext ∈ Z then there is a Ck-smooth path u(µext),

ωext(µext) of relative periodic orbits satisfying

Φ2π/ωext(µext),0(u(µext)) = ρ(0,a(µext))u(µext), a(µext) ∈ R3.
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The direction of the drift a(µext) of the periodically forced twisted scroll rings
in the above proposition will typically not point in x1-direction. The proof of
the proposition is similar as the proof of Proposition 2.7.

Note again that to the isotropy K of the relative equilibria not all kinds of
noncompact drift are possible. As mentioned before the drifts g(ωext, µ) of
the emanating relative periodic orbits have to lie in N(K). Remember that
we have chosen G = N(K)/K in the whole section. In a second step we
have to interpret our results on periodic forcing for the original group G. In
a system with E(2)-symmetry for instance we see that a rotating wave with
spatial symmetry K can not start drifting under the influence of the periodic
forcing if K contains a non-trivial rotation (φ, 0). In this case N(K) = SO(2),
see [7]. Similarly if G = E(2) and K only consists of one reflection then the
relative equilibrium u∗ can not rotate. Hence it is a travelling wave in general.
A relative equilibrium in an E(2)-equivariant system with K ⊃ Dn, n > 1,
even has to be stationary.
We can generalize Propositions 2.7, 2.10 as follows: Let g = g̃(χ), χ ∈ Rn,
|χ| ≤ 1, be a smooth n-dimensional hyper-surface in G such that g(0) = g∗ =
exp(T ∗extξ

∗). Let {ξi |i = 1, . . .m}, m = dim(G), denote a basis of alg(G).
Write

g̃(χ) = exp(ζ̃(χ))g∗, ζ̃(χ) =

dim(G)∑

i=1

ζ̃i(χ)ξi, (2.8)

ζ̃i(0) = 0, i = 1, . . . ,m, and assume that (∂χj ζ̃i(0))i,j=1,...,n is an invertible
(n, n)-matrix

(∂χj ζ̃i(0))i,j=1,...,n ∈ GL(n), (2.9)

and that
∂χζ̃i(0) = 0 for i = n+ 1, . . . ,m. (2.10)

Let u∗(µ̂) = ρexp(−t∑m
i=1 ζ

∗
i (µ̂)ξi)Φt(u

∗(µ̂)) be relative equilibria of (2.1) at

µext = 0 such that u∗(0) = u∗,
∑m

i=1 ζ
∗
i (0)ξi = ξ∗ and u∗(µ̂) ∈ Sl. Then

the following holds:

Proposition 2.11 Let the assumptions of Theorem 2.3 jold. Then there is
a Ck-smooth hyper-surface (ωext(µext, ν), µ(µext, ν)) of relative periodic orbits
u(µext, ν) in the (ωext, µ)-parameter-space with ν ∈ Rd, d = p − (m − n) and
|ν| small, satisfying

Φ2π/ωext(µext,ν),0(u(µext, ν);µ(µext, ν)) = ρg̃(χ(µext,ν))u(µext, ν)

and
u(µext, ν) ∈ Sl, u(0, 0) = u∗, χ(0, 0) = 0,

provided that the (m− n, p)-matrix

(∂(ωext,µ̂)Textζ
∗
i (0))i=n+1,...,m

has full rank.
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Proof. We solve the equation

g̃(χ)−1g(ωext, µ) = id

by the implicit function theorem.
In the examples 2.6, 2.8, 2.9 above the hyper-surface g = g̃(χ) consists of
elements with average drift velocity far away from the drift velocity ξ∗ of the
relative equilibrium.

2.3 Scaling of drift velocity

In this section we study the scaling of drifts induced by a harmonic periodic
forcing where the forcing term in (2.1) is of the form

fext(u, ωextt, µ) = f̃(u) cos(ωextt, µ). (2.11)

Such a forcing term is usually used in experiments [16], [35]. Further let µ =
µext ∈ R.
We first state a general proposition, then we apply this result to some examples
in spiral wave dynamics explaining scaling laws which were observed in experi-
ments or simulations. In the end we give a mathematical definition of the spiral
tip. The motion of the spiral tip is measured in experiments to visualize the
drift [5].
We assume that the unforced system (2.1) has a non-critical relative equilibrium
u∗ and denote again by {ξ1, ξ2, . . . , ξm} a basis of alg(G).

Proposition 2.12 Assume that the periodic forcing term in (2.1) is of the
form (2.11). Fix a forcing frequency ω∗ext. Let u(µext), g(µext) be relative
periodic orbits for µext ≈ 0. Write

g(µext) = eTextζ(µext)eTextξ
∗

, ζ(µext) =

m∑

i=1

ζi(µext)ξi.

Assume that the geometric multiplicity of the eigenvalue 0 of the linear map
[·, ξ∗] on alg(G) equals its algebraic multiplicity. Then

∂µextζi(0) = 0 if [ξi, ξ
∗] = 0.

This is also true if fext is not a harmonic periodic forcing, but the mean value∫ 2π

0 fext(u, t)dt of fext is zero.
Now assume that the periodic forcing is resonant so that the linear map [·, ξ∗] on
alg(G) has eigenvalues ±iω∗G with eigenvectors ξ1± iξ2 such that ω∗G/ω

∗
ext = j ∈

Z. Assume that the algebraic and the geometric multiplicity of the eigenvalue
±iω∗G of [·, ξ∗] are equal. Then

∂µextζi(0) = 0 for i = 1, 2 if j > 1.
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If u∗ is a rotating wave then eTextξ
∗

= id for some Text. Therefore the (m,m)-
matrix [·, ξ∗] is semisimple and has eigenvalues ±iω∗G with ω∗G/ω

∗
ext = j ∈ Z

and the above proposition can be applied, see Example 2.13 below.

Proof of Proposition 2.12. We write a prime for ∂µext in the following
calculation. We choose the functionals li in (2.5) defining the section transversal
to the group orbit again as left center-eigenvectors of L∗. Differentiating (2.5)
with respect to µext in µext = 0 gives

∑m
i=1 T

∗
extζ

′
i(0)ξiu

∗ = (eTextL
∗ − 1)u′(0)

+ρexp(−Textξ∗)∂µΦT∗
ext

(u∗;µ)|µ=0
(2.12)

where

ρexp(−ξ∗Text
)∂µextΦText(u

∗;µ)|µ=0 =

∫ 2π/ωext

0

eL
∗(2π/ωext−t)f̃(u∗) cos(ωextt)dt.

Let P be the spectral projection of L∗ to the eigenvalue 0. Since algebraic
and geometric multiplicity of the eigenvalue 0 of [ξ∗, ·] are equal by assumption
and the relative equilibrium u∗ is noncritical we conclude that PL∗ = 0 and
therefore ∫ 2π/ωext

0

P eL
∗(2π/ωext−t)f̃(u∗) cos(ωextt)dt = 0.

Applying P onto (2.12) we therefore get

m∑

i=1

T ∗extζ
′
i(0)Pξiu

∗ =

∫ 2π/ωext

0

P eL
∗(2π/ωext−t)f̃(u∗) cos(ωextt)dt = 0.

This proves that ζ ′i(0) = 0 if [ξi, ξ
∗] = 0, and we see that we get the same result

if only the time average of fext(u, t, 0) is zero.
Now let Q be the spectral projection to the eigenvalue iω∗G, ω∗G/ω

∗
ext = j.

Applying Q onto (2.12) we get, similarly as above,

m∑

i=1

T ∗extζ
′
i(0)Qξiu

∗ =

∫ 2π/ωext

0

QeL
∗(2π/ωext−t)f̃(u∗) cos(ωextt)dt.

As above we conclude that ζ ′i(0) = 0 for i = 1, 2 if j > 1.

Example 2.13 Again let G = E(2) and let u∗ be a non-critical rotating wave
of the unforced system (2.1), e.g. a rigidly rotating spiral wave of the reaction-
diffusion system (2.2) on the plane Ω = R2. Assume that the periodic forcing
is resonant ω∗rot = jω∗ext, j ∈ Z. Then according to Example 2.6 there is a path
u(µext), a(µext), ωext(µext) of modulated travelling waves (drifting spiral waves
of the reaction-diffusion system (2.2)) in the parameter-plane (ωext, µext) ∈ R2.
Assume that the periodic forcing is harmonic. By Proposition 2.12 the drift

velocity v(µext) = a(µext)
Text

of the modulated travelling waves satisfies v′(0) = 0
if |j| > 1.
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Drift velocities which only grow with the square µ2
ext of the amplitude of the

external periodic forcing are rather small and apparently difficult to find in
experiments. That is why in experiments [35] mainly the 1:1-resonance is ob-
served; however in [16] also a 2 : 1-resonance could be detected experimentally.

Example 2.14 Let G = SO(3) and let u∗ be a non-critical wave of the un-
forced system (2.1) rotating around the x1-axis with speed ω∗rot, for instance, a
rigidly rotating spiral wave in the reaction-diffusion system (2.2) on the sphere,
see Example 2.8; if the periodic forcing is resonant ω∗rot = jω∗ext, j ∈ Z then
according to Example 2.8 there is a path u(µext), φ(µext), ωext(µext) of mod-
ulated rotating waves meandering around some vector in the (x2, x3)-plane.
By Proposition 2.12 their drift velocity ωrot(µext) = φ(µext)/Text(µext) satisfies
ω′rot(0) = 0 if j > 1.

Example 2.15 We again consider a twisted scroll ring, see Example 2.9. In
this case the symmetry group is G = E(2) × R and the drift velocity of the
scroll ring is given by ξ∗ = (ω∗rot, v

∗e1). Denote by u(µext), g(µext) the relative
periodic orbits generated by periodic forcing of the twisted scroll with fixed
forcing frequency ωext. We write g(µext) = (φ(µext), a(µext)) where a(µext) ∈
R3, a(0) = a∗e1 = Textv

∗e1, ωrot(µext) = φ(µext)/Text, ωrot(0) = ω∗rot. By
Proposition 2.12 we have

|ωrot(µext)− ω∗rot| = O(µ2
ext), |a1(µext)− a∗| = O(µ2

ext),

but in general |ai(µext)| = O(µext), i = 2, 3. This is also observed in numerical
simulations, see [15].

Now we define the tip position xtip(u) for u ∈ Y . It is not clear at all how
to define the spiral tip exactly. Experimentalists often determine the tip of a
spiral wave in two dimensions visually as point with maximal curvature at the
end of the spiral [5], but there are also other more or less precise definitions
around [14].
From a symmetry point of view the position xtip(u) ∈ R2 of the spiral tip in
the case G = E(2) is a function of the spiral wave solution u into R2 and has
the following property.

Definition 2.16 The tip position xtip(·) is a C1-smooth G-equivariant func-
tion which maps an open set of Y into a G-manifold M .

For example in the case G = E(2) we choose π(φ, a) = a, π(G) = R2 and G
acts on π(G) by the natural affine representation [8]; in the case G = SO(3)
we choose π(G) = S2; each g ∈ SO(3) can be represented by a vector φ ∈
so(3) = R3 such that g = exp(φ) is a rotation around the unit vector φ/|φ| by
the rotation angle |φ|; we set π(exp(φ)) = φ/|φ|.
In experiments the drift phenomena we talked about are detected by following
the spiral tip xtip(u). For the spiral tip xtip(u(ωext, µext)) the same scaling
phenomena hold as for the drifts g(ωext, µext).
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2.4 Resonant periodic forcing of relative periodic orbits

Now we consider resonant periodic forcing of relative periodic orbits. We still
assume that the isotropy K of the relative periodic orbit is trivial, otherwise
we choose G = N(K)/K, Y = Fix(K) as before.
Experiments on periodic forcing of meandering spiral waves have been carried
out e.g. by Müller and Zykov [35]. Here invariant 3-tori were found and fre-
quency locking between the period of the relative periodic orbits and the period
of the external forcing was observed. Furthermore for certain periods of the
external forcing modulated travelling waves were found in experiments. This
phenomenon is called ”generalized resonance drift” [35].
We will only consider frequency locked relative periodic solutions generated by
external periodic forcing. Let again Text = 2π

ωext
denote the period of the forcing,

let µext denote its amplitude and let T ∗ be the period of the relative periodic
orbit for µ = 0. Assume that u∗ is a non-critical relative periodic orbit in µ = 0,
that is, u∗ satisfies ΦT∗(u∗) = ρg∗u

∗, for some T ∗ > 0, B∗ = ρ−1
g∗ DΦT∗(u∗)

satisfies Hypothesis (S) and the center-eigenspace only consists of eigenvectors
forced by G-symmetry or time-shift symmetry:

Ec = alg(G)u∗ ⊕ span(∂tΦt(u
∗)|t=0).

Furthermore suppose that

Tnew = jText = `T ∗ where gcd(j, `) = 1.

Let Pθ be the spectral projection corresponding to the center spectral set of
ρ−1
g∗ DΦ1(Φθ(u

∗)). The condition Pθ(u − Φθ(u
∗)) = 0 defines a section Sθ

transversal to the relative periodic orbit in Φθ(u
∗).

Proposition 2.17 Under the above conditions there is a Ck-smooth hyper-
surface u(θ, µ) of ` : j-frequency-locked relative periodic solutions with µ ∈ Rp,
θ ∈ [0, T ∗], satisfying

Φ 2πj
ωext(θ,µ)

,0(u(θ, µ)) = ρg(θ,µ)u(θ, µ), u(θ, µ) ∈ Sθ, (2.13)

and u(θ, 0) = Φθ(u
∗), g(θ, 0) = (g∗)`.

This proposition is proved similarly as Theorem 2.3. We refer to section 4 for
a proof.
Assume for a moment that G is compact. Due to periodic forcing it may happen
that a discrete rotating wave, i.e., a relative periodic orbit u∗ for which g∗ lies
in a discrete Cartan subgroup Zn, starts drifting. If gcd(n, `) > 1, then (g∗)`

may lie in a Cartan subgroup Zn/gcd(n,`) × TN , N > 0 and ` : j-frequency
locked relative periodic orbits nearby starts drifting.
An example is the group G = O(2) where g∗ is a reflection. If ` = 2 then
modulated rotating waves with relative period Tnew ≈ 2T ∗ are generated by the
resonant periodic forcing of the discrete rotating wave u∗. Such a phenomenon
can not occur in the case of relative equilibria.
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Another phenomenon that may occur in the case of periodic forcing is resonance
drift as we saw in the preceding sections. Let ξ∗ be a drift velocity of g∗. By
resonance drift we mean that there are group elements g close to (g∗)` with all
average drift velocities ξ far away from the drift velocity ξ∗ of g∗. We first give
an example. Then we state a general proposition.

Example 2.18 We consider periodic forcing of meandering spiral waves. In
this case the symmetry group is G = E(2), and

u∗ = ρ(−φ∗,0)ΦT∗(u∗)

is a modulated rotating wave. Assume that

`φ∗ = 0 mod 2π, ` 6= 0,

and that µ̂ ∈ R (p = 2). If ∂µ̂φ
∗(0) 6= 0 then there is an ` : j-frequency locked

modulated travelling wave u(θ, µext) to the parameter µ = (µext, µ̂(θ, µext)),
ωext(θ, µext) such that u(θ, 0) = u∗. Here φ∗(µ̂) is the rotation angle for the
modulated rotating wave u∗(µ̂) = ρ(−φ∗(µ̂),0)ΦT∗(µ̂)(u

∗(µ̂)) for the autonomous
system (µext = 0) with parameter µ̂. This explains the ”generalized drift
resonance” of locked solutions reported by [35].

Let g = g̃(χ) as in section 2.1 be a hyper-surface of dimension n in G such that

g(0) = (g∗)` and that (2.8), (2.9), (2.10) hold. The hyper-surface g = g̃(χ)
may for example consist of the group elements with average velocities far away
from the drift velocity ξ∗ of g∗.
Let u∗(µ̂) = ρ−1

exp(
∑m
i=1 ζ

∗
i (µ̂)T∗(µ̂)ξi)g∗

ΦT∗(µ̂)(u
∗(µ̂)), P0(u

∗(µ̂) − u∗) = 0, be

relative periodic orbits of the unforced system (2.1) where µext = 0 such that
u∗(0) = u∗, T ∗(0) = T ∗, ζi(0) = 0, i = 1, . . . ,m. Similarly as in Proposition
2.11 we find:

Proposition 2.19 Under the above assumptions there is a Ck-smooth hyper-
surface of ` : j-frequency locked relative periodic orbits near u∗ satisfying

Φ j2π
ωext(θ,µext ,ν)

,0(u(θ, µext, ν);µ(θ, µext, ν)) = ρg̃(χ(θ,µext,ν))u(θ, µext, ν),

and u(θ, µext, ν) ∈ Sθ, where ν ∈ Rd, d = p − 1 − (n − dim(G)), |ν| small,
provided that the (n− dim(G), p− 1)-matrix

(∂µ̂ζ
∗
i (0))i=n+1,...,dim(G)

has full rank.

Now we study the scaling behaviour of the drift velocities in the case of har-
monic periodic forcing (2.11) which is usually used in experiments [35]. Let
µ = µext ∈ R.
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Proposition 2.20 Let the periodic forcing be harmonic as in (2.11). Fix a
frequency ωext of the periodic forcing and write the pull-back elements g(θ, µext)
of the ` : j-frequency locked periodic orbits, see Proposition 2.17, as

g(θ, µext) = exp(

m∑

i=1

jText(θ, µext)ζi(θ, µext)ξi)(g
∗)`.

If ` > 1 and if the geometric multiplicity of the eigenvalue 1 of Adg∗ equals its
algebraic multiplicity then we have:

∂µextζi(0) = 0 for all i with Adg∗ ξi = ξi.

Moreover the Arnold tongues where the frequency locking occurs grow as |µext|2
if ` > 1.

Note that if (g∗)` = id as in Example 2.18 the matrix Adg∗ is semisimple so
that Proposition 2.20 can be applied.

Again a cautious note: in the case G = E(2) the meandering spiral wave can
not start drifting unboundedly if its spatial symmetry group K contains a
nontrivial rotation. In general by periodic forcing the isotropy group of the
relative periodic orbit is not changed. So the group element g(θ, µ) satisfying
ΦjText(θ,µ)(u(θ, µ)) = ρg(θ,µ)u(θ, µ) is in N(K) where K is the isotropy of u∗

for properly chosen u(θ, µ). Note that we chose G = N(K)/K in the whole
section.

Proof of Proposition 2.20. Let W (t, 0) = DΦt(u
∗) denote the solution

of the variation equation along Φt(u
∗) and let W (t, s) := W (t, 0)(W (s, 0))−1,

that is, W (t, s) = DΦt−s(Φs(u∗)). We have

∂µextΦTnew(u∗, 0) =

∫ `T∗

0

W (`T ∗, s)f̃(Φs(u
∗)) cos(

2πjs

`T ∗
)ds

=

∫ T∗

0

(. . .)ds+ . . .+

∫ `T∗

(`−1)T∗

(. . .)ds

= Re

(
C

∫ T∗

0

W (T ∗, s)f̃(Φs(u
∗))e

2πijs
`T∗ ds

)

where

C = ρ`g∗

`−1∑

i=0

(ρ−1
g∗ W (T ∗, 0))`−i−1e2πiji/`ρ−1

g∗ .

Here we used that

W (t+ iT ∗, s+ iT ∗) = DΦt−s(Φs+iT∗(u∗)) = DΦt−s(ρ
i
g∗Φs(u

∗))

= ρig∗W (t, s)ρ−ig∗
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and that

W (`T ∗, iT ∗) = DΦ(`−i)T∗(ΦiT (u∗)) = ρig∗DΦ(`−i)T∗(u∗)ρ−ig∗

= ρ`g∗ρ
i−`
g∗ DΦ(`−i)T∗(u∗)ρ−ig∗

= ρ`g∗(ρ
−1
g∗ W (T ∗, 0))`−iρ−ig∗ ,

and that therefore for s ∈ [0, T ∗)

W (`T ∗, s+ iT ∗)f̃(ΦiT∗+s(u
∗))

= W (`T ∗, (i+ 1)T ∗)W (iT ∗ + T ∗, iT ∗ + s)ρig∗ f̃(Φs(u
∗))

= ρ`g∗(B∗)`−i−1ρ−1
g∗ W (T ∗, s)f̃(Φs(u

∗)),

where B∗ := ρ−1
g∗ W (T ∗, 0).

Let P be the spectral projection of B∗ to the eigenvalue 1. We have

Pρ−`g∗ ∂µextΦTnew (u∗, 0) = Re

(
cPρ−1

g∗

∫ T∗

0

W (T ∗, s)f̃(Φs(u
∗))e

2πijs
`T∗ ds

)

(2.14)

where c =
∑`−1

i=0 e2πiji/`. So P∂µextΦTnew(u∗; 0) = 0 if ` > 1.
Differentiating (2.13) in the solution (u, g, ωext)(µ) with respect to µext in µ = 0
yields with g(θ, µext)(g

∗)−` = exp(
∑m

i=1 jText(θ, µext)ζi(θ, µext)ξi)

0 = ((B∗)` − 1)∂µextu(θ, µext)|θ,µext=0 − `T ∗
m∑

i=1

∂µextζi(0)ξiu
∗

−2πj∂µextωext(0)

ω2
ext(0)

∂tΦt(u
∗)|t=0 + ρ−`g∗ ∂µextΦTnew,0(u

∗, µ)|µ=0.

Applying the projection P to the eigenvalue 1 of B∗ we see that ∂ζi
∂µext

(0) = 0

for all i with Adg∗ ξi = ξi and that ∂ωext

∂µext
(0) = 0 provided that ` > 1.

3 Hopf bifurcation from relative equilibria

In this section we study transitions from relative equlibria to relative periodic
orbits in autonomous systems caused by Hopf bifurcation. For experiments
on Hopf bifurcation from rotating waves – the meandering transition – in the
Belousov-Zhabotinsky reaction see [26], [32], [27]. First we state a general
theorem for Hopf bifurcation from relative equilibria. The proof of the Hopf
theorem can be found in Subsection 4.6. In Subsection 3.2 we explain the
drift phenomena caused by resonance which were observed in experiments. In
Subsection 3.3 we discuss equivariant Hopf bifurcation.
In the whole section we assume that the nonlinearity f in (1.3) is autonomous.
So we consider the differential equation

du

dt
= −Au+ f(u, µ). (3.1)
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In the applications we have in mind (3.1) is an autonomous reaction-diffusion
system

∂ui
∂t

= δi∆ui + fi(u, µ), i = 1, . . . ,M, (3.2)

cf. (1.1).

3.1 The theorem on Hopf bifurcation

Let u∗ be a relative equilibrium of (3.1) for µ = 0 satisfying Hypothesis (S).
We will show in Section 4 below that Hypothesis (S) implies that ρgu

∗ is Ck in
g. In this subsection we assume that the isotropy K of the relative equilibrium
is trivial K = {id} or we exchange G by N(K), Y by Fix(K). We assume that
±i are eigenvalues of the linearization L∗ = −A− ξ∗+Df(u∗) in the comoving
frame which are not only caused by symmetry, i.e., ifQ is the spectral projection
of L∗ to the i then there is some w ∈ QY with w /∈ alg(G)u∗. Furthermore
assume that

ni ∈ spec(L∗), n ∈ Z =⇒ QY ⊂ span(w, w̄)⊕ alg(G)u∗.

Let u∗(µ) be the Ck-smooth path of relative equilibria with

Φt(u
∗(µ)) = ρexp(tξ∗(µ))u

∗(µ), li(u
∗(µ) − u∗) = 0, i = 1, . . . ,m, u(0) = u∗.

Note that we can obtain the path of relative equilibria u∗(µ) near u∗ by applying
Theorem 2.3 with non-resonant period Text. As before the functionals li, i =
1, . . . ,m, determine a section Sl = u∗ + Ŝl transversal to the group orbit of
the relative equilibrium u∗. We choose the functionals li such that li(w) = 0,
i = 1, . . . ,m (e.g. by using the spectral projection of L∗ to the symmetry
eigenvalues to construct the functionals li.).

Lemma 3.1 Under the above assumptions there is a Ck−1-path β(µ) of eigen-
values of the linearization

L∗(µ) = −A+ Df(u∗(µ))− ξ∗(µ)

such that β(0) = i.

This lemma will be proved in section 4.6 below.

We write µ = (µ1, µ2) where µ1 ∈ R and µ2 ∈ Rp−1. If the transversality
condition

Re
∂β(0)

∂µ1
6= 0 (3.3)

holds then we can assume w.l.o.g. that µ1 = 0 parametrizes the relative equi-
libria u∗(µ) which are Hopf points.
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Theorem 3.2 Under the above assumptions there are relative periodic orbits
u(s, µ2), s ∈ R+

0 small, of relative period T (s, µ2) near u∗ to the parameter
µ1(s) satisfying

ΦT (s)(u(s, µ2), (µ1(s), µ2)) = ρg(s,µ2)u(s, µ2) (3.4)

and u(0) = u∗, µ(0) = 0, g(0) = e2πξ∗ , T (0) = 2π provided that the transver-
sality condition (3.3) is satisfied. For each small s a circle ul(s1, s2, µ2),
s1 = s cos τ , s2 = s sin τ , τ ∈ [0, 2π], of the relative periodic orbit to the param-
eter s lies in the section Sl with corresponding pull-back element gl(s1, s2, µ2),
and we fix the phase by setting u(s, µ2) = ul(s, 0, µ2), g(s, µ2) = gl(s, 0, µ2),
such that ∂su(0) = Re w. The functions ul(s1, s2, µ2), µ1(s, µ2), gl(s1, s2, µ2),
T (s, µ2) are Ck−1 in s1, s2 ∈ R and µ2 ∈ Rp−1, and µ1(s, µ2) and T (s, µ2) only
depend on s = ‖(s1, s2)‖ and µ2.

Theorem 3.2 is proved in section 4.6 below. The Hopf bifurcation from relative
equilibria to relative periodic orbits is called relative Hopf bifurcation because
it is a Hopf bifurcation in the space of group orbits. Formally we can define a
semiflow Ψt(·) on Ŝl in a comoving frame by

Ψt(u;µ) = ρ−1
g(Φt(u,µ))Φt(u+ u∗(µ);µ) − u∗(µ) (3.5)

where g(u) is such that li(ρ
−1
g(u)u − u∗) = 0, i = 1, . . . ,m, ie. ρ−1

g(u)u ∈ Sl.

Under the above assumptions Ψt(·) undergoes a usual Hopf bifurcation with two
simple Hopf eigenvalues ±i and without any resonances. To see this note that

the linearization eL̃t of Ψt(u) in the Hopf point u = 0 is given by L̃ = PlL
∗Pl

where Pl is the projection onto the space li(u) = 0, i = 1, . . . ,m such that
Pl alg(G)u∗ = 0. Choosing li, i = 1, . . . ,m, such that li(ρgy) is C1 in g for
y ∈ Y (which is possible as we will see in Lemma 4.3 below) we see that the
semiflow Ψt(u) is strongly continuous on Y . But it is only smooth in u if
the group action is smooth on Φt(u), t > 0, u ∈ Y , which is not the case in
applications as we saw in the introduction, cf. subsection 1.5.
Often we need not use the full symmetry G of (3.1) to prove the Hopf theorem.
The situation is analogous to the case of periodic forcing of relative equilibria,
see section 2.1: If L∗ does not have eigenvalues ij, j ∈ Z, forced by symmetry
then ξ∗ = 0 and we have an ordinary Hopf bifurcation from an equilibrium. If
[ξ∗, ·] has eigenvalues in iZ, then the corresponding (generalized) eigenvectors
form a Lie subalgebra of alg(G). We call the group generated by this Lie
subalgebra the minimal symmetry group for the Hopf bifurcation.

Example 3.3 Consider again the reaction-diffusion system (3.2) on the do-
main Ω = R2. Then the symmetry group is G = E(2). Let u∗ be a rigidly
rotating spiral wave Φt(u

∗) = ρ(ω∗
rott,0)

u∗ of the reaction-diffusion system (3.2).
The meandering transition mentioned in the introduction corresponds to a rel-
ative Hopf bifurcation from the rotating wave u∗.
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3.2 Resonance drift and scaling of drift velocity

In this section we deal with resonant Hopf bifurcation. Again we assume that
the isotropyK of the relative equilibrium u∗ is trivial, K = {id} or we choose Y
as Fix(K), G as N(K)/K. In the next subsection we will deal with equivariant
Hopf bifurcation where K 6= {id}. Let the assumptions of Theorem 3.2 hold,
let again u∗ be a Hopf point with Hopf eigenvalues ±i, let again µ ∈ Rp and
let u∗(µ) be relative equilibria satisfying li(u

∗(µ)− u∗) = 0, i = 1, . . . ,m, and

Φt(u
∗(µ)) = ρexp(ξ∗(µ)t)u

∗(µ), ξ∗(µ) =

m∑

i=1

ζ∗i (µ)ξi,

with u∗(0) = u∗, ξ∗(0) = ξ∗. Here we again denote by {ξi; i = 1, . . . ,m} a
basis of the Lie algebra alg(G) of G. We have

L∗ξu∗ = [ξ, ξ∗]u∗, e2πL∗

ξu∗ = Adexp(−2πξ∗) ξu
∗ = (e2π[·,ξ∗]ξ)u∗, ξ ∈ alg(G).

If exp(·) is not locally surjective near 2πξ∗ then there may be relative periodic
orbits bifurcating from the relative equilibrium with all average drift velocities
completely different from the drift velocity ξ∗ of the relative equilibrium at the
Hopf bifurcation. We talk of resonance drift as introduced in subsection 2.2.
For resonance drift to occur it is necessary that the Hopf bifurcation is reso-
nant which means that the linearization L∗ of the relative equilibrium in the
comoving frame has a symmetry eigenvalue in iZ \ {0}. In group-theoretical
terms, the linear map [·, ξ∗] has eigenvalues in iZ\{0}. Otherwise exp(·) would
be surjective near 2πξ∗ and the relative periodic orbits u(s) generated by Hopf
bifurcation would drift with velocity ξ(s) ≈ ξ∗, cf. subsection 2.2.
Let g = g̃(χ) be an n-dimensional hyper-surface in G, χ ∈ Rn, |χ| ≤ 1 such

that g̃(0) = g∗ = eξ
∗2π. Write g̃(χ) = exp(ζ̃(χ))g∗ where ζ̃ =

∑dim(G)
i=1 ζ̃i(χ)ξi,

ζi(0) = 0, i = 1, . . . , dim(G), and assume that (2.9) and (2.10) hold. As in
section 2.2 the hyper-surface g = g̃(χ) may consist of elements with average
drift velocity far away from the drift velocity ξ∗ of the relative equilibrium.
Again let µ = (µ1, µ2) with µ1 ∈ R, µ2 ∈ Rp−1.

Proposition 3.4 Let the assumptions of Theorem 3.2 and the above assump-
tions hold and let K = {id}. If ∂

∂µ1
Reβ(0) 6= 0 and if the matrix

∂µ2(
Imβ(µ)

ζ∗i (µ)
)|µ=0}i=n+1,...,m (3.6)

has full rank then there are relative periodic orbits with average drift inside
the hypersurface g = g̃(χ), more precisely: there are Ck−1-smooth functions
u(s, ν), T (s, ν), µ(s, ν), χ(s, ν) such that

ΦT (s,ν)(u(s, ν)) = ρg̃(χ(s,ν))u(s, ν).

Here ν ∈ Rd, d = p− 1− (dim(G)− n), χ(0) = 0, u(0) = u∗.
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Proof. By Theorem 3.2 there are relative periodic orbits u(s, µ2), g(s, µ2),
T (s, µ2) bifurcating from u∗(µ)|µ1=0.
We want to solve the equation g̃(χ)−1g(s, µ2) = id by the implicit function
theorem. Since T (0, µ2) = 2π

Imβ(0,µ2)
we have

∂µ2g(0, µ2)|µ2=0 = ∂µ2 exp(

m∑

i=1

2πζ∗i (0, µ2)

Imβ(0, µ2)
ξi)|µ2=0

= 2π(

m∑

i=1

∂µ2ζ
∗
i (0)ξi − Im ∂µ2β(0)ξ∗)g∗.

We need that ∂(χ,µ2)g̃(χ)−1g(s, µ2)(s,χ,µ2)=(0,0,0) has full rank. Therefore the
matrix

{∂µ2ζ
∗
i (0)− ζ∗i (0)∂µ2 Imβ(0)}i=n+1,...,dim(G)

has to be invertible, that is, we need that

{∂µ2(
Imβ(µ)

ζ∗i (µ)
)|µ=0}i=n+1,...,dim(G)

has full rank.
Now we study the scaling behaviour of the drift velocities. Let µ ∈ R and write
the pull-back elements g(s) of the bifurcating relative periodic orbits u(s) as

g(s) = exp(T (s)ζ(s))g∗, ζ(s) =

dim(G)∑

i=1

ζi(s)ξi. (3.7)

Remark 3.5 Let [ξi, ξ
∗] = 0. Then d

dsζi(0) = 0. In a j : 1-resonance

[ξ1 + iξ2, ξ
∗] = ij(ξ1 + iξ2), j ∈ N,

we have d`

ds`
ζi(0) = 0, i = 1, 2, ` = 1, . . . ,min(j, k)− 1.

Proof. Differentiating

ρ−1
g(s)ΦT (s)(u(s);µ(s)) − u(s) = 0

w.r.t. s in s = 0 gives

−2π

m∑

i=1

ζ ′i(0)ξiu
∗ + (e2πL∗ − 1) Rew = 0.

Applying the spectral projection P0 of L∗ to the eigenvalue 0 gives

P0

m∑

i=1

ζ ′i(0)ξiu
∗ = 0.
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If [ξi, ξ
∗] = 0 then P0ξiu

∗ = ξiu
∗, so ζ ′i(0) = 0. We have

ΦT (s)(ul(s1, s2), µ(s)) = ρgl(s1,s2)ul(s1, s2) (3.8)

where s1 = s cos τ , s2 = s sin τ , τ ∈ [0, 2π]. By Theorem 3.2 ul(s1, s2) and
gl(s1, s2) are Ck−1-smooth in s1, s2. We write gl(s1, s2) as in (3.7):

gl(s1, s2) = exp(T (s)ζl(s1, s2))g
∗, ζl(s1, s2) =

dim(G)∑

i=1

ζl,i(s1, s2)ξi.

Since ul(s1, s2) ∈ GΦτT (s)/2π(u(s), µ(s)) there are Ck−1-functions ĝ(τ, s) ∈ G,

ζ̂(τ, s) ∈ alg(G) such that ĝ(τ, 0) = id, ζ̂(τ, 0) = 0,

ĝ(τ, s) = exp(ζ̂(τ, s)), ζ̂(τ, s) =

m∑

i=1

ζ̂i(τ, s)ξi

and
ul(s1, s2) = ρĝ(τ,s) exp(−ξ∗τT (s)/2π)ΦτT (s)/2π(u(s), µ(s)). (3.9)

From (3.4), (3.8), (3.9) we conclude that

gl(s1, s2) = ĝ(τ, s) exp(−τT (s)

2π
ξ∗)g(s) exp(

τT (s)

2π
ξ∗)ĝ(τ, s)−1.

Hence

eT (s)ζ(s1,s2) = eζ̂(τ,s) exp(T (s) Ad
exp(− τT (s)

2π ξ∗)
ζ(s))e−Adg∗ ζ̂(τ,s).

We can choose G minimal such that Adg∗ = id on alg(G). Therefore we
conclude that for each i

ζl,i(s1, s2)ξi = Ad
exp(ζ̂(τ,s)) exp( τT (s)

2π ξ∗)
ζi(s)ξi.

Since exp(ξ∗τ)(ξ1 + iξ2) = exp(ijτ)(ξ1 + iξ2) we see that

ζl,1(s1, s2)ξ1 + iζl,2(s1, s2)ξ2 = (1 + sM(s)) exp(ijτ)(ζ1(s)ξ1 + iζ2(s)ξ2)

where M(s) ∈ Mat(2) is a Ck−2 smooth function. Therefore since ζl,i(s1, s2),

i = 1, 2, is Ck−1-smooth in s1, s2 we conclude that d`

ds`
ζi(0) = 0, ` =

0, . . . ,min(j, k)− 1, i = 1, 2.

Example 3.6 Again let G = E(2) and let u∗ be a rotating wave Φt(u
∗) =

ρ(ω∗
rott,0)

u∗ of (3.1), e.g. a rigidly rotating spiral wave of (3.2). Assume that the
parameter space is two-dimensional, µ ∈ R2, as in Fig. 3, and that parameters
are chosen such that the rotating waves u∗(µ) which are Hopf points lie on the
line µ1 = 0 in parameter space. Note that ±iω∗rot are eigenvalues of [·, ξ∗] with
eigenvectors ξ2 ± iξ3, cf. Example 2.1. Choosing the hypersurface g = g̃(χ) in
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Proposition 3.4 as the subgroup of translations we now understand Fig. 3: If
the rotation frequency ω∗rot is resonant to the Hopf frequency ω∗Hopf = 1, ω∗rot =

jω∗Hopf ∈ Z and the resonance is crossed with nonzero speed ∂µ2(
Imβ(µ)
ω∗

rot(µ) )|µ=0 6=
0 (which is generically satisfied) then there is a path µ(s) in parameter space
R2 of modulated travelling waves (drifting spiral waves)

ΦT (s)(u(s);µ(s)) = ρ(0,a(s))u(s).

From Remark 3.5 we see that the drift velocity v(s) = |a(s)|/T (s) generically
scales like |µ|j/2, see [4], [8].

3.3 Equivariant relative Hopf bifurcation

In this subsection we study relative Hopf bifurcation in the case of a compact
isotropy K 6= {id} of the relative equilibrium u∗. We consider the case when
the spatial isotropy K of the relative equilibrium is broken. If the bifurcating
solutions are relative periodic solutions and not relative equilibria we talk of
equivariant or symmetry-breaking relative Hopf bifurcation.
Assume that the linearization L∗ at the relative equilibrium u∗ has an eigen-
value i with a generalized eigenvector w /∈ alg(G)u∗, i.e., the eigenvalue i of
L∗ is not (only) caused by symmetry. The generalized eigenspace to the Hopf
eigenvalues ±i is K-invariant and may be forced by K-equivariance of L∗ to
have higher dimension than two even if ±i are not eigenvalues of [·, ξ∗]. see [11].
Let again Sl = u∗+Ŝl denote a section transversal to the group orbit Gu∗ at u∗

defined by functionals li, i = 1, . . . ,mK where mK = dim(G/K) and denote by
Pl the projection from Y to the subspace Ŝl = {y; li(y) = 0, i = 1, . . . ,mK}.
Since K is compact we can choose Pl to be K-equivariant and PlY = Ŝl to
be K-invariant: for example choose P = Ps + Q where Ps is the projection
onto the stable eigenspace of L∗ and Q is an orthogonal projection from the
finite-dimensional center-unstable eigenspace Ecu to (alg(G)u∗)⊥. Since ξ∗

commutes with the elements of K the operator L∗ = −A+ Df(u∗)− ξ∗ is K-
equivariant and therefore Ecu is invariant and Ps is K-equivariant. If we choose
the scalar-product on Ecu to be K-invariant then also Q is K-equivariant. De-
fine L̃ = PlLPl. Denote the eigenspace of L̃ to the eigenvalues ±i by V . In the

generic case when i is a simple eigenvalue of L̃ the matrices eL̃τ , τ ∈ [0, 2π],
define an S1-action on V .
We consider the subgroups H of K × S1 with two-dimensional fixed point
spaces. They are called axial subgroups [11]. Let π : K × S1 → K be the
projection of K×S1 onto its first component. For each axial subgroup H there
is a homomorphism Θ : K → S1 = R/Z such that H = {(h,Θ(h)) | h ∈ π(H)},
see [11], [7]. There are two cases, Θ(K) = S1 or Θ(K) = Z`. Let Kbif denote
the kernel of Θ. Then the following lemma holds:

Lemma 3.7 Let the assumptions of Theorem 3.2 and the above assumptions
hold. If Θ(K) = S1 then there is a symmetry breaking transition from relative
equilibria to relative equilibria.
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If Θ(K) = Z` then a symmetry breaking relative Hopf bifurcation takes place:
Let h∗ = Θ−1(1/`) ∈ K. There is a path of relative periodic solutions u(s)
which emanates from the relative equilibrium u∗ by equivariant relative Hopf
bifurcation and satisfies

ΦT (s)/`(u(s)) = ρg(s)h∗u(s), T (0) = 2π, u(0) = u∗, g(0) = e2πξ∗/`.

The isotropy of the bifurcating solutions is Kbif = ker(Θ) in both cases.

The proof is a small modification of the proof of Theorem 3.2 and can be found
in subsection 4.6, see also [7]. Again the pull-back element g(s)h∗ of the relative
periodic orbit u(s) has to lie in N(Kbif). In the following discussion assume
that G = N(Kbif)/Kbif .
In the case of symmetry breaking Hopf bifurcation the average velocity of the
bifurcating relative periodic orbits is often far away from the drift velocity of
the relative equilibrium, as we see from the following example.

Example 3.8 (See also [7], [10]) Again let G = E(2) and let u∗ be a ro-
tating wave Φt(u

∗) = ρ(ω∗
rott,0)

u∗ with isotropy K = Z`, for example a
rigidly rotating spiral wave of (3.2) with ` identical arms. Consider a rep-
resentation of K on the critical eigenspace V = spanC(w, w̄) which is faith-
ful, i.e., Θ−1(1/`) = 2πn/`, gcd(`, n) = 1. If the rotating wave is a Hopf
point then under the usual transversality condition and in the non-resonant
case a Hopf bifurcation to modulated rotating waves takes place. The av-
erage rotation frequency ωrot(s) of the bifurcating modulated rotating waves
is given as ωrot(s) = (h∗ + φ(s))/(T (s)/`). Note that h∗ = 2πn/` and that
g(s) = (φ(s), a(s)) satisfies g(0) = (ω∗rot2π/`, 0). Hence we get

ωrot(s = 0) = (2πn/`+ ω∗rot2π/`)/(2π/`) = n+ ω∗rot.

But in physical space the bifurcating modulated rotating waves in Example
3.8 still seem to drift in a similar direction as the rotating wave u∗. So what
is a useful definition of resonance drift in the case of symmetry-breaking Hopf
bifurcation? We first continue our example:

Example 3.9 (Example 3.8 continued) We recall the condition for noncom-
pact drift of relative periodic orbits nearby the Hopf point in Example 3.8,
see also [7], [10]. Since g(s) ∈ N(Kbif) we can only get noncompact drift if
Kbif ⊆ K is trivial. So we consider again, as above, a faithful representation
of K on the critical eigenspace V = spanC(w, w̄), where Θ−1(1/`) = 2πn/`,
gcd(`, n) = 1. Resonance drift occurs if ω∗rot = j`−n, j ∈ Z, since for noncom-
pact drift φ(0) = 2πω∗rot/`+ 2πn/` = 0 mod 2π has to be satisfied. Since iω∗rot
is in the spectrum of [·, ξ∗] with eigenvectors ξ1 + iξ2 we see from Remark 3.5
that the drift velocity v(s) = |a(s)|/T (s) generically grows as |µ||j`−n|/2.

In the case of noncompact drift in the above example we clearly want to speak
of resonance drift. Since we do not want to care about the (small) effects of the
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broken spatial Z` symmetry of the bifurcating relative periodic orbits in the
comoving system (3.5) we only talk of resonance whenever the drift (g(s)h∗)`

of the relative periodic orbits after time T (s) is not of the form exp(2πξ) with
ξ ≈ ξ∗. Note that a necessary condition for resonance drift is that exp(·) is
not locally surjective at ξ = 2πξ∗, but since g(s) and h∗ need not commute (in
contrast to h∗ and ξ∗) this condition is not sufficient: in Example 3.6 where the
isotropy is trivial the condition for unbounded drift is ω∗rot ∈ Z, in the case of
Z`-isotropy the condition for noncompact drift is more restrictive, see Example
3.9.

4 Proof of the main theorems

This section is devoted to the proof of the theorems on periodic forcing and
Hopf bifurcation which we presented in Sections 2 and 3. First, in subsections
4.1 – 4.4 we present a general method how to continue relative periodic orbits
that satisfy the spectral hypothesis (S). In subsection 4.5 we prove Theorem
2.3 on periodic forcing. In subsection 4.6 below we use the developed methods
to prove the Hopf theorem 3.2 by use of Lyapunov-Schmidt reduction.

4.1 The method of proof

Assume that we are given a relative periodic orbit u∗ = ρ−1
g∗ Φ2π/ω∗

ext,0
(u∗)

of (2.1) that satisfies the spectral hypothesis (S). We want to continue this
relative periodic orbit wrt. the parameters µ and ωext, i.e., we want to solve
the equation F = 0 where F is given by

F (u, g, ωext, µ) =

(
ρ−1
g ΦText,0(u;ωext, µ)− u
li(u− u∗), i = 1, . . . ,m

)
. (4.1)

We consider (4.1) for u in the fixed point space Fix(K) where K is the isotropy
of the relative periodic orbit. W.l.o.g. we assume that Y = Fix(K) and
G = N(K) is the normalizer of K. The functionals li, i = 1, . . . ,m, define a
section transversal to the group orbit Gu∗ at u∗. We will show in Lemma 4.5
below that hypothesis (S) implies that ρgu

∗ is C1 in g so that it makes sense to
talk about a transverse section to Gu∗. We can not solve (4.1) by the ordinary
implicit function theorem because in general F (u, g, ωext, µ) is only continuous
in g. This comes from the fact that the G-action is only strongly continuous
and the Lie algebra elements ξ ∈ alg(G) act in general as unbounded operators
on Y . Furthermore, the time-evolution does not smoothen the group action,
that is, ρgΦText,0(u) is not differentiable in g in general. This is due to the
fact that the operators ξ ∈ alg(G) are not assumed to be bounded w.r.t. A (in
the case of the reaction-diffusion system (1.1) the operator ∂

∂φ is not bounded

w.r.t. ∆, see Proposition 1.2). Therefore the operator ∂F
∂u (u, g, ωext, µ) is in

general not continuous in g with respect to the norm ‖ · ‖L(Y ). We overcome
these difficulties as follows:
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We will solve the fixed point equation

y = Π(y, q, g, ωext, µ) = (1− P̂ )ρ−1
g ΦText,0(y + q;ωext, µ), (4.2)

y ∈ (1− P̂ )Y , q ∈ P̂ Y , by Banach’s contraction mapping theorem. Here P̂ is
a projector which is near the projection P onto the center-unstable eigenspace
Ecu of B∗ = ρ−1

g∗ DΦText,0(u
∗) in the L(Y )-norm. Furthermore we will show that

the solution y(q, g, ωext, µ) of this fixed point equation depends smoothly on
the parameters (q, g, ωext, µ) and that the G-action on the solutions is smooth.
Then we solve the reduced equation Fred = 0

Fred(q, g, ωext, µ) =

(
P̂ ρ−1

g ΦText,0(y(q, g, ωext, µ) + q;ωext, µ)− q
li(y(q, g, ωext, µ) + q − u∗) = 0, i = 1, . . . ,m

)

(4.3)
by the implicit function theorem. In this way we can solve (4.1).

4.2 The scale of Banach spaces {Yj}j=0,...,k

For j > 1, define inductively

Yj := {u ∈ Yj−1; ξu ∈ Yj−1 for any ξ ∈ alg(G)}, Y0 = Y, (4.4)

equipped with the graph norm | · |Yj given by

|u|Yj = |u|Yj−1 + sup
ξ∈alg(G),|ξ|=1

|ξu|Yj−1 .

Let Y ? be the dual space to Y and define

Z?0 := {y? ∈ Y ?; ρ?gy? is C0 in g},

where ρ?g denotes the adjoint operator of ρg in Y ?. For j > 1, we define the
spaces Z?j with norm | · |Z?j for the adjoint group action as in (4.4) with Y0

replaced by Z?0 .
In the following we will often use that Pρg and ρgP are continuous in g with
respect to the norm ‖ · ‖L(Y ). For the second operator this is clear since ρg
is strongly continuous in g and PY is finite-dimensional. The operator Pρg is
continuous in g with respect to the norm ‖ · ‖L(Y ) iff ρ?gP

? is continuous with
respect to the norm ‖ · ‖L(Y ?) where P ? is the spectral projection in Y ? onto
the left center-unstable eigenspace of L∗.

Lemma 4.1 P ? maps Y ? into Z?0 .

If the group G acts strongly continuously on the dual space, for example in the
case G = E(2) acting on Y = L2(R2,RM ), then Lemma 4.1 is automatically
satisfied. Therefore we will skip the proof which is elementary, but technical
and can be found in [23, Lemmata 5.1,5.2].
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Remark 4.2 If we replace the assumption of a C0-action of G by the assump-
tion that ρgu

∗ is continuous in g and the group action is weakly continuous
then the theorems in sections 2, 3 still hold.

This is due to the fact that PY ⊂ Y0 is still satisfied, see [23, Lemmata 5.1,5.2]
and we can therefore restrict the problem onto Y0.
Since ξΦt,t0(u) = DΦt,t0(u)ξu we see that Φt,t0 maps Y1 into Y1. Inductively
we see that the time-evolution Φt,t0 maps each Yj , j ≤ k, into itself. Further
Φt,t0 is Ck−j -smooth from Yj into Yj .
Now we need the following lemma:

Lemma 4.3 Y1 is dense in Y0 and Z?1 is dense in Z?0 . Moreover, G acts as
C0-group on Yj , Z

?
j .

The proof can be found in [23, Lemma 4.1]. If dim(G) = 1 this is usual
semigroup theory. From this lemma we can deduce

Lemma 4.4 There is a projector P̂ near P such that ρgP̂ and P̂ ρg are Ck in
g.

This was shown in [23, Lemma 5.3]. The idea is the following: let ei, i =
1, . . . , dim(PY ) be a basis of PY , and e?i , i = 1, . . . , dim(PY ), be a basis for
P ?Y . Then by the foregoing lemma we can find êi ∈ Yk, ê?i ∈ Z?k which are
near ei rsp. e?i in the Y -norm rsp. Y ?-norm. From these vectors êi, ê

?
i we

”build” the projection P̂ .

4.3 Regularity of the relative periodic orbit

Now we need the following main lemma which will inductively yield Ck-
regularity of Gu∗ and ρgP , Pρg:

Lemma 4.5 If Hypothesis (S) is satisfied then u∗ ∈ Y1.

Proof. For a proof involving exponential dichotomies see [23]. Here we will
give a more elementary proof.
In a first step we define a formal expression for ξu∗, ξ ∈ algG, and in a second
step we will show that ξu∗ exists and indeed equals this expression.
Let P̂ be a projector near P such that ρgP̂ and P̂ ρg are C1 in g in the operator
norm on Y and denote Φ = ΦText,0. Since u∗ = ρ−1

g∗ Φ(u∗) and ξρ−1
g = ρ−1

g Adg ξ
we have

ξu∗ = ρ−1
g∗ (Adg∗ξ)Φ(u∗) = ρ−1

g∗ DΦ(u∗)(Adg∗ξ)u
∗ = B∗(Adg∗ξ)u

∗

where B∗ = ρ−1
g∗ DΦ(u∗) and so we formally get

z(ξ) = Bsz(Adg∗ξ) + η(ξ). (4.5)
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Here

z(ξ) := (1− P̂ )ξu∗, Bs := (1− P̂ )B∗, η(ξ) = BsP̂ (Adg∗ξ)u
∗.

Note that z(ξ) and η(ξ) are linear in ξ. Since P̂ is near P and since the
spectral radius of (1− P )B∗ is smaller than one also the spectral radius of Bs
is smaller than one. Let {ξi, i = 1, . . . ,m} be a basis of alg(G). By our overall
hypothesis the operator Adg∗ : alg(G) → alg(G) has spectrum on the unit
circle. Let (Adg∗)ij be the matrix associated to the operator Adg∗ with respect
to the basis {ξi, i = 1, . . . ,m} of alg(G). We can define Adg∗ as operator in
Y m = Y × . . .× Y by setting

Adg∗(z1, . . . , zm) := (s1, . . . , sm), si =

m∑

j=1

(Adg∗)ijzj , zi ∈ Y, i = 1, . . . ,m.

Also the operator Bs can be extended to an operator on Y m by defining

Bs(z1, . . . , zm) := (Bsz1, . . . , Bszm), zi ∈ Y, i = 1, . . . ,m.

Hence the operator BsAdg∗ = Adg∗Bs on Y m has also spectral radius smaller
than one. Changing Φ = ΦText,0 to Φ`Text,0 and accordingly B∗ to (B∗)` and
g∗ to (g∗)` with ` large enough we can achieve that ‖Bs‖‖Adg∗‖ < 1. W.l.o.g.
we assume that ` = 1. We rewrite (4.5) as

(1−BsAdg∗)z = η, z = (z1, . . . , zm), η = (η1, . . . , ηm) (4.6)

where ηi = η(ξi), i = 1, . . . ,m, are well-defined since P̂ ρg is C1 in g in the
operator norm. The system of equations (4.6) can be solved uniquely for zi =
z(ξi), i = 1, . . . ,m. So we have proved that ξiu

∗ = zi+P̂ ξiu
∗ formally exists for

all ξi, i = 1, . . . ,m, and hence by linear combination we get for each ξ ∈ alg(G)
a formal expression z(ξ) + P̂ ξu∗ which we know equals ξu∗ if u∗ ∈ Y1.
To show that the formal expression z(ξ) is indeed (1 − P̂ )ξu∗ we argue as
follows. Let z(ξ, t) = 1

t (1− P̂ )(ρexp(ξt)u
∗ − u∗). We have

z(ξ, t) = 1
t (1− P̂ )(ρexp(ξt)ρ

−1
g∗ Φ(u∗)− ρ−1

g∗ Φ(u∗))
= Bs(t)z(Adg∗ ξ, t) + η(ξ, t)

(4.7)

where
Bs(t) := (1− P̂ )ρ−1

g∗ DΦ(u∗ + Θ(t)(ρexp(Adg∗ξt)u
∗ − u∗))

with 0 ≤ Θ(t) ≤ 1 and

η(ξ, t) =
1

t
Bs(t)P̂ (ρexp(Adg∗ξt)u

∗ − u∗).

Here we applied the mean value theorem. Let δz(ξ, t) = z(ξ, t)− z(ξ). Then

δz(ξ, t) = Bs(t)δz(Adg∗ξ, t) + δη(ξ, t) (4.8)
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where
δη(ξ, t) = (Bs(t)−Bs)z(ξ) + η(ξ, t)− η(ξ)

converges to zero as t→ 0. Let

εz(t) = sup
‖ξ‖≤1,|τ |≤t

δz(ξ, τ), εη(t) = sup
‖ξ‖≤1,|τ |≤t

δη(ξ, τ).

Here ‖ξ‖ = (
∑m
i=1 ζ

2
i )

1/2 for ξ =
∑m

i=1 ζiξi is a norm on algG. We define Bs(t)
like Bs as operator from Y m into Y m. Since Bs(t) is continuous in t in the
L(Y )-norm and ‖Bs‖‖Adg∗ ‖ < 1 we get ‖Bs(t)‖‖Adg∗‖ = c < 1 for t small
enough .
From (4.8) we get

εz(t) ≤ cεz(‖Adg∗‖t) + εη(t) (4.9)

with εη(t)→ 0 as t→ 0. Here we used that

z(Adg∗ξ, t) = z(
1

‖Adg∗‖
Adg∗ξ, ‖Adg∗‖t)‖Adg∗‖,

z(Adg∗ξ) = z(
1

‖Adg∗‖
Adg∗ξ)‖Adg∗‖

and that therefore

δz(Adg∗ξ, t) = δz(
1

‖Adg∗‖
Adg∗ξ, ‖Adg∗‖t)‖Adg∗‖

and consequently

sup
‖ξ‖≤1

δz(Adg∗ξ, t) ≤ ‖Adg∗‖ sup
‖ξ‖≤1

δz(ξ, ‖Adg∗‖t).

From (4.9) we conclude that

εz(t) ≤ c`εz(‖Adg∗ ‖`t) +

`−1∑

i=0

ciεη(‖Adg∗ ‖it),

and hence that

εz(t/‖Adg∗ ‖`) ≤
1− c`
1− c εη(t) + c`εz(t).

Choosing t small enough and ` large enough we see that εz(t)→ 0 as t→ 0.

4.4 Contractions on a scale of Banach spaces

We first show (Lemma 4.6) that Π` is a contraction in (1 − P̂ )Y for some
` ∈ N. Afterwards, in Lemma 4.7, we show that we can apply the contraction
theorem on the Banach scale {(1− P̂ )Yj}j=0,...,k−1. Finally Theorem 4.8 below
guarantees that the solution we obtained depends smoothly on parameters.
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Lemma 4.6 Let u∗ be a relative periodic orbit of (1.3) to the parameters
(ω∗ext, µ

∗) fulfilling the spectral condition (S). Let P̂ be a projection which is
L(Y )-near P . Let (g, ωext, µ) be near (g∗, ω∗ext, µ

∗) and let (y + q) be near
(y∗+q∗) in the Y -norm with y∗, y ∈ (1− P̂ )Y , q, q∗ ∈ P̂ Y , q∗+y∗ = u∗. Then
Π satisfies

‖∂Π`

∂y
(y, q, g, ωext, µ)‖ ≤ c < 1,

where ` ∈ N is sufficiently large.

Proof of Lemma 4.6. Again let B∗ = ρ−1
g∗ DΦText ,0(u

∗). We have ‖(B∗(1−
P ))`‖ ≤ MC`, C < 1. Let ` ∈ N be so large that for g in a neighborhood UG
of id in G

‖(1− P )ρg(B
∗)`(1− P )‖ ≤ ‖(1− P )‖MGC

`M < 1.

Here we used that for g ∈ UG there is a uniform bound MG of ‖ρg‖. Then
(1− P )ρg(B

∗)`(1− P ) is a uniform contraction for g ∈ UG. We have

DyΠ
`(y) =

`−1∏

i=0

DΠ(Πi(y)) =

`−1∏

i=0

(1− P̂ )ρ−1
g DzΦText,0(q + z)|z=Πi(y).

Since y is near y∗, q is near q∗ and g is near g∗ we know that Πi(y) ≈ y∗ and
that

ρ−1
g DuΦText,0(u)|u=q+Πi(y) ≈ ρ−1

g ρg∗B
∗

in the operator norm. Since P̂ is near P in the ‖ · ‖L(Y )-norm we conclude that

DyΠ
`(y) ≈

`−1∏

i=0

(1− P )ρg−1g∗B
∗(1− P )

in the norm on L(Y ). Further we compute

(ρg−1g∗B
∗)2 = ρg−1DyΦText,0(u

∗)ρg−1g∗B
∗ ≈ ρg−1ρg−1g∗DyΦText,0(u

∗)B∗

= ρg−2(g∗)2(B
∗)2.

Similarly we get
(ρg−1g∗B

∗)` ≈ ρg−`(g∗)`(B
∗)`.

Since ρgP and Pρg are continuous in g in the operator norm we conclude that
DyΠ

`(y) is near (1−P )ρg−`(g∗)`(B
∗)`(1−P ) for g near g∗, y near y∗, q near q∗

in the operator norm. Hence ∂Π`

∂y (y, q, g, ωext, µ) is a contraction if we choose

(y + q, g, ωext, µ) near (y∗ + q∗, g∗, ω∗ext, µ
∗) (here we measure y − y∗, q − q∗ in

the Y -norm).
Now we show that Π` is a contraction on the scale of Banach spaces
{(1− P̂ )Yj}j=0,...,k−1 for some ` = `(k) ∈ N.
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Lemma 4.7 Let u∗ be a relative periodic orbit of (1.3) to the parameters
(ω∗ext, µ

∗) fulfilling Hypothesis (S). If f is Ck-smooth, k ∈ N, then we have:

(i) u∗ ∈ Yk.

(ii) B∗Yj ⊆ Yj , (B∗)?Z?j ⊆ Z?j , and spec(B∗j ) ⊂ spec(B∗), j = 1, . . . , k −
1, where B∗j is the operator B∗ considered as map from Yj into itself.
Further, P ∈ L(Y, Yk−1), P

? ∈ L(Y ?, Z?k−1).

(iii) u∗ satisfies Hypothesis (S) on each Yj , 0 ≤ j ≤ k − 1.

(iv) Let P̂ be L(Y, Yk−1)-near P . If ` = `(k) ∈ N is large enough then the func-
tion y → Π`(y, q, g, ωext, µ) from (4.2) is a uniform contraction on each
Yj , 0 ≤ j ≤ k−1, for y+q Yj-near u∗ and (g, ωext, µ) near (g∗, ω∗ext, µ

∗).

(v) Let P̂ be as in (iv) and assume that ρgP̂ and P̂ ρg are Ck-smooth in
the L(Y )-norm. Then there is a locally unique solution y(q, g, ωext, µ) ∈
(1− P̂ )Y of (4.2) which is continuous in (q, g, ωext, µ) with respect to the
norm ‖ · ‖Yk .

Part (i) of this lemma can also be found in [23].
Proof of Lemma 4.7. Suppose that u∗ ∈ Yj for some j with j ≥ 1, j < k.
Since Φt,t0 is a time-evolution on each Yj and G acts as C0-group on each Yj
w.r.t. the Yj-norm by Lemma 4.3 we know that B∗ ∈ L(Yi), i ≤ j. We have

ξ(B∗ − λ) = (B∗ − λ) Adg∗ ξ + V (ξ),

with

V (ξ) := ∂2
uΦText,0(u

∗)(Adg∗ ξ)u
∗ ∈ L(Yj−1).

Let λ ∈ C \ spec(B∗) lie in the resolvent set of B∗. Then we get

Adg∗ ξ(B
∗ − λ)−1 = (B∗ − λ)−1ξ − (B∗ − λ)−1V (ξ)(B∗ − λ)−1. (4.10)

Let B∗j be the operator B∗ considered as element of L(Yj). From (4.10) we
deduce that spec(B∗j ) ⊂ spec(B∗j−1) ⊂ . . . ⊂ spec(B∗0 ). Let σ be the spectral
set of the center-unstable eigenvalues of B∗. Then

P =
1

2πi

∮

around σ

(λ−B∗)−1dλ. (4.11)

From (4.11) we see that P maps Yj into itself if u∗ ∈ Yj . Since Yj is dense in Y
by iterative application of Lemma 4.3 we can find wi ∈ Yj , i = 1, . . .dim(PY ),
such that Pwi, i = 1, . . .dim(PY ), span PY . Hence PY ⊆ Yj . Since ξu∗ ∈ PY ,
ξ ∈ alg(G), we infer u∗ ∈ Yj+1.
According to Lemma 4.5 we have u∗ ∈ Y1 if k ≥ 1. Hence by induction we
obtain

u∗ ∈ Yk, PY ⊆ Yk−1.
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By computing the adjoints on both sides of equation (4.10) we see that B?Z?j ⊂
Z?j , 0 ≤ j ≤ k − 1. Analogously as above we obtain P ?Y ? ⊂ Z?k−1. Using (i)
and (ii) we conclude that u∗ satisfies condition (S) on each Yj , j ≤ k − 1.

To prove (iv) we apply Lemma 4.6 on each Yj , j ≤ k − 1. Applying the
contraction principle on each Yj , j ≤ k− 1, we obtain solutions yj(q, g, ωext, µ)
of y = Π`(y) which are continuous in the parameters and locally unique in Yj
and therefore solutions of (4.2). Since Yj ⊆ Y for all j the solutions are the
same solution y(q, g, ωext, µ). Since with y = y(q, g, ωext, µ) also Πi(y), i ∈ Z,
are solutions of y = Π`(y) and the solution is locally uniqute we know that
y(q, g, ωext, µ) is a solution of (4.2).

In the same way as in Lemma 4.5 we can show that y = y(q, g, ωext, µ) ∈ Yk:
From y = Π(y) we formally get the identity

z(ξ) = Bsz(Adg∗ ξ) + η(ξ)

on Yk−1 where z(ξ) = (1− P̂ )ξy(q, g, ωext, µ), Bs = DΠ(q + y)(1− P̂ ) and

η(ξ) = −(1− P̂ )ξP̂ ρ−1
g ΦText,0(y + q)

+(1− P̂ )ρ−1
g DΦText,0(y + q)(P̂ Adg∗ ξy + Adg∗ ξq).

The operator η(ξ) is well-defined for all y ∈ Y and maps into Yk−1 because
ρgP̂ and P̂ ρg are Ck-smooth in the L(Y )-norm. Since Bs has spectral radius
smaller than one this equation can be solved uniquely for z(ξi), i = 1, . . . ,m.
In the same way as in the proof of Lemma 4.5 we can now show that the formal
derivative z(ξ) + P̂ ξy(q, g, ωext, µ) is indeed the derivative ξy(q, g, ωext, µ). We
infer that y(q, g, ωext, µ) is continuous in its parameters in the norm of Yk.

In order to show that the solutions really depend Ck-smoothly on their param-
eters we will use a contraction mapping theorem on a scale of Banach spaces.
This idea has frequently been used in the literature, for example it is used to
prove the smoothness of center manifolds (Vanderbauwhede & Van Gils [30],
Vanderbauwhede & Iooss [29]). Renardy [19] proved a generalized implicit
function theorem on a scale of Banach spaces {Yj}0≤j≤k; he required that the
derivative of the nonlinear equation to be solved evaluated at the starting solu-
tion depends continuously on the parameter with respect to the norm ‖·‖L(Yj).
As in [30] we will assume that the derivative is a contraction. Hard implicit
function theorems can be found in Nirenberg [17]. We will employ the following
theorem which is stated in general form in [30] for k = 1.

Theorem 4.8 Let Y = Y0 ⊃ Y1 ⊃ . . . ⊃ Yk, k ≥ 1, be a scale of Banach
spaces with norms ‖ · ‖Yj , j ≤ k, and let Yj be continuously embedded in Yj−1.
Let (u, ν)→ Π(u, ν) be a nonlinear map from some open set U ⊂ Y × Rp into
Y. Assume the following:

(i) Π maps Uj := (Yj × Rp) ∩ U into Yj and Π is C`−j-smooth from U` to
Yj , j, ` ∈ N0, k ≥ ` ≥ j ≥ 0.
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(ii) (ν, u, w1, . . . , wj)→ ∂j+`

∂uj∂ν`Π(u, ν)(w1, . . . , wj) is continuous as map from

Ui × (Yi)j into L`(Rp,Yi−`), for i, j, ` ∈ N0, ` ≤ i ≤ k, j + ` ≤ k, where
L0(Rp,Yi) := Yi.

(iii) Π(·, ν) is a uniform contraction as map from Uj into Yj , 0 ≤ j ≤ k − 1,
with contraction constant c < 1.

Then

a) there is a unique solution u(ν) ∈ Yk−1 to Π(u, ν) = u and u(ν) is a
Ck−1-function of ν with respect to the norm ‖ · ‖Y .

b) If we require in addition

(iv) u(ν) is continuous in the norm ‖ · ‖Yk

then u(ν) is a Ck-function of ν with respect to the norm ‖ · ‖Y .

Proof. We can apply Banach’s fixed point theorem on each Yj , 0 ≤ j ≤ k−1,
and since Yj ⊂ Y for 0 ≤ j ≤ k the solutions are all equal to u(ν). Under
assumptions (i)–(iii) we can formally compute the first (k − 1) derivatives of
u(ν) considered as lying in Y , if we assume hypotheses (i)–(iv) then we can
even compute the formal k-th derivative of u(ν) considered as lying in Y . It
remains to be shown that the formal derivatives are indeed the derivatives of
u(ν). For k = 1 the proof can be found in [30]. The rest is induction over
k. Since this theorem is the main technical tool of our results we present the
whole proof of the theorem.
1. Step. We first show that the solution u(ν) is a C1-function of ν with respect
to the norm of Y . Assuming that u(ν) is C0 in ν in the Y1-norm the formal
derivative κ(ν) is given by the equation

κ(ν)− (∂uΠ)(u(ν), ν)κ(ν) = (∂νΠ)(u, ν)|u=u(ν).

Since ‖(∂uΠ)(u(ν), ν)‖L(Y) ≤ c < 1 this equation can be solved uniquely for
κ(ν) ∈ Y . Furthermore, due to our assumption, κ(ν) ∈ Y depends continuously
on ν. We consider a fixed ν. In order to prove that κ(ν) = ∂νu(ν) we have to
show that

‖u(ν + ν̃)− u(ν)− κ(ν)ν̃‖Y = o(ν̃). (4.12)

Multiplying

u(ν + ν̃)− u(ν)− κ(ν)ν̃ = u(ν + ν̃)− u(ν)
−ν̃(1− (∂uΠ)(u(ν), ν))−1(∂νΠ)(u, ν)|u=u(ν)

by (1 − (∂uΠ)(u(ν), ν)) we see that (4.12) is equivalent to ‖θ(ũ, ν̃)‖Y = o(ν̃)
where ũ = u(ν + ν̃)− u(ν) and

θ(ũ, ν̃) = Π(u(ν + ν̃), ν + ν̃)−Π(u(ν), ν)− (∂uΠ)(u(ν), ν)ũ − (∂νΠ)(u(ν), ν)ν̃ .
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We can estimate

‖θ(ũ, ν̃)‖Y ≤ ‖Π(u(ν + ν̃), ν + ν̃)−Π(u(ν + ν̃), ν)− (∂νΠ)(u(ν), ν)ν̃‖Y
+‖Π(u(ν + ν̃), ν)−Π(u(ν), ν) − (∂uΠ)(u(ν), ν)ũ‖Y

= ‖(∂νΠ)(u(ν + ν̃), ν)ν̃ − (∂νΠ)(u(ν), ν)ν̃‖Y
+o(‖ũ‖Y) + o(ν̃)

≤ o(ν̃) + o(‖ũ‖Y).
(4.13)

Here we used that u(ν) is a C0-function of ν with respect to the norm ‖ · ‖Y1 .
This follows from Banach’s contraction mapping theorem applied onto Y1 or,
if k = 1, from the additional assumption (iv). It holds

θ(ũ, ν̃) = (1− (∂uΠ)(u(ν), ν))ũ − (∂νΠ)(u(ν), ν)ν̃ .

Hence

‖ũ‖Y ≤
1

1− c (‖(∂νΠ)(u(ν), ν)‖Y |ν̃|+ ‖θ(ũ, ν̃)‖Y) ≤ 1

1− c (c̃|ν̃|+ o(‖ũ‖Y)).

Thus, we obtain ‖ũ‖Y ≤ ĉ|ν̃| for |ν̃| small. From (4.13) we conclude that
‖θ(ũ, ν̃)‖Y = o(ν̃). Hence u(ν) is a C1-function of ν with respect to the norm
‖ · ‖Y .
2. Step. To show that u(ν) is a Ci-function of ν, i > 1, we proceed by induc-
tion. If the theorem holds for k = (j − 1), j ≥ 2, and Π satisfies assumptions
(i) –(iii) of the theorem with k = j then by the contraction principle applied
on Yj−1 the function u(ν) is continuous in ν with respect to the norm ‖ · ‖Yj−1 .
Hence by part b) of the theorem for k = (j−1) we conclude that u(ν) is C j−1-
smooth in ν when considered as lying in Y . This proves part a) of the theorem
for k = j. Now we come to part b). If Π satisfies assumptions (i)–(iv) of the
theorem for k = j then u(ν) is a Cj−1-function of ν in the Y-norm and u(ν)
is a Cj−`-function of ν with respect to the norm ‖ · ‖Y` , j ≥ ` ≥ 1. Therefore
we can apply part b) of the theorem with k = (j − 1) onto the differentiated
equation

(1− (∂uΠ)(u(ν), ν))∂νu(ν) = (∂νΠ)(u, ν)|u=u(ν).

and conclude that ∂νu(ν) is a Cj−1-function of ν and that u is a Cj -function
of ν with respect to the norm ‖ · ‖Y .

4.5 Proof of the theorems on periodic forcing

We prove Theorem 2.3 by applying Theorem 4.8 onto (4.2) with ν =
(g, q, ωext, µ) and with the hierarchy Yj of Banach spaces defined by

Yj = (1− P̂ )Yj , Yj given by (4.4), 0 ≤ j ≤ k.

As before P̂ is a projection which is L(Y, Yk−1)-near the spectral projection P
onto the center-unstable eigenspace and such that P̂ ρg and ρgP̂ are Ck-smooth
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in g in the L(Y )-norm. We consider the fixed point equation y = Π`(y) with
` so large that DΠ` is a contraction on each Yj , 0 ≤ j ≤ k − 1, k ∈ N.
Because of Lemma 4.7 all assumptions of Theorem 4.8 are satisfied. So there
is a locally unique solution y(q, g, ωext, µ) ∈ Yk of Π`(y) = y if (q, g, ωext, µ) is
near (q∗, g∗, ω∗ext, µ

∗) satisfying y(q∗, g∗, ω∗ext, µ
∗) = y∗ and y(q, g, ωext, µ) is a

Ck−j -function of (q, g, ωext, µ) with respect to the norm ‖ · ‖Yj , 0 ≤ j ≤ k. As
in the proof of Lemma 4.7 we can argue that y(q, g, ωext, µ) is also a solution of
(4.2) since with y = y(q, g, ωext, µ) also Πi(y), i ∈ Z, are solutions of Π`(y) = y
and since the solution of y = Π`(y) is locally unique.
The reduced equation (4.3) is Ck−j -smooth in its variables if y(q, g, ωext, µ) is
considered as lying in Yj . Solving the reduced equation by the ordinary im-
plicit function theorem we obtain relative periodic orbits ΦText,0(u(ωext, µ)) =
ρg(ωext,µ)u(ωext, µ) of (1.3) to the parameters ωext, µ with (ωext, µ) near

(ω∗ext, µ
∗). Here g(ωext, µ) is Ck-smooth in (ωext, µ) and u(ωext, µ) depends

Ck−j -smoothly on (ωext, µ) when considered as lying in Yj .
Proposition 2.17 is proved along the same lines.

4.6 Proof of the results on Hopf bifurcation by use of Lyapunov-
Schmidt-reduction

In this section we will prove Theorem 3.2 on Hopf bifurcation and Proposition
3.7 on equivariant Hopf bifurcation by Lyapunov-Schmidt-reduction. First we
will prove Lemma 3.1 on the eigenvalue path β(µ).

4.6.1 Proof of Lemma 3.1

Let P be the projection onto the center-unstable eigenspace of u∗. By Lemma
4.7 we have P ∈ L(Y, Yk−1) and P ? ∈ L(Y ?, Z?k−1) with the hierarchy of
Banach spaces {Yj}0≤j≤k defined by (4.4).
Let u∗ satisfy Hypothesis (S) and let u∗(µ) ∈ Sl, µ small, be the Ck-smooth
manifold of relative equilibria of (1.3) such that u∗(0) = u∗ (cf. Section 3.1).
We will show:

Lemma 4.9 If the above assumptions hold then u∗(µ) satisfies Hypothesis (S)
and the center-unstable spectral projection P of L∗ can be continued to a spectral
projection P (µ) of L∗(µ) such that P (µ) is Ck−1 in µ in the space L(Y ).

Proof. Let B(µ) = ρexp(−ξ∗(µ)t)DΦt(u
∗(µ);µ) be the linearization at the

relative equilibrium u∗(µ) in the comoving frame and choose t so large that
‖(1− P )B(µ)‖ ≤ c < 1 for small µ. Let λ ∈ C, |λ| > c. Due to Lemma 4.7 the
equation

y =
1

λ
(1− P )(B(µ)y − w + (B(µ) − λ)q), q ∈ PY,w ∈ Yk−1

can be solved to get a solution y(q, µ, λ) for µ small enough. By Theorem 4.8
the solution y(q, µ, λ) is Ck−1−j in µ in the norm ‖ · ‖Yj . Now we solve the
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equation
P (B(µ)− λ)(y(q, µ, λ) + q) = Pw

by the implicit function theorem. We conclude that (B(µ)− λ)−1w is Ck−j−1

in µ in the space Yj . Let σ denote the center-unstable spectral set of B(0) and
denote

P (µ) =
1

2πi

∮

around σ

(λ−B(µ))−1dλ.

Since P ∈ L(Y, Yk−1) we know that ρgP (µ)P is Ck−1-smooth in (g, µ) in the
space L(Y ). Since P ? ∈ L(Y ?, Z?k−1) we can apply the same arguments on the

dual space which yields that ρ?gP
?(µ)P ? is Ck−1 in (g, µ) in the space L(Y ).

The operator P (µ) is a linear combination of the operators 〈P ?(µ)e?i , ·〉P (µ)ei
where {ei}i=1,...,m is a basis of PY and {e?i }i=1,...,m is a basis of P ?Y . Conse-
quently ρgP (µ) and P (µ)ρg are Ck−1 in (g, µ) in the space L(Y ).

Let Ψt(·) be the semiflow on Ŝl in a comoving frame

Ψt(u;µ) = ρ−1
g(Φt(u,µ))Φt(u+ u∗(µ);µ) − u∗(µ)

where u ∈ Ŝl is Y1-near u∗, and g(u) is such that ρ−1
g(u)u ∈ Sl, see also (3.5).

Let DΨt(0; 0) = eL̃t and denote by Pl the projection onto the space Ŝl such
that Pl alg(G)u∗ = 0. Then L̃ = PlL

∗Pl.

Similarly denote DΨt(0;µ) = eL̃(µ)t. Then L̃(µ) = Pl(µ)L∗(µ)Pl(µ) where

Pl(µ)y = y −
m∑

i=1

αi(µ)(y)ξiu
∗(µ)

and αi(µ) ∈ Y ? are such that li(y −
∑m
i=1 αi(µ)(y)ξiu

∗(µ)) = 0, i = 1, . . . ,m.
By the above Lemma 4.9 Pl(µ) is Ck−1 in µ in the space L(Y ) and the operator
L̃(µ)P (µ) is Ck−1 in µ in the space L(Y ). So the simple eigenvalue β(0) = i
of L̃ can be continued to a Ck−1 smooth path of eigenvalues β(µ) of L̃(µ) with
Ck−1 smooth path of eigenvectors w(µ). Note that β(µ) is an eigenvalue of
L(µ) as well.

4.6.2 Proof of Theorem 3.2

We will study the solutions of the equation

0 = F (u, g, T, µ) :=

(
ρ−1
g ΦT (u, µ)− u
li(u− u∗(µ)), i = 1, . . . ,m

)
, (4.14)

where li ∈ Y ? and the conditions li(u− u∗) = 0, i = 1, . . . ,m, define a section
transversely to the G-orbit of u∗. Later on, we will need an additional condition
to take care of the time-shift symmetry of the relative periodic orbits which we
want to find. The map F is smooth in u, µ, T for T > 0, but only continuous
in g. Further ∂uF (u, g, T, µ) is not continuous in g with respect to the norm
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‖ · ‖L(Y ). So we can not use the usual Lyapunov-Schmidt-reduction to solve
equation (4.14), but (4.14) fits into the setting which we treated in the preceding
subsections, and we will use the techniques developed in these subsections to
solve (4.14).
We can find a projector P̂ which is near P in the norm of L(Y, Yk−1) and such
that ρgP̂ and P̂ ρg are Ck-smooth in g in the norm of L(Y ). Consider the fixed
point equation

y = Π(y, q, g, T, µ) := (1− P̂ )ρ−1
g ΦT (y + q, µ),

with y ∈ (1− P̂ )Y , q ∈ P̂Y , on the scale of Banach spaces Yj , 0 ≤ j ≤ k. This
fixed point equation equals (4.2) from Section 4 with Text replaced by T and
Φt(·) autonomous. So we get a solution y(q, g, T, µ) of the fixed point equation
which is Ck−j -smooth in its parameters in the Yj-norm. Now we are ready to
solve the reduced equation Fred(q, g, T, µ) = 0 with Fred given by

Fred(q, g, T, µ) =

(
P
(
ρ−1
g ΦT (q + y(q, g, T, µ), µ)− q − y(q, g, T, µ)

)

li(u− u∗), i = 1, . . . ,m

)
.

(4.15)
The map Fred is Ck−j -smooth in its variables when considered as map from Yj
into Yj . The rest of the proof is standard, see [6]:

Let w be the eigenvector of L̃ to the eigenvalue i. Let 〈w?, ·〉 belong to the left
eigenspace of L∗ to the eigenvalue i such that

〈Rew?,Rew〉 = 〈Imw?, Imw〉 = 1,
〈Rew?, Imw〉 = 〈Imw?,Rew〉 = 0

(4.16)

is satisfied and 〈w?, algGu∗〉 = 0, i = 1 . . .m.
Let

s(q, g, T, µ) :=
1

2π
〈Rew?,

∫ 2π

0

eL̃(2π−t)ΨTt
2π

(y(q, g, T, µ) + q − u∗(µ);µ)dt〉

where Ψt is the semiflow in a comoving frame as defined in (3.5). We first
compute q = q(s, T, µ) and g = g(s, T, µ) as functions of s, T and µ by solving

Fred − 〈Rew?, Fred〉Rew − 〈Imw?, Fred〉 Imw = 0.

and

〈Imw?,

∫ 2π

0

eL̃(2π−t)ΨTt
2π

(y(q, g, T, µ) + q − u∗(µ);µ)dt〉 = 0.

The last condition fixes the time-shift. Now we still have to solve the Ck-
function F̂ : R3 → R2, (s, T, µ)→ F̂ (s, T, µ) given by

F̂ (s, T, µ) =

(〈Imw?, Fred(q(s, T, µ), g(s, T, µ), T, µ)〉
〈Rew?, Fred(q(s, T, µ), g(s, T, µ), T, µ)〉

)
= 0.

Documenta Mathematica 5 (2000) 227–274



270 Claudia Wulff

Obviously F̂ (0, T, µ) = 0, ∂(s,T,µ)F̂ (0, 2π, 0) = 0. We define

FLS(s, T, µ) :=
1

s
F̂ (s, T, µ).

Since

lim
s→0

1

s
F̂ (s, T, µ) = ∂sFLS(0, T, µ)

and ∂sF̂ (0, 2π, 0) = 0 we have FLS(0, 2π, 0) = 0. Furthermore ∂TFLS(0, T, µ) =
∂T ∂sF̂ (0, T, µ) and ∂µFLS(0, T, µ) = ∂µ∂sF̂ (0, T, µ), since ∂(T,µ)F̂ (0, T, µ) = 0.

Lemma 4.10 Under the assumptions of Theorem 3.2 the derivative

∂(T,µ)FLS(0, 2π, 0)

of FLS in (s, T, µ) = (0, 2π, 0) has full rank.

Proof of Lemma 4.10. We have

∂(T,µ)FLS(0, 2π, 0) =

(〈Imw?, ∂(T,µ)∂uΨ2π(0; 0) Rew〉
〈Rew?, ∂(T,µ)∂uΨ2π(0; 0) Rew〉

)
(4.17)

We invoke the following lemma which is the adaption of a lemma in Crandall
& Rabinowitz [6] to our setting.

Lemma 4.11 Let assumptions (i)–(iii) of Theorem 3.2 hold. Then

〈Rew?, ∂µ∂uΨ2π(0; 0) Rew〉 = 2πRe ∂β∂µ (0),

〈Imw?, ∂µ∂uΨ2π(0; 0) Rew〉 = −2π Im ∂β
∂µ (0),

(4.18)

where 〈w?, ·〉 is the left eigenvector of L̃ to the eigenvalue i which satisfies
(4.16).

We have
∂T ∂uΨ2π(0; 0) Rew = L̃eL̃2π Rew = Imw.

Using Lemma 4.11 and condition (iv) we conclude that ∂(T,µ)FLS(0, 2π, 0) has
full rank.
Because of Lemma 4.10 we can apply the ordinary implicit function theorem to
obtain solutions u(s, µ2) := u∗(µ(s, µ2))+z(s, µ2), g(s, µ2), T (s, µ2), µ(s, µ2) =
(µ1(s, µ2), µ2) of (4.14) which are relative periodic orbits with li(z(s, µ2)) =
0, i = 1, . . . ,m. Here µ(s, µ2), g(s, µ2), T (s, µ2) are Ck−1-smooth in s, µ2.
Moreover, z(s, µ2) is Ck−1-smooth in the ‖ · ‖Y -norm and Ck−j−1-smooth in
the ‖ · ‖Yj -norm, 1 ≤ j ≤ k − 1.
We have z(−s, µ2) = ΨT (s,µ2)

2

(z(s, µ2);µ(s, µ2)). Since µ(s, µ2), T (s, µ2) do

not depend on the time-shift, they are even in s.
The solutions u(s) = u∗(µ(s)) + z(s), g(s), T (s), µ(s) of (4.14) which we
obtained above (for convenience we ignore the µ2-dependence of the solutions
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in the notation) depend Ck−1-smoothly on the chosen eigenvector of L̃ to the
eigenvalue i. We can also consider zl ∈ Y , gl, Tl, µl as Ck−1-smooth functions
of (s1 + is2)w where s1, s2 ∈ R and w is the originally chosen eigenvector of L̃
to i. As before, zl(s1, s2) is Ck−j−1-smooth in the Yj-norm, 1 ≤ j < k. We
have z(s) = zl(s1, 0) and

eiτ = 〈Rew? + i Imw?,

∫ 2π

0

eL̃(2π−t)Ψ (t+τ)T (s)
2π

(z(s);µ(s))dt〉.

Obviously µ(s) = µl(s1, s2), T (s) = Tl(s1, s2) only depend on s = ‖(s1, s2)‖,

zl(s1, s2) := Ψ τT(s)
2π

(z(s);µ(s)), where s1 = s cos τ, s2 = s sin τ,

and ul(s1, s2) = u∗(µ(s)) + zl(s1, s2).

4.6.3 Equivariant Hopf bifurcation

In this subsection we prove Lemma 3.7, see also section 3.3. If the isotropy
K of the relative equilibrium u∗ is non-trivial it may happen that forced by
symmetry the eigenspace of the K-equivariant matrix L̃ to the Hopf eigenvalue
i has dimension higher than 2. Then the assumptions of Theorem 3.2 are not
satisfied any more.

We choose functionals li, i = 1, . . . ,mK , which define a section Sl = u∗ + Ŝl
transversal to the group orbit Gu∗ in u∗ such that Ŝl is K-invariant and that
Pl is K-equivariant, see subsection 3.3. Here mK = dim(G/K).

If Θ(K) = Z` then we solve the equation

F (u, g, T, µ) =

(
ρ(gh∗)−1ΦT (u, µ)− u
li(u− u∗), i = 1, . . .mK

)
= 0 (4.19)

on Fix(Kbif) where T ≈ 2π/`, g ≈ e
2π
` ξ

∗

, the group H is generated by h∗ ∈ K
and Kbif = ker(Θ) is axial. By our assumptions DFu(u

∗, e
2π
` ξ

∗

, 2π/`, 0)|Ŝl has
a two-dimensional kernel and therefore (4.19) can be solved by the methods of
subsection 4.6.2.

If Θ(K) = S1 we solve

F (u, g, T, µ) =

(
ρ−1
g exp(−χ∗T )ΦT (u, µ)− u
li(u− u∗), i = 1, . . .mK

)
= 0 (4.20)

on Fix(Kbif). In this case the axial group H is generated by χ∗ ∈ alg(K) and

Kbif = ker(Θ). We choose T such that (ρe−χ∗T eL̃T−1)|Ŝl has a two-dimensional

kernel. This is possible because the number of center eigenvalues of L̃ is finite.
Then we can proceed as before.
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Abstract. We consider vector spaces Hn,` and Fn,` spanned by the
degree-n coefficients in power series forms of the Homfly and Kauff-
man polynomials of links with ` components. Generalizing previously
known formulas, we determine the dimensions of the spaces Hn,`, Fn,`
and Hn,` +Fn,` for all values of n and `. Furthermore, we show that
for knots the algebra generated by

⊕
nHn,1 + Fn,1 is a polynomial

algebra with dim(Hn,1 + Fn,1) − 1 = n + [n/2]− 4 generators in de-
gree n ≥ 4 and one generator in degrees 2 and 3.
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1 Introduction

Soon after the discovery of the Jones polynomial V ([Jon]), two 2-parameter
generalizations of it were introduced: the Homfly polynomial H ([HOM]) and
the Kauffman polynomial F ([Ka2]) of oriented links. Let Vn,` be the vector
space of Q-valued Vassiliev invariants of degree n of links with ` components.
After a substitution of parameters, the polynomial H (resp. F ) can be writ-
ten as a power series in an indeterminate h, such that the coefficient of hn

is a polynomial-valued Vassiliev invariant pn (resp. qn) of degree n. Let Hn,`
(resp. Fn,`) be the vector space generated by the coefficients of pn (resp. qn)
regarded as a subspace of Vn,`. The dimensions of Hn,` and Fn,` have been de-
termined in [Men] for n ≥ 0 and ` = 1 and partial results were also known
for ` > 1. We complete these formulas by calculating dimHn,`, dimFn,`
and dim(Hn,` + Fn,`) for n ≥ 0 and all pairs (n, `).
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Theorem 1. (1) For all n, ` ≥ 1 we have

dimHn,` = min

{
n,

[
n− 1 + `

2

]}
=

{
n if n < `,[
n−1+`

2

]
if n ≥ `.

(2) If n ≥ 4, then

dimFn,` =





n− 1 if ` = 1,
2n− 1 if ` ≥ 2 and n ≤ `,
n+ `− 1 if ` ≥ 2 and n ≥ `.

The values of dimFn,` for n ≤ 3 are given in the following table

(n, `) (1, 1) (1,≥ 2) (2, 1) (2, 2) (2,≥ 3) (3, 1) (3, 2) (3,≥ 3)
dimFn,` 0 1 1 2 3 1 4 5

(3) For all n, ` ≥ 1 we have

dim(Hn,` ∩ Fn,`) = min{dimHn,`, 2}.

In the framework of Vassiliev invariants it is natural to consider the elements
of
⊕

n,`(Hn,` ∩ Fn,`) as the common specializations of H and F . It is known
that a one-variable polynomial Y ([CoG], [Kn1], [Lik], [Lie], [Sul]) appears as a
lowest coefficient in H and F . This is used in the proof of Theorem 1 to derive
lower bounds for dim(Hn,` ∩Fn,`). Let r`n be the coefficient of hn in the Jones
polynomial V (eh/2) and let y`n be the coefficient of hn in Y (eh/2). Then we
have r`n, y

`
n ∈ Hn,` ∩ Fn,`. The following corollary to the proof of Theorem 1

says that the Jones polynomial V and the polynomial Y are the only common
specializations of H and F in the sense above (compare [Lam] for common
specializations in a different sense).

Corollary 2. For all n ≥ 0, ` ≥ 1 we have Hn,` ∩ Fn,` = span{r`n, y`n}.

The main part of the proofs of Theorem 1 and Corollary 2 will not be given on
the level of link invariants, but on the level of weight systems. A weight system
of degree n is a linear form on a space Ān,` generated by certain trivalent graphs
with ` distinguished oriented circles and 2n vertices called trivalent diagrams.
There exists a surjective map W from Vn,` to the space Ā∗n,` = Hom(Ān,`,Q)
of weight systems. The restriction of W to Hn,` +Fn,` is injective. So we may
study the spaces H′n,` = W (Hn,`) and F ′n,` = W (Fn,`) ⊆ Ā∗n,` instead of Hn,`
and Fn,`. Using an explicit description of weight systems in H′n,` and F ′n,` we
derive upper bounds for dimH′n,` and dimF ′n,`. We obtain an upper bound
for dim(H′n,`+F ′n,`) from a lower bound for dim(H′n,`∩F ′n,`). We evaluate the
weight systems in H′n,` and F ′n,` on many trivalent diagrams which gives us
lower bounds for dimH′n,`, dimF ′n,` and dim(H′n,`+F ′n,`). These lower bounds
always coincide with the upper bounds. The resulting dimension formulas will
imply Theorem 1.
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For simplicity of notation we will drop the index ` when ` = 1. The fact
that the Jones polynomial and the square of the Jones polynomial appear
by choosing special values of parameters of the Kauffman polynomial gives
us quadratic relations between elements of

⊕∞
n=0 Fn,`. We will use the Hopf

algebra structure of Ā =
⊕∞

n=0 Ān to show that we know all algebraic relations
between elements of

⊕∞
n=0Hn + Fn:

Theorem 3. The algebra generated by
⊕∞

n=0Hn +Fn is a polynomial algebra
with

max{dim(Hn + Fn)− 1, 1} = max{n+ [n/2]− 4, 1}
generators in degree n ≥ 2.

If knot invariants vi satisfy vi(K1) = vi(K2), then polynomials in the invari-
ants vi also cannot distinguish the knots K1 and K2. By Theorem 3 there is
only one algebraic relation between elements vi ∈

⊕m−1
n=1 (Hn + Fn) and el-

ements of Hm + Fm in each degree m ≥ 4. This gives us a hint why it is
possible to distinguish many knots by comparing their Homfly and Kauffman
polynomials.
The plan of the paper is the following. In Section 2 we recall the definitions
of the link polynomials H , F , V , Y , and we give the exact definitions of Hn,`
and Fn,`. Then we express relations between these polynomials in terms of Vas-
siliev invariants. In Section 3 we define Ān,` and recall the connection between
the Vassiliev invariants in Hn,` +Fn,` and their weight systems in H′n,` +F ′n,`.
In Section 4 we use a direct combinatorial description of the weight systems
in H′n,` and F ′n,` to derive upper bounds for dimH′n,` and dimF ′n,`. For the
proof of lower bounds we state formulas for values of weight systems in H′n,`
and F ′n,` on certain trivalent diagrams in Section 5. We prove these formulas by
making calculations in the Brauer algebra Brk. In Section 6 we complete the
proofs of Theorem 1, Corollary 2 and Theorem 3 by using a module structure
on the space of primitive elements P of Ā over Vogel’s algebra Λ ([Vog]).
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2 Vassiliev invariants and link polynomials

A singular link is an immersion of a finite number of oriented circles into R3

whose only singularities are transversal double points. A singular link without
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double points is called a link. We consider singular links up to orientation
preserving diffeomorphisms of R3. The equivalence classes of this equivalence
relation are called singular link types or by abuse of language simply singular
links. A link invariant is a map from link types into a set. If v is a link invariant
with values in an abelian group, then it can be extended recursively to an
invariant of singular links by the local replacement rule v(L×) = v(L+)−v(L−)
(see Figure 1). A link invariant is called a Vassiliev invariant of degree n if it
vanishes on all singular links with n+ 1 double points. Let Vn,` be the vector
space of Q-valued Vassiliev invariants of degree n of links with ` components.

�
�

�
�	

@
@

@
@R

L×

�
�

�
�	

@
@

@
@R

L+

�
�

�
�	

@
@

@
@R

L−
	 R

L|| L=

Figure 1: Local modifications (of a diagram) of a (singular) link

Let us recall the definitions of the link invariants H ,F ,V , and Y (see [HOM],
[Ka2], [Jon], and Proposition 4.7 of [Lik]; the normalizations of H and V we
will use are equivalent to the original definitions). For a link L, the Homfly
polynomial HL(x, y) ∈ Z[x±1, y±1] is given by

xHL+(x, y)− x−1HL−(x, y) = yHL||
(x, y), (1)

HOk (x, y) =

(
x− x−1

y

)k
. (2)

The links in Equation (1) are the same outside of a small ball and differ inside
this ball as shown in Figure 1. The symbol Ok denotes the trivial link with
k ≥ 1 components.
A link diagram L ⊂ R2 is a generic projection of a link together with the
information which strand is the overpassing strand at each double point of the
projection. Call a crossing of a link diagram as in L+ (see Figure 1) positive and
a crossing as in L− negative. Define the writhe w(L) of a link diagram L as the
number of positive crossings minus the number of negative crossings. Similar
to the Homfly polynomial, the Dubrovnik version of the Kauffman polynomial
FL(x, y) ∈ Z[x±1, y±1] of a link diagram L is given by

xFL+(x, y)− x−1FL−(x, y) = y
(
FL||

(x, y)− xw(L=,or)−w(L||)FL=,or (x, y)
)
, (3)

FOk (x, y) =

(
x− x−1 + y

y

)k
. (4)

Here the link diagrams L+, L−, L||, L= differ inside of a disk as shown in Fig-
ure 1 and coincide on the outside of this disk, and L=,or is the link diagram L=
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equipped with an arbitrary orientation of the components of the corresponding
link. The symbol Ok denotes an arbitrary diagram of the trivial link with k ≥ 1
components. The Homfly and the Kauffman polynomials are invariants of links.
Let |L| denote the number of components of a link L. For the links in Equa-
tion (1) we have |L+| = |L−| = |L||| ± 1. Since Equations (1) and (2) are

sufficient to calculate H this implies HL(x, y) = (−1)|L|HL(x,−y) for every
link L. The Jones polynomial V can be expressed in terms of the Homfly
polynomial as

VL(x) := HL

(
x2, x−1 − x

)
= (−1)|L|HL

(
x2, x− x−1

)
∈ Z[x±1].

It is easy to see that for every link L we have

H̃L(x, y) := y|L|HL(x, y) ∈ Z[x±1, y] , F̃L(x, y) := y|L|FL(x, y) ∈ Z[x±1, y].
(5)

The link invariant Y is defined by

YL(x) = H̃L(x, 0) ∈ Z[x±1].

After substitutions of parameters we can express H and F as

HL

(
ech/2, eh/2 − e−h/2

)
=

∞∑

j=0

j+|L|∑

i=1

p
|L|
i,j (L)cihj ∈ Q[c][[h]], (6)

FL

(
e(c−1)h/2, eh/2 − e−h/2

)
=

∞∑

j=0

j+|L|∑

i=1

q
|L|
i,j (L)cihj ∈ Q[c][[h]], (7)

for the following reasons: Equation (5) implies that the sum over i is limited by
j+|L| in these expressions and one sees that no negative powers in h appear and
that the sum over i starts with i = 1 directly by using the defining equations

of H and F with the new parameters. For j = 0 we have p
|L|
i,0 = q

|L|
i,0 = δi,|L|,

where δi,j is 1 for i = j and is 0 otherwise. It follows from Equations (1) and (3)
that the link invariants p`i,n and q`i,n are in Vn,`. Define

Hn,` = span{p`1,n, p`2,n, . . . , p`n+`,n} ⊆ Vn,`, (8)

Fn,` = span{q`1,n, q`2,n, . . . , q`n+`,n} ⊆ Vn,`. (9)

Define the invariants y`n, r
`
n of links with ` components by

YL

(
eh/2

)
=

∞∑

n=0

y|L|n (L)hn ∈ Q[[h]], (10)

VL

(
eh/2

)
=

∞∑

n=0

r|L|n (L)hn ∈ Q[[h]]. (11)
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In the following proposition we state the consequences of Propositions 4.7, 4.2,
4.5 of [Lik] for the versions of the Homfly and Kauffman polynomials from
Equations (6) and (7).

Proposition 4. For all n ≥ 0, ` ≥ 1 we have

(1) y`n = p`n+`,n = q`n+`,n,

(2) r`n = (−1)`
n+∑̀

i=1

2ip`i,n = (−1/2)n
n+∑̀

i=1

(−2)iq`i,n,

(3) (−2)n
n+∑̀

i=1

4iq`i,n =

n∑

m=0

m+∑̀

i=1

n−m+`∑

j=1

(−2)i+jq`i,mq
`
j,n−m.

Sketch of Proof. (1) The following formulas for Y can directly be derived from
its definition:

(a) xYL+(x)− x−1YL−(x) = YL||
(x) if |L+| < |L|||,

(b) xYL+(x) = x−1YL−(x) if |L+| > |L|||,
(c) YOk (x) = (x− x−1)k .

These relations are sufficient to calculate YL(x) for every link L. The link

invariant Y ′L(x) := F̃L(x, 0) satisfies the same Relations (a), (b), (c) as Y ,

hence we have H̃L(x, 0) = YL(x) = Y ′L(x) = F̃L(x, 0). Now the formulas

H̃L

(
eh/2, 0

)
=

∞∑

n=0

p
|L|
n+|L|,n(L)hn and F̃L

(
eh/2, 0

)
=

∞∑

n=0

q
|L|
n+|L|,n(L)hn

imply Part (1) of the proposition.

(2) Let < L > (A) be the Kauffman bracket (see [Ka1], [Ka3]) defined by

< �� > = A < > + A−1 < > , < Ok >= (−A2 −A−2)k.

For a link diagram L define the link invariant fL(A) with values in Z[A2, A−2]
by fL(A) = (−A3)−w(L) < L > (A), where w(L) denotes the writhe of L. Then
one can show that

FL

(
e−3h/2, eh/2 − e−h/2

)
= fL

(
−e−h/2

)
= fL

(
e−h/2

)
and

(−1)|L|HL

(
eh, eh/2 − e−h/2

)
= VL

(
eh/2

)
= fL

(
eh/4

)
.

Documenta Mathematica 5 (2000) 275–299



Number of Independent Vassiliev Invariants in H and F 281

This implies Part (2) of the proposition.

(3) With the notation of Part (2) of the proof we have

FL(B3, B −B−1) = fL(−A−1)2 = FL(A−3, A−A−1)2, where B = A−2.

Substituting A = eh/2 and B = e~/2 with ~ = −2h and comparing with
Equation (7) gives us Part (3) of the proposition.

Parts (1) and (2) of Proposition 4 imply that r`n, y
`
n ∈ Hn,` ∩ Fn,`. In other

words, the polynomials V and Y are common specializations of H and F . This
was the easy part of the proofs of Theorem 1 and Corollary 2. Part (3) of
Proposition 4 will be used in the proof of Theorem 3.

3 Spaces of weight systems

We recall the following from [BN1]. A trivalent diagram is an unoriented graph
with ` ≥ 1 disjointly embedded oriented circles such that every connected
component of this graph contains at least one oriented circle, every vertex has
valency three, and the vertices that do not lie on an oriented circle have a cyclic
orientation. We consider trivalent diagrams up to homeomorphisms of graphs
that respect the additional data. The degree of a trivalent diagram is defined
as half of the number of its vertices. An example of a diagram on two circles
of degree 8 is shown in Figure 2.

&%
'$

&%
'$

��@@``````

Figure 2: A trivalent diagram

In the picture the distinguished circles are drawn with thicker lines than the
remaining part of the diagrams. Orientation of circles and vertices are assumed
to be counterclockwise. Crossings in the picture do not correspond to vertices
of a trivalent diagram. Let An,` be the Q-vector space generated by trivalent
diagrams of degree n on ` oriented circles together with the relations (STU),
(IHX) and (AS) shown in Figure 3.
The diagrams in a relation are assumed to coincide everywhere except for the
parts we have shown. Let Ān,` be the quotient of An,` by the relation (FI), also
shown in Figure 3. A weight system is a linear map from Ān,` to a Q-vector
space.
A chord diagram is a trivalent diagram where every trivalent vertex lies on an
oriented circle. It is easy to see that An,` is spanned by chord diagrams. If D
is a chord diagram of degree n on ` oriented circles, then one can construct a
singular link LD with ` components such that the preimages of double points
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(STU)-relation:
-

�@ =
-
−

-@
@
�

�

(IHX)-relation: �@ = −
@

@
�

�

(AS)-relation (anti-symmetry): �
A

= −

(FI)-rel. (framing-independence): - = 0

Figure 3: (STU), (IHX), (AS) and (FI)-relation

of LD correspond to the points of D connected by a chord. The singular link
LD described above is not uniquely determined by D, but, if v ∈ Vn,`, then the
linear map W (v) : Ān,` −→ Q which sends D to v(LD) is well-defined. This
defines a linear map W : Vn,` −→ Hom(Ān,`,Q) = Ā∗n,`. Let us define the
spaces

H′n,` = W (Hn,`) and F ′n,` = W (Fn,`) ⊆ Ā∗n,`.
If v1 ∈ Vn,` and v2 ∈ Vm,`, then the link invariant v1v2 defined by (v1v2)(L) =
v1(L)v2(L) is in Vn+m,`. Weight systems are multiplied by using the algebra
structure dual to the coalgebra structure of

⊕∞
n=0 Ān,` (see [BN1]). The fol-

lowing proposition is a well-known consequence of a theorem of Kontsevich (see
Proposition 2.9 of [BNG] and Theorem 7.2 of [KaT], Theorem 10 of [LM3] or
[LM1], [LM2]).

Proposition 5. For all ` ≥ 1 there exists an isomorphism of algebras

Z∗ :

∞⊕

n=0

Ā∗n,` −→
∞⋃

n=0

Vn,`

such that for all n ≥ 0 we have

Z∗ ◦W|(Hn,`+Fn,`) = id(Hn,`+Fn,`).

This proposition reduces the study of Hn,` and Fn,` to that of H′n,` and F ′n,`:
we have the following corollary.

Corollary 6. For all n ≥ 0 and ` ≥ 1 we have

dimH′n,` = dimHn,`,
dimF ′n,` = dimFn,`,

dim(H′n,` + F ′n,`) = dim(Hn,` + Fn,`).
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We will often use Corollary 6 without referring to it.

4 Upper bounds for dimH′n,` and dimF ′n,`

Let us recall the explicit descriptions of W (p`i,j) and W (q`i,j) from [BN1]. Let
D be a trivalent diagram. Cut it into pieces along small circles around each
vertex. Then replace the simple parts as shown in Figure 4.

?

; ; �
�

A
A

;
���

�

AA
A
A

− �
�

��

Q
Q

QQ

Figure 4: The map Wgl

Glue the substituted parts together. Sums of parts of diagrams are glued
together after multilinear expansion. The result is a linear combination of
unions of circles. Replace each circle by a formal parameter c and call the
resulting polynomial Wgl(D). It is well-known that this procedure determines
a linear map Wgl : An,` −→ Q[c] (see [BN1], Exercise 6.36). Proceeding with
the replacement patterns shown in Figure 5, we get the linear map Wso :
An,` −→ Q[c].

?

; ; −
D
D
D
D

�
�
�
�

�
�

A
A

;
���

�

AA
A
A

Figure 5: The map Wso

For a trivalent diagram D, define the linear combination of trivalent dia-
grams ι(D) by replacing each chord as shown in Figure 6. Connected com-

ponents of D \ S1q` with an internal trivalent vertex stay as they are.

?

6
;

?

6
− 1

2




?

6
+

?

6



Figure 6: The deframing map ι

This definition determines a linear map ι : Ān,` −→ An,`, such that π ◦ ι = id
where π : An,` −→ Ān,` denotes the canonical projection (compare [BN1],
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Exercise 3.16). By the following proposition ([BN1], Chapter 6.3) the weight
systems W gl = Wgl ◦ ι and W so = Wso ◦ ι belong to the Homfly and Kauffman
polynomials.

Proposition 7. For all n ≥ 0, i, ` ≥ 1 the weight system W (p`i,n) (resp.

W (q`i,n)) is equal to the coefficient of ci in W gl|Ān,` (resp. W so|Ān,`).

The direct description of W (p`i,n) and W (q`i,n) from the proposition above will
simplify the computation of dimensions.

Lemma 8. (1) For all n, ` ≥ 1 we have

dimH′n,` ≤
{
n if n < `,[
n−1+`

2

]
if n ≥ `.

(2) For all n, ` ≥ 1 we have

dimF ′n,` ≤





n− 1 if ` = 1,
2n− 1 if ` ≥ 2 and n ≤ `,
n+ `− 1 if ` ≥ 2 and n ≥ `.

Proof. In the proof D will denote a chord diagram of degree n ≥ 1 on ` circles.
(1) If n ≥ `, then we get [(n− 1 + `)/2] as an upper bound for dimH′n,` by the
following observations:
(a) The polynomial W gl(D) has degree ≤ n + ` and vanishing constant term
because the number of circles can at most increase by one with each replacement
of a chord as shown in Figure 4, and there remains always at least one circle.
(b) The coefficients of cn+`−1−2i (i = 0, 1, . . . ) vanish because the number of
circles changes by ±1 with each replacement of a chord as shown in Figure 4.
(c) We have W gl(D)(1) = 0 because Wgl(D

′)(1) = 1 for each chord diagram
D′ and ι(D) is a linear combination of chord diagrams D′ having 0 as sum of
their coefficients.

If D is a chord diagram of degree n < `, then by similar arguments W gl(D)
is a linear combination of c`−n, c`−n+2, . . . , c`+n with W gl(D)(1) = 0. This
implies the upper bound for dimH′n,`.
(2) If n ≥ `, then by the same arguments as above W so(D) is a polynomial of
degree ≤ n+ ` with vanishing constant term and W so(D)(1) = 0. This implies
dimF ′n,` ≤ n+ `− 1 in this case.
If ` = 1, then for chord diagrams D′ of degree n the value Wso(D

′)(2) is
constant because so2 is an abelian Lie algebra (see [BN1]). This implies
W so(D)(2) = 0 and hence dimF ′n,` ≤ n− 1 in this case.

If ` ≥ 2 and n < `, then the coefficient of c`−n in W so(D) is 0 by the following
argument: Assume that a chord diagram D′ has the minimal possible number
of ` − n connected components (in other words, if we contract the oriented
circles of D′ to points, then the resulting graph is a forest). Then we see that
Wso(D

′) = 0 by using Figure 5. Hence W so(D) is a linear combination of
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c`−n+1, c`−n+2, . . . , c`+n with W so(D)(1) = 0. This completes the proof of the
upper bounds for dimF ′n,`.

5 The Brauer algebra and values of W gl and W so

In order to find lower bounds for dimH′n,`, dimF ′n,` and dim(H′n,` +F ′n,`), we

shall evaluate the weight systems W gl and W so on sufficiently many trivalent
diagrams. Let ωk, Lk, Ck, Tk be the diagrams of degree k shown in Figure 7.

ωk =
�

�
� A

B
B...

�

�

�

� Lk = �������� ��������
· · ·

Tk = &%
'$

&%
'$

... Ck = �������� ��������
· · ·

Figure 7: The diagrams ωk, Lk, Ck, Tk

For technical reasons we extend this definition by setting L0 = C0 = T0 = S1

and C1 = L1. An important ingredient in the proofs of Theorems 1 and 3 is
the following lemma.

Lemma 9. (1) For all k ≥ 2 we have

W gl(ωk) =

{
ck+1 + c3 − 2c if k is even,
ck+1 − c2 if k is odd, and

W so(ωk) = c(c− 1)(c− 2)Rk(c),

where Rk is a polynomial with Rk(0) 6= 0. If k = 2, then R2 = 2, and if k 6= 3,
then Rk(2) 6= 0.

(2) For all k ≥ 1 we have

W gl(Lk) = c(1− c2)k, W so(Lk) = ck+1(1− c)k,
W gl(Tk) = (−c)k(c2 − 1), W so(Tk) = c(c− 1)Qk(c),

W so(Ck) = c(c− 1)Pk(c),

where Pk and Qk are polynomials in c such that for k ≥ 2 we have Pk(0) 6= 0,
Qk(0) = 2k−1, and Qk(2) = (−2)k.
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In the proof of the lemma we will determine the polynomials Pk, Qk, and Rk
explicitly, which will be helpful to us for calculations in low degrees. For the
main parts of the proofs of Theorems 1 and 3 it will be sufficient to know the
properties of these polynomials stated in the lemma. We do not need to know
the value of W gl(Ck).

In the proof of Lemma 9 we use the Brauer algebra ([Bra]) on k strands Brk. As
a Q[c]-module Brk has a basis in one-to-one correspondence with involutions
without fixed-points of the set {1, . . . , k}×{0, 1}. We represent a basis element
corresponding to an involution f graphically by connecting the points (i, j)
and f(i, j) by a curve in R × [0, 1]. Examples are the diagrams u−, x+, x−,
u+ = d, e, f , g, h in Figures 8 and 9.

?
H

;

u+

A
A

A

u−
�

�
�

A
A

A

A
A

A

x+

�
�
�

A
A

A

x−

Figure 8: Elements of Br3 needed to calculate Wso(ωk)

d e
�

�
�

f
@

@
@

g
�

�
�

@
@

@

h

Figure 9: Diagrams needed to calculate Wgl(ωk)

The product of basis vectors a and b is defined graphically by placing a onto
the top of b, by gluing the lower points (i, 0) of a to the upper points (i, 1) of b,
and by introducing the relation that a circle is equal to the formal parameter
c of the ground ring Q[c]. We have a map tr : Brk −→ Q[c], called trace, that
is defined graphically by connecting the vertices (i, 0) and (i, 1) of a diagram
by curves, and by replacing each circle by the indeterminate c. As an example,
the trace of the diagram x+u− is shown in Figure 10.

tr


 @

@
@


 =

@
@

@
= c

Figure 10: The trace of a diagram
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The elements u+, u−, x+, x− arise among others when the replacement rules
belonging to Wso (see Figure 5) are applied to the part H (see Figure 8) of
a trivalent diagram. Similarly, the elements d and h arise when we apply the
replacement rules belonging to Wgl (see Figure 4) to the part H of a trivalent
diagram. We have ι(ωk) = ωk (see Figure 6) because the diagram ωk contains
no chords. The proof of the following lemma is now straightforward.

Lemma 10. The following two formulas hold:

W gl(ωk) = tr
(
(d− h)k

)
and W so(ωk) = tr

(
(u+ − u− + x+ − x−)k

)
.

Now we can prove Lemma 9 by making calculations in the Brauer algebra.

Proof of Lemma 9. (1) With the elements u±, x± ∈ Br3 shown in Figure 8 we
define u = u+ − u− and x = x+ − x−. It is easy to verify that

(u+ x)u = (c− 2)u and x3 = x2 + 2x. (12)

In view of the expression for x3 it is clear that xk can be expressed as a linear
combination of x and x2:

dkx
2 + ekx = xk. (13)

It can be shown by induction that the sequence of pairs (dk , ek)k≥1 is given by
(d1, e1) = (0, 1) and (dk+1, ek+1) = (dk + ek, 2dk). We deduce

d1 − e1 = −1, dk+1 − ek+1 = dk + ek − 2dk = ek − dk
⇒ dk − ek = (−1)k, (14)

dk+1 + (−1)k = (dk + ek) + (dk − ek) = 2dk. (15)

By Equations (12) and (13) we have

(u+ x)k = xk +

k−1∑

i=0

(u+ x)iuxk−i−1

= dkx
2 + ekx+ (c− 2)k−1u+

k−2∑

i=0

(c− 2)i(dk−i−1ux
2 + ek−i−1ux).(16)

It is easy to see that

tr
(
x2
)
/(c− 1) = −tr(x) = tr(u) = −tr(ux) = tr

(
ux2

)
= c2 − c. (17)
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Applying the trace to Equation (16) yields by Lemma 10 and Equations (14)
and (17):

W so(ωk)

= (c2 − c)
[
dk(c− 1)− ek + (c− 2)k−1 +

k−2∑

i=0

(c− 2)i(dk−i−1 − ek−i−1)

]

= (c2 − c)
[
dk(c− 2) + (−1)k −

k−1∑

i=0

(−1)k−i(c− 2)i

]

= (c2 − c)(c− 2)

[
(dk + (−1)k) +

k−2∑

i=1

(−1)k−i(c− 2)i

]
.

Define the sequence (ak)k≥2 inductively by a2 = 2 and ak+1 = 2ak − 4(−1)k.
We have a2 = d2 + (−1)2 and by definition of ak, induction and Equation (15)
also

ak+1 = 2ak − 4(−1)k = 2(dk + (−1)k)− 4(−1)k = dk+1 + (−1)k+1.

This implies W so(ωk) = c(c− 1)(c− 2)Rk(c) with

Rk(c) = ak +

k−2∑

i=1

(−1)k−i(c− 2)i.

The properties of Rk stated in the lemma are satisfied because by a simple
computation we have Rk(2) = ak > 0 for k 6= 3 and

Rk(0) = ak + (−1)k(2k−1 − 2) ≡ 2 mod 4.

We only give a sketch of the proof of the formula for W gl(ωk). Let d, e, f, g, h
be the elements of Br3 shown in Figure 9. Then one can prove by induction
on k that

(d− h)2k+1 = c2kd− h+

k−1∑

i=0

c2i(d+ e)− c2i+1(f + g).

Using Lemma 10 this formula allows to conclude by distinguishing whether k
is even or odd.

(2) Let a, b,1 be the elements of Br2 shown in Figure 11.

Then we have ab = ba = a, a2 = ca, b2 = 1, tr(a) = tr(b) = c, tr(1) = c2, and
by convention (a− b)0 = 1. This implies for k ≥ 1 that
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a = b = J
JJ






1 =

Figure 11: Diagrams in Br2

W so(Tk) = tr
(
(a− b+ 1− c1)k

)

= tr

[
k∑

i=0

(
k

i

)
(1− c)k−i(a− b)i

]

= tr





k∑

i=0

(
k

i

)
(1− c)k−i


(−b)i +

i∑

j=1

(
i

j

)
cj−1(−1)i−ja







=

k∑

i=0

(
k

i

)
(1− c)k−i

[
tr
(
(−b)i

)
+ (c− 1)i − (−1)i

]

=

k∑

i=0

(
k

i

)
(1− c)k−i

[
tr
(
(−b)i

)
− (−1)i

]

=
∑

0≤i≤k
i even

(
k

i

)
(1− c)k−i(c2 − 1) +

∑

1≤i≤k
i odd

(
k

i

)
(1− c)k−i(1− c)

=

k∑

i=0

(
k

i

)
(1− c)k−i(c− 1)(−1)i + c

∑

0≤i≤k
i even

(
k

i

)
(1− c)k−i(c− 1)

= c(c− 1)


−(−c)k−1 +

∑

0≤i≤k
i even

(
k

i

)
(1− c)k−i


 .

Now one checks the properties of Qk using the last expression for W so(Tk).
The remaining formulas follow by easy computations. For example, W so(Lk)
is given by the value of Wso on the diagrams in ι(Lk) where no chord connects
two different circles. Furthermore, one can show for k ≥ 2 that

W so(Ck) = tr
(
(1− b)k

)
+(1−c)W so(Lk−1) = c(c−1)

(
2k−1 − ck−1(1− c)k−1

)
.

The property Pk(0) 6= 0 from the lemma is obvious from the formula above.

6 Completion of proofs using Vogel’s algebra

In the case of diagrams on one oriented circle, the coalgebra structure of
Ā =

⊕∞
n=0 Ān can be extended to a Hopf algebra structure (see [BN1]). The
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primitive elements P of Ā are spanned by diagrams D such that D \ S1 is
connected, where S1 denotes the oriented circle of D. Vogel defined an algebra
Λ which acts on primitive elements (see [Vog]). The diagrams t and x3 shown
in Figure 12 represent elements of Λ.

t = x3 =

Figure 12: Elements of Λ

The space of primitive elements P of Ā becomes a Λ-module by inserting an
element of Λ into a freely chosen trivalent vertex of a diagram of a primitive
element. Multiplication by t increases the degree by 1 and multiplication by
x3 increases the degree by 3. An example is shown in Figure 13.

x3ω4 = x3 &%
'$

= &%
'$

Figure 13: How P becomes a Λ–module

If D and D′ are classes of trivalent diagrams with a distinguished oriented circle
modulo (STU)-relations (see Figure 3), then their connected sum D#D′ along
these circles is well defined. We state in the following lemma how the weight
systems W gl and W so behave under the operations described above: Part (1)
of the lemma is easy to prove; for Part (2), see Theorem 6.4 and Theorem 6.7
of [Vog].

Lemma 11. (1) Let D and D′ be chord diagrams each one having a distin-
guished oriented circle. Then the connected sum of D and D′ satisfies

W gl(D#D′) = W gl(D)W gl(D
′)/c and W so(D#D′) = W so(D)W so(D

′)/c.

(2) For a primitive element p ∈ P we have:

W gl(tp) = cW gl(p),
W so(tp) = c̃W so(p),
W gl(x3p) = (c3 + 12c)W gl(p),
W so(x3p) = (c̃3 − 3c̃2 + 30c̃− 24)W so(p),

where c̃ = c− 2.

We have the following formulas concerning spaces of weight systems restricted
to primitive elements.

Proposition 12. For the restrictions of the weight systems to primitive ele-
ments of degree n ≥ 1 we have
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(1) dimH′n|Pn = dimH′n = [n/2],

(2) dimF ′n|Pn = max(n− 2, [n/2]) =

{
[n/2] if n ≤ 3,
n− 2 if n ≥ 3,

(3) dim
(
H′n|Pn ∩ F

′
n|Pn

)
= min(2, [n/2]) =

{
[n/2] if n ≤ 3,
2 if n ≥ 4.

The proof of Proposition 12 will be given in this section together with a proof
of Theorem 1. The proof is divided into several steps.
If q is a polynomial, then we denote the degree of its lowest degree term by
ord(q). Now we start to derive lower bounds for dimensions of spaces of weight
systems.

Proof of Part (1) of Proposition 12. By Lemma 9 we have ord(W gl(ωk)) = 1
for even k. By Lemma 11 we have W gl(t

kp) = ckW gl(p) for p ∈ P . This
implies

dim
(
W gl

(
span{tn−2ω2, t

n−4ω4, . . . , t
n−2[n/2]ω2[n/2]}

))
= [n/2] ≤ dimH′n|Pn.

Since this lower bound coincides with the upper bound from Lemma 8 we have
dimH′n|Pn = [n/2].

Let Dijk = (Li#Cj)#Tk (in this definition we choose arbitrary distinguished
circles of Li, Cj , (Li#Cj) and for further use also for Dijk). Let dijk be

the number of oriented circles in Dijk and define D`
i,j,k = Dijk q S1q(`−dijk)

for ` ≥ dijk . We will make use of the formulas for W gl(D
`
i,0,k#ωm) and

W so(D
`
i,j,k#ωm) implied by Lemmas 9 and 11 throughout the rest of this

section.

Proof of Part (1) of Theorem 1. For all n ≥ 1 we have [n/2] primitive ele-

ments pi such that the polynomials gi = W gl(pi q S1q(`−1)
) are linearly inde-

pendent and c`|gi (see the proof of Part (1) of Proposition 12). Let n < `. The
diagrams

D`
n,0,0, D

`
n−2,0,0#ω2, . . . , D

`
n−2[(n−1)/2],0,0#ω2[(n−1)/2] (18)

are mapped by W gl to the values

c`−n(1− c2)n, c`−n+2f2(c), . . . , c
`−1f[(n+1)/2](c)

with polynomials fi satisfying fi(0) = −2 (i = 2, . . . , [(n + 1)/2]). So in this
case we have found [n/2] + [(n+ 1)/2] = n linearly independent values, which
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is the maximal possible number (see Lemma 8). If n ≥ `, then we conclude in
the same way using the following list of k − n + 1 + [(n − 1)/2] = k − [n/2]
elements where k = [(n+ `− 1)/2]:

D`
2k−n,0,0#ω2n−2k, D

`
2k−n−2,0,0#ω2n−2k+2, . . . , D

`
n−2[(n−1)/2],0,0#ω2[(n−1)/2].

(19)

We will use the upper bounds for dimH′n,` and dimF ′n,` together with the
following lower bound for dim(H′n,`∩F ′n,`) to get an upper bound for dim(H′n,`+
F ′n,`). In the case ` = 1 we will argue in a similar way for the restriction of
weight systems to primitive elements.

Lemma 13. For all n, ` ≥ 1 we have

dim
(
H′n,` ∩ F ′n,`

)
≥ min(dimH′n,`, 2)

= min(n, [(n− 1 + `)/2], 2) = dim(span{W (r`n),W (y`n)}).

For all n ≥ 1 we have

dim
(
H′n|Pn ∩ F

′
n|Pn

)
≥ min(dimH′n, 2) = min([n/2], 2).

Proof. Propositions 4 and 7 imply that the weight system W (r`n) ∈ H′n,`∩F ′n,`
is equal to (−1)`W gl(.)(2)|Ān,` and the weight system W (y`n) ∈ H′n,` ∩ F ′n,`
is equal to the coefficient of c`+n in W gl|Ān,` . By the proof of Lemma 8 we

have W gl(D)(0) = W gl(D)(1) = 0 and in the weight system W gl|Ān,` the co-

efficients of c`+n−1, c`+n−3, . . . and the coefficients of c`−n−1, c`−n−2, . . . van-
ish. By Part (1) of Theorem 1 these are the only linear dependencies between
the coefficients of c`+n, c`+n−1, . . . in the polynomial W gl|Ān,` . This implies

for dimH′n,` = 1 that the coefficient of c`+n in W gl|Ān,` is not the trivial weight

system and this implies for dimH′n,` ≥ 2 that W gl(.)(2)|Ān,` and the coefficient

of c`+n in W gl|Ān,` are linearly independent. By Part (1) of Proposition 12 we

can argue in the same way with W gl|Pn . This completes the proof.

Define the weight system w = (−2)nW so(·)(4) − 2(−2)`W so(·)(−2) ∈ F ′n,`.
For n ≥ 4 Lemmas 9 and 11 imply that

w
(
ω2#(tn−4ω2)q S1q`−1

)
= 18(−4)n4`−1 6= 0. (20)

Part (3) of Proposition 4 together with Propositions 5 and 7 implies that
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0 6= w ∈
n−1⊕

i=1

F ′i,`F ′n−i,`. (21)

For ` = 1 Equation (21) implies w(Pn) = 0. Therefore we have

dimF ′n|Pn ≤ dimF ′n − 1 ≤ n− 2 for all n ≥ 4. (22)

Since we have dimH′n = dimH′n|Pn by Part (1) of Proposition 12 we know

that w 6∈ H′n and therefore

dim(H′n + F ′n) ≥ dim(H′n + F ′n)|Pn + 1 for all n ≥ 4. (23)

Let (W gl,W so) : Ān,` −→ Q[c]×Q[c] be defined by

(
W gl,W so

)
(D) =

(
W gl(D),W so(D)

)
.

Then by Proposition 7 we have

dim(H′n,` + F ′n,`) = dim
(
(W gl,W so)(Ān,`)

)
, (24)

dim
(
H′n|Pn + F ′n|Pn

)
= dim

(
(H′n + F ′n)|Pn

)
= dim

(
(W gl,W so)(Pn)

)
.(25)

We will use Equations (24) and (25) to derive lower bounds for dim(H′n,`+F ′n,`)
and for dim(H′n +F ′n)|Pn . Now we can complete the proofs of Theorem 1 and
Proposition 12.

Proof of Parts (2) and (3) of Proposition 12 and Theorem 1 for ` = 1. Let

Σ7 = span{ω7, tω6, t
2ω5, t

3ω4, t
5ω2, x3ω4} ⊂ P7.

Define for n > 7:

Σn =

{
tΣn−1 + Qωn if n is odd,
tΣn−1 + Qωn + Qx3ωn−3 if n is even.

By a calculation using Lemmas 9 and 11 we obtain

dim
(
(W gl,W so)(Σ7)

)
= 6.

In view of the proof of Lemma 8 we can define a polynomial-valued weight
system by W̃so(.) = W so(.)/(c(c − 1)). We used Lemma 9 and Lemma 11 to

compute the degree 1 coefficients of the values of W gl and W̃so on elements
of Σn stated in Table 1.

Documenta Mathematica 5 (2000) 275–299



294 Jens Lieberum

tΣn−1
ωn

(n odd)

ωn
(n even)

x3ωn−3

(n even)

coeff. of c̃ in W̃so(·): 0 Rn(2) Rn(2) −24Rn−3(2)

coeff. of c in W gl(·): 0 0 −2 0

Table 1: Degree 1 coefficients of W gl and W̃so on Σn

By Lemma 9 we have Rk(2) 6= 0 if k 6= 3. Then, by Table 1 and induction,
we see that dim(W gl,W so)(Σn) = [n/2] + n− 4 for n ≥ 7. By Equation (25),
Lemmas 8 and 13, and Equation (22) we obtain

[n/2] + n− 4 + 2 ≤ dim
(
H′n|Pn + F ′n|Pn

)
+ dim

(
H′n|Pn ∩ F

′
n|Pn

)
=

= dimH′n|Pn + dimF ′n|Pn ≤ [n/2] + n− 2.

Thus equality must hold. This implies Parts (2) and (3) of Proposition 12
for n ≥ 7. By Equation (23) we get dim(H′n + F ′n) ≥ [n/2] + n − 3. Now we
see by Lemmas 8 and 13 that

[n/2] + n− 3 + 2 ≤ dim (H′n + F ′n) + dim (H′n ∩ F ′n) =

= dimH′n + dimF ′n ≤ [n/2] + n− 1

which implies Part (2) and Part (3) of Theorem 1 for n ≥ 7 and ` = 1.
Let ψ be the element of degree 6 shown in Figure 14.

ψ = &%
'$

Figure 14: A primitive element in degree 6

A calculation done by computer yields

W gl(ψ) = c7 + 13c5 − 14c3,

W̃so(ψ) = c̃5 − 3c̃4 + 34c̃3 − 36c̃2 + 16c̃.

Let Σ4 = span{ω4, t
2ω2}, Σ5 = tΣ4 + Qω5, and Σ6 = tΣ5 + Qω6 + Qψ. We

obtain again dim(W gl,W so)(Σn) = [n/2]+n−4 which implies Parts (2) and (3)
of Proposition 12 and Theorem 1 for ` = 1 and n ≥ 4 by the same argument
as before. In degrees n = 1, 2, 3 we have dim Pn = dim Ān = dimH′n =
dimF ′n = [n/2]. This completes the proof.
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Proof of Parts (2) and (3) of Theorem 1 for ` > 1. Let n ≥ 4 and ` > 1. By
the previous proof we have n+[n/2]− 3 elements ai ∈ Ān such that the values

(
W gl(Di),W so(Di)

)
∈ Q[c]×Q[c]

of Di = ai q S1q`−1
are linearly independent. Consider the following lists of

elements:

If n ≤ `, then we take the n elements

D`
0,n,0, D

`
1,n−1,0, . . . , D

`
n−3,3,0, D

`
0,0,n, E

`
n := D`

0,0,n −D`
0,0,n−2#ω2.(26)

If n ≥ `+ 1, then we take the ` elements

D`
0,`−1,n−`+1, D

`
1,`−2,n−`+1, . . . , D

`
`−3,2,n−`+1, D

`
0,0,n, E

`
n. (27)

Let Mn,` be the list of elements Di together with the elements from Equa-
tion (18) (resp. (19)) and Equation (26) (resp. (27)). We have

card (Mn,`) =

{
3n− 3 if n < `,
n+ `− 3 + [(n+ `− 1)/2] if n ≥ `. (28)

The values of W gl and W so on elements ofMn,` have the properties stated in
Table 2.

ord(W gl(Di)) ≥ ` ord(W so(Di)) ≥ `,W so(Di)(2) = 0

ord(W gl(E
`
n)) ≥ ` ord(W so(E

`
n)) ≥ `,W so(E

`
n)(2) 6= 0

ord(W gl(D
`
i,0,0#ωn−i))

= `− i
(i > 0, n− i even)

ord(W so(D
`
i,0,0#ωn−i)) ≥ `

ord(W so(D
`
n−i,i,0)) = `+ 1− i (i ≥ 3)

ord(W so(D
`
i,`−1−i,n−`+1)) = i+ 1 (i ≤ `− 3)

ord(W so(D
`
0,0,n)) = `− 1

Table 2: Properties of W gl(e) and W so(e) for e ∈Mn,`

The statements from this table are easily verified. For example, we have

W so(E
`
n) = c`−1(c− 1)h(c)

with h(c) = Qn(c)−2(c−1)(c−2)Qn−2(c). We have h(0) = Qn(0)−4Qn−2(0) =
0 which implies

ord
(
W so(E

`
n)
)
≥ `,
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and h(2) = Qn(2) = (−2)n which implies W so(E
`
n)(2) 6= 0. Now let

f =
∑

e∈Mn,`

λ(e)
(
W gl(e),W so(e)

)
= (f1, f2) ∈ Q[c]×Q[c]

be a linear combination with λ(e) ∈ Q. We want to show that f = 0 implies
that all scalars λ(e) are 0. For our arguments we will use the entries of Table 2
beginning at its bottom. The coefficients λ(D`

n−i,i,0) (resp. λ(D`
i,`−1−i,n−`+1))

and λ(D`
0,0,n) are 0 because they are multiples of

dkf2
dck

(0), . . . ,
d`−1f2
dc`−1

(0)

with k = max{1, ` − n + 1}. The coefficients λ(D`
i,0,0#ωn−i) must be 0 by

a similiar argument for f1. We get λ(E`n) = 0 because W so(Di)(2) = 0 and
W so(E

`
n)(2) 6= 0. The remaining coefficients λ(Di) are 0 because the values

(W gl(Di),W so(Di)) are linearly independent. This implies dim(H′n,`+F ′n,`) ≥
card(Mn,`). By Lemma 8 and Lemma 13 we have

card(Mn,l) + 2 ≤ dim
(
H′n,` + F ′n,`

)
+ dim

(
H′n,` ∩ F ′n,`

)
=

= dimH′n,` + dimF ′n,` ≤
{

3n− 1 if n < `,

n+ `− 1 + [(n+ `− 1)/2] if n ≥ `.
(29)

Comparing with Equation (28) shows that equality must hold in Equation (29).
This completes the proof of Parts (2) and (3) of the theorem for all n ≥ 4.
In degrees n = 1, 2, 3 we used the diagrams shown in Table (3) (possibly to-
gether with some additional circles S1) to determine dimF ′n,`.

n = 1 L1

n = 2 ω2, C2, L2

n = 3 ω3,Ω3 := ��������
, ω2#L1, T3, C3

Table 3: Diagrams used in low degrees

In the calculation we used the explicit formulas for the values of W so from the
proof of Lemma 9 together with W so(Ω3) = 2c(c − 1)(2 − c). The number of
linearly independent values coincides in all of these cases with the upper bound
for dimF ′n,` from Lemma 8 or with dim Ān,`. For ` ≥ 4 and a ∈ Ā3,3 we have

ord
(
W gl

(
L3 q S1q`−4

))
= `− 3 and ord

(
W gl

(
aq S1q`−3

))
≥ `− 2.

Together with Lemmas 8 and 13 this implies
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3 + 5− 2 ≥ dim(H′3,` + F ′3,`) ≥ dimF ′3,3 + 1 = 6

and therefore dim(H′3,` + F ′3,`) = 6 and dim(H′3,` ∩ F ′3,`) = 2 for ` ≥ 4. In the
cases n = 1, 2, and in the case n = 3 and ` < 4, we have dimH′n,` ≤ 2 and
obtain dim(H′n,` ∩ F ′n,`) = dimH′n,` by applying Lemma 13. This completes
the proof.

Corollary 2 can now be proven easily.

Proof of Corollary 2. Proposition 5, Lemma 13, and Part (3) of Theorem 1
imply

dim(span{r`n, y`n}) = dim(span{W (r`n),W (y`n)})
= min(dimH′n,`, 2) = min(dimHn,`, 2) = dim(Hn,` ∩ Fn,`).

By Proposition 4 we have r`n, y
`
n ∈ Hn,` ∩ Fn,`. This implies the statement

span{r`n, y`n} = Hn,` ∩ Fn,` of the corollary.

Using Theorem 1 and Proposition 12 we can also prove Theorem 3.

Proof of Theorem 3. By Proposition 12 we have

dim(H′n + F ′n)|Pn = bn :=

{
[n/2] n ≤ 3
n+ [n/2]− 4 n ≥ 4.

This implies that in the graded algebra A generated by
⊕∞

n=0(H′n + F ′n) we
find a subalgebra B ⊆ A which is a polynomial algebra with bn generators in
degree n. For n ≥ 4 we find by Equation (21) a nontrivial element w ∈ F ′n
lying in the algebra generated by

⊕n−1
n=1 F ′n. This shows that A is generated

by an elements in degree n with an := dim(H′n + F ′n)− 1 for n ≥ 4 and an :=
dim(H′n + F ′n) for n ≤ 3. By Theorem 1 we have an = bn. Now B ⊆ A
implies A = B. By Proposition 5 the isomorphism Z∗ maps A to the algebra
generated by

⊕∞
n=0(Hn + Fn). This completes the proof.
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[Vog] P. Vogel, Algebraic structures on modules of diagrams, Invent. Math.,
to appear.

Jens Lieberum
MSRI
1000 Centennial Drive
Berkeley, CA 94720-5070
USA
lieberum@msri.org

Documenta Mathematica 5 (2000) 275–299



300

Documenta Mathematica 5 (2000)



Documenta Math. 301

On the Inner Daniell-Stone

and Riesz Representation Theorems

Heinz König

Received: October 19, 1999

Revised: May 25, 2000

Communicated by Alfred K. Louis

Abstract. The paper deals with the context of the inner Daniell-
Stone and Riesz representation theorems, which arose within the new
development in measure and integration in the book 1997 and subse-
quent work of the author. The theorems extend the traditional ones,
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The extension enforces that the assertions attain different forms. The
present paper wants to exhibit special situations in which the theo-
rems retain their familiar appearance.
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In the recent book [3] on measure and integration (cited as MI) and in sub-
sequent papers [4]-[10] the present author attempted to restructure the area
of the basic extension and representation procedures and results, and to de-
velop the implications on various issues in measure and integration and beyond.
One main point was to extend the Riesz representation theorem in terms of
Radon measures on locally compact Hausdorff topological spaces, one of the
most famous and important theorems in abstract analysis, to arbitrary Haus-
dorff topological spaces. The resultant theorem in MI section 16 was a direct
specialization of the new inner type Daniell-Stone representation theorem in
terms of abstract measures in MI section 15. This is in quite some contrast to
the traditional situation, where the Daniell-Stone theorem does not furnish the
Riesz theorem.

However, the two new theorems look different from their traditional versions,
because of the inherent so-called tightness conditions. The conditions of this
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type came up in the characterization of Radon premeasures due to Kisyński
[2], and dominated the subsequent extension and representation theories ever
since. They are an unavoidable consequence of the transition from rings of
subsets to lattices, and from lattice subspaces of functions to lattice cones, a
transition which forms the basis of the theories in question. It is of course desir-
able to exhibit comprehensive special situations in which the relevant tightness
conditions become automatic facts, as it has been done in the second part of
MI section 7 in the extension theories for set functions.

The present paper wants to obtain some such situations. Section 1 recalls the
context. Then section 2 considers the Daniell-Stone theorem, while section 3
specializes to the Riesz theorem. At last the short section 4 uses the occasion
to comment on related recent work of Zakharov and Mikhalev [13]-[16].

1. Inner Preintegrals

We adopt the terms of MI but shall recall the less familiar ones. The extension
and representation theories in MI come in three parallel versions. They are
marked • = ?στ , where ? is to be read as finite, σ as sequential or countable,
and τ as nonsequential or arbitrary (or as the respective adverbs).

Let X be a nonvoid set. For a nonvoid set system S in X we define S• and
S• to consist of the unions and intersections of its nonvoid • subsystems. If
∅ ∈ S then for an isotone set function ϕ : S→ [0,∞] with ϕ(∅) = 0 we define
the outer and inner • envelopes ϕ•, ϕ• : P(X)→ [0,∞] to be

ϕ•(A) = inf{ sup
S∈M

ϕ(S) : M ⊂ S nonvoid • with M ↑⊃ A},

ϕ•(A) = sup{ inf
S∈M

ϕ(S) : M ⊂ S nonvoid • with M ↓⊂ A},

in the obvious terms of MI and with the usual convention inf ∅ := ∞. For a
nonvoid function class E ⊂ [0,∞]X on X we define E• and E• to consist of the
pointwise suprema and infima of its nonvoid • subclasses. If 0 ∈ E then for an
isotone functional I : E → [0,∞] with I(0) = 0 we define the outer and inner
• envelopes I•, I• : [0,∞]X → [0,∞] to be

I•(f) = inf{ sup
u∈M

I(u) : M ⊂ E nonvoid • with M ↑= f},

I•(f) = sup{ inf
u∈M

I(u) : M ⊂ E nonvoid • with M ↓5 f}.

In the sequel we restrict ourselves to the inner theories, but note that in MI
and in [7]-[9] the outer ones are presented as well. Also it is explained that
in some more abstract frame at least the outer and inner extension theories
for set functions are identical. For concrete purposes the inner approach turns
out to be the more important one. But this approach requires that one starts
with finite set functions ϕ : S → [0,∞[, and likewise with E ⊂ [0,∞[X and
I : E → [0,∞[.

Let S be a lattice in X with ∅ ∈ S and ϕ : S → [0,∞[ be isotone with
ϕ(∅) = 0. We define an inner • extension of ϕ to be an extension α : A→ [0,∞]
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of ϕ which is a content on a ring, such that also S• ⊂ A and

α is inner regular S• , and
α|S• is downward • continuous (which is void for • = ?).

Then we define ϕ to be an inner • premeasure iff it admits inner • extensions.
The inner • main theorem MI 6.31 characterizes those ϕ which are inner •
premeasures, and then describes all inner • extensions of ϕ. The theorem is
in terms of the inner • envelopes ϕ• of ϕ defined above and of their so-called
satellites, and with inner • tightness as the essential condition. We shall not
repeat the main theorem, as it has been done in [7] section 1 and [8] section 1,
but instead quote an implication which will be referred to in the sequel.

Recollection 1.1 (for • = στ). Let S be a lattice and A be a σ algebra in
X with ∅ ∈ S ⊂ S• ⊂ A ⊂ Aσ(S>S•) (where > denotes the transporter).
Then there is a one-to-one correspondence between the inner • premeasures
ϕ : S→ [0,∞[ and the measures α : A→ [0,∞] such that

α|S <∞ and hence α|S• <∞,
α is inner regular S•, and
α|S• is downward • continuous.

The correspondence is α = ϕ•|A and ϕ = α|S.

For the next step we recall from MI section 11 the integral of Choquet type
called the horizontal integral. Let S be a lattice in X with ∅ ∈ S. We form
the function classes

LM(S) : the f ∈ [0,∞]X such that [f > t] ∈ S for all t > 0,

UM(S) : the f ∈ [0,∞]X such that [f = t] ∈ S for all t > 0.

Let ϕ : S → [0,∞] be an isotone set function with ϕ(∅) = 0. We define the
integral

∫
−fdϕ ∈ [0,∞] with respect to ϕ

for f ∈ LM(S) to be
∫
−fdϕ =

→∞∫
0←

ϕ([f > t])dt,

for f ∈ UM(S) to be
∫
−fdϕ =

→∞∫
0←

ϕ([f = t])dt,

both times as an improper Riemann integral of a monotone function with values
in [0,∞]. It is well-defined since for f ∈ LM(S)∩UM(S) the two last integrals
are equal. If S is a σ algebra then LM(S) = UM(S) consists of the functions
f ∈ [0,∞]X which are measurable S in the usual sense, and in case of a measure
ϕ : S→ [0,∞] then

∫
−fdϕ is the usual integral

∫
fdϕ.

After this we introduce the class of functionals which are to be represented.
Let E ⊂ [0,∞[X be a lattice cone in the pointwise operations, which is meant
to include 0 ∈ E. We recall from [9] that the remainder of the present section
can be preserved even when E need not be stable under addition. We form the
set systems

t(E) := {A ⊂ X : χA ∈ E},
=(E) := {[f = t] : f ∈ E and t > 0},
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which are lattices with ∅ ∈ t(E) ⊂=(E). E is called Stonean iff f ∈ E ⇒ f ∧t,
f − f ∧ t = (f − t)+ ∈ E for all t > 0. We recall from MI 15.2 or [9] 3.2 that
for E Stonean

t(E•) = =(E•) = (=(E))• ⊃=(E) ⊃ t(E) for • = στ.

Next let I : E → [0,∞[ be an isotone and positive-linear functional, which
implies that I(0) = 0. We define the inner sources of I to be the isotone set
functions ϕ := (E) → [0,∞[ with ϕ(∅) = 0 which fulfil I(f) =

∫
−fdϕ for all

f ∈ E.
Then we define I to be an inner • preintegral if it admits inner sources which
are inner • premeasures. We note an immediate consequence of the above
1.1 which characterizes the inner • preintegrals via representation in terms of
certain measures.

Recollection 1.2 (for • = στ). Let E ⊂ [0,∞[X be a lattice cone and A be a σ
algebra in X with (=(E))• ⊂ A ⊂ Aσ

(
=(E)>(=(E))•

)
. Let I : E → [0,∞[ be

isotone and positive-linear. Then there is a one-to-one correspondence between
the inner sources ϕ : = (E) → [0,∞[ of I which are inner • premeasures, and
the measures α : A→ [0,∞] which fulfil I(f) =

∫
fdα for all f ∈ E and hence

α| =(E) <∞, and are such that

α is inner regular (=(E))•, and
α|(=(E))• is downward • continuous.

The correspondence is α = ϕ•|A and ϕ = α| =(E).

We come to the fundamental inner • Daniell-Stone theorem MI 15.9 (for
• = στ), which is an intrinsic characterization of the inner • preintegrals;
an extended version is [9] 5.8. The theorem is in terms of the inner • envelopes
I• of I defined above and of their satellites Iv• : [0,∞]X → [0,∞[ for v ∈ E,
defined to be

Iv• (f) = sup{ inf
u∈M

I(u) : M ⊂ E nonvoid • with M ↓5 f and u 5 v ∀u ∈M}.

Theorem 1.3 (for • = στ). Let E ⊂ [0,∞[X be a Stonean lattice cone and
I : E → [0,∞[ be isotone and positive-linear. Then the following are equivalent.

1) I is an inner • preintegral.
2) I is downward • continuous; and

I(v)− I(u) 5 I•(v − u) for all u 5 v in E.

3) I is • continuous at 0; and

I(v)− I(u) 5 Iv• (v − u) for all u 5 v in E.

In this case ϕ := I?(χ.)| = (E) is the unique inner source of I which is an
inner • premeasure. It fulfils ϕ• = I•(χ.), and even I•(f) =

∫
−fdϕ• for all

f ∈ [0,∞]X .

We conclude the section with another characterization of the inner • preinte-
grals. It is of interest because it relates this class to the simpler class of inner
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? premeasures. The proof does not depend on the above inner • Daniell-Stone
theorem, but uses some basic results from [9].

Theorem 1.4 (for • = στ). Let E ⊂ [0,∞[X be a Stonean lattice cone and
I : E → [0,∞[ be isotone and positive-linear. Then the following are equivalent.

1) I is an inner • preintegral.
2) I is • continuous at 0; and ϕ := I?(χ.)|=(E) is an inner • premeasure.
3) I is • continuous at 0; and φ := I?(χ.)|(=(E))• is an inner ? premeasure.

In this case I•(χ.) = ϕ• = φ?.

Proof. 1)⇒2) follows at once from [9] 4.2. 2)⇒1) From [9] 2.3 we see that I is
truncable in the sense of that paper. Then [9] 2.12 implies that ϕ is an inner
source of I . Thus I is an inner • preintegral.

1)2)⇒3) Let α : A → [0,∞] be an inner • extension of ϕ. i) From MI 6.18
we have α = ϕ•|A, and hence from MI 6.5.iii) that α|(= (E))• is downward
• continuous. ii) From [9] 4.2 we see that I is downward • continuous, and
hence from [9] 3.5.1.Inn)2.Inn) that I?|E• is downward • continuous. Because
of (= (E))• = t(E•) therefore φ = I?(χ.)|(= (E))• is downward • continuous.
iii) On = (E) we have α = ϕ• = ϕ = I?(χ.) = φ. Since α|(= (E))• and φ are
both downward • continuous by i)ii) it follows that α|(=(E))• = φ. Thus α is
an inner ? extension of φ, and hence φ is an inner ? premeasure.

3)⇒2) From [9] 3.6.3) we see that φ is • continuous at ∅, and hence from MI
6.31 that φ is an inner • premeasure. Now each inner • extension of φ is also
an inner • extension of ϕ. Therefore ϕ is an inner • premeasure.

It remains to prove I•(χ.) = ϕ• = φ? under 1)2)3). From [9] 4.2 we know
that I•(χ.) = ϕ•. Then ϕ• = φ? on (= (E))•, because from [9] 3.5.1.Inn) and
(= (E))• = t(E•) we have ϕ• = I•(χ.) = I?(χ.) = φ = φ?. Since both ϕ• and
φ? are inner regular (=(E))• it follows that ϕ• = φ? partout. �

2. The Inner Daniell-Stone Theorem

The present results will be for • = στ as before. We start with a consequence
of 1.3 which consists of two parts. The first part has an immediate proof.

Theorem 2.1. Let E ⊂ [0,∞[X be a Stonean lattice cone. 1) Assume that
v − u ∈ E• for all u 5 v in E. Then an isotone and positive-linear functional
I : E → [0,∞[ is an inner • preintegral iff it is • continuous at 0.
2) Assume that v−u ∈ (E•)σ for all u 5 v in E. Then an isotone and positive-
linear functional I : E → [0,∞[ is an inner • preintegral iff it is • continuous
at 0 and upward σ continuous.

A special case of 1) is the situation that v − u ∈ E for all u 5 v in E. After
MI 14.6-7 it is equivalent to assume that E = H+ for the Stonean lattice
subspace H = E − E ⊂ RX (Stonean in the usual sense). So this special
case furnishes the traditional Daniell-Stone theorem in the versions • = στ .
However, unlike the present procedure the traditional proofs do not lead to
measures α : A → [0,∞] with I(f) =

∫
fdα for all f ∈ E which have the
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fundamental additional inner properties recorded in 1.2 above. The reason
is that those proofs are based on outer procedures. In order to arrive at the
present inner type entities one has to mount the so-called essential construction
on top of them. This is a formidable detour. We have clarified all this in [7]
section 5.

Proof of 1). To be shown is that the assumption implies the tightness condition
in 1.3.3). Fix u 5 v in E, and let M ⊂ E be nonvoid • with M ↓ v − u and
h 5 v for all h ∈M . For h ∈M then h = v − u and hence I(h) = I(v)− I(u).
It follows that I(v)− I(u) 5 inf{I(h) : h ∈M} 5 Iv• (v − u). �

Proof of 2). We show that the assumption combined with I upward σ con-
tinuous implies the tightness condition in 1.3.3). Fix u 5 v in E, and then a
sequence (fl)l in E• with fl ↑ v−u. i) For each l ∈ N there exists an M(l) ⊂ E
nonvoid • such that M(l) ↓ fl and h 5 v for all h ∈ M(l). We note that then
the

N(l) := {h1 ∨ · · · ∨ hl : hk ∈M(k) for k = 1, · · · , l} ⊂ E for l ∈ N

do the same. Thus we can assume that for each g ∈ M(l + 1) there is an
f ∈ M(l) such that f 5 g. ii) Now fix ε > 0, and then ul ∈ M(l) for l ∈ N
such that

I(ul) 5 cl +
ε

2l
with cl := inf{I(h) : h ∈M(l)}.

Then the vl := u1 ∨ · · · ∨ ul ∈ E fulfil vl = ul = fl and hence vl ↑= v − u. We
show via induction that

I(vl) 5 cl + ε
(
1− 1

2l
)

for l ∈ N.

The case l = 1 is clear. For the induction step 1 5 l ⇒ l + 1 we note from i)
that vl ∧ul+1 = ul ∧ul+1 is = some member of M(l), so that I(vl ∧ul+1) = cl.
Thus from vl+1 + vl ∧ ul+1 = vl + ul+1 it follows that

I(vl+1) = I(vl) + I(ul+1)− I(vl ∧ ul+1)

5 cl + ε
(
1− 1

2l
) + cl+1 +

ε

2l+1
− cl = cl+1 + ε

(
1− 1

2l+1

)
.

iii) From ii) we obtain on the one hand cl 5 Iv• (v − u) and hence lim
l→∞

I(vl) 5

Iv• (v − u) + ε. On the other hand (u+ vl) ∧ v ↑ v because v = (u + vl) ∧ v =
(u+ fl) ∧ v = u+ fl ↑ v, and hence

I(u) + lim
l→∞

I(vl) = lim
l→∞

I((u+ vl) ∧ v) = I(v).

It follows that I(v)− I(u) 5 Iv• (v − u). �

In 2.1.2) the condition that I be upward σ continuous cannot be dispensed
with. This will be seen after 3.10 below.

In the sequel we shall exhibit a class of Stonean lattice cones E ⊂ [0,∞[X for
which the assumption of 2.1.2) is fulfilled. We need some preparations.

Let S be a lattice in X with ∅ ∈ S. We define S(S) to consist of the positive-
linear combinations of the characteristic functions χS of the S ∈ S. We know
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from MI 11.4 that S(S) consists of the functions X → [0,∞[ with finite value
set which are in LM(S), and the same with UM(S). We define f ∈ [0,∞]X

to be enclosable S iff f 5 u for some u ∈ S(S). This means of course that
f be < ∞ and bounded above, and = 0 outside some member of S. At last
we define LMo(S) and UMo(S) to consist of those members of LM(S) and
UM(S) which are enclosable S.

After this we recall the assertion MI 22.1 on monotone approximation: For
each f ∈ LM(S) ∪ UM(S) there exists a sequence (fn)n in S(S) such that
fn ↑ f pointwise, and in supnorm on [f 5 c] for each 0 < c < ∞. We shall
need the counterpart for downward monotone approximation.

Lemma 2.2. For each f ∈ LMo(S) ∪UMo(S) there exists a sequence (fn)n in
S(S) such that fn ↓ f pointwise and in supnorm.

Proof. Assume that f 5 c with 0 < c < ∞ and that f = 0 outside S ∈ S.
For the subdivision t : 0 = t(0) < t(1) < · · · < t(r) = c we form δ(t) =
max{t(l)− t(l − 1) : l = 1, · · · , r}. We define ut ∈ S(S) to be

ut =
r

Σ
l=1

(t(l)− t(l − 1))χ[f>t(l)] when f ∈ LMo(S),

ut =
r

Σ
l=1

(t(l)− t(l − 1))χ[f=t(l)] when f ∈ UMo(S),

and vt ∈ S(S) to be

vt =
r

Σ
l=1

(t(l)− t(l − 1))χ[f>t(l−1)][∗] when f ∈ LMo(S),

vt =
r

Σ
l=1

(t(l)− t(l − 1))χ[f=t(l−1)][∗] when f ∈ UMo(S),

where [∗] is to mean that for l = 1 one has to take S instead of [f > 0] when
f ∈ LMo(S) and instead of [f = 0] when f ∈ UMo(S). From the basic lemma
MI 11.6 one verifies that ut 5 f 5 vt and vt 5 ut + δ(t)χA, and moreover
that t 7→ ut is isotone and t 7→ vt is antitone with respect to refinement in t.
Now take for n ∈ N the subdivision t : t(l) = cl2−n for l = 0, 1, · · · , 2n with
δ(t) = c2−n. Then the assertions are all clear. �

The final preparation will be on the monotone approximation of differences.

Lemma 2.3. Let S and K be lattices in X with ∅ ∈ S ⊂ K such that B\A ∈ Kσ

for all A ⊂ B in S. Then for each pair of functions u 5 v <∞ in UM(S) there
exists a sequence (fn)n of functions in S(K) enclosable S such that fn ↑ v−u.
Proof. The first part of the proof assumes that u 5 v 5 c with 0 < c <∞ and
that v = 0 outside some S ∈ S. 1) We fix t : 0 = t(0) < t(1) < · · · < t(r) = c
with δ(t) = max{t(l)− t(l−1) : l = 1, · · · , r} as before and define ut, vt ∈ S(S)
to be

ut =
r

Σ
l=1

(t(l)− t(l − 1))χ[u=t(l)],

vt =
r

Σ
l=1

(t(l)− t(l − 1))χ[v=t(l)],
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so that ut 5 vt are = 0 outside S. From MI 11.6 we have ut 5 u 5 ut + δ(t)χS
and vt 5 v 5 vt + δ(t)χS , and hence

v − u = vt − ut − δ(t)χS = v − u− 2δ(t)χS ,

v − u = (vt − ut − δ(t)χS)+ = (vt − ut − δ(t))+ = v − u− 2δ(t)χS .

2) For fixed l = 1, · · · , r there is a sequence (K(l, n))n in K such that K(l, n) ↑
[v = t(l)] \ [u = t(l)]. We form the functions

hn :=
r

Σ
l=1

(t(l)− t(l − 1))χK(l,n) ∈ S(K) for n ∈ N,

so that hn = 0 outside S. Then hn ↑ vt − ut. Therefore the functions gn :=
(fn − δ(t))+ ∈ S(K) are = 0 outside S as well, and gn ↑ (vt − ut − δ(t))+ =: g
with v − u = g = v − u − 2δ(t)χS . 3) From 1)2) we obtain for each l ∈ N
a sequence (gln)n in S(K) with gln = 0 outside S such that gln ↑ some gl with
v − u = gl = v − u− 1

l χS . We define fn := g1
n ∨ · · · ∨ gnn ∈ S(K) for n ∈ N, so

that fn = 0 outside S. Then fn ↑ some f 5 v − u. From fn = gln for n = l
we obtain f = gl = v − u− 1

l χS for l ∈ N. Therefore f = v − u. 4) Thus the
result of the first part is a sequence (fn)n in S(K) with fn = 0 outside S such
that fn ↑ v − u.
The second part of the proof will obtain the full assertion. Thus let u 5 v <∞
in UM(S). We fix a pair of numerical sequences 0 < al < bl < ∞ with al ↓ 0
and bl ↑ ∞. We form

ul := (u− al)+ ∧ (bl − al) and vl := (v − al)+ ∧ (bl − al),
so that ul, vl ∈ UM(S) with ul 5 vl 5 bl − al which are = 0 outside [v = al].
1) We claim that vl − ul 5 vl+1 − ul+1, which can also be written ul+1 − ul 5
vl+1 − vl. Thus the claim is that the function ϑ : [0,∞[→ R, defined to be

ϑ(x) = (x− al+1)
+ ∧ (bl+1 − al+1)− (x− al)+ ∧ (bl − al) for 0 5 x <∞,

is monotone increasing. To see this note that 0 < al+1 5 al < bl 5 bl+1 < ∞.
Since ϑ is continuous it remains to show that it is monotone increasing in each
of the closed subintervals of [0,∞[ thus produced. Now one verifies that

on [0, al+1] : ϑ(x) = 0,

on [al+1, al] : ϑ(x) = x− al+1,

on [al, bl] : ϑ(x) = al − al+1,

on [bl, bl+1] : ϑ(x) = x− al+1 − bl + al,

on [bl+1,∞[ : ϑ(x) = bl+1 − al+1 − bl + al.

Thus the assertion follows. 2) From the first part of the proof we obtain for
each fixed l ∈ N a sequence (f ln)n in S(K) with f ln = 0 outside [v = al] such
that f ln ↑ vl−ul. We define fn := f1

n∨· · ·∨fnn ∈ S(K) for n ∈ N, so that fn = 0
outside [v = an]. Then fn ↑ some f ∈ [0,∞]X . We claim that f = v−u, which
will complete the proof. From 1) we see that vl − ul ↑ v − u. Thus on the one
hand fn 5 (v1 − u1) ∨ · · · ∨ (vn − un) = vn − un and hence f 5 v − u. On the
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other hand fn = f ln for n = l and hence f = vl−ul for l ∈ N, so that f = v−u.
The assertion follows. �

Combination 2.4. Let E ⊂ [0,∞[X be a Stonean lattice cone and S be a
lattice in X with = (E) ⊂ S ⊂= (E•). Then 1) S• = = (E•) and UMo(S•) ⊂
E• ⊂ UM(S•). 2) Assume that B \ A ∈ (S•)σ for all A ⊂ B in S. Then
v − u ∈ (E•)σ for all u 5 v in E.

Proof. 1) We know that t(E•) = = (E•) = (= (E))•. Therefore S• ⊂= (E•) =
t(E•), that is χT ∈ E• for all T ∈ S•. Since E• is a cone it follows that
S(S•) ⊂ E•. Thus 2.2 implies that UMo(S•) ⊂ E•. In the other direction
= (E) ⊂ S implies that = (E•) = (= (E))• ⊂ S• or E• ⊂ UM(S•). 2) For
u 5 v in E ⊂ UM(S) we obtain from 2.3 a sequence (fn)n in S(S•) ⊂ E• such
that fn ↑ v − u. Thus v − u ∈ (E•)σ . �

We combine 2.4.2) with the above 2.1.2) to obtain the other main result of the
present section.

Theorem 2.5. Let E ⊂ [0,∞[X be a Stonean lattice cone and S be a lattice
in X with =(E) ⊂ S ⊂=(E•). Assume that S satisfies B \A ∈ (S•)σ for all
A ⊂ B in S. Then an isotone and positive-linear functional I : E → [0,∞[ is
an inner • preintegral iff it is • continuous at 0 and upward σ continuous.

3. The Riesz Representation Theorem

The present section assumes a Hausdorff topological space X with its obvious
set systems Op(X) and Cl(X), Comp(X) =: K and its σ algebra Bor(X) =: B.
We start with a little historical sketch on Radon measures.

A Borel measure α : B → [0,∞] is called Radon iff α|K < ∞ and α is inner
regular K. When in particular X is locally compact then all these measures
are locally finite in the obvious sense. There is a related notion, which in
earlier presentations sometimes even cut out the present one. Let a Borel
measure β : B → [0,∞] be called associate Radon iff β|K < ∞ and β is
inner regular K at Op(X) and outer regular Op(X). Then Schwartz [12] pp.12-
15 established a one-to-one correspondence between the locally finite Radon
measures α : B → [0,∞] and the associate Radon measures β : B → [0,∞],
which is unique both under α|K = β|K and under α|Op(X) = β|Op(X). Thus
he was led to include local finiteness in the definition of Radon measures, but
this could be abandoned since.

After this a set function φ : K → [0,∞[ is called a Radon premeasure iff it
can be extended to some Radon measure, and then of course to the unique
one α := φ?|B. It is an obvious problem to characterize those set functions
φ : K → [0,∞[ which are Radon premeasures. There appeared two such char-
acterizations at about the same time, in 1968 in Kisyński [2] and in 1969 in
Bourbaki [1] section 3 théorème 1 p.43 (the latter restricted to local finiteness).

Kisyński Theorem 3.1. For an isotone set function φ : K → [0,∞[ the
following are equivalent. 1) φ is a Radon premeasure. 2) φ is supermodular
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with φ(∅) = 0; and

φ(B) − φ(A) 5 φ?(B \A) for all A ⊂ B in K.

Bourbaki Theorem 3.2. For an isotone set function φ : K → [0,∞[ the fol-
lowing are equivalent. 1) φ is a Radon premeasure. 2) φ(A∪B) 5 φ(A)+φ(B)
for all A,B ∈ K, with = when A ∩B = ∅; and φ is downward τ continuous.

These two characterizations are so different that they must come from different
conceptions. In fact, it turned out that Kisyński had captured the adequate
concept in order to prepare the transition from topological to abstract measure
and integration, which then started in no time as described in the introduction
to MI. At present the above 3.1 is contained in MI 9.1, which is a simple
consequence of the inner • main theorem MI 6.31. Moreover MI 9.1 asserts for
each • = ?στ that φ : K → [0,∞[ is a Radon premeasure iff it is an inner •
premeasure, and that in this case all three φ• are equal. The reason for this
coincidence are the two properties of the lattice K that K = Kτ and that K is
τ compact (recall that a set system in an abstract set is called • compact iff
each of its nonvoid • subsystems M with M ↓ ∅ has ∅ ∈M).

Then in 3.2 the implication 1)⇒2) is contained in the inherent fact that the
inner τ premeasures are downward τ continuous. However, the implication
2)⇒1) and thus the characterization asserted in 3.2 appears to be limited to
the topological context in the strict sense. The remark below wants to serve as
an illustration.

Remark 3.3. Let S be a lattice in an abstract set with ∅ ∈ S which fulfils S =
Sτ and is τ compact. Let φ : S→ [0,∞[ be isotone and modular with φ(∅) = 0,
and downward τ continuous. Then φ need not be an inner • premeasure for
any • = ?στ . Our example is the simplest possible one: Let X have more than
one element, and fix an a ∈ X . Define S to consist of ∅ and of the finite S ⊂ X
with a ∈ S. Then let φ : S → [0,∞[ be φ(∅) = 0 and φ(S) = #(A \ {a})
for the other S ∈ S. It is obvious that S and φ are as required. Moreover
φ?(A) = 0 when a 6∈ A and φ?(A) = #(A \ {a}) when a ∈ A. Now assume
that α : A→ [0,∞] is an extension of φ which is a content on a ring and inner
regular S. Thus α = φ?|A. For all A ∈ S with a ∈ A then

φ(A) = α(A) = α({a}) + α(A \ {a}) = φ?({a}) + φ?(A \ {a}) = 0,

which is a contradiction. �

After this excursion we turn to the Riesz representation theorem as obtained
in MI section 16, not without notice that the extension of the inner • Daniell-
Stone theorem in [9] 5.8 produces of course an extended Riesz theorem. But
for the present issue this would not contribute much.

Let E ⊂ [0,∞[X be a lattice cone. Since we want to represent our functionals
on E in terms of Radon measures, it is adequate after 1.2 to assume that E
satisfies (= (E))• = K for some • = στ . In particular then = (E) ⊂ K, so that
the members of E are upper semicontinuous and bounded above. Since the
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traditional Riesz theorem is for the lattice subspace CK(X) of the continuous
functions X → R which vanish outside certain compact subsets of X , that is for
the lattice cone CK+(X), it is adequate to assume that E be ⊂ USCK+(X),
defined to consist of the upper semicontinuous functions X → [0,∞[ which
vanish outside certain compact subsets of X . In the previous notation we have
USCK+(X) = UMo(K). Henceforth the lattice cones E ⊂ USCK+(X) with
(=(E))• = K will be called • rich; it will become clear that the situation • = τ
is the more important one. From 2.4.1) one obtains the remark below.

Remark 3.4. If E ⊂ USCK+(X) is a • rich Stonean lattice cone then E• =
USCK+(X).

Examples 3.5. 1) The lattice cone E = CK+(X) is τ rich iff X is locally
compact. This is a standard fact; see for example MI 16.3. 2) If the lattice
cone E ⊂ USCK+(X) satisfies S ⊂ = (E•) for some lattice S in X with
∅ ∈ S ⊂ S• = K then E is • rich. In fact,we have S ⊂=(E•) = (=(E))• ⊂ K.

In the sequel let E ⊂ USCK+(X) be a • rich lattice cone. We define an isotone
and positive-linear functional I : E → [0,∞[ to be a Radon preintegral iff there
exists a Radon measure α : B → [0,∞] such that I(f) =

∫
fdα for all f ∈ E.

Equivalent is of course that there exists a Radon premeasure φ : K → [0,∞[
such that I(f) =

∫
−fdφ for all f ∈ E, and these α and φ correspond to each

other via α = φ?|B and φ = α|K.

We turn to the connection with the previous representation theories. We start
with 1.2, where A can be chosen to be B.

Proposition 3.6 (for • = στ). Let E ⊂ USCK+(X) be a • rich lattice cone
and I : E → [0,∞[ be isotone and positive-linear. Then I is a Radon preintegral
iff it is an inner • preintegral. In this case the inner sources ϕ :=(E)→ [0,∞[
of I which are inner • premeasures correspond to the above α and φ via ϕ =
α| =(E) = φ| =(E), and α = ϕ•|B and φ = ϕ?|K = ϕ•|K.

If in particular E is Stonean then first of all the Dini consequence MI 16.4
asserts that all these I : E → [0,∞[ are τ continuous at 0. Thus 1.3 and 1.4
furnish the Riesz representation theorem in the version which follows.

Theorem 3.7 (for • = στ). Let E ⊂ USCK+(X) be a • rich Stonean lattice
cone and I : E → [0,∞[ be isotone and positive-linear. Then the following are
equivalent. 1) I is a Radon preintegral.

2) I is an inner • preintegral.
3) I(v)− I(u) 5 Iv• (v − u) for all u 5 v in E.
4) ϕ := I?(χ.)| =(E) is an inner • premeasure.
5) φ := I?(χ.)|K is a Radon premeasure.

In this case ϕ is the unique inner source of I which is an inner • premea-
sure, and φ is the unique Radon premeasure which represents I; likewise
α := I•(χ.)|B is the unique Radon measure which represents I. We have
I•(χ.) = ϕ• = φ? = α?.
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Our ultimate aim is the specialization of 2.1 and 2.5. We have • = στ as before,
but this time the case • = σ is contained in • = τ .

Theorem 3.8. Let E ⊂ USCK+(X) be a τ rich Stonean lattice cone. 1)
Assume that v − u ∈ USCK+(X) for all u 5 v in E. Then each isotone and
positive-linear I : E → [0,∞[ is a Radon preintegral.

2) Assume that v − u ∈ (USCK+(X))σ for all u 5 v in E. Then an isotone
and positive-linear I : E → [0,∞[ is a Radon preintegral iff it is upward σ
continuous.

In view of 3.5.1) the first assertion 3.8.1) contains the traditional Riesz rep-
resentation theorem. Thus we have the traditional Daniell-Stone and Riesz
theorems both under the same roof (and at the same time, as pointed out after
2.1, the former one enriched to a usable assertion).

Theorem 3.9. Let S be a lattice in X with ∅ ∈ S ⊂ Sτ = K and E ⊂
UMo(S) ⊂ USCK+(X) be a τ rich Stonean lattice cone. Assume that B \
A ∈ Kσ for all A ⊂ B in S. Then an isotone and positive-linear functional
I : E → [0,∞[ is a Radon preintegral iff it is upward σ continuous.

Proof. We have in fact = (E) ⊂ S ⊂= (Eτ ). Thus the assertion follows from
2.5, and likewise from 3.8.2) and hence from 2.1.2) via 2.4.2). �

We conclude with two illustrative examples, in that we specialize 3.9 to S := K

and to S := K ∩ (Op(X))σ (=:the compact Gδ subsets).

Example 3.10. Assume that B \ A ∈ Kσ for all A ⊂ B in K, that is that K is
upward σ full in the sense of MI section 7. Let E ⊂ USCK+(X) be a τ rich
Stonean lattice cone; in particular one can take E = USCK+(X) itself. Then
an isotone and positive-linear I : E → [0,∞[ is a Radon preintegral iff it is
upward σ continuous.

We turn to the counterexample announced after 2.1. As before assume that
B \ A ∈ Kσ for all A ⊂ B in K. Consider an isotone and modular set function
φ : K → [0,∞[ with φ(∅) = 0 which is not a Radon premeasure; there is an
example with X = [0, 1] in [10] 1.4. In view of MI 11.11 then I(f) =

∫
−fdφ for

all f ∈ E = USCK+(X) defines an isotone and positive-linear I : E → [0,∞[
which is not a Radon preintegral. Thus we see that in 3.9 and 2.5, and likewise
in 3.8.2) and 2.1.2), the condition that I be upward σ continuous cannot be
dispensed with.

Example 3.11. Assume that the lattice S = K ∩ (Op(X))σ fulfils Sτ = K.
Let E ⊂ UMo(S) ⊂ USCK+(X) be a τ rich Stonean lattice cone; in particular
one can take E = UMo(S) itself in view of MI 11.1.3). Then an isotone
and positive-linear I : E → [0,∞[ is a Radon preintegral iff it is upward σ
continuous.

4. Comparison with Another Approach

The present final section wants to relate the previous one to recent work of Za-
kharov and Mikhalev [13]-[16]; see also the conference abstracts [11][17]. This
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work has the aim to transfer one basic feature within the Riesz representation
theorem to arbitrary Hausdorff topological spaces. It does in fact not even
contain the Riesz theorem itself, but rather wants, in the words of the authors,
to find a class of linear functionals which via integration is in one-to-one cor-
respondence with the class of Radon measures on the space. Nonetheless this
less ambitious aim is called the General Riesz-Radon problem.

We retain the terms of the last section. The approach of the authors is via
the simple lattice cone S(K), but in terms of a certain lattice subspace. For a
lattice S in X with ∅ ∈ S define D(S) := S(S) − S(S), that is to consist of
the real-linear combinations of the χS for S ∈ S. We form the supnorm closure
H(X) := D(Cl(X)) in the space of all (Borel measurable) bounded functions
X → R. The members of H(X) are the metasemicontinuous functions in
the sense of the papers under view; but the definition of the authors is more
complicated and involves the so-called Aleksandrov set system. Then define
K(X) ⊂ H(X) to consist of the members of H(X) which vanish outside certain
compact subsets of X . H(X) and K(X) are lattice subspaces. With the
K(A) := {K ∈ K : K ⊂ A} for A ∈ K one has

S(K) ⊂ D(K) ⊂ K(X) =
⋃

A∈K

D(K(A)) ⊂ H(X).

The authors consider the isotone and linear functionals I : K(X) → R. We
continue with our own reconstruction. From an obvious manipulation combined
with the old Kisyński theorem 3.1 we obtain the assertion which follows.

Assertion 4.1. Let I : K(X) → R be isotone and linear. Then there exists
a Radon measure α : B → [0,∞] such that I(f) =

∫
fdα for all f ∈ K(X)

(and hence of course a unique one) iff the set function φ := I(χ.)|K is a Radon
premeasure. In view of the Kisyński theorem 3.1 this means that

I(χB\A) 5 sup{I(χK) : K ∈ K with K ⊂ B \A} for all A ⊂ B in K.

Proof. 1) For fixed A ∈ K the restriction I |D(K(A)) is an isotone linear func-

tional on the linear subspace D(K(A)) ⊂ K(X). One has χA ∈ D(K(A)). For

f ∈ D(K(A)) therefore |f | 5 ‖f‖χA implies that |I(f)| 5 ‖f‖I(χA). Thus

I |D(K(A)) is supnorm continuous. 2) Let α : B→ [0,∞] be a Radon measure.
The relation I(f) =

∫
fdα for all f ∈ K(X) means that for each fixed A ∈ K

one has I(f) =
∫
fdα for all f ∈ D(K(A)), that is after 1) for all f ∈ D(K(A)),

that is for all f ∈ S(K(A)). Thus one ends up with I(f) =
∫
fdα for all

f ∈ S(K), which says that φ(K) := I(χK) = α(K) for all K ∈ K. �

After this one notes with surprise that Zakharov-Mikhalev [13]-[16] did not
characterize the representable functionals I : K(X)→ R by the simple Kisyński
type condition of 4.1, but by means of a much more complicated equivalent
condition. In fact, their condition consists of the two parts
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1) I is σ continuous under monotone pointwise convergence; and
2) each sequence (A(l))l in R(K) which decreases A(l) ↓ A ⊂ X satisfies

lim
l→∞

I(χA(l)) 5 sup{I(χK) : K ∈ K with K ⊂ A},

once more in simplified form, with R(K) the ring generated by K.

The comparison with 4.1 makes clear that this equivalent condition is inade-
quate in depth in both parts.

This adds to the fact that the basic set-up in the papers under view, that is
the limitation to S(K) ⊂ D(K) ⊂ K(X), appears to be much too narrow. Thus
one more surprise is the sheer extent of the papers. To be sure, there are other
conclusions, but the equivalence described above forms their central result.
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1 Introduction

Let G be a reductive group over a number field F and H the fixed point set
of an involution θ of G. The period of a cusp form φ on G is defined as the
integral

ΠH(φ) =

∫

H(F )\(H(A)∩G(A)1)

φ(h) dh,

known to converge by [AGR]. Recall that a cuspidal representation π = ⊗πv
of G is said to be distinguished by H if there exists an element φ in the space
Vπ of π such that ΠH(φ) 6= 0. It is known in some cases that the period
factors as a product of local Hv-invariant functionals, even when there is no
local uniqueness for such functionals (cf. [J2]), and that it is related to special

1Supported by NSF Grant DMS 97-29992
2Partially supported by NSF Grant 9700950
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values of L-functions. Periods of more general automorphic forms, such as an
Eisenstein series, are also of interest. Although the above integral need not
converge, it should be possible to regularize it, as has been carried out in [JLR]
and [LR] when (G,H) is a Galois pair, i.e., when H is the fixed point set of
a Galois involution on G. The regularized period of cuspidal Eisenstein series
was computed for the pair (GL(n)E , GL(n)F ) in [JLR]. It is either identically
zero or can be expressed as a ratio of Asai L-functions (up to finitely many
local factors at the ramified places). In general, however, the result will be
more complicated.

In this paper we study the pair (GL(3)E , U(3)) in detail in order to illustrate
some phenomena which are likely to appear in the general case. Our goal is
two-fold. First, we introduce a stabilization procedure to express the period
of an Eisenstein series induced from a Borel subgroup as a sum of terms, each
of which is factorizable with local factors given almost everywhere by ratios
of L-factors. This is reminiscent of the procedure carried out in [LL] for the
usual trace formula. Second, we define a stable version of the relative Bessel
distributions occurring in the relative trace formula developed by Jacquet-Ye.
We then use the comparison of trace formulae carried out in [JY] to prove
some identities between our stable relative Bessel distributions on GL(3)E and
Bessel distributions on GL(3)F .

The main motivation for this work comes form the relative trace formula (RTF),
introduced by Jacquet to study distinguished representations. One expects in
general that the distinguished representations are precisely those in the image
of a functorial lifting from a group G′ determined by the pair (G,H). For
example, G′ is GL(n)F for the pair (GL(n)E , U(n)). To that end one compares
the RTF for G with the Kuznetzov trace formula (KTF) for G′. This was
first carried out in [Y] for the group GL(2). The cuspidal contribution to the
RTF appears directly as sum of relative Bessel distributions (defined below)
attached to distinguished representations of G. It should match term by term
with the corresponding sum in the KTF of Bessel distributions attached to
cuspidal representations of G′. Examples ([J1], [JY], [GJR]) suggest that the
contribution of the continuous spectrum of G can also be written as integrals
of relative Bessel distributions built out of regularized periods of Eisenstein
series. However, these terms cannot be matched up with the continuous part
of the KTF directly. Rather, as we show in our special case, the matching can
be carried out using the stable relative Bessel distributions.

We now describe our results in greater detail. Assume from now on that (G,H)
is a Galois pair, that is G = ResE/FH where E/F is a quadratic extension and
θ is the involution induced by the Galois conjugation of E/F . We also assume
that H is quasi-split. By abuse of notation, we treat G as a group over E,
identifying it with HE . The regularized period of an automorphic form φ,
also denoted ΠH(φ), can be defined using a certain truncation operator ΛTmφ
depending on a parameter T in the positive Weyl chamber. For T sufficiently
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regular, the integral
∫

H(F )Z\H(A)

ΛTmφ(h) dh

is a polynomial exponential function of T , i.e., it has the form
∑
pj(T )e〈λj ,T 〉

for certain polynomials pj and exponents λj . Under some restrictions on the
exponents of φ, the polynomial p0(T ) is constant and ΠH(φ) is defined to be
its value.
When φ = E(ϕ, λ) is a cuspidal Eisenstein series, ΠH(φ) can be expressed in
terms of certain linear functionals J(η, ϕ, λ) called intertwining periods ([JLR],
[LR]). To describe this, consider for simplicity the case of an Eisenstein series
induced from the Borel subgroup B = TN . We assume that B, T and N are
θ-stable. Given a character χ of T (E)\T (AE), trivial on Z(AE), and λ in the
complex vector space a∗0,C spanned by the roots of G, the Eisenstein series

E(g, ϕ, λ) =
∑

γ∈B(E)\G(E)

ϕ(γg) e〈λ,H(γg)〉

converges for Reλ sufficiently positive. Here, as usual, ϕ : G(A) → C is a

smooth function such that ϕ(bg) = δB(b)
1
2χ(b)ϕ(g). According to a result of

T. Springer [S], each double coset in B(E)\G(E)/H(F ) has a representative
η such that ηθ(η)−1 lies in the normalizer NG(T ) of T . Denoting the class of
ηθ(η)−1 in the Weyl group W by

[
ηθ(η)−1

]
, we obtain a natural map

ι : B(E)\G(E)/H(F ) → W

sending B(E)ηH(F ) to
[
η θ(η)−1

]
. For such η, set

Hη = H ∩ η−1Bη.

The intertwining period attached to η is the integral

J(η, ϕ, λ) =

∫

Hη(AF )\H(AF )

e〈λ,H(ηh)〉 ϕ(ηh) dh

where dh is a semi-invariant measure on the quotient Hη(AF )\H(AF ). The
result of [LR] alluded to above is that for suitable χ and λ the integral defining
J(η, λ, ϕ) converges and that

ΠH(E(ϕ, λ)) = δθ · c ·
∑

ι(η)=w

J(η, ϕ, λ) (1)

where w is the longest element inW and c = vol(Hη(F )Z(AF )\Hη(AF )). Here,
δθ is 1 if θ acts on a∗0 as −w and it is 0 otherwise.
If G = GL(2)E and H = GL(2)F , ι−1(w) consists of a single coset B(E)ηH(F )
and ΠH (E(ϕ, λ)) is either zero or proportional to J(η, ϕ, λ). More generally, if
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G = GL(n)E and H = GL(n)F , the regularized period of a cuspidal Eisenstein
series is either zero or is proportional to a single intertwining period. This
intertwining period factors as a product of local integrals which are equal al-
most everywhere to a certain ratio of Asai L-functions ([JLR]). For general
groups, however, the sum in (1) is infinite and ΠH(E(ϕ, λ)) cannot be ex-
pressed directly in terms of L-functions. This occurs already for G = SL(2)E
and H = SL(2)F . This is related to the fact that base change is not necessarily
one-to-one for induced representations. See [J2] for a discussion of the relation
between non-uniqueness of localH-invariant functionals and the non-injectivity
of base change for the pair (GL(3)E , U(3)).

For the rest of this paper, let G = GL(3)E , G′ = GL(3)F , and let H = U(3) be
the quasi-split unitary group in three variables relative to a quadratic extension
E/F and the Hermitian form

Φ =




0 0 −1
0 −1 0
−1 0 0




Let T and T ′ be the diagonal subgroups of G and G′, respectively, and Nm :
T → T ′ the norm mapping. We shall fix a unitary character χ of T (AE)
which is a base change lifting with respect to Nm of a unitary character of
T ′(F )Z ′(AF )\T ′(AF ). We write B(χ) = {ν} for the set of four characters of
T ′(F )Z ′(AF )\T ′(AF ) such that χ = ν ◦ Nm. The stable intertwining periods
Jst(ν, ϕ, λ) are defined in §8. Each functional Jst(ν, ϕ, λ) is factorizable and
invariant under H(Af ) where Af is the ring of finite adeles. Our first main
result is that with a suitable normalization of measures, we have the following

Theorem 1.

ΠH(E(ϕ, λ)) =
∑

ν∈B(χ)

Jst(ν, ϕ, λ)

In particular, this expresses the left-hand side as a sum of factorizable distri-
butions.

In Proposition 3, §7, we show that the local factors at the unramified places
are given by ratios of L-functions. This is done by a lengthy calculation which
can fortunately be handled using Mathematica. Hence we obtain a description
of ΠH(E(ϕ, λ)) in terms of L-functions.

We now describe our results on Bessel distributions. In general, if (π, V ) is a
unitary admissible representation of G(A) and L1, L2 ∈ V ∗ are linear function-
als, we may define a distribution on the space of compactly-supported, K-finite
functions by the formula

O(f) =
∑

{φ}
L1(π(f)φ) L2(φ)
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where {φ} is an orthonormal basis of V consisting of K-finite vectors. The sum
is then finite and O is independent of the choice of basis. The distributions oc-
curring in the KTF and RTF are all of this type. They are referred to as Bessel
distributions and relative Bessel distributions in the two cases, respectively.
In this paper, the representations of G and G′ that we consider are all assumed
to have trivial central character. Correspondingly we will consider factorizable
functions f =

∏
fv (resp. f ′ =

∏
f ′v) on G(AE) (resp. G′(A)) of the usual type

such that fv (resp. f ′v) is invariant under the center Zv (resp. Z ′v) of Gv (resp.
G′v) for all v. In particular, we define π(f) =

∫
G(E)Z(E)\G(AE)

f(g)π(g)dg and

similarly for π′(f ′). The relative Bessel distribution attached to a cuspidal
representation (π, Vπ) of G is defined by

B̃(f, π) =
∑

{φ}
ΠH (π(f)φ) W(φ) (2)

and the Bessel distribution attached to a cuspidal representation (π′, V ′) of G′

is defined by

B(f ′, π′) =
∑

{φ′}
W′(π′(f ′)φ′)W′(φ′).

Here {φ} and {φ′} are orthonormal bases of V and V ′, respectively, and W(φ)
and W′(φ′) are the Fourier coefficients defined in §2. They depend on the choice
of an additive character ψ which will remain fixed.
Jacquet and Ye have studied the comparison between the relative trace formula
on G and the Kuznetzov trace formula on G′ under the assumption that E
splits at all real places of F ([J1], [JY]). They define a local notion of matching
functions fv ↔ f ′v for all v and prove the identity

RTF (f) = KTF (f ′)

for all global function f =
∏
v fv and f ′ =

∏
f ′v such that f ↔ f ′. By

definition, f ↔ f ′ if fv ↔ f ′v for all v. It follows from the work of Jacquet-Ye
that if f ↔ f ′, then

B̃(f, π) = B(f ′, π′) (3)

for any cuspidal representation π′ of G′(AF ) with base change lifting π on
G(AE). Our goal is to formulate and prove an analogous result for Eisensteinian
automorphic representations.
Assume that χ is unitary and let

I(χ, λ) = Ind
G(AE)
B(AE) χ · e〈λ,H(·)〉

be an induced representation of G(AE). In this case, we define a relative Bessel
distribution in terms of the regularized period as follows:

B̃(f, χ, λ) =
∑

{ϕ}
ΠH (E(I(f, χ, λ)ϕ, λ)) W(ϕ, λ)
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where {ϕ} runs through an orthonormal basis of I(χ, λ) and W(ϕ, λ) =
W(E(ϕ, λ)). Throughout the paper we will use the notation W(·, ·) for the
complex conjugate of W(·, ·). For ν ∈ B(χ), the Bessel distribution is defined
by

B′(f ′, ν, λ) =
∑

{ϕ′}
W ′(I(f ′, ν, λ)ϕ, λ) W ′(ϕ′, λ),

whereW ′(ϕ′, λ) is defined similarly. However, the equality (3) no longer holds.
In fact, it is not well-defined since there is more than one automorphic repre-
sentation π′ whose base change lifting is I(χ, λ). However, for ν ∈ B(χ) we
may define

B̃st(f, ν, λ) =
∑

{ϕ}
Jst(ν, ϕ, λ) W(ϕ, λ). (4)

With this definition, Theorem 1 allows us to write

B̃(f, χ, λ) =
∑

ν∈B(χ)

B̃st(f, ν, λ).

Our next main result is the following

Theorem 2. Assume that the global quadratic extension E/F is split at the
real archimedean places. Fix a unitary character χ and ν ∈ B(χ). Then

B̃st(f, ν, λ) = B′(f ′, ν, λ)

for all matching functions f ↔ f ′.

There is a local analogue of this Theorem. The distributions B̃st(f, ν, λ) are
factorizable. Their local counterparts are defined in terms of Whittaker func-
tionals and local intertwining periods. Let E/F be a quadratic extension of
p-adic fields. For any character µ of F ∗, set

γ(µ, s, ψ) =
L(µ, s)

ε(µ, s, ψ)L(µ−1, 1− s) .

Denote by ω the character of F ∗ attached to E/F by class field theory. For
any character ν = (ν1, ν2, ν3) of T ′(F ) and λ ∈ ia∗0, set

γ(ν, λ, ψ) = γ(ν1ν
−1
2 ω, s1, ψ)γ(ν2ν

−1
3 ω, s2, ψ)γ(ν1ν

−1
3 ω, s3, ψ). (5)

with notation as in §2.

Theorem 3. Let E/F be a quadratic extension of p-adic fields. There exists
a constant dE/F depending only on the extension E/F with the property: for
all unitary characters ν of T ′(F ),

B̃st(f, ν, λ) = dE/F γ(ν, λ, ψ)B′(f ′, ν, λ).

whenever f ↔ f ′. Moreover, if E/F is unramified and p 6= 2 then dE/F = 1.
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We determine the constant dE/F for E/F unramified and p 6= 2 by taking f
to be the identity in the Hecke algebra and directly comparing both sides of
the equality. As remarked, this involves an elaborate Mathematica calculation.
Determining dE/F in general would require more elaborate calculations which
we have not carried out. We remark, however, that in a global situation we do
have

∏
dEv/Fv = 1.
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2 Notation

Throughout, E/F will denote a quadratic extension of global or local fields of
characteristic zero. In the local case we also consider E = F ⊕F . In the global
case we make the following assumption on the extension E/F :

E splits at every real place of F . (6)

The character of F attached to E by class field theory will be denoted ω. In
the local case, if E = F ⊕ F , then ω is trivial, and Nm : E → F is the map
(x, y)→ xy.
As in the introduction, H = U(3) denotes the quasi-split unitary group with
respect to E/F and the Hermitian form Φ, and we set G = GL(3)E and
G′ = GL(3, F ). We shall fix some notation and conventions for the group G.
Similar notation and conventions will be used for G′ with a prime added.
We write B for the Borel subgroup of G of upper triangular matrices and
B = TN for its Levi decomposition where T is the diagonal subgroup. Let
W be the Weyl group of G. The standard maximal compact subgroup of
G(A) will be denoted K. In the local case we write K. We have the Iwasawa
decompositions G(A) = T (A)N(A)K = N(A)T (A)K. We fix the following
Haar measures. Let dn and dt be the Tamagawa measures on N(A) and T (A),
respectively. Then vol(N(F )\N(A)) = 1. We fix dk on K by the requiring
vol(K) = 1. Let dg the Haar measure dt dn dk. We define Haar measures for
G′ and H similarly.
Let α1, α2 be the standard simple roots and set α3 = α1 + α2. Denote the
associated co-roots α∨1 , α∨2 , α∨3 . Let a∗0 be the real vector space spanned by the
roots, and let a0 be the dual space. For λ ∈ a∗0 set si = 〈λ, α∨i 〉 for i = 1, 2, 3. If
M is a Levi subgroup containing T , let aM ⊂ a0 be the subspace spanned by the
co-roots of the split component of the center of M . The map H : G(A) → a0

is characterized, as usual, by the condition e〈αi,H(ntk)〉 = |αi(t)|. We write
d(a, b, c) for the diagonal element

d(a, b, c) =




a
b

c


 .
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If M is a Levi subgroup of G, π is an admissible representation of M (locally
or globally) and λ ∈ a∗M,C we write I(π, λ) for the representation of G unitary

induced from the representation m → π(m)e〈λ,H(m)〉. In the global case, we
let E(g, ϕ, λ) be the Eisenstein series on G(A) induced by ϕ.
If χ is a unitary character of T (A), we identify the induced space I(χ) =
I(χ, λ), with the pre-Hilbert space of smooth functions ϕ : G(A)→ C such that

ϕ(ntg) = δ
1/2
B (t)χ(t)ϕ(g) for n ∈ N(A) and t ∈ T (A). We use the notation δQ

to denote the modulus function of a group Q. The scalar product is given by

(ϕ1, ϕ2) =

∫

B(A)\G(A)

ϕ1(g)ϕ2(g) dg =

∫

K

ϕ1(k)ϕ2(k) dk.

The representation I(χ, λ) is defined by

I(g, χ, λ)ϕ(g′) = e−〈λ,H(g′)〉e〈λ,H(g′g)〉ϕ(g′g).

It is unitary if λ ∈ ia∗0. Similar notation will be used in the local case. Let
w ∈W and let wχ(t) = χ(wtw−1). The (unnormalized) intertwining operator

M(w, λ) : I(χ, λ)→ I(wχ,wλ)

is defined by

[M(w, λ)ϕ](g) =

∫

(N∩w−1Nw)\N
ϕ(wng) dn.

It is absolutely convergent in a suitable cone and admits a meromorphic con-
tinuation in λ.
Let B(χ) = {ν} be the set of four Hecke characters of the diagonal subgroup
T ′(AF ) of G′(AF ) such that ν is trivial on the center Z ′(AF ) and χ = ν ◦Nm.
In the non-archimedean case, let HG be the Hecke algebra of compactly-
supported, bi -K-invariant functions onG. Let f̂(χ, λ) be the Satake transform,

i.e., f̂(χ, λ) is the trace of f acting on I(χ, λ). Define HG′ and f̂ ′(ν, λ) similarly.
We define the base change homomorphism

bc : HG → HG′

in the usual way. By definition, if f ′ = bc(f) then f̂(ν ◦Nm,λ) = f̂ ′(ν, λ) for
any unramified character ν of T ′(F ).
We fix a non-trivial additive character ψ of F\AF . The ψ-Fourier coefficient
of an automorphic form on G is defined by

W(φ) =

∫

N(E)\N(AE)

φ(n) ψN (n) dn

where

ψN (




1 x ∗
0 1 y
0 0 1


) = ψ(trx+ tr y).
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The ψ-Fourier coefficient W′(φ) of an automorphic form on G′ is defined in a
similar way with respect to the character

ψN ′(




1 x ∗
0 1 y
0 0 1


) = ψ(x+ y).

If ϕ ∈ I(π, λ), we set
W(ϕ, λ) = W(E(ϕ, λ)).

In this paper, we use a different Hermitian form from the one used in [JY].
This forces us to modify the definition of matching functions, namely we have
to take a left translate of f by τ where tττ = Φ.

Part I
The regularized Period

3 Double Cosets

Let θ : G→ G be the involution

θ(g) = Φ−1 tg−1Φ.

Then H = U(3) is the fixed-point set of θ. Note that θ preserves B, T , N and
K. We shall consider the space

S0 = {s ∈ G : θ(s) = s−1}

and its quotient modulo scalars

S = {s ∈ G : θ(s) = s−1}/F ∗.

Remark 1. The space S0 is a translate by Φ−1 of the space of non-degenerate
Hermitian forms. Indeed, s ∈ S0 if and only if Φ−1 ts = sΦ−1, i.e. sΦ−1 is
Hermitian.

The group G acts on S via s→ gsθ(g)−1. This is compatible with the action
on Hermitian forms. The stabilizer of s is the subgroup

Hs = {g ∈ G : gsΦ−1 tg = λsφ−1 for some λ ∈ F ∗}.

Thus Hs is the unitary similitude group of the Hermitian form sΦ−1. There
are only finitely many equivalence classes of Hermitian forms modulo scalars
and hence G has finitely many orbits in S. We obtain a bijection

∐

{s}
G/Hs → S

g → gsθ(g)−1
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where {s} is a set of orbit representatives. In fact, our assumption (6) implies
that there is only one orbit.
Consider the B-orbits in S. According to a result of Springer ([S]), every
B-orbit in S intersects the normalizer NG(T ) of the diagonal subgroup T .
Moreover, the map C 7→ C ∩ NG(T ) is a bijection between B-orbits of S and
T -orbits of S ∩NG(T ). Thus we may define a map

ι : B orbits of S → W

sending C to the T -coset of C ∩NG(T ).
Set w = Φ and regard w as an element of W . We shall be interested in ι−1(w).
Suppose that η ∈ G(E) satisfies

ηθ(η)−1 = tw

where t = d(t1, t2, t3) ∈ T (E). In this case, θ(tw)tw = 1, or θ(w)tw = θ(t)−1,
and hence t1, t2, t3 ∈ F ∗. If α ∈ T (E), then

α(tw)θ(α)−1 = α(tw)wαw−1 = (Nmα)tw (7)

since w = w−1. This yields the following

Lemma 1. There is a bijection (depending on the choice of w)

ι−1(w)←→ T ′(F )/Z ′(F ) Nm(T (E))

defined by sending C to {t : tw ∈ C ∩NG(T )} modulo Z ′(F ) Nm(T (E)).

In the local case, ι−1(w) consists of the open orbits.
Set

Bη = ηHη−1 ∩ B

and

Hη = H ∩ η−1Bη.

Then Bη = {b ∈ B : θ(b) = twbw−1t−1} and hence

Bη = {d(a, b, c) : a, b, c ∈ E1}

where E1 is the group of norm one elements in E∗. The subgroup Bη is thus
independent of η.

4 Fourier inversion and stabilization

For E/F a quadratic extension of local fields or number fields, or for E = F⊕F ,
we set

A(F ) = T ′(F )/Z ′(F ) Nm(T (E)).
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By Lemma 1, A(F ) parameterizes the B-orbits in ι−1(w). Note that A(F ) '
(F ∗/NE∗)2. If E = F ⊕ F , then A(F ) is trivial. In the global case, we define
A(AF ) as the direct sum of the corresponding local groups

A(AF ) =
⊕

v

A(Fv)

where v ranges over all places of F . View A(F ) as a subgroup of A(AF )
embedded diagonally. Note that [A(AF ) : A(F )] = 4.

For an absolutely summable function g on A(AF ), we may define the Fourier
transform

ĝ(κ) =
∑

x∈A(AF )

κ(x) g(x)

for any character κ of A(AF ). Let X be the set of four characters of A(AF )
trivial on A(F ). Then the following Fourier inversion formula holds

∑

x∈A(F )

g(x) =
1

4

∑

κ∈X
ĝ(κ).

Suppose in addition that g is of the form

g(x) =
∏

v

gv(xv)

where gv is a function on A(Fv) for all v and the infinite product converges
absolutely. Define the local Fourier transform

ĝv(κ) =
∑

xv∈A(Fv)

κ(xv) gv(xv)

for any character κ of A(Fv). We shall write κv for the restriction of a character
κ ∈ A(AF ) to A(Fv). Then we have the following

Lemma 2. ĝ(κ) =
∏
v ĝv(κv)

Proof. Let {Sn}∞n=1 be an ascending sequence of finite sets of places of F whose
union is the set of all places of F . For any finite set of places S let AS(AF ) be
the subgroup of elements x = (xv) ∈ A(AF ) such that xv = 1 for v 6∈ S. By
definition,

g(x) = lim
n→∞

∏

v∈Sn
gv(xv)
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and

ĝ(κ) = lim
n→∞

∑

x∈ASn(AF )

κ(x) g(x)

= lim
n→∞

∏

v∈Sn


 ∑

xv∈A(Fv)

κv(xv) gv(xv)


 ∏

v 6∈Sn
gv(1)

= lim
n→∞

( ∏

v∈Sn
ĝv(κv)

) ∏

v 6∈Sn
gv(1) =

∏

v

ĝv(κv)

since
∏
v 6∈Sn gv(1) converges to 1 as n→∞.

5 Stable Local Period

Let us consider the local case. Fix η ∈ G(E) such that ηθ(η)−1 = tw for
some t ∈ T (F ). To define the stable local period, we assume that the inducing
character χ = (χ1, χ2, χ3) satisfies χj

∣∣
E1 ≡ 1. It is shown in [LR] that the

integral

J(η, ϕ, λ) =

∫

Hη(F )\H(F )

e〈λ,H(ηh)〉 ϕ(ηh) dh

where ϕ ∈ I(χ, λ) converges for Reλ positive enough. Let ν = (ν1, ν2, ν3) be a
character of T ′ such that χj = νj ◦Nm for j = 1, 2, 3. Set

∆ν,λ(η) = ν(t)ω(t1t3) e
1
2 〈λ+ρ,H(t)〉.

By (7), we have

∆ν,λ(αη) = χ(α) e〈λ+ρ,H(α)〉 ∆ν,λ(η),

for all α ∈ T (E) and the expression

∆ν,λ(η)
−1

∫

Hη(F )\H(F )

e〈λ,H(ηh)〉 ϕ(ηh) dh (8)

depends only on the double coset BηH and the measure on Hη(F )\H(F ). The
stable local period is defined to be the distribution

Jst(ν, ϕ, λ) =
∑

ι(η)=w

∆ν,λ(η)
−1

∫

Hη(F )\H(F )

e〈λ,H(ηh)〉 ϕ(ηh) dh.

The split case

If E = F ⊕ F , then

G(E) = GL3(F )×GL3(F ) = G′(F )×G′(F ).
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In this case, the local period can be expressed in terms of an intertwining
operator. We have θ(h1, h2) = (ϑ(h2), ϑ(h1)) where ϑ(h) = Φ−1 th−1Φ, and

H = {(h, ϑ(h)) : h ∈ G′}.

Furthermore, B(E)\G(E)/H(F ) ' W , so the stabilization is trivial. We can
take η = (1, w). Then Hη = {(t, ϑ(t)) : t ∈ T ′}.
Let ν be a unitary character of T ′. Its base change to T is χ = (ν, ν). Let
ϕ = ϕ1 ⊗ ϕ2 ∈ I(ν ⊗ ν, (λ, λ)) = I ′(ν, λ) ⊗ I ′(ν, λ). Recall that K ′ is the
standard maximal compact subgroup of G′(F ).

Proposition 1. We have

Jst(ν, ϕ1 ⊗ ϕ2, λ) =

∫

K′

ϕ1(k)(M(w, λ)ϕ2)(ϑ(k)) dk.

Proof. By definition

J(η, ϕ, λ) =

∫

Hη\H
e〈(λ,λ),H(ηh)〉ϕ(ηh) dh

=

∫

T ′\G′

e〈λ,H(h)+H(wϑ(h))〉ϕ1(h)ϕ2(wϑ(h)) dh

=

∫

K′

ϕ1(k)

(∫

N

e〈λ,H(wϑ(n))〉ϕ2(wϑ(n)ϑ(k)) dn

)
dk

=

∫

K′

ϕ1(k)(M(w, λ)ϕ2)(ϑ(k)) dk.

as required.

6 Meromorphic Continuation of Local Periods in the p-adic case

Let E/F be quadratic extension of p-adic fields and let q = qF be the cardinality
of the residue field of F .

Proposition 2. Jst(ν, ϕ, λ) is a rational function in qλ.

It suffices to show that each integral J(η, ϕ, λ) is a rational function in qλ. We
shall follow the discussion in [GPSR], pp. 126–130, where a similar assertion
is established for certain zeta integrals.
The key ingredient is a theorem of J. Bernstein, which we now recall. Let
V be a vector space of countable dimension over C, Y an irreducible variety
over C with ring of regular functions C[Y ], and I an arbitrary index set. By a
system of linear equations in V ∗ indexed by i ∈ I we mean a set of equations
for ` ∈ V ∗ of the form `(vi) = ai where vi ∈ V and ai ∈ C. Consider an
algebraic family Ξ of systems parameterized by Y . In other words, for each
i ∈ I we have functions vi(y) ∈ V ⊗ C[Y ] and ai(y) ∈ C[Y ] defining a system
Ξy: `(vi(y)) = ai(y), for each y ∈ Y .
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Let K = C(Y ) be the fraction field of C[Y ]. If L ∈ HomC(V,K) and v(y) ∈
V ⊗ C[Y ], then L(v(y)) may be viewed as an element of K. We will say that
L ∈ HomC(V,K) is a meromorphic solution of the family Ξ if L(vi(y)) = ai(y)
for all i ∈ I . Then Bernstein’s Theorem is the following statement.

Theorem 4. In the above notation, suppose that the system Ξy has a unique
solution `y ∈ V ∗ for all y in some non-empty open set Ω ⊂ Y (in the
complex topology). Then the family Ξ has a unique meromorphic solution
L ∈ HomC(V,K). Furthermore, outside a countable set of hypersurfaces in
Y , `y(v) = (L(v))(y).

To use the Theorem, we need the following input. Recall that there are 4 open
B-orbits in G/H . The next lemma shows that generically each one supports
at most one H-invariant functional.

Lemma 3. (a). If Reλ is sufficiently positive, then there exists a unique (up
to a constant) H-invariant functional ` on I(χ, λ) such that `(ϕ) = 0 if
ϕ|BηH = 0.

(b). There exists ϕ0 ∈ I(χ, λ) such that J(η, ϕ0, λ) = cqnλ for some non-zero
c ∈ C and n ∈ Z.

Proof. To prove (a), first note that J(η, ϕ, λ) defines a non-zero H-invariant
functional whenever the integral defining it converges. To prove uniqueness, let
{ηi} be a set of representatives for the open orbits in B\G/H and let V be the
H-invariant subspace of ϕ ∈ I(χ, λ) whose support is contained in the union∐
ηi
BηiH . The argument in [JLR], pp. 212–213 shows that an H-invariant

functional vanishing on V is identically zero if Reλ is sufficiently positive. On
the other hand, V decomposes as a direct sum over the ηi’s of indHHηi (χ

ηi
λ )

where

(χηiλ )(h) = χ(ηihη
−1
i )e〈λ,H(ηihη

−1
i )〉.

It remains to show that the space of H-invariant functionals on indHHηi
(χηiλ ) is

at most one-dimensional. However, the dual of indHHη (χ
η
λ) is IndHHη ((χ

η
λ)
−1) and

the dimension of H-invariant vectors in the latter is at most one by Frobenius
reciprocity.
To prove (b), let V be a small open subgroup of G. The map B × H → G
defined by (b, h) 7→ bηh is proper since the stabilizer Bη is compact. We infer
that the set U = ηH ∩ BηV is a small neighborhood of Bηη and hence the
weight function H(x) takes the constant value H(η) on U . Then we may take
for ϕ0 any non-negative, non-zero function supported in BηV .

To finish the proof of Proposition 2, let V = I(χ) and Y = C∗. Then C[Y ]
may be identified with the ring of polynomials in q±λ. Fix ϕ0, c and n as in
Lemma 3 and consider the following conditions on a linear functional ` ∈ V ∗:

1. ` is H-invariant, i.e. `(I(h, χ, λ)ϕ − ϕ) = 0 for all ϕ and h ∈ H .
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2. `(ϕ) = 0 if ϕ
∣∣
BηH

= 0.

3. `(ϕ0) = cqnλ.

These conditions form an algebraic family of systems of linear equations as
above. The functional J(η, ϕ, λ) converges for Reλ > λ0 and it is the unique
solution for the system by Lemma 3. The proposition now follows from Bern-
stein’s Theorem.

7 Unramified Computation

Suppose now that E/F is an unramified extension of p-adic fields with p 6= 2
and that χ is unramified. Let ϕ0 be the K-invariant section of I(χ, λ) such
that ϕ0(e) = 1. Recall that si = 〈λ, α∨i 〉 for i = 1, 2, 3.
Recall our convention that the Haar measure dh onH(F ) is defined via the Iwa-
sawa decomposition and assigns measure one to KH . In the following Propo-
sition, we assume that the measure on Hη(F )\H(F ) is the quotient of the dh
by the measure on Hη(F ) such that vol(Hη(F )) = 1.

Proposition 3. The stable local period J st(ν, ϕ0, λ) is equal to

L(ν1ν
−1
2 ω, s1)L(ν2ν

−1
3 ω, s2)L(ν1ν

−1
3 ω, s3)

L(ν1ν
−1
2 , s1 + 1)L(ν2ν

−1
3 , s2 + 1)L(ν1ν

−1
3 , s3 + 1)

Sketch of proof. Without loss of generality we may assume that χ = 1. Let
η1, η2, η3, η4 be the matrices



1
2 0 1
0 1 0
− 1

2 0 1


 ,




ε
2 0 1
0 1 0
− 1

2 0 ε−1


 ,




ε
2 0 1
− 1

2 0 ε−1

0 −1 0


 ,




0 −1 0
ε
2 0 1
− 1

2 0 ε−1




respectively, where ε ∈ F ∗−NE∗, e.g., ε has odd valuation. They form a set of
representatives for the double cosets in B\G/H over w. The matrices ηiθ(ηi)

−1

are



1
1

−1


 ,




ε
1

−ε−1


 ,




ε
−ε−1

1


 ,




1
ε

−ε−1




respectively.
By definition,

Jst(ν, ϕ0, λ) =
∑

j

Ij

where

Ij = ∆−1
ν,λ(ηj)

∫

Hηj (F )\H(F )

e〈λ+ρ,H(ηjh)〉 dh. (9)
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Since Hηj (F ) has measure one, we may use Iwasawa decomposition to write Ij
as ∆ν,λ(ηj)

−1 times

∑

n

q2nE

∫

E

∫

β̄=−β
exp(

〈
λ+ ρ,H(ηj




1 x xx̄
2 + β

0 1 x̄
0 0 1





$n

1
$−n


)

〉
) dβ dx

where $ is a uniformizer of E and qE is the cardinality of the residue field of
E.
The Ij can be evaluated explicitly. For j = 2, 3, 4, the integrands depend only
on v(x), v(β) and n, but for j = 1 it depends also on v( xx̄4 ± 1). In any
case, the integrations and the summation over β, x and n can be computed as
geometric series. This is tedious to carry out by hand, especially in the first
case, but we did it using Mathematica with the following results. The term I1
is independent of ν and is equal to

[
1− q−2(s1+s2) − 2q−2(1+s1+s2) + q−1−2s1 + q−2−2s2−4s1 + q−1−2s2−

2q−1−2(s1+s2) − q−3−2(s1+s2) + q−2−2s1−4s2 + q−4s1−4s2−3
]
/

((1− q−2s1)(1− q−2s2)(1− q−2(s1+s2))),

(10)

while

I2 = ν1(ε)
−1ν3(ε) ·

q−2−s1−s2(1 + q)

1− q−2(s1+s2)
,

I3 = −ν1(ε)−1ν2(ε) ·
q−1−s1(1 + q)(1− q−2(1+s1+s2))

(1− q−2s1)(1− q−2(s1+s2))
,

I4 = −ν2(ε)−1ν3(ε) ·
q−1−s2(1 + q)(1− q−2(1+s1+s2))

(1− q−2s2)(1− q−2(s1+s2))

respectively. Summing up the contributions (also done with Mathematica) we
get

(1− q−(s1+1))(1− q−(s2+1))(1− q−(s1+s2+1))

(1 + q−s1)(1 + q−s2)(1 + q−(s1+s2))
for ν1 = ν2 = ν3 = 1

(1− q−(s1+1))(1 + q−(s2+1))(1 + q−(s1+s2+1))

(1 + q−s1)(1− q−s2)(1− q−(s1+s2))
for ν1 = ν2 = ω, ν3 = 1

(1 + q−(s1+1))(1 + q−(s2+1))(1− q−(s1+s2+1))

(1− q−s1)(1− q−s2)(1 + q−(s1+s2))
for ν1 = ν3 = ω, ν2 = 1

(1 + q−(s1+1))(1− q−(s2+1))(1 + q−(s1+s2+1))

(1− q−s1)(1 + q−s2)(1− q−(s1+s2))
for ν2 = ν3 = ω, ν1 = 1
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as required.

Remark 2. We have also computed Jst(ν, ϕ0, λ) when E/F is ramified but ν
is unramified and −1 ∈ NmE∗. In this case the matrices ηi still provide
representatives for B\G/H . We find that J st(ν, ϕ0, λ) is equal to

0 for ν1 = ν2 = ν3 = 1

q−(s2+1/2)(1− q−(s1+1))

(1− q−s2)(1− q−(s1+s2))
for ν1 = ν2 = ω, ν3 = 1

q−1/2(1− q−(s1+s2+1))

(1− q−s1)(1− q−s2) for ν1 = ν3 = ω, ν2 = 1

q−(s1+1/2)(1− q−(s2+1))

(1− q−s1)(1− q−(s1+s2))
for ν2 = ν3 = ω, ν1 = 1

However, this is not sufficient to evaluate dE/F . We would also need to deter-
mine the function f ′ on G′ that matches ϕ0. Finally if −1 6∈ NmE∗ then the
representatives are more difficult to write down and the computation is more
elaborate. We have not attempted to do this.

8 Stabilization of Periods

We return to the global situation. Let

c = vol(Hη(F )Z(AF )\Hη(A)) = vol(E1\E1(A))2.

The following identity

ΠH(E(ϕ, λ)) = c
∑

ι(η)=w

J(η, ϕ, λ)

is proved in [LR]. It is valid whenever Reλ is positive enough. From now
on, we assume that the Haar measure on Hη(A) is the Tamagawa measure.
This measure has the property that vol(Hη(Fv)) = 1 for almost all v and
furthermore,

c = 4 (11)

by Ono’s formula for the Tamagawa number of a torus [O].
Fix a character ν0 ∈ B(χ) to serve as a base-point. Recall from §4 that the
set of double cosets over w is parameterized by the group A(F ) both locally
and globally. For a ∈ A(F ), let ηa be a representative for the double coset
corresponding to a such that ηaθ(ηa)

−1 = tw with t ∈ T ′(F ). Fix λ and
ϕ = ⊗ϕv ∈ I(χ, λ) = ⊗I(χv, λ), and let gv be the function on A(Fv) defined
as follows:

gv(a) = ∆ν0,λ(ηa)
−1

∫

Hηa (Fv)\H(Fv)

e〈λ,Hv(ηah)〉 ϕv(ηah) dh. (12)
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The product function g =
∏
v gv on A(A) is integrable over A(AF ) for Reλ

positive enough. Indeed, Proposition 3 applied to |ν0| shows that almost all
factors of the integral are local factors of a quotient of products of L-functions.
For the same reason, we may define the global stable intertwining period for
Reλ positive enough as the absolutely convergent product

Jst(ν0, ϕ, λ) =
∏

v

Jstv (ν0v, ϕv , λ).

For any character κ of A(A) trivial on A(F ) we have ĝ(κ) = J st(κν0, ϕ, λ).
Observe that the characters ν = κν0 comprise B(χ). The Fourier inversion
formula of Section 4 together with (11) gives

ΠH(E(ϕ, λ)) =
∑

ν∈B(χ)

Jst(ν, ϕ, λ). (13)

By Propositions 1, 2 and 3, each Jst(ν, ϕ, λ) admits a meromorphic continua-
tion, and hence, the identity (13) is valid for all λ. These assertions make up
Theorem 1, which is now proved.

Remark 3. It seems unlikely that the individual terms J(η, ϕ, λ) have a mero-
morphic continuation to the entire complex plane. This is motivated by the
following old result of Estermann ([E]). Let P (x) be a polynomial with inte-
ger coefficients with P (0) = 1. Then either P (x) is a product of cyclotomic
polynomials or else the Euler product

∏
p P (p−s) has the imaginary axis as its

natural boundary. The function J(η, ϕ, λ) has Euler product where the factors
in the inert places are almost always (10).

Part II
Relative Bessel Distributions

We now turn to the relative Bessel distributions, starting with the local case.
Thus we assume that F is a local field. The Whittaker functional is defined by
the integral

W(ϕ, λ) =

∫

N

e〈λ,H(wn)〉ϕ(wn)ψN (n) dn

for ϕ ∈ I(χ, λ). It converges absolutely for Reλ sufficiently large, and defines
a rational function in qλ.

Definition 1. Let ν be a unitary character of T ′ which base changes to χ.
The stable relative Bessel distribution is defined by

B̃st(f, ν, λ) =
∑

ϕ

Jst(ν, I(f, χ, λ)ϕ, λ)W(ϕ, λ)

for λ ∈ ia∗0 where {ϕ} is an orthonormal basis for I(χ, λ).
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Similarly, the local Bessel distributions on G′ are defined in terms of the Whit-
taker functionals on G′ as follows:

B′(f ′, ν, λ) =
∑

ϕ′

W ′(I(f ′, ν, λ)ϕ′, λ)W ′(ϕ′, λ).

Remark 4. Let us check that Theorem 3 is compatible with a change of additive
character. In doing this, we include the additive character in the notation.
Let ψ′ be the character ψ′(x) = ψ(ax). Then ψ′N (·) = ψN (t−1

0 · t0) where
t0 = d(a−1, 1, a), and

Wψ′

(ϕ, λ) = χ(wt0w
−1)e〈wλ+ρ,H(t0)〉Wψ(I(t−1

0 , χ, λ)ϕ, λ).

Hence

B̃stψ′(f, ν, λ) = χ(wt0w−1)e〈wλ+ρ,H(t0)〉B̃stψ (ft0 , ν, λ)

where ft0(x) = f(xt0). Similarly,

B′ψ′(f ′, ν, λ) = |ν(wt0w−1)e〈wλ+ρ,H′(t0)〉|2B′ψ(f ′t0 , ν, λ)

where f ′t0(x) = f ′(t−1
0 xt0). It follows from the definition in [JY] that if f ↔ f ′

with respect to ψ then ft0 ↔ f ′t0 with respect to ψ′. On the other hand,

γ(ν, λ, ψ′) = (ν1ν
−1
2 )(a)|a|s1 (ν2ν−1

3 )(a)|a|s2(ν1ν−1
3 )(a)|a|s3γ(ν, λ, ψ).

It remains to note that

χ(wt0w−1)e〈wλ+ρ,H(t0)〉 = (ν1ν
−1
2 )(a)|a|s1(ν2ν−1

3 )(a)|a|s2 (ν1ν−1
3 )(a)|a|s3

|ν(wt0w−1)e〈wλ+ρ,H′(t0)〉|2.

Our goal is to prove Theorems 2 and 3. Let us start with the split case E =
F ⊕ F . By a special case of a result of Shahidi ([Sh]) we have the following
local functional equations. For any ϕ ∈ I ′(ν, λ)

W(M(w, λ)ϕ,wλ) = γ(ν, λ, ψ)W(ϕ, λ) (14)

where γ(ν, λ, ψ) is defined in (5). Recall that ω ≡ 1 in this case.

Proposition 4. We have

B̃st(f1 ⊗ f2, ν, λ) = γv(ν, λ)B
′(f, ν, λ)

where

f(g) =

∫

H(F )

f1(hg)f2(ϑ(h)) dh.
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Proof. The involution ϑ on G′ preserves B′, T ′, N ′. It induces the principal
involution on the space spanned by the roots. We also let (ϑϕ)(g) = ϕ(ϑ(g)).
This is a self-adjoint involution on I ′(ν). By Proposition 1

J(η, ϕ1 ⊗ ϕ2, λ) = (ϑ(M(w, λ)ϕ2), ϕ1),

and hence

B̃st(f1 ⊗ f2, ν, λ) (15)

is equal to
∑

i,j

(ϑ(M(w, λ)I ′(ν, f2, λ)ϕj), I ′(ν, f1, λ)ϕi)×W(ϕi, λ) · W(ϕj , λ).

The following identity holds for any operator A, functional l and orthonormal
basis {ei} on a Hilbert space:

∑

i

(Aei, v)l(ei) = l(A∗v).

Hence (15) is equal to
∑

i

W((ϑ ◦M(w, λ)I ′(ν, f2, λ))
∗I ′(ν, f1, λ)ϕi, λ)W(ϕi, λ) (16)

We have the following simple relations

W(ϑ(ϕ), ϑ(λ)) =W(ϕ, λ) because ψN ′(ϑ(n)) = ψN ′(n)

ϑ ◦M(w, λ) = M(w, ϑ(λ)) ◦ ϑ
ϑ ◦ I ′(ν, f, λ) = I ′(ν, ϑ(f), ϑ(λ)) ◦ ϑ

I ′(ν, f, λ)∗ = I ′(ν, f∨,−λ) where f∨(g) = f(g−1)

M(w, λ)∗ = M(w,−wλ)

We get for any ϕ,

(ϑ ◦M(w, λ)I ′(ν, f2, λ))
∗ϕ = (M(w, ϑ(λ))I ′(ν, ϑ(f2), ϑ(λ)) ◦ ϑ)∗ϕ

= (I ′(ν, ϑ(f2), wϑ(λ))M(w, ϑ(λ))ϑ)∗ϕ

= (ϑ ◦M(w,−wϑ(λ))I ′(ν, ϑ(f2)
∨,−wϑ(λ)))ϕ

= (ϑ ◦M(w, λ)I ′(ν, ϑ(f◦2 ), λ))ϕ

with f◦(g) = f(g−1). Hence,

W((ϑ ◦M(w, λ)I ′(ν, f2, λ))
∗I ′(ν, f1, λ)ϕi, λ)

=W(ϑ ◦M(w, λ)I ′(ν, ϑ(f◦2 ), λ)I ′(ν, f1, λ)ϕi, λ)

=W(M(w, λ)I ′(ν, ϑ(f◦2 ), λ)I ′(ν, f1, λ)ϕi, ϑ(λ))

=γ(ν, λ, ψ)W(I ′(ν, ϑ(f◦2 ), λ)I ′(ν, f1, λ)ϕi, wϑ(λ))

=γ(ν, λ, ψ)W(I ′(ν, ϑ(f◦2 )∗f1, λ)ϕi,−λ)
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and since λ ∈ ia∗0, (16) becomes

γ(ν, λ, ψ)
∑

i

W(I ′(ν, ϑ(f◦2 )∗f1, λ)ϕi, λ)W(ϕi, λ) = γ(ν, λ, ψ)B′(f, ν, λ)

as required.

We next consider the unramified non-archimedean case. Recall that

bc : HG → HG′

is the base change homomorphism. Proposition 3 gives the following

Proposition 5. Assume that f ∈ HG and that ν is a unitary, unramified
character. Then

B̃st(f, ν, λ) = γ(ν, λ, ψ)B′(bc(f), ν, λ). (17)

Proof. The left hand side is

Jst(ν, I(f, χ, λ)ϕ0, λ)W(ϕ0, λ) = f̂(χ, λ)Jst(ν, ϕ0, λ)W(ϕ0, λ).

Recall that we may assume that the additive character ψ is unramified. By the
formula for the unramified Whittaker functional and Proposition 3

Jst(ν, ϕ0, λ)W(ϕ0, λ) =
L(ν1ν

−1
2 ω, s1)L(ν2ν

−1
3 ω, s2)L(ν1ν

−1
3 ω, s3)

L(ν1ν
−1
2 , s1 + 1)L(ν2ν

−1
3 , s2 + 1)L(ν1ν

−1
3 , s3 + 1)

times

(L(χ1χ
−1
2 , s1 + 1)L(χ2χ

−1
3 , s2 + 1)L(χ1χ

−1
3 , s3 + 1))

−1

If µ0 is a character of F ∗, µ = µ0 ◦Nm, and s ∈ iR we have

L(µ0$, s)

L(µ0, s+ 1)
(L(µ, s+ 1))−1 =

L(µ0$, s)

L(µ0, s+ 1)
(L(µ0, s+ 1)L(µ0$, s+ 1))−1

= |L(µ0, s+ 1)|−2 L(µ0$, s)

L((µ0$)−1, 1− s) .

On the other hand

B′(bc(f), ν, λ) =W ′(I ′(ν, bc(f), λ)ϕ′0)W ′(ϕ′0)
= b̂c(f)(ν, λ)|L(ν1ν

−1
2 , s1 + 1)L(ν2ν

−1
3 , s2 + 1)L(ν1ν

−1
3 , s3 + 1)|−2

= f̂(χ, λ)|L(ν1ν
−1
2 , s1 + 1)L(ν2ν

−1
3 , s2 + 1)L(ν1ν

−1
3 , s3 + 1)|−2,

and the statement follows.
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In the global setup we define

B̃st(f, ν, λ) =
∏

v

B̃stv (fv, νv, λ)

for f = ⊗fv. Note that this is compatible with (4). Similarly

B′(f ′, ν, λ) =
∏

v

B′v(f
′
v, νv, λ).

9 The Relative Trace Formula

The relative trace formula identity, established by Jacquet reads

RTF (f) = KTF (f ′) (18)

where

RTF (f) =

∫

H\H(A)

∫

N(E)\N(AE)

Kf (h, n)ψN (n) dh dn

KTF (f ′) =

∫

N ′(F )\N ′(A)

∫

N ′(F )\N ′(A)

K ′f ′(n1, n2)ψN ′(n1n2) dn1 dn2

for f , f ′ matching. In ([J1]), Jacquet established the following spectral ex-
pansion for RTF (f), at least for K-finite functions f . It is a sum over terms
indexed by certain pairs Q = (M,π) consisting of a standard Levi subgroup M
and a cuspidal representation π of M(A).
If M = G, then Q contributes if π is H-distinguished. In this case, the contri-
bution is

∑

ϕ

ΠH(π(f)ϕ)W(ϕ)

where {ϕ} is an orthonormal basis of the space Vπ of π. We will say that
a Hecke character of GL(1)E is distinguished if it is trivial on E1(A), that
is, it is the base change of a Hecke character of GL(1)F . If M is the Levi
factor of a maximal parabolic subgroup, then π = σ ⊗ κ where σ is a cuspidal
representation of of GL(2)E and κ is a Hecke character of GL(1)E . The pair Q
contributes if σ is distinguished relative to some unitary group in two variables
relative to E/F in GL(2)E and κ is distinguished. In this case, the contribution
is

∫

ia∗
P

∑

ϕ

ΠH(E(I(f, π, λ)ϕ, λ))W(E(ϕ, λ)) dλ.

Finally, if M is the diagonal subgroup, then π is a triple of characters which we
denote χ = (χ1, χ2, χ3). There are two kinds of contributions. The first one,
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which we call fully continuous is in the case where each χj is distinguished. In
the notation of relative Bessel distributions, the contribution is

1

6

∫

ia∗
0

B̃(f, χ, λ) dλ.

On the other hand, the residual contribution comes from triplets χ such that
χ2 is distinguished, χ3(x) = χ1(x) but χ1, χ3 are not distinguished. Up to a
volume factor it is∫

i(α∨
3 )⊥)

∑

ϕ

∫

HK

I(f, χ, λ)ϕ(k) dk · W(ϕ, λ) dλ.

Moreover the sum over χ and the integrals are absolutely convergent.
The spectral decomposition of the KT (f ′) is

∑

M ′,π′

∫

ia∗
M′

∑

ϕ′

W ′(I(f ′, π′, λ′)ϕ′, λ)W ′(ϕ′, λ) dλ′.

The fully continuous part is

1

6
·
∑

ν

∫

ia∗
0

B′(f ′, ν, λ) dλ.

There is no contribution from the residual spectrum because the representations
occurring in it are not generic, i.e., the ψ-Fourier coefficients of the residual
automorphic forms all vanish. This follows from the description of the residual
spectrum by Moeglin and Waldspurger ([MW]).

Remark 5. For all w ∈ W , we have B̃(f, χ, λ) = B̃(f, wχ,wλ). Indeed, by the
functional equation for the Eisenstein series we have

ΠH(E(I(f, χ, λ)ϕ, λ))W (ϕ, λ)

= ΠH(E(M(w, λ)I(f, χ, λ)ϕ,wλ))W (M(w, λ)ϕ,wλ)

= ΠH(E(I(f, wχ,wλ)M(w, λ)ϕ,wλ))W (M(w, λ)ϕ,wλ).

We may change the orthonormal basis {ϕ} to {M(w, λ)ϕ} because M(w, λ) is
unitary for λ ∈ ia∗0.
A similar remark applies to the other contributions. In particular, all the
expressions above depend on Q only up to conjugacy.

Recall that

B̃(f, χ, λ) =
∑

ν∈B(χ)

B̃st(f, ν, λ)

and therefore
∑

ϕ

ΠH(E(I(f, χ, λ)ϕ, λ))W(ϕ, λ) =
∑

ν∈B(χ)

B̃st(f, ν, λ).

We shall now prove Theorems 2 and 3 by isolating the term corresponding to
ν, λ in the relative trace formula identity. We proceed in several steps.
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10 Separation of Continuous Spectrum

Proposition 6. For any χ and λ and matching functions f ↔ f ′,

∑

ν∈B(χ)

B̃st(f, ν, λ) =
∑

ν∈B(χ)

B(f ′, ν, λ). (19)

To prove this, we modify the usual linear independence of characters argument
([L]). In the following lemma, let G be a reductive group over a global field F
and S a set of places containing all the archimedean places and the “bad” places
of G. Let X be a countable set of pairs (M,π) consisting of a Levi subgroup M
and a cuspidal representation π of M(A) which is unramified outside S. For
each (M,π) ∈ X let a subspace Aπ ⊂ ia∗M and a continuous function gπ(·) on
Aπ be given. We make the following hypotheses:

1. If (M1, π1), (M2, π2) ∈ X with π1 6= π2 and λi ∈ Aπi , i = 1, 2, then
I(π1, λ1)

S and I(π2, λ2)
S have no sub-quotient in common.

2. If (M,π) ∈ X, λ, λ′ ∈ Aπ and I(π, λ)S ' I(π, λ′)S then gπ(λ) = gπ(λ
′).

Let HS denote the Hecke algebra of GS relative to hyperspecial maximal com-
pact subgroups of Gv for v /∈ S. For f ∈ HS and σS an unramified representa-
tion of GS , we set f̂S(σS) = tr(σS(fS)).

Lemma 4 (Generalized linear independence of characters).
Suppose that

∑

π

∫

Aπ

|gπ(λ)| dλ <∞ (20)

and that for any f ∈ HS

∑

π

∫

Aπ

f̂S(I(π, λ)S)gπ(λ) dλ = 0 (21)

Then gπ(λ) = 0 for all π ∈ X.

Proof. Let U be any set of places containing at least two places v1, v2 with
distinct residual characteristics p1 and p2 such that U ∩ S = ∅. Each π defines
a map

Tπ,U : Aπ → GunU

sending λ to I(π, λ)U . Applying (21) with fU = 1 gives

∑

π

∫

Aπ

f̂U (Tπ,U (λ))gπ(λ) dλ = 0. (22)
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Let µπ be the push-forward under Tπ,U of the measure gπ(λ)dλ. The Stone-
Weierstrass Theorem implies that the image of HU under the Satake transform
gives a dense set of continuous functions on ĜunU relative to the sup norm.

Therefore (21) vanishes for all continuous functions on ĜunU . The Riesz Repre-
sentation Theorem implies that

∑

π

µπ = 0.

Let Zπ,U be the image of Tπ,U . Then µπ1(Zπ,U ) = 0 unless Zπ,U ⊃ Zπ1,U . We

now claim that for any subset Z ⊂ ĜunU we have

∑

π:Zπ,U=Z

µπ = 0. (23)

We argue by induction on dimZ (i.e., dimAπ where Z = Zπ,U ). For Z zero
dimensional this follows from the fact that the atomic part of µ is

∑
π:Aπ={0} µπ.

For the induction step, we can assume that there are no π with dimAπ < dimZ.
The restriction of µ to Z is then given by the left-hand side of (23), and our
claim is proved.
For each place v, let Xv be the group of unramified characters of the maximal
split torus Tv in M0(Fv) where M0 is a Levi factor of a fixed minimal parabolic
subgroup P0 of G(Fv) (contained in a globally defined minimal parabolic). We
identify Xv with the vector space a∗v = X∗(Tv) ⊗ C modulo the lattice Lv =
2πi
ln qv

X∗(Tv). Attached to each unramified representation σ of Mv is an orbit
of characters in Xv under the Weyl group of Mv. Let λσ be a representative
of this orbit. Let Wv be the Weyl group of Gv and let WU be the Weyl group∏
v∈U Wv of GU . If σ is an unramified representation of GU , let λσ be the

element (λσv ) in the product XU =
∏
Xv . We observe that the natural map

a∗P → XU is injective since ln p1 and ln p2 are linearly independent over Q. We
identify a∗P with its image in XU .
We now claim that if Zπ,U = Zπ0,U , then there exists an element w ∈WU such
that

1. wλπ0,U − λπ,U ∈ Aπ.

2. Aπ = wAπ0 .

3. If x ∈ Aπ0 and λ = w(x+ λπ0,U )− λπ,U , then Tπ,U(λ) = Tπ0,U (x).

To prove this, observe that for each λ ∈ Aπ0 , there exist wλ ∈WU and λ′ ∈ Aπ
such that

wλ(λ+ λπ0,U ) = λ′ + λπ,U

in XU . There are only finitely many possibilities for wλ, and hence there exists
w ∈WU such that wλ = w for a set of λ whose closure has a non-empty interior.
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Since the condition wλ = w is a closed condition, it holds on an open set and
hence everywhere on Aπ0 . Taking λ = 0 gives (1). Parts (2) and (3) follow.
Set Z = Zπ0,U for a fixed π0. We rewrite (23) as follows:

∑

π:Zπ,U=Z

∫

Aπ

f̂U (Tπ,U (λ))gπ(λ) dλ =
∑

π:Zπ,U=Z

∫

Aπ0

f̂U (Tπ0,U (x))gπ(λ) dx

=

∫

Aπ0

f̂U (Tπ0,U (x))


 ∑

π:Zπ,U=Z

gπ(λ)


 dx = 0

where λ+λπ,U = w(x+λπ0,U ). The sum taken inside the integral is absolutely
convergent for almost all λ by Fubini’s theorem. It follows that the push-
forward to ĜunU with respect to Tπ0,U of the measure


 ∑

π:Zπ,U=Z

gπ(λ)


 dx

is zero. We conclude that for almost all λ0 ∈ Aπ0 , we have

∑

(π,λ):Tπ,U (λ)=Tπ0,U (λ0)

gπ(λ) = 0. (24)

It remains to prove that gπ0 is identically zero. Fix U as above and fix a set
Z = Zπ0,U . Suppose that gπ0(λ0) 6= 0. Let Y be the set of pairs (π, λ) such
that Tπ,U (λ) = Tπ0,U (λ0). We may choose a finite subset Y ′ ⊂ Y such such
that

∑

Y−Y ′

|gπ(λ)| < |gπ0(λ0)|/2.

By choosing U ′ ⊃ U sufficiently large, we can ensure that Tπ,U ′(λ) 6= Tπ0,U ′(λ0)
for all (π, λ) ∈ Y ′ such that I(π, λ)S and I(π0, λ0)

S have distinct unramified
constituents. By Assumption (1), this holds if π 6= π0. Equality (24) for U ′

yields

∑

λ:Tπ0,U
′ (λ)=Tπ0,U

′ (λ0)

gπ0(λ) +
∑

(π,λ):π 6=π0,Tπ,U′ (λ)=Tπ0,U
′ (λ0)

gπ(λ) = 0. (25)

By Assumption (2), the first term is a positive integer multiple of multiple of
gπ0(λ0). The second term is bounded by |gπ0(λ0)|/2. This is a contradiction.

Proof of Proposition 6. Fix a character χ and let S be a finite set of places
containing the archimedean places such that χ and E/F are unramified outside
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S. We shall consider functions f = fS ⊗ fS where fS is fixed and fS varies in
the Hecke algebra HS . Write (18) as an equality

RT (f)−KT (f ′) = 0.

Using the fundamental lemma we can write this in the form (21). To apply
Lemma 4, we must check that the Assumptions hold. Assumption (1) is a
consequence of the classification theorem of Jacquet-Shalika [JS] applied to
GL(3). To check Assumption (2), observe that if I(π, λ)S ' I(π, λ′)S , then
(π, λ) = (wπ,wλ′) by [JS]. Remark 5 then implies that gπ(λ) = gπ(λ

′).

11 Decomposable distributions

We still have to derive identities for the individual ν’s in (19). We note that
(19) is an equality between sums of four decomposable distributions. We have
the following elementary

Lemma 5. Let V1, V2, V3 be vector spaces. Consider vectors xi, x
′
i ∈ V1, yi, y

′
i ∈

V2, zi, z
′
i ∈ V3 for i = 1, . . . , n such that

n∑

i=1

xi ⊗ yi ⊗ zi =

n∑

i=1

x′i ⊗ y′i ⊗ z′i.

If each of the sets {xi}, {yi} and {zi} is linearly independent, then there exists
a permutation σ of {1, . . . , n} such that x′i ⊗ y′i ⊗ z′i = xσ(i) ⊗ yσ(i) ⊗ zσ(i) for
all i.

Proof. The hypothesis implies that the span of {x′i} is equal to the span of
{xi}, and similarly for the y’s and z’s. In particular, the sets {x′i}, {y′i}, {z′i}
are linearly independent. Write x′i =

∑
j αijxj . Since the sum

∑
xj ⊗ V2 ⊗ V3

is direct, we must have

xj ⊗ yj ⊗ zj =
∑

i

αijxj ⊗ y′i ⊗ z′i,

for all j and hence yj ⊗ zj =
∑

i αijy
′
i ⊗ z′i. Writing yj and zj in terms of the

linearly independent sets {y′i} and {z′i}, we see that αij is non-zero for exactly
one i.

We also have the following

Lemma 6. For v inert the distributions B̃stv (f, ν, λ), ν ∈ B(χ) are linearly
independent for λ generic.

Proof. Suppose that L′ and L1, ..., Ln are linear functionals on Vπ where (π, V )
is an irreducible unitary representation of a reductive group G over a local field.
Assume that L′ is non-zero and set

Oi(f) =
∑

{ϕ}⊂Vπ
Li(π(f)ϕ)L′(ϕ)
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for i = 1, . . . , n. Then the Oi’s are linearly independent distributions if and
only if the Li are linearly independent. Indeed, any relation among the Oi’s
would imply that

∑

ϕ

L(π(f)ϕ)L′(ϕ) = 0 (26)

for some linear combination L of the Li’s. Fix a compact open K small enough
so that L′|VK 6= 0. Then (26) implies that

∑

{ϕ}⊂VK
L(π(f)ϕ)L′(ϕ) = 0

for any f ∈ H(G,K). We can rewrite this as

L(π(f)ϕ0) = 0

for some 0 6= ϕ0 ∈ V K and all f ∈ H(G,K). This implies that L|VK = 0.
Thus, in order to prove the Lemma, it suffices to show that the function-
als {Jstv (νv , ϕv, λ)}ν∈B(χ) are linearly independent. However, it is clear that
{J(η, ϕv , λ)}η is a linearly independent set in the range of convergence, since
they are given by integrals over disjoint open orbits. Confining ourselves to
ϕ ∈ V K where K is small enough, the condition of linear independence can be
expressed in terms of a non-vanishing of some determinant which is a meromor-
phic function in λ (in fact rational in qλ). Thus, it holds for generic λ. Finally,
in order to prove the same thing for the Jstv , it suffices to check that the matrix
of coefficients (∆ν,λ(η)

−1)ν,η is non-singular. However the determinant of this
matrix is easily seen to be a non-zero constant multiple of a power of qλ times
the determinant of the character table of A(Fv).

Corollary 1. There exists a permutation τχ of B(χ) such that

B̃st(f, ν, λ) = B′(f ′, τχ(ν), λ) (27)

for all λ.

Proof. First, as was noted by Jacquet in ([J2], §4) one may use the localization
principle to infer that B′(f ′, ν, λ) depends only on the orbital integrals used
in the definition of matching functions, and hence only on f . Choose any two
finite places u, u′ of F which are inert in E and view each term in the equality

∑

ν∈B(χ)

B̃st(f, ν, λ) =
∑

ν∈B(χ)

B′(f ′, ν, λ)

of Proposition 6 as a decomposable distribution in f with three factors, where
the first two factors are the components at u and u′ and the third factor is the
product of all components away from u and u′. Lemma 6 allows us to apply
Lemma 5 to conclude that (27) holds with the permutation a-priori depending
on λ ∈ ia∗0. Each side of (27) is the restriction to ia∗0 of a meromorphic function
on a∗0,C. Thus, the permutation does not depend on λ, because there are only
finitely many of them.

Documenta Mathematica 5 (2000) 317–350



Periods of Eisenstein Series 345

12 Uniform distribution of Hecke characters

We need to prove that τχ(ν) = ν. We first prove a Lemma which is interesting
in its own right. Let F be a number field and S a finite set of places including
the archimedean ones. We write S = S∞ ∪ Sf . Embed R+ in F ⊗Q R by
x 7→ 1⊗ x. For any ideal I of OF let φ(I) = |(OF /I)∗|.

Lemma 7. Let {Ik} be a family of ideals, disjoint from S whose norms N(Ik)
tend to ∞. For each k let Xk be the set of Hecke characters of F which are
trivial on R+ and whose conductor divides IkJ for some ideal J whose prime
factors lie in S. Then for any fS ∈ C∞c (F ∗S) we have

1/φ(Ik)
∑

%∈Xk
f̂S(%S)→ λF

∫

R+

fS(t) d∗t

where λF = vol(F ∗R+\IF ).

Proof. This is a simple application of the trace formula for L2(R+F
∗\IF ). Let

f = fS ⊗fk ∈ C∞c (IF ) where fS ∈ C∞c (F ∗S) is fixed and fk is the characteristic
function of {x ∈ ∏v 6∈S O∗v : x ≡ 1 (mod Ik)}. The Poisson summation formula
gives

λF
∑

γ

g(γ) =
∑

%

f̂(%) (28)

where g(x) =
∫

R+
f(tx) d∗t. By our choice of f , the sum in the right hand side

extends over Xk, and in the left hand side only γ = 1 contributes provided that
k is sufficiently large.

By standard methods, this Lemma implies that as k →∞, the set of restrictions
%S of the Hecke characters % in Xk is uniformly distributed in the dual of F ∗S .
The Lemma carries over immediately to the torus T ′, which is a product of
copies of the multiplicative group. We shall use this variant to prove the fol-
lowing Corollary. If Q is a finite set of finite places, we denote by UQ the space
of unramified unitary characters of T ′(FQ) with the usual topology.

Corollary 2. Given a place w 6∈ S, a unitary character η = (ηv)v∈Sf of
T ′(FSf ) and an open set U ⊂ USf there exists a Hecke character % of T ′ which

is unramified outside S ∪ {w} such that %−1
Sf
η ∈ U .

13 Proof of Theorems 2 and 3

We now finish the proofs of Theorem 2 and Theorem 3.
We first prove Theorem 3 by choosing a favorable global situation. Suppose
that we are given local data which consists of:

• a quadratic extension E0/F 0, and
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• a unitary character µ of T ′(F 0).

In principle there is also an additive character of F 0, but we are free to choose
it at will by Remark 4. We can find a quadratic extension of number fields
E/F and a place v1 of F such that Ev1/Fv1 ' E0/F 0. By passing to EK/FK
for an appropriate K we can assume in addition that

1. Every real and even place of F splits at E.

2. Let S1 = {vi}li=1 be the set (possible empty) of places of F which ramify
over E. Then Evi/Fvi ' E0/F 0. We fix such isomorphisms.

Choose a non-trivial additive character ψ of F\AF . Let w1 be an auxiliary
place of F which is inert in E with residual characteristic p. Assume that
p 6 |qF 0 . Let S2 = {wj}mj=1 be the places of F of residual characteristic p. We
may also assume that ψv is unramified for v ∈ S2. Set

Lp(η, s) =
∏

j

Lwj (ηwj , s)

for any Hecke character η.

Lemma 8. There exists an open set U2 of US2 such that whenever ν is a Hecke
character of T ′ such that νS2 ∈ U2 we necessarily have τχ(ν) = ν in the nota-
tions of Corollary 1.

To deduce Theorem from Lemma 8, apply Corollary 2 with the following data:

1. S = S∞ ∪ S1 ∪ S2.

2. ηv = µ for v ∈ S1.

3. ηv = 1 for v ∈ S2.

4. U = U1 × U2 where U1 is an open set of US1 .

5. w 6∈ S is any place of F which splits at E.

Corollary 2 implies that there exists a ν such that νS2 ∈ U2 and νS2µ
−1 ∈ U1. In

particular, τχ(ν) = ν by our claim. The equality (27) yields the proportionality
of the local distributions, i.e.

B̃st(fv, ν, λ) = cv(νv , λ)B
′(f ′v , ν, λ).

Let

dv(νv , λ) = cv(νv , λ)/γv(νv , λ).

A-priori, dv is a rational function in qλ depending on ν and λ. In the split case
Proposition 4 shows that dv(νv , λ) = 1. In the unramified case, the same holds
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by Proposition 5 and Remark 4. Thus, by our conditions we have dv(νv , λ) = 1
except possibly for v = vi. Since

∏
v cv(νv, λ) = 1 we have

∏

i

dvi(νvi , λ) = 1. (29)

Write νviµ
−1 = |·|λi with λi ∈ ia∗0. The relation (29) implies that

∏

i

d(µ, λ + λi) = 1.

If d(µ, ·) were not constant this would impose a non-trivial closed condition on
the λi’s and this would contradict Corollary 2 for an appropriate choice of U1.
Hence d(µ, ·) is a constant. In fact, d(µ, ·) is an l-th root of unity where l is
the cardinality of S1 above. To show that d is independent of µ as well, let µ1

be given and apply the same corollary with η as before except that ηv1 = µ1.
Then (29) implies that d(µ)l−1d(µ1) = 1 so that d(µ1) = d(µ) as required.
We now prove Lemma 8. Let ν ′ = τχ(ν) and let S̃ be a finite set of places of F
including the archimedean ones, outside of which E/F , ψ and ν are unramified.
We are free to chose S̃ so that S2 ∩ S̃ = ∅. By applying Proposition 3.2
and Lemma 3.1 of [JY], we may fix matching functions fS̃ ↔ f ′

S̃
such that

B′
S̃
(f ′
S̃
, I(ν′, λ)) 6≡ 0 as a function of λ. Let f = fS̃ ⊗ 1KS̃ and f ′ = f ′

S̃
⊗ 1K′S̃ .

Then B′(f ′, I(ν′, λ)) 6≡ 0.
Since we assume that all real places of F split at E, the relation (27) gives

Dν
S̃
(f, λ)LS̃(1)(ν, λ)L

S̃
(2)(χ, λ) = γ∞(ν, λ, ψ)D′

ν′

S̃ (f ′, λ)|LS̃(3)(ν′, λ)|2 (30)

where Dν
S̃
, D′ν

′

S̃ are non-zero rational functions in S̃λ = {qλ : q = qv, v ∈ S̃},
LS̃(1)(ν, λ) is the partial L-function computed in Proposition 3 and LS̃(2)(χ, λ)

(resp. LS̃(3)(ν
′, λ)) is the L-function giving the Fourier coefficient of the Eisen-

stein series on G (resp. G′), and finally, γ∞ is the product of the local γ factors
(5) of the archimedean places. As is well known,

LS̃(2)(χ, λ) =
(
LS̃(χ1χ

−1
2 , s1 + 1)LS̃(χ2χ

−1
3 , s2 + 1)LS̃(χ1χ

−1
3 , s1 + s2 + 1)

)−1

and

LS̃(3)(ν, λ) =
(
LS̃(ν1ν

−1
2 , s1 + 1)LS̃(ν2ν

−1
3 , s2 + 1)LS̃(ν1ν

−1
3 , s1 + s2 + 1)

)−1

.

Since LS̃(2)(χ, λ) = LS̃(2)(χ
−1, λ) and si ∈ iR, we obtain a relation

LS̃(ν1ν
−1
2 ω, s1)LS̃(ν2ν

−1
3 ω, s2)LS̃(ν1ν

−1
3 ω, s1 + s2)

LS̃(ν1ν
−1
2 , s1 + 1)LS̃(ν2ν

−1
3 , s2 + 1)LS̃(ν1ν

−1
3 , s1 + s2 + 1)

×

(LS̃(χ−1
1 χ2,−s1 + 1)LS̃(χ−1

2 χ3,−s2 + 1)LS̃(χ−1
1 χ3,−s1 − s2 + 1))−1AS̃(λ)

= γ∞(ν, λ, ψ)|LS̃(ν′1ν
′
2
−1
, s1+1)LS̃(ν′2ν

′
3
−1
, s2+1)LS̃(ν′1ν

′
3
−1
, s1+s2+1)|−2

(31)
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where AS̃(λ) is a rational function in S̃λ. Note that for any Hecke character
µ0 of F which base changes to µ we have

LS̃(µ, s) = LS̃(µ0, s)L
S̃(µ0ω, s).

Hence, by the functional equation

L(µ0ω, s)

L(µ0, s+ 1) · L(µ−1,−s+ 1)
= ε(µ0ω, s)

−1|L(µ0, s+ 1)|−2

for s ∈ iR. Working with partial L-functions we obtain the relation

∣∣∣LS̃(ν1ν
−1
2 , s1 + 1)LS̃(ν2ν

−1
3 , s2 + 1)LS̃(ν1ν

−1
3 , s1 + s2 + 1)

∣∣∣
2

A′S(λ) =

∣∣∣LS̃(ν′1ν2,
−1, s1 + 1)LS̃(ν′2ν

′
3
−1, s2 + 1)LS̃(ν′1ν

′
3
−1, s1 + s2 + 1)

∣∣∣
2

where A′
S̃
(λ) is also a rational function in S̃λ. We will assume now that ν ′ 6= ν

and obtain a contradiction. Suppose, to be specific, that ν ′1 = ν1 but ν′j = νjω
for j = 2, 3. Thus we obtain

|LS̃(ν1ν2
−1, s1 + 1)LS̃(ν1ν3

−1, s1 + s2 + 1)|−2A′
S̃
(λ)

= |LS̃(ν1ν2
−1ω, s1 + 1)LS̃(ν1ν3

−1ω, s1 + s2 + 1)|−2

where A′
S̃
(λ) is as before. This implies then that A′S(λ) decomposes into a

product of rational functions depending only on s1 and s1 +s2 respectively and
then the identity is equivalent to two new identities, one of which reads:

∣∣LS(ν1ν
−1
2 , s+ 1)

∣∣2 c(λ) =
∣∣LS(ν1ν

−1
2 ω, s+ 1)

∣∣2

where c(λ) is a rational function in qS̃ . Using the functional equations again
and the fact that s ∈ iR, one can write this in the form

LS̃(ν1ν2
−1, s+ 1)LS̃(ν1ν2

−1, s)cS̃(s) = LS̃(ν1ν2
−1ω, s+ 1)LS̃(ν1ν2

−1ω, s)

where cS̃(s) is a rational function in qs, q|S̃. Note that the γ factors at ∞
cancel because E/F splits at all real places. This relation now holds as an
equality of meromorphic functions. For Re(s) large enough, both sides can be
expanded as Dirichlet series and we can compare their p-power coefficients to
conclude:

Lp(ν1ν
−1
2 , s)Lp(ν1ν

−1
2 , s+ 1) = Lp(ν1ν

−1
2 ω, s)Lp(ν1ν

−1
2 ω, s+ 1).

This imposes a non-trivial constraint on νS2 . A similar argument gives the
other cases. This proves Lemma 8 and hence finishes the proof of Theorem 3.
Theorem 2 is an immediate consequence of Theorem 3 and Corollary 1.
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Abstract. We consider a generalization E(n) of the Johnson-Wilson
spectrum E(n) for which E(n)∗ is a local ring with maximal ideal

In. We prove that the spectra E(n), E(n) and Ê(n) are Bousfield
equivalent. We also show that the Hopf algebroid E(n)∗E(n) is a free
E(n)∗-module, generalizing a result of Adams and Clarke forKU∗KU .
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Introduction

For each prime p and n > 0, the Johnson-Wilson ring spectrum E(n) provides
an important example of a p-local periodic ring spectrum. The associated Hopf
algebroid E(n)∗E(n) is well known to be flat over E(n)∗, but as far as we are
aware there is no proof in the literature that it is a free module for every n.

Of course, after passage to the In-adic completion Ê(n), and more drastically
the In-adic completion of E(n)∗E(n) (see [4, 8]), such problems disappear.
On the other hand, for the ring spectrum KU , the associated Hopf algebroid
KU∗KU was shown to be free over KU∗ by Frank Adams and Francis Clarke
[3, 2, 6]. Actually their approach has two parallel interpretations: one purely
algebraic involving stably numerical polynomials [5]; the other topological in
that it makes use of the cofibre sequence

Σ2kU
t−→ kU −→ HZ

induced by the Bott map t : S2 −→ kU in connective K-theory.
In this paper we demonstrate an analogous result by constructing an E(n)∗-
basis for E(n)∗E(n) for a generalized Johnson-Wilson spectrum E(n) whose
homotopy ring is the (graded) local ring

E(n)∗ = (E(n)∗)In .
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For completeness, in Section 1 we discuss even more general generalized
Johnson-Wilson spectra to which appropriate analogues of our results apply,
however we only describe the E(n) case explicitly.
Our main result is the following which has some immediate consequences stated
in the Corollary.

Theorem. E(n)∗E(n) is a free E(n)∗-module on a countably infinite basis.

Corollary.
A) For every E(n)∗-module M∗ and s > 0,

Exts,∗E(n)∗
(E(n)∗E(n),M∗) = 0.

In particular,

E(n)∗E(n) = Hom∗E(n)∗(E(n)∗E(n), E(n)∗),

and this is a free E(n)∗-module on an uncountably infinite basis.
B) The E(n)-module spectrum E(n) ∧ E(n) is a countable wedge

E(n) ∧ E(n) '
∨

α

Σ2`(α)E(n),

where ` is some integer valued function of the index α.

Actually, when s > 2, Exts,∗E(n)∗
(E(n)∗E(n),M∗) = 0 for formal reasons. The

statement about E(n)∗E(n) follows from a version of the Universal Coefficient
Spectral Sequence of Adams [1].
Our approach to constructing a basis follows a line of argument suggested by
that of Adams [2] which also has a purely algebraic interpretation in Adams
and Clarke [3, 6].
Although the technology of brave new ring spectra applies to generalized
Johnson-Wilson spectra [7, 15], we have no need of such structure, except
perhaps to ensure the existence of the relevant Universal Coefficient Spectral
Sequence mentioned above; alternatively, M. Hopkins has shown that such
spectral sequences exist for all multiplicative cohomology theories constructed
using the Landweber Exact Functor Theorem.

I would like to thank Francis Clarke, Neil Strickland and the referee for their
helpful comments.

1. Generalized Johnson-Wilson spectra

Given a prime p and n > 1 we define generalized Johnson-Wilson spectra as
follows. Begin with a regular sequence u : u0 = p, u1, . . . , uk, . . . in BP∗ satis-
fying

uk ∈ BP2(pk−1), (p, u1, . . . , uk−1) = Ik / BP∗,

where Ik is actually independent of the choice of generators for BP∗. Of course
we have

Ik = (p, v1, . . . , vk−1) = (p, w1, . . . , wk−1),
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where vj and wj are the Hazewinkel and Araki generators respectively.
There is a commutative ring spectrum BP 〈n;u〉 for which

BP 〈n;u〉∗ = π∗BP 〈n;u〉 = BP∗/(uj : j > n+ 1).

We will denote by In / BP 〈n;u〉∗ the image of the ideal In / BP∗ under the
natural ring homomorphism BP∗ −→ BP 〈n;u〉∗.
For any multiplicative set S ⊆ BP 〈n;u〉∗ containing un and having In∩S = ∅,
we can form the localization

E(n;u;S)∗ = BP 〈n;u〉∗ [S−1].

There is a commutative ring spectrum E(n;u;S) with

E(n;u;S)∗ = π∗E(n;u;S) = BP∗/(uj : j > n+ 1)[S−1].

Example 1.1. a) When S = {urn : r > 1},
E(n;u; {urn : r > 1})∗ = BP 〈n;u〉∗ [u−1

n ].

This ring contains a maximal ideal In generated by the image of In/BP 〈n;u〉∗,
whose quotient ring is

E(n;u; {urn : r > 1})∗/In = K(n)∗.

This is a mild generalization of the original notion of a Johnson-Wilson spec-
trum. There is also an In-adic completion E(n;u; {urn : r > 1})În with homo-
topy ring (E(n;u; {urn : r > 1})∗)În .
b) When S = BP 〈n;u〉∗ − In,

E(n;u;BP 〈n;u〉∗ − In)∗ = (BP 〈n;u〉∗)In .
This is a (graded) local ring with residue (graded) field

E(n;u;BP 〈n;u〉∗ − In)∗/In = K(n)∗.

In all cases we have the following which is a consequence of modified versions
of standard arguments based on the Landweber Exact Functor Theorem.

Theorem 1.2. For each spectrum E(n;u;S) the following hold.
a) On the category of BP∗BP -comodules, tensoring with the BP∗-module
E(n;u;S)∗ preserves exactness.
b) E(n;u;S)∗E(n;u;S) is a flat E(n;u;S)∗-module.
c) (E(n;u;S)∗, E(n;u;S)∗E(n;u;S)) is a Hopf algebroid over Z(p).

Setting uk = vk, the Hazewinkel generator, for all k, we obtain the standard
connective spectrum BP 〈n〉 and the Johnson-Wilson spectra E(n), E(n) for
which

π∗E(n) = E(n)∗ = BP 〈n〉∗ [v−1
n ],

π∗E(n) = E(n)∗ = (BP 〈n〉∗)In .
Notice that every unit u ∈ E(n)∗ has the form

u = avrn + w,(1.1)
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where a ∈ Z×(p) and w ∈ In; in particular, u ∈ E(n)2(pn−1)r. Of course, unlike

the case of E(n), the multiplicative set inverted to form E(n)∗ from BP 〈n〉∗
is infinitely generated. However, for every such unit u arising in BP 〈n〉∗, mul-
tiplication by U = ηR(u) ∈ E(n)∗BP 〈n〉 preserves E(n)∗-linearly independent
sets by courtesy of the following algebraic result (see for example theorem 7.10
of [12]) and Corollary 2.3 which shows that E(n)∗BP 〈n〉 is a free E(n)∗-module.

Proposition 1.3. Let A be a commutative unital local ring with maximal ideal
m. Let M be a flat A-module and (mi : i > 1) be a collection of elements in
M . Suppose that under the reduction map

q : M −→M = A/m⊗
A
M,

the resulting collection (q(mi) : i > 1) of elements in M is A/m-linearly inde-
pendent. Then (mi : i > 1) is A-linearly independent in M .

We end this section with some remarks intended to justify working with E(n)
rather than E(n). For algebraic reasons, our proof of E∗-freeness for E∗E only
appears to work for E = E(n) although we conjecture that the result is true
for E = E(n). However, there are sound topological reasons for viewing E(n)
as a substitute for E(n). Notice that

E(n)∗/In = E(n)∗/In = Ê(n)∗/In = K(n)∗.

Theorem 1.4. The spectra

E(n), E(n), Ê(n)

are Bousfield equivalent. More generally, the spectra

E(n;u; {urn : r > 1}), E(n;u;BP 〈n;u〉∗ − In), E(n;u; {urn : r > 1})În
are Bousfield equivalent.

Remark 1.5. It is claimed in proposition 5.3 of [10] that E(n) and Ê(n) are
Bousfield equivalent. The proof given there is not correct since the extension

E(n)∗ −→ Ê(n)∗ is not faithfully flat because In is not contained in the radical
of E(n)∗. We refer the reader to Matsumura [12], especially theorem 8.14(3), for
standard algebraic facts concerning faithful flatness. In the following proof, we
provide an alternative argument based on the Landweber Filtration Theorem
[11].

Proof. For simplicity we only give the proof for the classical case. Since

Ê(n)∗(X) = Ê(n)∗ ⊗
E(n)∗

E(n)∗(X),

we need only show that Ê(n)∗(X) = 0 implies E(n)∗(X) = 0.
Let M∗ a BP∗BP -comodule which is finitely generated as a BP∗-module. Then
M∗ admits a Landweber filtration by subcomodules

0 = M
[0]
∗ ⊆M [1]

∗ ⊆ · · · ⊆M [k]
∗ = M∗
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such that for each j = 0, . . . , k,

M
[j]
∗ /M

[j−1]
∗ ∼= BP∗/Idj

for some dj > 0. The E(n)∗E(n)-comodule

M∗ = E(n)∗ ⊗
BP∗

M∗

inherits a filtration by subcomodules

0 = M
[0]

∗ ⊆M
[1]

∗ ⊆ · · · ⊆M
[k]

∗ = M∗

satisfying

M
[j]

∗ /M
[j−1]

∗ ∼= E(n)∗/Idj ,

where E(n)∗/Idj = 0 if dj > n. For a BP∗-module N∗,

Ê(n)∗ ⊗
E(n)∗

E(n)∗ ⊗
BP∗

N∗ ∼= Ê(n)∗ ⊗
BP∗

N∗.

Then writing N̂∗ = Ê(n)∗⊗BP∗ N∗ we have

M̂
[j]
∗ /M̂

[j−1]
∗ ∼= Ê(n)∗/Idj .

From this it follows that M∗ = 0 if and only if M̂∗. So Ê(n)∗ is faithfully flat

in this sense on E(n)∗-comodules of the form M∗ for some finitely generated
BP∗BP -comodule.
We can extend this to faithful flatness on all BP∗BP -comodules. Such a co-
module N∗ is the union of its finitely generated subcomodules, by corollary
2.13 of [13]. For each finitely generated subcomodule M∗ ⊆ N∗, the short
exact sequence

0→M∗ −→ N∗ −→ N∗/M∗ → 0

gives rise to the sequences

0→M∗ −→ N∗ −→ N∗/M∗ → 0,

0→ M̂∗ −→ N̂∗ −→ N̂∗/M∗ → 0.

Each of these is short exact since by the Landweber Exact Functor Theorem,

tensor product over BP∗ with either of E(n)∗ or Ê(n)∗ is an exact functor on

BP∗-comodules. Suppose that N̂∗ = 0; then M̂∗ = 0, which implies M∗ = 0.
Since

N∗ = lim−→
M∗⊆N∗

M∗,

this gives N∗ = 0. Applying this to the case of N∗ = BP∗(X) we obtain the

Bousfield equivalence of E(n) with Ê(n).

In the chain of rings E(n)∗ ⊆ E(n)∗ ⊆ Ê(n)∗, the extension E(n)∗ −→ Ê(n)∗ is

faithfully flat, hence E(n) and Ê(n) are also Bousfield equivalent. Alternatively,
by the Landweber Exact Functor Theorem, tensoring with E(n)∗ is exact on
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BP∗BP -comodules, so the above proof works as well with E(n) in place of
E(n).

This result implies that the stable world as seen through the eyes of each of the

homology theories E(n)∗( ), E(n)∗( ) and Ê(n)∗( ) looks the same; indeed this
is true for any generalized Johnson-Wilson spectrum between BP 〈n〉 and E(n).
The proof of the p-local part of the result of Adams and Clarke [3, 2, 6] also
involves working over a (graded) local ring (KU∗)(p) = Z(p)[t, t

−1]; of course

their result holds over the arithmetically global ring KU∗ = Z[t, t−1].

2. Some bases for E(n)∗BP and E(n)∗BP 〈n〉
We first define a useful basis for E(n)∗BP which projects to a basis for
E(n)∗BP 〈n〉 under the natural surjective homomorphism of E(n)∗-algebras

qn : E(n)∗BP −→ E(n)∗BP 〈n〉 .
E(n)∗BP is the polynomial E(n)∗-algebra with the standard generators

tk ∈ E(n)2(pk−1)BP

induced from those for BP∗BP described by Adams [1], where

E(n)∗BP = E(n)∗[tk : k > 1].

Hence the latter has an E(n)∗-basis consisting of the monomials

tr11 · · · tr`` (0 6 rk).

The kernel of qn is the ideal generated by the elements Vn+k = ηR(vn+k)
(k > 1), where ηR is the right unit obtained from the right unit in BP∗BP as
the composite

BP∗
ηR−→ BP∗BP −→ E(n)∗BP.

By well known formulæ for the right unit of BP∗BP , in the ring E(n)∗BP we
have

ηR(vn+k) = vnt
pn

k − vp
k

n tk + · · ·+ ptn+k(2.1a)

≡ vntp
n

k − vp
k

n tk mod In.(2.1b)

Here the undisplayed terms are polynomials over BP∗ in t1, . . . , tk−1.

Remark 2.1. The main source of difficulty in working with E(n) itself in place

of E(n) seems to arise from the fact that the coefficient of tp
n

j in Equation (2.1)
is then only a unit modulo In, so we can only use monomials involving the
ηR(vn+k) as part of a basis when working over E(n)∗ rather than just E(n)∗.
This is used crucially in the proof of Proposition 2.2. Perhaps a careful choice
of generators in place of the Hazewinkel or Araki generators would overcome
this problem.
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We will also require an expression for the right unit on vn:

ηR(vn) = vn +
∑

16j6n

vjθj ∈ E(n)∗BP,(2.2)

where θj ∈ E(n)2(pn−pj)BP has the form

θj = tp
j

n−j mod In.

In particular θ0 = tn mod In. Although the θj are not unique, the terms
vjθj mod I2

n are well defined. Notice that if u ∈ E(n)∗ has the form of Equation
(1.1), then for the right unit ηR(u) on u,

ηR(u) ≡ avrn mod In.

Now we will define some elements that will eventually be seen to form a basis
for E(n)∗BP . First we introduce the following elements of ker qn:

κr1,... ,rk;s1,... ,s` = v−(s1+···+s`)
n tr11 · · · trkk V s1n+1 · · ·V s`n+`,(2.3a)

where 0 6 rj 6 pn − 1 with rk 6= 0 and ` > 0, sj > 0 and s` 6= 0. We also have
the elements

κr1,... ,rk = tr11 · · · trkk ,(2.3b)

where 0 6 rj 6 pn − 1 with rk 6= 0. The empty sequence corresponds to the
element κ∅ = 1. There are also elements

κr1,... ,rk = qn(κr1,... ,rk) ∈ E(n)∗BP 〈n〉 .(2.4)

Next we introduce an increasing multiplicative filtration on E(n)∗BP (apart
from a factor of 2 in the indexing, this is the filtration associated with the
Atiyah-Hirzebruch spectral sequence for E(n)∗BP ),

E(n)∗ = E(n)∗BP
[0] ⊆ · · · ⊆ E(n)∗BP

[k] ⊆ · · · ⊆
⋃

06j

E(n)∗BP
[j] = E(n)∗BP.

Here the monomial tr11 · · · tr`` has exact filtration
∑

j rj(p
j − 1). Of course each

E(n)∗BP [k] is a finite rank free E(n)∗-module with the basis consisting of all

the elements κr1,... ,rk it contains. There are also compatible filtrations ker q
[k]
n ,

E(n)∗BP 〈n〉[k] and K(n)∗BP [k] on ker qn, E(n)∗BP 〈n〉 and K(n)∗BP . Notice
that for j > 0, Vn+j has exact filtration (pn+j−1); more generally, the elements
defined in Equations (2.3) satisfy

κr1,... ,rk;s1,... ,s` ∈ E(n)∗BP
[d](2.5)

whenever

d >
∑

i

ri(p
i − 1) +

∑

j

sj(p
n+j − 1).
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Proposition 2.2. The elements{
κr1,... ,rk for 0 6 rj 6 pn − 1, rk 6= 0,

κr1,... ,rk;s1,... ,s` for 0 6 rj 6 pn − 1, rk 6= 0, 0 6 sj , s` 6= 0, ` > 0,
(2.6)

form an E(n)∗-basis for E(n)∗BP .

Proof. Since

E(n)∗BP =
⋃

j>0

E(n)∗BP
[m]

it suffices to show that for each m > 0, the κ elements specified in Equation
(2.6) and also contained in E(n)∗BP [m] actually form a basis for E(n)∗BP [m].
E(n)∗BP [m] has a natural basis consisting of all the t monomials tr11 · · · trkk
(rj > 0) it contains. Notice that the number of κ elements in E(n)∗BP [m]

is the same as the number of such monomials, hence is equal to the rank of
E(n)∗BP [m]. Let M(m) be the Gram matrix over E(n)∗ expressing the κ
elements in terms of the t monomial basis, with suitable orderings on these
elements. It suffices to show that M(m) is invertible, and for this we need
to show that detM(m) is a unit in E(n)∗. As E(n)∗ is local, this is true if
detM(m) mod In is a unit.
We have

κr1,... ,rk;s1,... ,s` ≡ tr11 · · · trkk (tp
n

1 − vp−1
n t1)

s1 · · · (tp
n

` − vp
`−1
n t`)

s` mod In

≡ tr1+p
ns1

1 · · · tr`+p
ns`

` + (terms of lower filtration) mod In.(2.7)

Working modulo In in terms of the basis of t monomials, the Gram matrix for
the κ elements is lower triangular with all diagonal terms being 1, therefore
detM(m) ≡ 1 mod In. So detM(m) is a unit and M(m) is invertible. Thus
the κ elements of E(n)∗BP [m] form a basis.

Corollary 2.3. The short exact sequence of E(n)∗-modules

0→ ker qn −→ E(n)∗BP
qn−→ E(n)∗BP 〈n〉 → 0

splits so there is an isomorphism of E(n)∗-modules

E(n)∗BP ∼= ker qn ⊕ E(n)∗BP 〈n〉 .
Also, E(n)∗BP 〈n〉 and ker qn are free E(n)∗-modules.

3. E(n)∗E(n) as a limit

In this section we will give a description of E(n)∗E(n) as a colimit. Although
we proceed algebraically, we note that this limit has topological origins since
for each u ∈ BP 〈n〉2(pn−1)r with r > 0 and which is a unit in E(n)∗, there is

a cofibre sequence

Σ2(pn−1)rBP 〈n〉 u−→ BP 〈n〉 −→ BP 〈n− 1;u〉
and E(n) is the telescope

E(n) = Tel
u
BP 〈n〉 .
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On applying the functor E(n)∗( ), there is a short exact sequence

0→ E(n)∗BP 〈n〉 U−→ E(n)∗BP 〈n〉 −→ E(n)∗BP 〈n− 1;u〉 → 0,

and limit

E(n)∗E(n) ∼= lim−→
U

E(n)∗BP 〈n〉 ,

in which U denotes multiplication by the right unit on u. Since u ≡ avrn mod In
in the notation of Equation (1.1), application of the functor K(n)∗( ) induces
another exact sequence and limit

0→ K(n)∗BP 〈n〉 U−→ K(n)∗BP 〈n〉 −→ K(n)∗BP 〈n− 1;u〉 = 0,

K(n)∗E(n) ∼= lim−→
U

K(n)∗BP 〈n〉 .

There are also algebraic identities

E(n)∗E(n) ∼= E(n)∗ ⊗
BP∗

BP∗BP ⊗
BP∗

E(n)∗,

E(n)∗BP 〈n〉 ∼= E(n)∗BP/ ker qn,

K(n)∗BP 〈n〉 ∼= K(n)∗ ⊗
E(n)∗

E(n)∗BP 〈n〉 ∼= K(n)∗ ⊗
BP∗

BP∗BP 〈n〉 ,

which allow us to work without direct reference to the underlying topology.
First we describe a directed system (Λ,4). Recall that BP 〈n〉∗ is a graded

unique factorization domain, with group of units BP 〈n〉×∗ = Z×(p). Define the
sets

Λr = {(u) / BP 〈n〉∗ : u ∈ BP 〈n〉2(pn−1)r , u ∈ E(n)∗ is a unit} (r > 0),

Λ =
⋃

r>0

Λr.

We will often abuse notation and identify (u) with a generator u; this can be
made precise by specifying a choice function to select a generator of each such
principal ideal. Of course, (u) = (v) if and only if there is a unit a ∈ Z×(p)
for which u = av, i.e., if u | v and v | u in BP 〈n〉∗. We will write u 4 v if
(v) ⊆ (u), i.e., if u | v. We will also write u ≺ v if u 4 v and (u) 6= (v). The
directed system (Λ,4) is filtered since for u, v ∈ Λ, u 4 uv and v 4 uv.

Remark 3.1. For later use we will need a cofinal subset of Λ and we now
describe some obvious examples. Since BP 〈n〉∗ is a countable unique fac-
torization domain, we may list the distinct prime ideals lying in Λ as
(w1), (w2), (w3), . . . say. Now inductively define

u0 = 1, uk = u k
k−1wk .

Then uk−1 | uk and indeed uk−1 ≺ uk. Also, for every element (u) ∈ Λ there
is a k such that u | uk, hence u 4 uk. So the uk form a cofinal sequence in Λ.
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Now form the directed system consisting of pairs of the form (BP 〈n〉∗ , u)
with u ∈ Λ. If u, v ∈ Λ, the morphism (BP 〈n〉∗ , u) −→ (BP 〈n〉∗ , uv) is
multiplication by v,

BP 〈n〉∗
v−→ BP 〈n〉∗ .

On setting V = ηR(v), there is also a homomorphism

E(n)∗BP 〈n〉 V−→ E(n)∗BP 〈n〉 .
These give rise to limits

E(n)∗ = lim−→
u∈Λ

BP 〈n〉∗ = (BP 〈n〉∗)In ,(3.1)

E(n)∗E(n) = lim−→
u∈Λ

E(n)∗BP 〈n〉 = (E(n)∗BP 〈n〉)ηRIn .(3.2)

Remark 3.2. In describing E(n)∗E(n) as a limit, it suffices to replace each
map V by

E(n)∗BP 〈n〉 v−1V−−−→ E(n)∗BP 〈n〉 ,
which is of degree 0 and satisfies

v−1V ≡ 1 mod In.(3.3)

This will simplify the description of our basis. Notice that if (v) = (w) /
BP 〈n〉∗, then

v−1V = w−1W,

providing another reason for using v−1V in place of V . From now on we will
consider E(n)∗E(n) as the limit over such maps v−1V rather than the limit of
Equation (3.2).

4. Some bases for E(n)∗BP 〈n〉 and E(n)∗E(n)

For each pair (u, s) with u ∈ Λr and s a non-negative integer, set

M(u; s)∗ = E(n)∗BP 〈n〉[s+r(p
n−1)]

.

By Corollary 2.3, M(u; s)∗ is free on the images under qn of the κr1,... ,rk defined
in Proposition 2.2 and we refer to this as the qnκ-basis. There are inclusion
maps

inc: M(u; s)∗ −→M(u; s+ 1)∗.

For v ∈ Λt and V = ηR(v), there is a multiplication by v−1V map

v−1V : M(u; s)∗ −→M(uv; s)∗.

By Equation (2.2), v−1V raises filtration by t(pn − 1). Equation (3.3) and
Proposition 1.3 imply that v−1V is also injective; indeed we have the following
result.
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Proposition 4.1. Let s > 0 and u, v ∈ Λ. The E(n)∗-submodule

v−1VM(u; s)∗ ⊆M(uv; s)∗

is a summand. Furthermore, if B is a basis for M(u; s)∗ then M(uv; s)∗ has a
basis consisting of the elements

v−1V b (b ∈ B), κr1,... ,rk ∈M(uv; s)∗ − v−1VM(u; s)∗.

Proof. M(u; s)∗ and M(uv; s)∗ each have the qnκ-bases. After reduction mod-
ulo In, the stated elements in K(n)∗BP 〈n〉 satisfy

v−1V b = b ∈ K(n)∗BP 〈n〉[d+s] ,
κr1,... ,rk ∈ K(n)∗BP 〈n〉[d+h+s] −K(n)∗BP 〈n〉[d+s] ,

where u and v have exact filtrations d and h. These elements are clearly
K(n)∗-linearly independent, so by Equation (3.3) and Proposition 1.3 they are
E(n)∗-linearly independent. Thus they form a basis, so the exact sequence

0→M(u; s)∗
v−1V−−−→M(uv; s)∗ −→M(uv; s)∗/v

−1VM(u; s)∗ → 0

splits and there is a direct sum decomposition

M(uv; s)∗ = v−1VM(u; s)∗ ⊕M(uv; s)∗/v
−1VM(u; s)∗.

The E(n)∗-linear maps v−1V and inc commute and together form a doubly
directed system. Then we have

E(n)∗E(n) = lim−→
(u,s)

M(u; s)∗

= lim−→
u

lim−→
s

M(u; s)∗

= lim−→
s

lim−→
u

M(u; s)∗.

Each M(u; s)∗ is a finitely generated free E(n)∗-module, with a basis consisting
of the κ elements it contains; we will refer to this as its κ-basis. M(u; s)∗ also
has another useful basis which we will now define.
Choose a cofinal sequence uk in Λ, for example by the process described in
Remark 3.1. For convenience we will assume that u0 = 1. Of course

E(n)∗E(n) = lim−→
(r,s)

M(ur; s)∗

= lim−→
r

lim−→
s

M(ur; s)∗

= lim−→
s

lim−→
r

M(ur; s)∗.

When r = 0, we take the κ-basis forM(1; s)∗, denoting its elements by κ1;s
r1,... ,rk

.

Now for r > 1, suppose that we have defined a basis κ
ur−1;s
r1,... ,rk for M(ur−1; s)∗.
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For M(ur; s)∗, replace each κr−1;s
r1,... ,rk

of this basis by

κur ;sr1,... ,rk = w−1
r Wrκ

ur−1;s
r1,... ,rk(4.1)

≡ κur−1;s
r1,... ,rk

mod In

whenever this element is also in M(ur; s)∗. For w−1
r Wrκ

ur−1;s
r1,... ,rk /∈ M(ur; s)∗,

set

κur ;sr1,... ,rk
= κur−1;s

r1,... ,rk
.(4.2)

Notice that by repeated applications of Equation (3.3), we have for all basis
elements,

κur;sr1,... ,rk
≡ κr1,... ,rk mod In.(4.3)

Next we consider the effect of raising s by considering the extension

M(ur; s)∗ ⊆M(ur; s+ 1)∗.

Clearly M(ur; s + 1)∗ contains all the elements κur ;sr1,... ,rk
together with its κ-

basis elements of exact filtration dr + s+ 1 where dr is the exact filtration of
ur. Reducing modulo In these elements are K(n)∗-linearly independent, so by
Equation (4.3) and Proposition 1.3 these are E(n)∗-linearly independent and
hence form a basis, showing that this extension splits. We have demonstrated
the following.

Proposition 4.2. For r, s > 0, the E(n)∗-module M(ur; s)∗ is free with the
following two bases:

• Bur;s1 consisting of the elements κr1,... ,rk contained in M(ur; s)∗;
• Bur;s2 consisting of the elements κur;sr1,... ,rk

.

Now we can state our main result.

Theorem 4.3. E(n)∗E(n) is E(n)∗-free with a basis consisting of the images of
the non-zero elements of the form

κur;sr1,... ,rk
∈M(ur; s)∗ − w−1

r WrM(ur−1; s)∗ (r, s > 0)

under the natural map M(ur; s)∗ −→ E(n)∗E(n).

Proof. We begin by showing that these elements span E(n)∗E(n). Let z ∈
E(n)∗E(n) and suppose that t is the image of zr ∈M(ur; s)∗ under the natural
map

M(ur; s)∗ −→ E(n)∗E(n).

Then zr can be uniquely expressed as an E(n)∗-linear combination

zr =
∑

r1,... ,rk

λr1,... ,rkκ
ur ;s
r1,... ,rk

.

We can split up this sum as

zr =

( ∑

r1,... ,r`

λr1,... ,r`κ
ur−1;s
r1,... ,r`

)
+ w−1

r Wr

( ∑

s1,... ,sk

λs1,... ,skκ
ur−1;s
s1,... ,sk

)
.
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Since
∑

r1,... ,r`

λr1,... ,r`κ
ur−1;s
r1,... ,r` ∈M(ur−1; s)∗,

∑

s1,... ,sk

λs1,... ,skκ
ur−1;s
s1,... ,sk ∈M(ur; s)∗

map to linear combinations of the asserted basis elements in the images of
M(ur−1; s)∗ and M(ur−1; s)∗ in E(n)∗E(n), z is also a linear combination of
those basis elements.
Now we show that these elements are linearly independent over E(n)∗E(n). We
know that E(n)∗E(n) is E(n)∗-flat, and also that

K(n)∗ ⊗
E(n)∗

E(n)∗E(n) = K(n)∗E(n)

( = K(n)∗K(n) in the standard but misleading notation)

which has a K(n)∗-basis consisting of the reductions of the elements

tr11 · · · trkk (0 6 rj 6 pn − 1).

Now tr11 · · · trkk is the image of κur;sr1,... ,rk
∈M(ur; s) under the natural map. Care-

ful book keeping shows that the asserted basis elements do indeed account for
all the tj-monomials in this basis of K(n)∗E(n). These are linearly independent
in E(n)∗E(n) by Proposition 1.3.

The following useful consequence of our construction is immediate on taking

E(n)∗BP 〈n〉 = lim−→
s

M(1; s)∗.

Corollary 4.4. The natural map

E(n)∗BP 〈n〉 −→ E(n)∗E(n)

is a split monomorphism of E(n)∗-modules.
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Abstract. In their famous article [Gr-Za], Gross and Zagier proved
a formula relating heights of Heegner points on modular curves and
derivatives of L-series of cusp forms.
We prove the function field analogue of this formula. The classical
modular curves parametrizing isogenies of elliptic curves are now re-
placed by Drinfeld modular curves dealing with isogenies of Drinfeld
modules. Cusp forms on the classical upper half plane are replaced
by harmonic functions on the edges of a Bruhat-Tits tree.
As a corollary we prove the conjecture of Birch and Swinnerton-Dyer
for certain elliptic curves over functions fields whose analytic rank is
equal to 1.
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1 Introduction

Let K = Fq(T ) be the rational function field over a finite field Fq of odd
characteristic. In K we distinguish the polynomial ring Fq[T ] and the place∞.
We consider harmonic functions f on GL2(K∞)/Γ∞K∗∞, the edges of the
Bruhat-Tits tree of GL2, which are invariant under Γ0(N) for N ∈ Fq [T ].
These are called automorphic cusp forms of Drinfeld type of level N (cf. sec-
tion 2.1).
Let L = K(

√
D), with gcd(N,D) = 1, be an imaginary quadratic extension of

K (we assume that D is irreducible to make calculations technically easier).
We attach to an automorphic cusp form f of Drinfeld type of level N , which
is a newform, and to an element A in the class group of OL = Fq [T ][

√
D] an

L-series L(f,A, s) (section 2.1).
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We represent this L-series (normalized by a suitable factor L(N,D)(2s + 1))
as a Petersson product of f and a function Φs on Γ0(N) \ GL2(K∞)/Γ∞K∗∞
(sections 2.2 and 2.3). From this representation we get a functional equation
for L(f,A, s) (Theorem 2.7.3 and Theorem 2.7.6), which shows in particular

that L(f,A, s) has a zero at s = 0, if

[
D

N

]
= 1.

In this case, under the additional assumptions that N is square free and that
each of its prime divisors is split in L, we evaluate the derivative of L(f,A, s) at
s = 0. Since the function Φs is not harmonic in general, we apply a holomorphic
projection formula (cf. section 2.4) to get

∂

∂s
(L(N,D)(2s+ 1)L(f,A, s)) |s=0=

∫
f ·ΨA (if degD is odd),

resp.

∂

∂s
(

1

1 + q−s−1
L(N,D)(2s+ 1)L(f,A, s)) |s=0=

∫
f ·ΨA (if degD is even),

where ΨA is an automorphic cusp form of Drinfeld type of level N . The Fourier
coefficients Ψ∗A(πdeg λ+2

∞ , λ) of ΨA are evaluated in sections 2.5, 2.6 and 2.8. The
results are summarized in Theorem 2.8.2 and Theorem 2.8.3.
On the other hand let x be a Heegner point on the Drinfeld modular curve
X0(N) with complex multiplication by OL = Fq [T ][

√
D]. There exists a cusp

form gA of Drinfeld type of level N whose Fourier coefficients are given by (cf.
Proposition 3.1.1):

g∗A(πdeg λ+2
∞ , λ) = q− degλ〈(x) − (∞), Tλ((x)

σA − (0))〉,
where the automorphism σA belongs to the class A via class field theory, where
Tλ is the Hecke operator attached to λ and where 〈 , 〉 denotes the global
Néron-Tate height pairing of divisors on X0(N) over the Hilbert class field of
L.
We want to compare the cusp forms ΨA and gA. Therefore we have to evaluate
the height of Heegner points, which is the content of chapter 3. We evaluate the
heights locally at each place of K. At the places belonging to the polynomial
ring Fq[T ] we use the modular interpretation of Heegner points by Drinfeld
modules. Counting homomorphisms between different Drinfeld modules (simi-
lar to calculations in [Gr-Za]) yields the formula for these local heights (Corol-
lary 3.4.10 and Proposition 3.4.13). At the place ∞ we construct a Green’s
function on the analytic upper half plane, which gives the local height in this
case (Propositions 3.6.3, 3.6.5). Finally we evaluate the Fourier coefficients of
gA in Theorems 3.6.4 and 3.6.6.
In chapter 4 we compare the results on the derivatives of the L-series, i.e. the
Fourier coefficients Ψ∗A(πdeg λ+2

∞ , λ), and the result on the heights of Heegner
points, i.e. the coefficients g∗A(πdeg λ+2

∞ , λ), and get our main result (cf. Theo-
rem 4.1.1 and Theorem 4.1.2): If gcd(λ,N) = 1, then

Ψ∗A(πdeg λ+2
∞ , λ) =

q − 1

2
q−(degD+1)/2 g∗A(πdeg λ+2

∞ , λ) (if degD is odd),
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resp.

Ψ∗A(πdeg λ+2
∞ , λ) =

q − 1

4
q−degD/2 g∗A(πdeg λ+2

∞ , λ) (if degD is even).

We apply this result to elliptic curves. Let E be an elliptic curve over K
with conductor N ·∞, which has split multiplicative reduction at∞, then E is
modular, i.e. it belongs to an automorphic cusp form f of Drinfeld type of level
N . In particular the L-series of E/K and of f satisfy L(E, s+ 1) = L(f, s).
The L-series of E over the field L = K(

√
D) equals L(E, s)L(ED, s) and can

be computed by

L(E, s+ 1)L(ED, s+ 1) =
∑

A∈Cl(OL)

L(N,D)(2s+ 1)L(f,A, s),

if degD is odd, or in the even case by

L(E, s+ 1)L(ED, s+ 1) =
∑

A∈Cl(OL)

1

1 + q−s−1
L(N,D)(2s+ 1)L(f,A, s).

This motivates the consideration of the L-series L(f,A, s).
The functional equations for all L(f,A, s) yield that L(E, s)L(ED, s) has a zero
at s = 1. In order to evaluate the first derivative, we consider a uniformization
π : X0(N) → E of the modular elliptic curve E and the Heegner point PL :=∑
A∈Cl(OL) π(xσA ). PL is an L-rational point on E.

Our main result yields a formula relating the derivative of the L-series of E/L

and the Néron-Tate height ĥE,L(PL) of the Heegner point on E over L (Theo-
rem 4.2.1):

∂

∂s
(L(E, s)L(ED , s)) |s=1= ĥE,L(PL) c(D) (deg π)−1

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f · f,

where the constant c(D) equals q−1
2 q−(degD+1)/2 (if degD is odd) or

q−1
4 q−degD/2 (if degD is even).

As a corollary (Corollary 4.2.2) we prove the conjecture of Birch and
Swinnerton-Dyer for E/L, if its analytic rank is equal to 1.
Large parts of this work were supported by the DFG-Schwerpunkt “Algorithmi-
sche Algebra und Zahlentheorie”. We are very thankful for this.

2 L-Series

2.1 Basic Definitions of L-Series

Let Fq be the finite field with q = pα elements (p 6= 2), and let K = Fq(T ) be
the rational function field over Fq . We distinguish the finite places given by the
irreducible elements in the polynomial ring Fq [T ] and the place∞ of K. For∞
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we consider the completion K∞ with normalized valuation v∞ and valuation
ring O∞. We fix the prime π∞ = T−1, then K∞ = Fq((π∞)). In addition
we define the following additive character ψ∞ of K∞: Take σ : Fq → C∗ with
σ(a) = exp( 2πi

p TrFq/Fp(a)) and set ψ∞(
∑
aiπ

i
∞) = σ(−a1).

The oriented edges of the Bruhat-Tits tree of GL2 over K∞ are parametrized
by the set GL2(K∞)/Γ∞K∗∞, where

Γ∞ := {
(
α β
γ δ

)
∈ GL2(O∞) | v∞(γ) > 0}.

GL2(K∞)/Γ∞K∗∞ can be represented by the two disjoint sets

T+ := {
(
πm∞ u
0 1

)
| m ∈ Z, u ∈ K∞/πm∞O∞} (2.1.1)

and

T− := {
(
πm∞ u
0 1

)(
0 1
π∞ 0

)
| m ∈ Z, u ∈ K∞/πm∞O∞}. (2.1.2)

Right multiplication by

(
0 1
π∞ 0

)
reverses the orientation of an edge.

We do not distinguish between matrices in GL2(K∞) and the corresponding
classes in GL2(K∞)/Γ∞K∗∞.
We want to study functions on GL2(K∞)/Γ∞K∗∞. Special functions are de-
fined in the following way: The groups GL2(Fq[T ]) and SL2(Fq [T ]) operate on
GL2(K∞)/Γ∞K∗∞ by left multiplication. For N ∈ Fq[T ] let

Γ0(N) := {
(
a b
c d

)
∈ GL2(Fq[T ]) | c ≡ 0 mod N}

and Γ
(1)
0 (N) := Γ0(N) ∩ SL2(Fq [T ]).

Definition 2.1.1 A function f : GL2(K∞)/Γ∞K∗∞ → C is called an au-
tomorphic cusp form of Drinfeld type of level N if it satisfies the following
conditions:
i) f is harmonic, i.e. ,

f(X

(
0 1
π∞ 0

)
) = −f(X)

and ∑

β∈GL2(O∞)/Γ∞

f(Xβ) = 0

for all X ∈ GL2(K∞)/Γ∞K∗∞,
ii) f is invariant under Γ0(N), i.e. ,

f(AX) = f(X)
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for all X ∈ GL2(K∞)/Γ∞K∗∞ and A ∈ Γ0(N),
iii) f has compact support modulo Γ0(N), i.e. there are only finitely many
elements X̄ in Γ0(N)\GL2(K∞)/Γ∞K∗∞ with f(X̄) 6= 0.

Any function f on GL2(K∞)/Γ∞K∗∞ which is invariant under

(
1 Fq[T ]
0 1

)

has a Fourier expansion

f(

(
πm∞ u
0 1

)
) =

∑

λ∈Fq [T ]

f∗(πm∞, λ)ψ∞(λu) (2.1.3)

with

f∗(πm∞, λ) =

∫

K∞/Fq[T ]

f(

(
πm∞ u
0 1

)
)ψ∞(−λu) du,

where du is a Haar measure with
∫

K∞/Fq[T ]

du = 1.

Since

(
1 Fq[T ]
0 1

)
⊂ Γ0(N) this applies to automorphic cusp forms. In this

particular case the harmonicity conditions of Definition 2.1.1 imply

f∗(πm∞, λ) = 0, if λ = 0 or if degλ+ 2 > m, (2.1.4)

f∗(πm∞, λ) = q−m+degλ+2f∗(πdeg λ+2
∞ , λ), if λ 6= 0 and degλ+ 2 ≤ m.

Hence we get the following:

Remark 2.1.2 All the Fourier coefficients of an automorphic cusp form f of
Drinfeld type are uniquely determined by the coefficients f ∗(πdeg λ+2

∞ , λ) for
λ ∈ Fq[T ].

To an automorphic cusp form f one can attach an L-series L(f, s) in the fol-
lowing way (cf. [We1], [We2]): Let m be an effective divisor of K of degree n,
then m = (λ)0 + (n− degλ)∞ with λ ∈ Fq[T ], deg λ ≤ n. We define

f∗(m) = f∗(πn+2
∞ , λ) and L(f, s) =

∑

m≥0

f∗(m)N(m)−s, (2.1.5)

where N(m) denotes the absolute norm of the divisor m.
The C-vector space of automorphic cusp forms of Drinfeld type of level N
is finite dimensional and it is equipped with a non-degenerate pairing, the
Petersson product, given by

(f, g) 7→
∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f · g.

There is the notion of oldforms, i.e. linear combinations of forms

g(

(
d 0
0 1

)
X), where g is an automorphic cusp form of level M , M |N

Documenta Mathematica 5 (2000) 365–444



370 Hans-Georg Rück and Ulrich Tipp

and M 6= N , and d is a divisor of N/M . Automorphic cusp forms of Drinfeld
type which are perpendicular under the Petersson product to all the oldforms
are called newforms.
Important examples of newforms are the following: Let E be an elliptic curve
over K with conductor N · ∞, which has split multiplicative reduction at ∞,
then E belongs to a newform f of level N such that the L-series of E satisfies
([De])

L(E, s+ 1) = L(f, s). (2.1.6)

This newform is in addition an eigenform for all Hecke operators, but we do
not assume this property in general.
From now on let f be an automorphic cusp form of level N which is a newform.
Let L/K be an imaginary quadratic extension (i.e. a quadratic extension of K
where ∞ is not split) in which each (finite) divisor of N is not ramified. Then
there is a square free polynomial D ∈ Fq [T ], prime to N with L = K(

√
D).

We assume in this paper that D is an irreducible polynomial. In principle all
the arguments apply to the general case, but the details are technically more
complicated. We distinguish two cases. In the first case the degree of D is odd,
i.e. ∞ is ramified in L/K; in the second case the degree of D is even and its
leading coefficient is not a square in F∗q , i.e. ∞ is inert in L/K.

The integral closure of Fq [T ] in L is OL = Fq[T ][
√
D].

Let A be an element of the class group Cl(OL) of OL. For an effective divisor
m = (λ)0 + (n− degλ)∞ (as above) we define

rA(m) = #{a ∈ A | a integral with NL/K(a) = λFq [T ]} (2.1.7)

and hence we get the partial zeta function attached to A as

ζA(s) =
∑

m≥0

rA(m)N(m)−s. (2.1.8)

For the calculations it is sometimes easier to define a function depending on
elements of Fq [T ] instead of divisors. We choose a0 ∈ A−1 and λ0 ∈ K with
NL/K(a0) = λ0 Fq[T ] and define

ra0,λ0(λ) = #{µ ∈ a0 | NL/K(µ) = λ0λ}. (2.1.9)

Then

rA(m) =
1

q − 1

∑

ε∈F∗
q

ra0,λ0(ελ).

The theta series is defined as

Θa0,λ0(

(
πm∞ u
0 1

)
) =

∑

degλ+2≤m
ra0,λ0(λ)ψ∞(λu). (2.1.10)
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We will see later that the transformation rules of this theta series are the
starting point of all our calculations.
Now we combine the L-series of a newform f (cf. (2.1.5)) and the partial zeta
function of A (cf. (2.1.8)) to obtain the function

L(f,A, s) =
∑

m≥0

f∗(m)rA(m)N(m)−s. (2.1.11)

For technical reasons we introduce

L(N,D)(2s+ 1) =
1

q − 1

∑

k∈Fq [T ]
gcd(k,N)=1

[
D

k

]
q−(2s+1) deg k, (2.1.12)

where

[
D

k

]
denotes the Legendre resp. the Jacobi symbol for the polynomial

ring Fq[T ]. For an irreducible k ∈ Fq[T ] and a coprime D ∈ Fq [T ] the Legendre

symbol

[
D

k

]
is by definition equal to 1 or −1 if D is or is not a square in

(Fq [T ]/kFq [T ])∗, respectively. If D is divisible by k, then

[
D

k

]
equals 0. This

definition is multiplicatively extended to the Jacobi symbol for arbitrary, not

necessarily irreducible k, so e.g.

[
D

k

]
=

[
D

k1

]
·
[
D

k2

]
if k = k1 · k2.

In the first case, where degD is odd, the function

L(N,D)(2s+ 1)L(f,A, s)
is the focus of our interest; in the case of even degree it is the function

1

1 + q−s−1
L(N,D)(2s+ 1)L(f,A, s).

This is motivated by the following fact:

Proposition 2.1.3 Let E be an elliptic curve with conductor N ·∞ and corre-
sponding newform f as above and let ED be its twist by D. Then the following
identities hold:

L(E, s+ 1)L(ED, s+ 1) =
∑

A∈Cl(OL)

L(N,D)(2s+ 1)L(f,A, s)

if degD is odd, and

L(E, s+ 1)L(ED, s+ 1) =
∑

A∈Cl(OL)

1

1 + q−s−1
L(N,D)(2s+ 1)L(f,A, s)

if degD is even.

It is not difficult to prove this fact using the definitions of the coefficients f ∗(m)
(cf. (2.1.5)) and rA(m) (cf. (2.1.7)) and the Euler products of the L-series of
the elliptic curves.
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2.2 Rankin’s Method

The properties of the automorphic cusp form f yield

f∗(πm∞, λ) = q−m+1
∑

u∈π∞/πm∞

f(

(
πm∞ u
0 1

)
)ψ∞(−λu). (2.2.1)

We use this to calculate

L(f,A, s) =
1

q − 1

∞∑

m=2

(
∑

deg λ+2≤m
f∗(πm∞, λ)ra0,λ0(λ)) q

−(m−2)s. (2.2.2)

Now we distinguish the two cases.

2.2.1 degD is odd

We continue with equations (2.2.1) and (2.2.2):

L(f,A, s)

=
q

q − 1

∞∑

m=2

∑

u∈π∞/πm∞

f(

(
πm∞ u
0 1

)
)Θa0,λ0(

(
πm∞ u
0 1

)
) q−m(s+1)+2s

=
q

q − 1

∫

H∞

f(

(
πm∞ u
0 1

)
)Θa0,λ0(

(
πm∞ u
0 1

)
) q−m(s̄+1)+2s̄, (2.2.3)

where

H∞ :=

(
1 Fq[T ]
0 1

)
\
(
K∗∞ K∞
0 1

)
/

(
O∗∞ O∞
0 1

)
.

We consider the canonical mapping

H∞ → Γ
(1)
0 (ND)\GL2(K∞)/Γ∞K

∗
∞ =: G(ND),

which is surjective. We take the measure on G(ND) which counts the size of
the stabilizer of an element (cf. [Ge-Re], (4.8)). Then we get

L(f,A, s) =
q

2(q − 1)
(2.2.4)

·
∫

G(ND)

f(

(
πm∞ u
0 1

)
)
∑

M

Θa0,λ0(M

(
πm∞ u
0 1

)
) q−m∗(s̄+1)+2s̄

where the sum is taken over those M =

(
a b
c d

)
∈
(

1 Fq[T ]
0 1

)
\Γ(1)

0 (ND)

with M

(
πm∞ u
0 1

)
∈ T+, and where m∗ = m− 2v∞(cu+ d).
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Remark 2.2.1 The definitions of T+ and T− (cf. (2.1.1), (2.1.2)) yield:

M

(
πm∞ u
0 1

)
∈ T+ if and only if v∞(cπm∞) > v∞(cu+ d).

In ([Rü1], Theorem 6.2) we showed that for those M satisfying v∞(cπm∞) >
v∞(cu + d) one has the following transformation rule for the theta series (cf.
(2.1.10)):

Θa0,λ0(M

(
πm∞ u
0 1

)
) = Θa0,λ0(

(
πm∞ u
0 1

)
)

[
d

D

]
δcu+d q

−v∞(cu+d),

(2.2.5)

where

[
d

D

]
is the Legendre symbol (defined in section 2.1) and where δz denotes

the local norm symbol at ∞, i.e., δz is equal to 1 if z ∈ K∗∞ is the norm of an
element in the quadratic extension K∞(

√
D)/K∞ and −1 otherwise.

Equations (2.2.4), (2.2.5) and the definition of L(N,D) (cf. (2.1.12)) yield:

L(N,D)(2s+ 1)L(f,A, s) =
q

2(q − 1)

∫

G(ND)

f ·Θa0,λ0H1,s̄

with

H1,s(

(
πm∞ u
0 1

)
) := q−m(s+1)+2s

∑

c,d∈Fq[T ]
c≡0modND
gcd(d,N)=1

v∞(cπm∞)>v∞(cu+d)

[
d

D

]
δcu+d q

v∞(cu+d)(2s+1).

We see that Θa0,λ0H1,s is a function on G(ND).

Let µ : Fq [T ]→ {0, 1,−1} be the Moebius function with

∑

e∈Fq [T ]
e|n

µ(e) = 0 if nFq[T ] 6= Fq[T ],

and
1

q − 1

∑

e∈F∗
q

µ(e) = 1,

then H1,s(

(
πm∞ u
0 1

)
)

=
q−m(s+1)+2s

q − 1

∑

e|N
µ(e)

[ e
D

]
δe q
−(2s+1) deg eE(1)

s (

(
Nπm∞
e

Nu
e

0 1

)
)
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with the Eisenstein series

E(1)
s (

(
πm∞ u
0 1

)
) :=

∑

c,d∈Fq[T ]
c≡0modD

v∞(cπm∞)>v∞(cu+d)

[
d

D

]
δcu+d q

v∞(cu+d)(2s+1). (2.2.6)

For a divisor e of N the function

Θa0,λ0(

(
πm∞ u
0 1

)
) q−m(s+1)+2sE(1)

s (

(
Nπm∞
e

Nu
e

0 1

)
)

on GL2(K∞)/Γ∞K∗∞ is invariant under Γ
(1)
0 (NDe ).

Since we assume that f is a newform of level N , it is orthogonal (with respect
to the Petersson product) to functions of lower level. Therefore we get

Proposition 2.2.2 Let degD be odd, then

L(N,D)(2s+ 1)L(f,A, s) =
q

2(q − 1)

∫

G(ND)

f ·Θa0,λ0H2,s̄

with H2,s(

(
πm∞ u
0 1

)
)

:= q−m(s+1)+2sE(1)
s (

(
Nπm∞ Nu

0 1

)
) (2.2.7)

= q−m(s+1)+2s
∑

c,d∈Fq[T ]
c≡0modD

v∞(cNπm∞)>v∞(cNu+d)

[
d

D

]
δcNu+d q

v∞(cNu+d)(2s+1).

.

2.2.2 degD is even

We use equation (2.2.2) and the geometric series expansion of 1/(1+ q−s−1) to
evaluate

1

1 + q−s−1
L(f,A, s) =

1

q − 1

·
∞∑

m=2

q−(m−2)s
m∑

l=2

(
∑

deg λ+2≤l
f∗(πl∞, λ)ra0 ,λ0(λ)) (−q−1)m−l.

Since f is an automorphic cusp form and hence f ∗(πl∞, λ) = qm−lf∗(πm∞, λ)
(cf. (2.1.4)), we get

1

1 + q−s−1
L(f,A, s) =

1

q − 1

·
∞∑

m=2

(
∑

deg λ+2≤m
f∗(πm∞, λ)ra0 ,λ0(λ)) q

−(m−2)s (−1)m−degλ + 1

2
.
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If ra0,λ0(λ) 6= 0, then deg λ ≡ deg λ0 mod 2, because degD is even. Now
equation (2.2.1) yields

1

1 + q−s−1
L(f,A, s) =

q

q − 1

·
∫

H∞

f(

(
πm∞ u
0 1

)
)Θa0,λ0(

(
πm∞ u
0 1

)
) q−m(s̄+1)+2s̄

(−1)m−degλ0 + 1

2
.

Thus the right side of this equation differs from (2.2.3) only by the factor
((−1)m−degλ0 +1)/2. But this factor is invariant under GL2(Fq [T ]) and hence
causes no problems here or in the next steps. Proceeding exactly as in the case
where degD is odd gives the following result:

Proposition 2.2.3 Let degD be even, then

1

1 + q−s−1
L(N,D)(2s+ 1)L(f,A, s) =

q

2(q − 1)
·

∫

G(ND)

f ·Θa0,λ0H2,s̄
(−1)m−degλ0 + 1

2

with H2,s given by equation (2.2.7).

2.3 Computation of the Trace

The function Θa0,λ0H2,s on GL2(K∞)/Γ∞K∗∞ is only invariant under

Γ
(1)
0 (ND). To make it invariant under Γ

(1)
0 (N) we compute the trace with

respect to the extension Γ
(1)
0 (ND)\Γ(1)

0 (N). The trace from Γ
(1)
0 (N) to Γ0(N)

is easy, this will be done at the very end of the calculations.
Since N and D are relatively prime, there are µ1, µ2 ∈ Fq[T ] with 1 = µ1N +
µ2D. The set

R = {
(

1 0
0 1

)
,

(
1 1

−µ2D µ1N

)(
0 −1
1 λ

)
(λ mod D)} (2.3.1)

is therefore a set of representatives of Γ
(1)
0 (ND)\Γ(1)

0 (N). Here we used the
assumption that D is irreducible. In order to evaluate

∑
M∈R Θa0,λ0H2,s(M · ),

we treat Θa0,λ0 and H2,s separately.
From ([Rü1], Prop. 4.4) we get, if m > v∞(u):

Θa0,λ0(

(
πm∞
u2

1
u

0 1

)
) = Θa0,λ0(

(
πm∞
D

u
D

0 1

)
)δu q

−v∞(u)δ−λ0q
− 1

2 degDε−1
0

where ε0 = 1 if degD is even and ε0 = δ−t(−1)α+1γ(p)α (q = pα ; γ(p) = 1 if
p ≡ 1 mod 4 or i otherwise) if degD is odd. Then one evaluates

Θa0,λ0(

(
0 −1
1 λ

)(
πm∞ u
0 1

)
) = Θa0,λ0(

(
πm∞
D

−(u+λ)
D

0 1

)
) · (2.3.2)

·δu+λ q
−v∞(u+λ)δλ0 q

− 1
2 degDε−1

0 .
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Now (2.2.5) and (2.3.2) yield the operation of the matrices M ∈ R (cf. (2.3.1))
on Θa0,λ0 .

The situation for H2,s and hence for the Eisenstein series E
(1)
s (cf. (2.2.6)) is

easier. Straightforward calculations (mainly transformations of the summation
indices) yield:

If

(
a b
c d

)
∈ SL2(Fq[T ]) with gcd(c,D) = 1 and if v∞(cπm∞) > v∞(cu + d)

then

E(1)
s (

(
a b
c d

)(
πm∞ u
0 1

)
) = E(D)

s (

(
πm∞
D

u+c∗d
D )

0 1

)
)
[ c
D

]
·

·δD q−(2s+1) degDδcu+d q
−v∞(cu+d)(2s+1) (2.3.3)

with c∗ ≡ c−1 mod D. Here E
(D)
s is the Eisenstein series

E(D)
s (

(
πm∞ u
0 1

)
) :=

∑

c,d∈Fq[T ]
v∞(cπm∞)>v∞(cu+d)

[ c
D

]
δcu+d q

v∞(cu+d)(2s+1). (2.3.4)

2.3.1 degD is odd

We apply the results of this section ((2.3.2) and (2.3.3)) to Proposition 2.2.2.

Let G(N) be the set Γ
(1)
0 (N)\GL2(K∞)/Γ∞K∗∞.

Proposition 2.3.1 Let degD be odd, then

L(N,D)(2s+ 1)L(f,A, s) =
q

2(q − 1)

∫

G(N)

f · Φ(o)
s̄

with

Φ(o)
s (

(
πm∞ u
0 1

)
) :=

∑

M∈R
Θa0,λ0H2,s(M

(
πm∞ u
0 1

)
) (2.3.5)

= q−degD
∑

λmodD

Θa0,λ0(

(
πm∞
D

−(u+λ)
D

0 1

)
) Es(

(
πm∞
D

u+λ
D

0 1

)
)

where Es(
(
πm∞ u
0 1

)
)

:= q(s+1) degD+2sq−m(s+1)

[
E(1)
s (

(
NDπm∞ NDu

0 1

)
) (2.3.6)

+E(D)
s (

(
Nπm∞ Nu

0 1

)
) δλ0DN ε

−1
0

[
D

N

]
q(−

1
2−2s) degD

]
.
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2.3.2 degD is even

We already mentioned that the factor ((−1)m−degλ0 + 1)/2 is invariant un-
der the whole group GL2(Fq[T ]). Therefore it is not affected by the trace.
Proposition 2.2.3 yields the following.

Proposition 2.3.2 Let degD be even, then

1

1 + q−s−1
L(N,D)(2s+ 1)L(f,A, s) =

q

2(q − 1)

∫

G(N)

f · Φ(e)
s̄

with

Φ(e)
s (

(
πm∞ u
0 1

)
) := Φ(o)

s (

(
πm∞ u
0 1

)
)

(−1)m−degλ0 + 1

2
. (2.3.7)

2.4 Holomorphic Projection

We want to evaluate an integral
∫
G(N) f · Φ, where f is our automorphic cusp

form of Drinfeld type of level N (cf. section 2.1) and Φ is any function on

G(N) = Γ
(1)
0 (N)\GL2(K∞)/Γ∞K∗∞. Since the Petersson product is non-

degenerate on cusp forms, we find an automorphic cusp form Ψ of Drinfeld

type for Γ
(1)
0 (N) (one has to modify the definition of cusp forms to Γ

(1)
0 (N) in

an obvious way) such that
∫

G(N)

g ·Ψ =

∫

G(N)

g · Φ

for all cusp forms g.
If we set g = f we obtain our result. In this section we want to show how one
can compute the Fourier coefficients of Ψ from those of Φ. We already noticed
that only the coefficients Ψ∗(πdeg λ+2

∞ , λ) are important (cf. Remark 2.1.2).
For this we take g = Pλ, where Pλ (λ ∈ Fq[T ], λ 6= 0) are the Poincaré series
introduced in [Rü2], and evaluate (cf. [Rü2], Prop. 14)

∫

G(N)

Pλ ·Ψ =
4

q − 1
Ψ∗(πdeg λ+2

∞ , λ). (2.4.1)

On the other hand we calculate (with transformations as in the proof of [Rü2],
Prop. 14)

∫

G(N)

Pλ · Φ = 2 lim
σ→1

∫

H∞

gλ,σ · (Φ− Φ̃) (2.4.2)

where

gλ,σ(

(
πm∞ u
0 1

)
) :=

{
0 if degλ+ 2 > m
q−mσψ∞(λu) if degλ+ 2 ≤ m

Documenta Mathematica 5 (2000) 365–444



378 Hans-Georg Rück and Ulrich Tipp

and where

Φ̃(

(
πm∞ u
0 1

)
) := Φ(

(
πm∞ u
0 1

)(
0 1
π∞ 0

)
). (2.4.3)

For these calculations we used again the canonical mapping (cf. section 2.2)

H∞ → G(N).

Since H∞ represents only the part T+ of GL2(K∞)/Γ∞K∗∞ (cf. section 2.1) and

since Φ is not necessarily harmonic, we also have to consider the function Φ̃.

Using the Fourier expansions

Φ(

(
πm∞ u
0 1

)
) =

∑

µ

Φ∗(πm∞, µ)ψ∞(µu)

Φ̃(

(
πm∞ u
0 1

)
) =

∑

µ

Φ̃∗(πm∞, µ)ψ∞(µu)

and the character relations for ψ∞, (2.4.2) yields

∫

G(N)

Pλ · Φ =
2

q
lim
σ→0

∞∑

m=degλ+2

q−mσ(Φ∗(πm∞, λ)− Φ̃∗(πm∞, λ)). (2.4.4)

Finally, (2.4.1) and (2.4.4) prove:

Proposition 2.4.1 Let Φ : G(N) = Γ
(1)
0 (N)\GL2(K∞)/Γ∞K∗∞ → C be any

function, then there is an automorphic cusp form Ψ of Drinfeld type for Γ
(1)
0 (N)

such that ∫

G(N)

f ·Ψ =

∫

G(N)

f · Φ.

The Fourier coefficients of Ψ can be evaluated by the formula

Ψ∗(πdeg λ+2
∞ , λ) =

q − 1

2q
lim
σ→0

∞∑

m=degλ+2

q−mσ(Φ∗(πm∞, λ)− Φ̃∗(πm∞, λ)),

where Φ̃ is defined in (2.4.3).

Problems could arise since the limit may not exist. We will see this in the

following sections, where we apply this holomorphic projection formula to Φ
(o)
s ,

Φ
(e)
s (cf. (2.3.5) and (2.3.7)) or their derivatives.
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2.5 Fourier Expansions of Φ
(o)
s and Φ

(e)
s

In this section we evaluate the Fourier coefficients Φ
(o)∗
s (πm∞, λ) and

Φ
(e)∗
s (πm∞, λ) (cf. (2.3.5) and (2.3.7)). The function Θa0,λ0 is already de-

fined by its coefficients ra0,λ0 . It remains to evaluate the coefficients of Es (cf.

(2.3.6)) and therefore of the Eisenstein series E
(1)
s (cf. (2.2.6)) and E

(D)
s (cf.

(2.3.4)).
We introduce a “basic function” on GL2(K∞)/Γ∞K∗∞:

Fs(

(
πm∞ u
0 1

)
) =

∑

λ

F ∗s (πm∞, λ)ψ∞(λu) :=
∑

d∈Fq[T ]
m>v∞(u+d)

δu+d q
v∞(u+d)(2s+1).

(2.5.1)

We recall that δz is the local norm symbol of z at ∞. At first we express the
Eisenstein series in terms of Fs. Elementary transformations give

E(1)
s (

(
NDπm∞ NDu

0 1

)
) =

∑

d∈Fq[T ]
d6=0

[
D

d

]
q−(2s+1) deg d + δD q

−(2s+1) degD

·
∑

µ∈Fq[T ]
µ6=0




∑

c|µ
c≡0modD

F ∗s (cNπm∞,
µ

c
)
∑

dmodD

[
d

D

]
ψ∞(

µ

c

d

D
)


ψ∞(µNu).

The Gauss sum can be evaluated
∑

dmodD

[
d

D

]
ψ∞(λ

d

D
) =

[
λ

D

]
ε−1
0 q

1
2 degD,

where ε0 is as in (2.3.2). Therefore

E(1)
s (

(
NDπm∞ NDu

0 1

)
)

=
∑

d∈Fq[T ]
d6=0

[
D

d

]
q−(2s+1) deg d + ε−1

0 δD q
(−2s− 1

2 ) degD ·

·
∑

µ6=0

∑

c|µ
c≡0modD

[
µ/c

D

]
F ∗s (cNπm∞,

µ

c
)ψ∞(µNu). (2.5.2)

The same transformations as above yield

E(D)
s (

(
Nπm∞ Nu

0 1

)
) =

∑

d∈Fq[T ]
d6=0

[
d

D

]
F ∗s (dNπm∞, 0) +

+
∑

µ6=0

∑

c|µ

[ c
D

]
F ∗s (cNπm∞,

µ

c
)ψ∞(µNu). (2.5.3)
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Now we have to evaluate the Fourier coefficients of the “basic function” Fs
(cf. (2.5.1)). This is not very difficult, though perhaps a little tedious to write
down in detail. One starts with the definition of the coefficients

F ∗s (πm∞, λ) = q−m+1
∑

u∈π∞/πm∞

Fs(

(
πm∞ u
0 1

)
)ψ∞(−λu)

and uses the character relations for ψ∞. We do not carry it out in detail. As
the local norm symbol δz behaves differently we have to distinguish again the
two cases.

2.5.1 degD is odd

L∞/K∞ is ramified and the local norm symbol for z = ezπ
n
∞ + . . . is given by

δz = χ2(ez) δ
n
T (χ2 is the quadratic character on F∗q ; we recall that π∞ = T−1).

We get:

Lemma 2.5.1 Let degD be odd, then

F ∗s (πm∞, µ) =

{
0 , if either µ = 0 or degµ+ 2 > m

ε−1
0 q

1
2 δµ q

2s(deg µ+1) , if µ 6= 0 and deg µ+ 2 ≤ m.

Now (2.5.2), (2.5.3), Lemma 2.5.1 and the definition of Es in (2.3.6) give:

Proposition 2.5.2 Let degD be odd, then

Es(
(
πm∞ u
0 1

)
) =

∑

µ∈Fq [T ]
deg(µN)+2≤m

es(π
m
∞, µ)ψ∞(µNu)

with

es(π
m
∞, 0) = q(s+1) degD+2s−m(s+1)

∑

d∈Fq[T ]
d6=0

[
D

d

]
q−(2s+1) deg d (2.5.4)

and (µ 6= 0)

es(π
m
∞, µ) = q(−s+

1
2 ) degD+4s+ 1

2−m(s+1)+2s degµ · (2.5.5)

· (
∑

c|µ
c≡0modD

[
D

µ/c

]
q−2sdeg c + δλ0Nµ

[
D

N

]∑

c|µ

[
D

c

]
q−2s deg c).

2.5.2 degD is even

L∞/K∞ is inert and the local norm symbol for z = ezπ
n
∞ + . . . is given by

δz = (−1)n.
We get:
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Lemma 2.5.3 Let degD be even, then

F ∗s (πm∞, 0) =
1− q
q2s + 1

(−q2s)m,

and (µ 6= 0 with degµ+ 2 ≤ m)

F ∗s (πm∞, µ) =
(−q2s)degµ+1

q2s + 1
((1− q)(−q2s)m−deg µ−1 − 1− q2s+1).

Again (2.5.2), (2.5.3), Lemma 2.5.3 and the definition of Es in (2.3.6) give:

Proposition 2.5.4 Let degD be even, then

Es(
(
πm∞ u
0 1

)
) =

∑

µ∈Fq [T ]
deg(µN)+2≤m

es(π
m
∞, µ)ψ∞(µNu)

with

es(π
m
∞, 0) = qdegD(s+1)−m(s+1)+2s(

∑

d∈Fq[T ]
d6=0

[
D

d

]
q−(2s+1) deg d

+
1− q
q2s + 1

qdegD(− 1
2−2s)+2sm−2s degN

(−1)degλ0+m

[
D

N

] ∑

d∈Fq[T ]
d6=0

[
D

d

]
q−2s deg d) (2.5.6)

and (µ 6= 0)

es(π
m
∞, µ) = qm(−s−1)+2s+degD(−s+ 1

2 ) · (2.5.7)
(
(
∑

c|µ
c≡0modD

[
D

µ/c

]
q−2s deg c)(

1− q
q2s + 1

(−1)m−degN−deg µ q2s(m−degN)

+
q2s+1 + 1

q2s + 1
q2s(deg µ+1))

+

[
D

N

]
(
∑

c|µ

[
D

c

]
q−2s deg c)(

1− q
q2s + 1

(−1)degλ0+m q2s(m−degN)

+
q2s+1 + 1

q2s + 1
(−1)degλ0+degN+deg µ q2s(deg µ+1))

)
.

2.6 Fourier Expansions of Φ̃
(o)
s and Φ̃

(e)
s

In accordance with (2.4.3) let Φ̃
(o)
s (resp. Φ̃

(e)
s ) on GL2(K∞)/Γ∞K∗∞ be defined

as Φ̃
(o)
s (X) = Φ

(o)
s (X

(
0 1
π∞ 0

)
) (resp. Φ̃

(e)
s (X) = Φ

(e)
s (X

(
0 1
π∞ 0

)
)).
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The situation is more complicated than in the last section. To extend functions
canonically from T+ (cf. (2.1.1)) to the whole of GL2(K∞)/Γ∞K∗∞ we need
the following proposition.

Proposition 2.6.1 Let χD : (Fq [T ]/DFq[T ])∗ → C∗ be a character modulo
D and let χ∞ : K∗∞ → C∗ be a character which vanishes on the subgroup of

1-units O
(1)
∞ = {x ∈ K∗∞ | v∞(x− 1) > 0}.

Let F : T+ → C be a function which satisfies

F (

(
a b
c d

)(
πm∞ u
0 1

)
) = F (

(
πm∞ u
0 1

)
)χD(d)χ∞(cu+ d),

for all

(
a b
c d

)
∈ Γ

(1)
0 (D) with

(
a b
c d

)(
πm∞ u
0 1

)
∈ T+.

Then F can be defined on GL2(K∞)/Γ∞K∗∞ with

F (

(
a b
c d

)(
πm∞ u
0 1

)
) = F (

(
πm∞ u
0 1

)
)χD(d) ·

·
{
χ∞(cu+ d) , if v∞(cπm∞) > v∞(cu+ d)
χ∞(c−1) , if v∞(cπm∞) ≤ v∞(cu+ d).

(2.6.1)

Proof. We already know that

(
a b
c d

)(
πm∞ u
0 1

)
∈ T+ is equivalent to

v∞(cπm∞) > v∞(cu + d) (cf. Remark 2.2.1). For each X ∈ GL2(K∞)/Γ∞K∗∞

there is A ∈ Γ
(1)
0 (D) and

(
πm∞ u
0 1

)
∈ T+ such that X = A

(
πm∞ u
0 1

)
in

GL2(K∞)/Γ∞K∗∞. Then we define F (X) by equation (2.6.1). The assumption
on F guarantees that this definition is independent of the choice of A and(
πm∞ u
0 1

)
. �

We apply this proposition to Θa0,λ0 (cf. (2.1.10)) and to the Eisenstein series.

The Eisenstein series E
(i)
s (i = 1, D) (cf. (2.2.6), (2.3.4)) satisfy

E(i)
s (

(
a b
c d

)(
πm∞ u
0 1

)
) = E(i)

s (

(
πm∞ u
0 1

)
) ·

·
[
d

D

]
δcu+d q

−v∞(cu+d)(2s+1)

if

(
a b
c d

)
∈ Γ

(1)
0 (D) and v∞(cπm∞) > v∞(cu+ d). We can apply Proposition

2.6.1 with χD(d) =

[
d

D

]
and χ∞(z) = δz q

−v∞(z)(2s+1).

Hence

E(1)
s (

(
πm∞ u
0 1

)(
0 1
π∞ 0

)
) =

∑

c,d∈Fq[T ]
c≡0modD

v∞(cπm∞)≤v∞(cu+d)

[
d

D

]
δ−c q

v∞(c)(2s+1)
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and

E(D)
s (

(
πm∞ u
0 1

)(
0 1
π∞ 0

)
) =

∑

c,d∈Fq[T ]
v∞(cπm∞)≤v∞(cu+d)

[ c
D

]
δ−c q

v∞(c)(2s+1).

We denote these functions by Ẽ
(1)
s and

˜
E

(D)
s as above. Starting with the

definition of the Fourier coefficients we calculate

Ẽ
(1)
s (

(
NDπm∞ NDu

0 1

)
)

=
∑

µ6=0
deg(µN)+2≤m

[
ε0 q

degD(−2s− 1
2 )+degN(−2s)+1−m ·

·δµND
∑

c|µ
c≡0modD

[
D

µ/c

]
q−2sdeg c

]
ψ∞(µNu) (2.6.2)

and

˜
E

(D)
s (

(
Nπm∞ Nu

0 1

)
) = qdegN(−2s)+1−mδ−N

∑

c6=0

[
D

c

]
q−2s deg c +

+
∑

µ6=0
deg(µN)+2≤m


qdegN(−2s)+1−mδ−N

∑

c|µ

[
D

c

]
q−2s deg c


ψ∞(µNu). (2.6.3)

In addition we have ˜q−m(s+1) = q−(1−m)(s+1), therefore (2.6.2) and (2.6.3) give:

Proposition 2.6.2 Let degD be odd or even, then

Ẽs(
(
πm∞ u
0 1

)
) := Es(

(
πm∞ u
0 1

)(
0 1
π∞ 0

)
) =

∑

µ∈Fq[T ]
deg(µN)+2≤m

ẽs(π
m
∞, µ)ψ∞(µNu)

with

ẽs(π
m
∞, 0) = qdegD(−s+ 1

2 )+degN(−2s)+ms+sε−1
0 δλ0

[
D

N

]∑

d6=0

[
D

c

]
q−2s deg d

(2.6.4)

and (µ 6= 0)

ẽs(π
m
∞, µ) = qdegD(−s+ 1

2 )+degN(−2s)+ms+sε−1
0 · (2.6.5)

(
δµN

∑

c|µ
c≡0modD

[
D

µ/c

]
q−2sdeg c + δλ0

[
D

N

]∑

c|µ

[
D

c

]
q−2s deg c

)
.
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For Θa0,λ0 it is not just straightforward calculation. In the following we make
use of the fact that the Fourier coefficients ra0,λ0(λ) of Θa0,λ0 are independent
of πm∞ if deg λ+ 2 ≤ m.

Θa0,λ0 satisfies Proposition 2.6.1 with χD(d) =

[
d

D

]
and χ∞(z) = δz q

−v∞(z)

(cf. (2.2.5)). Again we denote Θ̃a0,λ0(·) = Θa0,λ0(·
(

0 1
π∞ 0

)
).

Let πm∞ ∈ K∗∞ and u ∈ K∞. Choose c, d ∈ Fq[T ] with c ≡ 0 mod D, gcd(c, d) =
1 and v∞(u+ d

c ) ≥ m+ 1 and find a, b ∈ Fq [T ] with ad− bc = 1. Then for all
k ∈ Z with k ≤ m+ 1 there is the following identity in GL2(K∞)/Γ∞K∗∞:

(
πk∞ u
0 1

)(
0 1
π∞ 0

)
=

(
d −b
−c a

)(
π1−k
∞

c2
a
c

0 1

)

We use this identity for k = m and k = m+ 1. Then Proposition 2.6.1 gives

Θ̃a0,λ0(

(
πm∞ u
0 1

)
)− Θ̃a0,λ0(

(
πm+1
∞ u
0 1

)
) =

[
d

D

]
δ−c q

v∞(c) ·

·
∑

deg µ+2=1−m+2deg c

ra0,λ0(µ)ψ∞(µ
a

c
). (2.6.6)

On the other hand we set uε = −dc + επm∞ for ε ∈ F∗q , we compare a
c with auε+b

cuε+d
and sum over all ε:

(q − 1)Θ̃a0,λ0(

(
πm∞ u
0 1

)
)−

[
d

D

]
δ−c q

v∞(c)
∑

ε∈F∗
q

Θa0,λ0(

(
π1−m
∞

c2
auε+b
cuε+d

0 1

)
)

= q

[
d

D

]
δ−c q

v∞(c)
∑

degµ+2=1−m+2 deg c

ra0,λ0(µ)ψ∞(µ
a

c
). (2.6.7)

Now (
π1−m
∞

c2
auε+b
cuε+d

0 1

)
=

(
a b
c d

)(
πm+1
∞ uε
0 1

)

in GL2(K∞)/Γ∞K∗∞. We use this to evaluate the corresponding value of
Θa0,λ0 . A combination of (2.6.6) and (2.6.7) therefore gives

q Θ̃a0,λ0(

(
πm+1
∞ u
0 1

)
)− Θ̃a0,λ0(

(
πm∞ u
0 1

)
)

= δ−πm∞q
−m

∑

ε∈F∗
q

δεΘa0,λ0(

(
πm+1
∞ u+ επm∞
0 1

)
). (2.6.8)

If we evaluate in (2.6.8) the Fourier coefficients at λ with degλ + 2 ≤ m, we
get the recursion formula

q Θ̃a0,λ0

∗
(πm+1
∞ , λ)− Θ̃a0,λ0

∗
(πm∞, λ) = δπm∞q

−m ∑

ε∈F∗
q

δεra0,λ0(λ). (2.6.9)
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The Fourier coefficient in (2.6.8) at λ with deg λ+ 2 = m+ 1 yields

q Θ̃a0,λ0

∗
(πdeg λ+2
∞ , λ) = δπdeg λ+1

∞
q−deg λ−1

∑

ε∈F∗
q

δεψ∞(−λεπdeg λ+1
∞ )ra0,λ0(λ).

(2.6.10)

For λ = 0 we calculate

Θ̃a0,λ0

∗
(π∞, 0) = q−

1
2 degDδλ0ε

−1
0

∑

deg µ+2≤degD

ra0,λ0(µ). (2.6.11)

It is now obvious how one evaluates Θ̃a0,λ0

∗
(πm∞, λ) with the recursion formula

(2.6.9) and the starting values (2.6.10) and (2.6.11). Here again we have to
consider the two cases separately.

Proposition 2.6.3 Let degD be odd, then

Θ̃a0,λ0(

(
πm∞ u
0 1

)
) =

∑

degλ+2≤m
Θ̃a0,λ0

∗
(πm∞, λ)ψ∞(λu)

with

Θ̃a0,λ0

∗
(πm∞, λ) = q

1
2 q−mε−1

0 δλ0ra0,λ0(λ). (2.6.12)

Proposition 2.6.4 Let degD be even, then

Θ̃a0,λ0(

(
πm∞ u
0 1

)
) =

∑

degλ+2≤m
Θ̃a0,λ0

∗
(πm∞, λ)ψ∞(λu)

with

Θ̃a0,λ0

∗
(πm∞, λ) = q−m(−1)degλ0

(q + 1

2
+
q − 1

2
(−1)m+deg λ0−1

)
ra0,λ0(λ).

(2.6.13)

2.7 Functional Equations

In this section we modify the representations of the L-series of Proposition
2.3.1 and Proposition 2.3.2. With these new formulas we can prove functional
equations for the L-series. Later we will use them to get our final results.

2.7.1 degD is odd

Since f is an automorphic cusp form of Drinfeld type and therefore satisfies
(cf. Definition 2.1.1)

f(X

(
0 1
π∞ 0

)
) = −f(X) for all X ∈ GL2(K∞)/Γ∞K

∗
∞,

we can transform the integral in Proposition 2.3.1, and get:
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Lemma 2.7.1 Let degD be odd, then

L(N,D)(2s+ 1)L(f,A, s) =
q

4(q − 1)

∫

G(N)

f · F (o)
s̄

with

F (o)
s (X) := Φ(o)

s (X)− Φ̃
(o)
s (X),

whose Fourier coefficients are

F (o)∗
s (πm∞, λ) = −F̃ (o)

s

∗
(πm∞, λ) = Φ(o)∗

s (πm∞, λ)− Φ̃
(o)
s

∗
(πm∞, λ).

Now we evaluate F
(o)∗
s (πm∞, λ). We start with the definition (cf. Proposition

2.3.1)

Φ(o)
s (

(
πm∞ u
0 1

)
) = q−degD ·

·
∑

λmodD

Θa0,λ0(

(
πm∞
D

−(u+λ)
D

0 1

)
) Es(

(
πm∞
D

u+λ
D

0 1

)
)

and use the Fourier coefficients of Θa0,λ0 (cf. (2.1.10)) and Es (cf. (2.3.6) and
Proposition 2.5.2) to evaluate

Φ(o)∗
s (πm∞, λ) =

∑

µ∈Fq [T ]
deg(µN)+2≤m+degD

ra0,λ0(µN − λD) es(π
m+degD
∞ , µ). (2.7.1)

On the other hand, if

(
a b
c d

)
∈ SL2(Fq [T ]) with b, c ≡ 0 mod D and if u is

such that v∞(u + d/c) ≥ m, then we have (using the transformation rules of
Θa0,λ0 and Es):

Φ̃
(o)
s (

(
πm∞ u
0 1

)
) = Φ(o)

s (

(
π1−m
∞

c2
a
c

0 1

)
).

When we expand this equation with Fourier coefficients, we get

Φ̃
(o)
s

∗
(πm∞, λ) =

∑

µ∈Fq[T ]
deg(µN)+2≤m+degD

Θ̃a0,λ0

∗
(πm+degD
∞ , µN − λD) ẽs(π

m+degD
∞ , µ) δD.

(2.7.2)

Now we replace es, Θ̃a0,λ0

∗
and ẽs in (2.7.1) and (2.7.2) by (2.5.5), (2.6.12) and

(2.6.5), and we get:
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Proposition 2.7.2 Let degD be odd and degλ+ 2 ≤ m, then

Φ(o)∗
s (πm∞, λ)− Φ̃

(o)
s

∗
(πm∞, λ) = ra0,λ0(−λD) q−m−

1
2 degD+ 1

2 ·
(
(
∑

d∈Fq[T ]
d6=0

[
D

d

]
q−(2s+1) deg d) q−ms+2s+ 1

2 degD− 1
2

−(
∑

d∈Fq[T ]
d6=0

[
D

d

]
q−2sdeg d)

[
D

N

]
qms−2s degN+s

)

+
∑

µ∈Fq [T ] , µ6=0
deg(µN)+2≤m+degD

ra0,λ0(µN − λD) q−m−
1
2 degD+ 1

2 ·

(
(
∑

c|µ
c≡0modD

[
D

µ/c

]
q−2sdeg c)(q−2s degD−ms+4s+2s degµ − δλ0Nµ q

ms−2s degN+s)

+(
∑

c|µ

[
D

c

]
q−2s deg c)

[
D

N

]
(δλ0Nµ q

−2s degD−ms+4s+2s degµ − qms−2s degN+s)
)
.

With these formulas we prove the following result:

Theorem 2.7.3 Let degD be odd, then

q(degN+degD− 5
2 )s (Φ(o)∗

s (πm∞, λ)− Φ̃
(o)
s

∗
(πm∞, λ)) =

−
[
D

N

]
q(degN+degD− 5

2 )(−s) (Φ
(o)∗
−s (πm∞, λ)− Φ̃

(o)
−s

∗
(πm∞, λ)),

and therefore Lemma 2.7.1 implies that

Z(s) := q(degN+degD− 5
2 )sL(N,D)(2s+ 1)L(f,A, s)

satisfies the functional equation

Z(s) = −
[
D

N

]
Z(−s).

Proof. One can verify the functional equation for Φ
(o)∗
s (πm∞, λ)− Φ̃

(o)
s

∗
(πm∞, λ)

independently for each summand (summation over µ ∈ Fq[T ]) in the formula
of Proposition 2.7.2 if one applies the following remarks:
a) For the first summand we mention (cf. [Ar]) that

LD(s) :=
1

q − 1

∑

d∈Fq[T ]
d6=0

[
D

d

]
q−s deg d (2.7.3)
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is the L-series of the extension K(
√
D)/K and satisfies

LD(2s+ 1) = qs(−2 degD+2)− 1
2 degD+ 1

2LD(−2s). (2.7.4)

b) Let µ ∈ Fq [T ], µ 6= 0 with ra0,λ0(µN − λD) 6= 0. Then there is κ ∈ L with

NL/K(κ) = λ0(µN −λD) (cf. (2.1.9)). Hence we get

[
D

µ

]
=

[
D

N

]
δλ0Nµ. This

implies

∑

c|µ

[
D

c

]
q−2s deg c = q−2s degµ

[
D

N

]
δλ0Nµ

∑

c|µ

[
D

c

]
q2sdeg c (2.7.5)

if µ 6≡ 0 mod D.
c) For µ ∈ Fq[T ] with µ ≡ 0 mod D, it is easy to see that

∑

c|µ

[
D

c

]
q−2s deg c = q−2sdeg µ

∑

c|µ
c≡0modD

[
D

µ/c

]
q2s deg c. � (2.7.6)

2.7.2 degD is even

The automorphic cusp form f of Drinfeld type satisfies (cf. Definition 2.1.1)
∑

β∈GL2(O∞)/Γ∞

f(Xβ) = 0 for all X ∈ GL2(K∞)/Γ∞K
∗
∞.

With this identity a transformation of the integral in Proposition 2.3.2 yields
immediately:

Lemma 2.7.4 Let degD be even, then

1

1 + q−s−1
L(N,D)(2s+ 1)L(f,A, s) =

q

2(q − 1)

∫

G(N)

f · F (e)
s̄

with

F (e)
s (X) :=

q

q + 1
Φ(e)
s (X)− 1

q + 1

∑

β∈GL2(O∞)/Γ∞

β 6=1

Φ(e)
s (Xβ),

whose Fourier coefficients are

F (e)∗
s (πm∞, λ) =

{
q
q+1 (Φ

(e)∗
s (πm∞, λ)− Φ̃

(e)
s

∗
(πm+1
∞ , λ)), if m ≡ deg λ0 mod 2

0 , if m 6≡ deg λ0 mod 2

and

F̃
(e)
s

∗
(πm∞, λ) =





0 , if m ≡ deg λ0 mod 2

1
q+1 (Φ̃

(e)
s

∗
(πm∞, λ)− Φ

(e)∗
s (πm−1

∞ , λ)), if m 6≡ deg λ0 mod 2

and degλ+ 2 < m

Φ̃
(e)
s

∗
(πm∞, λ) , if m 6≡ deg λ0 mod 2

and degλ+ 2 = m .
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The calculations of F
(e)∗
s (πm∞, λ) and F̃

(e)
s

∗
(πm∞, λ) are similar to those above

and use Propositions 2.5.4, 2.6.2 and 2.6.4 developed in the previous sections.
We only give the results.

Proposition 2.7.5 Let degD be even, then

Φ(e)∗
s (πm∞, λ)− Φ̃

(e)
s

∗
(πm+1
∞ , λ) = ra0,λ0(−λD) q−m−

1
2 degD ·

(
(
∑

d∈Fq[T ]
d6=0

[
D

d

]
q−(2s+1) deg d) q−ms+2s+ 1

2 degD

+(
∑

d∈Fq[T ]
d6=0

[
D

d

]
q−2s deg d)

[
D

N

]
qms−2s degN+2s−q1−s − qs

qs + q−s

)

+
∑

µ∈Fq [T ] , µ6=0
deg(µN)+2≤m+degD

ra0,λ0(µN − λD) q−m−
1
2 degD ·

(
(
∑

c|µ
c≡0modD

[
D

µ/c

]
q−2s deg c)((−1)deg(λ0Nµ)qms−2s degN+2s−q1−s − qs

qs + q−s

+q−ms−2sdegD+2sdeg µ+4s q
−s + q1+s

qs + q−s
)

+(
∑

c|µ

[
D

c

]
q−2s deg c)

[
D

N

]
(qms−2s degN+2s−q1−s − qs

qs + q−s

+(−1)deg(λ0Nµ)q−ms−2s degD+2s degµ+4s q
−s + q1+s

qs + q−s
)
)
,

if m ≡ deg λ0 mod 2, and

Φ̃
(e)
s

∗
(πdeg λ+2
∞ , λ) =

∑

µ∈Fq[T ] , µ6=0
deg(µN)=deg(λD)

ra0,λ0(µN − λD) q− degλ−1− 1
2 degD ·

(
− (

∑

c|µ
c≡0modD

[
D

µ/c

]
q−2s deg c) +

[
D

N

]
(
∑

c|µ

[
D

c

]
q−2sdeg c)

)

· qs deg λ−2s degN+3s

if degλ 6≡ deg λ0 mod 2.

The proof of the following functional equation is completely analogous to the
proof in the first case. Parts b) and c) in the proof of Theorem 2.7.3 are the
same, part a) has to be replaced by the functional equation for degD even
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(cf. [Ar])

LD(−2s+ 1) =
1 + q1−2s

1 + q2s
qdegD(2s− 1

2 )LD(2s). (2.7.7)

We get

Theorem 2.7.6 Let degD be even, then

q(degN+degD−3)s (Φ(e)∗
s (πm∞, λ)− Φ̃

(e)
s

∗
(πm+1
∞ , λ)) =

−
[
D

N

]
q(degN+degD−3)(−s) (Φ

(e)∗
−s (πm∞, λ) − Φ̃

(e)
−s

∗
(πm+1
∞ , λ)),

if m ≡ deg λ0 mod 2, and therefore Lemma 2.7.4 implies that

Z(s) := q(degN+degD−3)s 1

1 + q−s−1
L(N,D)(2s+ 1)L(f,A, s)

satisfies the functional equation

Z(s) = −
[
D

N

]
Z(−s).

2.8 Derivatives of L-Series

The functional equations in Theorem 2.7.3 and Theorem 2.7.6 show that the

L-series have a zero at s = 0, if

[
D

N

]
= 1. From now on we assume that

[
D

N

]
= 1, and we want to compute the derivatives of the L-series at s = 0.

2.8.1 degD is odd

The first calculations are straightforward, we will only sketch this procedure.
We start with the representation of L(N,D)(2s + 1)L(f,A, s) in Lemma 2.7.1,

then we evaluate the derivatives ∂
∂sF

(o)
s |s=0 and ∂

∂s F̃
(o)
s |s=0 from Proposition

2.7.2 by ordinary calculus. To simplify the formulas we introduce

t(µ,D) :=

{
1 , if µ ≡ 0 mod D
0 , if µ 6≡ 0 mod D

, (2.8.1)

and we consider the function LD(s) defined in equation (2.7.3). It is known
that

hL := #Cl(OL) = LD(0).

In addition we use equations (2.7.4), (2.7.5) and (2.7.6).
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Then we apply the holomorphic projection formula of Proposition 2.4.1 and
evaluate

lim
σ→0

∞∑

m=degλ+2

q−mσ(
∂

∂s
F (o)∗
s (πm∞, λ) |s=0 −

∂

∂s
F̃

(o)
s

∗
(πm∞, λ) |s=0).

In Proposition 2.7.2 there is a summation over µ ∈ Fq [T ] with deg(µN) + 2 ≤
m + degD. We divide this summation into two parts. The first sum is over
those µ with deg(µN) ≤ deg(λD) and the second sum is over those µ with
deg(µN) > deg(λD). This is done in view of the following lemma.

Lemma 2.8.1 Let µ ∈ Fq[T ], µ 6= 0 with ra0,λ0(µN − λD) 6= 0, then
a)

1− δλ0Nµ

2
(t(µ,D) − 1)(

∑

c|µ

[
D

c

]
) = 0

and
b)

δλ0Nµ = 1 if deg(µN) > deg(λD).

Proof. The proof is an immediate consequence of

[
D

µ

]
=

[
D

N

]
δλ0Nµ, which

was shown in the proof of Theorem 2.7.3, part b). �

Now at the end of our calculations we have to apply the trace corresponding

to Γ
(1)
0 (N) ⊂ Γ0(N) to get a cusp form of level N (and not just a cusp form

for the subgroup Γ
(1)
0 (N)). We recall that

∑

ε∈F∗
q

ra0,λ0(εµ) = (q − 1)rA((µ)).

A heuristic consideration, based on the holomorphic projection formula of
Proposition 2.4.1 and on our calculations, would then give:

∂

∂s
(L(N,D)(2s+ 1)L(f,A, s)) |s=0=

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f ·ΨA,

Documenta Mathematica 5 (2000) 365–444



392 Hans-Georg Rück and Ulrich Tipp

where ΨA is an automorphic cusp form of Drinfeld type of level N with

Ψ∗A(πdeg λ+2
∞ , λ) =

ln q

2
q−(degD+1)/2 q− degλ

·
{

(q − 1) rA((λ)) hL

(
degN − deg(λD) − q + 1

2(q − 1)
− 2

ln q

L′D(0)

LD(0)

)

+
∑

µ6=0
deg(µN)≤deg(λD)

rA((µN − λD))

(
(
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

1 + δ(µN−λD)µN

2
·

· (deg(
µN

λD
)− q + 1

2(q − 1)
)− (1− δ(µN−λD)µN ) (

∑

c|µ

[
D

c

]
) degµ

+ (1− δ(µN−λD)µN ) (t(µ,D) + 1) (
∑

c|µ

[
D

c

]
deg c)

)

− q + 1

2(q − 1)
lim
σ→0

∑

deg(µN)>deg(λD)

rA((µN − λD)) (
∑

c|µ

[
D

c

]
) (t(µ,D) + 1) ·

· q(−σ−1) deg(µNλD ) (q − 1)2(q + q−σ)

(q + 1)(qσ+1 − 1)2
q(−σ) deg λ

}
, (2.8.2)

provided the limit exists. But unfortunately this is not the case.
In order to get the final result, we proceed as follows:
1) We evaluate the pole of the limit in (2.8.2).
2) We find a function h on Γ0(N)\GL2(K∞)/Γ∞K∗∞, whose holomorphic pro-
jection formula gives the same pole part as in (2.8.2) and which is perpendicular
to f under the Petersson product.

3) We replace ∂
∂sF

(o)
s |s=0 by ∂

∂sF
(o)
s |s=0 −h in the derivative of the equation

in Lemma 2.7.1 and in our calculations.
We start with 1): From section 3.5.1 we get the following result (independently
of these calculations):
Let C1 := 2(q − 1)2/[GL2(Fq [T ]) : Γ0(N)], then the limit

lim
σ→0

( ∑

deg(µN)>deg(λD)

rA((µN − λD)) (
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

· q(−σ−1) deg(µNλD ) − C1 hL (
∑

a|λ
qdeg a)

1

1− q−σ

)

exists. But for this we have to adjust our assumptions. From now on N has

to be square free with

[
D

P

]
= 1 for each prime divisor P of N and we only

consider those λ with gcd(λ,N) = 1.
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We use this to calculate

lim
σ→0

( ∑

deg(µN)>deg(λD)

rA((µN − λD)) (
∑

c|µ

[
D

c

]
) (t(µ,D) + 1) q(−σ−1) deg(µNλD )

· (q − 1)2(q + q−σ)

(q + 1)(qσ+1 − 1)2
q(−σ) deg λ − C1 hL (

∑

a|λ
qdeg a)

q(−σ)(deg λ+2)

1− q−σ

)

= lim
σ→0

( ∑

deg(µN)>deg(λD)

rA((µN − λD)) (
∑

c|µ

[
D

c

]
) (t(µ,D) + 1) q(−σ−1) deg(µNλD )

− C1 hL (
∑

a|λ
qdeg a)

1

1− q−σ

)
+ (
∑

a|λ
qdeg a) · C2, (2.8.3)

where C2 is a certain constant.
2) To find the function h we introduce for s > 1:

g0,s(

(
πm∞ u
0 1

)
) := −g0,s(

(
πm∞ u
0 1

)(
0 1
π∞ 0

)
) := q−ms

and the Eisenstein series

Gs(X) :=
∑

M

g0,s(M ·X),

where the sum is taken over M ∈
(

1 Fq[T ]
0 1

)
\SL2(Fq[T ]). Then Gs is a

function on GL2(K∞)/Γ∞K∗∞, which is invariant under SL2(Fq [T ]) and which

satisfies G̃s = −Gs. In addition Gs is perpendicular to cusp forms. This can
be shown analogously to calculations in the proof of [Rü2], Proposition 14 (in
fact Gs can be seen as a Poincaré series for µ = 0).
We evaluate the Fourier coefficients of Gs in a straightforward way (cf. proof
of [Rü2], Proposition 8) and get for degλ+ 2 ≤ m, λ 6= 0:

G∗s(π
m
∞, λ) = (

∑

a|λ
q−(2s−1) deg a)

·
(
(1− q2s) qs(2 degλ−m)−deg λ + (qs + 1)(q1−s − 1) qs(m−2)+1−m

)
.

The coefficients G∗s(π
m
∞, 0) are not important, because they play no role in the

holomorphic projection formula.
Now we define the Eisenstein series G by its Fourier coefficients

G∗(πm∞, λ) := lim
s→1

G∗s(π
m
∞, λ),

and H by

H∗(πm∞, λ) := lim
s→1

∂

∂s
G∗s(π

m
∞, λ).
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In the next step we evaluate the holomorphic projection formulas for G and H
and we get

lim
σ→0

∞∑

m=degλ+2

q−mσ(G∗(πm∞, λ)− G̃∗(πm∞, λ)) = −2(q + 1) q−degλ−1(
∑

a|λ
qdeg a),

(2.8.4)

and

lim
σ→0

∞∑

m=deg λ+2

q−mσ(H∗(πm∞, λ)− H̃∗(πm∞, λ)) = −2(q + 1) q−deg λ−1 ln q

·
(
− (
∑

a|λ
qdeg a(deg λ− 2 dega)) + (

∑

a|λ
qdeg a) lim

σ→0

q(−σ)(deg λ+2)

1− q−σ

− 1

q + 1
(
∑

a|λ
qdeg a)

)
. (2.8.5)

This construction is motivated by the fact that the limit in the last formula
already occurred in equation (2.8.3).

3) Comparing (2.8.4) and (2.8.5) with (2.8.2) and (2.8.3) shows how to choose
h = a ·G+ b ·H with a, b ∈ C to get the final result:

Theorem 2.8.2 Let D be irreducible of odd degree, and let N be square free

with

[
D

P

]
= 1 for each prime divisor P of N . For a newform f of level N we

get:

∂

∂s
(L(N,D)(2s+ 1)L(f,A, s)) |s=0=

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f ·ΨA,

where ΨA is a cusp form of level N , whose Fourier coefficients for λ with
gcd(λ,N) = 1 are given by
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Ψ∗A(πdeg λ+2
∞ , λ) =

ln q

2
q−(degD+1)/2 q−deg λ

·
{

(q − 1) rA((λ)) hL

(
degN − deg(λD) − q + 1

2(q − 1)
− 2

ln q

L′D(0)

LD(0)

)

+
∑

µ6=0
deg(µN)≤deg(λD)

rA((µN − λD))

(
(
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

1 + δ(µN−λD)µN

2

· (deg(
µN

λD
)− q + 1

2(q − 1)
)− (1− δ(µN−λD)µN ) (

∑

c|µ

[
D

c

]
) degµ

+ (1− δ(µN−λD)µN ) (t(µ,D) + 1) (
∑

c|µ

[
D

c

]
deg c)

)

− q + 1

2(q − 1)
lim
s→0

( ∑

deg(µN)>deg(λD)

rA((µN − λD)) (
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

· q(−s−1) deg(µNλD ) −
C1 hL (

∑
a|λ q

deg a)

1− q−s

)

− q + 1

2(q − 1)
C1 hL (

∑

a|λ
qdeg a(deg λ− 2 deg a)) + (

∑

a|λ
qdeg a) C2

}
.

The following notation is used: hL = #Cl(OL), LD(s) is as in (2.7.3), t(µ,D)
is as in (2.8.1),

C1 = 2(q − 1)2/[GL2(Fq[T ]) : Γ0(N)],

and C2 is any constant (in particular independent of λ).

2.8.2 degD is even

Of course the programme is the same as above. We start with Lemma 2.7.4,
and we get the same pole as in (2.8.2) with different constants. Here we use
the result (cf. section 3.5.2):
Let C1 := (q2 − 1)2/(2 q [GL2(Fq [T ]) : Γ0(N)]), then the limit

lim
σ→0

( ∑

deg(µN)>deg(λD)

rA((µN − λD)) (
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

· q(−σ−1) deg(µNλD ) − C1 hL (
∑

a|λ
qdeg a)

1

1− q−σ

)

converges.
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Again we take the Eisenstein series G and H to get the final result:

Theorem 2.8.3 Let D be irreducible of even degree, and let N be square free

with

[
D

P

]
= 1 for each prime divisor P of N . For a newform f of level N we

get:

∂

∂s
(

1

1 + q−s−1
L(N,D)(2s+ 1)L(f,A, s)) |s=0=

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f ·ΨA,

where ΨA is a cusp form of level N , whose Fourier coefficients for λ with
gcd(λ,N) = 1 are given by

Ψ∗A(πdeg λ+2
∞ , λ) =

ln q

4
q−degD/2 q−deg λ

·
{
rA((λ)) hL (q − 1)

(
degN − deg(λD) − 2q

q2 − 1
− 2

ln q

L′D(0)

LD(0)

)

+
∑

µ6=0
deg(µN)≤deg(λD)

rA((µN − λD))

(
(
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

1 + δ(µN−λD)µN

2

· (deg(
µN

λD
)− 2q

q2 − 1
)− (1− δ(µN−λD)µN ) (

∑

c|µ

[
D

c

]
) degµ

+ (1− δ(µN−λD)µN ) (t(µ,D) + 1) (
∑

c|µ

[
D

c

]
deg c)

)

− 2q

q2 − 1
lim
s→0

( ∑

deg(µN)>deg(λD)

rA((µN − λD)) (
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

· q(−s−1) deg(µNλD ) − C1 hL (
∑

a|λ
qdeg a)

1

1− q−s

)

− 2q

q2 − 1
C1 hL (

∑

a|λ
qdeg a(deg λ− 2 deg a)) + (

∑

a|λ
qdeg a) C2

}
.

The following notation is used: hL = #Cl(OL), LD(s) is as in (2.7.3), t(µ,D)
is as in (2.8.1),

C1 = (q2 − 1)2/(2 q [GL2(Fq [T ]) : Γ0(N)]),

and C2 is any constant (in particular independent of λ).
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3 Heights of Heegner Points

3.1 Heegner Points

LetK = Fq(T ) be the rational function field over Fq as in the previous chapters.
For every N ∈ Fq [T ] there exists a coarse moduli scheme Y0(N) over Fq [T ]
parametrizing isomorphism classes of pairs (φ, φ′) of Drinfeld modules of rank
2 together with a cyclic isogeny u : φ → φ′ of degree N (cf. Lecture 2, [AB]).
This means that keru ' Fq[T ]/(N). Y0(N) can be compactified to a scheme
X0(N) by adjoining a finite number of sections. The points on these sections
can be interpreted as generalized Drinfeld modules (cf. Lecture 9 [AB]). The
fibres of X0(N) → Spec Fq [T ] are regular outside the divisors of N . We will
also need the structure of the fibres over such places, which are known only for
N square free. So we will assume this condition on N for the whole chapter. By
abuse of notation we often write X0(N) also for the generic fibre X0(N)⊗K.

For every λ ∈ Fq [T ] there is a Hecke correspondence on X0(N). If x ∈ X0(N)
is represented by two Drinfeld modules φ, φ′ and a cyclic isogeny u : φ → φ′,
in which case we write x = (φ, φ′, u), then Tλ(x) =

∑
C(xC), where C runs

over all cyclic Fq[T ] submodules of φ isomorphic to Fq [T ]/(λ) which intersect
ker u trivially. xC is the point corresponding to (φ/C → φ′/u(C)). The Hecke
algebra is the subalgebra of End J0(N), the endomorphisms of the Jacobian
of X0(N), generated by the endomorphisms induced by the Hecke correspon-
dences. For more details see for example [Ge3].

Now let L = K(
√
D) be an imaginary quadratic extension, where D is a poly-

nomial in Fq[T ]. In the first part of this section we prove results for general D,
later we specialize to D being irreducible. We choose N ∈ Fq[T ] such that each

of its prime divisors is split in L. Then in particular we have

[
D

N

]
= 1. Suppose

that φ, φ′ are two Drinfeld modules of rank 2 for the ring Fq [T ] with complex

multiplication by an order O ⊂ OL = Fq [T ][
√
D], i.e. End φ = End φ′ = O

and that u : φ → φ′ is a cyclic isogeny of degree N . Then φ and φ′ can be
viewed as rank 1 Drinfeld modules over O. As explained in the paper ([Ha])
there is a natural action on rank 1 Drinfeld modules: If n ⊂ O is an invertible
ideal and φ is a rank 1 Drinfeld module then there is a Drinfeld module n ∗ φ
with an isogeny φn : φ → n ∗ φ. As was remarked in ([Ha]) just before Propo-
sition 8.3, every isogeny is of this form up to isomorphism. The explicit class
field theory ([Ha]) shows that φ, φ′ and the isogeny u can be defined (modulo
isomorphisms) over the class field HO of O, which is unramified outside the
conductor f := {α ∈ L : αOL ⊂ O} of O and where ∞ is totally split. (For the
maximal order OL we will simply write H instead of HOL .) Therefore the triple
(φ, φ′, u) defines an HO−rational point x on X0(N). This holds even though
X0(N) is not a fine moduli space. These rational points x are called Heegner
points. We will primarily consider Heegner points for the maximal order OL
but Heegner points corresponding to non-maximal orders will occur naturally,
when we consider the operation of Hecke operators on the Heegner points.
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Heegner points corresponding to a maximal order can also be described by
the following data: Let K∞ be the completion of K at ∞ and let C∞ be the
completion of the algebraic closure of K∞. The category of Drinfeld modules
of rank 2 over C∞ is equivalent to the category of rank 2 lattices in C∞. If φ, φ′

correspond to lattices Λ,Λ′, the isogenies are described by {c ∈ C∗∞ : cΛ ⊂ Λ′}.
If φ has complex multiplication by OL, the corresponding lattice is isomorphic
to an ideal a in OL. Now let n|N be an ideal of OL which contains exactly
one prime divisor of every conjugated pair over the primes dividing N . If n|a,
the ideal n−1a is integral and corresponds to another Drinfeld module φ′ with
complex multiplication. The inclusion a ⊂ n−1a defines a cyclic isogeny of
degree N , because n−1a/a ' OL/n ' Fq [T ]/(N).

The data describing the Heegner point x is the ideal class of a and the ideal n.

We get the following analytic realization of the Heegner point x.

Let Ω = C∞−K∞ be the Drinfeld upper half plane. ThenX0(N) is analytically
given by the quotient Γ0(N)\Ω compactified by adjoining finitely many cusps.
Let z ∈ Ω with

z =
B +

√
D

2A
, N |A, B2 ≡ D mod A.

Then the lattice 〈z, 1〉 is isomorphic to the ideal a = AFq [T ]+ (B+
√
D)Fq [T ],

which defines together with the ideal n = NFq[T ] + (β +
√
D)Fq [T ] with β ≡

B mod N a Heegner point.

Now we consider the global Néron-Tate height pairing on the H-rational points
of the Jacobian J0(N) of X0(N). There is an embedding of J0(N) in the
projective space P2g−1 (Kummer embedding), where g is the genus of X0(N).
The naive height on points in the projective space defines a height function h
on J0(N)(H). The Néron-Tate height is the unique function ĥ, which differs
from h by a bounded function and such that the map 〈 . 〉 : J0(N)×J0(N)→ R
defined by 〈D,E〉 = (1/2)(ĥ(D + E) − ĥ(D) − ĥ(E)) is bilinear. 〈 . 〉 is called
the Néron-Tate height pairing (cf. [Gr1]). The pairing depends on H although
we omit this in the notation. Whenever we consider height pairings over other
fields than H , it will be explicitly mentioned.

The global pairing can be written as a sum
∑

v〈 . 〉v running over all places v
of H . For an irreducible polynomial P ∈ Fq [T ] we write 〈 . 〉P for

∑
v|P 〈 . 〉v .

For the definition of the local pairing see [Gr1, 2.5]. We recall the relation
of the local pairing at non-archimedian primes with the intersection product
on a regular model (see [Gr1, 3]). Let v be some place of H and let Hv be
the completion with valuation ring Ov . We write qv for the cardinality of the
residue field. Let X/Hv be a curve and X/Ov be a regular model ofX . Suppose
D,E are divisors of degree 0 on X0(N) with disjoint support. Let Fi be the
fibre components of the special fibre of the regular model X and let D̃, Ẽ be the
horizontal divisors to D,E. (The horizontal divisor of a point in the generic
fibre is just the Zariski closure of it in X .) Let ( . )v be the intersection product
on X , which is defined in the following way. Let x 6= y be two distinct points
on X and x̃, ỹ their closure in X . For a point z in the special fibre we consider
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the stalk OX ,z of the structure sheaf in z. Let fx, fy be local equations for x̃, ỹ
in z. Then OX ,z/(fx, fy) is a module of finite length. The intersection number
(x̃ . ỹ)v,z is defined to be the length of the module OX ,z/(fx, fy) and it is zero
for almost all z. Let deg z be the degree of the residue field in z over the residue
field of v. The intersection number is then (x̃ . ỹ)v =

∑
z(x̃ . ỹ)v,z · deg z.

Now return to the divisors D,E of degree 0. There exist αi ∈ Q such that

〈D,E〉v = − ln qv [(D̃ . Ẽ)v +
∑

i

αi(Fi . Ẽ)v ] (3.1.1)

cf. [Gr1, 3]. The elements αi are unique up to an additive constant, indepen-
dent of i. In particular if (D̃ .Fi)v = 0 for all i, the equation (3.1.1) is satisfied
with αi = 0 for all i.
Let x = (φ, φ′, u) be a Heegner point on X0(N) for the maximal order OL. We
denote by σA the element in the Galois group of H/L which corresponds via
class field theory to A ∈ Cl(OL). Then xσA is again a Heegner point for the
maximal order. The cusps are given by the cosets Γ0(N) \P1(K) and they are
K-rational. If degN > 0 we have at least the two different cusps 0 and ∞. We
get the divisors (x)− (∞) and (x)σA − (0) of degree 0 on X0(N).
Let Tλ be a Hecke operator and let g be an automorphic cusp form of Drinfeld
type of level N (cf. Definition (2.1.1). If we associate to (Tλ, g) the Fourier
coefficient (Tλg)

∗(π2
∞, 1), we get a bilinear map between the Hecke algebra and

the space of cusp forms of level N . This map is a non-degenerate pairing ([Ge3,
Thm. 3.17]). For gcd(λ,N) = 1 we have

(Tλg)
∗(π2
∞, 1) = qdegλg∗(πdeg λ+2

∞ , λ).

This is the key to the proof of the following proposition as in [Gr-Za, V 1]

Proposition 3.1.1 There is an automorphic cusp form gA of Drinfeld type of
level N such that

〈(x) − (∞), Tλ((x)
σA − (0))〉 = qdegλg∗A(πdeg λ+2

∞ , λ)

for all λ ∈ Fq [T ] with gcd(λ,N) = 1.

We want to compare gA with the cusp form ΨA of the previous section. There-
fore we have to evaluate this global height pairing. As we compare the cusp
forms only up to old forms, it suffices to calculate the height pairings above
only for the Hecke operators with gcd(λ,N) = 1. Thus we restrict to this case
in the whole section.
The first objective of this section is to express the intersection number of the
Heegner divisors on X0(N) at the finite places, i.e., those places corresponding
to irreducible polynomials in Fq [T ], by numbers of homomorphisms between
the corresponding Drinfeld modules (Theorem 3.3.4).
For a place v of H we write Hv for the completion at v and Ov for the valuation
ring. Let W be the completion of the maximal unramified extension of Ov and
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π a uniformizing element of Ov (W , resp.). In order to calculate the local
pairings

〈(x) − (∞) , Tλ((x)
σA − (0))〉v

we first describe the divisor Tλx
σA .

3.2 The divisor Tλx
σA

Definition 3.2.1 If x = (φ, φ′, u) and y = (ψ, ψ′, v) are two points on X0(N),
where φ, φ′, ψ, ψ′ are Drinfeld modules of rank 2 and u : φ→ φ′ and v : ψ → ψ′

are cyclic isogenies of degree N , we define

Hom R(x, y) := {(f, f ′) ∈ Hom R(φ, ψ)×Hom R(φ′, ψ′) : vf = f ′u}

for any ring R where this is well defined, e.g. for R a local ring with alge-
braically closed residue field.

Consider a finite place v of H . Let Hv be the completion of H at v and let
Ov be the valuation ring. Let W again be the completion of the maximal
unramified extension of Ov .

Lemma 3.2.2 Let x = (φ, φ′, φn) be a Heegner point for the maximal order and
a an integral ideal in the class A, which corresponds to σA ∈ Gal (H/L) under
the Artin homomorphism. Then

Hom W (xσA , x) ' End W (x) · a (3.2.1)

and

Hom W/πn(xσA , x) ' End W/πn(x) · a (3.2.2)

for every n ≥ 1 as left modules over the prevailing ring of endomorphisms.

Proof. It is enough to show the second assertion for all n, because for n suf-
ficiently big the second and the first assertion coincide. We show the assertion
for φ instead of x. To show it for x one only has to remark that the morphism
defined below is compatible with the morphism φn. We again assume that φ
is defined over W and has leading coefficients in Fq

∗
. For brevity we write

Rn := End W/πn(φ). Let Λ be the fraction field of W and Ia be the left ideal in
Λ{τ} generated by all φa with a ∈ a. This ideal is left principal and generated
by some φa ∈W{τ} ([Ha], Prop. 7.5). So Ia ∩ Rn is a left ideal in Rn and we
shall show that it is equal to the left ideal Rna. The inclusion Rna ⊂ Ia ∩ Rn
is trivial. For the other inclusion we shall show (Ia ∩ Rn)a−1 ⊂ Rn. Without
loss of generality we shall assume that the image under the natural inclusion of
a is not divisible by π. Then for every b ∈ a−1 there is a twisted power series
φb in W{{τ}} such that for a ∈ a we get φaφb = φab. Now let f ∈ Ia ∩Rn and
b ∈ a−1, then f =

∑
fiφai , for some fi ∈ W{τ}. So fφb =

∑
fiφaib, which is
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a polynomial, because aib ∈ O. We also have φbφa = φaφb for every a ∈ Fq [T ],
and therefore fφbφa ≡ φafφb mod πn. This implies f · b ∈ Rn.
We know from (Thm. 8.5[Ha]) that there exists a w ∈ W ∗ such that

φaφa = w−1φσA
a wφa

holds for every a ∈ O, i.e. wφa ∈ Hom W (φ, φσ). Now define an Rn−module
homomorphism from Hom W/πn(φσA , φ) to Rn ∩ Ia by the assignment f 7→
f · wφa. On the other hand if g ∈ W/πn{τ} such that gwφa =: u ∈ Rn, then
we have to show that g ∈ Hom W/πn(φσ , φ). We have

gφσawφa = gwφaφa = uφa = φau

for all a ∈ Fq[T ], where the last equality holds, because Fq[T ] is central in R1

and therefore also in Rn for every n ≥ 1. But φau = φagwφa and so

(gφσa − φag)wφa = 0.

wφa cannot be a zero divisor, because the leading coefficient of φa is 1. This
finishes the proof of the lemma. �
From this lemma we get the following result about the multiplicity of x in
Tλx

σA . The proof is exactly the same as in the characteristic 0 case ([Gr-Za,
(4.3)]).

Proposition 3.2.3 Let σA ∈ Gal (H/L), let A be the ideal class correspond-
ing to σA and let λ ∈ Fq[T ]. Then the multiplicity of x in the divisor Tλx

σA is
equal to the number rA((λ)) of integral ideals in the class of A with norm (λ).

The points y ∈ TλxσA are Heegner points for orders Oy ⊂ OL. Let f = {α ∈ L :
αOL ⊂ Oy} be the conductor of the order Oy. Let P be an irreducible, monic
polynomial in Fq [T ] and let s = s(y, P ) be the greatest integer with P s|f. We
call s the level of y at P . If P - λ, we get s = 0, because f|(λ). If λ = P t · R
with P - R and t > 0, then

Tλx
σA =

∑

z∈TRxσA
TP tz.

The following proposition tells us how often each level occurs in the divisor
TP tz. For a proof see [Ti1].

Proposition 3.2.4 Let P ∈ Fq[T ] be irreducible and let z be a Heegner point
of level 0 at P . Set d = degP and qP = qd. Then the number of points of level
s in the divisor TP tz is equal to

(t− s+ 1)(qsP − qs−1
P ) for t ≥ s ≥ 1

t+ 1 for s = 0

}
if P is split in L/K;

qsP + qs−1
P for t ≥ s ≥ 1, s ≡ t mod 2

1 for s = 0, t ≡ 0 mod 2

}
if P is inert in L/K;

qsP for t ≥ s ≥ 0 if P is ramified in L/K.
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The next proposition shows where the points with level s are defined. The
proof is given by D. Hayes ([Ha, Thm 8.10, Thm. 1.5])

Proposition 3.2.5 Let P be any irreducible polynomial and let z be a Heegner
point for an order O with conductor prime to N . Suppose that z has level 0 at
P . Then

1. z is defined over HO, the ring class field of O, which is unramified over
H at P . The Galois group of HO/H is isomorphic to the group of ideals
in OL modulo the principal ideals generated by some element a ∈ O which
is prime to the conductor of O.

2. Every y ∈ TP tz of level s at P is defined over another class field Hs with
[Hs : HO] = |(OL/P sOL)∗|/|(Fq [T ]/P sFq[T ])∗|, which is totally ramified
at P over HO.

3.3 The finite places

For the calculations of height pairings at the finite places we want to make use
of the modular interpretation of the points on the modular curve in every fibre
including the fibres over the divisors of N . In contrast to the elliptic curve
case, we do not know how these fibres look like if N is not square free. This is
one reason why we confine ourselves to this case.

The first step is to describe the pairings at a finite place v by intersection
products on a regular model of X0(N)⊗K. When v - N then X0(N)⊗ Ov is
a regular model and when v|N we take a regularization of X0(N)⊗Ov , which
can be done by finitely many blow ups at the singular points. After that we use
the modular interpretation to describe the intersection numbers by numbers of
homomorphisms.

First we recall the structure of the fibres of X0(N) at the places over N (see
[Ge2]).

Proposition 3.3.1 For N ∈ Fq [T ] square free, N 6∈ Fq, the modular curve
X0(N) over Fq [T ] is regular outside N and outside the supersingular points in
the fibres above prime divisors of N . Let P be any prime divisor of N of degree
d. Then the special fibre over P consists of two copies of X0(N/P ), which
intersect transversally in the supersingular points. One of the components is
the image of the map

X0(N/P )× Fq [T ]/P −→ X0(N)× Fq[T ]/P

(φ, φ′, u) mod P 7−→ (φ, φ′′, τdu) mod P,

where τd is the Frobenius of Fq[T ]/P regarded as isogeny of degree P . This
component is the “local component”, the other one is the “reduced component”.
The cusp 0 lies on the reduced component and ∞ lies on the local component.
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Remarks. 1. We need not know what the resolutions of singular points are,
because our horizontal divisors always intersect the fibres over N outside the
supersingular points and the next proposition will show that no contribution
from the fibre components of the regular model will occur.
2. Because gcd(D,N) = 1, the regular model remains regular under base
change to the Hilbert class field H/L as well as over the completion of the
maximal unramified extension W of some completion Ov for a place v of H .

Proposition 3.3.2 Let x = (φ, φ′, φn) be a Heegner point for the maximal
order, σA ∈ Gal (H/L), A the corresponding ideal class, λ ∈ Fq[T ], v a finite
place of H of residue cardinality qv. Suppose that rA((λ)) = 0, then

〈(x)− (∞), Tλ((x)
σA − (0))〉v = −(x . Tλx

σA)v ln qv.

Proof. At first we check that the horizontal extension of one of the divisors in
the pairing has zero intersection with both fibre components if v|N . It follows
that the values αi in 3.1.1 all vanish. Let n be the ideal, such that φn is the
cyclic isogeny defining x. If v|n, x intersects the fibre in the local component.
If v|n then it intersects in the reduced component. Thus one of the divisors
(x)− (∞), (x)− (0) has zero intersection with both fibre components. But the
points in Tλx

σA reduce to the same component as x. This shows that one of the
divisors has zero intersection with all fibre components. This is trivially true
for the places of good reduction (v - N). The result now follows by linearity of
the pairing and the fact that x can be represented by a Drinfeld module with
good reduction, so it does not intersect with the cusps. �

Proposition 3.3.3 Let x = (φ → φ′), y = (ψ → ψ′) be two W−rational
sections, i.e. horizontal divisors on X0(N) over W , which intersect properly
and which reduce to regular points outside the cusps in the special fibre. Then

(y . x)v =
1

q − 1

∑

n≥1

#Isom W/πn(y, x).

Proof. Let f : Y −→ X0(N) be a fine moduli scheme (e.g. a supplementary
full level N ′− structure with gcd(N ′, N) = 1 and N ′ with at least two different
prime factors.) Let y0 be a pre-image of y and xi the different pre-images of x,
i.e. f∗(y0) = y , f∗(x) =

∑
xi. Because f is proper, the projection formula

[Sha, Lect.6,(7)] implies that

(y . x)v = (f∗y0 . x)v = (y0 . f
∗x)v =

∑

i

(y0 . xi)v .

If (φ, φ′, u) is a representative of x, all the xi are represented by (φ, φ′, u, P,Q),
where P,Q generates the N ′ torsion module. Every such point occurs with
multiplicity #Aut(x)/(q − 1) in f∗(x). The q − 1 trivial automorphisms all
give the same point in f∗(x). Now let (ψ, ψ′, v) be a representative of y
and (φ, φ′, u) a representative of x. Let y0 be represented by (ψ, ψ′, v, P,Q).
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Then an isomorphism f : (ψ, ψ′, v) → (φ, φ′, u) defines an isomorphism

f̂ : (ψ, ψ′, v, P,Q) → (φ, φ′, u, f(P ), f(Q)) and this is uniquely determined.
If xi0 is the class of
(φ, φ′, u, f(P ), f(Q)), we have

#Isom W/πn(y0, xi) =

{
1 , if xi = xi0
0 , otherwise.

Now xi0 occurs in f∗(x) with multiplicity #Aut(x)/(q − 1) and therefore

∑

i

#Isom W/πn(y0, xi) =





#Aut(x)

q − 1
, if #Isom W/πn(y, x) 6= 0

0 , otherwise

=
1

q − 1
#Isom W/πn(y, x).

Therefore we only have to show that

(y0 . xi)v =
∑

n≥1

#Isom W/πn(y0, xi).

Let Y ↪→ PrW be a projective embedding. Let ArW be an affine part, which
contains the intersection point s of xi and y0. The coordinates with respect
to this affine part are denoted by y0 = (η1, . . . , ηr) and xi = (ξi1, . . . , ξir). In
the local ring OY,s we have the local functions zj − ηj , zj − ξij , respectively.
The ideal generated by these functions contains all differences (ηj − ξij) and
therefore is the ideal (π)k with k = minj v(ηj − ξij). From the definition of the
intersection number we get

(y0 . xi)v = dimW/π(OY,s/(zj − ηj , zj − ξij)) = dimW/π(W/πkW ) = k.

On the other hand

#Isom W/πn(y0, xi) =

{
0, ηj 6≡ ξij mod πn for some j
1, ηj ≡ ξij mod πn for all j,

because Y is a fine moduli scheme. It follows that

∑

n≥1

#Isom W/πn(y0, xi) = k.

�
The degree of an isogeny u between two Drinfeld modules φ, φ′ is by definition
the ideal IJ , if ker u ' Fq [T ]/I ⊕ Fq[T ]/J .

Theorem 3.3.4 Let P ∈ Fq [T ] be irreducible , v|P a place of H with local
parameter π and W the completion of the maximal unramified extension of
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Ov. Let x = (φ, φ′, u) be a Heegner point for the maximal order OL. Let
σA ∈ Gal (H/L). For λ,N without common divisor and rA((λ)) = 0 we get

(x . Tλx
σA)v =

1

q − 1

∑

n≥1

#Hom W/πn(xσA , x)degλ.

The subscript deg λ indicates that only homomorphisms of degree λ are
counted. The sum is finite because #Hom W/πn(xσA , x)deg λ = 0 for n
sufficiently large, because Hom W (xσA , x) =

⋂
n≥1 Hom W/πn(xσA , x) and

#Hom W (xσA , x)deg λ = rA((λ)) = 0 by assumption.

The rest of this section is used to prove this theorem. First of all we consider
the easiest case, namely P - λ. For the case P |λ we need the Eichler-Shimura
congruence and a congruence between points of level 0 and points of higher
level. After that the formula of the theorem is proved at first for P split, then
for P inert and finally for P ramified.
Suppose now that P - λ. We have

d

dt
φλ(t) = λ 6≡ 0 mod P,

and so the zeroes of φλ(t) are pairwise disjoint mod P . If u : xσA → x
is an isogeny over W/πn of degree λ, then u is uniquely determined up to
automorphism of x by keru(t) ⊂ kerφλ(t). For a fixed u we have a unique
lifting to a submodule of kerφλ(t) over W , i.e., there exists y and an isogeny
xσA → y of degree λ, such that

xσA x

y

'

-

?

@
@

@
@R

commutes. Therefore

#Hom W/πn(xσA , x)degλ =
∑

y∈TλxσA
#Isom W/πn(y, x).

By summation over n together with Proposition 3.3.3 the assertion of the the-
orem follows.
Now let λ = P tR with t ≥ 1 and P - R. The elements y ∈ TλxσA are Heegner
points of different levels and are defined over some extension Hs/H which is
ramified at P . The analogue of the Eichler-Shimura congruence holds, i.e.

TP ≡ F ∗ + F mod P,
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where F is the Frobenius correspondence and F ∗ is its dual correspondence on
X0(N). This can be shown in the following way. Let u : φ → φ′ be a cyclic
isogeny of degree P given as a τ−polynomial. Then there exists a dual isogeny
v : φ′ → φ, such that φP = v · u. Then either v ≡ τd mod P and consequently
φ′ ≡ φF mod P or u ≡ τd mod P and consequently φ ≡ φ

′F mod P . This
proves the Eichler-Shimura congruence.
By a simple induction we get

TP t ≡ F ∗t + F ∗(t−1)F + · · ·+ F ∗F t−1 + F t mod P.

Lemma 3.3.5 Let y ∈ TP tz. If s is the level of y, then y is defined over a
class field Hs (cf. Proposition 3.2.5). Let Hs,v be the completion at v|P and
Ws the valuation ring of the maximal unramified extension of Hs,v with local
parameter πs. y is defined over Ws. If z has level 0 at P then it is defined
over an unramified extension HO/H (cf. Proposition 3.2.5), thus also over W .
There exists a y0 of level 0 defined over W , with y ≡ y0 mod πs.

Proof. For P ramified or split in L/K let σp ∈ Gal (HO/L) be the Frobenius
of p|P over L. For P inert let σp = σP ∈ Gal (HO/K) be the Frobenius
of P over K. Then σp operates on φ. The definition of Frobenius yields

φσp ≡ φF mod πs and φσ
−1
p ≡ φ′ mod πs with φ

′F ≡ φ mod πs.
Now let y ∈ TP tz. From the Eichler-Shimura congruence we get the existence
of y′ and i with 0 ≤ i ≤ t, such that y

′F i ≡ z mod πs and y ≡ y
′F t−i mod πs

therefore y ≡ y′σt−ip ≡ zσt−2i
p mod πs, so we can take y0 = zσ

t−2i
p . �

Remark. In the ramified and in the inert case we have y0 = zσp for t odd or
y0 = z for t even. This holds because , if P is inert in L/K it is a principal
ideal generated by an element which does not divide the conductor of O. This
implies, that σ2

p = 1 for σp ∈ Gal(HO/K). If P is ramified in L/K we have
that p2 = (P ) is a principal ideal prime to the conductor. Therefore σ2

p = 1
also in this case.

Lemma 3.3.6 Let y ∈ TP tz with level s ≥ 1 and y0, πs as in Lemma 3.3.5.
Then

y 6≡ y0 mod π2
s .

Proof. The assertion is even true for the associated formal modules [Gr2,
Prop. 5.3]. The formal module associated to a Drinfeld module is an extension
of φ to a homomorphism φ(P ) : Fq [T ]P → W/π{{τ}} where Fq[T ]P is the
completion at P and W/π{{τ}} is the twisted power series ring. �
Now we can go on with the proof of Theorem 3.3.4. We treat the cases P split,
P inert and P ramified separately.
Suppose at first that P is split. Then φ has ordinary reduction and therefore
Hom W (xσA , x) = Hom W/πn(xσA , x) for all n ≥ 1, because Hom W/πn(x, x) =
Hom W (x, x) = OL and Hom W/πn(xσA , x) = a . By assumption we have
rA((λ)) = 0, so Hom W/πn(xσA , x)degλ = ∅.
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On the other hand let y ∈ Tλx
σA with x ≡ y mod πs. Then Lemma 3.3.5

gives y ≡ y0 mod πs for a y0 ∈ TλxσA of level 0. Because x ' y0 over W/π
and therefore also over W , we get x ' y0 over W , and so x ∈ TλxσA , which
contradicts the assumption rA((λ)) = 0. Therefore we get

(x . Tλx
σA )v = 0.

If P is inert then let y0 = zσp for t odd and y0 = z for t even, respectively,
as in the remark following Lemma 3.3.5. Then Lemma 3.3.5 and Lemma 3.3.6
yield y ≡ y0 mod πs, y 6≡ y0 mod π2

s .

Each y of level s = s(y) is defined over Ws, which is ramified of degree es =

q
(s−1)
P (qP + 1) (cf. Proposition 3.2.5(2)).

We distinguish between the intersection pairing over W and Ws. For the latter
we write ( . )v,s. From the definition of the intersection multiplicity we get

(TP tz . x)v =
1

es
(TP tz . x)v,s

and further

(TP tz . x)v =
1

es

∑

y∈TPtz
(y . x)v,s = (3.3.1)

=

t∑

s=0
s≡tmod2

∑

y∈T
Pt
z

s(y)=s

1

(q − 1)es

∑

n≥1

#Isom Ws/πns
(y, x)

=





1

q − 1

∑

n≥1

#Isom W/πn(z, x)

+

t∑

s=1
s≡tmod2

#{y ∈ TP tz : s(y) = s}
(q − 1) · es

#Isom W/π(y0, x) , if t is even

t∑

s=1
s≡tmod2

#{y ∈ TP tz : s(y) = s}
(q − 1) · es

#Isom W/π(y0, x) , if t is odd

=





1

q − 1


∑

n≥1

#Isom W/πn(z, x) + · t
2
#Isom W/π(z, x)


 , if t is even

1

q − 1
· t+ 1

2
#Hom W/π(z, x)degP , if t is odd.
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Summing over all z ∈ TRx we obtain (P - R)

(Tλx
σA . x)v =

∑

z∈TRxσA
(TP tz . x)v =

=





1

q − 1

∑

n≥1

#Hom W/πn(xσA , x)degR

+
t

2(q − 1)
#Hom W/π(x

σA , x)degR , if t is even

t+ 1

2(q − 1)
#Hom W/π(x

σA , x)degRP , if t is odd.

Lemma 3.3.7 a) If t is even:

#Hom W/πn(xσA , x)degR = #Hom W/πn+t/2(xσA , x)degλ for n ≥ 1

#Hom W/π(x
σA , x)degR = #Hom W/πn(xσA , x)deg λ for n ≤ t/2.

b) If t is odd:

#Hom W/π(x
σA , x)degRP = #Hom W/π(t+1)/2 (xσA , x)deg λ

#Hom W/π(x
σA , x)degRP = #Hom W/πn(xσA , x)degλ

for n ≤ (t+ 1)/2.

Proof. a) We have that φP t/2 ≡ τdt mod πt/2 is an isogeny of degree P t.
If u ∈ Hom W/πn(xσA , x)degR, then φP t/2(uφ

σA
x − φxu) ≡ 0 mod πn+t/2 and

therefore φP t/2uφ
σA
x ≡ φxφP t/2u mod πn+t/2, i.e.

φP t/2u ∈ Hom W/πn+t/2(xσA , x)deg λ.

Now P - R, thus π - u0 for u 6= 0, and φP t/2u ≡ 0 mod πn+t/2 implies u ≡
0 mod πn, i.e. the map is injective.
Now let u ∈ Hom W/πn+t/2(xσA , x)degλ, then there is a splitting u = u1 · u2

with an isogeny u1 of degree P t and an isogeny u2 of degree R. We have
u1 ≡ τdt mod πt/2, therefore the map is also surjective. This also shows that

Hom W/π(x
σA , x)degR −→ Hom W/πn(xσA , x)degλ

is bijective for n ≤ t/2, which implies a).

b) Analogous to a) with

Hom W/π(x
σA , x)degRP −→ Hom W/π(t+1)/2 (xσA , x)degλ

f 7−→ φP (t−1)/2 · f.

This completes the proof of Theorem 3.3.4, if P is inert.
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Now let P be ramified. p a prime in L over P . Then y0 = zσp for t odd and
y0 = z for t even, respectively, where σp is now the Frobenius over L. Lemma
3.3.5 and Lemma 3.3.6 tell us again that y ≡ y0 mod πs, y 6≡ y0 mod π2

s .

(Tλx
σA . x)v = (3.3.2)

=





1

q − 1

∑

n≥1

#Isom W/πn(z, x) +
t

q − 1
#Isom W/π(z, x)

1

q − 1

∑

n≥1

#Isom W/πn(zσp , x) +
t

q − 1
#Hom W/π(zσp , x)degP

for t even or odd, resp. Summing over all z ∈ TRxσA yields

(Tλx
σA . x)v =

∑

z∈TRxσA
(TP tz . x)v =

=





1

q − 1

∑

n≥1

#Hom W/πn(xσA , x)degR

+
t

q − 1
#Hom W/π(xσA , x)degR , if t is even

1

q − 1

∑

n≥1

#Hom W/πn(xσAσp , x)degR

+
t

q − 1
#Hom W/π(xσAσp , x)degR , if t is odd.

Lemma 3.3.8 a) For t even

#Hom W/πn(xσA , x)degR = #Hom W/πn+t(xσA , x)degλ for n ≥ 1

#Hom W/π(x
σA , x)degR = #Hom W/πn(xσA , x)degλ for n ≤ t.

b) For t odd

#Hom W/πn(xσAσp , x)degR = #Hom W/π(t+n)(xσA , x)deg λ

#Hom W/π(xσAσp , x)degR = #Hom W/πn(xσA , x)deg λ

where the first equality holds for all n ≥ 1 and the second one for all n ≤ t+ 1.

Proof. The proof is analogous to the proof of the previous lemma. Using the
facts that f 7−→ φP t/2f for a) and f 7−→ φptf for b) are bijections of the sets.�
Now Theorem 3.3.4 is also completely proved.

3.4 Quaternions

Assume that P is a prime which is non split in L. Then φ has supersingular
reduction and therefore End W/π(φ) is a maximal order in a quaternion algebra
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B over K with maximal subfield L, unramified outside P and ∞ and having
invariants invP = 1/2 and inv∞ = −1/2 (cf. [Ge4]). The reduced norm of
B/K will be denoted by nr and the reduced trace by tr. The norm of L/K will
be denoted by NL/K(·). Let x = (φ, φ′, φn) be a Heegner point. Then

R := End W/π(x) = {f ∈ End W/π(φ) : φnf = gφn, for some g ∈ End W/π(φ)}

which is the same as R = End W/π(φ) ∩ End W/π(φ
′) in B. This is also an

order in B, but is not a maximal one in general.
Let Fq[T ]P be the completion of Fq[T ] at P . Then φ extends to a formal module

φ(P ) : Fq[T ]P −→W/π{{τ}}

where W/π{{τ}} is the twisted power series ring. Then we have the following

analogue of the theorem of Serre-Tate [Dr] with x(P ) = (φ(P ), φ
′(P ), φ

(P )
n ):

Lemma 3.4.1

End W/πn(x) = End W/π(x) ∩ End W/πn(x(P )).

Proof. It suffices to show that

End W/πn(φ) = End W/π(φ) ∩ End W/πn(φ(P )).

We use induction. Let f ∈ End W/πn(φ)∩End W/πn+1(φ(P )). We have to show
that f ∈ End W/πn+1(φ). Therefore let

f = f0 + f1τ + . . .+ fiτ
i + . . . ∈W/πn+1{{τ}}

with fφa ≡ φaf mod πn+1 for all a ∈ Fq[T ] and assume that there is anM ∈ N,
such that fi ≡ 0 mod πn for all i ≥M . Now φ has supersingular reduction at
π, therefore

φP = a0 + a1τ + . . .+ a2dτ
2d ≡ a2dτ

2d mod π,

if d = degP . Now if k > M + 2d then the k−th coefficient of fφP is

fk−2da
qk−2d

2d + fk−2d+1a
qk−2d+1

2d−1 + · · ·+ fka
qk

0 ≡ fk−2da
qk−2d

2d mod πn+1,

because fi ≡ 0 mod πn and ai ≡ 0 mod π for i < 2d. On the other hand this
coefficient is equal to the k−th coefficient of φP f which is

a0fk + a1f
q
k−1 + · · ·+ a2d−1f

q2d−1

k−2d+1 + a2df
q2d

k−2d ≡ 0 mod πn+1.

Here a2d occurs only together with f q
2d

k−2d which vanishes modulo πn+1 because
d ≥ 1. Comparing both yields the assertion, namely fk−2d ≡ 0 mod πn+1 for
all k > M + 2d. �
From Lemma 3.4.1 and the corresponding statement for formal groups ([Gr2])
we immediately get for the order R in the quaternion algebra B:
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Proposition 3.4.2 Let p|P be a prime ideal in L and j in R with B = L+Lj.
Then End W/πn(x) =

{b = b1 + b2j ∈ R : D · NL/K(b2)nr(j) ≡ 0 mod P (NL/K(p))n−1}.

Together with 3.3.4 we get

Proposition 3.4.3 Let x be a Heegner point for the maximal order OL, σA ∈
Gal (H/L) and a an ideal from the ideal class A corresponding to σA. Let
R = End W/π(x) and suppose gcd(λ,N) = 1. Then

(x . Tλx
σA )v =

1

q − 1

∑

b∈Ra,b6∈L
nr(b)=λNL/K(a)

{
1
2 (1 + ordP (nr(j)NL/K(b2))) (P inert)
ordP (D nr(j)NL/K(b2)) (P ramified).

Proof. Theorem 3.3.4 yields

(x . Tλx
σA)v =

1

q − 1

∑

n≥1

#Hom W/πn(xσA , x)deg λ.

With Lemma 3.2.2 and Proposition 3.4.2 we obtain

(q − 1)(x . Tλx
σA)v

=
∑

n≥1

#{b = b1 + b2j ∈ Ra :

(nr(b)) = (λNL/K(a)), D · NL/K(b2)nr(j) ≡ 0 mod P (NL/K(p))n−1}

=
∑

b∈Ra

(nr(b))=(λNL/K(a))

{
#{n : nr(j)NL/K(b2) ≡ 0 mod P 2n−1}, (P inert)
#{n : D nr(j)NL/K(b2) ≡ 0 mod P n}, (P ramified)

=
∑

b∈Ra

(nr(b))=(λNL/K(a))

{
1
2 (1 + ordP (nr(j)NL/K(b2))) (P inert)
ordP (D nr(j)NL/K(b2)) (P ramified).

In the assertion of the proposition we sum only over b 6∈ L or equivalently
b2 6= 0. As we assume that rA((λ)) = 0 this makes no difference because the
elements with b2 = 0 correspond to homomorphisms defined over W . �
The next step towards our final formulae is to describe Ra explicitly. This can
be done in almost the same way as in the paper of Gross and Zagier, therefore
we omit the details.
First of all we want to describe the quaternion algebra by Hilbert symbols.
This is obtained by class field theory.

Proposition 3.4.4 Let P be monic and inert. Let εD be the leading coefficient
of D. Then there exists a monic, irreducible polynomial Q 6= P and ε ∈ F∗q−F2

q,
such that
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1. degPQD is odd,

2. εPQ ≡ 1 mod l for all l|D.

In terms of the Hilbert symbol this means

(
D, εPQ

l

)
=

{
1 for l - P∞
−1 for l = P or l =∞.

Furthermore D is a quadratic residue modulo Q, i.e. Q is split in L/K.

Corollary 3.4.5 B is described by

B ' (D, εPQ), B = L+ Lj

with j2 = εPQ.

We recall the following definition.

Definition 3.4.6 The level (or reduced discriminant) rd of an order J in a
quaternion algebra B is defined by

rd := n(J̃)−1,

where J̃ = {b ∈ B : tr(bJ) ⊂ Fq[T ]} is the complement of J and n(J̃) is the

gcd of the norms of elements in J̃ .

Then we can show that R has level NP and OL is optimally embedded in R,
i.e. R ∩ L = OL.
The next step is to identify the order R in B.

Proposition 3.4.7 The set

S = {α+ βj : α ∈ d−1, β ∈ d−1q−1n, α ≡ β mod Of ∀f|d}

is an order in (D, εPQ) of level NP and OL is optimally embedded in S. Here
d = (

√
D) is the different, q|Q is a prime of L and Of is the localization of OL

at f.

The proof is given by straightforward calculations (cf. Satz 3.18, [Ti1]).
Now R,S are both orders in which OL is optimally embedded and sharing the
same level. A Theorem of Eichler [Ei, Satz 7] states the existence of an ideal b

of OL with Rb = bS.
So if a is an ideal in the class A corresponding to σA ∈ Gal (H/L), and without
loss of generality we assume that P is not a divisor of a, then

Ra = bSb−1a =

= {α+ βj : α ∈ d−1a, β ∈ d−1q−1nbb
−1

a, α ≡ (−1)ordf(b)β mod Of ∀f|d}.
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The ideal class B of b depends on the place v|P . But P is inert, therefore it is
a principal prime ideal in L, and so P is totally split in H/L. The places over
P are permuted transitively by the Galois group. If τ ∈ Gal (H/L) and Wτ is
the maximal unramified extension of OH,vτ and πτ is a uniformizing parameter
and Rτ = End Wτ/πτ (x), then Rτ = cτRc−1

τ , where cτ lies in the ideal class
corresponding to τ . If bτ is defined by Rτbτ = bτS, it follows that bτ = bcτ .
Now we can give a more explicit formula for the height pairing at inert primes.
We define d(µ,D) to be the number of common prime factors of µ and D.

Proposition 3.4.8 For P inert we get the formula:

〈(x) − (∞) , Tλ((x)
σA − (0))〉P

=
∑

v|P
−(x . Tλx

σA)v ln qv

= −u2 1

q − 1
ln q degP

∑

µ∈Fq [T ]−{0}

deg µ≤deg λD−degNP

ordP (P 2µ) · rA((NPµ− λD)) ·

2d(µ,D)R{A[qn]}((µ))
1− δ(NPµ−λD)NPµ

2

with

u = |O∗L/F∗q | =
{
q + 1, if degD = 0

1, otherwise.

Here δ is again the local norm symbol at ∞ (cf. the definition of δ in section
2.2 following equation (2.2.5) ). R{A[qn]}(µ) denotes the number of integral
ideals c, which lie in a class differing from the class A[qn] by a square in the
class group and with norm (µ).

Proof. Let a be a fixed ideal in A and let λ0 be a fixed generator of NL/K(a).
We calculate the height pairing using Proposition 3.4.3 together with the ex-
plicit description of Ra.

If b = α+ βj ∈ Rτa, i.e. α ∈ d−1a, β ∈ d−1q−1nbτb
−1

τ a, α ≡ (−1)ordf(b)β mod
Of, we define

c := (β)dqn−1b−1
τ bτa

−1 ∈ [qn−1]B2A

and

ν := −NL/K(α)Dλ−1
0 ∈ Fq[T ]

µ := −εNL/K(β)DQN−1λ−1
0 ∈ Fq [T ].

Then c is integral and

nr(α+ βj) = NL/K(α) − εPQNL/K(β) = (−ν +NPµ)D−1λ0
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thus

(nr(α+ βj)) = (λλ0) ⇐⇒ (−ν +NPµ) = (Dλ) ⇐⇒ ν = NPµ− ε̃Dλ

for a uniquely determined ε̃ ∈ F∗q .
Now if µ ∈ Fq [T ] and ε ∈ F∗q are given, then the number of α ∈ d−1a with
NL/K(α) = −νD−1λ0 is ra,λ0(NPµ− ε̃Dλ).
β is determined by the integral ideal c up to multiplication with elements of
OL
∗.

If degD = 0 there are no further restrictions on α, β. Now suppose degD > 0.
We have that ε̃λλ0 = NL/K(α) − εPQNL/K(β) is integral and that εPQ ≡
1 mod f for all f |D. Therefore α ≡ ±β mod Of.

Let (
√
D) = p1 · · · pt, we can modify bτ modulo squares of classes to find b

with

b = bτ · pε11 · · · pεtt

with εi ∈ {0, 1} such that

α ≡ (−1)ordpi
(b)β mod Opi .

The εi are uniquely determined if β 6∈ Of, which is the case exactly when pi - µ.
If β ∈ Of then both choices of εi give the correct congruence. Thus there are
2d(µ,D) ideal classes which differ from the class of bτ only by classes of order
2 and which have the given congruence for α and β. The only exception to
this is when D|µ. In this case all εi can be chosen arbitrarily, so for each d-
tuple (ε1, . . . , εd) also (−ε1, . . . ,−εd) is possible but both give the same class.
The number of classes is therefore divided by two. On the other hand the
congruences fix β, except when all congruences are trivial. So the number of
pairs (α, β) doubles in the latter case.

The existence of β is equivalent to ε−1µQ−1Nλ0 being a norm of an element
in L∗. As we already know that it is the norm of an ideal, we get the following
local condition:

ε−1µQ−1Nλ0 ∈ NL/K(L∗) ⇐⇒ δε−1µQ−1Nλ0
= 1.

By definition of Q we have

(
D, εPQ

∞

)
= −1. Therefore the condition is equiv-

alent to δµPNλ0 = −1.

For a given α the number of β in some class bτ is then

2d(µ,D)R{A[qn]}(µ)
1− δµPNλ0

2
.
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This shows that

〈(x) − (∞) , Tλ((x)
σA − (0))〉P

= −u 1

q − 1
ln qv

∑

µ∈Fq [T ]−{0}

deg µ≤deg λD−degNP

∑

ε̃∈F∗
q

1

2
(1 + ordP (Pµ)) ·

ra,λ0(NPµ− ε̃λD) · 2d(µ,D)R{A[qn]}((µ))
1− δNPµλ0

2
.

If ra,λ0((NPµ − ε̃λD)) 6= 0 then δλ0 = δNPµ−ε̃λD , ln qv = 2 degP ln q. If we
substitute this and change µ 7→ ε̃µ we get

〈(x) − (∞) , Tλ((x)
σA − (0))〉P

= −u degP ln q
∑

µ∈Fq [T ]−{0}

deg µ≤deg λD−degNP

ordP (P 2µ)
∑

ε̃∈F∗
q

ra,λ0(ε̃(NPµ− λD)) ·

2d(µ,D)R{A[qn]}((µ))
1− δNPµ(NPµ−λD)

2
.

Using the identity

1

q − 1

∑

ε̃∈F∗
q

ra,λ0(ε̃(NPµ− λD)) = urA((NPµ− λD))

we get the formula of the proposition. �
We specialize this result to the case where D is irreducible. Then u = 1
because degD > 0. d(µ,D) = t(µ,D) = 0 or 1 for t(µ,D) defined in (2.8.1)
and therefore 2d(µ,D) = t(µ,D) + 1.

Lemma 3.4.9 If D is irreducible, then

R{A[qn]}((µ))
1− δ−NQµλ0

2
=

1

q − 1

∑

c|µ

[
D

c

]
1− δ−NQµλ0

2
.

Proof. One has to show that

R{A[qn]}((µ))
1− δ−NQµλ0

2
= #{c integral ideal : NL/K(c) = (µ)}.

Then the assertion follows by comparing the coefficients of both sides of ζL(s) =
ζK(s)LD(s). If degD is odd then every class is a square in the class group and
we are done. If degD is even and if −NQµλ0 is a norm, then deg NL/K(a0qn) ≡
deg µ mod 2. #{c integral ideal : NL/K(c) = (µ)} is the sum of rÃ((µ)) over

all classes Ã, which is equal to the sum over all square classes if µ ≡ 0 mod 2
and equal to the sum over all non-square classes if µ 6≡ 0 mod 2. In any case
this is RA[qn](µ). �
From this lemma the following corollary follows.
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Corollary 3.4.10 Let P be inert and D be irreducible. Then

〈(x) − (∞) , Tλ((x)
σA − (0))〉P

=
∑

v|P
−(x . Tλx

σA )v ln qv

= − ln q

q − 1

∑

µ∈Fq [T ]−{0}

deg µ≤deg λD−degNP

degPordP (P 2µ) · rA((NPµ− λD)) ·

(t(µ,D) + 1)


∑

c|µ

[
D

c

]
 1− δ(NPµ−λD)NPµ

2
.

If P is ramified we can get a similar formula arguing in the same way as for
the inert case. Let p|P be a prime over P and let f (= 1 or 2) be the order of
the place in the class group. Then p splits in H into h/f factors all of which
have residue degree f over the residue field of p.

Proposition 3.4.11 There exists ε ∈ F∗q − F2
q and a monic polynomial Q ∈

Fq [T ] with degQD odd, such that εQ ≡ 1 mod l for all l|D, l 6= P and
(
εQ

P

)
= −1.

Also Q is split in L/K, B ' (D, εQ) and B = L+ Lj with j2 = εQ.

Proposition 3.4.12 The order

S = {α+ βj : α ∈ pd−1, β ∈ pd−1q−1n, α ≡ β mod Of ∀f|d}
in (D, εQ) has level N · P and OL is optimally embedded in S.

From this and the Theorem of Eichler we get

Rτa = bτSb−1
τ a =

= {α+ βj : α ∈ pd−1a, β ∈ pd−1q−1nbτb
−1

τ a, α ≡ (−1)ordf(bτ )β mod Of}.
In the same way as for the inert primes we can show:

Proposition 3.4.13 Assume again that rA((λ)) = 0. Let P be ramified. Then
degD > 0 and u = 1. We have:

〈(x) − (∞) , Tλ((x)
σA − (0))〉P

=
∑

v|P
−(x . Tλx

σA)v ln qv

= − ln q

q − 1
degP

∑

µ∈Fq [T ]−{0}

deg µ≤deg λD−degNP

ordP (Pµ) · rA((NPµ− λD)) ·

2d(µ,D)R{A[qn]}(Pµ)
1− δ(NPµ−λD)NPµ

2
.
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If D is irreducible we get the formula:

〈(x) − (∞) , Tλ((x)
σA − (0))〉P

= − ln q

q − 1
degP

∑

µ∈Fq [T ]−{0}

deg µ≤deg λD−degNP

ordP (Pµ) · rA((NPµ− λD)) ·

2


∑

µ|c

[
D

c

]
 1− δ(NPµ−λD)NPµ

2
.

Proof. The proof is just as in the inert case. The only thing we want to
mention is that all classes for b are counted. But the sum runs only over the
v|P , so only over the h/f classes mod p. On the other hand there is a factor f
from ln qv = f · degP ln q which compensates for this. �
Now we sum up the formulae for all finite P in the case that D is irreducible.

Theorem 3.4.14 Let N ∈ Fq [T ] square free, D ∈ Fq [T ] irreducible and D ≡
b2 mod N for some b ∈ Fq[T ]. Let L = K(

√
D) and let H denote the Hilbert

class field of L. Let σA ∈ Gal(H/L) and suppose that A is the corresponding
ideal class.
Let λ ∈ Fq [T ] be such that gcd(λ,N) = 1 and rA((λ)) = 0. Then

∑

P 6=∞
〈(x) − (∞) , Tλ((x)

σA − (0))〉P

= − ln q

q − 1

∑

µ∈Fq [T ]−{0}

deg µN≤deg λD

rA((µN − λD)) · (1− δ(µN−λD)µN )

[
− (t(µ,D) + 1)


∑

c|µ

[
D

c

]
deg c


+


∑

c|µ

[
D

c

]
degµ



]
.

Proof. The sum over all P 6= ∞ of the formulae in Proposition 3.4.8 and in
Proposition 3.4.13 gives

∑

P 6=∞
〈(x) − (∞) , Tλ((x)

σA − (0))〉P

= − ln q

q − 1

∑

µ∈Fq [T ]−{0}

deg µN≤deg λD

rA((µN − λD)) · (1− δ(µN−λD)µN )

[
(t(µ,D) + 1)

∑

P |µ
P inert

degP ordP (Pµ)


∑

c|µp

[
D

c

]


+2 ordD(µ) degD


∑

c| µD

[
D

c

]

]
.
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Some calculations with the Dirichlet character show that

∑

P |µ
P inert

degP ordP (Pµ)


∑

c|µp

[
D

c

]


=


∑

c|µ

[
D

c

]
 degµ− ordD(µ) degD


∑

c|µ

[
D

c

]


−2


∑

c|µ

[
D

c

]
deg c


 .

Substituting this yields
∑

P 6=∞
〈(x) − (∞) , Tλ((x)

σA − (0))〉P

= − ln q

q − 1

∑

µ∈Fq [T ]−{0}

deg µN≤deg λD

rA((µN − λD)) · (1− δ(µN−λD)µN )

·
[
(t(µ,D) + 1)


∑

c|µ

[
D

c

]
deg µ

− degD (t(µ,D) + 1) ordD(µ)


∑

c|µ

[
D

c

]


−2(t(µ,D) + 1)


∑

c|µ

[
D

c

]
deg c


+ 2 ordD(µ) degD


∑

c|µ

[
D

c

]

]
.

For rA((µN − λD)) 6= 0 we observe that (cf. Lemma 2.8.1):

(1− δ(µN−λD)µN )(t(µ,D) − 1)


∑

c| µD

[
D

c

]
 = 0

from which the theorem follows. �

3.5 The local height pairing at ∞
At first we assume that rA((λ)) = 0. The local height pairing at places over∞
can be calculated by Green’s functions as described in [Ti3]. This approach is
based on the general formula (3.1.1). This means that there are contributions
coming from the intersection of horizontal divisors and from the intersection
with the fibre components. In contrast to [Ti3] here we always consider Γ as
a subgroup of GL2(Fq [T ]) instead of PGL2(Fq [T ]), so the formulae differ by a
factor q − 1.
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The cases degD odd and degD even will be treated separately starting with
the former case. In the whole section we again assume that D is irreducible.
We write |z|i = min{|z − y| : y ∈ K∞} and

d(z, z′) = logq
|z − z′|2
|z|i|z′|i

.

3.5.1 deg D odd

If z, z′ are two elements in Ω with logq |z|i, logq |z′|i 6∈ Z and which represent
L∞− rational points on the algebraic curve X0(N) then by definition of the
Green’s function G ([Ti3, Def 2]) and Theorem 2 together with Proposition 8
of [Ti3] we have

〈(z)− (∞), (z′)− (0)〉L∞

= (− ln q)(G(z, z′)−G(z′,∞)−G(0, z) +G(0,∞))

=
− ln q

q − 1

[ ∑

γ∈Γ

d(γz,z′)≤0

( q + 1

2(q − 1)
− d(γz, z′)

)

+ lim
s→1

[ q + 1

2(q − 1)

∑

γ∈Γ

d(γz,z′)>0

q−d(γz,z
′)s − 2κ(q − 1)

1− q1−s
]

− lim
s→1

[
q1/2(q2 − 1)(Ei(N)

s (z′) +Ei(N)
s (

1

Nz
))− 4κ(q − 1)

1− q1−s
]]

with κ :=
q2 − 1

2 [GL2(Fq [T ]) : Γ0(N)]
. Here Ei

(N)
s (z) is the Eisenstein series

Ei(N)
s (z) = |z|si

∑

(c,d), N|c
gcd(c,d)=1

|cz + d|−2s.

We define

RN := {
(
a b
c d

)
∈ Mat2×2(Fq[T ]) : N |c, det

(
a b
c d

)
6= 0}.
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If λ ∈ Fq [T ], λ 6= 0 we get

〈(z)− (∞), Tλ((z
′)− (0))〉L∞

=
− ln q

q − 1

[ ∑

γ∈RN, (det γ)=(λ)

d(z,γz′)≤0

( q + 1

2(q − 1)
− d(z, γz′)

)

+ lim
s→1

[ q + 1

2(q − 1)

∑

γ∈RN, (det γ)=(λ)

d(z,γz′)>0

q−d(z,γz
′)s − 2κσ1(λ)

1− q1−s
]

− lim
s→1

[
q1/2(q + 1)

(
qdeg λsσ1−2s(λ)Ei

(N)
s (z′) + σ1(λ)Ei

(N)
s (

1

Nz
)
)

− 4κσ1(λ)

1− q1−s
]]

with σs(λ) :=
∑

a|λ q
deg a s for any s. Now we specialize z to be a Heegner

point and z′ to be a conjugate under the Galois group.

Let λ ∈ Fq [T ] \ {0} with rA((λ)) = 0. Let n be an ideal with nn = (N). For

j = 1, 2 let aj = AjFq[T ] + (Bj +
√
D)Fq[T ] be two ideals contained in n with

NL/K(aj) = (Aj) and let Aj be the corresponding ideal classes. Then this data
defines two Heegner points which are represented in the upper half plane by

τj =
−Bj +

√
D

2Aj
. We have that logq |τj |i = logq |

√
D/Aj | 6∈ Z.

If A is an ideal class and σA ∈ Gal(H/L) the corresponding automorphism we
get

〈(τ) − (∞), Tλ((τ)
σA − (0))〉∞

=
∑

v|∞
〈(τ) − (∞), Tλ((τ)

σA − (0))〉v

=
∑

A1,A2∈Cl(OL)

A1A
−1
2

=A

〈(τA1 )− (∞), Tλ((τA2 )− (0))〉L∞

=
− ln q

q − 1

[
lim
s→1

[
F1(A, s)−

2κhLσ1(λ)

1− q1−s
]

− lim
s→1

[
F2(A, s)−

4κhLσ1(λ)

1− q1−s
]]

(3.5.1)
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where τ is one of the τAj , κ =
(q2 − 1)

2[GL2(Fq[T ]) : Γ0(N)]
and

F1(A, s) :=
∑

A1,A2∈Cl(OL)

A1A
−1
2

=A

[ ∑

γ∈RN, (det γ)=(λ)

d(γτA1
,τA2

)≤0

( q + 1

2(q − 1)
− d(γτA1 , τA2)

)

+
q + 1

2(q − 1)

∑

γ∈RN, (det γ)=(λ)

d(γτA1
,τA2

)>0

q−d(γτA1 ,τA2 )s
]

and

F2(A, s) :=
∑

A1,A2∈Cl(OL)

A1A
−1
2

=A

q1/2(q + 1) ·

·
[
qdeg λsσ1−2s(λ)Ei

(N)
s (τA2) + σ1(λ)Ei

(N)
s (

1

NτA1

)
]
. (3.5.2)

At first we calculate the function F1(A, s). The following proposition combined
with the convergence of the limits in (3.5.1) implies the existence of the limits
in section 2.8 (cf. the corresponding remark there).

Proposition 3.5.1 The following equation for F1 holds:

F1(A, s) =
∑

µ6=0
deg(µN)≤deg(λD)

rA((µN − λD))


∑

c|µ

[
D

c

]
 (t(µ,D) + 1)

·1 + δ(µN−λD)µN

2

(
− degµN + degλD +

q + 1

2(q − 1)

)

+
q + 1

2(q − 1)

∑

µ∈Fq [T ]−{0}

deg µN>deg λD

rA((µN − λD))


∑

c|µ

[
D

c

]


·(t(µ,D) + 1)q−(deg µN−degλD)s.

Proof. We define

M(a1, a2, n) = {(α, β) ∈ a−1
1 a−1

2 × a−1
1 a−1

2 n|A1A2(α− β) ∈
√
DFq[T ][

√
D]}

By calculations analogous to [Gr-Za], II (3.6)-(3.10) the map

RN −→ M(a1, a2, n)(
a b
c d

)
7−→ (α = cτ1τ2 + dτ 2 − aτ1 − b, β = cτ1τ2 + dτ2 − aτ1 − b)
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is a bijection and det

(
a b
c d

)
= −A1A2(NL/K(α) −NL/K(β))D−1.

For λ ∈ Fq[T ], λ 6= 0 we get

{
(
a b
c d

)
∈ RN , (ad− bc) = (λ)}

' {(α, β) ∈M(a1, a2, n)|(−A1A2(NL/K(α)−NL/K(β))

D
) = (λ)}.

We set µ = NL/K(β)/A−1
1 A−1

2 N ∈ Fq [T ], then d(γτA1 , τA2) = deg µN −
deg λD. Then it follows that

∑

γ∈RN
(det γ)=(λ)

( q + 1

2(q − 1)
− d(γτA1 , τA2)

)

=
∑

µ∈Fq[T ]−{0}

( q + 1

2(q − 1)
− deg µN + degλD

)
·

#{(α, β) ∈M(a1, a2, n)|

(
−A1A2(NL/K(α)−NL/K(β))

D
) = (λ),

NL/K(β)

A−1
1 A−1

2 N
= µ}.

We see that

#{(α, β) ∈M(a1, a2, n)|

(
−A1A2(NL/K(α) −NL/K(β))

D
) = (λ),

NL/K(β)

A−1
1 A−1

2 N
= µ}

= #{β ∈ a−1
1 a−1

2 n| NL/K(β)

A−1
1 A−1

2 N
= µ} ·

#{α ∈ a−1
1 a−1

2 | (−A1A2(NL/K(α) −NL/K(β))) = (λD)} ·

·1
2
(t(µ,D) + 1)

= ra−1
1 a

−1
2 n,A−1

1 A−1
2 N (µ) ·

∑

ε∈F∗
q

ra−1
1 a

−1
2 ,A−1

1 A−1
2

(µN − ελD) · 1
2
(t(µ,D) + 1).

Now we set a2 = a−1
1 a−1

0 and A2 = A−1
1 λ−1

0 , summing over all classes we get
for the first part of the formula in the proposition:

∑

A1,A2∈Cl(OL)

A1A
−1
2

=A

∑

γ∈RN,

(det γ)=(λ)

( q + 1

2(q − 1)
− d(γτA1 , τA2)

)

=
∑

µ∈Fq [T ]−{0}

( q + 1

2(q − 1)
− deg µN + deg λD

)
·

( ∑

A1∈Cl(OL)

ra−1
1 a1a0n,λ0N

(µ)
)
·
(∑

ε∈F∗
q

ra0,λ0(µN − ελD)
) 1

2
(t(µ,D) + 1).
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Since degD is odd we see that

ra−1
1 a1a0n,λ0N

(µ) = rA2
1 [a0n]((µ))(δλ0Nµ + 1).

The class number is odd, and therefore every class is a square. Hence

∑

A1∈Cl(OL)

ra−1
1 a1a0n,λ0N

(µ) =
∑

B∈Cl(OL)

rB((µ))(δλ0Nµ + 1) =
δλ0Nµ + 1

q − 1

∑

c|µ

[D
c

]
.

We use this equation, we change the order of the summation, and we continue
with our formula

∑

A1,A2∈Cl(OL)

A1A
−1
2

=A

∑

γ∈RN,

(det γ)=(λ)

( q + 1

2(q − 1)
− d(γτA1 , τA2)

)

=
∑

ε∈F∗
q

∑

µ∈Fq [T ]−{0}

( q + 1

2(q − 1)
− deg µN + deg λD

)
·

1

q − 1

(∑

c|µ

[D
c

])
(δλ0Nεµ + 1) ra0,λ0 (ε(µN − λD))

1

2
(t(µ,D) + 1).

If ra0,λ0 (ε(µN − λD)) 6= 0, then λ0ε(µN − λD) is a norm and δλ0Nεµ =
δµN(µN−λD). In addition we use the relation

∑

ε∈F∗
q

ra0,λ0 (ε(µN − λD)) = (q − 1)rA((µN − λD)).

This proves the first part of the formula in the proposition. The same calcula-
tions hold with q−d(γτA1 ,τA2 )s instead of d(γτA1 , τA2). If deg µN > deg λD we
have δµN(µN−λD) = 1. Therefore the second part of the formula is also true.
�
Now we continue with the calculation of the function F2(A, s) defined in equa-
tion (3.5.2).

Proposition 3.5.2 For the function F2(A, s) the following formula holds

lim
s→1

[
F2(A, s)−

4κhLσ1(λ)

1− q1−s
]

= C
(∑

a|λ
qdeg a

)
+ 2κhL

∑

a|λ
(degλ− 2 deg a)qdeg a

with

C := −4κhL

(
degN −

∑

(P )|(N)
(P ) prime

degP (1 + qdegP )−1

−degD

2
− 2

q − 1
− 1

ln q

L′D(1)

LD(1)

)
.
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Proof. Ei
(N)
s (τ) is invariant under the non trivial automorphism of L/K.

From τA,n = τA−1,n and 1/(NτA1,n) = τA1[n],n it follows that

∑

A∈Cl(OL)

Ei(N)
s (

1

NτA
) =

∑

A∈Cl(OL)

Ei(N)
s (τA).

Ei(N) can be expressed through the Eisenstein series Ei(1) by (cf. Lemma 7,
[Ti3])

Ei(N)
s (τA) = |N |−s

∏

(P )|(N)
(P ) prime

(1− |P |−2s)−1
( ∑

δ|N
δmodF∗q

µ(δ)|δ|−s
)
Ei(1)s (

N

δ
τA).

(N/δ)τA are Heegner points for δ instead of N with the same discriminant.
Immediately from the definitions we get

Ei(1)s (τ) = (1− q1−2s)|
√
D|sζL(A, s)

where ζL(A, s) is the partial ζ−function to the class A. This yields

∑

A∈Cl(OL)

Ei(N)
s (τA)

= |N |−s
∏

(P )|(N)
(P ) prime

(1− |P |−2s)−1
( ∑

δ|N
δmodF∗q

µ(δ)|δ|−s
)

(1− q1−2s)|
√
D|s

∑

A
ζL(A, s).

We have
∑
A ζL(A, s) = ζL(s)(1− q−s) = LD(s)/(1− q1−s). This gives

F2(A, s) = |N |−s
∏

P |N
PmodF∗q

(1 + |P |−s)−1q1/2(q + 1)
1− q1−2s

1− q1−s

·|
√
D|sLD(s)(σ1(λ) + |λ|sσ1−2s(λ)).

Now a straightforward calculation gives the desired result. �

3.5.2 deg D even

For the case where the degree of D is even we proceed in almost the same way
as for the case of odd degree, so we only need mention here the statements and
the differences in the proofs.

We start again with the general formula for the local height pairing at infinity
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for two points given by z, z′ ∈ Ω of [Ti3] (Thm.1, Prop. 8,9):

〈(z)− (∞), (z′)− (0)〉L∞

=
−2 ln q

q − 1

[ ∑

γ∈Γ

d(γz,z′)≤0

( q

q2 − 1
− 1

2
d(γz, z′)

)

+ lim
s→1

[ q

q2 − 1

∑

γ∈Γ

d(γz,z′)>0

q−d(γz,z
′)s − κ(q − 1)

1− q1−s
]

− lim
s→1

[
q(q − 1)(Ei(N)

s (z′) +Ei(N)
s (

1

Nz
))− 2κ(q − 1)

1− q1−s
]]
.

Again we take τAj ∈ Ω to be elements corresponding to the different ideal
classes Aj . If τ is one of these τAj we get

〈(τ) − (∞), Tλ((τ)
σA − (0))〉∞

=
− ln q

q − 1

[
lim
s→1

[
F1(A, s)−

2κhLσ1(λ)

1− q1−s
]

− lim
s→1

[
F2(A, s)−

4κhLσ1(λ)

1− q1−s
] ]

with κ :=
q2 − 1

2 [GL2(Fq [T ]) : Γ0(N)]
as above and the modified functions F1, F2

F1(A, s) :=
∑

A1,A2∈Cl(OL)

A1A
−1
2 =A

[ ∑

γ∈RN, (det γ)=(λ)

d(γτA1
,τA2

)≤0

( 2q

q2 − 1
− d(γτA1 , τA2 )

)

+
2q

q2 − 1

∑

γ∈RN, (det γ)=(λ)

d(γτA1
,τA2

)>0

q−d(γτA1 ,τA2 )s
]

and

F2(A, s) :=
∑

A1,A2∈Cl(OL)

A1A
−1
2 =A

q
[
qdeg λsσ1−2s(λ)Ei

(N)
s (τA2 ) + σ1(λ)Ei

(N)
s (

1

NτA1

)
]
.

With these definitions we get:
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Proposition 3.5.3 The following equation for F1 holds

F1(A, s) =
∑

µ6=0
deg(µN)≤deg(λD)

rA((µN − λD))


∑

c|µ

[
D

c

]
 (t(µ,D) + 1)

·1 + δ(µN−λD)Nµ

2

(
− degµN + degλD +

2q

q2 − 1

)

+
2q

q2 − 1

∑

µ∈Fq [T ]−{0}

deg µN>deg λD

rA((µN − λD))


∑

c|µ

[
D

c

]


·(t(µ,D) + 1)q−(deg µN−degλD)s.

Proof. The proof of this proposition differs from the corresponding Proposi-
tion 3.5.1 only slightly. We start with

∑

µ6=0

( 2q

q2 − 1
− deg µN + deg λD

)
rA((µN − λD)) ·


∑

c|µ

[
D

c

]
 (δµN(µN−λD) + 1)

1

2
(t(µ,D) + 1).

Since D is irreducible with even degree, the ideal class number is divisible by
2 exactly once. Hence the set {A2|A ∈ Cl(OL)} is equal to the set

{B ∈ Cl(OL)| deg NL/K(b) is even for all b ∈ B}.

This yields:

∑

A1∈Cl(OL)

rA2
1 [a0n]((µ)) =

∑

B∈Cl(OL)

rB((µ))(δλ0Nµ + 1)

=
1

q − 1

(∑

c|µ

[D
c

])
(δλ0Nµ + 1).

Using similar arguments as in Proposition 3.5.1 we get for our first sum:

∑

µ6=0

( 2q

q2 − 1
− degµN + deg λD

)( ∑

A1∈Cl(OL)

1

q − 1

∑

ε1∈F∗
q

ra−1
1 a1a0n,λ0N

(ε1µ)
)

·
(∑

ε∈F∗
q

ra0,λ0(µN − ελD)
) 1

2
(t(µ,D) + 1).

Each ε1 ∈ F∗q is norm at the extension L/K, i.e., ε1 = NL/K(κ). The divisor of

κ is of the form (κ) = b−1b. This proves

ra−1
1 a1a0n,λ0N

(µ) = r(a1b)−1a1ba0n,λ0N
(ε1µ).
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Therefore an appropriate choice of the ideals a1 yields for our sum:

∑

µ6=0

( 2q

q2 − 1
− deg µN + deg λD

)( ∑

A1∈Cl(OL)

ra−1
1 a1a0n,λ0N

(µ)
)
·

(∑

ε∈F∗
q

ra0,λ0(µN − ελD)
) 1

2
(t(µ,D) + 1).

The rest follows in the same way as in the proof of Proposition 3.5.1. �
The formula for F2(A, s) can be calculated in exactly the same way, so we only
write down the result.

Proposition 3.5.4 For the function F2(A, s) the following formula holds

lim
s→1

[
F2(A, s)−

4κhLσ1(λ)

1− q1−s
]

= C
(∑

a|λ
qdeg a

)
+ 2κhL

∑

a|λ
(degλ− 2 deg a)qdeg a

with

C := −4κhL

(
degN −

∑

(P )|(N)
(P ) prime

degP (1 + qdegP )−1

−degD

2
− q + 3

q2 − 1
− 1

ln q

L′D(1)

LD(1)

)
.

3.6 Modification if rA((λ)) 6= 0

So far we have only evaluated heights and intersection numbers, when the
divisors involved have a disjoint support. In order to get a final result we must
also define and compute self-intersection numbers.
Let X be a complete, non-singular, irreducible curve defined over a global
function field F over Fq, and let x be a F -rational point on X . Let X be a
regular model of X over P1

F . We call lx a local parameter at x if lx generates the
prime ideal corresponding to x in the local ring at x in the generic fibre. Let x̃ be
the Zariski closure of x in X . If π is a local parameter of a fibre corresponding
to a valuation v, we call lx a local parameter at x for the valuation v, if lx
together with π generate the maximal ideal corresponding to the intersection
point of x̃ with the fibre over v. Now fix a local parameter lx at x. Then we
define for each normalized valuation v of F the local self-intersection number
of x as

(x . x)v := lim
y→x

((x . y)v − v(lx(y))) = lim
y→x

((x . y)v +
1

deg v
logq |lx(y)|v),

(3.6.1)
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where deg v is defined as usual, and where the absolute value is given by |α|v :=
q−deg v·v(α), according to the product formula of the function field F .
The definition (3.6.1) and the definition of the ordinary intersection number
(x . y)v (cf. section 3.1) show immediately that (x . x)v = 0, if lx is a local
parameter at x for the valuation v.
In the next step we have to choose the local parameter lx in our situation. The
curve X0(1) is the projective line parametrized by the j-invariant of a Drinfeld
module of rank 2. We recall that a Drinfeld module of rank 2 over Fq [T ] is

given by an additive polynomial ΦT (X) = TX+gXq+∆Xq2 with discriminant
∆ and j-invariant j = gq+1/∆.
We let Y1 be the projective line given by the parameter u with uq+1 = j. Then
Y1/X0(1) is an extension of degree q + 1, where only the elliptic points and
cusps (i.e. zeroes and poles of j) are ramified (These facts and the definition of
elliptic points can be found in [Ge1] or in other textbooks on Drinfeld modules).
Let YN be the composite of Y1 and X0(N), we get the following diagram:

YN

��zzuuuuuuuuuu

Y1

��

X0(N)

zzuuuu
uu

uuu

X0(1)

On YN we choose for a point y the local parameter ly := u − u(y). The self-
intersection numbers onX0(N) will then be evaluated with this local parameter
on YN and with the projection formula for the extension YN/X0(N).
We distinguish different cases for the valuations v:

3.6.1 v - N · ∞
Let x be a Heegner point on X0(N), defined locally over W as in section 3.1,
and let y1, . . . , yt be the points on YN lying over x. Then the projection formula
yields

(x . x)v = (y1 . y1)v + (y1 . y2)v + · · ·+ (y1 . yt)v .

Since the covering YN/X0(N) is unramified outside the elliptic points and cusps
and outside the divisors of N ·∞, we see that u−u(y1) is a local parameter of
y1 at v. Hence (y1 . y1)v = 0 by the above remark. Since

(y1 . yj)v =
1

q − 1

∞∑

k=1

#IsomW/πk (y1, yj)

for j 6= 1 (Proposition 3.3.3), we therefore get

(x . x)v =
1

q − 1

∞∑

k=1

(#AutW/πk(x) −#AutW (x)). (3.6.2)
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As mentioned at the end of the proof of Proposition 3.4.3 the automorphisms
not defined over W correspond to the elements b ∈ Ra, b = b1 + b2j with
b2 6= 0 which corresponds to µ 6= 0 in the formulae of Corollary 3.4.10 and
Proposition 3.4.13. So these formulae already count only the “new” part, i.e.
without counting homomorphisms over W . Thus if λ ∈ Fq[T ] is prime to P the
formulae for the local height pairings 〈(x)− (∞), Tλ(x)

σA − (0)〉P of Corollary
3.4.10 and Proposition 3.4.13 remain valid. This is not true however, if v|λ.
We write as before λ = P tR with P - R. For the points of level s > 0 it is not
correct to take only the ”new” part. So we have to add the contribution from
homomorphisms over W for these points to the formulae of Corollary 3.4.10
and Proposition 3.4.13.
For P inert we look at the last line of (3.3.1) We get a contribution of

1

q − 1





t

2
# IsomW (z, x) #{z ∈ TRxσA} if t is even

t+ 1

2
# HomW (z, x)degP #{z ∈ TRxσA} if t is odd

which is (t/2)r1((P t))rA((R)) if t is even and 0 if t is odd. In both cases this
is equal to (ordP (λ)/2)rA((λ)).
If P is ramified we get in a similar way from (3.3.2) a contribution of
ordP (λ)rA((λ)).
If P is split we have t + 1 points of level 0 in Tλx

σA , where x is just one of
them (cf. Proposition 3.2.4). From the t−s+1 divisors of points of level s > 0
there is at most one whose points are congruent to x. Summing over all levels
shows that the correction term in this case is ordP (λ)rA((λ))kp, where kp is a
number less or equal to t, and kp + kp̄ = ordP (λ).

3.6.2 v|N
Let x be a Heegner point on X0(N) represented by the pair of ideals (a, an−1),
where n is a divisor of N in L (cf. section 3.1).
a) Suppose that v|n, in particular let v divide the prime divisor p of norm
NL/K(p). The Artin reciprocity law in explicit class field theory ([Ha, (8.7)])
uses the fundamental congruence

j(ap−1) ≡ j(a)NL/K(p) mod v.

From this we see that u − u(y1) is again a local parameter of y1 at v for a
point y1 on YN lying over x. Hence the calculations of the previous section, in
particular equation (3.6.2), remain true in this situation.
b) Suppose that v|n̄. Then the calculations of a) show that wN (u − u(y1)) is
a local parameter of y1 at v, where wN denotes the canonical involution on
X0(N) and YN . Hence

(y1 . y1)v = v(
∂wN (u)

∂u
(u(y1))). (3.6.3)
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Using the fact that uq+1 = j we get

(
∂wN (u)

∂u
)q+1 = (

∂wN (j)

∂j
)q+1(

j

wN (j)
)q . (3.6.4)

If the Heegner point x is represented by τ ∈ Ω, then wN (j)(τ) = j(Nτ). And

we can evaluate the right hand side of (3.6.4) with
∂wN (j)

∂z
(τ) and

∂j

∂z
(τ). For

∂j

∂z
we use the definition j = gq+1/∆ and get

∂j

∂z
=

gq

∆2
(
∂g

∂z
∆− g ∂∆

∂z
).

∂g

∂z
∆− g ∂∆

∂z
can be expressed in terms of ∆ (cf. equation (3.6.11)). For

∂wN (j)

∂z
we perform similar calculations. Hence we get

(
∂wN (u)

∂u
(u(y1)))

q2−1 = N q2−1 (
∆(Nτ)

∆(τ)
)2. (3.6.5)

∆(τ)/∆(Nτ) is algebraic over L and its divisor is equal to n̄q
2−1 (we get this

by calculations analogous to those in [Deu], sect. 13). With this fact and with
(3.6.5) we can evaluate the value in (3.6.3). Together we get

Lemma 3.6.1 If v|n, then
(x . x)v = 0,

and if v|n̄, then
(x . x)v = −v(N) = −1.

We can now summarize the results of the first two cases. We want to evaluate
the height of Heegner points as in section 3.4, but without any restriction on
rA((λ)). We combine the calculations in section 3.4 with the contributions
from subsection 3.6.1 and Lemma 3.6.1, and we get

Proposition 3.6.2

∑

P 6=∞
〈(x) − (∞), Tλ((x)

σA − (0))〉P =
ln q

q − 1

·
{

(q − 1) rA((λ)) hL (degN − degλ)

+
∑

µ6=0
deg(µN)≤deg(λD)

rA((µN − λD)) (1− δ(µN−λD)µN )

·


(t(µ,D) + 1)(

∑

c|µ

[
D

c

]
deg c)− (

∑

c|µ

[
D

c

]
) deg µ



}
.
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3.6.3 v|∞
Let x be a Heegner point on X0(N) represented by τ ∈ Ω, and let y1, . . . , yt
be the points on YN lying over x. As above the projection formula yields

(x . x)v = (y1 . y1)v + (y1 . y2)v + · · ·+ (y1 . yt)v .

The self-intersection number on YN is by definition given as

(y1 . y1)v := lim
ỹ→y1

((y1 . ỹ)v − v(u(ỹ)− u(y1))).

Therefore, if ỹ on YN is mapped to x̃ on X0(N), we get

(x . x)v := lim
x̃→x

((x . x̃)v − v(u(ỹ)− u(y1))). (3.6.6)

The point x is represented by τ ∈ Ω, let in addition x̃ be represented by τ̃ ∈ Ω.
At first we treat the case where degD is odd. The local height pairing of x and
x̃ at v is given by the Green’s function G(τ̃ , τ) ([Ti3], cf. also section 3.5):

G(τ̃ , τ) =
1

q − 1

∑

γ∈Γ0(N)

|τ−γτ̃|2≤|τ|i|γτ̃|i

( q + 1

2(q − 1)
− logq

|τ − γτ̃ |2
|τ |i|γτ̃ |i

)

+
q + 1

2(q − 1)2
lim
σ→1

( ∑

γ∈Γ0(N)

|τ−γτ̃|2>|τ|i|γτ̃|i

(
|τ − γτ̃ |2
|τ |i|γτ̃ |i

)−σ − C1

1− q1−σ
)
,(3.6.7)

where we normalize the absolute value such that |f | = qdeg f = q−v(f) for
f ∈ Fq [T ].
The Green’s function G(τ̃ , τ) contains two parts, the intersection number
(x̃ . x)v and the contribution of the fibre components (cf. (3.1.1)). We must
replace (x̃ . x)v by the self intersection number (x . x)v . The contribution of
the fibre components remains unchanged.
We have uq+1 = j and j = j(z) for z ∈ Ω, this yields

lim
ỹ→y1

(v(u(ỹ)− u(y1))) = v(
∂u

∂τ
) + lim

τ̃→τ
(v(τ̃ − τ)). (3.6.8)

Here
∂u

∂τ
only represents the two derivatives

∂u

∂j
and

∂j

∂τ
, we do not assume

that YN is a quotient of Ω.
Now (3.6.6), (3.6.7) and (3.6.8) show that we have to replace G(τ̃ , τ) by

G(τ, τ) :=
1

q − 1

∑

γ∈Γ0(N),γτ 6=τ

|τ−γτ|2≤|τ|i|γτ|i

( q + 1

2(q − 1)
− logq

|τ − γτ |2
|τ |i|γτ |i

)

+
q + 1

2(q − 1)2
lim
σ→1

( ∑

γ∈Γ0(N)

|τ−γτ|2>|τ|i|γτ|i

(
|τ − γτ |2
|τ |i|γτ |i

)−σ − C1

1− q1−σ
)

+
q + 1

2(q − 1)
+ 2 logq(|τ |i|

∂u

∂τ
|),
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When we compare the results in section 3.5 with these formulas, we get

〈(x)− (∞), Tλ((x)
σA − (0))〉∞ = right hand side of eq. (3.5.1)

−2 ln q rA((λ))
∑

τ

(
logq(|τ |i|

∂u

∂τ
|) +

q + 1

4(q − 1)

)
, (3.6.9)

where we sum over all τ corresponding to the classes in OL. We denote the
second sum in (3.6.9) by S, which we will evaluate now.
We use the definitions uq+1 = j and j = gq+1/∆ to evaluate

(
∂u

∂z
)q

2−1 = ∆2−q2−q(
∂g

∂z
∆− g ∂∆

∂z
)q

2−1. (3.6.10)

(
∂g

∂z
∆− g ∂∆

∂z
)q−1 is a modular form of weight q(q2 − 1) for the group

GL2(Fq [T ]), and it is therefore a polynomial in g and ∆ (cf. [Go]). The
evaluation of the expansion around the cusp yields the identity

(
∂g

∂z
∆− g ∂∆

∂z
)q−1 = −π̄1−q∆q , (3.6.11)

where π̄ is a well-defined element (cf. [Ge3]) with logq |π̄| = q/(q − 1).
Now (3.6.10) and (3.6.11) yield

logq(|τ |i|
∂u

∂τ
|) = logq(|∆(τ)|2/(q2−1)|τ |i)−

q

q − 1
.

Since |∆(τ)|2/(q2−1)|τ |i is invariant under GL2(Fq [T ]), we can assume that τ
satisfies |τ | = |τ |i > 1. For these τ we use the product formula for ∆ (for all
the details concerning the product formula we refer to [Ge3]):

∆(τ) = −π̄q2−1t(τ)q−1
∏

a∈Fq [T ]

monic

fa(t(τ))
(q2−1)(q−1),

where
t(τ) = (π̄τ

∏

l∈Fq [T ]

l6=0

(1− τ

l
))−1,

and where fa are well-defined polynomials. Using the definitions of fa and t(τ)
we can show that in our case (i.e. τ ∈ K∞(

√
D), degD odd, |τ | = |τ |i > 1)

logq |t(τ)| = −|τ |iq1/2
q + 1

2(q − 1)

and
logq |fa(t(τ))| = 0.

Therefore

logq |∆(τ)| = q(q + 1)− 1

2
q1/2(q + 1)|τ |i. (3.6.12)
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Hence we get

logq(|τ |i|
∂u

∂τ
|) =

q

q − 1
− q1/2

q − 1
|τ |i + logq |τ |i. (3.6.13)

Now the definition of S in (3.6.9) and equation (3.6.13) yield

S = −2 ln q rA((λ))
( 5q + 1

4(q − 1)
hL +

∑

τ

(−q
1/2|τ |i
q − 1

+ logq |τ |i)
)
. (3.6.14)

On the other hand we consider the Eisenstein series

Eis(τ) :=
∑

c,d∈Fq [T ]

(c,d)6=(0,0)

|τ |si
|cτ + d|2s . (3.6.15)

We see that

∑

τ

Eis(τ) =
(q − 1)|

√
D|s

1− q1−s LD(s), (3.6.16)

where LD(s) again is the non-trivial L-series of the extension L/K. Straight-
forward calculations of the sum in (3.6.15) show that Eis(τ) can be expressed
as a rational function:

Eis(τ) = (q − 1)
|τ |si

1− q1−2s
+
q1/2|τ |1−si

1− q2−2s

(
(q − 1)2

q−s

1− q1−2s
+ q − 1

)
. (3.6.17)

With (3.6.16) and (3.6.17) we can evaluate the following term

2

ln q

L′D(0)

LD(0)
= − degD +

2q

q − 1
− 2

hL

∑

τ

(q1/2|τ |i
q − 1

− logq |τ |i
)
. (3.6.18)

We compare equation (3.6.14) coming from values of ∆ and equation (3.6.18)
dealing with Eisenstein series, to get

S = ln q rA((λ)) hL
(
− degD − 2

ln q

L′D(0)

LD(0)
− q + 1

2(q − 1)

)
. (3.6.19)

This result can be seen as the Kronecker limit formula for function fields.

We summarize Propositions 3.5.1 and 3.5.2 and the result (3.6.9), (3.6.19) about
S in the following proposition.
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Proposition 3.6.3 Let degD be odd, then

〈(x) − (∞), Tλ((x)
σA − (0))〉∞ =

ln q

q − 1

·
{

(q − 1) rA((λ)) hL

(
− degD − q + 1

2(q − 1)
− 2

ln q

L′D(0)

LD(0)

)

+
∑

µ6=0
deg(µN)≤deg(λD)

rA((µN − λD))(
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

1 + δ(µN−λD)µN

2

· (deg(
µN

λD
)− q + 1

2(q − 1)
)

− q + 1

2(q − 1)
lim
σ→0


 ∑

deg(µN)>deg(λD)

rA((µN − λD)) (
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

· q(−σ−1) deg(µNλD ) −
C1 hL (

∑
a|λ q

deg a)

1− q−σ

)

− q + 1

2(q − 1)
C1 hL (

∑

a|λ
qdeg a(deg λ− 2 deg a)) + (

∑

a|λ
qdeg a) C2

}

with

C1 :=
2(q − 1)2

[GL2(Fq [T ]) : Γ0(N)]

and

C2 := − 2(q2 − 1)

[GL2(Fq [T ]) : Γ0(N)]
hL


degN −

∑

(P )|(N)
(P ) prime

degP

qdegP + 1
− degD

2

− 2

q − 1
− 1

ln q

L′D(1)

LD(1)

)
.

Combining this with the results for the finite primes finally gives:

Theorem 3.6.4 Let degD be odd and let gA be the Drinfeld automorphic cusp
form of Proposition 3.1.1. Then gA has the Fourier coefficients for all λ ∈ Fq [T ]
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with gcd(λ,N) = 1:

g∗A(πdeg λ+2
∞ , λ) =

ln q

q − 1
q−deg λ

·
{

(q − 1) rA((λ)) hL

(
degN − deg(λD) − q + 1

2(q − 1)
− 2

ln q

L′D(0)

LD(0)

)

+
∑

µ6=0
deg(µN)≤deg(λD)

rA((µN − λD))

(
(
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

1 + δ(µN−λD)µN

2

· (deg(
µN

λD
)− q + 1

2(q − 1)
)− (1− δ(µN−λD)µN ) (

∑

c|µ

[
D

c

]
) degµ

+ (1− δ(µN−λD)µN ) (t(µ,D) + 1) (
∑

c|µ

[
D

c

]
deg c)

)

− q + 1

2(q − 1)
lim
σ→0

( ∑

deg(µN)>deg(λD)

rA((µN − λD)) (
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

· q(−σ−1) deg(µNλD ) −
C1 hL (

∑
a|λ q

deg a)

1− q−σ

)

− q + 1

2(q − 1)
C1 hL (

∑

a|λ
qdeg a(deg λ− 2 deg a)) + (

∑

a|λ
qdeg a) C2

}

with

C1 :=
2(q − 1)2

[GL2(Fq [T ]) : Γ0(N)]

and

C2 := − 2(q2 − 1)

[GL2(Fq [T ]) : Γ0(N)]
hL


degN −

∑

(P )|(N)
(P ) prime

degP

qdegP + 1
− degD

2

− 2

q − 1
− 1

ln q

L′D(1)

LD(1)

)
.

If degD is even, the calculations are the same. We will present only the differ-
ences in the formulas to the first case. The calculations with the corresponding
Green’s function (cf. (3.6.9)) give

S = −2 ln q rA((λ))
∑

τ

(
logq(|τ |i|

∂u

∂τ
|) +

q

q2 − 1

)
.

Equation (3.6.12) has to be replaced by

logq |∆(τ)| = q(q + 1)− q |τ |i.

Documenta Mathematica 5 (2000) 365–444



436 Hans-Georg Rück and Ulrich Tipp

Hence (3.6.14) has the form

S = −2 ln q rA((λ))
(q2 + 2q

q2 − 1
hL +

∑

τ

(− 2q|τ |i
q2 − 1

+ logq |τ |i)
)
.

The definition (3.6.15) and the relation (3.6.16) remain unchanged, but the
rational expression (3.6.17) becomes

Eis(τ) = (q − 1)
|τ |si

1− q1−2s
+

q|τ |1−si

1− q2−2s

(
(q − 1)2

q−2s

1− q1−2s
+ q − 1

)
.

Equation (3.6.18) has to be replaced by

2

ln q

L′D(0)

LD(0)
= − degD +

2q2 + 2q

q2 − 1
− 2

hL

∑

τ

( 2q|τ |i
q2 − 1

− logq |τ |i
)
.

And finally we get:

Proposition 3.6.5 Let degD be even, then

〈(x) − (∞), Tλ((x)
σA − (0))〉∞ =

ln q

q − 1

·
{

(q − 1) rA((λ)) hL

(
− degD − 2q

q2 − 1
− 2

ln q

L′D(0)

LD(0)

)

+
∑

µ6=0
deg(µN)≤deg(λD)

rA((µN − λD))(
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

1 + δ(µN−λD)µN

2

· (deg(
µN

λD
)− 2q

q2 − 1
)

− 2q

q2 − 1
lim
σ→0


 ∑

deg(µN)>deg(λD)

rA((µN − λD)) (
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

· q(−σ−1) deg(µNλD ) −
C1 hL (

∑
a|λ q

deg a)

1− q−σ

)

− 2q

q2 − 1
C1 hL (

∑

a|λ
qdeg a(deg λ− 2 deg a)) + (

∑

a|λ
qdeg a) C2

}

with

C1 :=
(q2 − 1)2

2q[GL2(Fq [T ]) : Γ0(N)]
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and

C2 := − 2(q2 − 1)

[GL2(Fq [T ]) : Γ0(N)]
hL

(
degN −

∑

(P )|(N)
(P ) prime

degP

qdegP + 1
− degD

2

− q + 3

q2 − 1
− 1

ln q

L′D(1)

LD(1)

)
.

Combining this with the results for the finite places yields:

Theorem 3.6.6 Let degD be even and let gA be the Drinfeld automorphic
cusp form of Proposition 3.1.1. Then gA has the Fourier coefficients for all
λ ∈ Fq[T ] with gcd(λ,N) = 1:

g∗A(πdeg λ+2
∞ , λ) =

ln q

q − 1
q−deg λ

·
{
rA((λ)) hL (q − 1)

(
degN − deg(λD) − 2q

q2 − 1
− 2

ln q

L′D(0)

LD(0)

)

+
∑

µ6=0
deg(µN)≤deg(λD)

rA((µN − λD))

(
(
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

1 + δ(µN−λD)µN

2

· (deg(
µN

λD
)− 2q

q2 − 1
)− (1− δ(µN−λD)µN ) (

∑

c|µ

[
D

c

]
) degµ

+ (1− δ(µN−λD)µN ) (t(µ,D) + 1) (
∑

c|µ

[
D

c

]
deg c)

)

− 2q

q2 − 1
lim
σ→0

( ∑

deg(µN)>deg(λD)

rA((µN − λD)) (
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

· q(−σ−1) deg(µNλD ) − C1 hL (
∑

a|λ
qdeg a)

1

1− q−σ

)

− 2q

q2 − 1
C1 hL (

∑

a|λ
qdeg a(deg λ− 2 deg a)) + (

∑

a|λ
qdeg a) C2

}

with

C1 :=
(q2 − 1)2

2q[GL2(Fq [T ]) : Γ0(N)]

Documenta Mathematica 5 (2000) 365–444



438 Hans-Georg Rück and Ulrich Tipp

and

C2 := − 2(q2 − 1)

[GL2(Fq [T ]) : Γ0(N)]
hL

(
degN −

∑

(P )|(N)
(P ) prime

degP

qdegP + 1
− degD

2

− q + 3

q2 − 1
− 1

ln q

L′D(1)

LD(1)

)
.

4 Conclusion

4.1 Main Results

Now we combine the previous chapters on L-series (chapter 2) and on Heegner
points (chapter 3). We recall the assumptions: D ∈ Fq[T ] is an irreducible
polynomial and N ∈ Fq [T ] is a square free polynomial, whose prime divisors

are split in the imaginary quadratic extension K(
√
D)/K.

If degD is odd, we evaluated in Theorem 2.8.2 the Fourier coefficients
Ψ∗A(πdeg λ+2

∞ , λ) of an automorphic cusp form ΨA of Drinfeld type with

∂

∂s
(L(N,D)(2s+ 1)L(f,A, s)) |s=0=

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f ·ΨA.

On the other hand, in Theorem 3.6.4 we obtained the Fourier coefficients of
gA, which are defined as

g∗A(πdeg λ+2
∞ , λ) = q− degλ〈(x) − (∞), Tλ((x)

σA − (0))〉.

If we compare the two formulas, we see that

Ψ∗A(πdeg λ+2
∞ , λ) =

q − 1

2
q−(degD+1)/2 g∗A(πdeg λ+2

∞ , λ)

for all λ ∈ Fq[T ] with gcd(λ,N) = 1. Hence the two automorphic cusp forms
ΨA and (q − 1)/2 · q−(degD+1)/2 gA differ only by an old form. Since f is a
newform, the occurring old form does not affect the integral. And this can be
summarized by the following main result:

Theorem 4.1.1 Let degD be odd. Let x be a Heegner point on X0(N) with
complex multiplication by OL = Fq[T ][

√
D], let A ∈ Cl(OL), and let gA be the

automorphic cusp form of Drinfeld type of level N , which is given by

(TλgA)∗(π2
∞, 1) = 〈(x) − (∞), Tλ((x)

σA − (0))〉

for all λ ∈ Fq [T ]. Let f be a newform of level N , then

∂

∂s
(L(N,D)(2s+ 1)L(f,A, s)) |s=0=

q − 1

2
q−(degD+1)/2

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f · gA.
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If degD is even, we have to compare Theorem 2.8.3 and Theorem 3.6.6. Let
ΨA be defined by

∂

∂s
(

1

1 + q−s−1
L(N,D)(2s+ 1)L(f,A, s)) |s=0=

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f ·ΨA.

The Fourier coefficients of ΨA and gA satisfy

Ψ∗A(πdeg λ+2
∞ , λ) =

q − 1

4
q−degD/2 g∗A(πdeg λ+2

∞ , λ)

for all λ ∈ Fq [T ] with gcd(λ,N) = 1. Hence we have

Theorem 4.1.2 Let degD be even. Let x be a Heegner point on X0(N) with
complex multiplication by OL = Fq[T ][

√
D], let A ∈ Cl(OL), and let gA be the

automorphic cusp form of Drinfeld type of level N , which is given by

(TλgA)∗(π2
∞, 1) = 〈(x) − (∞), Tλ((x)

σA − (0))〉

for all λ ∈ Fq [T ]. Let f be a newform of level N , then

∂

∂s
(

1

1 + q−s−1
L(N,D)(2s+1)L(f,A, s)) |s=0=

q − 1

4
q−degD/2

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f ·gA.

4.2 Application to Elliptic Curves

We want to apply our main results to elliptic curves. Therefore we assume in
addition that the newform f is an eigenform for all Hecke operators. So far we
haven’t required this condition in our calculations.
Let χ be a character of the class group Cl(OL). If degD is odd, we define

L(f, χ, s) :=
∑

A∈Cl(OL)

χ(A) L(N,D)(2s+ 1)L(f,A, s).

Then Theorem 4.1.1 yields immediately

∂

∂s
L(f, χ, s) |s=0=

q − 1

2
q−(degD+1)/2

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f ·
∑

A
χ(A)gA.

(4.2.1)

Note that
∑
A χ(A)gA is an automorphic cusp form which satisfies (cf. the

definition of gA in Proposition 3.1.1)

(T
∑

A
χ(A)gA)∗(π2

∞, 1) =
∑

A
χ(A)〈(x) − (∞), T ((x)σA − (0))〉 (4.2.2)
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for each Hecke operator T . Exactly the same calculations as in [Gr-Za], p. 308
show that (4.2.2) can be computed as

(T
∑

A
χ(A)gA)∗(π2

∞, 1) = h−1
L 〈cχ, T cχ〉,

where cχ =
∑
A χ
−1(A)((x) − (∞))σA is an element in the Jacobian

J0(N)(H) ⊗ C. Here we used the fact that (0) − (∞) is an element of finite
order in J0(N) (cf. [Ge2, Satz 4.1]).
Let {fi} be a basis of the space of automorphic cusp forms of Drinfeld type
of level N which consists of normalized newforms together with a basis of the

space of oldforms. We assume that f1 = f . And let cχ =
∑
i c

(i)
χ be the

decomposition of cχ in fi-isotypical components (i.e. components, where the
Hecke operators act by multiplication of the corresponding Hecke eigenvalues).
Then again as in [Gr-Za], p. 308 we get

∑

A
χ(A)gA = h−1

L

∑

i,j

〈c(i)χ , c(j)χ 〉fj . (4.2.3)

Since f is a newform, we have 〈c(i)χ , c
(1)
χ 〉 = 0 for i 6= 1. Then equations (4.2.1)

and (4.2.3) yield:
Corollary of Theorem 4.1.1 If degD is odd, then

∂

∂s
L(f, χ, s) |s=0 =

q − 1

2
q−(degD+1)/2 ·

·h−1
L 〈c(1)χ , c(1)χ 〉

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f · f.

If degD is even we define

L(f, χ, s) :=
∑

A∈Cl(OL)

χ(A)
1

1 + q−s−1
L(N,D)(2s+ 1)L(f,A, s),

and we get analogously:
Corollary of Theorem 4.1.2 If degD is even, then

∂

∂s
L(f, χ, s) |s=0 =

q − 1

4
q−degD/2 ·

h−1
L 〈c(1)χ , c(1)χ 〉

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f · f.

Now let E be an elliptic curve with conductor N ·∞, which has split multiplica-
tive reduction at ∞, and let f be the corresponding newform as in section 2.1.
We have already seen that the L-series of E over the imaginary quadratic field L
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satisfies (with the notations of this section) L(E, s+1)L(ED, s+1) = L(f, χ0, s),
where χ0 is the trivial character of Cl(OL).
Let π : X0(N)→ E be a uniformization (cf. [Ge-Re], (8)) which maps the point
∞ on X0(N) to the zero on E. The two homomorphisms π∗ : J0(N)→ E and
π∗ : E → J0(N) are related by the formula π∗ ◦ π∗ = deg π. On J0(N) we
consider the elliptic curve E ′ = π∗(E). Then π∗|E′ and π∗ are dual isogenies
of E and E′, in particular we get

π∗ ◦ π∗|E′ = degπ. (4.2.4)

For a Heegner point x on X0(N) let PL :=
∑
A∈Cl(OL) π(xσA ) be the corre-

sponding Heegner point on E. The component c
(1)
χ0 lies on E′ and we have

π∗|E′(c(1)χ0
) = PL. (4.2.5)

The points PL on E and c
(1)
χ0 on J0(N) are both defined over the field L. Let

ĥE,L be the canonical Néron-Tate height of E over L, analogously we consider

ĥJ0(N),L. If we apply the projection formula and equations (4.2.4) and (4.2.5)
we get

deg π · ĥJ0(N),L(c(1)χ0
) = 〈deg π · c(1)χ0

, c(1)χ0
〉J0(N),L

= 〈π∗ ◦ π∗|E′(c(1)χ0
), c(1)χ0

〉J0(N),L

= 〈π∗|E′(c(1)χ0
), π∗|E′(c(1)χ0

)〉E,L
= ĥE,L(PL). (4.2.6)

Since the height pairing 〈 , 〉 is normalized for the Hilbert class field H (cf.
section 3.1), we have

〈c(1)χ0
, c(1)χ0
〉 = hL · ĥJ0(N),L(c(1)χ0

). (4.2.7)

Now (4.2.6), (4.2.7) and the two corollaries yield in the case of elliptic curves:

Theorem 4.2.1 Let E be an elliptic curve with conductor N · ∞, which has
split multiplicative reduction at ∞, with corresponding newform f as above, let
PL ∈ E(L) be the Heegner point given by the parametrization π : X0(N) →
E. Then the derivative of the L-series of E over L and the canonical height
ĥE,L(PL) are related by the formula

∂

∂s
(L(E, s)L(ED , s)) |s=1= ĥE,L(PL) c(D) (deg π)−1

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f · f,

where the constant

c(D) :=

{ q−1
2 q−(degD+1)/2 if degD is odd,
q−1
4 q−degD/2 if degD is even.
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Finally we mention just one consequence of Theorem 4.2.1. The L-series
L(E, s) · L(ED, s) of E over the field L has a zero at s = 1 according to
the functional equations of section 2.7. In the function field case it is known
([Ta], [Sh]) that the analytic rank of E/L is not smaller than the Mordell-Weil
rank of E(L). Therefore Theorem 4.2.1 implies

Corollary 4.2.2 If

∂

∂s
(L(E, s)L(ED , s)) |s=1 6= 0,

then the Birch and Swinnerton-Dyer conjecture is true for E, i.e. the analytic
rank and the Mordell-Weil rank of E/L are both equal to 1.

Remarks.
1) In [Br] Brown proved the Birch and Swinnerton-Dyer conjecture in the
case that the Heegner point has infinite order. And he conjectured that this
assumption is true if and only if the first derivative of the L-series does not
vanish at the point 1. Theorem 4.2.1 proves his conjecture.
2) Milne ([Mi]) showed that the equality of the analytic rank and the Mordell-
Weil rank implies even the strong Birch and Swinnerton-Dyer conjecture.
Therefore in our case the assumption of Corollary 4.2.2 implies

∂

∂s
L∗(E/L, s) |s=1=

#X · ĥE,L(P0)

(#E(L)tors)2
,

where L∗(E/L, s) is the modified L-series of the elliptic curve E over the field
L (cf. [Ta], [Mi]), P0 is a generator of the free part of the Mordell-Weil group
E(L) and X is the Tate-Shafarevich group of E/L.
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Abstract. This paper demonstrates the existence of a theory of
symmetric spectra for the motivic stable category. The main results
together provide a categorical model for the motivic stable category
which has an internal symmetric monoidal smash product. The de-
tails of the basic construction of the Morel-Voevodsky proper closed
simplicial model structure underlying the motivic stable category are
required to handle the symmetric case, and are displayed in the first
three sections of this paper.

1991 Mathematics Subject Classification: 55P42, 14F42, 55U35

Keywords and Phrases: motivic stable category, symmetric spectra

Introduction

This paper gives a method for importing the stable homotopy theory of sym-
metric spectra [7] into the motivic stable category of Morel and Voevodsky [14],
[16], [17]. This category arises from a closed model structure on a suitably de-
fined category of spectra on a smooth Nisnevich site, and it is fundamental for
Voevodsky’s proof of the Milnor Conjecture [16]. The motivic stable category
acquires an effective theory of smash, or non-abelian tensor products with the
results presented here.

Loosely speaking, the motivic stable category is the result of formally in-
verting the functor X 7→ T ∧ X within motivic homotopy theory, where T is
the quotient of sheaves A1/(A1 − 0). In this context, a spectrum X , or T -
spectrum, consists of pointed simplicial presheaves Xn, n ≥ 0, together with
bonding maps T ∧ Xn → Xn+1. The theory is exotic in at least two ways:
it lives within the motivic model category, which is a localized theory of sim-
plicial presheaves, and the object T is not a circle in any sense, but is rather
motivic equivalent to an honest suspension S1 ∧Gm of the scheme underlying
the multiplicative group. Smashing with T is thus a combination of topological
and geometric suspensions.
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A symmetric spectrum in this category is a T -spectrum Y which is equipp-
ed with symmetric group actions Σn × Y n → Y n in all levels such that all
composite bonding maps T∧p ∧ Xn → Xp+n are (Σp × Σn)-equivariant. The
main theorems of this paper assert that this category of symmetric spectra
carries a notion of stable equivalence within the motivic model category which
is part of a proper closed simplicial model structure (Theorem 4.15), and such
that the forgetful functor to T -spectra induces an equivalence of the stable
homotopy category for symmetric spectra with the motivic stable category
(Theorem 4.31). This collection of results gives a category which models the
motivic stable category, and also has a symmetric monoidal smash product.

The relation between spectra and symmetric spectra in motivic homotopy
theory is an exact analogue of that found in ordinary homotopy theory. In
this way, every T -spectrum is representable by a symmetric object, but some
outstanding examples of T -spectra are intrinsically symmetric. These include
the T -spectrum HZ which represents motivic cohomology [18].

The principal results of this paper are simple enough to state, but a bit com-
plicated to demonstrate in that their proofs involve some fine detail from the
construction of the motivic stable category. It was initially expected, given the
experience of [13], that the passage from spectra to symmetric spectra would
be essentially axiomatic, along the lines of the original proof of [7]. This re-
mains true in a gross sense, but many of the steps in the proofs of [7] and
[13] involve standard results from stable homotopy theory which cannot be
taken for granted in the motivic context. In particular, the construction of the
motivic stable category is quite special: one proves it by verifying the Bousfield-
Friedlander axioms A4 – A6 [2], but the proofs of these axioms involve Nis-
nevich descent in a non-trivial way, and essentially force the introduction of the
concept of flasque simplical presheaf. The class of flasque simplicial presheaves
contains all globally fibrant objects, but is also closed under filtered colimit
(unlike fibrant objects — the assertion to the contrary is a common error)
and the “T -loop” functor. It is a key technical point that these constructions
also preserve many pointwise weak equivalences, such as those arising from
Nisnevich descent.

We must also use a suitable notion of compact object, so that the corre-
sponding loop functors commute with filtered colimits. The class of compact
simplicial presheaves is closed under finite smash product and homotopy cofi-
bre, and includes all finite simplicial sets and smooth schemes over a decent
base. As a result, the Morel-Voevodsky object belongs to a broader class of
compact objects T for which the corresponding categories of T -spectra on the
smooth Nisnevich site have closed model structures associated to an adequate
notion of stable equivalence. These ideas are the subject of the first two sec-
tions of this paper and culminate in Theorem 2.9, which asserts the existence
of the model structure.

Theorem 2.9 is proved without reference to stable homotopy groups. This is
achieved in part by using an auxilliary closed model structure for T -spectra,
for which the cofibrations (respectively weak equivalences) are maps which
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are cofibrations (respectively motivic weak equivalences) in each level. The
fibrant objects for the theory are called injective objects, and one can show
(Lemma 2.11) that the functor defined by naive homotopy classes of maps
taking values in objects W which are both injective and stably fibrant for the
theory detects stable equivalences. This idea was lifted from [7], and appears
again for symmetric spectra in Section 4.

It is crucial for the development of the stable homotopy theory of symmetric
spectra as presented here (eg. Proposition 4.13, proof of Theorem 4.15) to know
that fibre sequences and cofibre sequences of ordinary spectra coincide up to
motivic stable equivalence — this is the first major result of Section 3 (Lemma
3.9, Corollary 3.10). The method of proof involves long exact sequences in
weighted stable homotopy groups. These groups were introduced in [16], but
the present construction is predicated on knowing that a spectrum X is a piece
of an asymmetric bispectrum object for which one smashes with the simplicial
circle S1 in one direction and with the scheme Gm in the other.

The section closes with a proof of the assertion (Theorem 3.11, Corollary
3.16) that the functors X 7→ X ∧ T and Y 7→ ΩTY are inverse to each other
on the motivic stable category. This proof uses Voevodsky’s observation that
twisting the 3-fold smash product T 3 = T∧3 by a cyclic permutation of order
3 is the identity in the motivic homotopy category — this is Lemma 3.13.
This result is also required for showing that the stable homotopy category of
symmetric spectra is equivalent to the motivic stable category.

Section 4 contains the main results: the model structure for stable equiv-
alences of symmetric spectra is Theorem 4.15, and the equivalence of stable
categories is Theorem 4.31. With all of the material in the previous sections in
place, and subject to being careful about the technical difficulties underlying
the stability functor for the category of spectra, the derivation of the proper
closed simplicial model structure for symmetric spectra follows the method
developed in [7] and [13]. The demonstration of the equivalence of stable cat-
egories is also by analogy with the methods of those papers, but one has to
be a bit more careful again, so that it is necessary to discuss T -bispectra in a
limited way.

It would appear that the compactness of T and the triviality of the action
of the cyclic permutation on T 3 are minimum requirements for setting up the
full machinery of spectra and symmetric spectra, along with the equivalence
of stable categories within motivic homotopy theory, at least according to the
proofs given here (see also [6]). These features are certainly present for the
original categories of presheaves of spectra and symmetric spectra in motivic
homotopy theory. This is the case T = S1 for the results of Section 2, and the
corresponding thread of results (Theorem 2.9, Remark 3.22) for the motivic sta-
ble categories of S1-spectra and symmetric S1-spectra concludes in Section 4.5
with an equivalence of motivic stable homotopy categories statement in Theo-
rem 4.40. There is also a rather generic result about the interaction between
cofibrations and the smash product in the category of symmetric spectrum ob-
jects which obtains in all of the cases at hand — see Proposition 4.41. The
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motivic stable homotopy theory of S1-spectra has found recent application in
[19].

This paper concludes with two appendices. Appendix A shows that formally
inverting a rational point f : ∗ → I of a simplicial presheaf I on an arbitrary
small Grothendieck site gives a closed model structure which is proper (The-
orem A.5). This result specializes to a proof that the motivic closed model
structure is proper, but does not depend on the object I being an interval in
any sense — compare [14, Theorem 2.3.2].

The purpose of Appendix B is to show that the category of presheaves on
the smooth Nisnevich site (Sm|S)Nis inherits a proper closed simplicial model
structure from the corresponding category of simplicial presheaves, such that
the presheaf category is a model for motivic homotopy theory. The main result
is Theorem B.4. The corresponding sheaf theoretic result appears as Theorem
B.6, and this is the foundation of the Morel-Voevodsky category of spaces model
for motivic homotopy theory. I have included this on the grounds that it so
far appears explicitly nowhere else, though the alert reader can cobble a proof
together from the ideas in [14]. The only particular claim to originality of the
results presented in Appendix B is the observation that the Morel-Voevodsky
techniques also make sense on the presheaf level.

This paper has gone through a rather long debugging phase that began with
its appearance under the original title “A1-local symmetric spectra” on the
K-theory preprint server in September, 1998. I would like to thank a group
of referees for their remarks and suggestions. One such remark was that the
proof of Lemma 3.14 in the original version was incorrect, and should involve
Voevodsky’s Lemma 3.13. The corrected form of this result now appears as
Theorem 3.11. Another suggestion was to enlarge the class of base schemes
from fields to Noetherian schemes S of finite dimension, and this has been
done here — the only technical consequence was the necessity to strengthen
Lemma 3.13 to a statement that holds over the integers.

There has been a rather substantial shift in language with the present version
of the paper. In particular, the use of the term “motivic homotopy theory”
has become standard recently, and is incorporated here in place of either the
old homotopy theoretic convention “f -local theory” [4] for the localized theory
associated to a rational point f : ∗ → A1, or the “A1-homotopy theory” of
[14]. Motivic homotopy theory is the fundamental object of discussion; at the
risk of confusing readers who like to start in the middle, “weak equivalence”
means “motivic weak equivalence” and similarly fibrations and cofibrations are
in the motivic closed model structure, unless explicit mention is made to the
contrary.

This work owes an enormous debt to that of Fabien Morel, Jeff Smith and
Vladimir Voevodsky, and to conversations with all three; I would like to take
this opportunity to thank them. Several of the main results of the first two
sections of this paper were announced in some form in [16], while the unsta-
ble Nisnevich descent technique that is so important here was brought to my

Documenta Mathematica 5 (2000) 445–552



Motivic Symmetric Spectra 449

attention by Morel, and appears in [14].
The conversations that I refer to took place at a particularly stimulating

meeting on the homotopy theory of algebraic varieties at the Mathematical
Sciences Research Institute in Berkeley in May, 1998. The idea for this project
was essentially conceived there, while Appendix A was mostly written a few
weeks prior during a visit to Université Paris VII. I thank both institutions for
their hospitality and support.
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1 Preliminaries

1.1 Motivic homotopy theory

One starts with a rational point f : ∗ → A1 of the affine line A1 in the category
of smooth schemes (Sm|S)Nis of finite type over a scheme S of finite dimension,
equipped with the Nisnevich topology. The empty scheme ∅ is a member of
this category.

The localization theory arising from “formally inverting” the map f in the
standard, or local homotopy theory of simplicial presheaves on (Sm|S)Nis is
the motivic homotopy theory for the scheme S — it has been formerly called
both the f -local theory [4] and the A1-homotopy theory [14].

The standard homotopy theory of simplicial presheaves arises from a proper
closed model structure that exists quite generally [9], [12] for simplicial pre-
sheaves on arbitrary small Grothendieck sites. In cases, like the Nisnevich site,
where stalks are available, a local weak equivalence (or stalkwise weak equiv-
alence) is a map of simplicial presheaves which induces a weak equivalence
of simplicial sets in all stalks. A cofibration is a monomorphism of simplicial
presheaves, and a global fibration is a map which has the right lifting property
with respect to all maps which are cofibrations and local weak equivalences. A
proper closed simplicial model structure for simplicial sheaves on an arbitrary
Grothendieck site arises from similar definitions (cofibrations are monomor-
phisms, local weak equivalences are defined stalkwise, and global fibrations are
defined by a lifting property), and the resulting homotopy category for sim-
plicial sheaves is equivalent to the homotopy category associated to the closed
model structure on simplicial presheaves. In particular, the associated sheaf
map η : X → X̃ from a simplicial presheaf to its associated simplicial sheaf is a
local weak equivalence, since it induces an isomorphism on stalks. In the local
theory, a globally fibrant model of a simplicial presheaf or sheaf X is a local
weak equivalence X →W such that W is globally fibrant.

One says that a simplicial presheaf X on the Nisnevich site is motivic fibrant
if it is globally fibrant for the Nisnevich topology, and has the right lifting
property with respect to all simplicial presheaf inclusions

(f, j) : (A1 ×A) ∪A B → A1 ×B
arising from f : ∗ → A1 and all cofibrations j : A → B. A simplicial presheaf
map g : X → Y is said to be a motivic weak equivalence if it induces a weak
equivalence of simplicial sets

g∗ : hom(Y, Z)→ hom(X,Z)

in function complexes for every motivic fibrant object Z. A cofibration is a
monomorphism of simplicial presheaves, just as in the local theory. A map
p : Z →W is a motivic fibration if it has the right lifting property with respect
to all maps which are simultaneously motivic weak equivalences and cofibra-
tions. The homotopy theory arising from the following theorem is effectively
the motivic homotopy theory of Morel and Voevodsky:
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Theorem 1.1. The category SPre(Sm|S)Nis of simplicial presheaves on the
smooth Nisnevich site of the scheme S, together with the classes of cofibrations,
motivic weak equivalences and motivic fibrations, satisfies the axioms for a
proper, closed simplicial model category.

The simplicial structure is the usual one for simplicial presheaves: the func-
tion complex hom(X,Y ) for simplicial presheaves X and Y has n-simplices
consisting of all simplicial presheaf maps X ×∆n → Y . Most of Theorem 1.1
is derived in [4], meaning that all except the properness assertion is proved
there. Morel and Voevodsky demonstrate properness in [14] — an alternative
proof appears in Appendix A (Theorem A.5) of this paper. Recall that a closed
model category is said to be proper if the class of weak equivalences is closed
under pullback along fibrations and pushout along cofibrations.

Recall [4] a map g : X → Y of simplicial presheaves is a pointwise weak
equivalence if each map g : X(U) → Y (U), U smooth over S, in sections is
a weak equivalence of simplicial sets. Similarly, g is said to be a pointwise
fibration if all maps g : X(U)→ Y (U) are Kan fibrations.

The standard equivalence of the local homotopy theories for simplicial pre-
sheaves and simplicial sheaves is inherited by all localized theories, and induces
an equivalence of the homotopy category arising from Theorem 1.1 with the
homotopy category for a corresponding closed model structure for simplicial
sheaves. This holds quite generally [4, Theorem 1.2], but in the case at hand,
more explicit definitions and proofs are quite easy to see: say that a map
p : X → Y of simplicial sheaves on (Sm|S)Nis is a motivic fibration if it is
a global fibration of simplicial sheaves and has the right lifting property with
respect to all simplicial sheaf inclusions (f, j) : (A1×A)∪AB → A1×B. Then
a map is a motivic fibration of simplicial sheaves if and only if it is a motivic
fibration in the simplicial presheaf category.

In particular (see the discussion preceding Lemma 1.6) a simplicial sheaf
or presheaf Z is motivic fibrant if and only if it is globally fibrant and the
projection U × A1 → U induces a weak equivalence of simplicial sets Z(U) '
Z(U×A1) for all smooth S-schemes U . Thus, if Y is a motivic fibrant simplicial
presheaf and the simplicial sheaf GỸ is a globally fibrant model of its associated
simplicial sheaf Ỹ , then the map Y → GỸ is a pointwise weak equivalence,
so that GỸ is motivic fibrant. The two following statements are therefore
equivalent for a simplicial sheaf map g : X → Y :

1) the map g induces a weak equivalence g∗ : hom(Y, Z)→ hom(X,Z) for
all motivic fibrant simplicial sheaves Z,

2) the map g is a motivic weak equivalence in the simplicial presheaf cate-
gory.

Say that a map g which satisfies either of these properties is a motivic weak
equivalence of simplicial sheaves. A cofibration of simplicial sheaves is a level-
wise monomorphism, or a cofibration in the simplicial presheaf category.
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Theorem 1.2. 1) The category S Shv(Sm|S)Nis of simplicial sheaves on
the smooth Nisnevich site of the scheme S, together with the classes of
cofibrations, motivic weak equivalences and motivic fibrations, satisfies
the axioms for a proper, closed simplicial model category.

2) The forgetful functor and the associated sheaf functor together determine
an adjoint equivalence of motivic homotopy categories

Ho(SPre(Sm|S)Nis) ' Ho(S Shv(Sm|S)Nis).

The first part of Theorem 1.2 is proved in [14], and is the basis for their dis-
cussion of motivic homotopy theory. The second part says that the simplicial
presheaf category gives a second model for motivic homotopy theory. Other
models arising from ordinary (not simplicial) sheaves and presheaves are dis-
cussed in Appendix B.

Proof of Theorem 1.2. The equivalence of the homotopy categories is trivial,
once the first statement is proved. For the closed model structure of part 1),
there is really just a factorization axiom to prove. Any map f : X → Y of
simplicial sheaves has a factorization

X
j //

f   @
@@

@@
@@

Z

p

��
Y

in the simplicial presheaf category, where j is a motivic weak equivalence and
a cofibration and p is a motivic fibration. Then the composite map

X
i−→ Z

η−→ Z̃

is a motivic weak equivalence and a cofibration of simplicial sheaves, where η
is the associated sheaf map. Form the diagram

Z
η //

p
��?

??
??

??
? Z̃

i // W

π
~~~~

~~
~~

~~

Y

where i is a trivial cofibration and π is a global fibration of simplicial sheaves.
This same diagram is a local weak equivalence of cofibrant and globally fibrant
objects over Y , and so the map Z →W is a homotopy equivalence and therefore
a pointwise weak equivalence. Finally (see Lemma 1.5), a motivic fibration of
simplicial presheaves can be characterized as a global fibration X → Y such
that the induced map

X(U × A1)→ X(U)×Y (U) Y (U × A1)

is a weak equivalence of simplicial sets for all smooth S-schemes U . It follows
that π is a motivic fibration of simplicial sheaves.
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1.2 Controlled fibrant models

This section is technical, and should perhaps be read in conjunction with some
motivation, such as one finds in the proofs of Proposition 2.15 and Corollary
2.16. This material is used to produce generating sets of trivial cofibrations
in a variety of contexts. In particular, essential use is made of these ideas for
symmetric spectrum objects in the proofs of Theorem 4.2 and Proposition 4.4.

The proofs in [4] and Appendix A hold for arbitrary choices of rational point
∗ → I of any simplicial presheaf on any small Grothendieck site C. At that level
of generality, and in the language of [4], suppose α is an infinite cardinal which
is an upper bound for the cardinality of the set Mor(C) of morphisms of C. Pick
a rational point f : ∗ → I , and suppose that I is α-bounded in the sense that all
sets of simplices of all sections I(U) have cardinality bounded above by α. This
map f is a cofibration, and we are entitled to a corresponding f -localization
homotopy theory for the category SPre(C), according to the results of [4].

In particular, one says that a simplicial presheaf Z is f -local if Z is globally
fibrant, and the map Z → ∗ has the right lifting property with respect to all
inclusions

(∗ × LU∆n) ∪(∗×Y ) (I × Y ) ⊂ I × LU∆n (1.1)

arising from all subobjects Y ⊂ LU∆n. It follows that Z → ∗ has the right
lifting property with respect to all inclusions

(∗ ×B) ∪(∗×A) (I ×A) ⊂ I ×B

arising from cofibrations A→ B. The map

f∗ : hom(I × Y, Z)→ hom(∗ × Y, Z)

is therefore a weak equivalence for all simplicial presheaves Y if Z is f -local,
and so all induced maps

hom(I × LU∆n, Z)→ hom((I × Y ) ∪(∗×Y ) (∗ × LU∆n), Z)

are trivial fibrations of simplicial sets.
A simplicial presheaf map g : X → Y is an f -equivalence if the induced map

g∗ : hom(Y, Z)→ hom(X,Z)

is a weak equivalence of simplicial sets for all f -local objects Z. The original
map f : ∗ → I is an f -equivalence, and the maps

f × 1Y : ∗ × Y → I × Y

and the inclusions

(∗ ×B) ∪(∗×A) (I ×A) ⊂ I ×B
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are f -equivalences. A map p : X → Y is an f -fibration if it has the right
lifting property with respect to all cofibrations of simplicial presheaves which
are f -equivalences.

It is a consequence of Theorem 4.6 of [4] that the category SPre(C) with the
cofibrations, f -equivalences and f -fibrations, together satisfy the axioms for a
closed simplicial model category. This result specializes to the closed model
structure of Theorem 1.1 in the case of simplicial presheaves on the smooth
Nisnevich site of S. Note as well that, very generally, the f -local objects
coincide with the f -fibrant objects.

Pick cardinals λ and κ such that

λ = 2κ > κ > 2α.

As part of the proof of [4, Theorem 4.6], it is shown that there is a functor X 7→
LX defined on simplicial presheaves X together with a natural transformation
ηX : X → LX which is an f -fibrant model for X , such that the following
properties hold:

L1: L preserves local weak equivalences.

L2: L preserves cofibrations.

L3: Let β be any cardinal with β ≥ α. Let {Xj} be the filtered system of
sub-objects of X which are β-bounded. Then the map

lim−→L(Xj)→ LX
is an isomorphism.

L4: Let γ be an ordinal number of cardinality strictly greater than 2α. Let
X : γ → S be a diagram of cofibrations so that for all limit ordinals s < γ
the induced map

lim−→ t<sX(t)→ X(s)

is an isomorphism. Then lim−→ t<γL(X(t)) ∼= L(lim−→ t<γX(t)).

L5: If X is λ-bounded, then LX is λ-bounded.

L6: Let Y, Z be two subobjects of X . Then

L(Y ) ∩ L(Z) = L(Y ∩ Z)

in LX .

L7: The functor L is continuous; that is, it extends to a natural morphism of
simplicial sets

L : hom(X,Y )→ hom(LX,LY )

compatible with composition.
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In fact, the map ηX : X → LX is a cofibration and an f -weak equivalence,
which is constructed by a transfinite small object argument. The size of the
construction, or rather the ordinal number that defines LX as a filtered colimit,
is the cardinal κ (see [4, p.42]).

The demonstration of the statement L7 further involves the construction of
a functorial pairing

φ : LX × L→ L(X ×K)

for simplicial presheaves X and simplicial sets L, and which satisfies a short
list of compatibility conditions. This pairing induces a natural pointed map

φ : LX ∧K → L(X ∧K)

for pointed simplicial presheaves X and pointed simplicial sets K such that the
following properties hold:

L8: the map

φ : (LX) ∧∆0
+ → L(X ∧∆0

+)

is the canonical isomorphism,

L9: the triangle

X ∧K
ηX∧K//

ηX∧K %%LLLLLLLLLL
(LX) ∧K

φ

��
L(X ∧K)

commutes, and

L10: the diagram

(LX) ∧K ∧ L φ //

φ∧L
��

L(X ∧K ∧ L)

(L(X ∧K)) ∧ L
φ

66lllllllllllll

commutes.

These statements are analogues of the standard properties for the unpointed
pairing, and are consequences of same. In fact, nothing in the argument pre-
vents L and K from being arbitrary simplicial presheaves, and we shall work
with the more general pairing.

Specializing this construction to the case of pointed simplicial presheaves
on (Sm|S)Nis gives controlled fibrant model construction ηX : X → LX for
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a simplicial presheaf X . The construction is controlled in the sense that the
cardinality of LX has a specific bound if the cardinality of the original object
X is well behaved, by L5. Also, the functor X 7→ LX is compatible with
smash product pairings in the sense that every pointed simplicial presheaf map
σ : X ∧ T → Y induces a commutative diagram

X ∧ T σ //

ηX∧1T

��

ηX∧T

&&MMMMMMMMMM Y

ηY

��
LX ∧ T

φ
// L(X ∧ T ) Lσ

// LY

(1.2)

1.3 Nisnevich descent

We shall need an unstable variant of the Nisnevich descent theorem [15]. The
version of this result given in [11, p.296] says if a presheaf of spectra F on the
Nisnevich site satisfies the cd-excision property, then any stably fibrant model
j : F → GF for the Nisnevich topology is a stable equivalence in all sections.

A simplicial presheaf Z is said to have the cd-excision property (aka. B.G.
property in [14]) if any elementary Cartesian square

U ×X V //

��

V

p

��
U

i
// X

(1.3)

of smooth schemes over k with p étale, i an open immersion and p−1(X−U) ∼=
X − U induces a homotopy Cartesian diagram of simplicial sets

Z(X) //

��

Z(U)

��
Z(V ) // Z(U ×X V )

The cd-excision property for presheaves of spectra is the stable analog of this
requirement.

The unstable Nisnevich descent theorem is the following:

Theorem 1.3. A simplicial presheaf Z on the site (Sm|S)Nis has the cd-
excision property if and only if any globally fibrant model j : Z → GZ for
Z induces weak equivalences of simplicial sets Z(U)→ GZ(U) in all sections.

This is the simplicial presheaf analogue of a result for simplicial sheaves [14,
3.1.16].

Proof. Morel and Voevodsky point out that any globally fibrant simplicial sheaf
has the cd-excision property [14, 3.1.15] and they show [14, 3.1.18] that if a map
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f : X → Y is a local weak equivalence of simplicial presheaves and both have
the cd-excision property, then f consists of weak equivalences f : X(U)→ Y (U)
in all sections.

Any simplicial sheaf which is globally fibrant within the simplicial sheaf
category is also globally fibrant as a simplicial presheaf. It follows that the
canonical map η : Z → Z̃ taking values in the associated sheaf Z̃ gives rise to
a diagram

Z
η //

jZ

��

Z̃

iZ̃
��

GZ η∗
// GZ̃

where all maps are local weak equivalences and GZ̃ is globally fibrant in the
simplicial sheaf category. In particular, η∗ is a local weak equivalence of
globally fibrant simplicial presheaves, and hence consists weak equivalences
GZ(U) → GZ̃(U) in all sections, since weakly equivalent globally fibrant
models are homotopy equivalent. It follows in particular that any globally
fibrant simplicial presheaf has the cd-excision property. Thus, if Z has the
cd-excision property, any globally fibrant model consists of weak equivalences
Z(U) → GZ(U) in sections, by the Morel-Voevodsky result, and the converse
is obvious.

All of the hard work in the proof of Theorem 1.3 was done by Morel and
Voevodsky. The original stable form of the Nisnevich descent theorem for the
smooth site (Sm|S)Nis is a corollary:

Corollary 1.4. Suppose that Z is a presheaf of spectra on the smooth Nis-
nevich site (Sm|S)Nis. Then a stably fibrant model j : Z → GZ consists of
stable equivalences Z(U)→ GZ(U) in all sections if and only if the presheaf of
spectra Z satisfies the (stable) cd-excision property.

Proof. The presheaf of spectra Z satisfies the stable cd-excision property if and
only if any elementary Cartesian diagram (1.3) induces a homotopy Cartesian
diagram

Z(X) //

��

Z(U)

��
Z(V ) // Z(U ×X V )

of spectra with respect to stable equivalence. It follows that a presheaf of
spectra Z has the stable cd-excision property if and only if each of the simplicial
presheaves QEx∞ Zn has the cd-excision property. The maps QEx∞ Z →
GZ are level weak equivalences of presheaves of Ω-spectra and all simplicial
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presheavesGZn are globally fibrant. It follows that Z has the stable cd-excision
property if and only if all of the maps in sections QEx∞ Zn(U) → GZn(U)
are weak equivalences of pointed simplicial sets, and this holds if and only if
all maps Z(U)→ GZ(U) are stable equivalences of spectra.

The cd-excision property is preserved by taking filtered colimits. Thus, if

Z1 → Z2 → Z3 → · · ·
is an inductive system of maps between simplicial presheaves which are globally
fibrant for the Nisnevich topology, then any choice of globally fibrant model

j : lim−→Zi → G(lim−→Zi)

for the Nisnevich topology is a pointwise weak equivalence.

Let’s return briefly to a gross level of generality. Suppose that X and Y are
simplicial presheaves on a site C. For U ∈ C, write C ↓ U for the category
whose objects are morphism V → U and whose morphisms are commutative
triangles. There is a standard functor QU : C ↓ U → C which is defined by
taking the morphism

V1
α //

  @
@@

@@
@@

V2

~~~~
~~

~~
~

U

to the morphism α : V1 → V2 of C. WriteX |U for the composite of the simplicial
presheaf X with the functor QU . Any map φ : V → U of C defines a functor
φ∗ : C ↓ V → C ↓ U on objects V1 → V by composition with φ, and obviously
QU · φ∗ = QV .

The internal hom complex Hom(X,Y ) is a simplicial presheaf on C which is
defined by

Hom(X,Y )(U) = hom(X |U , Y |U ).

Evaluation in U -sections defines natural maps

evU : hom(X |U , Y |U )×X(U)→ Y (U)

which together give a natural evaluation map

ev : Hom(X,Y )×X → Y.

This evaluation map defines a natural bijection

hom(Z ×X,Y ) ∼= hom(Z,Hom(X,Y )),

or exponential law, for simplicial presheaves X , Y and Z on an arbitrary
Grothendieck site C.

The main homotopical fact about internal hom complexes is the following
expanded version of Quillen’s axiom SM7:
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Lemma 1.5. Suppose that i : A → B is a cofibration and that p : X → Y is a
global fibration of simplicial presheaves. Then the induced map

(i∗, p∗) : Hom(B,X)→ Hom(A,X)×Hom(A,Y ) Hom(B, Y )

is a global fibration, which is trivial if either i or p is a local weak equivalence.

Proof. By adjointness, the claim follows from the assertion that the cofibration
i : A→ B and another cofibration j : C → D together determine a cofibration

(A×D) ∪(A×C) (B × C) ↪→ B ×D

which is a local weak equivalence if either i or j is a local weak equivalence.
This is checked stalkwise, or with a Boolean localization argument [12].

Recall that a motivic fibrant simplicial presheaf Z on (Sm|S)Nis is an object
which is globally fibrant for the Nisnevich topology and has the right lifting
property with respect to all simplicial presheaf inclusions

(A1 ×A) ∪A B
(f,j)−−−→ A1 ×B

arising from f : ∗ → A1 and all cofibrations j : A→ B. The lifting property is
equivalent to the assertion that the induced global fibration

f∗ : Hom(A1, Z)→ Hom(∗, Z) ∼= Z

is a trivial global fibration. It follows that a simplicial presheaf Z is motivic
fibrant if and only if Z is globally fibrant and all projections U×A1 → U induce
weak equivalences of simplicial sets Z(U) → Z(U × A1). This observation is
essentially well known, and was proved by Morel and Voevodsky in [14].

We can now prove the following:

Lemma 1.6. Suppose given an inductive system

Z1 → Z2 → Z2 → · · ·

of motivic fibrant simplicial presheaves on (Sm|S), and let

j : lim−→Zi → G(lim−→Zi)

be a choice of globally fibrant model for the Nisnevich topology. Then the sim-
plicial presheaf G(lim−→Zi) is motivic fibrant.

Proof. The map j is a pointwise weak equivalence by Nisnevich descent, and
the the simplicial presheaf maps

pr∗ : Zi(U)→ Zi(U × A1)

induce a weak equivalence on the filtered colimit, and so G(lim−→Zi) is motivic
fibrant.
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We shall make constant use of the following variant of Lemma 1.6:

Corollary 1.7. Suppose that X1 → X2 → . . . is an inductive system of
motivic fibrant simplicial presheaves on (Sm|S)Nis. Then any motivic fibrant
model

j : lim−→Xi → Z

is a pointwise weak equivalence.

1.4 Flasque simplicial presheaves

Say that a simplicial presheaf X on (Sm|S)Nis is flasque if X is a presheaf of
Kan complexes and every finite collection Ui ↪→ U , i = 1, . . . , n of subschemes
of a scheme U induces a Kan fibration

X(U) ∼= hom(U,X)
i∗−→ hom(∪ni=1Ui, X).

Here, the union is taken in the presheaf category, so that the simplicial set

hom(∪ni=1Ui, X)

is an iterated fibre product of the simplicial sets X(Ui).
Every globally fibrant simplicial presheaf is flasque, and the class of flasque

simplicial presheaves is closed under filtered colimits. Note that the condition
forX to be flasque says that the mapX(U)→ X(V ) associated to the singleton
set consisting of a subscheme V ↪→ U is a Kan fibration.

Lifting problems

Λnk //

��

hom(U,X)

i∗

��
∆n //

88

hom(∪ni=1Ui, X)

and their solutions are equivalent to diagrams of simplicial presheaf maps

(∪ni=1Ui ×∆n) ∪(∪ni=1Ui×Λn
k
) U × Λnk //

��

X

U ×∆n

55

One says more generally that a map p : X → Y of simplicial presheaves is
flasque if it is a pointwise fibration and has the right lifting property with
respect to all maps

(∪ni=1Ui ×∆n) ∪(∪n
i=1

Ui×Λn
k
) U × Λnk ↪→ U ×∆n (1.4)
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arising from all finite collections Ui, i = 1, . . . , n of subschemes of schemes U .
Equivalently, the map p is flasque if and only if the simplicial set map

hom(U,X)
(i∗,p∗)−−−−→ hom(∪ni=1Ui, X)×hom(∪n

i=1
Ui,Y ) hom(U, Y )

is a Kan fibration.
Note in particular that a simplicial presheafX is flasque if and only if the map

X → ∗ is flasque. The class of flasque maps is clearly stable under pullback.
One also has the following:

Lemma 1.8. Suppose that p : X → Y is a flasque map of simplicial presheaves,
and suppose that j : A ↪→ B is an inclusion of schemes. Then the induced map

Hom(B,X)
(j∗,p∗)−−−−→ Hom(A,X)×Hom(A,Y ) Hom(B, Y )

is flasque.

Proof. The map in U -sections induced by (j∗, p∗) is isomorphic to the map

X(B × U)→ X(A× U)×Y (A×U) Y (B × U)

which is induced by restriction along the subscheme A × U of B × U . This
map is a Kan fibration since p is flasque, so that (j∗, p∗) is a pointwise Kan
fibration.

Any lifting problem for the cofibration (1.4) and the map (j∗, p∗) is equivalent
to the extension problem for the map p : X → Y corresponding to the collection
of subschemes consisting of Ui×B, i = 1, . . . , n, as well as U×A of the scheme
U ×B.

Corollary 1.9. Suppose that X is a flasque simplicial presheaf and that B
is a scheme. Then Hom(B,X) is flasque.

Proof. If X is flasque, then Hom(∅, X) is the constant simplicial presheaf on
the Kan complex X(∅), and is therefore flasque. The inclusion ∅ ⊂ B induces
a flasque map Hom(B,X)→ Hom(∅, X), by Lemma 1.8, so that Hom(B,X)
is flasque.

Corollary 1.10. Suppose that X is a pointed flasque simplicial presheaf and
that j : A ↪→ B is an inclusion of schemes. Then Hom∗(B/A,X) is flasque.

Proof. Hom∗(B/A,X) is the fibre of the flasque map j∗ : Hom(B,X) →
Hom(A,X).

Lemma 1.11. Suppose that the simplicial presheaf X is flasque, and that j :
K ↪→ L is an inclusion of simplicial sets. Then the simplicial presheaf map

j∗ : hom(L,X)→ hom(K,X)

is flasque.

Documenta Mathematica 5 (2000) 445–552



462 J. F. Jardine

Proof. Write XL = hom(L,X). We must solve the lifting problem

Λnk //

��

hom(U,XL)

(i∗,j∗)

��
∆n //

44

hom(∪iUi, XL)×hom(∪iUi,XK) hom(U,XK)

An adjointness argument says that this problem is isomorphic to the lifting
problem

Λnk //

��

hom(U,X)L

(i∗,j∗)

��
∆n //

44

hom(∪iUi, X)L ×hom(∪iUi,X)K hom(U,X)K

But i∗ is a fibration, so the lifting problem is solved by SM7 for simplicial
sets.

Lemma 1.12. Suppose that g : A → B is a map of schemes, and that X is a
pointed flasque simplicial presheaf. Let Mg denote the mapping cylinder for g
in the simplicial presheaf category, and let Cg = Mg/A be the homotopy cofibre.
Then the standard cofibration j : A ↪→ Mg associated to g induces a flasque
map

j∗ : Hom(Mg , X)→ Hom(A,X).

The simplicial presheaves Hom(Mg, X) and Hom∗(Cg , X) are flasque.

Proof. The second claim follows from the first. The mapping cylinder Mg is
defined by a pushout diagram

A t A
gt1A //

(d0,d1)

��

B tA
d∗
��

A×∆1 // Mg

and the map j is the composite

A
inR−−→ B t A d∗−→Mg.

The map d = (d0, d1) induces a flasque map

Hom(A×∆1, X)
d∗−→ Hom(A× ∂∆1, X),
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by Lemma 1.11 since Hom(A,X) is flasque by Corollary 1.9. Flasque maps
are closed under pullback, so the map

d∗ : Hom(Mg, X)→ Hom(B t A,X)

is flasque. The inclusion inR : A→ B t A induces the projection map

Hom(B,X)×Hom(A,X)→ Hom(A,X)

which is flasque since the simplicial presheaf Hom(B,X) is flasque. Flasque
maps are closed under composition, so we’re done.

Example 1.13. Suppose that T is the quotient A1/(A1−0), and suppose that
X is a flasque simplicial presheaf. Then the object Hom∗(T,X) is the fibre of
the flasque map

Hom(A1, X)
i∗−→ Hom(A1 − 0, X),

which is induced by the inclusion i : A1 − 0 ⊂ A1, so that Hom∗(T,X) is
flasque by Corollary 1.10.

There is an isomorphism

Hom(U,X)(V ) ∼= X(U × V ),

which is natural for all objects U and V of the underlying site. It follows that
there is a fibre sequence

Hom∗(T,X)(U)→ X(A1 × U)→ X((A1 − 0)× U)

if X is flasque, so that the functor Hom∗(T, ) preserves pointwise weak equiv-
alences of flasque simplicial presheaves. It follows as well that the functor
Hom∗(T, ) preserves filtered colimits of simplicial presheaves.

Example 1.14. Suppose that K is a finite pointed simplicial set, identified
with a constant simplicial presheaf. Then there is an isomorphism

Hom∗(K,X) ∼= hom∗(K,X),

and the functor hom∗(K, ) is flasque by Lemma 1.11. The functor hom∗(K, )
preserves pointwise weak equivalences of pointed simplicial presheaves consist-
ing of Kan complexes, so that it preserves pointwise weak equivalences of flasque
simplicial presheaves. The functor hom(K, ) commutes with all filtered col-
imits since K is finite.

2 Motivic stable categories

In this section, we work exclusively with spectrum objects defined by T on
the smooth Nisnevich site (Sm|S)Nis, where T is a pointed simplicial presheaf
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which is compact in the sense described below; examples of such T include
the quotient A1/(A1 − 0) and all constant simplicial presheaves associated to
pointed finite simplicial sets. The object of the section is to develop a stable
homotopy theory of spectrum objects defined by T , or T -spectra, in the motivic
context. The motivic stable category of Morel and Voevodsky arises as a special
case, as does a motivic stable homotopy theory for ordinary S1-spectra.

Warning: We shall work almost entirely within the motivic closed model struc-
ture henceforth. In particular, all fibrations will be motivic fibrations and all
weak equivalences will be motivic weak equivalences, unless explicit mention is
made to the contrary.

Formally, if T is a pointed simplicial presheaf, then a T -spectrum X consists
of pointed simplicial presheaves Xn, n ≥ 0, and pointed maps σ : T ∧ Xn →
Xn+1. The maps σ are called bonding maps; it is a fact of life (see Section 3.4)
that it matters whether one writes T ∧Xn or Xn∧T in the description of these
maps — I shall always display them by smashing with T on the left.

There is an obvious category SptT (Sm|S)Nis of T -spectra. If T is the Morel-
Voevodsky object A1/(A1− 0) then the corresponding category of T -spectra is
the basis for the motivic stable category.

2.1 The level structures

For arbitrary pointed simplicial presheaves T , there are two preliminary closed
model structures on T -spectra which are analogous to the level fibration and
level cofibration structures for ordinary presheaves of spectra (aka. S1-spectra
in this language), but where the level equivalences are motivic weak equiva-
lences.

Say that a map f : X → Y of T -spectra is a

1) level cofibration if all component maps f : Xn → Y n are cofibrations of
simplicial presheaves,

2) level fibration if all component maps f : Xn → Y n are fibrations (ie.
motivic fibrations),

3) level equivalence if all component maps f : Xn → Y n are motivic weak
equivalences

A cofibration is a map which has the left lifting property with respect to all maps
which are level fibrations and level weak equivalences. An injective fibration is
a map which has the right lifting property with respect to all maps which are
level cofibrations and level equivalences.

Lemma 2.1. 1) The category SptT ((Sm|S)Nis) of T -spectra, together with
the classes of cofibrations, level equivalences and level fibrations, satisfies
the axioms for a proper closed simplicial model category.
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2) The category SptT ((Sm|S)Nis), together with the classes of level cofibra-
tions, level equivalences and injective fibrations, satisfies the axioms for
a proper closed simplicial model category.

Proof. For the first part (following [2]), suppose that a map i : A→ B satisfies

a) i0 : A0 → B0 is a cofibration of simplicial presheaves, and

b) each map i∗ : T ∧ Bn ∪T∧An An+1 → Bn+1 is a cofibration.

Then i is a cofibration. Further, if i0 and all maps i∗ as above are cofibrations
and equivalences, then i is a level equivalence as well as a cofibration. These two
observations are the basis of proof for the factorization axiom CM5. Further,
it’s a consequence of the factorization axiom that every cofibration satisfies the
two properties above. The axiom CM4 follows, and the rest of the axioms are
trivial.

For the second statement, suppose that α is an infinite cardinal which is
an upper bound for the cardinality of the set of morphisms Mor((Sm|S)Nis).
As in [4], choose a cardinal κ > 2α and set λ = 2κ. The axioms sE1 – sE7
of [4] and their consequences apply to categories of T -spectra. We verify the
bounded cofibration axiom sE7; the remaining axioms are easily verified, giving
statement 2) according to the methods of [4].

Recall that the classes of cofibrations and equivalences of simplicial pre-
sheaves on (Sm|S)Nis together satisfy the bounded cofibration condition for
the cardinal λ in the sense that, given a diagram

X

i

��
A

j
// Y

(2.1)

such that the cofibration i is an equivalence and the subobject A of Y is λ-
bounded, there is a λ-bounded suboject B of Y with A ⊂ B, with B ∩X ↪→ B
an equivalence.

Suppose now that the objects and maps of diagram (2.1) are in the category
of T -spectra, where i is a level equivalence and a level cofibration and A is
λ-bounded. There is a simplicial presheaf B0 with A0 ⊂ B0 ⊂ Y 0 such that
B0 is λ-bounded and the cofibration B0 ∩X0 ↪→ B0 is an equivalence. Write
j′ for the inclusion B0 ↪→ Y 0 and use the diagram

T ∧ A0 //

σ

��

T ∧B0

σ·(T∧j′)
��

A1
j

// Y 1
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to show that there is a λ-bounded subobject A
1 ⊂ Y 1 such that the map

A1 ∪T∧A0 T ∧ B0 → Y 1

factors through A
1
. There is a λ-bounded subobject B1 ⊂ Y 1 with A

1 ⊂ B1

such that the cofibrationB1∩X1 ↪→ B1 is an equivalence. This is the beginning
of an inductive construction which produces a λ-bounded subobject B of the
T -spectrum Y with A ⊂ B such that the level cofibration B∩X ↪→ B is a level
equivalence.

Insofar as the factorization axiom CM5 in part (2) of Lemma 2.1 is covertly
proved by using a small object argument, there is a natural injective model
construction: there is a natural map of T -spectra iX : X → IX , such that iX is
a level cofibration and a level equivalence, and IX is injective. More generally,
any level equivalence X → Y with Y injective is said to be an injective model
for X .

There is a natural level fibrant model jX : X → JX , meaning that jX
is a cofibration and a level equivalence and JX is level fibrant. This can be
constructed directly from the small object arguments, or by using the controlled
fibrant object construction X 7→ LX of [4] (see also Section 1.2). Note as well
that every injective object is level fibrant.

2.2 Compact objects

Say that a simplicial presheaf X on (Sm|S)Nis is motivic flasque if

1) X is flasque, and

2) every map X(U) → X(A1 × U) induced by the projection A1 × U → U
is a weak equivalence of simplicial sets.

Every motivic fibrant simplicial presheaf on (Sm|S)Nis is motivic flasque, and
the class of motivic flasque simplicial presheaves is closed under filtered colimits.

A pointed simplicial presheaf T on the smooth Nisnevich site is said to be
compact if the following conditions hold:

C1: All inductive systems Y1 → Y2 → . . . of pointed simplicial presheaves
induce isomorphisms

Hom∗(T, lim−→Yi) ∼= lim−→Hom∗(T, Yi).

C2: If X is motivic flasque, then so is Hom∗(T,X).

C3: The functor Hom∗(T, ) takes pointwise weak equivalences of motivic
flasque simplicial presheaves to pointwise weak equivalences.
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The following result generates examples of compact simplicial presheaves:

Lemma 2.2. 1) If A ↪→ B is an inclusion of schemes, then the quotient
B/A is compact.

2) All finite pointed simplicial sets K are compact.

3) All pointed schemes U in the underlying site (Sm|S)Nis are compact.

4) If T1 and T2 are compact, then T1 ∨ T2 and T1 ∧ T2 and are compact.

5) If g : T1 → T2 is a map of compact simplicial presheaves, then the pointed
mapping cylinder Mg and the homotopy cofibre Cg are compact.

Proof. If X is motivic flasque, then Hom∗(B/A,X) is flasque by Corollary
1.10. We also know that there is an isomorphism

Hom(B,X)(V ) ∼= X(B × V )

and a pointwise fibre sequence

Hom∗(B/A,X)→ Hom(B,X)→ Hom(A,X) (2.2)

All maps

Hom(B,X)(V )→ Hom(B,X)(V × A1)

induced by projection are weak equivalences of simplicial sets. It follows that
Hom∗(B/A,X) is motivic flasque. The functor X 7→ Hom∗(B/A,X) pre-
serves filtered colimits of simplicial presheaves. The fibre sequences (2.2) im-
ply that the functor Hom∗(B/A, ) preserves pointwise weak equivalences of
motivic flasque simplicial presheaves, giving 1).

Statement 2) is proved by first observing that there is a natural isomorphism

Hom∗(K,X) ∼= hom∗(K,X).

The functor X 7→ hom∗(K,X) preserves filtered colimits since K is a finite
simplicial set. The statement C3 is trivial, and C2 follows from Lemma 1.11,
and the functor X 7→ hom∗(K,X) preserves pointwise weak equivalences of
pointed presheaves of Kan complexes.

Statement 3) is a consequence of statement 1), and the smash product part
of statement 4) is an adjointness argument.

Suppose that X is motivic flasque. The diagram

T1 ∨ T1
//

��

T1 ∨ T2

��
T1 ∧∆1

+
// Mg
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that defines the pointed mapping cylinder Mg induces a pullback diagram

Hom∗(Mg , X) //

��

Hom∗(T1 ∧∆1
+, X)

��
Hom∗(T1 ∨ T2, X) // Hom∗(T1 ∨ T1, X)

(2.3)

and the map

Hom∗(T1 ∧∆1
+, X)→ Hom∗(T1 ∨ T1, X)

is flasque, by the pointed version of Lemma 1.11. Hom∗(Mg, X) is therefore
flasque. The composite

Hom∗(Mg, X)→ Hom∗(T1 ∨ T2, X)→ Hom(T2, X)

is also flasque, and so the pointwise homotopy fibre Hom∗(Cg , X) is flasque.
The objects other than Hom∗(Mg, X) in the pointwise fibre square (2.3) take
the projections U × A1 → U to weak equivalences. Properness for simpli-
cial sets therefore implies that the simplicial presheaves Hom∗(Mg , X) and
Hom∗(Cg , X) are motivic flasque. Similarly, the functors Hom∗(Mg , ) and
Hom∗(Cg , ) preserve pointwise weak equivalences of motivic flasque objects.
Both functors preserve filtered colimits, since they are built in finitely many
steps from functors that do the same. We have proved statement 5).

Remark 2.3. One can show that statement 1) of Lemma 2.2 follows from state-
ment 5), but the presented proof is easier. Statement 1) implies that the
Morel-Voevodsky object T = A1/(A1 − 0) is compact.

2.3 The stable closed model structure

Suppose that T is a compact pointed simplicial presheaf on the smooth Nis-
nevich site (Sm|S)Nis.

The T -loops functor ΩTY is defined for pointed simplicial presheaves Y in
terms of internal hom by

ΩTY = Hom∗(T, Y ).

The T -loops functor is right adjoint to smashing with T , and so the bonding
maps σ : T ∧ Xn → Xn+1 of a presheaf of T -spectra X can equally well be
specified by their adjoints σ∗ : Xn → ΩTX

n+1, up to a twist: σ∗ is the adjoint
of the composite

Xn ∧ T t−→∼= T ∧Xn σ−→ Xn+1,

where t is the isomorphism which flips smash factors.
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The T -loops functor ΩTX is defined on T -spectra X by setting (ΩTX)n =
ΩT (Xn), and by specifying that the bonding map σ : T ∧ ΩTX

n → ΩTX
n+1

should be adjoint to the composite

T ∧ ΩTX
n ∧ T T∧ev−−−→ T ∧Xn σ−→ Xn+1.

The T -loops functor X 7→ ΩTX is right adjoint to the functor Y 7→ Y ∧T which
is defined by smashing with T on the right. More generally, there is a function
complex functor X 7→ Hom∗(A,X) for all T -spectra X and pointed simplicial
presheaves A, and this functor is right adjoint to the functor X 7→ X ∧ A
defined by smashing on the right with A in the obvious way.

Just as in ordinary stable homotopy theory (see [11, Chapter 1]), there is a
fake T -loops spectrum Ω`TX , with

(Ω`TX)n = ΩT (Xn),

and with bonding maps adjoint to the morphisms

ΩT (σ∗) : ΩT (Xn)→ Ω2
T (Xn+1).

The fake T -loop suspension functor is right adjoint to the fake suspension
functor Y 7→ Σ`TY , where Σ`TY

n = T ∧Y n and the bonding maps T ∧Σ`TY
n →

Σ`TY
n+1 are defined to be the morphisms T ∧ σ : T 2 ∧ Y n → T ∧ Y n+1.

Generally, the superscript ` for “left”: the functor X 7→ Ω`TX is the right
adjoint of Y 7→ Σ`TY , which is defined by smashing with T on the left.

Remark 2.4. The fake T -loop spectrum Ω`TX is not isomorphic to the T -loop
spectrum ΩTX , since the adjoint σ∗ : ΩTX

n → Ω2
TX

n+1 of the bonding map
σ : T ∧ΩTX

n → ΩTX
n+1 differs from the map ΩTσ∗ by a twist of loop factors.

This phenomenon is the source of much of the technical fun in stable homotopy
theory, and the present discussion is no exception — see the proof of Theorem
3.11.

The maps σ∗ determine a natural morphism of T -spectra

σ∗ : X → Ω`TX [1],

where the shifted T -spectrumX [1] is defined byX [1] = Xn+1. The T -spectrum
QTX is defined to be the inductive colimit of the system

X
σ∗−→ Ω`TX [1]

Ω`Tσ∗[1]−−−−−→ (Ω`T )2X [2]
(Ω`T )2σ∗[2]−−−−−−−→ · · ·

Write ηX : X → QTX for the associated canonical map. We shall be particu-
larly interested in the composite map

X
jX−→ JX

ηJX−−→ QTJX,

which will be denoted by η̃X . The functor QT is sometimes called the stabi-
lization functor, for the object T .
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A map g : X → Y of T -spectra is said to be a stable equivalence if it induces
a level equivalence

QTJ(g) : QTJX → QTJY.

Observe that g is a stable equivalence if and only if it induces a level equivalence

IQTJ(g) : IQTJX → IQTJY.

More usefully, perhaps, it is a consequence of Corollary 1.7 that g is a stable
equivalence if and only if the induced map QTJ(g) is a pointwise equivalence
of motivic flasque simplicial presheaves in all levels.

A stable fibration is a map which has the right lifting property with respect
to all maps which are cofibrations and stable equivalences. A T -spectrum X is
said to be stably fibrant if the map T → ∗ is a stable fibration.

We shall prove the following statements:

A4 Every level equivalence is a stable equivalence

A5 The maps

η̃QTJX , QTJ(η̃X ) : QTJX → (QTJ)2X

are stable equivalences.

A6 Stable equivalences are closed under pullback along stable fibrations, and
stable equivalences are closed under pushout along cofibrations.

Lemma 2.5. The statements A4 and A5 hold for T -spectra.

Proof. If g : X → Y is a level equivalence between T -spectra such that X and
Y are level fibrant, then g is a pointwise weak equivalence of motivic flasque
objects in all levels, and so all ΩnT g and QT g are level pointwise equivalences
by C2 and C3. This proves A4.

The map QTJ(jX ) : QTJX → QTJ
2X is a level equivalence by A4. There

is a commutative diagram

QTJ
2X

QTJ(ηJX )// QTJQTJX

QTJX
QT (ηJX )

//

QT (jJX )

OO

QTQTJX

QT (jQT JX )

OO

The vertical map QT (jJX) is a level equivalence because jJX is a pointwise
weak equivalence of motivic flasque simplicial presheaves in each level, and
QT preserves such by C2 and C3. All maps QT (ηZ) are isomorphisms by C1
and a cofinality argument. The map jQTJX is a pointwise weak equivalence
of motivic flasque simplicial presheaves in each level by Corollary 1.7, and so
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the map QT (jQTJX ) has the same property by C2 and C3. It follows that
QTJ(ηJX ) and QTJ(η̃X ) are level equivalences.

There is a commutative diagram

JQTJX
n σ∗ // ΩT JQTJXn+1

QTJX
n

σ∗

//

jQT JX '

OO

ΩTQTJX
n+1

ΩT (jQT JX )

OO

The map jQT JX is a level pointwise equivalence by Corollary 1.7, the lower map
σ∗ is an isomorphism by a cofinality argument and C1, and the map ΩT (jQTJX )
is a pointwise weak equivalence of motivic flasque simplicial presheaves by C2
and C3. It follows that all maps σ∗ : JQTJX

n → ΩTJQTJX
n+1 are pointwise

weak equivalences, and so the map

ηJQTJX : JQTJX → QTJQTJX

is a level equivalence. In particular, the composite

QTJX
jQT JX−−−−→ JQTJX

ηJQT JX−−−−−→ QTJQTJX

is a level equivalence.

Lemma 2.6. The class of stable equivalences is closed under pullback along
level fibrations.

Proof. Suppose given a pullback diagram

A×Y X
g∗ //

��

X

p

��
A g

// Y

in which g is a stable equivalence and p is a level fibration. We want to show
that g∗ is a stable equivalence.

By properness of the level structure and A4, we can assume that all ob-
jects are level fibrant. Every level equivalence C → D of level fibrant objects
consists of pointwise weak equivalences Cn → Dn of motivic flasque simplicial
presheaves, so QT takes each level equivalence of level fibrant objects to a map
of T -spectra which consists of pointwise weak equivalences in all levels. All
induced maps QTA

n → QTY
n are pointwise weak equivalences. The maps

p∗ : QTX
n → QTY

n are filtered colimits of pointwise Kan fibrations, and are
therefore pointwise Kan fibrations. Finally, QT preserves pullbacks and the
ordinary simplicial set category is proper, so the maps

QT (g∗) : QT (A×Y X)n → QTX
n

are pointwise weak equivalences of simplicial presheaves.
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Every stable fibration is a level fibration, because every level equivalence is
a stable equivalence. Lemma 2.6 therefore implies the first statement of A6.

The statements A4 and A5 together imply a Bousfield-Friedlander recogni-
tion principle for stable fibrations (see Lemma A.9 of [2]):

Lemma 2.7. A map p : X → Y is a stable fibration if p is a level fibration and
the diagram

X
η̃X //

p

��

QTJX

p∗

��
Y

η̃Y
// QTJY

is level homotopy Cartesian.

In particular, a T -spectrum X is stably fibrant if X is level fibrant and the
maps σ∗ : Xn → ΩTX

n+1 are equivalences (or pointwise weak equivalences).
We shall need the converse assertion:

Lemma 2.8. Suppose that X is stably fibrant. Then X is level fibrant, and all
maps σ∗ : Xn → ΩTX

n+1 are pointwise weak equivalences.

Proof. The composite

X
jX−→ JX

ηIX−−→ QTJX
iQT JX−−−−→ IQTJX

is a stable equivalence by Lemma 2.5, and the object IQTJX is stably fibrant
since all maps

σ∗ : IQTJX
n → ΩT IQTJX

n+1

are pointwise weak equivalences. Write µX : X → IQTJX for this composite.
Factorize µX as

X
µX //

α
��?

??
??

??
?

IQTJX

Z

π

;;wwwwwwwww

where π is a level fibration and a level equivalence, and α is a cofibration. Then
π is a stable fibration since it has the right lifting property with respect to all
cofibrations. It follows that Z is stably fibrant and all maps σ∗ : Zn → ΩTZ

n+1

are pointwise weak equivalences. Also, the map α : X → Z is a cofibration
and a stable equivalence. The object X is therefore a retract of Z, and so the
maps σ∗ : Xn → ΩTX

n+1 are pointwise weak equivalences.
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Theorem 2.9. Suppose that T is a compact object on the smooth Nisnevich
site (Sm|S)Nis. Then the category of T -spectra on that site, together with the
classes of cofibrations, stable equivalences and stable fibrations, satisfies the
axioms for a proper closed simplicial model category.

The homotopy category Ho(SptT (Sm|S)Nis) associated to the stable model
structure of Theorem 2.9 is the motivic stable category of T -spectra on the
smooth Nisnevich site. In the particular case where T = A1/(A1 − 0), the
category Ho(SptT (Sm|S)Nis) is the motivic stable category of Morel and Vo-
evodsky — it is often denoted by SH(S).

Proof. The axioms CM1 – CM3 are trivial to verify. We also know (Lemma
A.8 of [2], but this is also a direct consequence of Lemma 2.7) that a map p is a
stable fibration and a stable equivalence if and only if it is a level fibration and a
level equivalence. The existence of the cofibration-trivial fibration factorization
of CM5 follows, as does CM4.

It is a consequence of Lemma 2.7 and Lemma 2.8 that a level fibration
between stably fibrant objects must be a stable fibration.

To prove the remaining part of CM5, suppose given a map g : X → Y of
T -spectra. Form the diagram

X
µX //

α∗

%%K
KKKKKKKKK

g

��

IQTJX

α

##G
GGGGGGGG

g∗

��

Y ×IQTJY Z

p∗
yysssssssssss

µ∗ // Z

p
{{xxxxxxxxx

Y µY
// IQTJY

where p is a level fibration and α is a cofibration and a level equivalence. Then
Z is level fibrant, and the maps α : IQTJX

n → Zn are pointwise equivalences
of motivic flasque simplicial presheaves, so Z is stably fibrant. Thus, p is a
stable fibration.

The map µ∗ is a stable equivalence by Lemma 2.6, so that α∗ is a stable
equivalence. Factorize α∗ as

X
α′

//

α∗ %%KKKKKKKKKK W

π

��
Y ×IQTJY Z

where α′ is a cofibration and π is a level fibration and a level equivalence. Then
α′ is also a stable equivalence, and π is a stable fibration, so f = (p∗π) · α′ is a
factorization of f as a stable fibration following a cofibration which is a stable
equivalence, giving CM5.
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Part of the properness assertion was proved in Lemma 2.6. For the cofibration
statement, form a pushout diagram

A
g //

j

��

C

��
B g∗

// B ∪A C

where j is a cofibration and g is a stable equivalence. We must show that g∗ is a
stable equivalence. By properness of the level structure and by taking a suitable
factorization in the level structure, we can assume that g is a cofibration. But
then it’s a standard fact about closed model categories that trivial cofibrations
are closed under pushout.

We must finally verify Quillen’s axiom SM7. Suppose that i : K → L is a
cofibration of pointed simplicial sets and that α : A → B is a cofibration of
T -spectra. We must show that the cofibration

(A ∧ L) ∪(A∧K) (B ∧K)→ B ∧ L
is a stable equivalence if either j is a stable equivalence or i is a weak equivalence
of simplicial sets. The case where i is a weak equivalence is a consequence of
the corresponding result for the level structure. The remaining case is verified
by showing that the cofibration α ∧ L : A ∧ L→ B ∧ L is a stable equivalence
if α is a stable equivalence.

From Lemma 2.8, one sees that if W is both stably fibrant and injective, then
so is hom∗(L,W ). Also one can identify the set [X,W ] of stable homotopy
classes of maps with π0hom(X,W ) in the sense that the natural map

π0hom(X,W )→ [X,W ]

is a bijection. In effect, there is a trivial level fibration π : X ′ → X with X ′

cofibrant which induces an isomorphism

π0hom(X,W ) ∼= π0hom(X ′,W )

since W is injective and all T -spectra are cofibrant in the injective model struc-
ture (see Remark 2.10 following this proof), while π0hom(X ′,W ) ∼= [X ′,W ] ∼=
[X,W ] since X ′ is cofibrant and W is stably fibrant. There is an isomorphism

hom(X,hom∗(L,W )) ∼= hom(X ∧ L,W ),

and so there is a natural bijection

[X,hom∗(L,W )] ∼= [X ∧ L,W ]

of morphisms in the stable homotopy category. From Lemma 2.11 below, one
sees that a map g : X → Y is a stable equivalence if and only if it induces a
bijection g∗ : [Y,W ] → [X,W ] of morphisms in the homotopy category for all
injective stably fibrant objects W . It follows that α∧L is a stable equivalence
if α is a stable equivalence.
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Remark 2.10. In general, every map f : A→ B between cofibrant objects in a
closed model category has a factorization

A
f //

j ��@
@@

@@
@@

B

C

π

??~~~~~~~

where j is a cofibration and π is left inverse to a trivial cofibration — this is
really just the standard mapping cylinder construction. It follows that, in a
simplicial model category, if W is fibrant and g : A→ B is a weak equivalence
of cofibrant objects, then the induced map

g∗ : hom(B,W )→ hom(A,W )

is a weak equivalence of Kan complexes. This is certainly so if g is a trivial
cofibration, and then one uses the above factorization to see the more general
case.

Lemma 2.11. A map g : X → Y is a stable equivalence if and only if it induces
bijections

g∗ : [Y,W ]
∼=−→ [X,W ]

of morphisms in the stable (equivalently, level) homotopy category for all stably
fibrant injective objects W .

Proof. Every stable equivalence clearly induces a bijection

g∗ : [Y,W ]
∼=−→ [X,W ]

for all stably fibrant injective objects W .
For the converse, assume that all such maps g∗ are bijections. The injective

stably fibrant model X → IQTJX is a stable equivalence, so it suffices to
assume that X and Y are both stably fibrant and injective. But then g must
be a homotopy equivalence: the homotopy inverse of g is a pre-image under g∗

of the class of 1X for the case W = X .

With the proof of Theorem 2.9 now completely in hand, Lemma 2.11 can be
bootstrapped to the following:

Corollary 2.12. A map g : X → Y of T -spectra is a stable equivalence if
and only if it induces a weak equivalence

g∗ : hom(Y,W )→ hom(X,W )

of Kan complexes for all stably fibrant injective objects W .
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Proof. If g : X → Y is a level equivalence, then the induced map

g∗ : hom(Y,W )→ hom(X,W )

is a weak equivalence for all stably fibrant injective objects W , since all objects
in the injective simplicial model structure are cofibrant and we can use Remark
2.10.

Suppose that g : X → Y is a stable equivalence. Then there is a diagram

X̃
g̃ //

πX

��

Ỹ

πY

��
X g

// Y

such that X̃ and Ỹ are cofibrant and the maps πX and πY are trivial level fibra-
tions. Then, for example, πX induces a weak equivalence π∗X : hom(X,W )→
hom(X̃,W ) for all stably fibrant injective objects W by the previous para-
graph. It suffices, therefore, to assume that X and Y are cofibrant, but then
Remark 2.10 can be used in the stable simplicial model structure to show that
g∗ is a weak equivalence of simplicial sets.

For the reverse direction, suppose that g∗ : hom(Y,W ) → hom(X,W ) is a
weak equivalence for all stably fibrant injective W . Then by computing in π0,
the induced map

g∗ : [Y,W ]→ [X,W ]

of morphisms in the homotopy category is a bijection for all stably fibrant
injective W , and Lemma 2.11 can be applied.

2.4 Change of suspension

Any map θ : T1 → T2 of pointed simplicial presheaves on the site (Sm|S)Nis
induces a functor

θ∗ : SptT2
(Sm|S)Nis → SptT1

(Sm|S)Nis,

by precomposing the bonding maps with θ. More precisely, for any T2-spectrum
X , θ∗X is the T1-spectrum with (θ∗X)n = Xn, with bonding maps given by
the composites

T1 ∧Xn θ∧1−−→ T2 ∧Xn σ−→ Xn+1.

There is homotopical content to this construction when T1 and T2 are compact
and θ is an equivalence:
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Proposition 2.13. Suppose that θ : T1 → T2 is a weak equivalence of compact
objects on the site (Sm|S)Nis. Then the functor θ∗ induces an equivalence of
motivic stable homotopy categories

θ∗ : Ho(SptT2
(Sm|S)Nis)→ Ho(SptT1

(Sm|S)Nis).

Proof. Write σθ for the bonding maps of θ∗X . The functor θ∗ clearly preserves
level equivalences, level fibrations and level cofibrations. If X is level fibrant,
there is a diagram

Xn σ //

σθ
$$H

HH
HH

HH
HH

H ΩT2X
n+1

ΩT2σ //

θ∗

��

Ω2
T2
Xn+2

θ∗

��

· · ·

ΩT1X
n+1

ΩT1σ//

ΩT1σθ ''NNNNNNNNNNN
ΩT1ΩT2X

n+2

ΩT1θ
∗

��

· · ·

Ω2
T1
Xn+2 · · ·

All vertical maps are pointwise weak equivalences, so there are induced natural
pointwise weak equivalences θ∗ : QT2X

n → QT1θ
∗Xn for level fibrant objects

X . It follows that g : X → Y is a stable equivalence of T2-spectra if and only
if θ∗g : θ∗X → θ∗Y is a stable equivalence of presheaves of T1-spectra. In
particular, θ∗ induces a functor

θ∗ : Ho(SptT2
(Sm|S)Nis)→ Ho(SptT1

(Sm|S)Nis).

on stable homotopy categories. It also follows, using Lemma 2.7, that θ∗ pre-
serves stable fibrations.

To go further, we must presume that θ is a cofibration as well as an equiv-
alence. This suffices, since the factorization trick of Remark 2.10 involves the
mapping cylinder, and we have Lemma 2.2.

Given this new assumption, one can further show that θ∗ preserves cofibra-
tions: given a cofibration i : A→ B of T2-spectra, there is a pushout diagram

(T1 ∧ Bn) ∪(T1∧An) (T2 ∧ Bn) //

(θ,i)∗

��

(T1 ∧ Bn) ∪(T1∧An) A
n+1

θ∗

��
T2 ∧ Bn // (T2 ∧ Bn) ∪(T2∧An) A

n+1

in which (θ, i)∗ is a cofibration. The canonical map

(T1 ∧ Bn) ∪(T1∧An) A
n+1 → Bn+1

for θ∗i is the composite

(T1 ∧ Bn) ∪(T1∧An) A
n+1 θ∗−→ (T2 ∧ Bn) ∪(T2∧An) A

n+1 → Bn+1,
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so θ∗i is a cofibration of T1-spectra if i is a cofibration of T2-spectra.
Every stably fibrant T1-spectrum X is of the form X = θ∗X for some stably

fibrant T2-spectrum X. To see this, let X
n

= Xn, and choose bonding maps
σ : T2 ∧Xn → Xn+1 making the following diagram commute:

T1 ∧Xn σ //

θ∧1

��

Xn+1

T2 ∧Xn

σ

99sssssssss

One gets away with this because θ ∧ 1 is a trivial cofibration. It follows that
every stably fibrant T1-spectrum X is stably equivalent to a T1-spectrum θ∗Y ,
where Y is a stably fibrant and cofibrant T2-spectrum.

To finish off the proof, the idea is to show that θ : T1 → T2 induces a weak
equivalence of Kan complexes

hom(A,X)
θ∗−→ hom(θ∗A, θ∗X)

for all cofibrant A and stably fibrantX . Computing in π0 implies that θ induces
bijections

θ∗ : [Y,X ]
∼=−→ [θ∗Y, θ∗X ]

for all stably fibrant, cofibrant objectsX and Y . The desired result then follows
from basic category theory.

We show that θ∗ is a weak equivalence of Kan complexes by showing that,
given any solid arrow diagram

∂∆n //

��

hom(A,X)

��
∆n //

88

hom(θ∗A, θ∗X)

a dotted arrow exists such that

1) the upper triangle commutes, and

2) the lower triangle commutes up to homotopy which is constant on ∂∆n.

This homotopy lifting property is implied by the following: given any solid
arrow commutative diagrams

A
α //

j

��

X

B

g

>> θ∗A
θ∗α //

θ∗j

��

θ∗X

θ∗B

f

;;xxxxxxxx
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with A is cofibrant, j is a cofibration and X is stably fibrant, then the dotted
arrow g exists making the diagram of T2-spectra commute, and there is a
homotopy θ∗g ' f which is constant at θ∗α on θ∗A.

This last property is proved by a homotopy extension argument which de-
pends on the assumption that θ is a trivial cofibration. The method is to
inductively find the dotted arrows h and g making the following diagrams si-
multaneously commute

Bn+1

d1

��

f

&&MMMMMMMMMM

Bn+1 n ∆1 h // Xn+1

Bn+1

d0

OO

g

88

T1 ∧ Bn n ∆1
T1∧h //

θ∧1

��

T1 ∧Xn

θ∧1

��
T2 ∧ Bn n ∆1

σn∆1

��

T2 ∧Xn

σ

��
Bn+1 n ∆1

h
// Xn+1

An+1 n ∆1
pr //

jn∆1

��

An+1

α

��
Bn+1 n ∆1

h
// Xn+1

T2 ∧ Bn
T2∧g //

σ

��

T2 ∧Xn

σ

��
Bn+1

g
// Xn+1

The inclusion of

(An+1 ∪ (T1 ∧ Bn)) n ∆1 ∪ (An+1 ∪ (T2 ∧ Bn)) n ∂∆1

in (An+1 ∪ (T2 ∧Bn)) n ∆1 is a trivial cofibration since θ is trivial, so that the
composite homotopy

T1 ∧ Bn n ∆1 T1∧h−−−→ T1 ∧Xn θ∧1−−→ T2 ∧Xn σ−→ Xn+1

extends to a homotopy h̃ : T2 ∧ Bn n ∆1 → Xn+1 from f · σ to σ · (T2 ∧ g)
which is constant on An+1. The homotopy h̃ extends to the desired map h in
the usual way, since the map

(An+1 ∪ (T2 ∧ Bn)) n ∆1 ∪ Bn+1 × {0} → Bn+1 n ∆1

is a trivial cofibration.

2.5 Bounded cofibrations

The commutativity of the diagram (1.2) for the controlled fibrant model con-
struction X 7→ LX of Section 1 implies that this construction can be promoted
to the category of T -spectra. More explicitly, there is a natural level fibrant
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model ηX : X → LX defined for T -spectra such that the map ηX is a level cofi-
bration and a level equivalence. The standard properties of the functor L (see
Section 1.1) pass to the spectrum level, and so the functor L is an example of
a functor F : SptT (Sm|S)Nis → SptT (Sm|S)Nis which satisfies the following:

L1: F preserves level weak equivalences.

L2: F preserves level cofibrations.

L3: Let β be any cardinal with β ≥ α. Let {Xj} be the filtered system of
sub-objects of X which are β-bounded. Then the map

lim−→F (Xj)→ FX

is an isomorphism.

L4: Let γ be an ordinal number of cardinality strictly greater than 2α. Let
X : γ → SptT (Sm|S)Nis be a diagram of level cofibrations so that for all
limit ordinals s < γ the induced map

lim−→ t<sX(t)→ X(s)

is an isomorphism. Then lim−→ t<γF (X(t)) ∼= F (lim−→ t<γX(t)).

L5: If X is λ-bounded, then FX is λ-bounded.

L6: Let Y, Z be two subobjects of X . Then

FY ∩ FZ = F (Y ∩ Z)

in FX .

L7: The functor F is continuous; that is, it extends to a natural morphism of
simplicial sets

F : hom(X,Y )→ hom(FX,FY )

compatible with composition.

Recall that the cardinals λ and κ are chosen such that

λ = 2κ > κ > 2α,

where α is an upper bound on the cardinality of the set of morphisms of (the
chosen approximation for) the smooth Nisnevich site.

Remark 2.14. If the spectrumX has extra structure, such as a symmetric struc-
ture, then that structure is preserved by the functor X 7→ LX : the pairings

LXn ∧ L φ−→ L(Xn ∧ L)

satisfy properties L9 and L10 in Section 1.1, and are natural in L and Xn so
that they respect all symmetric group actions.
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Say that a map g : X → Y of T -spectra is an F -equivalence if it induces a
level weak equivalence Fg : FX → FY .

Proposition 2.15. Suppose that the functor

F : SptT (Sm|S)Nis → SptT (Sm|S)Nis

satisfies the conditions L1 – L7. Then the class of cofibrations of T -spectra
which are F -equivalences satisfies the bounded cofibration condition for the car-
dinal λ.

Proof. The class of maps of T -spectra which are level cofibrations and level
equivalences satisfies the bounded cofibration condition for the cardinal λ. To
see this, recall that the category of simplicial presheaves satisfies the bounded
cofibration condition with respect to the cardinal λ, since λ is an upper bound
for the cardinality of the set of morphisms of the underlying site [4, Lemma
2.3]. Then use the argument for the second part of Lemma 2.1.

Suppose that i : X ↪→ Y is a cofibration in the category of T -spectra, and
that j : A ↪→ Y is a subobject of Y . Then the restriction X ∩ A → A is
a cofibration of T -spectra (so that the statement of the Proposition makes
sense). The claim for S1-spectra was proved in Lemma 3.1 of [4]. There is
nothing special about the simplicial circle S1 in that argument, so the same
argument obtains here.

Alternatively, the key is to show that the map

j∗ : (T ∧ An) ∪(T∧(An∩Xn)) (An+1 ∩Xn+1)→ (T ∧ Y n) ∪(T∧Xn) X
n+1

is an inclusion in all presheaves of simplices for all n. But

(T ∧ An) ∪(T∧(An∩Xn)) (An+1 ∩Xn+1)

= ((T − ∗)× (An −Xn)) t (An+1 ∩Xn+1),

at the simplex level, while

(T ∧ Y n) ∪(T∧Xn) X
n+1 = ((T − ∗)× (Y n −Xn)) tXn+1,

and the map between the two is obvious.
Let X → Y be an F -equivalence and a cofibration of T -spectra, and let

A ⊆ Y be a λ-bounded sub-object. Inductively define a chain of λ-bounded
sub-objects A = A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ Y over λ, and a chain of sub-objects

F (A) = F (A0) ⊆ X1 ⊆ F (A1) ⊆ X2 ⊆ F (A2) ⊆ · · ·F (Y ),

also over λ, with the property that the cofibration

F (X) ∩Xs → Xs
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is a level weak equivalence. Set B = lim−→ s<κAs. Then, by L6,

F (X ∩ B) = F (X) ∩ F (B) = lim−→ s<κF (X) ∩Xs

→ lim−→ s<κXs
∼= F (B)

is a level weak equivalence, and so X ∩ B ↪→ B is an F -equivalence.
The As and Xs are defined recursively. Suppose s+ 1 is a successor ordinal

and As has been defined. Then, since As is λ-bounded, F (As) is λ-bounded
by L5. The map F (X) → F (Y ) is a cofibration and a level equivalence, so
there is a λ-bounded sub-object Xs+1 ⊆ F (Y ) so that F (As) ⊆ Xs+1 and
F (X) ∩ Xs+1 → Xs+1 is a level weak equivalence. Since there is a filtered
colimit F (Y ) = lim−→F (Yj) indexed over the λ-bounded subobjects Yj by L3,
there is a λ-bounded subobject A′s+1 of Y so that Xs+1 ⊂ F (A′s+1). Set
As+1 = As ∪ As+1. Finally suppose that s is a limit ordinal, and set

Xs = lim−→ t<sF (At) ∼= lim−→ t<sXt.

Then Xs is λ-bounded and F (X) ∩ Xs → Xs is a level weak equivalence.
Choose A′s ⊂ Y such that A′s is λ-bounded and Xs ⊂ F (A′s). Set As =
lim−→ t<sAt ∪ A′s.
Corollary 2.16. The class of cofibrations which are stable equivalences sat-
isfies the bounded cofibration condition with respect to the cardinal λ.

Proof. The functor X 7→ QTLX is an example of a functor F satisfying the
conditions for Proposition 2.15.

3 Fibre and cofibre sequences

The purpose of this section is to show that the standard calculus of fibre and
cofibre sequences can be promoted to the motivic stable category, with the help
of a suitable theory of stable homotopy groups with weights. The outcomes
include detection of motivic stable equivalences by presheaves of weighted stable
homotopy groups, and a collection of results which together assert that fibre
and cofibre sequences are indistinguishable in the motivic stable category.

The last part of this section is devoted to showing that the various standard
flavors of suspension functors (ie. left, right, and shift) are equivalent. These
results turn out to be special, and depend on knowing Voevodsky’s observation
that the cyclic permutation of order 3 acts trivially on T 3 = T∧3 in the motivic
homotopy category. The Voevodsky result appears here as Lemma 3.13.

3.1 Exact sequences for S1-spectra

Recall that Lemma 2.2 asserts, in part, that finite pointed simplicial sets are
compact. The simplicial circle S1 is finite, so that Theorem 2.9 implies that
there is a proper closed simplicial model structure on the category

Spt(Sm|S)Nis = SptS1(Sm|S)Nis
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for S1-spectra on the smooth Nisnevich site, for which the weak equivalences
are the motivic stable equivalences. Our first job is to show that the traditional
facts about fibre and cofibre sequences of ordinary spectra have analogues in
this setting.

Lemma 3.1. Suppose that a map g : X → Y of S1-spectra is an ordinary local
stable equivalence. Then g is a motivic stable equivalence.

Recall [10], [11] that a map g : X → Y of presheaves of spectra is a local
stable equivalence if it induces an isomorphism on all sheaves of ordinary stable
homotopy groups.

Proof. If an S1-spectrum W is motivic injective and motivic stably fibrant,
it must be injective and stably fibrant for the local theory. It follows that
ordinary stable homotopy classes [X,W ] coincide with naive homotopy classes
π(X,W ) and hence with level homotopy classes [X,W ] in the motivic theory
for all such W and all S1-spectra X . Thus, every stable equivalence g : X → Y
induces a bijection

g∗ : [Y,W ]→ [X,W ]

in level homotopy classes for the motivic theory if W is motivic injective and
motivic stably fibrant. Lemma 2.11 implies that g is a motivic stable equiva-
lence.

Corollary 3.2. Suppose that

F
i−→ X

p−→ Y

is a level motivic fibre sequence of S1-spectra. Then the induced map p∗ :
X/F → Y is a motivic stable equivalence.

Proof. This is a consequence of the corresponding result for ordinary spectra,
and Lemma 3.1.

All weak equivalences, stable equivalences, fibrations and so on will be tacitly
assumed to be motivic henceforth. We shall drop the use of the term “motivic”,
except when it is necessary to include it for clarity.

Lemma 3.3. Suppose given a commutative diagram of S1-spectra

A1
//

f1

��

B1
//

f2

��

C1

f3

��
A2

// B2
// C2

in which the horizontal sequences are level cofibre sequences. Then if any two
of f1, f2 or f3 are stable equivalences, then so is the third.
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Proof. We will show that f1 is a stable equivalence if f2 and f3 are stable
equivalences. The other two cases are similar.

The idea is to show that precomposition with f1 induces a weak equivalence

f∗1 : hom(A2,W )→ hom(A1,W )

of function complexes for any stably fibrant injective object W . The map of
cofibre sequences induces a comparison diagram of fibre sequences

hom(C2,W ) //

f∗
3

��

hom(B2,W ) //

f∗
2

��

hom(A2,W )

f∗
1

��
hom(C1,W ) // hom(B1,W ) // hom(A1,W )

The level equivalences W → ΩW [1] of stably fibrant injective objects give all
spaces in this diagram the structure of infinite loop spaces, and f ∗2 and f∗3 are
the maps at level 0 for stable equivalences of spectra. The map f ∗1 is therefore
the level 0 part of a stable equivalence of stably fibrant spectra, and so f ∗1 is a
weak equivalence of simplicial sets.

We now have the following consequence of Corollary 3.2 and Lemma 3.3:

Corollary 3.4. Suppose given a commutative diagram of S1-spectra

F1
//

f1

��

X1
//

f2

��

Y1

f3

��
F2

// X2
// Y2

in which the horizontal sequences are level fibre sequences. Then if any two of
f1, f2 or f3 are stable equivalences, then so is the third.

Recall that a map g : X → Y is a stable equivalence of S1-spectra if and
only if it induces a pointwise level equivalence g∗ : QJX → QJY . The functor
QJ = QS1J produces presheaves of infinite loop spaces, so that g∗ is a pointwise
level equivalence if and only if it induces pointwise isomorphisms

πnQJX(U) ∼= πnQJY (U)

in all homotopy groups. The group πnQJX(U) can be identified up to isomor-
phism with the filtered colimit of the system

[Sn+r, Xr|U ]→ [Sn+r+1, Xr+1|U ]→ · · · ,

where St denotes the t-fold smash product of the constant simplicial presheaf
associated to the simplicial circle S1, and the morphisms in the motivic homo-
topy category are computed over the scheme U . This filtered colimit may be
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computed without reference to a level fibrant model for X ; we define a presheaf
πnX of stable homotopy groups for X in U -sections to be the filtered colimit of
this system. A map g : X → Y is a motivic stable equivalence if and only if it
induces presheaf isomorphisms πnX ∼= πnY for all n ∈ Z.

Warning: The presheaves of groups πnX are defined by morphisms in the
motivic homotopy category. Despite the notation, they do not coincide with the
stable homotopy group presheaves of X , but rather with the stable homotopy
group presheaves of a motivic stably fibrant model for X .

Any level fibre sequence

F
i−→ X

p−→ Y

can be functorially replaced up to level equivalence by a fibre sequence in
which all objects are level fibrant. Suppose that this has been done — then
the induced maps of S1-spectra

QF
Qi−→ QX

Qp−−→ QY

forms a level fibre sequence of spectra

QF (U)
Qi−→ QX(U)

Qp−−→ QY (U)

in each section, and therefore determines a long exact sequence

· · · p∗−→ πn+1QY (U)
∂−→ πnQF (U)

i∗−→ πnQX(U)
p∗−→ πnQY (U)

∂−→ · · ·

of presheaves of stable homotopy groups. It follows that there is a natural long
exact sequence

· · · p∗−→ πn+1Y
∂−→ πnF

i∗−→ πnX
i∗−→ πnY

∂−→ · · ·

of presheaves of groups associated to a level fibre sequence.
Suppose given a level cofibre sequence

A
i−→ B

π−→ B/A, (3.1)

and replace the map π up to motivic weak equivalence by a level motivic
fibration by taking a factorization

B
π //

j

��

B/A

X

q

=={{{{{{{{

where q is a level motivic fibration and j is a cofibration and a level motivic
equivalence. Let F be the fibre of q. Then the cofibre sequence (3.1) is a fibre
sequence in the standard way in the motivic setting, in the sense that we can
prove
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Lemma 3.5. The cofibration j induces a motivic stable equivalence j∗ : A→ F .

Proof. There is a commutative diagram

A
i //

j

��

B
π //

j

��

B/A

j∗

��
F // X π

// X/F

The map q : X → B/A factors through π : X → X/F in that there is a map
q∗ : X/F → B/A such that q∗ · π = q. The map q∗ is a stable equivalence by
Corollary 3.2. One also checks that q∗j∗π = π so that q∗j∗ = 1 on B/A, and
so j∗ is a stable equivalence. Now use Lemma 3.3 to conclude that the induced
map j : A→ F of S1-spectra is a stable equivalence.

Corollary 3.6. Any cofibre sequence

A
i−→ B

π−→ B/A

induces a natural long exact sequence

· · · π∗−→ πi+1B/A
∂−→ πiA

i∗−→ πiB
π∗−→ πiB/A

∂−→ · · ·

Proof. The sequence is the long exact sequence for the corresponding fibre
sequence arising from the construction of Lemma 3.5.

3.2 Weighted stable homotopy groups

The presheaf T = A1/(A1 − 0) sits in a pushout square of presheaves

A1 − 0
i //

��

A1

��
∗ // T,

and A1 is contractible in the motivic homotopy category. A standard argu-
ment on mapping cones (which uses properness) implies that there are motivic
equivalences

T = A1/(A1 − 0)
'←−Mi/(A1 − 0)

'−→ S1 ∧ (A1 − 0)

involving the mapping cylinder Mi of the inclusion i. All of these objects
are compact, by Lemma 2.2, and Proposition 2.13 implies that the displayed
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equivalences induces equivalences of the stable categories associated to the
various suspensions.

For convenience, write Gm = A1 − 0, pointed by the global section given by
the identity element e (Voevodsky denotes this object by S1

t [16]). This is the
underlying scheme of the multiplicative group, but the group structure is never
used.

Recall that a map g : X → Y of spectra is an stable equivalence if and only if
the induced map g∗ : QTJX → QTJY is a pointwise level equivalence. Recall
further that the object QTY for a level fibrant spectrum Y has object at level
n given by the filtered colimit

Y n
σ∗−→ ΩTY

n+1 ΩTσ∗−−−→ Ω2
TY

n+2 → . . . .

The homotopy group πrQTY
n(U) in U -sections is isomorphic to the filtered

colimit of the diagram

πrY
n(U)

σ∗−→ πrΩTY
n+1(U)

ΩTσ∗−−−→ πrΩ
2
TY

n+2(U)→ . . . ,

which can be identified with a filtered colimit of maps in the motivic homotopy
category over the scheme U of the form

[Sr, Y n|U ]→ [Sr ∧ T, Y n+1|U ]→ [Sr ∧ T 2, Y n+2|U ]→ . . .

Here, T r denotes an r-fold wedge product of copies of the simplicial presheaf T ,
and Sr is the r-fold wedge product of copies of S1. The equivalence T ' S1∧Gm

further implies that this last inductive system can be rewritten as

[Sr, Y n|U ]→ [Sr+1 ∧Gm, Y
n+1|U ]→ [Sr+2 ∧G2

m, Y
n+2|U ]→ . . .

Write πt,sY (U) for the colimit of the sequence

[St+n ∧Gs+n
m , Y n|U ]→ [St+n+1 ∧Gs+n+1

m , Y n+1|U ]→ . . .

The variable t in πt,sY is usually called the degree, while s is called the weight.
The presheaves of groups πt,sY are called the weighted stable homotopy groups
of the T -spectrum Y .

This last definition of the presheaf U 7→ πt,sY (U) makes sense for any T -
spectrum Y , and there is an isomorphism

πrQTJY
n(U) ∼= πr−n,−nY (U).

From a different point of view, if t ≤ s, then there are isomorphisms

lim−→ n[St+n ∧Gs+n
m , Y n|U ] ∼= lim−→ n[S

n ∧Gs−t+n
m , Y [−t]n|U ]

∼= lim−→ n[S
n ∧Gn

m,Ω
s−t
Gm

JY [−t]n|U ],
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where Y [k]n = Y n+k defines the shifted T -spectrum object Y [k] in the standard
way for all k ∈ Z. It follows that there is an isomorphism

πt,sY ∼= π0Ω
s−t
Gm

QT (JY [−t])0

if t ≥ s. Similarly, if s ≥ t, there is an isomorphism

πt,sY ∼= π0Ω
t−sQT (JY [−s])0.

If g : X → Y is an stable equivalence, then g∗ : QT (JX [k])→ QT (JY [k]) is
a pointwise level equivalence for all k ∈ Z, so that all induced maps

g∗ : πt,sX → πt,sY

are isomorphisms of presheaves. Conversely, if g induces isomorphisms in
all bigraded stable homotopy group presheaves, then g induces isomorphisms
πt,sX ∼= πt,sY for s ≤ 0 and t ≥ s. In that case

πt,sY = π(t−s)+s,sY ∼= πt−sQTY
−s,

so that g∗ : QTJX → QTJY is a pointwise level equivalence. We have proved

Lemma 3.7. A map g : X → Y of T -spectra is an stable equivalence if and
only if g induces isomorphisms

πt,sX ∼= πt,sY

of presheaves of groups for all t, s ∈ Z.

Given Proposition 2.13, we can assume that T is identically S1 ∧ Gm, so a
T -spectrum consists of pointed simplicial presheaves Y n and bonding maps

S1 ∧Gm ∧ Y n → Y n+1.

An S1/Gm-bispectrum consists of pointed simplicial presheavesXm,n, m,n ≥ 0,
together with bonding maps σh : S1∧Xm,n → Xm+1,n and σv : Gm∧Xm,n →
Xm,n+1, such that the diagram

S1 ∧Xm,n+1
σh // Xm+1,n+1

S1 ∧Gm ∧Xm,n

S1∧σv

OO

t∧1

∼=

))SSSSSSSSSSSSSS

Gm ∧ S1 ∧Xm,n
Gm∧σh

// Gm ∧Xm+1,n

σv

OO

commutes, where t : S1 ∧ Gm → Gm ∧ S1 is the canonical isomorphism which
flips smash factors. The maps σv and σh are called vertical and horizontal
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bonding maps respectively. Such a gadget may alternatively be viewed as a
collection of S1-spectra

Xn = X∗,n,

together with maps of S1-spectra Xn ∧ Gm → Xn+1 induced by the vertical
bonding maps.

For us, the key example arises from a T -spectrum Y , in that it functorially
determines an array Y ∗,∗

...
...

...

G∧2
m ∧ Y 0 Gm ∧ Y 1 Y 2 · · ·

Gm ∧ Y 0 Y 1 S1 ∧ Y 1 · · ·

Y 0 S1 ∧ Y 0 S2 ∧ Y 0 · · ·

which has the structure of an S1/Gm-bispectrum. In effect, the horizontal
bonding map σh : S1∧Gk

m∧Y n → Gk−1
m ∧Y n+1 is defined to be the composite

S1 ∧Gk−1
m ∧Gm ∧ Y n t∧1−−→ Gk−1

m ∧ S1 ∧Gm ∧ Y n 1∧σ−−→ Gk−1
m ∧ Y n+1,

and the vertical bonding maps arise from the maps of S1-spectra Y ∗,n∧Gm →
Y ∗,n+1 which are canonically determined by the twist isomorphisms

(Gk
m ∧ Y n−k) ∧Gm

t−→ Gm ∧ (Gk
m ∧ Y n−k).

for 0 ≤ k ≤ n.
An S1/Gm-bispectrum X has presheaves of bigraded stable homotopy groups

πt,sX defined in bidegree (t, s) and in U -sections to be the colimit of the system

...
...

[St+k ∧Gs+l+1
m , Xk,l+1|U ]

σh∗ //

OO

[St+k+1 ∧Gs+l+1
m , Xk+1,l+1|U ] //

OO

· · ·

[St+k ∧Gs+l
m , Xk,l|U ] σh∗

//

σv∗

OO

[St+k+1 ∧Gs+l
m , Xk+1,l|U ] //

σv∗

OO

· · ·
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Here (presuming that all Xk,l are fibrant, which is harmless), the map σh∗
takes a representative θ : Sr ∧Gs

m → Xk,l to the composite

S1 ∧ Sr ∧Gs
m

S1∧θ−−−→ S1 ∧Xk,l σh−→ Xk+1,l,

while σv∗ takes θ to the composite

Sr ∧Gm ∧Gs
m

t∧Gsm−−−→ Gm ∧ Sr ∧Gs
m

Gm∧θ−−−−→ Gm ∧Xk,l σv−→ Xk,l+1.

The bispectrum object X determines a sequence of maps of S1-spectra

X0 σv∗−−→ ΩGmX
1 ΩGm (σv∗)−−−−−−→ Ω2

Gm
X2 → · · · ,

where ΩGm is the functor Hom∗(Gm, ). Then the presheaf πt,sX is the filtered
colimit of the presheaves of stable homotopy groups

πtΩ
s+l
Gm

JX l → πtΩ
s+l+1
Gm

JX l+1 → · · ·

once X has been replaced up to levelwise equivalence by a levelwise fibrant
object JX so that the “loop” constructions make sense.

In particular, starting with a T -spectrumX , a cofinality argument shows that
the presheaves of weighted stable homotopy groups πt,sX forX as defined above
coincide up to natural isomorphism with the presheaves πt,sX

∗,∗ of bigraded
stable homotopy groups for the associated bispectrum object X∗,∗.

3.3 Fibre and cofibre sequences

A level fibration p : X → Y of S1/Gm-bispectra is a map which consists of
fibrations p : Xm,n → Y m,n for all m,n ≥ 0. Level equivalences and level
cofibrations have analogous definitions. One can use standard techniques to
show that any map f : X → Y of S1/Gm-bispectra has a factorization

X
f //

j   @
@@

@@
@@

Y

Z

p

??~~~~~~~

where p is a level fibration and j is a level cofibration and a level equivalence.
Suppose that

F
i−→ X

p−→ Y

is a level fibre sequence of S1/Gm-bispectra, and suppose that Y (and hence
X) is level fibrant. Then there are fibre sequences of S1-spectra

Ωs+rGm
F r

i∗−→ Ωs+rGm
Xr p∗−→ Ωs+rGm

Y r
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and hence long exact sequences in stable homotopy group presheaves

· · · p∗−→ πt+1Ω
s+r
Gm

Y r
∂−→ πtΩ

s+r
Gm

F r
i∗−→ πtΩ

s+r
Gm

Xr p∗−→ πtΩ
s+r
Gm

Y r
∂−→ · · ·

Taking a filtered colimit in r gives a long exact sequence

· · · p∗−→ πt+1,sY
∂−→ πt,sF

i∗−→ πt,sX
p∗−→ πt,sY

∂−→ · · · (3.2)

for each s. One can remove the condition that Y is level fibrant by using
factorization tricks from the previous paragraph.

If

A
i−→ B

π−→ B/A

is a level cofibre sequence of S1/Gm-bispectra, then replacing the map π up to
level equivalence by a fibration p as above gives a diagram

A
i //

j∗

��

B
π //

j

��

B/A

1B/A

��
F // X p

// B/A

in which p is a level fibration and j is a level equivalence. It follows from
Lemma 3.5 that the induced maps j∗ : An → Fn are stable equivalences of
S1-spectra. But then the induced maps

πt,sA
j∗−→ πt,sF

are isomorphisms in all bidegrees. This implies that there is a natural long
exact sequence

· · · π∗−→ πt+1,sB/A
∂−→ πt,sA

i∗−→ πt,sB
π∗−→ πt,sB/A

∂−→ · · · (3.3)

associated to a cofibre sequence of S1/Gm-bispectra in each s. As a corollary
of the construction we have

Corollary 3.8. There are natural isomorphisms

πt+1,s(Y ∧ S1) ∼= πt,sY

for all bidegrees (t, s) and S1/Gm-bispectra Y .

Lemma 3.9. Suppose that

F
i−→ X

p−→ Y

is a level fibre sequence of T -spectra. Then the induced map X/F → Y is a
stable equivalence.
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Proof. The idea is to show that the map X/F → Y induces isomorphisms

πt,s(X/F )∗,∗ ∼= πt,sY
∗,∗.

Form the diagram of maps of S1/Gm-bispectra

F ∗,∗
i∗ //

j∗

��

X∗,∗
p∗ //

j

��

Y ∗,∗

1Y ∗,∗

��
F // Z q

// Y ∗,∗

where q is a level fibration, j is a level equivalence, and F is the fibre of the
map q. The map j∗ : F ∗,∗ → F consists in part of equivalences F n → F

n,n
in

bidegree (n, n) for all n ≥ 0, since the sequence

F ∗,∗
i∗−→ X∗,∗

p∗−→ Y ∗,∗

is already an fibre sequence in those bidegrees. A cofinality argument therefore
implies that the map j∗ : F ∗,∗ → F induces isomorphisms

j∗ : πt,sF
∗,∗ ∼=−→ πt,sF

for all t and s.
The map Z/F → Y ∗,∗ of S1/Gm-bispectra induces isomorphisms in all πt,s,

since it consists of maps Zn/F
n → Y ∗,n of S1-spectra which are stable equiv-

alences by Lemma 3.2.
A long exact sequence argument arising from the comparison of cofibre se-

quences

F ∗,∗
i∗ //

j∗

��

X∗,∗
π∗ //

j

��

(X/F )∗,∗

j∗

��
F // Z π

// Z/F

shows that the map j∗ : (X/F )∗,∗ → Z/F induces an isomorphism in all πt,s.
The result follows.

Corollary 3.10. Suppose that

A
i−→ B

π−→ B/A

is a level cofibre sequence of T -spectra, and take a factorization

B
j //

π !!C
CC

CC
CC

C X

p

��
B/A
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of the map π such that j is a level equivalence and p is a level fibration. Let
F be the fibre of the map p. Then the induced map j∗ : A → F is a stable
equivalence.

Proof. The induced map X/F → B/A is a stable equivalence by Lemma 3.9.
The map j∗ : B/A→ X/F is therefore a stable equivalence, so a comparison of
long exact sequences argument shows that j∗ : A → F is a stable equivalence.

3.4 T -suspensions and T -loops

Write jX : X → Xs for a natural choice of stably fibrant model Xs for a T -
spectrum X , where jX is a cofibration and a stable equivalence. The aim of
this section is to prove and discuss the consequences of the following result:

Theorem 3.11. The composition

X
ηX−−→ ΩT (X ∧ T )

ΩjX∧T−−−−→ ΩT (X ∧ T )s

arising from the adjunction map ηX is a stable equivalence for all T -spectra X.

The proof of this result is a bit delicate, and will be accomplished with the
help of a series of lemmas. We begin with something which is quite general:

Lemma 3.12. Suppose that the comparison diagram of inductive systems

X0
//

f0

��

X1
//

f1

��

X2
//

f2

��

· · ·

Y0
// Y1

// Y2
// · · ·

consists of stable equivalences fi : Xi → Yi. Then the induced map

lim−→ fi : lim−→Xi → lim−→Yi

is a stable equivalence.

Proof. The idea of the proof is to show that we can assume that the spectra
Xi and Yi are stably fibrant.

In effect, suppose that there are trivial cofibrations ji : Xi → (Xi)s and
ji : Yi → (Yi)s and maps (fi)∗ : (Xi)s → (Yi)s such that (Xi)s and (Yi)s are
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stably fibrant for i ≤ n, and such that the diagrams

Xi−1
//

ji−1

$$I
IIIIIIII

fi−1

��

Xi

ji

""D
DD

DD
DD

D

fi

��

(Xi−1)s //

(fi−1)∗

��

(Xi)s

(fi)∗

��

Yi−1
//

ji−1 $$I
IIIIIIII

Yi
ji

""D
DDDD

DD
D

(Yi−1)s // (Yi)s

commute. Now form the commutative diagram

Xn
//

jn

""F
FFFF

FFF

fn

��

Xn+1

jn∗

''OOOOOOOOOOO

fn+1

��

(Xn)s //

(fn)∗

��

(Xn)s ∪Xn Xn+1

f∗

��

j // (Xn+1)s

(fn+1)∗

��

Yn //

jn ""F
FFFFFFF

Yn+1

jn∗

''OOOOOOOOOOO

(Yn)s // (Yn)s ∪Yn Yn+1
j

// (Yn+1)s

where both instances of j are trivial cofibrations, and (Xn+1)s and (Yn+1)s are
stably fibrant. The dotted arrow (fn+1)∗ exists by the closed model axioms,
and the instances of the compositions jn+1 = j ·jn∗ are both trivial cofibrations.

In the resulting diagram

lim−→Xn
j∗ //

f∗

��

lim−→(Xn)s

f∗

��
lim−→Yn

j∗
// lim−→(Yn)s

both instances of j∗ are trivial cofibrations by construction, and the map f∗ :
lim−→(Xn)s → lim−→(Yn)s is a filtered colimit of maps which are pointwise weak
equivalences in each level, and therefore shares this property. In particular, f∗
is a stable equivalence.

We’re going to need the following:
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Lemma 3.13. (Voevodsky) The cyclic permutation c1,2 = (3, 2, 1) ∈ Σ3 induces
the identity morphism on T∧3 = T 3 in the pointed motivic homotopy category.

For the record (this comes up later), the element cp,q in the symmetric group
Σp+q is the shuffle which moves the first p elements past the last q elements,
in order. Explicitly

cp,q(i) =

{
q + i if i ≤ p,
i− p if i ≥ p+ 1.

Proof of Lemma 3.13. For the purposes of this proof, we shall notationally con-
fuse T 3 with its associated sheaf, and prove the result on the sheaf level. This
is harmless, since the canonical map η : X → X̃ taking values in the associated
sheaf X̃ is a weak equivalence for any presheaf X .

There is an isomorphism of pointed sheaves

An/(An − 0) ∧ A1/(A1 − 0) ∼= An+1/(An+1 − 0),

since

((An − 0)× A1) ∪ (An × (A1 − 0)) = An+1 − 0

inside An+1. It follows that there is an isomorphism

Tn ∼= An/(An − 0).

There is a pointed algebraic group action

Gln × Tn → Tn

in the sheaf category which is induced by the standard action Gln×An → An.
It follows that any rational point g ∈ Gln(Z) induces a morphism of sheaves

g : Tn → Tn.

In particular, the permutation matrix corresponding to the element c1,2 =
(3, 2, 1) induces the map

c1,2 : T 3 → T 3

in the statement of the lemma.

The element

c1,2 =




0 1 0
0 0 1
1 0 0
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is a product of elementary transformations in Gl3(Z), and so there is an alge-
braic path ω : A1 → Gl3 such that ω(1) = c1,2 and ω(0) = e. It follows that
there is a composite pointed algebraic homotopy

A1 × T 3 1×ω−−−→ Gl3 × T 3 → T 3

from c1,2 : T 3 → T 3 to the identity on T 3 (see also Theorem 1.1 of [8]). The
maps c1,2 and e therefore coincide in the motivic homotopy category.

Observe that a T -spectrum X has a natural filtration

X ∼= lim−→LnX,

where LnX is the spectrum

X0, X1, . . . , Xn, T ∧Xn, T∧2 ∧Xn, . . .

There is a natural pushout diagram

Σ∞T (T ∧Xn)[−(n+ 1)] //

��

LnX

��
Σ∞Xn+1[−(n+ 1)] // Ln+1X

Note further that the canonical map Σ∞T X
n[−n]→ LnX is a stable equivalence.

The filtration {LnX} is called the layer filtration of X .

Lemma 3.14. Suppose that K is a pointed simplicial presheaf. Then the com-
position

Σ∞T K
η−→ ΩT ((Σ∞T K) ∧ T )

Ωj−→ ΩT ((Σ∞T K) ∧ T )s

is a stable equivalence.

Proof. Recall that if Y is a spectrum, then the homotopy group presheaves
πrY

n
s (U) of the stably fibrant model Ys = IQTJY are computed by the filtered

colimits

[Sr, Y n]U
Σ−→ [T ∧ Sr, Y n+1]U

Σ−→ · · ·

where [K,X ]U = [K|U , X |U ] means homotopy classes of maps of the restrictions
to the site over U . The suspension homomorphism Σ takes a morphism θ :
T k ∧ Sr → Y n+k to the composite

T ∧ T k ∧ Sr T∧θ−−→ T ∧ Y n+k σ−→ Y n+k+1

Practically speaking, the suspension morphism Σ is induced by smashing with
T on the left.

Documenta Mathematica 5 (2000) 445–552



Motivic Symmetric Spectra 497

Observe as well that if Y is level fibrant, then the adjunction isomorphisms

[T k ∧ Sr,ΩTY n+k]U ∼= [T k ∧ Sr ∧ T, Y n+k]U

fit into commutative diagrams

[T k ∧ Sr,ΩTY n+k]U
∼= //

Σ

��

[T k ∧ Sr ∧ T, Y n+k]U

Σ

��
[T k+1 ∧ Sr,ΩTY n+k+1]U ∼=

// [T k+1 ∧ Sr ∧ T, Y n+k+1]U

It follows that the map in presheaves of stable homotopy groups induced by
the composite

Σ∞T K
η−→ ΩT ((Σ∞T K) ∧ T )

Ωj−→ ΩT ((Σ∞T K) ∧ T )s

is isomorphic to the filtered colimit of the maps

[T k ∧ Sr, Tn+k ∧K]U
∧T−−→ [T k ∧ Sr ∧ T, Tn+k ∧K ∧ T ]U

which are induced by smashing with T on the right.
Suppose that φ : K ∧ T → X ∧ T is a map of pointed simplicial presheaves,

and write ct(φ) for the map T ∧K → T ∧X arises from φ by conjugation with
the twist of smash factors. There is a commutative diagram

K ∧ T t
∼=

//

φ

��

T ∧K
ct(φ)

��
X ∧ T

∼=
t

// T ∧X

Then there is a diagram

T ∧ T 2 ∧K
ct(T

2∧φ)

��

T 2 ∧K ∧ T T 2∧t //

T 2∧φ
��

too T 2 ∧ T ∧K
T 2∧ct(φ)

��
T ∧ T 2 ∧X T 2 ∧X ∧ T

T 2∧t
//

t
oo T 2 ∧ T ∧X

and hence a diagram

T 3 ∧K
c1,2∧K//

ct(T
2∧φ)

��

T 3 ∧K
T 2∧ct(φ)

��
T 3 ∧K

c1,2∧K
// T 3 ∧X
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It follows from Lemma 3.13 that the maps in the homotopy category repre-
sented by T 2 ∧ ct(φ) and ct(T

2 ∧ φ) coincide.
As a consequence, there are commutative diagrams

[T k ∧ Sr, Tn+k ∧K]U
T 2∧ //

∧T
��

[T 2 ∧ T k ∧ Sr, T 2 ∧ Tn+k ∧K]U

∧T
��

[T k ∧ Sr ∧ T, Tn+k ∧K ∧ T ]U
T 2∧ //

ct ∼=
��

[T 2 ∧ T k ∧ Sr ∧ T, T 2 ∧ Tn+k ∧K ∧ T ]U

ct∼=
��

[T ∧ T k ∧ Sr, T ∧ Tn+k ∧K]U
T 2∧

// [T 3 ∧ T k ∧ Sr, T 3 ∧ Tn+k ∧K]U

The vertical composites coincide with the map T∧ induced by smashing on the
left with T , so a cofinality argument says that the induced map on the filtered
colimits is an isomorphism.

Proof of Theorem 3.11. It is a consequence of Lemma 2.11 that the functor
X 7→ X ∧ T preserves stable equivalences. It follows that the functors X 7→ X
and X 7→ ΩT (X ∧ T )s both preserve stable equivalences. The T -spectrum X
is a filtered colimit of its layers LnX , and there is a stable equivalence

Σ∞T X
n[−n]→ LnX

for n ≥ 0. Write η∗ : X → ΩT (X ∧ T )s for the composite in the statement of
Theorem 3.11. The proof consists of showing that all maps

Σ∞T K[−n]
η∗−→ ΩT (Σ∞T K[−n] ∧ T )s (3.4)

are stable equivalences. Then we show that these equivalences pass appropri-
ately to filtered colimits.

Shifts preserve stable equivalence, so it suffices to consider the case of the
map (3.4) corresponding to n = 0, but this is Lemma 3.14.

Suppose given a system

X0 → X1 → · · ·

of T -spectra such that all maps

η∗ : Xi → ΩT (Xi ∧ T )s

are stable equivalences. I claim that the induced map

η∗ : lim−→Xi → ΩT ((lim−→Xi) ∧ T )s
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is a stable equivalence. The composite

lim−→Xi

lim−→ η−−−→ lim−→ΩT (Xi ∧ T )
lim−→ΩT j−−−−−→ lim−→ΩT (Xi ∧ S)s

is a stable equivalence by Lemma 3.12. There is a commutative diagram

lim−→(Xi ∧ T )
lim−→ j

//

∼=
��

lim−→(Xi ∧ T )s

c

��
(lim−→Xi) ∧ T

j
// ((lim−→Xi) ∧ T )s

The map lim−→ j is a stable equivalence by Lemma 3.12, and so the map c is a
pointwise weak equivalence of motivic flasque objects in all levels by a Nisnevich
descent argument (Corollary 1.7). There is also a commutative diagram

lim−→Xi
η//

lim−→ η

��>
>>

>>
>>

>>
>>

>>
>>

>>
>>

ΩT ((lim−→Xi) ∧ T )
ΩT j // ΩT ((lim−→Xi) ∧ T )s

ΩT lim−→(Xi ∧ T )

∼=

OO

ΩT j
// ΩT lim−→(Xi ∧ T )s

ΩT c

OO

lim−→ΩT (Xi ∧ T )

∼=

OO

lim−→ΩT j
// lim−→ΩT (Xi ∧ T )s

∼=

OO

The map ΩT c is a pointwise weak equivalence in all levels, so the composite

lim−→Xi
η−→ ΩT ((lim−→Xi) ∧ T )

ΩT j−−→ ΩT ((lim−→Xi) ∧ T )s

is a stable equivalence.

Lemma 3.15. Suppose that X is level fibrant. Then there is an isomorphism

QT (ΩTX)n ∼= ΩT (QTX)n.

In particular, the loop functor X 7→ ΩTX preserves stable equivalences of level
fibrant objects.

Proof. Recall that ΩTX has bonding map σ : T ∧ ΩTX
n → ΩTX

n+1 adjoint
to the composite

T ∧ ΩTX
n ∧ T T∧ev−−−→ T ∧Xn σ−→ Xn+1

It follows that there is a commutative diagram

ΩTXn σ∗ //

ΩTσ∗ %%JJJJJJJJJJ
Ω2
TX

n+1

t∗∼=
��

Ω2
TX

n+1
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where t∗ is the map which flips loop factors. Inductively, one finds diagrams

Ωk+1
T Xn+k

ΩkT σ∗//

c∗k,1 ∼=
��

Ωk+2
T Xn+k+1

c∗k+1,1
∼=
��

Ωk+1
T Xn+k

Ωk+1
T

σ∗

// Ωk+2
T Xn+k+1

where c∗k,1 is precomposition with the map which is induced by the shuffle ck,1 in
the loop factors. The maps c∗k,1 therefore induce the desired isomorphism.

Corollary 3.16. Suppose that Y is level fibrant. Then the evaluation map

ev : ΩTY ∧ T → Y

is a stable equivalence.

Proof. The functor Y 7→ Y ∧ T preserves stable equivalences, so Lemma 3.15
implies that it suffices to assume that Y is stably fibrant.

Take a stably fibrant model j : ΩTY ∧ T → (ΩTY ∧ T )s (j is a cofibration
as well as a stable equivalence), and form the diagram

ΩTY ∧ T
j //

ev

��

(ΩTY ∧ T )s

ẽv
wwoooooooooooo

Y

The idea is to show that ẽv is a stable equivalence by showing that ΩT ẽv is a
stable equivalence. This works, on account of the natural isomorphism

πt,sΩTX ∼= πt+1,s+1X

for level fibrant objects X — this isomorphism is another consequence of
Lemma 3.15. There is a diagram

ΩTY

ΩT η

��

ΩT η∗

((RRRRRRRRRRRRRR

ΩT (ΩTY ∧ T )
ΩT j //

ΩT ev

��

ΩT (ΩTY ∧ T )s

ΩT ẽvvvllllllllllllll

ΩTY

The map ΩT η∗ is a pointwise equivalence by Theorem 3.11, and so ΩT ẽv is a
stable equivalence.

Documenta Mathematica 5 (2000) 445–552



Motivic Symmetric Spectra 501

Corollary 3.17. Let j : Y → Ys be a choice of stably fibrant model for Y .
Then a map g : X ∧ T → Y is a stable equivalence if and only if the composite

X
g∗−→ ΩTY

ΩT j−−→ ΩTYs

is a stable equivalence, where g∗ is the adjoint of g.

Proof. There is a diagram

X ∧ T
j //

g

��

(X ∧ T )s

g̃

��
Y

j
// Ys

where both maps labeled j are stably fibrant models. Then g is a stable equiv-
alence if and only if g̃ is a stable equivalence if and only if the composite

X
η∗−→ ΩT (X ∧ T )s

ΩT g̃−−→ ΩTYs

is a stable equivalence.

Corollary 3.18. A map g : X → Y is a stable equivalence if and only if the
suspension g ∧ T : X ∧ T → Y ∧ T is a stable equivalence.

In the final part of this section we show that all of the usual candidates for
suspension functors on T -spectra are naturally equivalent in the motivic stable
category. This is the content of the next two lemmas. As a corollary, all of the
corresponding loop functors are naturally stably equivalent.

Lemma 3.19. The canonical map σ : Σ`TX → X [1] from the fake suspension
Σ`TX to the shift X [1] is a natural stable equivalence.

Proof. The map

σ : Σ`T (Σ∞T K[−n])→ (Σ∞T K[−n])[1]

is an isomorphism in level p for p ≥ n and for all n ≥ 0. The fake suspension
X 7→ Σ`TX and shift X 7→ X [1] functors preserve colimits, so we can argue
along the layer filtration using Lemma 3.12. It therefore suffices to show that
both functors preserve stable equivalence.

In order to see that the shift functor X 7→ X [1] preserves stable equivalences,
it suffices to show that the shift X [1] → (IQTJX)[1] of the canonical stable
equivalence is a stable equivalence. For this, it enough to show that the shifted
map (JX)[1] → (QT JX)[1] is a stable equivalence, but this is a consequence
of the isomorphism (QTJX)[1] ∼= QT (JX [1]).

The fake loop functor X 7→ Ω`TX preserves stably fibrant objects, according
to the characterization given by Lemma 2.7 and Lemma 2.8. The fake suspen-
sion functor Y 7→ Σ`TY preserves level cofibrations and level weak equivalences,
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so that the fake loop functor preserves injective fibrations by adjointness. It
follows that the fake loop functor preserves the class of stably fibrant injective
objects.

We know from Corollary 2.12 that a map f : X → Y is a stable equivalence
if and only if it induces a weak equivalence

f∗ : hom(Y,W )→ hom(X,W )

for all stably fibrant injective W . If f : X → Y is a stable equivalence of
T -spectra and W is stably fibrant and injective, then the map

(Σ`T f)∗ : hom(Σ`TY,W )→ hom(Σ`TX,W )

is isomorphic to the map

f∗ : hom(Y,Ω`TW )→ hom(X,Ω`TW ),

and is therefore a weak equivalence since Ω`TW is stably fibrant and injective.
If follows that Σ`T f : Σ`TX → Σ`TY is a stable equivalence.

Lemma 3.20. The fake suspension functor X 7→ Σ`TX is naturally stably equiv-
alent to the functor X 7→ X ∧ T .

Proof. Both functors preserve level equivalences, so it suffices to assume that
X (by taking associated sheaves) is a sheaf of T -spectra, where T and all of
its smash powers are notationally confused with their associated sheaves. We
do this so that we can use the explicit pointed algebraic homotopy h : T 3 ×
A1 → T 3 from c1,2 to the identity which appears in the proof of Lemma 3.13.
Write da : T 3 → T 3 × A1 for the map which is induced by the rational point
a : ∗ → A1. Then hd0 is the identity map on T 3 and hd1 = c1,2 : T 3 → T 3.

Recall that the fake suspension Σ`TX consists of the objects T ∧ Xn and
bonding maps T ∧ σ : T 2 ∧Xn → T ∧Xn+1. The object X ∧ T consists of the
pointed simplicial presheaves Xn ∧T and bonding maps σ ∧ T : T ∧Xn ∧ T →
Xn+1 ∧ T . After twisting along the isomorphisms t : Xn ∧ T ∼= T ∧ Xn, we
can identify X ∧ T up to isomorphism with a spectrum consisting of objects
T ∧Xn and having bonding maps σ given by the composites

T 2 ∧Xn t∧Xn−−−→ T 2 ∧Xn T∧σ−−−→ T ∧Xn+1

It follows that there are commutative diagrams

T 3 ∧Xn T 2∧σ //

c1,2∧Xn
��

T 2 ∧Xn+1 T∧σ // T ∧Xn+2

T 3 ∧Xn
T∧σ

// T 2 ∧Xn+1

σ

77ooooooooooo
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The method of proof is to show that the “partial spectrum” objects X1 and
X2, having constituent simplicial presheaves

Xn
1 = Xn

2 = T ∧X2n

and bonding maps T 2 ∧Xn
i → Xn+1

i defined by the composites

σ1 = (T ∧ σ)(T 2 ∧ σ)

and σ2 = σ(T ∧ σ) respectively (as in the diagram) are naturally stably equiv-
alent.

The idea is to use the natural algebraic homotopies h : T 3 ∧ X2n n A1 →
T ∧ X2n+2 from σ1 to σ2 and the constant algebraic homotopies c on σ1 to
define natural level weak equivalences

X2
h∗←−− Tel(X1)

c∗−→ X1

where Tel(X1) is the algebraic telescope. The construction is by exact anal-
ogy with that of the ordinary mapping telescope given in [11, pp.11–15]. To
summarize, one inductively constructs a sequence of trivial cofibrations

Xn
1

jn−→ CXn
1

αn−−→ Tel(X1)
n,

where jn is the inclusion of Xn
1 in the algebraic mapping cylinder CXn

1 given
by the pushout diagram

T 2 ∧Xn−1
1

σ1 //

d0

��

Xn
1

jn

��
T 2 ∧Xn−1

1 n A1
ζn

// CXn
1

and αn is inductively defined by the pushout diagram

T 2 ∧Xn−1
1

d1 //

jn−1

��

T 2 ∧Xn−1
1 n A1

ζn // CXn
1

αn

��

T 2 ∧ CXn−1
1

T 2∧αn−1

��
T 2 ∧ Tel(X1)

n−1
σ

// Tel(X1)
n

The bonding maps σ : T 2 ∧ Tel(X1)
n−1 → Tel(X1)

n are also defined by this
construction. The identity on Xn

1 and h : T 2 ∧Xn
1 n A1 → T ∧Xn+1

1 together

determine a weak equivalence ĥ : CXn
1 → Xn

2 and the map ĥ extends levelwise
along the trivial cofibrations αn : CXn

1 → Tel(X1)
n to a natural map of partial

spectra h∗ : Tel(X1)→ X2. The map h∗ is a levelwise weak equivalence.
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Corollary 3.21. Suppose that X is a level fibrant spectrum. Then the spectra
Ω`TX, ΩTX and X [−1] are naturally stably equivalent.

Remark 3.22. A statement analogous to Theorem 3.11 is true for S1-spectra,
in that the composite

X
ηX−−→ Ω(X ∧ S1)

Ω(jX∧T )−−−−−−→ Ω(X ∧ S1)s

is a natural weak equivalence in the motivic stable model structure for S1-
spectra. The proof is formally the same as that displayed for Theorem 3.11,
with T replaced by S1. The key is that it is well known that the cyclic permuta-
tion c1,2 acts trivially in the ordinary homotopy category on S3. With suitable
modifications, the rest of the statements up to Corollary 3.18 also hold for-
mally for S1-spectra, so that the suspension and loop functors determine a self
equivalence of categories for the motivic stable category of S1-spectra, as one
would expect. The analogues of Lemma 3.19 and Lemma 3.20 for S1-spectra
follow from standard results of stable homotopy theory, along with Lemma 3.1.

4 Motivic symmetric spectra

We continue to work within motivic homotopy theory on the smooth Nisnevich
site (Sm|S)Nis, meaning that we formally contract the affine line onto a rational
point within the associated category of simplicial presheaves. As before, T
denotes either the quotient A1/(A1 − 0) or the equivalent object S1 ∧Gm. As
in all discussions of geometric theories, one tacitly assumes that all objects in
(Sm|S)Nis (including the base scheme S) are bounded above by a fixed large
cardinal, and that the category itself is a skeleton. This means that the site is
small, and so its morphisms form a set. We shall assume that α is an infinite
cardinal which is an upper bound for the cardinality of the set of morphisms
of this site.

A symmetric T -spectrumX on the Nisnevich site (Sm|S)Nis is a T -spectrum
together with symmetric group actions Σn×Xn → Xn such that the composite
bonding maps T p ∧Xn → Xp+n is (Σp × Σn)-equivariant. A map f : X → Y
of such objects is a map of T -spectra which is equivariant in each level for the
ambient symmetric group action. The resulting category will be denoted by
SptΣ

T (Sm|S)Nis. This category is complete and cocomplete.

The most primitive example of a symmetric T -spectrum is the sphere T -
spectrum, which will be denoted by T . Explicitly,

Tn =

{
S0 if n = 0,

T∧n if n > 0.

with the obvious isomorphisms T ∧ T n ∼= Tn+1 as bonding maps.
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4.1 The level structure

Say that a map f : X → Y of symmetric T -spectra is a level equivalence if
each of the component maps f : Xn → Y n is a motivic equivalence. The map
f is said to be a level cofibration if each of the maps Xn → Y n is a cofibration
of simplicial presheaves. Write sE for the class of level equivalences in the
category of symmetric T -spectra.

Proposition 4.1. The class sE of level equivalences and the class of level
cofibrations of symmetric T -spectra together satisfy the following properties:

sE1: The class of morphisms sE is closed under retracts.

sE2: Given a composable pair of morphisms

X
f−→ Y

g−→ Z,

if any two of f , g and gf are in the class sE, then so is the third.

sE3: Every pointwise level equivalence is in sE.

sE4: The class of sE-trivial cofibrations is closed under pushout.

sE5: Suppose that γ is a limit ordinal, and there is a functor

X : γ → SptΣ
T (Sm|S)Nis

such that for each morphism i ≤ j of γ, the induced map X(i) → X(j)
is an sE-trivial cofibration. Then the canonical maps

X(i)
τi−→ lim−→ j∈γX(j)

are sE-trivial cofibrations.

sE6: Suppose that the morphisms fi : Xi → Yi are sE-trivial cofibrations for
i ∈ I. Then the morphism

∨

i∈I
fi :

∨

i∈I
Xi →

∨

i∈I
Yi

is an E-trivial cofibration.

sE7: There is an infinite cardinal λ which is at least as large as the cardinality
of the set of morphisms of (Sm|S)Nis, such that for every diagram

X

i

��
A // Y

of maps of T -spectra with i a sE-trivial cofibration, and A α-bounded,
there is an α-bounded subobject B ⊂ Y such that A ⊂ B, and such that
the inclusion B ∩X ↪→ B is an sE-trivial cofibration.
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A pointwise level equivalence is a map f : X → Y of symmetric T -spectra such
that all maps f : Xn(U) → Y n(U) are weak equivalences of simplicial sets in
all sections and levels. An sE-trivial level cofibration is a map of symmetric
T -spectra which is both a level equivalence and a level cofibration.

Proof. Every weak equivalence of simplicial presheaves is a motivic equivalence,
giving sE3. With the exception of sE7, the remaining statements are due to
the existence of the motivic closed model structure for the category of simplicial
presheaves on (Sm|S)Nis.

The proof of sE7 is analogous to the proof of Proposition 2.15. One begins
by showing, using the method of proof of Lemma 1 of [13], that the class of
maps which are level local weak equivalences and level cofibrations has the
bounded cofibration property with respect to the cardinal λ. The argument is
then completed just as in the last paragraph of the proof of Proposition 2.15
by using the controlled level fibrant model construction X 7→ LX in place of
the functor F .

A symmetric sequence X consists of pointed simplicial presheavesXn, n ≥ o,
each of which carries a symmetric group action Σn × Xn → Xn. There is
an obvious category of such things. The product X ⊗ Y in the category of
symmetric sequences is defined by

(X ⊗ Y )n =
∨

p+q=n

Σn ⊗(Σp×Σq) X
p ∧ Y q .

A symmetric sequence map f : X ⊗ Y → Z therefore consists of (Σp × Σq)-
equivariant pointed maps f : Xp∧Y q → Zp+q, so that a symmetric T -spectrum
Z can be identified with a symmetric sequence carrying a T -module structure,
or a symmetric sequence map σ : T ⊗ Z → Z. Note that there is a canonical
twist isomorphism τ : X ⊗ Y → Y ⊗X which is determined by the composites

Xp ∧ Y q t−→ Y q ∧Xp ine−−→ (Y ⊗X)q+p
cq,p−−→ (Y ⊗X)p+q.

Here, t is the canonical twist of smash factors and ine is the inclusion corre-
sponding to the coset of the identity e in

(Y ⊗X)q+p ∼=
∨

Σq+p/(Σq×Σp)

Y q ∧Xp.

Following [7] and [13], given a pointed simplicial presheaf K, the free sym-
metric sequence GnK consists of the simplicial presheaf

Σn ⊗K =
∨

σ∈Σn

K,

concentrated in level n, and the free symmetric T -spectrum Fn(K) = T ⊗GnK
is defined at level p by

Fn(K)p = (T ⊗GnK)p = Σp ⊗Σp−n×Σn (T p−n ∧ (
∨

σ∈Σn

K)).
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The object Fn(K) is free in the sense that morphisms Fn(K) → X in the
category of symmetric T -spectra are in one to one correspondence with pointed
simplicial presheaf maps K → Xn.

An injective fibration in the category of symmetric T -spectra is a map which
has the right lifting property with respect to all morphisms which are both
level cofibrations and level equivalences. It follows from the existence of the
free object functors K 7→ Fn(K) that every injective fibration p : X → Y is
a level fibration in the sense that it consists of fibrations p : Xn → Y n in all
levels.

Theorem 4.2. The category

SptΣ
T (Sm|S)Nis

of symmetric T -spectra on the smooth Nisnevich site, together with the classes
of level cofibrations, level equivalences and injective fibrations, satisfies the ax-
ioms for a proper closed simplicial model category.

Proof. The proof proceeds just like that of Theorem 3 of [13], using the method
of [4] and Proposition 4.1. The function complex hom(X,Y ) giving the sim-
plicial structure is defined in n-simplices in the usual way by

hom(X,Y )n = hom(X ∧∆n
+, Y ),

where the pointed simplicial set ∆n
+ is the result of attaching a disjoint base

point to the standard n-simplex.

The functor

U : SptΣ
T (Sm|S)Nis → SptT (Sm|S)Nis

taking values in T -spectra forgets the symmetric group actions. The functor
U has a left adjoint symmetrization functor V such that for n ≥ 0

V (Σ∞T K[−n]) = Fn(K),

where Σ∞T K is the suspension T -spectrum

K, T ∧K, T 2 ∧K, . . .

and Σ∞T K[r] is the result of shifting in the usual way:

Σ∞T K[r]p = (Σ∞T K)r+p.

As in Section 3.4, every T -spectrum X has a layer filtration

X = lim−→LnX
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and V preserves colimits, so that

V X = lim−→V LnX,

and there are pushouts

Fn+1(T ∧Xn) //

σ∗

��

V LnX

��
Fn+1(X

n+1) // V Ln+1X.

in the category of symmetric T -spectra.
There is a natural isomorphism of T -spectra

(UW )K ∼= U(WK),

which induces a simplicial adjunction isomorphism

hom(V A,W ) ∼= hom(A,UW ).

We shall also need the following:

Lemma 4.3. The functor V takes cofibrations of T -spectra to level cofibrations
of symmetric T -spectra.

Proof. The proof is just like that of Lemma 5 of [13], and begins with the
observation that the functor

K 7→ V (Σ∞T K[−n]) = Fn(K)

takes cofibrations of pointed simplicial presheaves to level cofibrations of sym-
metric T -spectra for n ≥ 0.

4.2 The stable structure

Say that a map p : X → Y of symmetric T -spectra is a stable fibration if the
underlying map p∗ : UX → UY is a stable fibration of T -spectra.

Proposition 4.4. Every map f : X → Y of symmetric T -spectra has a natu-
ral factorization

X
j //

f   @
@@

@@
@@

Z

p

��
Y

such that p is a stable fibration, and j is a level cofibration which has the left
lifting property with respect to all stable fibrations.
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Proof. By the methods of [4] and Corollary 2.16, a map of symmetric T -spectra
is a stable fibration if and only if it has the right lifting property with respect
to all maps i∗ : V A→ V B induced by λ-bounded cofibrations i : A→ B which
are stable equivalences. The factorization is constructed by a transfinite small
object argument of size β > 2λ, as in the proof of Lemma 6 of [13].

Observe that if j is a level cofibration which has the left lifting property with
respect to all stable fibrations, then j induces a trivial fibration

j∗ : hom(Z,W )→ hom(X,W )

of simplicial sets for each stably fibrant object W , by appropriate use of
Quillen’s axiom SM7 for the motivic stable closed model structure on the
category of T -spectra.

It follows from Theorem 4.2 and Proposition 4.4 that any morphism f : X →
Y of symmetric T -spectra may be successively factored

X
i1 //

f
((QQQQQQQQQQQQQQQQ Xs

i2 //

p1

!!D
DD

DD
DD

D
Xsi

p2

��
Y

where

1) i1 is a level cofibration which has the left lifting property with respect to
all stable fibrations, and p1 is a stable fibration;

2) i2 is a level cofibration and a level equivalence, and p2 is an injective
fibration.

In particular, Up2 is a level fibration, which is level equivalent to the stable
fibration Up1, so that p2 is a stable fibration by Lemma 2.7 as well as an
injective fibration of symmetric T -spectra. By specializing to Y = ∗, we obtain
a natural construction

X
i1−→ Xs

i2−→ Xsi

of an injective stably fibrant model Xsi for a given symmetric T -spectrum X .
Say that a map f : X → Y of symmetric T -spectra is a stable equivalence if

it induces a weak equivalence of Kan complexes

f∗ : hom(Y,W )→ hom(X,W )

for each injective stably fibrant object W . The maps i1 and i2 above are both
stable equivalences. Following [13] we can also show

Lemma 4.5. Suppose that the objects X and Y are stably fibrant and injective.
Then a map g : X → Y is a stable equivalence if and only if it is a level
equivalence.
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Proof. If g is a stable equivalence, then the map

g∗ : hom(Y,X)→ hom(X,X)

is a weak equivalence of Kan complexes, since X is stably fibrant and injective.
It follows that g is a homotopy equivalence.

The converse follows from the closed simplicial model structure for level cofi-
brations and level weak equivalences for symmetric T -spectra, since all sym-
metric T -spectra are cofibrant and all stably fibrant injective objects W are
fibrant for that theory.

Corollary 4.6. Suppose that X and Y are stably fibrant objects. Then a map
g : X → Y is a stable equivalence if and only if it is a level equivalence.

Suppose that Z is a symmetric T -spectrum and that K is a pointed simplicial
presheaf. The symmetric T -spectrum

ZK = Hom∗(K,Z)

is defined in levels by

Hom∗(K,Z)n = Hom∗(K,Z
n),

where Hom∗ denotes the pointed internal hom functor, as in Section 1.1. The
structure map

T p ∧Hom∗(K,Z
n)

σ−→ Hom∗(K,Z
p+n)

is the unique pointed simplicial set map making the diagram

T p ∧Hom∗(K,Zn) ∧K σ∧K //

Tp∧ev

��

Hom∗(K,Zp+n) ∧K
ev

��
T p ∧ Zn σ

// Zp+n

commute, where ev is the evaluation map wherever it appears. This construc-
tion is natural in K and Z, and there are natural isomorphisms

Hom∗(K ∧ L,Z) ∼= Hom∗(K,Hom∗(L,Z))

for all pointed simplicial presheaves K, L, and symmetric T -spectra Z.
We shall write ΩTX for the symmetric T -spectrum Hom∗(T,X), in order

to simplify notation.
Following [13], define a natural shift functor Z 7→ Z[1] for symmetric T -

spectra Z by setting Z[1]m = Z1+m, where σ ∈ Σm acts on Z[1]m as 1 ⊕ σ ∈
Σm+1. The structure map σ∗ : T p ∧ Z[1]m → Z[1]p+m is defined to be the
composite

T p ∧ Z1+m σ−→ Zp+1+m c(p,1)⊕1−−−−−→ Z1+p+m,
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where c(p, 1) ∈ Σp+1 is the cyclic permutation of order p + 1. One checks
that σ∗ is Σp×Σm-equivariant. Define the shifted symmetric T -spectrum Z[s]
inductively by Z[s] = Z[s− 1][1], or directly.

The standard maps σ∗ : Zn → Hom∗(T, Z1+n) which are adjoint to the
composites

Zn ∧ T t−→ T ∧ Zn σ−→ Z1+n

together determine a natural map of of symmetric T -spectra

σ∗ : Z → Hom∗(T, Z[1]) ∼= Hom∗(T, Z)[1],

or equivalently a map

σ∗ : Z → ΩT (Z[1]) ∼= (ΩTZ)[1]. (4.1)

Suppose that Z is a symmetric T -spectrum which is level fibrant. Flipping
loop factors defines a natural isomorphism

t∗ : Ω2
TZ[2]→ Ω2

TZ[2],

and there is an isomorphism (1, 2) : Z[2]→ Z[2] which consists of maps (1, 2) :
Z2+n → Z2+n induced by the transposition (1, 2) ∈ Σ2+n. Write σ̃ for the
bonding maps of ΩTZ[1]. Then there is a natural commutative diagram

ΩTZ[1]
ΩTσ∗[1]//

σ̃∗ $$J
JJJJJJJJ
Ω2
TZ[2]

(1,2)∗t
∗

��
Ω2
TZ[2]

which translates into a diagram of simplicial presheaves

ΩTZ
n+1

σ̃∗ %%KKKKKKKKKK

ΩTσ∗ // Ω2
TZ

n+2

(1,2)∗t
∗

��
Ω2
TZ

n+2

(4.2)

for each n.
For a level fibrant object Z, define the symmetric T -spectrum QΣ

TZ to be
the filtered colimit of the system

Z
σ∗−→ ΩTZ[1]

σ̃∗−→ Ω2
TZ[2]

˜̃σ∗−→ · · · (4.3)

Lemma 4.7. Suppose that Z is a level fibrant symmetric T -spectrum. Then
there is a natural isomorphism

QΣ
TZ

n ∼= QT (UZ)n.
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Warning: Lemma 4.7 only says that the T -spectra U(QΣ
TZ) and QT (UZ) are

isomorphic in each level. The assertion that these are isomorphic spectrum
objects is one of the canonical mistakes in the theory of symmetric spectra.

Proof of Lemma 4.7. To extend the notation for the bonding map σ̃ of ΩTZ[1]
given above, write

σ
∼(n)
∗ = ˜σ∼(n−1)∗ : ΩnTZ[n]→ Ωn+1

T Z[n+ 1],

so that σ̃∗ = σ
∼(1)
∗ and ˜̃σ∗ = σ

∼(2)
∗ in the sequence (4.3). Repeated instances

of the diagram (4.2) paste together to give a natural commutative diagram

ΩkTZ
n+k

σ
∼(k)
∗ //

ΩkTσ∗ &&MMMMMMMMMMM
Ωk+1
T Zn+k+1

θk+1

��
Ωk+1
T Zn+k+1

where θk+1 is a composite of isomorphisms ΩiT t
∗ or (1, 2)∗.

Now suppose given natural isomorphisms γi : ΩiTZ
n+i → ΩiTZ

n+i such that
the diagram

ΩTZ
n+1

σ
∼(1)
∗ //

1

��

Ω2
TZ

n+2σ
∼(2)
∗ //

γ2

��

· · · σ
∼(k−1)
∗ // ΩkTZ

n+k

γk

��
ΩTZ

n+1
ΩTσ∗

// Ω2
TZ

n+2

Ω2
T σ∗

// · · ·
Ωk−1
T

σ∗

// ΩkTZ
n+k

commutes, and all isomorphisms γi are compositions of of ΩjT t
∗ or (i, i+ 1)∗.

In particular, presume that γ2 = t∗(1, 2)∗ : Ω2
TZ

n+2 → Ω2
TZ

n+2. Then the

isomorphism ΩjT t
∗ commutes with ΩkTσ∗ : ΩkTZ

n+k → Ωk+1
T Zn+k+1, and

σ∗(i, i+ 1)∗ = (i+ 1, i+ 2)∗σ∗

so there is an isomorphism γk+1 composed of maps ΩjT t
∗ and (i, i + 1)∗ such

that the diagram

ΩkTZ
n+k

σ
∼(k)
∗ //

ΩkTσ∗ &&MMMMMMMMMMM

γk

��

Ωk+1
T Zn+k+1

θk+1

��
Ωk+1
T Zn+k+1

γk+1

��
ΩkTZ

n+k

ΩkTσ∗

// Ωk+1
T Zn+k+1

commutes. The natural isomorphism γk+1 is defined by γk+1 = γk+1θk+1.
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Formally, there is a map c : QΣ
TX∧K → QΣ

T (X∧K) which fits into a natural
commutative diagram

QΣ
TX ∧K

c // QΣ
T (X ∧K),

X ∧K

γX∧K
OO

γX∧K

77ooooooooooo

for all symmetric T -spectra X and pointed simplicial sets K. It follows that
the functor QΣ

T prolongs to a simplicial functor

QΣ
T : hom(X,Y )→ hom(QΣ

TX,Q
Σ
TY ).

Proposition 4.8. Suppose that α : X → Y is a map of symmetric T -spectra
such that Uα : UX → UY is a stable equivalence of T -spectra. Then α is a
stable equivalence of symmetric T -spectra.

Proof. We can assume that X and Y are level fibrant. If W is a stably fibrant
and injective object, then the canonical map γW : W → QΣ

TW is a level
equivalence, and hence induces a weak equivalence

γ∗W : hom(QΣ
TW,W )→ hom(W,W ).

It follows that there is a map gW : QΣ
TW →W such that the composite gW γW

is simplicially homotopic to the identity 1W on W .
The composite

hom(X,W )
QΣ
T−−→ hom(QΣ

TX,Q
Σ
TW )

gW∗−−→ hom(QΣ
TX,W )

γ∗
X−−→ hom(X,W )

is induced by composition with gW γW , and is therefore homotopic to the iden-
tity on hom(X,W ). The composition and the homotopy are natural in X . If
α : X → Y induces a stable equivalence Uα : UX → UY , then the induced
map QΣ

Tα : QΣ
TX → QΣ

TY is a level equivalence by Lemma 4.7, and so the
maps

QΣ
Tα
∗ : hom(QΣ

TY,W )→ hom(QΣ
TX,W )

and hence the morphisms

α∗ : hom(Y,W )→ hom(X,W )

are weak equivalences of pointed simplicial sets.

Recall that if Y is a symmetric T -spectrum and n ≥ 0, then the shift Y [n]
is defined by Y [n]p = Y n+p, with α ∈ Σp acting as 1n ⊕ α. The bonding map
T q ∧ Y [n]p → Y [n]q+p for Y [n] is the composite

T q ∧ Y n+p σ−→ Y q+n+p cq,n⊕1−−−−→ Y n+q+p
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where σ is the original bonding map for Y .

Suppose that X is a symmetric T -spectrum, with T -module structure map
σ : T ⊗X → X . Then the symmetric sequence Gn(S

0) ⊗X has a symmetric
T -spectrum structure, with T -structure given by the composite

T ⊗Gn(S0)⊗X τ⊗1−−→ Gn(S0)⊗ T ⊗X 1⊗σ−−→ Gn(S
0)⊗X.

A symmetric T -spectrum map f : Gn(S0) ⊗ X → Y consists of pointed sim-
plicial presheaf maps f : Xp → Y n+p which are equivariant for the homomor-
phisms Σp → Σn+p defined by α 7→ 1n ⊕ α, and such that the diagrams

T q ∧Xp
1∧f //

σ

��

T q ∧ Y n+p

σ

��
Y q+n+p

cq,n⊕1

��
Xq+p

f
// Y n+q+p

commute. It follows that the symmetric T -spectrum map f : Gn(S0)⊗X → Y
can be identified with a symmetric T -spectrum map X → Y [n], and we have
proved

Lemma 4.9. The functor X 7→ Gn(S
0)⊗X is left adjoint to the shift functor

Y 7→ Y [n] for n ≥ 0.

The functor X 7→ Gn(S0) ⊗ X preserves level cofibrations and level equiva-
lences, so we have

Corollary 4.10. The shift functor Y 7→ Y [n] preserves injective fibrations
and level trivial injective fibrations. In particular, if Y is an injective symmetric
T -spectrum, then Y [n] is an injective symmetric T -spectrum for n ≥ 0.

Lemma 4.11. Suppose that the commutative diagram

A1
i1 //

f1

��

B1
π1 //

f2

��

B1/A1

f3

��
A2 i2

// B2 π2

// B2/A2

is a comparison diagram of level cofibre sequences. Then if any two of the
maps f1, f2 and f3 are stable equivalences of symmetric T -spectra, then so is
the third.
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Proof. We shall show that f1 is a stable equivalence if f2 and f3 are stable
equivalences. This amounts to showing that the map f ∗1 in the comparison
diagram of fibrations

hom(B2/A2,W )
π∗
2 //

f∗
3

��

hom(B2,W )
i∗2 //

f∗
2

��

hom(A2,W )

f∗
1

��
hom(B1/A1,W )

π∗
1

// hom(B1,W )
i∗1

// hom(A1,W )

is a weak equivalence for any choice of stably fibrant injective object W , in the
presence of knowing that the simplicial set maps f ∗2 and f∗3 are weak equiva-
lences.

There is a levelwise equivalence

W → ΩTW [1] ' ΩΩGmW [1],

of stably fibrant injective objects, where W [1] is injective by Corollary 4.10.
It is also the case that ΩGmW [1] is stably fibrant and injective. It follows
that the comparison diagram of fibrations can be delooped infinitely often. In
particular, f∗1 is part of a stable weak equivalence of infinite loop spaces, and
is therefore a weak equivalence of simplicial sets.

Corollary 4.12. Suppose that the commutative diagram

F1
//

f1

��

X1
p1 //

f2

��

Y1

f3

��
F2

// X2 p2
// Y2

is a comparison diagram of level fibre sequences of symmetric T -spectra. Then
if any two of f1, f2 and f3 are stable equivalences, then so is the third.

Proof. Use Lemma 3.9 to replace the comparison of fibre sequences by the a
comparison of level cofibre sequences

Fi
i−→ Xi

π−→ Xi/Fi. (4.4)

More precisely, Lemma 3.9 guarantees that the map of T -spectra underlying
pi∗ : Xi/Fi → Yi is a stable equivalence, so that pi∗ is a stable equivalence of
symmetric T -spectra by Proposition 4.8. Now use Lemma 4.11.

We are now ready to prove the following:

Proposition 4.13. Suppose that p : X → Y is a map of symmetric T -spectra
which is both a stable fibration and a stable equivalence. Then p is a level
equivalence.
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Proof. It suffices to show that the fibre F of p is level contractible. If so, the
underlying map Up of T -spectra is a stable fibration and a stable equivalence
by a long exact sequence argument in bigraded stable homotopy groups (3.2),
and is therefore a level equivalence.

The comparison map

F //

��

X
p //

p'
��

Y

1

��
∗ // Y

1
// Y

of level fibre sequences and Corollary 4.12 together imply that the map F → ∗
is a stable equivalence of stably fibrant objects, so it is a level weak equivalence
by Corollary 4.6.

Corollary 4.14. A map p : X → Y of symmetric T -spectra is a stable fibra-
tion and a stable equivalence if and only if it is both a level fibration and a level
equivalence.

Proof. One direction is Proposition 4.13; the other follows from the definition
of stable equivalence of symmetric T -spectra and Lemma 2.7.

Say that a map i : A→ B of symmetric T -spectra is a stable cofibration if it
has the left lifting property with respect to all morphisms p : X → Y which are
simultaneously stable fibrations and stable equivalences. In view of Corollary
4.14, the maps

Fn(A+)→ Fn(LU∆r
+)

induced by the inclusions A ⊂ LU∆r are stable cofibrations for all r and objects
U . Here, LU denotes the left adjoint to the U -sections functor for simplicial
presheaves.

Theorem 4.15. The category SptΣ
T (Sm|S)Nis of symmetric T -spectra on the

smooth Nisnevich site, and the classes of stable equivalences, stable fibrations
and stable cofibrations, together satisfy the axioms for a proper closed simplicial
model category.

Proof. On account of Proposition 4.4, every map g : X → Y of symmetric
T -spectra has a factorization

X
j //

g
  @

@@
@@

@@
Z

p

��
Y

(4.5)

such that p is a stable fibration, and j has the left lifting property with re-
spect to all stable fibrations and induces trivial fibrations j∗ : hom(Z,W ) →
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hom(X,W ) for all stably fibrant objects W . In particular, j is a stable equiv-
alence and a stable cofibration. The map j is a level cofibration, by Lemma
4.3.

A transfinite small object argument says that g : X → Y has a factorization

X
i //

g
  @

@@
@@

@@
U

q

��
Y

such that i has the left lifting property with respect to all maps which are simul-
taneously level fibrations and level weak equivalences, and q has the right lifting
property with respect to all morphisms Fn(A+) → Fn(LU∆r

+) corresponding
to cofibrations A ↪→ LU∆n of simplicial presheaves for all n and objects U ∈ C.
In particular, q is a level trivial fibration and hence a stable fibration as well as
a stable equivalence by Corollary 4.14. The map i has the left lifting property
with respect to all maps which are stable fibrations and stable equivalences,
also by Corollary 4.14, so that i is a stable cofibration. It is a consequence of
the small object argument that the map i is a level cofibration.

The factorization axiom CM5 has therefore been demonstrated. The exis-
tence of the factorization (4.5) implies that every map which is a stable cofi-
bration and a stable equivalence has the left lifting property with respect to all
stable fibrations and is a level cofibration, by a standard argument. We have
proved CM4, and the axioms CM1 – CM3 are obvious.

If i : K ↪→ L is an inclusion of simplicial sets and p : X → Y is a stable
fibration of symmetric T -spectra, then the induced map

(i∗, p∗) : hom∗(L+, X)→ hom∗(K+, X)×hom∗(K+,Y ) hom∗(L+, Y )

is a stable fibration, which is trivial if i is a weak equivalence or p is a stable
equivalence. This is on account of the corresponding statement for T -spectra
and Corollary 4.14, and implies the axiom SM7 for SptΣ

T (Sm|S)Nis.
The properness assertion is a consequence of Lemma 4.11 and Corollary

4.12.

4.3 The smash product

The smash product X ∧ Y of the symmetric T -spectra X and Y is defined by
the symmetric sequence coequalizer

T ⊗X ⊗ Y ⇒ X ⊗ Y → X ∧ Y

of the map m⊗ 1 : T ⊗X ⊗ Y → X ⊗ Y with the composite

T ⊗X ⊗ Y τ⊗1−−→ X ⊗ T ⊗ Y 1⊗m−−−→ X ⊗ Y
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where m denotes the T -module structure for each of X and Y . The T -module
structure on X ∧ Y is induced by the map m⊗ 1 : T ⊗X ⊗ Y → X ⊗ Y .

The smash product gives the category SptΣ
T (Sm|S)Nis of symmetric T -

spectra the structure of a symmetric monoidal category. This is a formal
consequence of the fact that the symmetric T -spectrum T is a commutative
monoid in the category of symmetric sequences, just as in [7].

A map h : X ∧ Y → Z of symmetric T -spectra can be characterized as a
collection of (Σp×Σq)-equivariant maps hp,q : Xp∧Y q → Zp+q , p, q ≥ 0, which
are T -linear in the sense that the diagram

T r ∧Xp ∧ Y q σ∧1 //

1∧hp,q
��

Xr+p ∧ Y q

hr+p,q

��
T r ∧ Zp+q σ

// Zr+p+q

(4.6)

commutes, and are T -bilinear, meaning that the following diagram commutes

T r ∧Xp ∧ Y q t∧1 //

σ∧1

��

Xp ∧ T r ∧ Y q 1∧σ // Xp ∧ Y r+q

hp,r+q

��
Xr+p ∧ Y q

hr+p,q

// Zr+p+q cr,p⊕1
// Zp+r+q

(4.7)

for each p, q, r ≥ 0.

Lemma 4.16. There is a natural isomorphism

hom(Fn(S0) ∧ A,X) ∼= hom(A,X [n])

for symmetric T -spectra A and X.

Proof. Recall that the symmetric T -spectrum Fn(S
0) ∼= T ⊗ Gn(S0) has the

form

Fn(S0)j =

{
∗ j < n

Σj ⊗Σj−n×Σn (T j−n ∧ Σn+) j ≥ n

and has the obvious T -action. Here, Σn+ denotes the set Σn t {∗}, pointed by
the terminal object ∗.

A map h : Fn(S
0) ∧ X → Y is therefore determined by (Σp × Σn × Σq)-

equivariant maps hp+n,q : T p ∧Σn+ ∧Xq → Y n+p+q for p, q ≥ 0, which satisfy
compatibility conditions given by diagrams (4.6) and (4.7) above. In particular
the maps

hn,q : Σn+ ∧Xq → Y n+q
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are completely determined by the Σq-equivariant composites

Xq ine−−→ Σn+ ∧Xq hn,q−−→ Y n+q ,

where σ ∈ Σq acts on Y n+q via 1n⊕σ and ine is the inclusion of the wedge sum-
mand corresponding to the identity element e ∈ Σn. Then the Σq-equivariant
maps

hq = hn,qine : Xq → Y n+q

define a map of symmetric T -spectra h∗ : X → Y [n] — seeing this is a matter
of chasing the definitions through instances of the diagrams (4.6) and (4.7).

For the converse, suppose given a map h : X → Y [n] of symmetric T -spectra,
which is defined by Σq-equivariant maps hq : Xq → Y n+q. Then hq uniquely
extends to a (Σn × Σq)-equivariant map hn,q : Σn+ ∧Xq → Y n+q. Define the
map hp+n,q : T p ∧ Σn+ ∧Xq → Y p+n+q to be the composite

T p ∧ Σn+ ∧Xq 1∧hn,q−−−−→ T p ∧ Y n+q σ−→ Xp+n+q.

This description of the maps hn,q is determined by h and the T -linearity re-
quirement. For the T -bilinearity, it suffices to show that the diagram

T p ∧ Σn+ ∧Xq t∧1 //

1∧hn,q
��

Σn+ ∧ T p ∧Xq

1∧σ
��

T p ∧ Y n+q

σ

��

Σn+ ∧Xp+q

hn,p+q

��
Y p+n+q

cp,n⊕1
// Y n+p+q

commutes, but this follows from the commutativity of the diagram

T p ∧Xq
1∧hq //

σ

��

T p ∧ Y n+q

σ

��
Y p+n+q

cp,n⊕1

��
Xp+q

hp+q

// Y n+p+q

that arises from the symmetric T -spectrum map h : X → Y [n].

Corollary 4.17. There is a natural isomorphism of symmetric T -spectra

Fn(S
0) ∧X ∼= Gn(S0)⊗X.
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Proof. Both functors are left adjoint to the shift functor X 7→ X [n] — see
Lemma 4.9.

Corollary 4.18. There are isomorphisms

Fn(A) ∧ Fm(B) ∼= Fn+m(A ∧ B),

and these isomorphisms are natural in pointed simplicial presheaves A and B.

Proposition 4.19. Suppose that i : A → B is a stable cofibration and that
j : C → D is a level cofibration. Then the map

(i, j)∗ : (B ∧ C) ∪(A∧C) (A ∧D)→ B ∧D

is a level cofibration. If i and j are both cofibrations, then (i, j)∗ is a cofibration.
If either i or j is a stable equivalence, then (i, j)∗ is a stable equivalence.

Proof. We shall begin with the statements on stable cofibrations. The map
(i∗, j∗) induced by the cofibrations i∗ : Fn(A) → Fn(B) and j∗ : Fm(C) →
Fm(D) is isomorphic to the map obtained from the pointed simplicial set cofi-
bration

(B ∧ C) ∪(A∧C) (A ∧D)→ B ∧D

by applying the functor Fn+m, so (i∗, j∗) is a cofibration.

Suppose that we fix a choice of cofibration j : C → D. Then the collection of
level cofibrations i : A→ B for which the map (i, j) is a cofibration (respectively
a trivial cofibration) is saturated; this means that the collection is closed under
pushouts, filtered colimits over ordinals, and retracts. It follows that all maps
of the form (i, j∗) and hence all maps (i, j) are cofibrations, for all cofibrations
i, and then for all cofibrations j.

The cofibre of the cofibration (i, j) is B/A ∧ D/C, and both factors are
cofibrant. To show that (i, j)∗ is a trivial cofibration if either i or j is a stable
equivalence, it suffices to show that, given cofibrant objects A and B, the
symmetric T -spectrum A ∧ B is trivially cofibrant if either A or B is trivially
cofibrant. For this, it is enough to show that the map 1 ∧ i∗ : A ∧ Fn(K) →
A ∧ Fn(L) is a trivial cofibration if A is trivially cofibrant and i : K → L is a
cofibration of pointed simplicial presheaves.

We have natural isomorphisms

Fn(K) ∼= Fn(S0) ∧K

and we also know from Lemma 4.16 that there is an isomorphism

hom(A ∧ Fn(S0), X) ∼= hom(A,X [n]) (4.8)
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It follows that the diagram

A ∧ Fn(K) //

1∧i∗
��

X

p

��
A ∧ Fn(L) //

::

Y

is adjoint to a diagram

XL[n]

��
A //

77

XK [n]×YK [n] Y
L[n]

and the dotted arrow exists by axiom SM7 and the fact that stable fibrations
shift in the category of T -spectra. In particular, 1∧ i∗ is a trivial cofibration.

Suppose more generally that i is a stable cofibration and that j is a level
cofibration. To show that (i, j)∗ is a level cofibration, it suffices by a saturation
argument to show that the map

(Fn(L) ∧ C) ∪(Fn(K)∧C) (Fn(K) ∧D)→ Fn(L) ∧D

is a level cofibration for all cofibrationsK → L of pointed simplicial presheaves.
This amounts to showing that the dotted arrow exists in all diagrams

C //

j

��

XL[n]

��
D //

88

(Y L ×YK XK)[n]

arising from all trivial injective fibrations p, but this is a consequence of the
Corollary 4.10 and the properness property for the level model structure on
symmetric T -spectra (Theorem 4.2).

The same argument implies that any trivial level cofibration j : C → D
induces a trivial level cofibration (i, j)∗ for any stable cofibration i. It follows
that a level weak equivalence f : E → F induces a level weak equivalence
1 ∧ f : A ∧ E → A ∧ F for any cofibrant symmetric T -spectrum A.

The map (i, j)∗ is a level cofibration with cofibre B/A∧D/C, where B/A is
cofibrant. To show that (i, j)∗ is stably trivial if either i or j is stably trivial, it
suffices once again to show that if B is cofibrant, then A∧B is stably equivalent
to a point if this is so for either A or B. But there is a level weak equivalence
A → A where A is cofibrant by Corollary 4.14 and Theorem 4.15, and the
induced map A ∧ B → A ∧ B is a level equivalence by the argument above.
The result is therefore a consequence of the cofibration case.
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Write MapΣ(X,Y ) for the mapping symmetric T -spectrum object associated
to symmetric T -spectra X and Y . This object exists formally in the category
of symmetric T -spectra, just as in [7, Lemma 2.2.2]. In particular, there are
natural adjunction isomorphisms

hom(Z ∧X,Y ) ∼= hom(Z,MapΣ(X,Y ))

Every symmetric T -spectrum X functorially determines a symmetric T -
spectrum object X [∗] in the category of symmetric T -spectra, with objects
X [n], n ≥ 0 and having bonding maps T p ∧ X [n] → X [p + n]. Each X [n]
carries a canonical Σn-action, and the maps σ : T p ∧ X [n] → X [p + n] are
(Σp × Σn)-equivariant. The map σ is defined in level r by the bonding map
T p ∧Xn+r → Xp+n+r of the original symmetric T -spectrum X .

The point of the remainder of this section is to characterize the levels
MapΣ(X,Y )n in terms of the internal function spaces Hom(X,Y [n]) arising
from shifts of Y .

Write α : Fn+p(S
0) ∧ T p → Fn(S0) for the map of symmetric T -spectra

which picks out the copy of T p corresponding to the identity e ∈ Σn in

T p ∧ Σn+ ⊂ Fn(S0)n+p.

Then Hom(Fn(S0), X) ∼= Xn and precomposition with the map α induces the
adjoint Xn → ΩpTX

n+p of the bonding map T p ∧Xn → Xn+p.

It follows that there are isomorphisms

MapΣ(X,Y )n = Hom(Fn(S
0),MapΣ(X,Y ))

∼= Hom(Fn(S
0) ∧X,Y )

∼= Hom(X,Y [n])

by Lemma 4.16. One sees further that the adjoint bonding map

MapΣ(X,Y )n
σ∗−→ ΩpTMapΣ(X,Y )n+p

is determined by precomposition with α.

There is a commutative diagram

hom(Fn(S0) ∧X,Y )
∼= //

α∗

��

hom(X,Y [n])

σ∗

��
hom(Fn+p(S

0) ∧ T p ∧X,Y ) ∼=
// hom(X,ΩpTY [n+ p])

involving canonical isomorphisms and the adjoint Y [n] → ΩpTY [n + p] of the
map σ : T p ∧ Y [n] → Y [n+ p]. This, in turn, is a consequence of the commu-
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tativity of the diagram

Fn+p(S
0) ∧ T p ∧ Y [n]

α∧1 //

1∧σ
��

Fn(S0) ∧ Y [n]

evn

��
Fn+p(S

0) ∧ Y [n+ p] evn+p

// Y

where evn : Fn(S0) ∧ Y [n] → Y is adjoint to the identity map Y [n] → Y [n].
One uses the concrete description of evn given by proof of the Lemma 4.16 to
show that this diagram commutes.

We have shown the following:

Proposition 4.20. There is a natural isomorphism

MapΣ(X,Y )n ∼= Hom(X,Y [n]),

and the bonding maps of MapΣ(X,Y ) are induced by composition with the
adjoints Y [n]→ ΩpTY [p+ n] of the maps σ : T p ∧ Y [n]→ Y [p+ n]

4.4 Equivalence of stable categories

The purpose of this section is to show that the stable closed model structure on
the category SptΣ

T (Sm|S)Nis of symmetric T -spectra has associated homotopy
category equivalent to the motivic stable category arising from the category
SptT (Sm|S)Nis of T -spectra.

The equivalence of homotopy categories is induced by the functors U (which
forgets the symmetry) and its left adjoint V . As in [7] and [13], the proof of
the equivalence of homotopy categories boils down to showing that any stably
fibrant model j : V X → (V X)s associated to a cofibrant T -spectrumX induces
a stable equivalence given by the composite

X
η−→ UVX

Uj−−→ U(V X)s.

The idea of proof is to use a layer filtration for X , and then show that the
result for all of the layers implies the statement for X .

The functor V preserves stably trivial cofibrations and level equivalences, and
hence preserves stable equivalences. It follows that the functor X 7→ U(V X)s
preserves stable equivalences. Each of the layers of X is a shifted suspension
object up to stable equivalence, so we inductively prove the claim for shifted
suspensions, beginning with suspension T -spectra Σ∞T K associated to pointed
simplicial presheaves K.

The canonical map η : Σ∞T K → UV (Σ∞T K) is an isomorphism, so it suffices
to find a stably fibrant model

V (Σ∞T K) ∼= T ⊗K j−→ (T ⊗K)s
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for the symmetric T -spectrum T ⊗ K such that the map j induces a stable
equivalence Uj : U(T ⊗K) → U(T ⊗K)s of T -spectra — this is Lemma 4.23
below.

The construction that we use involves T -bispectra. A T -bispectrum X con-
sists of pointed simplicial presheaves Xr,s, r, s ≥ 0, together with bonding
maps

σh : T ∧Xr,s → Xr+1,s and σv : T ∧Xr,s → Xr,s+1,

such that the diagram

T ∧Xr,s+1
σh // Xr+1,s+1

T ∧ T ∧Xr,s

T∧σv

OO

t∧1

∼=

((QQQQQQQQQQQQQ

T ∧ T ∧Xr,s
T∧σh

// T ∧Xr+1,s

σv

OO

commutes, where t : T ∧ T → T ∧ T is the isomorphism which flips smash
factors. A T -bispectrum may alternatively be viewed as a T -spectrum object
in the category of T -spectra, in the sense that the collections of objects X r,∗

form T -spectra for all r ≥ 0, and the horizontal bonding maps σh determine
morphisms σh∗ : Xr,∗ ∧ T → Xr+1,∗ given in levels by the composites

Xr,s ∧ T t−→∼= T ∧Xr,s σh−→ Xr+1,s.

There is of course another way to interpret X as a T -spectrum object, by
starting with the T -spectra X∗,s and taking bonding maps X∗,s ∧ T → X∗,s+1

induced by the maps σv .
These definitions are analogous to those for ordinary bispectra [11]. Perhaps

much of that machinery can be pushed through for T -bispectra — the trick for
the moment is to avoid doing so.

A morphism g : X → Y of T -bispectra is a collection of maps

g : Xr,s → Y r,s

which preserve all structure. A map g : X → Y is said to be a level equivalence
(respectively fibration) if each of the component maps g : Xr,s → Y r,s is an
equivalence (respectively fibration). It is an easy exercise, using the level model
structure for T -spectra, to show that there is a level equivalence i : X → Y for
every object X , such that Y is level fibrant.

Suppose that X is level fibrant. Then the map σh∗ : Xr,∗∧T → Xr+1,∗ of T -
spectra has an adjoint σh∗ : Xr,∗ → ΩTX

r+1,∗, and so there are commutative
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diagrams

Xr,s
σh∗ //

σv∗

��

ΩTX
r+1,s

(σv)∗

��
ΩTX

r,s+1
ΩTσh∗

// Ω2
TX

r+1,s+1

One has to be careful here: the map (σv)∗ is the adjoint of the canonical
choice of bonding map σv : T ∧ ΩTX

r+1,s → ΩTX
r+1,s+1 for the T -spectrum

ΩTX
r+1,s, and a calculation shows that there is a commutative diagram

ΩTX
r+1,s

ΩTσv∗//

(σv)∗ ''NNNNNNNNNNN
Ω2
TX

r+1,s+1

t∗

��
Ω2
TX

r+1,s+1

where t∗ is induced by flipping the loop factors. It follows that composing two
instances of these diagrams give a picture

Xr,s
σh∗ //

ΩT (σv∗)σv∗

��

ΩTX
r+1,s

ΩT (ΩT (σv∗)σv∗)

��
Ω3
TX

r+1,s+2

c∗2,1

��
Ω2
TX

r,s+2

Ω2
T σh∗

// Ω3
TX

r+1,s+2

where c∗2,1 = ΩT (t∗)t∗ is induced in loop factors by the cyclic permutation c2,1
of order 3.

Lemma 3.13 implies that the map c∗ induces the identity in presheaves of
homotopy groups. We therefore have a commutative diagram of presheaves of
groups

πjX
r,s //

��

πjΩ
2
TX

r+2,s //

��

· · ·

πjΩ
2
TX

r,s+2 //

��

πjΩ
4
TX

r+2,s+2 //

��

· · ·

...
...

(4.9)
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in which the horizontal morphisms induced by maps Ω2n
T (ΩT (σh)σh) and the

vertical maps are induced by maps Ω2n
T (ΩT (σv)σv)

Write πjQX
r,s for the filtered colimit of the diagram (4.9), and say that a

map g : X → Y of level fibrant T -bispectra is a stable equivalence if it induces
isomorphisms of presheaves of groups

πjQX
r,s g∗−→∼= πjQY

r,s

for all j, r and s. One expands the definition of stable equivalence to arbitrary
T -bispectra by declaring a map to be a stable equivalence if the induced map
on level fibrant models is a stable equivalence.

The presheaves of groups πjQX
r,s are filtered colimits of presheaves of stable

homotopy groups corresponding to both horizontal and vertical choices of T -
spectra. This leads immediately to the following

Lemma 4.21. Suppose that g : X → Y is a map of T -bispectra such that either
all maps g : Xr,∗ → Y r,∗, r ≥ 0, or all maps g : X∗,s → Y ∗,s, s ≥ 0, are stable
equivalences of T -spectra. Then g is a stable equivalence of T -bispectra.

A T -bispectrum Y is said to be stably fibrant if it is level fibrant and all bond-
ing maps σh : Y r,s → ΩTY

r+1,s and σv : Y r,s → ΩTY
r,s+1 are equivalences

(hence pointwise equivalences).
Every T -spectrum Z has an associated suspension T -bispectrum Σ∞T Z con-

sisting of the objects

Z, Z ∧ T, Z ∧ T 2, . . .

The technical device that begins the proof of the main result of this section is
the following:

Lemma 4.22. Let Z be a T -spectrum and suppose that Y is a stably fibrant T -
bispectrum. Suppose that the morphism g : Σ∞T Z → Y is a stable equivalence
of T -bispectra. Then the map g : Z → Y 0 at level 0 is a stable equivalence of
T -spectra, and Y 0 is a stably fibrant T -spectrum.

Proof. We can suppose that there is a level fibrant model j : Σ∞T Z → X for
Σ∞T Z such that the map g factors through j. Make the suspension index of
Σ∞T Z the horizontal index, so that

(Σ∞T Z)r,s = Zs ∧ T r.

The map of T -spectra

Xr,∗ ΩT (σh∗)σh∗−−−−−−−−→ Ω2
TX

r+2,∗

is a stable equivalence by Theorem 3.11 and Lemma 3.15, and so there is an
isomorphism

πj(QTX
r,∗)s ∼= lim−→πjΩ

2n
T X

r,s+2n ∼= πjQX
r,s.
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There is a similar isomorphism

πj(QTY
r,∗)s ∼= lim−→ πjΩ

2n
T Y

r,s+2n ∼= πjQY
r,s.

since Y is stably fibrant. The morphisms

πjQX
r,s → πjQY

r,s

are isomorphisms of presheaves of groups by assumption, so in particular the
map

πj(QTX
0,∗)s → πj(QTY

0,∗)s

is an isomorphism as well.

Lemma 4.23. Suppose that K is a pointed simplicial presheaf, and let i : T ⊗
K → (T ⊗K)s be a stably fibrant model for the symmetric T -spectrum T ⊗K.
Then i induces a stable equivalence Ui : U(T ⊗K)→ U(T ⊗K)s of T -spectra.

Corollary 4.24. Suppose that K is a pointed simplicial presheaf. Then the
map

Σ∞T K
η∗−→ UV (Σ∞T K)s

is a stable equivalence.

Proof of Lemma 4.23. It suffices to find just one stably fibrant model for T⊗K
which satisfies the statement of the lemma.

There is a T -spectrum object Σ∞T (T ⊗K) in the category of symmetric T -
spectra, given by

Σ∞T (T ⊗K)n = (T ⊗K) ∧ T n.

Suppose that n is the horizontal degree, so that the T -bispectrum underlying
this object is specified in bidegrees by

U(Σ∞T (T ⊗K))r,s = T s ∧K ∧ T r.

The functor QT and the level fibrant model functor L are both simplicial func-
tors, so the maps of T -spectra

T s ∧K ∧ T ∗ → LQTL(T s ∧K ∧ T ∗)

determine a map

Σ∞T (T ⊗K)→ LQTL(Σ∞T (T ⊗K))

of T -spectrum objects in the category of symmetric T -spectra whose underlying
map of T -bispectra consists of stably fibrant models in each vertical degree. By
Theorem 3.11, the vertical bonding map

LQTL(T s ∧K ∧ T ∗)→ ΩTLQTL(T s+1 ∧K ∧ T ∗)
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is a stable equivalence and hence a level equivalence, so that the T -bispectrum
U(LQTL(Σ∞T (T ⊗ K))) is stably fibrant. Thus, the symmetric T -spectrum
LQTL((T ⊗K)∧S0) is stably fibrant, as is its underlying T -spectrum. Finally,
Lemma 4.22 implies that the map of T -spectra

U((T ⊗K) ∧ S0)→ U(LQTL((T ⊗K) ∧ S0))

is a stable equivalence.

Lemma 4.25. A map g : X → Y of symmetric T -spectra is a stable equivalence
if and only if the suspension g ∧ T : X ∧ T → Y ∧ T is a stable equivalence.

Proof. If g is a stable equivalence, then g∧T is a stable equivalence, on account
of the isomorphisms

hom(X ∧ T,W ) ∼= hom(X,ΩTW )

and the fact that the functor ΩT preserves stably fibrant injective objects.
If g∧T is a stable equivalence, then the natural stable equivalence σ∗ : W →

ΩTW [1] of (4.1) (see also Corollary 4.10) induces a diagram

hom(Y,W )
g∗ //

'
��

hom(X,W )

'
��

hom(Y,ΩTW [1])
g∗ //

∼=
��

hom(X,ΩTW [1])

∼=
��

hom(Y ∧ T,W [1])
(g∧T )∗

// hom(X ∧ T,W [1])

If g∧T is a stable equivalence, then (g∧T )∗ is a weak equivalence for all stably
fibrant injective W , so g∗ is a weak equivalence for all such W .

Corollary 4.26. The composite

η∗ : X
η−→ ΩT (X ∧ T )

ΩT j−−→ ΩT (X ∧ T )s

is a stable equivalence of symmetric T -spectra, for any choice of stably fibrant
model j for X ∧ T .

Proof. There is a diagram

X ∧ T
η∗∧T //

j ''OOOOOOOOOOOO
ΩT (X ∧ T )s ∧ T

ev

��
(X ∧ T )s

and the evaluation map ev is a stable equivalence of the underlying T -spectra
by Corollary 3.16. Now use the Lemma 4.25.
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Lemma 4.27. The natural map η∗ : X → U(V X)s is a stable equivalence if
and only if the map η∗ : X ∧ T → U(V (X ∧ T ))s is a stable equivalence.

Proof. There is a commutative diagram

X ∧ T
η∧T //

η

��<
<

<<
<<

<
<<

<<
<<

<<
<

<<
UV (X) ∧ T Uj∧T //

∼=
��

U(V X)s ∧ T
∼=
��

U(V (X) ∧ T )
U(j∧T )//

∼=
��

U((V X)s ∧ T )

Uj̃

��
UV (X ∧ T )

Uj
// U(V (X ∧ T )s)

Here j̃ : (V X)s ∧ T → (V (X ∧ T )s is a map of symmetric T -spectra which
makes the diagram

V (X) ∧ T j∧T //

∼=
��

V (X)s ∧ T

j̃

��
V (X ∧ T )

j
// (V (X ∧ T ))s

commute — it exists since j∧T is a trivial cofibration if j : V (X)→ V (X)s is a
trivial cofibration. It therefore suffices to show that Uj̃ is a stable equivalence
of T -spectra.

It further suffices to show that the composite

UY ∧ T ∼=−→ U(Y ∧ T )
Uj−−→ U(Y ∧ T )s (4.10)

is a stable equivalence if Y is a stably fibrant symmetric T -spectrum and j :
Y ∧ T → (Y ∧ T )s is a stably fibrant model. This, however, is a consequence
of the commutativity of the diagram

UY
η //

Uη ++WWWWWWWWWWWWWWWWWWWWWWW ΩT (UY ∧ T )
∼= // ΩTU(Y ∧ T )

ΩTUj //

∼=
��

ΩTU(Y ∧ T )s

∼=
��

UΩT (Y ∧ T )
UΩT j

// UΩT (Y ∧ T )s

The top horizontal composite in this diagram is the adjoint of the composite
(4.10), while the composite

Y
η−→ ΩT (Y ∧ T )

ΩT j−−→ ΩT (Y ∧ T )s

is a levelwise equivalence of stably fibrant symmetric T -spectra, by Corollary
4.26.
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There are canonical stable equivalences

Σ∞T K[−n] ∧ Tn → Σ∞T K

and

Σ∞T X
n[−n]→ LnX

where LnX is the nth stage of the layer filtration for a T -spectrum X . The
following is then a consequence of Corollary 4.24 and Lemma 4.27:

Corollary 4.28. 1) Suppose that K is a pointed simplicial presheaf. Then
the map

η∗ : Σ∞T K[n]→ UV (Σ∞T K[n])s

is a stable equivalence for all n ∈ Z.

2) Suppose that X is a T -spectrum. Then the map

η∗ : LnX → UV (LnX)s

is a stable equivalence for all n ≥ 0.

Proof. For part 2), recall that the functor V preserves stably trivial cofibrations
and level equivalences, and hence preserves stable equivalences, so that the
functor X 7→ U(V X)s preserves stable equivalences. Part 2) is therefore a
consequence of part 1), while 1) follows from Lemma 4.27.

Lemma 4.29. Suppose that

X0 → X1 → · · ·

is an inductive system of T -spectra such that all maps η∗ : Xn → U(V Xn)s are
stable equivalences. Then the map

η∗ : lim−→Xn → UV (lim−→Xn)s

is a stable equivalence.

Proof. There is a commutative diagram

lim−→UV (Xn)
lim−→Uj

//

∼=

&&LLLLLLLLLL
lim−→U(V (Xn))s

∼=

''NNNNNNNNNNN

lim−→Xn

lim−→ η
;;wwwwwwwww

η
##G

GG
GG

GG
GG

U(lim−→V (Xn))
U(lim−→ j)

//

∼=xxrrrrrrrrrr
U(lim−→V (Xn)s)

Uj̃wwppppppppppp

UV (lim−→Xn)
Uj

// UV (lim−→Xn)s
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where the displayed isomorphisms are canonical and j̃ make the following dia-
gram commute:

lim−→V (Xn)
lim−→ j

//

∼=
��

lim−→V (Xn)s

j̃

��
V (lim−→Xn)

j
// V (lim−→Xn)s

Note that we can presume that the stably trivial cofibrations j : V (Xn) →
V (Xn)s of symmetric T -spectra can be chosen so that the induced map lim−→ j :
lim−→V (Xn)→ lim−→V (Xn)s is a stably trivial cofibration, so that the existence of

the map j̃ makes sense. This is the analogue of a step in the proof of Lemma
3.12 (a corresponding result, namely that stable equivalences are closed under
filtered colimits, holds for symmetric T -spectra, via the same proof). It follows
that j̃ is a stable equivalence, but then Corollary 1.7 implies that j̃ is a level
equivalence, and so Uj̃ is a level equivalence as well. Observe finally that
Lemma 3.12 implies that the composite

lim−→Xn

lim−→ η−−−→ lim−→UV (Xn)
lim−→Uj−−−−→ lim−→U(V (Xn)s)

is a stable equivalence.

Corollary 4.28 and Lemma 4.29 together imply the following:

Proposition 4.30. The natural map η∗ : X → U(V (X))s is a stable equiva-
lence for all T -spectra X.

Theorem 4.31. The functors U and V induce an adjoint equivalence of stable
homotopy categories

Ho(SptΣ
T (Sm|S)Nis) � Ho(SptT (Sm|S)Nis)

Proof. We show that the adjoint pair of functors (U, V ) is a Quillen equivalence.
Suppose that W is a stably fibrant symmetric T -spectrum. Then the canon-

ical map ε : V U(W ) → W is a stable equivalence. To see this, take a factor-
ization

V U(W )
j //

ε

��

(V U(W ))s

j̃
xxppppppppppp

W

and apply the functor U to obtain the diagram

U(W )
η //

1 &&LLLLLLLLLL
U(V U(W ))

Uj //

Uε

��

U(V U(W ))s

Uj̃wwoooooooooooo

U(W )
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The composite Uj ·η : U(W )→ U(V U(W ))s is a stable equivalence by Proposi-
tion 4.30, so that Uj̃ is a stable equivalence of T -spectra. But then j̃ is a stable
equivalence of symmetric T -spectra by Proposition 4.8, and so ε : V U(W )→W
is a stable equivalence.

Proposition 4.13 implies that U preserves stable trivial fibrations, while it
preserves stable fibrations by definition.

Suppose that X is a cofibrant T -spectrum and W is a stably fibrant symmet-
ric T -spectrum. We have seen that ε : V U(W ) → W is a stable equivalence,
and we also know that V preserves stable equivalences — see the proof of
Corollary 4.28. Thus, if f : X → U(W ) is a stable equivalence then the adjoint
f∗ : V (X)→W is a stable equivalence.

Conversely, if f∗ is a stable equivalence, then f∗ factors through a level
equivalence f̃ : (V (X))s →W , and there is a diagram

X
η //

η∗ $$I
II

II
II

II
I UV (X)

j

��

Uf∗ // U(W )

U(V (X))s

Uf̃

99rrrrrrrrrr

The map η∗ is a stable equivalence by Proposition 4.30 and Uf̃ is a level
equivalence, so that f is a stable equivalence.

4.5 Symmetric S1-spectra

The results proved above for symmetric T -spectra have analogues for symmetric
S1-spectra, with proofs that are formally the same in many cases. These results
will be summarized here.

The analogy begins with the definition. A symmetric S1-spectrumX is an S1-
spectrum consisting of pointed simplicial presheaves Xn, n ≥ 0, with bonding
maps σ : S1 ∧Xn → Xn+1, with symmetric group actions Σn ×Xn → Xn+1,
such that the composite bonding maps Sp ∧ Xn → Xp+n are (Σp × Σn)-
equivariant. There is an obvious category of such things, which is denoted by
SptΣ

S1(Sm|S)Nis. This category is, in the language of [13], the category of
presheaves of symmetric spectra on the smooth Nisnevich site (Sm|S)Nis. We
know from [13] that this category carries a well behaved stable closed model
structure which is created by the Nisnevich topology. The point of this section
is to show that there is an additional motivic stable closed model structure
such that the associated homotopy category is equivalent to the motivic stable
category for S1-spectra.

As for symmetric T -spectra, say that a map f : X → Y is a level equivalence
if each component map f : Xn → Y n is a motivic equivalence. The map f is a
level cofibration if each f : Xn → Y n is a cofibration of simplicial presheaves.
Finally, a map g : Z → W is an injective fibration if it has the right lifting
property with respect to all maps which are level cofibrations and level weak
equivalences. We then have the following:
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Theorem 4.32. The category SptΣ
S1(Sm|S)Nis of symmetric S1-spectra on the

smooth Nisnevich site, together with the classes of level cofibrations, level equiv-
alences and injective fibrations, satisfies the axioms for a proper closed simpli-
cial model category.

The proof of this result is just like that of Theorem 4.2: the controlled level
fibrant construction Y 7→ L(Y ) for simplicial presheaves extends to a functor
on symmetric S1-spectra (diagram (1.2)), and we know from [13] that level cofi-
brations and level local equivalences of symmetric S1-spectra satisfy a bounded
cofibration condition. These two facts can be used together with the argument
in the proof of Proposition 2.15 to show that the level motivic equivalences
and level cofibrations of symmetric S1-spectra satisfy a bounded cofibration
condition. The rest of the proof is formal.

The definition and properties of the left adjoint V to the forgetful functor

U : SptΣ
S1(Sm|S)Nis → SptS1(Sm|S)Nis

taking values in S1-spectra are already well known.
We say that a map p : X → Y of symmetric S1-spectra is a stable fibration

if the underlying map Up : UX → UY of S1-spectra is a (motivic) stable
fibration. Proposition 2.15 has an analogue for S1-spectra which implies that a
map q : Z →W of S1-spectra is a stable fibration if and only if it has the right
lifting property with respect to all λ-bounded cofibrations A → B which are
stable equivalences. It follows that a map p : X → Y of symmetric S1-spectra
is a stable fibration if and only if it has the right lifting property with respect to
images V (A)→ V (B) of all λ-bounded trivial cofibrations of S1-spectra under
the functor V . This implies the following analogue of Proposition 4.4:

Proposition 4.33. Every map f : X → Y of symmetric S1-spectra has a
natural factorization

X
j //

f   @
@@

@@
@@

Z

p

��
Y

such that p is a stable fibration, and j is a level cofibration which has the left
lifting property with respect to all stable fibrations.

As before, this result implies the existence of injective stably fibrant models.
Say that a map f : X → Y of symmetric S1-spectra is a stable equivalence if

it induces a weak equivalence

g∗ : hom(Y,W )→ hom(X,W )

for all stably fibrant injective objects W .
The shift construction X 7→ X [n], the natural map X → ΩX [1] and the

symmetric stabilization functor X 7→ QΣX = QΣ
S1X are already well known

[7], [13], and the same argument as for Proposition 4.8 gives the following:

Documenta Mathematica 5 (2000) 445–552



534 J. F. Jardine

Proposition 4.34. Suppose that α : X → Y is a map of symmetric S1-spectra
such that Uα : UX → UY is a stable equivalence of S1-spectra. Then α is a
stable equivalence of symmetric S1-spectra.

The description X 7→ Gn(S
0) ⊗ X of the left adjoint to the shift functor

is also well known. This functor preserves level cofibrations and level weak
equivalences by construction and the properness of the unstable motivic closed
model structure, so that the adjoint Y 7→ Y [n] preserves injective fibrations.
In particular, if W is stably fibrant and injective, then the canonical map W →
ΩW [1] is a level equivalence of stably fibrant injective objects. The function
complex hom(X,W ) is therefore an infinite loop space for all symmetric S1-
spectra X and stably fibrant injective objects W , so that we can prove

Lemma 4.35. Suppose that the commutative diagram

A1
i1 //

f1

��

B1
π1 //

f2

��

B1/A1

f3

��
A2

i2
// B2 π2

// B2/A2

is a comparison diagram of level cofibre sequences. Then if any two of the maps
f1, f2 and f3 are stable equivalences of symmetric S1-spectra, then so is the
third.

The proof is by analogy with the proof of Lemma 4.11.

Insofar as we know that fibre and cofibre sequences coincide in the motivic
stable category of S1-spectra (Corollary 3.2), we also have the analogue of
Corollary 4.12, and this implies

Proposition 4.36. Suppose that p : X → Y is a map of symmetric S1-spectra
which is both a stable fibration and a stable equivalence. Then p is a level
equivalence.

Corollary 4.37. A map p : X → Y of symmetric S1-spectra is a stable
fibration and a stable equivalence if and only if it is both a level fibration and
a level equivalence.

Say that a map i : A → B of symmetric S1-spectra is a stable cofibration if
it has the left lifting property with respect to all maps p : X → Y which are
stable equivalences and stable fibrations. Then we have

Theorem 4.38. The category SptΣ
S1(Sm|S)Nis of symmetric S1-spectra on the

smooth Nisnevich site, and the classes of stable equivalences, stable fibrations
and stable cofibrations, together satisfy the axioms for a proper closed simplicial
model category.
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Write η∗ for the composite

X
η−→ UV X

Uj−−→ U(V X)s

where j : V X → (V X)s is a stably fibrant model of the symmetric S1-spectrum
V X . Then Proposition 4.30 translates as follows:

Proposition 4.39. The natural map η∗ : X → U(V X)s is a stable equivalence
for all S1-spectra X.

Just as before, this is the key step in demonstrating that the category of sym-
metric spectrum objects is a model for the stable category:

Theorem 4.40. The functors U and V induce an adjoint equivalence of stable
homotopy categories

Ho(SptΣ
S1(Sm|S)Nis) � Ho(SptS1(Sm|S)Nis)

Again, one shows that the adjoint pair of functors (U, V ) is a Quillen equiva-
lence.

The proofs of Proposition 4.30 and Theorem 4.31 occupied all of Section 4.4,
and the proofs of Proposition 4.39 and Theorem 4.40 are exactly the same, sub-
ject to replacing T by S1. As before, the interesting part is proving Proposition
4.39 in the case of suspension objects — the analogue is Lemma 4.23. That
proof involved T -bispectra, which translates here to S1-bispectra, or presheaves
of bispectra in the sense of [11], but interpreted in motivic homotopy theory.

Finally, the categorical material on smash products in Section 4.3 arises from
manipulations of free functors that are well known for ordinary symmetric spec-
tra, and therefore hold for symmetric S1-spectra. The homotopically significant
statement is Proposition 4.19:

Proposition 4.41. Suppose that i : A → B is a stable cofibration and that
j : C → D is a level cofibration. Then the map

(i, j)∗ : (B ∧ C) ∪(A∧C) (A ∧D)→ B ∧D

is a level cofibration. If i and j are both cofibrations, then (i, j)∗ is a cofibration.
If either i or j is a stable equivalence, then (i, j)∗ is a stable equivalence.

The statement and proof of this result are really quite generic, and hold
essentially anywhere that one succeeds in generating the usual machinery of
symmetric spectrum objects. This includes the present discussion of symmetric
S1-spectra in the motivic context, and also translates into a statement for
presheaves of symmetric spectra in the sense of [13].
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Appendices

A Properness

The purpose of this section is to show that the closed model structure that
arises from formally collapsing a simplicial presheaf I to a point satisfies the
properness axiom. This is true over arbitrary small Grothendieck sites and,
more explicitly, for the f -local theory for any rational point f : ∗ → I . This
result specializes to properness for motivic homotopy theory: that is the case
of a rational point ∗ → A1 on the affine line, in the category of simplicial
presheaves (or sheaves) for the site (Sm|S)Nis of smooth k-schemes equipped
with the Nisnevich topology. I shall revert to the original homotopy theoretic
notation (see also Section 1.2) for the general discussion that follows.

Suppose that C is a small Grothendieck site, and let α be a cardinal which
is an upper bound for the cardinality of the set Mor(C) of morphisms of C.
Suppose that I is a simplicial presheaf on C having a rational point f : ∗ → I .
We will show that the f -local closed model structure on SPre(C) is proper, for
any such map f : ∗ → I .

Let D be a simplicial presheaf on the site C, and write f : D → D × I for
the composite

D ∼= D × ∗ 1D×f−−−−→ D × I.
Lemma A.1. Suppose given maps

D
f−→ D × I g−→ X

and a global fibration π : U → X, and suppose that X is f -fibrant. Then the
induced map

f∗ : U ×X D → U ×X (D × I)
is an f -equivalence.

Proof. To make the notation easier, given a map α : V → X , write Vα = U×XV
for the pullback of α along π : U → X . In this notation, the statement of the
lemma is the assertion that the induced map

f∗ : Dgf → (D × I)g
is an f -equivalence.

The object X is f -fibrant and the projection map pr : D × I → D is an
f -equivalence, so there is a simplicial homotopy

D × I d0 //

pr

��

(D × I)×∆1

h

��

D × Id1oo

g
xxpppppppppppp

D
gf

// X.
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Pulling back along the global fibration π : U → X gives a diagram

Dgf
d0∗ //

f∗

��

(D ×∆1)h(f×1)

(f×1)∗

��

Dgf
d1∗oo

f∗

��
(D × I)gf ·pr

d0∗

// (D × I ×∆1)h (D × I)g
d1∗

oo

All of the maps labeled dε∗ are local weak equivalences, since π is a global
fibration and the ordinary closed model structure for SPre(C) is proper. It
therefore suffices to show that the map f∗ : Dgf → (D × I)gf ·pr is an f -
equivalence.

But the map gf · pr factors through the projection map pr, so that there is
an isomorphism

θ : (D × I)gf ·pr
∼=−→ Dgf × I

and a commutative diagram

Dgf

f∗

��

f

&&NNNNNNNNNNN

(D × I)gf ·pr
θ

∼= // Dgf × I

The map f∗ is therefore an f -equivalence.

An elementary f -trivial cofibration is a member of the saturation of the
family of cofibrations consisting of the maps

(∗ × LU∆n) ∪(∗×Y ) (I × Y ) ⊂ I × LU∆n,

and all maps

C ↪→ D

which are cofibrations and local weak equivalences, where D is α-bounded. An
f -injective fibration is a map p : Z → W which has the right lifting property
with respect to all elementary f -trivial cofibrations.

Lemma A.2. 1) An f -injective fibration p is a global fibration.

2) The class of f -injective fibrations is closed under composition.

3) A simplicial presheaf Z is f -local if and only if the map Z → ∗ is an
f -injective fibration.
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4) Every simplicial presheaf map g : X → Y has a factorization

X
g //

j   B
BB

BB
BB

B Y

W

q

>>}}}}}}}}

where q is an f -injective fibration and j is an elementary f -cofibration
and an f -equivalence.

5) Every elementary f -cofibration is an f -equivalence.

Proof. Part 4) is the consequence of a standard transfinite small object argu-
ment.

The family of maps having the left lifting property with respect to all f -
injective fibrations is a saturated class containing the generating elementary
f -cofibrations, so that the elementary f -cofibrations have the left lifting prop-
erty with respect to all f -injective fibrations. It follows from the factorization
statement 4) that every elementary f -cofibration is a retract of an elementary f -
cofibration which is an f -equivalence. But then every elementary f -cofibration
is an f -equivalence, giving 5).

Now we can list some consequences of Lemmas A.1 and A.2:

Lemma A.3. Suppose given maps

C
j−→ D

g−→ X

and a global fibration π : U → X, and suppose that X is f -fibrant and j is an
elementary f -cofibration. Then the induced map

j∗ : U ×X C → U ×X D

is an f -equivalence.

Proof. The class of cofibrations C ↪→ D → X over X which pull back to
f -equivalences U ×X C → U ×X D is saturated by exactness of pullback,
and contains all ordinary trivial cofibrations since the standard closed model
structure on SPre(C) is proper.

In any diagram

Y //

f

��

LU∆n

f∗

��
f

!!D
DD

DD
DD

DD
DD

DDD
DD

DD
DD

I × Y //

++XXXXXXXXXXXXXXXXXXXXXXXXXXXX (I × Y ) ∪Y LU∆n

θ

((QQQQQQQQQQQQQ

I × LU∆n
g

// X
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the maps f and f∗ pull back to f -equivalences along π by Lemma A.1, and so
θ pulls back to an f -equivalence along π. This means that all generators of the
family of elementary f -cofibrations pull back to f -equivalences along π, so all
elementary f -cofibrations pull back to f -equivalences along π.

Corollary A.4. Suppose given a pullback diagram

A×X U
g∗ //

��

U

π

��
A g

// X

where X is f -fibrant, g is an f -equivalence and π is a global fibration. Then
the induced map g∗ is an f -equivalence.

Proof. Find a factorization

A
g //

j   A
AA

AA
AA

A X

W

q

>>}}}}}}}}

of g, where j is an elementary f -cofibration and q is an f -injective fibration.
Then W is f -fibrant by Lemma A.2, and the fact that the classes of f -fibrant
objects and f -injective objects coincide [4]. Thus, q is an f -equivalence of f -
fibrant objects, and is therefore an ordinary local weak equivalence, and hence
pulls back to a local weak equivalence along the global fibration π. But then the
elementary f -cofibration j pulls back to an f -equivalence by Lemma A.3.

Theorem A.5 (Properness). Suppose given a diagram

A×X U
g∗ //

��

U

π

��
A g

// Z

such that π is an f -fibration and g is an f -equivalence. Then the induced map
g∗ is an f -equivalence.

Proof. Form a diagram

U
i //

π

��

V

p

��
Z

j
// LZ
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such that i is a cofibration and an f -equivalence, LZ is f -fibrant, p is an f -
fibration, and j is a cofibration and an f -equivalence. Consider the pullback
diagram

Z ×LZ V
j∗ //

p∗

��

V

p

��
Z

j
// LZ

The map j∗ : Z×LZ V → V is an f -equivalence by Corollary A.4. The induced
comparison

U
θ //

π
��?

??
??

??
?

Z ×LZ V

p∗
zzuuuuuuuuu

Z

is an f -equivalence of f -fibrant objects in SPre(C) ↓ X , hence a homotopy
equivalence, and so the map θ is a local weak equivalence. Properness for the
standard closed model structure on SPre(C) implies that the induced map

A×Z U θ∗−→ A×LZ V

is a local weak equivalence. Thus, in the diagram

A×Z U
g∗ //

θ∗

��

U

θ

��
A×LZ V

g′
// Z ×LZ V

the map g∗ is an f -equivalence if and only if g′ is an f -equivalence. But the
maps j∗g′ and j∗ are f -equivalences by Corollary A.4, so g′ is an f -equivalence.

Theorem A.5 is not the full properness assertion for the f -local theory but it
is the heart of the matter. The second half of the properness axiom says that
the class of f -equivalences is closed under pushout along cofibrations. This
means that, given a pushout diagram

A
g //

i

��

C

��
B g∗

// B ∪A C
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with i a cofibration and g an f -equivalence, the map g∗ should be an f -
equivalence. This is easily proved: the functor hom( ,W ) takes pushouts
of simplicial presheaves to pullbacks of simplicial sets, and the map i∗ :
hom(B,W )→ hom(A,W ) is a fibration and g∗ : hom(C,W ) → hom(A,W )
is a weak equivalence if W is f -local. Properness for ordinary simplicial sets
implies that the induced map

g∗∗ : hom(B ∪A C,W )→ hom(B,W )

is a weak equivalence of simplicial sets. This is true for all f -local objects W ,
so that g∗ is an f -equivalence.

B Motivic homotopy theory of presheaves

Let S Shv(Sm|S)Nis (respectively Shv(Sm|S)Nis) denote the category of sim-
plicial sheaves (respectively sheaves) on the smooth Nisnevich site (Sm|S)Nis
for a Noetherian scheme S of finite dimension. Suppose that Pre(Sm|S)Nis and
SPre(Sm|S)Nis denote the corresponding categories of presheaves and simpli-
cial presheaves. We know that the categories of simplicial sheaves and simplicial
presheaves carry closed model structures obtained from the local structures for
the Nisnevich topology by formally contracting the affine line A1, and that the
resulting homotopy categories are equivalent, and are models for the motivic
homotopy category — see Theorem 1.1 and Theorem 1.2.

The purpose of this section is to explain the Morel-Voevodsky result that
the sheaf category Shv(Sm|S)Nis inherits a closed model structure from the
category of simplicial sheaves in such a way that the associated homotopy
category is also a model for the motivic homotopy category. We actually do a
little more here (Theorem B.4 below), and show that the category of presheaves
Pre(Sm|S)Nis has a proper closed simplicial model structure, so that there is
an adjoint equivalence of the associated homotopy category Ho(Pre(Sm|S)Nis)
with the motivic homotopy category. The Morel-Voevodsky result for sheaves
(Theorem B.6) is a consequence of Theorem B.4, in a way that one has come
to expect.

Morel and Voevodsky construct a singular functor

S = SA1 : S Shv(Sm|S)Nis → S Shv(Sm|S)Nis

in terms of the internal hom functor by specifying S(B) = Hom(A•, B) for
ordinary sheaves B, and then by defining S(X) for a simplicial sheaf X to be
the diagonal of the bisimplicial object

Hom(Am, Xn).

Here, A• refers to the standard cosimplicial k-variety made up of the affine
planes An. The singular functor specializes, in particular, to a functor

S : Shv(Sm|S)Nis → S Shv(Sm|S)Nis,
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This last functor has a canonical left adjoint

| · | : S Shv(Sm|S)Nis → Shv(Sm|S)Nis,

which is defined by a suitable coend. This means that there is a coequalizer in
the sheaf category having the form

⊔

θ:m→n

Xn × Am ⇒
⊔

n

Xn × An → |X |

for a simplicial sheaf X that one expects from the definition of the realization
functor from simplicial sets to spaces. Morel and Voevodsky show [14] that, for
a suitable closed model structure on the sheaf category Shv(Sm|S)Nis, these
functors define an adjoint equivalence of the associated homotopy categories.

These constructions are easily generalized to simplicial presheaves, with com-
pletely analogous definitions. There is a singular functor

S = SA1 : SPre(Sm|S)Nis → SPre(Sm|S)Nis

which is defined on presheaves C by setting S(C) = Hom(A•, C); then S(Y )
is defined for a simplicial presheaf Y by taking the diagonal of the bisimplicial
presheaf

Hom(Am, Yn).

There is a realization functor

| · | : SPre(Sm|S)Nis → Pre(Sm|S)Nis,

defined by coend, so that there is a coequalizer

⊔

θ:m→n

Yn × Am ⇒
⊔

n

Yn × An → |Y |

in the presheaf category, for simplicial presheaves Y . The realization functor
is left adjoint to the singular functor, just as before.

We now have the following analogue of a string of results for the singular
functor on simplicial sheaves, proved by Morel and Voevodsky in [14]:

Lemma B.1. The singular functor

S : SPre(Sm|S)Nis → SPre(Sm|S)Nis

has the following properties:

1) The functor S takes the morphism f : ∗ → A1 to a weak equivalence of
simplicial sheaves.

2) For any simplicial presheaf X, the canonical map η : X → S(X) is a
motivic weak equivalence and a cofibration.
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3) The realization functor preserves cofibrations and motivic weak equiva-
lences.

Proof. For 1), it suffices to show that the simplicial set

S(A1)(Sp(R)) ∼= R[t∗]

is contractible for affine schemes Sp(R), where R[t∗] is the simplicial R-algebra
with n-simplices

R[t∗]n = R[t0, . . . , tn]/(
∑

ti = 1),

and having face maps defined by

di(tj) =





tj if j < i,

0 if j = i, and

tj−1 if j > i.

It is well known (for many years — see [1], for example) that the simplicial set
underlying this simplicial R-algebra is contractible, with contracting (chain)
homotopy given by

f(t0, . . . tn) 7→ (1− t0)f(t1, . . . , tn+1).

For 2), the canonical map η for simplicial sets is the diagonal of a correspond-
ing bisimplicial set map made of canonical maps η : B → Hom(A•, B) defined
for simplicial presheaves B. This map is a morphism of simplicial presheaves
which on n-simplices is the map

B → Hom(An, B) (B.1)

defined by precomposition with the map An → ∗. There is a contracting
homotopy h : An × A1 → An defined by

((t1, . . . , tn), s) 7→ (t1s, . . . , tns).

This contracting homotopy induces an obvious map

h∗ : Hom(An, B)× A1 → Hom(An, B),

and the existence of the homotopy h∗ implies that the map (B.1) is an A1

homotopy equivalence, and hence a motivic weak equivalence. The motivic
model structure for the simplicial presheaf category is proper, so that standard
techniques imply that the map η : X → S(X) is a motivic weak equivalence
for all simplicial presheaves X .

To prove statement 3), observe that any cosimplicial set E determines a
set-valued realization functor X 7→ |X |E defined on simplicial sets by the co-
equalizer

⊔

θ:m→n

Xn ×Em ⇒
⊔

n

Xn ×En → |Y |E .
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One sees easily that there is a bijection |∆n|E → En defined by the maps ∆n
k ×

Dk → Dn given by (θ, x) 7→ θ∗(x). This bijection is natural in ordinal number
maps; in particular, the induced function |∂∆1|E → |∆1|E is isomorphic to the
function

(d0, d1) : E0 t E0 → E1.

Also, all diagrams

En−2 dj−1
//

di

��

En−1

di

��
En−1

dj
// En

corresponding to i < j are pullbacks by the cosimplicial identities for n ≥ 2.
Thus, there is an isomorphism

|∂∆n|E ∼= ∂En,

where ∂En denotes the union of the images di(En−1) in En, and that the
induced map |∂∆n|E → |∆n|E is an injection for n ≥ 2. It follows that the
realization functor X 7→ |X |E takes cofibrations to injections if and only if E
is unaugmented in the (traditional — see [3]) sense that the diagram

∅ //

��

E0

d0

��
E0

d1
// E1

is a pullback.
Also, if E is unaugmented, one can show that the natural map

X0 ×E0 → |X |E

is an inclusion, by induction on the skeleta of X .
Any cosimplicial object D in the category of simplicial presheaves determines

a D-realization functor Y 7→ |Y |D, defined by a coequalizer diagram

⊔

θ:m→n

Yn ×Dm ⇒
⊔

n

Yn ×Dn → |Y |D.

as above. Write |Y |(p)D for the image of

⊔

0≤n≤p
Yn ×Dn
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in |Y |D, and let s[p]Yp be the degenerate part of Yp+1. Then there is a pushout
diagram

(s[p]Yp ×Dp+1) ∪ (Yp+1 × ∂Dp+1) //

��

|Y |(p)D

��
Yp+1 ×Dp+1 // |Y |(p+1)

D

The vertical maps are cofibrations, and the canonical map

Y0 ×D0 → |Y |(0)D
is an isomorphism if D is unaugmented.

A properness argument therefore implies that any level motivic equivalence
D → E of unaugmented cosimplicial presheaves induces a natural motivic
equivalence |Y |D → |Y |E . In particular, the maps of cosimplicial objects

An ← An ×∆n → ∆n

are level motivic equivalences, and so there are natural motivic equivalences

|Y |A• ← |Y |A•×∆ → |Y |∆ ∼= Y.

The realization functor Y 7→ |Y | = |Y |A• therefore preserves motivic equiv-
alences. It follows also that this realization functor preserves cofibrations of
simplicial presheaves.

Corollary B.2. The singular functor preserves fibrations.

Corollary B.3. There is a natural motivic weak equivalence Y ' |Y |, for all
simplicial presheaves Y .

Say that a map g : X → Y of presheaves on the smooth Nisnevich site
(Sm|S)Nis is a motivic weak equivalence if the associated morphism of constant
simplicial presheaves is a motivic weak equivalence. A cofibration of presheaves
is an inclusion, and a motivic fibration is a map which has the right lifting
property with respect to all maps which are simultaneously cofibrations and
motivic weak equivalences.

Given a presheaf X and a simplicial set K, write X ⊗ K for the presheaf
given by

X ⊗K = |X ×K|.

There is an isomorphism

X ⊗K ∼= lim−→
σ:∆n→K

X ⊗∆n,
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where the colimit is indexed over the simplex category of K, and one checks
that there is a natural isomorphism

X ⊗∆n ∼= X × An.

The category of presheaves on (Sm|S)Nis acquires a simplicial structure from
these definitions: the function complex hom(X,Y ) has n-simplices specified by

hom(X,Y )n = hom(X ⊗∆n, Y ) ∼= hom(X × An, Y ),

while for a simplicial setK and a presheafX , the mapping presheaf hom(K,X)
is given in terms of the internal hom functor by

hom(K,X) = lim←−
σ:∆n→K

Hom(An, X).

Theorem B.4. With these definitions, we have the following:

1) The category Pre(Sm|S)Nis of presheaves on the smooth Nisnevich site
of a Noetherian scheme S of finite dimension satisfies the axioms for a
proper closed simplicial model category.

2) The singular and realization functors determine an adjoint equivalence of
motivic homotopy categories

Ho(Pre(Sm|S)Nis) ' Ho(SPre(Sm|S)Nis).

Proof. Recall from [4, p.1086] that the category SPre(Sm|S)Nis of simplicial
presheaves on the smooth Nisnevich site and the class E of motivic weak equiv-
alences together satisfy a list of properties analogous to those appearing in the
statement of Proposition 4.1. These include, for example, the bounded cofibra-
tion condition:

E7: There is an infinite cardinal λ which is an upper bound for the cardinal-
ity of the set of morphisms of (Sm|S)Nis, such that for every simplicial
presheaf diagram

X

i

��
A // Y

with i an E-trivial cofibration and A an λ-bounded subobject of Y , there
is a subobject B ⊂ Y such that A ⊂ B, the object B is λ-bounded, and
the inclusion B ∩X ↪→ B is an E-trivial cofibration.

Here, an E-trivial cofibration is a map which is a cofibration and a motivic
weak equivalence. We are also tacitly working over a small, full subcategory of
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(Sm|S)Nis consisting of objects of size at most some fixed infinite cardinal, so
that the statement of E7 makes sense.

Up to isomorphism, a subobject of a constant simplicial presheaf must be
constant, so that the bounded cofibration condition E7 for simplicial presheaves
implies a bounded cofibration condition for ordinary presheaves on (Sm|S)Nis.
The other axioms E1 – E6 for the class of cofibrations and motivic weak equiv-
alences in the presheaf category are trivial consequences of the corresponding
results for simplicial presheaves. It follows that a map p : X → Y of presheaves
is a fibration if and only if it has the right lifting property with respect to all λ-
bounded cofibrations which are motivic equivalences — the argument appears
in the proof of Theorem 1.1 of [4]. Continuing in that vein, a transfinite small
object argument then implies that every map g : X → Y has a factorization

X
j //

g
  @

@@
@@

@@
Z

p

��
Y

such that p is a fibration, and j is a motivic weak equivalence and a cofibration.
Write LU∗ for the free presheaf on a section over U . Then I claim that

the presheaf map p : X → Y is a fibration and a motivic weak equivalence
if it has the right lifting property with respect to all inclusions A ⊂ LU∗. A
map p having this lifting property has the right lifting property with respect
to all inclusions, so it is a fibration. The induced map p∗ : S(X) → S(Y )
has the right lifting property with respect to all cofibrations, by an adjointness
argument and the fact that realization preserves cofibrations. The map p∗ is
therefore a fibration and a motivic weak equivalence of simplicial presheaves.
The canonical map η : X → S(X) is a motivic weak equivalence of simplicial
presheaves, so the original map p : X → Y must also be a motivic weak
equivalence of presheaves. A transfinite small object argument then implies
that every map g : X → Y of presheaves has a factorization

X
i //

g
  B

BB
BB

BB
B W

q

��
Y

where i is a cofibration and q is both a fibration and a motivic weak equivalence.
We have proved the factorization axiom CM5. The style of its proof further

implies, in a standard way, that every map which is a fibration and a motivic
weak equivalence is a retract of a map which has the right lifting property with
respect to all cofibrations, and therefore has the same right lifting property.
The axiom CM4 follows. The other closed model axioms are trivial to verify.
The simplicial model axiom SM7 is a consequence of the corresponding axiom
for simplicial presheaves, together with part 3) of Lemma B.1.
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To show that motivic weak equivalences of presheaves are stable under pull-
back along fibrations, it suffices to observe that the singular functor preserves
and reflects motivic weak equivalences, in addition to preserving fibrations.
The pullback part of the properness assertion therefore follows from the corre-
sponding assertion for simplicial presheaves. The pushout part is a more direct
consequence of the statement for simplicial presheaves.

To prove 2), note that the singular and realization functors both preserve
motivic weak equivalences, and hence induce functors

S : Ho(Pre(Sm|S)Nis) � Ho(SPre(Sm|S)Nis) : | · |.

To show that these functors give an equivalence of categories, it suffices to show
that the canonical map η : X → S|X | is a motivic equivalence for all simplicial
presheaves X . Then the map Sε : S|S(Y )| → S(Y ) would be a motivic weak
equivalence for all presheaves Y by a triangle identity, and so ε : |S(Y )| → Y
would be a motivic weak equivalence since the singular functor reflects motivic
weak equivalences.

If X is a constant simplicial presheaf, then the canonical map η : X → S|X |
is isomorphic to the map η : X → S(X), since X ∼= |X | in this case.

Recall that

S(Y )n(U) = Hom(An, Y )(U) ∼= Y (An × U)

for all presheaves Y . It follows that the singular functor preserves all colimits
in presheaves and hence in simplicial presheaves. In other words, the singular
functor satisfies a very strong excision property.

Every simplicial presheaf X is a coend for the morphisms Xn × ∆n → X ,
and the skeletal filtration skrX is defined by pushouts of cofibrations

(s[r]Xr ×∆r+1) ∪ (Xr+1 × ∂∆r+1) //

��

skrX

��
Xr+1 ×∆r+1 // skr+1X

Here, s[r]Xr is the degenerate part of Xr+1. More generally, define

s[k]Xr =

r⋃

i=0

si(Xr) ⊂ Xr+1,

and observe that there are pushout of cofibration diagrams

s[k]Xp−1
sk+1 //

��

s[k]Xp

��
Xp sk+1

// s[k+1]Xp
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for all p and k that make sense. The composite functor X 7→ S|X | preserves
all colimits and hence preserves the skeletal filtration for X in the sense that
both of the above species of diagrams are taken to pushouts of cofibrations. On
account of properness for the motivic model structure for simplicial presheaves,
it therefore suffices to show that the maps

Xr ×∆r → S|Xr ×∆r|

are motivic weak equivalences. But the projections Xr×∆r → Xr are motivic
weak equivalences and the composite S| · | preserves motivic weak equivalences,
so the claim reduces to the constant case.

Here is a corollary of the proof of Theorem B.4:

Corollary B.5. Suppose that g : X → Y is a map of simplicial presheaves
such that every map g : Xn → Yn is a motivic weak equivalence of presheaves.
Then g is a motivic weak equivalence of simplicial presheaves.

Say that a map of sheaves g : X → Y on the Nisnevich site (Sm|S)Nis is a
motivic weak equivalence if the associated map of constant simplicial sheaves
(or presheaves) is a motivic weak equivalence. A cofibration of sheaves is just
an inclusion, and a map of simplicial sheaves is a motivic fibration if it has
the right lifting property with respect to all maps which are simultaneously
cofibrations and motivic weak equivalences of simplicial sheaves.

Theorem B.6. With these definitions, we have the following:

1) The category Shv(Sm|S)Nis of sheaves on the smooth Nisnevich site of a
Noetherian scheme S of finite dimension satisfies the axioms for a proper
closed simplicial model category.

2) The singular and realization functors determine an adjoint equivalence of
motivic homotopy categories

Ho(Shv(Sm|S)Nis) ' Ho(S Shv(Sm|S)Nis).

3) The associated sheaf functor determines an adjoint equivalence of motivic
homotopy categories

Ho(Pre(Sm|S)Nis) ' Ho(Shv(Sm|S)Nis).

Proof. For 1), note that a map g : X → Y of sheaves is a motivic equivalence
(respectively cofibration) if and only if is a motivic equivalence (respectively
cofibration) of presheaves. The associated sheaf map A→ Ã is a local isomor-
phism, and hence a motivic weak equivalence of presheaves. It follows that
the classes of motivic weak equivalences and cofibrations of sheaves satisfy the
axioms E1 – E7 involved in the proof of Theorem B.4, and then the closed
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model structure for the sheaf category is a formal consequence, just as before.
Properness is an easy consequence of properness for the presheaf category.

In 2), the singular functor

S : Shv(Sm|S)Nis → S Shv(Sm|S)Nis

is defined as for presheaves, and so it preserves and reflects motivic weak equiv-
alences. The simplicial sheaf realization |X | of a simplicial sheaf X is the asso-
ciated sheaf of the presheaf level realization, so that the map η : X → S|X | is a
motivic weak equivalence, on account of the fact that we know the correspond-
ing statement for simplicial presheaves. The adjoint equivalence of homotopy
categories then follows just as in the presheaf case.

Statement 3) is obvious.
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Abstract. We define a certain compactifiction of the general linear
group and give a modular description for its points with values in arbi-
trary schemes. This is a first step in the construction of a higher rank
generalization of Gieseker’s degeneration of moduli spaces of vector
bundles over a curve. We show that our compactification has simi-
lar properties as the “wonderful compactification” of algebraic groups
of adjoint type as studied by de Concini and Procesi. As a byprod-
uct we obtain a modular description of the points of the wonderful
compactification of PGln.
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1. Introduction

In this paper we give a modular description of a certain compactification KGln
of the general linear group Gln. The variety KGln is constructed as follows:
First one embeds Gln in the obvious way in the projective space which contains
the affine space of n × n matrices as a standard open set. Then one succes-
sively blows up the closed subschemes defined by the vanishing of the r × r
subminors (1 ≤ r ≤ n), along with the intersection of these subschemes with
the hyperplane at infinity.
We were led to the problem of finding a modular description of KGln in the
course of our research on the degeneration of moduli spaces of vector bundles.
Let me explain in some detail the relevance of compactifications of Gln in this
context.
Let B be a regular integral one-dimensional base scheme and b0 ∈ B a closed
point. Let C → B be a proper flat familly of curves over B which is smooth
outside b0 and whose fibre C0 at b0 is irreducible with one ordinary double
point p0 ∈ C0. Let C̃0 → C0 be the normalization of C0 and let p1, p2 ∈ C̃0
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the two points lying above the singular point p0. Thus the situation may be
depicted as follows:

(C̃0, p1, p2)

uukkkkkkkkkkkkk

))SSSSSSSSSSSSS

C̃0 C0

��

// C

��
b0 // B

where the left arrow means “forgetting the points p1, p2”. There is a corre-
sponding diagram of moduli-functors of vector bundles (v.b.) of rank n:





v.b. E on C̃0

together with an

isomorphism E[p1]
∼
→ E[p2]





f1vvlllllll
f2

∼=
((RRRRRRR

{
v.b. on

C̃0

} {
v.b. on

C0

}

��

//
{

v.b. on
C/B

}

��
b0 // B

where E[pi] denotes the fibre of E at the point pi (cf. section 3 below). The
morphism f1 is “forgetting the isomorphism between the fibres” and f2 is “glue-
ing together the fibres at p1 and p2 along the given isomorphism”. The square
on the right is the inclusion of the special fibre. It is clear that f is a lo-
cally trivial fibration with fibre Gln. Consequently, f1 is not proper and thus
{v.b. on C/B} is not proper over B. It is desirable to have a diagram (∗):





generalized
v.b.-data on

(C̃0 , p1, p2)





f1zzuuu
uu

uu
u

f2 %%KKKKKK

{
v.b. on

C̃0

} 



generalized
v.b. on

C0





��

//





generalized
v.b. on
C/B





��
b0 // B

where the functors of “generalized” objects contain the original ones as open
subfunctors and where {generalized v.b. on C/B} is proper over B or at least
satisfies the existence part of the valuative criterion for properness. The mo-
tivation is that such a diagram may help to calculate cohomological invariants
of {v.b. on Y } (Y a smooth projective curve) by induction on the genus of Y
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(notice that the genus of C̃0 is one less than the genus of the generic fibre of
C/B).
In the current literature there exist two different approaches for the construc-
tion of diagram (∗). In the first approach the “generalized v.b.” on C0 are
torsion-free sheaves (cf. [S1], [F], [NR], [Sun]). The second approach is by
Gieseker who considered only the rank-two case (cf. [G]). Here the “general-
ized v.b.” on C0 are certain vector bundles on C0, C1 or C2, where Ci is built
from C0 by inserting a chain of i copies of the projective line at p0. (Cf. also
[Tei] for a discussion of the two approaches). Of course, this is only a very
rough picture of what is going on in these papers since I do not mention con-
cepts of stability for the various objects nor the representability of the functors
by varieties or by algebraic stacks.
In both approaches the morphism f2 is the normalization morphism (at least on
the complement of a set of small dimension) and f1 is a locally trivial fibration
with fibre a compactification of Gln. In the torsion-free sheaves approach this
compactification is Gr(2n, n), the grassmanian of n-dimensional subspaces of a
2n-dimensional vector space. In Gieseker’s construction the relevant compacti-
fication of Gl2 is KGl2. An advantage of Gieseker’s construction is that in con-
trast to the torsion-free sheaves approach, the space {generalized v.b. on C/B}
is regular and its special fibre over b0 is a divisor with normal crossings.
Very recently, Nagaraj and Seshadri have generalized Gieseker’s construction
of the right part of diagram (∗), i.e. the diagram





generalized
v.b. on
C0





��

//





generalized
v.b. on
C/B





��
b0 // B

to arbitrary rank n (cf. [NS], [S2]). Nagaraj’s and Seshadri’s “generalized
vector bundles” on C0 are certain equivalence classes of vector bundles on one
of the curves C0, . . . , Cn, whose push-forward to C0 are stable torsion free
sheaves.
Without worrying about stability I have recently (and independently from Na-
garaj and Seshadri) constructed the full diagram (∗) at least at the level of
functors (details will appear in a forthcoming paper) and I have reasons to
believe that the fibres of the corresponding morphism f1 should be represented
by KGln. The present paper is the first step in the proof of this fact.
The compactification KGln of Gln has properties similar to those of the “won-
derful compactification” of algebraic groups of adjoint type as studied by De
Concini and Procesi (cf. [CP]). Namely:

1. The group Gln×Gln acts on KGln, extending the operation of Gln×Gln
on Gln induced by right and left multiplication (cf. 5.6).

2. The complement of Gln in KGln is a divisor with normal crossings with
irreducible components Yi, Zj (i, j ∈ {0, . . . , n− 1}) (cf. 4.2).
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3. The orbit closures of the operation of Gln × Gln on KGln are precisely
the intersections YI ∩ ZJ , where I, J are subsets of {0, . . . , n − 1} with
min(I) + min(J) ≥ n and where YI := ∩i∈IYi, ZJ := ∩j∈JZj (cf. 9.4).

4. For each I, J as above there exists a natural mapping from YI ∩ZJ to the
product of two flag varieties. This mapping is a locally trivial fibration
with standard fibre a product of copies of PGlnk (the wonderful compact-
ification of PGlnk ) for some nk ≥ 1 and of one copy of KGlm for some
m ≥ 0 (cf. 9.3).

Our main theorem 5.5 says that KGln parametrizes what we call “general-
ized isomorphisms” from the trivial bundle of rank n to itself. A generalized
isomorphism between vector bundles E and F is by definition a diagram

E = E0

⊗ ��
E1

oo
⊗ ��

E2
oo . . . En−1

⊗   
En

oo ∼ // Fn
// Fn−1

⊗��
. . . F2

// F1
//

⊗��
F0

⊗��
= F

with certain properties, where the Ei and Fj are vector bundles of the same
rank as E and F and where the arrow ⊗ // indicates a morphims of the
source into the target tensored with a line bundle to be specified. Cf. 5.2 for a
precise definition.
The wonderful compactification PGln of PGln is contained as an orbit closure
in KGln, in fact Y0

∼= PGln. Therefore theorem 5.5 implies a modular de-
scription of PGln. One of the reasons why I decided to publish the present
paper separately from my investigations on the degeneration of moduli spaces
of vector bundles on curves is the fact that PGln has been quite extensively
studied in the past (cf. [Lak1] for a historical overview and also the recent pa-
per [Tha2]). Although some efford has been made to find a modular description
for it, up to now only partial results in this direction have been obtained (cf.
[V], [Lak2], [TK]). In section 8 we explain the connection of these results with

ours. Recently Lafforgue has used PGln to compactify the stack of Drinfeld’s
shtukas (cf. [Laf1], [Laf2]).
Sections 4 and 5 contain the main definitions: In section 4 we give the construc-
tion of KGln and in section 5 we define the notion of generalized isomorphisms.
At the end of section 5 we state our main theorem 5.5. Its proof is given in
sections 6 and 7. In section 8 we define complete collineations and compare our
notion with the one given by previous authors, in section 9 we study the orbit
closures of the operation of Gln ×Gln on KGln and in section 10 we define an
equivariant morphism of KGln onto the Grassmannian compactification of Gln
and compute its fibres.
My interest in degeneration of moduli spaces of bundles on curves has been
greatly stimulated by a workshop on conformal blocks and the Verlinde for-
mula, organized in March 1997 by the physicists Jürgen Fuchs and Christoph
Schweigert at the Mathematisches Forschungsinstitut in Oberwolfach. Part of
this work has been prepared during a stay at the Mathematical Institute of
the University of Oxford. Its hospitality is gratefully acknowledged. Thanks
are due to Daniel Huybrechts for mentioning to me the work of Thaddeus, to
M. Thaddeus himself for sending me a copy of part of his thesis and to M.
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Rapoport for drawing my attention to the work of Laksov and Lafforgue. I
would also like to thank Uwe Jannsen for his constant encouragement.

2. An elementary example

This section is not strictly necessary for the comprehension of what follows.
But since the rest of the paper is a bit technical, I felt that a simple example
might facilitate its understanding.
Let A be a discrete valuation ring, K its field of fractions, m its maximal ideal,
t ∈ m a local parameter and k := A/m the residue class field of A. Let E and

F be two free A-modules of rank n and let ϕK : EK
∼→ FK be an isomorphism

between the generic fibers EK := E ⊗A K and FK := F ⊗A K of E and F .
We can choose A-bases of E and F such that ϕK has the matrix presentation
diag(tm1 , . . . , tmn) with respect to these bases, where mi ∈ Z and m1 ≤ · · · ≤
mn. Now let a0 := 0 =: b0 and for 1 ≤ i ≤ n set ai := −min(0,mn+1−i) and
bi := max(0,mi). Note that we have

0 = a0 = · · · = an−l ≤ an−l+1 ≤ · · · ≤ an
and 0 = b0 = · · · = bl ≤ bl+1 ≤ · · · ≤ bn

for some l ∈ {0, . . . , n}. Let

En ⊆ · · · ⊆ E1 ⊆ E0 := E and Fn ⊆ · · · ⊆ F1 ⊆ F0 := F

be the A-submodules defined by

Ei+1 :=




tai+1−aiIn−i 0

0 Ii


Ei , Fi+1 :=




Ii 0

0 tbi+1−biIn−i


Fi ,

where Ii denotes the i × i unit matrix. Then ϕK induces an isomorphism
ϕ : En

∼→ Fn and we have the natural injections

Ei ↪→ mai−ai+1Ei+1 , Ei ←↩ Ei+1

Fi+1 ↪→ Fi , mbi−bi+1Fi+1 ←↩ Fi .

Observe that the compositions Ei+1 ↪→ Ei ↪→ mai−ai+1Ei+1 and Ei ↪→
mai−ai+1Ei+1 ↪→ mai−ai+1Ei are both the injections induced by the inclu-
sion A ↪→ mai−ai+1 . Furthermore, if ai − ai+1 < 0 then the morphism of
k-vectorspaces Ei+1 ⊗ k → Ei ⊗ k is of rank i and the sequence

Ei+1 ⊗ k → Ei ⊗ k → (mai−ai+1Ei+1)⊗ k → (mai−ai+1Ei)⊗ k

is exact. This shows that the tupel

(mai−ai+1 , 1 ∈ mai−ai+1 , Ei+1 ↪→ Ei , mai−ai+1Ei+1 ←↩ Ei , i)
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is what we call a “bf-morphism” of rank i (cf. definition 5.1). Observe now
that if ai − ai+1 < 0 and (f, g) is one of the following two pairs of morphisms:

E ⊗ k f−→ (m−aiEi)⊗ k g−→ (m−ai+1Ei+1)⊗ k ,

Ei ⊗ k g←− Ei+1 ⊗ k f←− En ⊗ k ,

then im(g ◦ f) = im(g). The above statements hold true also if we replace the
Ei-s by the Fi-s and the ai-s by the bi-s. Observe finally that in the diagram

0

��
ker(En ⊗ k → E0 ⊗ k)

�� ++WWWWWWWWW

0 // ker(Fn ⊗ k → F0 ⊗ k) //

++WWWWWWWWW
En ⊗ k ∼= Fn ⊗ k

��

// im(Fn ⊗ k → F0 ⊗ k) // 0

im(En ⊗ k → E0 ⊗ k)
��
0

the oblique arrows are injections.
All these properties are summed up in the statement that the tupel

Φ := ((mbi−bi+1 , 1), (mai−ai+1 , 1), Ei ↪→ mai−ai+1Ei+1, Ei ←↩ Ei+1,

Fi+1 ↪→ Fi, mbi−bi+1Fi+1 ←↩ Fi (0 ≤ i ≤ n− 1), ϕ : En
∼→ Fn)

is a generalized isomorphism from E to F in the sense of definition 5.2, where
for a ≤ 0 we consider ma as an invertible A-module with global section 1 ∈ ma.
Observe that Φ does not depend on our choice of the bases for E and F . Indeed,
it is well-known that the sequence (m1, . . . ,mn) is independent of such a choice
and it is easy to see that En = ϕ−1

K (F ) ∩ E, Fn = ϕK(En) and

Ei = En + maiE , Fi = Fn + mbiF

for 1 ≤ i ≤ n−1, where the +-sign means generation in EK and FK respectively.
Observe furthermore that by pull-back the generalized isomorphism Φ induces
a generalized isomorphism f∗Φ on a scheme S for every morphism f : S →
Spec (A). Of course the morphisms f∗Ei+1 → f∗Ei etc. will be in general no
longer injective, but this is not required in the definition.

3. Notations

We collect some less common notations, which we will use freely in this paper:

• For two integers a ≤ b we sometimes denote by [a, b] the set {c ∈ Z | a ≤
c ≤ b}.

• For a n× n-matrix with entries aij in some ring, and for two subsets A
and B of cardinality r of {1, . . . , n}, we will denote by detAB(aij) the
determinant of the r × r-matrix (aij)i∈A,j∈B .

• For a scheme X we will denote by KX the sheaf of total quotient rings of
OX .
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• For a scheme X , a coherent sheaf E on X and a point x ∈ X , we denote
by E [x] the fibre E ⊗OX κ(x) of E at x.

• For n ∈ N, the symbol Sn denotes the symmetric group of permutations
of the set {1, . . . , n}.

4. Construction of the compactification

Let X(0) := ProjZ[x00, xij (1 ≤ i, j ≤ n)]. We define closed subschemes

Y
(0)
0

� � // Y
(0)
1

� � // . . . � � // Y (0)
n−1

Z
(0)
n−1

� � //
?�

OO

. . . � � // Z(0)
1

� � //
?�

OO

Z
(0)
0

of X(0), by setting Y
(0)
r := V +(I(0)

r ), Z
(0)
r := V +(J (0)

r ), where I(0)
r is the

homogenous ideal in Z[x00, xij (1 ≤ i, j ≤ n)], generated by all (r+1)×(r+1)-

subdeterminants of the matrix (xij)1≤i,j≤n, and where J (0)
r = (x00)+I(0)

n−r for

0 ≤ r ≤ n − 1. For 1 ≤ k ≤ n let the scheme X (k) together with closed

subschemes Y
(k)
r , Z

(k)
r ⊂ X(k) (0 ≤ r ≤ n − 1) be inductively defined as

follows:
X(k) → X(k−1) is the blowing up of X(k−1) along the closed subscheme

Y
(k−1)
k−1 ∪ Z(k−1)

n−k . The subscheme Y
(k)
k−1 ⊂ X(k) (respectively Z

(k)
n−k ⊂ X(k))

is the inverse image of Y
(k−1)
k−1 (respectively of Z

(k−1)
n−k ) under the morphism

X(k) → X(k−1), and for r 6= k − 1 (respectively r 6= n − k) the subscheme

Y
(k)
r ⊂ X(k) (respectively of Z

(k)
r ⊂ X(k)) is the complete transform of

Y
(k−1)
r ⊂ X(k−1) (respectively Z

(k−1)
r ⊂ X(k−1)). We set

KGln := X(n) and Yr := Y (n)
r , Zr := Z(n)

r (0 ≤ r ≤ n− 1) .

We are interested in finding a modular description for the compactification
KGln of Gln = Spec Z[xij/x00 (1 ≤ i, j ≤ n), det(xij/x00)

−1].
Let (α, β) ∈ Sn × Sn and set

x
(0)
ij (α, β) :=

xα(i),β(j)

x00
(1 ≤ i, j ≤ n) .

For 1 ≤ k ≤ n we define elements

yji(α, β) , zij(α, β) (1 ≤ i ≤ k, i < j ≤ n)

x
(k)
ij (α, β) (k + 1 ≤ i, j ≤ n)
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of the function field Q(X(0)) = Q(xij/x00 (1 ≤ i, j ≤ n)) of X(0) inductively
as follows:

yik(α, β) :=
x

(k−1)
ik (α, β)

x
(k−1)
kk (α, β)

(k + 1 ≤ i ≤ n) ,

zkj(α, β) :=
x

(k−1)
kj (α, β)

x
(k−1)
kk (α, β)

(k + 1 ≤ j ≤ n) ,

x
(k)
ij (α, β) :=

x
(k−1)
ij (α, β)

x
(k−1)
kk (α, β)

− yik(α, β) zkj(α, β) (k + 1 ≤ i, j ≤ n) .

Finally, we set t0(α, β) := t0 := x00 and

ti(α, β) := t0 ·
i∏

j=1

x
(j−1)
jj (α, β) (1 ≤ i ≤ n) .

Observe, that for each k ∈ {0, . . . , n}, we have the following decomposition of
the matrix [xij/x00]:

[
xij
x00

]
= nα




1 _ _ _ _

9
9

9

___

�
�
�

0

1

yij(α, β)

In−k

�

�

�

�

�

9
9

9

�
�
�
�

_ _







t1(α,β)
t0

0

0

0
tk(α,β)

t0

0
tk(α,β)

t0
[x

(k)
ij (α, β)]







1 _ _ _ _ _

=
=

=

___

�
�
�

zij(α, β)

1

0 In−k

�

�

�

�

�

=
=

=

�

�

�

_ _



n−1
β

Here, nα is the permutation matrix associated to α, i.e. the matrix, whose
entry in the i-th row and j-th column is δi,α(j). For convenience, we define for

each l ∈ {0, . . . , n} a bijection ιl : {1, . . . , n+ 1} ∼→ {0, . . . , n}, by setting

ιl(i) =





i if 1 ≤ i ≤ l
0 if i = l + 1
i− 1 if l + 2 ≤ i ≤ n+ 1

for 1 ≤ i ≤ n+ 1. With this notaton, we define for each triple (α, β, l) ∈ Sn ×
Sn × [0, n] polynomial subalgebras R(α, β, l) of Q(KGln) = Q(X(0)) together
with ideals Ir(α, β, l) and Jr(α, β, l) (0 ≤ r ≤ n− 1) of R(α, β, l) as follows:

R(α, β, l) := Z
[

tιl(i+1)(α, β)

tιl(i)(α, β)
(1 ≤ i ≤ n), yji(α, β), zij(α, β) (1 ≤ i < j ≤ n)

]
,

Ir(α, β, l) :=

(
tιl(r+2)(α, β)

tιl(r+1)(α, β)

)
if l ≤ r ≤ n − 1 and Ir(α, β, l) := (1) else,

Jr(α, β, l) :=

(
tιl(n−r+1)(α, β)

tιl(n−r)(α, β)

)
if n − l ≤ r ≤ n − 1 and Jr(α, β, l) := (1) else.

Proposition 4.1. There is a covering of KGln by open affine pieces X(α, β, l)
((α, β, l) ∈ Sn × Sn × [0, n]), such that Γ(X(α, β, l),O) = R(α, β, l) (equality
as subrings of the function field Q(KGln)). Furthermore, for 0 ≤ r ≤ n − 1
the ideals Ir(α, β, l) and Jr(α, β, l) of R(α, β, l) are the defining ideals for the
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closed subschemes Yr(α, β, l) := Yr∩X(α, β, l) and Zr(α, β, l) := Zr∩X(α, β, l)
respectively.

Proof. We make the blowing-up procedure explicit, in terms of open affine
coverings. For each k ∈ {0, . . . , n} we define a finite index set Pk, consisting of
all pairs

(p, q) =





p0

:
pk


 ,



q0
:
qk




 ∈ {0, . . . , n}k+1 × {0, . . . , n}k+1

with the property that pi 6= pj and qi 6= qj for i 6= j and that pi = 0 for some i,
if and only if qi = 0. Observe that for each k ∈ {0, . . . , n} there is a surjection
Sn × Sn × {0, . . . , n} → Pk, which maps the triple (α, β, l) to the element

(p, q) =






α(ιl(1))
:

α(ιl(k + 1))


 ,




β(ιl(1))
:

β(ιl(k + 1))






of Pk. (Here we have used the convention that α(0) := 0 for any permutation
α ∈ Sn). Furthermore, this surjection is in fact a bijection in the case of
k = n. Let (p, q) ∈ Pk and chose an element (α, β, l) in its preimage under
the surjection Sn × Sn × {0, . . . , n} → Pk. We define subrings R(k)(p, q) of

Q(xij/x00 (1 ≤ i, j ≤ n)) together with ideals I(k)
r (p, q), J (k)

r (p, q) (0 ≤ r ≤ n),
distinguishing three cases.

First case: 0 ≤ l ≤ k − 1

R(k)(p, q) := Z

[
tιl(i+1)(α, β)

tιl(i)(α, β)
(1 ≤ i ≤ k), yji(α, β), zij(α, β)

(
1 ≤ i ≤ k,
i < j ≤ n

)
,

x
(k)
ij (α, β) (k + 1 ≤ i, j ≤ n)

]

I(k)
r (p, q) :=





(1) if r ∈ [0, l− 1](
tιl(r+2)(α,β)

tιl(r+1)(α,β)

)
if r ∈ [l, k − 1]

(
detAB(x

(k)
ij (α, β))

(
A,B ⊆ {k + 1, . . . , n}
]A = ]B = r + 1− k

) )
if r ∈ [k, n− 1]

J (k)
r (p, q) :=





(1) if r ∈ [0, n− l− 1](
tιl(n−r+1)(α,β)

tιl(n−r)(α,β)

)
if r ∈ [n− l, n− 1]
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Second case: l = k

R(k)(p, q) := Z

[
tιl(i+1)(α, β)

tιl(i)(α, β)
(1 ≤ i ≤ k), yji(α, β), zij(α, β)

(
1 ≤ i ≤ k,
i < j ≤ n

)
,

tk(α, β)

t0
x
(k)
ij (α, β) (k + 1 ≤ i, j ≤ n)

]

I(k)
r (p, q) :=





(1) if r ∈ [0, l− 1](
detAB

(
tk(α,β)

t0
x
(k)
ij (α, β)

) (
A,B ⊆ {k + 1, . . . , n}
]A = ]B = r + 1− k

) )
if r ∈ [l, n− 1]

J (k)
r (p, q) :=





(1) if r ∈ [0, n− l − 1](
tιl(n−r+1)(α,β)

tιl(n−r)(α,β)

)
if r ∈ [n− l, n − 1]

Third case: k + 1 ≤ l ≤ n

R(k)(p, q) := Z

[
tιl(i+1)(α, β)

tιl(i)(α, β)
(1 ≤ i ≤ k), t0

tk+1(α, β)
,

yji(α, β), zij(α, β)

(
1 ≤ i ≤ k + 1,
i < j ≤ n

)
, x

(k+1)
ij (α, β) (k + 2 ≤ i, j ≤ n)

]

I(k)
r (p, q) :=





(1) if r ∈ [0, k](
detAB

(
x
(k+1)
ij (α, β)

) (
A,B ⊆ {k + 2, . . . , n}
]A = ]B = r − k

) )
if r ∈ [k + 1, n− 1]

J (k)
r (p, q) :=





(
t0

tk+1(α,β)
, detAB(x

(k+1)
ij (α, β))

(
A,B ⊆ {k + 2, . . . , n}
]A = ]B = n− r − k

) )

if r ∈ [0, n− k − 1]

(
tιl(n−r+1)(α,β)

tιl(n−r)(α,β)

)
if r ∈ [n− k, n− 1]

Observe that the objects R(k)(p, q), I(k)
r (p, q), J (k)

r (p, q) thus defined, depend
indeed only on (p, q) and not on the chosen element (α, β, l). By induction on
k one shows that X(k) is covered by open affine pieces X (k)(p, q) ((p, q) ∈ Pk),
such that Γ(X(k)(p, q),O) = R(k)(p, q) (equality as subrings of the function field

Q(X(k))), and such that the ideals I(k)
r (α, β) and J (k)

r (α, β) are the defining

ideals of the closed subschemes Y
(k)
r ∩X(k)(p, q) and Z

(k)
r ∩X(k)(p, q) respec-

tively.

Corollary 4.2. The scheme KGln is smooth and projective over Spec Z and
contains Gln as a dense open subset. The complement of Gln in KGln is the
union of the closed subschemes Yi, Zi (0 ≤ i ≤ n− 1), which is a divisor with
normal crossings. Furthermore, we have Yi ∩ Zj = ∅ for i+ j < n.

Proof. This is immediate from the local description given in 4.1.

We will now define a certain toric scheme, which will play an important role
in the sequel. Let M := Zn, with canonical basis e1, . . . , en. For m ∈ M we
denote by tm the corresponding monomial in the ring Z[M ]. Furthermore, we
write ti/t0 for the canonical generator tei of Z[M ]. Let N := M∨ be the dual
of M with the dual basis e∨1 , . . . , e

∨
n . For 0 ≤ l ≤ n let σl ⊂ NQ := N ⊗Q be
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the cone generated by the elements −∑i
j=1 e

∨
j (1 ≤ i ≤ l) and the elements∑n

j=i e
∨
j (l + 1 ≤ i ≤ n). In other words:

σl =

l∑

i=1

Q+ ·


−

i∑

j=1

e∨j


+

n∑

i=l+1

Q+ ·




n∑

j=i

e∨j


 .

Let Σ be the fan generated by all σl (0 ≤ l ≤ n) and let T̃ := XΣ the associated

toric scheme (over Z). See e.g. [Da] for definitions. T̃ is covered by the open

sets T̃l := Xσ∨
l

= Spec Z[tm (m ∈ σ∨l ∩M)] = Spec Z[tιl(i+1)/tιl(i) (1 ≤ i ≤ n)].

Observe that there are Cartier divisors Yr,T̃ , Zr,T̃ (0 ≤ r ≤ n− 1) on T̃ , such

that for each l ∈ {0, . . . , n} over the open part T̃l ⊂ T̃ ,

Yr,T̃ is given by the equation

{
1 if 0 ≤ r ≤ l − 1
tιl(r+2)/tιl(r+1) if l ≤ r ≤ n− 1

Zr,T̃ is given by the equation

{
1 if 0 ≤ r ≤ n− l − 1
tιl(n−r+1)/tιl(n−r) if n− l ≤ r ≤ n− 1

Observe furthermore that Yi,T̃ ∩ Zj,T̃ = ∅ for i + j < n and that for each

r ∈ {1, . . . , n}, multiplication by tr/t0 establishes an isomorphism

OT̃

(
−
n−r∑

i=0

Zi,T̃

)
∼−→ OT̃

(
−
r−1∑

i=0

Yi,T̃

)
.

Lemma 4.3. The toric scheme T̃ together with the “universal” tupel

(OT̃ (Yi,T̃ ), 1OT̃ (Y
i,T̃

), OT̃ (Zi,T̃ ), 1OT̃ (Z
i,T̃

) (0 ≤ i ≤ n− 1), tr/t0 (1 ≤ r ≤ n))

represents the functor, which to each scheme S associates the set of equivalence
classes of tupels

(Li, λi, Mi, µi (0 ≤ i ≤ n− 1), ϕr (1 ≤ r ≤ n)) ,

where the Li and Mi are invertible OS-modules with global sectons λi and µi
respectively, such that for i+ j < n the zero-sets of λi and µj do not intersect,
and where the ϕr are isomorphisms

n−r⊗

i=0

M∨i
∼−→

r−1⊗

i=0

L∨i .

Here two tupels (Li, λi, Mi, µi (0 ≤ i ≤ n − 1), ϕr (1 ≤ r ≤ n)) and
(L′i, λ′i, M′i, µ′i (0 ≤ i ≤ n− 1), ϕ′r (1 ≤ r ≤ n)) are called equivalent, if there

exist isomorphisms Li ∼→ L′i and Mi
∼→ M′i for 0 ≤ i ≤ n − 1, such that all

the obvious diagrams commute.

Proof. Let S be a scheme and (Li, λi, Mi, µi (0 ≤ i ≤ n−1), ϕr (1 ≤ r ≤ n))
a tupel defined over S, which has the properties stated in the lemma. Let us
first consider the case, where all the sheaves Li,Mi are trivial and where there
exists an l ∈ {0, . . . , n}, such that λi and µj is nowhere vanishing for 0 ≤ i < l
and 0 ≤ j < n − l respectively. Observe that under theses conditions there
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exists a unique set of trivializations Li ∼→ OS , Mi
∼→ OS , (0 ≤ i ≤ n) such

that λi 7→ 1 for 0 ≤ i < l, µj 7→ 1 for 0 ≤ j < n − l, and such that the
diagrams

⊗n−r
i=0 M∨i

∼

$$I
IIIIIIII

ϕr

∼
//⊗r−1

i=0 L∨i
∼

zzvv
vv

vv
vvv

OS
commute for 1 ≤ r ≤ n. Let aν ∈ Γ(S,OS) (1 ≤ ν ≤ n) be defined by
λi 7→ ai+1 for l ≤ i ≤ n − 1 and µj 7→ an−j for n − l ≤ j ≤ n − 1, and let

fl : S → T̃l be the morphism defined by f∗l (tιl(ν+1)/tιl(ν)) = aν (1 ≤ ν ≤ n).

It is straightforward to check that the induced morphism f : S → T̃ does not
depend on the chosen number l and that it is unique with the property that
the pull-back under f of the universal tupel is equivalent to the given one on
S.
Returning to the general case, observe that there is an open covering S = ∪kUk,
such that for each k there exists an l with the property that over Uk all the Li,
Mi are trivial and that λi and µj is nowhere vanishing over Uk for 0 ≤ i < l
and 0 ≤ j < n − l. The above construction shows that there exists a unique

morphism f : S → T̃ such that for each k the restriction to Uk of the pull-
back under f of the universal tupel is equivalent to the restriction to Uk of
the given one. Thus it remains only to show that the isomorphisms defining
the equivalences over the Uk glue together to give a global equivalence of the
pull-back of the universal tupel with the given one. However, this is clear, since
it is easy to see that there exists at most one set of isomorphisms Li ∼→ L′i,
Mi

∼→M′i establishing an equvalence between two tuples (Li, λi, Mi, µi, ϕr)
and (L′i, λ′i, M′i, µ′i, ϕ′r).
For each pair (α, β) ∈ Sn × Sn we define the open subset X(α, β) ⊆ KGln as
the union of the open affines X(α, β, l) (0 ≤ l ≤ n). Let

U− := Spec Z[yji (1 ≤ i < j ≤ n)] ,

U+ := Spec Z[zij (1 ≤ i < j ≤ n)] .

Let y : X(α, β) → U− (respectively z : X(α, β) → U+) be the morphism de-
fined by the property that y∗(yji) = yji(α, β) (respectively z∗(zij) = zij(α, β))

for 1 ≤ i, j ≤ n. Observe that just as in the case of T̃ , multiplication by the
rational function tr(α, β)/t0 provides an isomorphism

OX(α,β)

(
−
n−r∑

i=0

Zi(α, β)

)
∼−→ OX(α,β)

(
−
r−1∑

i=0

Yi(α, β)

)

for 1 ≤ r ≤ n, where Yi(α, β) (respectively Zi(α, β)) denotes the restriction of
Yi (respectively Zi) to the open set X(α, β). Thus, by lemma 4.3, the tupel

(O(Yi(α, β)), 1, O(Zi(α, β)), 1 (i ∈ [0, n− 1]), tr(α, β)/t0 (r ∈ [1, n]))

defines a morphism t : X(α, β)→ T̃ .
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Lemma 4.4. The morphism (y, t, z) : X(α, β) → U− × T̃ × U+ is an isomor-
phism.

Proof. Let Ω(α, β) ⊂ X(α, β) be the preimage of Gln under the morphism
X(α, β) ↪→ KGln → X(0). By definition of KGln, we have for all l ∈ {0, . . . , n}:

Ω(α, β) = X(α, β, l) \
n−1⋃

i=0

(Yi(α, β, l) ∪ Zi(α, β, l))

= Spec Z[yji(α, β), zij(α, β) (1 ≤ i < j ≤ n),

(ti(α, β)/t0)
±1 (1 ≤ i ≤ n)] .

Let T := Spec Z[(ti/t0)
±1] ⊂ T̃ be the Torus in T̃ . We have an isomorphism

Ω(α, β)
∼→ U− × T × U+ defined by yji 7→ yji(α, β), zij 7→ zij(α, β), ti/t0 7→

ti(α, β)/t0, and a commutative quadrangle

X(α, β)
(y,t,z)−−−−→ U− × T̃ × U+

x
x

Ω(α, β)
∼−−−−→ U− × T × U+ ,

where the vertical arrows are the natural inclusions. Furthermore, the map

(y, t, z) induces an isomorphism X(α, β, l)
∼→ U− × T̃l × U+ for 0 ≤ l ≤ n.

Using the fact that X(α, β) is separated and that Ω(α, β) dense in X(α, β), the
lemma now follows easily.

5. bf-morphisms and generalized isomorpisms

Definition 5.1. Let S be a scheme, E and F two localy free OS-modules and
r a nonnegative integer. A bf-morphism of rank r from E to F is a tupel

g = (M, µ, E → F , M⊗E ← F , r) ,

where M is an invertible OS-module and µ a global section of M such that
the following holds:

1. The composed morphisms E → F →M⊗E and F →M⊗E →M⊗F
are both induced by the morphism µ : OS →M.

2. For every point x ∈ S with µ(x) = 0, the complex

E [x]→ F [x]→ (M⊗E)[x]→ (M⊗F)[x]

is exact and the rank of the morphism E [x]→ F [x] equals r.

The letters “bf” stand for “back and forth”. As a matter of notation, we
will sometimes write g] for the morphism E → F and g[ for the morphism
F → M⊗ E occuring in the bf-morphism g. Note that in case µ is nowhere
vanishing, the number rk g := r cannot be deduced from the other ingredients

Documenta Mathematica 5 (2000) 553–594



566 Ivan Kausz

of g. Sometimes we will use the following more suggestive notation for the
bf-morphism g:

g =


 E r //

(M,µ)
F

⊗
��


 .

In situations where it is clear, what (M, µ) and r are, we will sometimes omit
these data from our notation:

g =


 E // F

⊗
��


 .

Definition 5.2. Let S be a scheme, E and F two locally free OS-modules of
rank n. A generalized isomorphism from E to F is a tupel

Φ = (Li, λi, Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi, Li ⊗Fi+1 ← Fi (0 ≤ i ≤ n− 1), En ∼→ Fn) ,
where E = E0, E1, . . . , En, Fn, . . . ,F1, F0 = F , are localy free OS-modules of
rank n and the tupels

(Mi, µi, Ei+1 → Ei, Mi ⊗ Ei+1 ← Ei, i)

and (Li, λi, Fi+1 → Fi, Li ⊗Fi+1 ← Fi, i)

are bf-morphisms of rank i for 0 ≤ i ≤ n − 1, such that for each x ∈ S the
following holds:

1. If µi(x) = 0 and (f, g) is one of the following two pairs of morphisms:

E [x] f−→ ((⊗i−1
j=0Mj)⊗ Ei)[x] g−→ ((⊗ij=0Mj)⊗ Ei+1)[x] ,

Ei[x] g←− Ei+1[x]
f←− En[x] ,

then im(g ◦ f) = im(g). Likewise, if λi(x) = 0 and (f, g) is one of the
following two pairs of morphisms:

Fn[x] f−→ Fi+1[x]
g−→ Fi[x] ,

((⊗ij=0Lj)⊗Fi+1)[x]
g←− ((⊗i−1

j=0Lj)⊗Fi)[x]
f←− F [x] ,

then im(g ◦ f) = im(g).
2. In the diagram:

0

��
ker(En[x]→ E0[x])

�� **UUUUUUUU

0 // ker(Fn[x]→ F0[x]) //

**UUUUUUUU
En[x] ∼= Fn[x]

��

// im(Fn[x]→ F0[x]) // 0

im(En[x]→ E0[x])
��
0
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the oblique arrows are injections.

Definition 5.3. A quasi-equivalence between two generalized isomorphisms

Φ = (Li, λi,Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi, Li ⊗Fi+1 ← Fi (0 ≤ i ≤ n− 1), En ∼→ Fn) ,
Φ′ = (L′i, λ′i,M′i, µ′i, E ′i →M′i ⊗ E ′i+1, E ′i ← E ′i+1,

F ′i+1 → F ′i , L′i ⊗F ′i+1 ← F ′i (0 ≤ i ≤ n− 1), E ′n
∼→ F ′n)

from E to F consists in isomorphisms Li ∼→ L′i andMi
∼→M′i for 0 ≤ i ≤ n−1,

and isomorphisms Ei ∼→ E ′i and Fi ∼→ F ′i for 0 ≤ i ≤ n, such that all the obvious
diagrams are commutative. A quasi-equivalence between Φ and Φ′ is called an
equivalence, if the isomorphisms E0 ∼→ E ′0 and F0

∼→ F ′0 are in fact the identity
on E and F respectively.

After these general definitions, we now return to our scheme KGln. The nota-
tions are as in the previous section.
From the matrix-decomposition on page 560 (for k = n) we see that the ma-

trix [xij/x00]1≤i,j≤n has entries in the subspace Γ(KGln,O(
∑n−1

i=0 Zi)) of the
function field Q(KGln) of KGln. Therefore it defines a morphism

x : E0 −→ O
(
n−1∑

i=0

Zi

)
· F0 ,

where E0 = F0 = ⊕nOKGln .

Let En ⊂ E0 be the preimage under x of F0 ⊂ O(
∑n−1

i=0 Zi)·F0 and let Fn ⊂ F0

be the image under x of En. Thus x induces a morphism

En −→ Fn ,

which we again denote by x. For 1 ≤ i ≤ n − 1 we define OKGln-submodules
Ei and Fi of ⊕nKKGln as follows:

Ei := En +O


−

i−1∑

j=0

Zj


 ·E0

Fi := Fn +O


−

i−1∑

j=0

Yj


 · F0

(the plus-sign means generation in ⊕nKKGln). Observe that for 0 ≤ i ≤ n− 1
we have the following natural injections:

Ei ↪→ O(Zi) · Ei+1 , Ei ←↩ Ei+1

Fi+1 ↪→ Fi , O(Yi) · Fi+1 ←↩ Fi
Proposition 5.4. The tupel

Φuniv := (O(Yi), 1O(Yi), O(Zi), 1O(Zi), Ei ↪→ O(Zi) ·Ei+1, Ei ←↩ Ei+1,

Fi+1 ↪→ Fi, O(Yi) · Fi+1 ←↩ Fi (0 ≤ i ≤ n− 1), x : En → Fn)
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is a generalized isomorphism from ⊕nOKGln to itself.

Proof. It suffices to show that for each (α, β) ∈ Sn × Sn the restriction of
Φuniv to the open set X(α, β) is a generalized isomorphism from ⊕nOX(α,β) to
itself. Let z(α, β) (y(α, β)) be the upper (lower) triangular n× n matrix with
1 on the diagonal and entries zij(α, β) (yji(α, β)) over (under) the diagonal
(1 ≤ i < j ≤ n). For 0 ≤ i ≤ n we define

Ei(α, β) := z(α, β) · n−1
β ·Ei|X(α,β) ,

Fi(α, β) := y(α, β)−1 · n−1
α · Fi|X(α,β) .

Here we interprete the matrices z(α, β) · n−1
β and y(α, β)−1 · n−1

α as automor-

phisms of ⊕nKX(α,β). Accordingly we view the sheaves Ei(α, β) and Fi(α, β)
as subsheaves of ⊕nKX(α,β). We have to show that the tupel

Φ(α, β) := (O(Yi(α, β)) , 1O(Yi(α,β)) , O(Zi(α, β)) , 1O(Zi(α,β)) ,

Ei(α, β) ↪→ O(Zi(α, β)) ·Ei+1(α, β) , Ei(α, β) ←↩ Ei+1(α, β),

Fi+1(α, β) ↪→ Fi(α, β) , O(Yi(α, β)) · Fi+1(α, β)←↩ Fi(α, β)

(0 ≤ i ≤ n− 1) ,

y(α, β)−1n−1
α xnβz(α, β)−1 : En(α, β)

∼→ Fn(α, β))

is a generalized isomorphism from ⊕nOX(α,β) to itself.
We have for 0 ≤ i ≤ n the following equality of subsheaves of ⊕nKX(α,β):

Ei(α, β) =

n−i⊕

j=1

O
(
−
i−1∑

ν=0

Zν(α, β)

)
⊕

n⊕

j=n−i+1

O
(
−
n−j∑

ν=0

Zν(α, β)

)
,

Fi(α, β) =

i⊕

j=1

O
(
−
j−1∑

ν=0

Yν(α, β)

)
⊕

n⊕

j=i+1

O
(
−
i−1∑

ν=0

Yν(α, β)

)
.

This is easily checked by restricting both sides of the equations to the open
subsets X(α, β, l), (0 ≤ l ≤ n) of X(α, β) and using 4.1. Observe that the
morphisms

Ei(α, β) ↪→ O(Zi(α, β)) ·Ei+1(α, β) , Ei(α, β)←↩ Ei+1(α, β)

are described by the matrices
[

In−i 0
0 µiIi

]
and

[
µiIn−i 0

0 Ii

]
,

and the morphisms

Fi+1(α, β) ↪→ Fi(α, β) , O(Yi(α, β)) · Fi+1(α, β)←↩ Fi(α, β)

by the matrices
[

Ii 0
0 λiIn−i

]
and

[
λiIi 0
0 In−i

]

respectively, where we have abbreviated 1O(Yi(α,β)) by λi, and 1O(Zi(α,β))

by µi. Furthermore the matrix-decomposition on page 560 (for k = n)
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shows that y(α, β)−1n−1
α xnβz(α, β)−1 is the diagonal matrix with entries

(t1(α, β)/t0, . . . , tn(α, β)/t0). With this information at hand, it is easy to see
that Φ(α, β) is indeed a generalized isomorphism from ⊕nOX(α,β) to itself.

Theorem 5.5. Let S be a scheme and Φ a generalized isomorphism from ⊕nOS
to itself. Then there is a unique morphism f : S → KGln such that f∗Φuniv is
equivalent to Φ. In other words, the scheme KGln together with Φuniv represents
the functor, which to each scheme S associates the set of equivalence classes of
generalized isomorphisms from ⊕nOS to itself.

The proof of the theorem will be given in section 7.

Corollary 5.6. There is a (left) action of Gln×Gln on KGln, which extends
the action ((ϕ, ψ),Φ) 7→ ψΦϕ−1 of Gln ×Gln on Gln. The divisors Zi and Yi
are invariant under this action.

Proof. The the morphism (Gln × Gln) × KGln → KGln defining the action is
given on S-valued points by

((ϕ, ψ),Φ) 7→ Φ′ ,

where Φ is a generalized isomorphism as in definition 5.2 from E0 = ⊕nOS to
F0 = ⊕nOS and Φ′ is the generalized isomorphism where for 2 ≤ i ≤ n the
bf-morphisms from Ei to Ei−1, the ones from Fi to Fi−1 and the isomorphism

En ∼→ Fn are the same as in the tupel Φ, and where the bf-morphisms

(M0, µ0, E1 → E0, M0 ⊗ E0 ← E1, 0)

and (L0, λ0, F1 → F0, L0 ⊗F0 ← F1, 0)

in the tupel Φ are replaced by the bf-morphisms

(M0, µ0, E1 → E0 ϕ→ E0, M0 ⊗ E1 ← E0 ϕ
−1

← E0, 0)

and (L0, λ0, F1 → F0
ψ→ F0, L0 ⊗F1 ← F0

ψ−1

← F0, 0)

respectively. The invariance of the divisors Zi and Yi is clear, since they are
defined by the vanishing of µi and λi respectively.

6. Exterior powers

Lemma 6.1. Let S be a scheme and E, F two locally free OS-modules of rank
n. Let

g = (M, µ, E → F , M⊗E ← F , r)

be a bf-morphism of rank r from E to F . Then each point x ∈ S has an
open neighbourhood U such that over U there exist local frames (e1, . . . , en)
and (f1, . . . , fn) for E and F respectively with the property that the matrices
for the morphisms

E −→ F and M⊗E ←− F
with respect to these frames are[

Ir 0
0 µ/mIn−r

]
and

[
µIr 0
0 mIn−r

]
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respectively, where m is a nowhere vanishing section of M over U .

Proof. Restricting to a neighbourhood of x, we may assume that the sheaves
M, E , F are free. Let (ẽ1, . . . , ẽn) and (f̃1, . . . , f̃n) be global frames for E and F
respectively. After permutation of their elements, and restricting to a possibly
smaller neighbourhood of x, we may further assume that the morphisms

〈ẽ1, . . . , ẽr〉 −→ F/〈f̃r+1, . . . , f̃n〉
〈f̃r+1, . . . , f̃n〉 −→ M⊗ E/〈ẽ1, . . . , ẽr〉

induced by g] and g[ respectively, are isomorphisms. Let

Ẽ := 〈ẽ1, . . . , ẽr〉 , Ẽ ′ := ker(E →M⊗F/〈f̃r+1, . . . , f̃n〉)
F̃ := ker(F → E/〈ẽ1, . . . , ẽr〉) , F̃ ′ := 〈f̃r+1, . . . , f̃n〉 .

Then we have direct-sum decompositions E = Ẽ ⊕ Ẽ ′ , F = F̃ ⊕ F̃ ′ , which
are respected by g] and g[. Let m be a nowhere vanishing section of M. The
frames (e1, . . . , en), (f1, . . . , fn) of E , F , defined by setting ei := ẽi, fi := g](ẽi)

for 1 ≤ i ≤ r and ei := (1/m)g[(f̃i), fi := f̃i for r+1 ≤ i ≤ n, have the desired
property.

Proposition 6.2. Let S be a scheme and E, F two locally free OS-modules of
rank n. Let

g = (M, µ, E → F , M⊗E ← F , i)

be a bf-morphism of rank i from E to F and let 1 ≤ r ≤ n.
1. There exists a unique morphism

∧rg : ∧rE −→ (M∨)⊗max(0,r−i) ⊗ ∧rF

with the following property: If (e1, . . . , en) and (f1, . . . , fn) are local
frames for E and F respectively over an open set U ⊆ S, such that the
matrices for the morphisms

E −→ F and M⊗E ←− F

with respect to these frames are
[

Ii 0
0 µ/mIn−i

]
and

[
µIi 0
0 mIn−i

]

respectively (m being a nowhere vanishing section of M over U), then
(∧rg)|U takes the form

eI ∧ eJ 7→ mp−r ⊗ µmin(i,r)−p ⊗ fI ∧ fJ ,

where I ⊆ {1, . . . , i}, J ⊆ {i+1, . . . , n} with ]I = p, ]J = r−p and where
eI = ei1 ∧ · · · ∧ eip , if I = {i1, . . . , ip} and i1 < · · · < ip. The eJ , fI , fJ
are defined analoguosly.
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2. Similarly, there exists a unique morphism

∧−rg : ∧rF −→M⊗min(r,n−i) ⊗ ∧rE
with the following property: If (e1, . . . , en) and (f1, . . . , fn) are local
frames for E and F respectively over an open set U ⊆ S, such that the
matrices for the morphisms

F −→M⊗ E and E ←− F
with respect to these frames are

[
mIn−i 0

0 µIi

]
and

[
µ/mIn−i 0

0 Ii

]

respectively (m being a nowhere vanishing section of M over U), then
(∧−rg)|U takes the form

fI ∧ fJ 7→ mp ⊗ µmin(r,n−i)−p ⊗ eI ∧ eJ ,

where I ⊆ {1, . . . , n− i}, J ⊆ {n− i+ 1, . . . , n} with ]I = p, ]J = r − p.
Proof. 1. An easy calculation shows that the morphism given by the prescrip-
tion

eI ∧ eJ 7→ mp−r ⊗ µmin(i,r)−p ⊗ fI ∧ fJ ,

does not depend on the chosen local frames (e1, . . . , en), (f1, . . . , fn). Therefore
using 6.1, we may define ∧rg by this local prescription.
2. This can be proven along the same lines as 1. Alternatively, it follows by
applying 1. to the bf-morphism (M, µ, E ′ → F ′, M ⊗ E ′ ← F ′, n − r)
obtained from g by setting E ′ := F and F ′ :=M⊗E .
In the situation of the above proposition 6.2, assume that E = E1 ⊕ E2 and
F = F1 ⊕ F2, where rkEi = rkFi =: ni for i = 1, 2. Assume furthermore
that the morphisms E → F and F → M⊗ E both respect these direct-sum
decompositions and that there are i1, i2 ≥ 0 with i1 + i2 = i, such that the
tupels

g1 := (M, µ, E1 → F1, M⊗E1 ← F1, i1)

and g2 := (M, µ, E2 → F2, M⊗E2 ← F2, i2) ,

induced by g, are also bf-morphisms. We write g = g1 ⊕ g2. The following
lemma says that exterior powers of bf-morphisms are compatible with direct
sums whenever this makes sense.

Lemma 6.3. Let 1 ≤ r ≤ n and r = r1 + r2 for some r1, r2 ≥ 0.

1. If max(0, r− i) = max(0, r1− i1)+max(0, r2− i2), then we have for every
ε1 ∈ Γ(S,∧r1E1), ε2 ∈ Γ(S,∧r2E2) the following equality:

(∧rg)(ε1 ∧ ε2) = (∧r1g1)(ε1) ∧ (∧r2g2)(ε2) .

2. If min(i, r) = min(i1, r1) + min(i2, r2), then we have for every ω1 ∈
Γ(S,∧r1F1), ω2 ∈ Γ(S,∧r2F2) the following equality:

(∧−rg)(ω1 ∧ ω2) = (∧−r1g1)(ω1) ∧ (∧−r2g2)(ω2) .
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Proof. This follows immediately from the local description of ∧rg and ∧−rg
respectively.

Definition 6.4. Let S be a scheme, E and F two localy free OS-modules of
rank n and

Φ = (Li, λi, Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi, Li ⊗Fi+1 ← Fi (0 ≤ i ≤ n− 1), En ∼→ Fn) ,
a generalized isomorphism from E = E0 to F = F0. For 1 ≤ r ≤ n we define
the r-th exterior power

∧rΦ :

r∧
E −→

r⊗

ν=1

(
ν−1⊗

i=0

L∨i ⊗
n−ν⊗

i=0

Mi

)
⊗

r∧
F

of Φ as the composition

∧rΦ := (∧−rg0) ◦ (∧−rg1) ◦ . . . ◦ (∧−rgn−1) ◦ (∧rhn) ◦ (∧rhn−1) ◦ . . .◦ (∧rh0) ,

where gi and hi are the bf-morphisms

(Mi, µi, Ei+1 → Ei, Mi ⊗ Ei+1 ← Ei, i)

and (Li, λi, Fi+1 → Fi, Li ⊗Fi+1 ← Fi, i)

respectively for 0 ≤ i ≤ n− 1, and where hn is the isomorphism En ∼→ Fn.
In the situation of the above definition consider especially the case, where
E = ⊕nOS and F = ⊕nL for some invertible OS-module L. Then we have
natural direct sum decompositions

r∧
E =

⊕

B

OS and
r∧
F =

⊕

A

Lr ,

where A and B run through all subsets of cardinality r of {1, . . . , n}. For two
such subsets A and B, we denote by πA (respectively by ιB) the projection
∧rF → Lr onto the A-th component (respectively the inclusion OS ↪→ ∧rE of
the B-th component). Now we define

detA,BΦ := πA ◦ (∧rΦ) ◦ ιB : OS −→
r⊗

ν=1

(
ν−1⊗

i=0

L∨i ⊗
n−ν⊗

i=0

Mi

)
⊗Lr .

Lemma 6.5. Let (α, β) ∈ Sn × Sn and let X(α, β) be the open set of KGln
defined in section 4. Let Φuniv be the generalized isomorphism defined in 5.4.
Then the sections detα[1,r],β[1,r]Φuniv are nowhere vanishing on X(α, β) for 1 ≤
r ≤ n.
Proof. From the proof of 5.4 it follows readily that the restriction of
detα[1,r],β[1,r]Φuniv to X(α, β) is

∏r
ν=1(tν(α, β)/t0) as an element of

Γ

(
X(α, β), O

(
r∑

ν=1

(
n−ν∑

i=0

Zi −
ν−1∑

i=0

Yi

)))
⊂ Γ(X(α, β), KKGln) .
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On the other hand, 4.1 tells us that
∏r
ν=1(tν(α, β)/t0) is a generator of

O(
∑r

ν=1(
∑n−ν

i=0 Zi −
∑ν−1
i=0 Yi)) over X(α, β).

7. Proof of theorem 5.5

Let S be a scheme, L an invertible OS-module. For 0 ≤ i ≤ n− 1 let (Li, λi),
(Mi, µi) be invertible OS-modules together with global sections, such that the
zero sets of λi and µj do not intersect for i + j < n. Given these data, we
associate to every tupel (ϕ1, . . . , ϕn) of isomorphisms

ϕr :

n−r⊗

i=0

M∨i
∼−→

r−1⊗

i=0

L∨i ⊗L (1 ≤ r ≤ n)

the following generalized isomorphism from ⊕nOS to ⊕nL :

Φ(ϕ1, . . . , ϕn) := (Li, λi, Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi, Li ⊗Fi+1 ← Fi (0 ≤ i ≤ n− 1), En ∼→ Fn) ,
where the locally free modules Ei and Fi are defined as

Ei :=

n−i⊕

j=1

(
i−1⊗

ν=0

M∨ν

)
⊕

n⊕

j=n−i+1

(
n−j⊗

ν=0

M∨ν

)
,

Fi :=




i⊕

j=1

(
j−1⊗

ν=0

L∨ν

)
⊕

n⊕

j=i+1

(
i−1⊗

ν=0

L∨ν

)
⊗L ,

the morphisms

Ei −→Mi ⊗ Ei+1 and Ei ←− Ei+1

are described by the matrices
[

In−i 0
0 µiIi

]
and

[
µiIn−i 0

0 Ii

]
,

the morphisms

Fi+1 −→ Fi and Li ⊗Fi+1 ←− Fi
by the matrices

[
Ii 0
0 λiIn−i

]
and

[
λiIi 0
0 In−i

]

respectively, and the isomorphism En ∼→ Fn is given by the diagonal matrix
with entries (ϕ1, . . . , ϕn).

Definition 7.1. Let S be a scheme, L an invertible OS-module and

Φ := (Li, λi, Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi, Li ⊗Fi+1 ← Fi (0 ≤ i ≤ n− 1), En ∼→ Fn)
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an arbitrary generalized isomorphism from E0 = ⊕nOS to F0 = ⊕nL. A
diagonalization of Φ with respect to a pair (α, β) ∈ Sn×Sn of permutations is
a tupel (ui,vi (0 ≤ i ≤ n), (ϕ1, . . . , ϕn)) of isomorphisms

ui : Ei ∼−→
n−i⊕

j=1

(
i−1⊗

ν=0

M∨ν

)
⊕

n⊕

j=n−i+1

(
n−j⊗

ν=0

M∨ν

)
(0 ≤ i ≤ n)

vi : Fi ∼−→




i⊕

j=1

(
j−1⊗

ν=0

L∨ν

)
⊕

n⊕

j=i+1

(
i−1⊗

ν=0

L∨ν

)
⊗L (0 ≤ i ≤ n)

ϕr :

n−r⊗

i=0

M∨i
∼−→

r−1⊗

i=0

L∨i ⊗L (1 ≤ r ≤ n)

such that (ui, vi (0 ≤ i ≤ n)) establishes a quasi-equivalence between Φ and
Φ(ϕ1, . . . , ϕn) and such that

un · nβ : E0 = ⊕nOS ∼−→ ⊕nOS and vn · nα : F0 = ⊕nL ∼−→ ⊕nL
are described by upper and lower triangular matrices respectively, with unit
diagonal entries.

Definition 7.2. As in the above definition let Φ be a generalized isomorphism
from ⊕nOS to ⊕nL. A pair (α, β) ∈ Sn × Sn of permutations is called admis-
sible, if for all 1 ≤ r ≤ n the global sections detα[1,r],β[1,r]Φ of

r⊗

ν=1

(
n−ν⊗

i=0

Mi ⊗
ν−1⊗

i=0

L∨i

)
⊗Lr

are nowhere vanishing on S.

Proposition 7.3. Let S be a scheme, L an invertible OS-module and Φ a
generalized isomorphism from ⊕nOS to ⊕nL. Then:

1. For (α, β) ∈ Sn × Sn the following are equivalent:
(a) there exists a diagonalization of Φ with respect to (α, β)
(b) (α, β) is admissible for Φ

2. Every point of S has an open neighbourhood U , such that there is a diag-
onalization of Φ|U with respect to some pair (α, β) ∈ Sn × Sn.

3. For a given pair (α, β) ∈ Sn × Sn there is at most one diagonalization of
Φ with respect to (α, β).

Proof. Let

Φ := (Li, λi, Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi, Li ⊗Fi+1 ← Fi (0 ≤ i ≤ n− 1), En ∼→ Fn) ,
be a generalized isomorphism from E0 = ⊕nOS to F0 = ⊕nL. For 0 ≤ i ≤ n−1
denote bf-morphisms as follows:

gi := (Mi, µi, Ei+1 → Ei, Mi ⊗ Ei+1 ← Ei, i) ,

hi := (Li, λi, Fi+1 → Fi, Li ⊗Fi+1 ← Fi, i) ,
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and let hn the isomorphism En ∼→ Fn.
1. We may assume that α = β = id. We show by induction on n that
admissibility of (id, id) for Φ implies the diagonalizability of Φ with respect
to (id, id). The case n = 1 is trivial, so assume n ≥ 2. By assumption, the
morphism

det{1},{1}Φ : OS −→ L∨0 ⊗
n−1⊗

i=0

Mi ⊗L

is an isomorphism. Let

Ẽ ′i := ker(π1 ◦ (∧1h0) ◦ . . . ◦ (∧−1gi) : Ei −→ L∨0 ⊗
n−1⊗

j=i

Mj ⊗L)

(i ∈ [0, n])

F̃ ′i := ker(π1 ◦ (∧1h0) ◦ . . . ◦ (∧1hi−1) : Fi −→ L∨0 ⊗L) (i ∈ [1, n])

F̃ ′0 := ker(π1 : ⊕nL −→ L) = ⊕n−1L

and

Ẽi := im((∧−1gi−1) ◦ . . . ◦ (∧−1g0) ◦ ι1 :

i−1⊗

j=0

M∨j −→ Ei) (i ∈ [0, n])

F̃i := im((∧1hi) ◦ . . . ◦ (∧−1g0) ◦ ι1 :
n−1⊗

j=0

M∨j −→ Fi) (i ∈ [1, n])

F̃0 := im((∧1h0) ◦ . . . ◦ (∧−1g0) ◦ ι1 : L∨0 ⊗
n−1⊗

j=0

M∨j −→ F0)

Then we have natural direct sum decompositions

Ei = Ẽi ⊕ Ẽ ′i (0 ≤ i ≤ n) ,

Fi = F̃i ⊕ F̃ ′i (0 ≤ i ≤ n) .

Since the bf-morphisms gi and hi respect these decompositions, we can write
gi = g̃i⊕ g̃′i and hi = h̃i⊕ h̃′i where g̃i (respectively g̃′i, h̃i, h̃

′
i) is a bf-morphism

from Ẽi+1 to Ẽi (respectively from Ẽ ′i+1 to Ẽ ′i , from F̃i+1 to F̃i, from F̃ ′i+1

to F̃ ′i) for 0 ≤ i ≤ n − 1. By the same reason, we can write hn = h̃n ⊕ h̃′n,
where h̃n : Ẽn ∼→ F̃ and h̃′n : Ẽ ′n

∼→ F̃ ′. Observe that rk g̃i = 0 and rk g̃′i = i for
0 ≤ i ≤ n− 1 and that

rk h̃i =

{
0 , if i = 0
1 , if i > 0

, rk h̃′i =

{
0 , if i = 0
i− 1 , if i > 0

.
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Now we define

L′ := L⊗ L∨0
L′i := Li+1 , λ′i := λi+1 (0 ≤ i ≤ n− 2)

M′i := Mi , µ′i := µi (0 ≤ i ≤ n− 2)

E ′i := Ẽ ′i (0 ≤ i ≤ n− 1)

F ′i := F̃ ′i+1 (0 ≤ i ≤ n− 1)

where we identify E ′0 with ⊕n−1OS via the isomorphism

E ′0 = Ẽ ′0
inclusion−−−−−→ E0 = ⊕nOS

π[2,n]−−−−→ ⊕n−1OS ,

and F ′0 with ⊕n−1L′ via the isomorphism

F ′0 = F̃ ′1
∧1h̃′

0−−−−→ L∨0 ⊗⊕n−1L = ⊕n−1L′ .

Let

Φ′ := (L′i, λ′i, M′i, µ′i, E ′i →M′i ⊗ E ′i+1, E ′i ← E ′i+1,

F ′i+1 → F ′i , L′i ⊗F ′i+1 ← F ′i (0 ≤ i ≤ n− 2), E ′n−1
∼→ F ′n−1) ,

where E ′n−1
∼→ F ′n−1 is the composition

E ′n−1 = Ẽ ′n−1

∧−1g̃′n−1−−−−−−→ Ẽ ′n
h̃′
n−−−−→ F̃ ′n = F ′n−1

,

and where the other morphisms are the ones from the g̃′i and the h̃′i. It is
easy to see that Φ′ is a generalized isomorphism from ⊕n−1OS to ⊕n−1L′.
Furthermore, it follows from 6.3 that

(∧rΦ)(e1 ∧ · · · ∧ er) = (∧1Φ)(e1) ∧ (∧r−1Φ′)(e′1 ∧ · · · ∧ e′r−1) (2 ≤ r ≤ n) ,

where (e1, . . . , en) ⊂ Γ(S, E0) and (e′1, . . . , e
′
n−1) ⊂ Γ(S, E ′0) are the canonical

global frames of ⊕nOS and ⊕n−1OS respectively. Therefore we have

det[1.r][1,r]Φ = det{1}{1}Φ⊗ det[1,r−1][1,r−1]Φ
′ (2 ≤ r ≤ n) .

Since, by assumption, the sections det[1.r][1,r]Φ are nowhere vanishing,
the above equation implies that the same is true also for the sections
det[1,r−1][1,r−1]Φ

′ (2 ≤ r ≤ n). In other words, (id, id) is admissible for
Φ′. By induction-hypothesis, we conclude that there exists a diagonalization
(u′i, v

′
i, (0 ≤ i ≤ n− 1), (ϕ′1, . . . , ϕ

′
n−1)) of Φ′ with respect to (id, id).

Let

ũ′i := u′i (0 ≤ i ≤ n− 1) ,

ṽ′i := v′i−1 (1 ≤ i ≤ n) ,

and

ũ′n : Ẽ ′n
g̃]n−1−−−−→
∼

Ẽ ′n−1 = E ′n−1

u′
n−1−−−−→
∼

⊕n
j=2

(⊗n−j
ν=0M∨

)
,

ṽ′0 : F̃ ′0 =
⊕n−1 L = L0 ⊗F ′0

v′0−−−−→
∼

⊕n−1 L .
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Observe that there are natural isomorphisms

ũi : Ẽi ∼−−−−→ ⊗i−1
j=0M∨j (0 ≤ i ≤ n)

ṽi : F̃i ∼−−−−→ ⊗n−1
j=0 M∨j

det{1}{1}Φ−−−−−−−→ L⊗L∨0 (1 ≤ i ≤ n)

ṽ0 : F̃0
∼−−−−→ L0 ⊗

⊗n−1
j=0 M∨j

det{1}{1}Φ−−−−−−−→ L
We set ui := ũi ⊕ ũ′i , vi := ṽi ⊕ ṽ′i for 0 ≤ i ≤ n, and ϕr := ϕ′r−1 for

2 ≤ r ≤ n. Finally, we let ϕ1 :
⊗n−1

i=0 M∨i
∼→ L ⊗ L∨0 be the isomorphism

induced by det{1}{1}Φ. It is now easy to see that the tupel (ui, vi (0 ≤ i ≤
n), (ϕ1, . . . , ϕn)) is a diagonalization of Φ with respect to (id, id).
Conversely, assume that there exists a diagonalization (ui, vi (0 ≤ i ≤
n), (ϕ1, . . . , ϕn)) of Φ with respect to (id, id). Observe that the diagram

∧rE0

∧ru0

��

∧rΦ // Nr ⊗ (∧rF0)

∧rv0

��

π[1,r]

**VVVVVVVV

OS

ι[1,r] 66mmmmmmmm

ι[1,r] ((QQQQQQQ Nr ⊗L⊗r

∧r(⊕nOS)
∧rΦ(ϕ1,...,ϕn) // Nr ⊗ (∧r(⊕nL))

π[1,r]

44hhhhhhhh

where Nr :=
⊗r

ν=1(
⊗n−ν

i=0 Mi ⊗
⊗ν−1

i=0 L∨i ), is commutative for 1 ≤ r ≤ n.
Therefore we may assume that Φ = Φ(ϕ1, . . . , ϕn). But then det[1,r][1,r]Φ is
the section induced by the isomorphism

ϕ1 ⊗ . . .⊗ ϕr :

r⊗

ν=1

n−ν⊗

i=0

M∨i
∼−→

r⊗

ν=1

ν−1⊗

i=0

L∨i

for 1 ≤ r ≤ n. In particular the det[1,r][1,r]Φ are nowhere vanishing on S, which
is precisely what is required for the admissibility of (id, id) for Φ.
2. By 1, it suffices to show that in the case S = Spec k (k a field) there exists
a pair (α, β) ∈ Sn × Sn which is admissible for Φ. We apply induction on n,
the case n = 1 being trivial.
It is an easy exercise in linear algebra, to show that the morphism

∧1Φ = (h[0)
−1 ◦ h]1 . . . ◦ h]n−1 ◦ hn ◦ g[n−1 ◦ . . . ◦ g[0

has at least rank one. Consequently there exist indices i1, j1 ∈ {1, . . . , n}, such
that the composition det{i1}{j1}Φ = πi1 ◦(∧1Φ)◦ιj1 is an isomorphism. Let the

sheaves Ẽ ′i , F̃ ′i (0 ≤ i ≤ n) be defined as on page 575, with π1 replaced by πi1 ,
and using these sheaves, let Φ′ be defined as on page 576. This is a generalized
isomophism from kn−1 to ⊕n−1(L∨0 ⊗L). By induction-hypothesis there exists
a pair (α′, β′) ∈ Sn−1×Sn−1, which is admissible for Φ′. Let α ∈ Sn be defined
by

α(r) :=

{
i1 , if r = 1
α′(r − 1) + 1 , if 2 ≤ r ≤ n ,

and let β ∈ Sn be defined analogously. As on page 576 we have

detα[1.r],β[1,r]Φ = det{i1}{j1}Φ⊗ detα′[1,r−1],β′[1,r−1]Φ
′ (2 ≤ r ≤ n)
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for 2 ≤ r ≤ n, i.e. the pair (α, β) is admissible for Φ.
3. This follows from the proof of 1, since it is clear that the construction of the
diagonalization there is unique.

Proposition 7.4. Let S be a scheme and Φ a generalized isomorphism from
⊕nOS to itself.

1. If (α, β) ∈ Sn × Sn is admissible for Φ, then there exists a unique mor-
phism S → X(α, β), such that the pull-back of Φuniv to S by this mor-
phism is equivalent to Φ.

2. We have the following description of X(α, β) as an open subset of KGln:

X(α, β) =
{
x ∈ KGln | (detα[1,r],β[1,r]Φuniv)(x) 6= 0 for 1 ≤ r ≤ n

}
.

3. If (α′, β′) ∈ Sn×Sn is a further admissible pair for Φ, then the above mor-
phism S → X(α, β) factorizes over the inclusion X(α, β) ∩X(α′, β′) ↪→
X(α, β).

Proof. 1. Let

Φ = (Li, λi, Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi, Li ⊗Fi+1 ← Fi (0 ≤ i ≤ n− 1), En ∼→ Fn) .
By proposition 7.3 there exists a diagonalization (ui, vi (0 ≤ i ≤
n), (ϕ1, . . . , ϕn)) of Φ with respect to (α, β). Let aji ∈ Γ(S,OS) (respec-
tively bij ∈ Γ(S,OS)) (1 ≤ i < j ≤ n) be the nontrivial entries of the lower
(respectively upper) triangular matrix (v0 · nα)−1 (respectively u0 · nβ). Let
a : S → U− and b : S → U+ be the morphisms defined by a∗(yji) = aji
and b∗(zij) = bij respectively. Furthermore, let ϕ : S → T̃ be the morphism
induced by the tupel

(Li, λi, Mi, µi (0 ≤ i ≤ n− 1), ϕr (1 ≤ r ≤ n)) ,

(cf lemma 4.3). Thus we have a morphism

f : S
(a,ϕ,b)−→ U− × T̃ × U+ ∼−→ X(α, β) ,

where the right isomorphism is the inverse of the one in lemma 4.4. It is clear
that

f∗O(Yi(α, β)) ∼= Li , f∗1O(Yi(α,β)) = λi

f∗O(Zi(α, β)) ∼=Mi , f∗1O(Zi(α,β)) = µi (0 ≤ i ≤ n− 1) .

Denote by (u′i, v
′
i (0 ≤ i ≤ n), (ϕ′1, . . . , ϕ

′
n)) the pull-back under f of the

diagonalization of Φuniv|X(α,β), which exists by 6.5 and 7.3. By the uniquness
of diagonalizations (cf 7.3), we have u0 = u′0, v0 = v′0 and (ϕ1, . . . , ϕn) =
(ϕ′1, . . . , ϕ

′
n). Therefore the isomorphisms

(u′i)
−1 ◦ ui : Ei ∼−→ f∗Ei

(v′i)
−1 ◦ vi : Fi ∼−→ f∗Fi

induce an equivalence between Φ and f∗Φuniv. This proves the existence part
of the proposition. For uniqueness, assume that f̃ is a further morphism from
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S to X(α, β), such that Φ is equivalent to f̃∗Φuniv. Let ui : Ei ∼→ f̃∗Ei,
vi : Fi ∼→ f̃∗Fi, (0 ≤ i ≤ n) be an equivalence. Note that by definition
u0 = id⊕nOS = u0. Let (ũi, ṽi (0 ≤ i ≤ n), (ϕ̃1, . . . , ϕ̃n)) be the pull-back

under f̃ of the diagonalization with respect to (α, β) of Φuniv|X(α,β). Then
(ũi ◦ui, ṽi ◦ vi (0 ≤ i ≤ n), (ϕ̃1, . . . , ϕ̃n)) is a diagonalization of Φ with respect
to (α, β). By 7.3.3 we conclude that ũ0 = ũ0 ◦ u0 = u0, ṽ0 = ṽ0 ◦ v0 = v0 and
(ϕ̃1, . . . , ϕ̃n) = (ϕ1, . . . , ϕn). But this implies that the composite morphism

S
f̃−→ X(α, β)

∼−→ U− × T̃ × U+

equals (a, ϕ, b) and thus that f̃ = f .
2. Denote for a moment by U the open subset of KGln, defined by the non-
vanishing of detα[1,r],β[1,r]Φuniv for 1 ≤ r ≤ n. We have already seen in 6.5
that X(α, β) is contained in U . Let x ∈ U . Since X(α, β) is dense in U ,
there exists a generalization y ∈ X(α, β) of x. Then there exists a morphism
f : S → U , where S is the Spec of a valuation ring, such that the special point
of S is mapped to x and its generic point to y. By definition of U , the pair
(α, β) is admissible for the generalized isomorphism f ∗Φuniv. Therefore 1 tells
us that there exists a morphism f ′ : S → X(α, β), which coincides with f at
the generic point of S. Since KGln is separabel, it follows that f = f ′ and thus
that x ∈ X(α, β).
3. This follows immediatelly from 2.

Proof. (Of theorem 5.5). Let S be a scheme and Φ a generalized isomorphism
from ⊕nOS to itself. By proposition 7.3, there is a covering of S by open sets Ui
(i ∈ I), and for every index i ∈ I a pair (αi, βi) ∈ Sn×Sn, which is admissible
for Φ|Ui . Proposition 7.4.1 now tells us that there exists for each i ∈ I a unique
morhpism fi : Ui → X(αi, βi) with the property that there is an equivalence,
say ui, from Φ|Ui to f∗i Φuniv. By proposition 7.4.2, the fi glue together, to
give a morphism f : S → KGln. It remains to show that also the ui glue
together, to give an overall equivalence from Φ to f ∗Φuniv. For this, it suffices
to show that for two generalized isomorphisms Φ and Φ′ from ⊕nOS to itself
there exists at most one equivalence from Φ to Φ′. The question being local,
we may assume by proposition 7.3.2 that Φ′ is diagonalizable with respect to
some pair (α, β) ∈ Sn × Sn. Composing the diagonalization of Φ′ with any
equivalence from Φ to Φ′ gives a diagonalization of Φ with respect to (α, β).
Since different equivalences from Φ to Φ′ would yield different diagonalizations
of Φ, proposition 7.3.3 tells us that there exists at most one equivalence.

8. Complete collineations

In this section we prove a modular property for the compactification PGln of
PGln and compare it with the results of other authors.
The scheme PGln together with closed subschemes ∆r (1 ≤ r ≤ n−1) is defined

by successive blow ups as follows. Let Ω
(0)

:= Proj (Z[xi,j (1 ≤ i, j ≤ n)]) and

let ∆
(0)

r := V +((detAB(xij ) | A,B ⊆ {1, . . . , n}, ]A = ]B = r + 1)) (1 ≤
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r ≤ n− 1). Inductively, define Ω
(ν)

as the blowing up of Ω
(ν−1)

along ∆
(ν−1)

ν .

The closed subscheme ∆
(ν)

r ⊂ Ω
(ν)

is by definition the strict (resp. total)

transform of ∆
(ν−1)

r for r 6= ν (resp. r = ν). By definition, PGln := Ω
(n−1)

and ∆r := ∆
(n−1)

r for 1 ≤ r ≤ n− 1.
The variety PGln×Spec (C) is the so-called “wonderful compactification” of the
homogenuos space PGln,C = (PGln,C×PGln,C)/PGln,C (cf. [CP]). Vainsencher
[V], Laksov [Lak2] and Thorup-Kleiman [TK] have given a modular description
for (some of) the S-valued points of PGln. We will give a brief account of their
results.
Let R ⊆ [1, n − 1] and let S be a scheme. Following the terminology of
Vainsencher, an S-valued complete collineation of type R from a rank-n vector
bundle E to a rank-n vector bundle F is a collection of morphisms

vi : Ei → Ni ⊗ Fi (0 ≤ i ≤ k),

where R = {r1, . . . , rk}, 0 =: r0 < r1 < · · · < rk < rk+1 := n, the Ni
are line bundles, the Ei, Fi are vector bundles on S and vi has overall rank
ri+1 − ri; furthermore it is required that E0 = E, F0 = F , and Ei = ker(vi−1),
Fi = N∨i−1 ⊗ coker(vi−1) for 1 ≤ i ≤ k. Vainsencher proves that the locally

closed subscheme (∩r∈R∆r) \ ∪r 6∈R∆r of PGln represents the functor which to
each scheme S associates the set of isomorphism classes of S-valued complete
collineations of type R from ⊕nOS to itself.
Laksov went further. He succeeded to give a modular description for those
S-valued points of ∆(R) := ∩r∈R∆r for which the pull-back of the divisor∑

r 6∈R∆r|∆(R) on ∆(R) is a well-defined divisor on S. We refer the reader to

[Lak2] for more details.
Finally, Thorup and Kleiman gave the following description for all S-valued
points of PGln. A morphism u from (⊕nOS)⊗ (⊕nOS)∨ to a line bundle L is
called a divisorial form, if for each i ∈ [1, n] the image Mi(u) of the induced
map ∧i(⊕nOS)⊗∧i(⊕nOS)∨ → L⊗i is an invertible sheaf. In this case denote
by ui the induced surjection ∧i(⊕nOS) ⊗ ∧i(⊕nOS)∨ → Mi(u). Following
Thorup and Kleiman, we define a projectively complete bilinear form as a tupel
u = (u1, . . . , un), where ui : ∧i(⊕nOS) ⊗ ∧i(⊕nOS)∨ → Mi is a surjection
onto an invertible sheafMi for 1 ≤ i ≤ n, such that u is “locally the pull-back
of a divisorial form”. The last requirement means the following: For each point
x ∈ S, there exists an open neighborhood U of x, a morphism from U to some
scheme S′ and a divisorial form u : (⊕nOS′)⊗ (⊕nOS′)∨ → L′ on S′ such that
the restriction of u to U is isomorphic to the pull-back of (u1, . . . , un). Thorup
and Kleiman show that PGln represents the functor that to each scheme S
associates the set of isomorphism classes of projectively complete bilinear forms
on S.
None of these descriptions is completely satisfactory: Those of Vainsencher and
Laksov deal only with special S-valued points and the description of Thorup-
Kleiman is not explicit and is not truely modular, since the condition “to
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be locally pull-back of a divisorial form” makes reference to the existence of
morphisms between schemes.
The terminology in the following definition will be justified by the corollary 8.2
below.

Definition 8.1. Let S be a scheme and E , F two locally free OS-modules of
rank n. A complete collineation from E to F is a tupel

Ψ = (Li, λi, Fi+1 → Fi, Li ⊗Fi+1 ← Fi (0 ≤ i ≤ n− 1)) ,

where E = Fn,Fn−1, . . . ,F1,F0 = F are locally free OS-modules of rank n,
the tupels

(Li, λi, Fi+1 → Fi, Li ⊗Fi+1 ← Fi, i)
are bf-morphisms of rank i for 0 ≤ i ≤ n − 1 and λ0 = 0, such that for each
point x ∈ S and index i ∈ {0, . . . , n− 1} with the property that λi(x) = 0, the
following holds:
If (f, g) is one of the following two pairs of morphisms:

Fn[x] f−→ Fi+1[x]
g−→ Fi[x] ,

((⊗ij=0Lj)⊗Fi+1)[x]
g←− ((⊗i−1

j=0Lj)⊗Fi)[x]
f←− F0[x] ,

then im(g ◦ f) = im(g).
Two complete collineations Ψ and Ψ′ from E to F are called equivalent, if
there are isomorphisms Li ∼→ L′i, Fi

∼→ F ′i , such that all the obvious diagrams

commute and such that Fn ∼→ F ′n and F0
∼→ F ′0 is the identity on E and F .

Corollary 8.2. On PGln there exists a universal complete collineation Ψuniv

from ⊕nO to itself, such that the pair (PGln,Ψuniv) represents the functor,
which to every scheme S associates the set of equivalence classes of complete
collineations from ⊕nOS to itself.

Proof. Observe that PGln is naturally isomorphic to the closed subscheme Y0

of KGln. The restriction of Φuniv to PGln induces in an obvious way a complete
collineation Ψuniv of ⊕nO to itself on PGln. The corollary now follows from
theorem 5.5.

We conclude this section by indicating how one can recover Vainsencher’s and
Thorup-Kleiman’s description from corollary 8.2. Let S be a scheme and let

Ψ = (Li, λi, Fi+1 → Fi, Li ⊗Fi+1 ← Fi (0 ≤ i ≤ n− 1))

be a complete collineation from ⊕nOS to itself in the sense of definition 8.1.
First assume that there exists a subset R of [1, n − 1], such that the map
S → PGln corresponding to Ψ factors through (∩r∈R∆r) \ ∪r 6∈R∆r. This
means that λr is zero for r ∈ R and is nowhere vanishing for r ∈ [1, n− 1] \R.
As above, let R = {r1, . . . , rk}, 0 =: r0 < r1 < · · · < rk < rk+1 := n. For
0 ≤ i ≤ k let

Ei := ker(Fn → Fn−1 → · · · → Fri)
Fi := N∨i ⊗ ker(Fri+1 → Fri+1−1 → · · · → Fri) ,
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where Ni := ⊗ij=1L∨ri . Observe that the data in Ψ provide natural maps

vi : Ei → Ni ⊗ Fi
of overall rank ri+1 − ri for 0 ≤ i ≤ k. Furthermore we have natural isomor-
phisms E0 = Fn = ⊕nO, F0

∼= F0 = ⊕nO, and for 1 ≤ i ≤ k:
ker(vi−1) = Ei

coker(vi−1) ∼= coker(Fn → Fri) = coker(Fri+1 → Fri) ∼=
∼= ker(Lri ⊗Fri+1 → Lri ⊗Fri) ∼= Ni−1 ⊗ Fi .

Thus, (vi)0≤i≤k is a complete homomorphism of type R in the sense of
Vainsencher.
Now let Ψ be arbitrary. As in section 6, Ψ induces nowhere vanishing mor-
phisms

∧rΨ : ∧rFn →
(

r⊗

ν=1

ν−1⊗

i=0

L∨i

)
⊗ ∧rF0

and thus surjections

ur : ∧rFn ⊗ ∧rF∨0 →
r⊗

ν=1

ν−1⊗

i=0

L∨i

for 1 ≤ r ≤ n. The tupel (ur)1≤r≤n is a projectively complete bilinear form in
the sense of Thorup-Kleiman. This follows from the fact that ∧1Ψuniv induces
a divisorial form on PGln.

9. Geometry of the strata

In this section we need relative versions of the varieties KGln, PGln and OI,J :=
∩i∈IZi ∩ ∩j∈JYj , where I and J are subsets of [0, n− 1]. They are defined in
the following theorem.

Theorem 9.1. Let T be a scheme and let E and F be two locally free OT -
modules of rank n. For a T -scheme S we write ES and FS for the pull-back
of E and F to S. Let I, J be two subsets of [0, n− 1] Consider the following
contravariant functors from the category of T -schemes to the category of sets:

KGl(E ,F) : S 7→





equivalence classes of
generalized isomorphisms
from ES to FS





PGl(E ,F) : S 7→





equivalence classes of
complete collineations
from ES to FS





OI,J(E ,F) : S 7→





equivalence classes of
generalized isomorphisms Φ
as in definition 5.2 from
ES to FS, with µi = 0 for i ∈ I
and λj = 0 for j ∈ J
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These functors are representable by smooth projective T -schemes, which we will
call KGl(E ,F), PGl(E ,F) and OI,J(E ,F) respectively.

Proof. In the case of T = Spec Z and E = F = ⊕nOSpecZ, the theorem is

a consequence of 5.5 and 8.2, where the representing objects are KGln, PGln
and OI,J respectively. Let T = ∪Ui an open covering such that there exist
trivializations

ξi : E|Ui
∼→ ⊕nOUi

ζi : F |Ui
∼→ ⊕nOUi .

Let KGlUi := KGln×SpecZUi and πi : KGlUi → Ui the projection. By corollary

5.6, over the intersections Ui ∩Uj the pairs (ξiξ
−1
j , ζiζ

−1
j ) induce isomorphisms

π−1
i (Ui ∩ Uj) ∼→ π−1

j (Ui ∩ Uj). These provide the data for the pieces KGlUi to

glue together to define KGl(E ,F). Using theorem 5.5 it is easy to check that
KGl(E ,F) has the required universal property. This proves the existence of
KGl(E ,F). The existence of PGl(E ,F) and of OI,J(E ,F) is proved analogously.

Definition 9.2. Let T be a scheme and E a locally free OT -module of rank
n. Let d := (d0, . . . , dt), where 0 ≤ d0 ≤ · · · ≤ dt ≤ n Let Fld(E) be the flag
variety which represents the following contravariant functor from the category
of T -schemes to the category of sets:

S 7→





All filtrations F0E ⊆ · · · ⊆ FtE , where
FpE is a subbundle of rank dp of ES
for 0 ≤ p ≤ t





Here as usual, a subbundle of ES means a locally free subsheaf of ES , which is
locally a direct summand.

After these preliminaries we can state the main result of this section, which
descibes the structure of the schemes OI,J defined above.

Theorem 9.3. Let T be a scheme and let E and F be two locally free OT -
modules of rank n. Let I := {i1, . . . , ir} and J := {j1, . . . , js}, where i1 +
j1 ≥ n and 0 ≤ i1 < · · · < ir+1 := n, 0 ≤ j1 < · · · < js+1 := n. Let
d := (d0, . . . , dr+s+1) and δ := (δ0, . . . , δr+s+1), where

dp :=

{
n− js+1−p for 0 ≤ p ≤ s
ip−s for s+ 1 ≤ p ≤ r + s+ 1

and δq := n− dr+s+1−q for 0 ≤ q ≤ r + s+ 1. Let

0 = U0 ⊆ U1 ⊆ · · · ⊆ Ur+s+1 = EFld(E)×Flδ(F)

and 0 = V0 ⊆ V1 ⊆ · · · ⊆ Vr+s+1 = FFld(E)×Flδ(F)

be the pull back to Fld(E)×Flδ(F) of the universal flag on Fld(E) and Flδ(F)
respectively. Then there is a natural isomorphism

OI,J(E ,F)
∼→ P1 ×

Fl
. . .×

Fl
Pr ×

Fl
Qs ×

Fl
. . .×

Fl
Q1 ×

Fl
K ′ ,

Documenta Mathematica 5 (2000) 553–594



584 Ivan Kausz

where Fl := Fld(E)× Flδ(F) and where

Pp := PGl(Vr−p+1/Vr−p, Us+p+1/Us+p) (1 ≤ p ≤ r)
Qq := PGl(Us−q+1/Us−q, Vr+q+1/Vr+q) (1 ≤ q ≤ s)
K ′ := KGl(Us+1/Us, Vr+1/Vr) .

Proof. The isomorphism

OI,J ∼= P1 ×
Fl
. . .×

Fl
Pr ×

Fl
Qs ×

Fl
. . .×

Fl
Q1 ×

Fl
K ′

is given on S-valued points by the bijectiv correspondence

Φ←→ ((F•E , F•F), ϕ1, . . . , ϕr, ψs, . . . , ψ1,Φ
′) ,

where

Φ =


 ES

⊗

��

(M0,µ0)
E1

0oo
(M1,µ1)

⊗

��
E2

1oo . . . En−1
(Mn−1,µn−1)

⊗

��
En

n−1oo ∼ // Fn
n−1// Fn−1

⊗

��

(Ln−1,λn−1)

. . . F2
1 // F1

0 //
(L1,λ1)

⊗

��
FS

(L0,λ0)

⊗

��



is a generalized isomorphism from ES to FS with µi = λj = 0 for i ∈ I and
j ∈ J ,

F•E = (0 = F0E ⊆ · · · ⊆ Fr+s+1E = ES)

and F•F = (0 = F0F ⊆ · · · ⊆ Fr+s+1F = FS)

are flags of type d and δ in ES and FS respectively,

ϕp =


 E(p)

0

⊗ %%

E(p)
1

0oo

(M(p)
0 ,µ

(p)
0 )

. . . E(p)
mp−1

⊗ %%
E(p)
mp

mpoo

(M(p)
mp

,µ(p)
mp

)




is a complete collineation from E (p)
mp = Fr−p+1F/Fr−pF to E(p)

0 =
Fs+p+1E/Fs+pE for 1 ≤ p ≤ r,

ψq =


 F (q)

nq

nq //

(L(q)
nq
,λ(q)
nq

)

F (q)
nq−1

⊗xx
. . . F (q)

1

0 //

(L(q)
0 ,λ

(q)
0 )

F (p)
0

⊗yy



is a complete collineation from F (q)
nq = Fs−q+1F/Fs−qE to F (q)

0 =
Fr+q+1F/Fr+qF for s ≥ q ≥ 1 and Φ′ =

 E ′

0

⊗
��

(M′
0,µ′

0)

E ′
1

0oo
(M′

1,µ′
1)

⊗
��
E ′
2

1oo . . . E ′
n′−1

(M′
n′−1

,µ′
n′−1

)

⊗
��
E ′

n′

n′
−1oo ∼ // F ′

n′

n′
−1// F ′

n′−1

⊗
��

(L′
n′−1

,λ′
n′−1

)

. . . F ′
2

1 // F ′
1

0 //
(L′

1,λ′
1)

⊗
��

F ′
0

(L′
0,λ′

0)

⊗
��




is a generalized isomorphism from E ′0 = Fs+1E/FsE to F ′0 = Fr+1F/FrF .
The mapping

Φ 7→ ((F•E , F•F), ϕ1, . . . , ϕr, ψs, . . . , ψ1,Φ
′)

is defined as follows: Let Φ as above be given. For convenience we set
En+1 := Fn, Fn+1 := En and we let Fn+1 → Fn and En ← En+1 be the iso-

morphism En ∼→ Fn and its inverse respectively, whereas we let En ⊗ // En+1
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and Fn+1 Fn⊗oo both be the zero morphism. For what follows, the picture

below may help to keep track of the indices:

Φ︷ ︸︸ ︷
0

| . . . . . .
n−j1
| . . .

i1
| . . .

i2
| . . . . . .

ir
| . . .

n

|
n

| . . .
js

| . . . . . .
j2

| . . .
j1

| . . .
n−i1
| . . . . . .

0

|︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸
Φ′ ϕ1 ϕr ψs ψ1 Φ′

Let F0E = F0F := 0, Fr+s+1E := E , Fr+s+1F := F and

FpE :=





(
image of ker(En → Fjs−p+1) by
the morphism ES ← En

)
, if 1 ≤ p ≤ s

ker( ES ⊗ // Eip−s+1 ) , if s+ 1 ≤ p ≤ r + s

FqF :=





(
image of ker(Eir−q+1 ← Fn) by
the morphism Fn → FS

)
, if 1 ≤ q ≤ r

ker( Fjq−r+1 FS⊗oo ) , if r + 1 ≤ q ≤ r + s

It is then clear from the definition of generalized isomorphisms that

F•E := (0 = F0E ⊆ · · · ⊆ Fr+s+1E = ES)

and F•F := (0 = F0F ⊆ · · · ⊆ Fr+s+1F = FS)

are flags of type d and δ in ES and FS respectively. Let 1 ≤ p ≤ r. We set

E(p)
0 := ker( E ⊗ // Eip+1+1 )/ ker( E ⊗ // Eip+1 ) = Fs+p+1E/Fs+pE

M(p)
0 :=

ip⊗

i=0

Mi , µ
(p)
0 := 0

and

E(p)
k := ker(Eip ← Eip+k) ∩ ker( Eip+k ⊗ // Eip+1+1 ) (1 ≤ k ≤ mp)

M(p)
k := Mip+k , µ

(p)
k := µip+k (1 ≤ k ≤ mp − 1)

where mp = ip+1 − ip. Observe that the sheaves E (p)
k thus defined are locally

free of rank mp. Indeed, this is clear for k = 0. For k ≥ 1 it suffices to
show that Eip+k is generated by the two subsheaves ker(Eip ← Eip+k) and

ker( Eip+k ⊗ // Eip+1+1 ). For this in turn, it suffices to show that the image

of ker( Eip+k ⊗ // Eip+1+1 ) by the morphism Eip ← Eip+k is im(Eip ← Eip+k).
But this is clear, since by the definition of generalized isomorphisms we have

ker( Eip+k ⊗ // Eip+1+1 ) ⊇ im(Eip+k ← Eip+1+1)

and im(Eip ← Eip+k) = im(Eip ← Eip+1+1) .

Since
ip⊗

i=0

M∨i ⊗ (ES/Fs+pE) = im(

ip⊗

i=0

M∨i ⊗ ES → Eip+1) = ker(Eip ← Eip+1) ,
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we have a natural isomorphism E (p)
0 = Fs+p+1E/Fs+pE ∼→ M(p)

0 ⊗ E(p)
1 . We

define E(p)
0 ← E(p)

1 to be the zero morphism. Thus we have a bf-morphism

E(p)
0

⊗ %%

E(p)
1

0oo

(M(p)
0 ,µ

(p)
0 =0)

of rank zero. For 1 ≤ k ≤ mp − 1 let E(p)
k

⊗ &&

E(p)
k+1

koo

(M(p)
k ,µ

(p)
k )

be

the bf-morphism induced by the bf-morphism Eip+k
⊗ &&
Eip+k+1

ip+koo

(Mip+k,µip+k)

. Observe

that ker( Eip+1 ⊗ // Eip+1+1 ) = im(Eip+1 ← En) = En/ ker(Eip+1 ← En) and

that the morphism En → FS maps ker(Eip ← En) injectively into FS. Therefore

we have a natural isomorphism E (p)
mp
∼= Fr−p+1F/Fr−pF by which we identify

these two sheaves. It is not difficult to see that

ϕp :=


 E(p)

0

⊗ %%

E(p)
1

0oo

(M(p)
0 ,µ

(p)
0 )

. . . E(p)
mp−1

⊗ %%
E(p)
mp

mpoo

(M(p)
mp

,µ(p)
mp

)




is a complete collineation in the sense of 8.1 from E (p)
mp = Fr−p+1F/Fr−pF to

E(p)
0 = Fs+p+1E/Fs+pE . In a completely symmetric way the generalized iso-

morphism Φ induces also complete collineations

ψq =


 F (q)

nq

nq //

(L(q)
nq
,λ(q)
nq

)

F (q)
nq−1

⊗xx
. . . F (q)

1

0 //

(L(q)
0 ,λ

(q)
0 )

F (p)
0

⊗yy



from F (q)
nq = Fs−q+1F/Fs−qE to F (q)

0 = Fr+q+1F/Fr+qF for s ≥ q ≥ 1. It
remains to construct the generalized isomorphism Φ′. We set

E ′k := ker( En−j1+k ⊗ // Ei1+1 )/im(En−j1+k ← ker(En → Fj1))

F ′k := ker( Fj1+1 Fn−i1+k⊗oo )/im(ker(Ei1 ← Fn)→ Fn−i1+k))

for 0 ≤ k ≤ n′ := i1 + j1 − n and

M′k := Mn−j1+k , µ′k := µn−j1+k

L′k := Ln−i1+k , λ′k := λn−i1+k

for 0 ≤ k ≤ n′ − 1. It is then clear that the E ′k and F ′k are locally free of rank
n′ = i1+j1−n. It follows from definition 5.2.2. that the µi and λj are nowhere
vanishing for 0 ≤ i ≤ n − j1 − 1 and n − i1 − 1 ≥ j ≥ 0. Therefore we may
identify Ei with ES and Fj with FS for 0 ≤ i ≤ n−j1−1 and n− i1−1 ≥ j ≥ 0
respectively. This implies in particular that we have E ′0 = Fs+1E/FsE and
F ′0 = Fr+1F/FrF . Let

E ′k
⊗   
E ′k+1

koo
(M′

k,µ
′
k)

and F ′k+1
k //

(L′
k,λ

′
k)

F ′k
⊗}}
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be the bf-morphisms induced by the bf-morphisms

En−j1+k

⊗ ''
En−j1+k+1

n−j1+koo
(Mn−j1+k,µn−j1+k)

and Fn−i1+k+1
n−i1+k //

(Ln−i1+k,λn−i1+k)

Fn−i1+k
⊗ww

respectively. We have

ker( Ei1 ⊗ // Ei1+1 ) = im(Ei1 ← En) = En/ ker(Ei1 ← En)

and therefore

E ′n′ = En/(ker(Ei1 ← En) + ker(En → Fj1)) .

By the same argument:

F ′n′ = Fn/(ker(Ei1 ← Fn) + ker(Fn → Fj1)) .

Thus the isomorphism En ∼→ Fn induces an isomorphism E ′n′

∼→ F ′n′ . Again it
is not difficult to check that Φ′ :=

 E ′

0

⊗
��

(M′
0,µ′

0)

E ′
1

0oo
(M′

1,µ′
1)

⊗
��
E ′
2

1oo . . . E ′
n′−1

(M′
n′−1

,µ′
n′−1

)

⊗
��
E ′

n′

n′
−1oo ∼ // F ′

n′

n′
−1// F ′

n′−1

⊗
��

(L′
n′−1

,λ′
n′−1

)

. . . F ′
2

1 // F ′
1

0 //
(L′

1,λ′
1)

⊗
��

F ′
0

(L′
0,λ′

0)

⊗
��




is a generalized isomorphism from E ′0 = Fs+1E/FsE to F ′0 = Fr+1F/FrF . This
completes the construction of the mapping

Φ 7→ ((F•E , F•F), ϕ1, . . . , ϕr, ψs, . . . , ψ1,Φ
′) .

We proceed by constructing the inverse of this mapping. Let data
((F•E , F•F), ϕ1, . . . , ϕr, ψs, . . . , ψ1,Φ

′) be given. Let Ei := ES and Fj := FS
for 0 ≤ i ≤ n− j1 and n− i1 ≥ j ≥ 0 respectively. Now let n− j1 + 1 ≤ i ≤ i1
and j1 ≥ j ≥ n− i1 + 1. Let Ẽi and F̃j be defined by the cartesian diagrams

Ẽi

��

// E ′i+j1−n

��
Fs+1E // // Fs+1E/FsE

and

F̃j

��

// F ′j+i1−n

��
Fr+1F // // Fr+1F/FrF

respectively. For a moment letM :=
⊗i+j1−n−1

k=0 M′k. We have a commutative
diagram

M∨ ⊗ Fs+1E

��

// E ′i+j1−n

��
Fs+1E // // Fs+1E/FsE

(∗)

where the left vertical arrow is induced by
⊗i+j1−n−1

k=0 µ′k : OS →M and the
upper horizontal arrow is the composition

M∨ ⊗ Fs+1E →M∨ ⊗ Fs+1E/FsE =M∨ ⊗ E ′0 → E ′i+j1−n
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The diagram (∗) induces a morphism M∨ ⊗ Fs+1E → Ẽi. Analogously, we

have a morphism L∨⊗Fr+1F → F̃j , where we have employed the abbreviation

L :=
⊗j+i1−n−1

k=0 L′k. Let Ei and Fj be defined by the cocartesian diagrams

M∨ ⊗ Fs+1E

��

� � //M∨ ⊗ ES

��
Ẽi // Ei

and

L∨ ⊗ Fr+1F

��

� � // L∨ ⊗FS

��
F̃j // Fj

respectively.
We define En = Fn by the cartesian diagram

En = Fn

��

// F̃j1

����
Ẽi1 // // E ′i1+j1−n

∼= // F ′i1+j1−n

Observe that the composed morphism En → Ẽi1 → Fs+1E maps the submod-

ule ker(En → F̃j1) of En isomorphically onto the submodule FsE of Fs+1E .
Therefore we have canonical injections

FpE ↪→ FsE ∼→ ker(En → F̃j1) ↪→ En
for 0 ≤ p ≤ s. Analogously, we have canonical injections

FqF ↪→ FrF ∼→ ker(Fn → Ẽi1) ↪→ Fn
for 0 ≤ q ≤ r.
Now let 1 ≤ p ≤ r, ip + 1 ≤ i ≤ ip+1 and s ≥ q ≥ 1, jq+1 ≥ j ≥ jq + 1. We

want to define Ei and Fj in this case. Let first Ẽi and F̃j be defined by the
cocartesian diagrams

M∨ ⊗ Fs+p+1E/Fs+pE //
� _

��

E(p)
i−ip

��
M∨ ⊗ ES/Fs+pE // Ẽi

and

L∨ ⊗ Fr+q+1F/Fr+qE //
� _

��

F (q)
j−jq

��
L∨ ⊗FS/Fr+qF // F̃j

where we have set M :=
⊗i−ip−1

k=0 M(p)
k and L :=

⊗j−jq−1
k=0 L(q)

k . Let further-

more Êi and F̂j be defined by the cocartesian diagrams

Fr−p+1F/Fr−pF //
� _

��

E(p)
i−ip

��
Fn/Fr−pF // Êi

and

Fs−q+1E/Fs−qE //
� _

��

F (q)
j−jq

��
En/Fs−qE // F̂j

Documenta Mathematica 5 (2000) 553–594



Compactification of the General Linear Group 589

Now we define Ei and Fj by the cocartesian diagrams

E(p)
i−ip

��

// Ẽi
��

Êi // Ei
and

F (q)
j−jq

��

// F̃j
��

F̂j // Fj

respectively. For p = r and i = ir+1 = n this gives formally a new definition of
En, but it is clear that we have a canonical isomorphism between the two En’s.
A similar remark applies to Fn.
We define the invertible sheavesMi together with their respective sections µi
as follows:

Mi := OS , µi := 1 (0 ≤ i ≤ n− j1 − 1)

Mi := M′i+j1−n , µi := µ′i+j1−n (n− j1 ≤ i ≤ i1 − 1)

Mi := M(p)
i−ip , µi := µ

(p)
i−ip (1 ≤ p ≤ r , ip < i < ip+1)

Mi1 := M(1)
0 ⊗

i1+j1−n−1⊗

k=0

(M′k)∨ , µi1 := 0

Mip := M(p)
0 ⊗

ip−ip−1−1⊗

k=0

(M(p−1)
k )∨ , µip := 0 (2 ≤ p ≤ r)

Let the Lj and λj be defined symmetrically (i.e. by replacing in the above
definition the letter M with L, µ with λ, i with j, j with i and r with s).
It remains to define the bf-morphisms

Ei
⊗ ��
Ei+1

ioo
(Mi,µi)

and Fj+1
j //

(Lj ,λj)
Fj

⊗��

for n − j1 ≤ i ≤ n − 1 and n − 1 ≥ j ≥ n − i1. Again we restrict ourselves
to the left hand side, since the right hand side is obtained by the symmetric
construction. For n − j1 ≤ i ≤ i1 − 1 (respectively for 1 ≤ p ≤ r , ip ≤

i ≤ ip+1 − 1) the bf-morphism Ei
⊗ ��
Ei+1

oo is induced in an obvious way

by the bf-morphism E ′i+j1−n
⊗ &&
E ′i+j1−n+1

oo (respectively by the bf-morphism

E(p)
i−ip

⊗ &&

E(p)
i−ip+1

oo ). For the definition of the bf-morphism Ei1
⊗ ��
Ei1+1oo

consider the two canonical exact sequences

0 // Ẽ i1 // Ei1 //M∨ ⊗ ES/Fs+1E // 0

0 // Ẽ i1+1
// Ei1+1

// Ê i1+1/E(1)
1

// 0
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whereM :=
⊗i1−1

k=0 Mk. Observe that we have canonical isomorphisms

Ẽ i1
a
∼=

// Fn/FrF b
∼=

// Ê i1+1/E(1)
1

Ẽ i1+1
c
∼=

//M∨i1 ⊗M∨ ⊗ ES/Fs+1E

The isomorphism a follows from the observation we made after the definition
of En = Fn, namely that the composed morphism Fn → F̃j1 → Fr+1F maps

ker(En → Ẽi1) isomorphically to FrF . The isomorphism b comes from the fact

that for i = i1+1 the left vertical arrow in the defining diagram for Êi vanishes,
and the isomorphism c follows since for i = i1 + 1 the left vertical arrow in the
defining diagram for Ẽi is an isomorphism. Thus we have morphisms

Ei1 // //M∨ ⊗ ES/Fs+1
c−1

//Mi1 ⊗ Ẽ i1+1
� � //Mi1 ⊗ Ei1+1

Ei1 Ẽ i1? _oo Ê i1+1/E(1)
1

a−1b−1
oo Ei1+1

oooo

which make up the bf-morphism Ei1
⊗ ��
Ei1+1

oo . For 2 ≤ p ≤ r the bf-

morphism Eip
⊗ !!
Eip+1oo is constructed similarly from the exact sequences

0 // Ê ip // Eip // Ẽ ip/E(p−1)
ip−ip−1

// 0

0 // Ẽ ip+1
// Eip+1 // Ê ip+1/E(p)

1
// 0

and the canonical isomorphisms

Ê ip
∼= // Fn/Fr−p+1F

∼= // Ê ip+1/E(p)
1

Ẽ ip+1

∼= //M∨ip ⊗M∨ ⊗ E/Fs+pE
∼= //M∨ip ⊗ Ẽ ip/E

(p−1)
ip−ip−1

whereM :=
⊗ip−1

k=0 Mk.
This completes the construction of

Φ =


 ES

⊗

��

(M0,µ0)
E1

0oo
(M1,µ1)

⊗

��
E2

1oo . . . En−1
(Mn−1,µn−1)

⊗

��
En

n−1oo ∼ // Fn
n−1// Fn−1

⊗

��

(Ln−1,λn−1)

. . . F2
1 // F1

0 //
(L1,λ1)

⊗

��
FS

(L0,λ0)

⊗

��



It is not difficult to see that Φ is a generalized isomorphism from ES to FS and
that the mapping ((F•E , F•F), ϕ1, . . . , ϕr, ψs, . . . , ψ1,Φ

′) 7→ Φ is inverse to the
mapping Φ 7→ ((F•E , F•F), ϕ1, . . . , ϕr, ψs, . . . , ψ1,Φ

′) constructed before. We
leave the details to the reader.

In the situation of theorem 9.3 we denote by Gl(E) the group scheme over T ,
whose S-valued points are the automorphisms of ES . There is a natural left

Documenta Mathematica 5 (2000) 553–594



Compactification of the General Linear Group 591

operation of Gl(E)×T Gl(F) on KGl(E ,F), which is given on S-valued points
by

(f, g)




ES

⊗
u[

!!
E1

u]
oo . . . F1

v]
// FS

⊗
v[

||


 :=


 ES

⊗
u[◦f−1

!!
E1

f◦u]
oo . . . F1

g◦v]
// FS

⊗
v[◦g−1

||




Corollary 9.4. The orbits of the Gl(E)×T Gl(F)-operation on KGl(E ,F) are
the locally closed subvarieties

OI,J(E ,F) := OI,J(E ,F) \


⋃

i6∈I
Zi(E ,F) ∪

⋃

j 6∈J
Yj(E ,F)


 ,

where I, J ⊆ [0, n − 1] with min I + min J ≥ n, and where Zi(E ,F) :=
O{i},∅(E ,F) and Yj(E ,F) := O∅,{j}(E ,F).

Proof. The S-valued points of OI,J(E ,F) are the generalized isomorphisms

Φ =


 ES

⊗

��

(M0,µ0)
E1

0oo
(M1,µ1)

⊗

��
E2

1oo . . . En−1
(Mn−1,µn−1)

⊗

��
En

n−1oo ∼ // Fn
n−1// Fn−1

⊗

��

(Ln−1,λn−1)

. . . F2
1 // F1

0 //
(L1,λ1)

⊗

��
FS

(L0,λ0)

⊗

��



where µi = λj = 0 for i ∈ I and j ∈ J and where µi, λj are nowhere vanishing
for i 6∈ I , j 6∈ J . It is clear that OI,J (E ,F) is invariant under the operation
of Gl(E) ×T Gl(F). From the proof of theorem 9.3 it follows that we have the
following isomorphism

OI,J(E ,F) ∼=
o

P1 ×
Fl
. . .×

Fl

o

Pr ×
Fl

o

Qs ×
Fl
. . .×

Fl

o

Q1 ×
Fl

o

K ′ ,

where
o

Pp := PGl(Vr−p+1/Vr−p, Us+p+1/Us+p) (1 ≤ p ≤ r)
o

Qq := PGl(Us−q+1/Us−q, Vr+q+1/Vr+q) (1 ≤ q ≤ s)
o

K ′ := Isom(Us+1/Us, Vr+1/Vr) .

There is a left Gl(E)×T Gl(F)-operation on the right-hand side of this isomor-
phism, given on S-valued points by

(f, g)((F•E , F•F), ϕ1, . . . , ϕr, ψs, . . . , ψ1,Φ
′) :=

((f(F•E), g(F•F)), f−1ϕ1g, . . . , f
−1ϕrg, gψsf

−1, . . . , gψ1f
−1, gΦ′f−1),

where ϕp is an isomorphism (up to multiplication by an invertible section ofOS)
from Fr−p+1F/Fr−pF to Fs+p+1E/Fs+pE for 1 ≤ p ≤ r, ψq an isomorphism
(up to multiplication by an invertible section of OS) from Fs−q+1E/Fs−qE to
Fr+q+1F/Fr+qF for s ≥ q ≥ 1 and Φ′ is an isomorphism from Fs+1E/FsE
to Fr+1F/FrF . It is easy to see that this operation is transitiv and that the
isomorphism

OI,J(E ,F) ∼=
o

P1 ×
Fl
. . .×

Fl

o

Pr ×
Fl

o

Qs ×
Fl
. . .×

Fl

o

Q1 ×
Fl

o

K ′ ,
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is Gl(E)×T Gl(F)-equivariant.

10. A morphism of KGln onto the Grassmannian compactification
of the general linear group

Let V be an n-dimensional vector space over some field. As mentioned in the
introduction, there is another natural compactification of the general linear
group Gl(V ): The Grassmannian Grn(V ⊕ V ) of n-dimensional subspaces of
a V ⊕ V -dimensional vector space. The embedding Gl(V ) ↪→ Grn(V ⊕ V ) is

given by associating to an automorphism V
∼→ V its graph in V ⊕ V . We

will see in this section that there exists a natural morphism from KGl(V ) to
Grn(V ⊕ V ). Our motivation here is to obtain a better understanding of the
relation between the Gieseker-type degeneration of moduli spaces of vector
bundles and the torsion-free sheaves approach as developed in [NS] and [S2].
As in the previous section, we work over an arbitrary base scheme T . Let
E , F be two locally free OT -modules of rank n. Denote by Grn(E ⊕ F) the
Grassmanian variety over T which parametrizes subbundles of rank n of E ⊕F .
Let S be a T -scheme and let

Φ =


 ES

⊗

��

(M0,µ0)
E1

0oo
(M1,µ1)

⊗

��
E2

1oo . . . En−1
(Mn−1,µn−1)

⊗

��
En

n−1oo ∼ // Fn
n−1// Fn−1

⊗

��

(Ln−1,λn−1)

. . . F2
1 // F1

0 //
(L1,λ1)

⊗

��
FS

(L0,λ0)

⊗

��



be a generalized isomorphism from ES to FS . By 5.2.2, the morphism En →
ES ⊕FS induced by the two composed morphisms

En → En−1 → · · · → E1 → ES
En ∼→ Fn → Fn−1 → · · · → F1 → FS

is a subbundle of ES ⊕FS . Let

KGl(E ,F)→ Grn(E ⊕ F)

be the morphism, which on S-valued points is given by Φ 7→ (En → ES ⊕ FS).
Observe that the following diagram commutes

Isom(E ,F)
jJ

wwppppppppppp t�

''OOOOOOOOOOO

KGl(E ,F) // Grn(E ⊕ F)

and that furthermore all the arrows in this diagram are equivariant with respect
to the natural action of Gl(E) ×T Gl(F) on the three schemes. In the next
proposition we compute the fibres of the morphism KGl(E ,F)→ Grn(E ⊕ F).

Proposition 10.1. Let S ′ be a T -scheme and let H ↪→ ES′ ⊕ FS′ be an S′-
valued point of Grn(E ,F) such that im(H → ES′) and im(H → FS′) are sub-
bundles of ES′ and FS′ respectively. Then the fibre product

KGl(E ,F) ×
Grn(E⊕F)

S′
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is isomorphic to

PGl(ker(H → ES′), coker(H → ES′))×S′ PGl(ker(H → FS′), coker(H → FS′)),

where by convention PGl(N ,N ) := S ′ for the zero-sheaf N = 0 on S ′.

Proof. Let S be an S′-scheme. An S-valued point of the fibre product
KGl(E ,F)×Grn(E⊕F) S

′ is given by a generalized isomorphism

Φ =


 ES

⊗

��

(M0,µ0)
E1

0oo
(M1,µ1)

⊗

��
E2

1oo . . . En−1
(Mn−1,µn−1)

⊗

��
En

n−1oo ∼ // Fn
n−1// Fn−1

⊗

��

(Ln−1,λn−1)

. . . F2
1 // F1

0 //
(L1,λ1)

⊗

��
FS

(L0,λ0)

⊗

��



from ES to FS such that the induced morphism En ↪→ ES⊕FS identifies En with
the subbundleHS . Let i1 and j1 be the ranks of im(H → ES′) and im(H → FS′)
respectively. Observe that i1 + j1 ≥ n. We restrict ourselves to the case, where
i1 and j1 are both strictly smaller than n. (The cases where one or both of i1, j1
are equal to n are proved analogously). Then the sections µ0, . . . , µi1−1 and
λj1−1, . . . , λ0 are invertible and µi1 = λj1 = 0. From the proof of theorem 9.3
it follows that such a Φ may be given by a tupel ((F•E , F•F), ϕ, ψ,Φ′) where

F•E = (0 = F0E ⊆ F1E ⊆ F2E ⊆ F3E = ES)

F•F = (0 = F0F ⊆ F1F ⊆ F2F ⊆ F3F = FS)

are the filtrations given by

F1E := im(ker(HS → FS)→ ES)

F2E := im(HS → ES)

F1F := im(ker(HS → ES)→ FS)

F2F := im(HS → FS) ,

ϕ is a complete collineation from F1F/F0F ∼= ker(HS → ES) to F3E/F2E ∼=
coker(HS → ES), ψ is a complete collineation from F1E/F0E ∼= ker(HS → FS)
to F3F/F2F ∼= coker(HS → FS), and Φ′ is the isomorphism

F2E/F1E ∼→ HS/(ker(HS → ES) + ker(HS → FS))
∼→ F2F/F1F .

We see in particular that the tupel ((F•E , F•F), ϕ, ψ,Φ′) is already determined
by the subbundle HS ↪→ ES ⊕FS (i.e. by the morphism S → S′) and the pair
(ϕ, ψ).
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Summary

Let G be a complex semisimple algebraic group with real form GR, the fixed-
point subgroup of an antiholomorphic involution g 7→ g. The group GR ×GR

acts of G by the rule (r1,r2)g = r1gr
−1
2 . In this paper, we give a construc-

tion of a GR × GR-invariant pseudokähler form on a neighborhood of GR in
G. We expect this result will find application in several related areas in com-
plex geometry and representation theory. For example, future work of others
will show that symplectic reduction (with respect to the imaginary part of the
pseudokähler form) relates this open set in G with a neighborhood of a non-
compact Riemannian symmetric space in its complexification, as studied by
Akhiezer and Gindikin [AG].
As a first guess, one might attempt to construct such a pseudokähler form
as follows: given left-invariant vector fields Z,W on G, define the Hermitian
product of Z and W to be κ(Z,W ), where κ is the Killing form. However,
this fails, since the corresponding 2-form (the imaginary part of the Hermitian
form) is not closed. Instead, we take the following approach. We construct
a pseudokähler form on a complex manifold M ⊂ igR × GR. We then define
M ′ ⊂M such that f |M ′ : M ′ → G is a diffeomorphism onto an open subset of

G. Here f : igR×GR → G is the map (iX, r)
f7→ eiX · r. This allows us to push
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down the pseudokähler form on M ′ to the open set f(M ′) ⊂ G. The new form
turns out to be closely related to the form Z,W 7→ κ(Z,W ).
Our main results are as follows:
Let GR×GR act on igR×GR by the rule (r1,r2)(iX, r) = (iAdr1X, r1rr

−1
2 ); then

f equivariant. Define M := {(iX, r) : df is nonsingular at (iX, r)} ⊂ igR×GR.
This makes M a complex manifold, with complex structure J induced from the
complex structure on G. A useful description of M is:

Theorem 1. (iX, r) /∈M if and only if adX has an eigenvalue of nπ for some
nonzero integer n. Equivalently, for p := eiX , (iX, r) /∈M exactly when either
Adp has an eigenvalue of −1 or Adp fixes a vector in g not fixed by adX . (Proof
in §2.) �

Regard igR ×GR as the cotangent bundle of GR. As such, there is a canonical
real 1-form λ on igR × GR such that ω := dλ is an (exact) nondegenerate
symplectic form. On the other hand, let φ : igR×GR → R, (iX, r) 7→ κ(X,X),
which is a GR ×GR-invariant function. These objects are related:

Theorem 2. On the complex manifold M ⊂ igR × GR, we have 2λ = dcφ.
(Proof in §4.) �

As an immediate corollary, we have:

Theorem 3. ω = dλ = 1
2dd

cφ = −i∂∂φ is a GR ×GR-invariant, J-invariant,
nondegenerate, exact, real 2-form on M , and

〈A,B〉 := ω(JA,B) + iω(A,B) (A,B ∈ TmM)

is a GR ×GR-invariant pseudokähler form on M . �

We seek to compute the pseudokähler form in terms of a reasonable collection
of vector fields on M . Let Z ∈ g, that is to say, a tangent vector to G at the
identity 1. As usual, we may identify Z with a left G-invariant vector field onG.

Let Ẑ denote the vector field onM obtained by pulling back the left G-invariant
vector field Z on G via the map f . These vector fields, which we call canonical
vector fields, are the ones we shall use throughout for computations. We also
need to define several linear transformations on g. Let (iX, r) ∈ M and write

p := eiX . First, we define Ap : g → g, Ap :=
(
I+Adp

2

)−1

. (This makes sense,

by Theorem 1.) We also define FiX : g → g by FiX (Z) := d
ds

∣∣
s=0

log(pesZ).

(Here log denotes a local inverse for exp, returning a neighborhood of p in G to
a neighborhood of iX in g.) Finally, define EiX := FiX ◦Ap ◦Adp. Our result
is:

Theorem 4. For Z,W ∈ g and (iX, r) ∈ M , we have that
〈
Ẑ, Ŵ

〉
(iX,r)

=

κ(EiAd−1
r XZ,W ). (Proof in §5.) �

Theorem 4 is useful since EiX is easy to understand: if adX is diagonaliz-
able, then EiX is also diagonalizable, has the same eigenspaces as adX , and
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its eigenvalues can be expressed in terms of the corresponding eigenvalues of
adX . In particular, if X lies in a Cartan subalgebra tR of gR, then one has
a simple expression for 〈 , 〉 at (iX, 1) when expressed using canonical vector
fields corresponding to elements of g that are root vectors or vectors in t. We
refer the reader to §6 for the precise statement. Additionally,

Theorem 5. The signature of the pseudokähler form is constant on M , and
is equal to the signature of the Hermitian form Z,W 7→ κ(Z,W ) on g. (Proof
in §6.) �

Trivially, if M ′ ⊂M is open and GR×GR-stable, and if f |M ′ is injective, then
the pseudokähler form on M ′ pushes down to a GR×GR-invariant pseudokähler
form on f(M ′), which is open in G. We produce such a set M ′:

Theorem 6. Let ψ : G → GL(V ), g → gl(V ) be a finite-dimensional repre-
sentation that is defined over R and is faithful modulo the center of G (e.g. the
adjoint representation). Define M ′ ⊂ igR×GR, where (iX, r) ∈M ′ if and only
if for each eigenvalue λ of ψ(X), |Reλ| < π/2. Then

(1) M ′ ⊂M ,
(2) M ′ is GR ×GR-stable,
(3) M ′ is open in igR ×GR,
(4) f |M ′ is injective. (Proof in §8.) �

In some applications, it is more convenient to replace the above canonical
vector fields with tangent vectors that are either tangent (“orbital vectors”) or
transverse (“vertical vectors”) to the GR ×GR-orbits. We set up the notation
and compute the pseudokähler form using these vectors (§7). The imaginary
part of the pseudokähler form is particularly easy, and from it, one easily
computes the moment map:

Theorem 7. Relative to the symplectic form ω, the moment map µ : igR ×
GR → g∗R × g∗R ' gR × gR is given by (iX, r) 7→ (X,−Ad−1

r X). The moment
map separates GR ×GR-orbits. We have ||µ||2 = 2φ. �

The present paper extends recent results of Gregor Fels. In [F], pseudokähler
forms are defined on certain complex domains which turn out to be subsets
of M . In §7, we verify that the restriction of 〈 , 〉 to these domains coincides
with Fels’ definition. That paper uses orbital and vertical vector fields, and
includes discussions of the moment map and CR-structures. I am grateful to
G. F. for sharing a copy of his preprint with me. I also thank Alan Huckleberry
for suggesting this problem to me and for helpful conversations.

§1. The Group Action

Let G be a connected complex semisimple algebraic group, endowed with a
complex conjugation g 7→ g, defining a real form GR ⊂ G (the fixed point
subgroup of the complex conjugation). The real group GR ×GR acts on G by
the rule (r1,r2)g = r1gr

−1
2 . Let g = Te(G) denote the Lie algebra of G, with
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Killing form κ. Given Y ∈ g, the left- and right-invariant vector fields on G
generated by Y are denoted g 7→ dlgY and g 7→ drgY .
We can identify the cotangent bundle T ∗(GR) with igR × GR; namely, from
X ∈ gR and k ∈ GR, we obtain the 1-form at k that sends drkY to κ(X,Y ),
where Y ∈ gR. The action of GR×GR on GR (by left/right translation) induces
an action on T ∗(GR), which in the above identification gives the following action
of GR ×GR on igR ×GR:

(r1,r2)(iX, r) = (Adr1(iX), r1rr
−1
2 ).

With this action, the map f : igR ×GR → G, (iX, r) 7→ eiXr is equivariant.
We shall often be particularly interested in the case when X is semisimple, and
we now set up some notation. If X is semisimple, then it is contained in tR,
where t is a (complex) Cartan subalgebra of g that is stable under complex
conjugation. Also p := eix ∈ T , where T is the maximal (complex) R-torus of
G with Lie (T ) = t. We have a root system Φ(T,G) consisting of characters
α : T → C∗, with differentials dα : t → C. (By abuse of notation, we write
−α for the inverse of α.) Roots are real, imaginary, or complex according to
whether α = α, −α, or neither. Imaginary roots arise in two ways, according to
whether the set of real points of the corresponding root sl(2) is isomorphic to
sl(2,R) or su(2), and are respectively “noncompact imaginary” or “compact
imaginary” roots. We have that dα(iX) ∈ iR (resp. R) if α is real (resp.
imaginary) and hence α(p) = edα(iX) ∈ U(1) (resp. R>0).
We recall some related facts (see [BF]). Let Z(G) = {g ∈ G : g = g−1}. It is a
topologically closed, smooth, IntGR-stable submanifold of G of real dimension

equal to the complex dimension of G. The subset B(G) := {h · h−1
: h ∈ G} ⊂

Z(G) coincides with the connected component of Z(G) containing 1. Since

eiX = eiX/2 · eiX/2−1
, we have exp(igR) ⊂ B(G).

§2. The Complex Manifold M and Canonical Vector Fields

In this section, we define the “canonical vector fields,” which are global vector
fields on a dense open subset M ⊂ igR×GR that are associated to elements of g.
We define and provide a characterization ofM (2.1). Given a point (iX, r) ∈M
and Z ∈ g, we produce a curve through (iX, r) in M whose tangent vector at
(iX, r) is the canonical tangent vector associated to Z (2.6).

We would like to define global vector fields on igR × GR by pulling
back the left invariant vector fields on G via the map f ; that is, given

Z ∈ g, we would like to define a vector field Ẑ = Z∧ on igR ×
GR by the rule Ẑ(iX,r) = (df)−1(dlf(iX,r)Z). This works precisely at
the points where df is an isomorphism. We define M = {(iX, r) :
adX has no eigenvalue of πn for any nonzero integer n} ⊂ igR × GR. Letting
p = eiX , we see that (iX, r) fails to be in M exactly when either Adp has an
eigenvalue of −1, or Adp fixes a point in g not fixed by adX . Below we prove:
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Theorem 2.1. The differential of f is an isomorphism at (iX, r) precisely
when (iX, r) ∈M . �

Thus an element Z ∈ g yields a globally-defined nonvanishing vector field Ẑ
on M , which we call the canonical vector field associated to Z. We see, by
taking a basis of g, that the tangent bundle of M is trivial. If we denote the

complex structure on M by J , we have that J(Ẑ) = (iZ)∧, where i is the
complex structure on the vector space g. The action of GR×GR on M induces

an action on vector fields, and (r1,r2)(Ẑ) = (Adr2Z)∧.
For df to be nonsingular at (iX, r), we need the exponential map exp : igR →
B(G) to be nonsingular at iX , and we need the multiplication map B(G) ×
GR → G to be nonsingular at (eiX , r). Thus 2.1 follows from 2.2 and 2.3 below.

Proposition 2.2. (See [V].) Given exp : g → G and Y ∈ g, then the differ-
ential d exp : TY (g)→ TeY (G) is given by

d exp : W 7→ d

ds

∣∣∣∣
s=0

eY+sW = dl(eY )

∞∑

n=0

(−adY )n

(n+ 1)!
W

and is an isomorphism exactly when adY has no eigenvalue of 2πin,
n ∈ Z \ {0}. �

(In particular, if Y ∈ g has no eigenvalue of 2πin (n a nonzero integer), then
there is a well-defined map log = logY from a neighborhood of eY in G to a
neighborhood of Y in g. If Y = iX (X ∈ gR), then in addition, log maps a
neighborhood of eiX in Z(G) to a neighborhood of iX in igR.)

Proposition 2.3. The differential of the multiplication map Z(G)×GR → G
at (p, r) is an isomorphism if and only if Adp has no eigenvalue of −1.

Before proving 2.3, we need to define an important linear operator on g. Let
X ∈ gR and let p = eiX . Assume that Adp has no eigenvalue of −1. We define

Ap : g→ g by Ap =
(
I+Adp

2

)−1

. We will often use the following properties of

Ap:

Lemma 2.4.

(1) Ap = Adp ◦Ap = 2I −Ap.
(2) κ(Z,AdpW ) = κ(Ad−1

p Z,W ).
(3) κ(Z,ApW ) = κ(Adp ◦ApZ,W ).
(4) [X,DW ] = D[X,W ], where D = Adp or Ap.
(5) [Z,ApW ]− [Adp ◦ApZ,W ] = 1

2 (I −Adp)[ApZ,ApW ].
(6) κ (X, [Z,ApW ]) = κ (X, [Adp ◦ApZ,W ]).
(7) ApW = W if [X,W ] = 0, and more generally, ApW = 2

1+eµ if

[iX,W ] = µW .

Proof. For (1), we compute that Ap =
(
I+Ad−1

p

2

)−1

= Adp ◦
(

Adp+I
2

)−1

=

Adp ◦ Ap. Moreover, Ap + Adp ◦ Ap = Ap ◦ (I + Adp) = 2I . (2) follows from
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the Ad-invariance of κ. To prove (3), let Z ′ = ApZ and W ′ = ApW . Then

the left side of (3) is κ(
I+Adp

2 Z ′,W ′) = 1
2κ(Z

′,W ′) + 1
2κ(Adp Z

′,W ′), whereas

the right side is κ(Adp Z
′, I+Adp

2 W ′) = 1
2κ(Adp Z

′,AdpW
′) + 1

2κ(Adp Z
′,W ′).

The proofs of (4), (5), and (6) are similar, using also that Ap and Adp fix X .
(7) is immediate from the definition of Ap. �

Lemma 2.5. If p ∈ Z(G), then Tp(Z(G)) = {dlpZ : Z ∈ Te(G) and Z =
−Adp (Z)}, and for such Z, petZ ∈ Z(G) for all t ∈ R.

Proof. Since Z(G) is smooth, any tangent vector at p can be written as dlpZ

for some Z ∈ g. If Z = −Adp Z then the curve petZ is contained in Z(G) since

petZ = p−1etZ and (petZ)−1 = e−tZp−1 = p−1e−tAdpZ = p−1etZ . Hence all
such Z give tangent vectors in Z(G). Note that since p = p−1, Z 7→ Adp Z gives
a complex conjugation on the vector space g; the choice of Z above amounts
to the pure imaginary elements of g for this real structure. The lemma follows
since dimR(Z(G)) = dimC g. �

Proof of 2.3. Tangent vectors at pr which are in the image of the differential of
the multiplication map at (p, r) are exactly those of the form d

dt

∣∣
t=0

petZetY r =
d
dt

∣∣
t=0

pet(Z+Y )r, where Z = −Adp Z and Y = Y . Hence (Z, Y ) is in the kernel
of the differential exactly when Z = −Y , which is possible for Z exactly when
Z is real, meaning Adp Z = −Z. �

Let (iX, r) ∈M and Z ∈ g. Since t 7→ eiXretZ gives an integral curve (starting
at eiXr) for the left invariant vector field associated to Z, we can obtain (for t

small) an integral curve at (iX, r) for Ẑ, by locally inverting f . The resulting
curve δ is described below. Unfortunately this curve is unwieldy for computa-
tions. Instead, we produce a simpler curve γ in igR × GR which has tangent

vector Ẑ at (iX, r) but not at other points on the curve. (This will be sufficient
for applications.)

Proposition 2.6. Let (iX, r) ∈ M , with p = eiX , and let Z ∈ g. Define the
following curves in M :

γiX,r,Z : t 7→
(
log
(
petAp◦AdriImZ

)
, et(AdrZ−Ap◦AdriImZ) · r

)

δiX,r,Z : t 7→
(

1

2
log2iX(pretZe−tZr−1p), p(t)−1pretZ

)

p(t) := exp

(
1

2
log2iX (pretZe−tZr−1p)

)

Then d
dt

∣∣
t=0

γ = Ẑ(iX,r), and δ is an integral curve for Ẑ starting at (iX, r).

Proof. (a) Both curves have a value of (iX, r) at t = 0. (b) We must
verify that the curves actually lie in igR × GR. For γ, one can use 2.5 to
show that petAp◦AdriImZ ∈ Z(G), and using 2.4(1), it is easy to verify that

AdrZ−Ap◦AdriImZ ∈ gR. For δ, one has that pretZe−tZr−1p ∈ Z(G) since its
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complex conjugate equals its inverse. The fact that p(t)−1pretZ ∈ GR turns out

to be equivalent to p(t)2 = pretZe−tZr−1p, which is true by definition. (c)
Proving that the curves have the correct derivatives follows from pushing them
forward via f . We have that f(γ(t)) = petAp◦AdriImZet(Adr−Ap◦AdriImZ)r,
whose derivative at t = 0 is dlp ◦ drr ◦ AdrZ = dlprZ, as required. Note
that at other values of t, tangent vectors for this curve do not coincide with
the left invariant vector field on G! However, we do have f(δ(t)) = pretZ , as
required. �

§3. The Differential of the Logarithm Map

Throughout this section, let (iX, r) ∈M and let p = eiX . We define:

FiX : g→ g FiX (Z) =
d

ds

∣∣∣∣
s=0

logiX (pesZ)

This section is devoted to listing properties of this map.
By definition FiX = d(logiX ◦lp), with the differential taken at the identity.
Near the identity element of G, the map lp−1 ◦ exp ◦ logiX ◦lp is (defined and)
the identity function, so after taking differentials at the identity, we have

I = (dlp)
−1 ◦ d exp ◦d(logiX ◦lp) =

∞∑

n=0

(−adiX)n

(n+ 1)!
◦ FiX by 2.2.

Lemma 3.1. FiX = limc→0(icI − adiX ) ◦ (eicI−adiX − I)−1.

Proof.
Let T = −adiX and λ ∈ C. We must prove that

∞∑

n=0

Tn

(n+ 1)!
◦ lim
c→0

(icI − adiX) ◦ (eicI−adiX − I)−1 = I ∈ GL(g).

We compute that

∞∑

n=0

Tn

(n+ 1)!
◦ lim
c→0

(icI − adiX) ◦ (eicI−adiX − I)−1

=

( ∞∑

n=0

Tn

(n+ 1)!

)
◦ lim
λ→0

(λI + T ) ◦ (eλI+T − I)−1

= lim
λ→0

( ∞∑

n=0

(λI + T )n

(n+ 1)!

)
◦ (λI + T ) ◦ (eλI+T − I)−1

= lim
λ→0

∞∑

n=0

(λI + T )n

(n+ 1)!
◦ (λI + T ) ◦ (eλI+T − I)−1

and if S := λI+T , then
∑∞
n=0

Sn

(n+1)! ◦S ◦(eS−I)−1 =
∑∞
n=1

Sn

n! ◦(eS−I)−1 =

(eS − I) ◦ (eS − I)−1 = I . �
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Lemma 3.2.

(1) FiX (W ) = W if [X,W ] = 0, and FiX (W ) = −µeµ
1−eµW if [iX,W ] = µW ,

µ 6= 0.
(2) F iX = Ad−1

p ◦ FiX = F−iX .
(3) κ(Z, FiXW ) = κ(F−iXZ,W ) for all Z,W ∈ g.
(4) κ(X,FiX (W )) = κ(X,W ) for all W ∈ g.
(5) adiX = FiX ◦ (I −Ad−1

p ).

Proof. (1,2) are easy. By substitution, (3) is equivalent to κ(Z, d(lp−1 ◦
exp)iXW ) = κ(d(lp ◦ exp)−iXZ,W ). By 2.2, κ(Z, d(lp−1 ◦ exp)iXW ) =

κ
(
Z,
∑ (−adiX )n

(n+1)! W
)
, which equals κ

(∑ (adiX )n

(n+1)! Z,W
)

= κ(d(lp ◦
exp)−iXZ,W ) by the associativity of the Killing form. Then (4) follows from

(1) and (3). For (5), we have FiX◦(I−Ad−1
p ) = FiX◦

(
−∑∞n=0

(−adiX )n

n! + I
)

=

FiX ◦
(
−∑∞n=0

(−adiX )n+1

(n+1)!

)
= FiX ◦

(∑∞
n=1

(−adiX)n

(n+1)!

)
◦ adiX = I ◦ adiX . �

§4. The Liouville Form on M and its Exterior Derivative

We recall that the cotangent bundle to any real manifold possesses a canonical
1-form λ and that ω := dλ is a nondegenerate exact symplectic form (see [A],
[CG]). We have identified T ∗(GR) with igR ×GR. Given a curve (iX(t), r(t)),
then one can check that λ

(
d
dt

∣∣
t=0

(iX(t), r(t))
)

= κ
(
X(0), d

dt

∣∣
t=0

r(t)r(0)−1
)
.

It is easy to see that λ is GR ×GR-invariant. We wish to obtain a formula for

λ(Ẑ); this conveniently expresses the restriction of λ toM . By 2.6, we have that

λ(Ẑ)(iX,r) = κ(X, d
dt

∣∣
t=0

et(AdrZ−Ap◦AdriImZ)) = κ(X,AdrZ−Ap ◦AdriImZ),

where p = eiX . This can be sharpened:

Proposition 4.1. For all (iX, r) ∈M , λ(Ẑ)(iX,r) = κ(X,AdrReZ).

Proof. We must show that κ(X,AdriImZ) = κ(X,Ap◦AdriImZ). This follows
from 2.4(3), since Adp ◦Ap(X) = X . �

On M , we have a complex structure J . Even prior to the explicit computation
of dλ, we have the following important observation:

Theorem 4.2. As a differential form on M , the 2-form ω := dλ is J-
invariant. �

This is a consequence of 4.4, for which we recall the customary notation. On any
complex manifold, the exterior derivative is written as the sum d = ∂ + ∂. Let
dc = i(∂− ∂). From d2 = 0, we know that ∂∂ = −∂∂, and hence ddc = 2i∂∂ =
−dcd. One can show (e.g. using local coordinates) that if φ is a smooth function
and X a vector field on M , then dcφ(X) = dφ(JX); by the derivation property,
if µ is a 1-form, then dcµ(X1, X2) = JX1(µ(X2))−JX2(µ(X1))−µ(J [X1, X2]).
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We confirm that ddc(φ) is J-invariant: by the product rule we have

ddcφ(X1, X2) = X1(d
cφ(X2)) −X2(d

cφ(X1))− dcφ([X1, X2])

= X1(dφ(JX2))−X2(dφ(JX1))− dφ(J [X1, X2]),

and hence

ddcφ(JX1, JX2) = JX1(dφ(−X2))− JX2(dφ(−X1))− dφ(J [JX1, JX2])

= −JX1(dφ(X2) + JX2(dφ(X1) + dφ(J [X1, X2])

= −dcdφ(X1, X2) = ddcφ(X1, X2).

Definition/Theorem 4.3. Let φ : M → R be the GR×GR-invariant function
φ(iX, r) = κ(X,X). Then 2λ = dc(φ).

Proof. By definition,

dcφ(Ẑ)(iX,r) =
def of dc

(JẐ(φ))(iX,r) =
2.6

d

dt

∣∣∣∣
t=0

(φ(γiX,r,jZ (t)))

=
2.6,def of φ

2κ

(
−i d

dt

∣∣∣∣
t=0

log(petAp◦AdriIm iZ), X

)

= 2κ(FiX ◦Ap ◦AdrReZ,X)

=
2.4(3),3.2(4)

2κ(AdrReZ,X) =
4.1

2λ(Ẑ)(iX,r). �

Corollary 4.4. ω = dλ = 1
2dd

c(φ) = −i∂∂(φ). �

§5. Computation of the Pseudokähler Form

Let ω = dλ, a 2-form on igR × GR ⊃ M . Here we compute the restriction of

ω to M , using the vector fields Ẑ (which are only defined on M). We use the

formula ω(Ẑ, Ŵ ) = Ẑ(λ(Ŵ ))− Ŵ (λ(Ẑ))− λ([Ẑ, Ŵ ]).
We will require another linear operator on g. For (iX, r) ∈ M and p := eiX ,
let

EiX = FiX ◦Adp ◦Ap = d(log ◦lp) ◦Adp ◦Ap.

(Note that the three factors commute.) We collect some properties of EiX and
FiX ◦Ap:
Lemma 5.1.

(1) EiX = FiX ◦Ad−1
p ◦Ap.

(2) For all Z,W ∈ g, κ(EiXZ,W ) = κ(Z,EiXW ).
(3) iImEiX = adiX .
(4) If [X,W ] = 0 then EiXW = W .
(5) FiX ◦Ap = FiX ◦Ap and for all Z,W ∈ g, we have κ(FiX ◦Ap Z,W ) =

κ(Z, FiX ◦ApW ).

Documenta Mathematica 5 (2000) 595–611



604 Ralph J. Bremigan

Proof. EiX = FiX ◦ (Adp ◦Ap) =
2.4(1),3.2(2)

(FiX ◦Ad−1
p )◦Ap, proving (1). Then

(2) follows from (1), 2.4(1,2), and 3.2(2,3). To prove (3), we note 2iImEiX =
EiX−EiX =

5.1(1)
FiX ◦Ap◦Adp−FiX ◦Ap◦Ad−1

p = FiX ◦Ad−1
p ◦Ap◦(Ad2

p−I) =

2FiX ◦ (Adp − I) ◦ Ad−1
p ◦ Ap ◦

(
Adp+I

2

)
= 2FiX ◦ (I − Adp)

−1 =
3.2(5)

2adiX .

Finally, (4) follows from 2.4(7) and 3.2(1), and (5) is similar to (1) and (2). �

We return to the computation of dλ. First,

Ẑ(λŴ )(iX,r)

=
4.1

Ẑ (κ(X,AdrReW )

=
2.6

d

dt

∣∣∣∣
t=0

κ
(
−i log petAp◦AdriImZ ,Adet(AdrZ−Ap◦AdriImZ) ◦AdrReW

)

= κ (−iFiX ◦Ap ◦AdriImZ,AdrReW )

+ κ
(
X, adAdrZ−Ap◦AdriImZ ◦AdrReW

)

= κ (FiX ◦Ap ◦AdrImZ,AdrReW )

− iκ (adiX(AdrZ −Ap ◦AdriImZ),AdrReW )

= κ (FiX ◦Ap ◦AdrImZ,AdrReW )

− iκ
(
FiX ◦ (I −Ad−1

p )(AdrZ −Ap ◦AdriImZ),AdrReW
)

by 3.2(5)

= κ
(
FiX ◦Ap ◦Ad−1

p ◦AdrImZ,AdrReW
)

− iκ
(
FiX ◦ (I −Ad−1

p ) ◦AdrZ,AdrReW
)

=
−i
4
κ
(
FiX ◦Ap ◦Ad−1

p ◦Adr(Z − Z),Adr(W +W )
)

+
−i
4
κ
(
FiX ◦ (I −Ad−1

p ) ◦Adr2Z,Adk(W +W )
)
.

Similarly, we have

−Ŵ (λẐ)(iX,r) =
i

4
κ
(
Adr(Z + Z), FiX ◦Ap ◦Ad−1

p ◦Adr(W −W )
)

+
i

4
κ
(
Adr(Z + Z), FiX ◦ (I −Ad−1

p ) ◦Adr2W
)

=
i

4
κ
(
FiX ◦Ap ◦Adp ◦Adr(Z + Z),Adr(W −W )

)

+
i

4
κ
(
FiX ◦Ad−1

p ◦ (I −Adp) ◦Adr(Z + Z),Adr2W
)

by 5.1(5), 3.2(2,3).
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Finally,

−λ[Ẑ, Ŵ ] = −λ([Z,W ]∧) = −κ (X,AdrRe [Z,W ])

=
i

2
κ (iX,Adr[Z,W ]) +

i

2
κ
(
iX,Adr[Z,W ]

)

=
i

2
κ
(
FiX ◦ (I −Ad−1

p ) ◦AdrZ,AdrW
)

+
i

2
κ
(
FiX ◦ (I −Ad−1

p ) ◦AdrZ,AdrW
)
.

Summing the terms and using 2.4(1), we find

ω(Ẑ, Ŵ ) =
−i
2
κ(FiX ◦Ap ◦Adp ◦AdrZ,AdrW )

+
i

2
κ(FiX ◦Ap ◦Ad−1

p ◦AdrZ,AdrW )

=
−i
2

(
κ(EiX ◦AdrZ,AdrW )− κ(EiX ◦Ad−2

p ◦AdrZ,AdrW )
)

=
1

2i

(
κ(EiX ◦AdrZ,AdrW

)
− κ(EiX ◦AdrZ,AdrW )

= Im
(
κ(EiX ◦AdrZ,AdrW

)

We have proved:

Theorem 5.2. ω(Ẑ, Ŵ ) = Imκ
(
EiX ◦AdrZ,AdrW

)
is an exact, nondegen-

erate, J-invariant, GR×GR-invariant, real-valued 2-form on M , and coincides
with the restriction to M of the standard (cotangent bundle) symplectic form
on T ∗(GR). �

Recall that on any complex manifold, a closed, nondegenerate, real 2-form ω
for which the complex structure is an isometry yields a pseudokähler form, by

the rule
〈
Ẑ, Ŵ

〉
= ω(JẐ, Ŵ ) + iω(Ẑ, Ŵ ). Here Ẑ, Ŵ 7→ ω(JẐ, Ŵ ), the real

part of
〈
Ẑ, Ŵ

〉
, is a real, J-invariant, symmetric bilinear form (which need not

be positive definite), and the imaginary part of 〈 , 〉 is just ω.
In our situation, we have:

Theorem 5.3. The pseudokähler form associated to ω is

〈
Ẑ, Ŵ

〉
(iX,r)

= κ(EiX ◦AdrZ,AdrW ) = κ(EiAd−1
r XZ,W ). �

Note that 5.1(2) shows independently that 〈 , 〉 is Hermitian.

§6. Evaluation of the Pseudokähler Form on a Basis

Our next goal is to compute 〈 , 〉 with respect to a natural basis of vector
fields at (iX, r), in the (generic) case that X is semisimple. Without loss of
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generality, we assume that r is the identity element of GR. We use notation
involving T and t as in §1.
It is clear that EiX preserves t and each root space gα. Hence for our Hermitian
form, t ⊥ gα and gα ⊥ gβ unless β = −α. So, the only products we need

compute are
〈
Ẑ, Ŵ

〉
for Z,W ∈ t, and

〈
Ẑα, Ẑ−α

〉
, where Zα ∈ gα.

By 2.4(1) and the definition of EiX , it follows easily that:

Lemma 6.1. EiX (Z) = Z if Z ∈ t (or more generally, if [X,Z] = 0); and if

Zα ∈ gα with dα(iX) 6= 0, then EiX (Zα) =
−α(p2) · dα(2iX)

1− α(p2)
Zα. �

Lemma 6.2. For Z,W ∈ t, we have

〈
Ẑ, Ŵ

〉
= κ(Z,W )

= (κ(ReZ,ReW ) + κ(ImZ, ImW ))

+ i (κ(ImZ,ReW )− κ(ReZ, ImW ))

=
∑

α∈Φ(T,G)

dα(Z) · dα(W ). �

From this, it is easy to describe the signature of 〈 , 〉 on t: suppose the con-
nected component of 1 in TR is a product of n circles and m real lines (here
n +m is the complex dimension of T ). Then 〈 , 〉 is negative-definite on the
complexified Lie algebra of the circles and positive-definite on the lines, and
these two subspaces of t are perpendicular. For: in computing signatures, we
may assume that Z ∈ tR. If Z ∈ tR, then in the former case dα(Z) ∈ iR,
and in the latter, dα(Z) ∈ R. Also for Z ∈ tR, 〈Z,Z〉 =

∑
α∈Φ(T,G)(dα(Z))2.

Also if Z,W ∈ tR but are of “opposite types,” the last lemma shows that
〈Z,W 〉 ∈ iR ∩ R = {0}.
Now let Z = Zα and W = Z−α. Recall that by our definition of M , we have
α(p) 6= −1. Also, either α(p) 6= 1, or dα(iX) = 0 and α(p) = 1.

Lemma 6.3. If α(p) 6= 1, then
〈
Ẑα, Ẑ−α

〉
=
−α(p2) · dα(2iX) · κ(Zα, Z−α)

1− α(p2)
,

whereas if dα(iX) = 0, then
〈
Ẑα, Ẑ−α

〉
= κ(Zα, Z−α). �

This shows that if α is not imaginary, then 〈 , 〉 is isotropic on gα⊕ g−α. Sup-
pose that α is imaginary; we wish to see whether 〈 , 〉 is positive- or negative-
definite on gα. In the copy of sl(2) (sl(α) ⊂ g) corresponding to α, recall that
we may pick a basis {Hα, Zα, Z−α} satisfying [Zα, Z−α] = Hα, [Hα, Zα] = 2Zα,
and [Hα, Z−α] = −2Z−α. By explicit computation, one sees that one can pick
Zα satisfying Zα = εZ−α, where ε = 1 (resp. −1) if SL(α)R is noncompact

(resp. compact). Then
〈
Ẑα, Ẑα

〉
=
−ε · α(p2) · dα(2iX) · κ(Zα, Z−α)

1− α(p2)
, or sim-

ply εκ(Zα, Z−α) if dα(iX) = 0. In the latter case, since κ(Zα, Z−α) > 0 we
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already see that 〈 , 〉 is positive on gα if α is noncompact and negative if
α is compact. In the former case, we get the same information: since α is
imaginary, we have dα(iX) ∈ R, and α(p) = edα(iX) > 0. Note then that

dα(iX)/(1− α(p)) < 0; it then follows that the sign of
〈
Ẑα, Ẑα

〉
is ε.

Summarizing the above, we have:

Theorem 6.4. Suppose that (iX, 1) ∈ M and eiX ∈ T for some maximal R-
torus T of G. Write T = Ts · Ta, the decomposition of T into an almost direct
product of split and anisotropic subtori. For each root α, let gα be the root
subspace of g. We identify elements of g with the induced tangent vectors at
(iX, 1) coming from the canonical vector fields. Then under the Hermitian form
〈 , 〉, t is perpendicular to each root space; LieTa is perpendicular to LieTs; gα
is perpendicular to gβ unless β = −α; 〈 , 〉 is positive definite on LieTs and
negative definite on LieTa; 〈 , 〉 is isotropic on gα⊕g−α if α is not imaginary;
and 〈 , 〉 is positive (resp. negative) definite on gα if α is noncompact imaginary
(resp. compact imaginary). �

A priori, the signature of 〈 , 〉 is only constant on each connected component
of M , but in fact more is true:

Corollary 6.5. The signature of 〈 , 〉 is constant on M .

Proof. Since (i0, 1) ∈ M , there exists a connected neighborhood U of 0 in
gR such that iU × GR ⊂ M . It follows that 〈 , 〉 has constant signature on
iU × GR (note that while GR need not be connected, this is irrelevant since
〈 , 〉 is GR-invariant). We must show that the signature of 〈 , 〉 on any con-
nected component of M is the same as on iU ×GR. Without loss of generality
we may choose (iX, r) ∈M such that X is regular semisimple in g, which is to
say that X ∈ tR for a (unique) Cartan subalgebra tR ⊂ gR. We may find s ∈ R∗

sufficiently small that sX ∈ U , and of course sX ∈ tR is still regular semisim-
ple. However by 6.4, the signature at (iY, r) ∈ M (for Y regular semisimple)
depends only on attributes of the unique real Cartan subalgebra containing Y
and of its root system. Hence the signature of 〈 , 〉 at (iX, r) is the same as
the signature of 〈 , 〉 on iU ×GR. �

Corollary 6.6. The signature of 〈 , 〉 equals the signature of the Hermitian
form Z,W 7→ κ(Z,W ) on g, which equals the signature of the (real) symmetric
bilinear form Z,W 7→ κ(Z,W ) on gR.

Proof. By 6.5, it is enough to check the result at a single point of M , and at
the point (i0, 1), 〈Z,W 〉 = κ(Z,W ). The second statement is a simple linear
algebra fact. �

7. Alternative Vector Fields and Comparison with Fels’ Work

Let (iX, r) ∈M . Since GR×GR acts onM , any pair (Y1, Y2) ∈ gR×gR produces
a tangent vector at (iX, r) (indeed it produces an “orbital vector field” on all of
igR×GR). It is easy to see that (Y1, Y2) and (Y ′1 , Y

′
2) produce the same tangent
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vector at (iX, r) if and only if (Y ′1 , Y
′
2) = (Y1 +A, Y2 + Ad−1

r A) for some A in
the centralizer in gR of X . Given any V in this centralizer, we obtain a (non-
orbital) tangent vector to M at (iX, r), namely d

dt

∣∣
t=0

(iX + itV, r) (however
this need not be extendable to a vector field on M). By dimension count,
any tangent vector to M at (iX, r) can be obtained from a combination of
orbital and transverse vectors; namely, given (Y1, Y2, V ) as above, we obtain
the tangent vector d

dt

∣∣
t=0

(
AdetY1 (iX + itV ), etY1re−tY2

)
, and every tangent

vector can be obtained in this way. The relationship to canonical vectors is:

Proposition 7.1. At (iX, r) (with p = eiX), the tangent vector
coming from the triple (Y1, Y2, V ) coincides with the canonical vector
(Ad−1

pr Y1 + iAd−1
r V − Y2)

∧.

Proof. This is equivalent to the (straightforward) proof that
d
dt

∣∣
t=0

(
etY1eiX+itV e−tY1

)
·
(
etY1ke−tY2

)
= dlpk

(
Ad−1

pr Y1 + iAd−1
r V − Y2

)
. �

Fix (iX, r) ∈M , and take (Y1, Y2, V1) and (Y3, Y4, V2) as above. Let Z,W ∈ g

be the corresponding canonical vectors (only valid for the point (iX, r)!). It
follows from 2.4(2) and 5.1(1,2,4) that:

Theorem 7.2. At (iX, r),

〈
Ẑ, Ŵ

〉
= κ(EiXY1, Y3)− κ(FiX ◦Ap Y1,Adr Y4)− κ(Y1, iV2)

− κ(FiX ◦Ap ◦Adr Y2, Y3) + κ(EiX ◦Adr Y2,Adr Y4) + κ(Adr Y2, iV2)

+ κ(iV1, Y3)− κ(iV1,Adr Y4) + κ(iV1,−iV2). �

Using 5.1(1,3,5), we can separate easily the real and imaginary parts of
〈
Ẑ, Ŵ

〉
:

Corollary 7.3.

Re
〈
Ẑ, Ŵ

〉

= κ(FiX ◦Ap Re (Adp Y1), Y3) + κ(FiX ◦Ap Re (Adp Adr Y2),Adr Y4)

− κ(FiX ◦Ap Y1,Adr Y4)− κ(FiX ◦Ap ◦Adr Y2, Y3) + κ(V1, V2),

and

ω(Ẑ, Ŵ )

= Im
〈
Ẑ, Ŵ

〉

= κ(X, [Y1, Y3]−Adr [Y2, Y4])

+ κ(V1, Y3 −Adr Y4)− κ(Y1 −Adr Y2, V2). �

We recall some facts about moment maps (see [CG, Chapter 1], [HW]). Suppose
that a Lie group K acts symplectically on a symplectic manifold (N,ω). There
is a map sending smooth functions on N to symplectic (=locally Hamiltonian)
vector fields on N . Since G acts symplectically, there is also a map sending
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each element of k to a symplectic vector field. The action of K is said to
be Hamiltonian if there is a Lie algebra homomorphism H from k to smooth
functions on N which makes a commutative triangle with the other two maps.
The associated moment map µ : N → k∗ is the map sending n ∈ N to the linear
function on k given by x 7→ Hx(n). If the manifold in question is a cotangent
bundle, with canonical 1-form λ and ω := dλ and with K acting on the base
space, then (N,ω) is Hamiltonian, with H sending x ∈ k to the contraction of
λ with the vector field coming from the infinitesimal action of x.
In our case, N = igR×GR ' T ∗(GR) and k = gR×gR. Given (Y1, Y2) ∈ gR×gR,
the induced tangent vector at (iX, r) is d

dt

∣∣
t=0

(
iAdetY1X, e

tY1re−tY2
)
, so by the

remark at the beginning of §4, we have

H(Y1,Y2) = κ(X,
d

dt

∣∣∣∣
t=0

etY1re−tY2r−1)

= κ(X,Y1 −AdrY2) = κ(X,Y1)− κ(Ad−1
r X,Y2).

We identify gR with g∗R via the Killing form. We have proved:

Theorem 7.4. Relative to the symplectic form ω, the moment map µ : igR ×
GR → g∗R × g∗R ' gR × gR is given by (iX, r) 7→ (X,−Ad−1

r X). �

Corollary 7.5. The image of the moment map is {(Y1, Y2) :
Y1 and −Y2 are Ad(GR)-conjugate}. �

Another easy consequence of 7.4 is:

Corollary 7.6. The moment map µ : igR×GR → g∗R×g∗R ' gR×gR separates
GR ×GR-orbits. �

The formula for ω(Ẑ, Ŵ ) in (7.3) is essentially due to Gregor Fels [F]. Here
we recall his construction in [F] of a pseudokähler form on certain complex
manifolds and relate the construction to the one in this paper. (We have
changed notation slightly from [F].)
Let GR ⊂ G as usual, and let t be a Cartan subalgebra of g that is stable
under complex conjugation. Let t′R denote the regular semisimple elements of
tR. Define N = {(n, n) : n ∈ NGR

(TR)} ⊂ GR × GR. Since N acts on t′R, we
have the usual twisted product (GR ×GR) ∗N it′R. It is easy to see that the
map

Θ : (GR ×GR) ∗N it′R −→M

given by [(r1, r2), iX ] 7→
(
Adr1(iX), r1r

−1
2

)
is well-defined, injective, and GR×

GR-equivariant, with everywhere nonsingular differential. Moreover, the map
forms one leg of a commutative triangle with the maps

(GR ×GR) ∗N it′R → G M → G

[(r1, r2), iX ] 7→ r1e
iXr−1

2 (iX, k) 7→ eiXk.
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It follows that there is a complex structure on (GR ×GR) ∗N it′R that agrees
with the ones on G and on M .
Given the point v = [(r1, r2), iX ] ∈ (GR ×GR) ∗N it′R, one can construct (any)

tangent vector as d
ds

∣∣
s=0

of the curve s 7→ [(r1e
sY1 , r2e

sY2), iX + siY3], where

Y1, Y2 ∈ gR and Y3 ∈ tR. The J-invariant 2-form on (GR ×GR) ∗N it′R con-
structed in [F] arises as dθ, where θ is the 1-form which sends the above tangent
vector to κ(X,Y1−Y2). However, one can show that Θ induces an identification
between the 1-forms θ and λ, and hence Θ induces an identification between
(the restriction of) the pseudokähler form in the present paper and the one in
[F].

8. Proof of Theorem 6

Proof of (1). Write H for GL(V ). The map ψ : G→ H induces an embedding
ψ : g ↪→ h. Since g is reductive, we can choose a G-stable complement of g in
h and obtain embeddings Γ : GL(g) ↪→ GL(h) and Γ : gl(g) ↪→ gl(h).
Suppose that (iX, r) ∈ M ′; for any eigenvalue λ of ψ(X), |Reλ| < π/2. Since
the eigenvalues of adψ(X) are the pairwise differences of the eigenvalues of
ψ(X), we have that for any eigenvalue α of adψ(X), |Reα| < π. However
adψ(X) = Γ(adX), and Γ is an embedding, so we can say that for any eigenvalue
β of adX , |Reβ| < π. In particular, this shows that (iX, r) ∈M .
Proof of (2,3). These are trivial.
Proof of (4). Let (iX1, r1), (iX2, r2) ∈ M ′ and suppose that eiX1r1 = eiX2r2.
Applying the map η : g 7→ gg−1, we have that e2iX1 = e2iX2 . Applying ψ,
we have eψ(2iX1) = eψ(2iX2). Let λ be any eigenvalue of ψ(X1) or ψ(X2). By
assumption, |Reλ| < π/2, hence for any eigenvalue α of ψ(2iX1) or ψ(2iX2),
we have |Imα| < π. By a well-known property of the exponential map for linear
groups (see[V, p. 111]), we may conclude that ψ(2iX1) = ψ(2iX2). Since ψ is
injective on the level of Lie algebras, we have X1 = X2, and r1 = r2. �
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Introduction

In [Sug60] Sugawara examined structures on topological monoids, which in-
duce H-space multiplications on the classifying spaces. He introduced a form
of coherently homotopy commutative monoids, which he called strongly ho-
motopy commutative. His main result is that a countable CW -group G is
strongly homotopy-commutative if and only if its classifying space BG is an
H-space. The proof proceeds as follows. One first shows that the multiplication
G×G→ G of a strongly homotopy commutative group is a homotopy homo-
morphism (Sugawara called such maps strongly homotopy multiplicative), i.e.
a homomorphism up to coherent homotopies. Then one shows that this map
induces an H-space structure on BG. The proof of the converse is very sketchy
and far from convincing.
We start with an easy to handle reformulation of the notion of homotopy ho-
momorphisms. The well-pointed and grouplike monoids (cmp. Def. 2.4) and
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homotopy classes of these homotopy homomorphisms form a category HGrH .
If Top∗H is the category of well-pointed spaces and based homotopy classes of
maps, then the classifying space and the Moore loop space functors induces
functors BH : HGrH → Top∗H and ΩH : Top∗H → HGrH . We first prove the
following strengthening of a result of Fuchs ([Fuc65]).

Theorem (3.7). The functor BH is left adjoint to ΩH .

The adjunction induces an equivalence of the full subcategories of monoids in
HGrH of the homotopy type of CW -complexes and of the full subcategory of
Top∗H of connected spaces of the homotopy type of CW -complexes.

We then reexamine Sugawara’s result starting with grouplike monoids whose
multiplications are homotopy homomorphisms. They give rise to H-objects
(i.e. Hopf objects) in the category HGrH . We obtain the following extension
of Sugawara’s theorem.

Theorem (3.8 and 4.2). The classifying space of a grouplike and well-pointed
monoid M is an H-space if and only if M is an H-object in HGrH .

As mentioned above the multiplication of a strongly homotopy commutative
monoid is a homotopy homomorphism. We were not able to prove the converse
and consider it an open question.

I would like to thank Rainer Vogt for his guidance and help during the prepa-
ration of this paper, and James Stasheff for his corrections and suggestions.
The author was supported by the Deutsche Forschungsgemeinschaft.

1 The W-construction

Let Mon be the category of well-pointed, topological monoids and continuous
homomorphisms between them. Here well-pointed means, that the inclusion of
the unit is a closed cofibration.

Remark 1.1. One can functorially replace any monoid M by well-pointed one
by adding a whisker (cmp. [BV68], pg 1130f.). This does not change the
(unbased) homotopy type of M .

Definition 1.2. Let M and N be topological monoids. A homotopy Ht :
M → N is called a homotopy through homomorphisms if for each t ∈ I the
map Ht : M → N is a homomorphism.

Definition 1.3. (cmp. [BV73], [Vog73], [SV86]) We define a functor W :
Mon→Mon. For M ∈ obMon the monoid WM is the space

WM =
∐

n∈N

Mn+1 × In/ ∼
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with the relation

(x0, t1, x1, . . . , tn, xn) =




(x0, . . . , ti−1, xi−1xi, ti+1, . . . , xn) for ti = 0

(x1, t2, . . . , xn) for x0 = e

(x0, . . . , xi−1,max(ti, ti+1), xi+1, . . . , xn) for xi = e

(x0, . . . , tn−1, xn−1) for xn = e.

The multiplication is given by

(x0, . . . , tn, xn) · (y0, s1, . . . , yk) = (x0, . . . , tn, xn, 1, y0, s1, . . . , yk).

A continuous homomorphism F : M → N is mapped to WF : WM → WN
with

WF (x0, t1, x1 . . . , xn) =
(
F (x0), t1, F (x1), . . . , F (xn))

)
.

The augmentation εM : WM →M with εM (x0, . . . , xn) = x0 · · · · ·xn defines a
natural transformation ε : W → id. If iM : M → WM is the inclusion, which
maps every element x of M to the chain (x), we get εM ◦ iM = idM and a
non-homomorphic homotopy ht : WM →WM from iM ◦ εM to idM , given by

ht(x0, t1, x1, . . . , tn, xn) = (x0, tt1, x1, . . . , ttn, xn).

Therefore εM is a homotopy equivalence and M a strong deformation retract
of WM at space level, i.e. its homotopy inverse is no homomorphism.
One of the most important properties of the W -construction is the following
lifting theorem, which is a slight variation of [SV86, 4.2] and is proven in the
same way.

Theorem 1.4. Given the following diagram in Mon with 0 ≤ n ≤ ∞ such
that

WM

F ""E
EE

EE
EE

E

H // B

L~~~~
~~

~~
~~

N

1. M is well-pointed and

2. L is a homotopy equivalence.

Then there exists a homomorphism H : WM → B and a homotopy Kt :
WM → N through homomorphisms from L ◦ H to F . Furthermore H is
unique up to homotopy through homomorphisms.

2 Homotopy homomorphisms

Definition 2.1. Let M and N be two well-pointed monoids. A homotopy
homomorphism F from M to N is a homomorphism F : WM → WN . The
map f := εN ◦ F ◦ iM : M → N is the underlying map of F .
Let HMon be the category whose objects are well-pointed, topological
monoids, and whose morphisms are homotopy homomorphisms.
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Remark 2.2. Our homotopy homomorphisms are closely related to Sugawara’s
approach. If we compose a homotopy homomorphism with the augmentation,
we obtain a map WM → N which is, up to the conditions for the unit, a
strong homotopy multiplicative map in Sugawara’s sense. Since εN is a homo-
topy equivalence, the resulting structures are equivalent, after passage to the
homotopy category.

The Moore loop-space construction ΩMX and the classifying space functor B
define functors ΩW : Top∗ → HMon and BW : HMon → Top∗ by ΩW (X) =
ΩMX and BW (M) = B(WM) on objects and ΩW (f) = WΩMf and BW (F ) =
BF on morphisms.
For a based map f : X → Y let [f ]∗ denote its based homotopy class. For a
homomorphism F of monoids let [F ] denote its homotopy class with respect to
homotopies through homomorphisms.
Let Top∗H be the category of based, well-pointed spaces and based homotopy
classes of based spaces and HMonH the category of well-pointed monoids and
homotopy classes of homotopy homomorphisms.

Remark 2.3. One can prove that the homotopy homomorphisms, which are
homotopy equivalences on space level, represent isomorphisms in HMonH .

Since ΩW and BW preserve homotopies, they induce a pair of functors.

BH : Top∗H � HMonH : ΩH

Definition 2.4. A monoid M with multiplication µ and unit e is called grou-
plike, if there a continuous map i : M →M such that the maps x 7→ µ(x, i(x))
and x 7→ µ(i(x), x) are homotopic to the constant map on e.

Since the Moore loop-spaces are grouplike and since this notion is homotopy
invariant, an additional restriction is necessary for Theorem 3.7 to be true. Let
HGr be the full subcategory of HMon, whose objects are grouplike, and let
HGrH be the corresponding homotopy category. Then BH and ΩH give rise
to a pair of functors

BH : Top∗H � HGrH : ΩH .

We make use of a construction from [SV86]. For an arbitrary monoid M let
EM be the contractible space with right M -action such that EM/M ' BM .
We define a monoid structure on the Moore path space

P (EM ; e,M) :=
{
(ω, l) ∈ EMR+ × R+ : ω(0) = e, ω(l) ∈M,ω(t) = ω(l) for t ≥ l

}
.

The product of two paths (ω, l) and (ν, k) is given by (ρ, l + k), with

ρ(t) =

{
ω(t) if 0 ≤ t ≤ l
ω(l) · ν(t− l) if l ≤ t ≤ l + k.
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The end-point projection πM : P (EM ; e,M) → M, (ω, l) 7→ ω(l) a continuous
homomorphism. Since P (EM ; e,M) is the homotopy fiber of the inclusion
i : M ↪→ EM and since EM is contractible, πM is a homotopy equivalence.
By Theorem 1.4 there exists a homomorphism T̄M : WM → P (EWM ; e,WM)
such that the following diagram commutes up to homotopy through homomor-
phisms.

WM
T̄M //

GGG
GG

GG
GG

GG
GGG

GG
GG

P (EWM ; e,WM)

πWMwwnnnnnnnnnnnn

WM

Because πWM is strictly natural inWM , T̄M is natural up to homotopy through
homomorphism.
Obviously we have P (BWM, ∗, ∗) = ΩMBWM . Hence the projection
pWM : EWM → BWM induces a natural homomorphism P (pWM ) :
P (EWM ; e,WM) → ΩMBWM . Because WM is grouplike, P (pWM ) is a
homotopy equivalence. Therefore we obtain a homomorphism TM : WM →
WΩMBWM , which is induced by Theorem 1.4 and the following diagram.

WM
TM //

T̄M

��

WΩMBWM

εΩMBWM

��
P (EWM ; e,WM)

P (pM )
// ΩMBWM

Since all morphisms are natural up to homotopy through homomorphisms, the
TM form a natural transformation [T ] from idHGrH

to ΩHBH and each TM is
a homotopy equivalence and hence an isomorphism in HGrH . Its inverse [KM ]
can be constructed by Theorem 1.4 and the following diagram.

WΩMBWM
KM //

QQQQQQQQQQQQ

QQQQQQQQQQQQ
WM

TMxxqqqqqqqqqqq

WΩMBWM

For each well-pointed space X , we chose EX to be the dotted arrow in the
following diagram.

BWΩMBWΩMX
BKΩMX //

BεΩMBWΩMX

��

BWΩMX

BεΩMX

��
BΩMBWΩMX

eBWΩMX

��

BΩMX

eX

��
BWΩMX

EX
// X
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Here the e• are the maps described in Proposition 5.1. Since all solid arrows,
except for eX , are based homotopy equivalences the morphism EX exists and
is uniquely determined up to based homotopy. The naturality of EX follows
from the naturality up to homotopy of all other maps. Hence we have a natural
transformation [E]∗ from BHΩH to the identity on Top∗H .

Theorem 2.5. The functor BH : HGrH → Top∗H is left adjoint to ΩH . The
natural isomorphism [T ] is the unit, and the natural transformation [E]∗ the
counit of this adjunction.

Proof. The definition of EBWM and the naturality of several morphisms imply

[EBWM ◦BTM ◦ eBWM ]∗ = [eBWM ]∗

and since eBWM is a based homotopy equivalence by Proposition 5.1 this results
in

[EBH (M)]∗ ◦BH [TM ] = [EBWM ]∗ ◦ [BTM ]∗ = [idBM ]∗.

The definition of EX implies

[WΩMEX ◦WΩMeBWΩMX ◦WΩMBεΩMBWΩMX ◦WΩMBTΩMX ] =

[WΩMeX ◦WΩMBεΩMX ]

and the naturality of several maps leads to

[WΩMEX ◦WΩMeBWΩMX ◦WΩMBεΩMBWΩMX ◦WΩMBTΩMX ] =

[WΩMeX ◦WΩMBεΩMX ◦WΩMBWΩMEX ◦WΩMBTΩMX ] .

Since εΩMX and ΩMeX are homotopy equivalences the homomorphisms
WΩMeX and WΩBεΩMX represent isomorphisms in HGrH . Therefore we
have

[WΩMBWΩMEX ◦WΩMBTΩMX ] = [idWΩMBWΩMX ] .

The facts that TΩMX is an isomorphism in HGrH and that

[TΩMX ◦WΩMEX ◦ TΩMX ] =

[WΩMBWΩMEX ◦WΩMBTΩMX ◦ TΩMX ]

imply

ΩH [EX ]∗ ◦ [TΩH(X)] = [WΩMEX ◦ TΩMX ] = [idWΩMX ] .
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3 Hopf-objects

Definition 3.1. An H- or Hopf-object (X,µ, ρ) in a monoidal category1

(C,⊗, e) is a non-associative monoid, i.e. an object X of C together with mor-
phisms µ : X ⊗ X → X and ρ : e → X such that the following diagram
commutes.

e⊗X ρ⊗idX //

'
%%KKKKKKKKKK

X ⊗X
µ

��

X ⊗ eidX⊗ρoo

'
yytttttttttt

X.

A morphism of H-objects (or H-morphism) f : X → Y is a morphism such
that µY ◦ (f ⊗ f) = f ◦ µX . The H-objects of C and the H-morphisms form a
category HopfC.

Proposition 3.2. Let (C,�, eC) and (D,⊗, eD) be monoidal categories and

(F,G, η, ε) : C → D

an adjunction of monoidal functors2 such that the diagrams

Y � Y
ηY �ηY

//

ηY�Y

��

GFY �GFY

��
GF (Y � Y ) G(FY ⊗ FY )oo

FGX ⊗ FGX //

εX⊗εX
��

F (GX �GX)

��
X ⊗X FG(X ⊗X)oo

commute for each X ∈ C and Y ∈ D, then there exists an adjoint pair of
functors

HopfF : HopfHC � HopfD : HopfG.

Proof. HopfF is given by

HopfF (X,µ, ρ) = (FX,Fµ ◦ ϕ, Fρ) and HopfF (f) = Ff,

with ϕ : FX⊗FX → F (X�X) the natural transformation. Its adjointHopfG
is given analogously. The two commutative diagrams imply that the units ηX
and the counits εY of the adjunction are H-morphisms. Therefore they form
the unit and counit of an adjunction.

Example 3.3. Top∗H with its product is a monoidal category. The H-objects in
Top∗H are precisely the H-spaces with the base point as unit. The homotopy
class [µ]∗ of the multiplication is called H-space structure of X . H-morphisms
are the homotopy classes of H-space morphisms up to homotopy.

1For a definition of monoidal categories see [McL71].
2For a definition of monoidal functors see [BFSV98]
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Example 3.4. HGrH has a monoidal structure ⊗ given on objects by M⊗N =
M × N . For morphisms F : WM → WM ′ and G : WN → WN ′ we define
F ⊗G : W (M ×N)→W (M ′ ×N ′) as follows: Let SM,N = (WprM ,WprN ) :
W (M × N) → WM × WN be induced by the two projections. Then the
diagram

W (M ×N)
SM,N //

εM×N &&NNNNNNNNNNN
WM ×WN

εM×εNwwppppppppppp

M ×N.
commutes. Obviously SM,N is a homotopy equivalence. By Theorem 1.4 the
homotopy class of SM,N in HMon is uniquely determined.
For two homotopy homomorphisms F : WM → WM ′ and G : WN → WN ′,
we define F ⊗G : W (M ×N)→W (M ′×N ′) to be the lifting in the following
diagram.

W (M ×N)
F⊗G //

SM,N

��

W (M ′ ×N ′)
SM′,N′

��
WM ×WN

F×G
// WM ′ ×WN ′.

This construction is compatible with the composition and we can define a
functor ⊗ : HGrH ×HGrH → HGrH with M ⊗N = M ×N and [F ]⊗ [G] =
[F ⊗G].
The projections [PM ] and [PN ] on M ⊗N are given by [pi ◦ SM,N ], where pi
is the according projection from WM ×WN . It is easy to check that ⊗ and
these projections form a product in HGrH and that the trivial monoid ∗ is
a terminal and initial object of HGrH . Therefore HGrH is monoidal and we
have a notion of H-objects in HGrH .
The unit of an H-object in HGrH is always the unit of the underlying monoid.

Lemma 3.5. If (M, [F ]) is a H-object in HGrH , then the underlying map f
of F is homotopic to the multiplication µ of M .

Proof. The homomorphism F̄ = εM ◦ F has the property [F̄ ◦Wik] = [εM ] for
k = 1, 2. The homotopy ht : M ×M → M with ht(x, y) = F̄

(
(x, e), t, (e, y)

)

runs from f(x, y) to f(x, e)f(e, y), and hence f and µ are based homotopic.

Thus the multiplication µ of an H-object (M, [F ]) in HGrH is homotopic to
the underlying map of F , and therefore homotopy-commutative with the com-
muting homotopy from xy to yx derived from F

(
(e, y), t, (x, e)

)
. The relations

in W (M ×M) define higher homotopies so that the underlying monoid is ho-
motopy commutative in a strong sense.
We now want to examine the structure on a monoid M , that leads to the
existence of an H-space multiplication on its classifying space.

Proposition 3.6. BH and ΩH are monoidal functors.
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Proof. For M,N ∈ HGrH the morphism

sM,N : BW (M ×N)→ BWM ×BWN

is given by the based homotopy equivalence (BWp1, BWp2), where p1, p2 :
M ×M →M are the projections.

For X,Y ∈ Top∗H the morphism ΩH(X × Y ) ' ΩHX ⊗ ΩHY is given by
W (ΩMp1,ΩMp2) : WΩM (X × Y )→W (ΩMX × ΩMY ).

Theorem 3.2 now implies

Theorem 3.7. BH and ΩH induce an adjunction

HopfBH : HopfHGrH � HopfTop∗H : HopfΩH

with

HopfBH(M, [F ]) = (BWM, [BF ◦ sM,M ]∗)

and

HopfΩH(X, [µ]∗) = (ΩMX, [WΩMµ ◦RX,X ]).

Theorem 3.8. The classifying space BM of a grouplike and well-pointed
monoid M is an H-space if and only if M is an H-object in HGrH .

Proof. If M is an H-object, then BWM and thus BM are H-spaces.

Now let BM be an H-space. Then ΩMBWM is an H-object in HopfHGrH .
Since TM : WM →WΩMBWM is a homotopy equivalence, M is an H-object,
too.

4 Extensions

A monoid in HopfTop∗H is a homotopy-associative H-space (X,µ). A monoid
HopfHGrH consists of a well-pointed and grouplike monoid together with
homotopy homomorphisms F2 : W (M ×M) → WM and F3 : W (M ×M ×
M)→WM such that (M, [F2]) is an H-object and

[F2 ◦ (F2 ⊗ id)] = [F3] = [F2 ◦ (id⊗ F2)].

We call the H-object (M, [F2]) associative.

Since these structures are invariant under isomorphisms we obtain, similar to
the non-associative case, the following

Theorem 4.1. The classifying space BM of a well-pointed, grouplike monoid
M is an homotopy associative H-space, if M is an associative H-object in
HGrH .
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As we realized earlier, the morphism eX : BΩMX → X need not be a homotopy
equivalence. But by Proposition 5.1 ΩMeX is a based homotopy equivalence.
Hence, if we restrict to connected, based spaces of the homotopy type of CW -
complexes, eX is a homotopy equivalence.
This implies that the adjunction

BH : HGrH � Top∗H : ΩH

induces an equivalence of categories, if we restrict to the full subcategories of
based spaces of the homotopy type of connected CW-complexes and grouplike
monoids of the homotopy type of CW -complexes.

Theorem 4.2. The full subcategories HopfHGrCWH ⊂ HopfHGrH of H-

objects of the homotopy type of CW-complexes, and HopfTop
∗,CW
H ⊂

HopfTop∗H of connected H-spaces of the homotopy type of CW -complexes, are
equivalent.

5 Appendix: The evaluation map

This section is dedicated to the proof of the following theorem.

Proposition 5.1. For each based space X there exists a natural map eX :
BΩMX → X such that

1. ΩMeX is a homotopy equivalence for each based space X and

2. if M is a grouplike well-pointed monoid then eBM is a homotopy equiva-
lence.

To prove this we will use based simplicial spaces. A based simplicial space is a
functor from the dual of the category ∆ of finite, ordered sets [n] = {0, 1, . . . , n}
to Top∗. The based standard simplices ∇∗(n) are given by the quotient space
∇(n)/Vn with ∇(n) the n-th standard simplex and Vn its subspace of vertices.
They induce a based cosimplicial space ∇∗ : ∆→ Top∗.
We define the based geometric realization of a based simplicial space X as

| · |∗ =
∐

n

X(n) ∧ ∇∗(n)/ ∼

with the relation ∼ generated by the same equalities as in the unbased case.
This induces a functor |·|∗ from the category of based simplicial spaces to Top∗.
Analogous to the unbased singular complex we can define the based singular
complex S∗X : ∆op → Top∗ of a based space X by

[n] 7→ Top∗(∇∗(n), X).

S∗ induces a functor from Top∗ to the category of based simplicial sets. As
in the unbased case this right adjoint to the based realization | · |∗. The unit
τ∗ : id→ S∗| · |∗ is given by

τ∗,X(x) = (t 7→ (x, t)) , x ∈ Xn, t ∈ ∇∗(n)
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and the counit η∗ : |S∗ · |∗ → id by

η∗,X(ω, t) = ω(t), ω ∈ S∗Y (n), t ∈ ∇∗(n).

Definition 5.2. (cmp. [Seg74, A.4.]) A based simplicial space X is good if for
each n and 0 ≤ i ≤ n the inclusion si(Xn−1) ↪→ Xn is a closed cofibration.

Now observe that the based realization |X|∗ coincides with the unbased realiza-
tion |X| if the simplicial space X has only one 0-simplex. Therefore we obtain
the following lemma from well-known facts.

Lemma 5.3. (cmp. [Seg74, A.1]) Let X and Y be good, based simplicial spaces
with X0 = ∗ = Y0 and let f : X→ Y be a based simplicial map. If each map fn
is a based homotopy equivalence, then the map

|f|∗ : |X|∗ → |Y|∗

is a based homotopy equivalence.

In the following we will show that the nerve Ω•MX of the Moore loop space of an
arbitrary well-pointed space X is homotopy equivalent to its based simplicial
complex. There exists a based simplicial map a : Ω•MX → S∗X , given by

an(ω1, . . . , ωn)(t0, . . . , tn) = (ω1 + · · ·+ ωn)




n∑

i=1

i∑

j=1

tilj




(lj is the length of the loop ωj and + the loop addition). Let ej = (t0, . . . , tn)
be the vertex of ∇(n) given by tj = 1, tk = 0, k 6= j. Then a maps the loop ωj
to the edge running from ej−1 to ej .
En := {(t0, . . . , tn) ∈ ∇(n) : ti + ti+1 = 1 for some i} is a strong deformation
retract of ∇(n) and there exists a sequence of homotopy equivalences

Top∗ (∇∗(n), X) ' Top∗ (En, X) ' (ΩX)n ' (ΩMX)n

such that the composition of a with these maps is the endomorphism of
(ΩMX)n which changes the length of the loops to length 1. This map is ho-
motopic to the identity, and hence a is a homotopy equivalence. Furthermore
a is natural in X and defines a natural transformation from Ω•M to S∗. If
X and hence ΩMX and Top∗ (∇∗(n), X) are well-pointed, then aX is a based
homotopy equivalence.
The map eX := η∗,X ◦ |aX |∗ : |Ω•MX |∗ → X is natural in X and therefore
induces a natural transformation from |Ω•M · |∗ to id. Since Ω•M is the nerve
of a topological monoid, e is in fact a natural transformation from BΩM to
idTop∗

.
By [Seg74, 1.5] the canonical map τΩMX : ΩMX → ΩBΩMX with
τΩMX(ω)(t) = (ω; 1−t, t) is a homotopy equivalence because ΩMX is grouplike.
The composition ΩeX ◦ τΩMX : ΩMX → ΩX is the map normalizing the loops
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to length 1 and hence a homotopy equivalence. Therefore ΩeX is a homotopy
equivalence. Since the maps ΩMX → ΩX are natural in X , this implies the
first statement of Proposition 5.1.
Let M be a well-pointed grouplike monoid. Using the adjunction of the based
realization and the based singular complex functors, we obtain a sequence

BM = |M•|∗ |τ∗,M |∗
// |S∗BM |∗ η∗,BM // |M•|∗ = BM

The map η∗,BM ◦ |τ∗,M• |∗ is the identity. S∗BM(1) is precisely the non-
associative loop space ΩBM and, by [Seg74, 1.5], the map τ∗,M• is a homo-
topy equivalence on the 1-simplices. Furthermore S∗BM(n) is based homotopy
equivalent to (ΩMBM)

n
and S∗BM(n) is special, i.e. it satisfies the condi-

tions of [Seg74, 1.5]. Therefore τ∗,M• is a based homotopy equivalence in each
dimension and thus |τ∗,M• |∗ and η∗,BM . Since |aBM |∗ is a based homotopy
equivalence this implies the second statement of Proposition 5.1.
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structure theorem for the norm completions of these algebras asso-
ciated to groupoids with invariant filtrations. As a consequence, we
obtain criteria for an operator to be compact or Fredholm. We end
with a discussion of the significance of these results to the index the-
ory of operators on certain singular spaces. For example, we give a
new approach to the question of the existence of spectral sections for
operators on coverings of manifolds with boundary. We expect that
our results will also play a role in the analysis on more general singular
spaces.
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Introduction

For the proof of his measured index theorem for C∞,0-foliations [3], Connes in-
troduced pseudodifferential operators on the holonomy groupoid. Two closely
related constructions of algebras of pseudodifferential operators for general dif-
ferentiable groupoids were proposed in [28, 29]. Coming from microlocal analy-
sis of pseudodifferential operators on manifolds with corners, a similar construc-
tion was suggested and used by Melrose [21], without mentioning groupoids
explicitly. While the initial motivation for these constructions was completely
different, eventually it was realized that they all can be used to formalize vari-
ous constructions with pseudodifferential operators related to adiabatic limits,
scattering or spectral problems, and index theoretical computations.
Recall that a groupoid is a small category in which every morphism is invertible.
The domain map d : G(1) −→ M associates to a morphism g : d(g) → r(g) its
domain d(g), which is an object in M . This yields a decomposition of the set
of morphisms

G(1) =
⋃

x∈M
d−1(x) .

The basic idea for a pseudodifferential calculus on groupoids is to consider fam-
ilies (Px)x∈M of pseudodifferential operators on the “fibers” Gx := d−1(x) that
are equivariant with respect to the action of the groupoid induced by compos-
ing compatible morphisms. All that is needed for this construction is in fact a
smooth structure on the sets Gx, x ∈M . Of course, there is a maze of possible
ways to glue these fibers together. Let us only mention differentiable groupoids,
where the fibers, roughly speaking, depend smoothly on the parameter x ∈M ,
and continuous family groupoids introduced by Paterson [32] generalizing the
holonomy groupoid of a C∞,0-foliation as considered in [3]. In that case, the
dependence on x is merely continuous in an appropriate sense – see Section 1
for precise definitions.
In [28, 29] pseudodifferential operators were introduced on differentiable group-
oids; one of the main results is that (under appropriate restrictions on the dis-
tributional supports) pseudodifferential operators can be composed. Though
the definition is rather simple, these algebras of pseudodifferential operators re-
cover many previously known classes of operators, including families, adiabatic
limits, and longitudinal operators on foliations. Moreover, for manifolds with
corners, the pseudodifferential calculus identifies with a proper subalgebra of
the “b”–calculus [18, 19]. It is possible, however, to recover the “b”–calculus
in the framework of groupoids, as shown by the second autor in [27].
In this paper, we first extend the construction of [28, 29] to continuous family
groupoids. This more general setting enables us to freely restrict pseudodif-
ferential operators to invariant subsets of the groupoid; these restrictions are
necessary to fully understand the Fredholm properties of pseudodifferential op-
erators on groupoids. To see what are the technical problems when dealing
with the more restrictive setting of differentiable groupoids, simply note that
for instance, the boundary of a manifold with corners is not a manifold with
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corners anymore, so that the class of differentiable groupoids is not stable under
restriction to invariant subsets.
In the main part of the paper, we set up some analytical foundations for a
general pseudodifferential analysis on groupoids. This covers among others
the existence of bounded representations on appropriate Hilbert spaces, and
criteria for Fredholmness or compactness. This is inspired in part by the central
role played by groupoids in the work of Connes on index theory and by some
questions in spectral theory [13]. In both cases it is natural to consider norm
closures of the algebras of pseudodifferential operators that are of interest, so
the study of these complete algebras plays a prominent role in our paper. We
show that (and how) the geometry of the space of objects of a given groupoid
is reflected by the structure of the C∗-algebra generated by the operators of
order zero. The morphism of restricting to invariant subsets is an important
tool in this picture; these homomorphisms are in fact necessary ingredients to
understand Fredholm and representation theory of pseudodifferential operators.
Let us now briefly describe the contents of each section. The first section
introduces continuous family groupoids and explains how the results of [28]
and [29] can be extended to this setting. However, we avoid repeating the
same proofs.
In the second section, we discuss restriction maps, which are a generalization
of the indicial maps of Melrose. The third section contains the basic results on
the boundedness and representations of algebras of pseudodifferential operators
on a continuous family groupoid. We prove that all boundedness results for
pseudodifferential operators of order zero reduce to the corresponding results
for regularizing operators. This is obtained using a variant of the approach
of Hörmander [6]. In the fourth section, we study the structure of the norm
closure of the groupoid algebras and obtain a canonical composition series of
a groupoid algebra, if there is given an invariant stratification of the space of
units. This generalizes a result from [22]. As a consequence of this structure
theorem, we obtain characterizations of Fredholm and of compact operators in
these algebras in Theorem 4:

• An order zero operator between suitable L2-spaces is Fredholm if, and only
if, it is elliptic (i.e., its principal symbol is invertible) and its restrictions
to all strata of lower dimension are invertible as operators between certain
natural Hilbert spaces.

• An order zero operator is compact if, and only if, its principal symbol
and all its restrictions to strata of lower dimension vanish.

See Theorem 4 for the precise statements. These characterizations of com-
pactness and Fredholmness are classical results for compact manifolds with-
out boundary (which correspond in our framework to the product groupoid
G = M × M , M compact without boundary). For other classes of opera-
tors, characterizations of this kind were obtained previously for instance in
[17, 19, 20, 22, 23, 33, 41].
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The last section contains two applications. The first one is a discussion of
the relation between the adiabatic groupoid Gad canonically associated to a
groupoid G and index theory of pseudodifferential operators. The second ap-
plication is to operators on a covering M̃ of a manifold with boundary M , with
group of deck transformations denoted by Γ. We prove that every invariant,
b-pseudodifferential, elliptic operator on M̃ has a perturbation by regularizing
operators of the same kind that is C∗(Γ)-Fredholm in the sense of Mishenko
and Fomenko. This was first proved in [14] using “spectral sections.”
A differentiable groupoid is a particular case of a continuous family groupoid.
In particular, all results of this section remain valid for differentiable groupoids,
when they make sense. This also allows us to recover most of the results of
[12].
The dimension of the fibers Gx is constant in x on each component of M . For
simplicity, we agree throughout the paper to assume that M is connected and
denote by n the common dimension of the fibers Gx.
Acknowledgments: The first named author is indebted to Richard Melrose for
explaining the conormal nature of pseudodifferential operators. He wants to
thank the Massachusetts Institute of Technology and the SFB 478 at the Uni-
versity of Münster, and, in particular, Richard Melrose and Joachim Cuntz for
the invitation and excellent hospitality. Also, we would like to thank an anony-
mous referee for comments that helped to improve parts of the manuscript.

1 Basic Definitions

We begin this section by recalling some definitions involving groupoids. Then
we review and extend some results from [28, 29] on pseudodifferential operators,
from the case of differentiable groupoids to that of continuous family groupoids.
In the following, we shall use the framework of [28, 29], and generalize it to the
context of continuous family groupoids.
A small category is a category whose class of morphisms is a set. The class of
objects of a small category is then a set as well. By definition, a groupoid is
a small category G in which every morphism is invertible. See [37] for general
references on groupoids.
We now fix some notation and make the definition of a groupoid more explicit.
The set of objects (or units) of G is denoted by M or G(0). The set of morphisms
(or arrows) of a groupoid G is denoted by G(1). We shall sometimes write G
instead of G(1), by abuse of notation. For example, when we consider a space of
functions on G, we actually mean a space of functions on G(1). We will denote
by d(g) [respectively r(g)] the domain [respectively, the range] of the morphism
g : d(g)→ r(g). We thus obtain functions

d, r : G(1) −→M = G(0) (1)

that will play an important role in what follows. The multiplication gh of
g, h ∈ G0 is defined if, and only if, d(g) = r(h). A groupoid G is completely
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determined by the spaces M and G and by the structural morphisms: d, r,
multiplication, inversion, and the inclusion M → G.
In [3], A. Connes defined the notion of a C∞,0-foliation. This leads to the
definition of a continuous family groupoid by Paterson [32]. Let us summarize
this notion.
By definition, a continuous family groupoid is a locally compact topological
groupoid such that G is covered by some open subsets Ω and:

• each chart Ω is homeomorphic to two open subsets of Rk × G(0), T × U
and T ′ × U ′ such that the following diagram is commutative:

T ′ × U ′

{{ww
www

ww
ww

Ω
'oo

r
||xx

xx
xx

xx
x

' //

d ""E
EEEEEEE T × U

""E
EE

EE
EE

EE

U ′ r(Ω)
=oo d(Ω)

= // U

• each coordinate change is given by (t, u) 7→ (φ(t, u), u) where φ is of class
C∞,0, i.e. u 7→ φ(., u) is a continuous map from U to C∞(T, T ′).

In addition, one requires that the composition and the inversion be C∞,0 mor-
phisms.
Generally, we will transform several concepts from the smooth to the C∞,0
setting. The definitions are in the same spirit as the definition of a continuous
family groupoid, and the reader can fill in the necessary details without any
difficulties. For instance, the restriction A(G) of the d-vertical tangent bundle
TdG =

⋃
g∈G TgGd(g) of G to the space of units is called the Lie algebroid of G;

it is a C∞,0-vector bundle.
We now review pseudodifferential operators, the main focus being on the def-
inition and properties of the algebra Ψ∞(G) of pseudodifferential operators
on a continuous family groupoid G, and its variant, Ψ∞(G;E), the algebra of
pseudodifferential operators on G acting on sections of a vector bundle.
Consider a complex vector bundle E on the space of units M of a continuous
family groupoid G, and let r∗(E) be its pull-back to G. Right translations on
G define linear isomorphisms

Ug : C∞(Gd(g), r∗(E))→ C∞(Gr(g), r∗(E)) : (Ugf)(g′) = f(g′g) ∈ (r∗E)g′ (2)

which are defined because (r∗E)g′ = (r∗E)g′g = Er(g′).
Let B ⊂ Rn be an open subset. Define the space Sm(B×Rn) of symbols on the
bundle B×Rn → B as in [8] to be the set of smooth functions a : B×Rn → C
such that

|∂αy ∂βξ a(y, ξ)| ≤ CK,α,β(1 + |ξ|)m−|β| (3)

for any compact set K ⊂ B, for any multi-indices α and β, for any x ∈ K, and
for any ξ ∈ Rn. An element of one of our spaces Sm should more properly be
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said to have “order less than or equal to m”; however, by abuse of language we
will say that it has “order m.”
A symbol a ∈ Sm(B × Rn) is called classical (or polyhomogeneous) if it
has an asymptotic expansion as an infinite sum of homogeneous symbols
a ∼∑∞k=0 am−k, al homogeneous of degree l:

al(y, tξ) = tlal(y, ξ) if ‖ξ‖ ≥ 1

and t ≥ 1. (“Asymptotic expansion” is used here in the sense that for each

N ∈ N, the difference a−∑N−1
k=0 am−k belongs to Sm−N (B ×Rn).) The space

of classical symbols will be denoted by Smcl (B×Rn); its topology is given by the
semi-norms induced by the inequalities (3). We shall be working exclusively
with classical symbols in this paper.
This definition immediately extends to give spaces Smcl (E;F ) of symbols on
E with values in F , where π : E → B and F → B are smooth Euclidean
vector bundles. These spaces, which are independent of the metrics used in
their definition, are sometimes denoted Smcl (E;π∗(F )). Taking E = B × Rn

and F = C one recovers Smcl (B × Rn) = Smcl (B × Rn; C).
Recall that an operator T : C∞c (U)→ C∞(V ) is called regularizing if, and only
if, it has a smooth distribution (or Schwartz) kernel. For any open subset W
of Rn and any complex valued symbol a on T ∗W = W × Rn, let

a(y,Dy) : C∞c (W )→ C∞(W )

be given by

a(y,Dy)u(y) = (2π)−n
∫

Rn
eiy·ξa(y, ξ)û(ξ)dξ . (4)

Then, by definition, a pseudodifferential operator P on B is a continuous, linear
map P : C∞c (B)→ C∞(B) that is locally of the form P = a(y,Dy) +R, where
R is a regularizing operator.
We shall sometimes refer to pseudodifferential operators acting on a smooth
manifold as ordinary pseudodifferential operators, in order to distinguish them
from pseudodifferential operators on groupoids, a class of operators we now
define (and which are really families of ordinary pseudodifferential operators).
Throughout this paper, we shall denote by (Px, x ∈ M) a family of order m
pseudodifferential operators Px, acting on the spaces C∞c (Gx, r∗(E)) for some
vector bundle E over M . Operators between sections of two different vector
bundles E1 and E2 are obtained by considering E = E1⊕E2. (See also below.)

Definition 1 A family (Px, x ∈ M) as above is called continuous if, and
only if, for any open chart V ⊂ G, homeomorphic to W × d(V ), and for any
φ ∈ C∞,0c (V ), we can find a continuous family of symbols (ax, x ∈ d(V )) with

ax ∈ Smcl (T ∗W ; End(E))

such that φPxφ corresponds to ax(y,Dy) under the diffeomorphism Gx∩V 'W ,
for each x ∈ d(V ).
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Thus, we require that the operators Px be given in local coordinates by symbols
ax that depend smoothly on longitudinal variables (with respect to d) and
continuously on transverse variables.
Let us denote by D the density bundle of the Lie algebroid A(G).

Definition 2 An order m, invariant pseudodifferential operator P on a con-
tinuous family groupoid G, acting on sections of the vector bundle E, is a con-
tinuous family (Px, x ∈ M) of order m, classical pseudodifferential operators
Px acting on C∞c (Gx, r∗(E ⊗D1/2)) that satisfies

Pr(g)Ug = UgPd(g), (5)

for any g ∈ G, where Ug is as in (2).

This definition is a generalization of the one in [28, 29]; moreover, we have
replaced the bundle E by E ⊗D1/2.
Let us denote by C−∞(Y ;E) := C∞c (Y,E′ ⊗ Ω)′ the space of distributions on
a smooth manifold Y with coefficients in the bundle E; here E ′ is the dual
bundle of E, and Ω = Ω(Y ) is the bundle of 1-densities on Y .
We fix from now on a Hermitian metric on E, and we use it to identify E ′, the
dual of E, with E, the complex conjugate of E. Of course, E ' E.
For a family of pseudodifferential operators P = (Px, x ∈ G(0)) acting on Gx,
let us denote by Kx the distributional kernel of Px

Kx ∈ C−∞(Gx × Gx; r∗1(E ⊗D1/2)⊗ r∗2(E ⊗D1/2)′ ⊗ Ω2) (6)

' C−∞(Gx × Gx; r∗1(E ⊗D1/2)⊗ r∗2(E ⊗D1/2)).

Here Ω2 is the pull-back of the bundle of vertical densities r∗(D) on Gx to
Gx × Gx via the second projection. These distributional kernels are obtained
using Schwartz’ kernel theorem. Let us denote

END(E) := r∗(E ⊗D1/2)⊗ d∗(E∗ ⊗D1/2).

The space of kernels of pseudodifferential operators on Gx is denoted, as usual,
by Im(Gx×Gx,Gx; END(E)) where Gx ↪→ Gx×Gx is embedded as the diagonal
[8].
Let µ1(g

′, g) = g′g−1. We define the support of the operator P to be

supp (P ) = ∪xµ1( supp (Kx)) ⊂ G. (7)

The family P = (Px, x ∈ G(0)) is called uniformly supported if, and only if,
supp (P ) is a compact subset of G(1). The composition PQ of two uniformly

supported families of operators P = (Px, x ∈M) and Q = (Qx, x ∈M) on G(1)

is defined by pointwise multiplication:

PQ = (PxQx, x ∈M).
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Since
supp (PQ) ⊂ supp (P ) supp (Q),

the product is also uniformly supported. The action of a family P = (Px) on
sections of r∗(E) is also defined pointwise, as follows. For any smooth section
f ∈ C∞,0(G, r∗(E)), let fx be the restriction f |Gx . If each fx has compact
support and P = (Px, x ∈ G(0)) is a family of ordinary pseudodifferential
operators, then we define Pf such that its restrictions to the fibers Gx are
given by

(Pf)x = Px(fx).

Let G be a continuous family groupoid. The space of order m, invari-
ant, uniformly supported pseudodifferential operators on G, acting on sec-
tions of the vector bundle E will be denoted by Ψm,0(G;E). For the triv-
ial bundle E = M × C, we write Ψm,0(G;E) = Ψm,0(G). Furthermore, let
Ψ∞,0(G;E) = ∪m∈ZΨm,0(G;E) and Ψ−∞,0(G;E) = ∩m∈ZΨm,0(G;E).
Thus, P ∈ Ψm,0(G;E) is actually a continuous family P = (Px, x ∈ G(0)) of
ordinary pseudodifferential operators. It is sometimes more convenient to con-
sider the convolution kernels of these operators. Let Kx(g, g

′) be the Schwartz
kernel of Px, a distribution on Gx×Gx, as above; thus (Kx)x∈M is a continuous
family, equivariant with respect to the action of G:

∀g0 ∈ G, ∀g ∈ Gr(g0), ∀g′ ∈ Gd(g0),Kr(g0)(g, g
′g−1

0 ) = Kd(g0)(gg0, g
′).

We can therefore define

kP (g) = Kd(g)(g, d(g)) (8)

which is a distribution on G, i.e. a continuous linear form on C∞,0(G).
We denote by Im,0c (G,M ; END(E)) the space of distributions k on G such that
for any x ∈ G the distribution defined by

Kx(g, g
′) := k(gg′

−1
)

is a pseudodifferential kernel on Gx × Gx, i.e. Kx ∈ Im(Gx ×Gx,Gx; END(E)),
and the family (Kx)x∈M is continuous. Let us denote by Sm,0cl (A∗(G); End(E))
the space of continuous families (ax)x∈M with ax ∈ Smcl (TxGx; End(E)). For
P ∈ Ψm,0(G;E), let

σm(P ) ∈ Sm,0cl (A∗(G); End(E))/Sm−1,0
cl (A∗(G); End(E)) (9)

be defined by
σm(P )(ξ) = σm(Px)(ξ),

if ξ ∈ A(G)x. Note that the principal symbol of P determines the principal
symbols of the individual operators Px by the invariance with respect to right
translations. More precisely, we have σm(Px) = r∗(σ(P ))|T∗Gx . As in the
classical situation, it is convenient to identify the space on the right hand side
in (9)
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with sections of a certain bundle Pm. Let S∗(G) be the cosphere bundle of G,
that is, S∗(G) = (A∗(G) \ 0)/R∗+ is the quotient of the vector bundle A∗(G)
with the zero section removed by the action of positive real numbers. Let Pm
be the bundle on S∗(G) whose sections are C∞,0-functions f on A∗(G) \ 0 that
are homogeneous of degree m. Then the quotient space in Equation (9) can
certainly be identified with the space C∞,0c (S∗(G),End(E)⊗Pm), thus, we have
σm(P ) ∈ C∞,0c (S∗(G),End(E)⊗Pm). The following theorem is a generalization
of results from [26, 28, 29] and extends some well-known properties of the
calculus of pseudodifferential operators on smooth manifolds.

Theorem 1 Let G be a continuous family groupoid. Then

Ψm,0(G;E)Ψm′,0(G;E) ⊂ Ψm+m′,0(G;E),

σm+m′(PQ) = σm(P )σm′(Q), and the map P 7→ kP establishes an isomor-
phism Ψm,0(G;E) 3 P 7−→ kP ∈ Im,0c (G,M ; END(E)).
Moreover, the principal symbol σm gives rise to a short exact sequence

0→ Ψm−1,0(G;E)→ Ψm,0(G;E)
σm−−−→ C∞,0c (S∗(G),End(E)⊗Pm)→ 0. (10)

It follows that Ψ−∞,0(G;E) is a two-sided ideal of Ψ∞,0(G;E). Another con-
sequence of the above theorem is that we obtain the asymptotic completeness
of the spaces Ψm,0(G): If Pk ∈ Ψm,0(G) is a sequence of operators such that
the order of Pk − Pk+1 converges to −∞ and the kernels kPk have support
contained in a fixed compact set, then there exists P ∈ Ψm,0(G), such that the
order of P − Pk converges to −∞.
Using an observation from [29], we can assume that E is the trivial one dimen-
sional bundleM×C. Indeed, we can realizeE as a sub-bundle of a trivial bundle
M × Cn, with the induced metric. Let e be the orthogonal projection onto E,
which is therefore an n×nmatrix, and hence it is a multiplier of Ψ∞,0(G). Then
Ψm,0(G;E) ' eMn(Ψ

m,0(G))e, for eachm, and form =∞, it is an isomorphism
of algebras. In the last section we shall consider operators between different
vector bundles. They can be treated similarly, as follows. Suppose E0 and E1

are two vector bundles on M and (Px), x ∈M , is a family of pseudodifferential
operators Px ∈ Ψm,0(Gx; r∗(E0), r

∗(E1)) satisfying the usual conditions: (Px)
is a continuous family of invariant, uniformly supported operators. The set of
such operators will be denoted Ψm,0(G;E0, E1). It can be defined using the
spaces Ψm,0(G) by the following procedure. Choose embeddings of E0 and E1

into the trivial bundle CN such that Ei can be identified with the range of a
projection ei ∈ MN(C∞(M). Then Ψm,0(G;E0, E1) ' e1MN(Ψm,0(G))e0, as
filtered vector spaces.
Sometimes it is convenient to get rid of the density bundles in the definition
of various algebras associated to a continuous family groupoid. This can easily
be achieved as follows. The bundle D is trivial, but not canonically. Choose
a positive, nowhere vanishing section ω of D. Its pull-back, denoted r∗(ω),
restricts to a nowhere vanishing density on each fiber Gx, and hence defines
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a smooth measure µx, with support Gx. From the definition, we see that the
measures µx are invariant with respect to right translations.
The choice of ω as above gives rise to an isomorphism

Φω : Ψ−∞,0(G)→ C∞,0c (G),

such that the convolution product becomes

f0 ∗ f1(g) =

∫

Gx
f0(gh

−1)f1(h)dµx(h),

where g, h ∈ G and x = d(g). If we change ω to φ−2ω, then we get
Φφ−2ω(f)(g) = φ(r(g))Φω(f)(g)φ(d(g)), and µx changes to (φ ◦ r)−1µx. See
Ramazan’s thesis [36] for the question of the existence of Haar systems on
groupoids.

2 Restriction maps

Let A ⊂M and let GA := d−1(A) ∩ r−1(A). Then GA is a groupoid with units
A, called the reduction of G to A. An invariant subset A ⊂M is a subset such
that d(g) ∈ A implies r(g) ∈ A. Then GA = d−1(A) = r−1(A).
In this section we establish some elementary properties of the restriction map

RY : Ψ∞,0(G)→ Ψ∞,0(GY ) ,

associated to a closed, invariant subset Y ⊂M . Then we study the properties
of these indicial maps. For algebras acting on sections of a smooth, hermitian
bundle E on M , this morphism becomes

RY : Ψ∞(G;E)→ Ψ∞,0(GY ;E|Y ).

Then Y is the space of units of the reduction GY and d−1(Y ) = r−1(Y ) is the
space of arrows of GY , hence

GY = (Y, d−1(Y ))

is a continuous family groupoid for the structural maps obtained by restricting
the structural maps of G to GY . As before, we identify the groupoid GY with
its set of arrows d−1(Y ).
Clearly, GY = d−1(Y ) is a disjoint union of d-fibers Gx, so if P = (Px, x ∈ G(0))
is a pseudodifferential operator on G, we can restrict P to d−1(Y ) and obtain

RY (P ) := (Px, x ∈ Y ),

which is a family of operators acting on the fibers of d : GY = d−1(Y )→ Y and
satisfies all the conditions necessary to define an element of Ψ∞,0(GY ). This
leads to a map

RY = RY,M : Ψ∞,0(G)→ Ψ∞,0(GY ), (11)
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which is easily seen to be an algebra morphism.
If Z ⊂ Y are two closed invariant subsets of M , we also obtain a map

RZ,Y : Ψ∞,0(GY )→ Ψ∞,0(GZ), (12)

defined analogously. The following proposition summarizes the properties of
the maps RY .

Proposition 1 Let Y ⊂M be a closed, invariant subset. Using the notation
above, we have:
(i) The convolution kernel kRY (P ) of RY (P ) is the restriction of kP to d−1(Y ).
(ii) The map RY is an algebra morphism with RY (Ψm,0(G)) = Ψm,0(GY ) and

C0(M \ Y )Im,0c (G,M ; END(E)) ⊆ ker(RY ).

(iii) If Z ⊂ Y is a closed invariant submanifold, then RZ = RZ,Y ◦ RY .
(iv) If P ∈ Ψm,0(G), then σm(RY (P )) = σm(P ) on S∗(GY ) = S∗(G)|Y .

Proof: The definition of kP , equation (8), is compatible with restrictions,
and hence (i) follows from the definitions.
The surjectivity of RY follows from the fact that the restriction

Im,0c (G,M)→ Im,0c (GY , Y )

is surjective. Finally, (iii) and (iv) follow directly from the definitions. �

Consider now an open invariant subset O ⊂ M , instead of a closed invariant
subset Y ⊂ M . Then we still can consider the reduction GO = (O, d−1(O)),
which is also a continuous family groupoid, and hence we can define Ψ∞,0(GO).
If moreover O is the complement of a closed invariant subset Y ⊂ M , then
we can extend a family (Px) ∈ Ψ∞,0(GO) to be zero outside O, which gives an
inclusion Ψ∞,0(GO) ⊂ Ψ∞,0(G). Clearly, Ψ∞,0(GO) ⊂ ker(RY ), but they are
not equal in general, although we shall see later on that the norm closures of
these algebras are the same.

3 Continuous representations

As in the classical case of pseudodifferential operators on a compact mani-
fold (without corners) M , the algebra Ψ0,0(G) of operators of order 0 acts by
bounded operators on various Hilbert spaces. It is convenient, in what follows,
to regard these actions from the point of view of representation theory. Un-
like the classical case, however, there are many (non-equivalent, irreducible,
bounded, and infinite dimensional) representations of the algebra Ψ0,0(G), in
general. The purpose of this section is to introduce the class of representations
in which we are interested and to study some of their properties. A consequence
of our results is that in order to construct and classify bounded representations
of Ψ0,0(G), it is essentially enough to do this for Ψ−∞,0(G).
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Let D1/2 be the square root of the density bundle

D = | ∧n A(G)|,

as before. If P ∈ Ψm,0(G) consists of the family (Px, x ∈ M), then each Px
acts on

Vx = C∞c (Gx; r∗(D1/2)).

Since r∗(D1/2) = Ω
1/2
Gx is the bundle of half densities on Gx, we can define a

hermitian inner product on Vx, and hence also the formal adjoint P ∗x of Px.
The following lemma establishes that Ψ∞,0(G) is stable with respect to taking
(formal) adjoints. (The formal adjoint P ∗ of a pseudodifferential operator
P is the pseudodifferential operator that satisfies (P ∗φ, ψ) = (φ, Pψ), for all
compactly supported, smooth 1/2-densities φ and ψ.) Let

END(D1/2) := r∗(D1/2)⊗ d∗(D1/2).

Lemma 1 If P = (Px, x ∈ M) ∈ Ψm,0(G), then (P ∗x , x ∈ M) ∈ Ψm,0(G).
Moreover,

kP∗(g) = kP (g−1) ∈ I∞,0c (G,M ; END(D1/2)), (13)

and hence σm(P ∗) = σm(P ).

Proof: It follows directly from the invariance of the family Px that the
family P ∗x is invariant. The support supp (P ∗) = supp (kP∗) ⊂ G of the
reduced kernel kP∗ is ι( supp (P )) = {g−1, g ∈ supp (P )}, also a compact set.
Since the adjoint of a continuous family is a continuous family, we obtain that
(P ∗x )x∈M defines an element of Ψm,0(G).
We now obtain the explicit formula (13) for the kernel of kP∗ stated above.
Suppose first that P ∈ Ψ−n−1,0(G). Then the convolution kernel kP of P is a
compactly supported continuous section of END(D1/2), and the desired formula
follows by direct computation. In general, we can choose Pm ∈ Ψ−n−1,0(G) such
that kPm → kP as distributions. Then kP∗

m
→ kP∗ as distributions also, which

gives (13) in general. �

Having defined the involution ∗ on Ψ∞,0(G), we can now introduce the repre-
sentations we are interested in. Fix m ∈ {0} ∪ {±∞} and let H0 be a dense
subspace of a Hilbert space.

Definition 3 A bounded ∗-representation of Ψm,0(G) on the inner product
space H0 is a morphism ρ : Ψm,0(G)→ End(H0) satisfying

(ρ(P ∗)ξ, η) = (ξ, ρ(P )η) (14)

and, if P ∈ Ψ0,0(G),
‖ρ(P )ξ‖ ≤ CP ‖ξ‖, (15)

for all ξ, η ∈ H0, where CP > 0 is independent of ξ. One defines similarly
bounded ∗-representations of the algebras Ψm,0(G;E).
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Note that for m > 0 and P ∈ Ψm,0(G), ρ(P ) does not have to be bounded,
even if ρ is bounded. However, ρ(P ) will be a densely defined operator with
ρ(P ∗) ⊂ ρ(P )∗.

Theorem 2 Let H be a Hilbert space and let ρ : Ψ−∞,0(G;E) → End(H)
be a bounded ∗-representation. Then ρ extends to a bounded ∗-representation
of Ψ0,0(G;E) on H and to a bounded ∗-representation of Ψ∞,0(G;E) on the
subspace H0 := ρ(Ψ−∞,0(G;E))H of H. Moreover, any extension of ρ to a
∗-representation of Ψ0,0(G;E) is bounded and is uniquely determined provided
that H0 is dense in H.

Proof: We assume that E = C is a trivial line bundle, for simplicity. The
general case can be treated in exactly the same way. We first address the
question of the existence of the extension ρ with the desired properties. Let
P ∈ Ψm,0(G). If H0 is not dense in H, we let ρ(P ) = 0 on the orthogonal
complement of H0. Thus, in order to define ρ(P ), we may assume that H0 is
dense in H.
On H0 we let

ρ(P )ξ = ρ(PQ)η,

if ξ = ρ(Q)η, for some Q ∈ Ψ−∞,0(G) and η ∈ H; however, we need to show
that this is well-defined and that it gives rise to a bounded operator for each
P ∈ Ψ0,0(G). Thus, we need to prove that

∑N
k=1 ρ(PQk)ξk = 0, if P ∈ Ψ0,0(G)

and
∑N
k=1 ρ(Qk)ξk = 0, for some Qk ∈ Ψ−∞,0(G) and ξk ∈ H.

We will show that, for each P ∈ Ψ0,0(G), there exists a constant CP > 0 such
that

‖
N∑

k=1

ρ(PQk)ξk‖ ≤ CP ‖
N∑

k=1

ρ(Qk)ξk‖. (16)

This will prove that ρ(P ) is well defined and bounded at the same time. To
this end, we use an argument of [8]. Let M ≥ |σ0(P )|+ 1, M ∈ R, and let

b = (M2 − |σ0(P )|2)1/2. (17)

Then b −M is in C∞,0c (S∗(G)), and it follows from Theorem 1 that we can
find Q0 ∈ Ψ0,0(G) such that σ0(Q0) = b−M . Let Q = Q0 +M . Using again
Theorem 1, we obtain, for

R = M2 − P ∗P −Q∗Q ∈ Ψ0,0(G),

that
σ0(R) = σ0(M

2 − P ∗P −Q∗Q) = 0,

and hence R ∈ Ψ−1,0(G). We can also assume that Q is self-adjoint. We claim
that we can choose Q so that R is of order −∞. Indeed, by the asymptotic
completeness of the space of pseudodifferential operators, it is enough to find
Q such that R is of arbitrary low order and has principal symbol in a fixed
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compact set. So, assume that we have found Q such that R has order −m.
Then, if we let Q1 = Q+ (RS+SR)/4, where S is a self-adjoint parametrix of
Q (i.e., SQ− 1 and QS − 1 have negative order), then R1 = M2 − P ∗P −Q2

1

has lower order.
So, assume that R has order −∞, and let

ξ =

N∑

k=1

ρ(Qk)ξk, η =

N∑

k=1

ρ(PQk)ξk , and ζ =

N∑

k=1

ρ(QQk)ξk . (18)

Then we have

(η, η) (19)

=

N∑

j,k=1

(ρ(Q∗kP
∗PQj)ξj , ξk)

=

N∑

j,k=1

(
M2(ρ(QkQj)ξj , ξk)− (ρ(Q∗kQ

∗QQj)ξj , ξk)− (ρ(Q∗kRQj)ξj , ξk)
)

= M2‖ξ‖2 − ‖ζ‖2 − (ρ(R)ξ, ξ) ≤ (M2 + ‖ρ(R)‖)‖ξ‖2.
The desired representation of Ψ0,0(G) on H is obtained by extending ρ(P ) by
continuity to H.
To extend ρ further to Ψ∞,0(G), we proceed similarly: we want

ρ(P )ρ(Q)ξ = ρ(PQ)ξ,

for P ∈ Ψ∞,0(G) and Q ∈ Ψ−∞,0(G). Let ξ and η be as in Equation (18). We
need to prove that η = 0 if ξ = 0. Now, because H0 is dense in H, we can find
Tj in Aρ the norm closure of ρ(Ψ−∞,0(G)) and ηj ∈ H such that η =

∑N
j=1 Tjηj .

Choose an approximate unit uα of the C∗-algebra Aρ, then uαTj → Tj (in the
sense of generalized sequences). We can replace then the generalized sequence
(net) uα by a subsequence, call it um such that umTj → Tj , as m → ∞. By
density, we may assume um = ρ(Rm), for some Rm ∈ Ψ−∞,0(G). Consequently,
ρ(Rm)η → η, as m→∞. Then

η = lim

N∑

k=1

ρ(Rm)ρ(PQk)ξk = lim

N∑

k=1

ρ(RmP )ρ(Qk)ξk = 0,

because RmP ∈ Ψ−∞,0(G).
We now consider the uniqueness of the extension of ρ to Ψ0,0(G). First, the
uniqueness of this extension acting on the closure of H0 = ρ(Ψ−∞,0(G))H is
immediate. This implies the boundedness of any extension of ρ to Ψ0,0(G) if
H0 is dense.
In general, a completely similar argument applies to give that on the orthogonal
complement of H0 any extension of ρ to Ψ0,0(G) factors through a representa-
tion of Ψ0,0(G)/Ψ−1,0(G), and hence it is again bounded. �
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Let x ∈ M , then the regular representation πx associated to x is the natural
representation of Ψ∞,0(G) on C∞c (Gx; r∗(D1/2)), that is πx(P ) = Px. (Because
C∞c (Gx; r∗(D1/2)) consists of half-densities, it has a natural inner product and
a natural Hilbert space completion.) As for locally compact groups, the regular
representation(s) will play an important role in our study and are one of the
main sources of examples of bounded ∗-representations.
Assume that M is connected, so that all the manifolds Gx have the same di-
mension n. We now proceed to define a Banach norm on Ψ−n−1,0(G). This
norm depends on the choice of a trivialization of the bundle of densities D,
which then gives rise to a right invariant system of measures µx on Gx. Indeed,
for P ∈ Ψ−n−1,0(G), we use the chosen trivialization of D to identify kP , which
is a priori a continuous family of distributions, with a compactly supported,
C∞,0-function on G, still denoted kP . We then define

‖P‖1 = sup
x∈M

{∫

Gx
|kP (g−1)|dµx(g),

∫

Gx
|kP (g)|dµx(g)

}
. (20)

If we change the trivialization of D, then we obtain a new norm ‖P‖′1, which is
however related to the original norm by ‖P‖′1 = ‖φPφ−1‖1, for some continuous
function φ > 0 on M . This shows that the completions of Ψ−n−1,0(G) with
respect to ‖ ‖1 and ‖ ‖′1 are isomorphic.

Corollary 1 Let x ∈ M . Then the regular representation πx is a bounded
∗-representation of Ψ0,0(G) such that ‖πx(P )‖ ≤ ‖P‖1, if P ∈ Ψ−n−1,0(G).

Proof: Suppose first that P ∈ Ψ−n−1,0(G). Then the convolution kernel kP
of P , which is a priori a distribution, turns out in this case to be a compactly
supported continuous section of

END(D1/2) = r∗(D1/2)⊗ d∗(D1/2).

Choose a trivialization ofD, which then gives trivializations of d∗(D) and r∗(D).
Also denote by µx the smooth measure on Gx obtained from the trivialization
of ΩGx = r∗(D), so that L2(Gx, r∗(D1/2)) identifies with L2(Gx, µx). Using
the same trivialization, we identify kP with a continuous, compactly supported
function.
The action of Px on C∞c (Gx) is given then by

Pxu(g) =

∫

Gx
kP (gh−1)u(h)dµx(h).

Let y = r(g), x = d(g) = d(h), and z = r(h). Then the integrals
∫

Gx
|kP (gh−1)|dµx(h) =

∫

Gy
|kP (h−1)|dµy(h),

and ∫

Gx
|kP (gh−1)|dµx(g) =

∫

Gz
|kP (g)|dµz(g) ,
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are uniformly bounded by a constant M that depends only on kP and the
trivialization of D, but not on g ∈ Gx or h ∈ Gx. A well-known estimate
implies then that Px is bounded on L2(Gx, µx) with

‖πx(P )‖ = ‖Px‖ ≤M.

Then Theorem 2 gives the result. �

Note that the boundedness of order zero operators depends essentially on the
fact that we use uniformly supported operators. For properly supported oper-
ators this is not true, as seen by considering the multiplication operator with
an unbounded function f ∈ C(M).
Define now the reduced norm of P by

‖P‖r = sup
x
‖πx(P )‖ = sup

x
‖Px‖ , x ∈M.

Then ‖P‖r is the norm of the operator π(P ) :=
∏
πx(P ) acting on the Hilbert

space direct sum

l2−
⊕

x∈M
L2(Gx).

The Hilbert space l2-direct sum space l2 −⊕x∈ML2(Gx) is called the space of
the total regular representation. Also, let

‖P‖ = sup
ρ
‖ρ(P )‖,

where ρ ranges through all bounded ∗-representations ρ of Ψ0,0(G) such that

‖ρ(P )‖ ≤ ‖P‖1,

for all P ∈ Ψ−∞,0(G) and for some fixed choice of the measures µx correspond-
ing to a trivialization of D.
The following result shows, in particular, that we have ‖P‖r ≤ ‖P‖ < ∞, for
all P ∈ Ψ0,0(G), which is not clear a priori from the definition.

Corollary 2 Let P ∈ Ψ0,0(G), then ‖P‖ and ‖P‖r are finite and we have the
inequalities ‖RY (P )‖r ≤ ‖P‖r and ‖RY (P )‖ ≤ ‖P‖, for any closed invariant
submanifold Y of M .

Proof: Consider the product representation π =
∏
x∈M πx of Ψ−∞,0(G)

acting on

H :=
∏

L2(Gx;D1/2).

It follows from Corollary 1 that π is bounded. By Theorem 2, π is bounded on
Ψ0,0(G). This shows that ‖P‖r := ‖π(P )‖ is finite for all P ∈ Ψ0,0(G).
Moreover, we have

‖RY (P )‖r = sup
y∈Y
‖πy(P )‖ ≤ sup

x∈M
‖πx(P )‖ = ‖P‖r.
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The rest is proved similarly. �

Denote by A(G) [respectively, by Ar(G)] the closure of Ψ0,0(G) in the norm ‖ ‖
[respectively, in the norm ‖ ‖r]. Also, denote by C∗(G) [respectively, by C∗r (G)]
the closure of Ψ−∞,0(G) in the norm ‖ ‖ [respectively, in the norm ‖ ‖r].
We also obtain an extension of the classical results on the boundedness of the
principal symbol and of results on the distance of an operator to the regularizing
ideal. In what follows, S∗(G) denotes the space of rays in A∗(G), as in Section
1. By choosing a metric on A(G), we may identify S∗(G) with the subset of
vectors of length one in A∗(G).

Corollary 3 Let P ∈ Ψ0,0(G). Then the distance from P to C∗r (G) in A(G)
is ‖σ0(P )‖∞. Similarly, dist(P,C∗(G)) = ‖σ0(P )‖∞, for all P ∈ Ψ0,0(G).
Consequently, the principal symbol extends to continuous algebra morphisms
Ar(G) → C0(S∗(G)) and A(G) → C0(S∗(G)) with kernels C∗r (G) and C∗(G),
respectively.

Proof: Let P = (Px). Then, by classical results,

‖σ0(P )‖∞ = sup
x∈M

‖σ0(Px)‖∞ ≤ sup
x∈M

‖Px‖ = ‖P‖r ≤ ‖P‖.

This proves the first part of this corollary.
Consider now the morphism ρ : Ψ0,0(G) → Ar(G)/C∗r (G). Then we proceed as
in the proof of Theorem 2, but we take M = ‖σ0(P )‖∞ + ε in the definition of
b of Equation (17), where ε > 0 is small but fixed. Since we may assume that
Ar(G)/C∗r (G) is embedded in the algebra of bounded operators on a Hilbert
space, we may apply the same argument as in the proof of Theorem 2, and
constructQ ∈ Ψ0,0(G)+C1 and R ∈ Ψ−∞,0(G) such that P ∗P = M2−Q∗Q−R.
Then Equation (19) gives ‖ρ(P )‖ ≤M , because ρ vanishes on Ψ−∞,0(G). �

We shall continue to denote by σ0 the extensions by continuity of the principal
symbol map σ0 : Ψ0,0(G) → C∞,0c (S∗(G)). The above corollary extends to
operators acting on sections of a vector bundle E, in an obvious way.
See [28] for a result related to Corollary 3. Another useful consequence is the
following.

Corollary 4 Using the above notation, we have that Ψ−∞,0(G) is dense in
Ψ−1,0(G) in the ‖ · ‖-norm, and hence Ψ−1,0(G) ⊂ C∗(G) and Ψ−1,0(G) ⊂
C∗r (G).

4 Invariant filtrations

Let G be a continuous family groupoid with space of units denoted by M . In
order to obtain more insight into the structure of the algebras A(G) and Ar(G),
we shall make certain assumptions on G.

Definition 4 An invariant filtration Y0 ⊂ Y1 ⊂ . . . ⊂ Yn = M is an increas-
ing sequence of closed invariant subsets of M .
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Fix now an invariant filtration Y0 ⊂ Y1 ⊂ . . . ⊂ Yn = M . For each k, we have
restriction maps RYk and we define ideals Ik as follows:

Ik = kerRYk−1
∩ C∗(G). (21)

(by convention, we define I0 = C∗(G)).
We shall also consider the “L1-algebra” L1(G) associated to a groupoid G; it is
obtained as the completion of Ψ−∞,0(G) ' C∞,0c (G) (using a trivialization of the
density bundle D) in the ‖ ‖1-norm, defined in Equation (20). More precisely,
L1(G) is the completion of C∞,0c (G) in the algebra of bounded operators on

`∞−
⊕(

L1(Gx)⊕ L∞(Gx)
)
,

so it is indeed an algebra. If Y ⊂M is invariant, then we obtain sequences

0→ L1(GM\Y )→ L1(G)→ L1(GY )→ 0 , (22)

and
0→ C∗(GM\Y )→ C∗(G)→ C∗(GY )→ 0 . (23)

Lemma 2 The sequences (22) and (23) are exact.

Proof: The exactness of (22) follows from the fact that the two functions,

x 7−→
∫

Gx
|f(g)|dµx(g) and x 7−→

∫

Gx
|f(g−1)|dµx(g),

are continuous in x for f ∈ L1(G).
Indeed, to prove exactness in (22), let f ∈ L1(G) be a function that vanishes
in L1(GY ). Then we can find φn ∈ C∞c (M r Y ) such that ‖f − φnf‖1 < 1/n,
by the continuity of the above two function. Choose fn ∈ C∞,0c (G) such that
‖fn − f‖1 → 0, as n → ∞. Then φnfn ∈ C∞,0c (GM\Y ) and ‖φnfn − f‖1 → 0,
as n→∞.
Let π be an irreducible representation of C∗(G) that vanishes on C∗(GM\Y ).
To prove the exactness of (23), it is enough to prove that π comes from a
representation of C∗(GY ). Now π vanishes on L1(GM\Y ), and hence it induces
a bounded ∗-representation of L1(GY ), by the exactness of (22). This proves
the exactness of (23). �

The exactness of the second exact sequence was proved in [37], and is true
in general for locally compact groupoids. It is worthwhile mentioning that the
corresponding results for reduced C∗-algebras is not true (at least in the general
setting of locally compact groupoids).
We then have the following generalization of some results from [9, 22, 26]:

Theorem 3 Let G be a continuous family groupoid with space of units M and
Y0 ⊂ Y1 ⊂ . . . ⊂ Yn = M be an invariant filtration. Then Equation (21) defines
a composition series

(0) ⊂ In ⊂ In−1 ⊂ . . . ⊂ I0 ⊂ A(G) ,
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with not necessarily distinct ideals, such that I0 is the norm closure of
Ψ−∞,0(G) and Ik is the norm closure of Ψ−∞,0(GM\Yk−1

). The subquotients

are determined by σ0 : AM/I0
∼−→ C0(S∗(G)), and by

Ik/Ik+1 ' C∗(GYk\Yk−1
) , 0 ≤ k ≤ n .

The above theorem extends right away to operators acting on sections of a
vector bundle E, the proof being exactly the same.
Proof: We have that I0 is the closure of Ψ−∞,0(G), by definition. By the
Corollaries 3 and 4, I0 is also the kernel of σ0.
The rest of the theorem follows by applying Lemma 2 to the groupoids GM\Yk−1

and the closed subsets Yk \ Yk−1 of M \ Yk−1, for all k. �

The above theorem leads to a characterization of compactness and Fredholm-
ness for operators in Ψ0,0(G), a question that was discussed also in [12, 26].
This generalizes the characterization of Fredholm operators in the “b-calculus”
or one of its variants on manifolds with corners, see [19, 23]. Characterizations
of compact and of Fredholm operators on manifolds with more complicated
boundaries were obtained in [11, 17], see also [41].
Recall that the product groupoid with units X is the groupoid with set of arrows
X ×X , so there exists exactly one arrow between any two points of X , and we
have (x, y)(y, z) = (x, z).

Theorem 4 Suppose that, using the notation of the above theorem, the restric-
tion of G to M\Yn−1 is the product groupoid, and that the regular representation
πx is injective on A(G) (for one, and hence for all x ∈M \ Yn−1).
(i) The algebra A(G) contains (an ideal isomorphic to) the algebra of compact
operators acting on L2(M\Yn−1), where on M\Yn−1 we consider the (complete)
metric induced by a metric on A(G).
(ii) An operator P ∈ Ψ0,0(G) is compact on L2(M \ Yn−1) if, and only if, the
principal symbol σ0(P ) vanishes, and RYn−1(P ) = 0 ∈ Ψ0,0(GYn−1).
(iii) An operator P ∈ A(G) is Fredholm on L2(M \ Yn−1) if, and only if,
σ0(P )(ξ) is invertible for all ξ ∈ S∗(G) (which can happen only when M is
compact) and RYn−1(P ) is invertible in A(GYn−1).
In (ii) and (iii), we may assume, more generally, that we have P ∈ A(G) or
P ∈MN (A(G)).
The above theorem extends right away to operators acting on sections of a
vector bundle E, the proof being exactly the same. If the representation(s) πx,
x ∈ M r Yn−1, are not injective, then the above theorem gives only sufficient
conditions for an operator P as above to be compact or Fredholm.
Proof: First we need to prove the following lemma:

Lemma 3 Let Y ⊂ M be an invariant subset and let S∗GY be the restriction
of the cosphere bundle of A(G), S∗G →M , to Y . Then the following sequence
is exact:

0 −→ C∗(GM\Y )→ A(G) RY ⊕σ0−→ A(GY )×C0(S∗GY ) C0(S
∗G) −→ 0 .
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Above we have denoted by A(GY )×C0(S∗GY )C0(S
∗G) the fibered product alge-

bra obtained as the pair of elements (P, f), P ∈ A(GY ) and f ∈ C0(S
∗G) that

map to the same element in C0(S
∗GY ).

Proof: This exact sequence comes out directly from the following commuta-
tive diagram:

0
↓

C∗(GM\Y )
↓

0 → C∗(G) → A(G) σ0→ C0(S
∗G) → 0

↓ ↓ RY ↓
0 → C∗(GY ) → A(GY ) → C0(S

∗GY ) → 0
↓ ↓
0 0

�

We can now prove the theorem itself.
(i) As GM\Yn−1

= (M \ Yn−1) × (M \ Yn−1), its C∗-algebra is isomorphic to
that of compact operators on L2(M \ Yn−1).
(ii) A bounded operator P ∈ L(H), acting on the Hilbert space H, is com-
pact if, and only if, its image in the Calkin algebra Q(H) := L(H)/K(H) is
zero. The assumption that πx is injective guarantees that the induced map
A(G)/C∗(GM\Yn−1

) → Q(H) is also injective. Then the lemma above, applied
to Yn−1, implies that P is compact if and only if

P ∈ ker(RYn−1 ⊕ σ0) = kerRYn−1 ∩ kerσ0 .

(iii) By Atkinson’s theorem, a bounded operator P ∈ L(H) is Fredholm if,
and only if, its image in the Calkin algebra Q(H) := L(H)/K(H) is invertible.
Also, recall that an injective morphism ρ of C∗-algebras has the property that
ρ(T ) is invertible if, and only if, T is invertible. Thus we can use again the fact
that the morphism A(G)/C∗(GM\Yn−1

) → Q(H) induced by πx is injective to
conclude that P is Fredholm if, and only if, (RYn−1 ⊕ σ0)(P ) is invertible, i.e.
if, and only if, RYn−1(P ) and σ0(P ) are invertible. �

The significance of Theorem 3 is that often in practice we can find nice invariant
filtrations of M , possibly given by a stratification of M , such that the subquo-
tients C∗(GYk\Yk−1

) have a relatively simpler structure than that of C∗(G). In
that case, the ideal structure reflects the geometric structure of M [12]. In
this context, let us mention only the edge-calculus on manifolds with boundary
[13, 16], and the b- resp. cusp-calculus, or, slightly more general, the cn-calculus
on manifolds with corners [10, 13, 22, 23, 26, 27].
Let us now assume, until the end of this section, that G is a differentiable
groupoid. In many cases, the subquotients C∗(GYk\Yk−1

) are then related to
foliation algebras, to which the results of [38] can be applied. Actually, we
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can always find an ideal in A(G), whose structure resembles that of foliation
algebras. The construction of this ideal goes as follows. Recall that for a
differentiable groupoid G there is a canonical map q : A(G) → TM of vector
bndles, called the anchor map.
Consider, for each k ≤ n = dimGx, the set

Xk ⊂M

of points x such that the dimension of q(A(G)x) ⊂ TxM is k. Then

Yk := X0 ∪X1 ∪ · · · ∪Xk

is a closed subset of M . It is known [15], that dim(q(A(G)y)) is constant for
y ∈ r(Gx), and hence each Xk is an invariant subset of M . If p is the largest
integer for which Xp 6= ∅, then O = Xp is an open invariant subset of M ,
foliated by the sets r(Gx), x ∈ O. Denote by F this foliation of O and by
TF = q(A(G)|O) its tangent space. The set O will be called the maximal
regular open subset of M .
Finally, still in the setting of differentiable groupoids, let us define a represen-
tation π of Ψ∞,0(G) on C∞c (M)by

(π(P )u) ◦ r = P (u ◦ r) ;

this representation is called the vector representation.

Lemma 4 Let O be an invariant open subset of M . Then the operator π(P )
map C∞c (O) to itself.

Proof: The support of π(P )u is contained in the product

supp (P ) supp (u),

a compact subset of M , which, we claim, does not intersect Y := M r O.
Indeed, if we assume by contradiction that

y ∈ Y ∩ supp (P ) supp (u),

then the intersection of supp (P )−1Y and supp (u) is not empty. However,
this is not possible since we have supp (P )−1Y ⊂ Y , by the invariance of Y ,
and supp (u) ⊂ O. �

The representation of Ψ∞,0(G) on C∞c (O) obtained in the above lemma will be
denoted by πO. In particular, πM = π.
Let F be the foliation of the maximal regular open subset O of M . Also, let
ΩF be the bundle of densities along the fibers of F . The bundle ΩF is trivial
and the notion of positive section of ΩF is defined invariantly. Recall that
a transverse measure µ on F is a linear map µ : Cc(O,ΩF ) → C such that
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µ(f) ≥ 0 if f is positive. A transverse measure µ on O gives rise to an inner
product ( , )µ on

C∞,0c (O; Ω
1/2
F )

by the formula (f, g)µ := µ
(
fg)
)
. Let L2(O, dµ) be the completion of

C∞,0c (O,ΩF ) with respect to the Hilbert space norm ‖f‖µ = (f, f)
1/2
µ .

Theorem 5 For any transverse measure µ on O the representation πO ex-
tends to a bounded ∗–representation of A(G) on L2(O, dµ).

Proof: The results from [3] and, more specifically, [38] show that πO extends
to a bounded ∗-representation of C∗(GMrO). Since C∗(GMrO) is an ideal in
A(G), we can extend further πO to a bounded ∗-representation of A(G) acting
on the same Hilbert space. �

The above construction generalizes to give a large class of representations of
the algebras A(G) for groupoids G whose spaces of units are endowed with some
specific filtrations. Let us assume that Y0 ⊂ Y1 ⊂ . . . ⊂ Yn = M is an invariant
filtration, such that for each stratum Sk = Yk \Yk−1, the map r : Gx → Sk has
the same rank for all x ∈ Sk. When this is the case, we shall call M = ∪Sk a
regular invariant stratification. Then each Sk is invariant and foliated by the
orbits of G (whose leaves are the sets r(Gx), x ∈ S). In particular, each Sk is
an invariant open subset of Yk, and hence plays the role of O above for the
groupoid GYk .

Corollary 5 Let G be a differentiable groupoid with space of units M . As-
sume that M = ∪S is a regular, invariant stratification. Then any non-zero
transverse measure on a stratum S gives rise to a ∗-representation of A(G).

Proof: Any transverse measure on Sk gives rise to a representation of the
C∗-algebra A(GYk ), by the above theorem. Then use the restriction morphism
RYk : A(G)→ A(GYk ) to obtain the desired representations. �

In the following, we shall denote by ⊗min the minimal tensor product of C∗–
algebras, defined using the tensor product of Hilbert spaces, see [40]. We shall
use the following well-known result several times in the last section.

Proposition 2 If Gi, i = 0, 1, are two differential groupoids, then

C∗r (G0 × G1) ' C∗r (G0)⊗min C∗r (G1).

Proof: Let M0 and M1 be the space of units of G0 and G1, and define

Hi =
⊕

x∈Mi

L2((Gi)x)

[respectively, H = ⊕x∈M0×M1L
2((G0 × G1)x)] to be the space of the total reg-

ular representation of Ψ−∞(Gi) [respectively, of Ψ−∞(G0 × G1)]. Then the
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reduced C∗-algebras C∗r (Gi) [respectively, C∗r (G0 × G1)] are the completions of
Ψ−∞(Gi) [respectively, of Ψ−∞(G0×G1)] acting on Hi [respectively, on H]. Let
⊗ be the completed tensor product of Hilbert spaces. Since H ' H0⊗H1, the
isomorphism

C∗r (G0 × G1) ' C∗r (G0)⊗min C∗r (G1)

follows directly from the definition of the minimal C∗-algebra tensor product
of C∗r (G0) and C∗r (G1) as the completion of C∗r (G0)⊗C∗r (G1) acting on H0⊗H1.

�

5 Applications to index theory on singular spaces

We now discuss in greater detail two examples, the adiabatic limit groupoid
and the “b-Γ–groupoid.” The first example is relevant for the index theory on
singular manifolds, or open manifolds with a uniform structure at infinity; it
generalizes the construction of the tangent groupoid, that plays a key role in
index theory as showed in [4]. The second example is related to the theory of
elliptic (or Fredholm) boundary value problems.

Let X be a locally compact space and B be a Banach algebra. We shall
denote, as usual, by C0(X ;B) the space of continuous functions X → B that
vanish in norm at infinity. Also, recall that Ki(C0(R, B)) ' Ki−1(B) and
K0(C0(X)) ' K0(X).

If G is a continuous family groupoid with space of units M , then we construct
its adiabatic groupoid, denoted Gad, as follows. First, the space of units of Gad
is M × [0,∞).

The underlying set of the groupoid Gad is the disjoint union:

Gad = A(G)× {0} ∪ G × (0,∞).

We endow A(G)×{0} with the structure of a commutative bundle of Lie groups
and G × (0,∞) with the product (or pointwise) groupoid structure. Then
the groupoid operations of Gad are such that A(G) × {0} and G × (0,∞) are
subgroupoids with the induced structure.

Now let us endow this groupoid with a continuous family groupoid structure.
Let us consider an atlas (Ω).

Let Ω be a chart of G, such that Ω ∩ G(0) 6= ∅; one can assume without loss of
generality that Ω ' T × U with respect to d, and Ω ' T ′ × U with respect to
r; let us denote by φ and ψ these homeomorphisms. Thus, if x ∈ U , Gx ' T ,
and A(G)U ' Rk ×U . Let (Θx)x∈U (resp. (Θ′x)x∈U ) be a continuous family of
diffeomorphisms from Rk to T (resp. T ′) such that ι(x) = φ(Θx(0), x) (resp.
ι(x) = ψ(Θ′x(0), x), where ι denotes the inclusion of G(0) into G).
Then Ω = A(G)U × {0} ∪ Ω× (0,∞) is an open subset of Gad, homeomorphic
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to Rk × U × R+ with respect to d and to r as follows:

φ(ξ, u, α) =

{
(φ(Θu(αξ), u), α)
(ξ, u, 0)

if α 6= 0
if α = 0

ψ(ξ, u, α) =

{ (
(φ(Θu(αξ), u))

−1, α
)

(ξ, u, 0)
if α 6= 0
if α = 0

This defines an atlas of Gad, endowing it with a continuous family groupoid
structure.
The tangent groupoid of G is defined to be the restriction of Gad toM×[0, 1]. We
are interested in the adiabatic groupoid (or in the tangent groupoid) because
it may be used to formalize certain constructions in index theory, as we shall
show below.
First, note that

M × [0,∞) = M × {0} ∪M × (0,∞)

is an invariant stratification of the space of units. Consequently, Theorem 3
gives rise to the short exact sequence

0→ SC∗(G) := C0((0,∞), C∗(G)) → C∗(Gad)→ C0(A∗(G))→ 0.

The boundary map ∂ of the K-theory six term exact sequence associated to
the above exact sequence of C∗-algebras then provides us with a map

inda : Ki(A∗(G)) = Ki(C0(A∗(G))) ∂→ Ki+1(SC
∗(G)) ' Ki(C

∗(G)), (24)

the analytic index morphism, which we shall discuss below in relation with
the Fredholm index. Remark that this morphism does not necessarily take its
values in Z; however, in the case of the groupoid M ×M of a smooth manifold
M one has Ki(C

∗(M ×M) = Z.
We assume from now on, for simplicity, that M , the space of units of G, is
compact. Let P = (Px) ∈ Ψm,0(G;E0, E1) be a family of elliptic operators
acting on sections of r∗(E0), with values sections of r∗(E1), for some bundles
E0 and E1 on M . (Here “elliptic” means, as before, that the principal symbol
is invertible.) We shall denote the pull-backs of E0 and E1 to A∗(G) by the
same letters. Then the triple (E0, E1, σm(P )) defines an element [σm(P )] in
K0(A∗(G)), the K-theory groups with compact supports of A∗(G). Further-
more, the morphism inda provides us with an element inda([σm(P )]), which we
shall also write as inda(P ), and call the analytic index of the family P . As we
shall see below, this construction generalizes the usual analytic (or Fredholm)
index of elliptic operators.
Suppose now that M = ∪S is an invariant stratification of the space of units
of the continuous family groupoid G. Then we obtain a natural, invariant
stratification of the space of units of Gad as

M × [0,∞) =
⋃

S

(
S × (0,∞)

)
∪M × {0}.
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To recover the Fredholm index, we shall assume that there exists a unique
stratum of maximal dimension in the above stratification, let us call it Smax,
and let us assume that the restriction of G to Smax is the product groupoid:

GSmax := r−1(Smax) = d−1(Smax) ' Smax × Smax. (25)

Let K denote the algebra of compact operators on L2(Smax) ' L2(M). Then
Smax × (0,∞) is the unique stratum of maximal dimension of M × [0,∞),
and the ideal associated to it is SK := C0((0,∞),K). This leads to an exact
sequence of C∗-algebras

0→ SK → C∗(Gad)→ Q(Gad)→ 0, (26)

where Q(Gad) := C∗(Gad)/C0((0,∞),K).
As above, this exact sequence of C∗-algebras leads to a six term exact sequence
in K-theory, and hence to a map

indf : K0(Q(Gad)) ∂→ K1(SK) ' Z. (27)

(The second isomorphism is obtained from the boundary map associated to the
exact sequence

0→ SK → C0((0,∞],K)→ K → 0.)

Below we shall use the “graph projection” of a densely defined, unbounded
operator P , which we now define. Let τ be a smooth, even function on R
satisfying τ(x2)2x2 = e−x

2

(1− e−x2

). Then the graph projection of P is

B(P ) =

[
1− e−P∗P τ(P ∗P )P ∗

τ(PP ∗)P e−PP
∗

]
. (28)

This projection is also called the Bott or the Wasserman projection by some
authors. Also, let

e0 =

[
1 0
0 0

]
.

Denote by ρ : Q(Gad)→ C0(A∗(G)) the canonical projection, and let

ρ∗ : Ki(Q(Gad))→ Ki(C0(A∗(G)))
be the morphism induced on K-theory. For operators of positive order, we
shall consider Sobolev spaces on Smax, defined using the bounded geometry
metric on Smax obtained from a metric on A(G) (recall that we assume M to
be compact, and that Smax is smooth as it is a fiber of G). We then have the
following result.

Proposition 3 Let Smax and G be as above, GSmax ' Smax × Smax. Assume
that the regular representation πx : A(G) → L(L2(Gx)) ' L(L2(Smax)), asso-
ciated to some x ∈ Smax, is injective. If P ∈ Ψm,0(G;E0, E1) is a Fredholm
differential operator Hm(Smax) → L2(Smax), then it defines a canonical class
[P ] ∈ K0(Q(Gad)) such that ρ∗([P ]) = [σm(P )] and indf ([P ]) coincides with
the Fredholm index of P .
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Proof: We may assume that the family P consists of operators of order
m > 0. The Fredholmness of P implies that σm(P ) is invertible outside the
zero section, by Theorem 4.
Because P is a family of differential operator of order m, we can define a new
family Q ∈ Ψm,0(Gad) by

Q(x,t) = tmPx, if (x, t) ∈M × (0,∞),

and

Q(x,0) = σm(P ),

a polynomial function on A(G)∗x×{0} (the complete symbol of a homogeneous
differential operator on A(G)x).
Moreover, let C0((0,∞],K) be the space of all continuous functions (0,∞)→ K
vanishing for t→ 0 and having limits for t→∞. Also, let us denote by B the
algebra B := C∗(Gad) + C0((0,∞],K).
Consider now the graph projection B(Q). The algebra B can be identified with
a subalgebra of C0((0,∞],L(L2(Smax)), naturally. Then B(Q) identifies with
the function whose value at t > 0 is B(tmP ). Because of

lim
t→∞

B(tmP ) =

(
1− πN(P ) 0

0 πN(P∗)

)
,

where πN(P ) [respectively πN(P∗)] stands for the orthogonal projection onto the
kernel N(P ) [respectively the cokernel N(P ∗)], we have B(tmP )−e0 ∈MN(B),
thus, we obtain a class [B(tmP )] − [e0] ∈ K0(B). (The scalar matrix e0 was
defined shortly before the statement of this theorem.) Let us observe now that
the C∗-algebra B fits into the following commutative diagram with exact rows.

0 −→ C0((0,∞),K) −→ C∗(Gad) −→ Q(Gad) −→ 0yid
y

yid⊕ 0

0 −→ C0((0,∞),K) −→ B q−→ Q(Gad)⊕K −→ 0xid
x

x0⊕ id
0 −→ C0((0,∞),K) −→ C0((0,∞],K) −→ K −→ 0

We shall use this information in the following way. The two right vertical
morphisms identify K∗(q(B)) ∼= K∗(Q(Gad)) ⊕ K∗(K). We shall decompose
accordingly the elements in K∗(q(B)). Thus, there exists a uniquely defined
class [P ] ∈ K0(Q(Gad)) satisfying

q∗([B(tmP )]− [e0]) =

(
[P ],

[(
1− πN(P ) 0

0 πN(P∗)

)]
− [e0]

)

= ([P ],−[πN(P )] + [πN(P∗)]).
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The property ρ∗([P ]) = [σm(P )] is now an immediate consequence of the defi-
nitions.
Let now ∂ : K0(·) −→ K1(C0((0,∞),K)) ∼= K0(K) ∼= Z be the boundary maps
of the corresponding three cyclic 6-term exact sequences. Note that all the
previous isomorphisms are canonical, as explained above. Then we get

0 = ∂q∗([B(tmP )]− [e0]) = ∂[P ]+∂(−[πN(P )]+[πN(P∗)]) = indf ([P ])− ind(P ),

where ind(P ) is the Fredholm index. This completes the proof. �

We now briefly discuss a different example, that of elliptic operators on cover-
ings of manifolds with boundary and interpret in our framework the existence
of spectral sections considered in [14] and [24]. We need to remind first two
constructions, the first one is that of the “b-groupoid” associated to a mani-
fold with boundary and the second one is that of the groupoid associated to a
covering of a manifold without boundary.
Let M be a manifold with boundary with fundamental group Γ acting on M̃ .
We need to first recall the definition of the b-groupoid of M . For the simplicity
of the presentation, we shall assume that the boundary of M is connected. Not
all results extend to the case when ∂M is not connected. (We are indebted
to Severino Melo for this remark.) The b-groupoid GM,b is a submanifold of
the b-stretched product defined by Melrose [18, 19]. It consists of the disjoint
union of ∂M ×∂M ×R and (M r∂M)× (M r∂M), with groupoid operations
induced from the product groupoid structures on each component. Choose a
defining function f of the boundary of M . Then the topology on GM,b is such
that

(yn, zn)→ (y, z, t) ∈ ∂M × ∂M × R

if, and only if,
(yn, zn)→ (y, z)

in M ×M and
log f(yn)− log f(zn)→ t.

Second, recall that if π is a discrete group that acts freely on the space X , then
(X ×X)/π is naturally a groupoid with units X/π, such that the domain and
the range maps are the projections onto the first and, respectively, onto the
second variable. The composition is such that (x, y)π ◦ (y, z)π = (x, z)π.
We are now ready to define the b-Γ-groupoid associated to a covering

Γ→ M̃ →M

(with Γ the group of deck transformations) of a manifold with boundary M .
This groupoid will be denoted G

M̃,b. To form the groupoid G
M̃,b, we proceed

in a similar way, by combining the above two constructions. Consider first the
actions of Γ on M̃ \ ∂M̃ and on ∂M̃ to form the induced groupoids

G1 =
(
(M̃ \ ∂M̃)× (M̃ \ ∂M̃)

)
/Γ
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and
G2 =

(
∂M̃ × ∂M̃

)
/Γ.

Then we form the disjoint union

G
M̃,b

:= (G2 × R) ∪ G1,

to which we give the structure of a continuous family groupoid by requiring that
the projection G

M̃,b
→ GM,b is a local diffeomorphism. (Here GM,b is Melrose’s

b-groupoid, as above.)
Let T0 denote C∗(GI,b), if I is the manifold with boundary [0,∞). Then T0
is the closure of the algebra of Wiener-Hopf operators acting on [0,∞), and
hence its closure is isomorphic to the (non-unital) Toeplitz algebra, defined as
the kernel of the evaluation at 1 of the symbol map of a Toeplitz operator.
In other words, if T denotes the C∗-algebra of Toeplitz operators on the unit
circle, then we have an exact sequence

0→ T0 → T → C→ 0.

The structure of the C∗-algebra C∗(G
M̃,b

) is given by the isomorphism

C∗(G
M̃,b)

∼= T0 ⊗ C∗(Γ)⊗K
and similarly for the reduced algebras. Since the reduced Toeplitz algebra T0
is contractible, the K-groups of C∗(G

M̃,b
) vanish, and hence the map

p∗ : K∗(A(G
M̃,b

)) −→ K∗(A(G
M̃,b

)/C∗(G
M̃,b

)) ∼= K∗(C(S∗M)),

induced by the canonical projection p : A(G
M̃,b) −→ A(G

M̃,b)/C
∗(G

M̃,b), is an

isomorphism. On the other hand, let p1 : A(G
M̃,b

) −→ A(G
M̃,b

)/C∗(G1) and

q : A(G
M̃,b)/C

∗(G1) −→ A(G
M̃,b)/C

∗(G
M̃,b) be the obvious projection maps.

Then we have p = q ◦ p1, which gives the surjectivity of the induced map

q∗ : K∗(A(G
M̃ ,b

)/C∗(G1)) −→ K∗(A(G
M̃,b

)/C∗(G
M̃ ,b

)) ∼= K∗(C(S∗M)) .

(Here it is essential to assume that ∂M is connected.)
Consequently, any elliptic operator P ∈MN (Ψm,0(G

M̃ ,b)) (which identifies with
a Γ-invariant b-pseudodifferential operator acting on a trivial vector bundle on
M̃) has a perturbation by an element in MN (Ψ−∞,0(G

M̃,b)) to an operator in

MN (Ψm,0(G
M̃ ,b)) that has an invertible boundary indicial map. (This is proved

as the corresponding statement in [31].) Consequently, this perturbation is
C∗(Γ)-Fredholm, in the sense of Mishenko and Fomenko, [25]. The existence
of this kind of perturbations was obtained before in [14] using the concept
of spectral section. A completely similar argument can be used in the study
of elliptic boundary value problems for families of elliptic operators to prove
that every family of elliptic b-pseudodifferential operators on a manifold with
boundary has a perturbation by a family of regularizing operators that makes
this family a family of Fredholm operators. This result was obtained in [24]
also using spectral sections.
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[8] L. Hörmander, The analysis of linear partial differential operators, vol. 3,
Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.

[9] R. Lauter. On the existence and structure of Ψ∗-algebras of totally char-
acteristic operators on compact manifolds with boundary. J. Functional
Analysis, 169:81–120, 1999.

[10] R. Lauter. The length of C∗-algebras of b-pseudodifferential operators.
Proc. of the Amer. Math. Soc., 128:1955–1961, 2000.

[11] R. Lauter and S. Moroianu. Fredholm theory for degenerate pseudodif-
ferential operators on manifolds with fibered boundaries. to appear in:
Comm. Partial Differential Equations.

[12] R. Lauter and V. Nistor. Pseudodifferential analysis on groupoids and
singular spaces. Preprint Nr. 12/99, Fachbereich Mathematik, Johannes
Gutenberg-Universität Mainz, June 1999.

[13] R. Lauter and V. Nistor. Analysis of geometric operators on open man-
ifolds: a groupoid approach. Heft 108, Universität Münster, SFB 478
Geometrische Strukturen in der Mathematik, May 2000. to appear in:
Quantization of Singular Symplectic Quotients, Edts. N. P. Landsman,
M. Pflaum, M. Schlichtenmaier, Birkhäuser, Basel.
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[27] B. Monthubert. Pseudodifferential calculus on manifolds with corners and
groupoids, Proc. Amer. Math. Soc. 127,10 (1999), pages 2871–2881.

[28] B. Monthubert and F. Pierrot. Indice analytique et groupöıdes de Lie. C.
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Abstract. Using the standard duality we construct a linear embedding
of an associated module for a pair of ideals in an extension of a Dedekind
ring into a tensor square of its fraction field. Using this map we investi-
gate properties of the coefficient-wise multiplication on associated orders
and modules of ideals. This technique allows to study the question of de-
termining when the ring of integers is free over its associated order. We
answer this question for an Abelian totally wildly ramified p-extension
of complete discrete valuation fields whose different is generated by an
element of the base field. We also determine when the ring of integers is
free over a Hopf order as a Galois module.
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Introduction

0.1. Additive Galois modules and especially the ring of integers of local fields
are considered from different viewpoints. Starting from H. Leopoldt [L] the
ring of integers is studied as a module over its associated order. To be precise,
if K is an extension of a local field k with Galois group being equal to G
and OK is the ring of integers of K, then OK is considered as a module over
AK/k(OK) = {λ ∈ k[G], λOK ⊂ OK}.
One of the main questions is to determine when OK is free as an AK/k(OK)-
module. Another related problem is to describe explicitly the ring AK/k(OK)
(cf. [Fr], [Chi], [CM]).
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This question was actively studied by F. Bertrandias and M.-J. Ferton (cf. [Be],
[B-F], [F1-2]) and more recently by M. J. Taylor, N. Byott and G. Lettl (cf.
[T1], [By], [Le1]).

In particular, G. Lettl proved that if K/Qp is Abelian and k ⊂ K, then OK ≈
AK/k(OK) (cf. [Le1]). The proof was based on the fact that all Abelian
extensions of Qp are cyclotomic. So the methods of that paper and of most of
preceding ones are scarcely applicable in more general situations.

M. J. Taylor [T1] considers intermediate extensions in the tower of Lubin-Tate
extensions. He proves that for some of these extensions OK is a free AK/k(OK)-
module. Taylor considers a formal Lubin-Tate group F (X,Y ) over the ring of
integers o of a local field k. Let π be a prime element of the field k and Tm
be equal to Ker[πm] in the algebraic closure of the field k. For 1 ≤ r ≤ m, let
L be equal to k(Tm+r), and let K be equal to k(Tm), . Lastly, let q be the
cardinality of the residue field of k.

Taylor proves that

(1) the ring OL is a free AL/K(OL)-module and any element of L whose valu-
ation is equal to qr − 1 generates it, and

(2) AL/K(OL) = OK +
∑qr−2
i=0 OKσi, where σi ∈ K[G] and are described

explicitly (cf. the details in [T1], subsection 1.4).

This result was generalized to relative formal Lubin-Tate groups in the papers
[Ch] and [Im]. Results of these papers were proved by direct computation. So
these works do not show how one can obtain a converse result, i.e., how to
find all extensions, that fulfill some conditions on the Galois structure of the
ring of integers. To the best of author’s knowledge the only result obtained
in this direction was proved in [By1] and refers only to cyclotomic Lubin-Tate
extensions.

0.2. In the examples mentioned above the associated order is also a Hopf order
in the group algebra (i.e., it is an order stable under comultiplication). Sev-
eral authors are interested in this situation. The extra structure allows to deal
with wild extensions as if they were tame (in some sense). This is why in this
situation, following Childs, one speaks of “taming wild extensions by Hopf or-
ders”. In the paper [By1], Byott proves that the associated order can be a Hopf
order only in the case when the different of the extension is generated by an
element of the smaller field. The present paper is also dedicated to extensions
of this sort. More precisely, Theorem 4.4 of the paper [By1] implies that the
order AK/k(OK) can be a Hopf order (in the case when the ring OK is o[G]-
indecomposable) only if K/k fulfills the stated condition on the different and
OK is free over AK/k(OK). Our main Theorem settles completely the question
to determine when the order AK/k(OK) is a Hopf order. It also describes com-
pletely Hopf orders that can be obtained as associated Galois orders. We shall
also prove in subsection 3.4 that under the present assumptions if OK is free
over AK/k(OK), then AK/k(OK) is a Hopf order and determine when the in-
verse different of an Abelian totally ramified p-extension of a complete discrete
valuation field is free over its associated order (cf. [By1] Theorem 3.10).
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In the first section we study a more general situation. We consider a Galois
extension K/k of fraction fields of Dedekind rings, with Galois group G. We
prove a formula for the module

CK/k(I1, I2) = Homo(I1, I2) ,

where I1, I2 are fractional ideals of K (this set also can be defined for ideals
that are not G-stable) in Theorem 1.3.1. We introduce two submodules of
CK/k(I1, I2):

AK/k(I1, I2) = {f ∈ k[G]|f(I1) ⊂ I2}
BK/k(I1, I2) = Homo[G](I1, I2), .

These modules coincide in the case whenK/k is Abelian (cf. Proposition 1.4.2).
We call these modules the associated modules for the pair I1, I2. In case I1 = I2
we call the associated module associated order.
In subsection 1.5 we define a multiplication on the modules of the type
CK/k(I1, I2) and show the product of two such modules lies in some third one.
We have also used this multiplication in the study of the decomposability
of ideals in extensions of complete discrete valuation fields with inseparable
residue field extension (cf. [BV]).
Starting from the second section we consider totally wildly ramified extensions
of complete discrete valuation fields with residue field of characteristic p with
the restriction on the different:

DK/k = (δ), δ ∈ k (∗).

This second section is dedicated to the study of conditions ensuring that the
ring of integers OK is free over its associated order AK/k(OK) or BK/k(OK).
Let n = [K : k].
We prove the following statement.

Proposition. If in the associated order AK/k(OK) (BK/k(OK) resp.) there
is an element ξ which maps some (and so, any) element a ∈ OK with valuation
equal to n − 1 onto a prime element of the ring OK, then OK ≈ AK/k (resp.
BK/k) and besides that AK/k (resp. BK/k) has a “power” base (in the sense of

multiplication
∆∗, cf. the second section), which is constructed explicitly using

the element ξ.

The converse to this statement is also proved in the case when AK/k(OK) (resp.
BK/k(OK)) is indecomposable (cf. the Theorems 2.4.1, 2.4.2). An important
part of our reasoning is due to Byott (cf. [By1]).

0.3. The third, fourth and fifth sections are dedicated to proving a more ex-
plicit form of the condition of the second section for the Abelian case. The main
result of the paper is the following one. We will call an Abelian p-extension of
complete discrete valuation fields of characteristic 0 almost maximally ramified
if its degree divides the different.
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Theorem A. Let K/k be an Abelian totally ramified p-extension of p-adic
fields, which in case chark = 0 is not almost maximally ramified, and suppose
that the different of the extension is generated by an element in the base field
(see (*)). Then the following conditions are equivalent:
1. The extension K/k is Kummer for a formal group F , that there exists
a formal group F over the ring of integers o of the field k, a finite torsion
subgroup T of the formal module F (Mo) and a prime element π0 of k such that
K = k(x), where x is a root of the equation P (X) = π0, where

P (X) =
∏

t∈T
(X −

F
t) .

2. The ring OK is isomorphic to the associated order AK/k(OK) as an o[G]-
module.

Remark 0.3.1. Besides proving Theorem A we will also construct the element
ξ explicitly and so describe AK/k(OK) (cf. the theorems of §2).

Remark 0.3.2. IF k is of characteristic 0 the fact that OK is indecomposable as
an o[G]-module if and only if K/k is not almost maximally ramified, was proved
in [BVZ]. The case of almost maximally ramified extensions is well understood
(cf., for example, [Be]). It is obvious, that in the case char k = p the ring OK

is indecomposable as an o[G]-module, because in this case the algebra k[G] is
indecomposable.

Remark 0.3.3. In the paper [CM] rings of integers in Kummer extensions for
formal groups are also studied as modules over their associated orders. In that
paper Kummer extensions are defined with the use of homomorphisms of formal
groups. For extensions obtained in this way freeness of the ring of integers over
its associated orders is proved. Childs and Moss also use some tensor product
to prove their results. Yet their methods seem to be inapplicable for proving
inverse results.
Our notion of a Kummer extension for a formal group is essentially equivalent
to the one in [CM]. We however only use one formal group and do not impose
finiteness restriction on its height.
Besides we consider also the equal characteristic case i.e., chark = char k = p.
Using the methods presented here one can prove that we can actually take the
formal group F in Theorem A of finite height. Yet such a restriction does not
seem to be natural.

Remark 0.3.4. Theorem A shows which Hopf orders can be associated to Galois
orders for some Abelian extensions. The papers of mathematicians that “tame
wild extensions by Hopf orders” do not show that their authors know or guess
that such an assertion is valid.
In the third section we study the fields that are Kummer in the sense of part
1 of Theorem A and deduce 2 from 1. In the fourth section we prove that we
can suppose the coefficient b1 in ξ = δ−1

∑
bσσ to be equal to 0. Further, if
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b1 is equal to 0, then we show that there exists a formal group F over o, such
that for σ ∈ G the bσ, form a torsion subgroup in the formal module F (Mo),
i.e.,

bσ +
F
bτ = bστ .

In the fifth section we prove that if bσ +
F
bτ is indeed equal to bστ , then K/k is

Kummer for the group F .

0.4. This paper is the first in a series of papers devoted to associated orders
and associated modules. The technique introduced in this paper (especially
the map φ and the multiplication ∗ defined below) turns out to be very useful
in studying The Galois structure of ideals. It allows the author to prove in
another paper some results about freeness of ideals over their associated orders
in extensions that do not fulfill the condition on the different (*). In particular,
using Kummer extensions for formal groups we construct a wide variety of
extensions in which some ideals are free over their associated orders. These
examples are completely new. We also calculate explicitly the Galois structure
of all ideals in such extensions. Such a result is very rare. In a large number
of cases the necessary and sufficient condition for an ideal to be free over its
associated order is found.
The author is deeply grateful to professor S. V. Vostokov for his help and
advice.
The work paper is supported by the Russian Fundamental Research Foundation
N 01-00-000140.

§1 General results

Let
o be a Dedekind ring,
k be the fraction field of the ring o,
K/k be a Galois extension with Galois group equal to G,
D = DK/k be the different of the extension K/k,
n = [K : k],
tr be the trace operator in K/k.
We also define some associated modules.
For I1 and I2 G-stable ideals in K put
BK/k(I1, I2) = Homo[G](I1, I2). For I1, I2 not being G-stable one can define

BK/k(I1, I2) = {f ∈ Homo[G](K,K), f(I1) ⊂ I2}.

For arbitrary I1, I2 ⊂ K we define
AK/k(I1, I2) = {f ∈ k[G]|f(I1) ⊂ I2},
CK/k(I1, I2) = Homo(I1, I2).
Obviously, any o-linear map from I1 into I2 can be extended to a k-linear
homomorphism from K into K. The dimension of Homk(K,K) over k is equal
to n2. Now we consider the group algebra K[G]. This algebra acts on K and
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the statement in (Bourbaki, algebra, §7, no. 5) implies that a non-zero element
of K[G] corresponds to a non-zero map from K into K. Besides the dimension
of K[G] over k is also equal to n2. It follows that any element of Homk(K,K)
can be expressed uniquely as an element of K[G]. So we reckon CK/k(I1, I2)
being embedded in K[G].

1.1. We consider the G-Galois algebraK ⊗k K. It is easily seen that the tensor
product K ⊗k K is isomorphic to a direct sum of n copies of K as a k-algebra.
Being more precise, let Kσ, σ ∈ G denote a field, isomorphic to K.

Lemma 1.1.1. There is an isomorphism of K-algebras

ψ : K ⊗k K →
∑

σ∈G
Kσ,

where ψ =
∑

σ ψσ and ψσ is the projection on the coordinate σ, defined by the
equality

ψσ(x⊗ y) = xσ(y) ∈ Kσ .

The proof is quite easy, you can find it, for example, in ”Algebra” of Bourbaki.
Also see 1.2 below.
Now we construct a map φ from the G-Galois algebra K ⊗k K into the group
algebra K[G]:

(1)

φ : K ⊗k K → K[G]

α =
∑

i

xi ⊗ yi → φ(α) =
∑

i

xi

(∑

σ∈G
σ(yi)σ

)
.

It is clear that φ(α) as a function acts on K as follows:

(2) φ(α)(z) =
∑

i

xitr(yiz), z ∈ K.

Besides that, the map φ may be expressed through ψσ in the form

(3) φ(α) =
∑

σ

ψσ(α)σ, α ∈ K ⊗k K.

Proposition 1.1.2. The map φ is an isomorphism of k-vector spaces between
K ⊗k K and K[G].

Cf. the sketch of the proof in Remark 1.2 below.

1.2 Pairings on K ⊗k K and K[G].
There is a natural isomorphism of the k-space K and its dual space of k-
functionals:

K → K̂

a→ fa(b) = tr(ab).
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We define a pairing 〈, 〉⊗ on K ⊗k K, that takes its values in k:

(K ⊗k K)× (K ⊗k K)→ k

〈a⊗ b, c⊗ d〉⊗ → (fa ⊗ fc)(b⊗ d) = (tr ac)(tr bd).

This pairing is correctly defined and is non-degenerate. The second fact is
easily proved with the use of dual bases.
We also define a pairing on K[G] that takes its values in k:

K[G]×K[G]→ k

α =
∑

σ

aσσ, β =
∑

σ

bσσ →
∑

σ

tr aσbσ = 〈α, β〉K[G].

The pairing 〈, 〉K[G] is also non-degenerate because it is a direct sum of n =
[K : k] non-degenerate pairings

K ×K → k

(a, b)→ tr ab.

We check that for any two x, y the following equality is fulfilled:

(4) 〈x, y〉⊗ = 〈φ(x), φ(y)〉K[G].

Indeed, it follows from linearity that it is sufficient to prove that for x =
a⊗ b, y = c⊗ d. In that case we have

〈a⊗ b, c⊗ d〉⊗ = tr ac tr bd,

and besides that

〈φ(a ⊗ b), φ(c⊗ d)〉K[G]

= 〈a
∑

σ

σ(b)σ, c
∑

σ

σ(d)σ〉K[G]

=
∑

σ

tr(acσ(bd)) =
∑

σ

∑

τ

τ(acσ(bd))

=
∑

τ

∑

σ

τ(ac)τσ(bd) = trac tr bd.

and the equality (4) is proved.

Remark 1.2. It follows from (4) that the map φ from (1) is an injection. Indeed,
let φ(α) be equal to 0 for α ∈ K ⊗k K, then 〈φ(α), φ(β)〉K[G] = 0 for any
b ∈ K ⊗k K. So, according to (4), 〈α, β〉⊗ = 0 for any β ∈ K ⊗k K. From
the non-degeneracy of the pairing 〈, 〉⊗ it follows that α = 0. That implies
Ker(φ) = 0.
Using the equality of dimensions we can deduce that φ is an isomorphism.
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1.3 Modules of homomorphisms for a pair of ideals.
Let I1, I2 be fractional ideals of the field K.

Theorem 1.3.1. Let φ be the bijection from (1) and let I∗1 = D−1I−1
1 (this is

dual of I1 for the bilinear trace form on K). For the associated modules the
following equality holds:

CK/k(I1, I2) = φ(I2 ⊗o I
∗
1 ) .

Proof. First we show that φ(I2 ⊗o I
∗
1 ) ⊂ CK/k(I1, I2). If x ∈ I2, y ∈ I∗1 , then

for any z ∈ I1 we have, according to the definition (2):

φ(x ⊗ y)(z) = x tr(yz) ∈ I2,

since x ∈ I2 and tr(yz) ∈ o, which follows from the definition of I∗1 and of the
different D.
Conversely, let f ∈ CK/k(I1, I2). We define a map θf and show that it is sent
onto f by φ. Let:

(5)
θf : I∗2 ⊗o I1 → o

x⊗ y → tr(xf(y)).

This map is correctly defined since x ∈ I∗2 = D−1I−1
2 and f(y) ∈ I2, thus

tr(xf(y)) ∈ o.

For a o-module M we denote by M̂ the module of o-linear functions from M
into o. It is clear that

(6) θf ∈ ̂(I∗2 ⊗o I1).

We identify the ideal I2 with the o-module Î∗2 via:

I2 → Î∗2

a→ fa =
∑

σ∈G
σ(a)σ.

Obviously fa(z) = tr(az) for any z ∈ Î2.
In a completely analogous way we identify I∗1 with Î∗1
Using these identifications and the fact that I1 and I∗2 are projective o-modules
we obtain an isomorphism

(7)
I2 ⊗o I

∗
1 → ̂(I∗2 ⊗o I1)

a⊗ b→ ha,b,
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where ha,b(x⊗ y) = 〈a⊗ b, x⊗ y〉⊗ = (tr ax)(tr by) for all x in I∗2 and y in I1.

The map θf in (5) lies in ̂(I∗2 ⊗o I1) (cf. (6)), and so, according to the isomor-
phism (7), it corresponds to an element αf in I2 ⊗o I

∗
1 , i.e.,

αf =
∑

i

ai ⊗ bi, ai ∈ I2, bi ∈ I∗1 .

Then (7) implies that the functional hαf , that corresponds to the element αf ,
is defined in the following way:

hαf (x ⊗ y) = 〈αf , x⊗ y〉⊗ =
∑

i

tr aix tr biy.

On the other hand, from the definition of θf (cf. (5)) we obtain:

hαf (x⊗ y) = θf (x⊗ y) = tr(xf(y)).

It follows that f(y) =
∑

i ai tr(biy). So we have

f = φ(
∑

ai ⊗ bi),

and for any f in CK/k(I1, I2) we have found its preimage in I2 ⊗ I∗1 , i.e.,

CK/k(I1, I2) ⊂ φ(I2 ⊗o I
∗
1 ).

The theorem is proved. �

Remark 1.3.2. In the same way as above we can prove, that if we replace the
ideals I1, I2 by two arbitrary free o-submodules X and Y of K of dimension
n, then we will obtain the following formula:

CK/k(X,Y ) = φ(Y ⊗ X̂),

where X̂ is the dual module to X in K with respect to the pairing K×K → k
defined by the trace tr.

Remark 1.3.3. All elements in CK/k(I1, I2), AK/k(I1, I2), BK/k(I1, I2) have
unique extensions to k-linear maps from K to K. To be more precise, if f :
I1 → I2 is an o-homomorphism, then for all x ∈ K we can assume f(x) = αf(a)
if x = αa, α ∈ k, a ∈ I1. It is easily seen that the map we obtained in this way
is a correctly defined k-linear homomorphism from K into K.
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1.4. Now we compare the modules A and B.

Proposition 1.4.

(8) AK/k(I1, I2) = BK/k(I1, I2)

if and only if K/k is an Abelian extension.

Proof. 1. Let K/k be an Abelian extension. To verify the equality (8) in this
case, let first f belong to AK/k(I1, I2), then f is an o-homomorphism from I1
into I2. Besides that, f commutes with all elements of G since G is an Abelian
group, i.e., σf(a) = f(σ(a)) for all σ ∈ G and a ∈ I1. So we obtain that f is
an o[G]-homomorphism from I1 into I2, thus f ∈ BK/k(I1, I2).
For the reverse inclusion, let f belong to BK/k(I1, I2). Then f induces an
o[G]-homomorphism from K into K. We take an element x that generates a
normal base of the field K over k. Then there exists an element g ∈ k[G] such
that f(x) = g(x), to be more precise, if f(x) =

∑
σ aσσ(x), aσ ∈ k then we

take g =
∑
aσσ. We consider the o[G]-homomorphism g from K into K. Since

G is an Abelian group, f(σ(x)) = σ(f(x)) = σ(g(x)) = g(σ(x)) for any σ ∈ G.
We obtain that k-homomorphisms f and g coincide on the basic elements and
so f = g ∈ k[G] and f(I1) ⊂ I2, i.e., f ∈ AK/k(I1, I2).
2. Now we suppose that AK/k(I1, I2) = BK/k(I1, I2) and check that K/k is an
Abelian extension. Indeed, since kAK/k(I1, I2) = k[G], AK/k(I1, I2) contains
elements of the form aσ, where a ∈ k∗, for any σ ∈ G. It follows from our
assumption that aσ ∈ BK/k(I1, I2), and so aσ is an o[G]-homomorphism. We
obtain that G commutes with all elements σ ∈ G. Proposition is proved. �

Proposition 1.5. If we assume the action of G on K ⊗k K to be diagonal,
then

BK/k(I1, I2) = φ((I2 ⊗o I∗1 )G) .

Proof. Let α belong to (I2 ⊗o I
∗
1 )G. We have to show that φ(a) is an o[G]-

homomorphism from I1 into I2. This means that

σφ(a)(z) = φ(a)(σ(z))

for all z ∈ I1. Let α be equal to
∑
ai ⊗ bi, ai ∈ I2, bi ∈ I∗1 . Then from the

definition of φ (cf. (2)) it follows that

φ(a)(σ(z)) =
∑

i

ai tr(biσ(z))

=
∑

i

ai tr(σ
−1(bi)σ(z)) = φ

(∑

i

ai ⊗ σ−1(bi)

)
(z).

On the other hand,

σφ(a)(z) = σ
(∑

ai tr(biz)
)

=
∑

(σ(ai) tr(biz)) = φ
(∑

σ(ai)⊗ bi
)

(z).
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From the G-invariance of the element α it follows that

φ
(∑

ai ⊗ σ−1(bi)
)

= φ
(∑

σ(ai)⊗ σ(σ−1(bi))
)

= φ
(∑

σ(ai)⊗ bi
)
.

Thus φ(α)(σ(z)) = σφ(α)(z) for any σ ∈ G, i.e., φ(α) ∈ BK/k(I1, I2).

Conversely, let f belong to BK/k(I1, I2), then f ∈ CK/k(I1, I2) and so, ac-
cording to Theorem 1.3.1, there is an α ∈ I2 ⊗ I∗1 , such that f = φ(α). It
remains to check that α is G-invariant. We use the fact that f is an G-
homomorphism, i.e., σf(z) = f(σz) for all σ ∈ G and z ∈ I1. We obtain
an equality σφ(α)(z) = φ(α)(σz). By writing the left and the right side of the
equality as above we obtain for α =

∑
ai ⊗ bi:

σφ(α)(z) = φ
(∑

σai ⊗ σ(σ−1bi)
)

(z)

φ(α)(σz) = φ
(∑

ai ⊗ σ−1bi

)
(z).

It follows that

φ
(∑

σai ⊗ σ(σ−1bi)
)

= φ
(∑

ai ⊗ σ−1bi

)
.

Now using the fact that φ is a bijection we obtain

∑
σai ⊗ σ(σ−1bi) =

∑
ai ⊗ σ−1bi.

We apply to both sides of the equality the map

1⊗ σ : K ⊗k K → K ⊗k K
a⊗ b→ a⊗ σ(b)

,

that obviously is an homomorphism. We have

∑
σai ⊗ σbi =

∑
ai ⊗ bi,

i.e., σ(α) = α. �

1.6 The multiplication ∗ on K[G].

On the algebraK ⊗k K there is a natural multiplication: (a⊗b)·(c⊗d) = ac⊗bd.
Using it and the bijection φ we define a multiplication on K[G]. To be more
precise, if f, g ∈ K[G], then we define

f ∗ g = φ(φ−1(f) · φ−1(g)) ∈ K[G]. (9)
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Proposition 1.6.1. If f =
∑
σ aσσ and g =

∑
σ bσσ, then

f ∗ g =
∑

σ

aσbσσ.

Proof. Let f be equal to φ(α), g be equal to φ(β), where α, β ∈ K ⊗k K. If
α =

∑
xi⊗yi, β =

∑
uj ⊗ vj , then from the definition of φ (cf. (1)) we obtain

φ(α) =
∑

xi
∑

σ

σyiσ, φ(β) =
∑

uj
∑

σ

σvjσ.

It follows that ∑

σ

aσbσσ =
∑

i,j

xiujσ(yivj)σ.

On the other hand,

f ∗ g = φ(αβ) = φ


∑

i,j

(xiui ⊗ yivj)


 =

∑

i,j

xiujσ(yivj)σ

and we obtain the proof of Proposition. �

Remark 1.6.2. The formula from Proposition 1.6.1 will be used further as an
another definition of the multiplication ∗.

1.7 Multiplication on associated modules.

Now we consider the multiplication (9) on the different associated modules.
Here we will see appearing the different which we will suppose to be induced
from the base field in the following sections.

Proposition 1.7.1. Let f belong to CK/k(I1, I2), and let g belong to
CK/k(I3, I4). Then

f ∗ g ∈ CK/k(I1I3D, I2I4).

Proof. It is clear that φ−1(f) and φ−1(g) belong to I2 ⊗o I∗1 and I4 ⊗ I∗3 re-
spectively. So we obtain that φ−1(f)φ−1(g) lies in the product

(I2 ⊗o I∗1 )(I4 ⊗o I3∗) = I2I4 ⊗o (I∗1 I
∗
3 )

= I2I4 ⊗o D−2I−1
1 I−1

3 = I2I4 ⊗o (DI1I3)
∗.

So from the Theorem 1.3.1 it follows that f∗g belongs to CK/k(I1I3D, I2I4). �

Now we study the multiplication ∗ on the modules BK/k .
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Proposition 1.7.2. Let f belong to BK/k(I1, I2) and let g belong to
BK/k(I3, I4), then

f ∗ g ∈ BK/k(I1I3D, I2I4).

Proof. Since BK/k(I, J) is a submodule in CK/k(I, J), from Proposition 1.7 it
follows that f ∗ g ∈ CK/k(I1I3D, I2I4). From Proposition 1.5 we deduce that

f and g belong to phi(K ⊗k KG), g ∈ φ(K ⊗k KG). So f ∗ g ∈ φ(K ⊗k KG),
and this implies that

f ∗ g ∈ CK/k(I1I3D, I2I4) ∩ φ(K ⊗k KG) = BK/k(I1I3D, I2I4).

�

Proposition 1.7.3. Let f belong to AK/k(I1, I2) and LET g belong to
AK/k(I3, I4), then

f ∗ g ∈ AK/k(I1I3D, I2I4).

Proof. From Proposition 1.7 it follows that

f ∗ g ∈ CK/k(I1I3D, I2I4) (10)

since AK/k(I1, I2) and AK/k(I3, I4) are submodules OF CK/k(I1, I2) and
CK/k(I3, I4) respectively.

From the definition of AK/k it follows that f and g belong to k[G]. So the
coefficients of f and g lie in k, and from Proposition 1.6.1 it follows that f ∗ g
also belongs to k[G]. Then (10) implies that

f ∗ g ∈ CK/k(I1I3D, I2I4) ∩ k[G] = AK/k(I1I3D, I2I4),

and thus the proposition is proved. �

§2 Isomorphism of rings of integers of totally
wildly ramified extensions of complete discrete
valuation fields with their associated orders.

2.1. Let K/k be a totally wildly ramified Galois extension of a complete dis-
crete valuation field with residue field of characteristic p. Let D be the different
of the extension and let OK be the ring of integers of the field K. From this
moment and up to the end of the paper we will suppose the condition (*) of
the introduction to be fulfilled, i.e., that D = (δ), with δ ∈ k. We will write
AK/k(OK), BK/k(OK) instead of AK/k(OK ,OK), BK/k(OK ,OK).

We denote prime elements of the fields k and K by π0 and π respectively, and
their maximal ideals by Mo and M.
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Proposition 2.1. The modules CK/k(OK), AK/k(OK), BK/k(OK) are o-
algebras with a unit with respect to the multiplication

f
∆∗g = δf ∗ g = δ−1φ(φ−1(δf)φ−1(δg))

(cf. (9)). The unit is given by δ−1tr.

The motivation for the above definition is given by Theorem 2.4.1 below.

Proof. Let f and g belong to CK/k(OK), then according to Proposition 1.7,

the product f ∗ g maps the different D into the ring OK . It follows that f
∆∗g

maps D into D, and so it also maps o into itself since D = δOK . We obtain

that
∆∗ defines a multiplication on the each of the modules associated to OK .

Now we consider the element δ−1 tr and prove that it is the unit for the multi-

plication
∆∗ in each of these modules. It is clear that δ−1 tr maps OK into itself

and that δ−1 tr belongs to k[G], so δ−1 tr belongs to AK/k(OK). Besides that,

δ−1 tr commutes with all elements of G and so δ−1 tr lies in BK/k(OK).
Let now f belong to K[G], then

f =
∑

σ

aσσ, aσ ∈ K, δ−1 tr =
∑

σ

δ−1σ.

So, according to proposition 1.6.1,

f ∗ (δ−1 tr) =
∑

σ

δ−1aσσ

and we obtain

f
∆∗(δ−1 tr) =

∑
aσ = f.

Since AK/k(OK),BK/k(OK) are o-submodules in CK/k(OK), δ−1 tr ∈
AK/k(OK), BK/k(OK), δ−1 tr is also an identity in AK/k(OK), BK/k(OK)

with respect to the multiplication
∆∗.

2.2. Let as before n be equal to [K : k].

Lemma 2.2.1. Let x be an element of the ring OK whose valuation equals
n− 1, i.e., vK(x) = n− 1. Then

vk(trx) = vk(δ) .

In particular, there is an element a in OK with vK(a) = n − 1 and such that
tr a = δ.

Proof. Let M and Mo be the maximal ideals of K and k respectively. From the
definition of the different and surjectivity of the trace operator it follows that
tr(M−1D−1) = M−1

o . Moreover any element of M−1D−1, that does not belong
to D−1, has a non-integral trace. So the trace of the element z = π−1

0 δ−1x is
equal to

tr z = π−1
0 δ−1 trx = π−1

0 ε, ε ∈ o∗.

Thus trx = εδ. Further, if we multiply the element x by ε−1 ∈ o∗, then we get
the element a. �
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Lemma 2.2.2. In the ring OK we can choose a basis a0, a1, . . . , an−2, a, where
a is as in Lemma 2.2.1, and the ai for 0 ≤ i ≤ n− 2 are such that vK(ai) = i,
and satisfy tr ai = 0.

Proof. The kernel Ker tr(OK) has o-rank equal to n−1. Let x0, . . . , xn−2 be an
o-basis of Ker tr(OK). Along with the element a they form a o-base of the ring
OK . By elementary operations in Ker tr(OK) we can get from x0, . . . , xn−2

a set of elements with pairwise different valuations. Their valuations have to
be less than n − 1. Indeed, otherwise by subtracting from the element x0 of
valuation n− 1 an element a of the same valuation multiplied by a coefficient
in o∗ we can obtain an element of Mn, which is impossible. �

2.3. Let a be an element of OK with valuation equal to n−1, where n = [K : k],
and let

tra = δ, (12)

where δ is a generator of the different DK/k (cf. Lemma 2.2.1).

Proposition 2.3.1. 1. The module AK/k(OK)(a) mod Mn is a subring with
an identity in OK mod Mn (with standard multiplication).

2. The multiplication
∆∗ in AK/k(OK) (cf. (11)) induces the standard multipli-

cation in the ring AK/k(OK)(a) mod Mn, i.e.,

f
∆∗g(a) ≡ f(a)g(a) mod Mn.

Proof. Let f and g belong to AK/k(OK). Then the preimages φ−1(δf), φ−1(δg)
with respect to the bijection φ belong to OK ⊗o OK , since

D⊗o D−1 = δOK ⊗o δ−1OK = OK ⊗o OK .

We prove that

φ−1(δa) = x⊗ 1 + y, (13)

where x ∈ OK and y ∈ OK ⊗M.
Indeed, φ−1(δa) =

∑
ai ⊗ bi. If bi ∈ M, then ai ⊗ bi ∈ OK ⊗M, otherwise

bi = ci+di, where ci ∈ o, di ∈M and so ai⊗bi = ai⊗ci+ai⊗di = cixi⊗1+yi,
where cixi ∈ OK , since ci ∈ o and yi ∈ OK ⊗M. So (13) follows.
Similarly

φ−1(δg) = x′ ⊗ 1 + y′, (14)

where x′ ∈ OK , y′ ∈ OK ⊗M.
Thus

φ−1(δf)φ−1(δg) = (x⊗ 1 + y)(x′ ⊗ 1 + y′)

= xx′ ⊗ 1 + y((x′ ⊗ 1) + y′) + (x⊗ 1)y′

= xx′ ⊗ 1 + z, where z ∈ OK ⊗M.

(15)
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We consider the action of the element f ∈ AK/k(OK) on the element a with

valuation equal to n − 1. From (13) we obtain f = δ−1φ(x ⊗ 1 + y), where
x ∈ OK , y ∈ OK ⊗M. Then from the definition of the map φ we have:

f(a) = δ−1φ(x ⊗ 1 + y)(a)

= δ−1(φ(x ⊗ 1)(a) + φ(y)(a))

= δ−1x tr a+ δ−1φ(y)(a).

We show that δ−1φ(y)(a) ∈Mn,
i.e.,

f(a) = δ−1x tr a+ z, where z ∈Mn. (16)

Indeed, let y be equal to
∑
ai ⊗ bi, then from the definition of φ we deduce

that
φ(y)(a) =

∑
ai tr(bia).

Moreover tr bia ∈ DMo, thus δ−1ai tr(bia) ∈ Mn, i.e., z = δ−1φ(y)(a) ∈ Mn

and we obtain (16).
Our assumptions imply that tra = δ, so

f(a) ≡ x mod Mn

and similarly
g(a) ≡ x′ mod Mn,

where x′ is the element from (14). Then

f(a)g(a) ≡ xx′ mod Mn.

On the other hand from the definition of the multiplication f
∆∗g (cf. (11)) it

follows that

f
∆∗g(a) = δ−1φ(φ−1(δf)φ−1(δg))(a).

Using this and keeping in mind (15) and (16) we obtain

f
∆∗g(a) = δ−1φ(xx′ ⊗ 1 + z)(a) ≡ xx′ mod Mn.

So we have the congruence

f
∆∗g(a) ≡ f(a)g(a) mod Mn.

Also, the element δ−1 tr in AK/k(OK) gives us an identity element in the ring

AK/k(OK)(a) mod Mn, since δ−1 tr a = 1 (cf. (12)). �

Remark 2.3.2. For any other element a′ in the ring OK with valuation equal
to n− 1 we have AK/k(OK)(a′) ≡ εAK/k(OK)(a) mod Mn, ε ∈ o∗.

Remark 2.3.3. A similar statement also holds for the module BK/k(OK)(a)
mod Mn.
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2.4. Now we formulate the statements which we will begin to prove in the next
subsection.
We will investigate the following condition:
in the order AK/k(OK) (resp. BK/k(OK) ) there exists an element ξ such that

ξ(a) = π, (17)

where π is a prime element of the field K and a is some element with valuation
equal to n− 1.

Theorem 2.4.1. If in the ring AK/k(OK) (resp. BK/k(OK)) the condition
(17) is fulfilled, then the element ξ generates a “power” basis of AK/k(OK)

(BK/k(OK) resp.) over o with respect to the multiplication
∆∗ (cf. 11), i.e.,

AK/k(OK) = 〈ξ0, ξ1, . . . , ξn−1〉,

where ξ0 = δ−1 tr is the unit and ξi = ξ
∆∗ξi−1.

Theorem 2.4.2. 1. If for the ring AK/k(OK) (resp. BK/k(OK)) the condi-
tion (17) is fulfilled, then the ring OK is a free AK/k(OK)-module (resp. free
BK/k(OK)-module).
2. If the ring OK is a free module over the ring AK/k(OK) (resp. BK/k(OK))
and if moreover the order AK/k(OK) (resp. BK/k(OK)) is indecomposable (i.e
does not contain non-trivial idempotents), then for the ring AK/k(OK) (resp.
BK/k(OK)) the condition (17) and so also the assertions of the theorem 2.4.1
are fulfilled.

Remark 2.4.3. If ξ maps some element with valuation equal to n − 1 onto an
element with valuation equal to 1, then ξ also maps any other element with
valuation equal to n− 1 onto an element with valuation equal to 1.
Indeed, if a ∈ K, vk(a) = n − 1 and vK(ξ(a)) = 1, then any other element
a′ ∈ OK , for which vK(a′) = n − 1, is equal to εa+ b, where ε ∈ o∗, b ∈Mn,
so b = π0b

′, where π0 is a prime element in k. Besides that b′ ∈ OK and we
obtain ξ(b) = π0ξ(b

′) and this implies vK(ξ(b)) ≥ n.
We also have vK(ξ(εa)) = vK(εξ(a)) = vK(ε) + 1 = 1 i.e., ε ∈ o∗, and so
vK(ξ(a′)) = 1.

Remark 2.4.4. Any element ξ in AK/k(OK) (resp. in BK/k(OK)) that fulfills
the condition (17) generates a power base of the o-module AK/k(OK) (resp.

BK/k(OK)) with respect to the multiplication
∆∗.

2.5 Proof of Theorem 2.4.1 and of the first part of Theorem
2.4.2..
We take the element a in the ring OK such that vK(a) = n − 1 and tr a = δ
(cf. (12)). By assumption we have ξ(a) = π, where π is a prime element of the
field K. We check that

ξi(a) ≡ πi mod Mn
K . (18)
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Indeed, if i = 0, then for the usual product ξ0(a)δ−1 tr(a) = 1. Let further
ξi−1(a) be equal to πi−1 mod Mn

K , then according to Proposition 2.3.1 we
have

πi ≡ ξi−1(a)ξ(a) ≡ (ξi−1∆∗ξ)(a) ≡ ξi(a) mod Mn
K

and the congruence (18) is proved. This equality implies that ξi(a), 0 ≤ i ≤
n− 1, generate OK , i.e., OK = oξ0(a)⊕ · · · ⊕ oξn−1(a). Now we show that

AK/k(OK) = 〈ξ0, . . . , ξn−1〉.
If there exists an element η ∈ AK/k(OK) that does not belong to a o-module

〈ξ0, . . . , ξn−1〉, then η(a) = b ∈ OK . So we obtain

η(a) =

n−1∑

i=0

αiξ
i(a), αi ∈ o,

i.e.,

(η −
∑

αiξ
i)(a) = 0 (19)

Now we show that
η =

∑
αiξ

i. (20)

Indeed the spaces kAK/k(OK) and k〈ξ0, . . . , ξn−1〉 have equal dimensions and
so coincide. It follows from (19) that

η −
∑

αiξ
i ∈ AK/k(OK) ⊂ kAK/k(OK) = k〈ξ0, . . . , ξn−1〉,

and so

η −
∑

αiξ
i =

n−1∑

i=0

α′iξ
i,

where α′i ∈ k. Since α′i ∈ k and the valuations of the elements ξi(a), 0 ≤ i ≤ n−
1 are pairwise non-congruent mod n (cf. (16)), the valuations vK((α′iξ

i)(a))
are also pairwise non-congruent mod n, and so

∑
α′iξ

i(a) 6= 0 if not all the
α′i are equal to 0. This reasoning proves (20).
So we have obtained that the ring OK is a free AK/k(OK)-module:

OK = AK/k(OK)(a)

and we have proved Theorem 2.4.1 and the first part of Theorem 2.4.2.

Lemma 2.6. Let x be an element of the ring OK such that trx = 0, then for
any f ∈ AK/k(OK) and g ∈ BK/k(OK) the following equalities hold:

tr f(x) = 0 = tr g(x) = 0.

Proof. If f ∈ AK/k(OK), then f =
∑

σ∈G aσσ, aσ ∈ k, and so

tr f(x) = tr(
∑

aσσ(x)) =
∑

aσ trσ(x) = 0.

If g ∈ BK/k(OK), then tr g(x) = g(tr(x)) = g(0) = 0, since g is an o[G]-
homomorphism. �
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2.7. Proof of necessity in Theorem 2.4.2.
Let OK be a free AK/k(OK)-module and assume the order AK/k(OK) IS inde-
composable. We prove that in the order AK/k(OK) there exists an element ξ
that fulfills the condition (17) of 2.4. We take elements a0, . . . , an−2 such that
vK(ai) = i and such that trai = 0 (cf. Lemma 2.2.2 and also [By1]). We take
further an element a with valuation equal to n− 1. Let χ : OK → AK/k(OK)
be an isomorphism of o[G]-modules, then

AK/k(OK) = 〈χ(a0), . . . , χ(a)〉o.
Thus, in particular, there exist αi, α ∈ o such that

1 = α0χ(a0) + · · ·+ αn−2 + αχ(a).

The ring AK/k(OK) is indecomposable by assumption, and so, according to the
Krull-Schmidt Theorem, it is a local ring. We obtain that one of the χ(ai) OR
χ(a) has to be invertible in the ring AK/k(OK). The elements χ(ai) cannot be
invertible since, according to Lemma 2.6, AK/k(OK)(ai) ∈ Ker tr OK . Thus
χ(a) is invertible and it follows that AK/k(OK)(a) = OK . We obtain that
there exists a ξ in AK/k(OK) such that ξ(a) = π. Theorem 2.4.2 is proved.

Remark 2.7. The corresponding reasoning for the ring BK/k(OK) almost lit-
erally repeats the one we used above.

§3 Kummer extensions for formal groups.
The proof of sufficiency in Theorem A.

Starting from this section we assume that the extension K/k is Abelian.

3.1. We denote the valuation on k by v0. We also denote by v0 the valuation
on K that coincides with v0 on k.
We suppose that the field k fulfills the conditions of §2 and that F is some formal
group over the ring o (the coefficients of the series F (X,Y ) may, generally
speaking, lie, for example, in the ring of integers of some smaller field). On the
maximal ideal Mo of the ring o we introduce a structure of a formal Zp-module
using the formal group F by letting for x, y ∈Mo and α ∈ Zp

x+
F
y = F (x, y),

αx = [α](x).

We denote the Zp-module obtained in this way by F (Mo). Let T be a finite
torsion subgroup in F (Mo) and let n = cardT be the cardinality of the group
T . Obviously, n is a power of p.
We construct the following series:

P (X) =
∏

t∈T
(X −

F
t). (21)

Remark 3.1.1. The constant term of the series P (X) is equal to zero, the
coefficient at Xn is invertible in o, and the coefficients at the powers, not equal
to n, belong to the ideal Mo.
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Lemma 3.1.2. Let a be a prime element of the field k and K = k(x) be the
extension obtained from k by adjoining the roots of the equation P (X) = a,
where the series P is as in (21). Then the extension K/k is a totally ramified
Abelian extension of degree n and the different D of the extension K/k is gen-
erated by an element of the base field, i.e., D = (δ), δ ∈ k. The ramification
jumps of the extension K/k are equal to hl = nv0(tl)− 1, tl ∈ T .

Proof. Using the Weierstrass Preparation Lemma we decompose the series
P (X)− a into a product

P (X)− a = cf(X)ε(X),

where ε(X) ∈ o[[X ]]∗ is an invertible series (with respect to multiplication),
f(X) is A unitary polynomial, c ∈ o. Then, according to Remark 3.1.1, f(X)
is an Eisenstein polynomial of degree n. The series P (X) − a has the same
roots (we consider only the roots of P (X) − a with positive valuation) as the
polynomial f(X), and so there are exactly n roots. It is obvious that if P (x) =
a, then

P (x+
F
τ) =

∏

t∈T
(x−

F
t+
F
τ) =

∏

t∈T
(x−

F
t) = P (x) = a, τ ∈ T

and so the roots of P (X)− a and f(X) are exactly the elements x+
F
τ, τ ∈ T .

Thus we proved that all roots of f(X) lie in K and are all distinct. It follows
that K/k is a Galois extension. We denote the Galois group of the extension
K/k by G. Obviously if σ1, σ2 ∈ G, σ1(x) = x +

F
t1, σ2(x) = x +

F
t2, then

σ2(σ1(x)) = σ2(x +
F
t1) = σ2(x) +

F
t1 = x +

F
t2 +

F
t1 (as F (X,Y ) is defined

over o, t1 ∈ T ). Since the addition +
F

is commutative, the extension K/k is

Abelian. We also have that
∏
σ(x) = a, vk(a) = 1, and so v0(x) = e(K/k)

n .
This implies that the extension K/k is totally ramified and that x is a prime
element in K. Now we compute the ramification jumps of the extension K/k.
Let F (X,Y ) = X+Y +

∑
i,j>0 aijX

iY j be the formal group law, then we have

x− σl(x) = x− (x+
F
tl) = tl +

∑

i,j>0

aijx
itj = tlεt,

where εt is a unit of the ring OK . It follows that the ramification jumps
of the extension K/k are equal to nvk(tl) − 1. Hence the exponent of the
different is equal to

∑
tl∈T (hl + 1) = n

∑
tl∈T vk(tl) (cf., for example, [Se],

Ch. 4, Proposition 4) and so vk(D) ≡ 0 mod n. �

3.2. Before beginning the proof of Theorem A we prove that the first condition
of Theorem A is equivalent to a weaker one.
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Proposition 3.2. Let a belong to o, vk(a) = ns + 1, where 0 ≤ s <
mint∈T vk(t). Then the extension k(x)/k, where x is A root of the equation
P (X) = a, has the same properties as the extensions from the first condition
of Theorem A.

Proof. We consider the series

Fs(X,Y ) = π−s0 F (πs0X, π
s
0Y ).

It is easily seen that Fs also defines a formal group law and the elements of
Ts = {π−s0 t, t ∈ T} form some torsion subgroup in the formal module Fs(Mo).

Indeed, if F (X,Y ) =
∑
aijX

iY j , then Fs(X,Y ) =
∑
π
s(i+j−1)
0 aijX

iY j , and

so the coefficients of Fs(X,Y ) are integral. Since π−s0 X+
Fs
π−s0 Y = π−s0 (X+

F
Y ),

Fs indeed defines an associative and commutative addition. Besides that if
u1, u2 ∈ Ts, then u1 +

Fs
u2 = π−s0 (πs0u1 +

F
πs0u2) ∈ Ts and so Ts is indeed a

subgroup in F (Mo).
Now we compute the series PFs(X) for the formal group Fs. We obtain:

PFs(X) =
∏

t∈T
(X −

Fs
π−s0 t) =

∏

t

(π−s0 (πs0X) −
Fs
π−s0 t)

=
∏

t

π−s0 (πs0X −
F
t) = π−sn0 PF (πs0X).

Thus the equation Pf (X) = a is equivalent to PFs(π
−s
0 X) = aπ−sn0 . Besides

that v(π−sn0 a) = v(a)− sn, i.e., π−sn0 a is a prime element in k.
Now it remains to note that a root of the equation Pf (X) = a can be obtained
by multiplication of a root of the equation PFs(Y ) = aπ−sn0 by πs0, and so the
extensions obtained by adjoining the roots of these equations coincide. �

3.3 The proof of Theorem A: 1 =⇒ 2.
Let K/k be an extension obtained by adjoining the roots of the equation
P (X) = π0. So K = k(x) for some root x. We consider the maximal ideal
M⊗ of the tensor product OK ⊗OK . Obviously M⊗ = OK ⊗M + M ⊗OK .

We also have Mi
⊗ =

∑i
j=0 Mj ⊗Mi−j , i > 0, and so it is easily seen that

∩i>0M
i
⊗ = 0. It follows that we can introduce Zp-module structure F (M⊗) on

M⊗. We consider the element

α = x⊗ 1−
F

1⊗ x ∈M⊗ .

We can define ξ in the following way:

ξ = δ−1φ(α). (22)

We check the following properties of the element ξ:
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1. ξ ∈ AK/k(OK)

2. If y belongs to OK and v(y) = n− 1, then ξ(y) is a prime element in K.

For (1):

Let X −
F
Y be equal to

∑
bijX

iY j , then the equalities

φ(α) =
∑

bijφ(xi ⊗ 1i) ∗ φ(1j ⊗ xj)

=
∑

σ∈G, i,j
bijx

iσ(xj)σ =
∑

(x−
F
σx)σ =

∑
tσσ ∈ k[G]

follow from the definitions of φ and ∗. It also follows from Theorem 1.3.1 that
ξ belongs to CK/k(OK). Thus ξ ∈ k[G] ∩ CK/k(OK) = AK/k(OK).

For (2):

It easily seen that

(x⊗ 1)−
F

(1⊗ x) = x⊗ 1 + y, (23)

where y ∈M⊗M. Indeed,

x⊗ 1−
F

1⊗ x = x⊗ 1 +
∑

i≥1,j≥0

bijx
i ⊗ xj .

Since bij ∈ o, bijx
i ⊗ xj ∈ OK ⊗M and we obtain (23).

We can assume that tr(xa) = δ (cf. Remark 2.4.3).

Then, as in Proposition 2.3.1, we have

ξ(a) = δ−1φ(x ⊗ 1 + y)(a) ≡ x mod Mn.

Since v(x) = 1, we have proved the property 2.

3.4. Now we construct explicitly a basis of an associated order for extensions
that fulfill the condition 1 of Theorem A. We have proved above that we can
take the element ξ to be equal to δ−1

∑
tσσ. Then it follows from Theorem

2.4.1 that

AK/k(OK) = 〈δ−1
∑

σ

tiσσ, i = 0, . . . , n− 1〉.

Now suppose that K is generated by a root of the equation P (X) = b, where
vk(b) = sn+ 1, s < min v0(tl). In 3.2 we proved that K may be generated by
a root of the equation Ps(X) = bπ−sn0 , and so it follows in this case that

AK/k(OK) = 〈δ−1π−si0 tiσσ, i = 0, . . . , n− 1〉.
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Proposition 3.4.1. Suppose that the extension K/k fulfills the condition 1
of Theorem A. Then AK/k(OK) is a Hopf order in the group ring k[G] with
respect to the standard Hopf structure.

Proof. AK/k(OK) is an order in the group ring. It is easily seen, that if

f =
∑
σ∈G cσσ ∈ AK/k(OK), then

∑
cσσ
−1 ∈ AK/k(OK). Indeed, we have

φ−1(f) ∈ δ−1OK ⊗o OK . Now consider the o-linear map i : K ⊗k K →
K ⊗k K, that maps x ⊗ y into y ⊗ x. Obviously, i(φ−1(f)) ∈ δ−1OK ⊗o OK .
Besides, we have φ(x ⊗ y) =

∑
σ∈G xσ(y), φ(y ⊗ x) =

∑
σ∈G yσ(x) =∑

σ∈G σ(xσ−1(y). Thus we have
∑

cσσ
−1 = φ(i(φ−1(f))) ∈ AK/k(OK).

Thus it is sufficient to prove that for any f ∈ AK/k(OK) we have

∆(f) ∈ AK/k(OK)⊗ AK/k(OK) ,

, where ∆(
∑
cσσ) =

∑
cσσ ⊗ σ. Theorem 2.4.1 implies immediately that it

is sufficient to check this assertion for f = ξl, l ≥ 0, the power is taken with

respect to multiplication
∆∗.

We consider the polynomial

J(X) =
∏

t∈T\{0}

t−X
t

.

We have J(0) = 1, J(t) = 0 for t ∈ T \ {0}. The standard formula for the
valuation of the different (cf. [Se]) and the last assertion of Lemma 3.1.2 imply
that J(X) ∈ δ−1o[X ].
The fact that AK/k(OK) is an o-algebra with a unit with respect to the multi-

plication
∆∗ implies that for f1, f2 ∈ AK/k(OK)⊗AK/k(OK) their product f1∗f2

which is defined coefficient-wise lies in δ−2AK/k(OK) ⊗ AK/k(OK). Thus for

the element I =
∑
τ,σ∈G tστ−1στ belongs to δ2AK/k(OK)⊗ AK/k(OK) since

I =
∑

τ,σ∈G
(tσ −

F
tτ ) = δ2

∑

i,j≥0

bijξ
i ⊗ ξj ,

where the powers are taken with respect to
∆∗ and bij are the coefficients in the

expansion of the formal difference X −
F
Y into the powers of X and Y .

We also obtain that the element

L = ∆(tr) =
∑

σ∈G
σ ⊗ σ = J(I)

belongs to δAK/k(OK)⊗ AK/k(OK). Then we have the equality

∆(ξl) = (ξl ⊗ tr) ∗ L ∈ AK/k(OK)⊗ AK/k(OK)

since tr ∈ δAK/k(OK). �

In a future paper we will prove a similar statement for an extension that fulfills
the second condition of Theorem A not supposing K/k to be Abelian.
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§4 Construction of a formal group

4.1. We suppose that in the associated order AK/k(OK) there exists an element
ξ such that it maps an element a ∈ OK , vK(a) = n − 1 into a prime element
π of the field K, i.e.,

ξ(a) = π (24)

(cf. Lemma 2.2.1 and Theorem 2.4.2). We choose an element a such that
tr a = δ (cf. Lemma 2.2.1). Let

ψ1 : K ⊗k K → K

x⊗ y → xy
(25)

be the map from 1.1, and let φ be the bijection between K ⊗k K and K[G],
that was defined in subsection 1.1.

Lemma 4.1.1. We can choose an element ξ in AK/k(OK) fulfilling (4) so that

1. φ−1(δξ) = π⊗ 1− 1⊗ π + z, where z belongs to the maximal ideal M of the
ring OK .
2. In the expansion ξ =

∑
σ∈G aσσ, we have a1 = 0 and δaσ ∈Mo for σ 6= 1,

where Mo is the maximal ideal in o.

Proof. Theorem 1.3.1 implies that the preimage φ−1(ξ) belongs to OK ⊗D−1.
From our assumptions we also have D = (δ), δ ∈ k (cf. (*)), so φ−1(δξ) ∈
OK ⊗OK . As in 2.3, we can prove that

φ−1(δξ) = x⊗ 1 + y,

where x = ξ(a)δ tr(a)−1 = π, y ∈ OK ⊗M. It follows that

φ−1(δψ) = π ⊗ 1 + y, y ∈ OK ⊗M.

We compute the coefficient at 1 = idK of the element ξ = φ(δ−1(π ⊗ 1 + y)).
From the definition of φ it follows that it is equal to ψ1(δ

−1α). We have

ψ1(δ
−1(π ⊗ 1 + y)) = δ−1(π + ψ1(y)). (26)

We decompose the element y in the base of OK ⊗M:

y =
∑

i≥0, j≥1

aij(π
i ⊗ πj), aij ∈ o.

Then
ψ1(
∑

aijπ
i ⊗ πj) =

∑

ij

aijπ
i+j (27)

If ξ =
∑
aσσ, aσ ∈ k, then ψ1(δ

−1α) = a1 ∈ k.
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This implies that in order for the element (26) to lie in AK/k(OK) it is necessary
that the coefficient a01 in (27) is congruent with −1 mod π0, where π0 is the
prime element of k. It follows that y = −1 ⊗ π + z where z ∈ M ⊗M. The
first claim of the lemma is proved.
Now we consider

ξ′ = ξ − ψ1(ξ) tr =
∑

σ∈G
(aσ − a1)σ =

∑

σ∈G, σ 6=1

(aσ − a1)σ.

We have ψ1(ξ
′) = 0. Besides that, δa1 = π +

∑
aijπ

i+j , a1 ∈ k, and it follows
that δa1 ∈Mo. Thus a1 tr ∈M0AK/k(OK), and it follows that ξ′ ∈ AK/k(OK)
and ξ′(a) ≡ ξ(a) mod Mn. So ξ may be replaced by ξ′.
It remains to prove that in the expansion ξ =

∑
aσσ all δaσ lie in M.

From the definition of ψσ we have

δaσ = ψσ(δξ) = ψσ(π⊗ 1) = ψσ(1⊗π) +ψσ(z) = π−σ(π) +ψσ(z) ∈M (28)

since z ∈M⊗M. Yet aσ ∈ k and it follows that aσ ∈M ∩ k = Mo. �

Corollary 4.1.2. We introduce the following notation: δξ =
∑

σ bσσ. If
φ−1(δξ) = π ⊗ 1− 1⊗ π +

∑
1≤i,j≤n aijπ

i ⊗ πj , aij ∈ o, then we have

bσ = π − σ(π) +
∑

aijπ
iσπj (29)

and
bσ−1τ = σπ − τπ +

∑
aijσπ

iτπj . (30)

(the last statement follows from (29) and an obvious equality σbσ−1τ = bσ−1τ ).

4.2 A preliminary group law.
We consider the expansion

φ−1(δξ) = π ⊗ 1− 1⊗ π +
∑

1≤i,j<n
aijπ

i ⊗ πj , aij ∈ o. (31)

We replace π ⊗ 1 in this decomposition by X , and 1⊗ π by Y and decompose
πi ⊗ πj into the product (πi ⊗ 1)(1 ⊗ πj). Then from the expansion (31) we
obtain a polynomial in two variables of degree not greater than n; we denote
it by

R(X,Y ) = X − Y +
∑

1≤i,j≤n
aijX

iY j , aij ∈ o. (32)

Now we identify π ⊗ 1 with π, and 1 ⊗ π with Z and obtain from (31) a
polynomial in Z of degree not greater than n. We denote it by s(Z):

s(Z) = π − Z +
∑

1≤j≤n
(
∑

1≤i≤n
aijπ

i)Zj . (33)
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All the coefficients of this polynomial except the coefficient at Z belong to M,
and the coefficient at Z is invertible, so the polynomial s(Z) is invertible in
OK [[Z]] with respect to composition. We denote the inverse to s by s−1(Z).
It follows from (28) and (31) that

bσ = δaσ = (π − σ(π)) +
∑

1≤i,j≤n
aijπ

iσπj .

So, keeping in mind (33), we obtain

s(σπ) = bσ, s
−1(bσ) = σπ.

Besides that, (32) and (30) imply:

G(bσ , bτ ) = R(s−1(bσ), s
−1(bτ )) = bσ−1τ ,

we also know that the series G(X,Y ) = R(s−1(X), s−1(Y )) ∈ OK [[X,Y ]] and

G(bσ , bτ ) ≡ (bσ − bτ ) mod MOK [[X,Y ]].

So the series G(bσ, bτ ) is invertible with respect to composition as a series in
bτ . We denote this inverse series by H(bσ , bτ ) ∈ OK [[bσ , bτ ]]. We also note
that H(bσ, bτ ) = bστ .
We introduce the following notation:

M(X) =
∏

σ∈G
(X − bσ). (34)

Consider the reduction of the series H(X,Y ) modulo the ideal (M(X),M(Y )).
We obtain a polynomial J(X,Y ), whose degree in each variable is less than n.
Since M(bσ) = 0,

J(bσ , bτ ) = bστ . (35)

Proposition 4.2. J(X,Y ) ∈ o[[X,Y ]].

Proof. We denote by f(X,Y ) the interpolation polynomial whose degree in
each variable is less than n and that fulfills the system of relations

f(bσ, bτ ) = bστ , σ, τ ∈ G. (36)

The polynomial J also fulfills the system of equalities (36) and so

f(X,Y ) = J(X,Y ).

Since f ∈ k[X,Y ], J ∈ OK [X,Y ], the coefficients of J belong to k ∩ OK =
o. �
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4.3 The main statement concerning finite torsion submodules of
formal modules over formal groups.
Let G be an Abelian group and suppose that for any σ ∈ G there is an element
bσ ∈Mo chosen, and suppose that b1 = 0.

Theorem 4.3.1. The following conditions are equivalent
1 There exists a formal group F (X,Y ) over the ring of integers oE of some
extension E of the field k such that bσ +

F
bτ = bστ for all σ, τ ∈ G.

2. There exists a formal group F (X,Y ) over the ring o, fulfilling the same
conditions: bσ +

F
bτ = bστ .

3. The coefficients of the interpolation polynomial f(X,Y ), of degree less than
n in X and Y and such that for σ, τ ∈ G

f(bσ, bτ ) = bστ

belong to o.

Remark 4.3.2. This Theorem gives us a schematic description of finite subsets
of Mo that are finite groups with respect to an addition defined by some formal
group with integral coefficients.
Additive Galois modules are not mentioned in the stating of this theorem and
so it can be used without them.

Proof of Theorem 4.3.1: 2 =⇒ 1 =⇒ 3. The condition 2 obviously implies 1.
Now we prove that 1 implies 3. We consider the reduction of F (X,Y ) modulo
the ideal (M(X),M(Y )) (cf. (34)) and denote it by Fred(X,Y ). It follows
from the condition 1 that Fred(bσ, bτ ) = bστ , since M(bσ) = 0. So Fred(X,Y )
coincides with the interpolation polynomial f(X,Y ), whose coefficients belong
to k. Yet Fred[X,Y ] ∈ oE [X,Y ], so the coefficients of f(X,Y ) lie in o = k∩oE .
It remains to prove that 3 implies 2.

4.4 Some universal formal group laws.
We construct a formal group law in the same way as Hazewinkel (cf. [Ha], Ch.
I, §3, subsection 3.1).
Consider the ring of polynomials Zp[S2, S3, . . . , Sn] = Zp[S] ⊂ Qp[S]. We
introduce the following notation:

σ : Qp[S]→ Qp[S], Si → Spi .

We consider the series fS(X), whose coefficients are found from the equation

fS(X) = g(X) +
∑

i≥1

Spi

p
σi∗fS(Xpi), g(X) = X +

∑

i≥2

SiX
i −
∑

i≥1

SpiX
pi ,

where σi∗fS is the series obtained from fS by applying the homomorphism σi

to the coefficients, for i > n we reckon Si being equal to 0. It is easily seen that
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fS = X +
∑
i>1 aiX

i, ai ∈ Q[S]. Then the Hazewinkel’s Functional Equation
Lemma implies that

FS(X,Y ) = f−1
S (fS(X) + fS(Y ))

is a formal group law over Zp[S]. Besides that

FS [X,Y ] ≡X + Y + Smvp(m)−1Bm(X,Y )

mod (S2, . . . , Sm−1, deg(m+ 1)), 2 ≤ m ≤ n,
(37)

where vp(m) = p if m = pr, r ∈ Z, r > 0, else vp(m) = 1, and

Bm(X,Y ) = Xm + Y m − (X + Y )m.

We note that the series FS is a formal group law also in the case chark = p (in
that case we should compute the coefficients of vp(m)−1Bm(X,Y ) ’formally’ in
Z). This formal group differs from Hazewinkel’s only because Si = 0 for i > n.
Now we modify the formal group law we have obtained. To be more precise,
we make the following change of variables.
Now we define some values rm in the following way. Let rm be equal to s if
m = psm0 and (m0, p) = 1, m0 > 1 or m0 = p.
Then

FS(X,Y ) = X + Y +
∑

2≤m≤n
dmX

prmY m−p
rm

+ summands of other degrees.

We consider the ring

Zp[V ] = Zp[V2, . . . , Vn], Vi = di. (38)

Lemma 4.4. We can express the variables Si as polynomials in Vi with integral
coefficients and so obtain a new formal group law over Zp[V ].

Proof. We have the equality V2 = S2

Besides that, for i > 2 the equality Vi = Si + fi(S2, . . . , Si−1), fi ∈
Zp[S2, . . . , Si−1] is fulfilled (cf. (37)). It follows that we can express Si as
a polynomial in di, S2, . . . , Si−1 with integral coefficients. Making all such
changes we obtain an expression of Si as a polynomial in V2, . . . , Vi−1. Lemma
is proved. �

We note that the formal group law we constructed has the form

FV (X,Y ) = X + Y+
∑

2≤m≤n
VmX

prmY m−p
rm

+ summands of other degrees.

(39)
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4.5. In the Abelian group G we choose a family of subgroups 1 = G0 ⊂ G1 ⊂
G2 ⊂ · · · ⊂ Gl = G, where n = pl and the cardinality of Gi is equal to
pi. In each subgroup Gi we choose an element σpi−1 such that the coset σpi−1

mod Gi−1 generates the cyclic group Gi/Gi−1 of cardinality p. We obtain a set
of generators σ1, σp, . . . , σpl−1 for the group G. By induction on the cardinality
of G it can be easily proved that any element σ of G can be expressed uniquely
in the form

σ =
∏

0≤i≤l−1

σcipi , where 0 ≤ ci ≤ p− 1. (40)

We introduce the following notation:

cσ = c0 + pc1 + · · ·+ pl−1cl−1 ∈ Z, 0 ≤ cσ ≤ n− 1.

We obtain a one-to-one correspondence σ → cσ. We also use the inverse no-
tation: σc = σ ⇐⇒ c = cσ . We will construct the desired formal group by
induction On the m-th step we ’get rid’ of the variable Vm and adjoin the m-th
relation.
First we prove a simple lemma about relations in an arbitrary Abelian group.

Lemma 4.5. Let H be an Abelian group, f be a map from G into H, f(1) = 1H .
Then the following statements are fulfilled
1. If the relation

f(σi)f(σj) = f(σiσj) (41)

is fulfilled for all i = prs , j = s − prs , 2 ≤ s ≤ m, then it is also fulfilled for
0 ≤ i ≤ prm − 1, 0 ≤ j ≤ m− 1 and for i = prm , 0 ≤ j ≤ m− prm − 1.
2. If (41) is fulfilled for i = prs , j = s− prs , 2 ≤ s ≤ n, then it is also fulfilled
for all 0 ≤ i < n, 0 ≤ j < n.

Proof. 1. First we prove by induction that (41) is fulfilled for 0 ≤ i ≤ pt, 0 ≤
j ≤ m − 1, for all 0 ≤ t ≤ rm, i.e the restriction ft of f onto Gt is a group
homomorphism and Ftx = {fi = f(σi), i = ptx+u, 0 ≤ u ≤ pt−1}, 0 < x < m

pt

are cosets modulo the subgroup Ft = f(Gt).
This is fulfilled for t = 0 since f(1G) = 1H .
We suppose that such statement is fulfilled for t = w. Now we prove it for
t = w + 1. Since Fwx are cosets modulo the subgroup Fw, it is sufficient to
check that (41) is fulfilled for i = pwa, j = pwb, 0 < a ≤ p− 1, 0 < b < m

pw . If

0 < b ≤ p, then rbpw = w, and so for i = (b− 1)pw, j = pw the relation (41) is
fulfilled. Thus we obtain

fbpw = f bpw , b < p, f(p−1)pwfpw = fpw = f(σppw )

and fw+1 is a group homomorphism. Besides that, for b > p, (b, p) = 1 we also
have rbpw = w, and so f(b−1)pwfpw = fbpw . For b = pc we have:

f(pc−1)pwfpw = f(pc−p)pwf
p
pw = f(σ(pc−1)pwσpw),
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since σppw ∈ Gw. It follows that (41) is fulfilled indeed for all i = pwa, j =
pwb, 0 < a ≤ p − 1, 0 < b < m

pw , and so Fw+1x, 0 < x < m
pw+1 indeed form

cosets modulo Fw+1.
The relation (41) for i = pw, w = rm 0 ≤ j ≤ m − pw − 1 is also sufficient
to prove for j = pwb, since Fwx are cosets modulo Fw. We argue in the same
way as in the previous reasoning. We have again the equality rbpw = w for
0 < b ≤ p. It follows that if m

pw ≤ p, then we obtain the desired assumption. If
m
pw > p, then for m

pw ≥ b > p, (b, p) = 1 also rbpw = w, and so f(b−1)pwfpw =

f(σ(b1)pwσpw). For p | b this is also fulfilled as f(p−1)pw = fp−1
pw . It follows that

for pc+ p− 1 < m
pw we have

f(pc+p−1)pwfpw = fpcf
p
pw = f(σ(pc+p−1)pwσpw ),

since σppw ∈ Gw.
2. In the proof of the first part from the relation (41) for i = prs , j = s−prs , 2 ≤
s ≤ m we deduced that Ft, p

t | m is a group homomorphism, the same proof
for m = n gives us the desired statement. �

4.6 The proof of 3 =⇒ 2 in Theorem 4.3.1.
In the beginning we are in the following situation. We have a formal group
FV (X,Y ), for which the following relations are fulfilled: F (b1, bσ) = bσ for all
σ ∈ G, since b1 = 0 from our assumptions.
We describe the second step.
We take the generator σ1 of the group G1 and try to fit the relation

FV (bσ1 , bσ1) = bσ2
1
. (42)

The interpolation polynomial f(X,Y ) from our condition 3 can be written in
the form f(X,Y ) = X+Y +XY ψ(X,Y ), where ψ(X,Y ) ∈ o[X,Y ]. We denote
the ring of all series in o[[Vi]], that converge at all (integral) values of Vi, by

õ[[Vi]], and its ideal, consisting of series with coefficients in Mo, by M̃o[[Vi]].
We have bσ2

1
= bσ1 + bσ1 + b2σ1

c, c ∈ o. On the other hand, if the relation (42)
is fulfilled, then

bσ2
1

= bσ1 +
F
bσ1 = bσ1 + bσ1 + b2σ1

V2 + b3σ1
(. . . ), (. . . ) ∈ õ[[V2, V3, . . . , Vn]].

We obtain
V2 + bσ1(. . . ) = const ∈ o

where (. . . ) ∈ õ[[V2, V3, . . . , Vn]]. Using the last relation we express V2 in

V3, . . . , Vn, i.e., V2 = c + g(V3, V4, . . . , Vn), g ∈ M̃o[[V3, ,̇Vn]]. This is possi-
ble, since in this relation the coefficient at the first power of V2 is invertible,
and coefficients at all other powers contain bσ1 . We denote the formal group
we obtained in this way by F 2

V (X,Y ). It depends on variables V3, . . . , Vn and
fits the relations:

F 2
V (b1, bσ) = bσ, σ ∈ G
F 2
V (bσ1 , bσ1) = bσ2

1
.
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The second step is ended.
Now we describe the m-th step. We suppose that at the m−1-step we obtained
a formal group Fm−1

V (X,Y ) that depends on the variables Vm, Vm+1, . . . , Vn
and fits the relations:

bσi +
F
bσj = bσiσj (43)

for 0 ≤ i ≤ prm − 1, 0 ≤ j ≤ m− 1 and i = prm , 0 ≤ j ≤ m− prm − 1.
Thus we have (m− 1)(prm + 1) + 1 relations.
We denote by Am−1 the set of points (bσi , bσj ) in (43). We need some lemma
about interpolation. We introduce the following notation:

χm−1 = Fm−1
V (X,Y )− f(X,Y ), (44)

where f(X,Y ) is an interpolation polynomial from the formula (36). The rela-
tions for f(X,Y ) imply that χm−1(bσi , bσj ) = 0 for the indices (i, j) mentioned
in (43).

Lemma 4.6.1. Let R be an integral domain, bσi be a set of elements in R, I
be an ideal IN R[X,Y ], consisting of all polynomials that take the value zero at
all pairs (bσi , bσj ) in Am−1. Then I = (M,N,L), where M =

∏
0≤i≤prm (X −

bi), N =
∏

0≤j≤m−1(Y − bσj ), L =
∏

0≤i≤prm−1(X − bi)
∏

0≤j≤m−prm−1(Y −
bσj ).

Proof. Let ψ(X,Y ) be an arbitrary polynomial in the ideal I . It is easily seen
that it can be reduced uniquely modulo the ideal (M,N,L) to a polynomial
ψred, since the higher coefficients of L,M,N are equal to 1. By its reduction
we mean a polynomial that is congruent to it modulo (M,N,L) and has a
non-zero coefficient at X iY j only if (bσi+1 , bσj+1) ∈ Am−1.
Now we have to prove that a polynomial ψred that belongs to I and contains
non-zero coefficients only at powers mentioned above has to be equal to 0. It
is sufficient to prove this statement for polynomials over the field R0 that is
the fraction field of R since it does not depend on the ring. We note that if
we take for all g(X,Y ) ∈ R0(X,Y ) their values G(bσi , bσj ), (bσi , bσj ) in Am−1,

then we obtain a vector subspace of values in R
(prm+1)(m−1)+1
0 . It is easily seen

that any set of values corresponds to some polynomial in R0(X,Y ). A similar
statement is obvious for polynomials in one variable and is easily carried on by
induction to the case of any number of variables. It follows that the dimension
of the space of values is equal to (prm +1)(m−1)+1. The map R0[X,Y ]→ C,
where C is the (prm +1)(m−1)+1-dimensional space of values of polynomials
in R0[X,Y ] in points of Am−1, factorizes through the space I ′ of reduction
polynomials in R0[X,Y ]. So it follows from the equality of the dimensions that
Ker(I ′ → C) = {0} and thus ψred = 0. Lemma is proved. �

It is easily seen that we may also use this lemma for the ring of power series.
Indeed, we can reduce series modulo

∏
i<n(X − bi)

∏
i<n(Y − bi) and obtain

polynomials.
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Now we make the m-th step of formal group construction.

According to Lemma, the series from (44) can be represented in a form

χm−1(X,Y ) = fM + gN + hL, (45)

where f, g, h ∈ R[[X,Y ]], and R = õ[[Vm, . . . , Vn]].

We consider the following relation:

χm−1(bprm , bm−prm ) = 0.

It follows from the definition of M and N that fM(bprm , bm−prm ) =
gN(bprm , bm−prm ) = 0. We need h to be equal to 0. We consider h(X,Y ) in the
point (bprm , bm−prm ). It is clear that h(bprm , bm−prm ) ∈ R[bprm , bm−prm ] ⊂ R.
Besides that

h(bprm , bm−prm ) ≡ absolute term of (X,Y ) mod M̃o[[Vm, . . . , Vn]].

Since in M,N,L only higher coefficients are invertible, in the relation (45) the
coefficient at XprmY m−p

rm
of the series χm−1(X,Y ) is equal to

the absolute term of h(X,Y ) + an element of M̃o[[Vm, . . . , Vn]].

On the other hand it is equal to Vm + const, const ∈ o, as χm−1(X,Y ) =
FV (X,Y )− f(X,Y ). Thus we obtain

Vm + c = h(bprm , bm−prm ) + d,

where c ∈ o, d ∈ M̃o[[Vm, . . . , Vn]]. We chose Vm so that h(bprm , bm−prm ) = 0
(in the formal group we replace Vm by a series in Vm+1, . . . , Vn). So we made the
m-th step. Since all the formal group laws FmV are commutative and associative,

we can apply to the group H = FmV (M̃o)[[Vm+1, . . . , Vn]], f : σ → bσ the first

part of Lemma 4.5 and so indeed after the m− 1-th step the group Fm−1
V fits

the relations (43) that are necessary for the m-th step. From the second part of
Lemma 4.5 it follows that after the last (n-th) step all the relations for bσi , bσj
are fulfilled and all the variables Vi are got rid of and thus we obtained the
desired formal group law F = F nV in o[[X,Y ]].

Remark 4.6.2. The proof of Theorem 4.3.1 also implies that the formal group
law F that fits the relations bσ +

F
bτ = bστ , σ, τ ∈ G and for which all the

Si, i > n in expression F (X,Y ) through FS(X,Y ), is unique. Besides that
when we started instead of fixing Si = 0, i > n we could demand Si, i > n to
be equal to arbitrary convergent series in S2, . . . , Sn with integral coefficients
and obtain a similar statement.
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§5 The proof of necessity in Theorem A

Now we show that our extension is indeed Kummer for the formal group we
constructed.
We have a formal group F (X,Y ) such that

F (bσ, bτ ) = bστ . (46)

We introduce again the addition with the means of the formal group F on the
maximal ideal M⊗ = OK ⊗M+M⊗OK of the tensor product OK ⊗OK . We
denote the formal module obtained by F (M⊗).
Now let ξ =

∑
aσσ act as in (4). Let α be equal to δφ−1(ξ). Our aim in the

remaining subsections is the proof of the following statement.

Proposition 5.1. There are elements x and y in M such that

α = x⊗ 1 +
F

1⊗ y.

Here we show that the statement of Proposition implies theorem A.
Suppose that 5.1 is fulfilled. We can express y as 1 ⊗ z, z ∈ M and so α =
x⊗ 1+

F
1⊗ z. Using the formula for ψ1 and the fact that b1 = 0 we obtain that

0 = b1 = ψ1(α) = x +
F
z. Thus z is equal to [−1]F (x) ([−1]F (x) is the inverse

to x in F (M)) and it follows that α = x⊗ 1−
F

1⊗ x. Similarly

bσ = ψσ(α) = ψσ(x ⊗ 1)−
F
ψσ(1⊗ x) = x−

F
σ(x).

We obtain that the conjugates of x in the extension K/k are exactly the ele-
ments of the form x+

F
bσ. Then

∏
(x+

F
bσ) ∈ o and vk(

∏
(x+

F
bσ)) = 1, thus the

extension K/k is Kummer for the formal group F and is generated by a root
of the equation P (X) = w while vk(w) = 1. Theorem A of the introduction is
proved.

5.2. Now we start proving 5.1.
Let n be equal to pl = [K : k]. Consider a tower of intermediate extensions:

k = k0 ⊂ k1 ⊂ k2 ⊂ · · · ⊂ kl = K, [ki : ki−1] = p.

We take representatives τi for the generators of the Galois groups Gi =
Gal(ki/ki−1). For all τ ∈ G we prove the following equality:

τ(α) = α−
F
bτ (47)

(we assume here that the group G acts only on the first component of the
tensor product).
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Indeed, for any z ∈ K we have

φ(τ(x) ⊗ y)(z) = τ(x) tr yz = τ(x tr yz) = τ(φ(x ⊗ y)(z)),

and so for each β ∈ K ⊗k K the equality

φ((τ ⊗ 1)β(z)) = τ(φ(β)(z)) (48)

is also fulfilled. Thus we obtain

τ(δξ) =
∑

σ

bστσ =
∑

σ

(bτσ −
F
bτ )στ = σξ −

F
(bτ tr).

The formula (48) now implies (47).

5.3. Let oi be the ring of integers of the field ki. For each i : 0 ≤ i ≤ l we
prove by induction the following lemma.

Lemma 5.3. There is an equality

α = x⊗ 1 +
F
y, y ∈ oi ⊗M (49)

Proof. For i = l the claim is obvious.
Let the claim be fulfilled for i = s+ 1.
We can expand the element y in the base of the formal module F (os+1 ⊗M):

y =
∑

0≤i 0≤j<n
(F )aijπ

i
s+1 ⊗ πj , (50)

where πs+1 is a prime element of the field ks+1, the coefficients aij are either
equal to 0, or aij ∈ o∗ (for j ≥ n we extract the prime element π0 of the field
k from πn and convert it into the first component).
For the automorphism τs+1 we have the equality (47):

τs+1(α) = α−
F
bτs+1 . (51)

Now we express α in the form

x⊗ 1 +
F

∑

0≤i 0≤j<n
(F )bijπ

i
s ⊗ πj +

F

∑

0≤i 0≤j<n
(F )aijπ

i
s+1 ⊗ πj . (52)

We consequently convert the third summand in (52) into the first and the
second, increasing the minimum of ni+ j for i, j such that aij 6= 0. Out of all
pairs (i, j) for which aij 6= 0 we chose a pair with the least i, which we denote
by i0, further out of all pairs (i0, j) such that ai0j 6= 0 we chose the pair with
the least j and denote it by j0. We call the corresponding ordering of (i, j) by
order.
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We have three cases.
Case I. If j0 = 0, then

ai0j0(π
i0
s+1 ⊗ πj0 ) = ai00(π

i0
s+1 ⊗ 1) (53)

and we import this term into the first summand in (52). It is clear that sub-

tracting with respect to F the term ai00(π
i0
s+1 ⊗ 1) gives only the terms of

greater order (since X−
F
Y = (X−Y )(1+r(X,Y )), r(X,Y ) ∈ (X,Y )o[[X,Y ]])

and so we increase the value of ni0 + j0.

Case II. Now let j0 be not equal to 0. If p | i0 then πi0s+1 = π
i0
p
s + r, where

vs+1(r) > i0 and i0
p ∈ Z and thus

ai0j0(π
i0
s+1 ⊗ πj0) = ai0j0π

i0
p
s ⊗ πj0 +

F
terms of greater order. (54)

It follows that we can import the term ai0j0π
i0
p
s ⊗πj0 into the second summand

of the formula (52) and increase the minimum of ni+ j again.
Case III. It remains to consider the case (i0, p) = 1, j0 6= 0, We consider

τs+1(α)−
F
α = τs+1(x ⊗ 1)−

F
(x⊗ 1) +

F
(τs+1 −

F
1)ai0j0(π

i0
s+1 ⊗ πj0)

+
F

(τs+1 −
F

1)(terms of greater order).

We have:

τs+1(x⊗ 1)−
F

(x⊗ 1) = (τs+1(x) −
F
x)⊗ 1 ∈M⊗ o

aτs+1 = aτs+1 ⊗ 1 ∈M⊗ o.
(55)

So the element (τs+1−
F

1)ai0j0(π
i0
s+1⊗πj0)+

F
(τs+1−

F
1) (terms of greater order)

also belongs to M⊗ o. Yet that is impossible since

(τs+1 −
F

1)ai0j0(π
i0
s+1 ⊗ πj0) ≡ ai0j0(τs+1π

i0
s+1 − πi0s+1)⊗ πj0

mod (terms of greater order).

The remaining terms indeed have greater ni + j since (i0, p) = 1 and so the

valuation of τs+1π
i0
s+1 − πi0s+1 in ks+1 is equal to i0 + hs+1,s+1, where hs+1,s+1

is the ramification jump of τs+1 in the field Ks+1. Thus we obtain

ai0j0 (τs+1π
i0
s+1 − πi0s+1)⊗ πj0 +

F
(terms of greater order),

and this sum cannot belong to M ⊗ o since j0 does not contain n from our
assumptions (it can be easily proved by considering the expansion of an element
of M ⊗ o in the base OK ⊗OK over o.) So this case is impossible. Thus our
assertion is valid for i = s. Lemma 5.3 is proved. �

Now by applying the lemma 5.3 for i = 0 we obtain α = x⊗ 1 +
F
y, y ∈ o⊗M.

Theorem A is proved completely.

Documenta Mathematica 5 (2000) 657–693



692 M. V. Bondarko

References

[Be] F. Bertrandias, Sur les extensions cycliques de degré pn d’un corps
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Crossover Collision of Scroll Wave Filaments
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Abstract. Scroll waves are three-dimensional stacks of rotating spi-
ral waves, with spiral tips aligned along filament curves. Such spatio-
temporal patterns arise, for example, in reaction diffusion systems of
excitable media type.
We introduce and explore the crossover collision as the only generic
possibility for scroll wave filaments to change their topological knot
or linking structure. Our analysis is based on elementary singularity
theory, Thom transversality, and abackwards uniqueness property of
reaction diffusion systems.
All phenomena are illustrated numerically by six mpeg movies down-
loadable at

http://www.mathematik.uni-bielefeld.de/documenta/vol-05/21.html

and, in the printed version, with six snapshots from each sequence.

1991 Mathematics Subject Classification: 35B05, 35B30, 35K40,
35K55, 35K57, 37C20
Keywords and Phrases: Parabolic systems, scroll wave patterns, scroll
wave filaments, spirals, excitable media, crossover collision, singularity
theory, Thom transversality, backwards uniqueness, video.

1 Introduction

Spatio-temporal scroll wave patterns have been observed both experimentally
and in numerical simulations of excitable media in three space dimensions. See
for example [36, 25, 20] and the references there. Typical experimental settings
are the Belousov-Zhabotinsky reactions and its many variants.
In two space dimensions, or in suitable planar sections through scroll wave
patterns, rigidly rotating spiral wave patterns occur; see figure 1. For pioneering
analysis motivated by propagation of electrical impulses in the heart muscle
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696 Bernold Fiedler and Rolf M. Mantel

Figure 1: Spiral wave patterns (model see section 6). Shown on the left is a rigidly
rotating spiral wave with parameters as in section 6, on the right is a meandering
spiral wave, with parameter a = 0.65 instead of a = 0.8. For color coding see section 7.

see [34], 1946. Meandering tip motions are also observed; see for example
[35, 38, 5, 4] and the references there. There is some ambiguity in the definition
of the tip of a spiral. It is an admissible definition in the sense of [13, sec.4], to
associate tip positions (x1, x2) ∈ R2 at time t ≥ 0 with the location of zeros of
two components (u1, u2) of the solution describing the state of the system:

u = (u1, u2)(t, x1, x2) = 0.(1.1)

In a typical excitable medium the values of (u1, u2) trace out a cycle as shown
in figure 2, along x-circles around the spiral tip. In a singular perturbation
setting, steep wave fronts are observed along these x-circles. Only near the
spiral tip, these u-cycles shrink rapidly to the tip-value u = 0.
This scenario, among other observations, motivated Winfree to attempt a phe-
nomenological description in terms of states ϕ = u/|u| ∈ S1, for (almost) all
x ∈ R2, with remaining singularities of ϕ at the tip positions. In the present
paper, we return to a reaction diffusion setting for u = u(t, x) ∈ R2, keeping
in mind that the set u(t, x) = 0 is particularly visible, distinguished, and de-
scriptively important – not as an “organizing center”which causes the global
dynamics to follow its pace, but rather as a highly visible indicator of the global
dynamics. In fact, defining tip positions by other nonzero levels (t, x) ≡ const.,
inside the cycle of figure 2, works just as well, and only reflects some of the
ambiguity in the notion of “tip position”, as was mentioned above. With all
our results below holding true, independently of such a shift of u-values, we
proceed to work with u(t, x) = 0 as a definition of tip position.
Scroll waves in three space dimensions x = (x1, x2, x3) ∈ R3 can be viewed

Documenta Mathematica 5 (2000) 695–731



Crossover Collision of Scroll Wave Filaments 697

0.4

−0.4

0.4−0.4

u1

u2

0

Figure 2: A cycle of values (u1, u2)(t, x0) through a time-periodic wave front at a
suitably fixed position x0 in an excitable medium (see section 6). Polar coordinates
define a phase ϕ ∈ S1 along the dotted cycle.

as stacks of spiral waves with their tips aligned along a one-dimensional curve
called the tip filament. As in the planar case, the tip filament may move
around in R3, and the associated sectional spirals may continuously change
their shapes and their mutual phase relations with time. Denoting by (u1, u2)
two components of the solutions of the associated reaction diffusion systems,
again, we can consider filaments ϕt as given by the zero sets

u = (u1, u2)(t, x1, x2, x3) = 0.(1.2)

We use two components here because the local dynamics of excitable media
are essentially two-dimensional. More precisely, for each fixed time t > 0 the
filaments ϕt describe the zeros x ∈ R3 of the solution profile

x 7→ u(t, x).(1.3)

In other words, the filament ϕt is the zero level set of the solution profile u(t, ·)
at time t.
Suppose zero is a regular value of u(t, ·), that is, the x-Jacobian ux(t, ·) possesses
maximal rank 2 at any zero of u. Then the filaments ϕt consist of embedded
curves in R3, by the implicit function theorem. Moreover the filaments depend
as smoothly on t as smoothness of the solution u permits.
Therefore, collision of filaments can occur only if the rank of ux(t, ·) drops. To
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Figure 3: A scroll wave and its filament. The band is tangential to the wave front
at the filament.

b.) t = t0 c.) t > t0a.) t < t0

Figure 4: Crossover collision of oriented filaments at time t = t0

analyze the simplest possible case, we assume

u(t0, x0) = 0,
co-rank ux(t0, x0) = 1.

(1.4)

Let P denote a rank one projection along range ux(t0, x0) onto any complement
of that range. Let E = ker ux(t0, x0) denote the two-dimensional null space
of the 2 × 3 Jacobean matrix ux. We assume the following non-degeneracy
conditions for the time-derivative ut and the Hessian uxx, restricted to E:

Put(t0, x0) 6= 0, and
Puxx(t0, x0)|E is strictly indefinite.

(1.5)

A specific example u(t, x) satisfying assumptions (1.4), (1.5) at t = t0, x0 = 0
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is given by

u1(t, x) = (t− t0) + x2
1 − x2

2

u2(t, x) = x3.
(1.6)

In figure 4 we observe the associated crossover collision of filaments in pro-
jection onto the null space E: at t = t0 two filaments collide, and then re-
connect. Note that after collision the two filaments do not reconnect as be-
fore, re-establishing the previous filaments. Instead, they cross over, forming
bridges between originally distinct filaments. Figure 4 describes the universal
unfolding, by the time “parameter” t, of a standard transcritical bifurcation in
x-space. In fact, suppose u(t, x) satisfies assumptions (1.4), (1.5). Then there
exists a local diffeomorphism

τ = τ(t)
ξ = ξ(t, x)

(1.7)

mapping (t0, x0) to τ0 = t0, ξ0 = 0, such that the original zero set trans-
forms to that of example (1.6), rewritten in (τ, ξ)-coordinates. This follows
from Lyapunov-Schmidt reduction and elementary singularity theory; see for
example [15].
In an early survey, Tyson and Strogatz [31] hinted at topologically consistent
changes of the connectivity of oriented tip filaments, as a theoretical possibility.
The point of the present paper is to identify specific singularities, in the sense
of singularity theory, which achieve such changes and which, in addition, are
generic with respect to the initial conditions of general reaction diffusion sys-
tems. Genericity refers to topologically large sets. These sets contain countable
intersections of open dense sets, and are dense. We caution our PDE readers
here that we are not addressing issues like loss of regularity (smoothness) or
development of singularities in a blow-up sense. Genericity is based on pertur-
bations of only the initial conditions. We do not require any perturbations of
the underlying partial differential equations themselves.
We consider it a fundamental idea to study solutions u(t, x) of partial differ-
ential equations, qualitatively, by investigating the singularities of their level
sets – possibly for all, or at least for generic initial conditions. Such an idea is
already present in work by Schaeffer, [27], and more recently by Damon, [7],
[8], [9] and the references there. In view of example (2.12) for linear scalar
parabolic equations in one space dimension below, the first relevant example
can even be attributed to Sturm [28], 1836. For present day relevance of Sturm’s
observations, once motivated by Sturm-Liouville theory, see also [3], [12], [23].
The work by Schaeffer addresses level sets of strictly convex scalar hyperbolic
conservation laws in one space dimension. His analysis is based on the vari-
ational formulation due to Lax: for almost every (t, x) the solution u(t, x)
appears as the pointwise minimizer of a given function, which involves the
initial conditions u0(x) explicitly. The backwards uniqueness problem, a some-
what delicate technical point for our parabolic systems, is circumvented by the
explicit Lax formula in his context.

Documenta Mathematica 5 (2000) 695–731



700 Bernold Fiedler and Rolf M. Mantel

Damon’s work is motivated by Gaussian blurring and by applications of the
linear heat equation to image processing, but applies to a large class of differ-
ential operators. Unfortunately, the partial differential equations are viewed as
purely local constraints on the k-jet of “solutions”. Neither initial nor boundary
conditions are imposed on these “solutions”. Genericity is understood purely
in the space of smooth such “solutions”. The important nonlocal PDE issue of
genericity in terms of initial conditions, as addressed in our present paper, has
not been resolved by Damon’s approach.
In contrast to these abstract results, strongly in the spirit of pure singularity
theory, our motivation is the global qualitative dynamics of reaction diffusion
systems. In particular, we do require our solutions u = u(t, x) to not only
satisfy the underlying partial differential equations near (t0, x0) but also the
respective initial and boundary conditions. For a technically detailed statement
see our main result, theorem 2.1 below. As a consequence, the crossover of
filaments just described is the one and only non-destructive collision of filaments
possible – for a generic set of initial conditions. See theorem 2.2.
The remaining sections are organized as follows. Preparing for the proof of
theorem 2.1, we provide an abstract jet perturbation lemma in section 3 which
is based on backwards uniqueness results for linear, non-autonomous parabolic
systems. In section 4, we prove theorem 2.1 using Thom’s jet transversality
theorem. Moreover we present a generalization to the vector case u ∈ Rm,m ≥
2, in corollary 4.2. Theorem 2.2 is proved in section 5. Section 6 summarizes a
fast numerical method, due to [11, 22], for time integration of a specific excitable
medium with steep fronts in three space dimensions. In section 7 we adapt
this method to compute filaments and their associated local isochrone phase
bands. We conclude with numerical examples illustrating crossover collisions in
autonomous and periodically forced reaction diffusion systems, including the
unlinking of linked twisted scroll rings and the unknotting of a trefoil torus
knot filament; see section 8.
Acknowledgment. Both authors are grateful to the Institute of Mathematics
and its Applications (IMA), Minneapolis, Minnesota. The main part of this
work was completed there during a PostDoc stay of the second author and
several visits of the first author as senior visiting scientist during the special year
”Emerging Applications of Dynamical Systems”, 1997/98. We are indebted to
Jim Damon for helpful discussions, and to the referee for additional references.
We thank Martin Rumpf and Peter Serocka for help with visualization. Support
by the Deutsche Forschungsgemeinschaft is also gratefully acknowledged.

2 Main Results

For a technical setting we consider semilinear parabolic systems

uit = divx(d
i(t, x)∇xui) + f i(t, x, u,∇xu)(2.1)

throughout the present paper. Here u = (u1, . . . , um) ∈ Rm, x =
(x1, . . . , xN ) ∈ Ω ⊂ RN . The data di, f i are smooth with uniformly posi-
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tive definite diffusion matrices di. The bounded open domain Ω is assumed to
have smooth boundary. Inhomogeneous mixed linear boundary conditions

αi(x)u
i(t, x) + βi(x)∂νu

i(t, x) = γ(x)(2.2)

with smooth data and αi, βi ≥ 0, α2
i + β2

i ≡ 1 are imposed. Periodic bound-
ary conditions are also admissible, as well as uniformly parabolic semilinear
equations on compact manifolds with smooth boundaries, if any.
The solutions

u = u(t, x;u0)(2.3)

of (2.1), (2.2) with initial condition

u(0, x;u0) := u0(x)(2.4)

define a local semi-evolution system in the phase space X of profiles u0(·) in
any of the Sobolev spaces W k′,p(Ω), k′ > N/p, which satisfy the boundary
conditions (2.2); see [16] for a reference. By the smoothing property of the
parabolic system, solutions are in fact smooth in their maximal open intervals
of existence t ∈ (0, t+(u0)) and depend smoothly on u0 ∈ X , both when viewed
pointwise and when viewed as x-profiles u(t, ·;u0) ∈ X .
To address the issue of singularities u(t0, x0) = 0, in the sense of singularity the-
ory, we consider the jet space Jkx of Taylor-polynomials in x = (x1, . . . , xN ) ∈
RN of degree at most k, with real coefficients and vector values u ∈ Rm. Defin-
ing the k-jet jkxu with respect to x at (t0, x0) as

(jkxu)(t0, x0) := (u, ∂xu, . . . , ∂
k
xu)(t0, x0),(2.5)

Taylor expansion at x0 allows us to interpret jkxu(t0, x0) as an element of our
linear jet space Jkx satisfying

u(t0, x0) = 0.(2.6)

Here and below, we assume that k′ > k +N/p so that the evaluation

u 7→ jkxu(t0, x0)(2.7)

becomes a bounded linear map from X to Jkx , by Sobolev embedding.
On the level of k-jets, a notion of equivalence is induced by the action of local
Ck-diffeomorphisms x 7→ Φ(x), u 7→ Ψ(u) fixing the origins of x ∈ RN , u ∈ Rm,
respectively. Indeed, for any polynomial p(x) ∈ Jkx with p(0) = 0, we may
consider the transformed polynomial

jkx(Ψ ◦ p ◦ Φ) ∈ Jkx .(2.8)

We call the jet (2.8) contact equivalent to jkxp = p; see for example [15].
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By a variety S ⊂ R` we here mean a finite disjoint union

S =

j0⋃

j=0

Sj(2.9)

of embedded submanifolds Sj ⊂ R` with strictly decreasing dimensions such
that Sj1 ∪ . . .∪Sj0 is closed for any j1. We call codimR` S0 the codimension of
the variety S in R`.
Similarly, by a singularity (in the sense of singularity theory) we mean a variety
S ⊂ Jkx in the sense of (2.9), which satisfies u = 0 and is invariant under any
of the contact equivalences (2.8). Let codimJkx

S denote the codimension of

S, viewed as a subvariety of Jkx . Shifting codimension by N = dimx for
convenience we call

codimS := (codimJkx
S)−N(2.10)

the codimension of the singularity S. For example, a typical map (t0, x0) 7→
jkxu(t0, x0) with x0 ∈ RN , u ∈ Rm will miss singularities of codimension 2 or
higher. In contrast, the map can be expected to hit singularities S of codi-
mension 1 at isolated points t = t0, and for some x0 ∈ RN . Having shifted
codimension by N in (2.10) therefore conveniently allows us to observe that
typical profiles of functions u(t, ·) miss singularities of codimension 2 entirely,
and encounter such singularities of codimension 1, anywhere in x ∈ RN , only
at discrete times t. We aim to show that this simple arithmetic also works for
PDE solutions u(t, x) under generic initial conditions.
Since the geometrically simple issue of codimension is overloaded with – some-
times conflicting – definitions in singularity theory, we add some examples
which illustrate our terminology. First consider the simplest case

S = {u = 0} ⊂ Jkx .(2.11)

where u(t, ·) : RN → Rm. Then codimS = m − N . For systems of m = 2
equations in N = 0 space dimensions, that is, for ordinary differential equations
in the plane, typical trajectories fail to pass through the origin in finite time:
codimS = 2. For N = 1, we can expect the solution curve profile u(t, ·) to
pass through the origin at certain discrete times t0 and positions x0, because
codimS = 1. For N = 2 we have codimS = 0. We therefore expect isolated
zeros to move continuously with time: see our intuitive description of planar
spiral waves in section 1 and figure 1. Since codimS = −1 for N = 3, we
expect zeros of u(t0, ·) to occur along one-dimensional filaments, even for fixed
t0. This is the case of scroll wave filaments ϕt0 in excitable media.
Next we consider a scalar one-dimensional equation, m = N = 1. Multiple
zeros are characterized by

S = {u = 0, ux = 0},(2.12)
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x0

x′0

x

tt0 t′0

Figure 5: Saddle-node singularities of codimension 1.

a set to which we ascribe codimension 1. Indeed, we can typically expect a pair
of zeros to coalesce and disappear as in (t0, x0) of figure 5. The opposite case,
a pair creation of zeros as in (t′0, x

′
0), does not occur for scalar nonlinearities

f satisfying f(t, x, 0, 0) = 0. This observation, going back essentially to Sturm
[28], conveys considerable global consequences for the associated semiflows; see
for example [12] and the references there.
Passing to planar 2-systems, m = N = 2, the same saddle-node bifurcations of
figure 5 could for example correspond to annihilation and creation of a pair of
tips of counter-rotating spirals, respectively.
We conclude our series of motivating examples with the singularity (1.4) of
filament collision in systems satisfying N = m+ 1:

S = {u = 0, co-rank ux ≥ 1}.(2.13)

Note that codimS = 1. For the stratum S0 of S with lowest codimension we
can assume that the quadratic form Puxx|E is indeed nondegenerate, in the
notation of (1.5). Under the additional transversality assumption Put 6= 0, the
strictly indefinite case was discussed in section 1. It leads to crossover collisions,
which are our main applied motivation here. The strictly definite case, positive
or negative, leads to creation/annihilation of small circular filaments. For a
numerical realization of the associated scroll ring annihilation we refer to the
simulation in figure 8.
After our intermezzo on singularities we now address genericity. We say that
a property of solutions u(t, x;u0) of our semilinear parabolic system (2.1) –
(2.4) holds for generic initial conditions u0 ∈ X if it holds for a generic subset
of initial conditions. Here subsets are generic (or residual) if they contain a
countable intersection of open dense subsets of X . Recall that generic subsets
and countable intersections of generic subsets are dense in complete metric
spaces X , by Baire’s theorem; see [10, ch. 12].
With these preparations we can now state our main result concerning solutions
u(t, x) of our parabolic system (2.1) – (2.4) with generic initial conditions u0 ∈
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tt′0t0

x′0

x0

x

Figure 6: Annihilation (left) and creation (right) of closed filaments

X ⊂ W k′,p ↪→ Ck. As before 0 ≤ t < t+(u0) denotes the maximal interval of
existence. Finally, we recall that a map ρ : V → J between Banach spaces is
transverse to a variety S = S0 ∪ . . . ∪ Sj0 , in symbols:

ρ ∩> S,(2.14)

if ρ(v) ∈ Sj implies

Tρ(v)Sj + range Dρ(v) = J ;(2.15)

see for example [1, 19].

Theorem 2.1 For some fixed k ≥ 1, consider a finite collection of singularities
Si ⊂ Jkx , each of codimension at least 1. Then the following holds true for
solutions u(t, x) of (2.1) – (2.4) with generic initial conditions u0 ∈ X.
Singularities Si with

codimSi ≥ 2(2.16)

are not encountered at any (t0, x0) ∈ (0, t+(u0)) × Ω. In other words,
jkxu(t0, x0) ∈ Si for some 0 < t0 < t+(u0), x0 ∈ Ω implies codimSi = 1.
The map

(0, t+(u0))× Ω → Jkx
(t0, x0) 7→ jkxu(t0, x0)

(2.17)

is in fact transverse to each of the varieties Si. In particular, the points (tn0 , x
n
0 )

where the solution u(t, x) encounters singularities Si of codimension 1 are iso-
lated in the domain [0, t+(u0))×Ω of existence. Although there can be countably
many singular points (tn0 , x

n
0 ) accumulating to the boundary t+(u0) or ∂Ω, the

values tn0 are pairwise distinct.
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Theorem 2.2 For some fixed k ≥ 1, consider solutions u(t, x) of (2.1) – (2.4)
with N = 3, m = 2, that is with x ∈ Ω ⊂ R3 and u(t, x) ∈ R2. Then for
generic initial conditions u0 ∈ X the following holds true.

Except for at most countably many times t = tn0 ∈ (0, t+(u0)), the filaments

{x ∈ Ω | u(t, x) = 0}(2.18)

are curves embedded in Ω, possibly accumulating at the boundary. At each
exceptional value t = tn0 , exactly one of the following occurs at a unique location
xn0 ∈ Ω:

(i) a creation of a closed filament, or

(ii) an annihilation of a closed filament, or

(iii) a crossover collision of filaments.

For cases (i),(ii) see figures 6, 8; for case (iii) see figures 4, 9–13, and
(1.4) – (1.6).

3 Jet Perturbation

In this section we prove a perturbation result, lemma 3.1, which is crucial to our
proof of theorem 2.1. We work in the technical setting of semilinear parabolic
systems (2.1) – (2.4) with associated evolution

u = u(t, x;u0)(3.1)

on the phase spaceX of W k′,p(Ω)-profiles u(t, ·, ;u0) satisfying Robin boundary
conditions (2.2). Let k′ − N

p > k ≥ 1, to ensure the Sobolev embedding

X ↪→ Ck(Ω). Let

D := {(t, x, u0) | x ∈ Ω, u0 ∈ X, 0 < t < t+(u0)}(3.2)

denote the interior of the domain of definition.

Lemma 3.1 The map

jkxu : D → Jkx
(t, x, u0) 7→ jkxu(t, x;u0)

(3.3)

is a Cκ map, for any κ. For any (t, x, u0) ∈ D, the derivative

Du0j
k
xu(t, x;u0) : X → Jkx(3.4)

is surjective.
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Proof:
The regularity claim follows from smoothness of the data di, f i, αi, βi and the
smoothing action of parabolic systems; see for example [16, 26, 29, 14, 21].
To prove surjectivity of the linearization (3.4) with respect to the initial con-
dition, we essentially follow [16]. First observe that for any fixed x0 ∈ Ω the
linear evaluation map

jkx : X → Jkx
v 7→ jkxv(x0)

(3.5)

is bounded, because X ↪→ Ck(Ω), and trivially surjective. Moreover, the jet
space Jkx is finite-dimensional. It is therefore sufficient to show that the lin-
earization

Du0u(t, ·;u0) : X → X
v0 7→ v(t·)(3.6)

possesses dense range, for all u0 ∈ X , 0 < t0 < t+(u0). Here v(t, ·) satisfies
the linearized parabolic system

vit = divx(di(t, x)∇xvi) + f ip · ∇xv + f iu · v(3.7)

with boundary conditions (2.2) for v and initial condition v(0, ·) = v0. The
partial derivatives f ip, f

i
u of the nonlinearity f = f(t, x, u, p) are to be evaluated

along (t, x, u(t, x),∇xu(t, x)).
To show the density of range Du0u(t, ·;u0) in X , we now proceed indirectly.
Suppose

closXDu0u(t0, ·;u0)X 6= X.(3.8)

Then X contains a nonzero element w(t0, ·) in the L2-orthogonal complement
of Du0u(t, ·;u0)X in X . Consider the associated solution w(t, ·) ∈ X of the
formal adjoint equation

wit = −divx(di(t, x)
T∇xwi) +

∑

j

divx(w
jf jpi)− (fTu w)i(3.9)

for 0 ≤ t ≤ t0, still with boundary conditions (2.2) but with “initial” condition
w(t0, ·) at t = t0. We again use the notation f jpi for the partial derivative of f j

with respect to ∇ui, here.
Direct calculation shows that scalar products 〈·, ·〉 between solutions v(t, ·) of
the linearization (3.7) and solutions w(t, ·) of its formal adjoint (3.9) in L2(Ω)
are time-independent. Therefore, by construction of w(t0, ·)

〈v(t, ·), w(t, ·)〉L2(Ω) = 〈v(t0, ·), w(t0, ·)〉 = 0,(3.10)

for all 0 ≤ t ≤ t0. Evaluating at t = 0, v(0, ·) = v0 ∈ X , we conclude

〈v0, w(0, ·)〉L2(Ω) = 0(3.11)
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for all v0 ∈ X , and hence

w(0, ·) = 0.(3.12)

In other words, the backwards parabolic system (3.9) possesses a solution w(t, ·)
which starts nonzero at t = t0 > 0 but ends up zero at t = 0. This is a contra-
diction to the so-called backwards uniqueness property of parabolic equations.
See for example [14], [16] and the references there. By contradiction, we have
therefore proved that

closXDu0u(t0, ·;u0)X = X,(3.13)

contrary to our indirect assumption (3.8). This completes the indirect proof of
the perturbation lemma. ./

4 Proof of Theorem 2.1

Our proof of theorem 2.1 is based on Thom’s transversality theorem [30, 1]. For
convenience we first recall a modest adaptation of the transversality theorem,
fixing notation. We use the concept of transversality of a map ρ to a variety S
as explained in (2.9), (2.14), (2.15). The proof is based on Sard’s theorem and
is not reproduced here.

Theorem 4.1 [Thom transversality]
Let X be a Banach space, D ⊆ R` ×X open and

ρ : D → R`
′

(y, u0) 7→ ρ(y, u0)
(4.1)

a Cκ-map. Let S ⊂ R`
′

be a variety and assume

ρ ∩> S,(4.2)

κ > max{0, `− codimR`
′ S}.(4.3)

Then the set

XS := {u0 ∈ X | ρ(·, u0) S, where defined}(4.4)

is generic in X (that is: contains a countable intersection of open dense sets).

The point of the theorem is, of course, that in XS transversality to S is
achieved, for fixed u0, by varying only y in ρ(y, u0). For example, u0 ∈ XS and
codimR`

′ S > ` imply

ρ(y, u0) 6∈ S(4.5)
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whenever y is such that (y, u0) ∈ D. This follows immediately from condition
(2.15) on transversality. In other words, for generic u0 the image of ρ(·, u0)
misses varieties of sufficiently high codimension.
We now use theorem 4.1 to prove our main result, theorem 2.1. We consider
the jet evaluation map

ρ(t, x, u0) := jkxu(t, x;u0)(4.6)

of the evolution u(t, ·;u0) associated to our parabolic system; see (2.1) – (2.5).
We choose D to be the (open) domain of definition

D = {(t, x, u0) | 0 < t < t+(u0), x ∈ Ω, u0 ∈ X}(4.7)

of the evolution; clearly y = (t, x) ∈ RN+1 so that ` = N + 1. For the variety
S we choose, successively, any of the finitely many singularities S i ⊂ Jkx of
theorem (2.1). Their codimensions as subvarieties of Jkx

∼= R`
′

are

codimJkx
Si = N + codimSi;(4.8)

see (2.10). Note that assumptions (4.2) and (4.3) both hold, independently of
the choice of k for the varieties Si ⊆ Jkx , by lemma 3.1. Claim (2.17) about
transversality of (t0, x0) 7→ u(t0, x0;u0) to any singularity Si is now just the
statement of theorem 4.1.
Next, we prove that singularities Si with codimSi ≥ 2 are missed altogether,
for generic initial conditions u0 ∈ X , as was claimed in (2.16). We evaluate
(4.8) to yield

codimJkx
Si = N + codimSi ≥ N + 2 > N + 1 = `(4.9)

In view of example (4.5), this proves our claim (2.16): generically, only singu-
larities Si with codimSi = 1 are encountered.
Now we prove that the positions (tn0 , x

n
0 ), where singularities Si with codimSi =

1 are encountered, are generically isolated in [0, t+(u0)) × Ω. Indeed assum-
ing jkxu0 6∈ Si, we have tn0 > 0 without loss of generality. Since the lower-
dimensional strata Sij , j ≥ 1 of the singularity Si are of (singularity) codimen-
sion ≥ 2, they are missed by solutions entirely, for generic initial conditions u0.
Therefore

jkxu(t
n
0 , x

n
0 ;u0) ∈ Si0(4.10)

only hit the maximal strata, staying away from the closed union of lower-
dimensional strata, uniformly in compact subsets of [0, t+(u0)) × Ω. Because
the Si0 are finitely many embedded submanifolds of codimensionN+1 in Jkx and
because the crossings (4.10) are transverse, the corresponding crossing points
(tn0 , x

n
0 ) are also isolated in [0, t+(u0))× Ω, as claimed.

It remains to show that the values tn0 are mutually distinct for generic initial
conditions u0 ∈ X . To this end we consider the augmented map

ρ̃ : D̃ → Jkx × Jkx
(t, x1, x2, u0)→ (jkxu(t, x1;u0), j

k
xu(t, x2;u0))

(4.11)
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on the open domain

D̃ := {(t, x1, x2, u0) | 0 < t < t+(u), x1, x2 ∈ Ω, x1 6= x2, u0 ∈ X}.
(4.12)

To apply Thom’s transversality theorem 4.1, we only need to check the transver-
sality assumption (4.2). In fact we show

ρ̃ ∩> {0} ∈ Jkx × Jkx .(4.13)

This follows, analogously to lemma 3.1, from x1 6= x2 and the fact that the
linearization Du0u(t0, ·;u0) possesses dense range in X ; see (3.6) – (3.13).
We can therefore apply theorem 4.1 to ρ̃ with respect to the varieties

S̃ := Si1 × Si2 .(4.14)

In Jkx × Jkx , these varieties have codimension

codimJkx×Jkx S̃ = 2N + codimSi1 + codimSi2 = 2N + 2(4.15)

Since this number exceeds

dim(t, x1, x2) = 2N + 1,(4.16)

the variety S̃ is missed by ρ̃(·, ·, ·;u0), for generic u0 ∈ X . See example (4.5)
again. Therefore the times tn0 where singularities Si can occur are pairwise
distinct for generic initial conditions, completing the proof of theorem 2.1. ./

Reviewing the proof of theorem 2.1, which hinges crucially on the transversality
statement (3.4) of our jet perturbation lemma 3.1, we state an easy generaliza-
tion which is important from an applied viewpoint. Suppose that only m′ ≤ m
profiles (or m′ linear combinations) out of the m profiles u = (u1, ..., um)(t, x)
are observable:

û := P̂u,(4.17)

for some linear rank m′ projection of Rm. Then û(t, x;u0) may encounter

certain singularities Ŝi in the space Ĵkx of k-jets with values in range P̂ .

Corollary 4.2 Under the assumptions of theorem 2.1 and in the above set-
ting, theorem 2.1 remains valid, verbatim, for singularities Ŝi ⊂ Ĵkx of the k-jets

jkx û(t, x) of the observables û := P̂ u. We emphasize that codimensions of Ŝi

are then to be computed in Ĵkx .

Proof:
Acting on the dependent variables (u1, . . . , um), only, the projection P̂ lifts to

a projection P̂k from Jkx onto Ĵkx such that

jkx P̂u(t, x;u0) = P̂kj
k
xu(t, x;u0)(4.18)
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Therefore the surjectivity property (3.4) of lemma 3.1 remains valid for

Du0j
k
x û(t, x;u0) : X → Ĵk.(4.19)

Repeating the proof of theorem 4.1, now on the level of û, Ĵkx , Ŝ
i, proves the

corollary. ./

5 Proof of Theorem 2.2

To prove theorem 2.2 we invoke theorem 2.1 for x ∈ Ω ⊂ R3, u(t, x) ∈ R2, and
appropriate singularities Si ⊂ Jkx of singularity codimension 1, in the sense of
(2.10).
We first consider the case that 0 is a regular value of u(t, ·) on Ω, that is

rank ux(t0, x0) = 2(5.1)

is maximal, whenever u(t0, x0) = 0, 0 < t0 < t+(u0), x0 ∈ Ω. Then the
filament

{x ∈ Ω | u(t0, x) = 0}(5.2)

is an embedded curve in Ω, as claimed in (2.18).
Next consider the case

rank ux(t0, x0) ≤ 1.(5.3)

Let S ⊂ Jk=2
x be the set of those 2-jets (u, ux, uxx) ∈ Jk=2

x satisfying u = 0
and rank ux = 1. Clearly S is a singularity in the sense of (2.9), (2.10) and

codimS = 1(5.4)

as was discussed in example (2.13). We recall that the maximal stratum S0 of
S, determining the codimension, is given by the conditions

rank ux = 1,
Puxx|E nondegenerate.

(5.5)

Here E := ker ux denotes the kernel and P denotes a projection in R2 onto a
complement of the range of the Jacobian ux.
In view of example (2.13) and section 1, nondegeneracy of Puxx|E gives rise to
the three cases (i) - (iii) of corollary 2.2, via theorem 2.1, if only we show that

Put(t0, x0) 6= 0(5.6)

whenever j2xu(t0, x0) ∈ S.
By theorem 2.1, we have

j2xu(·, ·) ∩> S(5.7)
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in J2
x , at (t0, x0). Evaluating only transversality in the first component u = 0

of j2xu = (u, ux, uxx) ∈ J2
x , we see that

rank (ut, ux) = 2(5.8)

at (t0, x0). Since Pux = 0 by definition of P , this implies

Put(t0, x0) 6= 0(5.9)

and the proof of corollary 2.2 is complete. ./

6 Numerical Model and Methods

For our numerical simulations, we use two-variable N = 2 reaction-diffusion
equations

∂tũ
1 = 4ũ1 + f(ũ1, ũ2)

∂tũ
2 = D4ũ2 + g(ũ1, ũ2)

(6.1)

on a square or cube Ω with Neumann boundary conditions. The functions
f(ũ1, ũ2) and g(ũ1, ũ2) express the local reaction kinetics of the two variables
ũ1 and ũ2. The diffusion coefficient for the ũ1 variable has been scaled to unity,
and D is the ratio of diffusion coefficients. For the reaction kinetics we use

f(ũ1, ũ2) = ε−1ũ1(1− ũ1)(ũ1 − uth(ũ2))
g(ũ1, ũ2) = ũ1 − ũ2,

(6.2)

with uth(ũ
2) = (ũ2 + b)/a. This choice differs from traditional FitzHugh-

Nagumo equations, but facilitates fast computer simulations [11]. In non-
autonomous simulations, we periodically force the excitability threshold b =
b(t) = b0 + A cos(ωt). We keep most model parameters fixed at a = 0.8, b0 =
0.01, ε = 0.02, and D = 0.5.
Without forcing, the medium is strongly excitable, see figure 1. See figure 2
for the dynamics of a wave train. In two space dimensions, the equations
generate rigidly rotating spirals with small cores. These spirals are far from
the meander instability, and appropriate initial conditions quickly converge to
rotating waves. We map the coordinates (ũ1, ũ2) into the (u1, u2)-coordinates
of theorem 2.1 by setting u1 = ũ1 − 0.5 and u2 = ũ2 − (a/2 − b0). We have
remarked in the introduction, already, that our results are not effected by such
a shift of level sets.
In the autonomous cases we choose a forcing amplitude A = 0, of course. For
collision of spirals in two dimensions, we choose A = 0.01, ω = 3.21. For
collision of scroll wave filaments in three dimensions, we choose A = 0.01, ω =
3.92.
The challenging aspect of computing wave fronts in excitable media is the res-
olution of both spatial and temporal details of the wave fronts while the inter-
esting global phenomena occur on a much slower time scale. Since both spatial
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and temporal resolutions have to be high, the main computational speedup is
achieved by minimizing the number of operations necessary per time step and
space point.
Simulations with cellular automata encounter problems due to grid isotropies
[17, 32, 33]. The existence of persistent spatial wave fronts impedes algorithms
with variable time steps. Due to linearity of the spatial operator, methods with
fixed, small time steps are feasible. Moreover, ũ1 and ũ2 can be updated in
place away from the wave front.
We use a third-order semi-implicit stepping routine to time step f , combined
with explicit Euler time stepping for g and the Laplacian term. In the eval-
uation of f and in the diffusion of ũ1, we take into account that ũ1 ≈ 0 in a
large part of the domain, and that f(0, ũ2) = 0. This allows a cheap update
of approximately half of the grid elements and, even with a straightforward
finite-difference method, enables simulation on a workstation. The extra effort
of an adaptive grid with frequent re-meshing has been avoided.
In three space dimensions N = 3, we use a 19-point stencil with good numerical
properties (isotropic error, mild time-step constraint) for approximating the
Laplacian operator. In two dimensions N = 2, we use the analogous 9-point
stencil. Neumann boundary conditions are imposed on all boundaries.
For specific simulation runs in this paper, we take 1253 grid points. The domain
Ω is chosen sufficiently large, in terms of diffusion length, to exhibit scroll
wave collision phenomena. The time step 4t is chosen close to maximal: let h
denote grid size, σ = 3/8 the stability limit of the Laplacian stencil, and choose
4t := 0.784σh2. This results in the following numerical parameters: domain
Ω = −[15, 15]3, grid spacing h = 30/124 ≈ 1/4, time step 4t = 0.0172086,
giving 4t/ε = 0.86043. For high-accuracy studies of the collision of scroll
waves, we use a higher resolution of Ω = [−10, 10]3, h = 20/124 ≈ 1/6, 4t =
0.00764828, giving4t/ε = 0.3882414. Note that 4t/ε < 1 in both cases, which
means that the temporal dynamics are well resolved. Further numerical details
for the three-dimensional simulations are given in [11].

7 Filament Visualization

After discretization in the cube domain Ω, and time integration, the solution
data u(t, x) ∈ R2 are given as values u(ti, xi) at time steps ti and at positions
xi on a Cartesian lattice. In our two-dimensional examples, figure 1 and exam-
ple 8.2, we show the vector field (ũ1, ũ2) = (u1 + 0.5, u2 + (a/2− b0), choosing
for each point a color vector in RGB space of (u1, 0.73 ∗ (u2)2, 1.56 ∗ u2). We
also mark the (past) trace of the tip path in white, to keep track of the move-
ments of the spiral tip. In figure 3 and example 8.3, we depict the wave front
in x ∈ Ω as the surface u1 = 0.
To determine the filament location, alias the level set

ϕt := {x ∈ Ω | u1(t, x) = u2(t, x) = 0},(7.1)

we use a simplicial algorithm in the spirit of [2, ch. 12].
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As in section 6, let Q ⊆ Ω be any of the small discretization cubes. We trian-
gulate its faces by bisecting diagonals, denoting the resulting closed triangles
by τ . The corners of τ are vertices of Q. We orient τ according to the induced
orientation of ∂Q by its outward normal ν and the right hand rule applied to
(τ, ν).
By linear interpolation, u(t, τ) ⊂ R2 is also an oriented triangle. The filament
ϕt passes through τ , on the discretized level, if and only if 0 ∈ u(t, τ). Inverting
the linear approximation u on τ defines an approximation ϕtι ∈ τ to ϕt ∩ τ .
We orient ϕt to leave Q through τ , if the orientation of the triangle u(t, τ)
is positive (”door out”). In the opposite case of negative orientation we say
that ϕt enters Q through τ (”door in”). By elementary degree theory, the
numbers of in-doors and of out-doors coincide for any small discretization cube
Q. Matching in-doors ϕtι and out-doors ϕtι′ in pairs defines a piecewise linear,
oriented approximation to the filament ϕt. For orientations before and after
crossover-collision see figure 4.
Note that here and below, we freely discard certain degenerate, non-generic
situations from our discussion which complicate the presentation and tend to
confuse the simple issue. In fact, due to homotopy invariance of Brouwer degree,
this piecewise linear (PL) method is robust with respect to perturbations of
degeneracies like filaments touching a face of the cube Q or repeatedly threading
through the same triangle τ .
To indicate the phase near the filament ϕt, we compute a tangential approxi-
mation to the accompanying somewhat arbitrary isochrone

χt := {x ∈ Ω | u1(t, x) ≥ 0 = u2(t, x)}(7.2)

as follows. The values (u1, u2)(t, x) = (α, 0) with α > 0 define a local half
line in the face triangle x ∈ τ through the filament point ϕtι ∈ τ . Together
with a filament point ϕtι−1 in another cube face, this half line also defines a
half space which approximates the isochrone χt, locally . We choose a point
ϕ̃tι in this half space, a fixed distance from ϕtι and such that the line from
ϕtι to ϕ̃tι is orthogonal to the filament line from ϕtι−1 to ϕtι. The sequence
of triangles (ϕtι−1, ϕ̃

t
ι−1, ϕ̃

t
ι), (ϕ

t
ι−1, ϕ̃

t
ι, ϕ

t
ι) then define a triangulated isochrone

band approximating χt near the filament ϕt.
In practical computations shown in the next section, we distinguish an absolute
front and back of the isochrone band by color, independently of camera angle
and position. This difference reflects the absolute orientation of filaments, in-
troduced above, which induces an absolute orientation and an absolute normal
for the accompanying isochrone χt. The absolute normal of the isochrone χt

also points into the propagation direction of the isochrone, by our choice of
orientation.

8 Examples

In this section we present four simulations of three-dimensional filament dy-
namics, both in autonomous and in periodically forced cases. All examples are
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based on equations (6.1) with the set of nonlinearities and parameters speci-
fied there. We use a cube Ω = [−15, 15]3 as a spatial domain, together with
Neumann boundary conditions. Only in example 8.4, we use a smaller cube
Ω = [−10, 10]3. Reflecting the solutions through the boundaries we obtain an
extension to the larger cube 2Ω with periodic boundary conditions. Viewing
this system on the flat 3-torus T 3, equivalently, eliminates all boundary con-
ditions and avoids the issue of ∂Ω not being smooth. In the paper version,
each of the spatio-temporal singularities at (t0, x0) is illustrated by a series of
still shots: t ' 0, t / t0, t = t0, t ' t0 and t = tend for the respective run. In
the Internet version, each sequence is replaced by a downloadable animation in
MPEG-1 format; see

http://www.math.fu-berlin.de/~Dynamik/

For possible later, updated and revised versions, please contact the authors.
Discretization was performed by 1253 cubes and a time step of 4t = 0.0172086
(4t = 0.00764828 in example 8.4); see section 6. Autonomous cases refer to
the forcing amplitude A = 0, whereas A = 0.01 switches on non-autonomous
additive forcing.

8.1 Initial Conditions

Prescribing approximate initial conditions for colliding scroll waves in three
space dimensions is a somewhat delicate issue. We describe the construction
in 8.1.1, 8.1.2 below. We discuss our four examples in sections 8.3-8.6.

8.1.1 Two-dimensional spirals

According to our numerical simulations, planar spiral waves are very robust
objects. In fact, sufficiently separated nondegenerate zeroes of the planar “vec-
tor field” (u1

0, u
2
0)(x1, x2) of initial conditions typically seemed to converge into

collections of single-armed spiral waves. Their tips were located nearby the
prescribed zeroes of u0.
To prepare for our construction of scroll waves below, we nevertheless construct
u0 as a composition of two maps,

u0 = σ ◦ γ(8.1)

γ : R2 ⊇ Ω → C(8.2)

(x1, x2) 7→ z

σ : C → R2(8.3)

z 7→ (u1
0, u

2
0)

Here γ prescribes the geometric location of the spiral tip and wave fronts. The
scaling map σ is chosen piecewise linear. It adjusts for the appropriate range
of u-values to trace out a wave front cycle in our excitable medium, see fig. 2.
Specifically, we choose

σ(z) = (u1, u2) = (Re z, Im z/4)(8.4)
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near the origin. Further away, we cut off by constants as follows:

u1 :=





−0.5, when Re(z) < −0.5

Re(z), when Re(z) ∈ [−0.5, 0.5]

0.5, when Re(z) > 0.5

u2 :=





−0.4, when Im(z) < −1.6

0.25Im(z), when Im(z) ∈ [−1.6, 1.6]

0.4, when Im(z) > 1.6

(8.5)

In the following, we will sometimes further decompose σ = σ2 ◦ σ1 where

σ1(z) = (Re(z), Im(z)/4)(8.6)

is linear and the clamping σ2 : R2 → R2 is the cut-off

(u1, u2) 7→ (sign(u1) min{|u1|, 0.5}, sign(u2) min{|u2|, 0.4}).(8.7)

For example, this choice of σ, combined with the simplest geometry map
γ(x1, x2) = x1 + ix2, results in a spiral wave rotating clockwise around
the origin, with wave front at x1 = 0, x2 < 0, initially, and wave back at
x1 = 0, x2 > 0.
A possible initial condition for a spiral — antispiral pair as in example 8.2
below would be

γ : [−15, 15]2 → C
(x1, x2) 7→ |x1| − 6 + ix2.

This reflection symmetric initial condition creates a pair of spirals rotating
around (±6, 0). The spiral at (6, 0) rotates clockwise and the symmetric spiral
around (−6, 0) rotates anti-clockwise.

8.1.2 Three-dimensional scrolls

It is useful to visualize a three-dimensional scroll wave as a stack foliated by two-
dimensional slices which contain planar spirals. Initial conditions u0 = σ◦γ for
scroll waves then contain the following ingredients: a mapping γ : R3 → C that
stacks the spirals into the desired three-dimensional geometry, and a scaling
σ : C → R2. For planar γ : R2 → C as in (8.2), the scaling σ of (8.3)–
(8.7) generates a spiral whose tip is at the origin in R2. For γ : R3 → C, the
preimage in R3 of the origin under the stacking map γ will therefore comprise
the filament of the three-dimensional scroll wave. For example, it is easy to find
a stacking map γ that gives rise to a single straight scroll wave with vertical
filament: γ(x1, x2, x3) := x1 + ix2. As soon as filaments are required to form
rings, linked rings or knots, however, the design of stacking maps γ with the
appropriate zero set becomes more difficult.
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For the generation of more complicated stacking maps γ, we largely follow the
method pioneered by Winfree et al [37, 18, 39]. This approach uses a standard
method of embedding an algebraic knot in 3-space [6]. For convenience of our
readers, we briefly recall the construction here.
We construct stacking maps γ : R3 → C with prescribed, possibly linked or
knotted zero set as a composition

γ = p ◦ s.(8.8)

Here the embedding s : R3 → C2 will be related to the map

s̃ : R3 → S3
ε ⊂ R4 = C2(8.9)

denoting the inverse of the standard stereographic projection from the standard
3- sphere S3

ε of radius ε to R3; see (8.11) below. The map

p : C2 → C(8.10)

is a complex polynomial p = p(z1, z2) in two complex variables z1, z2. The
zero set of p describes a real, two-dimensional variety V in C2. Consider the
intersection ϕ̃ of V with the small 3-sphere S3

ε, that is ϕ̃ := V ∩ S3
ε . Typically,

ϕ := s−1(ϕ̃) ⊂ R3, the zero set of γ, will be a one-dimensional curve or a
collection of curves: the desired filament of our scroll wave.
In the simplest case ϕ may be a circle embedded into the 3-sphere S3

ε . If
however zero is a critical point of the polynomial p, then the filament ϕ need
not be a topological circle. And even if ϕ̃ happens to be a topological circle, it
may be embedded as a knot in S3

ε.
The inverse stereographic map s̃ is given explicitly by

s̃(x1, x2, x3) =
1

R2 + ε2




2ε2x1

2ε2x2

2ε2x3

(R2 − ε2)ε


 ∼=

2ε2

R2 + ε2

(
x1 + ix2

x3 + i (R
2−ε2)
(2ε)

)
(8.11)

where R2 ≡ x2
1 + x2

2 + x2
3. Note that points inside S2

ε ⊂ R3 are mapped to the
lower hemisphere, points outside S2

ε to the upper hemisphere of S3
ε.

In our construction (8.8) of the stacking map γ, we now replace the inverse
stereographic map s̃ by the embedding

s(x1, x2, x3) ∼= c




x1

x2

x3

(cR2 − 1
4c)


 ∼=

(
cx1 + icx2

cx3 + i(c2R2 − 1
4 )

)
(8.12)

with a suitable scaling factor c. Clearly x → ∞ in R3 implies s(x) → ∞ in
C2. In the examples 8.5, 8.6 of a pair of linked rings and of a torus knot
below, the filaments ϕ = γ−1(0) ∩ Ω, ϕ̃ = s(ϕ) = p−1(0) ∩ s(Ω) do not inter-
sect the compact boundaries of the cube ∂Ω, s(∂Ω), respectively. Therefore,
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the embedded paraboloid s(R3) can in fact be modified outside s(Ω) without
changing the filaments in Ω. We modify s such that clos s(R3) closes up to a
diffeomorphically embedded 3-shere S diffeotopic to S3 in C2 \{0}, by a family
sϑ of embeddings 0 ≤ ϑ ≤ 1. Moreover, we will choose p = p(z1, z2) such that
z1 = z2 = 0 is the only critical point of p in C2. If the embedding sϑ(R3)
remains transverse to p−1(0) in C2 \ {0} throughout the diffeotopy, then the
variety p−1(0) is an embedded real surface in C2, outside z = 0. The filament
ϕ̃ = s(ϕ) = p−1(0) ∩ s(Ω) is diffeotopic to some components of p−1(0) ∩ S3

ε ,
which in turn are described classically in algebraic geometry.
The same remarks apply, slightly more generally, if we replace s by a compo-
sition

s ◦ `(8.13)

where ` denotes a nondegenerate affine transformation in R3.
In summary, we generate our initial conditions by applying the following com-
position of mappings:

u0 = σ ◦ γ = (σ2 ◦ σ1) ◦ (p ◦ s).(8.14)

Here the scaling σ is given by (8.5)–(8.7). The modified stereographic projec-
tion s is given by (8.12) with ` = id, except in example 8.5, and with appro-
priate scaling constant c. The polynomial p is chosen according to the desired
topology of the filament.
The initial conditions thus created do not necessarily respect the boundary con-
ditions; however any intersection of a filament with the boundary is transverse.
Anyways, such intersections only occur in example 8.4. Neumann boundary
conditions can be enforced artificially, by standard implementation, without
introducing additional filaments.

8.2 Two-dimensional spiral pair annihilation

As a preparation to visualizing the three-dimensional behavior, we begin with
the collision of a pair of counter-rotating planar spirals. We use a domain
Ω = [−15, 15]2 and discretize with 1252 grid points, resulting in the same
spatial and temporal resolution as with our three-dimensional experiments. In
the movie and pictures, we show the subdomain [−15, 15]× [−11.25, 11.25] to
get the 3:4 size ratio typical for video.
For initial conditions, we take the fully developed rigidly rotating spiral of
figure 1 with origin at (−6, 0), for the half-plane x1 ≤ 0, and reflect at the ver-
tical x2-axis. Near-resonant periodic forcing with an amplitude A = 0.01 and
ω = 3.21 causes the spirals to drift towards each other until they collide. The
forcing makes the spiral tips drift on an almost straight, epicyclic trajectory,
until they reach interaction distance at time t = 19.2. The paths of the tips
show that the forcing is strong enough to move the spirals by approximately
twice their tip radius per rotation (which is small in comparison to their wave
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t = 0 t = 19.60

t = 31.77 t = 35.08

t = 37.67 t = 38.46

Figure 7: Interaction and collision of a pair of spiral waves in the plane.

MPEG-Movie [26.4MB,gzipped]

http://www.mathematik.uni-bielefeld.de/documenta/vol-05/21.mpeg/twodim.mpg.gz
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length). During the interaction time of the spiral tips, the u2 gradients are
much shallower than at other times. This can be seen by the fact that the
bright red part of the wave front is further away from the tip location.
The spirals then wander along the vertical axis, the excited center getting
smaller with every revolution. Finally the center is too small to sustain exci-
tation (t0 = 39.825) and disappears; the spirals annihilate. The purely local
interaction between the spiral tips shortly before collision from time t∗ = 19.2
up to the extinction at t0 = 39.825, x0 = (0, 1.4) is clearly visible from the tip
paths.
In view of theorem 2.1, this annihilation illustrates the left saddle-node singu-
larity of fig. 5 for dimu = dim x = 2.

8.3 Scroll ring annihilation

Our first three-dimensional example shows the disappearance of a closed cir-
cular filament as described, from an abstract singularity theory point of view,
in theorem 2.2,(ii), and as illustrated in figure 6. The example is autonomous,
A = 0. Viewed in a vertical planar slice through the center, the dynamics is
reminiscent of the two-dimensional spiral pair annihilation 8.2. Instead of pe-
riodic forcing, this time, the curvature of the three-dimensional filament seems
to be responsible for the filament contraction and annihilation [24].
The simplest initial conditions to create a scroll ring would be via the poly-
nomial p(z1, z2) = z2, resulting in the vertical axis s̃(Rez2) = x3 = 0 being a
symmetry axis both for u0 and for Ω ⊂ R3. In order for the initial conditions
to be less symmetric with respect to the boundaries of the domain Ω, we apply
the translation `x = x−x∗ with x∗ = (−1.5, 3, 0), and we choose a polynomial
p that also depends on z1. Our initial conditions are prescribed by (8.14), using

p = z2 + 0.1 iz1,
c = 8/21.

(8.15)

Under discretization, scroll ring annihilation occurs at

t0 = 9.10; x0 = (−1.5, 3.5,−0.5).(8.16)

For illustration/animation see figs. 8.

8.4 Crossover collision of scroll waves

We now return to the motivating phenomenon of this paper, outlined in the
introduction; see (1.6) and figure 4.
For finer spatial resolution, we choose a smaller domain, Ω = [−10, 10]3, with
discretization into 1253 cubes. Due to the finer space discretization of 20/124
instead of 30/124, we choose a smaller time step of 4t = 0.00764828. The
example is non-autonomous, with forcing amplitude A = 0.01 and frequency
ω = 3.92. Circumventing the polynomial construction γ = p ◦ s, we take

γ(x̃/c) = ((x3 + π/6) + i sin(x1))(sin(x2)− i(x3 − π/6)),(8.17)
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t = 4.16 t = 4.58

t = 15.32 t = 15.67

t = 15.74 t = 16.38

Figure 8: Scroll ring annihilation. By t = 4.2, a spiral-like cross-section has
formed. The scroll ring emits ball shaped target waves twice per revolution, starting at
approximately t = 4.58. After scroll ring annihilation at t0 = 23.45, the surface u1 = 0
largely follows a concentric target wave pattern rather than a scroll ring pattern. The
remaining target waves move outwards, and the medium becomes quiescent.

MPEG-Movie [10.7MB,gzipped]

http://www.mathematik.uni-bielefeld.de/documenta/vol-05/21.mpeg/ring.mpg.gz
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t = 6.13 t = 17.875

t = 31.60 t = 35.654

t = 36.446 t = 39.918

Figure 9: Collision of scroll waves: Two scroll wave filaments drift towards each
other. After t = 17, they start interacting visibly. Around t = 34, the filaments
have found a common tangent plane and start lining up for collision. The crossover
collision occurs at t0 = 35.83, x0 = (−3.25, 3.25, 0). After collision, the filaments
connect adjacent faces of the cube rather than opposite faces.

MPEG-Movie [10.6MB,gzipped]

http://www.mathematik.uni-bielefeld.de/documenta/vol-05/21.mpeg/scrolls.mpg.gz
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which has zeros in [−π/2, π/2]3 at (0, x2,−π/6) and at (x1, 0, π/6). Taking
u0 = σ ◦ γ, we then start with explicit initial conditions

u1
0(x) = sin(ax1)(ax3 − π/6) + sin(ax2)(ax3 + π/6),
u2

0(x) = 0.25 ∗ (sin(ax1) sin(ax2)− (ax3 + π/6)(ax3 − π/6)).
(8.18)

The spatial scaling factor a is chosen as π/20.
This example was selected because (8.17) has zeroes in [−π/2, π/2]3 at
(0, x2,−π/6) and at (x1, 0, π/6). Then (u1

0, u
2
0) has zeroes at (0, x̃2,−10/3)

and at (x̃1, 0, 10/3). Therefore, at t = 0, filaments are at right angles to each
other. Near resonant forcing with amplitude A = 0.01 and frequency ω = 3.92
is chosen, together with an appropriate initial phase, such that the filaments
drift towards each other and eventually interact.
Under discretization, crossover collision occurs at

t0 = 35.83; x0 = (−3.25, 3.25, 0).(8.19)

For illustration/animation see figures 9 and 10.
Naively, there would be at least two options for non-destructive collision of the
two scroll wave filaments. In figures 4, 9 and 10, the two primary filaments are
seen to touch, forming a crossing with four emanating semi-branches. Keeping
their orientation, the semi-branches could either simply re-connect, as before
the collision. Alternatively, they could separate and connect with that semi-
branch of matching orientation which they were not attached to previously.
The first scenario of a crossing collision may be more intuitive at first: the two
incoming semi-branches simply reconnect to their previous outgoing partners
without exchanging their pairing. Such a crossing clearly would not change the
global connectivity of the filaments. Viewed in projection onto the tangent
plane E at collision time t0, however, the filament branches would then have to
remain crossing immediately before and after collision time t0, in contradiction
to both theorem 2.2 and numerical observation in figures 9 and 10.
Note that the filaments, albeit initially straight lines, have to bend out of their
way considerably in order to accommodate a generic crossover collision in the
tangent plane E. Indeed, initial conditions, periodic forcing, and boundary
conditions are all chosen invariant under a rotation by 180o around the axis
A which diagonally connects the mid-edge points (−10, 10, 0) and (10,−10, 0)
of the domain Ω. This rotation invariance is preserved by the solution u(t, .).
Because rotation initially maps one filament into the other, the collision point
x0 must occur on the axis A – and it does, see (8.19). Similarly, the tangent
plane E must be orthogonal to A, forming angles of 45o with the straight line
initial conditions. We found it fascinating to watch the numerical filaments
obey all these predictions.
We caution the reader here that theorems 2.1 and 2.2, as they stand, do not
directly apply within restricted classes of symmetric initial conditions. In full
generality, the necessary modifications require a restriction to, and analysis of,
invariant singularities and their codimensions in spaces of symmetry invariant
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t = 35.764 t = 35.918

tangent plane

side view

top view

Figure 10: Details of the crossover collision: breaking and reconnecting scroll
wave filaments, consistently with theorem 2.2. The two incoming semi-branches ex-

change their pairing with the two outgoing semi-branches at t = t0, x = x0. Each
incoming semi-branch crosses over to its opposite outgoing semi-branch. The pro-
jected branches, when viewed locally in the tangent plane E = kerux to the collision
configuration at t = t0, x = x0, neither cross before nor after collision.

MPEG-Movie [10.7MB,gzipped]

http://www.mathematik.uni-bielefeld.de/documenta/vol-05/21.mpeg/scrollzoom.mpg.gz
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k-jets, again based on transversality, lemma 3.1. The present example and
its codimension, however, comply with our simple rotation symmetry. In the
coordinates (1.6) of crossover collision this can be seen from invariance under
the 180o rotation (x1, x2) 7→ (−x1,−x2) around the x3 axis.

8.5 Collision of linked twisted scroll rings

In the previous non-autonomous example we have seen how crossover collisions
change the local connectivity of tip filaments. We now present an autonomous
example, with forcing amplitude A = 0, where two linked filaments merge into
a single filament. After collision the resulting filament is neither knotted nor
self-linked but is isotopic to a circle.
We start with initial conditions u0 prescribed by (8.14), with the polynomial
p = z2

1 − z2
2 and stereographic scaling factor c = 8/21 in (8.12).

p = z2
1 − z2

2 ,
c = 8/21.

(8.20)

Under discretization, crossover collision occurs at

t0 = 4.90, x0 = (0, 0,−2.14)(8.21)

For illustration/animation see fig. 11.
We comment on the changes of the global topological characteristics of twist
and linking which occur at the crossover collision in this example. See figure 12
for a caricature of the essential features.
To determine the twist of a non self-intersecting closed oriented filament ϕt,
we first orient the tip filament ϕt as described in section 7. Then we count
the integer winding number of the accompanying isochrone band χt around ϕt,
according to the right hand rule. The integer twist can be positive, negative, or
zero. Next suppose the filament ϕt spans an embedded disk, as all filaments in
figures 11, 12 do. The orientation of ϕt induces an orientation of the disk which,
again by the right hand rule, we can represent by a field of vectors ν normal
to the disk. To any other oriented filament crossing the disk transversely, we
associate a crossing sign +1, if the crossing is in the direction of ν, and −1
otherwise. Following [40], the sum of crossing signs on the disk adds up to the
twist of the boundary filament ϕt.
Applied to the schematic representation of figure 11 in figure 12, we conclude
that the two filaments ϕt`, ϕ

t
r for t < t0 each have twist −1. After collision the

single remaining filament is untwisted. Our example therefore indicates that
one can hope, at best, for a conservation of the parity of the total twist.

8.6 Unknotting the trefoil knot by crossover collision

In the previous example two linked but unknotted filaments merged into a
single filament. Also, the initial conditions were far from a long-term solution
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t = 0.00 t = 1.665

t = 4.278 4.881

t = 4.910 t = 10.598

Figure 11: Crossover collision of two linked twisted filaments at t0 = 4.90, x0 =
(0, 0,−2.14) into a single untwisted filament.

MPEG-Movie [3.3MB,gzipped]

http://www.mathematik.uni-bielefeld.de/documenta/vol-05/21.mpeg/rings.mpg.gz
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ϕt` ϕtr

Figure 12: A caricature of the crossover collision of two linked, simply twisted
filaments ϕt

`, ϕt
r at t = t0. Before collision, each scroll ring possesses a twist of −1.

After collision, the resulting scroll ring is untwisted, globally.

of the equations. In contrast, we now take a trefoil knot as an initial condition
that already exhibits fully developed scroll waves. We then rescale space, which
is equivalent to a change of diffusion constants. This brings the filaments into
sufficiently close contact for interaction.
The initial conditions for this autonomous example, A = 0, are the numerical
end state of a coarser simulation on a domain Ω1 = [−25, 25]3, also running
on a numerical grid of 1253 grid points. The initial condition for the coarser
simulation (starting at time t = −10) is created using the polynomial p = z2

1−z3
2

with stereographic scaling factor c = 1/5 in (8.12):

z1 = 1/5(x1 + ix2);
z2 = 1/5x3 + i((x2

1 + x2
2 + x2

3)/5
2 − 1/4);

u1
0(x) = Re(z2

1 − z3
2) clamped by (8.7);

u2
0(x) = 0.25Im(z2

1 − z3
2) clamped by (8.7).

(8.22)

At time t = 0, we stop the simulation, keeping the same numerical data at grid
points but rescaling the domain to Ω = [−15, 15]3. This is the initial condition
at t = 0.
Under discretization, crossover collision from a trefoil knot to two linked rings
is observed at

t0 = 8.94, x0 = (0, 0,−9.28)(8.23)

For illustration/animation see figure 13. Again we provide a caricature in
figure 14.

8.7 Discussion of examples

We conclude our series of examples with some remarks. Concerning example
8.3 of scroll ring annihilation we observe that only untwisted scroll rings can be
directly annihilated. This follows from the normal form of the corresponding
singularity with positive definite quadratic form 〈Put, Puxx|E〉 at (t0, x0); see
section 1. More globally, it also follows from the observation that the shrinking
disk spanned by a circular filament near annihilation is not traversed by other
filaments. Indeed a filament shrinking around another, large filament would
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t = 0.00 t = 4.905

t = 7.985 t = 8.914

t = 8.966 t = 12.597

Figure 13: Decomposing the trefoil knot into two linked twisted unknotted fila-
ments by crossover collision at t0 = 8.94, x0 = (0, 0,−9.28). As explained in example
8.3, we see in figures 13, 14 how the trefoil knot with twist ±3 decomposes into two
unknotted, but mutually linked twisted filaments, each of twist −1.

MPEG-Movie [8.9MB,gzipped]

http://www.mathematik.uni-bielefeld.de/documenta/vol-05/21.mpeg/knot.mpg.gz

Documenta Mathematica 5 (2000) 695–731

http://www.mathematik.uni-bielefeld.de/documenta/vol-05/21.mpeg/knot.mpg.gz


728 Bernold Fiedler and Rolf M. Mantel

Figure 14: A caricature of the unknotting of the trefoil knot, showing the orien-
tations of all filaments.

require a three-dimensional kernel and hence a singularity of codimension at
least six.
We have not presented an example for the process opposing annihilation:
the creation of a circular filament by a negative definite quadratic form
〈Put, Puxx|E〉 at (t0, x0). Since the definiteness required for Puxx|E does not
predetermine the direction of 4u, we could construct initial conditions u0(x)
corresponding to scroll ring creation at t0 = 0, x0 ∈ Ω. Although we expect
scroll ring creation to be feasible also for large positive times t0, we did not
observe this phenomenon in our simulations so far.
Our results provide specific examples of the “internal” collision type, which [31]
have described as topologically viable; furthermore, we show that crossover
collision is the only generic way for scroll waves to change their topological
linking type.
From a modeling point of view, experimental systems may require substantially
more than just two dependent variables u1, u2 for an adequate description by
parabolic reaction diffusion systems. We repeat that theorem 4.2 predicts the
described two-variable phenomena to occur in any projection setting, where
only two combinations of the relevant quantities u1, ..., um are observable, for
example by color shading. We emphasize that this observation neither requires,
nor corresponds to, a dynamic reduction of the full underlying reaction diffusion
system by inertial manifolds or related techniques of dimension reduction.
Aiming at the ubiquitous wealth of phenomena of pattern formation and pat-
tern transformation, our paper has detected and addressed just a few elemen-
tary dynamic effects peculiar to systems of two equations in three space di-
mensions. Clearly, the theoretical framework supports significantly more com-
plicated spatio-temporal effects than were presented here. Applicability hope-
fully also will reach far beyond the specific motivating context of Belousov-
Zhabotinsky patterns or excitable media.
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