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Abstract. We define a certain compactifiction of the general linear
group and give a modular description for its points with values in arbi-
trary schemes. This is a first step in the construction of a higher rank
generalization of Gieseker’s degeneration of moduli spaces of vector
bundles over a curve. We show that our compactification has simi-
lar properties as the “wonderful compactification” of algebraic groups
of adjoint type as studied by de Concini and Procesi. As a byprod-
uct we obtain a modular description of the points of the wonderful
compactification of PGln.

1991 Mathematics Subject Classification: 14H60 14M15 20G
Keywords and Phrases: moduli of vector bundles on curves, modular
compactification, general linear group

1. Introduction

In this paper we give a modular description of a certain compactification KGln
of the general linear group Gln. The variety KGln is constructed as follows:
First one embeds Gln in the obvious way in the projective space which contains
the affine space of n × n matrices as a standard open set. Then one succes-
sively blows up the closed subschemes defined by the vanishing of the r × r
subminors (1 ≤ r ≤ n), along with the intersection of these subschemes with
the hyperplane at infinity.
We were led to the problem of finding a modular description of KGln in the
course of our research on the degeneration of moduli spaces of vector bundles.
Let me explain in some detail the relevance of compactifications of Gln in this
context.
Let B be a regular integral one-dimensional base scheme and b0 ∈ B a closed
point. Let C → B be a proper flat familly of curves over B which is smooth
outside b0 and whose fibre C0 at b0 is irreducible with one ordinary double
point p0 ∈ C0. Let C̃0 → C0 be the normalization of C0 and let p1, p2 ∈ C̃0
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the two points lying above the singular point p0. Thus the situation may be
depicted as follows:

(C̃0, p1, p2)

uukkkkkkkkkkkkk

))SSSSSSSSSSSSS

C̃0 C0

��

// C

��
b0 // B

where the left arrow means “forgetting the points p1, p2”. There is a corre-
sponding diagram of moduli-functors of vector bundles (v.b.) of rank n:






v.b. E on C̃0

together with an

isomorphism E[p1]
∼
→ E[p2]






f1vvlllllll

f2

∼=
((RRRRRRR

{
v.b. on

C̃0

} {
v.b. on

C0

}

��

//
{

v.b. on
C/B

}

��
b0 // B

where E[pi] denotes the fibre of E at the point pi (cf. section 3 below). The
morphism f1 is “forgetting the isomorphism between the fibres” and f2 is “glue-
ing together the fibres at p1 and p2 along the given isomorphism”. The square
on the right is the inclusion of the special fibre. It is clear that f is a lo-
cally trivial fibration with fibre Gln. Consequently, f1 is not proper and thus
{v.b. on C/B} is not proper over B. It is desirable to have a diagram (∗):





generalized
v.b.-data on

(C̃0 , p1, p2)





f1zzuuu
uu

uu
u

f2 %%KKKKKK

{
v.b. on

C̃0

} 



generalized
v.b. on

C0





��

//





generalized
v.b. on
C/B





��
b0 // B

where the functors of “generalized” objects contain the original ones as open
subfunctors and where {generalized v.b. on C/B} is proper over B or at least
satisfies the existence part of the valuative criterion for properness. The mo-
tivation is that such a diagram may help to calculate cohomological invariants
of {v.b. on Y } (Y a smooth projective curve) by induction on the genus of Y
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(notice that the genus of C̃0 is one less than the genus of the generic fibre of
C/B).
In the current literature there exist two different approaches for the construc-
tion of diagram (∗). In the first approach the “generalized v.b.” on C0 are
torsion-free sheaves (cf. [S1], [F], [NR], [Sun]). The second approach is by
Gieseker who considered only the rank-two case (cf. [G]). Here the “general-
ized v.b.” on C0 are certain vector bundles on C0, C1 or C2, where Ci is built
from C0 by inserting a chain of i copies of the projective line at p0. (Cf. also
[Tei] for a discussion of the two approaches). Of course, this is only a very
rough picture of what is going on in these papers since I do not mention con-
cepts of stability for the various objects nor the representability of the functors
by varieties or by algebraic stacks.
In both approaches the morphism f2 is the normalization morphism (at least on
the complement of a set of small dimension) and f1 is a locally trivial fibration
with fibre a compactification of Gln. In the torsion-free sheaves approach this
compactification is Gr(2n, n), the grassmanian of n-dimensional subspaces of a
2n-dimensional vector space. In Gieseker’s construction the relevant compacti-
fication of Gl2 is KGl2. An advantage of Gieseker’s construction is that in con-
trast to the torsion-free sheaves approach, the space {generalized v.b. on C/B}
is regular and its special fibre over b0 is a divisor with normal crossings.
Very recently, Nagaraj and Seshadri have generalized Gieseker’s construction
of the right part of diagram (∗), i.e. the diagram





generalized
v.b. on
C0





��

//





generalized
v.b. on
C/B





��
b0 // B

to arbitrary rank n (cf. [NS], [S2]). Nagaraj’s and Seshadri’s “generalized
vector bundles” on C0 are certain equivalence classes of vector bundles on one
of the curves C0, . . . , Cn, whose push-forward to C0 are stable torsion free
sheaves.
Without worrying about stability I have recently (and independently from Na-
garaj and Seshadri) constructed the full diagram (∗) at least at the level of
functors (details will appear in a forthcoming paper) and I have reasons to
believe that the fibres of the corresponding morphism f1 should be represented
by KGln. The present paper is the first step in the proof of this fact.
The compactification KGln of Gln has properties similar to those of the “won-
derful compactification” of algebraic groups of adjoint type as studied by De
Concini and Procesi (cf. [CP]). Namely:

1. The group Gln×Gln acts on KGln, extending the operation of Gln×Gln
on Gln induced by right and left multiplication (cf. 5.6).

2. The complement of Gln in KGln is a divisor with normal crossings with
irreducible components Yi, Zj (i, j ∈ {0, . . . , n− 1}) (cf. 4.2).
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3. The orbit closures of the operation of Gln × Gln on KGln are precisely
the intersections YI ∩ ZJ , where I, J are subsets of {0, . . . , n − 1} with
min(I) + min(J) ≥ n and where YI := ∩i∈IYi, ZJ := ∩j∈JZj (cf. 9.4).

4. For each I, J as above there exists a natural mapping from YI ∩ZJ to the
product of two flag varieties. This mapping is a locally trivial fibration
with standard fibre a product of copies of PGlnk

(the wonderful compact-
ification of PGlnk

) for some nk ≥ 1 and of one copy of KGlm for some
m ≥ 0 (cf. 9.3).

Our main theorem 5.5 says that KGln parametrizes what we call “general-
ized isomorphisms” from the trivial bundle of rank n to itself. A generalized
isomorphism between vector bundles E and F is by definition a diagram

E = E0

⊗ ��
E1

oo
⊗ ��

E2
oo . . . En−1

⊗   
En

oo ∼ // Fn
// Fn−1

⊗��
. . . F2

// F1
//

⊗��
F0

⊗��
= F

with certain properties, where the Ei and Fj are vector bundles of the same
rank as E and F and where the arrow ⊗ // indicates a morphims of the
source into the target tensored with a line bundle to be specified. Cf. 5.2 for a
precise definition.
The wonderful compactification PGln of PGln is contained as an orbit closure
in KGln, in fact Y0

∼= PGln. Therefore theorem 5.5 implies a modular de-
scription of PGln. One of the reasons why I decided to publish the present
paper separately from my investigations on the degeneration of moduli spaces
of vector bundles on curves is the fact that PGln has been quite extensively
studied in the past (cf. [Lak1] for a historical overview and also the recent pa-
per [Tha2]). Although some efford has been made to find a modular description
for it, up to now only partial results in this direction have been obtained (cf.
[V], [Lak2], [TK]). In section 8 we explain the connection of these results with

ours. Recently Lafforgue has used PGln to compactify the stack of Drinfeld’s
shtukas (cf. [Laf1], [Laf2]).
Sections 4 and 5 contain the main definitions: In section 4 we give the construc-
tion of KGln and in section 5 we define the notion of generalized isomorphisms.
At the end of section 5 we state our main theorem 5.5. Its proof is given in
sections 6 and 7. In section 8 we define complete collineations and compare our
notion with the one given by previous authors, in section 9 we study the orbit
closures of the operation of Gln ×Gln on KGln and in section 10 we define an
equivariant morphism of KGln onto the Grassmannian compactification of Gln
and compute its fibres.
My interest in degeneration of moduli spaces of bundles on curves has been
greatly stimulated by a workshop on conformal blocks and the Verlinde for-
mula, organized in March 1997 by the physicists Jürgen Fuchs and Christoph
Schweigert at the Mathematisches Forschungsinstitut in Oberwolfach. Part of
this work has been prepared during a stay at the Mathematical Institute of
the University of Oxford. Its hospitality is gratefully acknowledged. Thanks
are due to Daniel Huybrechts for mentioning to me the work of Thaddeus, to
M. Thaddeus himself for sending me a copy of part of his thesis and to M.
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Rapoport for drawing my attention to the work of Laksov and Lafforgue. I
would also like to thank Uwe Jannsen for his constant encouragement.

2. An elementary example

This section is not strictly necessary for the comprehension of what follows.
But since the rest of the paper is a bit technical, I felt that a simple example
might facilitate its understanding.
Let A be a discrete valuation ring, K its field of fractions, m its maximal ideal,
t ∈ m a local parameter and k := A/m the residue class field of A. Let E and

F be two free A-modules of rank n and let ϕK : EK
∼
→ FK be an isomorphism

between the generic fibers EK := E ⊗A K and FK := F ⊗A K of E and F .
We can choose A-bases of E and F such that ϕK has the matrix presentation
diag(tm1 , . . . , tmn) with respect to these bases, where mi ∈ Z and m1 ≤ · · · ≤
mn. Now let a0 := 0 =: b0 and for 1 ≤ i ≤ n set ai := −min(0,mn+1−i) and
bi := max(0,mi). Note that we have

0 = a0 = · · · = an−l ≤ an−l+1 ≤ · · · ≤ an

and 0 = b0 = · · · = bl ≤ bl+1 ≤ · · · ≤ bn

for some l ∈ {0, . . . , n}. Let

En ⊆ · · · ⊆ E1 ⊆ E0 := E and Fn ⊆ · · · ⊆ F1 ⊆ F0 := F

be the A-submodules defined by

Ei+1 :=




tai+1−aiIn−i 0

0 Ii


Ei , Fi+1 :=




Ii 0

0 tbi+1−biIn−i


Fi ,

where Ii denotes the i × i unit matrix. Then ϕK induces an isomorphism
ϕ : En

∼
→ Fn and we have the natural injections

Ei ↪→ m
ai−ai+1Ei+1 , Ei ←↩ Ei+1

Fi+1 ↪→ Fi , m
bi−bi+1Fi+1 ←↩ Fi .

Observe that the compositions Ei+1 ↪→ Ei ↪→ m
ai−ai+1Ei+1 and Ei ↪→

m
ai−ai+1Ei+1 ↪→ m

ai−ai+1Ei are both the injections induced by the inclu-
sion A ↪→ m

ai−ai+1 . Furthermore, if ai − ai+1 < 0 then the morphism of
k-vectorspaces Ei+1 ⊗ k → Ei ⊗ k is of rank i and the sequence

Ei+1 ⊗ k → Ei ⊗ k → (mai−ai+1Ei+1)⊗ k → (mai−ai+1Ei)⊗ k

is exact. This shows that the tupel

(mai−ai+1 , 1 ∈ m
ai−ai+1 , Ei+1 ↪→ Ei , m

ai−ai+1Ei+1 ←↩ Ei , i)
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is what we call a “bf-morphism” of rank i (cf. definition 5.1). Observe now
that if ai − ai+1 < 0 and (f, g) is one of the following two pairs of morphisms:

E ⊗ k
f
−→ (m−aiEi)⊗ k

g
−→ (m−ai+1Ei+1)⊗ k ,

Ei ⊗ k
g
←− Ei+1 ⊗ k

f
←− En ⊗ k ,

then im(g ◦ f) = im(g). The above statements hold true also if we replace the
Ei-s by the Fi-s and the ai-s by the bi-s. Observe finally that in the diagram

0

��
ker(En ⊗ k → E0 ⊗ k)

�� ++WWWWWWWWW

0 // ker(Fn ⊗ k → F0 ⊗ k) //

++WWWWWWWWW
En ⊗ k ∼= Fn ⊗ k

��

// im(Fn ⊗ k → F0 ⊗ k) // 0

im(En ⊗ k → E0 ⊗ k)

��
0

the oblique arrows are injections.
All these properties are summed up in the statement that the tupel

Φ := ((mbi−bi+1 , 1), (mai−ai+1 , 1), Ei ↪→ m
ai−ai+1Ei+1, Ei ←↩ Ei+1,

Fi+1 ↪→ Fi, m
bi−bi+1Fi+1 ←↩ Fi (0 ≤ i ≤ n− 1), ϕ : En

∼
→ Fn)

is a generalized isomorphism from E to F in the sense of definition 5.2, where
for a ≤ 0 we consider m

a as an invertible A-module with global section 1 ∈ m
a.

Observe that Φ does not depend on our choice of the bases for E and F . Indeed,
it is well-known that the sequence (m1, . . . ,mn) is independent of such a choice
and it is easy to see that En = ϕ−1

K (F ) ∩ E, Fn = ϕK(En) and

Ei = En + m
aiE , Fi = Fn + m

biF

for 1 ≤ i ≤ n−1, where the +-sign means generation in EK and FK respectively.
Observe furthermore that by pull-back the generalized isomorphism Φ induces
a generalized isomorphism f∗Φ on a scheme S for every morphism f : S →
Spec (A). Of course the morphisms f∗Ei+1 → f∗Ei etc. will be in general no
longer injective, but this is not required in the definition.

3. Notations

We collect some less common notations, which we will use freely in this paper:

• For two integers a ≤ b we sometimes denote by [a, b] the set {c ∈ Z | a ≤
c ≤ b}.

• For a n× n-matrix with entries aij in some ring, and for two subsets A
and B of cardinality r of {1, . . . , n}, we will denote by detAB(aij) the
determinant of the r × r-matrix (aij)i∈A,j∈B .

• For a scheme X we will denote by KX the sheaf of total quotient rings of
OX .
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• For a scheme X , a coherent sheaf E on X and a point x ∈ X , we denote
by E [x] the fibre E ⊗OX κ(x) of E at x.

• For n ∈ N, the symbol Sn denotes the symmetric group of permutations
of the set {1, . . . , n}.

4. Construction of the compactification

Let X(0) := ProjZ[x00, xij (1 ≤ i, j ≤ n)]. We define closed subschemes

Y
(0)
0

� � // Y
(0)
1

� � // . . . � � // Y (0)
n−1

Z
(0)
n−1

� � //
?�

OO

. . . � � // Z(0)
1

� � //
?�

OO

Z
(0)
0

of X(0), by setting Y
(0)
r := V +(I

(0)
r ), Z

(0)
r := V +(J

(0)
r ), where I

(0)
r is the

homogenous ideal in Z[x00, xij (1 ≤ i, j ≤ n)], generated by all (r+1)×(r+1)-

subdeterminants of the matrix (xij)1≤i,j≤n, and where J
(0)
r = (x00)+I

(0)
n−r for

0 ≤ r ≤ n − 1. For 1 ≤ k ≤ n let the scheme X (k) together with closed

subschemes Y
(k)
r , Z

(k)
r ⊂ X(k) (0 ≤ r ≤ n − 1) be inductively defined as

follows:
X(k) → X(k−1) is the blowing up of X(k−1) along the closed subscheme

Y
(k−1)
k−1 ∪ Z

(k−1)
n−k . The subscheme Y

(k)
k−1 ⊂ X(k) (respectively Z

(k)
n−k ⊂ X(k))

is the inverse image of Y
(k−1)
k−1 (respectively of Z

(k−1)
n−k ) under the morphism

X(k) → X(k−1), and for r 6= k − 1 (respectively r 6= n − k) the subscheme

Y
(k)
r ⊂ X(k) (respectively of Z

(k)
r ⊂ X(k)) is the complete transform of

Y
(k−1)
r ⊂ X(k−1) (respectively Z

(k−1)
r ⊂ X(k−1)). We set

KGln := X(n) and Yr := Y (n)
r , Zr := Z(n)

r (0 ≤ r ≤ n− 1) .

We are interested in finding a modular description for the compactification
KGln of Gln = Spec Z[xij/x00 (1 ≤ i, j ≤ n), det(xij/x00)

−1].
Let (α, β) ∈ Sn × Sn and set

x
(0)
ij (α, β) :=

xα(i),β(j)

x00
(1 ≤ i, j ≤ n) .

For 1 ≤ k ≤ n we define elements

yji(α, β) , zij(α, β) (1 ≤ i ≤ k, i < j ≤ n)

x
(k)
ij (α, β) (k + 1 ≤ i, j ≤ n)
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of the function field Q(X(0)) = Q(xij/x00 (1 ≤ i, j ≤ n)) of X(0) inductively
as follows:

yik(α, β) :=
x

(k−1)
ik (α, β)

x
(k−1)
kk (α, β)

(k + 1 ≤ i ≤ n) ,

zkj(α, β) :=
x

(k−1)
kj (α, β)

x
(k−1)
kk (α, β)

(k + 1 ≤ j ≤ n) ,

x
(k)
ij (α, β) :=

x
(k−1)
ij (α, β)

x
(k−1)
kk (α, β)

− yik(α, β) zkj(α, β) (k + 1 ≤ i, j ≤ n) .

Finally, we set t0(α, β) := t0 := x00 and

ti(α, β) := t0 ·
i∏

j=1

x
(j−1)
jj (α, β) (1 ≤ i ≤ n) .

Observe, that for each k ∈ {0, . . . , n}, we have the following decomposition of
the matrix [xij/x00]:

[
xij
x00

]
= nα




1 _ _ _ _

9

9

9

___

�

�

�
0

1

yij(α, β)

In−k

�

�

�

�

�

9

9

9

�

�

�

�

_ _







t1(α,β)
t0

0

0

0
tk(α,β)

t0

0
tk(α,β)

t0
[x

(k)
ij (α, β)]







1 _ _ _ _ _

=

=

=

___

�

�

�
zij(α, β)

1

0 In−k

�

�

�

�

�

=

=

=

�

�

�

_ _



n−1
β

Here, nα is the permutation matrix associated to α, i.e. the matrix, whose
entry in the i-th row and j-th column is δi,α(j). For convenience, we define for

each l ∈ {0, . . . , n} a bijection ιl : {1, . . . , n+ 1}
∼
→ {0, . . . , n}, by setting

ιl(i) =





i if 1 ≤ i ≤ l
0 if i = l + 1
i− 1 if l + 2 ≤ i ≤ n+ 1

for 1 ≤ i ≤ n+ 1. With this notaton, we define for each triple (α, β, l) ∈ Sn ×
Sn × [0, n] polynomial subalgebras R(α, β, l) of Q(KGln) = Q(X(0)) together
with ideals Ir(α, β, l) and Jr(α, β, l) (0 ≤ r ≤ n− 1) of R(α, β, l) as follows:

R(α, β, l) := Z

[
tιl(i+1)(α, β)

tιl(i)(α, β)
(1 ≤ i ≤ n), yji(α, β), zij(α, β) (1 ≤ i < j ≤ n)

]
,

Ir(α, β, l) :=

(
tιl(r+2)(α, β)

tιl(r+1)(α, β)

)
if l ≤ r ≤ n − 1 and Ir(α, β, l) := (1) else,

Jr(α, β, l) :=

(
tιl(n−r+1)(α, β)

tιl(n−r)(α, β)

)
if n − l ≤ r ≤ n − 1 and Jr(α, β, l) := (1) else.

Proposition 4.1. There is a covering of KGln by open affine pieces X(α, β, l)
((α, β, l) ∈ Sn × Sn × [0, n]), such that Γ(X(α, β, l),O) = R(α, β, l) (equality
as subrings of the function field Q(KGln)). Furthermore, for 0 ≤ r ≤ n − 1
the ideals Ir(α, β, l) and Jr(α, β, l) of R(α, β, l) are the defining ideals for the
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closed subschemes Yr(α, β, l) := Yr∩X(α, β, l) and Zr(α, β, l) := Zr∩X(α, β, l)
respectively.

Proof. We make the blowing-up procedure explicit, in terms of open affine
coverings. For each k ∈ {0, . . . , n} we define a finite index set Pk, consisting of
all pairs

(p, q) =





p0

:
pk


 ,



q0
:
qk




 ∈ {0, . . . , n}k+1 × {0, . . . , n}k+1

with the property that pi 6= pj and qi 6= qj for i 6= j and that pi = 0 for some i,
if and only if qi = 0. Observe that for each k ∈ {0, . . . , n} there is a surjection
Sn × Sn × {0, . . . , n} → Pk, which maps the triple (α, β, l) to the element

(p, q) =








α(ιl(1))

:
α(ιl(k + 1))



 ,




β(ιl(1))

:
β(ιl(k + 1))









of Pk. (Here we have used the convention that α(0) := 0 for any permutation
α ∈ Sn). Furthermore, this surjection is in fact a bijection in the case of
k = n. Let (p, q) ∈ Pk and chose an element (α, β, l) in its preimage under
the surjection Sn × Sn × {0, . . . , n} → Pk. We define subrings R(k)(p, q) of

Q(xij/x00 (1 ≤ i, j ≤ n)) together with ideals I
(k)
r (p, q), J

(k)
r (p, q) (0 ≤ r ≤ n),

distinguishing three cases.

First case: 0 ≤ l ≤ k − 1

R
(k)(p, q) := Z

[
tιl(i+1)(α, β)

tιl(i)
(α, β)

(1 ≤ i ≤ k), yji(α, β), zij(α, β)

(
1 ≤ i ≤ k,
i < j ≤ n

)
,

x
(k)
ij (α, β) (k + 1 ≤ i, j ≤ n)

]

I(k)
r (p, q) :=






(1) if r ∈ [0, l− 1](
tιl(r+2)(α,β)

tιl(r+1)(α,β)

)
if r ∈ [l, k − 1]

(
detAB(x

(k)
ij (α, β))

(
A,B ⊆ {k + 1, . . . , n}
]A = ]B = r + 1 − k

) )
if r ∈ [k, n− 1]

J (k)
r (p, q) :=





(1) if r ∈ [0, n− l− 1](
tιl(n−r+1)(α,β)

tιl(n−r)(α,β)

)
if r ∈ [n− l, n− 1]
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Second case: l = k

R
(k)(p, q) := Z

[
tιl(i+1)(α, β)

tιl(i)
(α, β)

(1 ≤ i ≤ k), yji(α, β), zij(α, β)

(
1 ≤ i ≤ k,
i < j ≤ n

)
,

tk(α, β)

t0
x
(k)
ij (α, β) (k + 1 ≤ i, j ≤ n)

]

I(k)
r (p, q) :=





(1) if r ∈ [0, l− 1](
detAB

(
tk(α,β)

t0
x
(k)
ij (α, β)

) (
A,B ⊆ {k + 1, . . . , n}
]A = ]B = r + 1 − k

) )
if r ∈ [l, n− 1]

J (k)
r (p, q) :=






(1) if r ∈ [0, n− l − 1](
tιl(n−r+1)(α,β)

tιl(n−r)(α,β)

)
if r ∈ [n− l, n − 1]

Third case: k + 1 ≤ l ≤ n

R
(k)(p, q) := Z

[
tιl(i+1)(α, β)

tιl(i)
(α, β)

(1 ≤ i ≤ k),
t0

tk+1(α, β)
,

yji(α, β), zij(α, β)

(
1 ≤ i ≤ k + 1,
i < j ≤ n

)
, x

(k+1)
ij (α, β) (k + 2 ≤ i, j ≤ n)

]

I
(k)
r (p, q) :=





(1) if r ∈ [0, k](
detAB

(
x
(k+1)
ij (α, β)

) (
A,B ⊆ {k + 2, . . . , n}
]A = ]B = r − k

) )
if r ∈ [k + 1, n− 1]

J (k)
r (p, q) :=





(
t0

tk+1(α,β)
, detAB(x

(k+1)
ij (α, β))

(
A,B ⊆ {k + 2, . . . , n}
]A = ]B = n− r − k

) )

if r ∈ [0, n− k − 1]

(
tιl(n−r+1)(α,β)

tιl(n−r)(α,β)

)
if r ∈ [n− k, n− 1]

Observe that the objects R(k)(p, q), I
(k)
r (p, q), J

(k)
r (p, q) thus defined, depend

indeed only on (p, q) and not on the chosen element (α, β, l). By induction on
k one shows that X(k) is covered by open affine pieces X (k)(p, q) ((p, q) ∈ Pk),
such that Γ(X(k)(p, q),O) = R(k)(p, q) (equality as subrings of the function field

Q(X(k))), and such that the ideals I
(k)
r (α, β) and J

(k)
r (α, β) are the defining

ideals of the closed subschemes Y
(k)
r ∩X(k)(p, q) and Z

(k)
r ∩X(k)(p, q) respec-

tively.

Corollary 4.2. The scheme KGln is smooth and projective over Spec Z and
contains Gln as a dense open subset. The complement of Gln in KGln is the
union of the closed subschemes Yi, Zi (0 ≤ i ≤ n− 1), which is a divisor with
normal crossings. Furthermore, we have Yi ∩ Zj = ∅ for i+ j < n.

Proof. This is immediate from the local description given in 4.1.

We will now define a certain toric scheme, which will play an important role
in the sequel. Let M := Zn, with canonical basis e1, . . . , en. For m ∈ M we
denote by tm the corresponding monomial in the ring Z[M ]. Furthermore, we
write ti/t0 for the canonical generator tei of Z[M ]. Let N := M∨ be the dual
of M with the dual basis e∨1 , . . . , e

∨
n . For 0 ≤ l ≤ n let σl ⊂ NQ := N ⊗Q be
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the cone generated by the elements −
∑i
j=1 e

∨
j (1 ≤ i ≤ l) and the elements∑n

j=i e
∨
j (l + 1 ≤ i ≤ n). In other words:

σl =

l∑

i=1

Q+ ·



−
i∑

j=1

e∨j



+

n∑

i=l+1

Q+ ·




n∑

j=i

e∨j



 .

Let Σ be the fan generated by all σl (0 ≤ l ≤ n) and let T̃ := XΣ the associated

toric scheme (over Z). See e.g. [Da] for definitions. T̃ is covered by the open

sets T̃l := Xσ∨
l

= Spec Z[tm (m ∈ σ∨
l ∩M)] = Spec Z[tιl(i+1)/tιl(i) (1 ≤ i ≤ n)].

Observe that there are Cartier divisors Yr,T̃ , Zr,T̃ (0 ≤ r ≤ n− 1) on T̃ , such

that for each l ∈ {0, . . . , n} over the open part T̃l ⊂ T̃ ,

Yr,T̃ is given by the equation

{
1 if 0 ≤ r ≤ l − 1
tιl(r+2)/tιl(r+1) if l ≤ r ≤ n− 1

Zr,T̃ is given by the equation

{
1 if 0 ≤ r ≤ n− l − 1
tιl(n−r+1)/tιl(n−r) if n− l ≤ r ≤ n− 1

Observe furthermore that Yi,T̃ ∩ Zj,T̃ = ∅ for i + j < n and that for each

r ∈ {1, . . . , n}, multiplication by tr/t0 establishes an isomorphism

OT̃

(
−
n−r∑

i=0

Zi,T̃

)
∼
−→ OT̃

(
−
r−1∑

i=0

Yi,T̃

)
.

Lemma 4.3. The toric scheme T̃ together with the “universal” tupel

(OT̃ (Yi,T̃ ), 1OT̃ (Y
i,T̃

), OT̃ (Zi,T̃ ), 1OT̃ (Z
i,T̃

) (0 ≤ i ≤ n− 1), tr/t0 (1 ≤ r ≤ n))

represents the functor, which to each scheme S associates the set of equivalence
classes of tupels

(Li, λi, Mi, µi (0 ≤ i ≤ n− 1), ϕr (1 ≤ r ≤ n)) ,

where the Li and Mi are invertible OS-modules with global sectons λi and µi
respectively, such that for i+ j < n the zero-sets of λi and µj do not intersect,
and where the ϕr are isomorphisms

n−r⊗

i=0

M∨
i

∼
−→

r−1⊗

i=0

L∨i .

Here two tupels (Li, λi, Mi, µi (0 ≤ i ≤ n − 1), ϕr (1 ≤ r ≤ n)) and
(L′i, λ

′
i, M

′
i, µ

′
i (0 ≤ i ≤ n− 1), ϕ′

r (1 ≤ r ≤ n)) are called equivalent, if there

exist isomorphisms Li
∼
→ L′

i and Mi
∼
→ M′

i for 0 ≤ i ≤ n − 1, such that all
the obvious diagrams commute.

Proof. Let S be a scheme and (Li, λi, Mi, µi (0 ≤ i ≤ n−1), ϕr (1 ≤ r ≤ n))
a tupel defined over S, which has the properties stated in the lemma. Let us
first consider the case, where all the sheaves Li,Mi are trivial and where there
exists an l ∈ {0, . . . , n}, such that λi and µj is nowhere vanishing for 0 ≤ i < l
and 0 ≤ j < n − l respectively. Observe that under theses conditions there
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exists a unique set of trivializations Li
∼
→ OS , Mi

∼
→ OS , (0 ≤ i ≤ n) such

that λi 7→ 1 for 0 ≤ i < l, µj 7→ 1 for 0 ≤ j < n − l, and such that the
diagrams

⊗n−r
i=0 M

∨
i

∼

$$I
IIIIIIII

ϕr

∼
//⊗r−1

i=0 L
∨
i

∼

zzvv
vv

vv
vvv

OS

commute for 1 ≤ r ≤ n. Let aν ∈ Γ(S,OS) (1 ≤ ν ≤ n) be defined by
λi 7→ ai+1 for l ≤ i ≤ n − 1 and µj 7→ an−j for n − l ≤ j ≤ n − 1, and let

fl : S → T̃l be the morphism defined by f∗
l (tιl(ν+1)/tιl(ν)) = aν (1 ≤ ν ≤ n).

It is straightforward to check that the induced morphism f : S → T̃ does not
depend on the chosen number l and that it is unique with the property that
the pull-back under f of the universal tupel is equivalent to the given one on
S.
Returning to the general case, observe that there is an open covering S = ∪kUk,
such that for each k there exists an l with the property that over Uk all the Li,
Mi are trivial and that λi and µj is nowhere vanishing over Uk for 0 ≤ i < l
and 0 ≤ j < n − l. The above construction shows that there exists a unique

morphism f : S → T̃ such that for each k the restriction to Uk of the pull-
back under f of the universal tupel is equivalent to the restriction to Uk of
the given one. Thus it remains only to show that the isomorphisms defining
the equivalences over the Uk glue together to give a global equivalence of the
pull-back of the universal tupel with the given one. However, this is clear, since
it is easy to see that there exists at most one set of isomorphisms Li

∼
→ L′

i,

Mi
∼
→M′

i establishing an equvalence between two tuples (Li, λi, Mi, µi, ϕr)
and (L′

i, λ
′
i, M

′
i, µ

′
i, ϕ

′
r).

For each pair (α, β) ∈ Sn × Sn we define the open subset X(α, β) ⊆ KGln as
the union of the open affines X(α, β, l) (0 ≤ l ≤ n). Let

U− := Spec Z[yji (1 ≤ i < j ≤ n)] ,

U+ := Spec Z[zij (1 ≤ i < j ≤ n)] .

Let y : X(α, β) → U− (respectively z : X(α, β) → U+) be the morphism de-
fined by the property that y∗(yji) = yji(α, β) (respectively z∗(zij) = zij(α, β))

for 1 ≤ i, j ≤ n. Observe that just as in the case of T̃ , multiplication by the
rational function tr(α, β)/t0 provides an isomorphism

OX(α,β)

(
−
n−r∑

i=0

Zi(α, β)

)
∼
−→ OX(α,β)

(
−
r−1∑

i=0

Yi(α, β)

)

for 1 ≤ r ≤ n, where Yi(α, β) (respectively Zi(α, β)) denotes the restriction of
Yi (respectively Zi) to the open set X(α, β). Thus, by lemma 4.3, the tupel

(O(Yi(α, β)), 1, O(Zi(α, β)), 1 (i ∈ [0, n− 1]), tr(α, β)/t0 (r ∈ [1, n]))

defines a morphism t : X(α, β)→ T̃ .
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Lemma 4.4. The morphism (y, t, z) : X(α, β) → U− × T̃ × U+ is an isomor-
phism.

Proof. Let Ω(α, β) ⊂ X(α, β) be the preimage of Gln under the morphism
X(α, β) ↪→ KGln → X(0). By definition of KGln, we have for all l ∈ {0, . . . , n}:

Ω(α, β) = X(α, β, l) \
n−1⋃

i=0

(Yi(α, β, l) ∪ Zi(α, β, l))

= Spec Z[yji(α, β), zij(α, β) (1 ≤ i < j ≤ n),

(ti(α, β)/t0)
±1 (1 ≤ i ≤ n)] .

Let T := Spec Z[(ti/t0)
±1] ⊂ T̃ be the Torus in T̃ . We have an isomorphism

Ω(α, β)
∼
→ U− × T × U+ defined by yji 7→ yji(α, β), zij 7→ zij(α, β), ti/t0 7→

ti(α, β)/t0, and a commutative quadrangle

X(α, β)
(y,t,z)
−−−−→ U− × T̃ × U+

x
x

Ω(α, β)
∼

−−−−→ U− × T × U+ ,

where the vertical arrows are the natural inclusions. Furthermore, the map

(y, t, z) induces an isomorphism X(α, β, l)
∼
→ U− × T̃l × U+ for 0 ≤ l ≤ n.

Using the fact that X(α, β) is separated and that Ω(α, β) dense in X(α, β), the
lemma now follows easily.

5. bf-morphisms and generalized isomorpisms

Definition 5.1. Let S be a scheme, E and F two localy free OS-modules and
r a nonnegative integer. A bf-morphism of rank r from E to F is a tupel

g = (M, µ, E → F , M⊗E ← F , r) ,

where M is an invertible OS-module and µ a global section of M such that
the following holds:

1. The composed morphisms E → F →M⊗E and F →M⊗E →M⊗F
are both induced by the morphism µ : OS →M.

2. For every point x ∈ S with µ(x) = 0, the complex

E [x]→ F [x]→ (M⊗E)[x]→ (M⊗F)[x]

is exact and the rank of the morphism E [x]→ F [x] equals r.

The letters “bf” stand for “back and forth”. As a matter of notation, we
will sometimes write g] for the morphism E → F and g[ for the morphism
F → M⊗ E occuring in the bf-morphism g. Note that in case µ is nowhere
vanishing, the number rk g := r cannot be deduced from the other ingredients
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of g. Sometimes we will use the following more suggestive notation for the
bf-morphism g:

g =


 E r //

(M,µ)
F

⊗
��


 .

In situations where it is clear, what (M, µ) and r are, we will sometimes omit
these data from our notation:

g =


 E // F

⊗
��


 .

Definition 5.2. Let S be a scheme, E and F two locally free OS-modules of
rank n. A generalized isomorphism from E to F is a tupel

Φ = (Li, λi, Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi, Li ⊗Fi+1 ← Fi (0 ≤ i ≤ n− 1), En
∼
→ Fn) ,

where E = E0, E1, . . . , En, Fn, . . . ,F1, F0 = F , are localy free OS-modules of
rank n and the tupels

(Mi, µi, Ei+1 → Ei, Mi ⊗ Ei+1 ← Ei, i)

and (Li, λi, Fi+1 → Fi, Li ⊗Fi+1 ← Fi, i)

are bf-morphisms of rank i for 0 ≤ i ≤ n − 1, such that for each x ∈ S the
following holds:

1. If µi(x) = 0 and (f, g) is one of the following two pairs of morphisms:

E [x]
f
−→ ((⊗i−1

j=0Mj)⊗ Ei)[x]
g
−→ ((⊗ij=0Mj)⊗ Ei+1)[x] ,

Ei[x]
g
←− Ei+1[x]

f
←− En[x] ,

then im(g ◦ f) = im(g). Likewise, if λi(x) = 0 and (f, g) is one of the
following two pairs of morphisms:

Fn[x]
f
−→ Fi+1[x]

g
−→ Fi[x] ,

((⊗ij=0Lj)⊗Fi+1)[x]
g
←− ((⊗i−1

j=0Lj)⊗Fi)[x]
f
←− F [x] ,

then im(g ◦ f) = im(g).
2. In the diagram:

0

��
ker(En[x]→ E0[x])

�� **UUUUUUUU

0 // ker(Fn[x]→ F0[x]) //

**UUUUUUUU
En[x] ∼= Fn[x]

��

// im(Fn[x]→ F0[x]) // 0

im(En[x]→ E0[x])

��
0
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the oblique arrows are injections.

Definition 5.3. A quasi-equivalence between two generalized isomorphisms

Φ = (Li, λi,Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi, Li ⊗Fi+1 ← Fi (0 ≤ i ≤ n− 1), En
∼
→ Fn) ,

Φ′ = (L′
i, λ

′
i,M

′
i, µ

′
i, E

′
i →M

′
i ⊗ E

′
i+1, E

′
i ← E

′
i+1,

F ′
i+1 → F

′
i , L

′
i ⊗F

′
i+1 ← F

′
i (0 ≤ i ≤ n− 1), E ′n

∼
→ F ′

n)

from E to F consists in isomorphisms Li
∼
→ L′

i andMi
∼
→M′

i for 0 ≤ i ≤ n−1,

and isomorphisms Ei
∼
→ E ′i and Fi

∼
→ F ′

i for 0 ≤ i ≤ n, such that all the obvious
diagrams are commutative. A quasi-equivalence between Φ and Φ′ is called an
equivalence, if the isomorphisms E0

∼
→ E ′0 and F0

∼
→ F ′

0 are in fact the identity
on E and F respectively.

After these general definitions, we now return to our scheme KGln. The nota-
tions are as in the previous section.
From the matrix-decomposition on page 560 (for k = n) we see that the ma-

trix [xij/x00]1≤i,j≤n has entries in the subspace Γ(KGln,O(
∑n−1

i=0 Zi)) of the
function field Q(KGln) of KGln. Therefore it defines a morphism

x : E0 −→ O

(
n−1∑

i=0

Zi

)
· F0 ,

where E0 = F0 = ⊕nOKGln .

Let En ⊂ E0 be the preimage under x of F0 ⊂ O(
∑n−1

i=0 Zi)·F0 and let Fn ⊂ F0

be the image under x of En. Thus x induces a morphism

En −→ Fn ,

which we again denote by x. For 1 ≤ i ≤ n − 1 we define OKGln-submodules
Ei and Fi of ⊕nKKGln as follows:

Ei := En +O


−

i−1∑

j=0

Zj


 ·E0

Fi := Fn +O


−

i−1∑

j=0

Yj


 · F0

(the plus-sign means generation in ⊕nKKGln). Observe that for 0 ≤ i ≤ n− 1
we have the following natural injections:

Ei ↪→ O(Zi) · Ei+1 , Ei ←↩ Ei+1

Fi+1 ↪→ Fi , O(Yi) · Fi+1 ←↩ Fi

Proposition 5.4. The tupel

Φuniv := (O(Yi), 1O(Yi), O(Zi), 1O(Zi), Ei ↪→ O(Zi) ·Ei+1, Ei ←↩ Ei+1,

Fi+1 ↪→ Fi, O(Yi) · Fi+1 ←↩ Fi (0 ≤ i ≤ n− 1), x : En → Fn)
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is a generalized isomorphism from ⊕nOKGln to itself.

Proof. It suffices to show that for each (α, β) ∈ Sn × Sn the restriction of
Φuniv to the open set X(α, β) is a generalized isomorphism from ⊕nOX(α,β) to
itself. Let z(α, β) (y(α, β)) be the upper (lower) triangular n× n matrix with
1 on the diagonal and entries zij(α, β) (yji(α, β)) over (under) the diagonal
(1 ≤ i < j ≤ n). For 0 ≤ i ≤ n we define

Ei(α, β) := z(α, β) · n−1
β ·Ei|X(α,β) ,

Fi(α, β) := y(α, β)−1 · n−1
α · Fi|X(α,β) .

Here we interprete the matrices z(α, β) · n−1
β and y(α, β)−1 · n−1

α as automor-

phisms of ⊕nKX(α,β). Accordingly we view the sheaves Ei(α, β) and Fi(α, β)
as subsheaves of ⊕nKX(α,β). We have to show that the tupel

Φ(α, β) := (O(Yi(α, β)) , 1O(Yi(α,β)) , O(Zi(α, β)) , 1O(Zi(α,β)) ,

Ei(α, β) ↪→ O(Zi(α, β)) ·Ei+1(α, β) , Ei(α, β) ←↩ Ei+1(α, β),

Fi+1(α, β) ↪→ Fi(α, β) , O(Yi(α, β)) · Fi+1(α, β)←↩ Fi(α, β)

(0 ≤ i ≤ n− 1) ,

y(α, β)−1n−1
α xnβz(α, β)−1 : En(α, β)

∼
→ Fn(α, β))

is a generalized isomorphism from ⊕nOX(α,β) to itself.
We have for 0 ≤ i ≤ n the following equality of subsheaves of ⊕nKX(α,β):

Ei(α, β) =

n−i⊕

j=1

O

(
−
i−1∑

ν=0

Zν(α, β)

)
⊕

n⊕

j=n−i+1

O

(
−

n−j∑

ν=0

Zν(α, β)

)
,

Fi(α, β) =

i⊕

j=1

O

(
−

j−1∑

ν=0

Yν(α, β)

)
⊕

n⊕

j=i+1

O

(
−
i−1∑

ν=0

Yν(α, β)

)
.

This is easily checked by restricting both sides of the equations to the open
subsets X(α, β, l), (0 ≤ l ≤ n) of X(α, β) and using 4.1. Observe that the
morphisms

Ei(α, β) ↪→ O(Zi(α, β)) ·Ei+1(α, β) , Ei(α, β)←↩ Ei+1(α, β)

are described by the matrices
[

In−i 0
0 µiIi

]
and

[
µiIn−i 0

0 Ii

]
,

and the morphisms

Fi+1(α, β) ↪→ Fi(α, β) , O(Yi(α, β)) · Fi+1(α, β)←↩ Fi(α, β)

by the matrices
[

Ii 0
0 λiIn−i

]
and

[
λiIi 0
0 In−i

]

respectively, where we have abbreviated 1O(Yi(α,β)) by λi, and 1O(Zi(α,β))

by µi. Furthermore the matrix-decomposition on page 560 (for k = n)
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shows that y(α, β)−1n−1
α xnβz(α, β)−1 is the diagonal matrix with entries

(t1(α, β)/t0, . . . , tn(α, β)/t0). With this information at hand, it is easy to see
that Φ(α, β) is indeed a generalized isomorphism from ⊕nOX(α,β) to itself.

Theorem 5.5. Let S be a scheme and Φ a generalized isomorphism from ⊕nOS
to itself. Then there is a unique morphism f : S → KGln such that f∗Φuniv is
equivalent to Φ. In other words, the scheme KGln together with Φuniv represents
the functor, which to each scheme S associates the set of equivalence classes of
generalized isomorphisms from ⊕nOS to itself.

The proof of the theorem will be given in section 7.

Corollary 5.6. There is a (left) action of Gln×Gln on KGln, which extends
the action ((ϕ, ψ),Φ) 7→ ψΦϕ−1 of Gln ×Gln on Gln. The divisors Zi and Yi
are invariant under this action.

Proof. The the morphism (Gln × Gln) × KGln → KGln defining the action is
given on S-valued points by

((ϕ, ψ),Φ) 7→ Φ′ ,

where Φ is a generalized isomorphism as in definition 5.2 from E0 = ⊕nOS to
F0 = ⊕nOS and Φ′ is the generalized isomorphism where for 2 ≤ i ≤ n the
bf-morphisms from Ei to Ei−1, the ones from Fi to Fi−1 and the isomorphism

En
∼
→ Fn are the same as in the tupel Φ, and where the bf-morphisms

(M0, µ0, E1 → E0, M0 ⊗ E0 ← E1, 0)

and (L0, λ0, F1 → F0, L0 ⊗F0 ← F1, 0)

in the tupel Φ are replaced by the bf-morphisms

(M0, µ0, E1 → E0
ϕ
→ E0, M0 ⊗ E1 ← E0

ϕ−1

← E0, 0)

and (L0, λ0, F1 → F0
ψ
→ F0, L0 ⊗F1 ← F0

ψ−1

← F0, 0)

respectively. The invariance of the divisors Zi and Yi is clear, since they are
defined by the vanishing of µi and λi respectively.

6. Exterior powers

Lemma 6.1. Let S be a scheme and E, F two locally free OS-modules of rank
n. Let

g = (M, µ, E → F , M⊗E ← F , r)

be a bf-morphism of rank r from E to F . Then each point x ∈ S has an
open neighbourhood U such that over U there exist local frames (e1, . . . , en)
and (f1, . . . , fn) for E and F respectively with the property that the matrices
for the morphisms

E −→ F and M⊗E ←− F

with respect to these frames are
[

Ir 0
0 µ/mIn−r

]
and

[
µIr 0
0 mIn−r

]
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respectively, where m is a nowhere vanishing section of M over U .

Proof. Restricting to a neighbourhood of x, we may assume that the sheaves
M, E , F are free. Let (ẽ1, . . . , ẽn) and (f̃1, . . . , f̃n) be global frames for E and F
respectively. After permutation of their elements, and restricting to a possibly
smaller neighbourhood of x, we may further assume that the morphisms

〈ẽ1, . . . , ẽr〉 −→ F/〈f̃r+1, . . . , f̃n〉

〈f̃r+1, . . . , f̃n〉 −→ M⊗ E/〈ẽ1, . . . , ẽr〉

induced by g] and g[ respectively, are isomorphisms. Let

Ẽ := 〈ẽ1, . . . , ẽr〉 , Ẽ ′ := ker(E →M⊗F/〈f̃r+1, . . . , f̃n〉)

F̃ := ker(F → E/〈ẽ1, . . . , ẽr〉) , F̃ ′ := 〈f̃r+1, . . . , f̃n〉 .

Then we have direct-sum decompositions E = Ẽ ⊕ Ẽ ′ , F = F̃ ⊕ F̃ ′ , which
are respected by g] and g[. Let m be a nowhere vanishing section of M. The
frames (e1, . . . , en), (f1, . . . , fn) of E , F , defined by setting ei := ẽi, fi := g](ẽi)

for 1 ≤ i ≤ r and ei := (1/m)g[(f̃i), fi := f̃i for r+1 ≤ i ≤ n, have the desired
property.

Proposition 6.2. Let S be a scheme and E, F two locally free OS-modules of
rank n. Let

g = (M, µ, E → F , M⊗E ← F , i)

be a bf-morphism of rank i from E to F and let 1 ≤ r ≤ n.

1. There exists a unique morphism

∧rg : ∧rE −→ (M∨)⊗max(0,r−i) ⊗ ∧rF

with the following property: If (e1, . . . , en) and (f1, . . . , fn) are local
frames for E and F respectively over an open set U ⊆ S, such that the
matrices for the morphisms

E −→ F and M⊗E ←− F

with respect to these frames are
[

Ii 0
0 µ/mIn−i

]
and

[
µIi 0
0 mIn−i

]

respectively (m being a nowhere vanishing section of M over U), then
(∧rg)|U takes the form

eI ∧ eJ 7→ mp−r ⊗ µmin(i,r)−p ⊗ fI ∧ fJ ,

where I ⊆ {1, . . . , i}, J ⊆ {i+1, . . . , n} with ]I = p, ]J = r−p and where
eI = ei1 ∧ · · · ∧ eip , if I = {i1, . . . , ip} and i1 < · · · < ip. The eJ , fI , fJ
are defined analoguosly.
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2. Similarly, there exists a unique morphism

∧−rg : ∧rF −→M⊗min(r,n−i) ⊗ ∧rE

with the following property: If (e1, . . . , en) and (f1, . . . , fn) are local
frames for E and F respectively over an open set U ⊆ S, such that the
matrices for the morphisms

F −→M⊗ E and E ←− F

with respect to these frames are

[
mIn−i 0

0 µIi

]
and

[
µ/mIn−i 0

0 Ii

]

respectively (m being a nowhere vanishing section of M over U), then
(∧−rg)|U takes the form

fI ∧ fJ 7→ mp ⊗ µmin(r,n−i)−p ⊗ eI ∧ eJ ,

where I ⊆ {1, . . . , n− i}, J ⊆ {n− i+ 1, . . . , n} with ]I = p, ]J = r − p.

Proof. 1. An easy calculation shows that the morphism given by the prescrip-
tion

eI ∧ eJ 7→ mp−r ⊗ µmin(i,r)−p ⊗ fI ∧ fJ ,

does not depend on the chosen local frames (e1, . . . , en), (f1, . . . , fn). Therefore
using 6.1, we may define ∧rg by this local prescription.
2. This can be proven along the same lines as 1. Alternatively, it follows by
applying 1. to the bf-morphism (M, µ, E ′ → F ′, M ⊗ E ′ ← F ′, n − r)
obtained from g by setting E ′ := F and F ′ :=M⊗E .

In the situation of the above proposition 6.2, assume that E = E1 ⊕ E2 and
F = F1 ⊕ F2, where rkEi = rkFi =: ni for i = 1, 2. Assume furthermore
that the morphisms E → F and F → M⊗ E both respect these direct-sum
decompositions and that there are i1, i2 ≥ 0 with i1 + i2 = i, such that the
tupels

g1 := (M, µ, E1 → F1, M⊗E1 ← F1, i1)

and g2 := (M, µ, E2 → F2, M⊗E2 ← F2, i2) ,

induced by g, are also bf-morphisms. We write g = g1 ⊕ g2. The following
lemma says that exterior powers of bf-morphisms are compatible with direct
sums whenever this makes sense.

Lemma 6.3. Let 1 ≤ r ≤ n and r = r1 + r2 for some r1, r2 ≥ 0.

1. If max(0, r− i) = max(0, r1− i1)+max(0, r2− i2), then we have for every
ε1 ∈ Γ(S,∧r1E1), ε2 ∈ Γ(S,∧r2E2) the following equality:

(∧rg)(ε1 ∧ ε2) = (∧r1g1)(ε1) ∧ (∧r2g2)(ε2) .

2. If min(i, r) = min(i1, r1) + min(i2, r2), then we have for every ω1 ∈
Γ(S,∧r1F1), ω2 ∈ Γ(S,∧r2F2) the following equality:

(∧−rg)(ω1 ∧ ω2) = (∧−r1g1)(ω1) ∧ (∧−r2g2)(ω2) .
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Proof. This follows immediately from the local description of ∧rg and ∧−rg
respectively.

Definition 6.4. Let S be a scheme, E and F two localy free OS-modules of
rank n and

Φ = (Li, λi, Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi, Li ⊗Fi+1 ← Fi (0 ≤ i ≤ n− 1), En
∼
→ Fn) ,

a generalized isomorphism from E = E0 to F = F0. For 1 ≤ r ≤ n we define
the r-th exterior power

∧rΦ :

r∧
E −→

r⊗

ν=1

(
ν−1⊗

i=0

L∨i ⊗
n−ν⊗

i=0

Mi

)
⊗

r∧
F

of Φ as the composition

∧rΦ := (∧−rg0) ◦ (∧
−rg1) ◦ . . . ◦ (∧

−rgn−1) ◦ (∧
rhn) ◦ (∧

rhn−1) ◦ . . .◦ (∧
rh0) ,

where gi and hi are the bf-morphisms

(Mi, µi, Ei+1 → Ei, Mi ⊗ Ei+1 ← Ei, i)

and (Li, λi, Fi+1 → Fi, Li ⊗Fi+1 ← Fi, i)

respectively for 0 ≤ i ≤ n− 1, and where hn is the isomorphism En
∼
→ Fn.

In the situation of the above definition consider especially the case, where
E = ⊕nOS and F = ⊕nL for some invertible OS-module L. Then we have
natural direct sum decompositions

r∧
E =

⊕

B

OS and
r∧
F =

⊕

A

Lr ,

where A and B run through all subsets of cardinality r of {1, . . . , n}. For two
such subsets A and B, we denote by πA (respectively by ιB) the projection
∧rF → Lr onto the A-th component (respectively the inclusion OS ↪→ ∧rE of
the B-th component). Now we define

detA,BΦ := πA ◦ (∧rΦ) ◦ ιB : OS −→
r⊗

ν=1

(
ν−1⊗

i=0

L∨i ⊗
n−ν⊗

i=0

Mi

)
⊗Lr .

Lemma 6.5. Let (α, β) ∈ Sn × Sn and let X(α, β) be the open set of KGln
defined in section 4. Let Φuniv be the generalized isomorphism defined in 5.4.
Then the sections detα[1,r],β[1,r]Φuniv are nowhere vanishing on X(α, β) for 1 ≤
r ≤ n.

Proof. From the proof of 5.4 it follows readily that the restriction of
detα[1,r],β[1,r]Φuniv to X(α, β) is

∏r
ν=1(tν(α, β)/t0) as an element of

Γ

(
X(α, β), O

(
r∑

ν=1

(
n−ν∑

i=0

Zi −
ν−1∑

i=0

Yi

)))
⊂ Γ(X(α, β), KKGln) .
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On the other hand, 4.1 tells us that
∏r
ν=1(tν(α, β)/t0) is a generator of

O(
∑r

ν=1(
∑n−ν

i=0 Zi −
∑ν−1
i=0 Yi)) over X(α, β).

7. Proof of theorem 5.5

Let S be a scheme, L an invertible OS-module. For 0 ≤ i ≤ n− 1 let (Li, λi),
(Mi, µi) be invertible OS-modules together with global sections, such that the
zero sets of λi and µj do not intersect for i + j < n. Given these data, we
associate to every tupel (ϕ1, . . . , ϕn) of isomorphisms

ϕr :

n−r⊗

i=0

M∨
i

∼
−→

r−1⊗

i=0

L∨i ⊗L (1 ≤ r ≤ n)

the following generalized isomorphism from ⊕nOS to ⊕nL :

Φ(ϕ1, . . . , ϕn) := (Li, λi, Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi, Li ⊗Fi+1 ← Fi (0 ≤ i ≤ n− 1), En
∼
→ Fn) ,

where the locally free modules Ei and Fi are defined as

Ei :=

n−i⊕

j=1

(
i−1⊗

ν=0

M∨
ν

)
⊕

n⊕

j=n−i+1

(
n−j⊗

ν=0

M∨
ν

)
,

Fi :=




i⊕

j=1

(
j−1⊗

ν=0

L∨ν

)
⊕

n⊕

j=i+1

(
i−1⊗

ν=0

L∨ν

)
⊗L ,

the morphisms

Ei −→Mi ⊗ Ei+1 and Ei ←− Ei+1

are described by the matrices
[

In−i 0
0 µiIi

]
and

[
µiIn−i 0

0 Ii

]
,

the morphisms

Fi+1 −→ Fi and Li ⊗Fi+1 ←− Fi

by the matrices
[

Ii 0
0 λiIn−i

]
and

[
λiIi 0
0 In−i

]

respectively, and the isomorphism En
∼
→ Fn is given by the diagonal matrix

with entries (ϕ1, . . . , ϕn).

Definition 7.1. Let S be a scheme, L an invertible OS-module and

Φ := (Li, λi, Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi, Li ⊗Fi+1 ← Fi (0 ≤ i ≤ n− 1), En
∼
→ Fn)
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an arbitrary generalized isomorphism from E0 = ⊕nOS to F0 = ⊕nL. A
diagonalization of Φ with respect to a pair (α, β) ∈ Sn×Sn of permutations is
a tupel (ui,vi (0 ≤ i ≤ n), (ϕ1, . . . , ϕn)) of isomorphisms

ui : Ei
∼
−→

n−i⊕

j=1

(
i−1⊗

ν=0

M∨
ν

)
⊕

n⊕

j=n−i+1

(
n−j⊗

ν=0

M∨
ν

)
(0 ≤ i ≤ n)

vi : Fi
∼
−→




i⊕

j=1

(
j−1⊗

ν=0

L∨ν

)
⊕

n⊕

j=i+1

(
i−1⊗

ν=0

L∨ν

)

⊗L (0 ≤ i ≤ n)

ϕr :

n−r⊗

i=0

M∨
i

∼
−→

r−1⊗

i=0

L∨i ⊗L (1 ≤ r ≤ n)

such that (ui, vi (0 ≤ i ≤ n)) establishes a quasi-equivalence between Φ and
Φ(ϕ1, . . . , ϕn) and such that

un · nβ : E0 = ⊕nOS
∼
−→ ⊕nOS and vn · nα : F0 = ⊕nL

∼
−→ ⊕nL

are described by upper and lower triangular matrices respectively, with unit
diagonal entries.

Definition 7.2. As in the above definition let Φ be a generalized isomorphism
from ⊕nOS to ⊕nL. A pair (α, β) ∈ Sn × Sn of permutations is called admis-
sible, if for all 1 ≤ r ≤ n the global sections detα[1,r],β[1,r]Φ of

r⊗

ν=1

(
n−ν⊗

i=0

Mi ⊗
ν−1⊗

i=0

L∨i

)
⊗Lr

are nowhere vanishing on S.

Proposition 7.3. Let S be a scheme, L an invertible OS-module and Φ a
generalized isomorphism from ⊕nOS to ⊕nL. Then:

1. For (α, β) ∈ Sn × Sn the following are equivalent:
(a) there exists a diagonalization of Φ with respect to (α, β)
(b) (α, β) is admissible for Φ

2. Every point of S has an open neighbourhood U , such that there is a diag-
onalization of Φ|U with respect to some pair (α, β) ∈ Sn × Sn.

3. For a given pair (α, β) ∈ Sn × Sn there is at most one diagonalization of
Φ with respect to (α, β).

Proof. Let

Φ := (Li, λi, Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi, Li ⊗Fi+1 ← Fi (0 ≤ i ≤ n− 1), En
∼
→ Fn) ,

be a generalized isomorphism from E0 = ⊕nOS to F0 = ⊕nL. For 0 ≤ i ≤ n−1
denote bf-morphisms as follows:

gi := (Mi, µi, Ei+1 → Ei, Mi ⊗ Ei+1 ← Ei, i) ,

hi := (Li, λi, Fi+1 → Fi, Li ⊗Fi+1 ← Fi, i) ,
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and let hn the isomorphism En
∼
→ Fn.

1. We may assume that α = β = id. We show by induction on n that
admissibility of (id, id) for Φ implies the diagonalizability of Φ with respect
to (id, id). The case n = 1 is trivial, so assume n ≥ 2. By assumption, the
morphism

det{1},{1}Φ : OS −→ L
∨
0 ⊗

n−1⊗

i=0

Mi ⊗L

is an isomorphism. Let

Ẽ ′i := ker(π1 ◦ (∧1h0) ◦ . . . ◦ (∧−1gi) : Ei −→ L
∨
0 ⊗

n−1⊗

j=i

Mj ⊗L)

(i ∈ [0, n])

F̃ ′
i := ker(π1 ◦ (∧1h0) ◦ . . . ◦ (∧1hi−1) : Fi −→ L

∨
0 ⊗L) (i ∈ [1, n])

F̃ ′
0 := ker(π1 : ⊕nL −→ L) = ⊕n−1L

and

Ẽi := im((∧−1gi−1) ◦ . . . ◦ (∧−1g0) ◦ ι1 :

i−1⊗

j=0

M∨
j −→ Ei) (i ∈ [0, n])

F̃i := im((∧1hi) ◦ . . . ◦ (∧−1g0) ◦ ι1 :
n−1⊗

j=0

M∨
j −→ Fi) (i ∈ [1, n])

F̃0 := im((∧1h0) ◦ . . . ◦ (∧−1g0) ◦ ι1 : L∨0 ⊗
n−1⊗

j=0

M∨
j −→ F0)

Then we have natural direct sum decompositions

Ei = Ẽi ⊕ Ẽ
′
i (0 ≤ i ≤ n) ,

Fi = F̃i ⊕ F̃
′
i (0 ≤ i ≤ n) .

Since the bf-morphisms gi and hi respect these decompositions, we can write
gi = g̃i⊕ g̃′i and hi = h̃i⊕ h̃′i where g̃i (respectively g̃′i, h̃i, h̃

′
i) is a bf-morphism

from Ẽi+1 to Ẽi (respectively from Ẽ ′i+1 to Ẽ ′i , from F̃i+1 to F̃i, from F̃ ′
i+1

to F̃ ′
i) for 0 ≤ i ≤ n − 1. By the same reason, we can write hn = h̃n ⊕ h̃′n,

where h̃n : Ẽn
∼
→ F̃ and h̃′n : Ẽ ′n

∼
→ F̃ ′. Observe that rk g̃i = 0 and rk g̃′i = i for

0 ≤ i ≤ n− 1 and that

rk h̃i =

{
0 , if i = 0
1 , if i > 0

, rk h̃′i =

{
0 , if i = 0
i− 1 , if i > 0

.
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Now we define

L′ := L⊗ L∨
0

L′i := Li+1 , λ′i := λi+1 (0 ≤ i ≤ n− 2)

M′
i := Mi , µ′

i := µi (0 ≤ i ≤ n− 2)

E ′i := Ẽ ′i (0 ≤ i ≤ n− 1)

F ′
i := F̃ ′

i+1 (0 ≤ i ≤ n− 1)

where we identify E ′0 with ⊕n−1OS via the isomorphism

E ′0 = Ẽ ′0
inclusion
−−−−−→ E0 = ⊕nOS

π[2,n]
−−−−→ ⊕n−1OS ,

and F ′
0 with ⊕n−1L′ via the isomorphism

F ′
0 = F̃ ′

1

∧1h̃′
0−−−−→ L∨

0 ⊗⊕
n−1L = ⊕n−1L′ .

Let

Φ′ := (L′
i, λ

′
i, M

′
i, µ

′
i, E

′
i →M

′
i ⊗ E

′
i+1, E

′
i ← E

′
i+1,

F ′
i+1 → F

′
i , L

′
i ⊗F

′
i+1 ← F

′
i (0 ≤ i ≤ n− 2), E ′n−1

∼
→ F ′

n−1) ,

where E ′n−1
∼
→ F ′

n−1 is the composition

E ′n−1 = Ẽ ′n−1

∧−1g̃′n−1
−−−−−−→ Ẽ ′n

h̃′
n−−−−→ F̃ ′

n = F ′
n−1

,

and where the other morphisms are the ones from the g̃′i and the h̃′i. It is
easy to see that Φ′ is a generalized isomorphism from ⊕n−1OS to ⊕n−1L′.
Furthermore, it follows from 6.3 that

(∧rΦ)(e1 ∧ · · · ∧ er) = (∧1Φ)(e1) ∧ (∧r−1Φ′)(e′1 ∧ · · · ∧ e
′
r−1) (2 ≤ r ≤ n) ,

where (e1, . . . , en) ⊂ Γ(S, E0) and (e′1, . . . , e
′
n−1) ⊂ Γ(S, E ′0) are the canonical

global frames of ⊕nOS and ⊕n−1OS respectively. Therefore we have

det[1.r][1,r]Φ = det{1}{1}Φ⊗ det[1,r−1][1,r−1]Φ
′ (2 ≤ r ≤ n) .

Since, by assumption, the sections det[1.r][1,r]Φ are nowhere vanishing,
the above equation implies that the same is true also for the sections
det[1,r−1][1,r−1]Φ

′ (2 ≤ r ≤ n). In other words, (id, id) is admissible for
Φ′. By induction-hypothesis, we conclude that there exists a diagonalization
(u′i, v

′
i, (0 ≤ i ≤ n− 1), (ϕ′

1, . . . , ϕ
′
n−1)) of Φ′ with respect to (id, id).

Let

ũ′i := u′i (0 ≤ i ≤ n− 1) ,

ṽ′i := v′i−1 (1 ≤ i ≤ n) ,

and

ũ′n : Ẽ ′n
g̃]

n−1
−−−−→

∼
Ẽ ′n−1 = E ′n−1

u′
n−1

−−−−→
∼

⊕n
j=2

(⊗n−j
ν=0M

∨
)

,

ṽ′0 : F̃ ′
0 =

⊕n−1 L = L0 ⊗F ′
0

v′0−−−−→
∼

⊕n−1 L .
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Observe that there are natural isomorphisms

ũi : Ẽi
∼

−−−−→
⊗i−1

j=0M
∨
j (0 ≤ i ≤ n)

ṽi : F̃i
∼

−−−−→
⊗n−1

j=0 M
∨
j

det{1}{1}Φ
−−−−−−−→ L⊗L∨

0
(1 ≤ i ≤ n)

ṽ0 : F̃0
∼

−−−−→ L0 ⊗
⊗n−1

j=0 M
∨
j

det{1}{1}Φ
−−−−−−−→ L

We set ui := ũi ⊕ ũ′i , vi := ṽi ⊕ ṽ′i for 0 ≤ i ≤ n, and ϕr := ϕ′
r−1 for

2 ≤ r ≤ n. Finally, we let ϕ1 :
⊗n−1

i=0 M
∨
i

∼
→ L ⊗ L∨

0 be the isomorphism
induced by det{1}{1}Φ. It is now easy to see that the tupel (ui, vi (0 ≤ i ≤
n), (ϕ1, . . . , ϕn)) is a diagonalization of Φ with respect to (id, id).
Conversely, assume that there exists a diagonalization (ui, vi (0 ≤ i ≤
n), (ϕ1, . . . , ϕn)) of Φ with respect to (id, id). Observe that the diagram

∧rE0

∧ru0

��

∧rΦ // Nr ⊗ (∧rF0)

∧rv0

��

π[1,r]

**VVVVVVVV

OS

ι[1,r]
66mmmmmmmm

ι[1,r]
((QQQQQQQ Nr ⊗L

⊗r

∧r(⊕nOS)
∧rΦ(ϕ1,...,ϕn) // Nr ⊗ (∧r(⊕nL))

π[1,r]

44hhhhhhhh

where Nr :=
⊗r

ν=1(
⊗n−ν

i=0 Mi ⊗
⊗ν−1

i=0 L
∨
i ), is commutative for 1 ≤ r ≤ n.

Therefore we may assume that Φ = Φ(ϕ1, . . . , ϕn). But then det[1,r][1,r]Φ is
the section induced by the isomorphism

ϕ1 ⊗ . . .⊗ ϕr :

r⊗

ν=1

n−ν⊗

i=0

M∨
i

∼
−→

r⊗

ν=1

ν−1⊗

i=0

L∨i

for 1 ≤ r ≤ n. In particular the det[1,r][1,r]Φ are nowhere vanishing on S, which
is precisely what is required for the admissibility of (id, id) for Φ.
2. By 1, it suffices to show that in the case S = Spec k (k a field) there exists
a pair (α, β) ∈ Sn × Sn which is admissible for Φ. We apply induction on n,
the case n = 1 being trivial.
It is an easy exercise in linear algebra, to show that the morphism

∧1Φ = (h[0)
−1 ◦ h]1 . . . ◦ h

]
n−1 ◦ hn ◦ g

[
n−1 ◦ . . . ◦ g

[
0

has at least rank one. Consequently there exist indices i1, j1 ∈ {1, . . . , n}, such
that the composition det{i1}{j1}Φ = πi1 ◦(∧

1Φ)◦ιj1 is an isomorphism. Let the

sheaves Ẽ ′i , F̃
′
i (0 ≤ i ≤ n) be defined as on page 575, with π1 replaced by πi1 ,

and using these sheaves, let Φ′ be defined as on page 576. This is a generalized
isomophism from kn−1 to ⊕n−1(L∨0 ⊗L). By induction-hypothesis there exists
a pair (α′, β′) ∈ Sn−1×Sn−1, which is admissible for Φ′. Let α ∈ Sn be defined
by

α(r) :=

{
i1 , if r = 1
α′(r − 1) + 1 , if 2 ≤ r ≤ n

,

and let β ∈ Sn be defined analogously. As on page 576 we have

detα[1.r],β[1,r]Φ = det{i1}{j1}Φ⊗ detα′[1,r−1],β′[1,r−1]Φ
′ (2 ≤ r ≤ n)
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for 2 ≤ r ≤ n, i.e. the pair (α, β) is admissible for Φ.
3. This follows from the proof of 1, since it is clear that the construction of the
diagonalization there is unique.

Proposition 7.4. Let S be a scheme and Φ a generalized isomorphism from
⊕nOS to itself.

1. If (α, β) ∈ Sn × Sn is admissible for Φ, then there exists a unique mor-
phism S → X(α, β), such that the pull-back of Φuniv to S by this mor-
phism is equivalent to Φ.

2. We have the following description of X(α, β) as an open subset of KGln:

X(α, β) =
{
x ∈ KGln | (detα[1,r],β[1,r]Φuniv)(x) 6= 0 for 1 ≤ r ≤ n

}
.

3. If (α′, β′) ∈ Sn×Sn is a further admissible pair for Φ, then the above mor-
phism S → X(α, β) factorizes over the inclusion X(α, β) ∩X(α′, β′) ↪→
X(α, β).

Proof. 1. Let

Φ = (Li, λi, Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi, Li ⊗Fi+1 ← Fi (0 ≤ i ≤ n− 1), En
∼
→ Fn) .

By proposition 7.3 there exists a diagonalization (ui, vi (0 ≤ i ≤
n), (ϕ1, . . . , ϕn)) of Φ with respect to (α, β). Let aji ∈ Γ(S,OS) (respec-
tively bij ∈ Γ(S,OS)) (1 ≤ i < j ≤ n) be the nontrivial entries of the lower
(respectively upper) triangular matrix (v0 · nα)−1 (respectively u0 · nβ). Let
a : S → U− and b : S → U+ be the morphisms defined by a∗(yji) = aji
and b∗(zij) = bij respectively. Furthermore, let ϕ : S → T̃ be the morphism
induced by the tupel

(Li, λi, Mi, µi (0 ≤ i ≤ n− 1), ϕr (1 ≤ r ≤ n)) ,

(cf lemma 4.3). Thus we have a morphism

f : S
(a,ϕ,b)
−→ U− × T̃ × U+ ∼

−→ X(α, β) ,

where the right isomorphism is the inverse of the one in lemma 4.4. It is clear
that

f∗O(Yi(α, β)) ∼= Li , f∗
1O(Yi(α,β)) = λi

f∗O(Zi(α, β)) ∼=Mi , f∗
1O(Zi(α,β)) = µi (0 ≤ i ≤ n− 1) .

Denote by (u′i, v
′
i (0 ≤ i ≤ n), (ϕ′

1, . . . , ϕ
′
n)) the pull-back under f of the

diagonalization of Φuniv|X(α,β), which exists by 6.5 and 7.3. By the uniquness
of diagonalizations (cf 7.3), we have u0 = u′0, v0 = v′0 and (ϕ1, . . . , ϕn) =
(ϕ′

1, . . . , ϕ
′
n). Therefore the isomorphisms

(u′i)
−1 ◦ ui : Ei

∼
−→ f∗Ei

(v′i)
−1 ◦ vi : Fi

∼
−→ f∗Fi

induce an equivalence between Φ and f∗Φuniv. This proves the existence part
of the proposition. For uniqueness, assume that f̃ is a further morphism from
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S to X(α, β), such that Φ is equivalent to f̃∗Φuniv. Let ui : Ei
∼
→ f̃∗Ei,

vi : Fi
∼
→ f̃∗Fi, (0 ≤ i ≤ n) be an equivalence. Note that by definition

u0 = id⊕nOS = u0. Let (ũi, ṽi (0 ≤ i ≤ n), (ϕ̃1, . . . , ϕ̃n)) be the pull-back

under f̃ of the diagonalization with respect to (α, β) of Φuniv|X(α,β). Then
(ũi ◦ui, ṽi ◦ vi (0 ≤ i ≤ n), (ϕ̃1, . . . , ϕ̃n)) is a diagonalization of Φ with respect
to (α, β). By 7.3.3 we conclude that ũ0 = ũ0 ◦ u0 = u0, ṽ0 = ṽ0 ◦ v0 = v0 and
(ϕ̃1, . . . , ϕ̃n) = (ϕ1, . . . , ϕn). But this implies that the composite morphism

S
f̃
−→ X(α, β)

∼
−→ U− × T̃ × U+

equals (a, ϕ, b) and thus that f̃ = f .
2. Denote for a moment by U the open subset of KGln, defined by the non-
vanishing of detα[1,r],β[1,r]Φuniv for 1 ≤ r ≤ n. We have already seen in 6.5
that X(α, β) is contained in U . Let x ∈ U . Since X(α, β) is dense in U ,
there exists a generalization y ∈ X(α, β) of x. Then there exists a morphism
f : S → U , where S is the Spec of a valuation ring, such that the special point
of S is mapped to x and its generic point to y. By definition of U , the pair
(α, β) is admissible for the generalized isomorphism f ∗Φuniv. Therefore 1 tells
us that there exists a morphism f ′ : S → X(α, β), which coincides with f at
the generic point of S. Since KGln is separabel, it follows that f = f ′ and thus
that x ∈ X(α, β).
3. This follows immediatelly from 2.

Proof. (Of theorem 5.5). Let S be a scheme and Φ a generalized isomorphism
from ⊕nOS to itself. By proposition 7.3, there is a covering of S by open sets Ui
(i ∈ I), and for every index i ∈ I a pair (αi, βi) ∈ Sn×Sn, which is admissible
for Φ|Ui . Proposition 7.4.1 now tells us that there exists for each i ∈ I a unique
morhpism fi : Ui → X(αi, βi) with the property that there is an equivalence,
say ui, from Φ|Ui to f∗

i Φuniv. By proposition 7.4.2, the fi glue together, to
give a morphism f : S → KGln. It remains to show that also the ui glue
together, to give an overall equivalence from Φ to f ∗Φuniv. For this, it suffices
to show that for two generalized isomorphisms Φ and Φ′ from ⊕nOS to itself
there exists at most one equivalence from Φ to Φ′. The question being local,
we may assume by proposition 7.3.2 that Φ′ is diagonalizable with respect to
some pair (α, β) ∈ Sn × Sn. Composing the diagonalization of Φ′ with any
equivalence from Φ to Φ′ gives a diagonalization of Φ with respect to (α, β).
Since different equivalences from Φ to Φ′ would yield different diagonalizations
of Φ, proposition 7.3.3 tells us that there exists at most one equivalence.

8. Complete collineations

In this section we prove a modular property for the compactification PGln of
PGln and compare it with the results of other authors.
The scheme PGln together with closed subschemes ∆r (1 ≤ r ≤ n−1) is defined

by successive blow ups as follows. Let Ω
(0)

:= Proj (Z[xi,j (1 ≤ i, j ≤ n)]) and

let ∆
(0)

r := V +((detAB(xij ) | A,B ⊆ {1, . . . , n}, ]A = ]B = r + 1)) (1 ≤
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r ≤ n− 1). Inductively, define Ω
(ν)

as the blowing up of Ω
(ν−1)

along ∆
(ν−1)

ν .

The closed subscheme ∆
(ν)

r ⊂ Ω
(ν)

is by definition the strict (resp. total)

transform of ∆
(ν−1)

r for r 6= ν (resp. r = ν). By definition, PGln := Ω
(n−1)

and ∆r := ∆
(n−1)

r for 1 ≤ r ≤ n− 1.
The variety PGln×Spec (C) is the so-called “wonderful compactification” of the
homogenuos space PGln,C = (PGln,C×PGln,C)/PGln,C (cf. [CP]). Vainsencher
[V], Laksov [Lak2] and Thorup-Kleiman [TK] have given a modular description
for (some of) the S-valued points of PGln. We will give a brief account of their
results.
Let R ⊆ [1, n − 1] and let S be a scheme. Following the terminology of
Vainsencher, an S-valued complete collineation of type R from a rank-n vector
bundle E to a rank-n vector bundle F is a collection of morphisms

vi : Ei → Ni ⊗ Fi (0 ≤ i ≤ k),

where R = {r1, . . . , rk}, 0 =: r0 < r1 < · · · < rk < rk+1 := n, the Ni
are line bundles, the Ei, Fi are vector bundles on S and vi has overall rank
ri+1 − ri; furthermore it is required that E0 = E, F0 = F , and Ei = ker(vi−1),
Fi = N∨

i−1 ⊗ coker(vi−1) for 1 ≤ i ≤ k. Vainsencher proves that the locally

closed subscheme (∩r∈R∆r) \ ∪r 6∈R∆r of PGln represents the functor which to
each scheme S associates the set of isomorphism classes of S-valued complete
collineations of type R from ⊕nOS to itself.
Laksov went further. He succeeded to give a modular description for those
S-valued points of ∆(R) := ∩r∈R∆r for which the pull-back of the divisor∑

r 6∈R∆r|∆(R) on ∆(R) is a well-defined divisor on S. We refer the reader to

[Lak2] for more details.
Finally, Thorup and Kleiman gave the following description for all S-valued
points of PGln. A morphism u from (⊕nOS)⊗ (⊕nOS)∨ to a line bundle L is
called a divisorial form, if for each i ∈ [1, n] the image Mi(u) of the induced
map ∧i(⊕nOS)⊗∧i(⊕nOS)∨ → L⊗i is an invertible sheaf. In this case denote
by ui the induced surjection ∧i(⊕nOS) ⊗ ∧i(⊕nOS)∨ → Mi(u). Following
Thorup and Kleiman, we define a projectively complete bilinear form as a tupel
u = (u1, . . . , un), where ui : ∧i(⊕nOS) ⊗ ∧i(⊕nOS)∨ → Mi is a surjection
onto an invertible sheafMi for 1 ≤ i ≤ n, such that u is “locally the pull-back
of a divisorial form”. The last requirement means the following: For each point
x ∈ S, there exists an open neighborhood U of x, a morphism from U to some
scheme S′ and a divisorial form u : (⊕nOS′)⊗ (⊕nOS′)∨ → L′ on S′ such that
the restriction of u to U is isomorphic to the pull-back of (u1, . . . , un). Thorup
and Kleiman show that PGln represents the functor that to each scheme S
associates the set of isomorphism classes of projectively complete bilinear forms
on S.
None of these descriptions is completely satisfactory: Those of Vainsencher and
Laksov deal only with special S-valued points and the description of Thorup-
Kleiman is not explicit and is not truely modular, since the condition “to
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be locally pull-back of a divisorial form” makes reference to the existence of
morphisms between schemes.
The terminology in the following definition will be justified by the corollary 8.2
below.

Definition 8.1. Let S be a scheme and E , F two locally free OS-modules of
rank n. A complete collineation from E to F is a tupel

Ψ = (Li, λi, Fi+1 → Fi, Li ⊗Fi+1 ← Fi (0 ≤ i ≤ n− 1)) ,

where E = Fn,Fn−1, . . . ,F1,F0 = F are locally free OS-modules of rank n,
the tupels

(Li, λi, Fi+1 → Fi, Li ⊗Fi+1 ← Fi, i)

are bf-morphisms of rank i for 0 ≤ i ≤ n − 1 and λ0 = 0, such that for each
point x ∈ S and index i ∈ {0, . . . , n− 1} with the property that λi(x) = 0, the
following holds:
If (f, g) is one of the following two pairs of morphisms:

Fn[x]
f
−→ Fi+1[x]

g
−→ Fi[x] ,

((⊗ij=0Lj)⊗Fi+1)[x]
g
←− ((⊗i−1

j=0Lj)⊗Fi)[x]
f
←− F0[x] ,

then im(g ◦ f) = im(g).
Two complete collineations Ψ and Ψ′ from E to F are called equivalent, if
there are isomorphisms Li

∼
→ L′

i, Fi
∼
→ F ′

i , such that all the obvious diagrams

commute and such that Fn
∼
→ F ′

n and F0
∼
→ F ′

0 is the identity on E and F .

Corollary 8.2. On PGln there exists a universal complete collineation Ψuniv

from ⊕nO to itself, such that the pair (PGln,Ψuniv) represents the functor,
which to every scheme S associates the set of equivalence classes of complete
collineations from ⊕nOS to itself.

Proof. Observe that PGln is naturally isomorphic to the closed subscheme Y0

of KGln. The restriction of Φuniv to PGln induces in an obvious way a complete
collineation Ψuniv of ⊕nO to itself on PGln. The corollary now follows from
theorem 5.5.

We conclude this section by indicating how one can recover Vainsencher’s and
Thorup-Kleiman’s description from corollary 8.2. Let S be a scheme and let

Ψ = (Li, λi, Fi+1 → Fi, Li ⊗Fi+1 ← Fi (0 ≤ i ≤ n− 1))

be a complete collineation from ⊕nOS to itself in the sense of definition 8.1.
First assume that there exists a subset R of [1, n − 1], such that the map
S → PGln corresponding to Ψ factors through (∩r∈R∆r) \ ∪r 6∈R∆r. This
means that λr is zero for r ∈ R and is nowhere vanishing for r ∈ [1, n− 1] \R.
As above, let R = {r1, . . . , rk}, 0 =: r0 < r1 < · · · < rk < rk+1 := n. For
0 ≤ i ≤ k let

Ei := ker(Fn → Fn−1 → · · · → Fri)

Fi := N∨
i ⊗ ker(Fri+1 → Fri+1−1 → · · · → Fri) ,
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where Ni := ⊗ij=1L
∨
ri

. Observe that the data in Ψ provide natural maps

vi : Ei → Ni ⊗ Fi

of overall rank ri+1 − ri for 0 ≤ i ≤ k. Furthermore we have natural isomor-
phisms E0 = Fn = ⊕nO, F0

∼= F0 = ⊕nO, and for 1 ≤ i ≤ k:

ker(vi−1) = Ei

coker(vi−1) ∼= coker(Fn → Fri) = coker(Fri+1 → Fri)
∼=

∼= ker(Lri ⊗Fri+1 → Lri ⊗Fri)
∼= Ni−1 ⊗ Fi .

Thus, (vi)0≤i≤k is a complete homomorphism of type R in the sense of
Vainsencher.
Now let Ψ be arbitrary. As in section 6, Ψ induces nowhere vanishing mor-
phisms

∧rΨ : ∧rFn →

(
r⊗

ν=1

ν−1⊗

i=0

L∨i

)
⊗ ∧rF0

and thus surjections

ur : ∧rFn ⊗ ∧
rF∨

0 →
r⊗

ν=1

ν−1⊗

i=0

L∨i

for 1 ≤ r ≤ n. The tupel (ur)1≤r≤n is a projectively complete bilinear form in
the sense of Thorup-Kleiman. This follows from the fact that ∧1Ψuniv induces
a divisorial form on PGln.

9. Geometry of the strata

In this section we need relative versions of the varieties KGln, PGln and OI,J :=
∩i∈IZi ∩ ∩j∈JYj , where I and J are subsets of [0, n− 1]. They are defined in
the following theorem.

Theorem 9.1. Let T be a scheme and let E and F be two locally free OT -
modules of rank n. For a T -scheme S we write ES and FS for the pull-back
of E and F to S. Let I, J be two subsets of [0, n− 1] Consider the following
contravariant functors from the category of T -schemes to the category of sets:

KGl(E ,F) : S 7→





equivalence classes of
generalized isomorphisms
from ES to FS





PGl(E ,F) : S 7→





equivalence classes of
complete collineations
from ES to FS





OI,J(E ,F) : S 7→





equivalence classes of
generalized isomorphisms Φ
as in definition 5.2 from
ES to FS, with µi = 0 for i ∈ I
and λj = 0 for j ∈ J
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These functors are representable by smooth projective T -schemes, which we will
call KGl(E ,F), PGl(E ,F) and OI,J(E ,F) respectively.

Proof. In the case of T = Spec Z and E = F = ⊕nOSpecZ, the theorem is

a consequence of 5.5 and 8.2, where the representing objects are KGln, PGln
and OI,J respectively. Let T = ∪Ui an open covering such that there exist
trivializations

ξi : E|Ui

∼
→ ⊕nOUi

ζi : F |Ui

∼
→ ⊕nOUi .

Let KGlUi := KGln×SpecZUi and πi : KGlUi → Ui the projection. By corollary

5.6, over the intersections Ui ∩Uj the pairs (ξiξ
−1
j , ζiζ

−1
j ) induce isomorphisms

π−1
i (Ui ∩ Uj)

∼
→ π−1

j (Ui ∩ Uj). These provide the data for the pieces KGlUi to

glue together to define KGl(E ,F). Using theorem 5.5 it is easy to check that
KGl(E ,F) has the required universal property. This proves the existence of
KGl(E ,F). The existence of PGl(E ,F) and of OI,J(E ,F) is proved analogously.

Definition 9.2. Let T be a scheme and E a locally free OT -module of rank
n. Let d := (d0, . . . , dt), where 0 ≤ d0 ≤ · · · ≤ dt ≤ n Let Fld(E) be the flag
variety which represents the following contravariant functor from the category
of T -schemes to the category of sets:

S 7→






All filtrations F0E ⊆ · · · ⊆ FtE , where
FpE is a subbundle of rank dp of ES
for 0 ≤ p ≤ t






Here as usual, a subbundle of ES means a locally free subsheaf of ES , which is
locally a direct summand.

After these preliminaries we can state the main result of this section, which
descibes the structure of the schemes OI,J defined above.

Theorem 9.3. Let T be a scheme and let E and F be two locally free OT -
modules of rank n. Let I := {i1, . . . , ir} and J := {j1, . . . , js}, where i1 +
j1 ≥ n and 0 ≤ i1 < · · · < ir+1 := n, 0 ≤ j1 < · · · < js+1 := n. Let
d := (d0, . . . , dr+s+1) and δ := (δ0, . . . , δr+s+1), where

dp :=

{
n− js+1−p for 0 ≤ p ≤ s
ip−s for s+ 1 ≤ p ≤ r + s+ 1

and δq := n− dr+s+1−q for 0 ≤ q ≤ r + s+ 1. Let

0 = U0 ⊆ U1 ⊆ · · · ⊆ Ur+s+1 = EFld(E)×Flδ(F)

and 0 = V0 ⊆ V1 ⊆ · · · ⊆ Vr+s+1 = FFld(E)×Flδ(F)

be the pull back to Fld(E)×Flδ(F) of the universal flag on Fld(E) and Flδ(F)
respectively. Then there is a natural isomorphism

OI,J(E ,F)
∼
→ P1 ×

Fl

. . .×
Fl

Pr ×
Fl

Qs ×
Fl

. . .×
Fl

Q1 ×
Fl

K ′ ,
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where Fl := Fld(E)× Flδ(F) and where

Pp := PGl(Vr−p+1/Vr−p, Us+p+1/Us+p) (1 ≤ p ≤ r)

Qq := PGl(Us−q+1/Us−q, Vr+q+1/Vr+q) (1 ≤ q ≤ s)

K ′ := KGl(Us+1/Us, Vr+1/Vr) .

Proof. The isomorphism

OI,J ∼= P1 ×
Fl
. . .×

Fl
Pr ×

Fl
Qs ×

Fl
. . .×

Fl
Q1 ×

Fl
K ′

is given on S-valued points by the bijectiv correspondence

Φ←→ ((F•E , F•F), ϕ1, . . . , ϕr, ψs, . . . , ψ1,Φ
′) ,

where

Φ =


 ES

⊗

��

(M0,µ0)
E1

0oo
(M1,µ1)

⊗

��
E2

1oo . . . En−1
(Mn−1,µn−1)

⊗

��
En

n−1oo ∼ // Fn
n−1// Fn−1

⊗

��

(Ln−1,λn−1)

. . . F2
1 // F1

0 //
(L1,λ1)

⊗

��
FS

(L0,λ0)

⊗

��



is a generalized isomorphism from ES to FS with µi = λj = 0 for i ∈ I and
j ∈ J ,

F•E = (0 = F0E ⊆ · · · ⊆ Fr+s+1E = ES)

and F•F = (0 = F0F ⊆ · · · ⊆ Fr+s+1F = FS)

are flags of type d and δ in ES and FS respectively,

ϕp =



 E(p)
0

⊗ %%

E
(p)
1

0oo

(M
(p)
0 ,µ

(p)
0 )

. . . E
(p)
mp−1

⊗ %%
E

(p)
mp

mpoo

(M(p)
mp

,µ(p)
mp

)





is a complete collineation from E
(p)
mp = Fr−p+1F/Fr−pF to E

(p)
0 =

Fs+p+1E/Fs+pE for 1 ≤ p ≤ r,

ψq =


 F (q)

nq

nq //

(L(q)
nq
,λ(q)

nq
)

F
(q)
nq−1

⊗xx
. . . F

(q)
1

0 //

(L
(q)
0 ,λ

(q)
0 )

F
(p)
0

⊗yy



is a complete collineation from F
(q)
nq = Fs−q+1F/Fs−qE to F

(q)
0 =

Fr+q+1F/Fr+qF for s ≥ q ≥ 1 and Φ′ =

 E ′

0

⊗
��

(M′
0,µ′

0)

E ′
1

0oo
(M′

1,µ′
1)

⊗
��
E ′
2

1oo . . . E ′
n′−1

(M′
n′−1

,µ′
n′−1

)

⊗
��
E ′

n′

n′
−1oo ∼ // F ′

n′

n′
−1// F ′

n′−1

⊗
��

(L′
n′−1

,λ′
n′−1

)

. . . F ′
2

1 // F ′
1

0 //
(L′

1,λ′
1)

⊗
��

F ′
0

(L′
0,λ′

0)

⊗
��




is a generalized isomorphism from E ′0 = Fs+1E/FsE to F ′
0 = Fr+1F/FrF .

The mapping

Φ 7→ ((F•E , F•F), ϕ1, . . . , ϕr, ψs, . . . , ψ1,Φ
′)

is defined as follows: Let Φ as above be given. For convenience we set
En+1 := Fn, Fn+1 := En and we let Fn+1 → Fn and En ← En+1 be the iso-

morphism En
∼
→ Fn and its inverse respectively, whereas we let En ⊗ // En+1
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and Fn+1 Fn⊗oo both be the zero morphism. For what follows, the picture

below may help to keep track of the indices:

Φ︷ ︸︸ ︷
0

| . . . . . .
n−j1

| . . .
i1

| . . .
i2

| . . . . . .
ir

| . . .
n

|
n

| . . .
js

| . . . . . .
j2

| . . .
j1

| . . .
n−i1
| . . . . . .

0

|
︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸
Φ′ ϕ1 ϕr ψs ψ1 Φ′

Let F0E = F0F := 0, Fr+s+1E := E , Fr+s+1F := F and

FpE :=





(
image of ker(En → Fjs−p+1) by
the morphism ES ← En

)
, if 1 ≤ p ≤ s

ker( ES ⊗ // Eip−s+1 ) , if s+ 1 ≤ p ≤ r + s

FqF :=





(
image of ker(Eir−q+1 ← Fn) by
the morphism Fn → FS

)
, if 1 ≤ q ≤ r

ker( Fjq−r+1 FS⊗oo ) , if r + 1 ≤ q ≤ r + s

It is then clear from the definition of generalized isomorphisms that

F•E := (0 = F0E ⊆ · · · ⊆ Fr+s+1E = ES)

and F•F := (0 = F0F ⊆ · · · ⊆ Fr+s+1F = FS)

are flags of type d and δ in ES and FS respectively. Let 1 ≤ p ≤ r. We set

E
(p)
0 := ker( E ⊗ // Eip+1+1 )/ ker( E ⊗ // Eip+1 ) = Fs+p+1E/Fs+pE

M
(p)
0 :=

ip⊗

i=0

Mi , µ
(p)
0 := 0

and

E
(p)
k := ker(Eip ← Eip+k) ∩ ker( Eip+k ⊗ // Eip+1+1 ) (1 ≤ k ≤ mp)

M
(p)
k := Mip+k , µ

(p)
k := µip+k (1 ≤ k ≤ mp − 1)

where mp = ip+1 − ip. Observe that the sheaves E
(p)
k thus defined are locally

free of rank mp. Indeed, this is clear for k = 0. For k ≥ 1 it suffices to
show that Eip+k is generated by the two subsheaves ker(Eip ← Eip+k) and

ker( Eip+k ⊗ // Eip+1+1 ). For this in turn, it suffices to show that the image

of ker( Eip+k ⊗ // Eip+1+1 ) by the morphism Eip ← Eip+k is im(Eip ← Eip+k).

But this is clear, since by the definition of generalized isomorphisms we have

ker( Eip+k ⊗ // Eip+1+1 ) ⊇ im(Eip+k ← Eip+1+1)

and im(Eip ← Eip+k) = im(Eip ← Eip+1+1) .

Since
ip⊗

i=0

M∨
i ⊗ (ES/Fs+pE) = im(

ip⊗

i=0

M∨
i ⊗ ES → Eip+1) = ker(Eip ← Eip+1) ,
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we have a natural isomorphism E
(p)
0 = Fs+p+1E/Fs+pE

∼
→ M

(p)
0 ⊗ E

(p)
1 . We

define E
(p)
0 ← E

(p)
1 to be the zero morphism. Thus we have a bf-morphism

E
(p)
0

⊗ %%

E
(p)
1

0oo

(M
(p)
0 ,µ

(p)
0 =0)

of rank zero. For 1 ≤ k ≤ mp − 1 let E
(p)
k

⊗ &&

E
(p)
k+1

koo

(M
(p)
k ,µ

(p)
k )

be

the bf-morphism induced by the bf-morphism Eip+k

⊗ &&
Eip+k+1

ip+koo

(Mip+k,µip+k)

. Observe

that ker( Eip+1 ⊗ // Eip+1+1 ) = im(Eip+1 ← En) = En/ ker(Eip+1 ← En) and

that the morphism En → FS maps ker(Eip ← En) injectively into FS. Therefore

we have a natural isomorphism E
(p)
mp
∼= Fr−p+1F/Fr−pF by which we identify

these two sheaves. It is not difficult to see that

ϕp :=



 E(p)
0

⊗ %%

E
(p)
1

0oo

(M
(p)
0 ,µ

(p)
0 )

. . . E
(p)
mp−1

⊗ %%
E

(p)
mp

mpoo

(M(p)
mp

,µ(p)
mp

)





is a complete collineation in the sense of 8.1 from E
(p)
mp = Fr−p+1F/Fr−pF to

E
(p)
0 = Fs+p+1E/Fs+pE . In a completely symmetric way the generalized iso-

morphism Φ induces also complete collineations

ψq =



 F (q)
nq

nq //

(L(q)
nq
,λ(q)

nq
)

F
(q)
nq−1

⊗xx
. . . F

(q)
1

0 //

(L
(q)
0 ,λ

(q)
0 )

F
(p)
0

⊗yy




from F
(q)
nq = Fs−q+1F/Fs−qE to F

(q)
0 = Fr+q+1F/Fr+qF for s ≥ q ≥ 1. It

remains to construct the generalized isomorphism Φ′. We set

E ′k := ker( En−j1+k ⊗ // Ei1+1 )/im(En−j1+k ← ker(En → Fj1))

F ′
k := ker( Fj1+1 Fn−i1+k⊗oo )/im(ker(Ei1 ← Fn)→ Fn−i1+k))

for 0 ≤ k ≤ n′ := i1 + j1 − n and

M′
k := Mn−j1+k , µ′

k := µn−j1+k

L′k := Ln−i1+k , λ′k := λn−i1+k

for 0 ≤ k ≤ n′ − 1. It is then clear that the E ′k and F ′
k are locally free of rank

n′ = i1+j1−n. It follows from definition 5.2.2. that the µi and λj are nowhere
vanishing for 0 ≤ i ≤ n − j1 − 1 and n − i1 − 1 ≥ j ≥ 0. Therefore we may
identify Ei with ES and Fj with FS for 0 ≤ i ≤ n−j1−1 and n− i1−1 ≥ j ≥ 0
respectively. This implies in particular that we have E ′0 = Fs+1E/FsE and
F ′

0 = Fr+1F/FrF . Let

E ′k

⊗   
E ′k+1

koo
(M′

k,µ
′
k)

and F ′
k+1

k //
(L′

k,λ
′
k)

F ′
k

⊗}}
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be the bf-morphisms induced by the bf-morphisms

En−j1+k

⊗ ''
En−j1+k+1

n−j1+koo
(Mn−j1+k,µn−j1+k)

and Fn−i1+k+1
n−i1+k //

(Ln−i1+k,λn−i1+k)

Fn−i1+k

⊗ww

respectively. We have

ker( Ei1 ⊗ // Ei1+1 ) = im(Ei1 ← En) = En/ ker(Ei1 ← En)

and therefore

E ′n′ = En/(ker(Ei1 ← En) + ker(En → Fj1)) .

By the same argument:

F ′
n′ = Fn/(ker(Ei1 ← Fn) + ker(Fn → Fj1)) .

Thus the isomorphism En
∼
→ Fn induces an isomorphism E ′n′

∼
→ F ′

n′ . Again it
is not difficult to check that Φ′ :=

 E ′

0

⊗
��

(M′
0,µ′

0)

E ′
1

0oo
(M′

1,µ′
1)

⊗
��
E ′
2

1oo . . . E ′
n′−1

(M′
n′−1

,µ′
n′−1

)

⊗
��
E ′

n′

n′
−1oo ∼ // F ′

n′

n′
−1// F ′

n′−1

⊗
��

(L′
n′−1

,λ′
n′−1

)

. . . F ′
2

1 // F ′
1

0 //
(L′

1,λ′
1)

⊗
��

F ′
0

(L′
0,λ′

0)

⊗
��




is a generalized isomorphism from E ′0 = Fs+1E/FsE to F ′
0 = Fr+1F/FrF . This

completes the construction of the mapping

Φ 7→ ((F•E , F•F), ϕ1, . . . , ϕr, ψs, . . . , ψ1,Φ
′) .

We proceed by constructing the inverse of this mapping. Let data
((F•E , F•F), ϕ1, . . . , ϕr, ψs, . . . , ψ1,Φ

′) be given. Let Ei := ES and Fj := FS
for 0 ≤ i ≤ n− j1 and n− i1 ≥ j ≥ 0 respectively. Now let n− j1 + 1 ≤ i ≤ i1
and j1 ≥ j ≥ n− i1 + 1. Let Ẽi and F̃j be defined by the cartesian diagrams

Ẽi

��

// E ′i+j1−n

��
Fs+1E // // Fs+1E/FsE

and

F̃j

��

// F ′
j+i1−n

��
Fr+1F // // Fr+1F/FrF

respectively. For a moment letM :=
⊗i+j1−n−1

k=0 M′
k. We have a commutative

diagram

M∨ ⊗ Fs+1E

��

// E ′i+j1−n

��
Fs+1E // // Fs+1E/FsE

(∗)

where the left vertical arrow is induced by
⊗i+j1−n−1

k=0 µ′
k : OS →M and the

upper horizontal arrow is the composition

M∨ ⊗ Fs+1E →M
∨ ⊗ Fs+1E/FsE =M∨ ⊗ E ′0 → E

′
i+j1−n
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The diagram (∗) induces a morphism M∨ ⊗ Fs+1E → Ẽi. Analogously, we

have a morphism L∨⊗Fr+1F → F̃j , where we have employed the abbreviation

L :=
⊗j+i1−n−1

k=0 L′k. Let Ei and Fj be defined by the cocartesian diagrams

M∨ ⊗ Fs+1E

��

� � //M∨ ⊗ ES

��
Ẽi

// Ei

and

L∨ ⊗ Fr+1F

��

� � // L∨ ⊗FS

��
F̃j // Fj

respectively.
We define En = Fn by the cartesian diagram

En = Fn

��

// F̃j1

����
Ẽi1

// // E ′i1+j1−n

∼= // F ′
i1+j1−n

Observe that the composed morphism En → Ẽi1 → Fs+1E maps the submod-

ule ker(En → F̃j1) of En isomorphically onto the submodule FsE of Fs+1E .
Therefore we have canonical injections

FpE ↪→ FsE
∼
→ ker(En → F̃j1) ↪→ En

for 0 ≤ p ≤ s. Analogously, we have canonical injections

FqF ↪→ FrF
∼
→ ker(Fn → Ẽi1) ↪→ Fn

for 0 ≤ q ≤ r.
Now let 1 ≤ p ≤ r, ip + 1 ≤ i ≤ ip+1 and s ≥ q ≥ 1, jq+1 ≥ j ≥ jq + 1. We

want to define Ei and Fj in this case. Let first Ẽi and F̃j be defined by the
cocartesian diagrams

M∨ ⊗ Fs+p+1E/Fs+pE //
� _

��

E
(p)
i−ip

��
M∨ ⊗ ES/Fs+pE // Ẽi

and

L∨ ⊗ Fr+q+1F/Fr+qE //
� _

��

F
(q)
j−jq

��
L∨ ⊗FS/Fr+qF // F̃j

where we have set M :=
⊗i−ip−1

k=0 M
(p)
k and L :=

⊗j−jq−1
k=0 L

(q)
k . Let further-

more Êi and F̂j be defined by the cocartesian diagrams

Fr−p+1F/Fr−pF //
� _

��

E
(p)
i−ip

��
Fn/Fr−pF // Êi

and

Fs−q+1E/Fs−qE //
� _

��

F
(q)
j−jq

��
En/Fs−qE // F̂j
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Now we define Ei and Fj by the cocartesian diagrams

E
(p)
i−ip

��

// Ẽi

��
Êi

// Ei

and

F
(q)
j−jq

��

// F̃j

��
F̂j // Fj

respectively. For p = r and i = ir+1 = n this gives formally a new definition of
En, but it is clear that we have a canonical isomorphism between the two En’s.
A similar remark applies to Fn.
We define the invertible sheavesMi together with their respective sections µi
as follows:

Mi := OS , µi := 1 (0 ≤ i ≤ n− j1 − 1)

Mi := M′
i+j1−n , µi := µ′

i+j1−n (n− j1 ≤ i ≤ i1 − 1)

Mi := M
(p)
i−ip

, µi := µ
(p)
i−ip

(1 ≤ p ≤ r , ip < i < ip+1)

Mi1 := M
(1)
0 ⊗

i1+j1−n−1⊗

k=0

(M′
k)

∨ , µi1 := 0

Mip := M
(p)
0 ⊗

ip−ip−1−1⊗

k=0

(M
(p−1)
k )∨ , µip := 0 (2 ≤ p ≤ r)

Let the Lj and λj be defined symmetrically (i.e. by replacing in the above
definition the letter M with L, µ with λ, i with j, j with i and r with s).
It remains to define the bf-morphisms

Ei

⊗ ��
Ei+1

ioo
(Mi,µi)

and Fj+1
j //

(Lj ,λj)

Fj

⊗��

for n − j1 ≤ i ≤ n − 1 and n − 1 ≥ j ≥ n − i1. Again we restrict ourselves
to the left hand side, since the right hand side is obtained by the symmetric
construction. For n − j1 ≤ i ≤ i1 − 1 (respectively for 1 ≤ p ≤ r , ip ≤

i ≤ ip+1 − 1) the bf-morphism Ei

⊗ ��
Ei+1

oo is induced in an obvious way

by the bf-morphism E ′i+j1−n

⊗ &&
E ′i+j1−n+1

oo (respectively by the bf-morphism

E
(p)
i−ip

⊗ &&

E
(p)
i−ip+1

oo ). For the definition of the bf-morphism Ei1

⊗ ��
Ei1+1oo

consider the two canonical exact sequences

0 // Ẽ i1
// Ei1 //M∨ ⊗ ES/Fs+1E // 0

0 // Ẽ i1+1
// Ei1+1

// Ê i1+1/E
(1)
1

// 0
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whereM :=
⊗i1−1

k=0 Mk. Observe that we have canonical isomorphisms

Ẽ i1
a

∼=
// Fn/FrF

b

∼=
// Ê i1+1/E

(1)
1

Ẽ i1+1
c

∼=
//M∨

i1
⊗M∨ ⊗ ES/Fs+1E

The isomorphism a follows from the observation we made after the definition
of En = Fn, namely that the composed morphism Fn → F̃j1 → Fr+1F maps

ker(En → Ẽi1) isomorphically to FrF . The isomorphism b comes from the fact

that for i = i1+1 the left vertical arrow in the defining diagram for Êi vanishes,
and the isomorphism c follows since for i = i1 + 1 the left vertical arrow in the
defining diagram for Ẽi is an isomorphism. Thus we have morphisms

Ei1 // //M∨ ⊗ ES/Fs+1
c−1

//Mi1 ⊗ Ẽ i1+1
� � //Mi1 ⊗ Ei1+1

Ei1 Ẽ i1
? _oo Ê i1+1/E

(1)
1

a−1b−1
oo Ei1+1

oooo

which make up the bf-morphism Ei1

⊗ ��
Ei1+1

oo . For 2 ≤ p ≤ r the bf-

morphism Eip

⊗ !!
Eip+1oo is constructed similarly from the exact sequences

0 // Ê ip
// Eip // Ẽ ip/E

(p−1)
ip−ip−1

// 0

0 // Ẽ ip+1
// Eip+1 // Ê ip+1/E

(p)
1

// 0

and the canonical isomorphisms

Ê ip
∼= // Fn/Fr−p+1F

∼= // Ê ip+1/E
(p)
1

Ẽ ip+1

∼= //M∨
ip
⊗M∨ ⊗ E/Fs+pE

∼= //M∨
ip
⊗ Ẽ ip/E

(p−1)
ip−ip−1

whereM :=
⊗ip−1

k=0 Mk.
This completes the construction of

Φ =


 ES

⊗

��

(M0,µ0)
E1

0oo
(M1,µ1)

⊗

��
E2

1oo . . . En−1
(Mn−1,µn−1)

⊗

��
En

n−1oo ∼ // Fn
n−1// Fn−1

⊗

��

(Ln−1,λn−1)

. . . F2
1 // F1

0 //
(L1,λ1)

⊗

��
FS

(L0,λ0)

⊗

��



It is not difficult to see that Φ is a generalized isomorphism from ES to FS and
that the mapping ((F•E , F•F), ϕ1, . . . , ϕr, ψs, . . . , ψ1,Φ

′) 7→ Φ is inverse to the
mapping Φ 7→ ((F•E , F•F), ϕ1, . . . , ϕr, ψs, . . . , ψ1,Φ

′) constructed before. We
leave the details to the reader.

In the situation of theorem 9.3 we denote by Gl(E) the group scheme over T ,
whose S-valued points are the automorphisms of ES . There is a natural left
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operation of Gl(E)×T Gl(F) on KGl(E ,F), which is given on S-valued points
by

(f, g)




ES

⊗
u[

!!
E1

u]

oo . . . F1
v]

// FS

⊗
v[

||


 :=


 ES

⊗
u[

◦f−1

!!
E1

f◦u]

oo . . . F1
g◦v]

// FS

⊗
v[

◦g−1

||




Corollary 9.4. The orbits of the Gl(E)×T Gl(F)-operation on KGl(E ,F) are
the locally closed subvarieties

OI,J(E ,F) := OI,J(E ,F) \



⋃

i6∈I

Zi(E ,F) ∪
⋃

j 6∈J

Yj(E ,F)


 ,

where I, J ⊆ [0, n − 1] with min I + min J ≥ n, and where Zi(E ,F) :=
O{i},∅(E ,F) and Yj(E ,F) := O∅,{j}(E ,F).

Proof. The S-valued points of OI,J(E ,F) are the generalized isomorphisms

Φ =


 ES

⊗

��

(M0,µ0)
E1

0oo
(M1,µ1)

⊗

��
E2

1oo . . . En−1
(Mn−1,µn−1)

⊗

��
En

n−1oo ∼ // Fn
n−1// Fn−1

⊗

��

(Ln−1,λn−1)

. . . F2
1 // F1

0 //
(L1,λ1)

⊗

��
FS

(L0,λ0)

⊗

��



where µi = λj = 0 for i ∈ I and j ∈ J and where µi, λj are nowhere vanishing
for i 6∈ I , j 6∈ J . It is clear that OI,J (E ,F) is invariant under the operation
of Gl(E) ×T Gl(F). From the proof of theorem 9.3 it follows that we have the
following isomorphism

OI,J(E ,F) ∼=
o

P1 ×
Fl
. . .×

Fl

o

Pr ×
Fl

o

Qs ×
Fl
. . .×

Fl

o

Q1 ×
Fl

o

K ′ ,

where
o

Pp := PGl(Vr−p+1/Vr−p, Us+p+1/Us+p) (1 ≤ p ≤ r)
o

Qq := PGl(Us−q+1/Us−q, Vr+q+1/Vr+q) (1 ≤ q ≤ s)
o

K ′ := Isom(Us+1/Us, Vr+1/Vr) .

There is a left Gl(E)×T Gl(F)-operation on the right-hand side of this isomor-
phism, given on S-valued points by

(f, g)((F•E , F•F), ϕ1, . . . , ϕr, ψs, . . . , ψ1,Φ
′) :=

((f(F•E), g(F•F)), f−1ϕ1g, . . . , f
−1ϕrg, gψsf

−1, . . . , gψ1f
−1, gΦ′f−1),

where ϕp is an isomorphism (up to multiplication by an invertible section ofOS)
from Fr−p+1F/Fr−pF to Fs+p+1E/Fs+pE for 1 ≤ p ≤ r, ψq an isomorphism
(up to multiplication by an invertible section of OS) from Fs−q+1E/Fs−qE to
Fr+q+1F/Fr+qF for s ≥ q ≥ 1 and Φ′ is an isomorphism from Fs+1E/FsE
to Fr+1F/FrF . It is easy to see that this operation is transitiv and that the
isomorphism

OI,J(E ,F) ∼=
o

P1 ×
Fl
. . .×

Fl

o

Pr ×
Fl

o

Qs ×
Fl
. . .×

Fl

o

Q1 ×
Fl

o

K ′ ,
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is Gl(E)×T Gl(F)-equivariant.

10. A morphism of KGln onto the Grassmannian compactification
of the general linear group

Let V be an n-dimensional vector space over some field. As mentioned in the
introduction, there is another natural compactification of the general linear
group Gl(V ): The Grassmannian Grn(V ⊕ V ) of n-dimensional subspaces of
a V ⊕ V -dimensional vector space. The embedding Gl(V ) ↪→ Grn(V ⊕ V ) is

given by associating to an automorphism V
∼
→ V its graph in V ⊕ V . We

will see in this section that there exists a natural morphism from KGl(V ) to
Grn(V ⊕ V ). Our motivation here is to obtain a better understanding of the
relation between the Gieseker-type degeneration of moduli spaces of vector
bundles and the torsion-free sheaves approach as developed in [NS] and [S2].
As in the previous section, we work over an arbitrary base scheme T . Let
E , F be two locally free OT -modules of rank n. Denote by Grn(E ⊕ F) the
Grassmanian variety over T which parametrizes subbundles of rank n of E ⊕F .
Let S be a T -scheme and let

Φ =


 ES

⊗

��

(M0,µ0)
E1

0oo
(M1,µ1)

⊗

��
E2

1oo . . . En−1
(Mn−1,µn−1)

⊗

��
En

n−1oo ∼ // Fn
n−1// Fn−1

⊗

��

(Ln−1,λn−1)

. . . F2
1 // F1

0 //
(L1,λ1)

⊗

��
FS

(L0,λ0)

⊗

��



be a generalized isomorphism from ES to FS . By 5.2.2, the morphism En →
ES ⊕FS induced by the two composed morphisms

En → En−1 → · · · → E1 → ES

En
∼
→ Fn → Fn−1 → · · · → F1 → FS

is a subbundle of ES ⊕FS . Let

KGl(E ,F)→ Grn(E ⊕ F)

be the morphism, which on S-valued points is given by Φ 7→ (En → ES ⊕ FS).
Observe that the following diagram commutes

Isom(E ,F)
jJ

wwppppppppppp t�

''OOOOOOOOOOO

KGl(E ,F) // Grn(E ⊕ F)

and that furthermore all the arrows in this diagram are equivariant with respect
to the natural action of Gl(E) ×T Gl(F) on the three schemes. In the next
proposition we compute the fibres of the morphism KGl(E ,F)→ Grn(E ⊕ F).

Proposition 10.1. Let S ′ be a T -scheme and let H ↪→ ES′ ⊕ FS′ be an S′-
valued point of Grn(E ,F) such that im(H → ES′) and im(H → FS′) are sub-
bundles of ES′ and FS′ respectively. Then the fibre product

KGl(E ,F) ×
Grn(E⊕F)

S′
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is isomorphic to

PGl(ker(H → ES′), coker(H → ES′))×S′ PGl(ker(H → FS′), coker(H → FS′)),

where by convention PGl(N ,N ) := S ′ for the zero-sheaf N = 0 on S ′.

Proof. Let S be an S′-scheme. An S-valued point of the fibre product
KGl(E ,F)×Grn(E⊕F) S

′ is given by a generalized isomorphism

Φ =


 ES

⊗

��

(M0,µ0)
E1

0oo
(M1,µ1)

⊗

��
E2

1oo . . . En−1
(Mn−1,µn−1)

⊗

��
En

n−1oo ∼ // Fn
n−1// Fn−1

⊗

��

(Ln−1,λn−1)

. . . F2
1 // F1

0 //
(L1,λ1)

⊗

��
FS

(L0,λ0)

⊗

��



from ES to FS such that the induced morphism En ↪→ ES⊕FS identifies En with
the subbundleHS . Let i1 and j1 be the ranks of im(H → ES′) and im(H → FS′)
respectively. Observe that i1 + j1 ≥ n. We restrict ourselves to the case, where
i1 and j1 are both strictly smaller than n. (The cases where one or both of i1, j1
are equal to n are proved analogously). Then the sections µ0, . . . , µi1−1 and
λj1−1, . . . , λ0 are invertible and µi1 = λj1 = 0. From the proof of theorem 9.3
it follows that such a Φ may be given by a tupel ((F•E , F•F), ϕ, ψ,Φ′) where

F•E = (0 = F0E ⊆ F1E ⊆ F2E ⊆ F3E = ES)

F•F = (0 = F0F ⊆ F1F ⊆ F2F ⊆ F3F = FS)

are the filtrations given by

F1E := im(ker(HS → FS)→ ES)

F2E := im(HS → ES)

F1F := im(ker(HS → ES)→ FS)

F2F := im(HS → FS) ,

ϕ is a complete collineation from F1F/F0F ∼= ker(HS → ES) to F3E/F2E ∼=
coker(HS → ES), ψ is a complete collineation from F1E/F0E ∼= ker(HS → FS)
to F3F/F2F ∼= coker(HS → FS), and Φ′ is the isomorphism

F2E/F1E
∼
→ HS/(ker(HS → ES) + ker(HS → FS))

∼
→ F2F/F1F .

We see in particular that the tupel ((F•E , F•F), ϕ, ψ,Φ′) is already determined
by the subbundle HS ↪→ ES ⊕FS (i.e. by the morphism S → S′) and the pair
(ϕ, ψ).
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