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Abstract. This paper demonstrates the existence of a theory of
symmetric spectra for the motivic stable category. The main results
together provide a categorical model for the motivic stable category
which has an internal symmetric monoidal smash product. The de-
tails of the basic construction of the Morel-Voevodsky proper closed
simplicial model structure underlying the motivic stable category are
required to handle the symmetric case, and are displayed in the first
three sections of this paper.
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Introduction

This paper gives a method for importing the stable homotopy theory of sym-
metric spectra [7] into the motivic stable category of Morel and Voevodsky [14],
[16], [17]. This category arises from a closed model structure on a suitably de-
fined category of spectra on a smooth Nisnevich site, and it is fundamental for
Voevodsky’s proof of the Milnor Conjecture [16]. The motivic stable category
acquires an effective theory of smash, or non-abelian tensor products with the
results presented here.

Loosely speaking, the motivic stable category is the result of formally in-
verting the functor X 7→ T ∧ X within motivic homotopy theory, where T is
the quotient of sheaves A1/(A1 − 0). In this context, a spectrum X , or T -
spectrum, consists of pointed simplicial presheaves Xn, n ≥ 0, together with
bonding maps T ∧ Xn → Xn+1. The theory is exotic in at least two ways:
it lives within the motivic model category, which is a localized theory of sim-
plicial presheaves, and the object T is not a circle in any sense, but is rather
motivic equivalent to an honest suspension S1 ∧Gm of the scheme underlying
the multiplicative group. Smashing with T is thus a combination of topological
and geometric suspensions.
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A symmetric spectrum in this category is a T -spectrum Y which is equipp-
ed with symmetric group actions Σn × Y n → Y n in all levels such that all
composite bonding maps T∧p ∧ Xn → Xp+n are (Σp × Σn)-equivariant. The
main theorems of this paper assert that this category of symmetric spectra
carries a notion of stable equivalence within the motivic model category which
is part of a proper closed simplicial model structure (Theorem 4.15), and such
that the forgetful functor to T -spectra induces an equivalence of the stable
homotopy category for symmetric spectra with the motivic stable category
(Theorem 4.31). This collection of results gives a category which models the
motivic stable category, and also has a symmetric monoidal smash product.

The relation between spectra and symmetric spectra in motivic homotopy
theory is an exact analogue of that found in ordinary homotopy theory. In
this way, every T -spectrum is representable by a symmetric object, but some
outstanding examples of T -spectra are intrinsically symmetric. These include
the T -spectrum HZ which represents motivic cohomology [18].

The principal results of this paper are simple enough to state, but a bit com-
plicated to demonstrate in that their proofs involve some fine detail from the
construction of the motivic stable category. It was initially expected, given the
experience of [13], that the passage from spectra to symmetric spectra would
be essentially axiomatic, along the lines of the original proof of [7]. This re-
mains true in a gross sense, but many of the steps in the proofs of [7] and
[13] involve standard results from stable homotopy theory which cannot be
taken for granted in the motivic context. In particular, the construction of the
motivic stable category is quite special: one proves it by verifying the Bousfield-
Friedlander axioms A4 – A6 [2], but the proofs of these axioms involve Nis-
nevich descent in a non-trivial way, and essentially force the introduction of the
concept of flasque simplical presheaf. The class of flasque simplicial presheaves
contains all globally fibrant objects, but is also closed under filtered colimit
(unlike fibrant objects — the assertion to the contrary is a common error)
and the “T -loop” functor. It is a key technical point that these constructions
also preserve many pointwise weak equivalences, such as those arising from
Nisnevich descent.

We must also use a suitable notion of compact object, so that the corre-
sponding loop functors commute with filtered colimits. The class of compact
simplicial presheaves is closed under finite smash product and homotopy cofi-
bre, and includes all finite simplicial sets and smooth schemes over a decent
base. As a result, the Morel-Voevodsky object belongs to a broader class of
compact objects T for which the corresponding categories of T -spectra on the
smooth Nisnevich site have closed model structures associated to an adequate
notion of stable equivalence. These ideas are the subject of the first two sec-
tions of this paper and culminate in Theorem 2.9, which asserts the existence
of the model structure.

Theorem 2.9 is proved without reference to stable homotopy groups. This is
achieved in part by using an auxilliary closed model structure for T -spectra,
for which the cofibrations (respectively weak equivalences) are maps which
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are cofibrations (respectively motivic weak equivalences) in each level. The
fibrant objects for the theory are called injective objects, and one can show
(Lemma 2.11) that the functor defined by naive homotopy classes of maps
taking values in objects W which are both injective and stably fibrant for the
theory detects stable equivalences. This idea was lifted from [7], and appears
again for symmetric spectra in Section 4.

It is crucial for the development of the stable homotopy theory of symmetric
spectra as presented here (eg. Proposition 4.13, proof of Theorem 4.15) to know
that fibre sequences and cofibre sequences of ordinary spectra coincide up to
motivic stable equivalence — this is the first major result of Section 3 (Lemma
3.9, Corollary 3.10). The method of proof involves long exact sequences in
weighted stable homotopy groups. These groups were introduced in [16], but
the present construction is predicated on knowing that a spectrum X is a piece
of an asymmetric bispectrum object for which one smashes with the simplicial
circle S1 in one direction and with the scheme Gm in the other.

The section closes with a proof of the assertion (Theorem 3.11, Corollary
3.16) that the functors X 7→ X ∧ T and Y 7→ ΩT Y are inverse to each other
on the motivic stable category. This proof uses Voevodsky’s observation that
twisting the 3-fold smash product T 3 = T∧3 by a cyclic permutation of order
3 is the identity in the motivic homotopy category — this is Lemma 3.13.
This result is also required for showing that the stable homotopy category of
symmetric spectra is equivalent to the motivic stable category.

Section 4 contains the main results: the model structure for stable equiv-
alences of symmetric spectra is Theorem 4.15, and the equivalence of stable
categories is Theorem 4.31. With all of the material in the previous sections in
place, and subject to being careful about the technical difficulties underlying
the stability functor for the category of spectra, the derivation of the proper
closed simplicial model structure for symmetric spectra follows the method
developed in [7] and [13]. The demonstration of the equivalence of stable cat-
egories is also by analogy with the methods of those papers, but one has to
be a bit more careful again, so that it is necessary to discuss T -bispectra in a
limited way.

It would appear that the compactness of T and the triviality of the action
of the cyclic permutation on T 3 are minimum requirements for setting up the
full machinery of spectra and symmetric spectra, along with the equivalence
of stable categories within motivic homotopy theory, at least according to the
proofs given here (see also [6]). These features are certainly present for the
original categories of presheaves of spectra and symmetric spectra in motivic
homotopy theory. This is the case T = S1 for the results of Section 2, and the
corresponding thread of results (Theorem 2.9, Remark 3.22) for the motivic sta-
ble categories of S1-spectra and symmetric S1-spectra concludes in Section 4.5
with an equivalence of motivic stable homotopy categories statement in Theo-
rem 4.40. There is also a rather generic result about the interaction between
cofibrations and the smash product in the category of symmetric spectrum ob-
jects which obtains in all of the cases at hand — see Proposition 4.41. The
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motivic stable homotopy theory of S1-spectra has found recent application in
[19].

This paper concludes with two appendices. Appendix A shows that formally
inverting a rational point f : ∗ → I of a simplicial presheaf I on an arbitrary
small Grothendieck site gives a closed model structure which is proper (The-
orem A.5). This result specializes to a proof that the motivic closed model
structure is proper, but does not depend on the object I being an interval in
any sense — compare [14, Theorem 2.3.2].

The purpose of Appendix B is to show that the category of presheaves on
the smooth Nisnevich site (Sm|S)Nis inherits a proper closed simplicial model
structure from the corresponding category of simplicial presheaves, such that
the presheaf category is a model for motivic homotopy theory. The main result
is Theorem B.4. The corresponding sheaf theoretic result appears as Theorem
B.6, and this is the foundation of the Morel-Voevodsky category of spaces model
for motivic homotopy theory. I have included this on the grounds that it so
far appears explicitly nowhere else, though the alert reader can cobble a proof
together from the ideas in [14]. The only particular claim to originality of the
results presented in Appendix B is the observation that the Morel-Voevodsky
techniques also make sense on the presheaf level.

This paper has gone through a rather long debugging phase that began with
its appearance under the original title “A1-local symmetric spectra” on the
K-theory preprint server in September, 1998. I would like to thank a group
of referees for their remarks and suggestions. One such remark was that the
proof of Lemma 3.14 in the original version was incorrect, and should involve
Voevodsky’s Lemma 3.13. The corrected form of this result now appears as
Theorem 3.11. Another suggestion was to enlarge the class of base schemes
from fields to Noetherian schemes S of finite dimension, and this has been
done here — the only technical consequence was the necessity to strengthen
Lemma 3.13 to a statement that holds over the integers.

There has been a rather substantial shift in language with the present version
of the paper. In particular, the use of the term “motivic homotopy theory”
has become standard recently, and is incorporated here in place of either the
old homotopy theoretic convention “f -local theory” [4] for the localized theory
associated to a rational point f : ∗ → A1, or the “A1-homotopy theory” of
[14]. Motivic homotopy theory is the fundamental object of discussion; at the
risk of confusing readers who like to start in the middle, “weak equivalence”
means “motivic weak equivalence” and similarly fibrations and cofibrations are
in the motivic closed model structure, unless explicit mention is made to the
contrary.

This work owes an enormous debt to that of Fabien Morel, Jeff Smith and
Vladimir Voevodsky, and to conversations with all three; I would like to take
this opportunity to thank them. Several of the main results of the first two
sections of this paper were announced in some form in [16], while the unsta-
ble Nisnevich descent technique that is so important here was brought to my
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attention by Morel, and appears in [14].
The conversations that I refer to took place at a particularly stimulating

meeting on the homotopy theory of algebraic varieties at the Mathematical
Sciences Research Institute in Berkeley in May, 1998. The idea for this project
was essentially conceived there, while Appendix A was mostly written a few
weeks prior during a visit to Université Paris VII. I thank both institutions for
their hospitality and support.
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1 Preliminaries

1.1 Motivic homotopy theory

One starts with a rational point f : ∗ → A1 of the affine line A1 in the category
of smooth schemes (Sm|S)Nis of finite type over a scheme S of finite dimension,
equipped with the Nisnevich topology. The empty scheme ∅ is a member of
this category.

The localization theory arising from “formally inverting” the map f in the
standard, or local homotopy theory of simplicial presheaves on (Sm|S)Nis is
the motivic homotopy theory for the scheme S — it has been formerly called
both the f -local theory [4] and the A1-homotopy theory [14].

The standard homotopy theory of simplicial presheaves arises from a proper
closed model structure that exists quite generally [9], [12] for simplicial pre-
sheaves on arbitrary small Grothendieck sites. In cases, like the Nisnevich site,
where stalks are available, a local weak equivalence (or stalkwise weak equiv-
alence) is a map of simplicial presheaves which induces a weak equivalence
of simplicial sets in all stalks. A cofibration is a monomorphism of simplicial
presheaves, and a global fibration is a map which has the right lifting property
with respect to all maps which are cofibrations and local weak equivalences. A
proper closed simplicial model structure for simplicial sheaves on an arbitrary
Grothendieck site arises from similar definitions (cofibrations are monomor-
phisms, local weak equivalences are defined stalkwise, and global fibrations are
defined by a lifting property), and the resulting homotopy category for sim-
plicial sheaves is equivalent to the homotopy category associated to the closed
model structure on simplicial presheaves. In particular, the associated sheaf
map η : X → X̃ from a simplicial presheaf to its associated simplicial sheaf is a
local weak equivalence, since it induces an isomorphism on stalks. In the local
theory, a globally fibrant model of a simplicial presheaf or sheaf X is a local
weak equivalence X →W such that W is globally fibrant.

One says that a simplicial presheaf X on the Nisnevich site is motivic fibrant
if it is globally fibrant for the Nisnevich topology, and has the right lifting
property with respect to all simplicial presheaf inclusions

(f, j) : (A1 ×A) ∪A B → A1 ×B

arising from f : ∗ → A1 and all cofibrations j : A → B. A simplicial presheaf
map g : X → Y is said to be a motivic weak equivalence if it induces a weak
equivalence of simplicial sets

g∗ : hom(Y, Z)→ hom(X, Z)

in function complexes for every motivic fibrant object Z. A cofibration is a
monomorphism of simplicial presheaves, just as in the local theory. A map
p : Z →W is a motivic fibration if it has the right lifting property with respect
to all maps which are simultaneously motivic weak equivalences and cofibra-
tions. The homotopy theory arising from the following theorem is effectively
the motivic homotopy theory of Morel and Voevodsky:
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Theorem 1.1. The category SPre(Sm|S)Nis of simplicial presheaves on the
smooth Nisnevich site of the scheme S, together with the classes of cofibrations,
motivic weak equivalences and motivic fibrations, satisfies the axioms for a
proper, closed simplicial model category.

The simplicial structure is the usual one for simplicial presheaves: the func-
tion complex hom(X, Y ) for simplicial presheaves X and Y has n-simplices
consisting of all simplicial presheaf maps X ×∆n → Y . Most of Theorem 1.1
is derived in [4], meaning that all except the properness assertion is proved
there. Morel and Voevodsky demonstrate properness in [14] — an alternative
proof appears in Appendix A (Theorem A.5) of this paper. Recall that a closed
model category is said to be proper if the class of weak equivalences is closed
under pullback along fibrations and pushout along cofibrations.

Recall [4] a map g : X → Y of simplicial presheaves is a pointwise weak
equivalence if each map g : X(U) → Y (U), U smooth over S, in sections is
a weak equivalence of simplicial sets. Similarly, g is said to be a pointwise
fibration if all maps g : X(U)→ Y (U) are Kan fibrations.

The standard equivalence of the local homotopy theories for simplicial pre-
sheaves and simplicial sheaves is inherited by all localized theories, and induces
an equivalence of the homotopy category arising from Theorem 1.1 with the
homotopy category for a corresponding closed model structure for simplicial
sheaves. This holds quite generally [4, Theorem 1.2], but in the case at hand,
more explicit definitions and proofs are quite easy to see: say that a map
p : X → Y of simplicial sheaves on (Sm|S)Nis is a motivic fibration if it is
a global fibration of simplicial sheaves and has the right lifting property with
respect to all simplicial sheaf inclusions (f, j) : (A1×A)∪A B → A1×B. Then
a map is a motivic fibration of simplicial sheaves if and only if it is a motivic
fibration in the simplicial presheaf category.

In particular (see the discussion preceding Lemma 1.6) a simplicial sheaf
or presheaf Z is motivic fibrant if and only if it is globally fibrant and the
projection U × A1 → U induces a weak equivalence of simplicial sets Z(U) '
Z(U×A1) for all smooth S-schemes U . Thus, if Y is a motivic fibrant simplicial
presheaf and the simplicial sheaf GỸ is a globally fibrant model of its associated
simplicial sheaf Ỹ , then the map Y → GỸ is a pointwise weak equivalence,
so that GỸ is motivic fibrant. The two following statements are therefore
equivalent for a simplicial sheaf map g : X → Y :

1) the map g induces a weak equivalence g∗ : hom(Y, Z)→ hom(X, Z) for
all motivic fibrant simplicial sheaves Z,

2) the map g is a motivic weak equivalence in the simplicial presheaf cate-
gory.

Say that a map g which satisfies either of these properties is a motivic weak
equivalence of simplicial sheaves. A cofibration of simplicial sheaves is a level-
wise monomorphism, or a cofibration in the simplicial presheaf category.
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Theorem 1.2. 1) The category S Shv(Sm|S)Nis of simplicial sheaves on
the smooth Nisnevich site of the scheme S, together with the classes of
cofibrations, motivic weak equivalences and motivic fibrations, satisfies
the axioms for a proper, closed simplicial model category.

2) The forgetful functor and the associated sheaf functor together determine
an adjoint equivalence of motivic homotopy categories

Ho(SPre(Sm|S)Nis) ' Ho(S Shv(Sm|S)Nis).

The first part of Theorem 1.2 is proved in [14], and is the basis for their dis-
cussion of motivic homotopy theory. The second part says that the simplicial
presheaf category gives a second model for motivic homotopy theory. Other
models arising from ordinary (not simplicial) sheaves and presheaves are dis-
cussed in Appendix B.

Proof of Theorem 1.2. The equivalence of the homotopy categories is trivial,
once the first statement is proved. For the closed model structure of part 1),
there is really just a factorization axiom to prove. Any map f : X → Y of
simplicial sheaves has a factorization

X
j //

f   @
@@

@@
@@

Z

p

��
Y

in the simplicial presheaf category, where j is a motivic weak equivalence and
a cofibration and p is a motivic fibration. Then the composite map

X
i
−→ Z

η
−→ Z̃

is a motivic weak equivalence and a cofibration of simplicial sheaves, where η
is the associated sheaf map. Form the diagram

Z
η //

p
��?

??
??

??
? Z̃

i // W

π
~~~~

~~
~~

~~

Y

where i is a trivial cofibration and π is a global fibration of simplicial sheaves.
This same diagram is a local weak equivalence of cofibrant and globally fibrant
objects over Y , and so the map Z →W is a homotopy equivalence and therefore
a pointwise weak equivalence. Finally (see Lemma 1.5), a motivic fibration of
simplicial presheaves can be characterized as a global fibration X → Y such
that the induced map

X(U × A1)→ X(U)×Y (U) Y (U × A1)

is a weak equivalence of simplicial sets for all smooth S-schemes U . It follows
that π is a motivic fibration of simplicial sheaves.
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1.2 Controlled fibrant models

This section is technical, and should perhaps be read in conjunction with some
motivation, such as one finds in the proofs of Proposition 2.15 and Corollary
2.16. This material is used to produce generating sets of trivial cofibrations
in a variety of contexts. In particular, essential use is made of these ideas for
symmetric spectrum objects in the proofs of Theorem 4.2 and Proposition 4.4.

The proofs in [4] and Appendix A hold for arbitrary choices of rational point
∗ → I of any simplicial presheaf on any small Grothendieck site C. At that level
of generality, and in the language of [4], suppose α is an infinite cardinal which
is an upper bound for the cardinality of the set Mor(C) of morphisms of C. Pick
a rational point f : ∗ → I , and suppose that I is α-bounded in the sense that all
sets of simplices of all sections I(U) have cardinality bounded above by α. This
map f is a cofibration, and we are entitled to a corresponding f -localization
homotopy theory for the category SPre(C), according to the results of [4].

In particular, one says that a simplicial presheaf Z is f -local if Z is globally
fibrant, and the map Z → ∗ has the right lifting property with respect to all
inclusions

(∗ × LU∆n) ∪(∗×Y ) (I × Y ) ⊂ I × LU∆n (1.1)

arising from all subobjects Y ⊂ LU∆n. It follows that Z → ∗ has the right
lifting property with respect to all inclusions

(∗ ×B) ∪(∗×A) (I ×A) ⊂ I ×B

arising from cofibrations A→ B. The map

f∗ : hom(I × Y, Z)→ hom(∗ × Y, Z)

is therefore a weak equivalence for all simplicial presheaves Y if Z is f -local,
and so all induced maps

hom(I × LU∆n, Z)→ hom((I × Y ) ∪(∗×Y ) (∗ × LU∆n), Z)

are trivial fibrations of simplicial sets.
A simplicial presheaf map g : X → Y is an f -equivalence if the induced map

g∗ : hom(Y, Z)→ hom(X, Z)

is a weak equivalence of simplicial sets for all f -local objects Z. The original
map f : ∗ → I is an f -equivalence, and the maps

f × 1Y : ∗ × Y → I × Y

and the inclusions

(∗ ×B) ∪(∗×A) (I ×A) ⊂ I ×B

Documenta Mathematica 5 (2000) 445–552



454 J. F. Jardine

are f -equivalences. A map p : X → Y is an f -fibration if it has the right
lifting property with respect to all cofibrations of simplicial presheaves which
are f -equivalences.

It is a consequence of Theorem 4.6 of [4] that the category SPre(C) with the
cofibrations, f -equivalences and f -fibrations, together satisfy the axioms for a
closed simplicial model category. This result specializes to the closed model
structure of Theorem 1.1 in the case of simplicial presheaves on the smooth
Nisnevich site of S. Note as well that, very generally, the f -local objects
coincide with the f -fibrant objects.

Pick cardinals λ and κ such that

λ = 2κ > κ > 2α.

As part of the proof of [4, Theorem 4.6], it is shown that there is a functor X 7→
LX defined on simplicial presheaves X together with a natural transformation
ηX : X → LX which is an f -fibrant model for X , such that the following
properties hold:

L1: L preserves local weak equivalences.

L2: L preserves cofibrations.

L3: Let β be any cardinal with β ≥ α. Let {Xj} be the filtered system of
sub-objects of X which are β-bounded. Then the map

lim−→L(Xj)→ LX

is an isomorphism.

L4: Let γ be an ordinal number of cardinality strictly greater than 2α. Let
X : γ → S be a diagram of cofibrations so that for all limit ordinals s < γ
the induced map

lim−→ t<sX(t)→ X(s)

is an isomorphism. Then lim−→ t<γL(X(t)) ∼= L(lim−→ t<γX(t)).

L5: If X is λ-bounded, then LX is λ-bounded.

L6: Let Y, Z be two subobjects of X . Then

L(Y ) ∩ L(Z) = L(Y ∩ Z)

in LX .

L7: The functor L is continuous; that is, it extends to a natural morphism of
simplicial sets

L : hom(X, Y )→ hom(LX,LY )

compatible with composition.
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In fact, the map ηX : X → LX is a cofibration and an f -weak equivalence,
which is constructed by a transfinite small object argument. The size of the
construction, or rather the ordinal number that defines LX as a filtered colimit,
is the cardinal κ (see [4, p.42]).

The demonstration of the statement L7 further involves the construction of
a functorial pairing

φ : LX × L→ L(X ×K)

for simplicial presheaves X and simplicial sets L, and which satisfies a short
list of compatibility conditions. This pairing induces a natural pointed map

φ : LX ∧K → L(X ∧K)

for pointed simplicial presheaves X and pointed simplicial sets K such that the
following properties hold:

L8: the map

φ : (LX) ∧∆0
+ → L(X ∧∆0

+)

is the canonical isomorphism,

L9: the triangle

X ∧K
ηX∧K//

ηX∧K %%LLLLLLLLLL
(LX) ∧K

φ

��
L(X ∧K)

commutes, and

L10: the diagram

(LX) ∧K ∧ L
φ //

φ∧L

��

L(X ∧K ∧ L)

(L(X ∧K)) ∧ L

φ

66lllllllllllll

commutes.

These statements are analogues of the standard properties for the unpointed
pairing, and are consequences of same. In fact, nothing in the argument pre-
vents L and K from being arbitrary simplicial presheaves, and we shall work
with the more general pairing.

Specializing this construction to the case of pointed simplicial presheaves
on (Sm|S)Nis gives controlled fibrant model construction ηX : X → LX for
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a simplicial presheaf X . The construction is controlled in the sense that the
cardinality of LX has a specific bound if the cardinality of the original object
X is well behaved, by L5. Also, the functor X 7→ LX is compatible with
smash product pairings in the sense that every pointed simplicial presheaf map
σ : X ∧ T → Y induces a commutative diagram

X ∧ T
σ //

ηX∧1T

��

ηX∧T

&&MMMMMMMMMM Y

ηY

��
LX ∧ T

φ
// L(X ∧ T )

Lσ
// LY

(1.2)

1.3 Nisnevich descent

We shall need an unstable variant of the Nisnevich descent theorem [15]. The
version of this result given in [11, p.296] says if a presheaf of spectra F on the
Nisnevich site satisfies the cd-excision property, then any stably fibrant model
j : F → GF for the Nisnevich topology is a stable equivalence in all sections.

A simplicial presheaf Z is said to have the cd-excision property (aka. B.G.
property in [14]) if any elementary Cartesian square

U ×X V //

��

V

p

��
U

i
// X

(1.3)

of smooth schemes over k with p étale, i an open immersion and p−1(X−U) ∼=
X − U induces a homotopy Cartesian diagram of simplicial sets

Z(X) //

��

Z(U)

��
Z(V ) // Z(U ×X V )

The cd-excision property for presheaves of spectra is the stable analog of this
requirement.

The unstable Nisnevich descent theorem is the following:

Theorem 1.3. A simplicial presheaf Z on the site (Sm|S)Nis has the cd-
excision property if and only if any globally fibrant model j : Z → GZ for
Z induces weak equivalences of simplicial sets Z(U)→ GZ(U) in all sections.

This is the simplicial presheaf analogue of a result for simplicial sheaves [14,
3.1.16].

Proof. Morel and Voevodsky point out that any globally fibrant simplicial sheaf
has the cd-excision property [14, 3.1.15] and they show [14, 3.1.18] that if a map
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f : X → Y is a local weak equivalence of simplicial presheaves and both have
the cd-excision property, then f consists of weak equivalences f : X(U)→ Y (U)
in all sections.

Any simplicial sheaf which is globally fibrant within the simplicial sheaf
category is also globally fibrant as a simplicial presheaf. It follows that the
canonical map η : Z → Z̃ taking values in the associated sheaf Z̃ gives rise to
a diagram

Z
η //

jZ

��

Z̃

iZ̃

��
GZ η∗

// GZ̃

where all maps are local weak equivalences and GZ̃ is globally fibrant in the
simplicial sheaf category. In particular, η∗ is a local weak equivalence of
globally fibrant simplicial presheaves, and hence consists weak equivalences
GZ(U) → GZ̃(U) in all sections, since weakly equivalent globally fibrant
models are homotopy equivalent. It follows in particular that any globally
fibrant simplicial presheaf has the cd-excision property. Thus, if Z has the
cd-excision property, any globally fibrant model consists of weak equivalences
Z(U) → GZ(U) in sections, by the Morel-Voevodsky result, and the converse
is obvious.

All of the hard work in the proof of Theorem 1.3 was done by Morel and
Voevodsky. The original stable form of the Nisnevich descent theorem for the
smooth site (Sm|S)Nis is a corollary:

Corollary 1.4. Suppose that Z is a presheaf of spectra on the smooth Nis-
nevich site (Sm|S)Nis. Then a stably fibrant model j : Z → GZ consists of
stable equivalences Z(U)→ GZ(U) in all sections if and only if the presheaf of
spectra Z satisfies the (stable) cd-excision property.

Proof. The presheaf of spectra Z satisfies the stable cd-excision property if and
only if any elementary Cartesian diagram (1.3) induces a homotopy Cartesian
diagram

Z(X) //

��

Z(U)

��
Z(V ) // Z(U ×X V )

of spectra with respect to stable equivalence. It follows that a presheaf of
spectra Z has the stable cd-excision property if and only if each of the simplicial
presheaves Q Ex∞ Zn has the cd-excision property. The maps Q Ex∞ Z →
GZ are level weak equivalences of presheaves of Ω-spectra and all simplicial
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presheaves GZn are globally fibrant. It follows that Z has the stable cd-excision
property if and only if all of the maps in sections Q Ex∞ Zn(U) → GZn(U)
are weak equivalences of pointed simplicial sets, and this holds if and only if
all maps Z(U)→ GZ(U) are stable equivalences of spectra.

The cd-excision property is preserved by taking filtered colimits. Thus, if

Z1 → Z2 → Z3 → · · ·

is an inductive system of maps between simplicial presheaves which are globally
fibrant for the Nisnevich topology, then any choice of globally fibrant model

j : lim−→Zi → G(lim−→Zi)

for the Nisnevich topology is a pointwise weak equivalence.

Let’s return briefly to a gross level of generality. Suppose that X and Y are
simplicial presheaves on a site C. For U ∈ C, write C ↓ U for the category
whose objects are morphism V → U and whose morphisms are commutative
triangles. There is a standard functor QU : C ↓ U → C which is defined by
taking the morphism

V1
α //

  @
@@

@@
@@

V2

~~~~
~~

~~
~

U

to the morphism α : V1 → V2 of C. Write X |U for the composite of the simplicial
presheaf X with the functor QU . Any map φ : V → U of C defines a functor
φ∗ : C ↓ V → C ↓ U on objects V1 → V by composition with φ, and obviously
QU · φ∗ = QV .

The internal hom complex Hom(X, Y ) is a simplicial presheaf on C which is
defined by

Hom(X, Y )(U) = hom(X |U , Y |U ).

Evaluation in U -sections defines natural maps

evU : hom(X |U , Y |U )×X(U)→ Y (U)

which together give a natural evaluation map

ev : Hom(X, Y )×X → Y.

This evaluation map defines a natural bijection

hom(Z ×X, Y ) ∼= hom(Z,Hom(X, Y )),

or exponential law, for simplicial presheaves X , Y and Z on an arbitrary
Grothendieck site C.

The main homotopical fact about internal hom complexes is the following
expanded version of Quillen’s axiom SM7:
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Lemma 1.5. Suppose that i : A → B is a cofibration and that p : X → Y is a
global fibration of simplicial presheaves. Then the induced map

(i∗, p∗) : Hom(B, X)→ Hom(A, X)×Hom(A,Y ) Hom(B, Y )

is a global fibration, which is trivial if either i or p is a local weak equivalence.

Proof. By adjointness, the claim follows from the assertion that the cofibration
i : A→ B and another cofibration j : C → D together determine a cofibration

(A×D) ∪(A×C) (B × C) ↪→ B ×D

which is a local weak equivalence if either i or j is a local weak equivalence.
This is checked stalkwise, or with a Boolean localization argument [12].

Recall that a motivic fibrant simplicial presheaf Z on (Sm|S)Nis is an object
which is globally fibrant for the Nisnevich topology and has the right lifting
property with respect to all simplicial presheaf inclusions

(A1 ×A) ∪A B
(f,j)
−−−→ A1 ×B

arising from f : ∗ → A1 and all cofibrations j : A→ B. The lifting property is
equivalent to the assertion that the induced global fibration

f∗ : Hom(A1, Z)→ Hom(∗, Z) ∼= Z

is a trivial global fibration. It follows that a simplicial presheaf Z is motivic
fibrant if and only if Z is globally fibrant and all projections U×A1 → U induce
weak equivalences of simplicial sets Z(U) → Z(U × A1). This observation is
essentially well known, and was proved by Morel and Voevodsky in [14].

We can now prove the following:

Lemma 1.6. Suppose given an inductive system

Z1 → Z2 → Z2 → · · ·

of motivic fibrant simplicial presheaves on (Sm|S), and let

j : lim−→Zi → G(lim−→Zi)

be a choice of globally fibrant model for the Nisnevich topology. Then the sim-
plicial presheaf G(lim−→Zi) is motivic fibrant.

Proof. The map j is a pointwise weak equivalence by Nisnevich descent, and
the the simplicial presheaf maps

pr∗ : Zi(U)→ Zi(U × A1)

induce a weak equivalence on the filtered colimit, and so G(lim−→Zi) is motivic
fibrant.
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We shall make constant use of the following variant of Lemma 1.6:

Corollary 1.7. Suppose that X1 → X2 → . . . is an inductive system of
motivic fibrant simplicial presheaves on (Sm|S)Nis. Then any motivic fibrant
model

j : lim−→Xi → Z

is a pointwise weak equivalence.

1.4 Flasque simplicial presheaves

Say that a simplicial presheaf X on (Sm|S)Nis is flasque if X is a presheaf of
Kan complexes and every finite collection Ui ↪→ U , i = 1, . . . , n of subschemes
of a scheme U induces a Kan fibration

X(U) ∼= hom(U, X)
i∗

−→ hom(∪n
i=1Ui, X).

Here, the union is taken in the presheaf category, so that the simplicial set

hom(∪n
i=1Ui, X)

is an iterated fibre product of the simplicial sets X(Ui).
Every globally fibrant simplicial presheaf is flasque, and the class of flasque

simplicial presheaves is closed under filtered colimits. Note that the condition
for X to be flasque says that the map X(U)→ X(V ) associated to the singleton
set consisting of a subscheme V ↪→ U is a Kan fibration.

Lifting problems

Λn
k

//

��

hom(U, X)

i∗

��
∆n //

88

hom(∪n
i=1Ui, X)

and their solutions are equivalent to diagrams of simplicial presheaf maps

(∪n
i=1Ui ×∆n) ∪(∪n

i=1Ui×Λn
k
) U × Λn

k
//

��

X

U ×∆n

55

One says more generally that a map p : X → Y of simplicial presheaves is
flasque if it is a pointwise fibration and has the right lifting property with
respect to all maps

(∪n
i=1Ui ×∆n) ∪(∪n

i=1
Ui×Λn

k
) U × Λn

k ↪→ U ×∆n (1.4)
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arising from all finite collections Ui, i = 1, . . . , n of subschemes of schemes U .
Equivalently, the map p is flasque if and only if the simplicial set map

hom(U, X)
(i∗,p∗)
−−−−→ hom(∪n

i=1Ui, X)×hom(∪n
i=1

Ui,Y ) hom(U, Y )

is a Kan fibration.
Note in particular that a simplicial presheaf X is flasque if and only if the map

X → ∗ is flasque. The class of flasque maps is clearly stable under pullback.
One also has the following:

Lemma 1.8. Suppose that p : X → Y is a flasque map of simplicial presheaves,
and suppose that j : A ↪→ B is an inclusion of schemes. Then the induced map

Hom(B, X)
(j∗,p∗)
−−−−→ Hom(A, X)×Hom(A,Y ) Hom(B, Y )

is flasque.

Proof. The map in U -sections induced by (j∗, p∗) is isomorphic to the map

X(B × U)→ X(A× U)×Y (A×U) Y (B × U)

which is induced by restriction along the subscheme A × U of B × U . This
map is a Kan fibration since p is flasque, so that (j∗, p∗) is a pointwise Kan
fibration.

Any lifting problem for the cofibration (1.4) and the map (j∗, p∗) is equivalent
to the extension problem for the map p : X → Y corresponding to the collection
of subschemes consisting of Ui×B, i = 1, . . . , n, as well as U×A of the scheme
U ×B.

Corollary 1.9. Suppose that X is a flasque simplicial presheaf and that B
is a scheme. Then Hom(B, X) is flasque.

Proof. If X is flasque, then Hom(∅, X) is the constant simplicial presheaf on
the Kan complex X(∅), and is therefore flasque. The inclusion ∅ ⊂ B induces
a flasque map Hom(B, X)→ Hom(∅, X), by Lemma 1.8, so that Hom(B, X)
is flasque.

Corollary 1.10. Suppose that X is a pointed flasque simplicial presheaf and
that j : A ↪→ B is an inclusion of schemes. Then Hom∗(B/A, X) is flasque.

Proof. Hom∗(B/A, X) is the fibre of the flasque map j∗ : Hom(B, X) →
Hom(A, X).

Lemma 1.11. Suppose that the simplicial presheaf X is flasque, and that j :
K ↪→ L is an inclusion of simplicial sets. Then the simplicial presheaf map

j∗ : hom(L, X)→ hom(K, X)

is flasque.
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Proof. Write XL = hom(L, X). We must solve the lifting problem

Λn
k

//

��

hom(U, XL)

(i∗,j∗)

��
∆n //

44

hom(∪iUi, X
L)×hom(∪iUi,XK) hom(U, XK)

An adjointness argument says that this problem is isomorphic to the lifting
problem

Λn
k

//

��

hom(U, X)L

(i∗,j∗)

��
∆n //

44

hom(∪iUi, X)L ×hom(∪iUi,X)K hom(U, X)K

But i∗ is a fibration, so the lifting problem is solved by SM7 for simplicial
sets.

Lemma 1.12. Suppose that g : A → B is a map of schemes, and that X is a
pointed flasque simplicial presheaf. Let Mg denote the mapping cylinder for g
in the simplicial presheaf category, and let Cg = Mg/A be the homotopy cofibre.
Then the standard cofibration j : A ↪→ Mg associated to g induces a flasque
map

j∗ : Hom(Mg , X)→ Hom(A, X).

The simplicial presheaves Hom(Mg, X) and Hom∗(Cg , X) are flasque.

Proof. The second claim follows from the first. The mapping cylinder Mg is
defined by a pushout diagram

A t A
gt1A //

(d0,d1)

��

B tA

d∗

��
A×∆1 // Mg

and the map j is the composite

A
inR−−→ B t A

d∗−→Mg.

The map d = (d0, d1) induces a flasque map

Hom(A×∆1, X)
d∗

−→ Hom(A× ∂∆1, X),
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by Lemma 1.11 since Hom(A, X) is flasque by Corollary 1.9. Flasque maps
are closed under pullback, so the map

d∗ : Hom(Mg, X)→ Hom(B t A, X)

is flasque. The inclusion inR : A→ B t A induces the projection map

Hom(B, X)×Hom(A, X)→ Hom(A, X)

which is flasque since the simplicial presheaf Hom(B, X) is flasque. Flasque
maps are closed under composition, so we’re done.

Example 1.13. Suppose that T is the quotient A1/(A1−0), and suppose that
X is a flasque simplicial presheaf. Then the object Hom∗(T, X) is the fibre of
the flasque map

Hom(A1, X)
i∗
−→ Hom(A1 − 0, X),

which is induced by the inclusion i : A1 − 0 ⊂ A1, so that Hom∗(T, X) is
flasque by Corollary 1.10.

There is an isomorphism

Hom(U, X)(V ) ∼= X(U × V ),

which is natural for all objects U and V of the underlying site. It follows that
there is a fibre sequence

Hom∗(T, X)(U)→ X(A1 × U)→ X((A1 − 0)× U)

if X is flasque, so that the functor Hom∗(T, ) preserves pointwise weak equiv-
alences of flasque simplicial presheaves. It follows as well that the functor
Hom∗(T, ) preserves filtered colimits of simplicial presheaves.

Example 1.14. Suppose that K is a finite pointed simplicial set, identified
with a constant simplicial presheaf. Then there is an isomorphism

Hom∗(K, X) ∼= hom∗(K, X),

and the functor hom∗(K, ) is flasque by Lemma 1.11. The functor hom∗(K, )
preserves pointwise weak equivalences of pointed simplicial presheaves consist-
ing of Kan complexes, so that it preserves pointwise weak equivalences of flasque
simplicial presheaves. The functor hom(K, ) commutes with all filtered col-
imits since K is finite.

2 Motivic stable categories

In this section, we work exclusively with spectrum objects defined by T on
the smooth Nisnevich site (Sm|S)Nis, where T is a pointed simplicial presheaf
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which is compact in the sense described below; examples of such T include
the quotient A1/(A1 − 0) and all constant simplicial presheaves associated to
pointed finite simplicial sets. The object of the section is to develop a stable
homotopy theory of spectrum objects defined by T , or T -spectra, in the motivic
context. The motivic stable category of Morel and Voevodsky arises as a special
case, as does a motivic stable homotopy theory for ordinary S1-spectra.

Warning: We shall work almost entirely within the motivic closed model struc-
ture henceforth. In particular, all fibrations will be motivic fibrations and all
weak equivalences will be motivic weak equivalences, unless explicit mention is
made to the contrary.

Formally, if T is a pointed simplicial presheaf, then a T -spectrum X consists
of pointed simplicial presheaves Xn, n ≥ 0, and pointed maps σ : T ∧ Xn →
Xn+1. The maps σ are called bonding maps; it is a fact of life (see Section 3.4)
that it matters whether one writes T ∧Xn or Xn∧T in the description of these
maps — I shall always display them by smashing with T on the left.

There is an obvious category SptT (Sm|S)Nis of T -spectra. If T is the Morel-
Voevodsky object A1/(A1− 0) then the corresponding category of T -spectra is
the basis for the motivic stable category.

2.1 The level structures

For arbitrary pointed simplicial presheaves T , there are two preliminary closed
model structures on T -spectra which are analogous to the level fibration and
level cofibration structures for ordinary presheaves of spectra (aka. S1-spectra
in this language), but where the level equivalences are motivic weak equiva-
lences.

Say that a map f : X → Y of T -spectra is a

1) level cofibration if all component maps f : Xn → Y n are cofibrations of
simplicial presheaves,

2) level fibration if all component maps f : Xn → Y n are fibrations (ie.
motivic fibrations),

3) level equivalence if all component maps f : Xn → Y n are motivic weak
equivalences

A cofibration is a map which has the left lifting property with respect to all maps
which are level fibrations and level weak equivalences. An injective fibration is
a map which has the right lifting property with respect to all maps which are
level cofibrations and level equivalences.

Lemma 2.1. 1) The category SptT ((Sm|S)Nis) of T -spectra, together with
the classes of cofibrations, level equivalences and level fibrations, satisfies
the axioms for a proper closed simplicial model category.
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2) The category SptT ((Sm|S)Nis), together with the classes of level cofibra-
tions, level equivalences and injective fibrations, satisfies the axioms for
a proper closed simplicial model category.

Proof. For the first part (following [2]), suppose that a map i : A→ B satisfies

a) i0 : A0 → B0 is a cofibration of simplicial presheaves, and

b) each map i∗ : T ∧ Bn ∪T∧An An+1 → Bn+1 is a cofibration.

Then i is a cofibration. Further, if i0 and all maps i∗ as above are cofibrations
and equivalences, then i is a level equivalence as well as a cofibration. These two
observations are the basis of proof for the factorization axiom CM5. Further,
it’s a consequence of the factorization axiom that every cofibration satisfies the
two properties above. The axiom CM4 follows, and the rest of the axioms are
trivial.

For the second statement, suppose that α is an infinite cardinal which is
an upper bound for the cardinality of the set of morphisms Mor((Sm|S)Nis).
As in [4], choose a cardinal κ > 2α and set λ = 2κ. The axioms sE1 – sE7
of [4] and their consequences apply to categories of T -spectra. We verify the
bounded cofibration axiom sE7; the remaining axioms are easily verified, giving
statement 2) according to the methods of [4].

Recall that the classes of cofibrations and equivalences of simplicial pre-
sheaves on (Sm|S)Nis together satisfy the bounded cofibration condition for
the cardinal λ in the sense that, given a diagram

X

i

��
A

j
// Y

(2.1)

such that the cofibration i is an equivalence and the subobject A of Y is λ-
bounded, there is a λ-bounded suboject B of Y with A ⊂ B, with B ∩X ↪→ B
an equivalence.

Suppose now that the objects and maps of diagram (2.1) are in the category
of T -spectra, where i is a level equivalence and a level cofibration and A is
λ-bounded. There is a simplicial presheaf B0 with A0 ⊂ B0 ⊂ Y 0 such that
B0 is λ-bounded and the cofibration B0 ∩X0 ↪→ B0 is an equivalence. Write
j′ for the inclusion B0 ↪→ Y 0 and use the diagram

T ∧ A0 //

σ

��

T ∧B0

σ·(T∧j′)

��
A1

j
// Y 1
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to show that there is a λ-bounded subobject A
1
⊂ Y 1 such that the map

A1 ∪T∧A0 T ∧ B0 → Y 1

factors through A
1
. There is a λ-bounded subobject B1 ⊂ Y 1 with A

1
⊂ B1

such that the cofibration B1∩X1 ↪→ B1 is an equivalence. This is the beginning
of an inductive construction which produces a λ-bounded subobject B of the
T -spectrum Y with A ⊂ B such that the level cofibration B∩X ↪→ B is a level
equivalence.

Insofar as the factorization axiom CM5 in part (2) of Lemma 2.1 is covertly
proved by using a small object argument, there is a natural injective model
construction: there is a natural map of T -spectra iX : X → IX , such that iX is
a level cofibration and a level equivalence, and IX is injective. More generally,
any level equivalence X → Y with Y injective is said to be an injective model
for X .

There is a natural level fibrant model jX : X → JX , meaning that jX

is a cofibration and a level equivalence and JX is level fibrant. This can be
constructed directly from the small object arguments, or by using the controlled
fibrant object construction X 7→ LX of [4] (see also Section 1.2). Note as well
that every injective object is level fibrant.

2.2 Compact objects

Say that a simplicial presheaf X on (Sm|S)Nis is motivic flasque if

1) X is flasque, and

2) every map X(U) → X(A1 × U) induced by the projection A1 × U → U
is a weak equivalence of simplicial sets.

Every motivic fibrant simplicial presheaf on (Sm|S)Nis is motivic flasque, and
the class of motivic flasque simplicial presheaves is closed under filtered colimits.

A pointed simplicial presheaf T on the smooth Nisnevich site is said to be
compact if the following conditions hold:

C1: All inductive systems Y1 → Y2 → . . . of pointed simplicial presheaves
induce isomorphisms

Hom∗(T, lim−→Yi) ∼= lim−→Hom∗(T, Yi).

C2: If X is motivic flasque, then so is Hom∗(T, X).

C3: The functor Hom∗(T, ) takes pointwise weak equivalences of motivic
flasque simplicial presheaves to pointwise weak equivalences.
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The following result generates examples of compact simplicial presheaves:

Lemma 2.2. 1) If A ↪→ B is an inclusion of schemes, then the quotient
B/A is compact.

2) All finite pointed simplicial sets K are compact.

3) All pointed schemes U in the underlying site (Sm|S)Nis are compact.

4) If T1 and T2 are compact, then T1 ∨ T2 and T1 ∧ T2 and are compact.

5) If g : T1 → T2 is a map of compact simplicial presheaves, then the pointed
mapping cylinder Mg and the homotopy cofibre Cg are compact.

Proof. If X is motivic flasque, then Hom∗(B/A, X) is flasque by Corollary
1.10. We also know that there is an isomorphism

Hom(B, X)(V ) ∼= X(B × V )

and a pointwise fibre sequence

Hom∗(B/A, X)→ Hom(B, X)→ Hom(A, X) (2.2)

All maps

Hom(B, X)(V )→ Hom(B, X)(V × A1)

induced by projection are weak equivalences of simplicial sets. It follows that
Hom∗(B/A, X) is motivic flasque. The functor X 7→ Hom∗(B/A, X) pre-
serves filtered colimits of simplicial presheaves. The fibre sequences (2.2) im-
ply that the functor Hom∗(B/A, ) preserves pointwise weak equivalences of
motivic flasque simplicial presheaves, giving 1).

Statement 2) is proved by first observing that there is a natural isomorphism

Hom∗(K, X) ∼= hom∗(K, X).

The functor X 7→ hom∗(K, X) preserves filtered colimits since K is a finite
simplicial set. The statement C3 is trivial, and C2 follows from Lemma 1.11,
and the functor X 7→ hom∗(K, X) preserves pointwise weak equivalences of
pointed presheaves of Kan complexes.

Statement 3) is a consequence of statement 1), and the smash product part
of statement 4) is an adjointness argument.

Suppose that X is motivic flasque. The diagram

T1 ∨ T1
//

��

T1 ∨ T2

��
T1 ∧∆1

+
// Mg
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that defines the pointed mapping cylinder Mg induces a pullback diagram

Hom∗(Mg , X) //

��

Hom∗(T1 ∧∆1
+, X)

��
Hom∗(T1 ∨ T2, X) // Hom∗(T1 ∨ T1, X)

(2.3)

and the map

Hom∗(T1 ∧∆1
+, X)→ Hom∗(T1 ∨ T1, X)

is flasque, by the pointed version of Lemma 1.11. Hom∗(Mg, X) is therefore
flasque. The composite

Hom∗(Mg, X)→ Hom∗(T1 ∨ T2, X)→ Hom(T2, X)

is also flasque, and so the pointwise homotopy fibre Hom∗(Cg , X) is flasque.
The objects other than Hom∗(Mg, X) in the pointwise fibre square (2.3) take
the projections U × A1 → U to weak equivalences. Properness for simpli-
cial sets therefore implies that the simplicial presheaves Hom∗(Mg , X) and
Hom∗(Cg , X) are motivic flasque. Similarly, the functors Hom∗(Mg , ) and
Hom∗(Cg , ) preserve pointwise weak equivalences of motivic flasque objects.
Both functors preserve filtered colimits, since they are built in finitely many
steps from functors that do the same. We have proved statement 5).

Remark 2.3. One can show that statement 1) of Lemma 2.2 follows from state-
ment 5), but the presented proof is easier. Statement 1) implies that the
Morel-Voevodsky object T = A1/(A1 − 0) is compact.

2.3 The stable closed model structure

Suppose that T is a compact pointed simplicial presheaf on the smooth Nis-
nevich site (Sm|S)Nis.

The T -loops functor ΩT Y is defined for pointed simplicial presheaves Y in
terms of internal hom by

ΩT Y = Hom∗(T, Y ).

The T -loops functor is right adjoint to smashing with T , and so the bonding
maps σ : T ∧ Xn → Xn+1 of a presheaf of T -spectra X can equally well be
specified by their adjoints σ∗ : Xn → ΩT Xn+1, up to a twist: σ∗ is the adjoint
of the composite

Xn ∧ T
t
−→
∼=

T ∧Xn σ
−→ Xn+1,

where t is the isomorphism which flips smash factors.
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The T -loops functor ΩT X is defined on T -spectra X by setting (ΩT X)n =
ΩT (Xn), and by specifying that the bonding map σ : T ∧ ΩT Xn → ΩT Xn+1

should be adjoint to the composite

T ∧ ΩT Xn ∧ T
T∧ev
−−−→ T ∧Xn σ

−→ Xn+1.

The T -loops functor X 7→ ΩT X is right adjoint to the functor Y 7→ Y ∧T which
is defined by smashing with T on the right. More generally, there is a function
complex functor X 7→ Hom∗(A, X) for all T -spectra X and pointed simplicial
presheaves A, and this functor is right adjoint to the functor X 7→ X ∧ A
defined by smashing on the right with A in the obvious way.

Just as in ordinary stable homotopy theory (see [11, Chapter 1]), there is a
fake T -loops spectrum Ω`

T X , with

(Ω`
T X)n = ΩT (Xn),

and with bonding maps adjoint to the morphisms

ΩT (σ∗) : ΩT (Xn)→ Ω2
T (Xn+1).

The fake T -loop suspension functor is right adjoint to the fake suspension
functor Y 7→ Σ`

T Y , where Σ`
T Y n = T ∧Y n and the bonding maps T ∧Σ`

T Y n →
Σ`

T Y n+1 are defined to be the morphisms T ∧ σ : T 2 ∧ Y n → T ∧ Y n+1.
Generally, the superscript ` for “left”: the functor X 7→ Ω`

T X is the right
adjoint of Y 7→ Σ`

T Y , which is defined by smashing with T on the left.

Remark 2.4. The fake T -loop spectrum Ω`
T X is not isomorphic to the T -loop

spectrum ΩT X , since the adjoint σ∗ : ΩT Xn → Ω2
T Xn+1 of the bonding map

σ : T ∧ΩT Xn → ΩT Xn+1 differs from the map ΩT σ∗ by a twist of loop factors.
This phenomenon is the source of much of the technical fun in stable homotopy
theory, and the present discussion is no exception — see the proof of Theorem
3.11.

The maps σ∗ determine a natural morphism of T -spectra

σ∗ : X → Ω`
T X [1],

where the shifted T -spectrum X [1] is defined by X [1] = Xn+1. The T -spectrum
QT X is defined to be the inductive colimit of the system

X
σ∗−→ Ω`

T X [1]
Ω`

T σ∗[1]
−−−−−→ (Ω`

T )2X [2]
(Ω`

T )2σ∗[2]
−−−−−−−→ · · ·

Write ηX : X → QT X for the associated canonical map. We shall be particu-
larly interested in the composite map

X
jX
−→ JX

ηJX
−−→ QT JX,

which will be denoted by η̃X . The functor QT is sometimes called the stabi-
lization functor, for the object T .
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A map g : X → Y of T -spectra is said to be a stable equivalence if it induces
a level equivalence

QT J(g) : QT JX → QT JY.

Observe that g is a stable equivalence if and only if it induces a level equivalence

IQT J(g) : IQT JX → IQT JY.

More usefully, perhaps, it is a consequence of Corollary 1.7 that g is a stable
equivalence if and only if the induced map QT J(g) is a pointwise equivalence
of motivic flasque simplicial presheaves in all levels.

A stable fibration is a map which has the right lifting property with respect
to all maps which are cofibrations and stable equivalences. A T -spectrum X is
said to be stably fibrant if the map T → ∗ is a stable fibration.

We shall prove the following statements:

A4 Every level equivalence is a stable equivalence

A5 The maps

η̃QT JX , QT J(η̃X ) : QT JX → (QT J)2X

are stable equivalences.

A6 Stable equivalences are closed under pullback along stable fibrations, and
stable equivalences are closed under pushout along cofibrations.

Lemma 2.5. The statements A4 and A5 hold for T -spectra.

Proof. If g : X → Y is a level equivalence between T -spectra such that X and
Y are level fibrant, then g is a pointwise weak equivalence of motivic flasque
objects in all levels, and so all Ωn

T g and QT g are level pointwise equivalences
by C2 and C3. This proves A4.

The map QT J(jX ) : QT JX → QT J2X is a level equivalence by A4. There
is a commutative diagram

QT J2X
QT J(ηJX )// QT JQT JX

QT JX
QT (ηJX )

//

QT (jJX )

OO

QT QT JX

QT (jQT JX )

OO

The vertical map QT (jJX) is a level equivalence because jJX is a pointwise
weak equivalence of motivic flasque simplicial presheaves in each level, and
QT preserves such by C2 and C3. All maps QT (ηZ) are isomorphisms by C1
and a cofinality argument. The map jQT JX is a pointwise weak equivalence
of motivic flasque simplicial presheaves in each level by Corollary 1.7, and so
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the map QT (jQT JX ) has the same property by C2 and C3. It follows that
QT J(ηJX ) and QT J(η̃X ) are level equivalences.

There is a commutative diagram

JQT JXn σ∗ // ΩT JQT JXn+1

QT JXn
σ∗

//

jQT JX '

OO

ΩT QT JXn+1

ΩT (jQT JX )

OO

The map jQT JX is a level pointwise equivalence by Corollary 1.7, the lower map
σ∗ is an isomorphism by a cofinality argument and C1, and the map ΩT (jQT JX )
is a pointwise weak equivalence of motivic flasque simplicial presheaves by C2
and C3. It follows that all maps σ∗ : JQT JXn → ΩT JQT JXn+1 are pointwise
weak equivalences, and so the map

ηJQT JX : JQT JX → QT JQT JX

is a level equivalence. In particular, the composite

QT JX
jQT JX

−−−−→ JQT JX
ηJQT JX

−−−−−→ QT JQT JX

is a level equivalence.

Lemma 2.6. The class of stable equivalences is closed under pullback along
level fibrations.

Proof. Suppose given a pullback diagram

A×Y X
g∗ //

��

X

p

��
A g

// Y

in which g is a stable equivalence and p is a level fibration. We want to show
that g∗ is a stable equivalence.

By properness of the level structure and A4, we can assume that all ob-
jects are level fibrant. Every level equivalence C → D of level fibrant objects
consists of pointwise weak equivalences Cn → Dn of motivic flasque simplicial
presheaves, so QT takes each level equivalence of level fibrant objects to a map
of T -spectra which consists of pointwise weak equivalences in all levels. All
induced maps QT An → QT Y n are pointwise weak equivalences. The maps
p∗ : QT Xn → QT Y n are filtered colimits of pointwise Kan fibrations, and are
therefore pointwise Kan fibrations. Finally, QT preserves pullbacks and the
ordinary simplicial set category is proper, so the maps

QT (g∗) : QT (A×Y X)n → QT Xn

are pointwise weak equivalences of simplicial presheaves.
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Every stable fibration is a level fibration, because every level equivalence is
a stable equivalence. Lemma 2.6 therefore implies the first statement of A6.

The statements A4 and A5 together imply a Bousfield-Friedlander recogni-
tion principle for stable fibrations (see Lemma A.9 of [2]):

Lemma 2.7. A map p : X → Y is a stable fibration if p is a level fibration and
the diagram

X
η̃X //

p

��

QT JX

p∗

��
Y

η̃Y

// QT JY

is level homotopy Cartesian.

In particular, a T -spectrum X is stably fibrant if X is level fibrant and the
maps σ∗ : Xn → ΩT Xn+1 are equivalences (or pointwise weak equivalences).
We shall need the converse assertion:

Lemma 2.8. Suppose that X is stably fibrant. Then X is level fibrant, and all
maps σ∗ : Xn → ΩT Xn+1 are pointwise weak equivalences.

Proof. The composite

X
jX
−→ JX

ηIX
−−→ QT JX

iQT JX

−−−−→ IQT JX

is a stable equivalence by Lemma 2.5, and the object IQT JX is stably fibrant
since all maps

σ∗ : IQT JXn → ΩT IQT JXn+1

are pointwise weak equivalences. Write µX : X → IQT JX for this composite.
Factorize µX as

X
µX //

α
��?

??
??

??
?

IQT JX

Z

π

;;wwwwwwwww

where π is a level fibration and a level equivalence, and α is a cofibration. Then
π is a stable fibration since it has the right lifting property with respect to all
cofibrations. It follows that Z is stably fibrant and all maps σ∗ : Zn → ΩT Zn+1

are pointwise weak equivalences. Also, the map α : X → Z is a cofibration
and a stable equivalence. The object X is therefore a retract of Z, and so the
maps σ∗ : Xn → ΩT Xn+1 are pointwise weak equivalences.
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Theorem 2.9. Suppose that T is a compact object on the smooth Nisnevich
site (Sm|S)Nis. Then the category of T -spectra on that site, together with the
classes of cofibrations, stable equivalences and stable fibrations, satisfies the
axioms for a proper closed simplicial model category.

The homotopy category Ho(SptT (Sm|S)Nis) associated to the stable model
structure of Theorem 2.9 is the motivic stable category of T -spectra on the
smooth Nisnevich site. In the particular case where T = A1/(A1 − 0), the
category Ho(SptT (Sm|S)Nis) is the motivic stable category of Morel and Vo-
evodsky — it is often denoted by SH(S).

Proof. The axioms CM1 – CM3 are trivial to verify. We also know (Lemma
A.8 of [2], but this is also a direct consequence of Lemma 2.7) that a map p is a
stable fibration and a stable equivalence if and only if it is a level fibration and a
level equivalence. The existence of the cofibration-trivial fibration factorization
of CM5 follows, as does CM4.

It is a consequence of Lemma 2.7 and Lemma 2.8 that a level fibration
between stably fibrant objects must be a stable fibration.

To prove the remaining part of CM5, suppose given a map g : X → Y of
T -spectra. Form the diagram

X
µX //

α∗

%%K
KKKKKKKKK

g

��

IQT JX

α

##G
GGGGGGGG

g∗

��

Y ×IQT JY Z

p∗

yysssssssssss

µ∗ // Z

p
{{xxxxxxxxx

Y µY

// IQT JY

where p is a level fibration and α is a cofibration and a level equivalence. Then
Z is level fibrant, and the maps α : IQT JXn → Zn are pointwise equivalences
of motivic flasque simplicial presheaves, so Z is stably fibrant. Thus, p is a
stable fibration.

The map µ∗ is a stable equivalence by Lemma 2.6, so that α∗ is a stable
equivalence. Factorize α∗ as

X
α′

//

α∗ %%KKKKKKKKKK W

π

��
Y ×IQT JY Z

where α′ is a cofibration and π is a level fibration and a level equivalence. Then
α′ is also a stable equivalence, and π is a stable fibration, so f = (p∗π) · α′ is a
factorization of f as a stable fibration following a cofibration which is a stable
equivalence, giving CM5.

Documenta Mathematica 5 (2000) 445–552



474 J. F. Jardine

Part of the properness assertion was proved in Lemma 2.6. For the cofibration
statement, form a pushout diagram

A
g //

j

��

C

��
B g∗

// B ∪A C

where j is a cofibration and g is a stable equivalence. We must show that g∗ is a
stable equivalence. By properness of the level structure and by taking a suitable
factorization in the level structure, we can assume that g is a cofibration. But
then it’s a standard fact about closed model categories that trivial cofibrations
are closed under pushout.

We must finally verify Quillen’s axiom SM7. Suppose that i : K → L is a
cofibration of pointed simplicial sets and that α : A → B is a cofibration of
T -spectra. We must show that the cofibration

(A ∧ L) ∪(A∧K) (B ∧K)→ B ∧ L

is a stable equivalence if either j is a stable equivalence or i is a weak equivalence
of simplicial sets. The case where i is a weak equivalence is a consequence of
the corresponding result for the level structure. The remaining case is verified
by showing that the cofibration α ∧ L : A ∧ L→ B ∧ L is a stable equivalence
if α is a stable equivalence.

From Lemma 2.8, one sees that if W is both stably fibrant and injective, then
so is hom∗(L, W ). Also one can identify the set [X, W ] of stable homotopy
classes of maps with π0hom(X, W ) in the sense that the natural map

π0hom(X, W )→ [X, W ]

is a bijection. In effect, there is a trivial level fibration π : X ′ → X with X ′

cofibrant which induces an isomorphism

π0hom(X, W ) ∼= π0hom(X ′, W )

since W is injective and all T -spectra are cofibrant in the injective model struc-
ture (see Remark 2.10 following this proof), while π0hom(X ′, W ) ∼= [X ′, W ] ∼=
[X, W ] since X ′ is cofibrant and W is stably fibrant. There is an isomorphism

hom(X,hom∗(L, W )) ∼= hom(X ∧ L, W ),

and so there is a natural bijection

[X,hom∗(L, W )] ∼= [X ∧ L, W ]

of morphisms in the stable homotopy category. From Lemma 2.11 below, one
sees that a map g : X → Y is a stable equivalence if and only if it induces a
bijection g∗ : [Y, W ] → [X, W ] of morphisms in the homotopy category for all
injective stably fibrant objects W . It follows that α∧L is a stable equivalence
if α is a stable equivalence.
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Remark 2.10. In general, every map f : A→ B between cofibrant objects in a
closed model category has a factorization

A
f //

j ��@
@@

@@
@@

B

C

π

??~~~~~~~

where j is a cofibration and π is left inverse to a trivial cofibration — this is
really just the standard mapping cylinder construction. It follows that, in a
simplicial model category, if W is fibrant and g : A→ B is a weak equivalence
of cofibrant objects, then the induced map

g∗ : hom(B, W )→ hom(A, W )

is a weak equivalence of Kan complexes. This is certainly so if g is a trivial
cofibration, and then one uses the above factorization to see the more general
case.

Lemma 2.11. A map g : X → Y is a stable equivalence if and only if it induces
bijections

g∗ : [Y, W ]
∼=
−→ [X, W ]

of morphisms in the stable (equivalently, level) homotopy category for all stably
fibrant injective objects W .

Proof. Every stable equivalence clearly induces a bijection

g∗ : [Y, W ]
∼=
−→ [X, W ]

for all stably fibrant injective objects W .
For the converse, assume that all such maps g∗ are bijections. The injective

stably fibrant model X → IQT JX is a stable equivalence, so it suffices to
assume that X and Y are both stably fibrant and injective. But then g must
be a homotopy equivalence: the homotopy inverse of g is a pre-image under g∗

of the class of 1X for the case W = X .

With the proof of Theorem 2.9 now completely in hand, Lemma 2.11 can be
bootstrapped to the following:

Corollary 2.12. A map g : X → Y of T -spectra is a stable equivalence if
and only if it induces a weak equivalence

g∗ : hom(Y, W )→ hom(X, W )

of Kan complexes for all stably fibrant injective objects W .
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Proof. If g : X → Y is a level equivalence, then the induced map

g∗ : hom(Y, W )→ hom(X, W )

is a weak equivalence for all stably fibrant injective objects W , since all objects
in the injective simplicial model structure are cofibrant and we can use Remark
2.10.

Suppose that g : X → Y is a stable equivalence. Then there is a diagram

X̃
g̃ //

πX

��

Ỹ

πY

��
X g

// Y

such that X̃ and Ỹ are cofibrant and the maps πX and πY are trivial level fibra-
tions. Then, for example, πX induces a weak equivalence π∗

X : hom(X, W )→
hom(X̃, W ) for all stably fibrant injective objects W by the previous para-
graph. It suffices, therefore, to assume that X and Y are cofibrant, but then
Remark 2.10 can be used in the stable simplicial model structure to show that
g∗ is a weak equivalence of simplicial sets.

For the reverse direction, suppose that g∗ : hom(Y, W ) → hom(X, W ) is a
weak equivalence for all stably fibrant injective W . Then by computing in π0,
the induced map

g∗ : [Y, W ]→ [X, W ]

of morphisms in the homotopy category is a bijection for all stably fibrant
injective W , and Lemma 2.11 can be applied.

2.4 Change of suspension

Any map θ : T1 → T2 of pointed simplicial presheaves on the site (Sm|S)Nis

induces a functor

θ∗ : SptT2
(Sm|S)Nis → SptT1

(Sm|S)Nis,

by precomposing the bonding maps with θ. More precisely, for any T2-spectrum
X , θ∗X is the T1-spectrum with (θ∗X)n = Xn, with bonding maps given by
the composites

T1 ∧Xn θ∧1
−−→ T2 ∧Xn σ

−→ Xn+1.

There is homotopical content to this construction when T1 and T2 are compact
and θ is an equivalence:
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Proposition 2.13. Suppose that θ : T1 → T2 is a weak equivalence of compact
objects on the site (Sm|S)Nis. Then the functor θ∗ induces an equivalence of
motivic stable homotopy categories

θ∗ : Ho(SptT2
(Sm|S)Nis)→ Ho(SptT1

(Sm|S)Nis).

Proof. Write σθ for the bonding maps of θ∗X . The functor θ∗ clearly preserves
level equivalences, level fibrations and level cofibrations. If X is level fibrant,
there is a diagram

Xn σ //

σθ
$$H

HH
HH

HH
HH

H ΩT2X
n+1

ΩT2σ
//

θ∗

��

Ω2
T2

Xn+2

θ∗

��

· · ·

ΩT1X
n+1

ΩT1σ
//

ΩT1σθ ''NNNNNNNNNNN
ΩT1ΩT2X

n+2

ΩT1θ∗

��

· · ·

Ω2
T1

Xn+2 · · ·

All vertical maps are pointwise weak equivalences, so there are induced natural
pointwise weak equivalences θ∗ : QT2X

n → QT1θ
∗Xn for level fibrant objects

X . It follows that g : X → Y is a stable equivalence of T2-spectra if and only
if θ∗g : θ∗X → θ∗Y is a stable equivalence of presheaves of T1-spectra. In
particular, θ∗ induces a functor

θ∗ : Ho(SptT2
(Sm|S)Nis)→ Ho(SptT1

(Sm|S)Nis).

on stable homotopy categories. It also follows, using Lemma 2.7, that θ∗ pre-
serves stable fibrations.

To go further, we must presume that θ is a cofibration as well as an equiv-
alence. This suffices, since the factorization trick of Remark 2.10 involves the
mapping cylinder, and we have Lemma 2.2.

Given this new assumption, one can further show that θ∗ preserves cofibra-
tions: given a cofibration i : A→ B of T2-spectra, there is a pushout diagram

(T1 ∧ Bn) ∪(T1∧An) (T2 ∧ Bn) //

(θ,i)∗

��

(T1 ∧ Bn) ∪(T1∧An) An+1

θ∗

��
T2 ∧ Bn // (T2 ∧ Bn) ∪(T2∧An) An+1

in which (θ, i)∗ is a cofibration. The canonical map

(T1 ∧ Bn) ∪(T1∧An) An+1 → Bn+1

for θ∗i is the composite

(T1 ∧ Bn) ∪(T1∧An) An+1 θ∗−→ (T2 ∧ Bn) ∪(T2∧An) An+1 → Bn+1,
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so θ∗i is a cofibration of T1-spectra if i is a cofibration of T2-spectra.
Every stably fibrant T1-spectrum X is of the form X = θ∗X for some stably

fibrant T2-spectrum X. To see this, let X
n

= Xn, and choose bonding maps
σ : T2 ∧Xn → Xn+1 making the following diagram commute:

T1 ∧Xn σ //

θ∧1

��

Xn+1

T2 ∧Xn

σ

99sssssssss

One gets away with this because θ ∧ 1 is a trivial cofibration. It follows that
every stably fibrant T1-spectrum X is stably equivalent to a T1-spectrum θ∗Y ,
where Y is a stably fibrant and cofibrant T2-spectrum.

To finish off the proof, the idea is to show that θ : T1 → T2 induces a weak
equivalence of Kan complexes

hom(A, X)
θ∗−→ hom(θ∗A, θ∗X)

for all cofibrant A and stably fibrant X . Computing in π0 implies that θ induces
bijections

θ∗ : [Y, X ]
∼=
−→ [θ∗Y, θ∗X ]

for all stably fibrant, cofibrant objects X and Y . The desired result then follows
from basic category theory.

We show that θ∗ is a weak equivalence of Kan complexes by showing that,
given any solid arrow diagram

∂∆n //

��

hom(A, X)

��
∆n //

88

hom(θ∗A, θ∗X)

a dotted arrow exists such that

1) the upper triangle commutes, and

2) the lower triangle commutes up to homotopy which is constant on ∂∆n.

This homotopy lifting property is implied by the following: given any solid
arrow commutative diagrams

A
α //

j

��

X

B

g

>> θ∗A
θ∗α //

θ∗j

��

θ∗X

θ∗B

f

;;xxxxxxxx
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with A is cofibrant, j is a cofibration and X is stably fibrant, then the dotted
arrow g exists making the diagram of T2-spectra commute, and there is a
homotopy θ∗g ' f which is constant at θ∗α on θ∗A.

This last property is proved by a homotopy extension argument which de-
pends on the assumption that θ is a trivial cofibration. The method is to
inductively find the dotted arrows h and g making the following diagrams si-
multaneously commute

Bn+1

d1

��

f

&&MMMMMMMMMM

Bn+1 n ∆1 h // Xn+1

Bn+1

d0

OO

g

88

T1 ∧ Bn n ∆1
T1∧h //

θ∧1

��

T1 ∧Xn

θ∧1

��
T2 ∧ Bn n ∆1

σn∆1

��

T2 ∧Xn

σ

��
Bn+1 n ∆1

h
// Xn+1

An+1 n ∆1
pr //

jn∆1

��

An+1

α

��
Bn+1 n ∆1

h
// Xn+1

T2 ∧ Bn T2∧g //

σ

��

T2 ∧Xn

σ

��
Bn+1

g
// Xn+1

The inclusion of

(An+1 ∪ (T1 ∧ Bn)) n ∆1 ∪ (An+1 ∪ (T2 ∧ Bn)) n ∂∆1

in (An+1 ∪ (T2 ∧Bn)) n ∆1 is a trivial cofibration since θ is trivial, so that the
composite homotopy

T1 ∧ Bn n ∆1 T1∧h
−−−→ T1 ∧Xn θ∧1

−−→ T2 ∧Xn σ
−→ Xn+1

extends to a homotopy h̃ : T2 ∧ Bn n ∆1 → Xn+1 from f · σ to σ · (T2 ∧ g)
which is constant on An+1. The homotopy h̃ extends to the desired map h in
the usual way, since the map

(An+1 ∪ (T2 ∧ Bn)) n ∆1 ∪ Bn+1 × {0} → Bn+1 n ∆1

is a trivial cofibration.

2.5 Bounded cofibrations

The commutativity of the diagram (1.2) for the controlled fibrant model con-
struction X 7→ LX of Section 1 implies that this construction can be promoted
to the category of T -spectra. More explicitly, there is a natural level fibrant
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model ηX : X → LX defined for T -spectra such that the map ηX is a level cofi-
bration and a level equivalence. The standard properties of the functor L (see
Section 1.1) pass to the spectrum level, and so the functor L is an example of
a functor F : SptT (Sm|S)Nis → SptT (Sm|S)Nis which satisfies the following:

L1: F preserves level weak equivalences.

L2: F preserves level cofibrations.

L3: Let β be any cardinal with β ≥ α. Let {Xj} be the filtered system of
sub-objects of X which are β-bounded. Then the map

lim−→F (Xj)→ FX

is an isomorphism.

L4: Let γ be an ordinal number of cardinality strictly greater than 2α. Let
X : γ → SptT (Sm|S)Nis be a diagram of level cofibrations so that for all
limit ordinals s < γ the induced map

lim−→ t<sX(t)→ X(s)

is an isomorphism. Then lim−→ t<γF (X(t)) ∼= F (lim−→ t<γX(t)).

L5: If X is λ-bounded, then FX is λ-bounded.

L6: Let Y, Z be two subobjects of X . Then

FY ∩ FZ = F (Y ∩ Z)

in FX .

L7: The functor F is continuous; that is, it extends to a natural morphism of
simplicial sets

F : hom(X, Y )→ hom(FX, FY )

compatible with composition.

Recall that the cardinals λ and κ are chosen such that

λ = 2κ > κ > 2α,

where α is an upper bound on the cardinality of the set of morphisms of (the
chosen approximation for) the smooth Nisnevich site.

Remark 2.14. If the spectrum X has extra structure, such as a symmetric struc-
ture, then that structure is preserved by the functor X 7→ LX : the pairings

LXn ∧ L
φ
−→ L(Xn ∧ L)

satisfy properties L9 and L10 in Section 1.1, and are natural in L and Xn so
that they respect all symmetric group actions.
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Say that a map g : X → Y of T -spectra is an F -equivalence if it induces a
level weak equivalence Fg : FX → FY .

Proposition 2.15. Suppose that the functor

F : SptT (Sm|S)Nis → SptT (Sm|S)Nis

satisfies the conditions L1 – L7. Then the class of cofibrations of T -spectra
which are F -equivalences satisfies the bounded cofibration condition for the car-
dinal λ.

Proof. The class of maps of T -spectra which are level cofibrations and level
equivalences satisfies the bounded cofibration condition for the cardinal λ. To
see this, recall that the category of simplicial presheaves satisfies the bounded
cofibration condition with respect to the cardinal λ, since λ is an upper bound
for the cardinality of the set of morphisms of the underlying site [4, Lemma
2.3]. Then use the argument for the second part of Lemma 2.1.

Suppose that i : X ↪→ Y is a cofibration in the category of T -spectra, and
that j : A ↪→ Y is a subobject of Y . Then the restriction X ∩ A → A is
a cofibration of T -spectra (so that the statement of the Proposition makes
sense). The claim for S1-spectra was proved in Lemma 3.1 of [4]. There is
nothing special about the simplicial circle S1 in that argument, so the same
argument obtains here.

Alternatively, the key is to show that the map

j∗ : (T ∧ An) ∪(T∧(An∩Xn)) (An+1 ∩Xn+1)→ (T ∧ Y n) ∪(T∧Xn) Xn+1

is an inclusion in all presheaves of simplices for all n. But

(T ∧ An) ∪(T∧(An∩Xn)) (An+1 ∩Xn+1)

= ((T − ∗)× (An −Xn)) t (An+1 ∩Xn+1),

at the simplex level, while

(T ∧ Y n) ∪(T∧Xn) Xn+1 = ((T − ∗)× (Y n −Xn)) tXn+1,

and the map between the two is obvious.
Let X → Y be an F -equivalence and a cofibration of T -spectra, and let

A ⊆ Y be a λ-bounded sub-object. Inductively define a chain of λ-bounded
sub-objects A = A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ Y over λ, and a chain of sub-objects

F (A) = F (A0) ⊆ X1 ⊆ F (A1) ⊆ X2 ⊆ F (A2) ⊆ · · ·F (Y ),

also over λ, with the property that the cofibration

F (X) ∩Xs → Xs
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is a level weak equivalence. Set B = lim−→ s<κAs. Then, by L6,

F (X ∩ B) = F (X) ∩ F (B) = lim−→ s<κF (X) ∩Xs

→ lim−→ s<κXs
∼= F (B)

is a level weak equivalence, and so X ∩ B ↪→ B is an F -equivalence.
The As and Xs are defined recursively. Suppose s + 1 is a successor ordinal

and As has been defined. Then, since As is λ-bounded, F (As) is λ-bounded
by L5. The map F (X) → F (Y ) is a cofibration and a level equivalence, so
there is a λ-bounded sub-object Xs+1 ⊆ F (Y ) so that F (As) ⊆ Xs+1 and
F (X) ∩ Xs+1 → Xs+1 is a level weak equivalence. Since there is a filtered
colimit F (Y ) = lim−→F (Yj) indexed over the λ-bounded subobjects Yj by L3,
there is a λ-bounded subobject A′

s+1 of Y so that Xs+1 ⊂ F (A′
s+1). Set

As+1 = As ∪ As+1. Finally suppose that s is a limit ordinal, and set

Xs = lim−→ t<sF (At) ∼= lim−→ t<sXt.

Then Xs is λ-bounded and F (X) ∩ Xs → Xs is a level weak equivalence.
Choose A′

s ⊂ Y such that A′
s is λ-bounded and Xs ⊂ F (A′

s). Set As =
lim−→ t<sAt ∪ A′

s.

Corollary 2.16. The class of cofibrations which are stable equivalences sat-
isfies the bounded cofibration condition with respect to the cardinal λ.

Proof. The functor X 7→ QTLX is an example of a functor F satisfying the
conditions for Proposition 2.15.

3 Fibre and cofibre sequences

The purpose of this section is to show that the standard calculus of fibre and
cofibre sequences can be promoted to the motivic stable category, with the help
of a suitable theory of stable homotopy groups with weights. The outcomes
include detection of motivic stable equivalences by presheaves of weighted stable
homotopy groups, and a collection of results which together assert that fibre
and cofibre sequences are indistinguishable in the motivic stable category.

The last part of this section is devoted to showing that the various standard
flavors of suspension functors (ie. left, right, and shift) are equivalent. These
results turn out to be special, and depend on knowing Voevodsky’s observation
that the cyclic permutation of order 3 acts trivially on T 3 = T∧3 in the motivic
homotopy category. The Voevodsky result appears here as Lemma 3.13.

3.1 Exact sequences for S1-spectra

Recall that Lemma 2.2 asserts, in part, that finite pointed simplicial sets are
compact. The simplicial circle S1 is finite, so that Theorem 2.9 implies that
there is a proper closed simplicial model structure on the category

Spt(Sm|S)Nis = SptS1(Sm|S)Nis
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for S1-spectra on the smooth Nisnevich site, for which the weak equivalences
are the motivic stable equivalences. Our first job is to show that the traditional
facts about fibre and cofibre sequences of ordinary spectra have analogues in
this setting.

Lemma 3.1. Suppose that a map g : X → Y of S1-spectra is an ordinary local
stable equivalence. Then g is a motivic stable equivalence.

Recall [10], [11] that a map g : X → Y of presheaves of spectra is a local
stable equivalence if it induces an isomorphism on all sheaves of ordinary stable
homotopy groups.

Proof. If an S1-spectrum W is motivic injective and motivic stably fibrant,
it must be injective and stably fibrant for the local theory. It follows that
ordinary stable homotopy classes [X, W ] coincide with naive homotopy classes
π(X, W ) and hence with level homotopy classes [X, W ] in the motivic theory
for all such W and all S1-spectra X . Thus, every stable equivalence g : X → Y
induces a bijection

g∗ : [Y, W ]→ [X, W ]

in level homotopy classes for the motivic theory if W is motivic injective and
motivic stably fibrant. Lemma 2.11 implies that g is a motivic stable equiva-
lence.

Corollary 3.2. Suppose that

F
i
−→ X

p
−→ Y

is a level motivic fibre sequence of S1-spectra. Then the induced map p∗ :
X/F → Y is a motivic stable equivalence.

Proof. This is a consequence of the corresponding result for ordinary spectra,
and Lemma 3.1.

All weak equivalences, stable equivalences, fibrations and so on will be tacitly
assumed to be motivic henceforth. We shall drop the use of the term “motivic”,
except when it is necessary to include it for clarity.

Lemma 3.3. Suppose given a commutative diagram of S1-spectra

A1
//

f1

��

B1
//

f2

��

C1

f3

��
A2

// B2
// C2

in which the horizontal sequences are level cofibre sequences. Then if any two
of f1, f2 or f3 are stable equivalences, then so is the third.
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Proof. We will show that f1 is a stable equivalence if f2 and f3 are stable
equivalences. The other two cases are similar.

The idea is to show that precomposition with f1 induces a weak equivalence

f∗
1 : hom(A2, W )→ hom(A1, W )

of function complexes for any stably fibrant injective object W . The map of
cofibre sequences induces a comparison diagram of fibre sequences

hom(C2, W ) //

f∗

3

��

hom(B2, W ) //

f∗

2

��

hom(A2, W )

f∗

1

��
hom(C1, W ) // hom(B1, W ) // hom(A1, W )

The level equivalences W → ΩW [1] of stably fibrant injective objects give all
spaces in this diagram the structure of infinite loop spaces, and f ∗

2 and f∗
3 are

the maps at level 0 for stable equivalences of spectra. The map f ∗
1 is therefore

the level 0 part of a stable equivalence of stably fibrant spectra, and so f ∗
1 is a

weak equivalence of simplicial sets.

We now have the following consequence of Corollary 3.2 and Lemma 3.3:

Corollary 3.4. Suppose given a commutative diagram of S1-spectra

F1
//

f1

��

X1
//

f2

��

Y1

f3

��
F2

// X2
// Y2

in which the horizontal sequences are level fibre sequences. Then if any two of
f1, f2 or f3 are stable equivalences, then so is the third.

Recall that a map g : X → Y is a stable equivalence of S1-spectra if and
only if it induces a pointwise level equivalence g∗ : QJX → QJY . The functor
QJ = QS1J produces presheaves of infinite loop spaces, so that g∗ is a pointwise
level equivalence if and only if it induces pointwise isomorphisms

πnQJX(U) ∼= πnQJY (U)

in all homotopy groups. The group πnQJX(U) can be identified up to isomor-
phism with the filtered colimit of the system

[Sn+r, Xr|U ]→ [Sn+r+1, Xr+1|U ]→ · · · ,

where St denotes the t-fold smash product of the constant simplicial presheaf
associated to the simplicial circle S1, and the morphisms in the motivic homo-
topy category are computed over the scheme U . This filtered colimit may be
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computed without reference to a level fibrant model for X ; we define a presheaf
πnX of stable homotopy groups for X in U -sections to be the filtered colimit of
this system. A map g : X → Y is a motivic stable equivalence if and only if it
induces presheaf isomorphisms πnX ∼= πnY for all n ∈ Z.

Warning: The presheaves of groups πnX are defined by morphisms in the
motivic homotopy category. Despite the notation, they do not coincide with the
stable homotopy group presheaves of X , but rather with the stable homotopy
group presheaves of a motivic stably fibrant model for X .

Any level fibre sequence

F
i
−→ X

p
−→ Y

can be functorially replaced up to level equivalence by a fibre sequence in
which all objects are level fibrant. Suppose that this has been done — then
the induced maps of S1-spectra

QF
Qi
−→ QX

Qp
−−→ QY

forms a level fibre sequence of spectra

QF (U)
Qi
−→ QX(U)

Qp
−−→ QY (U)

in each section, and therefore determines a long exact sequence

· · ·
p∗

−→ πn+1QY (U)
∂
−→ πnQF (U)

i∗−→ πnQX(U)
p∗

−→ πnQY (U)
∂
−→ · · ·

of presheaves of stable homotopy groups. It follows that there is a natural long
exact sequence

· · ·
p∗

−→ πn+1Y
∂
−→ πnF

i∗−→ πnX
i∗−→ πnY

∂
−→ · · ·

of presheaves of groups associated to a level fibre sequence.
Suppose given a level cofibre sequence

A
i
−→ B

π
−→ B/A, (3.1)

and replace the map π up to motivic weak equivalence by a level motivic
fibration by taking a factorization

B
π //

j

��

B/A

X

q

=={{{{{{{{

where q is a level motivic fibration and j is a cofibration and a level motivic
equivalence. Let F be the fibre of q. Then the cofibre sequence (3.1) is a fibre
sequence in the standard way in the motivic setting, in the sense that we can
prove
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Lemma 3.5. The cofibration j induces a motivic stable equivalence j∗ : A→ F .

Proof. There is a commutative diagram

A
i //

j

��

B
π //

j

��

B/A

j∗

��
F // X π

// X/F

The map q : X → B/A factors through π : X → X/F in that there is a map
q∗ : X/F → B/A such that q∗ · π = q. The map q∗ is a stable equivalence by
Corollary 3.2. One also checks that q∗j∗π = π so that q∗j∗ = 1 on B/A, and
so j∗ is a stable equivalence. Now use Lemma 3.3 to conclude that the induced
map j : A→ F of S1-spectra is a stable equivalence.

Corollary 3.6. Any cofibre sequence

A
i
−→ B

π
−→ B/A

induces a natural long exact sequence

· · ·
π∗−→ πi+1B/A

∂
−→ πiA

i∗−→ πiB
π∗−→ πiB/A

∂
−→ · · ·

Proof. The sequence is the long exact sequence for the corresponding fibre
sequence arising from the construction of Lemma 3.5.

3.2 Weighted stable homotopy groups

The presheaf T = A1/(A1 − 0) sits in a pushout square of presheaves

A1 − 0
i //

��

A1

��
∗ // T,

and A1 is contractible in the motivic homotopy category. A standard argu-
ment on mapping cones (which uses properness) implies that there are motivic
equivalences

T = A1/(A1 − 0)
'
←−Mi/(A1 − 0)

'
−→ S1 ∧ (A1 − 0)

involving the mapping cylinder Mi of the inclusion i. All of these objects
are compact, by Lemma 2.2, and Proposition 2.13 implies that the displayed

Documenta Mathematica 5 (2000) 445–552



Motivic Symmetric Spectra 487

equivalences induces equivalences of the stable categories associated to the
various suspensions.

For convenience, write Gm = A1 − 0, pointed by the global section given by
the identity element e (Voevodsky denotes this object by S1

t [16]). This is the
underlying scheme of the multiplicative group, but the group structure is never
used.

Recall that a map g : X → Y of spectra is an stable equivalence if and only if
the induced map g∗ : QT JX → QT JY is a pointwise level equivalence. Recall
further that the object QT Y for a level fibrant spectrum Y has object at level
n given by the filtered colimit

Y n σ∗−→ ΩT Y n+1 ΩT σ∗−−−→ Ω2
T Y n+2 → . . . .

The homotopy group πrQT Y n(U) in U -sections is isomorphic to the filtered
colimit of the diagram

πrY
n(U)

σ∗−→ πrΩT Y n+1(U)
ΩT σ∗−−−→ πrΩ

2
T Y n+2(U)→ . . . ,

which can be identified with a filtered colimit of maps in the motivic homotopy
category over the scheme U of the form

[Sr, Y n|U ]→ [Sr ∧ T, Y n+1|U ]→ [Sr ∧ T 2, Y n+2|U ]→ . . .

Here, T r denotes an r-fold wedge product of copies of the simplicial presheaf T ,
and Sr is the r-fold wedge product of copies of S1. The equivalence T ' S1∧Gm

further implies that this last inductive system can be rewritten as

[Sr, Y n|U ]→ [Sr+1 ∧Gm, Y n+1|U ]→ [Sr+2 ∧G2
m, Y n+2|U ]→ . . .

Write πt,sY (U) for the colimit of the sequence

[St+n ∧Gs+n
m , Y n|U ]→ [St+n+1 ∧Gs+n+1

m , Y n+1|U ]→ . . .

The variable t in πt,sY is usually called the degree, while s is called the weight.
The presheaves of groups πt,sY are called the weighted stable homotopy groups
of the T -spectrum Y .

This last definition of the presheaf U 7→ πt,sY (U) makes sense for any T -
spectrum Y , and there is an isomorphism

πrQT JY n(U) ∼= πr−n,−nY (U).

From a different point of view, if t ≤ s, then there are isomorphisms

lim−→ n[St+n ∧Gs+n
m , Y n|U ] ∼= lim−→ n[Sn ∧Gs−t+n

m , Y [−t]n|U ]

∼= lim−→ n[Sn ∧Gn
m, Ωs−t

Gm
JY [−t]n|U ],
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where Y [k]n = Y n+k defines the shifted T -spectrum object Y [k] in the standard
way for all k ∈ Z. It follows that there is an isomorphism

πt,sY ∼= π0Ω
s−t
Gm

QT (JY [−t])0

if t ≥ s. Similarly, if s ≥ t, there is an isomorphism

πt,sY ∼= π0Ω
t−sQT (JY [−s])0.

If g : X → Y is an stable equivalence, then g∗ : QT (JX [k])→ QT (JY [k]) is
a pointwise level equivalence for all k ∈ Z, so that all induced maps

g∗ : πt,sX → πt,sY

are isomorphisms of presheaves. Conversely, if g induces isomorphisms in
all bigraded stable homotopy group presheaves, then g induces isomorphisms
πt,sX ∼= πt,sY for s ≤ 0 and t ≥ s. In that case

πt,sY = π(t−s)+s,sY ∼= πt−sQT Y −s,

so that g∗ : QT JX → QT JY is a pointwise level equivalence. We have proved

Lemma 3.7. A map g : X → Y of T -spectra is an stable equivalence if and
only if g induces isomorphisms

πt,sX ∼= πt,sY

of presheaves of groups for all t, s ∈ Z.

Given Proposition 2.13, we can assume that T is identically S1 ∧ Gm, so a
T -spectrum consists of pointed simplicial presheaves Y n and bonding maps

S1 ∧Gm ∧ Y n → Y n+1.

An S1/Gm-bispectrum consists of pointed simplicial presheaves Xm,n, m, n ≥ 0,
together with bonding maps σh : S1∧Xm,n → Xm+1,n and σv : Gm∧Xm,n →
Xm,n+1, such that the diagram

S1 ∧Xm,n+1
σh // Xm+1,n+1

S1 ∧Gm ∧Xm,n

S1∧σv

OO

t∧1

∼=

))SSSSSSSSSSSSSS

Gm ∧ S1 ∧Xm,n
Gm∧σh

// Gm ∧Xm+1,n

σv

OO

commutes, where t : S1 ∧ Gm → Gm ∧ S1 is the canonical isomorphism which
flips smash factors. The maps σv and σh are called vertical and horizontal
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bonding maps respectively. Such a gadget may alternatively be viewed as a
collection of S1-spectra

Xn = X∗,n,

together with maps of S1-spectra Xn ∧ Gm → Xn+1 induced by the vertical
bonding maps.

For us, the key example arises from a T -spectrum Y , in that it functorially
determines an array Y ∗,∗

...
...

...

G∧2
m ∧ Y 0 Gm ∧ Y 1 Y 2 · · ·

Gm ∧ Y 0 Y 1 S1 ∧ Y 1 · · ·

Y 0 S1 ∧ Y 0 S2 ∧ Y 0 · · ·

which has the structure of an S1/Gm-bispectrum. In effect, the horizontal
bonding map σh : S1∧Gk

m∧Y n → Gk−1
m ∧Y n+1 is defined to be the composite

S1 ∧Gk−1
m ∧Gm ∧ Y n t∧1

−−→ Gk−1
m ∧ S1 ∧Gm ∧ Y n 1∧σ

−−→ Gk−1
m ∧ Y n+1,

and the vertical bonding maps arise from the maps of S1-spectra Y ∗,n∧Gm →
Y ∗,n+1 which are canonically determined by the twist isomorphisms

(Gk
m ∧ Y n−k) ∧Gm

t
−→ Gm ∧ (Gk

m ∧ Y n−k).

for 0 ≤ k ≤ n.
An S1/Gm-bispectrum X has presheaves of bigraded stable homotopy groups

πt,sX defined in bidegree (t, s) and in U -sections to be the colimit of the system

...
...

[St+k ∧Gs+l+1
m , Xk,l+1|U ]

σh∗ //

OO

[St+k+1 ∧Gs+l+1
m , Xk+1,l+1|U ] //

OO

· · ·

[St+k ∧Gs+l
m , Xk,l|U ] σh∗

//

σv∗

OO

[St+k+1 ∧Gs+l
m , Xk+1,l|U ] //

σv∗

OO

· · ·
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Here (presuming that all Xk,l are fibrant, which is harmless), the map σh∗

takes a representative θ : Sr ∧Gs
m → Xk,l to the composite

S1 ∧ Sr ∧Gs
m

S1∧θ
−−−→ S1 ∧Xk,l σh−→ Xk+1,l,

while σv∗ takes θ to the composite

Sr ∧Gm ∧Gs
m

t∧G
s
m−−−→ Gm ∧ Sr ∧Gs

m
Gm∧θ
−−−−→ Gm ∧Xk,l σv−→ Xk,l+1.

The bispectrum object X determines a sequence of maps of S1-spectra

X0 σv∗−−→ ΩGmX1 ΩGm (σv∗)
−−−−−−→ Ω2

Gm
X2 → · · · ,

where ΩGm is the functor Hom∗(Gm, ). Then the presheaf πt,sX is the filtered
colimit of the presheaves of stable homotopy groups

πtΩ
s+l
Gm

JX l → πtΩ
s+l+1
Gm

JX l+1 → · · ·

once X has been replaced up to levelwise equivalence by a levelwise fibrant
object JX so that the “loop” constructions make sense.

In particular, starting with a T -spectrum X , a cofinality argument shows that
the presheaves of weighted stable homotopy groups πt,sX for X as defined above
coincide up to natural isomorphism with the presheaves πt,sX

∗,∗ of bigraded
stable homotopy groups for the associated bispectrum object X∗,∗.

3.3 Fibre and cofibre sequences

A level fibration p : X → Y of S1/Gm-bispectra is a map which consists of
fibrations p : Xm,n → Y m,n for all m, n ≥ 0. Level equivalences and level
cofibrations have analogous definitions. One can use standard techniques to
show that any map f : X → Y of S1/Gm-bispectra has a factorization

X
f //

j   @
@@

@@
@@

Y

Z

p

??~~~~~~~

where p is a level fibration and j is a level cofibration and a level equivalence.
Suppose that

F
i
−→ X

p
−→ Y

is a level fibre sequence of S1/Gm-bispectra, and suppose that Y (and hence
X) is level fibrant. Then there are fibre sequences of S1-spectra

Ωs+r
Gm

F r i∗−→ Ωs+r
Gm

Xr p∗

−→ Ωs+r
Gm

Y r
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and hence long exact sequences in stable homotopy group presheaves

· · ·
p∗

−→ πt+1Ω
s+r
Gm

Y r ∂
−→ πtΩ

s+r
Gm

F r i∗−→ πtΩ
s+r
Gm

Xr p∗

−→ πtΩ
s+r
Gm

Y r ∂
−→ · · ·

Taking a filtered colimit in r gives a long exact sequence

· · ·
p∗

−→ πt+1,sY
∂
−→ πt,sF

i∗−→ πt,sX
p∗

−→ πt,sY
∂
−→ · · · (3.2)

for each s. One can remove the condition that Y is level fibrant by using
factorization tricks from the previous paragraph.

If

A
i
−→ B

π
−→ B/A

is a level cofibre sequence of S1/Gm-bispectra, then replacing the map π up to
level equivalence by a fibration p as above gives a diagram

A
i //

j∗

��

B
π //

j

��

B/A

1B/A

��
F // X p

// B/A

in which p is a level fibration and j is a level equivalence. It follows from
Lemma 3.5 that the induced maps j∗ : An → F n are stable equivalences of
S1-spectra. But then the induced maps

πt,sA
j∗
−→ πt,sF

are isomorphisms in all bidegrees. This implies that there is a natural long
exact sequence

· · ·
π∗−→ πt+1,sB/A

∂
−→ πt,sA

i∗−→ πt,sB
π∗−→ πt,sB/A

∂
−→ · · · (3.3)

associated to a cofibre sequence of S1/Gm-bispectra in each s. As a corollary
of the construction we have

Corollary 3.8. There are natural isomorphisms

πt+1,s(Y ∧ S1) ∼= πt,sY

for all bidegrees (t, s) and S1/Gm-bispectra Y .

Lemma 3.9. Suppose that

F
i
−→ X

p
−→ Y

is a level fibre sequence of T -spectra. Then the induced map X/F → Y is a
stable equivalence.
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Proof. The idea is to show that the map X/F → Y induces isomorphisms

πt,s(X/F )∗,∗ ∼= πt,sY
∗,∗.

Form the diagram of maps of S1/Gm-bispectra

F ∗,∗
i∗ //

j∗

��

X∗,∗
p∗ //

j

��

Y ∗,∗

1Y ∗,∗

��
F // Z q

// Y ∗,∗

where q is a level fibration, j is a level equivalence, and F is the fibre of the
map q. The map j∗ : F ∗,∗ → F consists in part of equivalences F n → F

n,n
in

bidegree (n, n) for all n ≥ 0, since the sequence

F ∗,∗ i∗−→ X∗,∗ p∗

−→ Y ∗,∗

is already an fibre sequence in those bidegrees. A cofinality argument therefore
implies that the map j∗ : F ∗,∗ → F induces isomorphisms

j∗ : πt,sF
∗,∗ ∼=
−→ πt,sF

for all t and s.
The map Z/F → Y ∗,∗ of S1/Gm-bispectra induces isomorphisms in all πt,s,

since it consists of maps Zn/F
n
→ Y ∗,n of S1-spectra which are stable equiv-

alences by Lemma 3.2.
A long exact sequence argument arising from the comparison of cofibre se-

quences

F ∗,∗
i∗ //

j∗

��

X∗,∗
π∗ //

j

��

(X/F )∗,∗

j∗

��

F // Z π
// Z/F

shows that the map j∗ : (X/F )∗,∗ → Z/F induces an isomorphism in all πt,s.
The result follows.

Corollary 3.10. Suppose that

A
i
−→ B

π
−→ B/A

is a level cofibre sequence of T -spectra, and take a factorization

B
j //

π !!C
CC

CC
CC

C X

p

��
B/A
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of the map π such that j is a level equivalence and p is a level fibration. Let
F be the fibre of the map p. Then the induced map j∗ : A → F is a stable
equivalence.

Proof. The induced map X/F → B/A is a stable equivalence by Lemma 3.9.
The map j∗ : B/A→ X/F is therefore a stable equivalence, so a comparison of
long exact sequences argument shows that j∗ : A → F is a stable equivalence.

3.4 T -suspensions and T -loops

Write jX : X → Xs for a natural choice of stably fibrant model Xs for a T -
spectrum X , where jX is a cofibration and a stable equivalence. The aim of
this section is to prove and discuss the consequences of the following result:

Theorem 3.11. The composition

X
ηX
−−→ ΩT (X ∧ T )

ΩjX∧T
−−−−→ ΩT (X ∧ T )s

arising from the adjunction map ηX is a stable equivalence for all T -spectra X.

The proof of this result is a bit delicate, and will be accomplished with the
help of a series of lemmas. We begin with something which is quite general:

Lemma 3.12. Suppose that the comparison diagram of inductive systems

X0
//

f0

��

X1
//

f1

��

X2
//

f2

��

· · ·

Y0
// Y1

// Y2
// · · ·

consists of stable equivalences fi : Xi → Yi. Then the induced map

lim−→ fi : lim−→Xi → lim−→Yi

is a stable equivalence.

Proof. The idea of the proof is to show that we can assume that the spectra
Xi and Yi are stably fibrant.

In effect, suppose that there are trivial cofibrations ji : Xi → (Xi)s and
ji : Yi → (Yi)s and maps (fi)∗ : (Xi)s → (Yi)s such that (Xi)s and (Yi)s are
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stably fibrant for i ≤ n, and such that the diagrams

Xi−1
//

ji−1

$$I
IIIIIIII

fi−1

��

Xi

ji

""D
DD

DD
DD

D

fi

��

(Xi−1)s
//

(fi−1)∗

��

(Xi)s

(fi)∗

��

Yi−1
//

ji−1 $$I
IIIIIIII

Yi

ji

""D
DDDD

DD
D

(Yi−1)s
// (Yi)s

commute. Now form the commutative diagram

Xn
//

jn

""F
FFFF

FFF

fn

��

Xn+1

jn∗

''OOOOOOOOOOO

fn+1

��

(Xn)s
//

(fn)∗

��

(Xn)s ∪Xn Xn+1

f∗

��

j // (Xn+1)s

(fn+1)∗

��

Yn
//

jn ""F
FFFFFFF

Yn+1

jn∗

''OOOOOOOOOOO

(Yn)s
// (Yn)s ∪Yn Yn+1

j
// (Yn+1)s

where both instances of j are trivial cofibrations, and (Xn+1)s and (Yn+1)s are
stably fibrant. The dotted arrow (fn+1)∗ exists by the closed model axioms,
and the instances of the compositions jn+1 = j ·jn∗ are both trivial cofibrations.

In the resulting diagram

lim−→Xn
j∗ //

f∗

��

lim−→(Xn)s

f∗

��
lim−→Yn

j∗
// lim−→(Yn)s

both instances of j∗ are trivial cofibrations by construction, and the map f∗ :
lim−→(Xn)s → lim−→(Yn)s is a filtered colimit of maps which are pointwise weak
equivalences in each level, and therefore shares this property. In particular, f∗

is a stable equivalence.

We’re going to need the following:
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Lemma 3.13. (Voevodsky) The cyclic permutation c1,2 = (3, 2, 1) ∈ Σ3 induces
the identity morphism on T∧3 = T 3 in the pointed motivic homotopy category.

For the record (this comes up later), the element cp,q in the symmetric group
Σp+q is the shuffle which moves the first p elements past the last q elements,
in order. Explicitly

cp,q(i) =

{

q + i if i ≤ p,

i− p if i ≥ p + 1.

Proof of Lemma 3.13. For the purposes of this proof, we shall notationally con-
fuse T 3 with its associated sheaf, and prove the result on the sheaf level. This
is harmless, since the canonical map η : X → X̃ taking values in the associated
sheaf X̃ is a weak equivalence for any presheaf X .

There is an isomorphism of pointed sheaves

An/(An − 0) ∧ A1/(A1 − 0) ∼= An+1/(An+1 − 0),

since

((An − 0)× A1) ∪ (An × (A1 − 0)) = An+1 − 0

inside An+1. It follows that there is an isomorphism

T n ∼= An/(An − 0).

There is a pointed algebraic group action

Gln × T n → T n

in the sheaf category which is induced by the standard action Gln×An → An.
It follows that any rational point g ∈ Gln(Z) induces a morphism of sheaves

g : T n → T n.

In particular, the permutation matrix corresponding to the element c1,2 =
(3, 2, 1) induces the map

c1,2 : T 3 → T 3

in the statement of the lemma.

The element

c1,2 =





0 1 0
0 0 1
1 0 0
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is a product of elementary transformations in Gl3(Z), and so there is an alge-
braic path ω : A1 → Gl3 such that ω(1) = c1,2 and ω(0) = e. It follows that
there is a composite pointed algebraic homotopy

A1 × T 3 1×ω
−−−→ Gl3 × T 3 → T 3

from c1,2 : T 3 → T 3 to the identity on T 3 (see also Theorem 1.1 of [8]). The
maps c1,2 and e therefore coincide in the motivic homotopy category.

Observe that a T -spectrum X has a natural filtration

X ∼= lim−→LnX,

where LnX is the spectrum

X0, X1, . . . , Xn, T ∧Xn, T∧2 ∧Xn, . . .

There is a natural pushout diagram

Σ∞
T (T ∧Xn)[−(n + 1)] //

��

LnX

��
Σ∞Xn+1[−(n + 1)] // Ln+1X

Note further that the canonical map Σ∞
T Xn[−n]→ LnX is a stable equivalence.

The filtration {LnX} is called the layer filtration of X .

Lemma 3.14. Suppose that K is a pointed simplicial presheaf. Then the com-
position

Σ∞
T K

η
−→ ΩT ((Σ∞

T K) ∧ T )
Ωj
−→ ΩT ((Σ∞

T K) ∧ T )s

is a stable equivalence.

Proof. Recall that if Y is a spectrum, then the homotopy group presheaves
πrY

n
s (U) of the stably fibrant model Ys = IQT JY are computed by the filtered

colimits

[Sr, Y n]U
Σ
−→ [T ∧ Sr, Y n+1]U

Σ
−→ · · ·

where [K, X ]U = [K|U , X |U ] means homotopy classes of maps of the restrictions
to the site over U . The suspension homomorphism Σ takes a morphism θ :
T k ∧ Sr → Y n+k to the composite

T ∧ T k ∧ Sr T∧θ
−−→ T ∧ Y n+k σ

−→ Y n+k+1

Practically speaking, the suspension morphism Σ is induced by smashing with
T on the left.
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Observe as well that if Y is level fibrant, then the adjunction isomorphisms

[T k ∧ Sr, ΩT Y n+k]U ∼= [T k ∧ Sr ∧ T, Y n+k]U

fit into commutative diagrams

[T k ∧ Sr, ΩT Y n+k]U
∼= //

Σ

��

[T k ∧ Sr ∧ T, Y n+k]U

Σ

��
[T k+1 ∧ Sr, ΩT Y n+k+1]U ∼=

// [T k+1 ∧ Sr ∧ T, Y n+k+1]U

It follows that the map in presheaves of stable homotopy groups induced by
the composite

Σ∞
T K

η
−→ ΩT ((Σ∞

T K) ∧ T )
Ωj
−→ ΩT ((Σ∞

T K) ∧ T )s

is isomorphic to the filtered colimit of the maps

[T k ∧ Sr, T n+k ∧K]U
∧T
−−→ [T k ∧ Sr ∧ T, T n+k ∧K ∧ T ]U

which are induced by smashing with T on the right.
Suppose that φ : K ∧ T → X ∧ T is a map of pointed simplicial presheaves,

and write ct(φ) for the map T ∧K → T ∧X arises from φ by conjugation with
the twist of smash factors. There is a commutative diagram

K ∧ T
t
∼=

//

φ

��

T ∧K

ct(φ)

��
X ∧ T

∼=

t
// T ∧X

Then there is a diagram

T ∧ T 2 ∧K

ct(T
2∧φ)

��

T 2 ∧K ∧ T
T 2∧t //

T 2∧φ

��

too T 2 ∧ T ∧K

T 2∧ct(φ)

��
T ∧ T 2 ∧X T 2 ∧X ∧ T

T 2∧t

//
t

oo T 2 ∧ T ∧X

and hence a diagram

T 3 ∧K
c1,2∧K//

ct(T
2∧φ)

��

T 3 ∧K

T 2∧ct(φ)

��
T 3 ∧K

c1,2∧K
// T 3 ∧X
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It follows from Lemma 3.13 that the maps in the homotopy category repre-
sented by T 2 ∧ ct(φ) and ct(T

2 ∧ φ) coincide.
As a consequence, there are commutative diagrams

[T k ∧ Sr, T n+k ∧K]U
T 2∧ //

∧T

��

[T 2 ∧ T k ∧ Sr, T 2 ∧ T n+k ∧K]U

∧T

��
[T k ∧ Sr ∧ T, T n+k ∧K ∧ T ]U

T 2∧ //

ct ∼=

��

[T 2 ∧ T k ∧ Sr ∧ T, T 2 ∧ T n+k ∧K ∧ T ]U

ct∼=

��
[T ∧ T k ∧ Sr, T ∧ T n+k ∧K]U

T 2∧

// [T 3 ∧ T k ∧ Sr, T 3 ∧ T n+k ∧K]U

The vertical composites coincide with the map T∧ induced by smashing on the
left with T , so a cofinality argument says that the induced map on the filtered
colimits is an isomorphism.

Proof of Theorem 3.11. It is a consequence of Lemma 2.11 that the functor
X 7→ X ∧ T preserves stable equivalences. It follows that the functors X 7→ X
and X 7→ ΩT (X ∧ T )s both preserve stable equivalences. The T -spectrum X
is a filtered colimit of its layers LnX , and there is a stable equivalence

Σ∞
T Xn[−n]→ LnX

for n ≥ 0. Write η∗ : X → ΩT (X ∧ T )s for the composite in the statement of
Theorem 3.11. The proof consists of showing that all maps

Σ∞
T K[−n]

η∗

−→ ΩT (Σ∞
T K[−n] ∧ T )s (3.4)

are stable equivalences. Then we show that these equivalences pass appropri-
ately to filtered colimits.

Shifts preserve stable equivalence, so it suffices to consider the case of the
map (3.4) corresponding to n = 0, but this is Lemma 3.14.

Suppose given a system

X0 → X1 → · · ·

of T -spectra such that all maps

η∗ : Xi → ΩT (Xi ∧ T )s

are stable equivalences. I claim that the induced map

η∗ : lim−→Xi → ΩT ((lim−→Xi) ∧ T )s
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is a stable equivalence. The composite

lim−→Xi

lim
−→

η
−−−→ lim−→ΩT (Xi ∧ T )

lim
−→

ΩT j
−−−−−→ lim−→ΩT (Xi ∧ S)s

is a stable equivalence by Lemma 3.12. There is a commutative diagram

lim−→(Xi ∧ T )
lim
−→

j
//

∼=

��

lim−→(Xi ∧ T )s

c

��
(lim−→Xi) ∧ T

j
// ((lim−→Xi) ∧ T )s

The map lim−→ j is a stable equivalence by Lemma 3.12, and so the map c is a
pointwise weak equivalence of motivic flasque objects in all levels by a Nisnevich
descent argument (Corollary 1.7). There is also a commutative diagram

lim−→Xi
η//

lim
−→

η

��>
>>

>>
>>

>>
>>

>>
>>

>>
>>

ΩT ((lim−→Xi) ∧ T )
ΩT j // ΩT ((lim−→Xi) ∧ T )s

ΩT lim−→(Xi ∧ T )

∼=

OO

ΩT j
// ΩT lim−→(Xi ∧ T )s

ΩT c

OO

lim−→ΩT (Xi ∧ T )

∼=

OO

lim
−→

ΩT j
// lim−→ΩT (Xi ∧ T )s

∼=

OO

The map ΩT c is a pointwise weak equivalence in all levels, so the composite

lim−→Xi
η
−→ ΩT ((lim−→Xi) ∧ T )

ΩT j
−−→ ΩT ((lim−→Xi) ∧ T )s

is a stable equivalence.

Lemma 3.15. Suppose that X is level fibrant. Then there is an isomorphism

QT (ΩT X)n ∼= ΩT (QT X)n.

In particular, the loop functor X 7→ ΩT X preserves stable equivalences of level
fibrant objects.

Proof. Recall that ΩT X has bonding map σ : T ∧ ΩT Xn → ΩT Xn+1 adjoint
to the composite

T ∧ ΩT Xn ∧ T
T∧ev
−−−→ T ∧Xn σ

−→ Xn+1

It follows that there is a commutative diagram

ΩT Xn σ∗ //

ΩT σ∗ %%JJJJJJJJJJ
Ω2

T Xn+1

t∗∼=

��
Ω2

T Xn+1

Documenta Mathematica 5 (2000) 445–552



500 J. F. Jardine

where t∗ is the map which flips loop factors. Inductively, one finds diagrams

Ωk+1
T Xn+k

Ωk
T σ∗//

c∗k,1
∼=

��

Ωk+2
T Xn+k+1

c∗k+1,1
∼=

��
Ωk+1

T Xn+k

Ωk+1
T

σ∗

// Ωk+2
T Xn+k+1

where c∗k,1 is precomposition with the map which is induced by the shuffle ck,1 in
the loop factors. The maps c∗k,1 therefore induce the desired isomorphism.

Corollary 3.16. Suppose that Y is level fibrant. Then the evaluation map

ev : ΩT Y ∧ T → Y

is a stable equivalence.

Proof. The functor Y 7→ Y ∧ T preserves stable equivalences, so Lemma 3.15
implies that it suffices to assume that Y is stably fibrant.

Take a stably fibrant model j : ΩT Y ∧ T → (ΩT Y ∧ T )s (j is a cofibration
as well as a stable equivalence), and form the diagram

ΩT Y ∧ T
j //

ev

��

(ΩT Y ∧ T )s

ẽv
wwoooooooooooo

Y

The idea is to show that ẽv is a stable equivalence by showing that ΩT ẽv is a
stable equivalence. This works, on account of the natural isomorphism

πt,sΩT X ∼= πt+1,s+1X

for level fibrant objects X — this isomorphism is another consequence of
Lemma 3.15. There is a diagram

ΩT Y

ΩT η

��

ΩT η∗

((RRRRRRRRRRRRRR

ΩT (ΩT Y ∧ T )
ΩT j //

ΩT ev

��

ΩT (ΩT Y ∧ T )s

ΩT ẽv
vvllllllllllllll

ΩT Y

The map ΩT η∗ is a pointwise equivalence by Theorem 3.11, and so ΩT ẽv is a
stable equivalence.
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Corollary 3.17. Let j : Y → Ys be a choice of stably fibrant model for Y .
Then a map g : X ∧ T → Y is a stable equivalence if and only if the composite

X
g∗

−→ ΩT Y
ΩT j
−−→ ΩT Ys

is a stable equivalence, where g∗ is the adjoint of g.

Proof. There is a diagram

X ∧ T
j //

g

��

(X ∧ T )s

g̃

��
Y

j
// Ys

where both maps labeled j are stably fibrant models. Then g is a stable equiv-
alence if and only if g̃ is a stable equivalence if and only if the composite

X
η∗

−→ ΩT (X ∧ T )s
ΩT g̃
−−→ ΩT Ys

is a stable equivalence.

Corollary 3.18. A map g : X → Y is a stable equivalence if and only if the
suspension g ∧ T : X ∧ T → Y ∧ T is a stable equivalence.

In the final part of this section we show that all of the usual candidates for
suspension functors on T -spectra are naturally equivalent in the motivic stable
category. This is the content of the next two lemmas. As a corollary, all of the
corresponding loop functors are naturally stably equivalent.

Lemma 3.19. The canonical map σ : Σ`
T X → X [1] from the fake suspension

Σ`
T X to the shift X [1] is a natural stable equivalence.

Proof. The map

σ : Σ`
T (Σ∞

T K[−n])→ (Σ∞
T K[−n])[1]

is an isomorphism in level p for p ≥ n and for all n ≥ 0. The fake suspension
X 7→ Σ`

T X and shift X 7→ X [1] functors preserve colimits, so we can argue
along the layer filtration using Lemma 3.12. It therefore suffices to show that
both functors preserve stable equivalence.

In order to see that the shift functor X 7→ X [1] preserves stable equivalences,
it suffices to show that the shift X [1] → (IQT JX)[1] of the canonical stable
equivalence is a stable equivalence. For this, it enough to show that the shifted
map (JX)[1] → (QT JX)[1] is a stable equivalence, but this is a consequence
of the isomorphism (QT JX)[1] ∼= QT (JX [1]).

The fake loop functor X 7→ Ω`
T X preserves stably fibrant objects, according

to the characterization given by Lemma 2.7 and Lemma 2.8. The fake suspen-
sion functor Y 7→ Σ`

T Y preserves level cofibrations and level weak equivalences,
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so that the fake loop functor preserves injective fibrations by adjointness. It
follows that the fake loop functor preserves the class of stably fibrant injective
objects.

We know from Corollary 2.12 that a map f : X → Y is a stable equivalence
if and only if it induces a weak equivalence

f∗ : hom(Y, W )→ hom(X, W )

for all stably fibrant injective W . If f : X → Y is a stable equivalence of
T -spectra and W is stably fibrant and injective, then the map

(Σ`
T f)∗ : hom(Σ`

T Y, W )→ hom(Σ`
T X, W )

is isomorphic to the map

f∗ : hom(Y, Ω`
T W )→ hom(X, Ω`

T W ),

and is therefore a weak equivalence since Ω`
T W is stably fibrant and injective.

If follows that Σ`
T f : Σ`

T X → Σ`
T Y is a stable equivalence.

Lemma 3.20. The fake suspension functor X 7→ Σ`
T X is naturally stably equiv-

alent to the functor X 7→ X ∧ T .

Proof. Both functors preserve level equivalences, so it suffices to assume that
X (by taking associated sheaves) is a sheaf of T -spectra, where T and all of
its smash powers are notationally confused with their associated sheaves. We
do this so that we can use the explicit pointed algebraic homotopy h : T 3 ×
A1 → T 3 from c1,2 to the identity which appears in the proof of Lemma 3.13.
Write da : T 3 → T 3 × A1 for the map which is induced by the rational point
a : ∗ → A1. Then hd0 is the identity map on T 3 and hd1 = c1,2 : T 3 → T 3.

Recall that the fake suspension Σ`
T X consists of the objects T ∧ Xn and

bonding maps T ∧ σ : T 2 ∧Xn → T ∧Xn+1. The object X ∧ T consists of the
pointed simplicial presheaves Xn ∧T and bonding maps σ ∧ T : T ∧Xn ∧ T →
Xn+1 ∧ T . After twisting along the isomorphisms t : Xn ∧ T ∼= T ∧ Xn, we
can identify X ∧ T up to isomorphism with a spectrum consisting of objects
T ∧Xn and having bonding maps σ given by the composites

T 2 ∧Xn t∧Xn

−−−→ T 2 ∧Xn T∧σ
−−−→ T ∧Xn+1

It follows that there are commutative diagrams

T 3 ∧Xn T 2∧σ //

c1,2∧Xn

��

T 2 ∧Xn+1 T∧σ // T ∧Xn+2

T 3 ∧Xn
T∧σ

// T 2 ∧Xn+1

σ

77ooooooooooo
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The method of proof is to show that the “partial spectrum” objects X1 and
X2, having constituent simplicial presheaves

Xn
1 = Xn

2 = T ∧X2n

and bonding maps T 2 ∧Xn
i → Xn+1

i defined by the composites

σ1 = (T ∧ σ)(T 2 ∧ σ)

and σ2 = σ(T ∧ σ) respectively (as in the diagram) are naturally stably equiv-
alent.

The idea is to use the natural algebraic homotopies h : T 3 ∧ X2n n A1 →
T ∧ X2n+2 from σ1 to σ2 and the constant algebraic homotopies c on σ1 to
define natural level weak equivalences

X2
h∗←−− Tel(X1)

c∗−→ X1

where Tel(X1) is the algebraic telescope. The construction is by exact anal-
ogy with that of the ordinary mapping telescope given in [11, pp.11–15]. To
summarize, one inductively constructs a sequence of trivial cofibrations

Xn
1

jn
−→ CXn

1
αn−−→ Tel(X1)

n,

where jn is the inclusion of Xn
1 in the algebraic mapping cylinder CXn

1 given
by the pushout diagram

T 2 ∧Xn−1
1

σ1 //

d0

��

Xn
1

jn

��
T 2 ∧Xn−1

1 n A1
ζn

// CXn
1

and αn is inductively defined by the pushout diagram

T 2 ∧Xn−1
1

d1
//

jn−1

��

T 2 ∧Xn−1
1 n A1

ζn // CXn
1

αn

��

T 2 ∧ CXn−1
1

T 2∧αn−1

��
T 2 ∧ Tel(X1)

n−1
σ

// Tel(X1)
n

The bonding maps σ : T 2 ∧ Tel(X1)
n−1 → Tel(X1)

n are also defined by this
construction. The identity on Xn

1 and h : T 2 ∧Xn
1 n A1 → T ∧Xn+1

1 together

determine a weak equivalence ĥ : CXn
1 → Xn

2 and the map ĥ extends levelwise
along the trivial cofibrations αn : CXn

1 → Tel(X1)
n to a natural map of partial

spectra h∗ : Tel(X1)→ X2. The map h∗ is a levelwise weak equivalence.
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Corollary 3.21. Suppose that X is a level fibrant spectrum. Then the spectra
Ω`

T X, ΩT X and X [−1] are naturally stably equivalent.

Remark 3.22. A statement analogous to Theorem 3.11 is true for S1-spectra,
in that the composite

X
ηX
−−→ Ω(X ∧ S1)

Ω(jX∧T )
−−−−−−→ Ω(X ∧ S1)s

is a natural weak equivalence in the motivic stable model structure for S1-
spectra. The proof is formally the same as that displayed for Theorem 3.11,
with T replaced by S1. The key is that it is well known that the cyclic permuta-
tion c1,2 acts trivially in the ordinary homotopy category on S3. With suitable
modifications, the rest of the statements up to Corollary 3.18 also hold for-
mally for S1-spectra, so that the suspension and loop functors determine a self
equivalence of categories for the motivic stable category of S1-spectra, as one
would expect. The analogues of Lemma 3.19 and Lemma 3.20 for S1-spectra
follow from standard results of stable homotopy theory, along with Lemma 3.1.

4 Motivic symmetric spectra

We continue to work within motivic homotopy theory on the smooth Nisnevich
site (Sm|S)Nis, meaning that we formally contract the affine line onto a rational
point within the associated category of simplicial presheaves. As before, T
denotes either the quotient A1/(A1 − 0) or the equivalent object S1 ∧Gm. As
in all discussions of geometric theories, one tacitly assumes that all objects in
(Sm|S)Nis (including the base scheme S) are bounded above by a fixed large
cardinal, and that the category itself is a skeleton. This means that the site is
small, and so its morphisms form a set. We shall assume that α is an infinite
cardinal which is an upper bound for the cardinality of the set of morphisms
of this site.

A symmetric T -spectrum X on the Nisnevich site (Sm|S)Nis is a T -spectrum
together with symmetric group actions Σn×Xn → Xn such that the composite
bonding maps T p ∧Xn → Xp+n is (Σp × Σn)-equivariant. A map f : X → Y
of such objects is a map of T -spectra which is equivariant in each level for the
ambient symmetric group action. The resulting category will be denoted by
SptΣ

T (Sm|S)Nis. This category is complete and cocomplete.

The most primitive example of a symmetric T -spectrum is the sphere T -
spectrum, which will be denoted by T . Explicitly,

T n =

{

S0 if n = 0,

T∧n if n > 0.

with the obvious isomorphisms T ∧ T n ∼= T n+1 as bonding maps.
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4.1 The level structure

Say that a map f : X → Y of symmetric T -spectra is a level equivalence if
each of the component maps f : Xn → Y n is a motivic equivalence. The map
f is said to be a level cofibration if each of the maps Xn → Y n is a cofibration
of simplicial presheaves. Write sE for the class of level equivalences in the
category of symmetric T -spectra.

Proposition 4.1. The class sE of level equivalences and the class of level
cofibrations of symmetric T -spectra together satisfy the following properties:

sE1: The class of morphisms sE is closed under retracts.

sE2: Given a composable pair of morphisms

X
f
−→ Y

g
−→ Z,

if any two of f , g and gf are in the class sE, then so is the third.

sE3: Every pointwise level equivalence is in sE.

sE4: The class of sE-trivial cofibrations is closed under pushout.

sE5: Suppose that γ is a limit ordinal, and there is a functor

X : γ → SptΣ
T (Sm|S)Nis

such that for each morphism i ≤ j of γ, the induced map X(i) → X(j)
is an sE-trivial cofibration. Then the canonical maps

X(i)
τi−→ lim−→ j∈γX(j)

are sE-trivial cofibrations.

sE6: Suppose that the morphisms fi : Xi → Yi are sE-trivial cofibrations for
i ∈ I. Then the morphism

∨

i∈I

fi :
∨

i∈I

Xi →
∨

i∈I

Yi

is an E-trivial cofibration.

sE7: There is an infinite cardinal λ which is at least as large as the cardinality
of the set of morphisms of (Sm|S)Nis, such that for every diagram

X

i

��
A // Y

of maps of T -spectra with i a sE-trivial cofibration, and A α-bounded,
there is an α-bounded subobject B ⊂ Y such that A ⊂ B, and such that
the inclusion B ∩X ↪→ B is an sE-trivial cofibration.
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A pointwise level equivalence is a map f : X → Y of symmetric T -spectra such
that all maps f : Xn(U) → Y n(U) are weak equivalences of simplicial sets in
all sections and levels. An sE-trivial level cofibration is a map of symmetric
T -spectra which is both a level equivalence and a level cofibration.

Proof. Every weak equivalence of simplicial presheaves is a motivic equivalence,
giving sE3. With the exception of sE7, the remaining statements are due to
the existence of the motivic closed model structure for the category of simplicial
presheaves on (Sm|S)Nis.

The proof of sE7 is analogous to the proof of Proposition 2.15. One begins
by showing, using the method of proof of Lemma 1 of [13], that the class of
maps which are level local weak equivalences and level cofibrations has the
bounded cofibration property with respect to the cardinal λ. The argument is
then completed just as in the last paragraph of the proof of Proposition 2.15
by using the controlled level fibrant model construction X 7→ LX in place of
the functor F .

A symmetric sequence X consists of pointed simplicial presheaves Xn, n ≥ o,
each of which carries a symmetric group action Σn × Xn → Xn. There is
an obvious category of such things. The product X ⊗ Y in the category of
symmetric sequences is defined by

(X ⊗ Y )n =
∨

p+q=n

Σn ⊗(Σp×Σq) Xp ∧ Y q .

A symmetric sequence map f : X ⊗ Y → Z therefore consists of (Σp × Σq)-
equivariant pointed maps f : Xp∧Y q → Zp+q, so that a symmetric T -spectrum
Z can be identified with a symmetric sequence carrying a T -module structure,
or a symmetric sequence map σ : T ⊗ Z → Z. Note that there is a canonical
twist isomorphism τ : X ⊗ Y → Y ⊗X which is determined by the composites

Xp ∧ Y q t
−→ Y q ∧Xp ine−−→ (Y ⊗X)q+p cq,p

−−→ (Y ⊗X)p+q.

Here, t is the canonical twist of smash factors and ine is the inclusion corre-
sponding to the coset of the identity e in

(Y ⊗X)q+p ∼=
∨

Σq+p/(Σq×Σp)

Y q ∧Xp.

Following [7] and [13], given a pointed simplicial presheaf K, the free sym-
metric sequence GnK consists of the simplicial presheaf

Σn ⊗K =
∨

σ∈Σn

K,

concentrated in level n, and the free symmetric T -spectrum Fn(K) = T ⊗GnK
is defined at level p by

Fn(K)p = (T ⊗GnK)p = Σp ⊗Σp−n×Σn (T p−n ∧ (
∨

σ∈Σn

K)).

Documenta Mathematica 5 (2000) 445–552



Motivic Symmetric Spectra 507

The object Fn(K) is free in the sense that morphisms Fn(K) → X in the
category of symmetric T -spectra are in one to one correspondence with pointed
simplicial presheaf maps K → Xn.

An injective fibration in the category of symmetric T -spectra is a map which
has the right lifting property with respect to all morphisms which are both
level cofibrations and level equivalences. It follows from the existence of the
free object functors K 7→ Fn(K) that every injective fibration p : X → Y is
a level fibration in the sense that it consists of fibrations p : Xn → Y n in all
levels.

Theorem 4.2. The category

SptΣ
T (Sm|S)Nis

of symmetric T -spectra on the smooth Nisnevich site, together with the classes
of level cofibrations, level equivalences and injective fibrations, satisfies the ax-
ioms for a proper closed simplicial model category.

Proof. The proof proceeds just like that of Theorem 3 of [13], using the method
of [4] and Proposition 4.1. The function complex hom(X, Y ) giving the sim-
plicial structure is defined in n-simplices in the usual way by

hom(X, Y )n = hom(X ∧∆n
+, Y ),

where the pointed simplicial set ∆n
+ is the result of attaching a disjoint base

point to the standard n-simplex.

The functor

U : SptΣ
T (Sm|S)Nis → SptT (Sm|S)Nis

taking values in T -spectra forgets the symmetric group actions. The functor
U has a left adjoint symmetrization functor V such that for n ≥ 0

V (Σ∞
T K[−n]) = Fn(K),

where Σ∞
T K is the suspension T -spectrum

K, T ∧K, T 2 ∧K, . . .

and Σ∞
T K[r] is the result of shifting in the usual way:

Σ∞
T K[r]p = (Σ∞

T K)r+p.

As in Section 3.4, every T -spectrum X has a layer filtration

X = lim−→LnX
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and V preserves colimits, so that

V X = lim−→V LnX,

and there are pushouts

Fn+1(T ∧Xn) //

σ∗

��

V LnX

��
Fn+1(X

n+1) // V Ln+1X.

in the category of symmetric T -spectra.
There is a natural isomorphism of T -spectra

(UW )K ∼= U(W K),

which induces a simplicial adjunction isomorphism

hom(V A, W ) ∼= hom(A, UW ).

We shall also need the following:

Lemma 4.3. The functor V takes cofibrations of T -spectra to level cofibrations
of symmetric T -spectra.

Proof. The proof is just like that of Lemma 5 of [13], and begins with the
observation that the functor

K 7→ V (Σ∞
T K[−n]) = Fn(K)

takes cofibrations of pointed simplicial presheaves to level cofibrations of sym-
metric T -spectra for n ≥ 0.

4.2 The stable structure

Say that a map p : X → Y of symmetric T -spectra is a stable fibration if the
underlying map p∗ : UX → UY is a stable fibration of T -spectra.

Proposition 4.4. Every map f : X → Y of symmetric T -spectra has a natu-
ral factorization

X
j //

f   @
@@

@@
@@

Z

p

��
Y

such that p is a stable fibration, and j is a level cofibration which has the left
lifting property with respect to all stable fibrations.
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Proof. By the methods of [4] and Corollary 2.16, a map of symmetric T -spectra
is a stable fibration if and only if it has the right lifting property with respect
to all maps i∗ : V A→ V B induced by λ-bounded cofibrations i : A→ B which
are stable equivalences. The factorization is constructed by a transfinite small
object argument of size β > 2λ, as in the proof of Lemma 6 of [13].

Observe that if j is a level cofibration which has the left lifting property with
respect to all stable fibrations, then j induces a trivial fibration

j∗ : hom(Z, W )→ hom(X, W )

of simplicial sets for each stably fibrant object W , by appropriate use of
Quillen’s axiom SM7 for the motivic stable closed model structure on the
category of T -spectra.

It follows from Theorem 4.2 and Proposition 4.4 that any morphism f : X →
Y of symmetric T -spectra may be successively factored

X
i1 //

f
((QQQQQQQQQQQQQQQQ Xs

i2 //

p1

!!D
DD

DD
DD

D
Xsi

p2

��
Y

where

1) i1 is a level cofibration which has the left lifting property with respect to
all stable fibrations, and p1 is a stable fibration;

2) i2 is a level cofibration and a level equivalence, and p2 is an injective
fibration.

In particular, Up2 is a level fibration, which is level equivalent to the stable
fibration Up1, so that p2 is a stable fibration by Lemma 2.7 as well as an
injective fibration of symmetric T -spectra. By specializing to Y = ∗, we obtain
a natural construction

X
i1−→ Xs

i2−→ Xsi

of an injective stably fibrant model Xsi for a given symmetric T -spectrum X .
Say that a map f : X → Y of symmetric T -spectra is a stable equivalence if

it induces a weak equivalence of Kan complexes

f∗ : hom(Y, W )→ hom(X, W )

for each injective stably fibrant object W . The maps i1 and i2 above are both
stable equivalences. Following [13] we can also show

Lemma 4.5. Suppose that the objects X and Y are stably fibrant and injective.
Then a map g : X → Y is a stable equivalence if and only if it is a level
equivalence.
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Proof. If g is a stable equivalence, then the map

g∗ : hom(Y, X)→ hom(X, X)

is a weak equivalence of Kan complexes, since X is stably fibrant and injective.
It follows that g is a homotopy equivalence.

The converse follows from the closed simplicial model structure for level cofi-
brations and level weak equivalences for symmetric T -spectra, since all sym-
metric T -spectra are cofibrant and all stably fibrant injective objects W are
fibrant for that theory.

Corollary 4.6. Suppose that X and Y are stably fibrant objects. Then a map
g : X → Y is a stable equivalence if and only if it is a level equivalence.

Suppose that Z is a symmetric T -spectrum and that K is a pointed simplicial
presheaf. The symmetric T -spectrum

ZK = Hom∗(K, Z)

is defined in levels by

Hom∗(K, Z)n = Hom∗(K, Zn),

where Hom∗ denotes the pointed internal hom functor, as in Section 1.1. The
structure map

T p ∧Hom∗(K, Zn)
σ
−→ Hom∗(K, Zp+n)

is the unique pointed simplicial set map making the diagram

T p ∧Hom∗(K, Zn) ∧K
σ∧K //

T p∧ev

��

Hom∗(K, Zp+n) ∧K

ev

��
T p ∧ Zn

σ
// Zp+n

commute, where ev is the evaluation map wherever it appears. This construc-
tion is natural in K and Z, and there are natural isomorphisms

Hom∗(K ∧ L, Z) ∼= Hom∗(K,Hom∗(L, Z))

for all pointed simplicial presheaves K, L, and symmetric T -spectra Z.
We shall write ΩT X for the symmetric T -spectrum Hom∗(T, X), in order

to simplify notation.
Following [13], define a natural shift functor Z 7→ Z[1] for symmetric T -

spectra Z by setting Z[1]m = Z1+m, where σ ∈ Σm acts on Z[1]m as 1 ⊕ σ ∈
Σm+1. The structure map σ∗ : T p ∧ Z[1]m → Z[1]p+m is defined to be the
composite

T p ∧ Z1+m σ
−→ Zp+1+m c(p,1)⊕1

−−−−−→ Z1+p+m,
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where c(p, 1) ∈ Σp+1 is the cyclic permutation of order p + 1. One checks
that σ∗ is Σp×Σm-equivariant. Define the shifted symmetric T -spectrum Z[s]
inductively by Z[s] = Z[s− 1][1], or directly.

The standard maps σ∗ : Zn → Hom∗(T, Z1+n) which are adjoint to the
composites

Zn ∧ T
t
−→ T ∧ Zn σ

−→ Z1+n

together determine a natural map of of symmetric T -spectra

σ∗ : Z → Hom∗(T, Z[1]) ∼= Hom∗(T, Z)[1],

or equivalently a map

σ∗ : Z → ΩT (Z[1]) ∼= (ΩT Z)[1]. (4.1)

Suppose that Z is a symmetric T -spectrum which is level fibrant. Flipping
loop factors defines a natural isomorphism

t∗ : Ω2
T Z[2]→ Ω2

T Z[2],

and there is an isomorphism (1, 2) : Z[2]→ Z[2] which consists of maps (1, 2) :
Z2+n → Z2+n induced by the transposition (1, 2) ∈ Σ2+n. Write σ̃ for the
bonding maps of ΩT Z[1]. Then there is a natural commutative diagram

ΩT Z[1]
ΩT σ∗[1]//

σ̃∗ $$J
JJJJJJJJ
Ω2

T Z[2]

(1,2)∗t∗

��
Ω2

T Z[2]

which translates into a diagram of simplicial presheaves

ΩT Zn+1

σ̃∗ %%KKKKKKKKKK

ΩT σ∗ // Ω2
T Zn+2

(1,2)∗t∗

��
Ω2

T Zn+2

(4.2)

for each n.
For a level fibrant object Z, define the symmetric T -spectrum QΣ

T Z to be
the filtered colimit of the system

Z
σ∗−→ ΩT Z[1]

σ̃∗−→ Ω2
T Z[2]

˜̃σ∗−→ · · · (4.3)

Lemma 4.7. Suppose that Z is a level fibrant symmetric T -spectrum. Then
there is a natural isomorphism

QΣ
T Zn ∼= QT (UZ)n.
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Warning: Lemma 4.7 only says that the T -spectra U(QΣ
T Z) and QT (UZ) are

isomorphic in each level. The assertion that these are isomorphic spectrum
objects is one of the canonical mistakes in the theory of symmetric spectra.

Proof of Lemma 4.7. To extend the notation for the bonding map σ̃ of ΩT Z[1]
given above, write

σ
∼(n)
∗ = ˜σ∼(n−1)

∗ : Ωn
T Z[n]→ Ωn+1

T Z[n + 1],

so that σ̃∗ = σ
∼(1)
∗ and ˜̃σ∗ = σ

∼(2)
∗ in the sequence (4.3). Repeated instances

of the diagram (4.2) paste together to give a natural commutative diagram

Ωk
T Zn+k

σ
∼(k)
∗ //

Ωk
T σ∗ &&MMMMMMMMMMM

Ωk+1
T Zn+k+1

θk+1

��
Ωk+1

T Zn+k+1

where θk+1 is a composite of isomorphisms Ωi
T t∗ or (1, 2)∗.

Now suppose given natural isomorphisms γi : Ωi
T Zn+i → Ωi

T Zn+i such that
the diagram

ΩT Zn+1
σ
∼(1)
∗ //

1

��

Ω2
T Zn+2σ

∼(2)
∗ //

γ2

��

· · ·
σ
∼(k−1)
∗ // Ωk

T Zn+k

γk

��
ΩT Zn+1

ΩT σ∗

// Ω2
T Zn+2

Ω2
T σ∗

// · · ·
Ωk−1

T
σ∗

// Ωk
T Zn+k

commutes, and all isomorphisms γi are compositions of of Ωj
T t∗ or (i, i + 1)∗.

In particular, presume that γ2 = t∗(1, 2)∗ : Ω2
T Zn+2 → Ω2

T Zn+2. Then the

isomorphism Ωj
T t∗ commutes with Ωk

T σ∗ : Ωk
T Zn+k → Ωk+1

T Zn+k+1, and

σ∗(i, i + 1)∗ = (i + 1, i + 2)∗σ∗

so there is an isomorphism γk+1 composed of maps Ωj
T t∗ and (i, i + 1)∗ such

that the diagram

Ωk
T Zn+k

σ
∼(k)
∗ //

Ωk
T σ∗ &&MMMMMMMMMMM

γk

��

Ωk+1
T Zn+k+1

θk+1

��
Ωk+1

T Zn+k+1

γk+1

��
Ωk

T Zn+k

Ωk
T σ∗

// Ωk+1
T Zn+k+1

commutes. The natural isomorphism γk+1 is defined by γk+1 = γk+1θk+1.
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Formally, there is a map c : QΣ
T X∧K → QΣ

T (X∧K) which fits into a natural
commutative diagram

QΣ
T X ∧K

c // QΣ
T (X ∧K),

X ∧K

γX∧K

OO

γX∧K

77ooooooooooo

for all symmetric T -spectra X and pointed simplicial sets K. It follows that
the functor QΣ

T prolongs to a simplicial functor

QΣ
T : hom(X, Y )→ hom(QΣ

T X, QΣ
T Y ).

Proposition 4.8. Suppose that α : X → Y is a map of symmetric T -spectra
such that Uα : UX → UY is a stable equivalence of T -spectra. Then α is a
stable equivalence of symmetric T -spectra.

Proof. We can assume that X and Y are level fibrant. If W is a stably fibrant
and injective object, then the canonical map γW : W → QΣ

T W is a level
equivalence, and hence induces a weak equivalence

γ∗
W : hom(QΣ

T W, W )→ hom(W, W ).

It follows that there is a map gW : QΣ
T W →W such that the composite gW γW

is simplicially homotopic to the identity 1W on W .
The composite

hom(X, W )
QΣ

T−−→ hom(QΣ
T X, QΣ

T W )
gW∗

−−→ hom(QΣ
T X, W )

γ∗

X−−→ hom(X, W )

is induced by composition with gW γW , and is therefore homotopic to the iden-
tity on hom(X, W ). The composition and the homotopy are natural in X . If
α : X → Y induces a stable equivalence Uα : UX → UY , then the induced
map QΣ

T α : QΣ
T X → QΣ

T Y is a level equivalence by Lemma 4.7, and so the
maps

QΣ
T α∗ : hom(QΣ

T Y, W )→ hom(QΣ
T X, W )

and hence the morphisms

α∗ : hom(Y, W )→ hom(X, W )

are weak equivalences of pointed simplicial sets.

Recall that if Y is a symmetric T -spectrum and n ≥ 0, then the shift Y [n]
is defined by Y [n]p = Y n+p, with α ∈ Σp acting as 1n ⊕ α. The bonding map
T q ∧ Y [n]p → Y [n]q+p for Y [n] is the composite

T q ∧ Y n+p σ
−→ Y q+n+p cq,n⊕1

−−−−→ Y n+q+p
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where σ is the original bonding map for Y .

Suppose that X is a symmetric T -spectrum, with T -module structure map
σ : T ⊗X → X . Then the symmetric sequence Gn(S0) ⊗X has a symmetric
T -spectrum structure, with T -structure given by the composite

T ⊗Gn(S0)⊗X
τ⊗1
−−→ Gn(S0)⊗ T ⊗X

1⊗σ
−−→ Gn(S0)⊗X.

A symmetric T -spectrum map f : Gn(S0) ⊗ X → Y consists of pointed sim-
plicial presheaf maps f : Xp → Y n+p which are equivariant for the homomor-
phisms Σp → Σn+p defined by α 7→ 1n ⊕ α, and such that the diagrams

T q ∧Xp
1∧f //

σ

��

T q ∧ Y n+p

σ

��
Y q+n+p

cq,n⊕1

��
Xq+p

f
// Y n+q+p

commute. It follows that the symmetric T -spectrum map f : Gn(S0)⊗X → Y
can be identified with a symmetric T -spectrum map X → Y [n], and we have
proved

Lemma 4.9. The functor X 7→ Gn(S0)⊗X is left adjoint to the shift functor
Y 7→ Y [n] for n ≥ 0.

The functor X 7→ Gn(S0) ⊗ X preserves level cofibrations and level equiva-
lences, so we have

Corollary 4.10. The shift functor Y 7→ Y [n] preserves injective fibrations
and level trivial injective fibrations. In particular, if Y is an injective symmetric
T -spectrum, then Y [n] is an injective symmetric T -spectrum for n ≥ 0.

Lemma 4.11. Suppose that the commutative diagram

A1
i1 //

f1

��

B1
π1 //

f2

��

B1/A1

f3

��
A2 i2

// B2 π2

// B2/A2

is a comparison diagram of level cofibre sequences. Then if any two of the
maps f1, f2 and f3 are stable equivalences of symmetric T -spectra, then so is
the third.
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Proof. We shall show that f1 is a stable equivalence if f2 and f3 are stable
equivalences. This amounts to showing that the map f ∗

1 in the comparison
diagram of fibrations

hom(B2/A2, W )
π∗

2 //

f∗

3

��

hom(B2, W )
i∗2 //

f∗

2

��

hom(A2, W )

f∗

1

��
hom(B1/A1, W )

π∗

1

// hom(B1, W )
i∗1

// hom(A1, W )

is a weak equivalence for any choice of stably fibrant injective object W , in the
presence of knowing that the simplicial set maps f ∗

2 and f∗
3 are weak equiva-

lences.
There is a levelwise equivalence

W → ΩT W [1] ' ΩΩGmW [1],

of stably fibrant injective objects, where W [1] is injective by Corollary 4.10.
It is also the case that ΩGmW [1] is stably fibrant and injective. It follows
that the comparison diagram of fibrations can be delooped infinitely often. In
particular, f∗

1 is part of a stable weak equivalence of infinite loop spaces, and
is therefore a weak equivalence of simplicial sets.

Corollary 4.12. Suppose that the commutative diagram

F1
//

f1

��

X1
p1 //

f2

��

Y1

f3

��
F2

// X2 p2

// Y2

is a comparison diagram of level fibre sequences of symmetric T -spectra. Then
if any two of f1, f2 and f3 are stable equivalences, then so is the third.

Proof. Use Lemma 3.9 to replace the comparison of fibre sequences by the a
comparison of level cofibre sequences

Fi
i
−→ Xi

π
−→ Xi/Fi. (4.4)

More precisely, Lemma 3.9 guarantees that the map of T -spectra underlying
pi∗ : Xi/Fi → Yi is a stable equivalence, so that pi∗ is a stable equivalence of
symmetric T -spectra by Proposition 4.8. Now use Lemma 4.11.

We are now ready to prove the following:

Proposition 4.13. Suppose that p : X → Y is a map of symmetric T -spectra
which is both a stable fibration and a stable equivalence. Then p is a level
equivalence.
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Proof. It suffices to show that the fibre F of p is level contractible. If so, the
underlying map Up of T -spectra is a stable fibration and a stable equivalence
by a long exact sequence argument in bigraded stable homotopy groups (3.2),
and is therefore a level equivalence.

The comparison map

F //

��

X
p //

p'

��

Y

1

��
∗ // Y

1
// Y

of level fibre sequences and Corollary 4.12 together imply that the map F → ∗
is a stable equivalence of stably fibrant objects, so it is a level weak equivalence
by Corollary 4.6.

Corollary 4.14. A map p : X → Y of symmetric T -spectra is a stable fibra-
tion and a stable equivalence if and only if it is both a level fibration and a level
equivalence.

Proof. One direction is Proposition 4.13; the other follows from the definition
of stable equivalence of symmetric T -spectra and Lemma 2.7.

Say that a map i : A→ B of symmetric T -spectra is a stable cofibration if it
has the left lifting property with respect to all morphisms p : X → Y which are
simultaneously stable fibrations and stable equivalences. In view of Corollary
4.14, the maps

Fn(A+)→ Fn(LU∆r
+)

induced by the inclusions A ⊂ LU∆r are stable cofibrations for all r and objects
U . Here, LU denotes the left adjoint to the U -sections functor for simplicial
presheaves.

Theorem 4.15. The category Spt
Σ
T (Sm|S)Nis of symmetric T -spectra on the

smooth Nisnevich site, and the classes of stable equivalences, stable fibrations
and stable cofibrations, together satisfy the axioms for a proper closed simplicial
model category.

Proof. On account of Proposition 4.4, every map g : X → Y of symmetric
T -spectra has a factorization

X
j //

g
  @

@@
@@

@@
Z

p

��
Y

(4.5)

such that p is a stable fibration, and j has the left lifting property with re-
spect to all stable fibrations and induces trivial fibrations j∗ : hom(Z, W ) →

Documenta Mathematica 5 (2000) 445–552



Motivic Symmetric Spectra 517

hom(X, W ) for all stably fibrant objects W . In particular, j is a stable equiv-
alence and a stable cofibration. The map j is a level cofibration, by Lemma
4.3.

A transfinite small object argument says that g : X → Y has a factorization

X
i //

g
  @

@@
@@

@@
U

q

��
Y

such that i has the left lifting property with respect to all maps which are simul-
taneously level fibrations and level weak equivalences, and q has the right lifting
property with respect to all morphisms Fn(A+) → Fn(LU∆r

+) corresponding
to cofibrations A ↪→ LU∆n of simplicial presheaves for all n and objects U ∈ C.
In particular, q is a level trivial fibration and hence a stable fibration as well as
a stable equivalence by Corollary 4.14. The map i has the left lifting property
with respect to all maps which are stable fibrations and stable equivalences,
also by Corollary 4.14, so that i is a stable cofibration. It is a consequence of
the small object argument that the map i is a level cofibration.

The factorization axiom CM5 has therefore been demonstrated. The exis-
tence of the factorization (4.5) implies that every map which is a stable cofi-
bration and a stable equivalence has the left lifting property with respect to all
stable fibrations and is a level cofibration, by a standard argument. We have
proved CM4, and the axioms CM1 – CM3 are obvious.

If i : K ↪→ L is an inclusion of simplicial sets and p : X → Y is a stable
fibration of symmetric T -spectra, then the induced map

(i∗, p∗) : hom∗(L+, X)→ hom∗(K+, X)×hom∗(K+,Y ) hom∗(L+, Y )

is a stable fibration, which is trivial if i is a weak equivalence or p is a stable
equivalence. This is on account of the corresponding statement for T -spectra
and Corollary 4.14, and implies the axiom SM7 for Spt

Σ
T (Sm|S)Nis.

The properness assertion is a consequence of Lemma 4.11 and Corollary
4.12.

4.3 The smash product

The smash product X ∧ Y of the symmetric T -spectra X and Y is defined by
the symmetric sequence coequalizer

T ⊗X ⊗ Y ⇒ X ⊗ Y → X ∧ Y

of the map m⊗ 1 : T ⊗X ⊗ Y → X ⊗ Y with the composite

T ⊗X ⊗ Y
τ⊗1
−−→ X ⊗ T ⊗ Y

1⊗m
−−−→ X ⊗ Y
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where m denotes the T -module structure for each of X and Y . The T -module
structure on X ∧ Y is induced by the map m⊗ 1 : T ⊗X ⊗ Y → X ⊗ Y .

The smash product gives the category SptΣ
T (Sm|S)Nis of symmetric T -

spectra the structure of a symmetric monoidal category. This is a formal
consequence of the fact that the symmetric T -spectrum T is a commutative
monoid in the category of symmetric sequences, just as in [7].

A map h : X ∧ Y → Z of symmetric T -spectra can be characterized as a
collection of (Σp×Σq)-equivariant maps hp,q : Xp∧Y q → Zp+q , p, q ≥ 0, which
are T -linear in the sense that the diagram

T r ∧Xp ∧ Y q σ∧1 //

1∧hp,q

��

Xr+p ∧ Y q

hr+p,q

��
T r ∧ Zp+q

σ
// Zr+p+q

(4.6)

commutes, and are T -bilinear, meaning that the following diagram commutes

T r ∧Xp ∧ Y q t∧1 //

σ∧1

��

Xp ∧ T r ∧ Y q 1∧σ // Xp ∧ Y r+q

hp,r+q

��
Xr+p ∧ Y q

hr+p,q

// Zr+p+q
cr,p⊕1

// Zp+r+q

(4.7)

for each p, q, r ≥ 0.

Lemma 4.16. There is a natural isomorphism

hom(Fn(S0) ∧ A, X) ∼= hom(A, X [n])

for symmetric T -spectra A and X.

Proof. Recall that the symmetric T -spectrum Fn(S0) ∼= T ⊗ Gn(S0) has the
form

Fn(S0)j =

{

∗ j < n

Σj ⊗Σj−n×Σn (T j−n ∧ Σn+) j ≥ n

and has the obvious T -action. Here, Σn+ denotes the set Σn t {∗}, pointed by
the terminal object ∗.

A map h : Fn(S0) ∧ X → Y is therefore determined by (Σp × Σn × Σq)-
equivariant maps hp+n,q : T p ∧Σn+ ∧Xq → Y n+p+q for p, q ≥ 0, which satisfy
compatibility conditions given by diagrams (4.6) and (4.7) above. In particular
the maps

hn,q : Σn+ ∧Xq → Y n+q

Documenta Mathematica 5 (2000) 445–552



Motivic Symmetric Spectra 519

are completely determined by the Σq-equivariant composites

Xq ine−−→ Σn+ ∧Xq hn,q
−−→ Y n+q ,

where σ ∈ Σq acts on Y n+q via 1n⊕σ and ine is the inclusion of the wedge sum-
mand corresponding to the identity element e ∈ Σn. Then the Σq-equivariant
maps

hq = hn,qine : Xq → Y n+q

define a map of symmetric T -spectra h∗ : X → Y [n] — seeing this is a matter
of chasing the definitions through instances of the diagrams (4.6) and (4.7).

For the converse, suppose given a map h : X → Y [n] of symmetric T -spectra,
which is defined by Σq-equivariant maps hq : Xq → Y n+q. Then hq uniquely
extends to a (Σn × Σq)-equivariant map hn,q : Σn+ ∧Xq → Y n+q. Define the
map hp+n,q : T p ∧ Σn+ ∧Xq → Y p+n+q to be the composite

T p ∧ Σn+ ∧Xq 1∧hn,q
−−−−→ T p ∧ Y n+q σ

−→ Xp+n+q.

This description of the maps hn,q is determined by h and the T -linearity re-
quirement. For the T -bilinearity, it suffices to show that the diagram

T p ∧ Σn+ ∧Xq t∧1 //

1∧hn,q

��

Σn+ ∧ T p ∧Xq

1∧σ

��
T p ∧ Y n+q

σ

��

Σn+ ∧Xp+q

hn,p+q

��
Y p+n+q

cp,n⊕1
// Y n+p+q

commutes, but this follows from the commutativity of the diagram

T p ∧Xq
1∧hq //

σ

��

T p ∧ Y n+q

σ

��
Y p+n+q

cp,n⊕1

��
Xp+q

hp+q

// Y n+p+q

that arises from the symmetric T -spectrum map h : X → Y [n].

Corollary 4.17. There is a natural isomorphism of symmetric T -spectra

Fn(S0) ∧X ∼= Gn(S0)⊗X.
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Proof. Both functors are left adjoint to the shift functor X 7→ X [n] — see
Lemma 4.9.

Corollary 4.18. There are isomorphisms

Fn(A) ∧ Fm(B) ∼= Fn+m(A ∧ B),

and these isomorphisms are natural in pointed simplicial presheaves A and B.

Proposition 4.19. Suppose that i : A → B is a stable cofibration and that
j : C → D is a level cofibration. Then the map

(i, j)∗ : (B ∧ C) ∪(A∧C) (A ∧D)→ B ∧D

is a level cofibration. If i and j are both cofibrations, then (i, j)∗ is a cofibration.
If either i or j is a stable equivalence, then (i, j)∗ is a stable equivalence.

Proof. We shall begin with the statements on stable cofibrations. The map
(i∗, j∗) induced by the cofibrations i∗ : Fn(A) → Fn(B) and j∗ : Fm(C) →
Fm(D) is isomorphic to the map obtained from the pointed simplicial set cofi-
bration

(B ∧ C) ∪(A∧C) (A ∧D)→ B ∧D

by applying the functor Fn+m, so (i∗, j∗) is a cofibration.

Suppose that we fix a choice of cofibration j : C → D. Then the collection of
level cofibrations i : A→ B for which the map (i, j) is a cofibration (respectively
a trivial cofibration) is saturated; this means that the collection is closed under
pushouts, filtered colimits over ordinals, and retracts. It follows that all maps
of the form (i, j∗) and hence all maps (i, j) are cofibrations, for all cofibrations
i, and then for all cofibrations j.

The cofibre of the cofibration (i, j) is B/A ∧ D/C, and both factors are
cofibrant. To show that (i, j)∗ is a trivial cofibration if either i or j is a stable
equivalence, it suffices to show that, given cofibrant objects A and B, the
symmetric T -spectrum A ∧ B is trivially cofibrant if either A or B is trivially
cofibrant. For this, it is enough to show that the map 1 ∧ i∗ : A ∧ Fn(K) →
A ∧ Fn(L) is a trivial cofibration if A is trivially cofibrant and i : K → L is a
cofibration of pointed simplicial presheaves.

We have natural isomorphisms

Fn(K) ∼= Fn(S0) ∧K

and we also know from Lemma 4.16 that there is an isomorphism

hom(A ∧ Fn(S0), X) ∼= hom(A, X [n]) (4.8)
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It follows that the diagram

A ∧ Fn(K) //

1∧i∗

��

X

p

��
A ∧ Fn(L) //

::

Y

is adjoint to a diagram

XL[n]

��
A //

77

XK [n]×Y K [n] Y L[n]

and the dotted arrow exists by axiom SM7 and the fact that stable fibrations
shift in the category of T -spectra. In particular, 1∧ i∗ is a trivial cofibration.

Suppose more generally that i is a stable cofibration and that j is a level
cofibration. To show that (i, j)∗ is a level cofibration, it suffices by a saturation
argument to show that the map

(Fn(L) ∧ C) ∪(Fn(K)∧C) (Fn(K) ∧D)→ Fn(L) ∧D

is a level cofibration for all cofibrations K → L of pointed simplicial presheaves.
This amounts to showing that the dotted arrow exists in all diagrams

C //

j

��

XL[n]

��
D //

88

(Y L ×Y K XK)[n]

arising from all trivial injective fibrations p, but this is a consequence of the
Corollary 4.10 and the properness property for the level model structure on
symmetric T -spectra (Theorem 4.2).

The same argument implies that any trivial level cofibration j : C → D
induces a trivial level cofibration (i, j)∗ for any stable cofibration i. It follows
that a level weak equivalence f : E → F induces a level weak equivalence
1 ∧ f : A ∧ E → A ∧ F for any cofibrant symmetric T -spectrum A.

The map (i, j)∗ is a level cofibration with cofibre B/A∧D/C, where B/A is
cofibrant. To show that (i, j)∗ is stably trivial if either i or j is stably trivial, it
suffices once again to show that if B is cofibrant, then A∧B is stably equivalent
to a point if this is so for either A or B. But there is a level weak equivalence
A → A where A is cofibrant by Corollary 4.14 and Theorem 4.15, and the
induced map A ∧ B → A ∧ B is a level equivalence by the argument above.
The result is therefore a consequence of the cofibration case.
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Write MapΣ(X, Y ) for the mapping symmetric T -spectrum object associated
to symmetric T -spectra X and Y . This object exists formally in the category
of symmetric T -spectra, just as in [7, Lemma 2.2.2]. In particular, there are
natural adjunction isomorphisms

hom(Z ∧X, Y ) ∼= hom(Z,MapΣ(X, Y ))

Every symmetric T -spectrum X functorially determines a symmetric T -
spectrum object X [∗] in the category of symmetric T -spectra, with objects
X [n], n ≥ 0 and having bonding maps T p ∧ X [n] → X [p + n]. Each X [n]
carries a canonical Σn-action, and the maps σ : T p ∧ X [n] → X [p + n] are
(Σp × Σn)-equivariant. The map σ is defined in level r by the bonding map
T p ∧Xn+r → Xp+n+r of the original symmetric T -spectrum X .

The point of the remainder of this section is to characterize the levels
MapΣ(X, Y )n in terms of the internal function spaces Hom(X, Y [n]) arising
from shifts of Y .

Write α : Fn+p(S
0) ∧ T p → Fn(S0) for the map of symmetric T -spectra

which picks out the copy of T p corresponding to the identity e ∈ Σn in

T p ∧ Σn+ ⊂ Fn(S0)n+p.

Then Hom(Fn(S0), X) ∼= Xn and precomposition with the map α induces the
adjoint Xn → Ωp

T Xn+p of the bonding map T p ∧Xn → Xn+p.

It follows that there are isomorphisms

MapΣ(X, Y )n = Hom(Fn(S0),MapΣ(X, Y ))

∼= Hom(Fn(S0) ∧X, Y )
∼= Hom(X, Y [n])

by Lemma 4.16. One sees further that the adjoint bonding map

MapΣ(X, Y )n σ∗−→ Ωp
T MapΣ(X, Y )n+p

is determined by precomposition with α.

There is a commutative diagram

hom(Fn(S0) ∧X, Y )
∼= //

α∗

��

hom(X, Y [n])

σ∗

��
hom(Fn+p(S

0) ∧ T p ∧X, Y ) ∼=
// hom(X, Ωp

T Y [n + p])

involving canonical isomorphisms and the adjoint Y [n] → Ωp
T Y [n + p] of the

map σ : T p ∧ Y [n] → Y [n + p]. This, in turn, is a consequence of the commu-
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tativity of the diagram

Fn+p(S
0) ∧ T p ∧ Y [n]

α∧1 //

1∧σ

��

Fn(S0) ∧ Y [n]

evn

��
Fn+p(S

0) ∧ Y [n + p] evn+p

// Y

where evn : Fn(S0) ∧ Y [n] → Y is adjoint to the identity map Y [n] → Y [n].
One uses the concrete description of evn given by proof of the Lemma 4.16 to
show that this diagram commutes.

We have shown the following:

Proposition 4.20. There is a natural isomorphism

MapΣ(X, Y )n ∼= Hom(X, Y [n]),

and the bonding maps of MapΣ(X, Y ) are induced by composition with the
adjoints Y [n]→ Ωp

T Y [p + n] of the maps σ : T p ∧ Y [n]→ Y [p + n]

4.4 Equivalence of stable categories

The purpose of this section is to show that the stable closed model structure on
the category SptΣ

T (Sm|S)Nis of symmetric T -spectra has associated homotopy
category equivalent to the motivic stable category arising from the category
SptT (Sm|S)Nis of T -spectra.

The equivalence of homotopy categories is induced by the functors U (which
forgets the symmetry) and its left adjoint V . As in [7] and [13], the proof of
the equivalence of homotopy categories boils down to showing that any stably
fibrant model j : V X → (V X)s associated to a cofibrant T -spectrum X induces
a stable equivalence given by the composite

X
η
−→ UV X

Uj
−−→ U(V X)s.

The idea of proof is to use a layer filtration for X , and then show that the
result for all of the layers implies the statement for X .

The functor V preserves stably trivial cofibrations and level equivalences, and
hence preserves stable equivalences. It follows that the functor X 7→ U(V X)s

preserves stable equivalences. Each of the layers of X is a shifted suspension
object up to stable equivalence, so we inductively prove the claim for shifted
suspensions, beginning with suspension T -spectra Σ∞

T K associated to pointed
simplicial presheaves K.

The canonical map η : Σ∞
T K → UV (Σ∞

T K) is an isomorphism, so it suffices
to find a stably fibrant model

V (Σ∞
T K) ∼= T ⊗K

j
−→ (T ⊗K)s
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for the symmetric T -spectrum T ⊗ K such that the map j induces a stable
equivalence Uj : U(T ⊗K) → U(T ⊗K)s of T -spectra — this is Lemma 4.23
below.

The construction that we use involves T -bispectra. A T -bispectrum X con-
sists of pointed simplicial presheaves Xr,s, r, s ≥ 0, together with bonding
maps

σh : T ∧Xr,s → Xr+1,s and σv : T ∧Xr,s → Xr,s+1,

such that the diagram

T ∧Xr,s+1
σh // Xr+1,s+1

T ∧ T ∧Xr,s

T∧σv

OO

t∧1

∼=

((QQQQQQQQQQQQQ

T ∧ T ∧Xr,s
T∧σh

// T ∧Xr+1,s

σv

OO

commutes, where t : T ∧ T → T ∧ T is the isomorphism which flips smash
factors. A T -bispectrum may alternatively be viewed as a T -spectrum object
in the category of T -spectra, in the sense that the collections of objects X r,∗

form T -spectra for all r ≥ 0, and the horizontal bonding maps σh determine
morphisms σh∗ : Xr,∗ ∧ T → Xr+1,∗ given in levels by the composites

Xr,s ∧ T
t
−→
∼=

T ∧Xr,s σh−→ Xr+1,s.

There is of course another way to interpret X as a T -spectrum object, by
starting with the T -spectra X∗,s and taking bonding maps X∗,s ∧ T → X∗,s+1

induced by the maps σv .
These definitions are analogous to those for ordinary bispectra [11]. Perhaps

much of that machinery can be pushed through for T -bispectra — the trick for
the moment is to avoid doing so.

A morphism g : X → Y of T -bispectra is a collection of maps

g : Xr,s → Y r,s

which preserve all structure. A map g : X → Y is said to be a level equivalence
(respectively fibration) if each of the component maps g : Xr,s → Y r,s is an
equivalence (respectively fibration). It is an easy exercise, using the level model
structure for T -spectra, to show that there is a level equivalence i : X → Y for
every object X , such that Y is level fibrant.

Suppose that X is level fibrant. Then the map σh∗ : Xr,∗∧T → Xr+1,∗ of T -
spectra has an adjoint σh∗ : Xr,∗ → ΩT Xr+1,∗, and so there are commutative
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diagrams

Xr,s
σh∗ //

σv∗

��

ΩT Xr+1,s

(σv)∗

��
ΩT Xr,s+1

ΩT σh∗

// Ω2
T Xr+1,s+1

One has to be careful here: the map (σv)∗ is the adjoint of the canonical
choice of bonding map σv : T ∧ ΩT Xr+1,s → ΩT Xr+1,s+1 for the T -spectrum
ΩT Xr+1,s, and a calculation shows that there is a commutative diagram

ΩT Xr+1,s
ΩT σv∗//

(σv)∗ ''NNNNNNNNNNN
Ω2

T Xr+1,s+1

t∗

��
Ω2

T Xr+1,s+1

where t∗ is induced by flipping the loop factors. It follows that composing two
instances of these diagrams give a picture

Xr,s
σh∗ //

ΩT (σv∗)σv∗

��

ΩT Xr+1,s

ΩT (ΩT (σv∗)σv∗)

��
Ω3

T Xr+1,s+2

c∗2,1

��
Ω2

T Xr,s+2

Ω2
T σh∗

// Ω3
T Xr+1,s+2

where c∗2,1 = ΩT (t∗)t∗ is induced in loop factors by the cyclic permutation c2,1

of order 3.

Lemma 3.13 implies that the map c∗ induces the identity in presheaves of
homotopy groups. We therefore have a commutative diagram of presheaves of
groups

πjX
r,s //

��

πjΩ
2
T Xr+2,s //

��

· · ·

πjΩ
2
T Xr,s+2 //

��

πjΩ
4
T Xr+2,s+2 //

��

· · ·

...
...

(4.9)
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in which the horizontal morphisms induced by maps Ω2n
T (ΩT (σh)σh) and the

vertical maps are induced by maps Ω2n
T (ΩT (σv)σv)

Write πjQXr,s for the filtered colimit of the diagram (4.9), and say that a
map g : X → Y of level fibrant T -bispectra is a stable equivalence if it induces
isomorphisms of presheaves of groups

πjQXr,s g∗

−→
∼=

πjQY r,s

for all j, r and s. One expands the definition of stable equivalence to arbitrary
T -bispectra by declaring a map to be a stable equivalence if the induced map
on level fibrant models is a stable equivalence.

The presheaves of groups πjQXr,s are filtered colimits of presheaves of stable
homotopy groups corresponding to both horizontal and vertical choices of T -
spectra. This leads immediately to the following

Lemma 4.21. Suppose that g : X → Y is a map of T -bispectra such that either
all maps g : Xr,∗ → Y r,∗, r ≥ 0, or all maps g : X∗,s → Y ∗,s, s ≥ 0, are stable
equivalences of T -spectra. Then g is a stable equivalence of T -bispectra.

A T -bispectrum Y is said to be stably fibrant if it is level fibrant and all bond-
ing maps σh : Y r,s → ΩT Y r+1,s and σv : Y r,s → ΩT Y r,s+1 are equivalences
(hence pointwise equivalences).

Every T -spectrum Z has an associated suspension T -bispectrum Σ∞
T Z con-

sisting of the objects

Z, Z ∧ T, Z ∧ T 2, . . .

The technical device that begins the proof of the main result of this section is
the following:

Lemma 4.22. Let Z be a T -spectrum and suppose that Y is a stably fibrant T -
bispectrum. Suppose that the morphism g : Σ∞

T Z → Y is a stable equivalence
of T -bispectra. Then the map g : Z → Y 0 at level 0 is a stable equivalence of
T -spectra, and Y 0 is a stably fibrant T -spectrum.

Proof. We can suppose that there is a level fibrant model j : Σ∞
T Z → X for

Σ∞
T Z such that the map g factors through j. Make the suspension index of

Σ∞
T Z the horizontal index, so that

(Σ∞
T Z)r,s = Zs ∧ T r.

The map of T -spectra

Xr,∗ ΩT (σh∗)σh∗

−−−−−−−−→ Ω2
T Xr+2,∗

is a stable equivalence by Theorem 3.11 and Lemma 3.15, and so there is an
isomorphism

πj(QT Xr,∗)s ∼= lim−→πjΩ
2n
T Xr,s+2n ∼= πjQXr,s.
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There is a similar isomorphism

πj(QT Y r,∗)s ∼= lim−→ πjΩ
2n
T Y r,s+2n ∼= πjQY r,s.

since Y is stably fibrant. The morphisms

πjQXr,s → πjQY r,s

are isomorphisms of presheaves of groups by assumption, so in particular the
map

πj(QT X0,∗)s → πj(QT Y 0,∗)s

is an isomorphism as well.

Lemma 4.23. Suppose that K is a pointed simplicial presheaf, and let i : T ⊗
K → (T ⊗K)s be a stably fibrant model for the symmetric T -spectrum T ⊗K.
Then i induces a stable equivalence Ui : U(T ⊗K)→ U(T ⊗K)s of T -spectra.

Corollary 4.24. Suppose that K is a pointed simplicial presheaf. Then the
map

Σ∞
T K

η∗

−→ UV (Σ∞
T K)s

is a stable equivalence.

Proof of Lemma 4.23. It suffices to find just one stably fibrant model for T⊗K
which satisfies the statement of the lemma.

There is a T -spectrum object Σ∞
T (T ⊗K) in the category of symmetric T -

spectra, given by

Σ∞
T (T ⊗K)n = (T ⊗K) ∧ T n.

Suppose that n is the horizontal degree, so that the T -bispectrum underlying
this object is specified in bidegrees by

U(Σ∞
T (T ⊗K))r,s = T s ∧K ∧ T r.

The functor QT and the level fibrant model functor L are both simplicial func-
tors, so the maps of T -spectra

T s ∧K ∧ T ∗ → LQTL(T s ∧K ∧ T ∗)

determine a map

Σ∞
T (T ⊗K)→ LQTL(Σ∞

T (T ⊗K))

of T -spectrum objects in the category of symmetric T -spectra whose underlying
map of T -bispectra consists of stably fibrant models in each vertical degree. By
Theorem 3.11, the vertical bonding map

LQTL(T s ∧K ∧ T ∗)→ ΩTLQTL(T s+1 ∧K ∧ T ∗)
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is a stable equivalence and hence a level equivalence, so that the T -bispectrum
U(LQTL(Σ∞

T (T ⊗ K))) is stably fibrant. Thus, the symmetric T -spectrum
LQTL((T ⊗K)∧S0) is stably fibrant, as is its underlying T -spectrum. Finally,
Lemma 4.22 implies that the map of T -spectra

U((T ⊗K) ∧ S0)→ U(LQTL((T ⊗K) ∧ S0))

is a stable equivalence.

Lemma 4.25. A map g : X → Y of symmetric T -spectra is a stable equivalence
if and only if the suspension g ∧ T : X ∧ T → Y ∧ T is a stable equivalence.

Proof. If g is a stable equivalence, then g∧T is a stable equivalence, on account
of the isomorphisms

hom(X ∧ T, W ) ∼= hom(X, ΩT W )

and the fact that the functor ΩT preserves stably fibrant injective objects.
If g∧T is a stable equivalence, then the natural stable equivalence σ∗ : W →

ΩT W [1] of (4.1) (see also Corollary 4.10) induces a diagram

hom(Y, W )
g∗

//

'

��

hom(X, W )

'

��
hom(Y, ΩT W [1])

g∗

//

∼=

��

hom(X, ΩT W [1])

∼=

��
hom(Y ∧ T, W [1])

(g∧T )∗
// hom(X ∧ T, W [1])

If g∧T is a stable equivalence, then (g∧T )∗ is a weak equivalence for all stably
fibrant injective W , so g∗ is a weak equivalence for all such W .

Corollary 4.26. The composite

η∗ : X
η
−→ ΩT (X ∧ T )

ΩT j
−−→ ΩT (X ∧ T )s

is a stable equivalence of symmetric T -spectra, for any choice of stably fibrant
model j for X ∧ T .

Proof. There is a diagram

X ∧ T
η∗∧T //

j ''OOOOOOOOOOOO
ΩT (X ∧ T )s ∧ T

ev

��
(X ∧ T )s

and the evaluation map ev is a stable equivalence of the underlying T -spectra
by Corollary 3.16. Now use the Lemma 4.25.
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Lemma 4.27. The natural map η∗ : X → U(V X)s is a stable equivalence if
and only if the map η∗ : X ∧ T → U(V (X ∧ T ))s is a stable equivalence.

Proof. There is a commutative diagram

X ∧ T
η∧T //

η

��<
<

<<
<<

<
<<

<<
<<

<<
<

<<
UV (X) ∧ T

Uj∧T //

∼=

��

U(V X)s ∧ T

∼=

��
U(V (X) ∧ T )

U(j∧T )//

∼=

��

U((V X)s ∧ T )

Uj̃

��
UV (X ∧ T )

Uj
// U(V (X ∧ T )s)

Here j̃ : (V X)s ∧ T → (V (X ∧ T )s is a map of symmetric T -spectra which
makes the diagram

V (X) ∧ T
j∧T //

∼=

��

V (X)s ∧ T

j̃

��
V (X ∧ T )

j
// (V (X ∧ T ))s

commute — it exists since j∧T is a trivial cofibration if j : V (X)→ V (X)s is a
trivial cofibration. It therefore suffices to show that Uj̃ is a stable equivalence
of T -spectra.

It further suffices to show that the composite

UY ∧ T
∼=
−→ U(Y ∧ T )

Uj
−−→ U(Y ∧ T )s (4.10)

is a stable equivalence if Y is a stably fibrant symmetric T -spectrum and j :
Y ∧ T → (Y ∧ T )s is a stably fibrant model. This, however, is a consequence
of the commutativity of the diagram

UY
η //

Uη ++WWWWWWWWWWWWWWWWWWWWWWW ΩT (UY ∧ T )
∼= // ΩT U(Y ∧ T )

ΩT Uj //

∼=

��

ΩT U(Y ∧ T )s

∼=

��
UΩT (Y ∧ T )

UΩT j
// UΩT (Y ∧ T )s

The top horizontal composite in this diagram is the adjoint of the composite
(4.10), while the composite

Y
η
−→ ΩT (Y ∧ T )

ΩT j
−−→ ΩT (Y ∧ T )s

is a levelwise equivalence of stably fibrant symmetric T -spectra, by Corollary
4.26.
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There are canonical stable equivalences

Σ∞
T K[−n] ∧ T n → Σ∞

T K

and

Σ∞
T Xn[−n]→ LnX

where LnX is the nth stage of the layer filtration for a T -spectrum X . The
following is then a consequence of Corollary 4.24 and Lemma 4.27:

Corollary 4.28. 1) Suppose that K is a pointed simplicial presheaf. Then
the map

η∗ : Σ∞
T K[n]→ UV (Σ∞

T K[n])s

is a stable equivalence for all n ∈ Z.

2) Suppose that X is a T -spectrum. Then the map

η∗ : LnX → UV (LnX)s

is a stable equivalence for all n ≥ 0.

Proof. For part 2), recall that the functor V preserves stably trivial cofibrations
and level equivalences, and hence preserves stable equivalences, so that the
functor X 7→ U(V X)s preserves stable equivalences. Part 2) is therefore a
consequence of part 1), while 1) follows from Lemma 4.27.

Lemma 4.29. Suppose that

X0 → X1 → · · ·

is an inductive system of T -spectra such that all maps η∗ : Xn → U(V Xn)s are
stable equivalences. Then the map

η∗ : lim−→Xn → UV (lim−→Xn)s

is a stable equivalence.

Proof. There is a commutative diagram

lim−→UV (Xn)
lim
−→

Uj
//

∼=

&&LLLLLLLLLL
lim−→U(V (Xn))s

∼=

''NNNNNNNNNNN

lim−→Xn

lim
−→

η
;;wwwwwwwww

η
##G

GG
GG

GG
GG

U(lim−→V (Xn))
U(lim

−→
j)

//

∼=xxrrrrrrrrrr
U(lim−→V (Xn)s)

Uj̃wwppppppppppp

UV (lim−→Xn)
Uj

// UV (lim−→Xn)s
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where the displayed isomorphisms are canonical and j̃ make the following dia-
gram commute:

lim−→V (Xn)
lim
−→

j
//

∼=

��

lim−→V (Xn)s

j̃

��
V (lim−→Xn)

j
// V (lim−→Xn)s

Note that we can presume that the stably trivial cofibrations j : V (Xn) →
V (Xn)s of symmetric T -spectra can be chosen so that the induced map lim−→ j :
lim−→V (Xn)→ lim−→V (Xn)s is a stably trivial cofibration, so that the existence of

the map j̃ makes sense. This is the analogue of a step in the proof of Lemma
3.12 (a corresponding result, namely that stable equivalences are closed under
filtered colimits, holds for symmetric T -spectra, via the same proof). It follows
that j̃ is a stable equivalence, but then Corollary 1.7 implies that j̃ is a level
equivalence, and so Uj̃ is a level equivalence as well. Observe finally that
Lemma 3.12 implies that the composite

lim−→Xn

lim
−→

η
−−−→ lim−→UV (Xn)

lim
−→

Uj
−−−−→ lim−→U(V (Xn)s)

is a stable equivalence.

Corollary 4.28 and Lemma 4.29 together imply the following:

Proposition 4.30. The natural map η∗ : X → U(V (X))s is a stable equiva-
lence for all T -spectra X.

Theorem 4.31. The functors U and V induce an adjoint equivalence of stable
homotopy categories

Ho(SptΣ
T (Sm|S)Nis) � Ho(SptT (Sm|S)Nis)

Proof. We show that the adjoint pair of functors (U, V ) is a Quillen equivalence.
Suppose that W is a stably fibrant symmetric T -spectrum. Then the canon-

ical map ε : V U(W ) → W is a stable equivalence. To see this, take a factor-
ization

V U(W )
j //

ε

��

(V U(W ))s

j̃
xxppppppppppp

W

and apply the functor U to obtain the diagram

U(W )
η //

1 &&LLLLLLLLLL
U(V U(W ))

Uj //

Uε

��

U(V U(W ))s

Uj̃wwoooooooooooo

U(W )
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The composite Uj ·η : U(W )→ U(V U(W ))s is a stable equivalence by Proposi-
tion 4.30, so that Uj̃ is a stable equivalence of T -spectra. But then j̃ is a stable
equivalence of symmetric T -spectra by Proposition 4.8, and so ε : V U(W )→W
is a stable equivalence.

Proposition 4.13 implies that U preserves stable trivial fibrations, while it
preserves stable fibrations by definition.

Suppose that X is a cofibrant T -spectrum and W is a stably fibrant symmet-
ric T -spectrum. We have seen that ε : V U(W ) → W is a stable equivalence,
and we also know that V preserves stable equivalences — see the proof of
Corollary 4.28. Thus, if f : X → U(W ) is a stable equivalence then the adjoint
f∗ : V (X)→W is a stable equivalence.

Conversely, if f∗ is a stable equivalence, then f∗ factors through a level
equivalence f̃ : (V (X))s →W , and there is a diagram

X
η //

η∗ $$I
II

II
II

II
I UV (X)

j

��

Uf∗ // U(W )

U(V (X))s

Uf̃

99rrrrrrrrrr

The map η∗ is a stable equivalence by Proposition 4.30 and Uf̃ is a level
equivalence, so that f is a stable equivalence.

4.5 Symmetric S1-spectra

The results proved above for symmetric T -spectra have analogues for symmetric
S1-spectra, with proofs that are formally the same in many cases. These results
will be summarized here.

The analogy begins with the definition. A symmetric S1-spectrum X is an S1-
spectrum consisting of pointed simplicial presheaves Xn, n ≥ 0, with bonding
maps σ : S1 ∧Xn → Xn+1, with symmetric group actions Σn ×Xn → Xn+1,
such that the composite bonding maps Sp ∧ Xn → Xp+n are (Σp × Σn)-
equivariant. There is an obvious category of such things, which is denoted by
Spt

Σ
S1(Sm|S)Nis. This category is, in the language of [13], the category of

presheaves of symmetric spectra on the smooth Nisnevich site (Sm|S)Nis. We
know from [13] that this category carries a well behaved stable closed model
structure which is created by the Nisnevich topology. The point of this section
is to show that there is an additional motivic stable closed model structure
such that the associated homotopy category is equivalent to the motivic stable
category for S1-spectra.

As for symmetric T -spectra, say that a map f : X → Y is a level equivalence
if each component map f : Xn → Y n is a motivic equivalence. The map f is a
level cofibration if each f : Xn → Y n is a cofibration of simplicial presheaves.
Finally, a map g : Z → W is an injective fibration if it has the right lifting
property with respect to all maps which are level cofibrations and level weak
equivalences. We then have the following:
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Theorem 4.32. The category SptΣ
S1(Sm|S)Nis of symmetric S1-spectra on the

smooth Nisnevich site, together with the classes of level cofibrations, level equiv-
alences and injective fibrations, satisfies the axioms for a proper closed simpli-
cial model category.

The proof of this result is just like that of Theorem 4.2: the controlled level
fibrant construction Y 7→ L(Y ) for simplicial presheaves extends to a functor
on symmetric S1-spectra (diagram (1.2)), and we know from [13] that level cofi-
brations and level local equivalences of symmetric S1-spectra satisfy a bounded
cofibration condition. These two facts can be used together with the argument
in the proof of Proposition 2.15 to show that the level motivic equivalences
and level cofibrations of symmetric S1-spectra satisfy a bounded cofibration
condition. The rest of the proof is formal.

The definition and properties of the left adjoint V to the forgetful functor

U : Spt
Σ
S1(Sm|S)Nis → SptS1(Sm|S)Nis

taking values in S1-spectra are already well known.
We say that a map p : X → Y of symmetric S1-spectra is a stable fibration

if the underlying map Up : UX → UY of S1-spectra is a (motivic) stable
fibration. Proposition 2.15 has an analogue for S1-spectra which implies that a
map q : Z →W of S1-spectra is a stable fibration if and only if it has the right
lifting property with respect to all λ-bounded cofibrations A → B which are
stable equivalences. It follows that a map p : X → Y of symmetric S1-spectra
is a stable fibration if and only if it has the right lifting property with respect to
images V (A)→ V (B) of all λ-bounded trivial cofibrations of S1-spectra under
the functor V . This implies the following analogue of Proposition 4.4:

Proposition 4.33. Every map f : X → Y of symmetric S1-spectra has a
natural factorization

X
j //

f   @
@@

@@
@@

Z

p

��
Y

such that p is a stable fibration, and j is a level cofibration which has the left
lifting property with respect to all stable fibrations.

As before, this result implies the existence of injective stably fibrant models.
Say that a map f : X → Y of symmetric S1-spectra is a stable equivalence if

it induces a weak equivalence

g∗ : hom(Y, W )→ hom(X, W )

for all stably fibrant injective objects W .
The shift construction X 7→ X [n], the natural map X → ΩX [1] and the

symmetric stabilization functor X 7→ QΣX = QΣ
S1X are already well known

[7], [13], and the same argument as for Proposition 4.8 gives the following:
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Proposition 4.34. Suppose that α : X → Y is a map of symmetric S1-spectra
such that Uα : UX → UY is a stable equivalence of S1-spectra. Then α is a
stable equivalence of symmetric S1-spectra.

The description X 7→ Gn(S0) ⊗ X of the left adjoint to the shift functor
is also well known. This functor preserves level cofibrations and level weak
equivalences by construction and the properness of the unstable motivic closed
model structure, so that the adjoint Y 7→ Y [n] preserves injective fibrations.
In particular, if W is stably fibrant and injective, then the canonical map W →
ΩW [1] is a level equivalence of stably fibrant injective objects. The function
complex hom(X, W ) is therefore an infinite loop space for all symmetric S1-
spectra X and stably fibrant injective objects W , so that we can prove

Lemma 4.35. Suppose that the commutative diagram

A1
i1 //

f1

��

B1
π1 //

f2

��

B1/A1

f3

��
A2

i2
// B2 π2

// B2/A2

is a comparison diagram of level cofibre sequences. Then if any two of the maps
f1, f2 and f3 are stable equivalences of symmetric S1-spectra, then so is the
third.

The proof is by analogy with the proof of Lemma 4.11.

Insofar as we know that fibre and cofibre sequences coincide in the motivic
stable category of S1-spectra (Corollary 3.2), we also have the analogue of
Corollary 4.12, and this implies

Proposition 4.36. Suppose that p : X → Y is a map of symmetric S1-spectra
which is both a stable fibration and a stable equivalence. Then p is a level
equivalence.

Corollary 4.37. A map p : X → Y of symmetric S1-spectra is a stable
fibration and a stable equivalence if and only if it is both a level fibration and
a level equivalence.

Say that a map i : A → B of symmetric S1-spectra is a stable cofibration if
it has the left lifting property with respect to all maps p : X → Y which are
stable equivalences and stable fibrations. Then we have

Theorem 4.38. The category SptΣ
S1(Sm|S)Nis of symmetric S1-spectra on the

smooth Nisnevich site, and the classes of stable equivalences, stable fibrations
and stable cofibrations, together satisfy the axioms for a proper closed simplicial
model category.
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Write η∗ for the composite

X
η
−→ UV X

Uj
−−→ U(V X)s

where j : V X → (V X)s is a stably fibrant model of the symmetric S1-spectrum
V X . Then Proposition 4.30 translates as follows:

Proposition 4.39. The natural map η∗ : X → U(V X)s is a stable equivalence
for all S1-spectra X.

Just as before, this is the key step in demonstrating that the category of sym-
metric spectrum objects is a model for the stable category:

Theorem 4.40. The functors U and V induce an adjoint equivalence of stable
homotopy categories

Ho(SptΣ
S1(Sm|S)Nis) � Ho(SptS1(Sm|S)Nis)

Again, one shows that the adjoint pair of functors (U, V ) is a Quillen equiva-
lence.

The proofs of Proposition 4.30 and Theorem 4.31 occupied all of Section 4.4,
and the proofs of Proposition 4.39 and Theorem 4.40 are exactly the same, sub-
ject to replacing T by S1. As before, the interesting part is proving Proposition
4.39 in the case of suspension objects — the analogue is Lemma 4.23. That
proof involved T -bispectra, which translates here to S1-bispectra, or presheaves
of bispectra in the sense of [11], but interpreted in motivic homotopy theory.

Finally, the categorical material on smash products in Section 4.3 arises from
manipulations of free functors that are well known for ordinary symmetric spec-
tra, and therefore hold for symmetric S1-spectra. The homotopically significant
statement is Proposition 4.19:

Proposition 4.41. Suppose that i : A → B is a stable cofibration and that
j : C → D is a level cofibration. Then the map

(i, j)∗ : (B ∧ C) ∪(A∧C) (A ∧D)→ B ∧D

is a level cofibration. If i and j are both cofibrations, then (i, j)∗ is a cofibration.
If either i or j is a stable equivalence, then (i, j)∗ is a stable equivalence.

The statement and proof of this result are really quite generic, and hold
essentially anywhere that one succeeds in generating the usual machinery of
symmetric spectrum objects. This includes the present discussion of symmetric
S1-spectra in the motivic context, and also translates into a statement for
presheaves of symmetric spectra in the sense of [13].
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Appendices

A Properness

The purpose of this section is to show that the closed model structure that
arises from formally collapsing a simplicial presheaf I to a point satisfies the
properness axiom. This is true over arbitrary small Grothendieck sites and,
more explicitly, for the f -local theory for any rational point f : ∗ → I . This
result specializes to properness for motivic homotopy theory: that is the case
of a rational point ∗ → A1 on the affine line, in the category of simplicial
presheaves (or sheaves) for the site (Sm|S)Nis of smooth k-schemes equipped
with the Nisnevich topology. I shall revert to the original homotopy theoretic
notation (see also Section 1.2) for the general discussion that follows.

Suppose that C is a small Grothendieck site, and let α be a cardinal which
is an upper bound for the cardinality of the set Mor(C) of morphisms of C.
Suppose that I is a simplicial presheaf on C having a rational point f : ∗ → I .
We will show that the f -local closed model structure on SPre(C) is proper, for
any such map f : ∗ → I .

Let D be a simplicial presheaf on the site C, and write f : D → D × I for
the composite

D ∼= D × ∗
1D×f
−−−−→ D × I.

Lemma A.1. Suppose given maps

D
f
−→ D × I

g
−→ X

and a global fibration π : U → X, and suppose that X is f -fibrant. Then the
induced map

f∗ : U ×X D → U ×X (D × I)

is an f -equivalence.

Proof. To make the notation easier, given a map α : V → X , write Vα = U×XV
for the pullback of α along π : U → X . In this notation, the statement of the
lemma is the assertion that the induced map

f∗ : Dgf → (D × I)g

is an f -equivalence.
The object X is f -fibrant and the projection map pr : D × I → D is an

f -equivalence, so there is a simplicial homotopy

D × I
d0

//

pr

��

(D × I)×∆1

h

��

D × I
d1

oo

g
xxpppppppppppp

D
gf

// X.
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Pulling back along the global fibration π : U → X gives a diagram

Dgf
d0
∗ //

f∗

��

(D ×∆1)h(f×1)

(f×1)∗

��

Dgf
d1
∗oo

f∗

��
(D × I)gf ·pr

d0
∗

// (D × I ×∆1)h (D × I)g
d1
∗

oo

All of the maps labeled dε
∗ are local weak equivalences, since π is a global

fibration and the ordinary closed model structure for SPre(C) is proper. It
therefore suffices to show that the map f∗ : Dgf → (D × I)gf ·pr is an f -
equivalence.

But the map gf · pr factors through the projection map pr, so that there is
an isomorphism

θ : (D × I)gf ·pr

∼=
−→ Dgf × I

and a commutative diagram

Dgf

f∗

��

f

&&NNNNNNNNNNN

(D × I)gf ·pr
θ

∼= // Dgf × I

The map f∗ is therefore an f -equivalence.

An elementary f -trivial cofibration is a member of the saturation of the
family of cofibrations consisting of the maps

(∗ × LU∆n) ∪(∗×Y ) (I × Y ) ⊂ I × LU∆n,

and all maps

C ↪→ D

which are cofibrations and local weak equivalences, where D is α-bounded. An
f -injective fibration is a map p : Z → W which has the right lifting property
with respect to all elementary f -trivial cofibrations.

Lemma A.2. 1) An f -injective fibration p is a global fibration.

2) The class of f -injective fibrations is closed under composition.

3) A simplicial presheaf Z is f -local if and only if the map Z → ∗ is an
f -injective fibration.
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4) Every simplicial presheaf map g : X → Y has a factorization

X
g //

j   B
BB

BB
BB

B Y

W

q

>>}}}}}}}}

where q is an f -injective fibration and j is an elementary f -cofibration
and an f -equivalence.

5) Every elementary f -cofibration is an f -equivalence.

Proof. Part 4) is the consequence of a standard transfinite small object argu-
ment.

The family of maps having the left lifting property with respect to all f -
injective fibrations is a saturated class containing the generating elementary
f -cofibrations, so that the elementary f -cofibrations have the left lifting prop-
erty with respect to all f -injective fibrations. It follows from the factorization
statement 4) that every elementary f -cofibration is a retract of an elementary f -
cofibration which is an f -equivalence. But then every elementary f -cofibration
is an f -equivalence, giving 5).

Now we can list some consequences of Lemmas A.1 and A.2:

Lemma A.3. Suppose given maps

C
j
−→ D

g
−→ X

and a global fibration π : U → X, and suppose that X is f -fibrant and j is an
elementary f -cofibration. Then the induced map

j∗ : U ×X C → U ×X D

is an f -equivalence.

Proof. The class of cofibrations C ↪→ D → X over X which pull back to
f -equivalences U ×X C → U ×X D is saturated by exactness of pullback,
and contains all ordinary trivial cofibrations since the standard closed model
structure on SPre(C) is proper.

In any diagram

Y //

f

��

LU∆n

f∗

��
f

!!D
DD

DD
DD

DD
DD

DDD
DD

DD
DD

I × Y //

++XXXXXXXXXXXXXXXXXXXXXXXXXXXX (I × Y ) ∪Y LU∆n

θ

((QQQQQQQQQQQQQ

I × LU∆n
g

// X
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the maps f and f∗ pull back to f -equivalences along π by Lemma A.1, and so
θ pulls back to an f -equivalence along π. This means that all generators of the
family of elementary f -cofibrations pull back to f -equivalences along π, so all
elementary f -cofibrations pull back to f -equivalences along π.

Corollary A.4. Suppose given a pullback diagram

A×X U
g∗ //

��

U

π

��
A g

// X

where X is f -fibrant, g is an f -equivalence and π is a global fibration. Then
the induced map g∗ is an f -equivalence.

Proof. Find a factorization

A
g //

j   A
AA

AA
AA

A X

W

q

>>}}}}}}}}

of g, where j is an elementary f -cofibration and q is an f -injective fibration.
Then W is f -fibrant by Lemma A.2, and the fact that the classes of f -fibrant
objects and f -injective objects coincide [4]. Thus, q is an f -equivalence of f -
fibrant objects, and is therefore an ordinary local weak equivalence, and hence
pulls back to a local weak equivalence along the global fibration π. But then the
elementary f -cofibration j pulls back to an f -equivalence by Lemma A.3.

Theorem A.5 (Properness). Suppose given a diagram

A×X U
g∗ //

��

U

π

��
A g

// Z

such that π is an f -fibration and g is an f -equivalence. Then the induced map
g∗ is an f -equivalence.

Proof. Form a diagram

U
i //

π

��

V

p

��
Z

j
// LZ
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such that i is a cofibration and an f -equivalence, LZ is f -fibrant, p is an f -
fibration, and j is a cofibration and an f -equivalence. Consider the pullback
diagram

Z ×LZ V
j∗ //

p∗

��

V

p

��
Z

j
// LZ

The map j∗ : Z×LZ V → V is an f -equivalence by Corollary A.4. The induced
comparison

U
θ //

π
��?

??
??

??
?

Z ×LZ V

p∗

zzuuuuuuuuu

Z

is an f -equivalence of f -fibrant objects in SPre(C) ↓ X , hence a homotopy
equivalence, and so the map θ is a local weak equivalence. Properness for the
standard closed model structure on SPre(C) implies that the induced map

A×Z U
θ∗−→ A×LZ V

is a local weak equivalence. Thus, in the diagram

A×Z U
g∗ //

θ∗

��

U

θ

��
A×LZ V

g′

// Z ×LZ V

the map g∗ is an f -equivalence if and only if g′ is an f -equivalence. But the
maps j∗g

′ and j∗ are f -equivalences by Corollary A.4, so g′ is an f -equivalence.

Theorem A.5 is not the full properness assertion for the f -local theory but it
is the heart of the matter. The second half of the properness axiom says that
the class of f -equivalences is closed under pushout along cofibrations. This
means that, given a pushout diagram

A
g //

i

��

C

��
B g∗

// B ∪A C

Documenta Mathematica 5 (2000) 445–552



Motivic Symmetric Spectra 541

with i a cofibration and g an f -equivalence, the map g∗ should be an f -
equivalence. This is easily proved: the functor hom( , W ) takes pushouts
of simplicial presheaves to pullbacks of simplicial sets, and the map i∗ :
hom(B, W )→ hom(A, W ) is a fibration and g∗ : hom(C, W ) → hom(A, W )
is a weak equivalence if W is f -local. Properness for ordinary simplicial sets
implies that the induced map

g∗∗ : hom(B ∪A C, W )→ hom(B, W )

is a weak equivalence of simplicial sets. This is true for all f -local objects W ,
so that g∗ is an f -equivalence.

B Motivic homotopy theory of presheaves

Let S Shv(Sm|S)Nis (respectively Shv(Sm|S)Nis) denote the category of sim-
plicial sheaves (respectively sheaves) on the smooth Nisnevich site (Sm|S)Nis

for a Noetherian scheme S of finite dimension. Suppose that Pre(Sm|S)Nis and
SPre(Sm|S)Nis denote the corresponding categories of presheaves and simpli-
cial presheaves. We know that the categories of simplicial sheaves and simplicial
presheaves carry closed model structures obtained from the local structures for
the Nisnevich topology by formally contracting the affine line A1, and that the
resulting homotopy categories are equivalent, and are models for the motivic
homotopy category — see Theorem 1.1 and Theorem 1.2.

The purpose of this section is to explain the Morel-Voevodsky result that
the sheaf category Shv(Sm|S)Nis inherits a closed model structure from the
category of simplicial sheaves in such a way that the associated homotopy
category is also a model for the motivic homotopy category. We actually do a
little more here (Theorem B.4 below), and show that the category of presheaves
Pre(Sm|S)Nis has a proper closed simplicial model structure, so that there is
an adjoint equivalence of the associated homotopy category Ho(Pre(Sm|S)Nis)
with the motivic homotopy category. The Morel-Voevodsky result for sheaves
(Theorem B.6) is a consequence of Theorem B.4, in a way that one has come
to expect.

Morel and Voevodsky construct a singular functor

S = SA1 : S Shv(Sm|S)Nis → S Shv(Sm|S)Nis

in terms of the internal hom functor by specifying S(B) = Hom(A•, B) for
ordinary sheaves B, and then by defining S(X) for a simplicial sheaf X to be
the diagonal of the bisimplicial object

Hom(Am, Xn).

Here, A• refers to the standard cosimplicial k-variety made up of the affine
planes An. The singular functor specializes, in particular, to a functor

S : Shv(Sm|S)Nis → S Shv(Sm|S)Nis,
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This last functor has a canonical left adjoint

| · | : S Shv(Sm|S)Nis → Shv(Sm|S)Nis,

which is defined by a suitable coend. This means that there is a coequalizer in
the sheaf category having the form

⊔

θ:m→n

Xn × Am
⇒

⊔

n

Xn × An → |X |

for a simplicial sheaf X that one expects from the definition of the realization
functor from simplicial sets to spaces. Morel and Voevodsky show [14] that, for
a suitable closed model structure on the sheaf category Shv(Sm|S)Nis, these
functors define an adjoint equivalence of the associated homotopy categories.

These constructions are easily generalized to simplicial presheaves, with com-
pletely analogous definitions. There is a singular functor

S = SA1 : SPre(Sm|S)Nis → SPre(Sm|S)Nis

which is defined on presheaves C by setting S(C) = Hom(A•, C); then S(Y )
is defined for a simplicial presheaf Y by taking the diagonal of the bisimplicial
presheaf

Hom(Am, Yn).

There is a realization functor

| · | : SPre(Sm|S)Nis → Pre(Sm|S)Nis,

defined by coend, so that there is a coequalizer

⊔

θ:m→n

Yn × Am
⇒

⊔

n

Yn × An → |Y |

in the presheaf category, for simplicial presheaves Y . The realization functor
is left adjoint to the singular functor, just as before.

We now have the following analogue of a string of results for the singular
functor on simplicial sheaves, proved by Morel and Voevodsky in [14]:

Lemma B.1. The singular functor

S : SPre(Sm|S)Nis → SPre(Sm|S)Nis

has the following properties:

1) The functor S takes the morphism f : ∗ → A1 to a weak equivalence of
simplicial sheaves.

2) For any simplicial presheaf X, the canonical map η : X → S(X) is a
motivic weak equivalence and a cofibration.
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3) The realization functor preserves cofibrations and motivic weak equiva-
lences.

Proof. For 1), it suffices to show that the simplicial set

S(A1)(Sp(R)) ∼= R[t∗]

is contractible for affine schemes Sp(R), where R[t∗] is the simplicial R-algebra
with n-simplices

R[t∗]n = R[t0, . . . , tn]/(
∑

ti = 1),

and having face maps defined by

di(tj) =











tj if j < i,

0 if j = i, and

tj−1 if j > i.

It is well known (for many years — see [1], for example) that the simplicial set
underlying this simplicial R-algebra is contractible, with contracting (chain)
homotopy given by

f(t0, . . . tn) 7→ (1− t0)f(t1, . . . , tn+1).

For 2), the canonical map η for simplicial sets is the diagonal of a correspond-
ing bisimplicial set map made of canonical maps η : B → Hom(A•, B) defined
for simplicial presheaves B. This map is a morphism of simplicial presheaves
which on n-simplices is the map

B → Hom(An, B) (B.1)

defined by precomposition with the map An → ∗. There is a contracting
homotopy h : An × A1 → An defined by

((t1, . . . , tn), s) 7→ (t1s, . . . , tns).

This contracting homotopy induces an obvious map

h∗ : Hom(An, B)× A1 → Hom(An, B),

and the existence of the homotopy h∗ implies that the map (B.1) is an A1

homotopy equivalence, and hence a motivic weak equivalence. The motivic
model structure for the simplicial presheaf category is proper, so that standard
techniques imply that the map η : X → S(X) is a motivic weak equivalence
for all simplicial presheaves X .

To prove statement 3), observe that any cosimplicial set E determines a
set-valued realization functor X 7→ |X |E defined on simplicial sets by the co-
equalizer

⊔

θ:m→n

Xn ×Em
⇒

⊔

n

Xn ×En → |Y |E .
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One sees easily that there is a bijection |∆n|E → En defined by the maps ∆n
k ×

Dk → Dn given by (θ, x) 7→ θ∗(x). This bijection is natural in ordinal number
maps; in particular, the induced function |∂∆1|E → |∆1|E is isomorphic to the
function

(d0, d1) : E0 t E0 → E1.

Also, all diagrams

En−2 dj−1
//

di

��

En−1

di

��
En−1

dj

// En

corresponding to i < j are pullbacks by the cosimplicial identities for n ≥ 2.
Thus, there is an isomorphism

|∂∆n|E ∼= ∂En,

where ∂En denotes the union of the images di(En−1) in En, and that the
induced map |∂∆n|E → |∆n|E is an injection for n ≥ 2. It follows that the
realization functor X 7→ |X |E takes cofibrations to injections if and only if E
is unaugmented in the (traditional — see [3]) sense that the diagram

∅ //

��

E0

d0

��
E0

d1

// E1

is a pullback.
Also, if E is unaugmented, one can show that the natural map

X0 ×E0 → |X |E

is an inclusion, by induction on the skeleta of X .
Any cosimplicial object D in the category of simplicial presheaves determines

a D-realization functor Y 7→ |Y |D, defined by a coequalizer diagram

⊔

θ:m→n

Yn ×Dm
⇒

⊔

n

Yn ×Dn → |Y |D.

as above. Write |Y |
(p)
D for the image of

⊔

0≤n≤p

Yn ×Dn
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in |Y |D, and let s[p]Yp be the degenerate part of Yp+1. Then there is a pushout
diagram

(s[p]Yp ×Dp+1) ∪ (Yp+1 × ∂Dp+1) //

��

|Y |(p)
D

��
Yp+1 ×Dp+1 // |Y |(p+1)

D

The vertical maps are cofibrations, and the canonical map

Y0 ×D0 → |Y |
(0)
D

is an isomorphism if D is unaugmented.
A properness argument therefore implies that any level motivic equivalence

D → E of unaugmented cosimplicial presheaves induces a natural motivic
equivalence |Y |D → |Y |E . In particular, the maps of cosimplicial objects

An ← An ×∆n → ∆n

are level motivic equivalences, and so there are natural motivic equivalences

|Y |A• ← |Y |A•×∆ → |Y |∆ ∼= Y.

The realization functor Y 7→ |Y | = |Y |A• therefore preserves motivic equiv-
alences. It follows also that this realization functor preserves cofibrations of
simplicial presheaves.

Corollary B.2. The singular functor preserves fibrations.

Corollary B.3. There is a natural motivic weak equivalence Y ' |Y |, for all
simplicial presheaves Y .

Say that a map g : X → Y of presheaves on the smooth Nisnevich site
(Sm|S)Nis is a motivic weak equivalence if the associated morphism of constant
simplicial presheaves is a motivic weak equivalence. A cofibration of presheaves
is an inclusion, and a motivic fibration is a map which has the right lifting
property with respect to all maps which are simultaneously cofibrations and
motivic weak equivalences.

Given a presheaf X and a simplicial set K, write X ⊗ K for the presheaf
given by

X ⊗K = |X ×K|.

There is an isomorphism

X ⊗K ∼= lim−→
σ:∆n→K

X ⊗∆n,
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where the colimit is indexed over the simplex category of K, and one checks
that there is a natural isomorphism

X ⊗∆n ∼= X × An.

The category of presheaves on (Sm|S)Nis acquires a simplicial structure from
these definitions: the function complex hom(X, Y ) has n-simplices specified by

hom(X, Y )n = hom(X ⊗∆n, Y ) ∼= hom(X × An, Y ),

while for a simplicial set K and a presheaf X , the mapping presheaf hom(K, X)
is given in terms of the internal hom functor by

hom(K, X) = lim←−
σ:∆n→K

Hom(An, X).

Theorem B.4. With these definitions, we have the following:

1) The category Pre(Sm|S)Nis of presheaves on the smooth Nisnevich site
of a Noetherian scheme S of finite dimension satisfies the axioms for a
proper closed simplicial model category.

2) The singular and realization functors determine an adjoint equivalence of
motivic homotopy categories

Ho(Pre(Sm|S)Nis) ' Ho(SPre(Sm|S)Nis).

Proof. Recall from [4, p.1086] that the category SPre(Sm|S)Nis of simplicial
presheaves on the smooth Nisnevich site and the class E of motivic weak equiv-
alences together satisfy a list of properties analogous to those appearing in the
statement of Proposition 4.1. These include, for example, the bounded cofibra-
tion condition:

E7: There is an infinite cardinal λ which is an upper bound for the cardinal-
ity of the set of morphisms of (Sm|S)Nis, such that for every simplicial
presheaf diagram

X

i

��
A // Y

with i an E-trivial cofibration and A an λ-bounded subobject of Y , there
is a subobject B ⊂ Y such that A ⊂ B, the object B is λ-bounded, and
the inclusion B ∩X ↪→ B is an E-trivial cofibration.

Here, an E-trivial cofibration is a map which is a cofibration and a motivic
weak equivalence. We are also tacitly working over a small, full subcategory of
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(Sm|S)Nis consisting of objects of size at most some fixed infinite cardinal, so
that the statement of E7 makes sense.

Up to isomorphism, a subobject of a constant simplicial presheaf must be
constant, so that the bounded cofibration condition E7 for simplicial presheaves
implies a bounded cofibration condition for ordinary presheaves on (Sm|S)Nis.
The other axioms E1 – E6 for the class of cofibrations and motivic weak equiv-
alences in the presheaf category are trivial consequences of the corresponding
results for simplicial presheaves. It follows that a map p : X → Y of presheaves
is a fibration if and only if it has the right lifting property with respect to all λ-
bounded cofibrations which are motivic equivalences — the argument appears
in the proof of Theorem 1.1 of [4]. Continuing in that vein, a transfinite small
object argument then implies that every map g : X → Y has a factorization

X
j //

g
  @

@@
@@

@@
Z

p

��
Y

such that p is a fibration, and j is a motivic weak equivalence and a cofibration.
Write LU∗ for the free presheaf on a section over U . Then I claim that

the presheaf map p : X → Y is a fibration and a motivic weak equivalence
if it has the right lifting property with respect to all inclusions A ⊂ LU∗. A
map p having this lifting property has the right lifting property with respect
to all inclusions, so it is a fibration. The induced map p∗ : S(X) → S(Y )
has the right lifting property with respect to all cofibrations, by an adjointness
argument and the fact that realization preserves cofibrations. The map p∗ is
therefore a fibration and a motivic weak equivalence of simplicial presheaves.
The canonical map η : X → S(X) is a motivic weak equivalence of simplicial
presheaves, so the original map p : X → Y must also be a motivic weak
equivalence of presheaves. A transfinite small object argument then implies
that every map g : X → Y of presheaves has a factorization

X
i //

g
  B

BB
BB

BB
B W

q

��
Y

where i is a cofibration and q is both a fibration and a motivic weak equivalence.
We have proved the factorization axiom CM5. The style of its proof further

implies, in a standard way, that every map which is a fibration and a motivic
weak equivalence is a retract of a map which has the right lifting property with
respect to all cofibrations, and therefore has the same right lifting property.
The axiom CM4 follows. The other closed model axioms are trivial to verify.
The simplicial model axiom SM7 is a consequence of the corresponding axiom
for simplicial presheaves, together with part 3) of Lemma B.1.
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To show that motivic weak equivalences of presheaves are stable under pull-
back along fibrations, it suffices to observe that the singular functor preserves
and reflects motivic weak equivalences, in addition to preserving fibrations.
The pullback part of the properness assertion therefore follows from the corre-
sponding assertion for simplicial presheaves. The pushout part is a more direct
consequence of the statement for simplicial presheaves.

To prove 2), note that the singular and realization functors both preserve
motivic weak equivalences, and hence induce functors

S : Ho(Pre(Sm|S)Nis) � Ho(SPre(Sm|S)Nis) : | · |.

To show that these functors give an equivalence of categories, it suffices to show
that the canonical map η : X → S|X | is a motivic equivalence for all simplicial
presheaves X . Then the map Sε : S|S(Y )| → S(Y ) would be a motivic weak
equivalence for all presheaves Y by a triangle identity, and so ε : |S(Y )| → Y
would be a motivic weak equivalence since the singular functor reflects motivic
weak equivalences.

If X is a constant simplicial presheaf, then the canonical map η : X → S|X |
is isomorphic to the map η : X → S(X), since X ∼= |X | in this case.

Recall that

S(Y )n(U) = Hom(An, Y )(U) ∼= Y (An × U)

for all presheaves Y . It follows that the singular functor preserves all colimits
in presheaves and hence in simplicial presheaves. In other words, the singular
functor satisfies a very strong excision property.

Every simplicial presheaf X is a coend for the morphisms Xn × ∆n → X ,
and the skeletal filtration skr X is defined by pushouts of cofibrations

(s[r]Xr ×∆r+1) ∪ (Xr+1 × ∂∆r+1) //

��

skr X

��
Xr+1 ×∆r+1 // skr+1 X

Here, s[r]Xr is the degenerate part of Xr+1. More generally, define

s[k]Xr =

r
⋃

i=0

si(Xr) ⊂ Xr+1,

and observe that there are pushout of cofibration diagrams

s[k]Xp−1
sk+1 //

��

s[k]Xp

��
Xp sk+1

// s[k+1]Xp
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for all p and k that make sense. The composite functor X 7→ S|X | preserves
all colimits and hence preserves the skeletal filtration for X in the sense that
both of the above species of diagrams are taken to pushouts of cofibrations. On
account of properness for the motivic model structure for simplicial presheaves,
it therefore suffices to show that the maps

Xr ×∆r → S|Xr ×∆r|

are motivic weak equivalences. But the projections Xr×∆r → Xr are motivic
weak equivalences and the composite S| · | preserves motivic weak equivalences,
so the claim reduces to the constant case.

Here is a corollary of the proof of Theorem B.4:

Corollary B.5. Suppose that g : X → Y is a map of simplicial presheaves
such that every map g : Xn → Yn is a motivic weak equivalence of presheaves.
Then g is a motivic weak equivalence of simplicial presheaves.

Say that a map of sheaves g : X → Y on the Nisnevich site (Sm|S)Nis is a
motivic weak equivalence if the associated map of constant simplicial sheaves
(or presheaves) is a motivic weak equivalence. A cofibration of sheaves is just
an inclusion, and a map of simplicial sheaves is a motivic fibration if it has
the right lifting property with respect to all maps which are simultaneously
cofibrations and motivic weak equivalences of simplicial sheaves.

Theorem B.6. With these definitions, we have the following:

1) The category Shv(Sm|S)Nis of sheaves on the smooth Nisnevich site of a
Noetherian scheme S of finite dimension satisfies the axioms for a proper
closed simplicial model category.

2) The singular and realization functors determine an adjoint equivalence of
motivic homotopy categories

Ho(Shv(Sm|S)Nis) ' Ho(S Shv(Sm|S)Nis).

3) The associated sheaf functor determines an adjoint equivalence of motivic
homotopy categories

Ho(Pre(Sm|S)Nis) ' Ho(Shv(Sm|S)Nis).

Proof. For 1), note that a map g : X → Y of sheaves is a motivic equivalence
(respectively cofibration) if and only if is a motivic equivalence (respectively
cofibration) of presheaves. The associated sheaf map A→ Ã is a local isomor-
phism, and hence a motivic weak equivalence of presheaves. It follows that
the classes of motivic weak equivalences and cofibrations of sheaves satisfy the
axioms E1 – E7 involved in the proof of Theorem B.4, and then the closed
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model structure for the sheaf category is a formal consequence, just as before.
Properness is an easy consequence of properness for the presheaf category.

In 2), the singular functor

S : Shv(Sm|S)Nis → S Shv(Sm|S)Nis

is defined as for presheaves, and so it preserves and reflects motivic weak equiv-
alences. The simplicial sheaf realization |X | of a simplicial sheaf X is the asso-
ciated sheaf of the presheaf level realization, so that the map η : X → S|X | is a
motivic weak equivalence, on account of the fact that we know the correspond-
ing statement for simplicial presheaves. The adjoint equivalence of homotopy
categories then follows just as in the presheaf case.

Statement 3) is obvious.
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