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Abstract. In their famous article [Gr-Za], Gross and Zagier proved
a formula relating heights of Heegner points on modular curves and
derivatives of L-series of cusp forms.
We prove the function field analogue of this formula. The classical
modular curves parametrizing isogenies of elliptic curves are now re-
placed by Drinfeld modular curves dealing with isogenies of Drinfeld
modules. Cusp forms on the classical upper half plane are replaced
by harmonic functions on the edges of a Bruhat-Tits tree.
As a corollary we prove the conjecture of Birch and Swinnerton-Dyer
for certain elliptic curves over functions fields whose analytic rank is
equal to 1.
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1 Introduction

Let K = Fq(T ) be the rational function field over a finite field Fq of odd
characteristic. In K we distinguish the polynomial ring Fq[T ] and the place ∞.
We consider harmonic functions f on GL2(K∞)/Γ∞K

∗
∞, the edges of the

Bruhat-Tits tree of GL2, which are invariant under Γ0(N) for N ∈ Fq [T ].
These are called automorphic cusp forms of Drinfeld type of level N (cf. sec-
tion 2.1).
Let L = K(

√
D), with gcd(N,D) = 1, be an imaginary quadratic extension of

K (we assume that D is irreducible to make calculations technically easier).
We attach to an automorphic cusp form f of Drinfeld type of level N , which
is a newform, and to an element A in the class group of OL = Fq [T ][

√
D] an

L-series L(f,A, s) (section 2.1).
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We represent this L-series (normalized by a suitable factor L(N,D)(2s + 1))
as a Petersson product of f and a function Φs on Γ0(N) \ GL2(K∞)/Γ∞K

∗
∞

(sections 2.2 and 2.3). From this representation we get a functional equation
for L(f,A, s) (Theorem 2.7.3 and Theorem 2.7.6), which shows in particular

that L(f,A, s) has a zero at s = 0, if

[
D

N

]
= 1.

In this case, under the additional assumptions that N is square free and that
each of its prime divisors is split in L, we evaluate the derivative of L(f,A, s) at
s = 0. Since the function Φs is not harmonic in general, we apply a holomorphic
projection formula (cf. section 2.4) to get

∂

∂s
(L(N,D)(2s+ 1)L(f,A, s)) |s=0=

∫
f · ΨA (if degD is odd),

resp.

∂

∂s
(

1

1 + q−s−1
L(N,D)(2s+ 1)L(f,A, s)) |s=0=

∫
f · ΨA (if degD is even),

where ΨA is an automorphic cusp form of Drinfeld type of level N . The Fourier
coefficients Ψ∗

A(πdeg λ+2
∞ , λ) of ΨA are evaluated in sections 2.5, 2.6 and 2.8. The

results are summarized in Theorem 2.8.2 and Theorem 2.8.3.
On the other hand let x be a Heegner point on the Drinfeld modular curve
X0(N) with complex multiplication by OL = Fq [T ][

√
D]. There exists a cusp

form gA of Drinfeld type of level N whose Fourier coefficients are given by (cf.
Proposition 3.1.1):

g∗A(πdeg λ+2
∞ , λ) = q− deg λ〈(x) − (∞), Tλ((x)σA − (0))〉,

where the automorphism σA belongs to the class A via class field theory, where
Tλ is the Hecke operator attached to λ and where 〈 , 〉 denotes the global
Néron-Tate height pairing of divisors on X0(N) over the Hilbert class field of
L.
We want to compare the cusp forms ΨA and gA. Therefore we have to evaluate
the height of Heegner points, which is the content of chapter 3. We evaluate the
heights locally at each place of K. At the places belonging to the polynomial
ring Fq[T ] we use the modular interpretation of Heegner points by Drinfeld
modules. Counting homomorphisms between different Drinfeld modules (simi-
lar to calculations in [Gr-Za]) yields the formula for these local heights (Corol-
lary 3.4.10 and Proposition 3.4.13). At the place ∞ we construct a Green’s
function on the analytic upper half plane, which gives the local height in this
case (Propositions 3.6.3, 3.6.5). Finally we evaluate the Fourier coefficients of
gA in Theorems 3.6.4 and 3.6.6.
In chapter 4 we compare the results on the derivatives of the L-series, i.e. the
Fourier coefficients Ψ∗

A(πdeg λ+2
∞ , λ), and the result on the heights of Heegner

points, i.e. the coefficients g∗A(πdeg λ+2
∞ , λ), and get our main result (cf. Theo-

rem 4.1.1 and Theorem 4.1.2): If gcd(λ,N) = 1, then

Ψ∗
A(πdeg λ+2

∞ , λ) =
q − 1

2
q−(deg D+1)/2 g∗A(πdeg λ+2

∞ , λ) (if degD is odd),
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resp.

Ψ∗
A(πdeg λ+2

∞ , λ) =
q − 1

4
q−deg D/2 g∗A(πdeg λ+2

∞ , λ) (if degD is even).

We apply this result to elliptic curves. Let E be an elliptic curve over K
with conductor N ·∞, which has split multiplicative reduction at ∞, then E is
modular, i.e. it belongs to an automorphic cusp form f of Drinfeld type of level
N . In particular the L-series of E/K and of f satisfy L(E, s+ 1) = L(f, s).
The L-series of E over the field L = K(

√
D) equals L(E, s)L(ED, s) and can

be computed by

L(E, s+ 1)L(ED, s+ 1) =
∑

A∈Cl(OL)

L(N,D)(2s+ 1)L(f,A, s),

if degD is odd, or in the even case by

L(E, s+ 1)L(ED, s+ 1) =
∑

A∈Cl(OL)

1

1 + q−s−1
L(N,D)(2s+ 1)L(f,A, s).

This motivates the consideration of the L-series L(f,A, s).
The functional equations for all L(f,A, s) yield that L(E, s)L(ED, s) has a zero
at s = 1. In order to evaluate the first derivative, we consider a uniformization
π : X0(N) → E of the modular elliptic curve E and the Heegner point PL :=∑

A∈Cl(OL) π(xσA ). PL is an L-rational point on E.

Our main result yields a formula relating the derivative of the L-series of E/L

and the Néron-Tate height ĥE,L(PL) of the Heegner point on E over L (Theo-
rem 4.2.1):

∂

∂s
(L(E, s)L(ED , s)) |s=1= ĥE,L(PL) c(D) (deg π)−1

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f · f,

where the constant c(D) equals q−1
2 q−(deg D+1)/2 (if degD is odd) or

q−1
4 q−deg D/2 (if degD is even).

As a corollary (Corollary 4.2.2) we prove the conjecture of Birch and
Swinnerton-Dyer for E/L, if its analytic rank is equal to 1.
Large parts of this work were supported by the DFG-Schwerpunkt “Algorithmi-
sche Algebra und Zahlentheorie”. We are very thankful for this.

2 L-Series

2.1 Basic Definitions of L-Series

Let Fq be the finite field with q = pα elements (p 6= 2), and let K = Fq(T ) be
the rational function field over Fq . We distinguish the finite places given by the
irreducible elements in the polynomial ring Fq [T ] and the place ∞ of K. For ∞
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we consider the completion K∞ with normalized valuation v∞ and valuation
ring O∞. We fix the prime π∞ = T−1, then K∞ = Fq((π∞)). In addition
we define the following additive character ψ∞ of K∞: Take σ : Fq → C∗ with
σ(a) = exp( 2πi

p TrFq/Fp
(a)) and set ψ∞(

∑
aiπ

i
∞) = σ(−a1).

The oriented edges of the Bruhat-Tits tree of GL2 over K∞ are parametrized
by the set GL2(K∞)/Γ∞K

∗
∞, where

Γ∞ := {
(
α β
γ δ

)
∈ GL2(O∞) | v∞(γ) > 0}.

GL2(K∞)/Γ∞K
∗
∞ can be represented by the two disjoint sets

T+ := {
(
πm
∞ u
0 1

)
| m ∈ Z, u ∈ K∞/π

m
∞O∞} (2.1.1)

and

T− := {
(
πm
∞ u
0 1

)(
0 1
π∞ 0

)
| m ∈ Z, u ∈ K∞/π

m
∞O∞}. (2.1.2)

Right multiplication by

(
0 1
π∞ 0

)
reverses the orientation of an edge.

We do not distinguish between matrices in GL2(K∞) and the corresponding
classes in GL2(K∞)/Γ∞K

∗
∞.

We want to study functions on GL2(K∞)/Γ∞K
∗
∞. Special functions are de-

fined in the following way: The groups GL2(Fq[T ]) and SL2(Fq [T ]) operate on
GL2(K∞)/Γ∞K

∗
∞ by left multiplication. For N ∈ Fq[T ] let

Γ0(N) := {
(
a b
c d

)
∈ GL2(Fq[T ]) | c ≡ 0 mod N}

and Γ
(1)
0 (N) := Γ0(N) ∩ SL2(Fq [T ]).

Definition 2.1.1 A function f : GL2(K∞)/Γ∞K
∗
∞ → C is called an au-

tomorphic cusp form of Drinfeld type of level N if it satisfies the following
conditions:
i) f is harmonic, i.e. ,

f(X

(
0 1
π∞ 0

)
) = −f(X)

and ∑

β∈GL2(O∞)/Γ∞

f(Xβ) = 0

for all X ∈ GL2(K∞)/Γ∞K
∗
∞,

ii) f is invariant under Γ0(N), i.e. ,

f(AX) = f(X)
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for all X ∈ GL2(K∞)/Γ∞K
∗
∞ and A ∈ Γ0(N),

iii) f has compact support modulo Γ0(N), i.e. there are only finitely many
elements X̄ in Γ0(N)\GL2(K∞)/Γ∞K

∗
∞ with f(X̄) 6= 0.

Any function f on GL2(K∞)/Γ∞K
∗
∞ which is invariant under

(
1 Fq[T ]
0 1

)

has a Fourier expansion

f(

(
πm
∞ u
0 1

)
) =

∑

λ∈Fq [T ]

f∗(πm
∞, λ)ψ∞(λu) (2.1.3)

with

f∗(πm
∞, λ) =

∫

K∞/Fq[T ]

f(

(
πm
∞ u
0 1

)
)ψ∞(−λu) du,

where du is a Haar measure with
∫

K∞/Fq[T ]

du = 1.

Since

(
1 Fq[T ]
0 1

)
⊂ Γ0(N) this applies to automorphic cusp forms. In this

particular case the harmonicity conditions of Definition 2.1.1 imply

f∗(πm
∞, λ) = 0, if λ = 0 or if degλ+ 2 > m, (2.1.4)

f∗(πm
∞, λ) = q−m+deg λ+2f∗(πdeg λ+2

∞ , λ), if λ 6= 0 and degλ+ 2 ≤ m.

Hence we get the following:

Remark 2.1.2 All the Fourier coefficients of an automorphic cusp form f of
Drinfeld type are uniquely determined by the coefficients f ∗(πdeg λ+2

∞ , λ) for
λ ∈ Fq[T ].

To an automorphic cusp form f one can attach an L-series L(f, s) in the fol-
lowing way (cf. [We1], [We2]): Let m be an effective divisor of K of degree n,
then m = (λ)0 + (n− degλ)∞ with λ ∈ Fq[T ], deg λ ≤ n. We define

f∗(m) = f∗(πn+2
∞ , λ) and L(f, s) =

∑

m≥0

f∗(m)N(m)−s, (2.1.5)

where N(m) denotes the absolute norm of the divisor m.
The C-vector space of automorphic cusp forms of Drinfeld type of level N
is finite dimensional and it is equipped with a non-degenerate pairing, the
Petersson product, given by

(f, g) 7→
∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f · g.

There is the notion of oldforms, i.e. linear combinations of forms

g(

(
d 0
0 1

)
X), where g is an automorphic cusp form of level M , M |N
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and M 6= N , and d is a divisor of N/M . Automorphic cusp forms of Drinfeld
type which are perpendicular under the Petersson product to all the oldforms
are called newforms.
Important examples of newforms are the following: Let E be an elliptic curve
over K with conductor N · ∞, which has split multiplicative reduction at ∞,
then E belongs to a newform f of level N such that the L-series of E satisfies
([De])

L(E, s+ 1) = L(f, s). (2.1.6)

This newform is in addition an eigenform for all Hecke operators, but we do
not assume this property in general.
From now on let f be an automorphic cusp form of level N which is a newform.
Let L/K be an imaginary quadratic extension (i.e. a quadratic extension of K
where ∞ is not split) in which each (finite) divisor of N is not ramified. Then
there is a square free polynomial D ∈ Fq [T ], prime to N with L = K(

√
D).

We assume in this paper that D is an irreducible polynomial. In principle all
the arguments apply to the general case, but the details are technically more
complicated. We distinguish two cases. In the first case the degree of D is odd,
i.e. ∞ is ramified in L/K; in the second case the degree of D is even and its
leading coefficient is not a square in F∗

q , i.e. ∞ is inert in L/K.

The integral closure of Fq [T ] in L is OL = Fq[T ][
√
D].

Let A be an element of the class group Cl(OL) of OL. For an effective divisor
m = (λ)0 + (n− degλ)∞ (as above) we define

rA(m) = #{a ∈ A | a integral with NL/K(a) = λFq [T ]} (2.1.7)

and hence we get the partial zeta function attached to A as

ζA(s) =
∑

m≥0

rA(m)N(m)−s. (2.1.8)

For the calculations it is sometimes easier to define a function depending on
elements of Fq [T ] instead of divisors. We choose a0 ∈ A−1 and λ0 ∈ K with
NL/K(a0) = λ0 Fq[T ] and define

ra0,λ0(λ) = #{µ ∈ a0 | NL/K(µ) = λ0λ}. (2.1.9)

Then

rA(m) =
1

q − 1

∑

ε∈F∗
q

ra0,λ0(ελ).

The theta series is defined as

Θa0,λ0(

(
πm
∞ u
0 1

)
) =

∑

deg λ+2≤m

ra0,λ0(λ)ψ∞(λu). (2.1.10)
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We will see later that the transformation rules of this theta series are the
starting point of all our calculations.
Now we combine the L-series of a newform f (cf. (2.1.5)) and the partial zeta
function of A (cf. (2.1.8)) to obtain the function

L(f,A, s) =
∑

m≥0

f∗(m)rA(m)N(m)−s. (2.1.11)

For technical reasons we introduce

L(N,D)(2s+ 1) =
1

q − 1

∑

k∈Fq [T ]
gcd(k,N)=1

[
D

k

]
q−(2s+1) deg k, (2.1.12)

where

[
D

k

]
denotes the Legendre resp. the Jacobi symbol for the polynomial

ring Fq[T ]. For an irreducible k ∈ Fq[T ] and a coprime D ∈ Fq [T ] the Legendre

symbol

[
D

k

]
is by definition equal to 1 or −1 if D is or is not a square in

(Fq [T ]/kFq [T ])∗, respectively. If D is divisible by k, then

[
D

k

]
equals 0. This

definition is multiplicatively extended to the Jacobi symbol for arbitrary, not

necessarily irreducible k, so e.g.

[
D

k

]
=

[
D

k1

]
·
[
D

k2

]
if k = k1 · k2.

In the first case, where degD is odd, the function

L(N,D)(2s+ 1)L(f,A, s)
is the focus of our interest; in the case of even degree it is the function

1

1 + q−s−1
L(N,D)(2s+ 1)L(f,A, s).

This is motivated by the following fact:

Proposition 2.1.3 Let E be an elliptic curve with conductor N ·∞ and corre-
sponding newform f as above and let ED be its twist by D. Then the following
identities hold:

L(E, s+ 1)L(ED, s+ 1) =
∑

A∈Cl(OL)

L(N,D)(2s+ 1)L(f,A, s)

if degD is odd, and

L(E, s+ 1)L(ED, s+ 1) =
∑

A∈Cl(OL)

1

1 + q−s−1
L(N,D)(2s+ 1)L(f,A, s)

if degD is even.

It is not difficult to prove this fact using the definitions of the coefficients f ∗(m)
(cf. (2.1.5)) and rA(m) (cf. (2.1.7)) and the Euler products of the L-series of
the elliptic curves.
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2.2 Rankin’s Method

The properties of the automorphic cusp form f yield

f∗(πm
∞, λ) = q−m+1

∑

u∈π∞/πm
∞

f(

(
πm
∞ u
0 1

)
)ψ∞(−λu). (2.2.1)

We use this to calculate

L(f,A, s) =
1

q − 1

∞∑

m=2

(
∑

deg λ+2≤m

f∗(πm
∞, λ)ra0,λ0(λ)) q

−(m−2)s. (2.2.2)

Now we distinguish the two cases.

2.2.1 degD is odd

We continue with equations (2.2.1) and (2.2.2):

L(f,A, s)

=
q

q − 1

∞∑

m=2

∑

u∈π∞/πm
∞

f(

(
πm
∞ u
0 1

)
)Θa0,λ0(

(
πm
∞ u
0 1

)
) q−m(s+1)+2s

=
q

q − 1

∫

H∞

f(

(
πm
∞ u
0 1

)
)Θa0,λ0(

(
πm
∞ u
0 1

)
) q−m(s̄+1)+2s̄, (2.2.3)

where

H∞ :=

(
1 Fq[T ]
0 1

)
\
(
K∗

∞ K∞

0 1

)
/

(
O∗

∞ O∞

0 1

)
.

We consider the canonical mapping

H∞ → Γ
(1)
0 (ND)\GL2(K∞)/Γ∞K

∗
∞ =: G(ND),

which is surjective. We take the measure on G(ND) which counts the size of
the stabilizer of an element (cf. [Ge-Re], (4.8)). Then we get

L(f,A, s) =
q

2(q − 1)
(2.2.4)

·
∫

G(ND)

f(

(
πm
∞ u
0 1

)
)
∑

M

Θa0,λ0(M

(
πm
∞ u
0 1

)
) q−m∗(s̄+1)+2s̄

where the sum is taken over those M =

(
a b
c d

)
∈
(

1 Fq[T ]
0 1

)
\Γ(1)

0 (ND)

with M

(
πm
∞ u
0 1

)
∈ T+, and where m∗ = m− 2v∞(cu+ d).
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Remark 2.2.1 The definitions of T+ and T− (cf. (2.1.1), (2.1.2)) yield:

M

(
πm
∞ u
0 1

)
∈ T+ if and only if v∞(cπm

∞) > v∞(cu+ d).

In ([Rü1], Theorem 6.2) we showed that for those M satisfying v∞(cπm
∞) >

v∞(cu + d) one has the following transformation rule for the theta series (cf.
(2.1.10)):

Θa0,λ0(M

(
πm
∞ u
0 1

)
) = Θa0,λ0(

(
πm
∞ u
0 1

)
)

[
d

D

]
δcu+d q

−v∞(cu+d),

(2.2.5)

where

[
d

D

]
is the Legendre symbol (defined in section 2.1) and where δz denotes

the local norm symbol at ∞, i.e., δz is equal to 1 if z ∈ K∗
∞ is the norm of an

element in the quadratic extension K∞(
√
D)/K∞ and −1 otherwise.

Equations (2.2.4), (2.2.5) and the definition of L(N,D) (cf. (2.1.12)) yield:

L(N,D)(2s+ 1)L(f,A, s) =
q

2(q − 1)

∫

G(ND)

f · Θa0,λ0H1,s̄

with

H1,s(

(
πm
∞ u
0 1

)
) := q−m(s+1)+2s

∑

c,d∈Fq[T ]
c≡0modND
gcd(d,N)=1

v∞(cπm
∞)>v∞(cu+d)

[
d

D

]
δcu+d q

v∞(cu+d)(2s+1).

We see that Θa0,λ0H1,s is a function on G(ND).

Let µ : Fq [T ] → {0, 1,−1} be the Moebius function with

∑

e∈Fq [T ]
e|n

µ(e) = 0 if nFq[T ] 6= Fq[T ],

and
1

q − 1

∑

e∈F∗
q

µ(e) = 1,

then H1,s(

(
πm
∞ u
0 1

)
)

=
q−m(s+1)+2s

q − 1

∑

e|N

µ(e)
[ e
D

]
δe q

−(2s+1) deg eE(1)
s (

(
Nπm

∞

e
Nu
e

0 1

)
)
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with the Eisenstein series

E(1)
s (

(
πm
∞ u
0 1

)
) :=

∑

c,d∈Fq[T ]
c≡0modD

v∞(cπm
∞)>v∞(cu+d)

[
d

D

]
δcu+d q

v∞(cu+d)(2s+1). (2.2.6)

For a divisor e of N the function

Θa0,λ0(

(
πm
∞ u
0 1

)
) q−m(s+1)+2sE(1)

s (

(
Nπm

∞

e
Nu
e

0 1

)
)

on GL2(K∞)/Γ∞K
∗
∞ is invariant under Γ

(1)
0 (ND

e ).
Since we assume that f is a newform of level N , it is orthogonal (with respect
to the Petersson product) to functions of lower level. Therefore we get

Proposition 2.2.2 Let degD be odd, then

L(N,D)(2s+ 1)L(f,A, s) =
q

2(q − 1)

∫

G(ND)

f · Θa0,λ0H2,s̄

with H2,s(

(
πm
∞ u
0 1

)
)

:= q−m(s+1)+2sE(1)
s (

(
Nπm

∞ Nu
0 1

)
) (2.2.7)

= q−m(s+1)+2s
∑

c,d∈Fq[T ]
c≡0modD

v∞(cNπm
∞)>v∞(cNu+d)

[
d

D

]
δcNu+d q

v∞(cNu+d)(2s+1).

.

2.2.2 degD is even

We use equation (2.2.2) and the geometric series expansion of 1/(1+ q−s−1) to
evaluate

1

1 + q−s−1
L(f,A, s) =

1

q − 1

·
∞∑

m=2

q−(m−2)s
m∑

l=2

(
∑

deg λ+2≤l

f∗(πl
∞, λ)ra0 ,λ0(λ)) (−q−1)m−l.

Since f is an automorphic cusp form and hence f ∗(πl
∞, λ) = qm−lf∗(πm

∞, λ)
(cf. (2.1.4)), we get

1

1 + q−s−1
L(f,A, s) =

1

q − 1

·
∞∑

m=2

(
∑

deg λ+2≤m

f∗(πm
∞, λ)ra0 ,λ0(λ)) q

−(m−2)s (−1)m−deg λ + 1

2
.
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If ra0,λ0(λ) 6= 0, then deg λ ≡ deg λ0 mod 2, because degD is even. Now
equation (2.2.1) yields

1

1 + q−s−1
L(f,A, s) =

q

q − 1

·
∫

H∞

f(

(
πm
∞ u
0 1

)
)Θa0,λ0(

(
πm
∞ u
0 1

)
) q−m(s̄+1)+2s̄

(−1)m−deg λ0 + 1

2
.

Thus the right side of this equation differs from (2.2.3) only by the factor
((−1)m−deg λ0 +1)/2. But this factor is invariant under GL2(Fq [T ]) and hence
causes no problems here or in the next steps. Proceeding exactly as in the case
where degD is odd gives the following result:

Proposition 2.2.3 Let degD be even, then

1

1 + q−s−1
L(N,D)(2s+ 1)L(f,A, s) =

q

2(q − 1)
·

∫

G(ND)

f · Θa0,λ0H2,s̄
(−1)m−deg λ0 + 1

2

with H2,s given by equation (2.2.7).

2.3 Computation of the Trace

The function Θa0,λ0H2,s on GL2(K∞)/Γ∞K
∗
∞ is only invariant under

Γ
(1)
0 (ND). To make it invariant under Γ

(1)
0 (N) we compute the trace with

respect to the extension Γ
(1)
0 (ND)\Γ(1)

0 (N). The trace from Γ
(1)
0 (N) to Γ0(N)

is easy, this will be done at the very end of the calculations.
Since N and D are relatively prime, there are µ1, µ2 ∈ Fq[T ] with 1 = µ1N +
µ2D. The set

R = {
(

1 0
0 1

)
,

(
1 1

−µ2D µ1N

)(
0 −1
1 λ

)
(λ mod D)} (2.3.1)

is therefore a set of representatives of Γ
(1)
0 (ND)\Γ(1)

0 (N). Here we used the
assumption that D is irreducible. In order to evaluate

∑
M∈R Θa0,λ0H2,s(M · ),

we treat Θa0,λ0 and H2,s separately.
From ([Rü1], Prop. 4.4) we get, if m > v∞(u):

Θa0,λ0(

(
πm
∞

u2
1
u

0 1

)
) = Θa0,λ0(

(
πm
∞

D
u
D

0 1

)
)δu q

−v∞(u)δ−λ0q
− 1

2 deg Dε−1
0

where ε0 = 1 if degD is even and ε0 = δ−t(−1)α+1γ(p)α (q = pα ; γ(p) = 1 if
p ≡ 1 mod 4 or i otherwise) if degD is odd. Then one evaluates

Θa0,λ0(

(
0 −1
1 λ

)(
πm
∞ u
0 1

)
) = Θa0,λ0(

(
πm
∞

D
−(u+λ)

D
0 1

)
) · (2.3.2)

·δu+λ q
−v∞(u+λ)δλ0 q

− 1
2 deg Dε−1

0 .
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Now (2.2.5) and (2.3.2) yield the operation of the matrices M ∈ R (cf. (2.3.1))
on Θa0,λ0 .

The situation for H2,s and hence for the Eisenstein series E
(1)
s (cf. (2.2.6)) is

easier. Straightforward calculations (mainly transformations of the summation
indices) yield:

If

(
a b
c d

)
∈ SL2(Fq[T ]) with gcd(c,D) = 1 and if v∞(cπm

∞) > v∞(cu + d)

then

E(1)
s (

(
a b
c d

)(
πm
∞ u
0 1

)
) = E(D)

s (

(
πm
∞

D
u+c∗d

D )
0 1

)
)
[ c
D

]
·

·δD q−(2s+1) deg Dδcu+d q
−v∞(cu+d)(2s+1) (2.3.3)

with c∗ ≡ c−1 mod D. Here E
(D)
s is the Eisenstein series

E(D)
s (

(
πm
∞ u
0 1

)
) :=

∑

c,d∈Fq[T ]
v∞(cπm

∞)>v∞(cu+d)

[ c
D

]
δcu+d q

v∞(cu+d)(2s+1). (2.3.4)

2.3.1 degD is odd

We apply the results of this section ((2.3.2) and (2.3.3)) to Proposition 2.2.2.

Let G(N) be the set Γ
(1)
0 (N)\GL2(K∞)/Γ∞K

∗
∞.

Proposition 2.3.1 Let degD be odd, then

L(N,D)(2s+ 1)L(f,A, s) =
q

2(q − 1)

∫

G(N)

f · Φ(o)
s̄

with

Φ(o)
s (

(
πm
∞ u
0 1

)
) :=

∑

M∈R

Θa0,λ0H2,s(M

(
πm
∞ u
0 1

)
) (2.3.5)

= q−deg D
∑

λmodD

Θa0,λ0(

(
πm
∞

D
−(u+λ)

D
0 1

)
) Es(

(
πm
∞

D
u+λ
D

0 1

)
)

where Es(

(
πm
∞ u
0 1

)
)

:= q(s+1) deg D+2sq−m(s+1)

[
E(1)

s (

(
NDπm

∞ NDu
0 1

)
) (2.3.6)

+E(D)
s (

(
Nπm

∞ Nu
0 1

)
) δλ0DN ε−1

0

[
D

N

]
q(−

1
2−2s) deg D

]
.
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2.3.2 degD is even

We already mentioned that the factor ((−1)m−deg λ0 + 1)/2 is invariant un-
der the whole group GL2(Fq[T ]). Therefore it is not affected by the trace.
Proposition 2.2.3 yields the following.

Proposition 2.3.2 Let degD be even, then

1

1 + q−s−1
L(N,D)(2s+ 1)L(f,A, s) =

q

2(q − 1)

∫

G(N)

f · Φ(e)
s̄

with

Φ(e)
s (

(
πm
∞ u
0 1

)
) := Φ(o)

s (

(
πm
∞ u
0 1

)
)

(−1)m−deg λ0 + 1

2
. (2.3.7)

2.4 Holomorphic Projection

We want to evaluate an integral
∫

G(N) f · Φ, where f is our automorphic cusp

form of Drinfeld type of level N (cf. section 2.1) and Φ is any function on

G(N) = Γ
(1)
0 (N)\GL2(K∞)/Γ∞K

∗
∞. Since the Petersson product is non-

degenerate on cusp forms, we find an automorphic cusp form Ψ of Drinfeld

type for Γ
(1)
0 (N) (one has to modify the definition of cusp forms to Γ

(1)
0 (N) in

an obvious way) such that
∫

G(N)

g · Ψ =

∫

G(N)

g · Φ

for all cusp forms g.
If we set g = f we obtain our result. In this section we want to show how one
can compute the Fourier coefficients of Ψ from those of Φ. We already noticed
that only the coefficients Ψ∗(πdeg λ+2

∞ , λ) are important (cf. Remark 2.1.2).
For this we take g = Pλ, where Pλ (λ ∈ Fq[T ], λ 6= 0) are the Poincaré series
introduced in [Rü2], and evaluate (cf. [Rü2], Prop. 14)

∫

G(N)

Pλ · Ψ =
4

q − 1
Ψ∗(πdeg λ+2

∞ , λ). (2.4.1)

On the other hand we calculate (with transformations as in the proof of [Rü2],
Prop. 14)

∫

G(N)

Pλ · Φ = 2 lim
σ→1

∫

H∞

gλ,σ · (Φ − Φ̃) (2.4.2)

where

gλ,σ(

(
πm
∞ u
0 1

)
) :=

{
0 if degλ+ 2 > m
q−mσψ∞(λu) if degλ+ 2 ≤ m
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and where

Φ̃(

(
πm
∞ u
0 1

)
) := Φ(

(
πm
∞ u
0 1

)(
0 1
π∞ 0

)
). (2.4.3)

For these calculations we used again the canonical mapping (cf. section 2.2)

H∞ → G(N).

Since H∞ represents only the part T+ of GL2(K∞)/Γ∞K
∗
∞ (cf. section 2.1) and

since Φ is not necessarily harmonic, we also have to consider the function Φ̃.

Using the Fourier expansions

Φ(

(
πm
∞ u
0 1

)
) =

∑

µ

Φ∗(πm
∞, µ)ψ∞(µu)

Φ̃(

(
πm
∞ u
0 1

)
) =

∑

µ

Φ̃∗(πm
∞, µ)ψ∞(µu)

and the character relations for ψ∞, (2.4.2) yields

∫

G(N)

Pλ · Φ =
2

q
lim
σ→0

∞∑

m=deg λ+2

q−mσ(Φ∗(πm
∞, λ) − Φ̃∗(πm

∞, λ)). (2.4.4)

Finally, (2.4.1) and (2.4.4) prove:

Proposition 2.4.1 Let Φ : G(N) = Γ
(1)
0 (N)\GL2(K∞)/Γ∞K

∗
∞ → C be any

function, then there is an automorphic cusp form Ψ of Drinfeld type for Γ
(1)
0 (N)

such that ∫

G(N)

f · Ψ =

∫

G(N)

f · Φ.

The Fourier coefficients of Ψ can be evaluated by the formula

Ψ∗(πdeg λ+2
∞ , λ) =

q − 1

2q
lim
σ→0

∞∑

m=deg λ+2

q−mσ(Φ∗(πm
∞, λ) − Φ̃∗(πm

∞, λ)),

where Φ̃ is defined in (2.4.3).

Problems could arise since the limit may not exist. We will see this in the

following sections, where we apply this holomorphic projection formula to Φ
(o)
s ,

Φ
(e)
s (cf. (2.3.5) and (2.3.7)) or their derivatives.
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2.5 Fourier Expansions of Φ
(o)
s and Φ

(e)
s

In this section we evaluate the Fourier coefficients Φ
(o)∗
s (πm

∞, λ) and

Φ
(e)∗
s (πm

∞, λ) (cf. (2.3.5) and (2.3.7)). The function Θa0,λ0 is already de-
fined by its coefficients ra0,λ0 . It remains to evaluate the coefficients of Es (cf.

(2.3.6)) and therefore of the Eisenstein series E
(1)
s (cf. (2.2.6)) and E

(D)
s (cf.

(2.3.4)).
We introduce a “basic function” on GL2(K∞)/Γ∞K

∗
∞:

Fs(

(
πm
∞ u
0 1

)
) =

∑

λ

F ∗
s (πm

∞, λ)ψ∞(λu) :=
∑

d∈Fq[T ]
m>v∞(u+d)

δu+d q
v∞(u+d)(2s+1).

(2.5.1)

We recall that δz is the local norm symbol of z at ∞. At first we express the
Eisenstein series in terms of Fs. Elementary transformations give

E(1)
s (

(
NDπm

∞ NDu
0 1

)
) =

∑

d∈Fq[T ]
d6=0

[
D

d

]
q−(2s+1) deg d + δD q−(2s+1) deg D

·
∑

µ∈Fq[T ]
µ6=0




∑

c|µ
c≡0modD

F ∗
s (cNπm

∞,
µ

c
)
∑

dmodD

[
d

D

]
ψ∞(

µ

c

d

D
)


ψ∞(µNu).

The Gauss sum can be evaluated
∑

dmodD

[
d

D

]
ψ∞(λ

d

D
) =

[
λ

D

]
ε−1
0 q

1
2 deg D,

where ε0 is as in (2.3.2). Therefore

E(1)
s (

(
NDπm

∞ NDu
0 1

)
)

=
∑

d∈Fq[T ]
d6=0

[
D

d

]
q−(2s+1) deg d + ε−1

0 δD q(−2s− 1
2 ) deg D ·

·
∑

µ6=0

∑

c|µ
c≡0modD

[
µ/c

D

]
F ∗

s (cNπm
∞,

µ

c
)ψ∞(µNu). (2.5.2)

The same transformations as above yield

E(D)
s (

(
Nπm

∞ Nu
0 1

)
) =

∑

d∈Fq[T ]
d6=0

[
d

D

]
F ∗

s (dNπm
∞, 0) +

+
∑

µ6=0

∑

c|µ

[ c
D

]
F ∗

s (cNπm
∞,

µ

c
)ψ∞(µNu). (2.5.3)
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Now we have to evaluate the Fourier coefficients of the “basic function” Fs

(cf. (2.5.1)). This is not very difficult, though perhaps a little tedious to write
down in detail. One starts with the definition of the coefficients

F ∗
s (πm

∞, λ) = q−m+1
∑

u∈π∞/πm
∞

Fs(

(
πm
∞ u
0 1

)
)ψ∞(−λu)

and uses the character relations for ψ∞. We do not carry it out in detail. As
the local norm symbol δz behaves differently we have to distinguish again the
two cases.

2.5.1 degD is odd

L∞/K∞ is ramified and the local norm symbol for z = ezπ
n
∞ + . . . is given by

δz = χ2(ez) δ
n
T (χ2 is the quadratic character on F∗

q ; we recall that π∞ = T−1).
We get:

Lemma 2.5.1 Let degD be odd, then

F ∗
s (πm

∞, µ) =

{
0 , if either µ = 0 or degµ+ 2 > m

ε−1
0 q

1
2 δµ q

2s(deg µ+1) , if µ 6= 0 and deg µ+ 2 ≤ m.

Now (2.5.2), (2.5.3), Lemma 2.5.1 and the definition of Es in (2.3.6) give:

Proposition 2.5.2 Let degD be odd, then

Es(

(
πm
∞ u
0 1

)
) =

∑

µ∈Fq [T ]
deg(µN)+2≤m

es(π
m
∞, µ)ψ∞(µNu)

with

es(π
m
∞, 0) = q(s+1) deg D+2s−m(s+1)

∑

d∈Fq[T ]
d6=0

[
D

d

]
q−(2s+1) deg d (2.5.4)

and (µ 6= 0)

es(π
m
∞, µ) = q(−s+ 1

2 ) deg D+4s+ 1
2−m(s+1)+2s deg µ · (2.5.5)

· (
∑

c|µ
c≡0modD

[
D

µ/c

]
q−2s deg c + δλ0Nµ

[
D

N

]∑

c|µ

[
D

c

]
q−2s deg c).

2.5.2 degD is even

L∞/K∞ is inert and the local norm symbol for z = ezπ
n
∞ + . . . is given by

δz = (−1)n.
We get:
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Lemma 2.5.3 Let degD be even, then

F ∗
s (πm

∞, 0) =
1 − q

q2s + 1
(−q2s)m,

and (µ 6= 0 with degµ+ 2 ≤ m)

F ∗
s (πm

∞, µ) =
(−q2s)deg µ+1

q2s + 1
((1 − q)(−q2s)m−deg µ−1 − 1 − q2s+1).

Again (2.5.2), (2.5.3), Lemma 2.5.3 and the definition of Es in (2.3.6) give:

Proposition 2.5.4 Let degD be even, then

Es(

(
πm
∞ u
0 1

)
) =

∑

µ∈Fq [T ]
deg(µN)+2≤m

es(π
m
∞, µ)ψ∞(µNu)

with

es(π
m
∞, 0) = qdeg D(s+1)−m(s+1)+2s(

∑

d∈Fq[T ]
d6=0

[
D

d

]
q−(2s+1) deg d

+
1 − q

q2s + 1
qdeg D(− 1

2−2s)+2sm−2s deg N

(−1)deg λ0+m

[
D

N

] ∑

d∈Fq[T ]
d6=0

[
D

d

]
q−2s deg d) (2.5.6)

and (µ 6= 0)

es(π
m
∞, µ) = qm(−s−1)+2s+deg D(−s+ 1

2 ) · (2.5.7)
(
(
∑

c|µ
c≡0modD

[
D

µ/c

]
q−2s deg c)(

1 − q

q2s + 1
(−1)m−deg N−deg µ q2s(m−deg N)

+
q2s+1 + 1

q2s + 1
q2s(deg µ+1))

+

[
D

N

]
(
∑

c|µ

[
D

c

]
q−2s deg c)(

1 − q

q2s + 1
(−1)deg λ0+m q2s(m−deg N)

+
q2s+1 + 1

q2s + 1
(−1)deg λ0+deg N+deg µ q2s(deg µ+1))

)
.

2.6 Fourier Expansions of Φ̃
(o)
s and Φ̃

(e)
s

In accordance with (2.4.3) let Φ̃
(o)
s (resp. Φ̃

(e)
s ) on GL2(K∞)/Γ∞K

∗
∞ be defined

as Φ̃
(o)
s (X) = Φ

(o)
s (X

(
0 1
π∞ 0

)
) (resp. Φ̃

(e)
s (X) = Φ

(e)
s (X

(
0 1
π∞ 0

)
)).
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The situation is more complicated than in the last section. To extend functions
canonically from T+ (cf. (2.1.1)) to the whole of GL2(K∞)/Γ∞K

∗
∞ we need

the following proposition.

Proposition 2.6.1 Let χD : (Fq [T ]/DFq[T ])∗ → C∗ be a character modulo
D and let χ∞ : K∗

∞ → C∗ be a character which vanishes on the subgroup of

1-units O
(1)
∞ = {x ∈ K∗

∞ | v∞(x− 1) > 0}.
Let F : T+ → C be a function which satisfies

F (

(
a b
c d

)(
πm
∞ u
0 1

)
) = F (

(
πm
∞ u
0 1

)
)χD(d)χ∞(cu+ d),

for all

(
a b
c d

)
∈ Γ

(1)
0 (D) with

(
a b
c d

)(
πm
∞ u
0 1

)
∈ T+.

Then F can be defined on GL2(K∞)/Γ∞K
∗
∞ with

F (

(
a b
c d

)(
πm
∞ u
0 1

)
) = F (

(
πm
∞ u
0 1

)
)χD(d) ·

·
{
χ∞(cu+ d) , if v∞(cπm

∞) > v∞(cu+ d)
χ∞(c−1) , if v∞(cπm

∞) ≤ v∞(cu+ d).
(2.6.1)

Proof. We already know that

(
a b
c d

)(
πm
∞ u
0 1

)
∈ T+ is equivalent to

v∞(cπm
∞) > v∞(cu + d) (cf. Remark 2.2.1). For each X ∈ GL2(K∞)/Γ∞K

∗
∞

there is A ∈ Γ
(1)
0 (D) and

(
πm
∞ u
0 1

)
∈ T+ such that X = A

(
πm
∞ u
0 1

)
in

GL2(K∞)/Γ∞K
∗
∞. Then we define F (X) by equation (2.6.1). The assumption

on F guarantees that this definition is independent of the choice of A and(
πm
∞ u
0 1

)
. �

We apply this proposition to Θa0,λ0 (cf. (2.1.10)) and to the Eisenstein series.

The Eisenstein series E
(i)
s (i = 1, D) (cf. (2.2.6), (2.3.4)) satisfy

E(i)
s (

(
a b
c d

)(
πm
∞ u
0 1

)
) = E(i)

s (

(
πm
∞ u
0 1

)
) ·

·
[
d

D

]
δcu+d q

−v∞(cu+d)(2s+1)

if

(
a b
c d

)
∈ Γ

(1)
0 (D) and v∞(cπm

∞) > v∞(cu+ d). We can apply Proposition

2.6.1 with χD(d) =

[
d

D

]
and χ∞(z) = δz q

−v∞(z)(2s+1).

Hence

E(1)
s (

(
πm
∞ u
0 1

)(
0 1
π∞ 0

)
) =

∑

c,d∈Fq[T ]
c≡0modD

v∞(cπm
∞)≤v∞(cu+d)

[
d

D

]
δ−c q

v∞(c)(2s+1)
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and

E(D)
s (

(
πm
∞ u
0 1

)(
0 1
π∞ 0

)
) =

∑

c,d∈Fq[T ]
v∞(cπm

∞)≤v∞(cu+d)

[ c
D

]
δ−c q

v∞(c)(2s+1).

We denote these functions by Ẽ
(1)
s and

˜
E

(D)
s as above. Starting with the

definition of the Fourier coefficients we calculate

Ẽ
(1)
s (

(
NDπm

∞ NDu
0 1

)
)

=
∑

µ6=0
deg(µN)+2≤m

[
ε0 q

deg D(−2s− 1
2 )+deg N(−2s)+1−m ·

·δµND

∑

c|µ
c≡0modD

[
D

µ/c

]
q−2s deg c

]
ψ∞(µNu) (2.6.2)

and

˜
E

(D)
s (

(
Nπm

∞ Nu
0 1

)
) = qdeg N(−2s)+1−mδ−N

∑

c6=0

[
D

c

]
q−2s deg c +

+
∑

µ6=0
deg(µN)+2≤m


qdeg N(−2s)+1−mδ−N

∑

c|µ

[
D

c

]
q−2s deg c


ψ∞(µNu). (2.6.3)

In addition we have ˜q−m(s+1) = q−(1−m)(s+1), therefore (2.6.2) and (2.6.3) give:

Proposition 2.6.2 Let degD be odd or even, then

Ẽs(

(
πm
∞ u
0 1

)
) := Es(

(
πm
∞ u
0 1

)(
0 1
π∞ 0

)
) =

∑

µ∈Fq[T ]
deg(µN)+2≤m

ẽs(π
m
∞, µ)ψ∞(µNu)

with

ẽs(π
m
∞, 0) = qdeg D(−s+ 1

2 )+deg N(−2s)+ms+sε−1
0 δλ0

[
D

N

]∑

d6=0

[
D

c

]
q−2s deg d

(2.6.4)

and (µ 6= 0)

ẽs(π
m
∞, µ) = qdeg D(−s+ 1

2 )+deg N(−2s)+ms+sε−1
0 · (2.6.5)

(
δµN

∑

c|µ
c≡0modD

[
D

µ/c

]
q−2s deg c + δλ0

[
D

N

]∑

c|µ

[
D

c

]
q−2s deg c

)
.
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For Θa0,λ0 it is not just straightforward calculation. In the following we make
use of the fact that the Fourier coefficients ra0,λ0(λ) of Θa0,λ0 are independent
of πm

∞ if deg λ+ 2 ≤ m.

Θa0,λ0 satisfies Proposition 2.6.1 with χD(d) =

[
d

D

]
and χ∞(z) = δz q

−v∞(z)

(cf. (2.2.5)). Again we denote Θ̃a0,λ0(·) = Θa0,λ0(·
(

0 1
π∞ 0

)
).

Let πm
∞ ∈ K∗

∞ and u ∈ K∞. Choose c, d ∈ Fq[T ] with c ≡ 0 mod D, gcd(c, d) =
1 and v∞(u+ d

c ) ≥ m+ 1 and find a, b ∈ Fq [T ] with ad− bc = 1. Then for all
k ∈ Z with k ≤ m+ 1 there is the following identity in GL2(K∞)/Γ∞K

∗
∞:

(
πk
∞ u
0 1

)(
0 1
π∞ 0

)
=

(
d −b
−c a

)(
π1−k
∞

c2
a
c

0 1

)

We use this identity for k = m and k = m+ 1. Then Proposition 2.6.1 gives

Θ̃a0,λ0(

(
πm
∞ u
0 1

)
) − Θ̃a0,λ0(

(
πm+1
∞ u
0 1

)
) =

[
d

D

]
δ−c q

v∞(c) ·

·
∑

deg µ+2=1−m+2deg c

ra0,λ0(µ)ψ∞(µ
a

c
). (2.6.6)

On the other hand we set uε = −d
c + επm

∞ for ε ∈ F∗
q , we compare a

c with auε+b
cuε+d

and sum over all ε:

(q − 1)Θ̃a0,λ0(

(
πm
∞ u
0 1

)
) −

[
d

D

]
δ−c q

v∞(c)
∑

ε∈F∗
q

Θa0,λ0(

(
π1−m
∞

c2
auε+b
cuε+d

0 1

)
)

= q

[
d

D

]
δ−c q

v∞(c)
∑

deg µ+2=1−m+2 deg c

ra0,λ0(µ)ψ∞(µ
a

c
). (2.6.7)

Now (
π1−m
∞

c2
auε+b
cuε+d

0 1

)
=

(
a b
c d

)(
πm+1
∞ uε

0 1

)

in GL2(K∞)/Γ∞K
∗
∞. We use this to evaluate the corresponding value of

Θa0,λ0 . A combination of (2.6.6) and (2.6.7) therefore gives

q Θ̃a0,λ0(

(
πm+1
∞ u
0 1

)
) − Θ̃a0,λ0(

(
πm
∞ u
0 1

)
)

= δ−πm
∞
q−m

∑

ε∈F∗
q

δεΘa0,λ0(

(
πm+1
∞ u+ επm

∞

0 1

)
). (2.6.8)

If we evaluate in (2.6.8) the Fourier coefficients at λ with degλ + 2 ≤ m, we
get the recursion formula

q Θ̃a0,λ0

∗

(πm+1
∞ , λ) − Θ̃a0,λ0

∗

(πm
∞, λ) = δπm

∞
q−m

∑

ε∈F∗
q

δεra0,λ0(λ). (2.6.9)
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The Fourier coefficient in (2.6.8) at λ with deg λ+ 2 = m+ 1 yields

q Θ̃a0,λ0

∗

(πdeg λ+2
∞ , λ) = δπdeg λ+1

∞
q−deg λ−1

∑

ε∈F∗
q

δεψ∞(−λεπdeg λ+1
∞ )ra0,λ0(λ).

(2.6.10)

For λ = 0 we calculate

Θ̃a0,λ0

∗

(π∞, 0) = q−
1
2 deg Dδλ0ε

−1
0

∑

deg µ+2≤deg D

ra0,λ0(µ). (2.6.11)

It is now obvious how one evaluates Θ̃a0,λ0

∗
(πm

∞, λ) with the recursion formula
(2.6.9) and the starting values (2.6.10) and (2.6.11). Here again we have to
consider the two cases separately.

Proposition 2.6.3 Let degD be odd, then

Θ̃a0,λ0(

(
πm
∞ u
0 1

)
) =

∑

deg λ+2≤m

Θ̃a0,λ0

∗
(πm

∞, λ)ψ∞(λu)

with

Θ̃a0,λ0

∗
(πm

∞, λ) = q
1
2 q−mε−1

0 δλ0ra0,λ0(λ). (2.6.12)

Proposition 2.6.4 Let degD be even, then

Θ̃a0,λ0(

(
πm
∞ u
0 1

)
) =

∑

deg λ+2≤m

Θ̃a0,λ0

∗
(πm

∞, λ)ψ∞(λu)

with

Θ̃a0,λ0

∗

(πm
∞, λ) = q−m(−1)deg λ0

(q + 1

2
+
q − 1

2
(−1)m+deg λ0−1

)
ra0,λ0(λ).

(2.6.13)

2.7 Functional Equations

In this section we modify the representations of the L-series of Proposition
2.3.1 and Proposition 2.3.2. With these new formulas we can prove functional
equations for the L-series. Later we will use them to get our final results.

2.7.1 degD is odd

Since f is an automorphic cusp form of Drinfeld type and therefore satisfies
(cf. Definition 2.1.1)

f(X

(
0 1
π∞ 0

)
) = −f(X) for all X ∈ GL2(K∞)/Γ∞K

∗
∞,

we can transform the integral in Proposition 2.3.1, and get:
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Lemma 2.7.1 Let degD be odd, then

L(N,D)(2s+ 1)L(f,A, s) =
q

4(q − 1)

∫

G(N)

f · F (o)
s̄

with

F (o)
s (X) := Φ(o)

s (X) − Φ̃
(o)
s (X),

whose Fourier coefficients are

F (o)∗
s (πm

∞, λ) = −F̃ (o)
s

∗

(πm
∞, λ) = Φ(o)∗

s (πm
∞, λ) − Φ̃

(o)
s

∗

(πm
∞, λ).

Now we evaluate F
(o)∗
s (πm

∞, λ). We start with the definition (cf. Proposition
2.3.1)

Φ(o)
s (

(
πm
∞ u
0 1

)
) = q−deg D ·

·
∑

λmodD

Θa0,λ0(

(
πm
∞

D
−(u+λ)

D
0 1

)
) Es(

(
πm
∞

D
u+λ
D

0 1

)
)

and use the Fourier coefficients of Θa0,λ0 (cf. (2.1.10)) and Es (cf. (2.3.6) and
Proposition 2.5.2) to evaluate

Φ(o)∗
s (πm

∞, λ) =
∑

µ∈Fq [T ]
deg(µN)+2≤m+deg D

ra0,λ0(µN − λD) es(π
m+deg D
∞ , µ). (2.7.1)

On the other hand, if

(
a b
c d

)
∈ SL2(Fq [T ]) with b, c ≡ 0 mod D and if u is

such that v∞(u + d/c) ≥ m, then we have (using the transformation rules of
Θa0,λ0 and Es):

Φ̃
(o)
s (

(
πm
∞ u
0 1

)
) = Φ(o)

s (

(
π1−m
∞

c2
a
c

0 1

)
).

When we expand this equation with Fourier coefficients, we get

Φ̃
(o)
s

∗

(πm
∞, λ) =

∑

µ∈Fq[T ]
deg(µN)+2≤m+deg D

Θ̃a0,λ0

∗
(πm+deg D

∞ , µN − λD) ẽs(π
m+deg D
∞ , µ) δD.

(2.7.2)

Now we replace es, Θ̃a0,λ0

∗

and ẽs in (2.7.1) and (2.7.2) by (2.5.5), (2.6.12) and
(2.6.5), and we get:
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Proposition 2.7.2 Let degD be odd and degλ+ 2 ≤ m, then

Φ(o)∗
s (πm

∞, λ) − Φ̃
(o)
s

∗

(πm
∞, λ) = ra0,λ0(−λD) q−m− 1

2 deg D+ 1
2 ·

(
(
∑

d∈Fq[T ]
d6=0

[
D

d

]
q−(2s+1) deg d) q−ms+2s+ 1

2 deg D− 1
2

−(
∑

d∈Fq[T ]
d6=0

[
D

d

]
q−2s deg d)

[
D

N

]
qms−2s deg N+s

)

+
∑

µ∈Fq [T ] , µ6=0
deg(µN)+2≤m+deg D

ra0,λ0(µN − λD) q−m− 1
2 deg D+ 1

2 ·

(
(
∑

c|µ
c≡0modD

[
D

µ/c

]
q−2s deg c)(q−2s deg D−ms+4s+2s deg µ − δλ0Nµ q

ms−2s deg N+s)

+(
∑

c|µ

[
D

c

]
q−2s deg c)

[
D

N

]
(δλ0Nµ q

−2s deg D−ms+4s+2s deg µ − qms−2s deg N+s)
)
.

With these formulas we prove the following result:

Theorem 2.7.3 Let degD be odd, then

q(deg N+deg D− 5
2 )s (Φ(o)∗

s (πm
∞, λ) − Φ̃

(o)
s

∗

(πm
∞, λ)) =

−
[
D

N

]
q(deg N+deg D− 5

2 )(−s) (Φ
(o)∗
−s (πm

∞, λ) − Φ̃
(o)
−s

∗

(πm
∞, λ)),

and therefore Lemma 2.7.1 implies that

Z(s) := q(deg N+deg D− 5
2 )sL(N,D)(2s+ 1)L(f,A, s)

satisfies the functional equation

Z(s) = −
[
D

N

]
Z(−s).

Proof. One can verify the functional equation for Φ
(o)∗
s (πm

∞, λ)− Φ̃
(o)
s

∗

(πm
∞, λ)

independently for each summand (summation over µ ∈ Fq[T ]) in the formula
of Proposition 2.7.2 if one applies the following remarks:
a) For the first summand we mention (cf. [Ar]) that

LD(s) :=
1

q − 1

∑

d∈Fq[T ]
d6=0

[
D

d

]
q−s deg d (2.7.3)
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is the L-series of the extension K(
√
D)/K and satisfies

LD(2s+ 1) = qs(−2 deg D+2)− 1
2 deg D+ 1

2LD(−2s). (2.7.4)

b) Let µ ∈ Fq [T ], µ 6= 0 with ra0,λ0(µN − λD) 6= 0. Then there is κ ∈ L with

NL/K(κ) = λ0(µN −λD) (cf. (2.1.9)). Hence we get

[
D

µ

]
=

[
D

N

]
δλ0Nµ. This

implies

∑

c|µ

[
D

c

]
q−2s deg c = q−2s deg µ

[
D

N

]
δλ0Nµ

∑

c|µ

[
D

c

]
q2s deg c (2.7.5)

if µ 6≡ 0 mod D.
c) For µ ∈ Fq[T ] with µ ≡ 0 mod D, it is easy to see that

∑

c|µ

[
D

c

]
q−2s deg c = q−2s deg µ

∑

c|µ
c≡0modD

[
D

µ/c

]
q2s deg c. � (2.7.6)

2.7.2 degD is even

The automorphic cusp form f of Drinfeld type satisfies (cf. Definition 2.1.1)
∑

β∈GL2(O∞)/Γ∞

f(Xβ) = 0 for all X ∈ GL2(K∞)/Γ∞K
∗
∞.

With this identity a transformation of the integral in Proposition 2.3.2 yields
immediately:

Lemma 2.7.4 Let degD be even, then

1

1 + q−s−1
L(N,D)(2s+ 1)L(f,A, s) =

q

2(q − 1)

∫

G(N)

f · F (e)
s̄

with

F (e)
s (X) :=

q

q + 1
Φ(e)

s (X) − 1

q + 1

∑

β∈GL2(O∞)/Γ∞

β 6=1

Φ(e)
s (Xβ),

whose Fourier coefficients are

F (e)∗
s (πm

∞, λ) =

{
q

q+1 (Φ
(e)∗
s (πm

∞, λ) − Φ̃
(e)
s

∗

(πm+1
∞ , λ)), if m ≡ deg λ0 mod 2

0 , if m 6≡ deg λ0 mod 2

and

F̃
(e)
s

∗

(πm
∞, λ) =





0 , if m ≡ deg λ0 mod 2

1
q+1 (Φ̃

(e)
s

∗

(πm
∞, λ) − Φ

(e)∗
s (πm−1

∞ , λ)), if m 6≡ deg λ0 mod 2

and degλ+ 2 < m

Φ̃
(e)
s

∗

(πm
∞, λ) , if m 6≡ deg λ0 mod 2

and degλ+ 2 = m .
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The calculations of F
(e)∗
s (πm

∞, λ) and F̃
(e)
s

∗

(πm
∞, λ) are similar to those above

and use Propositions 2.5.4, 2.6.2 and 2.6.4 developed in the previous sections.
We only give the results.

Proposition 2.7.5 Let degD be even, then

Φ(e)∗
s (πm

∞, λ) − Φ̃
(e)
s

∗

(πm+1
∞ , λ) = ra0,λ0(−λD) q−m− 1

2 deg D ·
(
(
∑

d∈Fq[T ]
d6=0

[
D

d

]
q−(2s+1) deg d) q−ms+2s+ 1

2 deg D

+(
∑

d∈Fq[T ]
d6=0

[
D

d

]
q−2s deg d)

[
D

N

]
qms−2s deg N+2s−q1−s − qs

qs + q−s

)

+
∑

µ∈Fq [T ] , µ6=0
deg(µN)+2≤m+deg D

ra0,λ0(µN − λD) q−m− 1
2 deg D ·

(
(
∑

c|µ
c≡0modD

[
D

µ/c

]
q−2s deg c)((−1)deg(λ0Nµ)qms−2s deg N+2s −q1−s − qs

qs + q−s

+q−ms−2s deg D+2s deg µ+4s q
−s + q1+s

qs + q−s
)

+(
∑

c|µ

[
D

c

]
q−2s deg c)

[
D

N

]
(qms−2s deg N+2s−q1−s − qs

qs + q−s

+(−1)deg(λ0Nµ)q−ms−2s deg D+2s deg µ+4s q
−s + q1+s

qs + q−s
)
)
,

if m ≡ deg λ0 mod 2, and

Φ̃
(e)
s

∗

(πdeg λ+2
∞ , λ) =

∑

µ∈Fq[T ] , µ6=0
deg(µN)=deg(λD)

ra0,λ0(µN − λD) q− deg λ−1− 1
2 deg D ·

(
− (

∑

c|µ
c≡0modD

[
D

µ/c

]
q−2s deg c) +

[
D

N

]
(
∑

c|µ

[
D

c

]
q−2s deg c)

)

· qs deg λ−2s deg N+3s

if degλ 6≡ deg λ0 mod 2.

The proof of the following functional equation is completely analogous to the
proof in the first case. Parts b) and c) in the proof of Theorem 2.7.3 are the
same, part a) has to be replaced by the functional equation for degD even
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(cf. [Ar])

LD(−2s+ 1) =
1 + q1−2s

1 + q2s
qdeg D(2s− 1

2 )LD(2s). (2.7.7)

We get

Theorem 2.7.6 Let degD be even, then

q(deg N+deg D−3)s (Φ(e)∗
s (πm

∞, λ) − Φ̃
(e)
s

∗

(πm+1
∞ , λ)) =

−
[
D

N

]
q(deg N+deg D−3)(−s) (Φ

(e)∗
−s (πm

∞, λ) − Φ̃
(e)
−s

∗

(πm+1
∞ , λ)),

if m ≡ deg λ0 mod 2, and therefore Lemma 2.7.4 implies that

Z(s) := q(deg N+deg D−3)s 1

1 + q−s−1
L(N,D)(2s+ 1)L(f,A, s)

satisfies the functional equation

Z(s) = −
[
D

N

]
Z(−s).

2.8 Derivatives of L-Series

The functional equations in Theorem 2.7.3 and Theorem 2.7.6 show that the

L-series have a zero at s = 0, if

[
D

N

]
= 1. From now on we assume that

[
D

N

]
= 1, and we want to compute the derivatives of the L-series at s = 0.

2.8.1 degD is odd

The first calculations are straightforward, we will only sketch this procedure.
We start with the representation of L(N,D)(2s + 1)L(f,A, s) in Lemma 2.7.1,

then we evaluate the derivatives ∂
∂sF

(o)
s |s=0 and ∂

∂s F̃
(o)
s |s=0 from Proposition

2.7.2 by ordinary calculus. To simplify the formulas we introduce

t(µ,D) :=

{
1 , if µ ≡ 0 mod D
0 , if µ 6≡ 0 mod D

, (2.8.1)

and we consider the function LD(s) defined in equation (2.7.3). It is known
that

hL := #Cl(OL) = LD(0).

In addition we use equations (2.7.4), (2.7.5) and (2.7.6).
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Then we apply the holomorphic projection formula of Proposition 2.4.1 and
evaluate

lim
σ→0

∞∑

m=deg λ+2

q−mσ(
∂

∂s
F (o)∗

s (πm
∞, λ) |s=0 − ∂

∂s
F̃

(o)
s

∗

(πm
∞, λ) |s=0).

In Proposition 2.7.2 there is a summation over µ ∈ Fq [T ] with deg(µN) + 2 ≤
m + degD. We divide this summation into two parts. The first sum is over
those µ with deg(µN) ≤ deg(λD) and the second sum is over those µ with
deg(µN) > deg(λD). This is done in view of the following lemma.

Lemma 2.8.1 Let µ ∈ Fq[T ], µ 6= 0 with ra0,λ0(µN − λD) 6= 0, then
a)

1 − δλ0Nµ

2
(t(µ,D) − 1)(

∑

c|µ

[
D

c

]
) = 0

and
b)

δλ0Nµ = 1 if deg(µN) > deg(λD).

Proof. The proof is an immediate consequence of

[
D

µ

]
=

[
D

N

]
δλ0Nµ, which

was shown in the proof of Theorem 2.7.3, part b). �

Now at the end of our calculations we have to apply the trace corresponding

to Γ
(1)
0 (N) ⊂ Γ0(N) to get a cusp form of level N (and not just a cusp form

for the subgroup Γ
(1)
0 (N)). We recall that

∑

ε∈F∗
q

ra0,λ0(εµ) = (q − 1)rA((µ)).

A heuristic consideration, based on the holomorphic projection formula of
Proposition 2.4.1 and on our calculations, would then give:

∂

∂s
(L(N,D)(2s+ 1)L(f,A, s)) |s=0=

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f · ΨA,
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where ΨA is an automorphic cusp form of Drinfeld type of level N with

Ψ∗
A(πdeg λ+2

∞ , λ) =
ln q

2
q−(deg D+1)/2 q− deg λ

·
{

(q − 1) rA((λ)) hL

(
degN − deg(λD) − q + 1

2(q − 1)
− 2

ln q

L′
D(0)

LD(0)

)

+
∑

µ6=0
deg(µN)≤deg(λD)

rA((µN − λD))

(
(
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

1 + δ(µN−λD)µN

2
·

· (deg(
µN

λD
) − q + 1

2(q − 1)
) − (1 − δ(µN−λD)µN ) (

∑

c|µ

[
D

c

]
) degµ

+ (1 − δ(µN−λD)µN ) (t(µ,D) + 1) (
∑

c|µ

[
D

c

]
deg c)

)

− q + 1

2(q − 1)
lim
σ→0

∑

deg(µN)>deg(λD)

rA((µN − λD)) (
∑

c|µ

[
D

c

]
) (t(µ,D) + 1) ·

· q(−σ−1) deg( µN
λD ) (q − 1)2(q + q−σ)

(q + 1)(qσ+1 − 1)2
q(−σ) deg λ

}
, (2.8.2)

provided the limit exists. But unfortunately this is not the case.
In order to get the final result, we proceed as follows:
1) We evaluate the pole of the limit in (2.8.2).
2) We find a function h on Γ0(N)\GL2(K∞)/Γ∞K

∗
∞, whose holomorphic pro-

jection formula gives the same pole part as in (2.8.2) and which is perpendicular
to f under the Petersson product.

3) We replace ∂
∂sF

(o)
s |s=0 by ∂

∂sF
(o)
s |s=0 −h in the derivative of the equation

in Lemma 2.7.1 and in our calculations.
We start with 1): From section 3.5.1 we get the following result (independently
of these calculations):
Let C1 := 2(q − 1)2/[GL2(Fq [T ]) : Γ0(N)], then the limit

lim
σ→0

(
∑

deg(µN)>deg(λD)

rA((µN − λD)) (
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

· q(−σ−1) deg( µN
λD ) − C1 hL (

∑

a|λ

qdeg a)
1

1 − q−σ

)

exists. But for this we have to adjust our assumptions. From now on N has

to be square free with

[
D

P

]
= 1 for each prime divisor P of N and we only

consider those λ with gcd(λ,N) = 1.
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We use this to calculate

lim
σ→0

(
∑

deg(µN)>deg(λD)

rA((µN − λD)) (
∑

c|µ

[
D

c

]
) (t(µ,D) + 1) q(−σ−1) deg( µN

λD )

· (q − 1)2(q + q−σ)

(q + 1)(qσ+1 − 1)2
q(−σ) deg λ − C1 hL (

∑

a|λ

qdeg a)
q(−σ)(deg λ+2)

1 − q−σ

)

= lim
σ→0

(
∑

deg(µN)>deg(λD)

rA((µN − λD)) (
∑

c|µ

[
D

c

]
) (t(µ,D) + 1) q(−σ−1) deg( µN

λD )

− C1 hL (
∑

a|λ

qdeg a)
1

1 − q−σ

)
+ (
∑

a|λ

qdeg a) · C2, (2.8.3)

where C2 is a certain constant.
2) To find the function h we introduce for s > 1:

g0,s(

(
πm
∞ u
0 1

)
) := −g0,s(

(
πm
∞ u
0 1

)(
0 1
π∞ 0

)
) := q−ms

and the Eisenstein series

Gs(X) :=
∑

M

g0,s(M ·X),

where the sum is taken over M ∈
(

1 Fq[T ]
0 1

)
\SL2(Fq[T ]). Then Gs is a

function on GL2(K∞)/Γ∞K
∗
∞, which is invariant under SL2(Fq [T ]) and which

satisfies G̃s = −Gs. In addition Gs is perpendicular to cusp forms. This can
be shown analogously to calculations in the proof of [Rü2], Proposition 14 (in
fact Gs can be seen as a Poincaré series for µ = 0).
We evaluate the Fourier coefficients of Gs in a straightforward way (cf. proof
of [Rü2], Proposition 8) and get for degλ+ 2 ≤ m, λ 6= 0:

G∗
s(π

m
∞, λ) = (

∑

a|λ

q−(2s−1) deg a)

·
(
(1 − q2s) qs(2 deg λ−m)−deg λ + (qs + 1)(q1−s − 1) qs(m−2)+1−m

)
.

The coefficients G∗
s(π

m
∞, 0) are not important, because they play no role in the

holomorphic projection formula.
Now we define the Eisenstein series G by its Fourier coefficients

G∗(πm
∞, λ) := lim

s→1
G∗

s(π
m
∞, λ),

and H by

H∗(πm
∞, λ) := lim

s→1

∂

∂s
G∗

s(π
m
∞, λ).

Documenta Mathematica 5 (2000) 365–444



394 Hans-Georg Rück and Ulrich Tipp

In the next step we evaluate the holomorphic projection formulas for G and H
and we get

lim
σ→0

∞∑

m=deg λ+2

q−mσ(G∗(πm
∞, λ) − G̃∗(πm

∞, λ)) = −2(q + 1) q−deg λ−1(
∑

a|λ

qdeg a),

(2.8.4)

and

lim
σ→0

∞∑

m=deg λ+2

q−mσ(H∗(πm
∞, λ) − H̃∗(πm

∞, λ)) = −2(q + 1) q−deg λ−1 ln q

·
(
− (
∑

a|λ

qdeg a(deg λ− 2 dega)) + (
∑

a|λ

qdeg a) lim
σ→0

q(−σ)(deg λ+2)

1 − q−σ

− 1

q + 1
(
∑

a|λ

qdeg a)
)
. (2.8.5)

This construction is motivated by the fact that the limit in the last formula
already occurred in equation (2.8.3).

3) Comparing (2.8.4) and (2.8.5) with (2.8.2) and (2.8.3) shows how to choose
h = a ·G+ b ·H with a, b ∈ C to get the final result:

Theorem 2.8.2 Let D be irreducible of odd degree, and let N be square free

with

[
D

P

]
= 1 for each prime divisor P of N . For a newform f of level N we

get:

∂

∂s
(L(N,D)(2s+ 1)L(f,A, s)) |s=0=

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f · ΨA,

where ΨA is a cusp form of level N , whose Fourier coefficients for λ with
gcd(λ,N) = 1 are given by
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Ψ∗
A(πdeg λ+2

∞ , λ) =
ln q

2
q−(deg D+1)/2 q−deg λ

·
{

(q − 1) rA((λ)) hL

(
degN − deg(λD) − q + 1

2(q − 1)
− 2

ln q

L′
D(0)

LD(0)

)

+
∑

µ6=0
deg(µN)≤deg(λD)

rA((µN − λD))

(
(
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

1 + δ(µN−λD)µN

2

· (deg(
µN

λD
) − q + 1

2(q − 1)
) − (1 − δ(µN−λD)µN ) (

∑

c|µ

[
D

c

]
) degµ

+ (1 − δ(µN−λD)µN ) (t(µ,D) + 1) (
∑

c|µ

[
D

c

]
deg c)

)

− q + 1

2(q − 1)
lim
s→0

(
∑

deg(µN)>deg(λD)

rA((µN − λD)) (
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

· q(−s−1) deg( µN
λD ) −

C1 hL (
∑

a|λ q
deg a)

1 − q−s

)

− q + 1

2(q − 1)
C1 hL (

∑

a|λ

qdeg a(deg λ− 2 deg a)) + (
∑

a|λ

qdeg a) C2

}
.

The following notation is used: hL = #Cl(OL), LD(s) is as in (2.7.3), t(µ,D)
is as in (2.8.1),

C1 = 2(q − 1)2/[GL2(Fq[T ]) : Γ0(N)],

and C2 is any constant (in particular independent of λ).

2.8.2 degD is even

Of course the programme is the same as above. We start with Lemma 2.7.4,
and we get the same pole as in (2.8.2) with different constants. Here we use
the result (cf. section 3.5.2):
Let C1 := (q2 − 1)2/(2 q [GL2(Fq [T ]) : Γ0(N)]), then the limit

lim
σ→0

(
∑

deg(µN)>deg(λD)

rA((µN − λD)) (
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

· q(−σ−1) deg( µN
λD ) − C1 hL (

∑

a|λ

qdeg a)
1

1 − q−σ

)

converges.
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Again we take the Eisenstein series G and H to get the final result:

Theorem 2.8.3 Let D be irreducible of even degree, and let N be square free

with

[
D

P

]
= 1 for each prime divisor P of N . For a newform f of level N we

get:

∂

∂s
(

1

1 + q−s−1
L(N,D)(2s+ 1)L(f,A, s)) |s=0=

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f · ΨA,

where ΨA is a cusp form of level N , whose Fourier coefficients for λ with
gcd(λ,N) = 1 are given by

Ψ∗
A(πdeg λ+2

∞ , λ) =
ln q

4
q−deg D/2 q−deg λ

·
{
rA((λ)) hL (q − 1)

(
degN − deg(λD) − 2q

q2 − 1
− 2

ln q

L′
D(0)

LD(0)

)

+
∑

µ6=0
deg(µN)≤deg(λD)

rA((µN − λD))

(
(
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

1 + δ(µN−λD)µN

2

· (deg(
µN

λD
) − 2q

q2 − 1
) − (1 − δ(µN−λD)µN ) (

∑

c|µ

[
D

c

]
) degµ

+ (1 − δ(µN−λD)µN ) (t(µ,D) + 1) (
∑

c|µ

[
D

c

]
deg c)

)

− 2q

q2 − 1
lim
s→0

(
∑

deg(µN)>deg(λD)

rA((µN − λD)) (
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

· q(−s−1) deg( µN
λD ) − C1 hL (

∑

a|λ

qdeg a)
1

1 − q−s

)

− 2q

q2 − 1
C1 hL (

∑

a|λ

qdeg a(deg λ− 2 deg a)) + (
∑

a|λ

qdeg a) C2

}
.

The following notation is used: hL = #Cl(OL), LD(s) is as in (2.7.3), t(µ,D)
is as in (2.8.1),

C1 = (q2 − 1)2/(2 q [GL2(Fq [T ]) : Γ0(N)]),

and C2 is any constant (in particular independent of λ).
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3 Heights of Heegner Points

3.1 Heegner Points

LetK = Fq(T ) be the rational function field over Fq as in the previous chapters.
For every N ∈ Fq [T ] there exists a coarse moduli scheme Y0(N) over Fq [T ]
parametrizing isomorphism classes of pairs (φ, φ′) of Drinfeld modules of rank
2 together with a cyclic isogeny u : φ → φ′ of degree N (cf. Lecture 2, [AB]).
This means that keru ' Fq[T ]/(N). Y0(N) can be compactified to a scheme
X0(N) by adjoining a finite number of sections. The points on these sections
can be interpreted as generalized Drinfeld modules (cf. Lecture 9 [AB]). The
fibres of X0(N) → Spec Fq [T ] are regular outside the divisors of N . We will
also need the structure of the fibres over such places, which are known only for
N square free. So we will assume this condition on N for the whole chapter. By
abuse of notation we often write X0(N) also for the generic fibre X0(N) ⊗K.

For every λ ∈ Fq [T ] there is a Hecke correspondence on X0(N). If x ∈ X0(N)
is represented by two Drinfeld modules φ, φ′ and a cyclic isogeny u : φ → φ′,
in which case we write x = (φ, φ′, u), then Tλ(x) =

∑
C(xC), where C runs

over all cyclic Fq[T ] submodules of φ isomorphic to Fq [T ]/(λ) which intersect
ker u trivially. xC is the point corresponding to (φ/C → φ′/u(C)). The Hecke
algebra is the subalgebra of End J0(N), the endomorphisms of the Jacobian
of X0(N), generated by the endomorphisms induced by the Hecke correspon-
dences. For more details see for example [Ge3].

Now let L = K(
√
D) be an imaginary quadratic extension, where D is a poly-

nomial in Fq[T ]. In the first part of this section we prove results for general D,
later we specialize to D being irreducible. We choose N ∈ Fq[T ] such that each

of its prime divisors is split in L. Then in particular we have

[
D

N

]
= 1. Suppose

that φ, φ′ are two Drinfeld modules of rank 2 for the ring Fq [T ] with complex

multiplication by an order O ⊂ OL = Fq [T ][
√
D], i.e. End φ = End φ′ = O

and that u : φ → φ′ is a cyclic isogeny of degree N . Then φ and φ′ can be
viewed as rank 1 Drinfeld modules over O. As explained in the paper ([Ha])
there is a natural action on rank 1 Drinfeld modules: If n ⊂ O is an invertible
ideal and φ is a rank 1 Drinfeld module then there is a Drinfeld module n ∗ φ
with an isogeny φn : φ → n ∗ φ. As was remarked in ([Ha]) just before Propo-
sition 8.3, every isogeny is of this form up to isomorphism. The explicit class
field theory ([Ha]) shows that φ, φ′ and the isogeny u can be defined (modulo
isomorphisms) over the class field HO of O, which is unramified outside the
conductor f := {α ∈ L : αOL ⊂ O} of O and where ∞ is totally split. (For the
maximal order OL we will simply write H instead of HOL .) Therefore the triple
(φ, φ′, u) defines an HO−rational point x on X0(N). This holds even though
X0(N) is not a fine moduli space. These rational points x are called Heegner
points. We will primarily consider Heegner points for the maximal order OL

but Heegner points corresponding to non-maximal orders will occur naturally,
when we consider the operation of Hecke operators on the Heegner points.
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Heegner points corresponding to a maximal order can also be described by
the following data: Let K∞ be the completion of K at ∞ and let C∞ be the
completion of the algebraic closure of K∞. The category of Drinfeld modules
of rank 2 over C∞ is equivalent to the category of rank 2 lattices in C∞. If φ, φ′

correspond to lattices Λ,Λ′, the isogenies are described by {c ∈ C∗
∞ : cΛ ⊂ Λ′}.

If φ has complex multiplication by OL, the corresponding lattice is isomorphic
to an ideal a in OL. Now let n|N be an ideal of OL which contains exactly
one prime divisor of every conjugated pair over the primes dividing N . If n|a,
the ideal n−1a is integral and corresponds to another Drinfeld module φ′ with
complex multiplication. The inclusion a ⊂ n−1a defines a cyclic isogeny of
degree N , because n−1a/a ' OL/n ' Fq [T ]/(N).

The data describing the Heegner point x is the ideal class of a and the ideal n.

We get the following analytic realization of the Heegner point x.

Let Ω = C∞−K∞ be the Drinfeld upper half plane. ThenX0(N) is analytically
given by the quotient Γ0(N)\Ω compactified by adjoining finitely many cusps.
Let z ∈ Ω with

z =
B +

√
D

2A
, N |A, B2 ≡ D mod A.

Then the lattice 〈z, 1〉 is isomorphic to the ideal a = AFq [T ]+ (B+
√
D)Fq [T ],

which defines together with the ideal n = NFq[T ] + (β +
√
D)Fq [T ] with β ≡

B mod N a Heegner point.

Now we consider the global Néron-Tate height pairing on the H-rational points
of the Jacobian J0(N) of X0(N). There is an embedding of J0(N) in the
projective space P2g−1 (Kummer embedding), where g is the genus of X0(N).
The naive height on points in the projective space defines a height function h
on J0(N)(H). The Néron-Tate height is the unique function ĥ, which differs
from h by a bounded function and such that the map 〈 . 〉 : J0(N)×J0(N) → R
defined by 〈D,E〉 = (1/2)(ĥ(D + E) − ĥ(D) − ĥ(E)) is bilinear. 〈 . 〉 is called
the Néron-Tate height pairing (cf. [Gr1]). The pairing depends on H although
we omit this in the notation. Whenever we consider height pairings over other
fields than H , it will be explicitly mentioned.

The global pairing can be written as a sum
∑

v〈 . 〉v running over all places v
of H . For an irreducible polynomial P ∈ Fq [T ] we write 〈 . 〉P for

∑
v|P 〈 . 〉v .

For the definition of the local pairing see [Gr1, 2.5]. We recall the relation
of the local pairing at non-archimedian primes with the intersection product
on a regular model (see [Gr1, 3]). Let v be some place of H and let Hv be
the completion with valuation ring Ov . We write qv for the cardinality of the
residue field. Let X/Hv be a curve and X/Ov be a regular model ofX . Suppose
D,E are divisors of degree 0 on X0(N) with disjoint support. Let Fi be the
fibre components of the special fibre of the regular model X and let D̃, Ẽ be the
horizontal divisors to D,E. (The horizontal divisor of a point in the generic
fibre is just the Zariski closure of it in X .) Let ( . )v be the intersection product
on X , which is defined in the following way. Let x 6= y be two distinct points
on X and x̃, ỹ their closure in X . For a point z in the special fibre we consider

Documenta Mathematica 5 (2000) 365–444



Heegner Points and L-Series 399

the stalk OX ,z of the structure sheaf in z. Let fx, fy be local equations for x̃, ỹ
in z. Then OX ,z/(fx, fy) is a module of finite length. The intersection number
(x̃ . ỹ)v,z is defined to be the length of the module OX ,z/(fx, fy) and it is zero
for almost all z. Let deg z be the degree of the residue field in z over the residue
field of v. The intersection number is then (x̃ . ỹ)v =

∑
z(x̃ . ỹ)v,z · deg z.

Now return to the divisors D,E of degree 0. There exist αi ∈ Q such that

〈D,E〉v = − ln qv [(D̃ . Ẽ)v +
∑

i

αi(Fi . Ẽ)v ] (3.1.1)

cf. [Gr1, 3]. The elements αi are unique up to an additive constant, indepen-
dent of i. In particular if (D̃ .Fi)v = 0 for all i, the equation (3.1.1) is satisfied
with αi = 0 for all i.
Let x = (φ, φ′, u) be a Heegner point on X0(N) for the maximal order OL. We
denote by σA the element in the Galois group of H/L which corresponds via
class field theory to A ∈ Cl(OL). Then xσA is again a Heegner point for the
maximal order. The cusps are given by the cosets Γ0(N) \P1(K) and they are
K-rational. If degN > 0 we have at least the two different cusps 0 and ∞. We
get the divisors (x) − (∞) and (x)σA − (0) of degree 0 on X0(N).
Let Tλ be a Hecke operator and let g be an automorphic cusp form of Drinfeld
type of level N (cf. Definition (2.1.1). If we associate to (Tλ, g) the Fourier
coefficient (Tλg)

∗(π2
∞, 1), we get a bilinear map between the Hecke algebra and

the space of cusp forms of level N . This map is a non-degenerate pairing ([Ge3,
Thm. 3.17]). For gcd(λ,N) = 1 we have

(Tλg)
∗(π2

∞, 1) = qdeg λg∗(πdeg λ+2
∞ , λ).

This is the key to the proof of the following proposition as in [Gr-Za, V 1]

Proposition 3.1.1 There is an automorphic cusp form gA of Drinfeld type of
level N such that

〈(x) − (∞), Tλ((x)σA − (0))〉 = qdeg λg∗A(πdeg λ+2
∞ , λ)

for all λ ∈ Fq [T ] with gcd(λ,N) = 1.

We want to compare gA with the cusp form ΨA of the previous section. There-
fore we have to evaluate this global height pairing. As we compare the cusp
forms only up to old forms, it suffices to calculate the height pairings above
only for the Hecke operators with gcd(λ,N) = 1. Thus we restrict to this case
in the whole section.
The first objective of this section is to express the intersection number of the
Heegner divisors on X0(N) at the finite places, i.e., those places corresponding
to irreducible polynomials in Fq [T ], by numbers of homomorphisms between
the corresponding Drinfeld modules (Theorem 3.3.4).
For a place v of H we write Hv for the completion at v and Ov for the valuation
ring. Let W be the completion of the maximal unramified extension of Ov and
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π a uniformizing element of Ov (W , resp.). In order to calculate the local
pairings

〈(x) − (∞) , Tλ((x)σA − (0))〉v

we first describe the divisor Tλx
σA .

3.2 The divisor Tλx
σA

Definition 3.2.1 If x = (φ, φ′, u) and y = (ψ, ψ′, v) are two points on X0(N),
where φ, φ′, ψ, ψ′ are Drinfeld modules of rank 2 and u : φ→ φ′ and v : ψ → ψ′

are cyclic isogenies of degree N , we define

Hom R(x, y) := {(f, f ′) ∈ Hom R(φ, ψ) × Hom R(φ′, ψ′) : vf = f ′u}

for any ring R where this is well defined, e.g. for R a local ring with alge-
braically closed residue field.

Consider a finite place v of H . Let Hv be the completion of H at v and let
Ov be the valuation ring. Let W again be the completion of the maximal
unramified extension of Ov .

Lemma 3.2.2 Let x = (φ, φ′, φn) be a Heegner point for the maximal order and
a an integral ideal in the class A, which corresponds to σA ∈ Gal (H/L) under
the Artin homomorphism. Then

Hom W (xσA , x) ' End W (x) · a (3.2.1)

and

Hom W/πn(xσA , x) ' End W/πn(x) · a (3.2.2)

for every n ≥ 1 as left modules over the prevailing ring of endomorphisms.

Proof. It is enough to show the second assertion for all n, because for n suf-
ficiently big the second and the first assertion coincide. We show the assertion
for φ instead of x. To show it for x one only has to remark that the morphism
defined below is compatible with the morphism φn. We again assume that φ
is defined over W and has leading coefficients in Fq

∗
. For brevity we write

Rn := End W/πn(φ). Let Λ be the fraction field of W and Ia be the left ideal in
Λ{τ} generated by all φa with a ∈ a. This ideal is left principal and generated
by some φa ∈W{τ} ([Ha], Prop. 7.5). So Ia ∩ Rn is a left ideal in Rn and we
shall show that it is equal to the left ideal Rna. The inclusion Rna ⊂ Ia ∩ Rn

is trivial. For the other inclusion we shall show (Ia ∩ Rn)a−1 ⊂ Rn. Without
loss of generality we shall assume that the image under the natural inclusion of
a is not divisible by π. Then for every b ∈ a−1 there is a twisted power series
φb in W{{τ}} such that for a ∈ a we get φaφb = φab. Now let f ∈ Ia ∩Rn and
b ∈ a−1, then f =

∑
fiφai , for some fi ∈ W{τ}. So fφb =

∑
fiφaib, which is
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a polynomial, because aib ∈ O. We also have φbφa = φaφb for every a ∈ Fq [T ],
and therefore fφbφa ≡ φafφb mod πn. This implies f · b ∈ Rn.
We know from (Thm. 8.5[Ha]) that there exists a w ∈ W ∗ such that

φaφa = w−1φσA
a wφa

holds for every a ∈ O, i.e. wφa ∈ Hom W (φ, φσ). Now define an Rn−module
homomorphism from Hom W/πn(φσA , φ) to Rn ∩ Ia by the assignment f 7→
f · wφa. On the other hand if g ∈ W/πn{τ} such that gwφa =: u ∈ Rn, then
we have to show that g ∈ Hom W/πn(φσ , φ). We have

gφσ
awφa = gwφaφa = uφa = φau

for all a ∈ Fq[T ], where the last equality holds, because Fq[T ] is central in R1

and therefore also in Rn for every n ≥ 1. But φau = φagwφa and so

(gφσ
a − φag)wφa = 0.

wφa cannot be a zero divisor, because the leading coefficient of φa is 1. This
finishes the proof of the lemma. �

From this lemma we get the following result about the multiplicity of x in
Tλx

σA . The proof is exactly the same as in the characteristic 0 case ([Gr-Za,
(4.3)]).

Proposition 3.2.3 Let σA ∈ Gal (H/L), let A be the ideal class correspond-
ing to σA and let λ ∈ Fq[T ]. Then the multiplicity of x in the divisor Tλx

σA is
equal to the number rA((λ)) of integral ideals in the class of A with norm (λ).

The points y ∈ Tλx
σA are Heegner points for orders Oy ⊂ OL. Let f = {α ∈ L :

αOL ⊂ Oy} be the conductor of the order Oy. Let P be an irreducible, monic
polynomial in Fq [T ] and let s = s(y, P ) be the greatest integer with P s|f. We
call s the level of y at P . If P - λ, we get s = 0, because f|(λ). If λ = P t · R
with P - R and t > 0, then

Tλx
σA =

∑

z∈TRxσA

TP tz.

The following proposition tells us how often each level occurs in the divisor
TP tz. For a proof see [Ti1].

Proposition 3.2.4 Let P ∈ Fq[T ] be irreducible and let z be a Heegner point
of level 0 at P . Set d = degP and qP = qd. Then the number of points of level
s in the divisor TP tz is equal to

(t− s+ 1)(qs
P − qs−1

P ) for t ≥ s ≥ 1
t+ 1 for s = 0

}
if P is split in L/K;

qs
P + qs−1

P for t ≥ s ≥ 1, s ≡ t mod 2
1 for s = 0, t ≡ 0 mod 2

}
if P is inert in L/K;

qs
P for t ≥ s ≥ 0 if P is ramified in L/K.
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The next proposition shows where the points with level s are defined. The
proof is given by D. Hayes ([Ha, Thm 8.10, Thm. 1.5])

Proposition 3.2.5 Let P be any irreducible polynomial and let z be a Heegner
point for an order O with conductor prime to N . Suppose that z has level 0 at
P . Then

1. z is defined over HO, the ring class field of O, which is unramified over
H at P . The Galois group of HO/H is isomorphic to the group of ideals
in OL modulo the principal ideals generated by some element a ∈ O which
is prime to the conductor of O.

2. Every y ∈ TP tz of level s at P is defined over another class field Hs with
[Hs : HO] = |(OL/P

sOL)∗|/|(Fq [T ]/P sFq[T ])∗|, which is totally ramified
at P over HO.

3.3 The finite places

For the calculations of height pairings at the finite places we want to make use
of the modular interpretation of the points on the modular curve in every fibre
including the fibres over the divisors of N . In contrast to the elliptic curve
case, we do not know how these fibres look like if N is not square free. This is
one reason why we confine ourselves to this case.

The first step is to describe the pairings at a finite place v by intersection
products on a regular model of X0(N) ⊗K. When v - N then X0(N) ⊗ Ov is
a regular model and when v|N we take a regularization of X0(N)⊗Ov , which
can be done by finitely many blow ups at the singular points. After that we use
the modular interpretation to describe the intersection numbers by numbers of
homomorphisms.

First we recall the structure of the fibres of X0(N) at the places over N (see
[Ge2]).

Proposition 3.3.1 For N ∈ Fq [T ] square free, N 6∈ Fq, the modular curve
X0(N) over Fq [T ] is regular outside N and outside the supersingular points in
the fibres above prime divisors of N . Let P be any prime divisor of N of degree
d. Then the special fibre over P consists of two copies of X0(N/P ), which
intersect transversally in the supersingular points. One of the components is
the image of the map

X0(N/P ) × Fq [T ]/P −→ X0(N) × Fq[T ]/P

(φ, φ′, u) mod P 7−→ (φ, φ′′, τdu) mod P,

where τd is the Frobenius of Fq[T ]/P regarded as isogeny of degree P . This
component is the “local component”, the other one is the “reduced component”.
The cusp 0 lies on the reduced component and ∞ lies on the local component.
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Remarks. 1. We need not know what the resolutions of singular points are,
because our horizontal divisors always intersect the fibres over N outside the
supersingular points and the next proposition will show that no contribution
from the fibre components of the regular model will occur.
2. Because gcd(D,N) = 1, the regular model remains regular under base
change to the Hilbert class field H/L as well as over the completion of the
maximal unramified extension W of some completion Ov for a place v of H .

Proposition 3.3.2 Let x = (φ, φ′, φn) be a Heegner point for the maximal
order, σA ∈ Gal (H/L), A the corresponding ideal class, λ ∈ Fq[T ], v a finite
place of H of residue cardinality qv. Suppose that rA((λ)) = 0, then

〈(x) − (∞), Tλ((x)σA − (0))〉v = −(x . Tλx
σA)v ln qv.

Proof. At first we check that the horizontal extension of one of the divisors in
the pairing has zero intersection with both fibre components if v|N . It follows
that the values αi in 3.1.1 all vanish. Let n be the ideal, such that φn is the
cyclic isogeny defining x. If v|n, x intersects the fibre in the local component.
If v|n then it intersects in the reduced component. Thus one of the divisors
(x)− (∞), (x)− (0) has zero intersection with both fibre components. But the
points in Tλx

σA reduce to the same component as x. This shows that one of the
divisors has zero intersection with all fibre components. This is trivially true
for the places of good reduction (v - N). The result now follows by linearity of
the pairing and the fact that x can be represented by a Drinfeld module with
good reduction, so it does not intersect with the cusps. �

Proposition 3.3.3 Let x = (φ → φ′), y = (ψ → ψ′) be two W−rational
sections, i.e. horizontal divisors on X0(N) over W , which intersect properly
and which reduce to regular points outside the cusps in the special fibre. Then

(y . x)v =
1

q − 1

∑

n≥1

#Isom W/πn(y, x).

Proof. Let f : Y −→ X0(N) be a fine moduli scheme (e.g. a supplementary
full level N ′− structure with gcd(N ′, N) = 1 and N ′ with at least two different
prime factors.) Let y0 be a pre-image of y and xi the different pre-images of x,
i.e. f∗(y0) = y , f∗(x) =

∑
xi. Because f is proper, the projection formula

[Sha, Lect.6,(7)] implies that

(y . x)v = (f∗y0 . x)v = (y0 . f
∗x)v =

∑

i

(y0 . xi)v .

If (φ, φ′, u) is a representative of x, all the xi are represented by (φ, φ′, u, P,Q),
where P,Q generates the N ′ torsion module. Every such point occurs with
multiplicity #Aut(x)/(q − 1) in f∗(x). The q − 1 trivial automorphisms all
give the same point in f∗(x). Now let (ψ, ψ′, v) be a representative of y
and (φ, φ′, u) a representative of x. Let y0 be represented by (ψ, ψ′, v, P,Q).
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Then an isomorphism f : (ψ, ψ′, v) → (φ, φ′, u) defines an isomorphism

f̂ : (ψ, ψ′, v, P,Q) → (φ, φ′, u, f(P ), f(Q)) and this is uniquely determined.
If xi0 is the class of
(φ, φ′, u, f(P ), f(Q)), we have

#Isom W/πn(y0, xi) =

{
1 , if xi = xi0

0 , otherwise.

Now xi0 occurs in f∗(x) with multiplicity #Aut(x)/(q − 1) and therefore

∑

i

#Isom W/πn(y0, xi) =





#Aut(x)

q − 1
, if #Isom W/πn(y, x) 6= 0

0 , otherwise

=
1

q − 1
#Isom W/πn(y, x).

Therefore we only have to show that

(y0 . xi)v =
∑

n≥1

#Isom W/πn(y0, xi).

Let Y ↪→ Pr
W be a projective embedding. Let Ar

W be an affine part, which
contains the intersection point s of xi and y0. The coordinates with respect
to this affine part are denoted by y0 = (η1, . . . , ηr) and xi = (ξi1, . . . , ξir). In
the local ring OY,s we have the local functions zj − ηj , zj − ξij , respectively.
The ideal generated by these functions contains all differences (ηj − ξij) and
therefore is the ideal (π)k with k = minj v(ηj − ξij). From the definition of the
intersection number we get

(y0 . xi)v = dimW/π(OY,s/(zj − ηj , zj − ξij)) = dimW/π(W/πkW ) = k.

On the other hand

#Isom W/πn(y0, xi) =

{
0, ηj 6≡ ξij mod πn for some j
1, ηj ≡ ξij mod πn for all j,

because Y is a fine moduli scheme. It follows that

∑

n≥1

#Isom W/πn(y0, xi) = k.

�

The degree of an isogeny u between two Drinfeld modules φ, φ′ is by definition
the ideal IJ , if ker u ' Fq [T ]/I ⊕ Fq[T ]/J .

Theorem 3.3.4 Let P ∈ Fq [T ] be irreducible , v|P a place of H with local
parameter π and W the completion of the maximal unramified extension of
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Ov. Let x = (φ, φ′, u) be a Heegner point for the maximal order OL. Let
σA ∈ Gal (H/L). For λ,N without common divisor and rA((λ)) = 0 we get

(x . Tλx
σA)v =

1

q − 1

∑

n≥1

#Hom W/πn(xσA , x)deg λ.

The subscript deg λ indicates that only homomorphisms of degree λ are
counted. The sum is finite because #Hom W/πn(xσA , x)deg λ = 0 for n
sufficiently large, because Hom W (xσA , x) =

⋂
n≥1 Hom W/πn(xσA , x) and

#Hom W (xσA , x)deg λ = rA((λ)) = 0 by assumption.

The rest of this section is used to prove this theorem. First of all we consider
the easiest case, namely P - λ. For the case P |λ we need the Eichler-Shimura
congruence and a congruence between points of level 0 and points of higher
level. After that the formula of the theorem is proved at first for P split, then
for P inert and finally for P ramified.
Suppose now that P - λ. We have

d

dt
φλ(t) = λ 6≡ 0 mod P,

and so the zeroes of φλ(t) are pairwise disjoint mod P . If u : xσA → x
is an isogeny over W/πn of degree λ, then u is uniquely determined up to
automorphism of x by keru(t) ⊂ kerφλ(t). For a fixed u we have a unique
lifting to a submodule of kerφλ(t) over W , i.e., there exists y and an isogeny
xσA → y of degree λ, such that

xσA x

y

'

-

?

@
@

@
@R

commutes. Therefore

#Hom W/πn(xσA , x)deg λ =
∑

y∈TλxσA

#Isom W/πn(y, x).

By summation over n together with Proposition 3.3.3 the assertion of the the-
orem follows.
Now let λ = P tR with t ≥ 1 and P - R. The elements y ∈ Tλx

σA are Heegner
points of different levels and are defined over some extension Hs/H which is
ramified at P . The analogue of the Eichler-Shimura congruence holds, i.e.

TP ≡ F ∗ + F mod P,
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where F is the Frobenius correspondence and F ∗ is its dual correspondence on
X0(N). This can be shown in the following way. Let u : φ → φ′ be a cyclic
isogeny of degree P given as a τ−polynomial. Then there exists a dual isogeny
v : φ′ → φ, such that φP = v · u. Then either v ≡ τd mod P and consequently
φ′ ≡ φF mod P or u ≡ τd mod P and consequently φ ≡ φ

′F mod P . This
proves the Eichler-Shimura congruence.
By a simple induction we get

TP t ≡ F ∗t + F ∗(t−1)F + · · · + F ∗F t−1 + F t mod P.

Lemma 3.3.5 Let y ∈ TP tz. If s is the level of y, then y is defined over a
class field Hs (cf. Proposition 3.2.5). Let Hs,v be the completion at v|P and
Ws the valuation ring of the maximal unramified extension of Hs,v with local
parameter πs. y is defined over Ws. If z has level 0 at P then it is defined
over an unramified extension HO/H (cf. Proposition 3.2.5), thus also over W .
There exists a y0 of level 0 defined over W , with y ≡ y0 mod πs.

Proof. For P ramified or split in L/K let σp ∈ Gal (HO/L) be the Frobenius
of p|P over L. For P inert let σp = σP ∈ Gal (HO/K) be the Frobenius
of P over K. Then σp operates on φ. The definition of Frobenius yields

φσp ≡ φF mod πs and φσ−1
p ≡ φ′ mod πs with φ

′F ≡ φ mod πs.
Now let y ∈ TP tz. From the Eichler-Shimura congruence we get the existence
of y′ and i with 0 ≤ i ≤ t, such that y

′F i ≡ z mod πs and y ≡ y
′F t−i

mod πs

therefore y ≡ y
′σt−i

p ≡ zσt−2i
p mod πs, so we can take y0 = zσt−2i

p . �

Remark. In the ramified and in the inert case we have y0 = zσp for t odd or
y0 = z for t even. This holds because , if P is inert in L/K it is a principal
ideal generated by an element which does not divide the conductor of O. This
implies, that σ2

p = 1 for σp ∈ Gal(HO/K). If P is ramified in L/K we have
that p2 = (P ) is a principal ideal prime to the conductor. Therefore σ2

p = 1
also in this case.

Lemma 3.3.6 Let y ∈ TP tz with level s ≥ 1 and y0, πs as in Lemma 3.3.5.
Then

y 6≡ y0 mod π2
s .

Proof. The assertion is even true for the associated formal modules [Gr2,
Prop. 5.3]. The formal module associated to a Drinfeld module is an extension
of φ to a homomorphism φ(P ) : Fq [T ]P → W/π{{τ}} where Fq[T ]P is the
completion at P and W/π{{τ}} is the twisted power series ring. �

Now we can go on with the proof of Theorem 3.3.4. We treat the cases P split,
P inert and P ramified separately.
Suppose at first that P is split. Then φ has ordinary reduction and therefore
Hom W (xσA , x) = Hom W/πn(xσA , x) for all n ≥ 1, because Hom W/πn(x, x) =
Hom W (x, x) = OL and Hom W/πn(xσA , x) = a . By assumption we have
rA((λ)) = 0, so Hom W/πn(xσA , x)deg λ = ∅.
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On the other hand let y ∈ Tλx
σA with x ≡ y mod πs. Then Lemma 3.3.5

gives y ≡ y0 mod πs for a y0 ∈ Tλx
σA of level 0. Because x ' y0 over W/π

and therefore also over W , we get x ' y0 over W , and so x ∈ Tλx
σA , which

contradicts the assumption rA((λ)) = 0. Therefore we get

(x . Tλx
σA )v = 0.

If P is inert then let y0 = zσp for t odd and y0 = z for t even, respectively,
as in the remark following Lemma 3.3.5. Then Lemma 3.3.5 and Lemma 3.3.6
yield y ≡ y0 mod πs, y 6≡ y0 mod π2

s .

Each y of level s = s(y) is defined over Ws, which is ramified of degree es =

q
(s−1)
P (qP + 1) (cf. Proposition 3.2.5(2)).

We distinguish between the intersection pairing over W and Ws. For the latter
we write ( . )v,s. From the definition of the intersection multiplicity we get

(TP tz . x)v =
1

es
(TP tz . x)v,s

and further

(TP tz . x)v =
1

es

∑

y∈TP tz

(y . x)v,s = (3.3.1)

=

t∑

s=0
s≡tmod2

∑

y∈T
P t z

s(y)=s

1

(q − 1)es

∑

n≥1

#Isom Ws/πn
s
(y, x)

=





1

q − 1

∑

n≥1

#Isom W/πn(z, x)

+

t∑

s=1
s≡tmod2

#{y ∈ TP tz : s(y) = s}
(q − 1) · es

#Isom W/π(y0, x) , if t is even

t∑

s=1
s≡tmod2

#{y ∈ TP tz : s(y) = s}
(q − 1) · es

#Isom W/π(y0, x) , if t is odd

=





1

q − 1


∑

n≥1

#Isom W/πn(z, x) + · t
2
#Isom W/π(z, x)


 , if t is even

1

q − 1
· t+ 1

2
#Hom W/π(z, x)deg P , if t is odd.
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Summing over all z ∈ TRx we obtain (P - R)

(Tλx
σA . x)v =

∑

z∈TRxσA

(TP tz . x)v =

=





1

q − 1

∑

n≥1

#Hom W/πn(xσA , x)deg R

+
t

2(q − 1)
#Hom W/π(xσA , x)deg R , if t is even

t+ 1

2(q − 1)
#Hom W/π(xσA , x)deg RP , if t is odd.

Lemma 3.3.7 a) If t is even:

#Hom W/πn(xσA , x)deg R = #Hom W/πn+t/2(xσA , x)deg λ for n ≥ 1

#Hom W/π(xσA , x)deg R = #Hom W/πn(xσA , x)deg λ for n ≤ t/2.

b) If t is odd:

#Hom W/π(xσA , x)deg RP = #Hom W/π(t+1)/2 (xσA , x)deg λ

#Hom W/π(xσA , x)deg RP = #Hom W/πn(xσA , x)deg λ

for n ≤ (t+ 1)/2.

Proof. a) We have that φP t/2 ≡ τdt mod πt/2 is an isogeny of degree P t.
If u ∈ Hom W/πn(xσA , x)deg R, then φP t/2(uφσA

x − φxu) ≡ 0 mod πn+t/2 and

therefore φP t/2uφσA
x ≡ φxφP t/2u mod πn+t/2, i.e.

φP t/2u ∈ Hom W/πn+t/2(xσA , x)deg λ.

Now P - R, thus π - u0 for u 6= 0, and φP t/2u ≡ 0 mod πn+t/2 implies u ≡
0 mod πn, i.e. the map is injective.
Now let u ∈ Hom W/πn+t/2(xσA , x)deg λ, then there is a splitting u = u1 · u2

with an isogeny u1 of degree P t and an isogeny u2 of degree R. We have
u1 ≡ τdt mod πt/2, therefore the map is also surjective. This also shows that

Hom W/π(xσA , x)deg R −→ Hom W/πn(xσA , x)deg λ

is bijective for n ≤ t/2, which implies a).

b) Analogous to a) with

Hom W/π(xσA , x)deg RP −→ Hom W/π(t+1)/2 (xσA , x)deg λ

f 7−→ φP (t−1)/2 · f.

This completes the proof of Theorem 3.3.4, if P is inert.
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Now let P be ramified. p a prime in L over P . Then y0 = zσp for t odd and
y0 = z for t even, respectively, where σp is now the Frobenius over L. Lemma
3.3.5 and Lemma 3.3.6 tell us again that y ≡ y0 mod πs, y 6≡ y0 mod π2

s .

(Tλx
σA . x)v = (3.3.2)

=





1

q − 1

∑

n≥1

#Isom W/πn(z, x) +
t

q − 1
#Isom W/π(z, x)

1

q − 1

∑

n≥1

#Isom W/πn(zσp , x) +
t

q − 1
#Hom W/π(zσp , x)deg P

for t even or odd, resp. Summing over all z ∈ TRx
σA yields

(Tλx
σA . x)v =

∑

z∈TRxσA

(TP tz . x)v =

=





1

q − 1

∑

n≥1

#Hom W/πn(xσA , x)deg R

+
t

q − 1
#Hom W/π(xσA , x)deg R , if t is even

1

q − 1

∑

n≥1

#Hom W/πn(xσAσp , x)deg R

+
t

q − 1
#Hom W/π(xσAσp , x)deg R , if t is odd.

Lemma 3.3.8 a) For t even

#Hom W/πn(xσA , x)deg R = #Hom W/πn+t(xσA , x)deg λ for n ≥ 1

#Hom W/π(xσA , x)deg R = #Hom W/πn(xσA , x)deg λ for n ≤ t.

b) For t odd

#Hom W/πn(xσAσp , x)deg R = #Hom W/π(t+n)(xσA , x)deg λ

#Hom W/π(xσAσp , x)deg R = #Hom W/πn(xσA , x)deg λ

where the first equality holds for all n ≥ 1 and the second one for all n ≤ t+ 1.

Proof. The proof is analogous to the proof of the previous lemma. Using the
facts that f 7−→ φP t/2f for a) and f 7−→ φptf for b) are bijections of the sets.�
Now Theorem 3.3.4 is also completely proved.

3.4 Quaternions

Assume that P is a prime which is non split in L. Then φ has supersingular
reduction and therefore End W/π(φ) is a maximal order in a quaternion algebra
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B over K with maximal subfield L, unramified outside P and ∞ and having
invariants invP = 1/2 and inv∞ = −1/2 (cf. [Ge4]). The reduced norm of
B/K will be denoted by nr and the reduced trace by tr. The norm of L/K will
be denoted by NL/K(·). Let x = (φ, φ′, φn) be a Heegner point. Then

R := End W/π(x) = {f ∈ End W/π(φ) : φnf = gφn, for some g ∈ End W/π(φ)}

which is the same as R = End W/π(φ) ∩ End W/π(φ′) in B. This is also an
order in B, but is not a maximal one in general.
Let Fq[T ]P be the completion of Fq[T ] at P . Then φ extends to a formal module

φ(P ) : Fq[T ]P −→W/π{{τ}}

where W/π{{τ}} is the twisted power series ring. Then we have the following

analogue of the theorem of Serre-Tate [Dr] with x(P ) = (φ(P ), φ
′(P ), φ

(P )
n ):

Lemma 3.4.1

End W/πn(x) = End W/π(x) ∩ End W/πn(x(P )).

Proof. It suffices to show that

End W/πn(φ) = End W/π(φ) ∩ End W/πn(φ(P )).

We use induction. Let f ∈ End W/πn(φ)∩End W/πn+1(φ(P )). We have to show
that f ∈ End W/πn+1(φ). Therefore let

f = f0 + f1τ + . . .+ fiτ
i + . . . ∈W/πn+1{{τ}}

with fφa ≡ φaf mod πn+1 for all a ∈ Fq[T ] and assume that there is anM ∈ N,
such that fi ≡ 0 mod πn for all i ≥ M . Now φ has supersingular reduction at
π, therefore

φP = a0 + a1τ + . . .+ a2dτ
2d ≡ a2dτ

2d mod π,

if d = degP . Now if k > M + 2d then the k−th coefficient of fφP is

fk−2da
qk−2d

2d + fk−2d+1a
qk−2d+1

2d−1 + · · · + fka
qk

0 ≡ fk−2da
qk−2d

2d mod πn+1,

because fi ≡ 0 mod πn and ai ≡ 0 mod π for i < 2d. On the other hand this
coefficient is equal to the k−th coefficient of φP f which is

a0fk + a1f
q
k−1 + · · · + a2d−1f

q2d−1

k−2d+1 + a2df
q2d

k−2d ≡ 0 mod πn+1.

Here a2d occurs only together with f q2d

k−2d which vanishes modulo πn+1 because
d ≥ 1. Comparing both yields the assertion, namely fk−2d ≡ 0 mod πn+1 for
all k > M + 2d. �

From Lemma 3.4.1 and the corresponding statement for formal groups ([Gr2])
we immediately get for the order R in the quaternion algebra B:
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Proposition 3.4.2 Let p|P be a prime ideal in L and j in R with B = L+Lj.
Then End W/πn(x) =

{b = b1 + b2j ∈ R : D · NL/K(b2)nr(j) ≡ 0 mod P (NL/K(p))n−1}.

Together with 3.3.4 we get

Proposition 3.4.3 Let x be a Heegner point for the maximal order OL, σA ∈
Gal (H/L) and a an ideal from the ideal class A corresponding to σA. Let
R = End W/π(x) and suppose gcd(λ,N) = 1. Then

(x . Tλx
σA )v =

1

q − 1

∑

b∈Ra,b6∈L
nr(b)=λNL/K(a)

{
1
2 (1 + ordP (nr(j)NL/K(b2))) (P inert)
ordP (D nr(j)NL/K(b2)) (P ramified).

Proof. Theorem 3.3.4 yields

(x . Tλx
σA)v =

1

q − 1

∑

n≥1

#Hom W/πn(xσA , x)deg λ.

With Lemma 3.2.2 and Proposition 3.4.2 we obtain

(q − 1)(x . Tλx
σA)v

=
∑

n≥1

#{b = b1 + b2j ∈ Ra :

(nr(b)) = (λNL/K(a)), D · NL/K(b2)nr(j) ≡ 0 mod P (NL/K(p))n−1}

=
∑

b∈Ra

(nr(b))=(λNL/K(a))

{
#{n : nr(j)NL/K(b2) ≡ 0 mod P 2n−1}, (P inert)
#{n : D nr(j)NL/K(b2) ≡ 0 mod P n}, (P ramified)

=
∑

b∈Ra

(nr(b))=(λNL/K(a))

{
1
2 (1 + ordP (nr(j)NL/K(b2))) (P inert)
ordP (D nr(j)NL/K(b2)) (P ramified).

In the assertion of the proposition we sum only over b 6∈ L or equivalently
b2 6= 0. As we assume that rA((λ)) = 0 this makes no difference because the
elements with b2 = 0 correspond to homomorphisms defined over W . �

The next step towards our final formulae is to describe Ra explicitly. This can
be done in almost the same way as in the paper of Gross and Zagier, therefore
we omit the details.
First of all we want to describe the quaternion algebra by Hilbert symbols.
This is obtained by class field theory.

Proposition 3.4.4 Let P be monic and inert. Let εD be the leading coefficient
of D. Then there exists a monic, irreducible polynomial Q 6= P and ε ∈ F∗

q−F2
q,

such that
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1. degPQD is odd,

2. εPQ ≡ 1 mod l for all l|D.

In terms of the Hilbert symbol this means

(
D, εPQ

l

)
=

{
1 for l - P∞

−1 for l = P or l = ∞.

Furthermore D is a quadratic residue modulo Q, i.e. Q is split in L/K.

Corollary 3.4.5 B is described by

B ' (D, εPQ), B = L+ Lj

with j2 = εPQ.

We recall the following definition.

Definition 3.4.6 The level (or reduced discriminant) rd of an order J in a
quaternion algebra B is defined by

rd := n(J̃)−1,

where J̃ = {b ∈ B : tr(bJ) ⊂ Fq[T ]} is the complement of J and n(J̃) is the

gcd of the norms of elements in J̃ .

Then we can show that R has level NP and OL is optimally embedded in R,
i.e. R ∩ L = OL.
The next step is to identify the order R in B.

Proposition 3.4.7 The set

S = {α+ βj : α ∈ d−1, β ∈ d−1q−1n, α ≡ β mod Of ∀f|d}

is an order in (D, εPQ) of level NP and OL is optimally embedded in S. Here
d = (

√
D) is the different, q|Q is a prime of L and Of is the localization of OL

at f.

The proof is given by straightforward calculations (cf. Satz 3.18, [Ti1]).
Now R,S are both orders in which OL is optimally embedded and sharing the
same level. A Theorem of Eichler [Ei, Satz 7] states the existence of an ideal b

of OL with Rb = bS.
So if a is an ideal in the class A corresponding to σA ∈ Gal (H/L), and without
loss of generality we assume that P is not a divisor of a, then

Ra = bSb−1a =

= {α+ βj : α ∈ d−1a, β ∈ d−1q−1nbb
−1

a, α ≡ (−1)ordf(b)β mod Of ∀f|d}.
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The ideal class B of b depends on the place v|P . But P is inert, therefore it is
a principal prime ideal in L, and so P is totally split in H/L. The places over
P are permuted transitively by the Galois group. If τ ∈ Gal (H/L) and Wτ is
the maximal unramified extension of OH,vτ and πτ is a uniformizing parameter
and Rτ = End Wτ /πτ

(x), then Rτ = cτRc−1
τ , where cτ lies in the ideal class

corresponding to τ . If bτ is defined by Rτbτ = bτS, it follows that bτ = bcτ .
Now we can give a more explicit formula for the height pairing at inert primes.
We define d(µ,D) to be the number of common prime factors of µ and D.

Proposition 3.4.8 For P inert we get the formula:

〈(x) − (∞) , Tλ((x)σA − (0))〉P
=

∑

v|P

−(x . Tλx
σA)v ln qv

= −u2 1

q − 1
ln q degP

∑

µ∈Fq [T ]−{0}

deg µ≤deg λD−deg NP

ordP (P 2µ) · rA((NPµ− λD)) ·

2d(µ,D)R{A[qn]}((µ))
1 − δ(NPµ−λD)NPµ

2

with

u = |O∗
L/F

∗
q | =

{
q + 1, if degD = 0

1, otherwise.

Here δ is again the local norm symbol at ∞ (cf. the definition of δ in section
2.2 following equation (2.2.5) ). R{A[qn]}(µ) denotes the number of integral
ideals c, which lie in a class differing from the class A[qn] by a square in the
class group and with norm (µ).

Proof. Let a be a fixed ideal in A and let λ0 be a fixed generator of NL/K(a).
We calculate the height pairing using Proposition 3.4.3 together with the ex-
plicit description of Ra.

If b = α+ βj ∈ Rτa, i.e. α ∈ d−1a, β ∈ d−1q−1nbτb
−1

τ a, α ≡ (−1)ordf(b)β mod
Of, we define

c := (β)dqn−1b−1
τ bτa−1 ∈ [qn−1]B2A

and

ν := −NL/K(α)Dλ−1
0 ∈ Fq[T ]

µ := −εNL/K(β)DQN−1λ−1
0 ∈ Fq [T ].

Then c is integral and

nr(α+ βj) = NL/K(α) − εPQNL/K(β) = (−ν +NPµ)D−1λ0
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thus

(nr(α+ βj)) = (λλ0) ⇐⇒ (−ν +NPµ) = (Dλ) ⇐⇒ ν = NPµ− ε̃Dλ

for a uniquely determined ε̃ ∈ F∗
q .

Now if µ ∈ Fq [T ] and ε ∈ F∗
q are given, then the number of α ∈ d−1a with

NL/K(α) = −νD−1λ0 is ra,λ0(NPµ− ε̃Dλ).

β is determined by the integral ideal c up to multiplication with elements of
OL

∗.

If degD = 0 there are no further restrictions on α, β. Now suppose degD > 0.
We have that ε̃λλ0 = NL/K(α) − εPQNL/K(β) is integral and that εPQ ≡
1 mod f for all f |D. Therefore α ≡ ±β mod Of.

Let (
√
D) = p1 · · · pt, we can modify bτ modulo squares of classes to find b

with

b = bτ · pε1
1 · · · pεt

t

with εi ∈ {0, 1} such that

α ≡ (−1)ordpi
(b)β mod Opi .

The εi are uniquely determined if β 6∈ Of, which is the case exactly when pi - µ.
If β ∈ Of then both choices of εi give the correct congruence. Thus there are
2d(µ,D) ideal classes which differ from the class of bτ only by classes of order
2 and which have the given congruence for α and β. The only exception to
this is when D|µ. In this case all εi can be chosen arbitrarily, so for each d-
tuple (ε1, . . . , εd) also (−ε1, . . . ,−εd) is possible but both give the same class.
The number of classes is therefore divided by two. On the other hand the
congruences fix β, except when all congruences are trivial. So the number of
pairs (α, β) doubles in the latter case.

The existence of β is equivalent to ε−1µQ−1Nλ0 being a norm of an element
in L∗. As we already know that it is the norm of an ideal, we get the following
local condition:

ε−1µQ−1Nλ0 ∈ NL/K(L∗) ⇐⇒ δε−1µQ−1Nλ0
= 1.

By definition of Q we have

(
D, εPQ

∞

)
= −1. Therefore the condition is equiv-

alent to δµPNλ0 = −1.

For a given α the number of β in some class bτ is then

2d(µ,D)R{A[qn]}(µ)
1 − δµPNλ0

2
.
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This shows that

〈(x) − (∞) , Tλ((x)σA − (0))〉P
= −u 1

q − 1
ln qv

∑

µ∈Fq [T ]−{0}

deg µ≤deg λD−deg NP

∑

ε̃∈F∗
q

1

2
(1 + ordP (Pµ)) ·

ra,λ0(NPµ− ε̃λD) · 2d(µ,D)R{A[qn]}((µ))
1 − δNPµλ0

2
.

If ra,λ0((NPµ − ε̃λD)) 6= 0 then δλ0 = δNPµ−ε̃λD , ln qv = 2 degP ln q. If we
substitute this and change µ 7→ ε̃µ we get

〈(x) − (∞) , Tλ((x)σA − (0))〉P
= −u degP ln q

∑

µ∈Fq [T ]−{0}

deg µ≤deg λD−deg NP

ordP (P 2µ)
∑

ε̃∈F∗
q

ra,λ0(ε̃(NPµ− λD)) ·

2d(µ,D)R{A[qn]}((µ))
1 − δNPµ(NPµ−λD)

2
.

Using the identity

1

q − 1

∑

ε̃∈F∗
q

ra,λ0(ε̃(NPµ− λD)) = urA((NPµ− λD))

we get the formula of the proposition. �

We specialize this result to the case where D is irreducible. Then u = 1
because degD > 0. d(µ,D) = t(µ,D) = 0 or 1 for t(µ,D) defined in (2.8.1)
and therefore 2d(µ,D) = t(µ,D) + 1.

Lemma 3.4.9 If D is irreducible, then

R{A[qn]}((µ))
1 − δ−NQµλ0

2
=

1

q − 1

∑

c|µ

[
D

c

]
1 − δ−NQµλ0

2
.

Proof. One has to show that

R{A[qn]}((µ))
1 − δ−NQµλ0

2
= #{c integral ideal : NL/K(c) = (µ)}.

Then the assertion follows by comparing the coefficients of both sides of ζL(s) =
ζK(s)LD(s). If degD is odd then every class is a square in the class group and
we are done. If degD is even and if −NQµλ0 is a norm, then deg NL/K(a0qn) ≡
deg µ mod 2. #{c integral ideal : NL/K(c) = (µ)} is the sum of rÃ((µ)) over

all classes Ã, which is equal to the sum over all square classes if µ ≡ 0 mod 2
and equal to the sum over all non-square classes if µ 6≡ 0 mod 2. In any case
this is RA[qn](µ). �

From this lemma the following corollary follows.
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Corollary 3.4.10 Let P be inert and D be irreducible. Then

〈(x) − (∞) , Tλ((x)σA − (0))〉P
=

∑

v|P

−(x . Tλx
σA )v ln qv

= − ln q

q − 1

∑

µ∈Fq [T ]−{0}

deg µ≤deg λD−deg NP

degPordP (P 2µ) · rA((NPµ− λD)) ·

(t(µ,D) + 1)


∑

c|µ

[
D

c

]
 1 − δ(NPµ−λD)NPµ

2
.

If P is ramified we can get a similar formula arguing in the same way as for
the inert case. Let p|P be a prime over P and let f (= 1 or 2) be the order of
the place in the class group. Then p splits in H into h/f factors all of which
have residue degree f over the residue field of p.

Proposition 3.4.11 There exists ε ∈ F∗
q − F2

q and a monic polynomial Q ∈
Fq [T ] with degQD odd, such that εQ ≡ 1 mod l for all l|D, l 6= P and

(
εQ

P

)
= −1.

Also Q is split in L/K, B ' (D, εQ) and B = L+ Lj with j2 = εQ.

Proposition 3.4.12 The order

S = {α+ βj : α ∈ pd−1, β ∈ pd−1q−1n, α ≡ β mod Of ∀f|d}
in (D, εQ) has level N · P and OL is optimally embedded in S.

From this and the Theorem of Eichler we get

Rτa = bτSb−1
τ a =

= {α+ βj : α ∈ pd−1a, β ∈ pd−1q−1nbτb
−1

τ a, α ≡ (−1)ordf(bτ )β mod Of}.
In the same way as for the inert primes we can show:

Proposition 3.4.13 Assume again that rA((λ)) = 0. Let P be ramified. Then
degD > 0 and u = 1. We have:

〈(x) − (∞) , Tλ((x)σA − (0))〉P
=

∑

v|P

−(x . Tλx
σA)v ln qv

= − ln q

q − 1
degP

∑

µ∈Fq [T ]−{0}

deg µ≤deg λD−deg NP

ordP (Pµ) · rA((NPµ− λD)) ·

2d(µ,D)R{A[qn]}(Pµ)
1 − δ(NPµ−λD)NPµ

2
.
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If D is irreducible we get the formula:

〈(x) − (∞) , Tλ((x)σA − (0))〉P
= − ln q

q − 1
degP

∑

µ∈Fq [T ]−{0}

deg µ≤deg λD−deg NP

ordP (Pµ) · rA((NPµ− λD)) ·

2


∑

µ|c

[
D

c

]
 1 − δ(NPµ−λD)NPµ

2
.

Proof. The proof is just as in the inert case. The only thing we want to
mention is that all classes for b are counted. But the sum runs only over the
v|P , so only over the h/f classes mod p. On the other hand there is a factor f
from ln qv = f · degP ln q which compensates for this. �

Now we sum up the formulae for all finite P in the case that D is irreducible.

Theorem 3.4.14 Let N ∈ Fq [T ] square free, D ∈ Fq [T ] irreducible and D ≡
b2 mod N for some b ∈ Fq[T ]. Let L = K(

√
D) and let H denote the Hilbert

class field of L. Let σA ∈ Gal(H/L) and suppose that A is the corresponding
ideal class.
Let λ ∈ Fq [T ] be such that gcd(λ,N) = 1 and rA((λ)) = 0. Then

∑

P 6=∞

〈(x) − (∞) , Tλ((x)σA − (0))〉P

= − ln q

q − 1

∑

µ∈Fq [T ]−{0}

deg µN≤deg λD

rA((µN − λD)) · (1 − δ(µN−λD)µN )

[
− (t(µ,D) + 1)


∑

c|µ

[
D

c

]
deg c


+


∑

c|µ

[
D

c

]
degµ



]
.

Proof. The sum over all P 6= ∞ of the formulae in Proposition 3.4.8 and in
Proposition 3.4.13 gives

∑

P 6=∞

〈(x) − (∞) , Tλ((x)σA − (0))〉P

= − ln q

q − 1

∑

µ∈Fq [T ]−{0}

deg µN≤deg λD

rA((µN − λD)) · (1 − δ(µN−λD)µN )

[
(t(µ,D) + 1)

∑

P |µ
P inert

degP ordP (Pµ)


∑

c|µ
p

[
D

c

]


+2 ordD(µ) degD


∑

c| µ
D

[
D

c

]

]
.
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Some calculations with the Dirichlet character show that

∑

P |µ
P inert

degP ordP (Pµ)


∑

c|µ
p

[
D

c

]


=


∑

c|µ

[
D

c

]
 degµ− ordD(µ) degD


∑

c|µ

[
D

c

]


−2


∑

c|µ

[
D

c

]
deg c


 .

Substituting this yields
∑

P 6=∞

〈(x) − (∞) , Tλ((x)σA − (0))〉P

= − ln q

q − 1

∑

µ∈Fq [T ]−{0}

deg µN≤deg λD

rA((µN − λD)) · (1 − δ(µN−λD)µN )

·
[
(t(µ,D) + 1)


∑

c|µ

[
D

c

]
deg µ

− degD (t(µ,D) + 1) ordD(µ)


∑

c|µ

[
D

c

]


−2(t(µ,D) + 1)


∑

c|µ

[
D

c

]
deg c


+ 2 ordD(µ) degD


∑

c|µ

[
D

c

]

]
.

For rA((µN − λD)) 6= 0 we observe that (cf. Lemma 2.8.1):

(1 − δ(µN−λD)µN )(t(µ,D) − 1)


∑

c| µ
D

[
D

c

]
 = 0

from which the theorem follows. �

3.5 The local height pairing at ∞
At first we assume that rA((λ)) = 0. The local height pairing at places over ∞
can be calculated by Green’s functions as described in [Ti3]. This approach is
based on the general formula (3.1.1). This means that there are contributions
coming from the intersection of horizontal divisors and from the intersection
with the fibre components. In contrast to [Ti3] here we always consider Γ as
a subgroup of GL2(Fq [T ]) instead of PGL2(Fq [T ]), so the formulae differ by a
factor q − 1.
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The cases degD odd and degD even will be treated separately starting with
the former case. In the whole section we again assume that D is irreducible.
We write |z|i = min{|z − y| : y ∈ K∞} and

d(z, z′) = logq

|z − z′|2
|z|i|z′|i

.

3.5.1 deg D odd

If z, z′ are two elements in Ω with logq |z|i, logq |z′|i 6∈ Z and which represent
L∞− rational points on the algebraic curve X0(N) then by definition of the
Green’s function G ([Ti3, Def 2]) and Theorem 2 together with Proposition 8
of [Ti3] we have

〈(z) − (∞), (z′) − (0)〉L∞

= (− ln q)(G(z, z′) −G(z′,∞) −G(0, z) +G(0,∞))

=
− ln q

q − 1

[
∑

γ∈Γ

d(γz,z′)≤0

( q + 1

2(q − 1)
− d(γz, z′)

)

+ lim
s→1

[ q + 1

2(q − 1)

∑

γ∈Γ

d(γz,z′)>0

q−d(γz,z′)s − 2κ(q − 1)

1 − q1−s

]

− lim
s→1

[
q1/2(q2 − 1)(Ei(N)

s (z′) +Ei(N)
s (

1

Nz
)) − 4κ(q − 1)

1− q1−s

]]

with κ :=
q2 − 1

2 [GL2(Fq [T ]) : Γ0(N)]
. Here Ei

(N)
s (z) is the Eisenstein series

Ei(N)
s (z) = |z|si

∑

(c,d), N|c
gcd(c,d)=1

|cz + d|−2s.

We define

RN := {
(
a b
c d

)
∈ Mat2×2(Fq[T ]) : N |c, det

(
a b
c d

)
6= 0}.
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If λ ∈ Fq [T ], λ 6= 0 we get

〈(z) − (∞), Tλ((z′) − (0))〉L∞

=
− ln q

q − 1

[
∑

γ∈RN , (det γ)=(λ)

d(z,γz′)≤0

( q + 1

2(q − 1)
− d(z, γz′)

)

+ lim
s→1

[ q + 1

2(q − 1)

∑

γ∈RN , (det γ)=(λ)

d(z,γz′)>0

q−d(z,γz′)s − 2κσ1(λ)

1 − q1−s

]

− lim
s→1

[
q1/2(q + 1)

(
qdeg λsσ1−2s(λ)Ei

(N)
s (z′) + σ1(λ)Ei

(N)
s (

1

Nz
)
)

− 4κσ1(λ)

1− q1−s

]]

with σs(λ) :=
∑

a|λ q
deg a s for any s. Now we specialize z to be a Heegner

point and z′ to be a conjugate under the Galois group.

Let λ ∈ Fq [T ] \ {0} with rA((λ)) = 0. Let n be an ideal with nn = (N). For

j = 1, 2 let aj = AjFq[T ] + (Bj +
√
D)Fq[T ] be two ideals contained in n with

NL/K(aj) = (Aj) and let Aj be the corresponding ideal classes. Then this data
defines two Heegner points which are represented in the upper half plane by

τj =
−Bj +

√
D

2Aj
. We have that logq |τj |i = logq |

√
D/Aj | 6∈ Z.

If A is an ideal class and σA ∈ Gal(H/L) the corresponding automorphism we
get

〈(τ) − (∞), Tλ((τ)σA − (0))〉∞
=

∑

v|∞

〈(τ) − (∞), Tλ((τ)σA − (0))〉v

=
∑

A1,A2∈Cl(OL)

A1A
−1
2

=A

〈(τA1 ) − (∞), Tλ((τA2 ) − (0))〉L∞

=
− ln q

q − 1

[
lim
s→1

[
F1(A, s) −

2κhLσ1(λ)

1 − q1−s

]

− lim
s→1

[
F2(A, s) −

4κhLσ1(λ)

1 − q1−s

]]
(3.5.1)
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where τ is one of the τAj , κ =
(q2 − 1)

2[GL2(Fq[T ]) : Γ0(N)]
and

F1(A, s) :=
∑

A1,A2∈Cl(OL)

A1A
−1
2

=A

[ ∑

γ∈RN , (det γ)=(λ)

d(γτA1
,τA2

)≤0

( q + 1

2(q − 1)
− d(γτA1 , τA2)

)

+
q + 1

2(q − 1)

∑

γ∈RN , (det γ)=(λ)

d(γτA1
,τA2

)>0

q−d(γτA1 ,τA2 )s
]

and

F2(A, s) :=
∑

A1,A2∈Cl(OL)

A1A
−1
2

=A

q1/2(q + 1) ·

·
[
qdeg λsσ1−2s(λ)Ei

(N)
s (τA2) + σ1(λ)Ei

(N)
s (

1

NτA1

)
]
. (3.5.2)

At first we calculate the function F1(A, s). The following proposition combined
with the convergence of the limits in (3.5.1) implies the existence of the limits
in section 2.8 (cf. the corresponding remark there).

Proposition 3.5.1 The following equation for F1 holds:

F1(A, s) =
∑

µ6=0
deg(µN)≤deg(λD)

rA((µN − λD))


∑

c|µ

[
D

c

]
 (t(µ,D) + 1)

·1 + δ(µN−λD)µN

2

(
− degµN + degλD +

q + 1

2(q − 1)

)

+
q + 1

2(q − 1)

∑

µ∈Fq [T ]−{0}

deg µN>deg λD

rA((µN − λD))


∑

c|µ

[
D

c

]


·(t(µ,D) + 1)q−(deg µN−deg λD)s.

Proof. We define

M(a1, a2, n) = {(α, β) ∈ a−1
1 a−1

2 × a−1
1 a−1

2 n|A1A2(α− β) ∈
√
DFq[T ][

√
D]}

By calculations analogous to [Gr-Za], II (3.6)-(3.10) the map

RN −→ M(a1, a2, n)(
a b
c d

)
7−→ (α = cτ1τ2 + dτ 2 − aτ1 − b, β = cτ1τ2 + dτ2 − aτ1 − b)
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is a bijection and det

(
a b
c d

)
= −A1A2(NL/K(α) − NL/K(β))D−1.

For λ ∈ Fq[T ], λ 6= 0 we get

{
(
a b
c d

)
∈ RN , (ad− bc) = (λ)}

' {(α, β) ∈M(a1, a2, n)|(−A1A2(NL/K(α) − NL/K(β))

D
) = (λ)}.

We set µ = NL/K(β)/A−1
1 A−1

2 N ∈ Fq [T ], then d(γτA1 , τA2) = deg µN −
deg λD. Then it follows that

∑

γ∈RN
(det γ)=(λ)

( q + 1

2(q − 1)
− d(γτA1 , τA2)

)

=
∑

µ∈Fq[T ]−{0}

( q + 1

2(q − 1)
− deg µN + degλD

)
·

#{(α, β) ∈M(a1, a2, n)|

(
−A1A2(NL/K(α) − NL/K(β))

D
) = (λ),

NL/K(β)

A−1
1 A−1

2 N
= µ}.

We see that

#{(α, β) ∈M(a1, a2, n)|

(
−A1A2(NL/K(α) − NL/K(β))

D
) = (λ),

NL/K(β)

A−1
1 A−1

2 N
= µ}

= #{β ∈ a−1
1 a−1

2 n| NL/K(β)

A−1
1 A−1

2 N
= µ} ·

#{α ∈ a−1
1 a−1

2 | (−A1A2(NL/K(α) − NL/K(β))) = (λD)} ·

·1
2
(t(µ,D) + 1)

= ra−1
1 a

−1
2 n,A−1

1 A−1
2 N (µ) ·

∑

ε∈F∗
q

ra−1
1 a

−1
2 ,A−1

1 A−1
2

(µN − ελD) · 1

2
(t(µ,D) + 1).

Now we set a2 = a−1
1 a−1

0 and A2 = A−1
1 λ−1

0 , summing over all classes we get
for the first part of the formula in the proposition:

∑

A1,A2∈Cl(OL)

A1A
−1
2

=A

∑

γ∈RN ,

(det γ)=(λ)

( q + 1

2(q − 1)
− d(γτA1 , τA2)

)

=
∑

µ∈Fq [T ]−{0}

( q + 1

2(q − 1)
− deg µN + deg λD

)
·

( ∑

A1∈Cl(OL)

ra−1
1 a1a0n,λ0N (µ)

)
·
(∑

ε∈F∗
q

ra0,λ0(µN − ελD)
) 1

2
(t(µ,D) + 1).
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Since degD is odd we see that

ra−1
1 a1a0n,λ0N (µ) = rA2

1 [a0n]((µ))(δλ0Nµ + 1).

The class number is odd, and therefore every class is a square. Hence

∑

A1∈Cl(OL)

ra−1
1 a1a0n,λ0N (µ) =

∑

B∈Cl(OL)

rB((µ))(δλ0Nµ + 1) =
δλ0Nµ + 1

q − 1

∑

c|µ

[D
c

]
.

We use this equation, we change the order of the summation, and we continue
with our formula

∑

A1,A2∈Cl(OL)

A1A
−1
2

=A

∑

γ∈RN ,

(det γ)=(λ)

( q + 1

2(q − 1)
− d(γτA1 , τA2)

)

=
∑

ε∈F∗
q

∑

µ∈Fq [T ]−{0}

( q + 1

2(q − 1)
− deg µN + deg λD

)
·

1

q − 1

(∑

c|µ

[D
c

])
(δλ0Nεµ + 1) ra0,λ0 (ε(µN − λD))

1

2
(t(µ,D) + 1).

If ra0,λ0 (ε(µN − λD)) 6= 0, then λ0ε(µN − λD) is a norm and δλ0Nεµ =
δµN(µN−λD). In addition we use the relation

∑

ε∈F∗
q

ra0,λ0 (ε(µN − λD)) = (q − 1)rA((µN − λD)).

This proves the first part of the formula in the proposition. The same calcula-
tions hold with q−d(γτA1 ,τA2 )s instead of d(γτA1 , τA2). If deg µN > deg λD we
have δµN(µN−λD) = 1. Therefore the second part of the formula is also true.
�

Now we continue with the calculation of the function F2(A, s) defined in equa-
tion (3.5.2).

Proposition 3.5.2 For the function F2(A, s) the following formula holds

lim
s→1

[
F2(A, s) −

4κhLσ1(λ)

1 − q1−s

]

= C
(∑

a|λ

qdeg a
)

+ 2κhL

∑

a|λ

(degλ− 2 deg a)qdeg a

with

C := −4κhL

(
degN −

∑

(P )|(N)
(P ) prime

degP (1 + qdeg P )−1

−degD

2
− 2

q − 1
− 1

ln q

L′
D(1)

LD(1)

)
.
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Proof. Ei
(N)
s (τ) is invariant under the non trivial automorphism of L/K.

From τA,n = τA−1,n and 1/(NτA1,n) = τA1[n],n it follows that

∑

A∈Cl(OL)

Ei(N)
s (

1

NτA
) =

∑

A∈Cl(OL)

Ei(N)
s (τA).

Ei(N) can be expressed through the Eisenstein series Ei(1) by (cf. Lemma 7,
[Ti3])

Ei(N)
s (τA) = |N |−s

∏

(P )|(N)
(P ) prime

(1 − |P |−2s)−1
( ∑

δ|N
δmodF∗q

µ(δ)|δ|−s
)
Ei(1)s (

N

δ
τA).

(N/δ)τA are Heegner points for δ instead of N with the same discriminant.
Immediately from the definitions we get

Ei(1)s (τ) = (1 − q1−2s)|
√
D|sζL(A, s)

where ζL(A, s) is the partial ζ−function to the class A. This yields

∑

A∈Cl(OL)

Ei(N)
s (τA)

= |N |−s
∏

(P )|(N)
(P ) prime

(1 − |P |−2s)−1
( ∑

δ|N
δmodF∗q

µ(δ)|δ|−s
)

(1 − q1−2s)|
√
D|s

∑

A

ζL(A, s).

We have
∑

A ζL(A, s) = ζL(s)(1 − q−s) = LD(s)/(1 − q1−s). This gives

F2(A, s) = |N |−s
∏

P |N
P modF∗q

(1 + |P |−s)−1q1/2(q + 1)
1 − q1−2s

1 − q1−s

·|
√
D|sLD(s)(σ1(λ) + |λ|sσ1−2s(λ)).

Now a straightforward calculation gives the desired result. �

3.5.2 deg D even

For the case where the degree of D is even we proceed in almost the same way
as for the case of odd degree, so we only need mention here the statements and
the differences in the proofs.

We start again with the general formula for the local height pairing at infinity
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for two points given by z, z′ ∈ Ω of [Ti3] (Thm.1, Prop. 8,9):

〈(z) − (∞), (z′) − (0)〉L∞

=
−2 ln q

q − 1

[
∑

γ∈Γ

d(γz,z′)≤0

( q

q2 − 1
− 1

2
d(γz, z′)

)

+ lim
s→1

[ q

q2 − 1

∑

γ∈Γ

d(γz,z′)>0

q−d(γz,z′)s − κ(q − 1)

1 − q1−s

]

− lim
s→1

[
q(q − 1)(Ei(N)

s (z′) +Ei(N)
s (

1

Nz
)) − 2κ(q − 1)

1 − q1−s

]]
.

Again we take τAj ∈ Ω to be elements corresponding to the different ideal
classes Aj . If τ is one of these τAj we get

〈(τ) − (∞), Tλ((τ)σA − (0))〉∞

=
− ln q

q − 1

[
lim
s→1

[
F1(A, s) −

2κhLσ1(λ)

1 − q1−s

]

− lim
s→1

[
F2(A, s) −

4κhLσ1(λ)

1 − q1−s

] ]

with κ :=
q2 − 1

2 [GL2(Fq [T ]) : Γ0(N)]
as above and the modified functions F1, F2

F1(A, s) :=
∑

A1,A2∈Cl(OL)

A1A
−1
2 =A

[ ∑

γ∈RN , (det γ)=(λ)

d(γτA1
,τA2

)≤0

( 2q

q2 − 1
− d(γτA1 , τA2 )

)

+
2q

q2 − 1

∑

γ∈RN , (det γ)=(λ)

d(γτA1
,τA2

)>0

q−d(γτA1 ,τA2 )s
]

and

F2(A, s) :=
∑

A1,A2∈Cl(OL)

A1A
−1
2 =A

q
[
qdeg λsσ1−2s(λ)Ei

(N)
s (τA2 ) + σ1(λ)Ei

(N)
s (

1

NτA1

)
]
.

With these definitions we get:
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Proposition 3.5.3 The following equation for F1 holds

F1(A, s) =
∑

µ6=0
deg(µN)≤deg(λD)

rA((µN − λD))


∑

c|µ

[
D

c

]
 (t(µ,D) + 1)

·1 + δ(µN−λD)Nµ

2

(
− degµN + degλD +

2q

q2 − 1

)

+
2q

q2 − 1

∑

µ∈Fq [T ]−{0}

deg µN>deg λD

rA((µN − λD))


∑

c|µ

[
D

c

]


·(t(µ,D) + 1)q−(deg µN−deg λD)s.

Proof. The proof of this proposition differs from the corresponding Proposi-
tion 3.5.1 only slightly. We start with

∑

µ6=0

( 2q

q2 − 1
− deg µN + deg λD

)
rA((µN − λD)) ·


∑

c|µ

[
D

c

]
 (δµN(µN−λD) + 1)

1

2
(t(µ,D) + 1).

Since D is irreducible with even degree, the ideal class number is divisible by
2 exactly once. Hence the set {A2|A ∈ Cl(OL)} is equal to the set

{B ∈ Cl(OL)| deg NL/K(b) is even for all b ∈ B}.

This yields:

∑

A1∈Cl(OL)

rA2
1 [a0n]((µ)) =

∑

B∈Cl(OL)

rB((µ))(δλ0Nµ + 1)

=
1

q − 1

(∑

c|µ

[D
c

])
(δλ0Nµ + 1).

Using similar arguments as in Proposition 3.5.1 we get for our first sum:

∑

µ6=0

( 2q

q2 − 1
− degµN + deg λD

)( ∑

A1∈Cl(OL)

1

q − 1

∑

ε1∈F∗
q

ra−1
1 a1a0n,λ0N (ε1µ)

)

·
(∑

ε∈F∗
q

ra0,λ0(µN − ελD)
) 1

2
(t(µ,D) + 1).

Each ε1 ∈ F∗
q is norm at the extension L/K, i.e., ε1 = NL/K(κ). The divisor of

κ is of the form (κ) = b−1b. This proves

ra−1
1 a1a0n,λ0N (µ) = r(a1b)−1a1ba0n,λ0N (ε1µ).
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Therefore an appropriate choice of the ideals a1 yields for our sum:

∑

µ6=0

( 2q

q2 − 1
− deg µN + deg λD

)( ∑

A1∈Cl(OL)

ra−1
1 a1a0n,λ0N (µ)

)
·

(∑

ε∈F∗
q

ra0,λ0(µN − ελD)
) 1

2
(t(µ,D) + 1).

The rest follows in the same way as in the proof of Proposition 3.5.1. �

The formula for F2(A, s) can be calculated in exactly the same way, so we only
write down the result.

Proposition 3.5.4 For the function F2(A, s) the following formula holds

lim
s→1

[
F2(A, s) −

4κhLσ1(λ)

1 − q1−s

]

= C
(∑

a|λ

qdeg a
)

+ 2κhL

∑

a|λ

(degλ− 2 deg a)qdeg a

with

C := −4κhL

(
degN −

∑

(P )|(N)
(P ) prime

degP (1 + qdeg P )−1

−degD

2
− q + 3

q2 − 1
− 1

ln q

L′
D(1)

LD(1)

)
.

3.6 Modification if rA((λ)) 6= 0

So far we have only evaluated heights and intersection numbers, when the
divisors involved have a disjoint support. In order to get a final result we must
also define and compute self-intersection numbers.
Let X be a complete, non-singular, irreducible curve defined over a global
function field F over Fq, and let x be a F -rational point on X . Let X be a
regular model of X over P1

F . We call lx a local parameter at x if lx generates the
prime ideal corresponding to x in the local ring at x in the generic fibre. Let x̃ be
the Zariski closure of x in X . If π is a local parameter of a fibre corresponding
to a valuation v, we call lx a local parameter at x for the valuation v, if lx
together with π generate the maximal ideal corresponding to the intersection
point of x̃ with the fibre over v. Now fix a local parameter lx at x. Then we
define for each normalized valuation v of F the local self-intersection number
of x as

(x . x)v := lim
y→x

((x . y)v − v(lx(y))) = lim
y→x

((x . y)v +
1

deg v
logq |lx(y)|v),

(3.6.1)
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where deg v is defined as usual, and where the absolute value is given by |α|v :=
q−deg v·v(α), according to the product formula of the function field F .
The definition (3.6.1) and the definition of the ordinary intersection number
(x . y)v (cf. section 3.1) show immediately that (x . x)v = 0, if lx is a local
parameter at x for the valuation v.
In the next step we have to choose the local parameter lx in our situation. The
curve X0(1) is the projective line parametrized by the j-invariant of a Drinfeld
module of rank 2. We recall that a Drinfeld module of rank 2 over Fq [T ] is

given by an additive polynomial ΦT (X) = TX+gXq+∆Xq2

with discriminant
∆ and j-invariant j = gq+1/∆.
We let Y1 be the projective line given by the parameter u with uq+1 = j. Then
Y1/X0(1) is an extension of degree q + 1, where only the elliptic points and
cusps (i.e. zeroes and poles of j) are ramified (These facts and the definition of
elliptic points can be found in [Ge1] or in other textbooks on Drinfeld modules).
Let YN be the composite of Y1 and X0(N), we get the following diagram:

YN

��zzuu
u
u
u
u
u
u
u
u

Y1

��

X0(N)

zzu
u
u
u
u
u
u
u
u

X0(1)

On YN we choose for a point y the local parameter ly := u − u(y). The self-
intersection numbers onX0(N) will then be evaluated with this local parameter
on YN and with the projection formula for the extension YN/X0(N).
We distinguish different cases for the valuations v:

3.6.1 v - N · ∞
Let x be a Heegner point on X0(N), defined locally over W as in section 3.1,
and let y1, . . . , yt be the points on YN lying over x. Then the projection formula
yields

(x . x)v = (y1 . y1)v + (y1 . y2)v + · · · + (y1 . yt)v .

Since the covering YN/X0(N) is unramified outside the elliptic points and cusps
and outside the divisors of N ·∞, we see that u−u(y1) is a local parameter of
y1 at v. Hence (y1 . y1)v = 0 by the above remark. Since

(y1 . yj)v =
1

q − 1

∞∑

k=1

#IsomW/πk (y1, yj)

for j 6= 1 (Proposition 3.3.3), we therefore get

(x . x)v =
1

q − 1

∞∑

k=1

(#AutW/πk(x) − #AutW (x)). (3.6.2)
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As mentioned at the end of the proof of Proposition 3.4.3 the automorphisms
not defined over W correspond to the elements b ∈ Ra, b = b1 + b2j with
b2 6= 0 which corresponds to µ 6= 0 in the formulae of Corollary 3.4.10 and
Proposition 3.4.13. So these formulae already count only the “new” part, i.e.
without counting homomorphisms over W . Thus if λ ∈ Fq[T ] is prime to P the
formulae for the local height pairings 〈(x)− (∞), Tλ(x)σA − (0)〉P of Corollary
3.4.10 and Proposition 3.4.13 remain valid. This is not true however, if v|λ.
We write as before λ = P tR with P - R. For the points of level s > 0 it is not
correct to take only the ”new” part. So we have to add the contribution from
homomorphisms over W for these points to the formulae of Corollary 3.4.10
and Proposition 3.4.13.
For P inert we look at the last line of (3.3.1) We get a contribution of

1

q − 1





t

2
# IsomW (z, x) #{z ∈ TRx

σA} if t is even

t+ 1

2
# HomW (z, x)deg P #{z ∈ TRx

σA} if t is odd

which is (t/2)r1((P t))rA((R)) if t is even and 0 if t is odd. In both cases this
is equal to (ordP (λ)/2)rA((λ)).
If P is ramified we get in a similar way from (3.3.2) a contribution of
ordP (λ)rA((λ)).
If P is split we have t + 1 points of level 0 in Tλx

σA , where x is just one of
them (cf. Proposition 3.2.4). From the t−s+1 divisors of points of level s > 0
there is at most one whose points are congruent to x. Summing over all levels
shows that the correction term in this case is ordP (λ)rA((λ))kp, where kp is a
number less or equal to t, and kp + kp̄ = ordP (λ).

3.6.2 v|N
Let x be a Heegner point on X0(N) represented by the pair of ideals (a, an−1),
where n is a divisor of N in L (cf. section 3.1).
a) Suppose that v|n, in particular let v divide the prime divisor p of norm
NL/K(p). The Artin reciprocity law in explicit class field theory ([Ha, (8.7)])
uses the fundamental congruence

j(ap−1) ≡ j(a)NL/K(p) mod v.

From this we see that u − u(y1) is again a local parameter of y1 at v for a
point y1 on YN lying over x. Hence the calculations of the previous section, in
particular equation (3.6.2), remain true in this situation.
b) Suppose that v|n̄. Then the calculations of a) show that wN (u − u(y1)) is
a local parameter of y1 at v, where wN denotes the canonical involution on
X0(N) and YN . Hence

(y1 . y1)v = v(
∂wN (u)

∂u
(u(y1))). (3.6.3)
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Using the fact that uq+1 = j we get

(
∂wN (u)

∂u
)q+1 = (

∂wN (j)

∂j
)q+1(

j

wN (j)
)q . (3.6.4)

If the Heegner point x is represented by τ ∈ Ω, then wN (j)(τ) = j(Nτ). And

we can evaluate the right hand side of (3.6.4) with
∂wN (j)

∂z
(τ) and

∂j

∂z
(τ). For

∂j

∂z
we use the definition j = gq+1/∆ and get

∂j

∂z
=

gq

∆2
(
∂g

∂z
∆ − g

∂∆

∂z
).

∂g

∂z
∆ − g

∂∆

∂z
can be expressed in terms of ∆ (cf. equation (3.6.11)). For

∂wN (j)

∂z
we perform similar calculations. Hence we get

(
∂wN (u)

∂u
(u(y1)))

q2−1 = N q2−1 (
∆(Nτ)

∆(τ)
)2. (3.6.5)

∆(τ)/∆(Nτ) is algebraic over L and its divisor is equal to n̄q2−1 (we get this
by calculations analogous to those in [Deu], sect. 13). With this fact and with
(3.6.5) we can evaluate the value in (3.6.3). Together we get

Lemma 3.6.1 If v|n, then
(x . x)v = 0,

and if v|n̄, then
(x . x)v = −v(N) = −1.

We can now summarize the results of the first two cases. We want to evaluate
the height of Heegner points as in section 3.4, but without any restriction on
rA((λ)). We combine the calculations in section 3.4 with the contributions
from subsection 3.6.1 and Lemma 3.6.1, and we get

Proposition 3.6.2

∑

P 6=∞

〈(x) − (∞), Tλ((x)σA − (0))〉P =
ln q

q − 1

·
{

(q − 1) rA((λ)) hL (degN − degλ)

+
∑

µ6=0
deg(µN)≤deg(λD)

rA((µN − λD)) (1 − δ(µN−λD)µN )

·


(t(µ,D) + 1)(

∑

c|µ

[
D

c

]
deg c) − (

∑

c|µ

[
D

c

]
) deg µ



}
.
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3.6.3 v|∞
Let x be a Heegner point on X0(N) represented by τ ∈ Ω, and let y1, . . . , yt

be the points on YN lying over x. As above the projection formula yields

(x . x)v = (y1 . y1)v + (y1 . y2)v + · · · + (y1 . yt)v .

The self-intersection number on YN is by definition given as

(y1 . y1)v := lim
ỹ→y1

((y1 . ỹ)v − v(u(ỹ) − u(y1))).

Therefore, if ỹ on YN is mapped to x̃ on X0(N), we get

(x . x)v := lim
x̃→x

((x . x̃)v − v(u(ỹ) − u(y1))). (3.6.6)

The point x is represented by τ ∈ Ω, let in addition x̃ be represented by τ̃ ∈ Ω.
At first we treat the case where degD is odd. The local height pairing of x and
x̃ at v is given by the Green’s function G(τ̃ , τ) ([Ti3], cf. also section 3.5):

G(τ̃ , τ) =
1

q − 1

∑

γ∈Γ0(N)

|τ−γτ̃|2≤|τ|i|γτ̃|i

( q + 1

2(q − 1)
− logq

|τ − γτ̃ |2
|τ |i|γτ̃ |i

)

+
q + 1

2(q − 1)2
lim
σ→1

( ∑

γ∈Γ0(N)

|τ−γτ̃|2>|τ|i|γτ̃|i

(
|τ − γτ̃ |2
|τ |i|γτ̃ |i

)−σ − C1

1 − q1−σ

)
,(3.6.7)

where we normalize the absolute value such that |f | = qdeg f = q−v(f) for
f ∈ Fq [T ].
The Green’s function G(τ̃ , τ) contains two parts, the intersection number
(x̃ . x)v and the contribution of the fibre components (cf. (3.1.1)). We must
replace (x̃ . x)v by the self intersection number (x . x)v . The contribution of
the fibre components remains unchanged.
We have uq+1 = j and j = j(z) for z ∈ Ω, this yields

lim
ỹ→y1

(v(u(ỹ) − u(y1))) = v(
∂u

∂τ
) + lim

τ̃→τ
(v(τ̃ − τ)). (3.6.8)

Here
∂u

∂τ
only represents the two derivatives

∂u

∂j
and

∂j

∂τ
, we do not assume

that YN is a quotient of Ω.
Now (3.6.6), (3.6.7) and (3.6.8) show that we have to replace G(τ̃ , τ) by

G(τ, τ) :=
1

q − 1

∑

γ∈Γ0(N),γτ 6=τ

|τ−γτ|2≤|τ|i|γτ|i

( q + 1

2(q − 1)
− logq

|τ − γτ |2
|τ |i|γτ |i

)

+
q + 1

2(q − 1)2
lim
σ→1

( ∑

γ∈Γ0(N)

|τ−γτ|2>|τ|i|γτ|i

(
|τ − γτ |2
|τ |i|γτ |i

)−σ − C1

1 − q1−σ

)

+
q + 1

2(q − 1)
+ 2 logq(|τ |i|

∂u

∂τ
|),
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When we compare the results in section 3.5 with these formulas, we get

〈(x) − (∞), Tλ((x)σA − (0))〉∞ = right hand side of eq. (3.5.1)

−2 ln q rA((λ))
∑

τ

(
logq(|τ |i|

∂u

∂τ
|) +

q + 1

4(q − 1)

)
, (3.6.9)

where we sum over all τ corresponding to the classes in OL. We denote the
second sum in (3.6.9) by S, which we will evaluate now.
We use the definitions uq+1 = j and j = gq+1/∆ to evaluate

(
∂u

∂z
)q2−1 = ∆2−q2−q(

∂g

∂z
∆ − g

∂∆

∂z
)q2−1. (3.6.10)

(
∂g

∂z
∆ − g

∂∆

∂z
)q−1 is a modular form of weight q(q2 − 1) for the group

GL2(Fq [T ]), and it is therefore a polynomial in g and ∆ (cf. [Go]). The
evaluation of the expansion around the cusp yields the identity

(
∂g

∂z
∆ − g

∂∆

∂z
)q−1 = −π̄1−q∆q , (3.6.11)

where π̄ is a well-defined element (cf. [Ge3]) with logq |π̄| = q/(q − 1).
Now (3.6.10) and (3.6.11) yield

logq(|τ |i|
∂u

∂τ
|) = logq(|∆(τ)|2/(q2−1)|τ |i) −

q

q − 1
.

Since |∆(τ)|2/(q2−1)|τ |i is invariant under GL2(Fq [T ]), we can assume that τ
satisfies |τ | = |τ |i > 1. For these τ we use the product formula for ∆ (for all
the details concerning the product formula we refer to [Ge3]):

∆(τ) = −π̄q2−1t(τ)q−1
∏

a∈Fq [T ]

monic

fa(t(τ))(q
2−1)(q−1),

where
t(τ) = (π̄τ

∏

l∈Fq [T ]

l6=0

(1 − τ

l
))−1,

and where fa are well-defined polynomials. Using the definitions of fa and t(τ)
we can show that in our case (i.e. τ ∈ K∞(

√
D), degD odd, |τ | = |τ |i > 1)

logq |t(τ)| = −|τ |iq1/2 q + 1

2(q − 1)

and
logq |fa(t(τ))| = 0.

Therefore

logq |∆(τ)| = q(q + 1) − 1

2
q1/2(q + 1)|τ |i. (3.6.12)
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Hence we get

logq(|τ |i|
∂u

∂τ
|) =

q

q − 1
− q1/2

q − 1
|τ |i + logq |τ |i. (3.6.13)

Now the definition of S in (3.6.9) and equation (3.6.13) yield

S = −2 ln q rA((λ))
( 5q + 1

4(q − 1)
hL +

∑

τ

(−q
1/2|τ |i
q − 1

+ logq |τ |i)
)
. (3.6.14)

On the other hand we consider the Eisenstein series

Eis(τ) :=
∑

c,d∈Fq [T ]

(c,d)6=(0,0)

|τ |si
|cτ + d|2s

. (3.6.15)

We see that

∑

τ

Eis(τ) =
(q − 1)|

√
D|s

1 − q1−s
LD(s), (3.6.16)

where LD(s) again is the non-trivial L-series of the extension L/K. Straight-
forward calculations of the sum in (3.6.15) show that Eis(τ) can be expressed
as a rational function:

Eis(τ) = (q − 1)
|τ |si

1 − q1−2s
+
q1/2|τ |1−s

i

1 − q2−2s

(
(q − 1)2

q−s

1 − q1−2s
+ q − 1

)
. (3.6.17)

With (3.6.16) and (3.6.17) we can evaluate the following term

2

ln q

L′
D(0)

LD(0)
= − degD +

2q

q − 1
− 2

hL

∑

τ

(q1/2|τ |i
q − 1

− logq |τ |i
)
. (3.6.18)

We compare equation (3.6.14) coming from values of ∆ and equation (3.6.18)
dealing with Eisenstein series, to get

S = ln q rA((λ)) hL

(
− degD − 2

ln q

L′
D(0)

LD(0)
− q + 1

2(q − 1)

)
. (3.6.19)

This result can be seen as the Kronecker limit formula for function fields.

We summarize Propositions 3.5.1 and 3.5.2 and the result (3.6.9), (3.6.19) about
S in the following proposition.
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Proposition 3.6.3 Let degD be odd, then

〈(x) − (∞), Tλ((x)σA − (0))〉∞ =
ln q

q − 1

·
{

(q − 1) rA((λ)) hL

(
− degD − q + 1

2(q − 1)
− 2

ln q

L′
D(0)

LD(0)

)

+
∑

µ6=0
deg(µN)≤deg(λD)

rA((µN − λD))(
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

1 + δ(µN−λD)µN

2

· (deg(
µN

λD
) − q + 1

2(q − 1)
)

− q + 1

2(q − 1)
lim
σ→0


 ∑

deg(µN)>deg(λD)

rA((µN − λD)) (
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

· q(−σ−1) deg( µN
λD ) −

C1 hL (
∑

a|λ q
deg a)

1 − q−σ

)

− q + 1

2(q − 1)
C1 hL (

∑

a|λ

qdeg a(deg λ− 2 deg a)) + (
∑

a|λ

qdeg a) C2

}

with

C1 :=
2(q − 1)2

[GL2(Fq [T ]) : Γ0(N)]

and

C2 := − 2(q2 − 1)

[GL2(Fq [T ]) : Γ0(N)]
hL


degN −

∑

(P )|(N)
(P ) prime

degP

qdeg P + 1
− degD

2

− 2

q − 1
− 1

ln q

L′
D(1)

LD(1)

)
.

Combining this with the results for the finite primes finally gives:

Theorem 3.6.4 Let degD be odd and let gA be the Drinfeld automorphic cusp
form of Proposition 3.1.1. Then gA has the Fourier coefficients for all λ ∈ Fq [T ]
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with gcd(λ,N) = 1:

g∗A(πdeg λ+2
∞ , λ) =

ln q

q − 1
q−deg λ

·
{

(q − 1) rA((λ)) hL

(
degN − deg(λD) − q + 1

2(q − 1)
− 2

ln q

L′
D(0)

LD(0)

)

+
∑

µ6=0
deg(µN)≤deg(λD)

rA((µN − λD))

(
(
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

1 + δ(µN−λD)µN

2

· (deg(
µN

λD
) − q + 1

2(q − 1)
) − (1 − δ(µN−λD)µN ) (

∑

c|µ

[
D

c

]
) degµ

+ (1 − δ(µN−λD)µN ) (t(µ,D) + 1) (
∑

c|µ

[
D

c

]
deg c)

)

− q + 1

2(q − 1)
lim
σ→0

(
∑

deg(µN)>deg(λD)

rA((µN − λD)) (
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

· q(−σ−1) deg( µN
λD ) −

C1 hL (
∑

a|λ q
deg a)

1 − q−σ

)

− q + 1

2(q − 1)
C1 hL (

∑

a|λ

qdeg a(deg λ− 2 deg a)) + (
∑

a|λ

qdeg a) C2

}

with

C1 :=
2(q − 1)2

[GL2(Fq [T ]) : Γ0(N)]

and

C2 := − 2(q2 − 1)

[GL2(Fq [T ]) : Γ0(N)]
hL


degN −

∑

(P )|(N)
(P ) prime

degP

qdeg P + 1
− degD

2

− 2

q − 1
− 1

ln q

L′
D(1)

LD(1)

)
.

If degD is even, the calculations are the same. We will present only the differ-
ences in the formulas to the first case. The calculations with the corresponding
Green’s function (cf. (3.6.9)) give

S = −2 ln q rA((λ))
∑

τ

(
logq(|τ |i|

∂u

∂τ
|) +

q

q2 − 1

)
.

Equation (3.6.12) has to be replaced by

logq |∆(τ)| = q(q + 1) − q |τ |i.
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Hence (3.6.14) has the form

S = −2 ln q rA((λ))
(q2 + 2q

q2 − 1
hL +

∑

τ

(− 2q|τ |i
q2 − 1

+ logq |τ |i)
)
.

The definition (3.6.15) and the relation (3.6.16) remain unchanged, but the
rational expression (3.6.17) becomes

Eis(τ) = (q − 1)
|τ |si

1 − q1−2s
+

q|τ |1−s
i

1 − q2−2s

(
(q − 1)2

q−2s

1 − q1−2s
+ q − 1

)
.

Equation (3.6.18) has to be replaced by

2

ln q

L′
D(0)

LD(0)
= − degD +

2q2 + 2q

q2 − 1
− 2

hL

∑

τ

( 2q|τ |i
q2 − 1

− logq |τ |i
)
.

And finally we get:

Proposition 3.6.5 Let degD be even, then

〈(x) − (∞), Tλ((x)σA − (0))〉∞ =
ln q

q − 1

·
{

(q − 1) rA((λ)) hL

(
− degD − 2q

q2 − 1
− 2

ln q

L′
D(0)

LD(0)

)

+
∑

µ6=0
deg(µN)≤deg(λD)

rA((µN − λD))(
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

1 + δ(µN−λD)µN

2

· (deg(
µN

λD
) − 2q

q2 − 1
)

− 2q

q2 − 1
lim
σ→0


 ∑

deg(µN)>deg(λD)

rA((µN − λD)) (
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

· q(−σ−1) deg( µN
λD ) −

C1 hL (
∑

a|λ q
deg a)

1 − q−σ

)

− 2q

q2 − 1
C1 hL (

∑

a|λ

qdeg a(deg λ− 2 deg a)) + (
∑

a|λ

qdeg a) C2

}

with

C1 :=
(q2 − 1)2

2q[GL2(Fq [T ]) : Γ0(N)]
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and

C2 := − 2(q2 − 1)

[GL2(Fq [T ]) : Γ0(N)]
hL

(
degN −

∑

(P )|(N)
(P ) prime

degP

qdeg P + 1
− degD

2

− q + 3

q2 − 1
− 1

ln q

L′
D(1)

LD(1)

)
.

Combining this with the results for the finite places yields:

Theorem 3.6.6 Let degD be even and let gA be the Drinfeld automorphic
cusp form of Proposition 3.1.1. Then gA has the Fourier coefficients for all
λ ∈ Fq[T ] with gcd(λ,N) = 1:

g∗A(πdeg λ+2
∞ , λ) =

ln q

q − 1
q−deg λ

·
{
rA((λ)) hL (q − 1)

(
degN − deg(λD) − 2q

q2 − 1
− 2

ln q

L′
D(0)

LD(0)

)

+
∑

µ6=0
deg(µN)≤deg(λD)

rA((µN − λD))

(
(
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

1 + δ(µN−λD)µN

2

· (deg(
µN

λD
) − 2q

q2 − 1
) − (1 − δ(µN−λD)µN ) (

∑

c|µ

[
D

c

]
) degµ

+ (1 − δ(µN−λD)µN ) (t(µ,D) + 1) (
∑

c|µ

[
D

c

]
deg c)

)

− 2q

q2 − 1
lim
σ→0

(
∑

deg(µN)>deg(λD)

rA((µN − λD)) (
∑

c|µ

[
D

c

]
) (t(µ,D) + 1)

· q(−σ−1) deg( µN
λD ) − C1 hL (

∑

a|λ

qdeg a)
1

1 − q−σ

)

− 2q

q2 − 1
C1 hL (

∑

a|λ

qdeg a(deg λ− 2 deg a)) + (
∑

a|λ

qdeg a) C2

}

with

C1 :=
(q2 − 1)2

2q[GL2(Fq [T ]) : Γ0(N)]
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and

C2 := − 2(q2 − 1)

[GL2(Fq [T ]) : Γ0(N)]
hL

(
degN −

∑

(P )|(N)
(P ) prime

degP

qdeg P + 1
− degD

2

− q + 3

q2 − 1
− 1

ln q

L′
D(1)

LD(1)

)
.

4 Conclusion

4.1 Main Results

Now we combine the previous chapters on L-series (chapter 2) and on Heegner
points (chapter 3). We recall the assumptions: D ∈ Fq[T ] is an irreducible
polynomial and N ∈ Fq [T ] is a square free polynomial, whose prime divisors

are split in the imaginary quadratic extension K(
√
D)/K.

If degD is odd, we evaluated in Theorem 2.8.2 the Fourier coefficients
Ψ∗

A(πdeg λ+2
∞ , λ) of an automorphic cusp form ΨA of Drinfeld type with

∂

∂s
(L(N,D)(2s+ 1)L(f,A, s)) |s=0=

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f · ΨA.

On the other hand, in Theorem 3.6.4 we obtained the Fourier coefficients of
gA, which are defined as

g∗A(πdeg λ+2
∞ , λ) = q− deg λ〈(x) − (∞), Tλ((x)σA − (0))〉.

If we compare the two formulas, we see that

Ψ∗
A(πdeg λ+2

∞ , λ) =
q − 1

2
q−(deg D+1)/2 g∗A(πdeg λ+2

∞ , λ)

for all λ ∈ Fq[T ] with gcd(λ,N) = 1. Hence the two automorphic cusp forms
ΨA and (q − 1)/2 · q−(deg D+1)/2 gA differ only by an old form. Since f is a
newform, the occurring old form does not affect the integral. And this can be
summarized by the following main result:

Theorem 4.1.1 Let degD be odd. Let x be a Heegner point on X0(N) with
complex multiplication by OL = Fq[T ][

√
D], let A ∈ Cl(OL), and let gA be the

automorphic cusp form of Drinfeld type of level N , which is given by

(TλgA)∗(π2
∞, 1) = 〈(x) − (∞), Tλ((x)σA − (0))〉

for all λ ∈ Fq [T ]. Let f be a newform of level N , then

∂

∂s
(L(N,D)(2s+ 1)L(f,A, s)) |s=0=

q − 1

2
q−(deg D+1)/2

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f · gA.
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If degD is even, we have to compare Theorem 2.8.3 and Theorem 3.6.6. Let
ΨA be defined by

∂

∂s
(

1

1 + q−s−1
L(N,D)(2s+ 1)L(f,A, s)) |s=0=

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f · ΨA.

The Fourier coefficients of ΨA and gA satisfy

Ψ∗
A(πdeg λ+2

∞ , λ) =
q − 1

4
q−deg D/2 g∗A(πdeg λ+2

∞ , λ)

for all λ ∈ Fq [T ] with gcd(λ,N) = 1. Hence we have

Theorem 4.1.2 Let degD be even. Let x be a Heegner point on X0(N) with
complex multiplication by OL = Fq[T ][

√
D], let A ∈ Cl(OL), and let gA be the

automorphic cusp form of Drinfeld type of level N , which is given by

(TλgA)∗(π2
∞, 1) = 〈(x) − (∞), Tλ((x)σA − (0))〉

for all λ ∈ Fq [T ]. Let f be a newform of level N , then

∂

∂s
(

1

1 + q−s−1
L(N,D)(2s+1)L(f,A, s)) |s=0=

q − 1

4
q−deg D/2

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f ·gA.

4.2 Application to Elliptic Curves

We want to apply our main results to elliptic curves. Therefore we assume in
addition that the newform f is an eigenform for all Hecke operators. So far we
haven’t required this condition in our calculations.
Let χ be a character of the class group Cl(OL). If degD is odd, we define

L(f, χ, s) :=
∑

A∈Cl(OL)

χ(A) L(N,D)(2s+ 1)L(f,A, s).

Then Theorem 4.1.1 yields immediately

∂

∂s
L(f, χ, s) |s=0=

q − 1

2
q−(deg D+1)/2

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f ·
∑

A

χ(A)gA.

(4.2.1)

Note that
∑

A χ(A)gA is an automorphic cusp form which satisfies (cf. the
definition of gA in Proposition 3.1.1)

(T
∑

A

χ(A)gA)∗(π2
∞, 1) =

∑

A

χ(A)〈(x) − (∞), T ((x)σA − (0))〉 (4.2.2)
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for each Hecke operator T . Exactly the same calculations as in [Gr-Za], p. 308
show that (4.2.2) can be computed as

(T
∑

A

χ(A)gA)∗(π2
∞, 1) = h−1

L 〈cχ, T cχ〉,

where cχ =
∑

A χ
−1(A)((x) − (∞))σA is an element in the Jacobian

J0(N)(H) ⊗ C. Here we used the fact that (0) − (∞) is an element of finite
order in J0(N) (cf. [Ge2, Satz 4.1]).
Let {fi} be a basis of the space of automorphic cusp forms of Drinfeld type
of level N which consists of normalized newforms together with a basis of the

space of oldforms. We assume that f1 = f . And let cχ =
∑

i c
(i)
χ be the

decomposition of cχ in fi-isotypical components (i.e. components, where the
Hecke operators act by multiplication of the corresponding Hecke eigenvalues).
Then again as in [Gr-Za], p. 308 we get

∑

A

χ(A)gA = h−1
L

∑

i,j

〈c(i)χ , c(j)χ 〉fj . (4.2.3)

Since f is a newform, we have 〈c(i)χ , c
(1)
χ 〉 = 0 for i 6= 1. Then equations (4.2.1)

and (4.2.3) yield:
Corollary of Theorem 4.1.1 If degD is odd, then

∂

∂s
L(f, χ, s) |s=0 =

q − 1

2
q−(deg D+1)/2 ·

·h−1
L 〈c(1)χ , c(1)χ 〉

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f · f.

If degD is even we define

L(f, χ, s) :=
∑

A∈Cl(OL)

χ(A)
1

1 + q−s−1
L(N,D)(2s+ 1)L(f,A, s),

and we get analogously:
Corollary of Theorem 4.1.2 If degD is even, then

∂

∂s
L(f, χ, s) |s=0 =

q − 1

4
q−deg D/2 ·

h−1
L 〈c(1)χ , c(1)χ 〉

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f · f.

Now let E be an elliptic curve with conductor N ·∞, which has split multiplica-
tive reduction at ∞, and let f be the corresponding newform as in section 2.1.
We have already seen that the L-series of E over the imaginary quadratic field L
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satisfies (with the notations of this section) L(E, s+1)L(ED, s+1) = L(f, χ0, s),
where χ0 is the trivial character of Cl(OL).
Let π : X0(N) → E be a uniformization (cf. [Ge-Re], (8)) which maps the point
∞ on X0(N) to the zero on E. The two homomorphisms π∗ : J0(N) → E and
π∗ : E → J0(N) are related by the formula π∗ ◦ π∗ = deg π. On J0(N) we
consider the elliptic curve E ′ = π∗(E). Then π∗|E′ and π∗ are dual isogenies
of E and E′, in particular we get

π∗ ◦ π∗|E′ = degπ. (4.2.4)

For a Heegner point x on X0(N) let PL :=
∑

A∈Cl(OL) π(xσA ) be the corre-

sponding Heegner point on E. The component c
(1)
χ0 lies on E′ and we have

π∗|E′(c(1)χ0
) = PL. (4.2.5)

The points PL on E and c
(1)
χ0 on J0(N) are both defined over the field L. Let

ĥE,L be the canonical Néron-Tate height of E over L, analogously we consider

ĥJ0(N),L. If we apply the projection formula and equations (4.2.4) and (4.2.5)
we get

deg π · ĥJ0(N),L(c(1)χ0
) = 〈deg π · c(1)χ0

, c(1)χ0
〉J0(N),L

= 〈π∗ ◦ π∗|E′(c(1)χ0
), c(1)χ0

〉J0(N),L

= 〈π∗|E′(c(1)χ0
), π∗|E′(c(1)χ0

)〉E,L

= ĥE,L(PL). (4.2.6)

Since the height pairing 〈 , 〉 is normalized for the Hilbert class field H (cf.
section 3.1), we have

〈c(1)χ0
, c(1)χ0

〉 = hL · ĥJ0(N),L(c(1)χ0
). (4.2.7)

Now (4.2.6), (4.2.7) and the two corollaries yield in the case of elliptic curves:

Theorem 4.2.1 Let E be an elliptic curve with conductor N · ∞, which has
split multiplicative reduction at ∞, with corresponding newform f as above, let
PL ∈ E(L) be the Heegner point given by the parametrization π : X0(N) →
E. Then the derivative of the L-series of E over L and the canonical height
ĥE,L(PL) are related by the formula

∂

∂s
(L(E, s)L(ED , s)) |s=1= ĥE,L(PL) c(D) (deg π)−1

∫

Γ0(N)\GL2(K∞)/Γ∞K∗
∞

f · f,

where the constant

c(D) :=

{ q−1
2 q−(deg D+1)/2 if degD is odd,

q−1
4 q−deg D/2 if degD is even.
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Finally we mention just one consequence of Theorem 4.2.1. The L-series
L(E, s) · L(ED, s) of E over the field L has a zero at s = 1 according to
the functional equations of section 2.7. In the function field case it is known
([Ta], [Sh]) that the analytic rank of E/L is not smaller than the Mordell-Weil
rank of E(L). Therefore Theorem 4.2.1 implies

Corollary 4.2.2 If

∂

∂s
(L(E, s)L(ED , s)) |s=1 6= 0,

then the Birch and Swinnerton-Dyer conjecture is true for E, i.e. the analytic
rank and the Mordell-Weil rank of E/L are both equal to 1.

Remarks.
1) In [Br] Brown proved the Birch and Swinnerton-Dyer conjecture in the
case that the Heegner point has infinite order. And he conjectured that this
assumption is true if and only if the first derivative of the L-series does not
vanish at the point 1. Theorem 4.2.1 proves his conjecture.
2) Milne ([Mi]) showed that the equality of the analytic rank and the Mordell-
Weil rank implies even the strong Birch and Swinnerton-Dyer conjecture.
Therefore in our case the assumption of Corollary 4.2.2 implies

∂

∂s
L∗(E/L, s) |s=1=

#X · ĥE,L(P0)

(#E(L)tors)2
,

where L∗(E/L, s) is the modified L-series of the elliptic curve E over the field
L (cf. [Ta], [Mi]), P0 is a generator of the free part of the Mordell-Weil group
E(L) and X is the Tate-Shafarevich group of E/L.
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