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Abstract. The paper deals with the context of the inner Daniell-
Stone and Riesz representation theorems, which arose within the new
development in measure and integration in the book 1997 and subse-
quent work of the author. The theorems extend the traditional ones,
in case of the Riesz theorem to arbitrary Hausdorff topological spaces.
The extension enforces that the assertions attain different forms. The
present paper wants to exhibit special situations in which the theo-
rems retain their familiar appearance.
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In the recent book [3] on measure and integration (cited as MI) and in sub-
sequent papers [4]-[10] the present author attempted to restructure the area
of the basic extension and representation procedures and results, and to de-
velop the implications on various issues in measure and integration and beyond.
One main point was to extend the Riesz representation theorem in terms of
Radon measures on locally compact Hausdorff topological spaces, one of the
most famous and important theorems in abstract analysis, to arbitrary Haus-
dorff topological spaces. The resultant theorem in MI section 16 was a direct
specialization of the new inner type Daniell-Stone representation theorem in
terms of abstract measures in MI section 15. This is in quite some contrast to
the traditional situation, where the Daniell-Stone theorem does not furnish the
Riesz theorem.

However, the two new theorems look different from their traditional versions,
because of the inherent so-called tightness conditions. The conditions of this
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type came up in the characterization of Radon premeasures due to Kisyński
[2], and dominated the subsequent extension and representation theories ever
since. They are an unavoidable consequence of the transition from rings of
subsets to lattices, and from lattice subspaces of functions to lattice cones, a
transition which forms the basis of the theories in question. It is of course desir-
able to exhibit comprehensive special situations in which the relevant tightness
conditions become automatic facts, as it has been done in the second part of
MI section 7 in the extension theories for set functions.

The present paper wants to obtain some such situations. Section 1 recalls the
context. Then section 2 considers the Daniell-Stone theorem, while section 3
specializes to the Riesz theorem. At last the short section 4 uses the occasion
to comment on related recent work of Zakharov and Mikhalev [13]-[16].

1. Inner Preintegrals

We adopt the terms of MI but shall recall the less familiar ones. The extension
and representation theories in MI come in three parallel versions. They are
marked • = ?στ , where ? is to be read as finite, σ as sequential or countable,
and τ as nonsequential or arbitrary (or as the respective adverbs).

Let X be a nonvoid set. For a nonvoid set system S in X we define S• and
S• to consist of the unions and intersections of its nonvoid • subsystems. If
∅ ∈ S then for an isotone set function ϕ : S → [0,∞] with ϕ(∅) = 0 we define
the outer and inner • envelopes ϕ•, ϕ• : P(X) → [0,∞] to be

ϕ•(A) = inf{ sup
S∈M

ϕ(S) : M ⊂ S nonvoid • with M ↑⊃ A},

ϕ•(A) = sup{ inf
S∈M

ϕ(S) : M ⊂ S nonvoid • with M ↓⊂ A},

in the obvious terms of MI and with the usual convention inf ∅ := ∞. For a
nonvoid function class E ⊂ [0,∞]X on X we define E• and E• to consist of the
pointwise suprema and infima of its nonvoid • subclasses. If 0 ∈ E then for an
isotone functional I : E → [0,∞] with I(0) = 0 we define the outer and inner

• envelopes I•, I• : [0,∞]X → [0,∞] to be

I•(f) = inf{ sup
u∈M

I(u) : M ⊂ E nonvoid • with M ↑= f},

I•(f) = sup{ inf
u∈M

I(u) : M ⊂ E nonvoid • with M ↓5 f}.

In the sequel we restrict ourselves to the inner theories, but note that in MI
and in [7]-[9] the outer ones are presented as well. Also it is explained that
in some more abstract frame at least the outer and inner extension theories
for set functions are identical. For concrete purposes the inner approach turns
out to be the more important one. But this approach requires that one starts
with finite set functions ϕ : S → [0,∞[, and likewise with E ⊂ [0,∞[X and
I : E → [0,∞[.

Let S be a lattice in X with ∅ ∈ S and ϕ : S → [0,∞[ be isotone with
ϕ(∅) = 0. We define an inner • extension of ϕ to be an extension α : A → [0,∞]
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of ϕ which is a content on a ring, such that also S• ⊂ A and

α is inner regular S• , and
α|S• is downward • continuous (which is void for • = ?).

Then we define ϕ to be an inner • premeasure iff it admits inner • extensions.
The inner • main theorem MI 6.31 characterizes those ϕ which are inner •
premeasures, and then describes all inner • extensions of ϕ. The theorem is
in terms of the inner • envelopes ϕ• of ϕ defined above and of their so-called
satellites, and with inner • tightness as the essential condition. We shall not
repeat the main theorem, as it has been done in [7] section 1 and [8] section 1,
but instead quote an implication which will be referred to in the sequel.

Recollection 1.1 (for • = στ). Let S be a lattice and A be a σ algebra in

X with ∅ ∈ S ⊂ S• ⊂ A ⊂ Aσ(S>S•) (where > denotes the transporter).
Then there is a one-to-one correspondence between the inner • premeasures

ϕ : S → [0,∞[ and the measures α : A → [0,∞] such that

α|S < ∞ and hence α|S• < ∞,

α is inner regular S•, and

α|S• is downward • continuous.

The correspondence is α = ϕ•|A and ϕ = α|S.

For the next step we recall from MI section 11 the integral of Choquet type
called the horizontal integral. Let S be a lattice in X with ∅ ∈ S. We form
the function classes

LM(S) : the f ∈ [0,∞]X such that [f > t] ∈ S for all t > 0,

UM(S) : the f ∈ [0,∞]X such that [f = t] ∈ S for all t > 0.

Let ϕ : S → [0,∞] be an isotone set function with ϕ(∅) = 0. We define the
integral

∫

−fdϕ ∈ [0,∞] with respect to ϕ

for f ∈ LM(S) to be
∫

−fdϕ =
→∞
∫

0←

ϕ([f > t])dt,

for f ∈ UM(S) to be
∫

−fdϕ =
→∞
∫

0←

ϕ([f = t])dt,

both times as an improper Riemann integral of a monotone function with values
in [0,∞]. It is well-defined since for f ∈ LM(S)∩UM(S) the two last integrals
are equal. If S is a σ algebra then LM(S) = UM(S) consists of the functions
f ∈ [0,∞]X which are measurable S in the usual sense, and in case of a measure
ϕ : S → [0,∞] then

∫

−fdϕ is the usual integral
∫

fdϕ.

After this we introduce the class of functionals which are to be represented.
Let E ⊂ [0,∞[X be a lattice cone in the pointwise operations, which is meant
to include 0 ∈ E. We recall from [9] that the remainder of the present section
can be preserved even when E need not be stable under addition. We form the
set systems

t(E) := {A ⊂ X : χA ∈ E},

=(E) := {[f = t] : f ∈ E and t > 0},
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which are lattices with ∅ ∈ t(E) ⊂=(E). E is called Stonean iff f ∈ E ⇒ f ∧t,
f − f ∧ t = (f − t)+ ∈ E for all t > 0. We recall from MI 15.2 or [9] 3.2 that
for E Stonean

t(E•) = =(E•) = (=(E))• ⊃ =(E) ⊃ t(E) for • = στ.

Next let I : E → [0,∞[ be an isotone and positive-linear functional, which
implies that I(0) = 0. We define the inner sources of I to be the isotone set
functions ϕ := (E) → [0,∞[ with ϕ(∅) = 0 which fulfil I(f) =

∫

−fdϕ for all
f ∈ E.
Then we define I to be an inner • preintegral if it admits inner sources which
are inner • premeasures. We note an immediate consequence of the above
1.1 which characterizes the inner • preintegrals via representation in terms of
certain measures.

Recollection 1.2 (for • = στ). Let E ⊂ [0,∞[X be a lattice cone and A be a σ

algebra in X with (=(E))• ⊂ A ⊂ Aσ
(

=(E)>(=(E))•
)

. Let I : E → [0,∞[ be

isotone and positive-linear. Then there is a one-to-one correspondence between

the inner sources ϕ : = (E) → [0,∞[ of I which are inner • premeasures, and

the measures α : A → [0,∞] which fulfil I(f) =
∫

fdα for all f ∈ E and hence

α| =(E) < ∞, and are such that

α is inner regular (=(E))•, and

α|(=(E))• is downward • continuous.

The correspondence is α = ϕ•|A and ϕ = α| =(E).

We come to the fundamental inner • Daniell-Stone theorem MI 15.9 (for
• = στ), which is an intrinsic characterization of the inner • preintegrals;
an extended version is [9] 5.8. The theorem is in terms of the inner • envelopes
I• of I defined above and of their satellites Iv

• : [0,∞]X → [0,∞[ for v ∈ E,
defined to be

Iv
• (f) = sup{ inf

u∈M
I(u) : M ⊂ E nonvoid • with M ↓5 f and u 5 v ∀u ∈ M}.

Theorem 1.3 (for • = στ). Let E ⊂ [0,∞[X be a Stonean lattice cone and

I : E → [0,∞[ be isotone and positive-linear. Then the following are equivalent.

1) I is an inner • preintegral.

2) I is downward • continuous; and

I(v) − I(u) 5 I•(v − u) for all u 5 v in E.

3) I is • continuous at 0; and

I(v) − I(u) 5 Iv
• (v − u) for all u 5 v in E.

In this case ϕ := I?(χ.)| = (E) is the unique inner source of I which is an

inner • premeasure. It fulfils ϕ• = I•(χ.), and even I•(f) =
∫

−fdϕ• for all

f ∈ [0,∞]X .

We conclude the section with another characterization of the inner • preinte-
grals. It is of interest because it relates this class to the simpler class of inner
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? premeasures. The proof does not depend on the above inner • Daniell-Stone
theorem, but uses some basic results from [9].

Theorem 1.4 (for • = στ). Let E ⊂ [0,∞[X be a Stonean lattice cone and

I : E → [0,∞[ be isotone and positive-linear. Then the following are equivalent.

1) I is an inner • preintegral.

2) I is • continuous at 0; and ϕ := I?(χ.)|=(E) is an inner • premeasure.

3) I is • continuous at 0; and φ := I?(χ.)|(=(E))• is an inner ? premeasure.

In this case I•(χ.) = ϕ• = φ?.

Proof. 1)⇒2) follows at once from [9] 4.2. 2)⇒1) From [9] 2.3 we see that I is
truncable in the sense of that paper. Then [9] 2.12 implies that ϕ is an inner
source of I . Thus I is an inner • preintegral.

1)2)⇒3) Let α : A → [0,∞] be an inner • extension of ϕ. i) From MI 6.18
we have α = ϕ•|A, and hence from MI 6.5.iii) that α|(= (E))• is downward
• continuous. ii) From [9] 4.2 we see that I is downward • continuous, and
hence from [9] 3.5.1.Inn)2.Inn) that I?|E• is downward • continuous. Because
of (= (E))• = t(E•) therefore φ = I?(χ.)|(= (E))• is downward • continuous.
iii) On = (E) we have α = ϕ• = ϕ = I?(χ.) = φ. Since α|(= (E))• and φ are
both downward • continuous by i)ii) it follows that α|(=(E))• = φ. Thus α is
an inner ? extension of φ, and hence φ is an inner ? premeasure.

3)⇒2) From [9] 3.6.3) we see that φ is • continuous at ∅, and hence from MI
6.31 that φ is an inner • premeasure. Now each inner • extension of φ is also
an inner • extension of ϕ. Therefore ϕ is an inner • premeasure.

It remains to prove I•(χ.) = ϕ• = φ? under 1)2)3). From [9] 4.2 we know
that I•(χ.) = ϕ•. Then ϕ• = φ? on (= (E))•, because from [9] 3.5.1.Inn) and
(= (E))• = t(E•) we have ϕ• = I•(χ.) = I?(χ.) = φ = φ?. Since both ϕ• and
φ? are inner regular (=(E))• it follows that ϕ• = φ? partout. �

2. The Inner Daniell-Stone Theorem

The present results will be for • = στ as before. We start with a consequence
of 1.3 which consists of two parts. The first part has an immediate proof.

Theorem 2.1. Let E ⊂ [0,∞[X be a Stonean lattice cone. 1) Assume that

v − u ∈ E• for all u 5 v in E. Then an isotone and positive-linear functional

I : E → [0,∞[ is an inner • preintegral iff it is • continuous at 0.
2) Assume that v−u ∈ (E•)

σ for all u 5 v in E. Then an isotone and positive-

linear functional I : E → [0,∞[ is an inner • preintegral iff it is • continuous

at 0 and upward σ continuous.

A special case of 1) is the situation that v − u ∈ E for all u 5 v in E. After
MI 14.6-7 it is equivalent to assume that E = H+ for the Stonean lattice
subspace H = E − E ⊂ R

X (Stonean in the usual sense). So this special
case furnishes the traditional Daniell-Stone theorem in the versions • = στ .
However, unlike the present procedure the traditional proofs do not lead to
measures α : A → [0,∞] with I(f) =

∫

fdα for all f ∈ E which have the
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fundamental additional inner properties recorded in 1.2 above. The reason
is that those proofs are based on outer procedures. In order to arrive at the
present inner type entities one has to mount the so-called essential construction
on top of them. This is a formidable detour. We have clarified all this in [7]
section 5.

Proof of 1). To be shown is that the assumption implies the tightness condition
in 1.3.3). Fix u 5 v in E, and let M ⊂ E be nonvoid • with M ↓ v − u and
h 5 v for all h ∈ M . For h ∈ M then h = v − u and hence I(h) = I(v) − I(u).
It follows that I(v) − I(u) 5 inf{I(h) : h ∈ M} 5 Iv

• (v − u). �

Proof of 2). We show that the assumption combined with I upward σ con-
tinuous implies the tightness condition in 1.3.3). Fix u 5 v in E, and then a
sequence (fl)l in E• with fl ↑ v−u. i) For each l ∈ N there exists an M(l) ⊂ E

nonvoid • such that M(l) ↓ fl and h 5 v for all h ∈ M(l). We note that then
the

N(l) := {h1 ∨ · · · ∨ hl : hk ∈ M(k) for k = 1, · · · , l} ⊂ E for l ∈ N

do the same. Thus we can assume that for each g ∈ M(l + 1) there is an
f ∈ M(l) such that f 5 g. ii) Now fix ε > 0, and then ul ∈ M(l) for l ∈ N

such that

I(ul) 5 cl +
ε

2l
with cl := inf{I(h) : h ∈ M(l)}.

Then the vl := u1 ∨ · · · ∨ ul ∈ E fulfil vl = ul = fl and hence vl ↑= v − u. We
show via induction that

I(vl) 5 cl + ε
(

1 −
1

2l

)

for l ∈ N.

The case l = 1 is clear. For the induction step 1 5 l ⇒ l + 1 we note from i)
that vl ∧ul+1 = ul ∧ul+1 is = some member of M(l), so that I(vl ∧ul+1) = cl.
Thus from vl+1 + vl ∧ ul+1 = vl + ul+1 it follows that

I(vl+1) = I(vl) + I(ul+1) − I(vl ∧ ul+1)

5 cl + ε
(

1 −
1

2l
) + cl+1 +

ε

2l+1
− cl = cl+1 + ε

(

1 −
1

2l+1

)

.

iii) From ii) we obtain on the one hand cl 5 Iv
• (v − u) and hence lim

l→∞
I(vl) 5

Iv
• (v − u) + ε. On the other hand (u + vl) ∧ v ↑ v because v = (u + vl) ∧ v =

(u + fl) ∧ v = u + fl ↑ v, and hence

I(u) + lim
l→∞

I(vl) = lim
l→∞

I((u + vl) ∧ v) = I(v).

It follows that I(v) − I(u) 5 Iv
• (v − u). �

In 2.1.2) the condition that I be upward σ continuous cannot be dispensed
with. This will be seen after 3.10 below.

In the sequel we shall exhibit a class of Stonean lattice cones E ⊂ [0,∞[X for
which the assumption of 2.1.2) is fulfilled. We need some preparations.

Let S be a lattice in X with ∅ ∈ S. We define S(S) to consist of the positive-
linear combinations of the characteristic functions χS of the S ∈ S. We know
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from MI 11.4 that S(S) consists of the functions X → [0,∞[ with finite value
set which are in LM(S), and the same with UM(S). We define f ∈ [0,∞]X

to be enclosable S iff f 5 u for some u ∈ S(S). This means of course that
f be < ∞ and bounded above, and = 0 outside some member of S. At last
we define LMo(S) and UMo(S) to consist of those members of LM(S) and
UM(S) which are enclosable S.

After this we recall the assertion MI 22.1 on monotone approximation: For

each f ∈ LM(S) ∪ UM(S) there exists a sequence (fn)n in S(S) such that

fn ↑ f pointwise, and in supnorm on [f 5 c] for each 0 < c < ∞. We shall
need the counterpart for downward monotone approximation.

Lemma 2.2. For each f ∈ LMo(S) ∪ UMo(S) there exists a sequence (fn)n in

S(S) such that fn ↓ f pointwise and in supnorm.

Proof. Assume that f 5 c with 0 < c < ∞ and that f = 0 outside S ∈ S.
For the subdivision t : 0 = t(0) < t(1) < · · · < t(r) = c we form δ(t) =
max{t(l) − t(l − 1) : l = 1, · · · , r}. We define ut ∈ S(S) to be

ut =
r

Σ
l=1

(t(l) − t(l − 1))χ[f>t(l)] when f ∈ LMo(S),

ut =
r

Σ
l=1

(t(l) − t(l − 1))χ[f=t(l)] when f ∈ UMo(S),

and vt ∈ S(S) to be

vt =
r

Σ
l=1

(t(l) − t(l − 1))χ[f>t(l−1)][∗] when f ∈ LMo(S),

vt =
r

Σ
l=1

(t(l) − t(l − 1))χ[f=t(l−1)][∗] when f ∈ UMo(S),

where [∗] is to mean that for l = 1 one has to take S instead of [f > 0] when
f ∈ LMo(S) and instead of [f = 0] when f ∈ UMo(S). From the basic lemma
MI 11.6 one verifies that ut 5 f 5 vt and vt 5 ut + δ(t)χA, and moreover
that t 7→ ut is isotone and t 7→ vt is antitone with respect to refinement in t.
Now take for n ∈ N the subdivision t : t(l) = cl2−n for l = 0, 1, · · · , 2n with
δ(t) = c2−n. Then the assertions are all clear. �

The final preparation will be on the monotone approximation of differences.

Lemma 2.3. Let S and K be lattices in X with ∅ ∈ S ⊂ K such that B\A ∈ Kσ

for all A ⊂ B in S. Then for each pair of functions u 5 v < ∞ in UM(S) there

exists a sequence (fn)n of functions in S(K) enclosable S such that fn ↑ v−u.

Proof. The first part of the proof assumes that u 5 v 5 c with 0 < c < ∞ and
that v = 0 outside some S ∈ S. 1) We fix t : 0 = t(0) < t(1) < · · · < t(r) = c

with δ(t) = max{t(l)− t(l−1) : l = 1, · · · , r} as before and define ut, vt ∈ S(S)
to be

ut =
r

Σ
l=1

(t(l) − t(l − 1))χ[u=t(l)],

vt =
r

Σ
l=1

(t(l) − t(l − 1))χ[v=t(l)],
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so that ut 5 vt are = 0 outside S. From MI 11.6 we have ut 5 u 5 ut + δ(t)χS

and vt 5 v 5 vt + δ(t)χS , and hence

v − u = vt − ut − δ(t)χS = v − u − 2δ(t)χS ,

v − u = (vt − ut − δ(t)χS)+ = (vt − ut − δ(t))+ = v − u − 2δ(t)χS .

2) For fixed l = 1, · · · , r there is a sequence (K(l, n))n in K such that K(l, n) ↑
[v = t(l)] \ [u = t(l)]. We form the functions

hn :=
r

Σ
l=1

(t(l) − t(l − 1))χK(l,n) ∈ S(K) for n ∈ N,

so that hn = 0 outside S. Then hn ↑ vt − ut. Therefore the functions gn :=
(fn − δ(t))+ ∈ S(K) are = 0 outside S as well, and gn ↑ (vt − ut − δ(t))+ =: g

with v − u = g = v − u − 2δ(t)χS . 3) From 1)2) we obtain for each l ∈ N

a sequence (gl
n)n in S(K) with gl

n = 0 outside S such that gl
n ↑ some gl with

v − u = gl = v − u − 1
l
χS . We define fn := g1

n ∨ · · · ∨ gn
n ∈ S(K) for n ∈ N, so

that fn = 0 outside S. Then fn ↑ some f 5 v − u. From fn = gl
n for n = l

we obtain f = gl = v − u − 1
l
χS for l ∈ N. Therefore f = v − u. 4) Thus the

result of the first part is a sequence (fn)n in S(K) with fn = 0 outside S such
that fn ↑ v − u.

The second part of the proof will obtain the full assertion. Thus let u 5 v < ∞
in UM(S). We fix a pair of numerical sequences 0 < al < bl < ∞ with al ↓ 0
and bl ↑ ∞. We form

ul := (u − al)
+ ∧ (bl − al) and vl := (v − al)

+ ∧ (bl − al),

so that ul, vl ∈ UM(S) with ul 5 vl 5 bl − al which are = 0 outside [v = al].
1) We claim that vl − ul 5 vl+1 − ul+1, which can also be written ul+1 − ul 5

vl+1 − vl. Thus the claim is that the function ϑ : [0,∞[→ R, defined to be

ϑ(x) = (x − al+1)
+ ∧ (bl+1 − al+1) − (x − al)

+ ∧ (bl − al) for 0 5 x < ∞,

is monotone increasing. To see this note that 0 < al+1 5 al < bl 5 bl+1 < ∞.
Since ϑ is continuous it remains to show that it is monotone increasing in each
of the closed subintervals of [0,∞[ thus produced. Now one verifies that

on [0, al+1] : ϑ(x) = 0,

on [al+1, al] : ϑ(x) = x − al+1,

on [al, bl] : ϑ(x) = al − al+1,

on [bl, bl+1] : ϑ(x) = x − al+1 − bl + al,

on [bl+1,∞[ : ϑ(x) = bl+1 − al+1 − bl + al.

Thus the assertion follows. 2) From the first part of the proof we obtain for
each fixed l ∈ N a sequence (f l

n)n in S(K) with f l
n = 0 outside [v = al] such

that f l
n ↑ vl−ul. We define fn := f1

n∨· · ·∨fn
n ∈ S(K) for n ∈ N, so that fn = 0

outside [v = an]. Then fn ↑ some f ∈ [0,∞]X . We claim that f = v−u, which
will complete the proof. From 1) we see that vl − ul ↑ v − u. Thus on the one
hand fn 5 (v1 − u1) ∨ · · · ∨ (vn − un) = vn − un and hence f 5 v − u. On the
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other hand fn = f l
n for n = l and hence f = vl−ul for l ∈ N, so that f = v−u.

The assertion follows. �

Combination 2.4. Let E ⊂ [0,∞[X be a Stonean lattice cone and S be a

lattice in X with = (E) ⊂ S ⊂ = (E•). Then 1) S• = = (E•) and UMo(S•) ⊂
E• ⊂ UM(S•). 2) Assume that B \ A ∈ (S•)

σ for all A ⊂ B in S. Then

v − u ∈ (E•)
σ for all u 5 v in E.

Proof. 1) We know that t(E•) = = (E•) = (= (E))•. Therefore S• ⊂ = (E•) =
t(E•), that is χT ∈ E• for all T ∈ S•. Since E• is a cone it follows that
S(S•) ⊂ E•. Thus 2.2 implies that UMo(S•) ⊂ E•. In the other direction
= (E) ⊂ S implies that = (E•) = (= (E))• ⊂ S• or E• ⊂ UM(S•). 2) For
u 5 v in E ⊂ UM(S) we obtain from 2.3 a sequence (fn)n in S(S•) ⊂ E• such
that fn ↑ v − u. Thus v − u ∈ (E•)

σ . �

We combine 2.4.2) with the above 2.1.2) to obtain the other main result of the
present section.

Theorem 2.5. Let E ⊂ [0,∞[X be a Stonean lattice cone and S be a lattice

in X with =(E) ⊂ S ⊂=(E•). Assume that S satisfies B \A ∈ (S•)
σ for all

A ⊂ B in S. Then an isotone and positive-linear functional I : E → [0,∞[ is

an inner • preintegral iff it is • continuous at 0 and upward σ continuous.

3. The Riesz Representation Theorem

The present section assumes a Hausdorff topological space X with its obvious
set systems Op(X) and Cl(X), Comp(X) =: K and its σ algebra Bor(X) =: B.
We start with a little historical sketch on Radon measures.

A Borel measure α : B → [0,∞] is called Radon iff α|K < ∞ and α is inner
regular K. When in particular X is locally compact then all these measures
are locally finite in the obvious sense. There is a related notion, which in
earlier presentations sometimes even cut out the present one. Let a Borel
measure β : B → [0,∞] be called associate Radon iff β|K < ∞ and β is
inner regular K at Op(X) and outer regular Op(X). Then Schwartz [12] pp.12-
15 established a one-to-one correspondence between the locally finite Radon
measures α : B → [0,∞] and the associate Radon measures β : B → [0,∞],
which is unique both under α|K = β|K and under α|Op(X) = β|Op(X). Thus
he was led to include local finiteness in the definition of Radon measures, but
this could be abandoned since.

After this a set function φ : K → [0,∞[ is called a Radon premeasure iff it
can be extended to some Radon measure, and then of course to the unique
one α := φ?|B. It is an obvious problem to characterize those set functions
φ : K → [0,∞[ which are Radon premeasures. There appeared two such char-
acterizations at about the same time, in 1968 in Kisyński [2] and in 1969 in
Bourbaki [1] section 3 théorème 1 p.43 (the latter restricted to local finiteness).

Kisyński Theorem 3.1. For an isotone set function φ : K → [0,∞[ the

following are equivalent. 1) φ is a Radon premeasure. 2) φ is supermodular
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with φ(∅) = 0; and

φ(B) − φ(A) 5 φ?(B \ A) for all A ⊂ B in K.

Bourbaki Theorem 3.2. For an isotone set function φ : K → [0,∞[ the fol-

lowing are equivalent. 1) φ is a Radon premeasure. 2) φ(A∪B) 5 φ(A)+φ(B)
for all A, B ∈ K, with = when A ∩ B = ∅; and φ is downward τ continuous.

These two characterizations are so different that they must come from different
conceptions. In fact, it turned out that Kisyński had captured the adequate
concept in order to prepare the transition from topological to abstract measure
and integration, which then started in no time as described in the introduction
to MI. At present the above 3.1 is contained in MI 9.1, which is a simple
consequence of the inner • main theorem MI 6.31. Moreover MI 9.1 asserts for
each • = ?στ that φ : K → [0,∞[ is a Radon premeasure iff it is an inner •
premeasure, and that in this case all three φ• are equal. The reason for this
coincidence are the two properties of the lattice K that K = Kτ and that K is
τ compact (recall that a set system in an abstract set is called • compact iff
each of its nonvoid • subsystems M with M ↓ ∅ has ∅ ∈ M).

Then in 3.2 the implication 1)⇒2) is contained in the inherent fact that the
inner τ premeasures are downward τ continuous. However, the implication
2)⇒1) and thus the characterization asserted in 3.2 appears to be limited to
the topological context in the strict sense. The remark below wants to serve as
an illustration.

Remark 3.3. Let S be a lattice in an abstract set with ∅ ∈ S which fulfils S =
Sτ and is τ compact. Let φ : S → [0,∞[ be isotone and modular with φ(∅) = 0,
and downward τ continuous. Then φ need not be an inner • premeasure for

any • = ?στ . Our example is the simplest possible one: Let X have more than
one element, and fix an a ∈ X . Define S to consist of ∅ and of the finite S ⊂ X

with a ∈ S. Then let φ : S → [0,∞[ be φ(∅) = 0 and φ(S) = #(A \ {a})
for the other S ∈ S. It is obvious that S and φ are as required. Moreover
φ?(A) = 0 when a 6∈ A and φ?(A) = #(A \ {a}) when a ∈ A. Now assume
that α : A → [0,∞] is an extension of φ which is a content on a ring and inner
regular S. Thus α = φ?|A. For all A ∈ S with a ∈ A then

φ(A) = α(A) = α({a}) + α(A \ {a}) = φ?({a}) + φ?(A \ {a}) = 0,

which is a contradiction. �

After this excursion we turn to the Riesz representation theorem as obtained
in MI section 16, not without notice that the extension of the inner • Daniell-
Stone theorem in [9] 5.8 produces of course an extended Riesz theorem. But
for the present issue this would not contribute much.

Let E ⊂ [0,∞[X be a lattice cone. Since we want to represent our functionals
on E in terms of Radon measures, it is adequate after 1.2 to assume that E

satisfies (= (E))• = K for some • = στ . In particular then = (E) ⊂ K, so that
the members of E are upper semicontinuous and bounded above. Since the
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traditional Riesz theorem is for the lattice subspace CK(X) of the continuous
functions X → R which vanish outside certain compact subsets of X , that is for
the lattice cone CK+(X), it is adequate to assume that E be ⊂ USCK+(X),
defined to consist of the upper semicontinuous functions X → [0,∞[ which
vanish outside certain compact subsets of X . In the previous notation we have
USCK+(X) = UMo(K). Henceforth the lattice cones E ⊂ USCK+(X) with
(=(E))• = K will be called • rich; it will become clear that the situation • = τ

is the more important one. From 2.4.1) one obtains the remark below.

Remark 3.4. If E ⊂ USCK+(X) is a • rich Stonean lattice cone then E• =
USCK+(X).

Examples 3.5. 1) The lattice cone E = CK+(X) is τ rich iff X is locally
compact. This is a standard fact; see for example MI 16.3. 2) If the lattice
cone E ⊂ USCK+(X) satisfies S ⊂ = (E•) for some lattice S in X with
∅ ∈ S ⊂ S• = K then E is • rich. In fact,we have S ⊂=(E•) = (=(E))• ⊂ K.

In the sequel let E ⊂ USCK+(X) be a • rich lattice cone. We define an isotone
and positive-linear functional I : E → [0,∞[ to be a Radon preintegral iff there
exists a Radon measure α : B → [0,∞] such that I(f) =

∫

fdα for all f ∈ E.
Equivalent is of course that there exists a Radon premeasure φ : K → [0,∞[
such that I(f) =

∫

−fdφ for all f ∈ E, and these α and φ correspond to each
other via α = φ?|B and φ = α|K.

We turn to the connection with the previous representation theories. We start
with 1.2, where A can be chosen to be B.

Proposition 3.6 (for • = στ). Let E ⊂ USCK+(X) be a • rich lattice cone

and I : E → [0,∞[ be isotone and positive-linear. Then I is a Radon preintegral

iff it is an inner • preintegral. In this case the inner sources ϕ :=(E) → [0,∞[
of I which are inner • premeasures correspond to the above α and φ via ϕ =
α| =(E) = φ| =(E), and α = ϕ•|B and φ = ϕ?|K = ϕ•|K.

If in particular E is Stonean then first of all the Dini consequence MI 16.4
asserts that all these I : E → [0,∞[ are τ continuous at 0. Thus 1.3 and 1.4
furnish the Riesz representation theorem in the version which follows.

Theorem 3.7 (for • = στ). Let E ⊂ USCK+(X) be a • rich Stonean lattice

cone and I : E → [0,∞[ be isotone and positive-linear. Then the following are

equivalent. 1) I is a Radon preintegral.

2) I is an inner • preintegral.

3) I(v) − I(u) 5 Iv
• (v − u) for all u 5 v in E.

4) ϕ := I?(χ.)| =(E) is an inner • premeasure.

5) φ := I?(χ.)|K is a Radon premeasure.

In this case ϕ is the unique inner source of I which is an inner • premea-

sure, and φ is the unique Radon premeasure which represents I; likewise

α := I•(χ.)|B is the unique Radon measure which represents I. We have

I•(χ.) = ϕ• = φ? = α?.
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Our ultimate aim is the specialization of 2.1 and 2.5. We have • = στ as before,
but this time the case • = σ is contained in • = τ .

Theorem 3.8. Let E ⊂ USCK+(X) be a τ rich Stonean lattice cone. 1)
Assume that v − u ∈ USCK+(X) for all u 5 v in E. Then each isotone and

positive-linear I : E → [0,∞[ is a Radon preintegral.

2) Assume that v − u ∈ (USCK+(X))σ for all u 5 v in E. Then an isotone

and positive-linear I : E → [0,∞[ is a Radon preintegral iff it is upward σ

continuous.

In view of 3.5.1) the first assertion 3.8.1) contains the traditional Riesz rep-
resentation theorem. Thus we have the traditional Daniell-Stone and Riesz
theorems both under the same roof (and at the same time, as pointed out after
2.1, the former one enriched to a usable assertion).

Theorem 3.9. Let S be a lattice in X with ∅ ∈ S ⊂ Sτ = K and E ⊂
UMo(S) ⊂ USCK+(X) be a τ rich Stonean lattice cone. Assume that B \
A ∈ Kσ for all A ⊂ B in S. Then an isotone and positive-linear functional

I : E → [0,∞[ is a Radon preintegral iff it is upward σ continuous.

Proof. We have in fact = (E) ⊂ S ⊂ = (Eτ ). Thus the assertion follows from
2.5, and likewise from 3.8.2) and hence from 2.1.2) via 2.4.2). �

We conclude with two illustrative examples, in that we specialize 3.9 to S := K

and to S := K ∩ (Op(X))σ (=:the compact Gδ subsets).

Example 3.10. Assume that B \ A ∈ Kσ for all A ⊂ B in K, that is that K is
upward σ full in the sense of MI section 7. Let E ⊂ USCK+(X) be a τ rich
Stonean lattice cone; in particular one can take E = USCK+(X) itself. Then

an isotone and positive-linear I : E → [0,∞[ is a Radon preintegral iff it is

upward σ continuous.

We turn to the counterexample announced after 2.1. As before assume that
B \ A ∈ Kσ for all A ⊂ B in K. Consider an isotone and modular set function
φ : K → [0,∞[ with φ(∅) = 0 which is not a Radon premeasure; there is an
example with X = [0, 1] in [10] 1.4. In view of MI 11.11 then I(f) =

∫

−fdφ for

all f ∈ E = USCK+(X) defines an isotone and positive-linear I : E → [0,∞[
which is not a Radon preintegral. Thus we see that in 3.9 and 2.5, and likewise
in 3.8.2) and 2.1.2), the condition that I be upward σ continuous cannot be
dispensed with.

Example 3.11. Assume that the lattice S = K ∩ (Op(X))σ fulfils Sτ = K.
Let E ⊂ UMo(S) ⊂ USCK+(X) be a τ rich Stonean lattice cone; in particular
one can take E = UMo(S) itself in view of MI 11.1.3). Then an isotone

and positive-linear I : E → [0,∞[ is a Radon preintegral iff it is upward σ

continuous.

4. Comparison with Another Approach

The present final section wants to relate the previous one to recent work of Za-
kharov and Mikhalev [13]-[16]; see also the conference abstracts [11][17]. This
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work has the aim to transfer one basic feature within the Riesz representation
theorem to arbitrary Hausdorff topological spaces. It does in fact not even
contain the Riesz theorem itself, but rather wants, in the words of the authors,
to find a class of linear functionals which via integration is in one-to-one cor-
respondence with the class of Radon measures on the space. Nonetheless this
less ambitious aim is called the General Riesz-Radon problem.

We retain the terms of the last section. The approach of the authors is via
the simple lattice cone S(K), but in terms of a certain lattice subspace. For a
lattice S in X with ∅ ∈ S define D(S) := S(S) − S(S), that is to consist of
the real-linear combinations of the χS for S ∈ S. We form the supnorm closure
H(X) := D(Cl(X)) in the space of all (Borel measurable) bounded functions
X → R. The members of H(X) are the metasemicontinuous functions in
the sense of the papers under view; but the definition of the authors is more
complicated and involves the so-called Aleksandrov set system. Then define
K(X) ⊂ H(X) to consist of the members of H(X) which vanish outside certain
compact subsets of X . H(X) and K(X) are lattice subspaces. With the
K(A) := {K ∈ K : K ⊂ A} for A ∈ K one has

S(K) ⊂ D(K) ⊂ K(X) =
⋃

A∈K

D(K(A)) ⊂ H(X).

The authors consider the isotone and linear functionals I : K(X) → R. We
continue with our own reconstruction. From an obvious manipulation combined
with the old Kisyński theorem 3.1 we obtain the assertion which follows.

Assertion 4.1. Let I : K(X) → R be isotone and linear. Then there exists

a Radon measure α : B → [0,∞] such that I(f) =
∫

fdα for all f ∈ K(X)
(and hence of course a unique one) iff the set function φ := I(χ.)|K is a Radon

premeasure. In view of the Kisyński theorem 3.1 this means that

I(χB\A) 5 sup{I(χK) : K ∈ K with K ⊂ B \ A} for all A ⊂ B in K.

Proof. 1) For fixed A ∈ K the restriction I |D(K(A)) is an isotone linear func-

tional on the linear subspace D(K(A)) ⊂ K(X). One has χA ∈ D(K(A)). For

f ∈ D(K(A)) therefore |f | 5 ‖f‖χA implies that |I(f)| 5 ‖f‖I(χA). Thus

I |D(K(A)) is supnorm continuous. 2) Let α : B → [0,∞] be a Radon measure.
The relation I(f) =

∫

fdα for all f ∈ K(X) means that for each fixed A ∈ K

one has I(f) =
∫

fdα for all f ∈ D(K(A)), that is after 1) for all f ∈ D(K(A)),
that is for all f ∈ S(K(A)). Thus one ends up with I(f) =

∫

fdα for all
f ∈ S(K), which says that φ(K) := I(χK) = α(K) for all K ∈ K. �

After this one notes with surprise that Zakharov-Mikhalev [13]-[16] did not
characterize the representable functionals I : K(X) → R by the simple Kisyński
type condition of 4.1, but by means of a much more complicated equivalent
condition. In fact, their condition consists of the two parts
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1) I is σ continuous under monotone pointwise convergence; and
2) each sequence (A(l))l in R(K) which decreases A(l) ↓ A ⊂ X satisfies

lim
l→∞

I(χA(l)) 5 sup{I(χK) : K ∈ K with K ⊂ A},

once more in simplified form, with R(K) the ring generated by K.

The comparison with 4.1 makes clear that this equivalent condition is inade-
quate in depth in both parts.

This adds to the fact that the basic set-up in the papers under view, that is
the limitation to S(K) ⊂ D(K) ⊂ K(X), appears to be much too narrow. Thus
one more surprise is the sheer extent of the papers. To be sure, there are other
conclusions, but the equivalence described above forms their central result.
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