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Abstract. Gabor and wavelet methods are preferred to classical
Fourier methods, whenever the time dependence of the analyzed sig-
nal is of the same importance as its frequency dependence. However,
there exist strict limits to the maximal time-frequency resolution of
these both transforms, similar to Heisenberg’s uncertainty principle in
Fourier analysis. Results of this type are the subject of the following
article. Among else, the following will be shown: if ψ is a window
function, f ∈ L2(R) \ {0} an arbitrary signal and Gψf(ω, t) the con-
tinuous Gabor transform of f with respect to ψ, then the support of
Gψf(ω, t) considered as a subset of the time-frequency-plane R

2 can-
not possess finite Lebesgue measure. The proof of this statement, as
well as the proof of its wavelet counterpart, relies heavily on the well
known fact that the ranges of the continuous transforms are reproduc-
ing kernel Hilbert spaces, showing some kind of shift-invariance. The
last point prohibits the extension of results of this type to discrete
theory.
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1 Introduction

One of the basic principles in classical Fourier analysis is the impossibility
to find a function f being arbitrarily well localized together with its Fourier
transform f̂ . There are many ways to get this statement precise. The most
famous of them is the so called Heisenberg uncertainty principle [Heis27], a
consequence of Cauchy-Schwarz’s inequality (c.f. [Chan89], for example):
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Given f ∈ L2(R) \ {0} arbitrary, one has





∞
∫

−∞

x2|f(x)|2dx
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∞
∫

−∞

ξ2|f̂(ξ)|2dξ





1/2

≥
‖f‖2

L2(R)

2
, (1)

where equality holds if and only if there exist some constants C ∈ C, k > 0
such that f(x) = Ce−kx

2

.

Completely different techniques lead to further restrictions of this type, e.g.
methods of complex analysis to the theorems of Paley-Wiener and Hardy
[Chan89, Hard33], and a study of the spectral properties of compact oper-
ators to the work of Slepian, Pollak and Landau [Slep65, LaWi80, Slep83].
The uncertainty principles of Lenard, Amrein, Berthier and Jauch [Lena72,
BeJa76, AmBe77] are mainly consequences of the geometric properties of ab-
stract Hilbert spaces. Additional considerations provide the articles of Cowling-
Price [CoPr84] and Donoho-Stark [DoSt89]. And those are just a few aspects
of uncertainty in harmonic analysis. Deeper insight can be won from the book
of Havin and Jöricke [HaJo94].

The representation of f as a function of x is usually called its time-represen-
tation, while frequency-representation is another name for the Fourier trans-
form f̂(ξ). For applications, one often needs information about the frequency-
behaviour of a signal at a certain time (resp. the time-behaviour of a certain
frequency-component of the signal). This lead to the construction of several
joint time-frequency representations, among those the Gabor transform (3).
The motivation for the wavelet transform (12) was of similar nature. However,
the latter should preferably be called a joint time-scale representation, since the
parameter a in (12) cannot completely be identified with an inverse frequency,
as it is often done in the literature.

Bearing in mind the limits of classical Fourier transform, one cannot expect to
achieve perfect phase-space resolution by using such joint representations. Even
worse, additional perturbations of the original signal may be introduced by the
window (resp. wavelet) function ψ. Precise estimates tackling exactly that
point are rare in literature. Usually, the time-frequency-resolution of a Gabor
(resp. wavelet) transform is identified with the time-frequency localization of
the function ψ [Chui92]. This can be seen even more clearly from the discrete
transforms: the famous uncertainty principles of Balian-Low for the discrete
Gabor transform [Bali81, Daub90] and Battle for the discrete wavelet transform
[Batt89, Batt97] just estimate the maximal time-frequency resolution of the
window (resp. wavelet) function ψ under the restriction that the daughter
functions of ψ span a frame (resp. an – in some suitable sense – orthogonal
set). As for the continuous wavelet transform, Dahlke and Maaß [DaMa95]
proved a Heisenberg-like inequality related to the affine group. It is not so
obvious, however, what consequences for the phase-space localization of Wψf

follow from this result. Presumably, Daubechies [Daub88, Daub92] was the
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first to analyze the energy content of Gψf (resp. Wψf) restricted to a proper
subset M of phase-space. But she considered only very special functions ψ and
subsets M of very special geometry, chosen in such a way that the arguments
of Slepian, Pollak and Landau could widely be transferred.

In section 4 of this article, a similar investigation will be performed for quite
general functions ψ and almost arbitrary subsets M of phase-space. By this,
one cannot expect to get such precise results as Daubechies did. While she
computed the whole spectrum of a suitably constructed compact operator,
we just derive an upper bound for its eigenvalues. This suffices, however, to
estimate the maximal energy content of Gψf (resp. Wψf) in M . Before doing
so, we show in section 3 that if M is a set of finite Lebesgue (resp. affine)
measure, there is no f ∈ L2(R) such that suppGψf ⊆ M (resp. suppWψf ⊆
M). Here, supph denotes the support of a given function h. We finish this
article with some conclusions following from Heisenberg’s uncertainty principle.

The results presented here are part of the author’s PhD thesis [Wilc97].

2 Prerequisites from the Theory of Gabor and Wavelet Trans-
forms

This section shall serve as a reference. It provides some of the most important
definitions and theorems from the theory of (continuous) Gabor and wavelet
transforms. Further introductory information, and especially the proofs of the
results presented here, can be found, e.g., in [Chui92, Daub92, Koel94].

In the following, we denote by λ(n) n-dimensional Lebesgue measure, by R
∗

the set of real numbers without zero and by χM the characteristic function
of the set M . The Fourier-Plancherel transform of a function f ∈ L2(R) is
normalized by

(Ff)(ξ) := f̂(ξ) :=
1√
2π

∞
∫

−∞

f(x)e−iξxdx (ξ ∈ R).

2.1 Basic Gabor Theory

Definition 2.1 (Gabor transform)
1. A window function is a function ψ ∈ L2(R) \ {0}.
2. Given a window function ψ and (ω, t) ∈ R

2, we define the daughter function
ψωt of ψ by

ψωt(x) :=
1√
2π
ψ(x− t)eiωx. (2)
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3. The Gabor transform (GT) of a function f ∈ L2(R) with respect to the
window function ψ is defined by

Gψf : R2 → C, where

Gψf(ω, t) :=

∞
∫

−∞

f(x)ψωt(x)dx. (3)

4. Given a window function ψ, we define an operator Gψ acting on L2(R) by

Gψ : f 7→ Gψf.

Gψ is called the operator of the Gabor transform or, shorter, the Gabor trans-
form with respect to ψ.

Remark 2.2
1. Other names of the Gabor transform frequently used in the literature
are Weyl-Heisenberg transform, short time Fourier transform and windowed
Fourier transform.
2. If there is no danger of confusion, we drop the attribute with respect to ψ

in the following.
3. From Plancherel’s formula we get the Fourier representations of Gψf :

Gψf(ω, t) = F(f(x)ψ(x − t))(ω) = e−itωF(f̂(ξ)ψ̂(ξ − ω))(−t). (4)

Denoting by Cb(R
2) the vector space of bounded continuous functions mapping

R
2 into C, equipped with the maximum norm, we have

Theorem 2.3 (Covariance properties) Let ψ be a window function. The
Gabor transform Gψ is a bounded linear operator from L2(R) to Cb(R

2)
possessing the following covariance properties:

for f ∈ L2(R) and (ω, t) ∈ R
2 arbitrary

[Gψf(· − x0)] (ω, t) = e−iωx0Gψf(ω, t− x0) (x0 ∈ R), (5)

[

Gψ(eiω0·f(·))
]

(ω, t) = Gψf(ω − ω0, t) (ω0 ∈ R). (6)

Theorem 2.4 (Orthogonality relation) Let ψ be a window function and f, g ∈
L2(R) arbitrary. Then we have

∞
∫

−∞

Gψf(ω, t)Gψg(ω, t)dωdt = ‖ψ‖2
L2(R)(f, g)L2(R). (7)
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Corollary 2.5 (Isometry) Let ψ be a window function. The normalized
Gabor transform 1

‖ψ‖L2(R)
Gψ is an isometry from L2(R) into a subspace of

L2(R2).

Corollary 2.6 (Reproducing kernel) Let ψ be a window function. Then
Gψ(L2(R)) is a reproducing kernel Hilbert space (r.k.H.s.) in L2(R2) with
kernel function

Kψ(ω′, t′;ω, t) :=
1

‖ψ‖2
L2(R)

(ψωt, ψω′t′)L2(R). (8)

The kernel is pointwise bounded:

|Kψ(ω′, t′;ω, t)| ≤ 1 ∀ (ω′, t′), (ω, t) ∈ R
2. (9)

2.2 Basic Wavelet Theory

Definition 2.7 (Wavelet transform)
1. A function ψ ∈ L2(R) \ {0} satisfying the admissibility condition

cψ := 2π

∞
∫

−∞

|ψ̂(ξ)|2 dξ|ξ| <∞ (10)

is called a mother wavelet.
2. Given a mother wavelet ψ and (a, b) ∈ R

∗ × R, we define the daughter
wavelet ψab of ψ by

ψab(x) :=
1

√

|a|
ψ

(

x− b

a

)

. (11)

3. The wavelet transform (WT) of a function f ∈ L2(R) with respect to the
mother wavelet ψ is defined by

Wψf : R
∗ ×R → C, where

Wψf(a, b) :=

∞
∫

−∞

f(x)ψab(x)dx. (12)

4. Given a mother wavelet ψ, we define an operator Wψ acting on L2(R) by

Wψ : f 7→Wψf.

Wψ is called the operator of the wavelet transform or, shorter, the wavelet
transform with respect to ψ.
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Remark 2.8
From Plancherel’s formula we get the Fourier representation

Wψf(a, b) = F−1(
√

2πf̂(ξ)
√

|a|ψ̂(aξ))(b). (13)

Denoting by Cb(R
∗ × R) the vector space of bounded continuous functions

mapping R
2 into C, equipped with the maximum norm, we have

Theorem 2.9 (Covariance properties) Let ψ be a mother wavelet. The
wavelet transform Wψ is a bounded linear operator from L2(R) to Cb(R

∗ ×R)
possessing the following covariance properties:

for f ∈ L2(R) and (a, b) ∈ R
∗ ×R arbitrary

[Wψf(· − x0)](a, b) = Wψf(a, b− x0) (x0 ∈ R), (14)

[

Wψ

(

1
√

|c|
f
( ·
c

)

)]

(a, b) = Wψf

(

a

c
,
b

c

)

(c ∈ R
∗). (15)

Theorem 2.10 (Orthogonality relation) Let ψ be a mother wavelet and f, g ∈
L2(R) arbitrary. Then we have

∞
∫

−∞

Wψf(a, b)Wψg(a, b)
dadb

a2
= cψ(f, g)L2(R). (16)

Corollary 2.11 (Isometry) Let ψ be a mother wavelet. The normalized
wavelet transform 1√

cψ
Wψ is an isometry from L2(R) into a subspace of

L2(R∗ ×R, dµaff ), where dµaff := dadb
a2 denotes the so-called affine measure.

Corollary 2.12 (Reproducing kernel) Let ψ be a mother wavelet. Then
Wψ(L2(R)) is a r.k.H.s. in L2(R∗ ×R, dµaff ) with kernel function

Kψ(a′, b′; a, b) :=
1

cψ
(ψab, ψa′b′)L2(R). (17)

The kernel is pointwise bounded:

|Kψ(a′, b′; a, b)| ≤
‖ψ‖2

L2(R)

cψ
∀ (a′, b′), (a, b) ∈ R

∗ × R. (18)

2.3 Group theoretical background

The parallel structures of the two foregoing sections suggest that Gabor and
wavelet transform originate from a common root. As it is widely known, this
root can be found in the theory of unitary representations of locally compact
groups. Using the terminology of e.g. [GrMo85, HeWa89] we state one of the
central results in that context:
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Theorem 2.13 (Orthogonality relation) Let G be a locally compact group with
left Haar measure µL, H a complex Hilbert space and U a square integrable,
irreducible, unitary representation of G on H. Define

AU := {ψ ∈ H : ψ is U − admissible}, (19)

where U-admissibility of ψ ∈ H means

0 < cUψ :=

∫

G

|(ψ,U(g)ψ)H|2dµL(g) <∞. (20)

Then AU is dense in H, and there exists a unique positive operator CU : AU →
H such that for all ψ,Ψ ∈ AU and for all f1, f2 ∈ H

∫

G

(f1, U(g)ψ)H(f2, U(g)Ψ)HdµL(g) = (CUΨ, CUψ)H(f1, f2)H. (21)

If G is unimodular, then CU is a multiple of the identity operator.

Remark 2.14 Gabor transform is induced by a square-integrable, unitary, ir-
reducible representationUWH of the so called Weyl-Heisenberg group on L2(R).
Here, UWH -admissibility poses no additional restrictions: AUWH

= L2(R).
Similarily, wavelet transform results from a representation Uaff of the affine
(”ax+b”-) group on L2(R). In this case, Uaff -admissibility of a function ψ ∈
L2(R) corresponds to admissibility in the sense of 10.
By this, covariance properties 5,6,14 and 15, as well as the orthogonality rela-
tions 7,16 with corollaries are immediate consequences of group theory.
A helpful reference in the context of time-frequency distributions and group
theory is the survey article of Miller [Mill91].

3 Restrictions on the Supports of Gabor and Wavelet Trans-
forms

In 1977, Amrein and Berthier ([AmBe77], see also [HaJo94]) proved that the
support of a function f ∈ L2(R) \ {0} and the support of its Fourier transform

f̂ cannot both be sets of finite Lebesgue measure. Using the same techniques,
we will show now that for any window function (resp. wavelet) ψ and any
f ∈ L2(R) \ {0} the support of the Gabor transform Gψf (resp. wavelet
transform Wψf) is a set of infinite Lebesgue (resp. affine) measure. As a
preparation we need

Lemma 3.1 (Dimension of certain subspaces of a r.k.H.s.)
Let (Y,ΣY , µY ) be a σ-finite measure space, M a subset of Y with µY (M) <∞,
and H ⊂ L2(Y, dµY ) a r.k.H.s. with kernel K. Assuming that

sup
y′,y∈Y

|K(y′, y)| <∞, (22)
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and defining

HM := {F ∈ H : F = χM · F}, (23)

the following estimate holds:

dim HM ≤
(

sup
y′,y∈Y

|K(y′, y)|
)2

µY (M)2 <∞. (24)

Proof: Using (22) and the finiteness of µY (M) we get

∫

M

∫

M

|K(y′, y)|2dµY (y′)dµY (y) ≤
(

sup
y′,y∈Y

|K(y′, y)|
)2

µY (M)2 <∞, (25)

hence, in particular, K ∈ L2(M × M,d2µY ). Let (en)Nn=1 (N ∈ N) be an
arbitrary orthonormal family in HM , and define

En(y′, y) := en(y
′)en(y) (n ∈ {1, . . . , N}).

Then for m,n ∈ {1, . . . , N}
∫

M

∫

M

Em(y′, y)En(y′, y)dµY (y′)dµY (y)

=
∫

M

∫

M

em(y′)em(y)en(y′)en(y)dµY (y′)dµY (y) = δmn,

hence, (En)Nn=1 is an orthonormal family in L2(M ×M,d2µY ). Since we have
shown that K ∈ L2(M × M,d2µY ), Bessel’s inequality, combined with the
reproducing property of K, leads to

‖K‖2
L2(M×M,d2µY ) ≥

N
∑

n=1

|(En,K)L2(M×M,d2µY )|2

=
N
∑

n=1

|
∫

M

∫

M

en(y
′)en(y)K(y′, y)dµY (y)dµY (y′)|2

=

N
∑

n=1

|
∫

M

en(y
′)en(y′)dµY (y′)|2 = N.

So, finally, (25) implies

N ≤
(

sup
y′,y∈Y

|K(y′, y)|
)2

µY (M)2 <∞,

and therefore each orthonormal set of HM is finite.
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Now, choose M as a subset of R
2 (resp. R

∗ × R) and H = Gψ(L2(R)) ⊂
L2(R2) (resp. Wψ(L2(R)) ⊂ L2

(

R
∗ ×R, dadba2

)

). From section 2 we know
that these two ranges are r.k.h.s with bounded kernels. Assuming, there exists
at least one non-trivial function F ∈ HM , we will construct an infinite sequence
of functions in H being linearly independent and supported in a set of finite
measure. Since this is a contradicition to lemma 3.1, HM must be zero space.

In the Gabor case, the construction is based on

Lemma 3.2 (Shifting lemma) Let M, M0 be two subsets of R
2, M0 ⊆ M ,

λ(2)(M0) > 0 and λ(2)(M) <∞. For ω0 ∈ R define

M0 − ω0 := {(ω, t) ∈ R
2 : (ω + ω0, t) ∈ M0}.

Then for each ε ∈]0, λ(2)(M0)[, there exists a real number ωε ∈ R such that

λ(2)(M) < λ(2)(M ∪ (M0 − ωε)) < λ(2)(M) + ε. (26)

Proof: Consider the function

v : R → R, ω 7→ λ(2)(M ∪ (M0 − ω)).

This function is continuous, since

v(ω) = λ(2)(M) + λ(2)(M0) − λ(2)(M ∩ (M0 − ω))

= λ(2)(M) + λ(2)(M0) −
∞
∫

−∞

∞
∫

−∞

χM (ω̃, t) · χM0−ω(ω̃, t)dω̃dt

= λ(2)(M) + λ(2)(M0) −
∫ ∫

M

χM0(ω̃ + ω, t)dω̃dt

= const.− ‖χM0(· + ω, ·)‖L1(M),

and lim|h|→0 ‖f(·+ h, ·) − f(·, ·)‖L1(M) = 0 for every f ∈ L1(M) (cf. [Okik71],
3.6). Hence, evaluating v at two suitably chosen points and using the mean
value theorem leads to assertion (26). Such points shall be constructed in the
following.
From M0 ⊆ M , one gets v(0) = λ(2)(M), and therefore the lower bound in
relation (26).
Since λ(2)(M) < ∞, given δ > 0, there exists a bounded measurable subset
M δ of M such that λ(2)(M \M δ) < δ (cf. [EvGa92]). Choose Kδ > 0 such
that M δ lies completely in the ball of radius Kδ centered at the origin. Put
ωδ := 3Kδ. Then M δ ∩ (M δ + ωδ) = ∅, and

∫ ∫

M

χM0(ω + ωδ, t)dωdt ≤
∫ ∫

Mδ

χM0(ω + ωδ, t)dωdt+ δ

=

∫ ∫

Mδ+ωδ

χM0(ω̃, t)dω̃dt+ δ ≤
∫ ∫

Rn\Mδ

χM (ω̃, t)dω̃dt+ δ ≤ 2δ,
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hence, as before,

v(ωδ) ≥ λ(2)(M) + λ(2)(M0) − 2δ.

Now the mean value theorem shows that v takes all values between λ(2)(M) and
λ(2)(M) + λ(2)(M0) − 2δ with δ arbitrarily small. This proves the assertion.

Theorem 3.3 For any window function ψ and any set M ⊂ R
2 of finite

Lebesgue measure, we have

Gψ(L2(R)) ∩ {F ∈ L2(R2) : F = χM · F} = {0}. (27)

Proof: Let us assume, there exists a non-trivial function F0 satisfying

F0 ∈ Gψ(L2(R)) ∩ {F ∈ L2(R2) : F = χM · F}. (28)

Let M0 ⊆M denote the support of F0, and choose ε ∈]0, 2λ(2)(M0)[ arbitrary.
Using the notation of lemma 3.2 we define

M1 := M,

M2 := M1 ∪ (M0 − ω1),

where ω1 ∈ R is chosen such that

λ(2)(M1) < λ(2)(M2) < λ(2)(M1) + ε · 2−1,

and correspondingly for k > 2

Mk := Mk−1 ∪ (M0 − ω1 − · · · − ωk−1),

where ωk−1 ∈ R satisfies

λ(2)(Mk−1) < λ(2)(Mk) < λ(2)(Mk−1) + ε · 2−k+1.

The existence of suitable translations ωk−1 ∈ R is guaranteed by lemma 3.2,
since M0 ⊆ M1 ⊂ M2 ⊂ · · · ⊂ Mk−2 ⊂ Mk−1. Let M∗ :=

⋃∞
k=1 Mk. By

construction

λ(2)(M∗) ≤ λ(2)(M) + ε

∞
∑

k=1

2−k = λ(2)(M) + ε.

Hence, λ(2)(M∗) < ∞ for λ(2)(M) < ∞. Let F1(ω, t) := F0(ω, t), Fk(ω, t) :=
Fk−1(ω + ωk−1, t) (k ∈ N, k > 1). Using the invariance property (6) of the
Gabor transform, we see that Fk ∈ Gψ(L2(R)) (k ∈ N, k > 1), and

supp Fk = supp Fk−1 − ωk−1

= supp F1 − ω1 − · · · − ωk−1

= M0 − ω1 − · · · − ωk−1 ⊆Mk ⊂M∗.
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We now show the linear independence of the family (Fk)k≥2. Let us assume,
there exists a k > 2 such that

Fk =

k−1
∑

k̃=2

ak̃Fk̃ (29)

for some suitably chosen coefficients a2, a3, . . . , ak−1 ∈ R. Then,

supp Fk ⊆
k−1
⋃

k̃=2

supp Fk̃,

and hence

M0 − ω1 − · · · − ωk−1

⊆ {(M0 − ω1) ∪ (M0 − ω1 − ω2) ∪ · · · ∪ (M0 − ω1 − ω2 − · · · − ωk−2)}
⊆Mk−1.

On the other hand, λ(2)(Mk) > λ(2)(Mk−1) implies that Mk = Mk−1 ∪ (M0 −
ω1 − · · · − ωk−1) is a real superset of Mk−1. So, M0 − ω1 − · · · − ωk−1 cannot
be a subset of Mk−1. Therefore, a linear combination of type (29) is not
possible, and hence (Fk)k≥2 is an infinite set of linearly independent functions
with supp Fk ⊂ M∗, where λ(2)(M∗) < ∞. From section 2 we know that
Gψ(L2(R)) is a r.k.H.s. with pointwise bounded kernel. Hence, following
lemma 3.1, each subspace of Gψ(L2(R)) consisting of functions supported on a
set of finite measure must be of finite dimension. This shows that assumption
(28) was wrong.

From theorem 3.3 we get immediately

Corollary 3.4 (The support of a GT has infinite measure)
Let ψ be a window function. Then, for f ∈ L2(R) \ {0} arbitrary, the support
of Gψf is a set of infinite Lebesgue measure.

Remark 3.5
Recalling the definition of the cross-ambiguity function of f, g ∈ L2(R)

A(f, g)(ω, t) :=
1√
2π

∞
∫

−∞

eiωx̃f

(

x̃+
t

2

)

g

(

x̃− t

2

)

dx̃, (30)

and rewriting (30) by

A(f, g)(ω, t) = e−
iωt
2 Ggf(−ω, t), (31)

we may conclude that suppA(f, g) is of infinite measure, unless f = 0 or g = 0.
This answers a question posed by Folland and Sitaram [FoSi97] which has been
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considered independently by Jaming [Jami98] and Janssen [Jans98]. Their
proofs are based on the Fourier uncertainty principle of Benedicks [Bene85].
Using the same principle, Janssen disproved the existence of an half-space
in R

2 containing a finitely measured part of suppA(f, g) unless f = 0 or
g = 0. Assuming f, g to be real-valued, this is a corollary to theorem 3.3,
for λ(2)(suppGψf(ω, t)|ω<0) < ∞ implies λ(2)(suppGψf(ω, t)|ω<0) < ∞, and
therefore λ(2)(suppGψf(ω, t)|ω>0) < ∞, hence λ(2)(suppGψf(ω, t)) < ∞,
where {(ω, t) ∈ R

2 : ω < 0} is representative for any subspace of R
2 (cf.

[Jans98]). In case f = g, complex values are admissible, as well.

Looking more closely at the proof of theorem 3.3 we find as its main ingredients

• a r.k.H.s. in an L2-space with a pointwise bounded reproducing kernel,

• translation invariance in at least one fixed direction.

Consequently, results of this type hold in a much wider sense:

Theorem 3.6 (Abstract version) Let H be a r.k.H.s. consisting of functions
on R

n which are square-integrable with respect to Lebesgue measure. Assume,
the reproducing kernel K of H is bounded. Let U 6= {0} be a subspace of R

n

such that F ∈ H, u ∈ U imply F (· − u) ∈ H. Then, for each F ∈ H, one has
λ(n)(suppF ) = ∞.

To obtain a corresponding result for the wavelet transform, we need an affine
version of the shifting lemma 3.2. Using µaff instead of Lebesgue measure, we
find analogously:

Lemma 3.7 (Affine shifting lemma) Let M, M0 be two subsets of R
∗ × R,

M0 ⊆M , µaff (M0) > 0 and µaff (M) <∞. For b0 ∈ R define

M0 − b0 := {(a, b) ∈ R
∗ ×R : (a, b+ b0) ∈ M0}.

Then, for each ε ∈]0, µaff (M0)[, there exists a number bε ∈ R such that

µaff (M) < µaff (M ∪ (M0 − bε)) < µaff (M) + ε. (32)

Hence, using (14) we can conclude as before

Theorem 3.8 For any wavelet ψ and any set M ⊂ R
∗ × R of finite affine

measure, we have

Wψ(L2(R)) ∩ {F ∈ L2(R∗ ×R, dµaff ) : F = χM · F} = {0}. (33)

Corollary 3.9 (The support of a WT has infinite measure)
Let ψ be a wavelet. Then, for f ∈ L2(R) \ {0} arbitrary, the support of Wψf

is a set of infinite affine measure.
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Remark 3.10 There is no such result for discrete Gabor resp. wavelet trans-
forms related to orthonormal bases 1:
Let (ψjk)j,k∈Z be an orthonormal wavelet basis in L2(R) and f = ψ = ψ00.
Then

f =
∑

j,k∈Z

(f, ψjk)L2(R)ψjk =
∑

j.k∈Z

δjkψjk ,

hence, there is just one non-vanishing wavelet coefficient.
This is a consequence of the fact that there is no translation invariance in the
discrete setting.

4 Approximative Concentration of Gabor and Wavelet Trans-
forms

From the foregoing section we know that the Gabor transformGψf of a function
f ∈ L2(R) \ {0} cannot possess a support of finite Lebesgue measure. In the
following we will show that the portion ofGψf lying outside some setM of finite
Lebesgue measure cannot be arbitrarily small, either. For sufficiently small M ,
this can be seen immediately by estimating the Hilbert-Schmidt norm of a
suitably defined operator. Taking into account some geometric properties of
abstract Hilbert spaces, we find that restrictions of this kind hold for arbitrary
sets of finite Lebesgue measure. More precise results going in that direction
can be found by Daubechies [Daub88, Daub92], but only for special window
functions ψ and special sets M .
The wavelet transform is treated in an analogous manner.

Theorem 4.1 (Concentration of Gψf in small sets) Let ψ be a window func-
tion and M ⊂ R

2 with λ(2)(M) < 1. Then, for f ∈ L2(R) arbitrary,

‖Gψf − χM ·Gψf‖L2(R2) ≥ ‖ψ‖L2(R)(1 − λ(2)(M)1/2)‖f‖L2(R). (34)

Proof: Define PR : L2(R2) → L2(R2) as the orthogonal projection from L2(R2)
onto Gψ(L2(R)), and PM : L2(R2) → L2(R2) as the orthogonal projection
from L2(R2) onto the subspace of functions supported in M . From corollary
2.5 we obtain

1

‖ψ‖L2(R)
‖Gψf − χM ·Gψf‖L2(R2)

=
1

‖ψ‖L2(R)
‖Gψf − PMPR(Gψf)‖L2(R2)

≥ (1 − ‖PMPR‖)‖f‖L2(R),

hence

‖Gψf − χM ·Gψf‖L2(R2) ≥ ‖ψ‖L2(R)(1 − ‖PMPR‖)‖f‖L2(R). (35)

1For definitions see e.g. [Daub92].
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Being the projection onto a r.k.H.s., PR can be represented by [Sait88]

PR : F 7→ PRF (ω, t) = (F (ω′, t′),Kψ(ω′, t′;ω, t))L2(R2)

with Kψ defined by (8). Hence, for F ∈ L2(R2) arbitrary, we have

PMPRF (ω, t) =

∞
∫

−∞

∞
∫

−∞

χM (ω, t)Kψ(ω′, t′;ω, t)F (ω′, t′)dω′d′t

Therefore, the operator norm ‖PMPR‖ can be estimated by the Hilbert-
Schmidt norm ‖PMPR‖HS (cf. [HaSu78]), using the fact that 1

‖ψ‖L2(R)
Gψ is

an isometry:

‖PMPR‖2
HS

=

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

|χM (ω, t)Kψ(ω′, t′;ω, t)|2dω′dt′dωdt

=

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

∣

∣

∣

∣

∣

χM (ω, t)
1

‖ψ‖2
L2(R)

(ψωt, ψω′t′)L2(R)

∣

∣

∣

∣

∣

2

dω′dt′dωdt

=

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

∣

∣

∣

∣

∣

χM (ω, t)
1

‖ψ‖2
L2(R)

Gψψωt(ω
′, t′)

∣

∣

∣

∣

∣

2

dω′dt′dωdt

=
1

‖ψ‖2
L2(R)

∞
∫

−∞

∞
∫

−∞

∫ ∫

M

∣

∣

∣

∣

1

‖ψ‖L2(R)
Gψψωt(ω

′, t′)

∣

∣

∣

∣

2

dω′dt′dωdt

=
1

‖ψ‖2
L2(R)

∫ ∫

M





∞
∫

−∞

|ψωt(x)|2dx



 dωdt

≤ 1

‖ψ‖2
L2(R)

‖ψ‖2
L2(R)λ

(2)(M) = λ(2)(M).

Putting this into (35) proves the assertion.

Remark 4.2 Notice that the lower bound for ‖Gψf−χM ·Gψf‖L2(R2) in (34)

is the bigger the smaller λ(2)(M) is. This is in accordance with the philosophy
of uncertainty.

Remark 4.3 Using mean value theorem and Cauchy-Schwarz’s inequality, one
gets immediately the related result

‖χM ·Gψf‖L2(R2) ≤ λ(2)(M)1/2‖Gψf‖L∞(R)

≤ ‖ψ‖L2(R)λ
(2)(M)1/2‖f‖L2(R)

(cf. [FoSi97]). The use of the projections PR and PM in the proof of theorem
4.1 leads to further conclusions, however:
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Remark 4.4 (Stable reconstruction from incomplete noisy data)
Let ψ be a window function, M ⊂ R

2 with λ(2)(M) < 1 and PM the orthogonal
projection from L2(R2) onto the subspace of functions supported on M . Then
there exists a linear operator Rψ,M : L2(R2) → L2(R2), as well as a constant
KG
ψ,M > 0 such that for all F ∈ Gψ(L2(R)), for all n ∈ L2(R2) and

F̃ := (1 − PM )F + n (36)

we have

‖F −Rψ,M F̃‖L2(R2) ≤ KG
ψ,M‖n‖L2(R2). (37)

Interpretation:
The original signal F can be stably reconstructed from the measured signal
F̃ affected with noise n using exclusively data from the complement of M .
Here, stability has to be understood in the sense that the reconstruction error
is proportional to the L2(R2)-norm of the noise. If there is no noise at all
(n = 0) , perfect reconstruction of F from F̃ := (1 − PM )F is possible.
An upper bound for the constant KG

ψ,M in (37) is given by

KG
ψ,M ≤ 1

1 − λ(2)(M)1/2
. (38)

The connection between this result and Gerchberg-Papoulis’
algorithm[ByWe85, DoSt89] for the reconstruction of incomplete Fourier
data will be treated elsewhere.

Proof of (37):
Choose Rψ,M := (1 − PMPR)−1 with PR defined as in the proof of theorem
4.1. From there we know that ‖PMPR‖2 ≤ λ(2)(M) < 1, showing that the
Neumann series

∑∞
n=0(PMPR)n is convergent. Hence, (1 − PMPR)−1 is well-

defined. Now,

‖F −Rψ,M F̃‖L2(R2) = ‖F −Rψ,M (1 − PM )F −Rψ,Mn‖L2(R2)

= ‖F −Rψ,M (1 − PMPR)F −Rψ,Mn‖L2(R2)

= ‖F − F −Rψ,Mn‖L2(R2) ≤ ‖Rψ,M‖ · ‖n‖L2(R2),

where

‖Rψ,M‖ = ‖1− PMPR‖−1

≤ (1 − ‖PMPR‖)−1

≤ (1 − λ(2)(M)1/2)−1.

Correspondingly, we obtain for the wavelet transform:
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Theorem 4.5 (Concentration of Wψf in small sets) Let ψ be a mother
wavelet and M ⊂ R

∗ ×R with

‖ψ‖L2(R)√
cψ

µaff (M)1/2 < 1.

Then for f ∈ L2(R) arbitrary,

‖Wψf − χM ·Wψf‖L2(R∗×R, dadb
a2

)

≥ √
cψ

(

1 − ‖ψ‖L2(R)√
cψ

µaff (M)1/2
)

‖f‖L2(R).
(39)

Remark 4.6 Assuming ‖ψ‖L2(R) = 1 we find (34) independent of ψ, while√
cψ cannot be eliminated from (39).

Analogously, the following abstract version of theorems 4.1, 4.5 can be proved:

Theorem 4.7 (Abstract concentration theorem for small sets) Let G be a lo-
cally compact group with left Haar measure µL, H a complex Hilbert space, U
a square integrable, irreducible, unitary representation of G on H and CU the
operator from theorem 21. For ψ ∈ H U-admissible we define an operator

Tψ : H → L2(G,µL), f 7→ Tψf,

setting
Tψf(g) := (f, U(g)ψ)H (g ∈ G).

Then, for M ⊂ G with ‖ψ‖H

‖CUψ‖H
µL(M)1/2 < 1 and f ∈ H arbitrary,

‖Tψf − χM · Tψf‖L2(G,dµL) ≥ ‖CUψ‖H
(

1 − ‖ψ‖H
‖CUψ‖H

µL(M)1/2
)

‖f‖H.
(40)

Question 4.8 Are there restrictions similar to (34) (resp. (39)) for ’bigger’
sets, as well? More precisely: given an arbitrary set M of finite Lebesgue (resp.
affine) measure – do there exist any constants CGψ,M (resp. CWψ,M )> 0 such that

for f ∈ L2(R) arbitrary

‖Gψf − χM ·Gψf‖L2(R2) ≥ CGψ,M‖f‖L2(R) (41)

(resp. ‖Wψf − χM ·Wψf‖L2(R2) ≥ CWψ,M‖f‖L2(R)) ? (42)

Using an abstract result of Havin and Jöricke [HaJo94] we will see that the
answer to this question is ’yes’. We will not be able to give an estimate for
CGψ,M , C

W
ψ,M by the measure of M , however.
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Lemma 4.9 (Havin-Jöricke) Let H1,H2 be two closed subspaces of a Hilbert
space H satisfying

H1 ∩H2 = {0}. (43)

Let PH1 , PH2 denote the corresponding orthogonal projections, and assume the
product PH1PH2 to be a compact operator. Then, there exists a constant C > 0
such that for all f ∈ H

‖PH⊥
1
f‖H + ‖PH⊥

2
f‖H ≥ C‖f‖H. (44)

Proof: Cf. [HaJo94] I.3 §1.2

Remark 4.10 Subspaces H1,H2 satisfying (43) are said to form an annihi-
lating pair or, shorter, an a-pair. Subspaces satisfying the harder condition
(44) are said to form a strongly annihilating pair or, shorter, strong a-pair, cf.
[HaJo94]. From the same reference we know that condition (44) is equivalent
to

α(H1,H2) > 0,

where α(H1,H2) denotes the angle 2 between H1 and H2, defined as the real
number in [0, π2 ] satisfying

cos(α(H1,H2)) = sup{|(f, g)H| : f ∈ H1, ‖f‖H ≤ 1, g ∈ H2, ‖g‖H ≤ 1}.

The angle α(H1,H2) is related to the projections PH1 , PH2 according to:

cos(α(H1,H2)) = ‖PH1PH2‖, (45)

cf. [HaJo94], I.3 §1.1. The optimal constant C in (44) is as a function of
α(H1,H2).

Theorem 4.11 (Concentration of Gψf in arbitrary sets of finite measure)
Let ψ be a window function and M ⊂ R

2 with λ(2)(M) < ∞. Then there
exists a constant CGψ,M > 0 such that for f ∈ L2(R) arbitrary (41) holds.

Proof: Defining PM ,PR as in the proof of theorem 4.1 and H1,H2 by

H1 := PM (L2(R2)), (46)

H2 := PR(L2(R2)), (47)

we conclude from theorem 3.3 that H1 and H2 form an a-pair. The proof of
theorem 4.1 implies that for M ⊆ R

2 arbitrary with λ(2)(M) <∞

‖PMPR‖HS ≤ (λ(2)(M))1/2 <∞.

2Cf. [Deut95] for more information on that subject.
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Hence, PMPR is a Hilbert-Schmidt operator and therefore compact, which
means that H1, H2 form a strong a-pair. Now lemma 4.9 implies the existence
of a constant C > 0 such that (44) holds for PH1 := PM and PH2 := PR. Since
PH⊥

1
(Gψf) = (1− PR)Gψf = 0, this leads to (41).

Again, theorem 4.11 can be generalized to a wider class of transforms. Espe-
cially, we have the following wavelet counterpart:

Theorem 4.12 (Concentration of Wψf in arbitrary sets of finite measure)
Let ψ be a mother wavelet and M ⊂ R

∗ × R with µaff (M) < ∞. Then there
exists a constant CWψ,M > 0 such that for f ∈ L2(R) arbitrary (42) holds.

The abstract version of theorem 4.11 is

Theorem 4.13 (Abstract concentration theorem for arbitrary sets) Allowing
M ⊂ G with µL(M) <∞ arbitrary in the situation of theorem 4.7, there exists
a constant CTψ,M > 0 such that for all f ∈ H

‖Tψf − χM · Tψf‖L2(G,dµL) ≥ CTψ,M‖f‖H. (48)

5 Uncertainty Principles of Heisenberg Type

Up to now, we analyzed the concentration of Gψf (resp. Wψf) as a function on
two-dimensional phase-space. A different class of uncertainty principles results
from comparing the localization of f (resp. f̂) with the localization of its Gabor
or wavelet transform regarded as function of one2 variable. Some results of that
type, originating from an idea of Singer in the wavelet case [Sing92], will be
presented in this final section.

Theorem 5.1 (UP of Heisenberg type for GT in ω) Let ψ be a window func-
tion. Then, for f ∈ L2(R) arbitrary, the following inequality holds





∞
∫

−∞

ω2|Gψf(ω, t)|2dωdt





1/2



∞
∫

−∞

x2|f(x)|2dx





1/2

≥ 1

2
‖ψ‖L2(R)‖f‖2

L2(R). (49)

Proof: Let us assume the non-trivial case that both integrals on the left hand
side of (49) are finite. By translation invariance of Lebesgue integral we get

‖ψ‖2
L2(R)

∞
∫

−∞

x2|f(x)|2dx =

∞
∫

−∞

∞
∫

−∞

x2|ψ(x− t)|2|f(x)|2dxdt

=

∞
∫

−∞

∞
∫

−∞

x2|F−1
ω (Gψf(ω, t))(x)|2dxdt,
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where Fω denotes Fourier transform with respect to the variable ω. Fixing
t ∈ R arbitrary, Heisenberg’s inequality implies





∞
∫

−∞

ω2|Gψf(ω, t)|2dω





1/2
(

∞
∫

−∞
x2|F−1

ω (Gψf(ω, t))(x)|2dx
)1/2

≥ 1
2

∞
∫

−∞
|Gψf(ω, t)|2dω.

Integrating over t and using the inequality of Cauchy-Schwarz, as well as the
isometry property of 1

‖ψ‖L2(R)
Gψ, results in





∞
∫

−∞

∞
∫

−∞

ω2|Gψf(ω, t)|2dωdt





1/2

‖ψ‖L2(R)





∞
∫

−∞

x2|f(x)|2dx





1/2

=





∞
∫

−∞

∞
∫

−∞

ω2|Gψf(ω, t)|2dωdt





1/2



∞
∫

−∞

∞
∫

−∞

x2|F−1
ω (Gψf(ω, t))(x)|2dxdt





1/2

≥
∞
∫

−∞





∞
∫

−∞

ω2|Gψf(ω, t)|2dω





1/2



∞
∫

−∞

x2|F−1
ω (Gψf(ω, t))(x)|2dx





1/2

dt

≥1

2

∞
∫

−∞

∞
∫

−∞

|Gψf(ω, t)|2dωdt =
1

2
‖ψ‖2

L2(R)‖f‖2
L2(R).

Dividing by ‖ψ‖L2(R) leads to (49).

Remark 5.2 Note that the localization of ψ has no influence on (49).

Theorem 5.3 (UP of Heisenberg type for GT in t) Let ψ be a window func-
tion. Then, for f ∈ L2(R) arbitrary, the following inequality holds





∞
∫

−∞

t2|Gψf(ω, t)|2dωdt





1/2



∞
∫

−∞

ξ2|f̂(ξ)|2dξ





1/2

≥ 1

2
‖ψ‖L2(R)‖f‖2

L2(R).

(50)

Proof: Similiar to the proof of theorem 5.1 using the Fourier representation of
Gψf.
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Corollary 5.4 (Phase space uncertainty of GT) For ψ a window function,
and f ∈ L2(R) arbitrary, we have





∞
∫

−∞

∞
∫

−∞

t2|Gψf(ω, t)|2dωdt





1/2



∞
∫

−∞

∞
∫

−∞

ω2|Gψf(ω, t)|2dωdt





1/2

·

·





∞
∫

−∞

x2|f(x)|2dx





1/2



∞
∫

−∞

ξ2|f̂(ξ)|2dξ



 ≥ 1

4
‖ψ‖L2(R)‖f‖4

L2(R).

Remark 5.5 Above corollary may be interpreted as follows: The better the
phase space localization of the pair (f, f̂), the worse is the phase space local-
ization of the Gabor transform Gψf(ω, t).

Remark 5.6 The symmetry between f and ψ in the definition of Gabor trans-
form leads to similar relations between Gψf and ψ (resp. ψ̂):





∞
∫

−∞

ω2|Gψf(ω, t)|2dωdt





1/2



∞
∫

−∞

x2|ψ(x)|2dx





1/2

≥ 1

2
‖f‖L2(R)‖ψ‖2

L2(R),





∞
∫

−∞

t2|Gψf(ω, t)|2dωdt





1/2



∞
∫

−∞

ξ2|ψ̂(ξ)|2dξ





1/2

≥ 1

2
‖f‖L2(R)‖ψ‖2

L2(R).

Theorem 5.7 (UP of Heisenberg type for the WT in b) Let ψ be a mother
wavelet. Then, for f ∈ L2(R) arbitrary,





∞
∫

−∞

∞
∫

−∞

b2|Wψf(a, b)|2 dadb
a2





1/2



∞
∫

−∞

ξ2|f̂(ξ)|2dξ





1/2

≥
√
cψ

2
‖f‖2

L2(R). (51)

Proof: Similar to the proof of theorem 5.1. Assuming the existence of both
integrals on the left hand side of (51), we get from the admissibilty condition
(10) for ψ

2π

∞
∫

−∞

∞
∫

−∞

ξ2|ψ̂(aξ)|2|f̂(ξ)|2 da|a|dξ = cψ

∞
∫

−∞

ξ2|f̂(ξ)|2dξ.

Using the Fourier representation of the wavelet transform (13), this implies

∞
∫

−∞

ξ2|Fb(Wψf(a, b))(ξ)|2 da
a2
dξ = cψ

∞
∫

−∞

ξ2|f̂(ξ)|2dξ. (52)
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On the other hand, Heisenberg’s inequality leads to





∞
∫

−∞

b|Wψf(a, b)|2db





1/2



∞
∫

−∞

ξ2|Fb(Wψf(a, b))(ξ)|2dξ





1/2

≥ 1

2

∞
∫

−∞

|Wψf(a, b)|2db

for all a ∈ R
∗. Integrating with respect to da

a2 gives

∞
∫

−∞











∞
∫

−∞

b2|Wψf(a, b)|2db





1/2



∞
∫

−∞

ξ2|Fb(Wψf(a, b))(ξ)|2dξ





1/2






da

a2

≥1

2

∞
∫

−∞

∞
∫

−∞

|Wψf(a, b)|2 da
a2
db.

The left hand side of this inequality may be estimated from above using Cauchy-
Schwarz’s inequality. The right hand side can be rewritten by the isometry of

1√
cψ
Wψ. From (52) we therefore get





∞
∫

−∞

∞
∫

−∞

b2|Wψf(a, b)|2dbda
a2





1/2



∞
∫

−∞

ξ2|Fb(Wψf(a, b))(ξ)|2dξ da
a2





1/2

=





∞
∫

−∞

∞
∫

−∞

b2|Wψf(a, b)|2dbda
a2





1/2

√
cψ





∞
∫

−∞

ξ2|f̂(ξ)|2dξ





1/2

≥1

2
cψ‖f‖2

L2(R).

Remark 5.8 There is not so much symmetry between the parameters a and
b of the wavelet transform as there is symmetry between ω and t in the Ga-
bor case. An uncertainty relation between Wψf as a function of a and f

as a function of x will be derived in the following using a slightly modified
definition of wavelet transform. Making use of Kaiser’s observation [Kais95]

that ”frequency filters” f̂(ξ) 7→ wf (ξ)f̂(ξ) often correspond to ”scale filters”
Wψf(a, b) 7→ wS(a)Wψf(a, b). Here, wF , wS denote some suitable filter func-
tions.

Theorem 5.9 (UP of Heisenberg type for WT in a) Let ψ be a mother

wavelet, ψ̂(ξ) = 0 for ξ < 0 and f ∈ L2(R) \ {0} arbitrary. Consider
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the following modified definition of wavelet transform:

W̃ψ : f 7→ W̃ψf(a, b) :=

∞
∫

−∞

f(x)ψ(ax − b)dx ((a, b) ∈ R
+ ×R). (53)

Then

∞
∫

0

∞
∫

−∞

a2|W̃ψf(a, b)|2dadb ·
∞
∫

−∞

x2|f(x)|2dx ≥ π(M(|ψ̂|2))(2)‖f‖2
L2(R). (54)

Here, M : f 7→ (Mf)(σ) :=
∞
∫

0

f(x)x−σ dxx denotes classical Mellin transform.

We have equality in (54), if there exist some constants C ∈ C and k > 0 such

that f(x) = Ce−k
x2

2 .

Proof: In the following we assume that
∞
∫

0

∞
∫

−∞
a2|Wψf(a, b)|2dadb < ∞ and

∞
∫

−∞
x2|f(x)|2dx < ∞. Otherwise, (54) is trivially satisfied. The Fourier repre-

sentation of W̃ψ is given by

W̃ψf(a, b) =
√

2πF−1(f̂(aξ)ψ̂(ξ))(b),

what can be seen by replacing ψ by F−1(ψ̂). Using Plancherel’s identity, we
get

∞
∫

−∞

|W̃ψf(a, b)|2db = 2π

∞
∫

−∞

|f̂(aξ)|2|ψ̂(ξ)|2dξ

= 2π

∞
∫

−∞

|f̂(u)|2
∣

∣

∣ψ̂
(u

a

)∣

∣

∣

2 du

a
.

Integrating by a2da leads to

∞
∫

0

∞
∫

−∞

a2|W̃ψf(a, b)|2dadb =

∞
∫

0

a22π





∞
∫

−∞

|f̂(u)|2
∣

∣

∣ψ̂
(u

a

)∣

∣

∣

2 du

a



 da

=

∞
∫

−∞

|f̂(u)|2


2π

∞
∫

0

a
∣

∣

∣ψ̂
(u

a

)∣

∣

∣

2

da



 du

=

∞
∫

0

K(u)|f̂(u)|2du

Documenta Mathematica 5 (2000) 201–226



New Uncertainty Principles . . . 223

with

K(u) := 2π

∞
∫

−∞

∣

∣

∣
ψ̂
(u

a

)∣

∣

∣

2 du

a
. (55)

(This is the previously mentioned correspondence between ”scale” and ”fre-
quency filters”.) Introducing Mellin transform, we see that K(u) is just a
function of u2:

K(u) = 2π

∞
∫

0

u

v
|ψ̂(v)|2udv

v2

= 2πu2

∞
∫

0

|ψ̂(v)|2v−2 dv

v

= 2πu2M(|ψ̂|2)(2).

Now, the remainder follows from Heisenberg’s uncertainty principle.

Remark 5.10 Estimates for the variance of Wψf(a, b) in both a and b were
proved by Flandrin [Flan98].
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