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Abstrat. In this paper we �nd asymptoti upper and lower bounds

for the spetrum of random operators of the form
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i
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where a

1

; : : : ; a

r

are elements of an exat C

�

-algebra and

Y

(n)

1

; : : : ; Y

(n)

r

are omplex Gaussian random n � n matries, with

independent entries. Our result an be onsidered as a generalization

of results of Geman (1981) and Silverstein (1985) on the asymptoti

behavior of the largest and smallest eigenvalue of a random matrix of

Wishart type. The result is used to give new proofs of:

(1) Every stably �nite exat unital C

�

-algebra A has a traial state.

(2) If A is an exat unital C

�

-algebra, then every state on K

0

(A) is

given by a traial state on A.

The new proofs do not rely on quasitraes or on AW

�

-algebra teh-

niques.

1991 Mathematis Subjet Classi�ation: Primary 46L05; Seondary

46L50, 46L35, 46L80, 60F15.

Introdution

Following the terminology in [HT℄, we let GRM(m;n; �

2

) denote the

lass of m � n random matries B = (b

ij

)

1�i�m; 1�j�n

, for whih

�

Re(b

ij

); Im(b

ij

)

�

1�i�m; 1�j�n

form a set of 2mn independent Gaussian

random variables, all with mean 0 and variane

1

2

�

2

. In other words, the
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entries of B are mn independent omplex random variables with distribution

measure on C given by

1

��

2

exp(�

jzj

2

�

2

) dRe(z) dIm(z):

The theory of exat C

�

-algebras has been developed by Kirhberg (see [Ki1℄,

[Ki2℄, [Ki3℄, [Was℄ and referenes given there). A C

�

-algebra A is exat, if for

all pairs (B;J ), of a C

�

-algebra B and a losed two-sided ideal J in B, the

sequene

0 �! A 


min

J �! A 


min

B �! A 


min

�

B=J

�

�! 0

is exat. Here, for any C

�

-algebras C and D, C 


min

D means the ompletion

of the algebrai tensor produt C � D in the minimal (=spatial) tensor norm.

Sub-algebras and quotients of exat C

�

-algebras are again exat (f. e.g. [Was,

2.5.2 and Corollary 9.3℄), and the lass of exat C

�

-algebras ontains most of

the C

�

-algebras of urrent interest, suh as all nulear C

�

-algebras, and the

non-nulear redued group C

�

-algebras C

�

r

(F

n

), assoiated with the free group

F

n

on n generators (2 � n � 1).

For any element T of a unital C

�

-algebra, we let sp(T ) denote the spetrum of

T . The main result of this paper is

0.1 Main Theorem. Let H and K be Hilbert spaes, and let a

1

; : : : ; a

r

be

elements of B(H;K), suh that fa

�

i

a

j

j 1 � i; j � rg is ontained in an exat

C

�

-subalgebra A of B(H). Let (
;F ; P ) be a �xed probability spae, and let,

for eah n in N, Y

(n)

1

; : : : ; Y

(n)

r

be independent Gaussian random matries on


 in the lass GRM(n; n;

1

n

). Put

S

n

=

r

X

i=1

a

i


 Y

(n)

i

; (n 2 N);

and let ; d be positive real numbers. We then have

(i) If k

P

r

i=1

a

�

i

a

i

k �  and k

P

r

i=1

a

i

a

�

i

k � d, then for almost all ! in 
,

lim sup

n!1

max

�

sp

�

S

�

n

(!)S

n

(!)

��

�

�

p

+

p

d

�

2

:

(ii) If

P

r

i=1

a

�

i

a

i

= 1

1

1

B(H)

, k

P

r

i=1

a

i

a

�

i

k � d, and d � , then for almost all

! in 
,

lim inf

n!1

min

�

sp

�

S

�

n

(!)S

n

(!)

��

�

�

p

�

p

d

�

2

: �

The Main Theorem an be onsidered as a generalization of the results of

Geman (f. [Gem℄) and Silverstein (f. [Si℄), on the asymptoti behavior of the

largest and smallest eigenvalues of a random matrix of Wishart type (see also

[BY℄, [YBK℄ and [HT℄).

The Main Theorem has the following two immediate onsequenes:
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0.2 Corollary. Let a

1

; : : : ; a

r

be elements of an exat C

�

-algebra A, and

for eah n in N, let Y

(1)

1

; : : : ; Y

(n)

r

be independent elements of GRM(n; n;

1

n

).

Then

lim sup

n!1







r

X

i=1

a

i
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(n)

i

(!)







�







r
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�

i

a

i







1
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r

X

i=1
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i

a

�

i







1

2

;

for almost all ! in 
. �

0.3 Corollary. Let a

1

; : : : ; a

r

and S

n

, n 2 N, be as in the Main Theorem,

and assume that

P

r

i=1

a

�

i

a

i

= 1

1

1

B(H)

and k

P

r

i=1

a

�

i

a

i

k � d, for some positive

real numbers ; d, suh that d < . Then for almost all ! in 
,

0 =2 sp

�

S

�

n

(!)S

n

(!)

�

; eventually as n!1: �

In a subsequent paper [Th℄ by the seond named author, it is proved, that if

a

1

; : : : ; a

r

and S

n

, n 2 N, are as in the Main Theorem, and if furthermore

P

r

i=1

a

�

i

a

i

= 1

1

1

B(H)

and

P

r

i=1

a

i

a

�

i

= d1

1

1

B(K)

, for some positive real numbers

; d, then

lim

n!1

max

�

sp(S

�

n

S

n

)

�

=

�

p

+

p

d

�

2

; almost surely;

and if  � d, then

lim

n!1

min

�

sp(S

�

n

S

n

)

�

=

�

p

�

p

d

�

2

; almost surely:

Hene the asymptoti upper and lower bounds in the Main Theorem annot,

in general, be improved.

Exatness is essential both for the Main Theorem and for the orollaries. An

example of violation of the upper bound in the Main Theorem is given in

Setion 4. The example is based on the non-exat full C

�

-algebra C

�

(F

r

)

assoiated with the free group on r generators, for r � 6.

In [Haa℄, the �rst named author proved that bounded quasitraes on exat

C

�

-algebras are traes. Together with results of Handelman (f. [Han℄) and

Blakadar and R�rdam (f. [BR℄), this result implies

(1) Every stably-�nite exat unital C

�

-algebra has a traial state.

(2) If A is an exat unital C

�

-algebra, then every state on K

0

(A) is given by

a traial state on A.

The proof in [Haa℄ of the above mentioned quasitrae result, relies heavily

on ultra produt tehniques for AW

�

-algebras, but the starting point of the

proof in [Haa℄ is the following fairly simple observation: Let a

1

; : : : ; a

r

be r

elements in a (not neessarily exat) C

�

-algebra A, suh that

P

r

i=1

a

�

i

a

i

= 1

1

1

A

and k

P

r

i=1

a

i

a

�

i

k < 1. Let further x

1

; : : : ; x

r

be a semi-irular system (in the

sense of Voiulesu; f. [Vo2℄) in some C

�

-probability spae (B;  ). Then the

operator s =

P

r

i=1

a

i


 x

i

in A 
 C

�

(x

1

; : : : ; x

r

;1

1

1

B

), satis�es 0 =2 sp(s

�

s) but
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0 2 sp(ss

�

), and this implies that u = s(s

�

s)

�

1

2

is a non-unitary isometry in

the C

�

-algebra A
 C

�

(x

1

; : : : ; x

r

;1

1

1

B

).

Corollary 0.3 an be viewed as a random matrix version of the result that

0 =2 sp(s

�

s). The orresponding random matrix version of the result that

0 2 sp(ss

�

), holds too, i.e., if a

1

; : : : ; a

r

and S

n

, n 2 N, are as in Corollary 0.3,

then with probability 1, 0 2 sp(S

n

S

�

n

), eventually as n ! 1 (f. [Th℄). In

view of Voiulesu's random matrix model for a semi-irular system (f. [Vo1,

Theorem 2.2℄), it would have been more natural to substitute Y

(n)

1

; : : : ; Y

(n)

r

from GRM(n; n;

1

n

), with a set of independent, selfadjoint Gaussian random

matries. However, we found it more tratable to work with the non-selfadjoint

random matries Y

(n)

1

; : : : ; Y

(n)

r

.

In the last setion (Setion 9), we use Corollary 0.3 to give a new proof of the

statements (1) and (2) above. The new proof does not rely on quasitraes or

AW

�

-algebra tehniques. The main step in the new proof of (1) and (2) is to

prove, that Corollary 0.3 implies the following

0.4 Proposition. Let p; q be projetions in an exat C

�

-algebra A, and as-

sume that there exists an � in ℄0; 1[, suh that

�(q) � (1� �)�(p);

for all lower semi-ontinuous (possibly unbounded) traes � : A

+

! [0;1℄.

Then for some n in N, there exists a partial isometry u inM

n

(A) = A
M

n

(C ),

suh that

u

�

u = q 
 1

1

1

M

n

(C)

and uu

�

� p
 1

1

1

M

n

(C)

: �

In the rest of this introdution, we shall briey disuss the main steps of the

proof of the Main Theorem. Observe �rst, that by a simple saling argument,

it is enough to treat the ase d = 1. This normalization will be used throughout

the paper. The proof of the Main Theorem relies on the following

0.5 Key Estimates. Let a

1

; : : : ; a

r

be elements of B(H;K), let  be a positive

onstant, and put S

n

=

P

r

i=1

a

i


 Y

(n)

i

, n 2 N, as in the Main Theorem. We

then have

(a) If k

P

r

i=1

a

�

i

a

i

k �  and k

P

r

i=1

a

i

a

�

i

k � 1, then for 0 � t � minf

n

2

;

n

2

g,

E

�

exp(tS

�

n

S

n

)

�

� exp

�

(

p

+ 1)

2

t+ (+ 1)

2
t

2

n

�

1

1

1

B(H

n

)

: (0.1)

(b) If

P

r

i=1

a

�

i

a

i

= 1

1

1

B(H)

,

P

r

i=1

a

i

a

�

i

= 1

1

1

B(K)

and  � 1, then for 0 � t �

n

2

,

E

�

exp(�tS

�

n

S

n

)

�

� exp

�

� (

p

� 1)

2

t+ (+ 1)

2
t

2

n

�

1

1

1

B(H

n

)

: (0.2)

�
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We emphasize that the key estimates (0.1) and (0.2) hold without the exat-

ness assumption of the Main Theorem. One these estimates are proved, a

fairly simple appliation of the Borel-Cantelli Lemma yields, that if H is �nite

dimensional, and �

max

and �

min

denote largest and smallest eigenvalues, then

one has

lim sup

n!1

�

max

(S

�

n

S

n

) �

�

p

+ 1

�

2

; almost surely;

in the situation of (a) above, and

lim inf

n!1

�

min

(S

�

n

S

n

) �

�

p

� 1

�

2

; almost surely;

in the situation of (b) above. (This is ompletely parallel to the proof of the

omplex version of the Geman-Silverstein result, given in [HT, Setion 7℄). To

pass from the ase dim(H) < 1 to the ase dim(H) = +1, we need the

assumption that the C

�

-algebra C

�

(fa

�

i

a

j

j 1 � i; j � rg) is exat, as well as

the following haraterization of exat C

�

-algebras, due to Kirhberg (f. [Ki2℄

and [Was, Setion 7℄):

A unital C

�

-subalgebra A of B(H) is exat if and only if the inlusion map

� : A ,! B(H) has an approximate fatorization

A

'

�

�!M

n

�

(C )

 

�

�! B(H);

through a net of full matrix algebras M

n

�

(C ), � 2 �. Here, '

�

;  

�

are unital

ompletely positive maps, and

lim

�

k 

�

Æ '

�

(x)� xk = 0; for all x in A:

Finally, we use a dilation argument to pass from the ondition

P

r

i=1

a

i

a

�

i

= 1

1

1

K

of (b) above, to the less restritive one: k

P

r

i=1

a

i

a

�

i

k � 1, whih is assumed

in (ii) of the Main Theorem (when d = 1). The proof of the fat that the key

estimates (0.1) and (0.2) imply the Main Theorem, is given in Setion 4 for the

upper bound, and in Setion 8 for the lower bound. Setions 1-3 and 5-7 are

used to prove the key estimates (0.1) respetively (0.2).

In Setion 1, we assoiate to any permutation � in the symmetri group S

p

, a

permutation �̂ in S

2p

, for whih �̂

2

= �̂ Æ �̂ = id and �̂(j) 6= j for all j, namely

the permutation given by

�̂(2j � 1) = 2�

�1

(j); (j 2 f1; 2; : : : ; pg)

�̂(2j) = 2�(j)� 1; (j 2 f1; 2; : : : ; pg):

Moreover, following [Vo1℄, we let �

�̂

denote the equivalene relation on

f1; 2; : : : ; 2pg, generated by the expression:

j �

�̂

�̂(j) + 1; (addition formed mod. 2p);

and we let d(�̂) denote the number of equivalene lasses for �

�̂

. We an write

d(�̂) = k(�̂) + l(�̂), where k(�̂) (resp. l(�̂)) denotes the number of equivalene
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lasses for �

�̂

, onsisting entirely of even numbers (resp. odd numbers) in

f1; 2; : : : ; 2pg. With this notation we prove, that for any random matrix B

from GRM(m;n; 1),

E ÆTr

n

�

(B

�

B)

p

�

=

X

�2S

p

m

k(�̂)

n

l(�̂)

: (0.3)

Consider next the quantity �(�̂) =

1

2

(p + 1� d(�̂)). It turns out, that �(�̂) is

always a non-negative integer, and that �(�̂) = 0 if and only if �̂ is non-rossing

(f. De�nition 1.14). In Setion 2 we show, that if a

1

; : : : ; a

r

are elements

of B(H;K) and S =

P

r

i=1

a

i


 Y

(n)

i

, where Y

(n)

1

; : : : ; Y

(n)

r

are independent

elements of GRM(n; n;

1

n

), then

E [(S

�

S)

p

℄ =

�

X

�2S

p

n

�2�(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

�


 1

1

1

M

n

(C)

: (0.4)

In [HT, Setion 6℄, we found expliit formulas for the quantities E Æ

Tr

n

[exp(tB

�

B)℄ and E Æ Tr

n

[B

�

B exp(tB

�

B)℄, where B is an element of

GRM(m;n; 1). In Setion 3, a areful omparison of the terms in (0.3)

and (0.4), ombined with these expliit formulas, allows us to prove, that if

k

P

r

i=1

a

�

i

a

i

k �  and k

P

r

i=1

a

i

a

�

i

k � 1, then for 0 � t � minf

n

2

;

n

2

g,

kE [exp(tS

�

S)℄k � exp((+ 1)

2

t

2

n

)

Z

1

0

exp(tx) d�



(x); (0.5)

where �



is the free (analog of the) Poisson distribution with parameter  (f.

[VDN℄ and [HT, Setion 6℄). The measure �



is also alled the Marhenko-

Pastur distribution (f. [OP℄), and it is given by

�



= maxf1� ; 0gÆ

0

+

p

(x � a)(b� x)

2�x

� 1

[a;b℄

(x) dx;

where a = (

p

 � 1)

2

, b = (

p

 + 1)

2

and Æ

0

is the Dira measure at 0. Sine

supp(�



) � [0; b℄, the �rst key estimate, (0.1), follows immediately from (0.5).

To prove the seond key estimate, (0.2), we show in Setions 5-6, that under

the ondition

r

X

i=1

a

�

i

a

i

= 1

1

1

B(H)

; and

r

X

i=1

a

i

a

�

i

= 1

1

1

B(K)

;

one has, for any q in N, the formula:

E

�

P



q

(S

�

S)

�

=

�

X

�2S

irr

q

n

�2�(�̂)

�

X

1�i

1

;::: ;i

q

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

q

a

i

�(q)

�

�


 1

1

1

M

n

(C)

:

(0.6)
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Here P



0

(x); P



1

(x); P



2

(x); : : : , is the sequene of moni polynomials obtained

from 1; x; x

2

; : : : , by the Gram-Shmidt orthogonalization proess, w.r.t. the

inner produt

hf; gi =

Z

1

0

fg d�



; (f; g 2 L

2

(R; �



)):

Moreover, S

irr

q

denotes the set of permutations � in S

q

, for whih

1 6= �(1) 6= 2 6= �(2) 6= � � � 6= q 6= �(q):

For �xed t in R, we expand in Setion 7 the exponential funtion x 7! exp(tx),

in terms of the polynomials P



q

(x), q 2 N

0

:

exp(tx) =

1

X

q=0

 



q

(t)P



q

(x); (x 2 [0;1[): (0.7)

We show that the oeÆients  



q

(t) are non-negative for all t in [0;1[, and that

for any q in N

0

,

j 



q

(�t)j �

�

R

1

0

exp(�tx) d�



(x)

R

1

0

exp(tx) d�



(x)

�

�  



q

(t); (t 2 [0;1[): (0.8)

By ombining (0.6), (0.7) and (0.8) with the proof of (0.5), we obtain that for

 � 1 and 0 � t �

n

2

,

kE [exp(�tS

�

S)℄k � exp((+ 1)

2

t

2

n

)

Z

1

0

exp(�tx) d�



(x);

and sine supp(�



) � [a;1[ = [(

p

�1)

2

;1[, when  � 1, we obtain the seond

key estimate (0.2).

The rest of the paper is organized in the following way:

1 A Combinatorial Expression for E ÆTr

n

[(B

�

B)

p

�

, for a Gaussian

Random Matrix B in GRM(m;n; 1) . . . . . . . . . . . . . . . . . . 348

2 A Combinatorial Expression for the Moments of S

�

S . . . . . . . . 360

3 An upper bound for E

�

exp(tS

�

S)

�

, t � 0 . . . . . . . . . . . . . . . 370

4 Asymptoti Upper Bound on the Spetrum of S

�

n

S

n

in the Exat

Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

5 A New Combinatorial Expression for E

�

(S

�

S)

p

�

. . . . . . . . . . . 390

6 The Sequene of Orthogonal Polynomials for the Measure �



. . . . 405

7 An Upper Bound for E
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1 A Combinatorial Expression for E ÆTr

n

[(B

�

B)

p

�

, for a Gaussian

Random Matrix B in GRM(m;n; 1)

For � in R and �

2

in ℄0;1[, we let N(�; �

2

) denote the Gaussian (or normal)

distribution with mean � and variane �

2

. In [HT℄, we introdued the following

lass of Gaussian random matries

1.1 Definition. (f. [HT℄) Let (
;F ; P ) be a lassial probability spae, let

m;n be positive integers, and let

B = (b(i; j))

1�i�m

1�j�n

: 
!M

m;n

(C );

be a omplex, random m � n matrix de�ned on 
. We say then that B is a

(standard) Gaussian randomm�nmatrix with entries of variane �

2

, if the real

valued random variables Re(b(i; j)), Im(b(i; j)), 1 � i � m; 1 � j � n, form

a family of 2mn independent, identially distributed random variables, with

distribution N(0;

�

2

2

). We denote by GRM(m;n; �

2

) the set of suh random

matries de�ned on 
. Note that �

2

equals the seond absolute moment of the

entries of an element from GRM(m;n; �

2

). �

In the following we shall omit mentioning the underlying probability spae

(
;F ; P ), and it will be understood that all onsidered random matri-

es/variables are de�ned on this probability spae. As a matter of notation,

by 1

n

we denote the unit of M

n

(C ), and by tr

n

we denote the trae on M

n

(C )

satisfying that tr

n

(1

n

) = 1. Moreover, we put Tr

n

= n � tr

n

.

Let B be an element of GRM(m;n; �

2

). Then for any p in N, (B

�

B)

p

is a

positive de�nite n � n random matrix, and Tr

n

((B

�

B)

p

) is a positive valued,

integrable, random variable. The main aim of this setion is to derive a om-

binatorial expression for the moments E ÆTr

n

((B

�

B)

p

) of B

�

B w.r.t. E ÆTr

n

,

where E denotes expetation w.r.t. P .

1.2 Lemma. Let m;n; r; p be positive integers, let B

1

; B

2

; : : : ; B

r

be inde-

pendent elements of GRM(m;n; �

2

), and for eah s in f1; 2; : : : ; rg, let

b(u; v; s); 1 � u � m; 1 � v � n, denote the entries of B

s

. Then for any

i

1

; j

1

; i

2

; j

2

; : : : ; i

p

; j

p

in f1; 2; : : : ; rg, we have that

E ÆTr

n

(B

�

i

1

B

j

1

B

�

i

2

B

j

2

� � �B

�

i

p

B

j

p

)

=

X

1�u

2

;u

4

;::: ;u

2p

�m

1�u

1

;u

3

;::: ;u

2p�1

�n

E

�

b(u

2

; u

1

; i

1

)b(u

2

; u

3

; j

1

) � � � b(u

2p

; u

2p�1

; i

p

)b(u

2p

; u

1

; j

p

)

�

;

(1.1)

and moreover E Æ Tr

n

(B

�

i

1

B

j

1

B

�

i

2

B

j

2

� � �B

�

i

p

B

j

p

) = 0, unless there exists a

permutation � in the symmetri group S

p

, suh that j

h

= i

�(h)

for all h in

f1; 2; : : : ; pg.
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Proof. Let f(u; v), 1 � u � m; 1 � v � n, denote the usual m � n matrix

units, and let g(u; v), 1 � u � n; 1 � v � m, denote the usual n �m matrix

units. We have then that

E ÆTr

n

(B

�

i

1

B

j

1

B

�

i

2

B

j

2

� � �B

�

i

p

B

j

p

)

=

X

1�v

1

;u

2

;v

3

;u

4

;::: ;v

2p�1

;u

2p

�m

1�u

1

;v

2

;u

3

;v

4

;::: ;u

2p�1

;v

2p

�n

E

�

b

�

(u

1

; v

1

; i

1

)b(u

2

; v

2

; j

1

) � � � b

�

(u

2p�1

; v

2p�1

; i

p

)b(u

2p

; v

2p

; j

p

)

�

� Tr

n

�

g(u

1

; v

1

)f(u

2

; v

2

) � � � g(u

2p�1

; v

2p�1

)f(u

2p

; v

2p

)

�

=

X

1�u

2

;u

4

;::: ;u

2p

�m

1�u

1

;u

3

;::: ;u

2p�1

�n

E

�

b(u

2

; u

1

; i

1

)b(u

2

; u

3

; j

1

) � � � b(u

2p

; u

2p�1

; i

p

)b(u

2p

; u

1

; j

p

)

�

:

Note here, that for any u

2

; u

4

; : : : ; u

2p

in f1; 2; : : : ;mg and u

1

; u

3

; : : : ; u

2p�1

in f1; 2; : : : ; ng, we have beause of the independene assumptions,

E

�

b(u

2

; u

1

; i

1

)b(u

2

; u

3

; j

1

) � � � b(u

2p

; u

2p�1

; i

p

)b(u

2p

; u

1

; j

p

)

�

=

r

Y

l=1

E

�

Y

h:i

h

=l

b(u

2h

; u

2h�1

; l)

Y

h:j

h

=l

b(u

2h

; u

2h+1

; l)

�

;

where 2h+ 1 is alulated mod. 2p.

Note here, that for any l in f1; 2; : : : ; rg, any u in f1; 2; : : : ;mg and any v in

f1; 2; : : : ; ng, the distribution of b(u; v; l) is invariant under multipliation by

omplex numbers of norm 1. Hene, for any s; t in N

0

, E

�

b(u; v; l)

s

�b(u; v; l)

t

�

=

0, unless s = t. Using this, and the independene assumptions, it follows

that for any l in f1; 2; : : : ; rg, any u

2

; u

4

; : : : ; u

2p

in f1; 2; : : : ;mg and any

u

1

; u

3

; : : : ; u

2p�1

in f1; 2; : : : ; ng, a neessary ondition for the mean

E

�

Y

h:i

h

=l

b(u

2h

; u

2h�1

; l) �

Y

h:j

h

=l

b(u

2h

; u

2h+1

; l)

�

to be distint from zero is that

ard

��

h 2 f1; 2; : : : ; pg

�

�

i

h

= l

	�

= ard

��

h 2 f1; 2; : : : ; pg

�

�

j

h

= l

	�

: (1.2)

It follows that E ÆTr

n

(B

�

i

1

B

j

1

B

�

i

2

B

j

2

� � �B

�

i

p

B

j

p

) = 0, unless (1.2) holds for all

l in f1; 2; : : : ; rg, and in this ase, it is not hard to onstrut a permutation �

from S

p

, with the property desribed in the lemma. �

1.3 Definition. Let p be a positive integer, and let � be an element of S

p

. We

assoiate to � a family �(�;m; n), m;n 2 N, of omplex numbers, as follows:

Let B

1

; B

2

; : : : ; B

p

be independent elements of GRM(m;n; 1), and then de�ne

�(�;m; n) = E ÆTr

n

(B

�

1

B

�(1)

B

�

2

B

�(2)

� � �B

�

p

B

�(p)

): �
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1.4 Remark. Let m;n; r; p be positive integers, and let B

1

; B

2

; : : : ; B

r

be

arbitrary elements of GRM(m;n; �

2

). Moreover, let i

1

; j

1

; : : : ; i

p

; j

p

be ar-

bitrary elements of f1; 2; : : : ; rg. We shall need the fat that the quan-

tity E Æ Tr

n

(B

�

i

1

B

j

1

� � �B

�

i

p

B

j

p

) is bounded numerially by some onstant

K(m;n; p; �

2

) depending only on m;n; p; �

2

and not on r or the distribu-

tional relations between B

1

; B

2

; : : : ; B

r

. For this, adapt the notation from

Lemma 1.2, and note then that by (1.1) from that lemma,

jE ÆTr

n

(B

�

i

1

B

j

1

� � �B

�

i

p

B

j

p

)j

�

X

1�u

2

;u

4

;::: ;u

2p

�m

1�u

1

;u

3

;::: ;u

2p�1

�n

�

�

E

�

b(u

2

; u

1

; i

1

)b(u

2

; u

3

; j

1

) � � � b(u

2p

; u

2p�1

; i

p

)b(u

2p

; u

1

; j

p

)

�

�

�

:

Then let M(2p; �

2

) denote the 2p'th absolute moment of the entries of an

element from GRM(m;n; �

2

). A standard omputation yields thatM(2p; �

2

) =

�

2p

� p!, but we shall not need this expliit formula. It follows now by the

generalized H�older inequality, that for any u

2

; u

4

; : : : ; u

2p

in f1; 2; : : : ;mg and

u

1

; u

3

; : : : ; u

2p�1

in f1; 2; : : : ; ng,

�

�

E

�

b(u

2

; u

1

; i

1

)b(u

2

; u

3

; j

1

) � � � b(u

2p

; u

2p�1

; i

p

)b(u

2p

; u

1

; j

p

)

�

�

�

�





b(u

2

; u

1

; i

1

)





2p





b(u

2

; u

3

; j

1

)





2p

� � �





b(u

2p

; u

2p�1

; i

p

)





2p





b(u

2p

; u

1

; j

p

)





2p

=

�

M(2p; �

2

)

1

2p

�

2p

=M(2p; �

2

):

Thus it follows that we may use K(m;n; p; �

2

) = m

p

n

p

M(2p; �

2

). �

1.5 Proposition. Let B be an element of GRM(m;n; 1), and let p be a pos-

itive integer. We then have

E ÆTr

n

[(B

�

B)

p

℄ =

X

�2S

p

�(�;m; n):

Proof. Let (B

i

)

i2N

be a sequene of independent elements of GRM(m;n; 1).

Note then that for any s in N, the matrix

1

p

s

(B

1

+ � � �+B

s

) is again an element

of GRM(m;n; 1), and therefore

E ÆTr

n

[(B

�

B)

p

℄ = E ÆTr

n

h�

�

s

�

1

2

(B

1

+ � � �+B

s

)

�

�

�

s

�

1

2

(B

1

+ � � �+B

s

)

�

�

p

i

= s

�p

X

1�i

1

;j

1

;::: ;i

p

;j

p

�s

E ÆTr

n

h

B

�

i

1

B

j

1

� � �B

�

i

p

B

j

p

i

:

(1.3)

For � in S

p

we de�ne

M(�; s) =

�

(i

1

; j

1

; : : : ; i

p

; j

p

) 2 f1; 2; : : : ; sg

2p

�

�

j

1

= i

�(1)

; : : : ; j

p

= i

�(p)

	

:
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It follows then from Lemma 1.2, that in (1.3), we only have to sum over those

2p-tuples (i

1

; j

1

; : : : ; i

p

; j

p

) that belong to M(�; s) for some � in S

p

, and on-

sequently

E ÆTr

n

[(B

�

B)

p

℄ = s

�p

X

(i

1

;j

1

;::: ;i

p

;j

p

)2[

�2S

p

M(�;s)

E ÆTr

n

h

B

�

i

1

B

j

1

� � �B

�

i

p

B

j

p

i

:

Note though, that the sets M(�; s); � 2 S

p

, are not disjoint. However, if we

put

D(s) =

�

(i

1

; j

1

; : : : ; i

p

; j

p

) 2 f1; 2; : : : ; sg

2p

�

�

i

1

; i

2

; : : : ; i

p

are distint

	

;

then the sets M(�; s) \ D(s); � 2 S

p

, are disjoint. Thus we have

E ÆTr

n

[(B

�

B)

p

℄

= s

�p

X

�2S

p

X

(i

1

;j

1

;::: ;i

p

;j

p

)2M(�;s)\D(s)

E ÆTr

n

h

B

�

i

1

B

j

1

� � �B

�

i

p

B

j

p

i

+ s

�p

X

(i

1

;j

1

;::: ;i

p

;j

p

)2

(

[

�2S

p

M(�;s)

)

nD(s)

E ÆTr

n

h

B

�

i

1

B

j

1

� � �B

�

i

p

B

j

p

i

:

(1.4)

Note here, that if (i

1

; j

1

; : : : ; i

p

; j

p

) 2 M(�; s) \ D(s), then B

i

1

; B

i

2

; : : : ; B

i

p

are independent elements of GRM(m;n; 1), and hene

E ÆTr

n

h

B

�

i

1

B

j

1

� � �B

�

i

p

B

j

p

i

= �(�;m; n):

Thus, the �rst term on the right hand side of (1.4) equals

s

�p

X

�2S

p

ard(M(�; s) \ D(s)) � �(�;m; n):

Here ard(M(�; s) \ D(s)) = s(s� 1) � � � (s� p+ 1), so

s

�p

� ard(M(�; s) \ D(s))! 1 as s!1:

Hene, the �rst term on the right hand side of (1.4) tends to

P

�2S

p

�(�;m; n)

as s ! 1, and sine the left hand side of (1.4) does not depend on s, it remains

thus to show that the seond term on the right hand side of (1.4) tends to 0

as s ! 1. This follows by noting that aording to Remark 1.4, for any

(i

1

; j

1

; : : : ; i

p

; j

p

) in f1; 2; : : : ; sg

2p

, the quantity jE Æ Tr

n

�

B

�

i

1

B

j

1

� � �B

�

i

p

B

j

p

�

j

is bounded by some onstant K(m;n; p) depending only on m;n; p; not on s.

And moreover,

s

�p

ard

��

[

�2S

p

M(�; s)

�

n D(s)

�

�

X

�2S

p

s

�p

ard(M(�; s) n D(s))

=

X

�2S

p

�

s

�p

ard(M(�; s)) � s

�p

ard(M(�; s) \ D(s))

�

=

X

�2S

p

�

1� s

�p

ard(M(�; s) \ D(s))

�

! 0;
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as s!1. This onludes the proof of the proposition. �

It follows from Proposition 1.5, that in order to obtain a ombinatorial expres-

sion for the moments E ÆTr

n

((B

�

B)

p

) for a matrix B from GRM(m;n; 1), we

need to derive a ombinatorial expression for the quantities

�(�;m; n) = E ÆTr

n

(B

�

1

B

�(1)

B

�

2

B

�(2)

� � �B

�

p

B

�(p)

);

where � 2 S

p

and B

1

; : : : ; B

p

are independent elements of GRM(m;n; 1).

As it turns out, it shall be useful to have the relations between the fators in

the produt B

�

1

B

�(1)

B

�

2

B

�(2)

� � �B

�

p

B

�(p)

determined in terms of a permutation

�̂ in S

2p

, rather than in terms of the permutation � from S

p

.

1.6 Definition. Let p be a positive integer, and let � be a permutation in S

p

.

Then the permutation �̂ in S

2p

is determined by the equations:

�̂(2i� 1) = 2�

�1

(i); (i 2 f1; 2; : : : ; pg);

�̂(2i) = 2�(i)� 1; (i 2 f1; 2; : : : ; pg): �

1.7 Remark. (a) Let p, � and �̂ be as in De�nition 1.6. Note then that

�̂

2

= �̂ Æ �̂ = id, the identity mapping on f1; 2; : : : ; 2pg, and that �̂ maps

odd numbers to even numbers, i.e., that �̂(j) � j = 1 (mod. 2), for all j in

f1; 2; : : : ; 2pg. In partiular, �̂ has no �xed points. It is easy to hek that

f�̂ j � 2 S

p

g is exatly the set of permutations  in S

2p

, for whih 

2

= id and

(j)�j = 1 (mod. 2), for all j in f1; 2; : : : ; 2pg. Moreover, the mapping � 7! �̂

is injetive.

(b) If B

1

; B

2

; : : : ; B

p

are independent elements of GRM(m;n; 1) ,

then we may write the produt B

�

1

B

�(1)

B

�

2

B

�(2)

� � �B

�

p

B

�(p)

in the form

C

�

1

C

2

C

�

3

C

4

� � �C

�

2p�1

C

2p

, where C

2i�1

= B

i

and C

2i

= B

�(i)

for all i

in f1; 2; : : : ; pg. Then �̂ is onstruted exatly so that for any j; j

0

in

f1; 2; : : : ; 2pg, we have

C

j

= C

j

0

, j = j

0

or �̂(j) = j

0

: �

1.8 Definition. We assoiate to �̂ an equivalene relation �

�̂

on Z

2p

. This

is the equivalene relation (introdued by Voiulesu in [Vo1, Proof of Theo-

rem 2.2℄), generated by the expression:

j �

�̂

�̂(j) + 1; (j 2 f1; 2; : : : ; 2pg);

where addition is formed mod. 2p. �

1.9 Remark. For a permutation � in S

p

, the �

�̂

-equivalene lasses are pre-

isely the orbits in f1; 2; : : : ; 2pg for the yli subgroup of S

2p

generated by

the permutation j 7! �̂(j) + 1 (addition formed mod. 2p). Sine this subgroup

is �nite, the equivalene lass [j℄

�̂

of an element j in f1; 2; : : : ; 2pg has the

following form:
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Let q be the number of elements in [j℄

�̂

. Then

[j℄

�̂

= fj

0

; j

1

; : : : ; j

q�1

g;

where j

0

= j; j

1

= �̂(j

0

) + 1; j

2

= �̂(j

1

) + 1; : : : ; j

q�1

= �̂(j

q�2

) + 1; j

0

=

�̂(j

q�1

) + 1, (addition formed mod. 2p). �

It follows immediately from the de�nition of �̂ and Remark 1.9 that eah �

�̂

-

equivalene lass onsists entirely of even numbers or entirely of odd numbers.

This is used in the following de�nition:

1.10 Definition. Let p be a positive integer, let � be a permutation in S

p

,

and onsider the orresponding permutation �̂ in S

2p

. By k(�̂) and l(�̂), we

denote then the number of �

�̂

-equivalene lasses onsisting of even numbers,

respetively the number of �

�̂

-equivalene lasses onsisting of odd numbers:

k(�̂) = ard

��

[j℄

�̂

�

�

j 2 f2; 4; : : : ; 2pg

	�

;

l(�̂) = ard

��

[j℄

�̂

�

�

j 2 f1; 3; : : : ; 2p� 1g

	�

:

Moreover, we de�ne the quantities d(�̂) and �(�̂) by the equations:

d(�̂) = k(�̂) + l(�̂) = ard

��

[j℄

�̂

�

�

j 2 f1; 2; : : : ; 2pg

	�

;

�(�̂) =

1

2

�

p+ 1� d(�̂)

�

: �

Regarding the de�nition of �(�̂), it will be shown later (f. Theorem 1.13), that

�(�̂) is always a non-negative integer. The quantity d(�̂) was introdued by

Voiulesu in [Vo1, Proof of Theorem 2.2℄.

1.11 Theorem. For any positive integers m;n and any � in S

p

, we have that

�(�;m; n) = m

k(�̂)

n

l(�̂)

:

Proof. Consider independent elements B

1

; B

2

; : : : ; B

p

of GRM(m;n; 1), and

for eah j in f1; 2; : : : ; pg, let b(u; v; j); 1 � u � m; 1 � v � n, denote the

entries of B

j

. It follows then by (1.1) in Lemma 1.2, that

�(�;m; n)

= E ÆTr

n

(B

�

1

B

�(1)

B

�

2

B

�(2)

� � �B

�

p

B

�(p)

)

=

X

1�u

1

;u

3

;:::;u

2p�1

�n

1�u

2

;u

4

;:::;u

2p

�m

E

�

b(u

2

; u

1

; 1)b(u

2

; u

3

; �(1)) � � � b(u

2p

; u

2p�1

; p)b(u

2p

; u

1

; �(p))

�

:

(1.5)

Arguing as in the proof of Lemma 1.2, it follows that the term in the above

sum orresponding to u

1

; u

2

; : : : ; u

2p

is zero, unless the orresponding matrix

entries are pairwise onjugate to eah other, i.e., unless we have that

b(u

2i

; u

2i+1

; �(i)) = b(u

2�(i)

; u

2�(i)�1

; �(i)); (i 2 f1; 2; : : : ; pg): (1.6)
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Note also, that if (1.6) is satis�ed, then the orresponding term in (1.5) equals

1, and onsequently

�(�;m; n)

= ard

��

(u

1

; u

2

; : : : ; u

2p

)

�

�

1 � u

2i�1

� n; 1 � u

2i

� m; and (1.6) holds

	�

:

To alulate this ardinality, we note �rst that (1.6) is equivalent to the ondi-

tion

u

2i

= u

2�(i)

and u

2i+1

= u

2�(i)�1

; (i 2 f1; 2; : : : ; pg); (1.7)

where addition and subtration are formed mod. 2p. Replaing now i by �

�1

(i)

in the �rst equation in (1.7), we get the equivalent ondition:

u

2i

= u

2�

�1

(i)

and u

2i+1

= u

2�(i)�1

; (i 2 f1; 2; : : : ; pg):

Reall then that by de�nition of �̂, �̂(2i�1) = 2�

�1

(i), and using this formula

with i replaed by �(i), we get that also 2�(i)� 1 = �̂

�

�̂(2�(i)� 1)

�

= �̂(2i).

Thus (1.6) is equivalent to the ondition

u

2i

= u

�̂(2i�1)

; and u

2i+1

= u

�̂(2i)

; (i 2 f1; 2; : : : ; pg);

i.e., the ondition

u

j

= u

�̂(j�1)

; (j 2 f1; 2; : : : ; 2pg):

Replaing �nally j by �̂(j) + 1, we onlude that (1.6) is equivalent to the

ondition

u

j

= u

�̂(j)+1

; (j 2 f1; 2; : : : ; 2pg);

where �̂(j) + 1 is alulated mod. 2p. Having realized this, it follows immedi-

ately from Remark 1.9 and the de�nitions of k(�̂) and l(�̂), that the right hand

side of (1) equals m

k(�̂)

n

l(�̂)

, and hene we have the desired formula. �

1.12 Corollary. Let m;n be positive integers and let B be an element of

GRM(m;n; 1). Then for any positive integer p, we have that

E ÆTr

n

�

(B

�

B)

p

�

=

X

�2S

p

m

k(�̂)

n

l(�̂)

:

Proof. This follows immediately by ombining Proposition 1.5 and Theo-

rem 1.11. �

1.13 Theorem. Let p be a positive integer, and let � be a permutation in S

p

.

Then

(i) k(�̂) � 1 and l(�̂) � 1.

(ii) k(�̂) + l(�̂) � p+ 1.

(iii) �(�̂) =

1

2

�

p+ 1� k(�̂)� l(�̂)

�

is a non-negative integer.
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Proof. (i) This is lear from De�nition 1.10.

(ii) Sine d(�̂) = k(�̂) + l(�̂) is the number of equivalene lasses for �

�̂

, (ii)

follows from [Vo1, Proof of Theorem 2.2℄.

(iii) The proof of (iii) requires more work. For elements p of N and k; l of N

0

,

we de�ne

Æ(p; k; l) = ard(f� 2 S

p

j k(�̂) = k and l(�̂) = lg):

By (i) and (ii), Æ(p; k; l) = 0 unless k � 1, l � 1 and k + l � p + 1. By

Corollary 1.12, we have for an element B of GRM(m;n; 1), that

E ÆTr

n

�

(B

�

B)

p

�

=

X

k;l2N

k+l�p+1

Æ(p; k; l)m

k

n

l

:

On the other hand, by the reursion formula for the moments E Æ

Tr

n

�

(B

�

B)

p

�

; (p 2 N), found in [HT, Theorem 8.2℄, it follows that for p in

N, the moment E ÆTr

n

�

(B

�

B)

p

�

an be expressed as a polynomial in m and n

of the form:

E ÆTr

n

�

(B

�

B)

p

�

=

X

k;l2N

k+l�p+1

Æ

0

(p; k; l)m

k

n

l

;

for suitable oe�eients Æ

0

(p; k; l). By the remarks following the proof of

[HT, Theorem 8.2℄, only terms of homogeneous degree p + 1 � 2j, j 2

f0; 1; 2; : : : ; [

p�1

2

℄g, appear in this polynomial, i.e.,

Æ

0

(p; k; l) = 0; when k + l = p (mod: 2):

If polynomials of two variables oinide on N

2

, then they are equal. Therefore,

Æ(p; k; l) = Æ

0

(p; k; l) for all k; l, whih proves that

ard(f� 2 S

p

j k(�̂) = k and l(�̂) = lg) = 0; if k + l = p (mod: 2):

Hene, �(�̂) is an integer for all � in S

p

, and by (ii), �(�̂) � 0. This proves

(iii). �

In the rest of this setion, we shall introdue a method of \redutions of per-

mutations", whih will be needed to determine the asymptoti lower bound of

the spetrum of S

�

n

S

n

(f. Setions 5-8).

Let p be a positive integer, let � be a permutation in S

p

, and onsider the

orresponding permutation �̂ in S

2p

, introdued in De�nition 1.6. Sine �̂

2

= id

and �̂ has no �xed points, the orbits under the ation of �̂ form a partition of

f1; 2; : : : ; 2pg into p sets, eah with two elements.

1.14 Definition. Let p be a positive integer, and let � be a permutation in

S

p

. Following the standard de�nition of rossings in partitions of f1; 2; : : : ; 2pg

into sets of ardinality 2 (see e.g. [Sp℄), we say that (a; b; ; d) is a rossing for

�̂, if a; b; ; d 2 f1; 2; : : : ; 2pg suh that

a < b <  < d; and �̂(a) = ; �̂(b) = d: (1.8)
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If �̂ has no suh rossings, we say that �̂ is a non-rossing permutation, and

we let S

n

p

denote the set of permutations � in S

p

for whih �̂ is non-rossing.

�

1.15 Definition. Let p be a positive integer, let � be a permutation in S

p

,

and let e be an element of f1; 2; : : : ; 2p� 1g. We say then that (e; e + 1) is a

pair of neighbors for �̂, if �̂(e) = e+ 1. Note, that a pair of neighbors for �̂ is

either of the form

(2k � 1; 2k); where k 2 f1; : : : ; pg;

or of the form

(2k; 2k + 1); where k 2 f1; : : : ; p� 1g:

In the �rst ase k = �(k), and in the seond ase �(k) = k + 1. �

1.16 Definition. Let p be a positive integer, let � be a permutation in S

p

, and

onsider the permutation �̂ in S

2p

introdued in De�nition 1.6. We say then

that �̂ is irreduible if �̂ has no pair of neighbors (in the sense of De�nition 1.15),

i.e., if �̂(j) 6= j + 1 for all j in f1; 2; : : : ; 2p� 1g. We denote by S

irr

p

the set of

permutations � in S

p

for whih �̂ is irreduible. Note that

� 2 S

irr

p

() 1 6= �(1) 6= 2 6= �(2) 6= � � � 6= p 6= �(p):

If � 2 S

p

n S

irr

p

, we say that �̂ is reduible. Note, that we do not require that

�̂(2p) 6= 1 in order for �̂ to be irreduible. Thus, irreduibility of �̂ is not

invariant under yli permutations of f1; 2; : : : ; 2pg. �

1.17 Lemma. Let p be a positive integer, and let � be a permutation in S

n

p

.

Then �̂ has a pair of neighbors, i.e., �̂ is reduible in the sense of De�nition 1.16.

In other words, we have the inlusion S

n

p

� S

p

n S

irr

p

or equivalently S

irr

p

�

S

p

n S

n

p

.

Proof. We prove the inlusion: S

irr

p

� S

p

n S

n

p

. So let � from S

irr

p

be given,

and onsider the set M = fj 2 f1; 2; : : : ; 2pg j �̂(j) � jg. Note that M 6= ;,

sine learly 1 2M . De�ne now

� = minf�̂(j)� j j j 2Mg:

Sine �̂ has no �xed points and no pairs of neighbors (sine � 2 S

irr

p

), we must

have � � 2. Choose j in f1; 2; : : : ; 2pg suh that �̂(j) � j = �. Sine � � 2,

�̂(j) 6= j + 1, or equivalently (sine �̂

2

= id), �̂(j + 1) 6= j. Combining this

with the de�nition of �, and the fat that �̂ has no �xed points, it follows that

�̂(j + 1) =2 fj; j + 1; : : : ; j + �g = fj; j + 1; : : : ; �̂(j)g;

i.e., either �̂(j+1) < j or �̂(j+1) > �̂(j). In the �rst ase (�̂(j+1); j; j+1; �̂(j))

is a rossing for �̂, and in the seond ase (j; j +1; �̂(j); �̂(j + 1)) is a rossing

for �̂. In all ases, � 2 S

p

n S

n

p

, as desired. �
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1.18 Definition. Let p be a positive integer, greater than or equal to 2, let �

be a permutation in S

p

, and assume that the permutation �̂ in S

2p

has a pair of

neighbors (e; e+1). Let ' be the order preserving bijetion of f1; 2; : : : ; 2p�2g

onto f1; 2; : : : ; 2pg n fe; e+ 1g, i.e.,

'(i) =

(

i; if 1 � i � e� 1;

i+ 2; if e � i � 2p� 2:

(1.9)

By �

0

we denote then the unique permutation in S

p�1

, satisfying that

�̂

0

= '

�1

Æ �̂ Æ ':

We say that �̂

0

is obtained from �̂ by anellation of the pair (e; e+1). �

A few words are appropriate about the introdution of �

0

in the de�ni-

tion above. Note �rst of all that '

�1

Æ �̂ Æ ' is a well-de�ned permu-

tation of f1; 2; : : : ; 2p � 2g, sine �̂

2

= id and �̂(e) = e + 1, so that

�̂(f1; 2; : : : ; 2pg n fe; e + 1g) = f1; 2; : : : ; 2pg n fe; e + 1g. To see that this

permutation is atually of the form �̂

0

for some (neessarily uniquely deter-

mined) permutation �

0

in S

p�1

, it suÆes, by Remark 1.7(a), to hek that

('

�1

Æ �̂ Æ ')

2

= id, and that '

�1

Æ �̂ Æ '(j) � j = 1 (mod. 2), for all j in

f1; 2; : : : ; 2p� 2g. But these properties follow from the orresponding proper-

ties of �̂, and the fat that '(j) = j (mod. 2), for all j.

1.19 Remark. Let p be a positive integer, greater than or equal to 2, let � be

a permutation in S

p

, and assume that the permutation �̂ in S

2p

has a pair of

neighbors (e; e+ 1). Let �

0

be the permutation in S

p�1

obtained from � as in

De�nition 1.18.

(a) If (e; e+1) = (2k� 1; 2k) for some k in f1; : : : ; pg, then �

0

=  

�1

Æ � Æ ,

where  : f1; : : : ; p� 1g ! f1; : : : ; pg n fkg is the bijetion given by

 (j) =

(

j; if 1 � j � k � 1;

j + 1; if k � j � p� 1:

(1.10)

(b) If (e; e+1) = (2k; 2k+1) for some k in f1; : : : ; p�1g, then �

0

= �

�1

Æ�Æ ,

where � : f1; : : : ; p� 1g ! f1; : : : ; pg n fk + 1g is the bijetion given by

�(j) =

(

j; if 1 � j � k;

j + 1; if k + 1 � j � p� 1;

(1.11)

and where  is given by (1.10). �

1.20 Lemma. Let p be a positive integer, greater than or equal to 2, and let

� be a permutation in S

p

n S

irr

p

. Let (e; e+ 1) be a pair of neighbors for �̂ and

let �

0

be the permutation in S

p�1

, for whih �̂

0

is the permutation obtained

from �̂ by anellation of (e; e+ 1). Then �̂ is non-rossing if and only if �̂

0

is

non-rossing.
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Proof. Let ' : f1; 2; : : : ; 2p � 2g ! f1; 2; : : : ; 2pg n fe; e + 1g be the bijetion

introdued in (1.9). We show that �̂

0

has a rossing if and only if �̂ does.

Assume �rst that �̂

0

has a rossing (a; b; ; d). Then sine ' is (stritly) mono-

tone and sine (by de�nition of �

0

) �̂('(a)) = '(), �̂('(b)) = '(d), it follows

that ('(a); '(b); '(); '(d)) is a rossing for �̂.

Assume onversely that �̂ has a rossing (a

0

; b

0

; 

0

; d

0

). Then learly

fa

0

; b

0

; 

0

; d

0

g \ fe; e+ 1g = ;;

so that the numbers '

�1

(a

0

); '

�1

(b

0

); '

�1

(

0

); '

�1

(d

0

) are well-de�ned. It fol-

lows then, as above, that ('

�1

(a

0

); '

�1

(b

0

); '

�1

(

0

); '

�1

(d

0

)) is a rossing for

�̂

0

. �

1.21 Lemma. Let m;n be positive integers, and let B be an element of

GRM(m;n; 1). Then

E(B

�

B) = m1

1

1

n

; and E(BB

�

) = n1

1

1

m

: (1.12)

Proof. Let (b

ij

)

1�i�m

1�j�n

be the entries of B. Then

E(b

ij

b

st

) =

(

1; if (i; j) = (s; t);

0; otherwise:

(1.13)

Sine (B

�

B)

ij

=

P

m

s=1

b

si

b

sj

and (BB

�

)

ij

=

P

n

s=1

b

is

b

js

, for all i; j, (1.12)

follows readily from (1.13). �

1.22 Proposition. Let p be a positive integer, greater than or equal to 2,

and let � be a permutation in S

p

n S

irr

p

. Let (e; e + 1) be a pair of neighbors

for �̂ and let �

0

be the permutation in S

p�1

, for whih �̂

0

is the permutation

obtained from �̂ by anellation of (e; e+1). Then with k(�); l(�); d(�) and �(�)

as introdued in De�nition 1.10, we have that

(i) If e is odd, then k(�̂

0

) = k(�̂)� 1 and l(�̂

0

) = l(�̂).

(ii) If e is even, then k(�̂

0

) = k(�̂) and l(�̂

0

) = l(�̂)� 1.

In both ases, d(�̂

0

) = d(�̂)� 1 and �(�̂

0

) = �(�̂).

Proof. Letm;n be positive integers, and let B

1

; : : : ; B

p

be independent random

matries from GRM(m;n; 1). By Theorem 1.11, we have then that

E ÆTr

n

�

B

�

1

B

�(1)

� � �B

�

p

B

�(p)

�

= m

k(�̂)

n

l(�̂)

: (1.14)

(i) Assume that e is odd, i.e., that (e; e + 1) = (2q � 1; 2q) for some q in

f1; 2; : : : ; pg. Then �(q) = q, and hene the set of random matries

(B

�

1

; B

�(1)

; : : : ; B

�

q�1

; B

�(q�1)

; B

�

q+1

; B

�(q+1)

; : : : ; B

�

p

; B

�(p)

)
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is independent from the set (B

�

q

; B

�(q)

). Therefore,

E ÆTr

n

�

B

�

1

B

�(1)

� � �B

�

p

B

�(p)

�

= E ÆTr

n

�

B

�

1

B

�(1)

� � �B

�

q�1

B

�(q�1)

E(B

�

q

B

�(q)

)B

�

q+1

� � �B

�

p

B

�(p)

�

= m � E ÆTr

n

�

B

�

1

B

�(1)

� � �B

�

q�1

B

�(q�1)

B

�

q+1

� � �B

�

p

B

�(p)

�

;

(1.15)

where the last equality follows from Lemma 1.21. Note that only the random

matries B

1

; : : : ; B

q�1

; B

q+1

; : : : ; B

p

our in the last expression in (1.15). De-

�ne now for i in f1; 2; : : : ; p� 1g;

B

0

i

=

(

B

i

; if 1 � i � q � 1;

B

i+1

; if q � i � p� 1:

Then by Remark 1.19(a), it follows that the last expression in (1.15) is equal

to

m � E ÆTr

n

�

(B

0

1

)

�

B

0

�

0

(1)

� � � (B

0

p�1

)

�

B

0

�

0

(p�1)

�

;

whih, by Theorem 1.11, is equal tom�m

k(�̂

0

)

n

l(�̂

0

)

. Altogether, we have shown

that

m

k(�̂)

n

l(�̂)

= m �m

k(�̂

0

)

n

l(�̂

0

)

;

and sine this holds for all positive integersm;n, it follows that k(�̂) = k(�̂

0

)+1

and l(�̂) = l(�̂

0

). This proves (i).

(ii) Assume that e is even, i.e., that (e; e + 1) = (2q; 2q + 1), for some q in

f1; 2; : : : ; p� 1g. Then �(q) = q+1, and arguing now as in the proof of (i), we

�nd that

m

k(�̂)

n

l(�̂)

= E ÆTr

n

�

B

�

1

B

�(1)

� � �B

�

p

B

�(p)

�

= E ÆTr

n

�

B

�

1

B

�(1)

� � �B

�

q

E(B

�(q)

B

�

q+1

)B

�(q+1)

� � �B

�

p

B

�(p)

�

= n � E ÆTr

n

�

B

�

1

B

�(1)

� � �B

�

q

B

�(q+1)

� � �B

�

p

B

�(p)

�

;

(1.16)

where the last equality follows from Lemma 1.21. De�ning, this time, for eah

i in f1; 2; : : : ; p� 1g,

B

0

i

=

(

B

i

; if 1 � i � q;

B

i+1

; if q + 1 � i � p� 1;

we get by appliation of Remark 1.19(b), that the last expression in (1.16) is

equal to

n � E ÆTr

n

�

(B

0

1

)

�

B

0

�

0

(1)

� � � (B

0

p�1

)

�

B

0

�

0

(p�1)

�

;

whih, by Theorem 1.11, equals n �m

k(�̂

0

)

n

l(�̂

0

)

. Arguing then as in the proof

of (i), it follows that k(�̂) = k(�̂

0

) and l(�̂) = l(�̂

0

) + 1. This proves (ii).

The last statements of Proposition 1.22 follow immediately from (i), (ii) and

De�nition 1.10. �
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1.23 Proposition. Let p be a positive integer, and let � be a permutation in

S

p

. By �nitely many (or possibly none) suessive anellations of pairs, �̂ an

be redued to either

(i) ê

1

, where e

1

is the trivial permutation in S

1

,

or

(ii) �̂, where � is a permutation in S

irr

q

for some q in f2; : : : ; pg.

Case (i) appears if and only if � 2 S

n

p

.

Proof. It is lear, that by �nitely many (or possibly none) suessive anel-

lations of pairs, �̂ an be redued to a permutation �̂, where either � 2 S

1

or

� 2 S

irr

q

for some q in f2; 3; : : : ; pg. By Lemma 1.20, �̂ is non-rossing if and

only if �̂ is. Sine S

1

= S

n

1

= fe

1

g, and S

irr

q

\S

n

q

= ; for all q in f2; 3; : : : ; pg,

by Lemma 1.17, it follows thus, that either ase (i) or ase (ii) ours, and that

ase (i) ours if and only if �̂ is non-rossing. �

The following orollary is a speial ase of [Sh, Lemma 2.3℄. For the onveniene

of the reader, we inlude a proof based on Propositions 1.22 and 1.23.

1.24 Corollary. Let p be a positive integer and let � be a permutation in

S

p

. Then �̂ is non-rossing if and only if k(�̂) + l(�̂) = p+ 1, or, equivalently,

if and only if �(�̂) = 0.

Proof. Assume �rst that �̂ is non-rossing. It follows then from Proposi-

tion 1.23, that by suessive anellations of pairs, �̂ may be redued to ê

1

,

where e

1

is the unique permutation in S

1

. Sine �(�) is invariant under an-

ellations of pairs, (f. Lemma 1.22), it follows that �(�̂) = �(ê

1

), and it is

straightforward to hek that �(ê

1

) = 0.

Assume next that �̂ has a rossing. Then, by Proposition 1.23, there exist

q in f2; : : : ; pg and a permutation � in S

irr

q

, suh that �̂ may be redued to

�̂ by �nitely many (or possibly none) suessive anellations of pairs. By

Proposition 1.22, �(�̂) = �(�̂), and hene it suÆes to show that �(�̂) > 0, i.e.,

that d(�̂) < q + 1. Note for this, that sine �̂ is irreduible, �̂(j) 6= j + 1, for

all j in f1; 2; : : : ; 2q � 1g. Sine �̂

2

= id, this is equivalent to the ondition

that �̂(j) 6= j � 1, for all j in f2; 3; : : : ; 2qg, and by Remark 1.9, this implies

that ard([j℄

�̂

) � 2, for all j in f2; 3; : : : ; 2qg. Letting r denote the number of

�

�̂

-equivalene lasses, that are distint from [1℄

�̂

, we have thus the inequality

2r + ard([1℄

�̂

) � 2q:

Sine r = d(�̂)�1, and sine ard([1℄

�̂

) � 1, this implies that 2(d(�̂)�1)+1 � 2q,

and hene that d(�̂) � q, as desired. �

2 A Combinatorial Expression for the Moments of S

�

S

Let H and K be Hilbert spaes, let r be a positive integer, and let a

1

; : : : ; a

r

be elements of B(H;K). Moreover, let n be a �xed positive integer, and let

Doumenta Mathematia 4 (1999) 341{450



Random Matries and K-Theory : : : 361

Y

1

; : : : ; Y

r

be independent elements of GRM(n; n;

1

n

). We then de�ne

S =

r

X

i=1

a

i


 Y

i

:

Note that S is a random variable taking values in B(H;K)
M

n

(C ). The aim

of this setion is to derive ombinatorial expressions for the moments

(id

B(H)


 (E Æ tr

n

))[(S

�

S)

p

℄ and (id

B(H)


 E)[(S

�

S)

p

℄; (p 2 N);

where id

B(H)

denotes the identity mapping on B(H). Moreover, we shall obtain

another ombinatorial expression, whih is an upper estimate for the norm of

(id

B(H)


 E)[(S

�

S)

p

℄. For the sake of short notation, in the following we shall

just write E Æ tr

n

and E instead of id

B(H)


 (E Æ tr

n

) and id

B(H)


 E .

We start with the following generalization of Proposition 1.5.

2.1 Proposition. Let H;K be Hilbert spaes, let r be a positive integer, and

let a

1

; : : : ; a

r

be elements of B(H;K). Moreover, let m;n be �xed positive

integers, and let B

1

; : : : ; B

r

be independent elements of GRM(m;n; 1). Then

with T =

P

r

i=1

a

i


B

i

; we have for any positive integer p, that

E ÆTr

n

[(T

�

T )

p

℄ =

X

�2S

p

m

k(�̂)

n

l(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

:

Proof. Let (B(1; h))

h2N

; : : : ; (B(r; h))

h2N

be sequenes of elements from

GRM(m;n; 1), suh that (the entries of) the random matries B(i; h); 1 �

i � r; h 2 N, are jointly independent. Then for h in N, we de�ne

T

h

=

r

X

i=1

a

i


B(i; h):

Note then, that for eah s in N,

s

�

1

2

s

X

h=1

T

h

= s

�

1

2

s

X

h=1

r

X

i=1

a

i


B(i; h) =

r

X

i=1

a

i




�

s

�

1

2

s

X

h=1

B(i; h)

�

;

where the random matries s

�

1

2

P

s

h=1

B(1; h); : : : ; s

�

1

2

P

s

h=1

B(r; h) are in-

dependent elements of GRM(m;n; 1). It follows thus, that the moments of

s

�1

(

P

s

h=1

T

h

)

�

P

s

h=1

T

h

w.r.t. E ÆTr

n

are equal to those of T

�

T . Thus for any

p; s in N, we have

E ÆTr

n

[(T

�

T )

p

℄ = E ÆTr

n

"

s

�p

��

s

X

h=1

T

h

�

�

s

X

h=1

T

h

�

p

#

= s

�p

�

X

1�h

1

;h

2

;::: ;h

p

�s

1�g

1

;g

2

;::: ;g

p

�s

E ÆTr

n

h

T

�

h

1

T

g

1

T

�

h

2

T

g

2

� � �T

�

h

p

T

g

p

i

:

(2.1)
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Consider here an arbitrary 2p{tuple (h

1

; g

1

; : : : ; h

p

; g

p

) in f1; 2; : : : ; sg

2p

. Re-

alling then the de�nition of T

h

, we �nd that

E ÆTr

n

h

T

�

h

1

T

g

1

T

�

h

2

T

g

2

� � �T

�

h

p

T

g

p

i

=

X

1�i

1

;::: ;i

p

�r

1�j

1

;::: ;j

p

�r

(a

�

i

1

a

j

1

� � �a

�

i

p

a

j

p

) � E

�

Tr

n

(B(i

1

; h

1

)

�

B(j

1

; g

1

) � � �B(i

p

; h

p

)

�

B(j

p

; g

p

))

�

:

Sine B(i; h) is independent of B(j; g) unless i = j and h = g, it follows here

from Lemma 1.2 in Setion 1, that

E ÆTr

n

[B(i

1

; h

1

)

�

B(j

1

; g

1

) � � �B(i

p

; h

p

)

�

B(j

p

; g

p

)℄ 6= 0

=) 9� 2 S

p

: (j

1

; g

1

) = (i

�(1)

; h

�(1)

); : : : ; (j

p

; g

p

) = (i

�(p)

; h

�(p)

):

(2.2)

In partiular it follows that in (2.1), we only have to sum over

(h

1

; g

1

; : : : ; h

p

; g

p

) in [

�2S

p

M(�; s), where, as in the proof of Proposition 1.5

in Setion 1 ,

M(�; s) =

�

(h

1

; g

1

; : : : ; h

p

; g

p

) 2 f1; 2; : : : ; sg

2p

�

�

g

1

= h

�(1)

; : : : ; g

p

= h

�(p)

	

;

for any � in S

p

. Following still the proof of Proposition 1.5 in Setion 1, we

de�ne,

D(s) =

�

(h

1

; g

1

; : : : ; h

p

; g

p

) 2 f1; 2; : : : ; sg

2p

�

�

h

1

; : : : ; h

p

are distint

	

;

and then the sets M(�; s) \ D(s); � 2 S

p

, are disjoint and

E ÆTr

n

[(T

�

T )

p

℄

= s

�p

X

�2S

p

X

(h

1

;g

1

;::: ;h

p

;g

p

)2M(�;s)\D(s)

E ÆTr

n

[T

�

h

1

T

g

1

� � �T

�

h

p

T

g

p

℄

+ s

�p

X

(h

1

;g

1

;::: ;h

p

;g

p

)2

(

[

�2S

p

M(�;s)

)

nD(s)

E ÆTr

n

[T

�

h

1

T

g

1

� � �T

�

h

p

T

g

p

℄:

(2.3)

As was noted in the proof of Proposition 1.5, we have here that

s

�p

� ard(M(�; s) \ D(s))! 1; as s!1; (� 2 S

p

); (2.4)

and that

s

�p

� ard(

�

[

�2S

p

M(�; s)

�

n D(s))! 0; as s!1: (2.5)
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Moreover, for any h

1

; g

1

; : : : ; h

p

; g

p

in N, we have that





E ÆTr

n

[T

�

h

1

T

g

1

� � �T

�

h

p

T

g

p

℄





�

X

1�i

1

;::: ;i

p

�r

1�j

1

;::: ;j

p

�r

ka

�

i

1

a

j

1

� � � a

�

i

p

a

j

p

k �

�

�

E

�

Tr

n

(B(i

1

; h

1

)

�

B(j

1

; g

1

) � � �B(i

p

; h

p

)

�

B(j

p

; g

p

))

�

�

�

� K(m;n; p; 1) �

X

1�i

1

;::: ;i

p

�r

1�j

1

;::: ;j

p

�r

ka

�

i

1

a

j

1

� � � a

�

i

p

a

j

p

k;

whereK(m;n; p; 1) is the onstant introdued in Remark 1.4 in Setion 1. Sine

this onstant does not depend on s, it follows thus, by (2.5), that the seond

term on the right hand side of (2.3) tends to 0 as s!1.

Regarding the �rst term on the right hand side of (2.3), for any � in S

p

and

any 2p{tuple (h

1

; g

1

; : : : ; h

p

; g

p

) in M(�; s) \ D(s), we have that

E ÆTr

n

[T

�

h

1

T

g

1

� � �T

�

h

p

T

g

p

℄ = E ÆTr

n

[T

�

h

1

T

h

�(1)

� � �T

�

h

p

T

h

�(p)

℄

=

X

1�i

1

;::: ;i

p

�r

1�j

1

;::: ;j

p

�r

(a

�

i

1

a

j

1

� � � a

�

i

p

a

j

p

)

� E

�

Tr

n

(B(i

1

; h

1

)

�

B(j

1

; h

�(1)

) � � �B(i

p

; h

p

)

�

B(j

p

; h

�(p)

))

�

:

Realling here the statement (2.2) and that h

1

; : : : ; h

p

are distint, it follows

that the term in the above sum orresponding to (i

1

; j

1

; : : : ; i

p

; j

p

) is 0, unless

j

1

= i

�(1)

; : : : ; j

p

= i

�(p)

. Thus we have that

E ÆTr

n

[T

�

h

1

T

g

1

� � �T

�

h

p

T

g

p

℄

=

X

1�i

1

;::: ;i

p

�r

(a

�

i

1

a

i

�(1)

� � �a

�

i

p

a

i

�(p)

)

� E

�

Tr

n

(B(i

1

; h

1

)

�

B(i

�(1)

; h

�(1)

) � � �B(i

p

; h

p

)

�

B(i

�(p)

; h

�(p)

))

�

:

Note here, that sine h

1

; : : : ; h

p

are distint, B(i

1

; h

1

); : : : ; B(i

p

; h

p

) are inde-

pendent for any hoie of i

1

; : : : ; i

p

in f1; 2; : : : ; rg, and onsequently

E

�

Tr

n

(B(i

1

; h

1

)

�

B(i

�(1)

; h

�(1)

) � � �B(i

p

; h

p

)

�

B(i

�(p)

; h

�(p)

))

�

= �(�;m; n);

for any i

1

; : : : ; i

p

in f1; 2; : : : ; rg. Thus, we may onlude that

E ÆTr

n

[T

�

h

1

T

g

1

� � �T

�

h

p

T

g

p

℄ = �(�;m; n) �

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

;

and this holds for any (h

1

; g

1

; : : : ; h

p

; g

p

) in M(�; s)\D(s). Therefore the �rst

term on the right hand side of (2.3) equals

X

�2S

p

s

�p

� ard(M(�; s) \ D(s)) � �(�;m; n) �

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

;
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and by (2.4), this tends to

X

�2S

p

�(�;m; n) �

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

;

as s!1. Sine the left hand side of (2.3) does not depend on s, we get thus

by letting s!1 in (2.3), that

E ÆTr

n

[(T

�

T )

p

℄ =

X

�2S

p

�(�;m; n) �

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

:

Combining �nally with Theorem 1.11, we obtain the desired formula. �

2.2 Corollary. Let H;K be Hilbert spaes, let r be a positive integer, and

let a

1

; : : : ; a

r

be elements of B(H;K). Moreover, let n be a �xed positive

integer, and let Y

1

; : : : ; Y

r

be independent elements of GRM(n; n;

1

n

). Then

with S =

P

r

i=1

a

i


 Y

i

; we have for any positive integer p, that

E Æ tr

n

[(S

�

S)

p

℄ =

X

�2S

p

n

�2�(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

; (2.6)

where �(�̂) is the quantity introdued in De�nition 1.10 in Setion 1.

Proof. With B

i

=

p

n � Y

i

; i 2 f1; 2; : : : ; rg, we have that B

1

; : : : ; B

r

are

independent elements of GRM(n; n; 1). It follows thus from Proposition 2.1,

that for any p in N,

n

p

� E ÆTr

n

[(S

�

S)

p

℄ =

X

�2S

p

n

k(�̂)+l(�̂)

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � �a

�

i

p

a

i

�(p)

;

and onsequently

E Æ tr

n

[(S

�

S)

p

℄ =

X

�2S

p

n

�p�1+k(�̂)+l(�̂)

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

:

Formula (2.6) now follows by noting that,

p+ 1� k(�̂)� l(�̂) = p+ 1� d(�̂) = 2�(�̂);

for any � in S

p

. �

Our next objetive is to derive a matrix version of formula (2.6). In other

words, we shall obtain a ombinatorial expression for E [(S

�

S)

p

℄.

2.3 Lemma. Let n; r be positive integers and let Y

1

; : : : ; Y

r

be independent

elements of GRM(n; n; �

2

). Then for any (non{random) unitary n�n matries

u

1

; : : : ; u

r

, the random matries u

1

Y

1

u

�

1

; : : : ; u

r

Y

r

u

�

r

are again independent

elements of GRM(n; n; �

2

).
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Proof. Note �rst that for eah i in f1; 2; : : : ; rg, the entries of u

i

Y

i

u

�

i

are all

measurable w.r.t. the �{algebra generated by the entries of Y

i

. It follows there-

fore immediately that u

1

Y

1

u

�

1

; : : : ; u

r

Y

r

u

�

r

are independent random matries.

We note next, that it follows easily from De�nition 1.1, that the joint distribu-

tion of the entries of an element from GRM(n; n; �

2

) has the following density

w.r.t. Lebesgue measure on M

n

(C ) ' R

2n

2

:

y 7!

�

1

��

2

�

n

2

exp

�

�

1

�

2

�Tr

n

(y

�

y)

�

; (y 2M

n

(C )): (2.7)

(Here the identi�ation of M

n

(C ) with R

2n

2

is given by

y 7! (Re(y

jk

); Im(y

jk

))

1�j;k�n

:)

Now let u be a unitary n� n matrix, and onsider then the linear mapping

Adu : y 7! uyu

�

: M

n

(C ) !M

n

(C ):

Under the identi�ation of M

n

(C ) with R

2n

2

, the Eulidean struture on R

2n

2

is given by the inner produt:

hy; zi = Re(Tr

n

(z

�

y)); (y; z 2M

n

(C )):

Thus Adu : R

2n

2

! R

2n

2

is a linear isometry, and hene the Jaobi determi-

nant of this mapping equals 1. Combining this fat with (2.7) and the usual

transformation theorem for Lebesgue measure, it follows that for any Y in

GRM(n; n; �

2

), the joint distribution of the entries of uY u

�

equals that of the

entries of Y . �

2.4 Lemma. Let B be a C

�

{algebra with unit 1

1

1, let n be a positive integer,

and onsider the tensor produt B 
M

n

(C ). If x 2 B 
M

n

(C ), suh that

(1

1

1
 u)x(1

1

1
 u)

�

= x for any unitary n� n matrix u, then x 2 B 
 1

1

1

n

.

Proof. Assume that x 2 B 
M

n

(C ), and that (1

1

1 
 u)x(1

1

1 
 u)

�

= x for any

unitary n � n matrix u. Sine M

n

(C ) is the linear span of its unitaries, it

follows that

x 2

�

y 2 B 
M

n

(C )

�

�

yT = Ty for all T in 1

1

1
M

n

(C )

	

= B 
 1

1

1

n

;

where the last equality follows by standard matrix onsiderations; thinking of

B 
M

n

(C ) as the set of n� n matries with entries from B. �

2.5 Proposition. Let S be as in Corollary 2.2. Then for any positive integer

p, we have that:

E [(S

�

S)

p

℄ =

�

X

�2S

p

n

�2�(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � �a

�

i

p

a

i

�(p)

�


 1

1

1

n

:
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Proof. Let u be an arbitrary unitary n�n matrix, and de�ne: S

u

=

P

r

i=1

a

i




(uY

i

u

�

). Note then that S

�

u

S

u

= (1

1

1

H


 u)S

�

S(1

1

1

H


u)

�

, where 1

1

1

H

denotes the

unit of B(H). It follows now by Lemma 2.3, that

E [(S

�

S)

p

℄ = E [(S

�

u

S

u

)

p

℄

= E [(1

1

1

H


 u)(S

�

S)

p

(1

1

1

H


 u)

�

℄ = (1

1

1

H


 u)E [(S

�

S)

p

℄(1

1

1

H


 u)

�

:

Sine this holds for any unitary u, it follows from Lemma 2.4, that E [(S

�

S)

p

℄ 2

B(H)
 1

1

1

n

, and onsequently

E [(S

�

S)

p

℄ =

�

tr

n

(E [(S

�

S)

p

℄)

�


 1

1

1

n

=

�

E Æ tr

n

[(S

�

S)

p

℄

�


 1

1

1

n

:

The proposition now follows by appliation of Corollary 2.2. �

In the next setion, we shall obtain ombinatorial expressions that are upper

estimates for the moments E [(S

�

S)

p

℄. It follows from Proposition 2.5, that in

order to obtain suh ombinatorial estimates, we should onentrate on deriving

ombinatorial estimates for the quantities





X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � �a

�

i

p

a

i

�(p)





;

where � 2 S

p

, and a

1

; : : : ; a

r

are arbitrary bounded operators from a Hilbert

spae H to a Hilbert spae K.

2.6 Definition. Let p be a positive integer, let � be a permutation in S

p

and

onsider the permutation �̂ in S

2p

. We then put

�(�̂) = ard(

�

j 2 f1; 3; : : : ; 2p� 1g

�

�

�̂(j) > j

	

);

�(�̂) = ard(

�

j 2 f1; 3; : : : ; 2p� 1g

�

�

�̂(j) < j

	

) + 1: �

We note, that sine �̂ has no �xed points, it follows that

�(�̂) + �(�̂) = p+ 1; (p 2 N; � 2 S

p

): (2.8)

Realling that by de�nition of �̂, �̂(2h�1) = 2�

�1

(h) for all h in f1; 2; : : : ; pg,

it follows furthermore that

�(�̂) = ard(

�

h 2 f1; 2; : : : ; pg

�

�

2�

�1

(h) > 2h� 1

	

)

= ard(

�

h 2 f1; 2; : : : ; pg

�

�

�

�1

(h) � h

	

)

= ard(

�

h 2 f1; 2; : : : ; pg

�

�

h � �(h)

	

);

(2.9)

where the last equality follows by replaing h by �

�1

(h). Similarly we have

that

�(�̂) = p+ 1� �(�̂)

= ard(

�

h 2 f1; 2; : : : ; pg

�

�

�

�1

(h) < h

	

) + 1

= ard(

�

h 2 f1; 2; : : : ; pg

�

�

h < �(h)

	

) + 1:

(2.10)
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We note also, that sine �̂(j) = j+1 mod. 2 and �̂(�̂(j)) = j for all j, we have

that

�(�̂) = ard(�̂

��

j 2 f1; 3; : : : ; 2p� 1g

�

�

�̂(j) > j

	�

)

= ard(

�

j 2 f2; 4; : : : ; 2pg

�

�

�̂(j) < j

	

);

(2.11)

and similarly

�(�̂) = ard(

�

j 2 f2; 4; : : : ; 2pg

�

�

�̂(j) > j

	

) + 1: (2.12)

In onnetion with produts of the form a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

, note that �(�̂)

denotes the number of h's in f1; 2; : : : ; pg for whih the fator a

�

i

h

appears

before the fator a

i

h

in this produt. Similarly �(�̂)� 1 denotes the number of

h's in f1; 2; : : : ; pg for whih the fator a

i

h

appears before the fator a

�

i

h

.

2.7 Proposition. Let H;K be Hilbert spaes, let r be a positive integer, and

let a

1

; : : : ; a

r

be elements of B(H;K). Let further  and d be positive real

numbers, suh that







r

X

i=1

a

�

i

a

i







�  and







r

X

i=1

a

i

a

�

i







� d: (2.13)

Then for any positive integer p and any permutation � in S

p

, we have that







X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)







� 

�(�̂)

d

�(�̂)�1

:

Proof. Let V be an in�nite dimensional Hilbert spae, and hoose r isometries

s

1

; : : : ; s

r

in B(V), with orthogonal ranges, i.e.,

s

�

i

s

j

= Æ

i;j

1

1

1

B(V)

; (i; j 2 f1; 2; : : : ; rg): (2.14)

Consider then the Hilbert spae

~

V = V 
 � � � 
 V (p fators), and for eah i in

f1; 2; : : : ; rg and h in f1; 2; : : : ; pg, de�ne the operator s(i; h) in B(

~

V) by the

equation

s(i; h) = 1

1

1

B(V)


 � � � 
 1

1

1

B(V)


 S

i


 1

1

1

B(V)


 � � � 
 1

1

1

B(V)

"

h'th position

: (2.15)

Next, put

t(i; h) =

(

s(i; h); if h � �

�1

(h);

s(i; h)

�

; if h > �

�1

(h);

(i 2 f1; 2; : : : ; rg; h 2 f1; 2; : : : ; pg);

(2.16)
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and

A

h

=

r

X

i=1

a

i


 t(i; h); (h 2 f1; 2; : : : ; pg): (2.17)

We onsider A

h

as an element of B(H


~

V ;K


~

V) in the usual way. We laim

then that

A

�

1

A

�(1)

A

�

2

A

�(2)

� � �A

�

p

A

�(p)

=

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � �a

�

i

p

a

i

�(p)

�


 1

1

1

B(

~

V)

:

(2.18)

To prove (2.18), observe �rst that

A

�

1

A

�(1)

� � �A

�

p

A

�(p)

=

X

1�i

1

;i

2

;::: ;i

p

�r

1�j

1

;j

2

;::: ;j

p

�r

(a

�

i

1

a

j

1

a

�

i

2

a

j

2

� � � a

�

i

p

a

j

p

)
�(i

1

; j

1

; i

2

; j

2

; : : : ; i

p

; j

p

);

(2.19)

where

�(i

1

; j

1

; : : : ; i

p

; j

p

)

= t(i

1

; 1)

�

t(j

1

; �(1))t(i

2

; 2)

�

t(j

2

; �(2)) � � � t(i

p

; p)

�

t(j

p

; �(p));

(2.20)

for all i

1

; j

1

; : : : ; i

p

; j

p

in f1; 2; : : : ; rg. By (2.15) and (2.16), t(i; h) and t(i; h)

�

both ommute with t(j; k) and t(j; k)

�

, as long as h 6= k. Hene, we an reorder

the fators in the produt on the right hand side of (2.20), aording to the

seond index in t(�; �) and t(�; �)

�

, in the following way

�(i

1

; j

1

; : : : ; i

p

; j

p

) = T (1)T (2) � � �T (p);

where

T (h) =

(

t(i

h

; h)

�

t(j

�

�1

(h)

; h); if h � �

�1

(h);

t(j

�

�1

(h)

; h)t(i

h

; h)

�

; if h > �

�1

(h);

for eah h in f1; 2; : : : ; pg. By (2.16), it follows that

T (h) =

(

s(i

h

; h)

�

s(j

�

�1

(h)

; h); if h � �

�1

(h);

s(j

�

�1

(h)

; h)

�

s(i

h

; h); if h > �

�1

(h);

and thus by (2.14)-(2.15), we get that for all i

1

; j

1

; : : : ; i

p

; j

p

in f1; 2; : : : ; rg

and all h in f1; 2; : : : ; pg,

T (h) =

(

1

1

1

B(

~

V)

; if i

h

= j

�

�1

(h)

;

0; if i

h

6= j

�

�1

(h)

:

Therefore, �(i

1

; j

1

; : : : ; i

p

; j

p

) = 0, unless i

h

= j

�

�1

(h)

, for all h in f1; 2; : : : ; pg,

or equivalently, unless i

�(h)

= j

h

, for all h in f1; 2; : : : ; pg, in whih ase

�(i

1

; j

1

; : : : ; i

p

; j

p

) = 1

1

1

B(

~

V)

. Combining this with (2.19), we obtain (2.18).
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Using again that s(i; h)

�

s(j; h) = Æ

i;j

1

1

1

B(

~

V)

, for all i; j in f1; 2; : : : ; rg, we get

that if h � �

�1

(h),

A

�

h

A

h

=

r

X

i;j=1

a

�

i

a

j


 s(i; h)

�

s(j; h) =

r

X

i=1

a

�

i

a

i


 1

1

1

B(

~

V)

;

and if h > �

�1

(h),

A

h

A

�

h

=

r

X

i=1

a

i

a

�

i


 1

1

1

B(

~

V)

:

By (2.13), it follows thus, that

kA

h

k

2

= kA

�

h

A

h

k � ; if h � �

�1

(h);

kA

h

k

2

= kA

h

A

�

h

k � d; if h > �

�1

(h);

so by (2.9) and (2.10),

kA

�

1

A

�(1)

� � �A

�

p

A

�(p)

k �

p

Y

h=1

kA

h

k

2

� 

�(�̂)

d

�(�̂)�1

:

Together with (2.18), this proves the proposition. �

2.8 Corollary. Let H;K be Hilbert spaes, let r be a positive integer, and

let a

1

; : : : ; a

r

be elements of B(H;K). Moreover, let n be a �xed positive

integer, and let Y

1

; : : : ; Y

r

be independent elements of GRM(n; n;

1

n

). Then

with S =

P

r

i=1

a

i


 Y

i

,  = k

P

r

i=1

a

�

i

a

i

k and d = k

P

r

i=1

a

i

a

�

i

k, we have for

any positive integer p, that

kE [(S

�

S)

p

℄k �

X

�2S

p

n

�2�(�̂)



�(�̂)

d

�(�̂)�1

:

Proof. This follows immediately by ombining Propositions 2.5 and 2.7. �

In Setion 3 we shall estimate further the quantity kE [(S

�

S)

p

℄k. As preparation

for this, we will in Proposition 2.10 below, ompare the numbers �(�̂) and �(�̂)

with the numbers k(�̂) and l(�̂), de�ned in Setion 1.

2.9 Lemma. Let p be a positive integer, let � be a permutation in S

p

, and on-

sider the permutation �̂ in S

2p

and the orresponding equivalene relation �

�̂

.

Then any equivalene lass for �

�̂

, exept possibly [1℄

�̂

, ontains an element j

with the property that �̂(j) < j.

Proof. Let j

0

be an element of f1; 2; : : : ; 2pg, suh that 1 =2 [j

0

℄

�̂

. We show

that [j

0

℄

�̂

ontains an element j suh that �̂(j) < j. For this, note �rst, that

we may assume that j

0

is the smallest element of [j

0

℄

�̂

. Then, by assumption,

j

0

� 2. Now write in the usual manner (f. Remark 1.9)

[j

0

℄

�̂

= fj

0

; j

1

; : : : ; j

q

g:
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In partiular, �̂(j

q

) + 1 = j

0

= j

0

(addition formed mod. 2p). Now, sine

j

0

� 2, we have that j

0

� 1 < j

0

, even when the subtration is formed mod. 2p.

Therefore, sine j

0

is the smallest element of [j

0

℄

�̂

, �̂(j

q

) = j

0

� 1 < j

0

� j

q

.

Thus we may hoose j = j

q

. �

2.10 Proposition. Let p be a positive integer, let � be a permutation in S

p

,

and onsider the permutation �̂ in S

2p

. We then have

(i) �(�̂) � k(�̂) and �(�̂) � l(�̂).

(ii) (�(�̂)� k(�̂)) + (�(�̂)� l(�̂)) = 2�(�̂).

(iii) �(�̂) = k(�̂) and �(�̂) = l(�̂) if and only if �̂ is non{rossing.

Proof. (i) By Lemma 2.9 and the de�nition of l(�̂), it follows that

l(�̂)� 1 � ard(

�

j 2 f1; 3; : : : ; 2p� 1g

�

�

�̂(j) < j

	

) = �(�̂)� 1:

Similarly we �nd by appliation of (2.11), that

k(�̂) � ard(

�

j 2 f2; 4; : : : ; 2pg

�

�

�̂(j) < j

	

) = �(�̂):

(ii) We �nd by appliation of (2.8), that

(�(�̂)� k(�̂)) + (�(�̂)� l(�̂)) = (�(�̂) + �(�̂))� d(�̂) = p+ 1� d(�̂) = 2�(�̂):

(iii) This follows immediately by ombining (i), (ii) and Corollary 1.24. �

3 An upper bound for E

�

exp(tS

�

S)

�

, t � 0

In the previous setion, we omputed E [(S

�

S)

p

℄, for p in N and S =

P

r

i=1

a

i




Y

i

, where a

1

; : : : ; a

r

2 B(H;K), for Hilbert spaes H and K, and where

Y

1

; : : : ; Y

r

are independent random matries in GRM(n; n;

1

n

). For �xed p

in N, the funtion ! 7!

�

S

�

(!)S(!)

�

p

only takes values in a �nite dimen-

sional subspae of B(H) 
 M

n

(C ). This is not the ase for the funtion

! 7! exp

�

tS

�

(!)S(!)

�

, so in order to give preise meaning to the mean

E

�

exp(tS

�

S)

�

, we will need the following de�nition (f. [Ru, De�nition 3.26℄).

3.1 Definition. Let X be a Banah spae, let (
;F ; P ) be a probability spae,

and let f : 
! X be a mapping, that satis�es the following two onditions

(a) 8' 2 X

�

: ' Æ f 2 L

1

(
;F ; P )

(b) 9x

0

2 X 8' 2 X

�

:

R




' Æ f(!) dP (!) = '(x

0

).

We say then that f is integrable in X , and we all x

0

the integral of f , and

write

E(f) =

Z




f dP = x

0

: �

Note that in the above de�nition, x

0

is uniquely determined by (b). Note also,

that we do not require that

R




kfk dP < 1, in order for f to be integrable.

However, if X is �nite dimensional, then this follows automatially from (a).
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3.2 Proposition. Let H and K be Hilbert spaes, let a

1

; : : : ; a

r

be elements

of B(H;K), and let  be a stritly positive number, suh that

max

�

k

P

r

i=1

a

�

i

a

i

k; k

P

r

i=1

a

i

a

�

i

k

	

� :

Furthermore, let n be a positive integer, let Y

1

; : : : ; Y

r

be independent random

matries in GRM(n; n;

1

n

), and put S =

P

r

i=1

a

i


 Y

i

.

Then for any omplex number t, suh that jtj <

n



, the funtion

! 7! exp

�

tS

�

(!)S(!)

�

; (! 2 
);

is integrable in B(H

n

), in the sense of De�nition 3.1, and

E

�

exp(tS

�

S)

�

=

1

X

p=0

t

p

p!

E

�

(S

�

S)

p

�

; (3.1)

where the series on the right hand side is absolutely onvergent in B(H

n

).

Proof. By Proposition 2.5, we have for any p in N,

E

�

(S

�

S)

p

�

=

�

X

�2S

p

n

�2�(�̂)

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

�


 1

1

1

n

;

and by Proposition 2.7 and formula (2.8), we have here for all � in S

p

, that





X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)





� 

p

: (3.2)

Hene the absolute onvergene of the right hand side of (3.1) will follow, if we

an prove that

1 +

1

X

p=1

(jtj)

p

p!

�

X

�2S

p

n

�2�(�̂)

�

<1; (3.3)

whenever jtj <

n



. For this, onsider an element B of GRM(n; n; 1), and reall

then from Corollary 1.12, that

E ÆTr

n

�

(B

�

B)

p

�

=

X

�2S

p

n

k(�̂)+l(�̂)

= n

p+1

X

�2S

p

n

�2�(�̂)

:

Hene for positive numbers s, we have

E ÆTr

n

�

exp(sB

�

B)

�

= n

�

1 +

1

X

p=1

(ns)

p

p!

X

�2S

p

n

�2�(�̂)

�

: (3.4)

From [HT, Theorem 6.4℄, we know that

E ÆTr

n

�

exp(sB

�

B)

�

<1; when 0 � s < 1:
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Hene the sum in (3.4) is �nite, whenever 0 � s < 1, and this implies that (3.3)

holds whenever jtj <

n



.

Consider now the state spae S(B(H

n

)) of B(H

n

) and an element ' of

S(B(H

n

)). For any ! in 
, we have then that

'

�

exp

�

tS

�

(!)S(!)

��

=

1

X

p=0

t

p

p!

'

�

(S

�

(!)S(!))

p

�

;

whih is learly a positive measurable funtion of ! (sine ' is a state). More-

over, by Lebesgue's Monotone Convergene Theorem,

E

�

'

�

exp(tS

�

S)

��

=

1

X

p=0

t

p

p!

E

�

'

�

(S

�

S)

p

��

=

1

X

p=0

t

p

p!

'

�

E

�

(S

�

S)

p

��

= 1 +

1

X

p=0

t

p

p!

'

�

X

�2S

p

n

�2�(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

�


 1

1

1

n

�

� 1 +

1

X

p=0

t

p

p!

X

�2S

p

n

�2�(�̂)





X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � �a

�

i

p

a

i

�(p)





;

(3.5)

and by (3.2) and (3.3), the latter sum is �nite, when jtj <

n



. Sine

B(H

n

)

�

= span

�

S(B(H

n

)

�

, it follows that the funtion ! 7! exp(tS

�

(!)S(!)),

is integrable, and (by the �rst two equalities in (3.5)) that E

�

exp(tS

�

S)

�

is

given by (3.1). �

The main result of this setion is the following

3.3 Theorem. Let H;K be Hilbert spaes, and let a

1

; : : : ; a

r

be elements of

B(H;K), satisfying that

r

X

i=1

a

�

i

a

i

� 1

1

1

B(H)

and

r

X

i=1

a

i

a

�

i

� 1

1

1

B(K)

;

for some onstant  in ℄0;1[. Consider furthermore independent elements

Y

1

; : : : ; Y

r

of GRM(n; n;

1

n

), and put S =

P

r

i=1

a

i


 Y

i

. Then for any t in

[0;

n

2

℄ \ [0;

n

2

℄, we have that

E

�

exp(tS

�

S)

�

� exp

�

(

p

+ 1)

2

t+ (+ 1)

2

�

t

2

n

�

� 1

1

1

B(H

n

)

:

For the proof of Theorem 3.3, we need three lemmas. Before stating these

lemmas, we introdue some notation:
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For any p; k; l in N, we put

Æ(p; k; l) = ard(f� 2 S

p

j k(�̂) = k and l(�̂) = lg): (3.6)

Note that for any p; k; l in N, Æ(p; k; l) = 0, unless k + l � p + 1 (f. Theo-

rem 1.13).

For any omplex number w and any n in N

0

, we put

(w)

n

=

(

1; if n = 0;

w(w + 1)(w + 2) � � � (w + n� 1); if n 2 N:

We reall then, that the hyper-geometri funtion F , is de�ned by the formula

F (a; b; ;x) =

1

X

k=0

(a)

k

(b)

k

()

k

k!

x

k

;

for a; b; ; x in C , suh that  =2 Zn N, and jxj < 1.

3.4 Lemma. For all positive real numbers �; �, we have that

1

X

p=1

t

p�1

(p� 1)!

X

k;l2N

k+l�p+1

Æ(p; k; l)�

k�1

�

l�1

=

F (1� �; 1� �; 2; t

2

)

(1� t)

�+�

; (t 2 C ; jtj < 1):

(3.7)

Proof. Assume �rst that � = n and � = m, where m;n 2 N, and onsider an

element B of GRM(m;n; 1). Then by [HT, Theorem 6.4℄,

F (1� n; 1�m; 2; t

2

)

(1� t)

m+n

=

1

mn

E ÆTr

n

�

B

�

B exp(tB

�

B)

�

=

1

mn

1

X

p=1

t

p�1

(p� 1)!

E ÆTr

n

�

(B

�

B)

p

�

:

But from Setion 1 of this paper, we know that for any p in N

E ÆTr

n

�

(B

�

B)

p

�

=

X

�2S

p

m

k(�̂)

n

l(�̂)

=

X

k;l2N

k+l�p+1

Æ(p; k; l)m

k

n

l

;

and thus (3.7) holds for all �; � in N. In partiular, the left hand side (3.7) is

�nite for all �; � in N. Sine the left hand side of (3.7) is an inreasing funtion

of both � and �, it is therefore �nite for all �; � in ℄0;1[.

To prove (3.7) for general positive real numbers, �; �, we get �rst, as in [HT,

Proof of Proposition 8.1℄, by multiplying the power series

F (1� �; 1� �; 2; t

2

) =

1

X

j=0

1

j + 1

�

�� 1

j

��

� � 1

j

�

t

2j

; (jtj < 1);
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and

(1� t)

�(�+�)

=

1

X

k=0

�

�+ � + k � 1

k

�

t

k

; (jtj < 1);

that the power series expansion for

F (1��;1��;2;t

2

)

(1�t)

�+�

is given by

F (1� �; 1� �; 2; t

2

)

(1� t)

�+�

=

1

X

p=1

 (p; �; �)t

p�1

; (jtj < 1); (3.8)

where for all p in N,

 (p; �; �) =

[

p�1

2

℄

X

j=0

1

j + 1

�

�� 1

j

��

� � 1

j

��

�+ � + p� 2j � 2

p� 2j � 1

�

: (3.9)

Sine we know that (3.7) holds for all �; � in N, we have, on the other hand,

that

 (p; �; �) =

1

(p� 1)!

X

k;l2N

k+l�p+1

Æ(p; k; l)�

k�1

�

l�1

; (3.10)

for all �; � in N. Thus, for �xed p, the right hand sides of (3.9) and (3.10)

oinide whenever �; � 2 N, and sine these two right hand sides are both

polynomials in � and �, they must therefore oinide for all �; � in ℄0;1[. In

other words, (3.10) holds for all �; � in ℄0;1[, and inserting this in (3.8), we

get the desired formula. �

3.5 Lemma. Let �; � be positive numbers, and assume that either � or � is

an integer. Then

F (1� �; 1� �; 2; t

2

) �

1

X

j=0

(��)

j

t

2j

j!(j + 1)!

; whenever 0 � t < 1: (3.11)

Proof. We reall �rst, that

F (1� �; 1� �; 2; t

2

) =

1

X

j=0

1

j + 1

�

�� 1

j

��

� � 1

j

�

t

2j

; (t 2 [0; 1[):

If both � and � are integers, then

0 �

�

�� 1

j

�

�

�

j

j!

and 0 �

�

� � 1

j

�

�

�

j

j!

;

for all j in N

0

, and (3.11) follows immediately. By symmetry of (3.11) in �

and �, it is therefore suÆient to treat the ase where � is an integer and � is

not. In this ase, we have

F (1� �; 1� �; 2; t

2

) =

��1

X

j=0

1

j + 1

�

�� 1

j

��

� � 1

j

�

t

2j

:
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If � � �, we have for any j in f0; 1; : : : ; � � 1g, that 0 <

�

��1

j

�

�

�

j

j!

and

0 <

�

��1

j

�

�

�

j

j!

, and again (3.11) follows immediately.

Assume then that � < �, and let n be the integer for whih n � 1 < � < n.

Sine � is an integer, and � > �, we have that � � n. Forming now Taylor

expansion on the funtion f(s) = F (1� �; 1� �; 2; s); (s > 0), it follows that

F (1� �; 1� �; 2; s) =

n�1

X

j=0

1

j + 1

�

�� 1

j

��

� � 1

j

�

s

j

+ r

n

(s); (s > 0);

(3.12)

where r

n

(s) =

f

(n)

(�(s))

n!

s

n

, for some �(s) in ℄0; s[. It suÆes thus to show that

f

(n)

(�) � 0, for all � in [0; 1[, sine this will imply that for all s in [0; 1[,

F (1� �; 1� �; 2; s) �

n�1

X

j=0

1

j + 1

�

�� 1

j

��

� � 1

j

�

s

j

;

where, as above, 0 <

�

��1

j

�

�

�

j

j!

and 0 <

�

��1

j

�

�

�

j

j!

, for all j in f0; 1; : : : ; n�

1g.

To show that f

(n)

(�) � 0 for all � in [0; 1[, we note that by [HTF, Vol. 1, p. 58,

formula (7)℄,

f

(n)

(�) =

d

n

d�

n

F (1� �; 1� �; 2; �)

=

(1� �)

n

(1� �)

n

(n+ 1)!

F (n+ 1� �; n+ 1� �; n+ 2; �);

for all � in [0; 1[. Note here that

(1� �)

n

(1� �)

n

= (�� 1)(�� 2) � � � (�� n)(� � 1)(� � 2) � � � (� � n) � 0;

beause � � n and n� 1 < � < n. Moreover, by [HTF, Vol. 1, p. 105, formula

(2)℄, we have for all � in [0; 1[

F (n+ 1� �; n+ 1� �; n+ 2; �) = (1� �)

�+��n

F (�+ 1; � + 1; n+ 2; �)

= (1� �)

�+��n

1

X

j=0

(� + 1)

j

(� + 1)

j

j!(n+ 2)

j

�

j

;

and therefore F (n + 1 � �; n + 1 � �; n + 2; �) > 0 for all � in [0; 1[. Taken

together, it follows that f

(n)

(�) � 0 for all � in [0; 1[, as desired. �

For any  in ℄0;1[, we let �



denote the free Poisson distribution with parameter

, i.e., the probability measure on R, given by

�



= maxf1� ; 0gÆ

0

+

p

(x � a)(b� x)

2�x

� 1

[a;b℄

(x) � dx; (3.13)
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where a = (

p

� 1)

2

, b = (

p

+ 1)

2

and Æ

0

is the Dira measure at 0 (f. [HT,

De�nition 6.5℄).

3.6 Lemma. Let �; � be stritly positive real numbers, and assume that either

� or � is an integer. Then for any t in [0;

1

2

℄,

1 +

1

X

p=1

t

p

p!

X

k;l2N

k+l�p+1

Æ(p; k; l)�

k

�

l�1

� exp((�+ �)t

2

)

Z

1

0

exp(�tx) d�

�

�

(x);

Proof. Using that � log(1 � t) =

P

1

n=1

t

n

n

� t + t

2

, whenever 0 � t �

1

2

, we

note �rst that

(1� t)

�(�+�)

� exp((� + �)t) exp((� + �)t

2

); (t 2 [0;

1

2

℄):

Hene by Lemma 3.4 and Lemma 3.5,

1

X

p=1

t

p�1

(p� 1)!

X

k;l2N

k+l�p+1

Æ(p; k; l)�

k�1

�

l�1

� exp((� + �)t) exp((� + �)t

2

)

1

X

j=0

(��)

j

t

2j

j!(j + 1)!

(3.14)

Put  =

�

�

and s = �t. From [HT, Formula (6.27)℄, it follows then that

Z

1

0

x exp(sx) d�



(x) =  exp((+ 1)s)

1

X

j=0



j

s

2j

j!(j + 1)!

=  exp((�+ �)t)

1

X

j=0

(��)

j

t

2j

j!(j + 1)!

:

Hene (3.14) an be rewritten as

1

X

p=1

t

p�1

(p� 1)!

X

k;l2N

k+l�p+1

Æ(p; k; l)�

k�1

�

l�1

�

�

�

exp((� + �)t

2

)

Z

1

0

x exp(�tx) d�

�

�

(x):

(3.15)

Using then that

t

p

p!

=

R

t

0

u

p�1

(p�1)!

du, for all p in N, and that exp((� + �)u

2

) �

exp((� + �)t

2

), whenever 0 � u � t, we get by termwise integration of (3.15)
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(after replaing t by u), that

1

X

p=1

t

p

p!

X

k;l2N

k+l�p+1

Æ(p; k; l)�

k�1

�

l�1

�

�

�

exp((�+ �)t

2

)

Z

t

0

�

Z

1

0

x exp(�ux) d�

�

�

(x)

�

du

=

�

�

exp((�+ �)t

2

)

Z

1

0

x

exp(�tx) � 1

�x

d�

�

�

(x)

=

1

�

exp((�+ �)t

2

)

Z

1

0

(exp(�tx) � 1) d�

�

�

(x):

Hene, using that �

�

�

is a probability measure, it follows that

1 +

1

X

p=1

t

p

p!

X

k;l2N

k+l�p+1

Æ(p; k; l)�

k

�

l�1

� 1 + exp((�+ �)t

2

)

�

Z

1

0

exp(�tx) d�

�

�

(x) � 1

�

� exp((�+ �)t

2

)

Z

1

0

exp(�tx) d�

�

�

(x):

This onludes the proof. �

Proof of Theorem 3.3. Let a

1

; : : : ; a

r

, Y

1

; : : : ; Y

r

and S be as set out in Theo-

rem 3.3. By Proposition 2.5 and Proposition 2.7, we have then that

E

�

(S

�

S)

p

�

=

�

X

�2S

p

n

�2�(�̂)

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � �a

�

i

p

a

i

�(p)

�


 1

1

1

n

�

�

X

�2S

p

n

�2�(�̂)



�(�̂)

�

� 1

1

1

B(H

n

)

;

(3.16)

where �(�̂) was introdued in De�nition 2.6.

We assume �rst that  � 1. By Proposition 2.10(i) and (ii), we have that

�(�̂) � k(�̂) + 2�(�̂); (� 2 S

p

):

Hene,

E

�

(S

�

S)

p

�

�

�

X

�2S

p

�

n



�

�2�(�̂)



k(�̂)

�

� 1

1

1

B(H

n

)

:

Using now that 2�(�̂) = p+ 1� d(�̂) = p+ 1� k(�̂)� l(�̂), we �nd that

E

�

(S

�

S)

p

�

�

�

�



n

�

p+1

X

�2S

p

n

k(�̂)

�

n



�

l(�̂)

�

� 1

1

1

B(H

n

)

=

�

�



n

�

p

X

k;l2N

k+l�p+1

Æ(p; k; l)n

k

�

n



�

l�1

�

� 1

1

1

B(H

n

)

;
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and therefore, for 0 � t �

n

maxf;1g

=

n



, it follows by appliation of Proposi-

tion 3.2, that

E

�

exp(tS

�

S)

�

= 1

1

1

B(H

n

)

+

1

X

p=1

t

p

p!

E

�

(S

�

S)

p

�

�

�

1 +

1

X

p=1

1

p!

�

t

n

�

p

X

k;l2N

k+l�p+1

Æ(p; k; l)n

k

�

n



�

l�1

�

� 1

1

1

B(H

n

)

:

Using now Lemma 3.6, we get for 0 �

t

n

�

1

2

, that

E

�

exp(tS

�

S)

�

�

�

exp

�

(n+

n



)(

t

n

)

2

�

Z

1

0

exp

�

n



(

t

n

)x

�

d�



(x)

�

� 1

1

1

B(H

n

)

=

�

exp

�

(+ 1)

t

2

n

�

Z

1

0

exp(tx) d�



(x)

�

� 1

1

1

B(H

n

)

�

�

exp

�

(+ 1)

2

�

t

2

n

�

Z

1

0

exp(tx) d�



(x)

�

� 1

1

1

B(H

n

)

:

Sine supp(�



) �

�

0; (

p

+ 1)

2

�

, it follows that

E

�

exp(tS

�

S)

�

� exp

�

(+ 1)

2

�

t

2

n

�

exp

�

(

p

+ 1)

2

t

�

� 1

1

1

B(H

n

)

;

and this proves the theorem in the ase where  � 1.

Assume then that  < 1. In this ase we use (3.16) together with the fat that

�(�̂) � k(�̂) for all � in S

p

, (Proposition 2.10(ii)) to obtain

E

�

(S

�

S)

p

�

�

�

X

�2S

p

n

�2�(�̂)



k(�̂)

�

� 1

1

1

B(H

n

)

�

�

1

n

p+1

X

�2S

p

(n)

k(�̂)

n

l(�̂)

�

� 1

1

1

B(H

n

)

=

�

1

n

p

X

k;l2N

k+l�p+1

Æ(p; k; l)(n)

k

n

l�1

�

� 1

1

1

B(H

n

)

:

Hene for 0 � t <

n

maxf;1g

= n, we get by appliation of Proposition 3.2,

E

�

exp(tS

�

S)

�

� 1

1

1

B(H

n

)

+

1

X

p=1

t

p

p!

E

�

(S

�

S)

p

�

�

�

1 +

1

X

p=1

1

p!

�

t

n

�

p

X

k;l2N

k+l�p+1

Æ(p; k; l)(n)

k

n

l�1

�

� 1

1

1

B(H

n

)

:
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Hene by Lemma 3.6, we have for 0 �

t

n

�

1

2

,

E

�

exp(tS

�

S)

�

�

�

exp

�

(n+ n)(

t

n

)

2

�

Z

1

0

exp

�

n(

t

n

)x

�

d�



(x)

�

� 1

1

1

B(H

n

)

=

�

exp

�

(+ 1)

t

2

n

�

Z

1

0

exp(tx) d�



(x)

�

� 1

1

1

B(H

n

)

� exp

�

(+ 1)

2

�

t

2

n

)

�

exp

�

(

p

+ 1)

2

t

�

� 1

1

1

B(H

n

)

;

and this ompletes the proof. �

3.7 Remark. Assume that a

1

; : : : ; a

r

2 B(H;K), satisfying that

P

r

i=1

a

�

i

a

i

�

1

1

1

B(H)

and

P

r

i=1

a

i

a

�

i

� d1

1

1

B(H)

, for some positive onstants  and d. Consider

furthermore independent elements Y

1

; : : : ; Y

r

of GRM(n; n;

1

n

), and put S =

P

r

i=1

a

i


Y

i

. Applying then Theorem 3.3 to a

0

i

=

1

p

d

a

i

and 

0

=



d

, we get the

following extension of Theorem 3.3:

For any t in [0;

n

2

℄ \ [0;

n

2d

℄,

E

�

exp(tS

�

S)

�

� exp

�

(

p

+

p

d)

2

t+ (+ d)

2

�

t

2

n

�

� 1

1

1

B(H

n

)

: �

4 Asymptoti Upper Bound on the Spetrum of S

�

n

S

n

in the Exat

Case

Throughout this setion, we onsider elements a

1

; : : : ; a

r

of B(H;K) (for

Hilbert spaes H and K), satisfying that





r

X

i=1

a

�

i

a

i





� ; and





r

X

i=1

a

i

a

�

i





� 1; (4.1)

for some onstant  in ℄0;1[. Let A denote the unital C

�

-subalgebra of B(H)

generated by the family

�

a

�

i

a

j

�

�

i; j 2 f1; : : : ; rg

	

[ f1

1

1

B(H)

g. Furthermore, for

eah n in N, we onsider independent elements Y

(n)

1

; : : : ; Y

(n)

r

of GRM(n; n;

1

n

),

and we de�ne

S

n

=

r

X

i=1

a

i


 Y

(n)

i

: (4.2)

In this setion, we shall determine (almost surely) the asymptoti behavior (as

n!1) of the largest element of the spetrum of S

�

n

S

n

(i.e., the norm of S

�

n

S

n

),

under the assumption that A is an exat C

�

-algebra. We start by studying the

orresponding asymptoti behavior for the image of S

�

n

S

n

under ertain matrix

valued ompletely positive mappings. More preisely, let d be a �xed positive

integer, and let �: A ! M

d

(C ) be a unital ompletely positive mapping. For
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eah n in N, let id

n

: M

n

(C ) !M

n

(C ) denote the identity mapping onM

n

(C ).

We then de�ne

V

n

=

�

�
 id

n

�

(S

�

n

S

n

) =

r

X

i;j=1

�(a

�

i

a

j

)


�

Y

(n)

i

�

�

Y

(n)

j

; (n 2 N): (4.3)

Note that V

n

is a random variable taking values inM

d

(C )
M

n

(C ) 'M

dn

(C ).

As indiated above, our �rst objetive is to determine the asymptoti behavior

of the largest eigenvalue of V

n

. We emphasize, that this step does not require

that A be exat.

The following lemma is a version of Jensen's Inequality, whih we shall need

signi�antly in this setion and in Setion 8. The lemma has been proved in

muh more general settings by Brown and Kosaki (f. [BK℄) and by Petz (f.

[Pe℄). For the reader's onveniene, we inlude a short proof, handling the

speial ase needed here.

4.1 Lemma. (i) Let L be a Hilbert spae, and let P be a �nite dimensional

projetion in B(L). Let tr denote the normalized trae on B(P (L)). Then for

any selfadjoint element a of B(L), and any onvex funtion g : R ! R, we have

that

tr

�

g(PaP )

�

� tr

�

Pg(a)P

�

: (4.4)

(ii) Let B be a C

�

-algebra, let m be a positive integer and let 	: B !M

m

(C )

be a unital ompletely positive mapping. Then for any selfadjoint element a of

B and any onvex funtion g : R ! R, we have that

tr

m

�

g(	(a))

�

� tr

m

�

	(g(a))

�

:

Proof. (i) Note �rst that g is ontinuous (being onvex on the whole real

line). Let m denote the dimension of P (L), and hoose an orthonormal basis

(e

1

; : : : ; e

m

) for P (L) onsisting of eigenvetors for PaP . Let �

1

; : : : ; �

m

be

the orresponding eigenvalues for PaP , i.e.,

�

i

= hPaPe

i

; e

i

i = hae

i

; e

i

i; (i 2 f1; 2; : : : ;mg):

Then g(�

1

); : : : ; g(�

m

) are the eigenvalues of g(PaP ), and hene

tr

�

g(PaP )

�

=

m

X

i=1

g(�

i

) =

m

X

i=1

g(hae

i

; e

i

i): (4.5)

Sine the trae on B(P (L)) is independent of the hoie of orthonormal basis

for P (L), we have at the same time, that

tr

�

Pg(a)P ℄ =

m

X

i=1

hPg(a)Pe

i

; e

i

i =

m

X

i=1

hg(a)e

i

; e

i

i: (4.6)
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Comparing (4.5) and (4.6), we see that it suÆes to show that hg(a)e

i

; e

i

i �

g(hae

i

; e

i

i), for all i in f1; 2; : : : ;mg. But for eah i, this follows from the

lassial Jensen Inequality, applied to the distribution of a w.r.t. the state

h � e

i

; e

i

i, i.e., the probability measure �

i

supported on sp(a), and satisfying

that hf(a)e

i

; e

i

i =

R

sp(a)

f(t) d�

i

(t), for all funtions f in C(sp(a)). This

onludes the proof of (i).

(ii) By Stinespring's Theorem, we may hoose a Hilbert spae L, a �-

representation � : B ! B(L) of B on L, and an embedding � : C

m

! L of

C

m

into L, suh that

	(b) = P

K

�(b)P

K

; (b 2 B); (4.7)

whereK = �(C

m

), and P

K

is the orthogonal projetion of L ontoK. Moreover,

the equality (4.7) is modulo the natural identi�ations assoiated with �. Let

tr

K

denote the normalized trae on B(K). By appliation of (i), it follows then

that

tr

m

�

g(	(a))

�

= tr

K

�

g(P

K

�(a)P

K

)

�

� tr

K

�

P

K

g(�(a))P

K

�

= tr

K

�

P

K

�(g(a))P

K

�

= tr

m

�

	(g(a))

�

;

and this proves (ii). �

4.2 Lemma. Let V

n

, n 2 N, be as in (4.3), and let �

max

(V

n

) denote the largest

eigenvalue of V

n

(onsidered as an element of M

dn

(C )). Then for any � in

℄0;1[, we have that

1

X

n=1

P

�

�

max

(V

n

) � (

p

+ 1)

2

+ �

�

<1: (4.8)

Proof. The proof proeeds along the same lines as the proof of [HT, Lemma 7.3℄;

the main di�erene being that in the present situation, we have to rely on the

estimate obtained in Theorem 3.3. Consider �rst a �xed n in N. We �nd then

for any t in ℄0;1[, that

P

�

�

max

(V

n

) � (

p

+ 1)

2

+ �

�

= P

�

exp

�

t�

max

(V

n

)� t(

p

+ 1)

2

� t�

�

� 1

�

� E

�

exp

�

t�

max

(V

n

)� t(

p

+ 1)

2

� t�

��

= exp(�t(

p

+ 1)

2

� t�) � E

�

�

max

�

exp(tV

n

)

��

� exp(�t(

p

+ 1)

2

� t�) � E

�

Tr

dn

�

exp(tV

n

)

��

;

(4.9)

where the last inequality follows by noting, that sine exp(tV

n

) is a positive

dn � dn matrix, �

max

(exp(tV

n

)) � Tr

dn

(exp(tV

n

)). Note now, that sine the

mapping � 
 id

n

is unital, ompletely positive, and sine the funtion x 7!
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e

tx

: R ! R is onvex, it follows from Lemma 4.1(ii), that

tr

dn

�

exp(tV

n

)

�

= tr

dn

�

exp

�

t(�
 id

n

)(S

�

n

S

n

)

��

� tr

dn

��

�
 id

n

�

(exp(tS

�

n

S

n

))

�

= tr

d


 tr

n

��

�
 id

n

�

(exp(tS

�

n

S

n

))

�

= �
 tr

n

�

exp(tS

�

n

S

n

)

�

;

(4.10)

where � is the state tr

d

Æ � on A. Note here, that by De�nition 3.1 and

Theorem 3.3,

E

�

�
 tr

n

�

exp(tS

�

n

S

n

)

��

= �
 tr

n

�

E

�

exp(tS

�

n

S

n

)

��

� exp

�

t(

p

+ 1)

2

+

t

2

n

(+ 1)

2

�

;

(4.11)

for all t in ℄0;

n

2

℄.

Combining now (4.9)-(4.11), we get that for all t in ℄0;

n

2

℄,

P

�

�

max

(V

n

) �(

p

+ 1)

2

+ �

�

� dn � exp(�t(

p

+ 1)

2

� t�) � exp

�

t(

p

+ 1)

2

+

t

2

n

(+ 1)

2

�

= dn � exp

�

t(

t

n

(+ 1)

2

� �)

�

;

Now hoose t = t

n

=

n�

2(+1)

2

, and note that t

n

2 ℄0;

n

2

℄, as long as � � 1.

Clearly it suÆes to prove the lemma for suh �, so we assume that � � 1. It

follows then that

P

�

�

max

(V

n

) � (

p

+1)

2

+�

�

� dn �exp

�

t

n

(

t

n

n

(+1)

2

��)

�

= dn �exp

�

�n�

2

4(+1)

2

�

:

Sine this estimate holds for all n in N, it follows immediately that (4.8) holds.

�

4.3 Proposition. Let V

n

, n 2 N, be as in (4.3). We then have

lim sup

n!1

�

max

(V

n

) �

�

p

+ 1

�

2

; almost surely:

Proof. It suÆes to show, that for any � from ℄0;1[,

P

�

lim sup

n!1

�

max

(V

n

) � (

p

+ 1)

2

+ �

�

= 1;

and this will follow, if we show that

P

�

�

max

(V

n

) � (

p

+ 1)

2

+ �; for all but �nitely many n

�

= 1;

for all � in ℄0;1[. But this follows from the Borel-Cantelli Lemma (f. [Bre,

Lemma 3.14℄) together with Lemma 4.2. �

Doumenta Mathematia 4 (1999) 341{450



Random Matries and K-Theory : : : 383

The next step is to replae V

n

in Proposition 4.3 by S

�

n

S

n

itself. This is where we

need to assume that A is an exat C

�

-algebra. The key point in this step is the

important result of E. Kirhberg that exatness implies nulear embeddability

(f. [Ki2, Theorem 4.1℄ and [Was, Theorem 7.3℄).

Let B be a unital C

�

-algebra. Reall then that an operator system in B is a

subspae E of B, suh that 1

1

1

B

2 E and x

�

2 E for all x in E.

4.4 Proposition. Let B be a unital exat C

�

-algebra, and let E be a �nite

dimensional operator system in B. Then for any � in ℄0;1[, there exist d in N

and a unital ompletely positive mapping �: B !M

d

(C ), suh that





�

�
 id

n

�

(x)





� (1� �)kxk;

for all n in N and all x in M

n

(E).

Proof. Clearly we may assume that B is a unital C

�

-subalgebra of B(L) for

some Hilbert spae L. Let N denote the dimension of E. Then by Auerbah's

Lemma (f. [LT, Proposition 1..3℄), we may hoose linear bases e

1

; : : : ; e

N

of

E and e

�

1

; : : : ; e

�

N

of the dual spae E

�

, suh that

ke

i

k = ke

�

i

k = 1; and e

�

i

(e

j

) = Æ

i;j

; (i; j 2 f1; 2; : : : ; Ng): (4.12)

Now sine B is exat, and hene nulear embeddable, there exist d in N, and

unital ompletely positive mappings �: B ! M

d

(C ) and 	: M

d

(C ) ! B(L),

suh that

k	(�(e

i

))� e

i

k �

�

N

; (i 2 f1; 2; : : : ; Ng); (4.13)

(f. [Was, p. 60℄). We show that this � has the property set out in the propo-

sition. For this, it suÆes to show that





(	 Æ�� �

B

)

jE





b

� �; (4.14)

where �

B

: B ! B(L) is the embedding of B into B(L). Indeed, knowing the

validity of (4.14), we have for n in N and x in M

n

(E), that

kxk �





�

(	 Æ�)
 id

n

�

(x)� x





+





�

(	 Æ�)
 id

n

�

(x)





� �kxk+





�

(	 Æ�)
 id

n

�

(x)





;

and hene that

(1� �)kxk �





�

(	 Æ�)
 id

n

�

(x)





� k(�
 id

n

)(x)k;

where the last inequality is due to the fat that 	, being unital ompletely

positive, is a omplete ontration.

To verify (4.14) note �rst, that for x in E, we have by (4.12),

x =

N

X

i=1

e

�

i

(x)e

i

;
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and hene

	 Æ�(x)� x =

N

X

i=1

e

�

i

(x)

�

	 Æ�(e

i

)� e

i

�

=

N

X

i=1

e

�

i

(x)f

i

;

where f

i

= 	 Æ �(e

i

) � e

i

. Note that by (4.13), kf

i

k �

�

N

, for all i in

f1; 2; : : : ; Ng.

Consider now n in N and x = (x

rs

)

1�r;s�n

in M

n

(E). We then have

�

(	 Æ�)
 id

n

�

(x)� x =

�

(	 Æ�)(x

rs

)� x

rs

�

1�r;s�n

=

h

P

N

i=1

e

�

i

(x

rs

)f

i

i

1�r;s�n

=

N

X

i=1

�

[e

�

i

(x

rs

)℄

1�r;s�n

� diag

n

(f

i

; : : : ; f

i

)

�

;

(4.15)

where diag

n

(f

i

; : : : ; f

i

) is the n�n diagonal matrix with f

i

in all the diagonal

positions. Note here that by (4.12), ke

�

i

k

b

= ke

�

i

k = 1, for all i (f. [Pa,

Proposition 3.7℄). Consequently,





[e

�

i

(x

rs

)℄

1�r;s�n





� ke

�

i

k

b

� kxk = kxk; (i 2 f1; 2; : : : ; Ng);

and using this in (4.15), we get that





�

(	 Æ�)
 id

n

�

(x)� x





�

N

X

i=1

kxk � kf

i

k �

N

X

i=1

kxk

�

N

= �kxk;

whih proves (4.14). �

4.5 Theorem. Let a

1

; : : : ; a

r

be elements of B(H;K), suh that

k

P

r

i=1

a

�

i

a

i

k � , and k

P

r

i=1

a

i

a

�

i

k � 1, for some onstant  in ℄0;1[.

Assume, in addition, that the C

�

-subalgebra A of B(H), generated by

fa

�

i

a

j

j i; j 2 f1; 2; : : : ; rgg [ f1

1

1

B(H)

g, is exat. Consider furthermore, for

eah n in N, independent elements Y

(n)

1

; : : : ; Y

(n)

r

of GRM(n; n;

1

n

), and put

S

n

=

P

r

i=1

a

i


 Y

(n)

i

. We then have

lim sup

n!1

max

�

sp(S

�

n

S

n

)

�

�

�

p

+ 1

�

2

; almost surely:

Proof. It suÆes to show, that for any � from ℄0;1[, the set

T

�

=

n

! 2 


�

�

�

lim sup

n!1

max

�

sp(S

n

(!)

�

S

n

(!))

�

�

1

1��

(

p

+ 1)

2

o

;

has probability 1. So let � from ℄0;1[ be given, and put

E = span

�

f1

1

1

A

g [

�

a

�

i

a

j

�

�

i; j 2 f1; 2; : : : ; rg

	�

:
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Note that x

�

2 E for all x in E, and that 1

1

1

A

2 E. Hene E is a �nite di-

mensional operator system in A. Sine A is exat, it follows thus from Propo-

sition 4.4, that we may hoose d in N and a ompletely positive mapping

�: A !M

d

(C ), suh that





�

�
 id

n

�

(x)





� (1� �)kxk; (n 2 N; x 2M

n

(E)): (4.16)

Now put

V

n

=

�

�
 id

n

�

(S

�

n

S

n

); (n 2 N);

and de�ne furthermore

V =

n

! 2 


�

�

�

lim sup

n!1

kV

n

(!)k � (

p

+ 1)

2

o

:

By Proposition 4.3, P (V) = 1, and hene it suÆes to show that T

�

� V . But

if ! 2 V , it follows from (4.16) that

lim sup

n!1

kS

n

(!)

�

S

n

(!)k � (1� �)

�1

lim sup

n!1

kV

n

(!)k � (1� �)

�1

(

p

+ 1)

2

;

whih shows that ! 2 T

�

. This onludes the proof. �

4.6 Corollary. Let a

1

; : : : ; a

r

be elements of an exat C

�

-algebra A, and

let, for eah n in N, Y

(n)

1

; : : : ; Y

(n)

r

be independent elements of GRM(n; n;

1

n

).

Then

lim sup

n!1





r

X

i=1

a

i


 Y

(n)

i





�





r

X

i=1

a

�

i

a

i





1

2

+





r

X

i=1

a

i

a

�

i





1

2

; almost surely:

Proof. We may assume that not all a

i

are zero. Put  = k

P

r

i=1

a

�

i

a

i

k > 0 and

Æ = k

P

r

i=1

a

i

a

�

i

k > 0. We may assume that A � B(H) for some Hilbert spae

H. Then the unital C

�

-algebra

~

A = C

�

(A;1

1

1

B(H)

) is also exat, and hene so is

every C

�

-subalgebra of

~

A (f. [Ki1℄ and [Was, 2.5.2℄). Therefore Corollary 4.6

follows by applying Theorem 4.5 to a

0

i

=

1

p

Æ

a

i

, i = 1; : : : ; r, and  =



Æ

. �

Regarding the orollary above, onsider arbitrary elements a

1

; : : : ; a

r

of an

arbitrary C

�

-algebra A, and let fy

1

; : : : ; y

r

g be a irular (or semi-irular)

system in some C

�

-probability spae (B;  ) (f. [Vo2℄), and normalized so that

 (y

�

i

y

i

) = 1, i = 1; 2; : : : ; r. In [HP, Proof of Proposition 4.8℄, G. Pisier and

the �rst named author showed, that in this setting, the following inequality

holds:





r

X

i=1

a

i


 y

i





� 2max

n





r

X

i=1

a

�

i

a

i





1

2

;





r

X

i=1

a

i

a

�

i





1

2

o

: (4.17)

In [HP, Proof of Proposition 4.8℄, the fator 2 on the right hand side of (4.17)

is missing, but this is due to a di�erent hoie of normalization of semi-irular
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and irular families. By appliation of [Haa, Setion 1℄, it is not hard to

strengthen (4.17) to the inequality





r

X

i=1

a

i


 y

i





�





r

X

i=1

a

�

i

a

i





1

2

+





r

X

i=1

a

i

a

�

i





1

2

; (4.18)

both for semi-irular and irular systems. Sine independent elements

Y

(n)

1

; : : : ; Y

(n)

r

of GRM(n; n;

1

n

) an be onsidered as a random matrix model

for the irular system fy

1

; : : : ; y

r

g, in the sense of [Vo1, Theorem 2.2℄, we

should thus onsider Corollary 4.6 as a random matrix version of (4.18). How-

ever, the random matrix version holds only under the assumption that the

C

�

-algebra A be exat. In fat, we shall spend the remaining part of this se-

tion, showing that the assumption in Theorem 4.5 that the C

�

-algebra A be

exat, an not be omitted. We start with two lemmas, the �rst of whih is a

slightly strengthened version of [HT, Theorem 7.4℄ (whih, in turn, is a speial

ase of a theorem of Wahter (f. [Wa℄)).

4.7 Lemma. Let  be a positive number, and let (m

n

) be a sequene of positive

integers, suh that

m

n

n

!  as n!1. Let furthermore (Y

n

) be a sequene of

random matries, suh that for eah n in N, Y

n

2 GRM(m

n

; n;

1

n

). Then for

any ontinuous funtion f : [0;1[! C , we have that

lim

n!1

tr

n

�

f(Y

�

n

Y

n

)

�

=

Z

b

0

f(x) d�



(x); almost surely; (4.19)

where b = (

p

+ 1)

2

and � is the measure introdued in (3.13).

Proof. By splitting f in its real and imaginary parts, it is lear, that we may

assume that f is a real valued ontinuous funtion on [0;1[. We note next,

that it follows from [HT, Theorem 7.4℄ and the de�nition of weak onvergene

(f. [HT, De�nition 2.2℄), that (4.19) holds for all ontinuous bounded funtions

f : [0;1[ ! R. Thus, our objetive is to pass from bounded to unbounded

ontinuous funtions, and the key to this, is the fat (f. [HT, Theorem 7.1℄),

that

lim

n!1

kY

�

n

Y

n

k =

�

p

+ 1

�

2

; almost surely: (4.20)

Indeed, it follows from (4.20), that (for example)

P

�

kY

�

n

Y

n

k � (

p

+ 1)

2

+ 1; for all but �nitely many n

�

= 1;

and hene, given any � in ℄0;1[, we may hoose N in N, suh that

P (F

N

) � 1� �;

where

F

N

=

�

! 2 


�

�

kY

n

(!)

�

Y

n

(!)k � (

p

+ 1)

2

+ 1; whenever n � N

	

:
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Now, given a ontinuous funtion f : [0;1[ ! R, let f

1

: [0;1[ ! R be an

arbitrary ontinuous funtion, satisfying that f

1

= f on [0; (

p

+1)

2

+1℄, and

that supp(f) is ompat. Then for any ! in F

N

, we have that

f

1

(Y

n

(!)

�

Y

n

(!)) = f(Y

n

(!)

�

Y

n

(!)); whenever n � N;

and hene, sine f

1

is bounded,

lim

n!1

tr

n

�

f(Y

n

(!)

�

Y

n

(!))

�

= lim

n!1

tr

n

�

f

1

(Y

n

(!)

�

Y

n

(!))

�

=

Z

b

a

f

1

(x) d�



(x)

=

Z

b

a

f(x) d�



(x):

It follows thus, that

P

�

lim

n!1

tr

n

�

f(Y

�

n

Y

n

)

�

=

R

b

a

f(x) d�



(x)

�

� P (F

N

) � 1� �;

and sine this holds for any � in ℄0;1[, we obtain the desired onlusion. �

Next, we shall study the polar deomposition of Gaussian random matries.

Let n be a positive integer and let Y be an element of GRM(n; n;

1

n

), de�ned

on (
;F ; P ). Furthermore, let U

n

denote the unitary group of M

n

(C ).

By a measurable unitary sign for Y , we mean a random matrix U : 
 ! U

n

,

suh that for almost all ! in 
, the polar-deomposition of Y (!) is given by:

Y (!) = U(!)jY (!)j;

where, as usual, jY (!)j = [Y (!)

�

Y (!)℄

1

2

. To see that suh measurable unitary

signs do exist, we note �rst that by [HT, Theorem 5.2℄, Y (!) is invertible for

almost all !. Thus, for example the random matrix U : 
! U

n

given by

U(!) =

(

Y (!)

�

Y (!)

�

Y (!)

�

�

1

2

; if Y (!) is invertible;

1

1

1

n

; otherwise;

is a measurable unitary sign for Y .

4.8 Lemma. For eah n in N, let Y

(n)

1

; : : : ; Y

(n)

r

be (not neessarily indepen-

dent) random matries in GRM(n; n;

1

n

), and let U

(n)

1

; : : : ; U

(n)

r

be measurable

unitary signs for Y

(n)

1

; : : : ; Y

(n)

r

, respetively. Furthermore, let U

(n)

1

; : : : ; U

(n)

r

,

denote the omplex onjugated matries of U

(n)

1

; : : : ; U

(n)

r

. We then have

lim inf

n!1





r

X

i=1

U

(n)

i


 Y

(n)

i





�

8

3�

� r; almost surely:
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Proof. Let (e

1

; : : : ; e

n

) be the usual orthonormal basis for C

n

, and onsider

then the unit vetor � =

1

p

n

P

n

i=1

e

i


 e

i

in C

n


 C

n

. Note then that for any

A = (a

jk

) and B = (b

jk

) in M

n

(C ), we have that




(A
B)�; �

�

=

1

n

n

X

j;k=1




(A
B)(e

j


 e

j

); e

k


 e

k

�

=

1

n

n

X

j;k=1

hAe

j

; e

k

i � hBe

j

; e

k

i

=

1

n

n

X

j;k=1

a

kj

b

kj

= tr

n

(AB

t

) = tr

n

(A

t

B):

It follows thus, that





r

X

i=1

U

(n)

i


 Y

(n)

i





�

�

�

�

D�

r

X

i=1

U

(n)

i


 Y

(n)

i

�

�; �

E

�

�

�

=

�

�

�

r

X

i=1

tr

n

��

U

(n)

i

�

�

Y

(n)

i

�

�

�

�

=

r

X

i=1

tr

n

�

jY

(n)

i

j

�

;

(4.21)

where the last equation holds almost surely. By Lemma 4.7, we have for all i

in f1; : : : ; rg, that

lim

n!1

tr

n

�

jY

(n)

i

j

�

=

Z

4

0

p

x d�

1

(x); almost surely;

and ombining this with (4.21), it follows that

lim inf

n!1





r

X

i=1

U

(n)

i


 Y

(n)

i





� r

Z

4

0

p

x d�

1

(x); almost surely:

We note �nally that

Z

4

0

p

x d�

1

(x) =

Z

4

0

p

x �

p

x(4�x)

2�x

dx =

1

2�

Z

4

0

p

4� x dx =

8

3�

;

and this onludes the proof. �

We are now ready to give an example where the onlusion of Theorem 4.5 fails,

due to lak of exatness of the C

�

-algebra A. Consider a �xed positive integer

r, greater than or equal to 2, and let F

r

denote the free group on r generators.

Let g

1

; : : : ; g

r

denote the generators of F

r

, and let C

�

(F

r

) denote the full C

�

-

algebra assoiated to F

r

. Reall that there is a anonial unitary representation

u

F

r

: F

r

! C

�

(F

r

), and that the pair (C

�

(F

r

); u

F

r

) is haraterized (up to �-

isomorphism) by the universal property, that given any unital C

�

-algebra B
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and any unitary representation u : F

r

! B, there exists a unique unital �-

homomorphism �

u

: C

�

(F

r

)! B, suh that the following diagram ommutes:

F

r

u

F

r

//

u

��

C

�

(F

r

)

�

u

{{ww
w
w
w
w
w
w
w

B

It is well-known (f. [Was, Corollary 3.7℄) that C

�

(F

r

) is not exat. We let

u

1

; : : : ; u

r

be the anonial unitaries in C

�

(F

r

) assoiated to g

1

; : : : ; g

r

respe-

tively, i.e., u

i

= u

F

r

(g

i

), i = 1; : : : ; r. We then de�ne

a

i

=

1

p

r

u

i

; (i 2 f1; : : : ; rg): (4.22)

Then learly,

r

X

i=1

a

�

i

a

i

=

r

X

i=1

a

i

a

�

i

= 1

1

1

C

�

(F

r

)

: (4.23)

Consider now, in addition, for eah n in N, independent elements Y

(n)

1

; : : : ; Y

(n)

r

of GRM(n; n;

1

n

), and de�ne

S

n

=

r

X

i=1

a

i


 Y

(n)

i

; (n 2 N): (4.24)

We then have the following

4.9 Proposition. With a

1

; : : : ; a

r

and S

n

, n 2 N, as introdued in (4.22) and

(4.24), we have that

(i) lim inf

n!1

kS

�

n

S

n

k �

�

8

3�

�

2

� r, almost surely.

(ii) The onlusion of Theorem 4.5 does not hold for these a

1

; : : : ; a

r

, whenever

r � 6.

In partiular, the assumption in Theorem 4.5, that A be exat, an not, in

general, be omitted.

Proof. (i) For eah positive integer n, hoose measurable unitary signs

U

(n)

1

; : : : ; U

(n)

r

for Y

(n)

1

; : : : ; Y

(n)

r

respetively, and let U

(n)

1

; : : : ; U

(n)

r

denote

the omplex onjugated matries of U

(n)

1

; : : : ; U

(n)

r

. Sine F

r

is the group free

produt of r opies of Z, it follows that for eah ! in 
 and eah n in N, there

exists a unitary representation u

(n)

!

: F

r

!M

n

(C ), suh that

u

(n)

!

(g

i

) = U

(n)

i

(!); (i 2 f1; : : : ; rg):

By the universial property of C

�

(F

r

) it follows then, that for eah ! in 
 and

eah n in N, we may hoose a �-homomorphism �

(n)

!

: C

�

(F

r

) !M

n

(C ), suh

that

�

(n)

!

(u

i

) = U

(n)

i

(!); (i 2 f1; : : : ; rg):
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For eah ! in 
 and eah n in N, note now that





r

X

i=1

u

i


 Y

(n)

i

(!)





�





�

�

(n)

!


 id

n

�

�

r

X

i=1

u

i


 Y

(n)

i

(!)

�





=





r

X

i=1

U

(n)

i

(!)
 Y

(n)

i

(!)





:

Applying then Lemma 4.8, it follows that

lim inf

n!1





r

X

i=1

u

i


 Y

(n)

i





�

8

3�

� r; almost surely;

and hene that

lim inf

n!1





r

X

i=1

a

i


 Y

(n)

i





�

8

3�

�

p

r; almost surely:

Sine kS

�

n

S

n

k = kS

n

k

2

, we get the desired formula.

(ii) By (4.23), a

1

; : : : ; a

r

introdued in (4.22) satisfy ondition (4.1) in the ase

 = 1. Thus, if the onlusion of Theorem 4.5 were to hold for these a

1

; : : : ; a

r

,

it would mean that

lim sup

n!1





r

X

i=1

a

i


 Y

(n)

i





� 2; almost surely:

However, Proposition 4.9 shows that

lim inf

n!1





r

X

i=1

a

i


 Y

(n)

i





�

�

8

3�

�

�

p

r; almost surely;

and thus the onlusion of Theorem 4.5 breaks down, for  = 1, whenever

r > (

3�

4

)

2

� 5:55, i.e., for r � 6. �

5 A New Combinatorial Expression for E

�

(S

�

S)

p

�

Throughout this setion, we onsider elements a

1

; : : : ; a

r

of B(H;K), where

H and K are Hilbert spaes. In Setion 2 we proved that if Y

1

; : : : ; Y

r

are

independent random matries in GRM(n; n;

1

n

), and we put S =

P

r

i=1

a

i


 Y

i

,

then

E

�

(S

�

S)

p

�

=

�

X

�2S

p

n

�2�(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

�


 1

1

1

n

: (5.1)

In this setion, we shall assume that a

1

; : : : ; a

r

satisfy the ondition

r

X

i=1

a

�

i

a

i

= 1

1

1

B(H)

; and

r

X

i=1

a

i

a

�

i

= 1

1

1

B(K)

; (5.2)
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for some number  in ℄0;1[. Under this assumption, and by appliation of

the method of \redutions of permutations", introdued in Setion 1, we show

that E

�

(S

�

S)

p

�

an be expressed as a onstant plus a linear ombination of the

sums:

X

�2S

irr

q

n

�2�(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

q

a

i

�(q)

�

; (q = 2; : : : ; p);

where S

irr

q

, as in Setion 1, denotes the set of permutations � in S

q

for whih

�̂ is irreduible in the sense of De�nition 1.16.

5.1 Lemma. Let a

1

; : : : ; a

r

be elements of B(H;K), and assume that (5.2)

holds. Let p be a positive integer, greater than or equal to 2, let � be a

permutation in S

p

n S

irr

p

, and let �

0

be the permutation in S

p�1

obtained by

anellation of a pair (e; e+ 1) for �̂ (f. De�nition 1.18). We then have

(i) If e is odd, then k(�̂

0

) = k(�̂)� 1, and

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

=  �

�

X

1�i

1

;::: ;i

p�1

�r

a

�

i

1

a

i

�

0

(1)

� � � a

�

i

p�1

a

i

�

0

(p�1)

�

:

(5.3)

(ii) If e is even, then k(�̂

0

) = k(�̂), and

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

=

X

1�i

1

;::: ;i

p�1

�r

a

�

i

1

a

i

�

0

(1)

� � � a

�

i

p�1

a

i

�

0

(p�1)

:

(5.4)

Proof. (i) Assume that e is odd. Then k(�̂

0

) = k(�̂)� 1 by Proposition 1.22.

Moreover, (e; e+ 1) is of the form (2j � 1; 2j) for some j in f1; 2; : : : ; pg, and

therefore �(j) = j (f. De�nition 1.15). Hene, the index i

j

our only at the

2j�1'th and the 2j'th fator in the produt a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

, and therefore

the sum on the left hand side of (5.3) is equal to

X

1�i

1

;::: ;i

j�1

;i

j+1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � �a

i

�(j�1)

�

r

X

i

j

=1

a

�

i

j

a

i

j

�

a

�

i

j+1

� � � a

�

i

p

a

i

�(p)

;

whih by (5.2) is equal to

 �

�

X

1�i

1

;::: ;i

j�1

;i

j+1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

i

�(j�1)

a

�

i

j+1

� � � a

�

i

p

a

i

�(p)

�

: (5.5)

Note here, that if we relabel the indies i

j+1

; : : : ; i

p

by i

j

; : : : ; i

p�1

, then it

follows from Remark 1.19(a), that (5.5) is equal to

 �

�

X

1�i

1

;::: ;i

p�1

�r

a

�

i

1

a

i

�

0

(1)

� � � a

�

i

p�1

a

i

�

0

(p�1)

�

;
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and this proves (5.3).

(ii) Assume that e is even. Then k(�̂

0

) = k(�̂) by Proposition 1.22, and

(e; e + 1) = (2j; 2j + 1), for some j in f1; 2; : : : ; p � 1g, so that �(j) = j + 1

(.f. De�nition 1.15). Hene, the left hand side of (5.4) is equal to

X

1�i

1

;::: ;i

j

;i

j+2

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

j

�

r

X

i

j+1

=1

a

i

j+1

a

�

i

j+1

�

a

i

�(j+1)

� � � a

�

i

p

a

i

�(p)

:

(5.6)

Here,

P

r

i

j+1

=1

a

i

j+1

a

�

i

j+1

= 1

1

1

B(K)

, by (5.2), and proeeding then as in the

proof of (i), we obtain by Remark 1.19(b) (after relabeling i

j+2

; : : : ; i

p

by

i

j+1

; : : : ; i

p�1

), that (5.6) is equal to

X

1�i

1

;::: ;i

p�1

�r

a

�

i

1

a

i

�

0

(1)

� � � a

�

i

p�1

a

i

�

0

(p�1)

:

This proves (5.4) �

Reall that for p in N, S

n

p

denotes the set of permutations � in S

p

, for whih

the permutation �̂ is non-rossing in the sense of De�nition 1.14.

5.2 Lemma. Let a

1

; : : : ; a

r

be elements of B(H;K), suh that (5.2) holds, let

p be a positive integer, and let � be a permutation in S

n

p

. Then

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

= 

k(�̂)

1

1

1

B(H)

; (5.7)

and

X

1�i

1

;::: ;i

p

�r

a

i

1

a

�

i

�(1)

� � � a

i

p

a

�

i

�(p)

= 

l(�̂)�1

1

1

1

B(K)

: (5.8)

Proof. We start by proving (5.7); proeeding by indution on p. The ase

p = 1 is lear from (5.2). Assume now that p � 2, and that (5.7) holds for p�1

instead of p, and all permutations in S

n

p�1

. Consider then a permutation �

from S

n

p

, and reall from Lemma 1.17 that �̂ has a pair of neighbors (e; e+1).

Let �

0

be the permutation in S

p�1

obtained by anellation of this pair. Then

by Lemma 1.20, �

0

2 S

n

p�1

, and hene by the indution hypothesis,

X

1�i

1

;::: ;i

p�1

�r

a

�

i

1

a

i

�

0

(1)

� � � a

�

i

p�1

a

i

�

0

(p�1)

= 

k(�̂

0

)

1

1

1

B(H)

: (5.9)

But by Lemma 5.1, (5.9) implies (5.7), both when e is odd, and when e is even.

This ompletes the proof of (5.7).

To prove (5.8), we put b

i

=

1

p



a

�

i

, i = 1; 2; � � � ; r. Then

r

X

i=1

b

�

i

b

i

= 

�1

1

1

1

B(K)

; and

r

X

i=1

b

i

b

�

i

= 1

1

1

B(H)

:
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Applying then (5.7), with  replaed by 

�1

, it follows that

X

1�i

1

;::: ;i

p

�r

b

�

i

1

b

i

�(1)

� � � b

�

i

p

b

i

�(p)

= 

�k(�̂)

1

1

1

B(K)

;

i.e., that

X

1�i

1

;::: ;i

p

�r

a

i

1

a

�

i

�(1)

� � � a

i

p

a

�

i

�(p)

= 

p�k(�̂)

1

1

1

B(K)

:

Reall �nally, that sine �̂ is non-rossing, k(�̂) + l(�̂) = p + 1 (f. Corol-

lary 1.24), and hene it follows that (5.8) holds. �

As in Setion 3, for any  in ℄0;1[, �



denotes the probability measure on

[0;1[, given by

�



= maxf1� ; 0gÆ

0

+

p

(x � a)(b� x)

2�x

� 1

[a;b℄

(x) � dx;

where a = (

p

 � 1)

2

, b = (

p

 + 1)

2

and Æ

0

is the Dira measure at 0. Reall

from [OP℄ or [HT, Remark 6.8℄, that the moments of �



are given by

Z

1

0

x

p

d�



(x) =

1

p

p

X

j=1

�

p

j

��

p

j�1

�



j

; (p 2 N): (5.10)

5.3 Lemma. For any positive integer p, we have

X

�2S

n

p



k(�̂)

=

1

p

p

X

j=1

�

p

j

��

p

j�1

�



j

; (5.11)

and

X

�2S

n

p



l(�̂)�1

=

1

p

p

X

j=1

�

p

j

��

p

j�1

�



j�1

: (5.12)

Proof. To prove (5.11), reall from Corollary 1.12, that for B in GRM(m;n; 1),

we have that

E ÆTr

n

�

(B

�

B)

p

�

=

X

�2S

p

m

k(�̂)

n

l(�̂)

:

Hene, for Y in GRM(m;n;

1

n

),

E Æ tr

n

�

(Y

�

Y )

p

�

= n

�p�1

X

�2S

p

m

k(�̂)

n

l(�̂)

=

X

�2S

p

n

�2�(�̂)

�

m

n

�

k(�̂)

; (5.13)

where we have used that �(�̂) =

1

2

(p+1�k(�̂)�l(�̂)). Consider now a sequene

(m

n

) of positive integers, suh that

m

n

n

!  as n ! 1, and for eah n in N,

let Y

n

be an element of GRM(m

n

; n;

1

n

). It follows then from (5.13), that

lim

n!1

E Æ tr

n

�

(Y

�

Y )

p

�

=

X

�2S

p

�(�̂)=0



k(�̂)

=

X

�2S

n

p



k(�̂)

; (5.14)
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where the last equality follows from Corollary 1.24. On the other hand, it

follows from [HT, Theorem 6.7(ii)℄ and (5.10), that

lim

n!1

E Æ tr

n

�

(Y

�

Y )

p

�

=

Z

1

0

x

p

d�



(x) =

1

p

p

X

j=1

�

p

j

��

p

j�1

�



j

: (5.15)

Combining (5.14) and (5.15), we obtain (5.11).

To prove (5.12), we use, again, that k(�̂) + l(�̂) = p + 1 for all � in S

n

p

. It

follows thus, that

X

�2S

n

p



l(�̂)�1

= 

p

X

�2S

n

p



�k(�̂)

: (5.16)

But by (5.11) (with  replaed by 

�1

), the right hand side of (5.16) is equal

to

1

p

p

X

j=1

�

p

j

��

p

j�1

�



p�j

: (5.17)

Substituting �nally j with p+ 1� j in (5.17), we obtain (5.12). �

5.4 Corollary. Let a

1

; : : : ; a

r

be elements of B(H;K), suh that (5.2) holds.

Then for any p in N, we have that

(i)

X

�2S

n

p

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

�

=

h

1

p

p

X

j=1

�

p

j

��

p

j�1

�



j

i

� 1

1

1

B(H)

;

and

(ii)

X

�2S

n

p

�

X

1�i

1

;::: ;i

p

�r

a

i

1

a

�

i

�(1)

� � �a

i

p

a

�

i

�(p)

�

=

h

1

p

p

X

j=1

�

p

j

��

p

j�1

�



j�1

i

� 1

1

1

B(K)

:

Proof. Combine Lemma 5.2 and Lemma 5.3. �

5.5 Definition. (a) A subset I of Z is alled an interval of integers, if it is

the form

I = f�; �+ 1; : : : ; �g;

for some �; � in Z, suh that � � �.

(b) Let p be a positive integer, let � be a permutation in S

p

, and let I be

an interval of integers, suh that I � f1; 2; : : : ; 2pg. We say then that the

restrition �̂

jI

of �̂ to I is non-rossing, if �̂(I) = I , and �̂ has no rossing

(a; b; ; d) where a; b; ; d 2 I . In this ase, we refer to I as a non-rossing

interval of integers for �̂. �
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5.6 Remark. Let p be a positive integer, let � be a permutation in S

p

and let

I be an interval of integers, suh that I � f1; 2; : : : ; 2pg and �̂(I) = I . Sine

�̂

2

= id and �̂ has no �xed points, it follows then, that ard(I) is an even

number. Put t =

1

2

ard(I), and onsider the unique order preserving bijetion

' : f1; 2; : : : ; 2tg ! I of f1; 2; : : : ; 2tg onto I (i.e., '(j) = min(I) � 1 + j, for

all j in f1; 2; : : : ; 2tg). It is lear then, that the mapping '

�1

Æ (�̂

jI

) Æ ' is a

permutation of f1; 2; : : : ; 2tg, and that we may hoose a (unique) permutation

�

1

in S

t

, suh that

�̂

1

= '

�1

Æ (�̂

jI

) Æ '; (5.18)

(f. Remark 1.7(a)). It is lear too, that the restrition �̂

jI

of �̂ to I is non-

rossing in the sense of De�nition 5.5, if and only if �̂

1

is a non-rossing per-

mutation in the usual sense (f. De�nition 1.14). �

5.7 Lemma. Let p be a positive integer, and let � be a permutation in S

p

.

(i) If I is an interval of integers suh that I � f1; 2; : : : ; 2pg and �̂

jI

is non-

rossing, then there exists e in I , suh that e+ 1 2 I and �̂(e) = e+ 1.

(ii) If � 2 S

irr

p

, then �̂ has no non-rossing interval of integers.

Proof. (i) Assume that I � f1; 2; : : : ; 2pg and that �̂

jI

is non-rossing. Put

t =

1

2

ard(I), let ' be the order preserving bijetion of f1; 2; : : : ; 2tg onto I ,

and let �

1

be the permutation in S

t

given by (5.18). Then �

1

2 S

n

t

, and hene

�̂

1

has a pair of neighbors (e

0

; e

0

+ 1) by Lemma 1.17. Putting e = '(e

0

), it

follows that e+ 1 = �̂(e) 2 I , and this proves (i).

(ii) This follows immediately from (i). �

5.8 Lemma. Let p be a positive integer, and let � be a permutation in S

p

,

suh that �̂ is reduible. Consider furthermore a family (I

�

)

�2�

of intervals

of integers, suh that I

�

� f1; 2; : : : ; 2pg for all �, and suh that the union

I = [

�2�

I

�

is again an interval of integers. If eah I

�

is a non-rossing interval

of integers for �̂, then so is I .

Proof. Assume that eah I

�

is a non-rossing interval of integers for �̂. Then

�̂(I

�

) = I

�

for all �, and hene also �̂(I) = I . Assume then that I ontains a

rossing for �̂, i.e., that there exist a; b; ; d in I , suh that a < b <  < d and

�̂(a) = , �̂(b) = d. Choose � in � suh that a 2 I

�

. Then  = �̂(a) 2 I

�

, and

sine I

�

is an interval of integers, also b 2 I

�

. But then d = �̂(b) 2 I

�

too, and

hene (a; b; ; d) is a rossing for �̂ ontained in I

�

; a ontradition. Therefore

I too is a non-rossing interval of integers for �̂. �

5.9 Definition. Let p be a positive integer and let � be a permutation in S

p

.

By J (�̂) we denote then the family of all non-rossing intervals of integers for
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�̂. Moreover, we put

NC(�̂) =

[

I2J (�̂)

I; (5.19)

IRR(�̂) = f1; 2; : : : ; 2pg nNC(�̂): (5.20)

We refer to NC(�̂) (respetively IRR(�̂)) as the non-rossing set (respetively

irreduible set) for �̂. �

5.10 Lemma. Let p be a positive integer and let � be a permutation in S

p

.

We then have

(i) NC(�̂) = f1; 2; : : : ; 2pg if and only if �̂ is non-rossing.

(ii) NC(�̂) = ; if and only if �̂ is irreduible.

Proof. (i) If NC(�̂) = f1; 2; : : : ; 2pg, then is follows from Lemma 5.8, that �̂ is

non-rossing. If, onversely, �̂ is non-rossing, then f1; 2; : : : ; 2pg 2 J (�̂), and

hene NC(�̂) = f1; 2; : : : ; 2pg.

(ii) If NC(�̂) = ;, then for any j in f1; 2; : : : ; 2p � 1g, fj; j + 1g an not

be a non-rossing interval of integers for �̂. Hene �̂(j) 6= j + 1 for all j

in f1; 2; : : : ; 2p � 1g, whih means that �̂ is irreduible. If, onversely, �̂ is

irreduible, then J (�̂) = ; by Lemma 5.7(ii), and hene also NC(�̂) = ;. �

5.11 Proposition. Let p be a positive integer, let � be a permutation in S

p

,

and assume that �̂ has a rossing. Then the set IRR(�̂) is of the form

IRR(�̂) = fs

1

; s

2

; : : : ; s

2q

g;

where q 2 f1; : : : ; pg, and 1 � s

1

< s

2

< � � � < s

2q

� 2p. Moreover,

s

1

; s

2

; : : : ; s

2q

have the following properties:

(i) The set fs

1

; s

2

; : : : ; s

2q

g is �̂-invariant and �̂(s

i

) 6= s

i+1

, for all i in

f1; 2; : : : ; 2q � 1g.

(ii) If we put s

0

= 0 and s

2q+1

= 2p+ 1, then for eah i in f0; 1; : : : ; 2qg, the

set

I

i

= ℄s

i

; s

i+1

[ \Z

is either the empty set or a non-rossing interval of integers for �̂.

Proof. By De�nition 5.5(b), eah I in J (�̂) is �̂-invariant. Therefore NC(�̂)

is �̂-invariant too, and hene so is IRR(�̂). Sine �̂

2

= id and �̂ has no �xed

points, it follows that ard(IRR(�̂)) = 2q for some q in f0; 1; : : : ; pg, and sine

�̂ has a rossing, Lemma 5.10(i) shows that q � 1. Thus, we may write IRR(�̂)

in the form fs

1

; s

2

; : : : ; s

2q

g, where s

1

< s

2

< � � � < s

2q

, and it remains to show

that these s

1

; s

2

; : : : ; s

2q

satisfy (i) and (ii).

We start by proving (ii). For all I from J (�̂), I \ fs

1

; s

2

; : : : ; s

2q

g = ;,

and hene eah suh I is ontained in one of the sets I

i

= ℄s

i

; s

i+1

[ \ Z,
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i = 0; 1; : : : ; 2q. Therefore

J (�̂) =

2q

[

i=0

J

i

(�̂); (5.21)

where J

i

(�̂) = fI 2 J (�̂) j I � I

i

g, for all i in f0; 1; : : : ; 2qg. Note here that

[

I2J

i

(�̂)

I � I

i

; (i 2 f0; 1; : : : ; 2qg); (5.22)

and that

[

I2J (�̂)

I = NC(�̂) = f1; 2; : : : ; 2pg n IRR(�̂) =

2q

[

i=0

I

i

: (5.23)

Combining (5.21)-(5.23), it follows that we atually have equality in (5.22), i.e.,

[

I2J

i

(�̂)

I = I

i

; (i 2 f0; 1; : : : ; 2qg): (5.24)

Sine eah I

i

is either empty or an interval of integers, (ii) follows now by

ombining (5.24) with Lemma 5.8.

It remains to prove (i). We already noted (and used) that IRR(�̂) is �̂-invariant.

Assume then that �̂(s

i

) = s

i+1

for some i in f1; : : : ; 2q� 1g. Then, by (ii), the

set

~

I

i

= fs

i

g [ I

i

[ fs

i+1

g;

is a non-rossing interval of integers for �̂. But this ontradits that s

i

=2 NC(�̂),

and hene we have proved (i). �

We prove next the following onverse of Proposition 5.11.

5.12 Proposition. Let p be a positive integer, let � be a permutation in

S

p

, and assume that there exist q in f1; : : : ; pg and s

1

< s

2

< � � � < s

2q

in

f1; 2; : : : ; 2pg, suh that

(i) The set fs

1

; s

2

; : : : ; s

2q

g is �̂-invariant and �̂(s

i

) 6= s

i+1

, for all i in

f1; 2; : : : ; 2q � 1g.

(ii) If we put s

0

= 0 and s

2q+1

= 2p + 1, then for eah i in f0; 1; : : : ; 2qg,

the set I

i

= ℄s

i

; s

i+1

[ \ Z is either the empty set or a non-rossing interval of

integers for �̂.

Then fs

1

; s

2

; : : : ; s

2q

g = IRR(�̂).

Proof. It follows from (i), that there exists a (unique) permutation  in S

2q

,

suh that

�̂(s

i

) = s

(i)

; (i 2 f1; 2; : : : ; 2qg);
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and moreover

(i) 6= i+ 1; (i 2 f1; 2; : : : ; 2q � 1g): (5.25)

Our �rst objetive is to prove that  is of the form �̂ for some (unique) per-

mutation � in S

irr

q

. For this, note �rst that by (ii), ard(I

i

) is an even number

for all i in f0; 1; : : : ; 2qg. Hene s

i+1

� s

i

is odd for all i in f0; 1; : : : ; 2qg, and

this implies that

s

1

; s

3

; : : : ; s

2q�1

are odd numbers

s

2

; s

4

; : : : ; s

2q

are even numbers

Sine �̂

2

= id and �̂(j) � j is odd for all j in f1; 2; : : : ; 2pg, it follows now

that 

2

= id and that (i) � i is odd for all i in f1; 2; : : : ; 2qg. Therefore, by

Remark 1.7(a),  = �̂ for some (unique) � in S

q

, and (5.25) shows that in fat

� 2 S

irr

q

.

Returning now to the proof of the equation fs

1

; s

2

; : : : ; s

2q

g = IRR(�̂), note

�rst that [

2q

i=0

I

i

� NC(�̂), and therefore

fs

1

; s

2

; : : : ; s

2q

g = f1; 2; : : : ; 2pg n [

2q

i=0

I

i

� IRR(�̂):

Suppose then that IRR(�̂) is a proper subset of fs

1

; s

2

; : : : ; s

2q

g. Then there

exists j

0

in f1; 2; : : : ; 2qg, suh that s

j

0

2 NC(�̂), i.e., s

j

0

2 I , for some non-

rossing interval of integers for �̂. For this I , de�ne

J =

�

j 2 f1; 2; : : : ; 2qg

�

�

s

j

2 I

	

:

Then J 6= ;, and sine s

1

< s

2

< � � � < s

2q

, J is an interval of integers. Consider

now the permutation � in S

irr

q

, introdued above. Then, sine �̂(I) = I , we

have also that �̂(J) = J . Moreover, J is a non-rossing interval of integers

for �̂. Indeed, if (a; b; ; d) were a rossing for �̂ ontained in J , then learly

(s

a

; s

b

; s



; s

d

) would be a rossing for �̂ ontained in I , whih is impossible.

Altogether, � is both irreduible and has a non-rossing interval of integers, and

by Lemma 5.10(ii), this is impossible. Thus, we have reahed a ontradition,

whih means that we must also have the inlusion fs

1

; s

2

; : : : ; s

2q

g � IRR(�̂).

�

5.13 Lemma. Let p be a positive integer, and let � be a permutation in S

p

nS

n

p

.

Write then, as in Proposition 5.11, IRR(�̂) in the form

IRR(�̂) = fs

1

; s

2

; : : : ; s

2q

g;

where q 2 f1; : : : ; pg and 1 � s

1

< s

2

< � � � < s

2q

� 2p. Then s

1

; s

2

; : : : ; s

2q

satisfy, in addition, that

(i) s

1

; s

3

; : : : ; s

2q�1

are odd numbers.

(ii) s

2

; s

4

; : : : ; s

2q

are even numbers.

(iii) There is one and only one permutation � in S

irr

q

, suh that �̂(s

j

) = s

�̂(j)

for all j in f1; 2; : : : ; 2qg.
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Proof. This follows immediately from Proposition 5.11 and the �rst part of the

proof of Proposition 5.12. �

5.14 Definition. Let p be a positive integer, let � be a permutation in S

p

nS

n

p

,

and let q, s

1

; s

2

; : : : ; s

2q

and I

0

; I

1

; : : : ; I

2q

, be as in Proposition 5.11. Then

put

t

i

=

1

2

ard(I

i

); (i 2 f0; 1; : : : ; 2qg);

and note that sine I

i

is either empty or a non-rossing interval of integers

for �̂, t

i

2 N

0

for all i. If t

i

> 0, then as in Remark 5.6, we onsider the

order-preserving bijetion '

i

of f1; 2; : : : ; 2t

i

g onto I

i

, and we let �

i

denote

the (unique) permutation in S

t

i

, satisfying that �̂

i

= '

�1

i

Æ (�̂

jI

i

) Æ '. Clearly

�

i

2 S

n

p

.

It is onvenient to onsider the permutation group S

0

of the empty set, as a

group with one element �

;

. Then, in the setting onsidered above, we put

�

i

= �

;

, for all i in f0; 1; : : : ; 2qg, for whih t

i

= 0. By onvention, we put

k(�̂

;

) = 0; and l(�̂

;

) = 1: (5.26)

�

5.15 Lemma. Let p be a positive integer, let � be a permutation in S

p

n S

n

p

,

and let � be the irreduible permutation introdued in Lemma 5.13(iii). Then

�(�̂) = �(�̂).

Proof. Let q, s

1

; s

2

; : : : ; s

2q

and I

0

; I

1

; : : : ; I

2q

, be as in Proposition 5.11, and

for eah i in f0; 1; : : : ; 2qg, let t

i

and �

i

be as in De�nition 5.14. If t

i

> 0, then

�̂

i

is non-rossing, and hene, by Proposition 1.23, �̂

i

may be redued to ê

1

(where e

1

is the permutation in S

1

), by a series of suessive anellations of

pairs. Here ê

1

onsists exatly of one pair of neighbors, so, formally speaking, ê

1

an be redued �̂

;

, by anellation of this pair. Thus, �̂

i

an be redued to �̂

;

,

by a series of suessive anellations of pairs, and forming the orresponding

series of anellations of pairs to �̂

jI

i

, it follows that �̂ an be redued to a

permutation, whih is, loosely speaking, obtained by \utting out" �̂

jI

i

from �̂.

Forming these redutions for eah i in f0; 1; : : : ; 2qg, for whih t

i

> 0, it follows

that �̂ an be redued to �̂ by a series of suessive anellations of pairs. By

Proposition 1.22, this implies that �(�̂) = �(�̂). �

5.16 Proposition. Let p be a positive integer, let � be a permutation in

S

p

n S

n

p

, and let q, s

1

; s

2

; : : : ; s

2q

be as in Proposition 5.11. Let further � be

the permutation in S

irr

q

introdued in Lemma 5.13(iii), and let �

0

; �

1

; : : : ; �

2q

be as in De�nition 5.14. Then for any elements a

1

; : : : ; a

r

of B(H;K) for whih

(5.2) holds, we have

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

= 

h(�̂)

X

1�i

1

;::: ;i

q

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

q

a

i

�(q)

;

(5.27)
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where

h(�̂) = k(�̂

0

) + (l(�̂

1

)� 1) + k(�̂

2

) + � � �+ (l(�̂

2q�1

)� 1) + k(�̂

2q

): (5.28)

Proof. We start by introduing some notation. Let t be a positive integer, and

let � be a permutation in S

t

. We then put

�(�̂) =

X

1�i

1

;::: ;i

t

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

t

a

i

�(t)

; (5.29)

and moreover, we put

�(�̂

;

) = 1

1

1

B(H)

: (5.30)

Note that �(�̂) an be expressed in terms of �̂ only, namely as

�(�̂) =

X

(i

1

;i

2

;i

3

;i

4

;::: ;i

2t

)2N(�̂)

a

�

i

1

a

i

2

a

�

i

3

a

i

4

� � � a

�

i

2t�1

a

i

2t

; (5.31)

where

N(�̂)

=

�

(i

1

; i

2

; : : : ; i

2t

) 2 f1; 2; : : : ; rg

2t

�

�

i

j

= i

�̂(j)

; for all j in f1; 2; : : : ; 2tg

	

;

(5.32)

(f. Remark 1.7(b)). Consider next an interval of integers I , suh that I �

f1; 2; : : : ; 2tg and �̂(I) = I . Write I in the form f�; � + 1; : : : ; �g, and note

that � � �+ 1 = ard(I) is an even number. We then put

N(�̂; I) =

�

(i

�

; : : : ; i

�

) 2 f1; 2; : : : ; rg

���+1

�

�

i

j

= i

�̂(j)

; j = �; �+ 1; : : : ; �

	

(5.33)

and

�(�̂; I) =

8

>

>

<

>

>

:

X

(i

�

;::: ;i

�

)2N(�̂;I)

a

�

i

�

a

i

�+1

� � � a

�

i

��1

a

i

�

; if � is odd;

X

(i

�

;::: ;i

�

)2N(�̂;I)

a

i

�

a

�

i

�+1

� � � a

i

��1

a

�

i

�

; if � is even:

(5.34)

Now, to prove (5.27), onsider p in N and � in S

p

nS

n

p

, and let q, s

1

; s

2

; : : : ; s

2q

and I

0

; I

1

; : : : ; I

2q

, t

0

; t

1

; : : : ; t

2q

be as in Proposition 5.11. Note then, that we

may write N(�̂) as

N(�̂) =

[

(i

s

1

;::: ;i

s

2q

)2N

1

(�̂)

N(�̂; I

0

)� fi

s

1

g �N(�̂; I

1

)� fi

s

2

g � � � � � fi

s

2q

g �N(�̂; I

2p

);

(5.35)
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with the onvention that N(�̂; I

i

) is omitted in the produt sets when 2t

i

=

ard(I

i

) = 0, and where

N

1

(�̂) =

�

(i

s

1

; : : : ; i

s

2q

) 2 f1; 2; : : : ; rg

2q

�

�

i

s

j

= i

�̂(s

j

)

; j = 1; 2; : : : ; 2q

	

:

(5.36)

It follows thus, by (5.31), that

�(�̂) =

X

(i

s

1

;::: ;i

s

2q

)2N

1

(�̂)

�(�̂; I

0

)a

�

i

s

1

�(�̂; I

1

)a

i

s

2

� � �a

i

s

2q

�(�̂; I

2q

); (5.37)

with the onvention that if ard(I

i

) = 0,

�(�̂; I

i

) =

(

1

1

1

B(H)

; if s

i

is even;

1

1

1

B(K)

; if s

i

is odd:

(5.38)

To alulate �(�̂; I

0

); : : : ;�(�̂; I

2q

), onsider the non-rossing permutations

�

0

; �

1

; : : : ; �

2q

introdued in De�nition 5.14. Note then, that for eah v in

f0; 1; : : : ; 2qg, suh that t

v

> 0, we have by a suitable relabeling of indies,

N(�̂; I

v

) =

�

(i

1

; i

2

; : : : ; i

2t

v

) 2 f1; 2; : : : ; rg

2t

v

�

�

i

j

= i

�̂

v

(j)

; j = 1; 2; : : : ; 2t

v

	

= N(�̂

v

):

It follows thus, that if t

v

> 0,

�(�̂; I

v

) =

8

>

>

<

>

>

:

X

1�i

1

;::: ;i

t

v

�r

a

�

i

1

a

i

�

v

(1)

� � � a

�

i

t

v

a

i

�

v

(t

v

)

; if v is even;

X

1�i

1

;::: ;i

t

v

�r

a

i

1

a

�

i

�

v

(1)

� � � a

i

t

v

a

�

i

�

v

(t

v

)

; if v is odd;

and hene by Lemma 5.2 (sine �̂

v

is non-rossing),

�(�̂; I

v

) =

(



k(�̂

v

)

1

1

1

B(H)

; if v is even;



l(�̂

v

)�1

1

1

1

B(K)

; if v is odd:

(5.39)

If t

v

= 0, then by de�nition,

�(�̂; I

v

) =

(

1

1

1

B(H)

; if v is even;

1

1

1

B(K)

; if v is odd;

=

(



k(�̂

v

)

1

1

1

B(H)

; if v is even;



l(�̂

v

)�1

1

1

1

B(K)

; if v is odd;

(5.40)

with k(�̂

;

); l(�̂

;

) as de�ned in (5.26). Combining (5.37),(5.39) and (5.40), it

follows that with h(�̂) given in (5.28), we have

�(�̂) = 

h(�̂)

X

(i

s

1

;::: ;i

s

2q

)2N

1

(�̂)

a

�

i

s

1

a

i

s

2

� � � a

�

i

2q�1

a

i

s

2q

: (5.41)
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Note �nally, that with � the permutation introdued in Lemma 5.13(iii), we

have that

N

1

(�̂) =

�

(i

1

; i

2

; : : : ; i

2q

) 2 f1; 2; : : : ; rg

2q

�

�

i

j

= i

�̂(j)

; j = 1; 2; : : : ; 2q

	

= N(�̂);

and therefore

X

(i

s

1

;::: ;i

s

2q

)2N

1

(�̂)

a

�

i

s

1

a

i

s

2

� � � a

�

i

2q�1

a

i

s

2q

=

X

1�i

1

;::: ;i

q

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

q

a

i

�(q)

:

Inserting this in (5.41), we obtain (5.27). �

5.17 Definition. Let  be a positive number. Then for any p in N

0

, we de�ne

g



(p) =

(

1

p

P

p

j=1

�

p

j

��

p

j�1

�



j

; if p 2 N;

1; if p = 0;

(5.42)

and

h



(p) =

(

1

p

P

p

j=1

�

p

j

��

p

j�1

�



j�1

; if p 2 N;

1; if p = 0:

(5.43)

Moreover, for p; q in N

0

, suh that p � q, we put

�

0

(; p; q) =

X

r

0

;r

1

;::: ;r

2q

�0

r

0

+r

1

+���+r

2q

=p�q

g



(r

0

)h



(r

1

)g



(r

2

)h



(r

3

) � � � g



(r

2q

): (5.44)

�

We are now ready to prove the main result of this setion.

5.18 Theorem. Let a

1

; : : : ; a

r

be elements of B(H;K), let  be a positive

number, and assume that

P

r

i=1

a

�

i

a

i

= 1

1

1

B(H)

, and

P

r

i=1

a

i

a

�

i

= 1

1

1

B(K)

. Con-

sider furthermore independent elements Y

1

; : : : ; Y

r

of GRM(n; n;

1

n

), and put

S =

P

r

i=1

a

i


 Y

i

. Then for any positive integer p,

E

�

(S

�

S)

p

�

=

�

�

0

(; p; 0)1

1

1

B(H)

+

p

X

q=1

�

0

(; p; q)

�

X

�2S

irr

q

n

�2�(�̂)

X

1�i

1

;::: ;i

q

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

q

a

i

�(q)

�

�


 1

1

1

n

:

(5.45)
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Proof. Let p from N be given. Then for eah q in f1; 2; : : : ; pg, we de�ne

S

p;q

=

�

� 2 S

p

�

�

ard(IRR(�̂)) = 2q

	

; (5.46)

and

M

q

=

X

�2S

p;q

n

�2�(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

�

(5.47)

It follows then by (5.1), that

E

�

(S

�

S)

p

�

=

�

X

�2S

p

n

�2�(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � �a

�

i

p

a

i

�(p)

�

�


 1

1

1

n

=

p

X

q=0

M

q


 1

1

1

n

:

(5.48)

By Lemma 5.10, S

p;0

= S

n

p

and S

p;p

= S

irr

p

. Hene

M

p

=

X

�2S

irr

p

n

�2�(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

�

; (5.49)

and by Corollary 5.4(i) and Corollary 1.24,

M

0

= g



(p)1

1

1

B(H)

= �

0

(; p; 0)1

1

1

B(H)

: (5.50)

To alulate M

1

;M

2

: : : ;M

p�1

, we let, for eah � in S

p

, �(�) denote the irre-

duible permutation � assoiated to � in Lemma 5.13(iii). Then for any q in

f1; 2; : : : ; p� 1g and any � in S

irr

q

, we de�ne

R(p; �) = f� 2 S

p;q

j �(�) = �g:

Then we have the following disjoint union

S

p;q

=

�

[

�2S

irr

q

R(p; �);

and therefore

M

q

=

X

�2S

irr

q

X

�2R(p;�)

n

�2�(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

�

: (5.51)

Note here, that for any � in S

irr

q

, we have by Proposition 5.16 and Lemma 5.15,

X

�2R(p;�)

n

�2�(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

�

=

�

X

�2R(p;�)



h(�̂)

�

n

�2�(�̂)

�

X

1�i

1

;::: ;i

q

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

q

a

i

�(q)

�

;

(5.52)
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where for eah � in R(p; �),

h(�̂) = k(�̂

0

) + (l(�̂

1

)� 1) + k(�̂

2

) + � � �+ (l(�̂

2q�1

)� 1) + k(�̂

2q

);

and where �

0

; �

1

; : : : ; �

2q

are the permutations introdued in De�nition 5.14.

For any � in S

irr

q

and any � in R(p; �), it follows from Proposition 5.11 and

Lemma 5.13, that �̂ an be obtained from �̂ in a unique way, by \stuÆng

in" the intervals (or empty sets) I

0

; I

1

; : : : ; I

2q

, and the orresponding non-

rossing permutations �̂

0

; �̂

1

; : : : ; �̂

2q

. Conversely, if � 2 S

p

suh that �̂ an

be obtained from �̂ by \stuÆng in" intervals (or empty sets) J

0

; J

1

; : : : ; J

2q

and orresponding non-rossing permutations �̂

0

; �̂

1

; : : : ; �̂

2q

, then, by Propo-

sition 5.12, � 2 R(p; �) and J

j

= I

j

, �

j

= �

j

, for all j in f0; 1; : : : ; 2qg. It

follows thus, that the mapping

� 7! (�

0

; �

1

; : : : ; �

2q

)

is a bijetion of R(p; �) onto the set of (2q + 1)-tuples (�

0

; �

1

; : : : ; �

2q

) of per-

mutations for whih there exist t

0

; t

1

; : : : ; t

2q

in N

0

, suh that �

i

2 S

n

t

i

for all i,

and

P

2q

i=0

t

i

= p� q (here we have used the onvention that S

n

0

= S

0

= f�

;

g).

Using this desription of R(p; �), it follows that

X

�2R(p;�)



h(�̂)

=

X

t

0

;::: ;t

2q

�0

t

0

+���+t

2q

=p�q

X

�

0

2S

n

t

0

;::: ;�

2q

2S

n

t

2q



k(�̂

0

)



(l(�̂

1

)�1)



k(�̂

2

)

� � � 

k(�̂

2q

)

:

(5.53)

Reall here from De�nition 5.17 and Lemma 5.3, that for any t in N,

X

�2S

n

t



k(�̂)

= g



(t); and

X

�2S

n

t



l(�̂)�1

= h



(t);

and by (5.26) this formula holds for t = 0 too. Using this in (5.53), it follows

that

X

�2R(p;�)



h(�̂)

=

X

t

0

;t

1

;::: ;t

2q

�0

t

0

+t

1

+���+t

2q

=p�q

g



(t

0

)h



(t

1

)g



(t

2

)h



(t

3

) � � � g



(t

2q

)

= �

0

(; p; q):

(5.54)

Note, in partiular, that the right hand side depends only on p and q, and not

on � itself. Combining (5.51),(5.52) and (5.54), it follows that for any q in

f1; 2; : : : ; p� 1g,

M

q

= �

0

(; p; q)

X

�2S

irr

q

n

�2�(�̂)

�

X

1�i

1

;::: ;i

q

�r

a

�

i

1

a

i

�(1)

� � �a

�

i

q

a

i

�(q)

�

: (5.55)

Sine �

0

(; p; p) = 1, (5.55) holds for q = p too, by (5.49), and ombining this

with (5.48) and (5.50), we obtain, �nally, (5.45). �
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5.19 Proposition. Let a

1

; : : : ; a

r

in B(H;K),  in ℄0;1[ and S =

P

r

i=1

a

i




Y

i

, be as in Theorem 5.18. Then for any p in N, we have that

X

�2S

p

n

�2�(�̂)







X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)







= �

0

(; p; 0) +

p

X

q=1

�

0

(; p; q)

X

�2S

irr

q

n

�2�(�̂)







X

1�i

1

;::: ;i

q

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

q

a

i

�(q)







:

Proof. This follows by exatly the same proof as for Theorem 5.18. �

5.20 Example. Let a

1

; : : : ; a

r

in B(H;K) and  from ℄0;1[ be as in Theo-

rem 5.18.

(a) For p = 1 or p = 2, we have S

p

= S

n

p

. Hene by (5.1), Corollary 1.24 and

Corollary 5.4(i), we get that

E

�

S

�

S

�

= 1

1

1

B(H)
M

n

(C)

; and E

�

(S

�

S)

2

�

= (

2

+ )1

1

1

B(H)
M

n

(C)

:

This an also easily be obtained diretly from (5.1) and (5.2).

(b) For p = 3, ard(S

3

) = 6 and ard(S

n

3

) = 5. The only element of S

3

n S

n

3

is the irreduible permutation � given by

�(1) = 3; �(2) = 1; �(3) = 2:

For this �, �(�̂) = 1, and it follows then by (5.1) and Corollary 5.4(i), that

E

�

(S

�

S)

3

�

= (

3

+ 3

2

+ )1

1

1

B(H)
M

n

(C)

+

�

n

�2

r

X

i;j;k=1

a

�

i

a

k

a

�

j

a

i

a

�

k

a

j

�


 1

1

1

n

:

This follows also from Theorem 5.18, beause S

irr

1

= S

irr

2

= ; and S

irr

3

= f�g.

�

6 The Sequene of Orthogonal Polynomials for the Measure �



Throughout this setion we onsider a �xed positive onstant , and elements

a

1

; : : : ; a

r

of B(H;K), satisfying that

r

X

i=1

a

�

i

a

i

= 1

1

1

B(H)

and

r

X

i=1

a

i

a

�

i

= 1

1

1

B(H)

:

Moreover, we put

S =

r

X

i=1

a

i


 Y

i

;

where Y

1

; : : : ; Y

r

are independent elements of GRM(n; n;

1

n

).
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As in Setion 3, we let �



denote the probability measure on R, given by

�



= maxf1� ; 0gÆ

0

+

p

(x � a)(b� x)

2�x

� 1

[a;b℄

(x) � dx;

where a = (

p

� 1)

2

, b = (

p

+ 1)

2

.

The asymptoti upper bound for the spetrum of S

�

S obtained in Setion 4

(in the exat ase), was obtained by making areful estimates of the moments

E

�

(S

�

S)

p

�

, p 2 N. However, these estimates annot be used to give good

asymptoti lower bounds for the spetrum of S

�

S in the ase  > 1. To obtain

suh lower bounds, we shall instead onsider the operators E

�

P



q

(S

�

S)

�

, where

(P



q

)

q2N

0

is the sequene of moni polynomials, obtained by Gram-Shmidt

orthogonalization of the polynomials 1; x; x

2

; : : : , w.r.t. the inner produt

hf; gi =

Z

1

0

f(x)g(x) d�



(x); (f; g 2 L

2

(R; �



)):

The main result of this setion is the equation

E

�

P



q

(S

�

S)

�

=

�

X

�2S

irr

q

n

�2�(�̂)

�

X

1�i

1

;::: ;i

q

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

q

a

i

�(q)

�

�


1

1

1

n

; (q 2 N);

where S

irr

q

is the set of permutations � in S

q

, satisfying that

1 6= �(1) 6= 2 6= �(2) 6= � � � 6= �(q)

(f. De�nition 1.16).

6.1 Proposition. Let (P



q

)

q2N

0

be the sequene of polynomials on R, de�ned

by the reursion formulas:

P



0

(x) = 1; (6.1)

P



1

(x) = x� ; (6.2)

P



q+1

(x) = (x� � 1)P



q

(x)� P



q�1

(x); (q � 1): (6.3)

We then have

(i) For eah q in N

0

, P



q

(x) is a moni polynomial of degree q, and P



q

(x) 2 R

for all real numbers x.

(ii) P



q

(+ 1 + 2

p

 os �) =



q

2

sin((q + 1)�) + 

q�1

2

sin(q�)

sin �

; (� 2 ℄0; �[ ):

(iii)

Z

b

a

P



q

(x)P



q

0

(x) d�



(x) =

(



q

; if q = q

0

;

0; if q 6= q

0

;

(q; q

0

2 N

0

):

In partiular, (P



q

)

q2N

0

is the sequene of moni orthogonal polynomials ob-

tained by Gram-Shmidt orthogonalization of 1; x; x

2

; : : : , in the Hilbert spae

L

2

(R; �



).
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Proof. (i) This is lear from (6.1)-(6.3).

(ii) Consider the sequenes (R



q

)

q2N

0

and (T



q

)

q2N

0

of polynomials, given by

the reursion formulas

R



0

(x) = 1; (6.4)

R



1

(x) = x� � 1; (6.5)

R



q+1

(x) = (x� � 1)R



q

(x) � R



q�1

(x); (q � 1); (6.6)

respetively

T



0

(x) = 0; (6.7)

T



1

(x) = 1; (6.8)

T



q+1

(x) = (x� � 1)T



q

(x) � T



q�1

(x); (q � 1): (6.9)

Note here, that the onditions (6.6) and (6.9) are the same, and therefore, the

sequene (R

q

+ T

q

)

q2N

0

satis�es this ondition too. Moreover, the sequene

(R

q

+ T

q

)

q2N

0

also satis�es (6.1) and (6.2), and it follows thus, that

P



q

(x) = R



q

(x) + T



q

(x); (q 2 N

0

):

Note also, that T



2

(x) = x �  � 1, so that the sequene (T



q+1

)

q2N

0

satis�es

(6.4)-(6.6), and hene

T



q

(x) = R



q�1

(x); (q 2 N):

Altogether, it follows that

P



q

(x) = R



q

(x) +R



q�1

(x); (q � 1); (6.10)

P



0

(x) = R



0

(x): (6.11)

To prove (ii), it suÆes therefore to show, that with x =  + 1 + 2

p

 os �,

� 2 ℄0; �[, one has

R



q

(x) =



q

2

sin((q + 1)�)

sin �

; (q 2 N

0

): (6.12)

For q = 0, this is lear from (6.4), and for q = 1, it follows easily from (6.5),

using that sin 2� = 2 sin � os �. Proeeding by indution, assume now that

p � 1 and that (6.12) has been proved for all q in f0; 1; : : : ; pg. Then by (6.6),

R



p+1

(x) =

2

p

 os � � 

p

2

sin((p+ 1)�)

sin �

�



p+1

2

sin(p�)

sin �

;

when x = +1+2

p

 os �, � 2 ℄0; �[. But 2 os � sin((p+1)�) = sin((p+2)�)+

sin(p�), and therefore

R



p+1

(x) =



p+1

2

sin((p+ 2)�)

sin �

;
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whih means that (6.12) holds for q = p+ 1. Thus, by indution, (6.12) holds

for all q in N

0

, and this onludes the proof of (ii).

(iii) We show �rst, that for any m;n in N

0

,

Z

1

0

xR



m

(x)R



n

(x) d�



(x) =

(

0; if n 6= m;



m+1

; if n = m;

(6.13)

where R



0

; R



1

; R



2

; : : : , are the polynomials determined by (6.4)-(6.6). Note for

this, that if  < 1, then the atom for �



at 0, does not ontribute to the integral

on the left hand side of (6.13). Hene, for all values of  in ℄0;1[, we have

Z

1

0

xR



m

(x)R



n

(x) d�



(x) =

1

2�

Z

b

a

R



m

(x)R



n

(x)

p

(x� a)(b� x) dx: (6.14)

By the substitution x = +1+2

p

 os �, � 2 ℄0; �[, and by (6.12), the integral

on the right hand side of (6.14) an be redued to

2

�

Z

�

0



m+n

2

sin((m+ 1)�) sin((n+ 1)�) d�;

whih is equal to 

m+1

Æ

m;n

. This proves (6.13).

We show next that

xR



m

(x) = P



m+1

(x) + P



m

(x); (m 2 N

0

): (6.15)

For m = 0, this is lear from (6.1),(6.2) and (6.4), and for m � 1, we get from

(6.6) and (6.10), that

xR



m

(x) = R



m+1

(x) + (+ 1)R



m

(x) + R



m�1

(x) = P



m+1

(x) + P



m

(x):

This proves (6.15). De�ne now



m;n

=

Z

1

0

P



m

(x)P



n

(x) d�



(x); (m;n 2 N

0

):

It follows then from (6.15), that



m+1;n

+ 

m;n

=

Z

1

0

xR



m

(x)P



n

(x) d�



(x); (m;n 2 N

0

);

and applying then (6.10),(6.11) and (6.13), we get that



m+1;n

+ 

m;n

= 

m+1

(Æ

m;n

+ Æ

m;n�1

); (m 2 N

0

; n 2 N); (6.16)

and



m+1;0

+ 

m;0

= 

m+1

Æ

m;0

; (m 2 N

0

): (6.17)
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Sine �



is a probability measure, 

0;0

= 1, and using this and indution on

(6.17), it follows that 

m;0

= 0 for all m in N. Thus



0;n

= 

n;0

=

(

1; if n = 0;

0; if n � 1:

(6.18)

Consider now a �xed n in N. By (6.16), we have then that



m+1;n

+ 

m;n

=

(

0; if m 2 f0; 1; : : : ; n� 2g;



n

; if m = n� 1:

By indution in m (0 � m � n), we get then, by appliation of (6.18), that



m;n

=

(

0; if m < n;



n

; if m = n;

and this ompletes the proof of (iii). �

6.2 Lemma. For any non-negative integers p; q, put

�(; p; q) = 

�q

Z

b

a

x

p

P



q

(x) d�



(x): (6.19)

We then have

(i) For any p in N

0

, x

p

=

P

p

q=0

�(; p; q)P



q

(x).

(ii) For any p; q in N

0

,

�(; p; q) � 0; if q � p; (6.20)

�(; p; p) = 1; (6.21)

�(; p; q) = 0; if q > p: (6.22)

Proof. (i) Consider a �xed p from N

0

. By Proposition 6.1,

spanfP



0

; P



1

; : : : ; P



p

g is equal to the set of all polynomials of degree less

than or equal to p. In partiular we have that x

p

=

P

p

q=0



q

P



q

(x), for suitable

omplex numbers 

0

; : : : ; 

p

(depending on  and p). Applying then the

orthogonality relation in Proposition 6.1(iii), it follows that 

q

= �(; p; q) for

all q in f0; 1; : : : ; pg, and this proves (i).

(ii) By (6.1)-(6.3), it follows that

xP



0

(x) = P



1

(x) + P



0

(x); (6.23)

xP



q

(x) = P



q+1

(x) + (+ 1)P



q

(x) + P



q�1

(x); (q � 1); (6.24)

so by indution in p, we get that x

p

(= x

p

P



0

(x)), an be expressed as a lin-

ear ombination of P



0

(x); P



1

(x); : : : ; P



p

(x), in whih all oeÆients are non-

negative. By (i) and the linear independene of P



0

(x); P



1

(x); : : : ; P



p

(x), these
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oeÆients are exatly �(; p; 0); �(; p; 1); : : : ; �(; p; p), and hene (6.20) fol-

lows.

Note next that (6.21) follows from (i) and the fats that P



p

(x) is a moni

polynomial of degree p, whereas P



0

(x); : : : ; P



p�1

(x) are all of degree at most

p� 1.

Finally, (6.22) follows from (i) and the orthogonality relation in Proposi-

tion 6.1(iii). �

6.3 Lemma. Let �(; p; q), p; q 2 N

0

, be as in Lemma 6.2. Then for any �xed

q in N

0

, the power series

1

X

p=0

�(; p; q)t

p

; (6.25)

onverges for all t in the open omplex ball B(0;

1

b

), where b = (

p

 + 1)

2

.

Moreover, the funtion

J



q

(t) =

1

X

p=0

�(; p; q)t

p

; (t 2 B(0;

1

b

));

is for all t in B(0;

1

b

) n f0g, given by

J



q

(t) =

1� (� 1)t�

p

(1� at)(1� bt)

2t

 

1� (+ 1)t�

p

(1� at)(1� bt)

2t

!

q

;

(6.26)

where

p

� is the prinipal branh of the omplex square-root.

Proof. Consider the Hilbert spae L

2

(R; �



), and let A be the bounded operator

on L

2

(R; �



), given by

[A(f)℄(x) = xf(x); (f 2 L

2

(R; �



); x 2 R):

Note that A

�

= A and that sp(A) = supp(�



) � [0; b℄. Thus, letting 1

1

1 denote

the identity operator on L

2

(R; �



), 1

1

1� tA is invertible for all omplex numbers

t suh that jtj <

1

b

, and moreover, for suh t,

(1

1

1� tA)

�1

=

1

X

p=0

t

p

A

p

; (norm onvergene):

For any t in B(0;

1

b

), we have thus that

1

X

p=0

�(; p; q)t

p

= 

�q

1

X

p=0

hx

p

; P



q

it

p

= 

�q

1

X

p=0

hA

p

P



0

; P



q

it

p

= 

�q

h(1� tA)

�1

P



0

; P



q

i:
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This shows that the series in (6.25) onverges for all t in B(0;

1

b

), and moreover,

that

J



q

(t) = 

�q

h(1� tA)

�1

P



0

; P



q

i; (t 2 B(0;

1

b

)): (6.27)

To prove (6.26), we shall alulate the right hand side of (6.27). For this,

onsider for eah z in B(0;

1

p



) the series

P

1

q=0

z

q

P



q

, and note that by

Lemma 6.1(iii), this series onverges in k � k

2

-norm in L

2

(R; �



). We may

thus de�ne

!

z

=

1

X

q=0

z

q

P



q

2 L

2

(R; �



); (z 2 B(0;

1

p



)): (6.28)

With A as above, it follows now by (6.23) and (6.24), that for any z in

B(0;

1

p



) n f0g,

A!

z

=

1

X

n=0

z

n

AP



n

= P



0

+ P



1

+

1

X

n=1

z

n

(P



n�1

+ (+ 1)P



n

+ P



n+1

)

= (+ z)P



0

+

1

X

n=1

(z

n�1

+ (+ 1)z

n

+ z

n+1

)P



n

= (+ z)P



0

+ z

�1

(1 + (+ 1)z + z

2

)

1

X

n=1

z

n

P



n

=

�

+ z � z

�1

(1 + (+ 1)z + z

2

)

�

P



0

+ z

�1

(1 + (+ 1)z + z

2

)!

z

= �z

�1

(1 + z)P



0

+ z

�1

(1 + z)(1 + z)!

z

;

where the in�nite sums onverge in k � k

2

-norm. From this it follows that

(z

�1

(1 + z)(1 + z)1

1

1�A)!

z

= z

�1

(1 + z)P



0

; (z 2 B(0;

1

p



) n f0g);

and hene that

�

1

1

1�

z

(1+z)(1+z)

A

�

!

z

=

1

1+z

P



0

; (z 2 B(0;

1

p



) n f�1;�

1



g): (6.29)

De�ne now

'(z) =

z

(1 + z)(1 + z)

; (z 2 C n f�1;

1



g):

Sine sp(A) � [0; b℄, it follows that (1

1

1 � '(z)A) is invertible whenever '(z) =2

[

1

b

;1[, and in partiular, as long as j'(z)j <

1

b

. Note then, that ' is analyti

on C n f�1;�

1



g, and that '(0) = 0, '

0

(0) = 1. It follows thus, that we may

hoose neighborhoods U and V of 0 in C , suh that ' is a bijetion of U onto

V . We may assume, in addition, that

U � B(0;

1

p



) n f�1;�

1



g; and V � B(0;

1

b

):
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For z in U , it follows now from (6.29), that

!

z

=

1

1+z

�

1� '(z)A

�

�1

P



0

;

and hene, by (6.27) and Lemma 6.1(iii),

J



q

�

'(z)

�

= (1 + z) � 

�q

h!

z

; P



q

i = (1 + z)z

q

; (z 2 U): (6.30)

It remains to invert '. By solving the equation

t =

z

(1 + z)(1 + z)

;

w.r.t. z, we �nd that

'

�1

(t) =

1� (+ 1)t�

p

(1� at)(1� bt)

2t

; (t 2 V n f0g);

where, as usual, a = (

p

�1)

2

and b = (

p

+1)

2

. Sine '

�1

(t)! 0 as t! 0, it

follows that for some neighbourhood V

0

of 0, suh that V

0

� V , we must have

'

�1

(t) =

1� (+ 1)t�

p

(1� at)(1� bt)

2t

; (t 2 V

0

n f0g); (6.31)

where

p

� is the prinipal part of the square root. Hene, we have also that

1 + '

�1

(t) =

1� (� 1)t�

p

(1� at)(1� bt)

2t

; (t 2 V

0

n f0g): (6.32)

Inserting (6.31) and (6.32) in (6.30), we obtain that (6.26) holds for all t in

V

0

n f0g.

To show that (6.26) atually holds for all t in B(0;

1

b

) n f0g, note that for all

suh t, Re(1�at) > 0 and Re(1�bt) > 0, so that (1�at)(1�bt) 2 C n ℄�1; 0℄.

Hene, with

p

� the prinipal branh of the square root, t 7!

p

(1� at)(1� bt)

is an analyti funtion of t 2 B(0;

1

b

). By uniqueness of analyti ontinuation,

it follows thus, that (6.26) holds for all t in B(0;

1

b

) n f0g. �

6.4 Lemma. Let g



(p) and h



(p), p 2 N

0

, be as in De�nition 5.17. Then the

power series

G



(t) =

1

X

p=0

g



(p)t

p

; (6.33)

and

H



(t) =

1

X

p=0

h



(p)t

p

; (6.34)

are onvergent for all t in B(0;

1

b

), and

J



q

(t) = t

q

G



(t)

q+1

H



(t)

q

; (t 2 B(0;

1

b

)): (6.35)
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Proof. By (5.10), we have

g



(p) =

Z

1

0

x

p

d�



(x); (p 2 N);

and sine g



(0) = 1, the same formula holds for p = 0. Hene g



(p) = �(; p; 0),

for all p in N

0

, so by Lemma 6.3, the series in (6.33) onverges for all t in

B(0;

1

b

), and

G



(t) = J



0

(t) =

1� (� 1)t�

p

(1� at)(1� bt)

2t

; (t 2 B(0;

1

b

) n f0g):

(6.36)

Sine h



(0) = 1 and sine h



(p) =

1



g



(p), for all p in N, the series in (6.34) is

also onvergent for all t in B(0;

1

b

), and

H



(t) = 1 +

1



(G



(t)� 1); (t 2 B(0;

1



)):

Hene by (6.34)

H



(t) =

1 + (� 1)t�

p

(1� at)(1� bt)

2t

; (t 2 B(0;

1

b

) n f0g): (6.37)

By (6.36) and (6.37), we get now for all t in B(0;

1

b

) n f0g,

G



(t)H



(t)

=

�

1�

p

(1� at)(1� bt)

�

2

� (� 1)

2

t

2

4t

2

=

1 + (1� at)(1� bt)� 2

p

(1� at)(1� bt)� (� 1)

2

t

2

4t

2

=

1 + (1� 2(+ 1)t+ (� 1)

2

t

2

)� 2

p

(1� at)(1� bt)� (� 1)

2

t

2

4t

2

=

1� (+ 1)t�

p

(1� at)(1� bt)

2t

2

:

Combining this with (6.36) and (6.26), it follows that

J

q



(t) = G



(t)

�

tG



(t)H



(t)

�

q

; (t 2 B(0;

1

b

));

and the same formula holds trivially for t = 0, by (6.22). This proves (6.35).

�

6.5 Lemma. For all p; q in N

0

suh that p � q, let �(; p; q) be as introdued

in De�nition 5.17. Then

�

0

(; p; q) = �(; p; q); (p; q 2 N

0

; q � p):
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Proof. Reall from De�nition 5.17, that for p; q in N

0

, suh that p � q, we have

�

0

(; p; q) =

X

r

0

;r

1

;::: ;r

2q

�0

r

0

+r

1

+���+r

2q

=p�q

g



(r

0

)h



(r

1

)g



(r

2

)h



(r

3

) � � � g



(r

2q

):

Hene �

0

(; p; q) is the oeÆient to t

p�q

in the power series for

G



(t)H



(t)G



(t)H



(t) � � �G



(t); (2q + 1 fators);

and therefore �

0

(; p; q) is the oeÆient to t

p

in the power series for

t

q

G



(t)

q+1

H



(t)

q

. Thus, by Lemma 6.3 and Lemma 6.4, it follows that

�

0

(; p; q) = �(; p; q); for all p; q in N

0

; suh that p � q: �

6.6 Theorem. Let H, K be Hilbert spaes, and let a

1

; : : : ; a

r

be elements of

B(H;K), satisfying that

P

r

i=1

a

�

i

a

i

= 1

1

1

B(H)

and

P

r

i=1

a

i

a

�

i

= 1

1

1

B(K)

, for some

positive real number . Furthermore, let Y

1

; : : : ; Y

r

be independent elements

of GRM(n; n;

1

n

), and put S =

P

r

i=1

a

i


 Y

i

. Then for any q in N,

E

�

P



q

(S

�

S)

�

=

�

X

�2S

irr

q

n

�2�(�̂)

�

X

1�i

1

;::: ;i

q

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

q

a

i

�(q)

�

�


 1

1

1

n

:

Proof. For eah q in N, put

T

q

=

X

�2S

irr

q

n

�2�(�̂)

�

X

1�i

1

;::: ;i

q

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

q

a

i

�(q)

�

;

and put T

0

= 1

1

1

B(H)

. By Theorem 5.18 and Lemma 6.5, it follows then that

E

�

(S

�

S)

p

�

=

p

X

q=0

�(; p; q) � T

q


 1

1

1

n

; (p 2 N

0

): (6.38)

On the other hand, it follows from Lemma 6.2(i), that

E

�

(S

�

S)

p

�

=

p

X

q=0

�(; p; q)E

�

P



q

(S

�

S)

�

; (p 2 N

0

): (6.39)

We prove that

E

�

P



q

(S

�

S)

�

= T

q


 1

1

1

n

; (q 2 N

0

); (6.40)

by indution in q. Note that (6.40) is trivial for q = 0. Consider then p

from N, and assume that (6.40) has been proved for q = 0; 1; : : : ; p� 1. Sine
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�(; p; p) = 1, by Lemma 6.2(ii), it follows then from (6.39) and (6.38), that

E

�

P



p

(S

�

S)

�

= E

�

(S

�

S)

p

�

�

p�1

X

q=0

�(; p; q)E

�

P



q

(S

�

S)

�

= E

�

(S

�

S)

p

�

�

p�1

X

q=0

�(; p; q) � T

q


 1

1

1

n

= T

p


 1

1

1

n

:

Thus, (6.40) holds for q = p, and this ompletes the proof. �

6.7 Example. By (6.1)-(6.3), it follows that

P



1

(x) = x� ; (6.41)

P



2

(x) = x

2

� (2+ 1)x+ 

2

; (6.42)

P



3

(x) = x

3

� (3+ 2)x

2

+ (3

2

+ 2+ 1)x� 

3

: (6.43)

By Example 5.20, S

irr

p

= ; if p 2 f1; 2g, and S

irr

3

= f�g, where � is the

permutation given by �(1) = 3; �(2) = 1; �(3) = 2, so that �(�̂) = 1. It follows

thus by Theorem 6.6, that

E

�

P



1

(S

�

S)

�

= 0;

E

�

P



2

(S

�

S)

�

= 0;

E

�

P



3

(S

�

S)

�

= n

�2

r

X

i;j;k=1

a

�

i

a

k

a

�

j

a

i

a

�

k

a

j

:

These three formulas an also easily be derived diretly from Example 5.20,

using the formulas (6.41)-(6.43). �

7 An Upper Bound for E

�

exp(�tS

�

S)

�

; t � 0

Throughout this setion, we onsider elements a

1

; : : : ; a

r

of B(H;K) (for given

Hilbert spaes H and K), satisfying that

r

X

i=1

a

�

i

a

i

= 1

1

1

B(H)

and

r

X

i=1

a

i

a

�

i

= 1

1

1

B(K)

;

for some onstant  in [1;1[. Moreover, we onsider independent elements

Y

1

; : : : ; Y

r

of GRM(n; n;

1

n

), and put

S =

r

X

i=1

a

i


 Y

i

:
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As in Setion 3, we let �



denote the probability measure on R, given by

�



=

p

(x� a)(b� x)

2�x

� 1

[a;b℄

(x) � dx;

where a = (

p

� 1)

2

and b = (

p

+ 1)

2

. Furthermore, we let (P



q

)

q2N

0

be the

sequene of moni orthogonal polynomials w.r.t. �



as de�ned in Setion 6. In

partiular P



0

� 1.

7.1 Lemma. Let, as above, a = (

p

� 1)

2

and b = (

p

+ 1)

2

. Then for any q

in N

0

,

(i) P



q

(x) � P



q

(b) > 0, for all x in ℄b;1[.

(ii) jP



q

(x)j � P



q

(b), for all x in [a; b℄.

(iii) jP



q

(x)j � P



q

(2+ 2� x), for all x in ℄�1; a[.

Proof. We start by proving (ii). If x 2 [a; b℄, then x =  + 1 + 2

p

 os �, for

some � in [0; �℄. For � in ℄0; �[, we have from Proposition 6.1(ii), that

P



q

(+ 1 + 2

p

 os �) =



q

2

sin((q + 1)�) + 

q�1

2

sin(q�)

sin �

: (7.1)

Note here that for any k in N

0

,

sin((k + 1)�)

sin �

= e

�k�

�

1 + e

2i�

+ e

4i�

+ � � �+ e

2ki�

�

; (7.2)

so that

�

�

sin((k+1)�)

sin �

�

�

� k + 1. It follows thus that

jP



q

(x)j � 

q

2

(q + 1) + 

q�1

2

q; (x 2℄a; b[); (7.3)

and by ontinuity, (7.3) holds also for x = a and x = b. By (7.2),

lim

�!0

sin((k+1)�)

sin �

= k + 1, for any k in N

0

, and hene the right hand side

of (7.3) is equal to P



q

(b). This proves (ii).

To prove (i), we note �rst, that by uniqueness of analyti ontinuation, (7.1)

atually holds for all � in C n �Z. If we put � = i�, � > 0, we get the equation:

P



q

(+ 1 + 2

p

 osh �) =



q

2

sinh((q + 1)�) + 

q�1

2

sinh(q�)

sinh �

; (� 2℄0;1[);

(7.4)

whih overs the values of P

q

(x) for all x in ℄b;1[. Note here that for any k in

N

0

,

sinh((k + 1)�)

sinh �

= e

�k�

�

1 + e

2�

+ e

4�

+ � � �+ e

2k�

�

;

and hene, if k is even,

sinh((k + 1)�)

sinh �

= 1 + 2 osh(2�) + 2 osh(4�) + � � �+ 2 osh(k�);
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whereas, if k is odd,

sinh((k + 1)�)

sinh �

= 2 osh(�) + 2 osh(3�) + � � �+ 2 osh(k�);

so in both ases

sinh((k+1)�)

sin �

is an inreasing funtion of � > 0. It follows thus

from (7.4), that P



q

(x) � P



q

(b) for all x in ℄b;1[. Moreover, as we saw in the

proof of (ii), P



q

(b) > 0. This onludes the proof of (i).

Finally, to prove (iii), we put � = � + i� in (7.1), and get for � in ℄0;1[, that

�

�

P



q

(+ 1� 2

p

 osh �)

�

�

=

�

�

�

(�1)

q



q

2

sinh((q + 1)�) + (�1)

q�1



q�1

2

sinh(q�)

sinh �

�

�

�

�



q

2

sinh((q + 1)�) + 

q�1

2

sinh(q�)

sinh �

= P



q

(+ 1 + 2

p

 osh �):

This proves (iii). �

7.2 Definition. For eah q in N

0

, we de�ne the funtion  



q

: R ! R, by the

equation

 



q

(t) = 

�q

Z

b

a

exp(tx)P



q

(x) d�



(x); (t 2 R): �

7.3 Lemma. Consider the sequene ( 



q

)

q2N

0

of funtions, introdued in De�-

nition 7.2, and for eah p in N

0

, let, as in Setion 6,

�(; p; q) = 

�q

Z

b

a

x

p

P



q

(x) d�



(x); (p; q 2 N

0

):

We then have

(i)  



q

(t) =

P

1

p=q

t

p

p!

�(; p; q), for all t in R.

(ii)

P

1

q=0

j 



q

(t)j � jP



q

(x)j � exp(jtjx) + exp(jtj(2+2)), for all t in R and all

x in [0;1[.

(iii) exp(tx) =

P

1

q=0

 



q

(t) �P



q

(x), for all t in R and x in [0;1[, and for �xed

t in R, the series onverges uniformly in x on ompat subsets of [0;1[.

Proof. (i) By Lemma 6.2(ii), �(; p; q) = 0 whenever q > p. Hene (i) follows

from the power series expansion of exp(tx).

(ii) Let � : R ! [b;1[ be the ontinuous funtion de�ned by:

�(x) =

8

>

<

>

:

x; if x > b;

b; if a � x � b;

2+ 2� x; if x < a;
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It follows then from Lemma 7.1, that

jP



q

(x)j � P



q

(�(x)); (x 2 R; q 2 N

0

): (7.5)

Reall that x

p

=

P

p

q=0

�(; p; q)P



q

(x), for all p in N (.f. Lemma 6.2(i)). Hene,

for x; t in R, we have that

exp(tx) =

1

X

p=0

t

p

p!

x

p

=

1

X

p=0

t

p

p!

�

p

X

q=0

�(; p; q)P



q

(x)

�

: (7.6)

Substituting x with �(x) and t with jtj in this formula, and realling from

Lemma 6.2(ii), that �(; p; q) � 0, for 0 � q � p, we get by appliation of (7.5),

1

X

p=0

jtj

p

p!

�

p

X

q=0

�(; p; q)jP



q

(x)j

�

�

1

X

p=0

jtj

p

p!

�

p

X

q=0

�(; p; q)P



q

(�(x))

�

= exp(jtj�(x)) <1:

Hene, we an apply Fubini's theorem to the double sum in (7.6), and obtain

that

exp(tx) =

1

X

q=0

�

1

X

p=q

t

p

p!

�(; p; q)

�

P



q

(x); (x; t 2 R): (7.7)

Similarly we have that

exp(jtj�(x)) =

1

X

q=0

�

1

X

p=q

jtj

p

p!

�(; p; q)

�

P



q

(�(x)); (x; t 2 R): (7.8)

Note here that by (i) proved above, we have that,

j 



q

(t)j �

1

X

p=q

jtj

p

p!

�(; p; q): (7.9)

Sine �(x) � maxf2+2; xg for all x in [0;1[, (7.5) and (7.7)-(7.9) imply that

for all t in R and x in [0;1[,

1

X

q=0

j 



q

(t)j � jP



q

(x)j � exp(jtj�(x)) � exp(jtj(2+ 2)) + exp(jtjx);

and this proves (ii).

(iii) The summation formula in (iii) follows from (i) and (7.7). To prove that

the onvergene is uniform in x on ompat subsets, we observe that for any
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Q in N,

�

�

�

exp(tx) �

Q

X

q=0

 



q

(t)P



q

(x)

�

�

�

�

1

X

q=Q+1

j 



q

(t)j � jP



q

(x)j

�

1

X

q=Q+1

�

1

X

p=q

jtj

p

p!

�(; p; q)P



q

(�(x))

�

�

1

X

p=Q+1

jtj

p

p!

�

p

X

q=0

�(; p; q)P



q

(�(x))

�

=

1

X

p=Q+1

(jtj�(x))

p

p!

:

(7.10)

Sine � is ontinuous, and hene bounded on ompat sets, it follows readily

from (7.10) that for �xed t in R, the series in (iii) onverges uniformly in x on

ompat subsets of [0;1[. �

7.4 Proposition. Consider the sequene ( 



q

)

q2N

0

of funtions, introdued in

De�nition 7.2. Then for any t in R suh that jtj <

n



, the funtion ! 7!

exp(tS

�

(!)S(!)) is integrable in the sense of De�nition 3.1, and

E

�

exp(tS

�

S)

�

=

1

X

q=0

 



q

(t)E

�

P



q

(S

�

S)

�

; (7.11)

where the sum on the right hand side is absolutely onvergent in B(H

n

).

Proof. We start by proving that the right hand side of (7.11) is absolutely

onvergent in B(H

n

). Sine j 



q

(t)j �  



q

(jtj) by Lemma 7.3(i) and (7.9), it

suÆes to onsider the ase where t � 0.

By Lemma 7.3(i), we have for any t in [0;1[,

1

X

q=0

 



q

(t)





E

�

P



q

(S

�

S)

�





=

1

X

p=0

t

p

p!

�

p

X

q=0

�(; p; q)





E

�

P



q

(S

�

S)

�





�

: (7.12)

Note here, that by Theorem 6.6,





E

�

P



q

(S

�

S)

�





�

X

�2S

irr

q

n

�2�(�̂)







X

1�i

1

;::: ;i

q

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

q

a

i

�(q)







;

for any q in N, whereas





E

�

P



0

(S

�

S)

�





= kE(1

1

1

B(H

n

)

)k = 1:
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Hene, by Proposition 5.19, Lemma 6.5 and Proposition 2.7, we have for any

p in N,

p

X

q=0

�(; p; q)





E

�

P



q

(S

�

S)

�





�

X

�2S

p

n

�2�(�̂)







X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)







�

X

�2S

p

n

�2�(�̂)



�(�̂)

:

(7.13)

Using now that  � 1, and that �(�̂) � k(�̂) + 2�(�̂) (.f. Proposition 2.10), it

follows that for any p in N,

X

�2S

p

n

�2�(�̂)



�(�̂)

�

X

�2S

p

�

n



�

�2�(�̂)



k(�̂)

: (7.14)

For p = 0, we note that

p

X

q=0

�(; p; q)





E

�

P



q

(S

�

S)

�





= 1: (7.15)

Combining now (7.12)-(7.15), we get that

1

X

q=0

 



q

(t)





E

�

P



q

(S

�

S)

�





� 1 +

1

X

p=1

t

p

p!

�

X

�2S

p

�

n



�

�2�(�̂)



k(�̂)

�

: (7.16)

Using then that �2�(�̂) = k(�̂) + l(�̂)� p� 1, it follows that

1

X

q=0

 



q

(t)





E

�

P



q

(S

�

S)

�





� 1 +

1

X

p=1

1

p!

�

t

n

�

p

X

�2S

p

n

k(�̂)

�

n



�

l(�̂)�1

� 1 + t

1

X

p=1

1

(p�1)!

�

t

n

�

p�1

X

�2S

p

n

k(�̂)�1

�

n



�

l(�̂)�1

;

(7.17)

where the last equality follows by noting that

1

p!

�

1

(p�1)!

for all p in N. By

Lemma 3.4, the last quantity in (7.17) is �nite whenever 0 �

t

n

< 1, and this

shows that the right hand side of (7.11) is absolutely onvergent for all t in

℄�

n



;

n



[, as desired.

It remains now (f. De�nition 3.1) to show, that for any state ' on B(H

n

),

E

�

'(exp(tS

�

S))

�

=

1

X

q=0

 



q

(t)'

�

E

�

P



q

(S

�

S)

��

; (t 2℄�

n



;

n



[): (7.18)
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So onsider a �xed t from ℄ �

n



;

n



[ and a �xed state ' on B(H

n

). Sine

the spetrum of S

�

(!)S(!) is ompat for eah ! in 
, it follows then by

Lemma 7.3, that

'

�

exp(tS

�

(!)S(!))

�

=

1

X

p=0

 



q

(t)'

�

P



q

(S

n

(!)

�

S

n

(!))

�

; (7.19)

so we need to show that we an integrate termwise in the sum on the right

hand side. Note for this, that by Lemma 7.3(ii), and the funtion alulus for

selfadjoint operators on Hilbert spaes,

1

X

p=0

j 



q

(t)j � jP



q

(S(!)

�

S(!))j � exp(2(+ 1)jtj)1

1

1

B(H

n

)

+ exp(jtjS(!)

�

S(!));

(7.20)

where jT j = (T

2

)

1

2

, for any selfadjoint T in B(H

n

). For suh T , we have also

that j'(T )j � '(jT j), and hene it follows from (7.20), that

1

X

p=0

j 



q

(t)j �

�

�

'

�

P



q

(S(!)

�

S(!))

�

�

�

� exp(2(+ 1)jtj) + '

�

exp(jtjS(!)

�

S(!))

�

:

(7.21)

Sine E

�

'(exp(jtjS

�

S))

�

< 1, by Proposition 3.2, it follows from (7.21) and

Lebesgue's theorem on dominated onvergene, that we may integrate termwise

in (7.19), and hene obtain (7.18). This onludes the proof. �

In order to obtain the upper bound for E

�

exp(�tS

�

S)

�

in Theorem 7.8 below,

we need more preise information about the behavior of the funtion  



q

(t) for

t < 0.

7.5 Proposition. Consider the sequene ( 



q

)

q2N

0

of funtions, de�ned in Def-

inition 7.2. Then for any q in N

0

, and any t in ℄0;1[, we have that

(i)  



q

(t) > 0.

(ii) (�1)

q

 



q

(�t) > 0.

(iii) j 



q

(�t)j �

 



0

(�t)

 



0

(t)

 



q

(t).

Proof. (i) This follows from Lemma 7.3(i), but for ompleteness we inlude a

di�erent proof, whih will also be needed in the proof of (ii) and (iii). For eah

q in N

0

, we put

�



q

(x) = 

�

q

2

P



q

(x); (x 2 R):

Then by Proposition 6.1, (�



q

)

q2N

0

is an orthonormal basis for L

2

([a; b℄; �



). Let

A be the (bounded) operator for multipliation by x in L

2

([a; b℄; �



). Then by
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(6.23) and (6.24), the matrix M(A) of A w.r.t. (�



q

)

q2N

0

, is given by

M(A) =

0

B

B

B

B

B

B

B

�



p

 0

p

 + 1

p



p

 + 1

p



.

.

.

.

.

.

.

.

.

0

1

C

C

C

C

C

C

C

A

(7.22)

From this, it follows, that for any p in N,

M(A

p

)

jk

> 0; when jj � kj � p;

M(A

p

)

jk

= 0; when jj � kj > p:

Hene, for any t in [0;1[,

M(exp(tA))

jk

= Æ

j;k

+

1

X

p=1

t

p

p!

M(A

p

)

jk

> 0; (j; k 2 N

0

):

Sine exp(tA) is the operator for multipliation by exp(tx) in L

2

([a; b℄; �



), and

sine P



0

(x) � 1, we get that

 



q

(t) = 

�q

Z

b

a

exp(tx)P



q

(x)P



0

(x) d�



(x) = 

�

q

2

hexp(tA)�



q

; �



0

i

= 

�

q

2

M(exp(tA))

0;q

> 0;

(7.23)

and this proves (i).

(ii) To prove (ii), we onsider the operator

B = A+ 2P

0

;

where P

0

is the projetion onto C �



0

in B

�

L

2

([a; b℄; �



)

�

. Then

M(B) =

0

B

B

B

B

B

B

B

�

+ 2

p

 0

p

 + 1

p



p

 + 1

p



.

.

.

.

.

.

.

.

.

0

1

C

C

C

C

C

C

C

A

; (7.24)

so as above, we get that

M(exp(tB))

jk

> 0; for all j; k in N

0

: (7.25)

Let U be the unitary operator on L

2

([a; b℄; �



), de�ned by the equation:

U�



q

= (�1)

q

�



q

; (q 2 N

0

):
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Then

M(UBU

�

) =

0

B

B

B

B

B

B

B

�

+ 2 �

p

 0

�

p

 + 1 �

p



�

p

 + 1 �

p



.

.

.

.

.

.

.

.

.

0

1

C

C

C

C

C

C

C

A

=M(2(+ 1)1

1

1�A):

Hene A = 2(+ 1)1

1

1� UBU

�

, and for t in [0;1[, we have thus that

exp(�tA) = exp(�2(+ 1)t) exp(tUBU

�

) = exp(�2(+ 1)t)U exp(tB)U

�

:

Therefore,

M(exp(�tA))

jk

= (�1)

j+k

exp(�2(+ 1)t)M(exp(tB))

jk

; (j; k 2 N

0

);

(7.26)

so in partiular, by (7.25),

(�1)

j+k

M(exp(�tA))

jk

> 0; (j; k 2 N

0

):

For t in [0;1[, we note here that

 



q

(�t) = 

�q

Z

b

a

exp(�tx)P



q

(x)P



0

(x) d�



(x) = 

�

q

2

M(exp(�tA))

q0

; (7.27)

and hene it follows that (�1)

q

 

q

(�t) > 0, whih proves (ii).

To prove (iii), we need the following tehnial lemma:

7.6 Lemma. Let C and D be bounded positive selfadjoint operators on `

2

(N

0

),

and assume that the orresponding matries (

jk

)

j;k2N

0

and (d

jk

)

j;k2N

0

satisfy

the following onditions:

(a) 

jk

� 0 for all j; k in N

0

.

(b) 

jk

= 0 when jj � kj � 2.

() d

jk

= 

jk

, when (j; k) 6= (0; 0).

(d) d

00

� 

00

.

For ';  in `

2

(N

0

), we de�ne

[';  ℄

j;k

= '(j) (k) � '(k) (j); (j; k 2 N

0

):

Consider then furthermore f; g from `

2

(N

0

), satisfying that

(e) f(k) � 0 and g(k) � 0 for all k in N

0

.

(f) [f; g℄

j;k

� 0, for all k; j in N

0

suh that k > j.

Then for all j; k in N

0

, suh that k > j, we have that

(i) [Cf;Cg℄

j;k

� 0.

(ii) [Df;Cg℄

j;k

� 0.

(iii) [D

n

f; C

n

g℄

j;k

� 0, for all n in N.

(iv) [exp(tD)f; exp(tC)g℄

j;k

� 0, for all t in [0;1[.
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7.7 Remark. If ';  are stritly positive funtions in `

2

(N

0

), then the state-

ment

[';  ℄

j;k

� 0; for all j; k in N

0

; suh that k > j;

is equivalent to the ondition that

'(0)

 (0)

�

'(1)

 (1)

�

'(2)

 (2)

� � � � : �

Proof of Lemma 7.6. Note �rst that for any ';  in `

2

(N

0

) and j; k in N

0

, we

have that [';  ℄

j;k

= �[';  ℄

k;j

. In partiular,

[';  ℄

j;j

= 0; (';  2 `

2

(N

0

); j 2 N

0

): (7.28)

Note also that the positivity of C implies that

det

�



jj



jk



kj



kk

�

� 0; for all j; k in N

0

, suh that j 6= k: (7.29)

To prove (i), onsider k; j in N

0

, suh that k > j � 0. We then have

�

Cf

�

(j) =

(



j;j�1

f(j � 1) + 

j;j

f(j) + 

j;j+1

f(j + 1); if j � 1;



0;0

f(0) + 

0;1

f(1); if j = 0;

and sine k 6= 0,

�

Cg

�

(k) = 

k;k�1

g(k � 1) + 

k;k

g(k) + 

k;k+1

g(k + 1):

Thus,

[Cf;Cg℄

j;k

=

(

P

j+1

l=j�1

P

k+1

m=k�1



jl



km

[f; g℄

l;m

; if j � 1;

P

1

l=0

P

k+1

m=k�1



0l



km

[f; g℄

l;m

; if j = 0:

Assume �rst that k � j + 2. In this ase, l � j + 1 � k � 1 � m, for all terms

in the above sums, and thus, by (f) and (7.28), [f; g℄

l;m

� 0. Sine 

lm

� 0 for

all l;m in N

0

(by (a)), it follows thus that [Cf;Cg℄

j;k

� 0.

Assume next that k = j + 1, and onsider �rst the ase j � 1. Then

[Cf;Cg℄

j;k

=

j+1

X

l=j�1

j+2

X

m=j



jl



j+1;m

[f; g℄

l;m

: (7.30)

In 8 of the 9 terms in the sum above, l � m, and hene [f; g℄

l;m

� 0. Only in

the ase (l;m) = (j + 1; j), do we have l > m. However, the sum of the two

terms orresponding to (l;m) = (j; j+1) and (l;m) = (j+1; j) is non-negative,

sine



jj



j+1;j+1

[f; g℄

j;j+1

+ 

j;j+1



j+1;j

[f; g℄

j+1;j

= (

jj



j+1;j+1

� 

j;j+1



j+1;j

)[f; g℄

j;j+1

;
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whih is non-negative by (7.29). Sine the remaining 7 terms in the sum on the

right hand side of (7.30) are also non-negative, it follows that [Cf;Cg℄

j;k

� 0.

If j = 0, and k = j + 1 = 1, the same argument an be used to show that

[Cf;Cg℄

0;1

=

1

X

l=0

2

X

m=0



0l



1m

[f; g℄

l;m

� 0:

This proves (i).

To prove (ii), note �rst that by (a) and (), we have

�

Df

�

(j) =

�

Cf

�

(j); if j � 1;

and

�

Df

�

(0) =

�

Cf

�

(0) + (d

00

� 

00

)f(0):

Hene, if k > j � 1, we get from (i), that

[Df;Cg℄

j;k

= [Cf;Cg℄

j;k

� 0:

If k > j = 0, then

[Df;Cg℄

0;k

=

�

Df

�

(0)

�

Cg

�

(k)�

�

Df

�

(k)

�

Cg

�

(0)

= [Cf;Cg℄

0;k

+ (d

00

� 

00

)f(0)(Cg)(k):

But (d

00

�

00

)f(0) � 0 by (d) and (e), and sine also (Cg)(k) =

P

1

l=0



kl

g(l) �

0, by (a) and (e), it follows by (i), that also [Df;Cg℄

0;k

� 0. This proves (ii).

Next, (iii) follows from (ii) and indution on n, and from noting (by indution),

that (D

n

f)(j); (C

n

g)(j) � 0 for all n in N and j in N

0

.

To prove (iv), we let t be a �xed number in [0;1[, and put

C

n

= 1

1

1 +

t

n

C; and D

n

= 1

1

1 +

t

n

D; (n 2 N

0

):

Then, for all n, C

n

and D

n

are positive selfadjoint operators on `

2

(N

0

), whih

also satisfy the requirements (a)-(d). Hene, if f; g 2 `

2

(N

0

) whih satisfy (e)

and (f), we onlude from (iii), that

��

1

1

1 +

t

n

D

�

n

f;

�

1

1

1 +

t

n

C

�

n

g

�

j;k

� 0; when j > k;

and hene, letting n!1, we get that

�

exp(tD)f; exp(tC)g

�

j;k

� 0; when j > k;

as desired. �

End of Proof of Proposition 7.5. Only (iii) in Proposition 7.5 remains to be

proved. Let A;B from B

�

L

2

([a; b℄; �



)

�

be as in the �rst part of the proof of

Proposition 7.5. Sine A is the multipliation operator assoiated to a positive

funtion on [a; b℄, and sine B � A, both A and B are positive selfadjoint
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operators on L

2

([a; b℄; �



). Let C and D be the operators in B

�

`

2

(N

0

)

�

orre-

sponding to A and B respetively, via the natural Hilbert spae isomorphism

between L

2

([a; b℄; �



) and `

2

(N

0

), given by the orthonormal basis (�



q

)

q2N

0

for

L

2

([a; b℄; �



). Then C andD are positive selfadjoint operators and by (7.22) and

(7.24), they satisfy the onditions (a)-(d) of Lemma 7.6. Now, let both f and g

be the �rst basis vetor in the natural basis for `

2

(N

0

) (i.e., f(k) = g(k) = Æ

k;0

for all k in N

0

). Then (e),(f) of Lemma 7.6 are also satis�ed, and hene we

obtain from (iv) of that lemma, that for all j; k in N

0

suh that k > j,

�

exp(tD)f

�

(j)

�

exp(tC)f

�

(k)�

�

exp(tD)f

�

(k)

�

exp(tC)f

�

(j) � 0;

i.e.,




exp(tB)�



0

; �



j

�

�




exp(tA)�



0

; �



k

�

�




exp(tB)�



0

; �



k

�

�




exp(tA)�



0

; �



j

�

:

For j = 0, we get in partiular,

M(exp(tB))

k;0

M(exp(tA))

k;0

�

M(exp(tB))

0;0

M(exp(tA))

0;0

; (k 2 N

0

): (7.31)

Note here, that by (7.26),

(�1)

k

M(exp(�tA))

k;0

= exp(�2(+ 1)t)M(exp(tB))

k;0

> 0; (k 2 N

0

):

Inserting this in (7.31), it follows that

(�1)

k

M(exp(�tA))

k;0

M(exp(tA))

k;0

�

M(exp(�tA))

0;0

M(exp(tA))

0;0

; (k 2 N

0

): (7.32)

By (7.23) and (7.27),

M(exp(�tA))

k;0

= 

�

k

2

Z

b

a

exp(�tx)P



k

(x) d�



(x) = 

k

2

 



k

(�t); (k 2 N

0

):

Hene, (iii) in Proposition 7.5 follows from (7.32). �

7.8 Theorem. Let H and K be Hilbert spaes, and let a

1

; : : : ; a

r

be elements

of B(H;K) suh that

P

r

i=1

a

�

i

a

i

= 1

1

1

B(H)

, and

P

r

i=1

a

i

a

�

i

= 1

1

1

B(K)

, for some

onstant  in [1;1[. Consider furthermore independent elements Y

1

; : : : ; Y

r

of

GRM(n; n;

1

n

), and put S =

P

r

i=1

a

i


 Y

i

. Then for any t in [0;

n

2

℄,

E

�

exp(�tS

�

S)

�

� exp

�

� (

p

� 1)

2

t+ (+ 1)

2

�

t

2

n

�

� 1

1

1

B(H

n

)

: (7.33)

Proof. Consider a �xed t in [0;

n

2

℄. By Proposition 7.4 and Proposition 7.5 we

then have





E

�

exp(�tS

�

S)

�





�

1

X

q=0

j 



q

(�t)j �





E

�

P



q

(S

�

S)

�





�

 



0

(�t)

 



0

(t)

1

X

q=0

 



q

(t)





E

�

P



q

(S

�

S)

�





:

(7.34)
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From (7.16) in the proof of Proposition 7.4, we have here that

1

X

q=0

 



q

(t) �





E

�

P



q

(S

�

S)

�





�

1

X

p=0

1

p!

�

t

n

�

p

X

�2S

p

n

k(�̂)

�

n



�

l(�̂)�1

�

1

X

p=0

1

p!

�

t

n

�

p

X

k;l2N

k+l�p+1

Æ(p; k; l)n

k

�

n



�

l�1

;

where Æ(p; k; l) was introdued in (3.6). Applying now Lemma 3.6, we get for

t in [0;

n

2

℄, that

1

X

q=0

 



q

(t) �





E

�

P



q

(S

�

S)

�





� exp

�

(n+

n



)(

t

n

)

2

�

Z

b

a

exp

�

n



(

t

n

x)

�

d�



(x)

� exp

�

(+ 1)

2

�

t

2

n

�

Z

b

a

exp(tx) d�



(x):

Note here, that  



0

(t) =

R

b

a

exp(tx) d�



(x), and hene we get by (7.34), that





E

�

exp(�tS

�

S)

�





� exp

�

(+ 1)

2

�

t

2

n

�

 



0

(�t)

= exp

�

(+ 1)

2

�

t

2

n

�

Z

b

a

exp(�tx) d�



(x):

But exp(�tx) � exp(�ta) = exp(�t(

p

 + 1)

2

) for all x in [a; b℄, and hene it

follows that





E

�

exp(�tS

�

S)

�





� exp

�

(+ 1)

2

�

t

2

n

�

exp(�(

p

� 1)

2

t); (t 2 [0;

n

2

℄):

This proves (7.33). �

7.9 Remark. By appliation of the method of Remark 3.7, it is easy to extend

Theorem 7.8, to the ase where

r

X

i=1

a

�

i

a

i

= 1

1

1

B(H)

; and

r

X

i=1

a

i

a

�

i

= d1

1

1

B(K)

;

for onstants ; d suh that  � d > 0. In this ase, one obtains that for t in

[0;

n

2

℄,

E

�

exp(�tS

�

S)

�

� exp

�

� (

p

�

p

d)

2

t+ (+ d)

2

�

t

2

n

�

� 1

1

1

B(H

n

)

: �
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8 Asymptoti Lower Bound on the Spetrum of S

�

n

S

n

in the Exat

Case

Let H and K be Hilbert spaes, and onsider elements a

1

; : : : ; a

r

of B(H;K).

Let A denote the C

�

-subalgebra of B(H), generated by the family

�

a

�

i

a

j

�

�

i; j 2

f1; 2; : : : ; rg

	

. Consider furthermore, for eah n in N, independent elements

Y

(n)

1

; : : : ; Y

(n)

r

of GRM(n; n;

1

n

), and de�ne

S

n

=

r

X

i=1

a

i


 Y

(n)

i

; (n 2 N): (8.1)

In this setion, we shall determine (almost surely), the asymptoti behavior of

the smallest element of the spetrum of S

�

n

S

n

, under the assumptions that A

is an exat C

�

-algebra and that a

1

; : : : ; a

r

satisfy the ondition

r

X

i=1

a

�

i

a

i

= 1

1

1

B(H)

and

r

X

i=1

a

i

a

�

i

� 1

1

1

B(K)

; (8.2)

for some onstant  in [1;1[. We start, however, by onsidering the simpler

ase, where, instead of (8.2), a

1

; : : : ; a

r

, satisfy the stronger ondition

r

X

i=1

a

�

i

a

i

= 1

1

1

B(H)

and

r

X

i=1

a

i

a

�

i

= 1

1

1

B(K)

; (8.3)

for some onstant  in [1;1[. One this simpler ase has been handled, we

obtain the more general ase by virtue of a dilation result.

As in Setion 4, we determine �rst the asymptoti behavior of the smallest

eigenvalue of V

n

, where

V

n

=

�

�
 id

n

�

(S

�

n

S

n

); (n 2 N); (8.4)

and �: A !M

d

(C ) is a ompletely positive mapping, for some d in N.

8.1 Lemma. Let S

n

, n 2 N, and V

n

, n 2 N, be as in (8.1) and (8.4), and

assume that a

1

; : : : ; a

r

satisfy the ondition (8.3). Let �

min

(V

n

) denote the

smallest eigenvalue of V

n

(onsidered as an element of M

dn

(C )). Then for any

� in ℄0;1[, we have that

1

X

n=1

P

�

�

min

(V

n

) � (

p

� 1)

2

� �

�

<1:

Proof. The proof is basially the same as the proof of Lemma 4.2; the main

di�erene being that in this proof we apply Theorem 7.8 instead of Theorem 3.3.

Consequently, we shall not repeat all details in this proof.
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For �xed n in N, and arbitrary t in ℄0;1[, we �nd that

P

�

�

min

(V

n

) � (

p

� 1)

2

� �

�

= P

�

exp

�

� t�

min

(V

n

) + t(

p

� 1)

2

� t�

�

� 1

�

� exp(t(

p

� 1)

2

� t�) � E

�

exp

�

� t�

min

(V

n

)

��

� exp(t(

p

� 1)

2

� t�) � E ÆTr

dn

�

exp(�tV

n

)

�

:

(8.5)

By appliation of Lemma 4.1(ii), we have here, that

tr

dn

�

exp(�tV

n

)

�

= tr

dn

�

exp

�

� t(�
 id

n

)(S

�

n

S

n

)

��

� tr

dn

��

�
 id

n

�

(exp(�tS

�

n

S

n

))

�

= tr

d


 tr

n

��

�
 id

n

�

(exp(�tS

�

n

S

n

))

�

= �
 tr

n

�

exp(�tS

�

n

S

n

)

�

;

(8.6)

where � is the state tr

d

Æ � on A. It follows here from De�nition 3.1 and

Theorem 7.8, that

E

�

�
 tr

n

�

exp(�tS

�

n

S

n

)

��

= �
 tr

n

�

E

�

exp(�tS

�

n

S

n

)

��

� exp

�

� t(

p

� 1)

2

+

t

2

n

(+ 1)

2

�

;

(8.7)

for all t in ℄0;

n

2

℄. Combining now (8.5)-(8.7), it follows that for all t in ℄0;

n

2

℄,

P

�

�

min

(V

n

) �(

p

� 1)

2

� �

�

� dn � exp(t(

p

� 1)

2

� t�) � exp

�

� t(

p

� 1)

2

+

t

2

n

(+ 1)

2

�

= dn � exp

�

t(

t

n

(+ 1)

2

� �)

�

:

From here, the proof is onluded exatly as the proof of Theorem 4.2. �

8.2 Proposition. Let S

n

, n 2 N, and V

n

, n 2 N, be as in (8.1) and (8.4), and

assume that a

1

; : : : ; a

r

satisfy the ondition (8.3). We then have

lim inf

n!1

�

min

(V

n

) �

�

p

� 1

�

2

; almost surely:

Proof. By Lemma 4.2 and the Borel-Cantelli Lemma (f. [Bre, Lemma 3.14℄),

we have for any � from ℄0;1[, that

P

�

�

min

(V

n

) � (

p

� 1)

2

� �; for all but �nitely many n

�

= 1;

and from this the proposition follows readily. �

The next two lemmas enable us to pass from the situation onsidered in Propo-

sition 8.2 to the more general situation, where it is only assumed that a

1

; : : : ; a

r

satisfy (8.2).
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8.3 Lemma. Let  be a number in [1;1[, and put q = 2+[℄, where [℄ denotes

the integer part of . Then there exist elements x

1

; : : : ; x

q

in the Cuntz algebra

O

2

, suh that

q

X

i=1

x

�

i

x

i

= 1

1

1

O

2

; and

q

X

i=1

x

i

x

�

i

= 1

1

1

O

2

:

Proof. Reall that O

2

is the unital C

�

-algebra C

�

(s

1

; s

2

) generated by two

operators s

1

; s

2

satisfying that s

�

i

s

j

= Æ

i;j

1

1

1

O

2

, i; j 2 f1; 2g, and that s

1

s

�

1

+

s

2

s

�

2

= 1

1

1

O

2

. De�ne then t

1

; : : : ; t

q�1

in O

2

, by the expression

t

j

=

(

s

j�1

2

s

1

; if j 2 f1; 2; : : : ; q � 2g;

s

q�2

2

; if j = q � 1:

Then t

�

i

t

j

= Æ

i;j

1

1

1

O

2

, for all i; j in f1; 2; : : : ; q � 1g, and

q�1

X

j=1

t

j

t

�

j

=

q�3

X

i=0

s

i

2

(1

1

1

O

2

� s

2

s

�

2

)(s

i

2

)

�

+ s

q�2

2

(s

q�2

2

)

�

= 1

1

1

O

2

; (8.8)

(i.e., t

1

; : : : ; t

q�1

generates a opy of O

q�1

inside O

2

). De�ne now x

1

; : : : ; x

q

in O

2

, by

x

i

=

8

>

>

<

>

>

:

�

� 1

q � 2

�

1

2

t

i

; if i 2 f1; 2; : : : ; q � 1g

�

q � 1� 

q � 2

�

1

2

1

1

1

O

2

; if i = q:

Then

q

X

i=1

x

�

i

x

i

= (q � 1) �

� 1

q � 2

� 1

1

1

O

2

+

q � 1� 

q � 2

� 1

1

1

O

2

= 1

1

1

O

2

;

and by (8.8),

q

X

i=1

x

i

x

�

i

=

� 1

q � 2

� 1

1

1

O

2

+

q � 1� 

q � 2

� 1

1

1

O

2

= 1

1

1

O

2

:

Thus, x

1

; : : : ; x

q

have the desired properties. �

8.4 Lemma. Let H and K be Hilbert spaes, and let a

1

; : : : ; a

r

be elements of

B(H;K), suh that

P

r

i=1

a

�

i

a

i

= 1

1

1

B(H)

, and

P

r

i=1

a

i

a

�

i

� 1

1

1

B(K)

.

Then there exist Hilbert spaes

~

H;

~

K, s in fr; r + 1; r + 2; : : : g and elements

~a

1

; : : : ; ~a

s

of B(

~

H;

~

K), suh that the following onditions hold:

(i)

~

H � H and

~

K � K.

(ii) ~a

i

jH

=

(

a

i

; if 1 � i � r;

0; if r + 1 � i � s:

(iii)

P

s

i=1

~a

�

i

~a

i

= 1

1

1

B(

~

H)

and

P

s

i=1

~a

i

~a

�

i

= 1

1

1

B(

~

K)

.

Doumenta Mathematia 4 (1999) 341{450



Random Matries and K-Theory : : : 431

Proof. By Lemma 8.3, we may hoose �nitely many elements x

1

; : : : ; x

q

of the

Cuntz algebra O

2

, suh that

P

q

i=1

x

�

i

x

i

= 1

1

1

O

2

and

P

q

i=1

x

i

x

�

i

= 1

1

1

O

2

. We

assume that O

2

is represented on some Hilbert spae L, so that x

1

; : : : ; x

r

2

B(L). De�ne then

~

H = (H
 L)� (K 
L) and

~

K = (K 
L)� (H
L):

For Hilbert spaes V ;W , an element v of B(V ;W), and an element y of B(L),

we onsider v 
 y as an element of B(V 
 L;W 
 L) in the natural manner.

Moreover, given v

11

in B(H 
 L;K 
 L), v

12

in B(K 
 L), v

21

in B(H 
 L)

and v

22

in B(K 
 L;H 
 L), we shall onsider the matrix (v

ij

)

1�i;j�1

as an

element of B(

~

H;

~

K) in the usual way. With these onventions, onsider now the

following elements of B(

~

H;

~

K),

~a

i

=

�

a

i


 1

1

1

B(L)

0

0 0

�

; (i 2 f1; 2; : : : ; rg);

b

j

=

�

0 (1

1

1

B(K)

�

P

r

i=1

a

i

a

�

i

)

1

2


 x

j

0 0

�

; (j 2 f1; 2; : : : ; qg);



i;j;k

=

�

0 0

0

1

p



� a

�

i


 (x

j

x

k

)

�

; (i 2 f1; 2; : : : ; rg; j; k 2 f1; 2; : : : ; qg):

It follows then by diret alulation, that

r

X

i=1

~a

�

i

~a

i

+

q

X

j=1

b

�

j

b

j

+

r

X

i=1

q

X

j;k=1



�

i;j;k



i;j;k

=

�
�

P

r

i=1

a

�

i

a

i

�


 1

1

1

B(L)

0

0

�

(1

1

1

B(K)

�

P

r

i=1

a

i

a

�

i

) + 

P

r

i=1

a

i

a

�

i

�


 1

1

1

B(L)

�

= 1

1

1

B(

~

H)

;

and that

r

X

i=1

~a

i

~a

�

i

+

q

X

j=1

b

j

b

�

j

+

r

X

i=1

q

X

j;k=1



i;j;k



�

i;j;k

=

�
�

P

r

i=1

a

i

a

�

i

+ (1

1

1

B(K)

�

P

r

i=1

a

i

a

�

i

)

�


 1

1

1

B(L)

0

0

�

1



P

r

i=1

a

�

i

a

i

�


 1

1

1

B(L)

�

= 1

1

1

B(

~

K)

:

Thus, if we put s = r + q + rq

2

, and let ~a

r+1

; ~a

r+2

; : : : ; ~a

s

, be new names for

the elements in the set fb

j

j j 2 f1; : : : ; qgg [ f

i;j;k

j i 2 f1; : : : ; rg; j; k 2

f1; : : : ; qgg, then it follows that ~a

1

; ~a

2

; : : : ; ~a

s

satisfy ondition (iii).
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Choosing a �xed unit vetor � in L, we have natural embeddings �

H

: H !

~

H

and �

K

: K !

~

K given by the equations

�

H

(h) = (h
 �)� 0; (h 2 H);

�

K

(k) = (k 
 �)� 0; (k 2 K):

This justi�es (i), and moreover, it is straightforward to hek, that under the

identi�ations of H with �

H

(H) and K with �

K

(K), ondition (ii) is satis�ed.

This onludes the proof. �

8.5 Proposition. Let S

n

, n 2 N, and V

n

, n 2 N, be as in (8.1) and (8.4), and

assume now that a

1

; : : : ; a

r

satisfy the ondition (8.2). Then

lim inf

n!1

�

min

(V

n

) �

�

p

� 1

�

2

; almost surely:

Proof. By Lemma 8.4, we may hoose Hilbert spaes

~

H;

~

K, s in fr; r +

1; : : : ; g and elements ~a

1

; ~a

2

; : : : ; ~a

s

of B(H;K), suh that onditions (i)-(iii)

of Lemma 8.4 are satis�ed. If r < s, then for eah n in N we hoose additional

elements Y

(n)

r+1

; : : : ; Y

(n)

s

of GRM(n; n;

1

n

), suh that Y

(n)

1

; Y

(n)

2

; : : : ; Y

(n)

s

are

independent. We then de�ne

~

S

n

=

s

X

i=1

~a

i


 Y

(n)

i

; (n 2 N):

Reall from (8.4), that

V

n

=

�

�
 id

n

�

(S

�

n

S

n

); (n 2 N);

where �: A !M

d

(C ) is a ompletely positive mapping from the C

�

-subalgebra

A of B(H) generated by fa

�

i

a

j

j i; j 2 f1; 2; : : : ; rgg, into the matrix algebra

M

d

(C ). By [Pa, Theorem 5.2℄, there exists a ompletely positive mapping

�

1

: B(H)!M

d

(C ) extending �. Note that sine � is unital, so is �

1

.

Consider next the orthogonal projetion P

H

of

~

H onto H. Then the mapping

C

P

H

: b 7! P

H

bP

H

: B(

~

H)! P

H

B(

~

H)P

H

' B(H);

is unital ompletely positive. Hene, so is the mapping �

2

: B(

~

H) ! M

d

(C ),

given by

�

2

(b) = �

1

(P

H

bP

H

) = �

1

Æ C

P

H

(b); (b 2 B(

~

H)):

Thus, if we de�ne

~

V

n

=

�

�

2

Æ id

n

)(

~

S

�

n

~

S

n

); (n 2 N);

then it follows from Lemma 8.4(iii) and Proposition 8.2, that

lim inf

n!1

�

min

(

~

V

n

) �

�

p

� 1

�

2

; almost surely: (8.9)
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However, by Lemma 8.4(ii), we have here that

~

V

n

=

�

�

2


 id

n

�

h

s

X

i;j=1

~a

�

i

~a

j




�

Y

(n)

i

�

�

Y

(n)

j

i

=

s

X

i;j=1

�

2

�

~a

�

i

~a

j

�




�

Y

(n)

i

�

�

Y

(n)

j

=

s

X

i;j=1

�

1

�

P

H

~a

�

i

~a

j

P

H

�




�

Y

(n)

i

�

�

Y

(n)

j

=

r

X

i;j=1

�

1

(a

�

i

a

j

)


�

Y

(n)

i

�

�

Y

(n)

j

=

r

X

i;j=1

�(a

�

i

a

j

)


�

Y

(n)

i

�

�

Y

(n)

j

= V

n

:

Therefore (8.9) yields the desired onlusion. �

It remains now to show that we an replae V

n

in Proposition 8.5 by S

�

n

S

n

itself. Before proeeding with this task, we draw attention to the following

simple observation:

8.6 Lemma. For eah n in N, let B

n

be a unital C

�

-algebra, and let b

n

be

an element of B

n

. Then for any R in [0;1[, the following two onditions are

equivalent:

(i) lim sup

n!1

kb

n

k � R.

(ii) lim sup

n!1

max(sp(b

n

)) � R, and lim inf

n!1

min(sp(b

n

)) � �R.

Proof. This is lear, sine, for eah n, kb

n

k is the largest of the two numbers

max(sp(b

n

)) and �min(sp(b

n

)). �

8.7 Theorem. Let a

1

; : : : ; a

r

be elements of B(H;K), suh that

P

r

i=1

a

�

i

a

i

=

1

1

1

B(H)

and

P

r

i=1

a

i

a

�

i

� 1

1

1

B(K)

, for some onstant  in [1;1[. Assume, in ad-

dition, that the unital C

�

-subalgebra A of B(H), generated by the set fa

�

i

a

j

j

i; j;2 f1; 2; : : : ; rgg, is exat. Consider furthermore, for eah n in N, indepen-

dent elements Y

(n)

1

; : : : ; Y

(n)

r

of GRM(n; n;

1

n

), and put S

n

=

P

r

i=1

a

i


 Y

(n)

i

,

n 2 N. We then have

lim inf

n!1

min

�

sp(S

�

n

S

n

)

�

� (

p

� 1)

2

; almost surely: (8.10)

Proof. Put E = spanfa

�

i

a

j

j i; j 2 f1; 2; : : : ; rgg, and note that x

�

2 E for

all x in E, and that 1

1

1

A

= 

�1

P

r

i=1

a

�

i

a

i

2 E. Thus, E is a �nite dimensional

operator system, and sine A is exat, it follows thus from Proposition 4.4,

that for any � from ℄0;1[, there exist d in N and a unital ompletely positive

mapping �: A ! M

d

(C ), suh that





�

�
 id

n

�

(x)





� (1� �)kxk; (n 2 N; x 2M

n

(E)): (8.11)

Consider now a �xed � from ℄0;1[, let d, � be as desribed above, and de�ne

V

n

=

�

�
 id

n

�

(S

�

n

S

n

); (n 2 N):
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Reall then from Proposition 4.3 and Proposition 8.5, that

lim sup

n!1

max

�

sp(V

n

)

�

� + 1 + 2

p

; almost surely;

lim inf

n!1

min

�

sp(V

n

)

�

� + 1� 2

p

; almost surely;

and hene that

lim sup

n!1

max

�

sp

�

V

n

� (+ 1)1

1

1

dn

��

� 2

p

; almost surely;

lim inf

n!1

min

�

sp

�

V

n

� (+ 1)1

1

1

dn

��

� �2

p

; almost surely:

By Lemma 8.6, this means that

lim sup

n!1





V

n

� (+ 1)1

1

1

dn





� 2

p

; almost surely: (8.12)

Note here, that sine S

�

n

S

n

� ( + 1)1

1

1

A
M

n

(C)

2 M

n

(E), for all n, it follows

from (8.11), that





S

�

n

S

n

� (+ 1)1

1

1

A
M

n

(C)





� (1� �)

�1





�

�
 id

n

��

S

�

n

S

n

� (+ 1)1

1

1

A
M

n

(C)

�





= (1� �)

�1





V

n

� (+ 1)1

1

1

dn





;

for all n in N. Hene (8.12) implies that

lim sup

n!1





S

�

n

S

n

� (+ 1)1

1

1

A
M

n

(C)





� (1� �)

�1

� 2

p

; almost surely:

Sine this holds for arbitrary � from ℄0;1[, it follows that atually

lim sup

n!1





S

�

n

S

n

� (+ 1)1

1

1

A
M

n

(C)





� 2

p

; almost surely:

By Lemma 8.6, this implies, in partiular, that

lim inf

n!1

min

�

sp(S

�

n

S

n

)� (+ 1)

�

� �2

p

; almost surely;

and this proves (8.10). �

8.8 Remark. As for the upper bound (f. Setion 4), Theorem 8.7 does not, in

general, hold without the ondition, that the C

�

-algebra generated by fa

�

i

a

j

j

1 � i; j � rg be exat. In fat, for any  in ℄1;1[, it is possible to hoose

a �nite set of elements a

1

; : : : ; a

r

of B(H), for an in�nite dimensional Hilbert

spae H, suh that

r

X

i=1

a

�

i

a

i

= 1

1

1

B(H)

and

r

X

i=1

a

i

a

�

i

= 1

1

1

B(H)

;
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but at the same time

P

�

0 2 sp(S

�

n

S

n

); for all but �nitely many n

�

= 1;

where S

n

=

P

r

i=1

a

i


 Y

(n)

i

, as in (8.1). The proof of this is, however, muh

more ompliated than the orresponding proof of the possible violation for the

upper bound (f. Proposition 4.9(ii)), and it will be presented elsewhere. �

9 Comparison of Projetions in Exat C

�

-algebras and states on

the K

0

-group

In [Haa℄, the �rst named author proved that quasitraes on exat, unital C

�

-

algebras are traes. This result implies the following two theorems

9.1 Theorem. (f. [Han℄, [Haa℄) If A is an exat, unital, stably �nite C

�

-

algebra, then A has a traial state.

9.2 Theorem. (f. [BR, Corollary 3.4℄) If A is an exat, unital C

�

-

algebra, then every state on K

0

(A) omes from a traial state on A.

The proof given in [Haa℄ of the fat that quasitraes in exat unital C

�

-algebras

are traes, is based on an ultra-produt argument, involving ultra produts of

�nite AW

�

-algebras. The aim of this setion is to show that Theorem 9.1 and

Theorem 9.2 an be obtained from the random matrix results of the previous

setions, without appealing to results on quasitraes and AW

�

-algebras.

We start by reapturing some of the standard notions and notation in

onnetion with omparison theory for projetions in C

�

-algebras (see e.g.

[Bl1℄,[Bl2℄,[Cu℄ and [Go2℄). For a C

�

-algebra A, we put

M

1

(A) =

[

n2N

M

n

(A);

where elements are identi�ed via the (non-unital) embeddings M

n

(A) ,!

M

n+1

(A), given by addition of a row and a olumn of zeroes. Given two

projetions p; q in M

1

(A), we say, as usual, that p and q are (Murray-von

Neumann) equivalent, and write p � q, if there exists a u in M

1

(A), suh that

u

�

u = p and uu

�

= q. We let V (A) denote the set of equivalene lasses hpi

of projetions p in M

1

(A), w.r.t. Murray-von Neumann equivalene, and we

equip V (A) with an order struture and an addition, as follows: For proje-

tions p; q in M

1

(A), we write hqi � hpi if q � p, i.e., if q is equivalent to a

sub-projetion of p. Moreover, we de�ne hpi+hqi to be hp

0

+q

0

i, where p

0

; q

0

are

projetions in M

1

(A), satisfying that p

0

� p, q

0

� q and p

0

? q

0

. Finally, for k

in N, we let khpi denote the equivalene lass hpi+ � � �+ hpi (k summands).

Reall that for a unital C

�

-algebra A, K

0

(A) is the additive group obtained

from the semi group V (A), via the Grothendiek onstrution (f. [Bl1℄), and
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that K

0

(A)

+

denotes the range of V (A) under the natural map

� : V (A)! K

0

(A):

In partiular, we have that K

0

(A) = K

0

(A)

+

�K

0

(A)

+

.

For a projetion p in M

1

(A), we put

[p℄ = �(hpi):

Note then, that for projetions p; q in M

1

(A), [p℄ = [q℄ if and only if there

exists a projetion r in M

1

(A), suh that hpi+ hri = hqi+ hri.

The four lemmas 9.3-9.6 below are well known and easy, but sine we have not

been able to �nd preise referenes in the literature, we have inluded proofs

of these lemmas.

9.3 Lemma. Let A be a C

�

-algebra, and let p; q be projetions in A. Then

with I(p) the ideal in A generated by p, the following three onditions are

equivalent:

(i) hqi � khpi, for some k in N.

(ii) q 2 I(p).

(iii) q 2 I(p).

Proof. (i) ) (ii) : Assume that (i) holds, i.e., that there exists k in N and u in

M

k

(A), suh that

u

�

u =

�

q 0

0 0

�

and uu

�

�

0

B

�

p 0

.

.

.

0 p

1

C

A

:

This implies that u is of the form

u =

0

B

�

u

11

0 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

u

k1

0 � � � 0

1

C

A

;

where u

11

; u

21

; : : : ; u

k1

2 pAq. It follows thus, that

q =

k

X

j=1

u

�

j1

u

j1

=

k

X

j=1

u

�

j1

pu

j1

2 I(p);

as desired.

(ii) ) (iii) : This is trivial.

(iii) ) (i) : Assume that (iii) holds. Then there exist k in N and a

1

; : : : ; a

k

,

b

1

; : : : ; b

k

in A, suh that







k

X

j=1

a

j

pb

j

� q







< 1: (9.1)
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Thus, by [Go2, 10.7℄,

�

q 0

0 0

�

�

0

B

�

p 0

.

.

.

0 p

1

C

A

in M

k

(A);

i.e., hqi � khpi. �

9.4 Lemma. Let M be a von Neumann algebra, and let p be a projetion in

M. Then any �-weakly lower semi-ontinuous trae

� :

�

pMp

�

+

! [0;1℄;

has an extension to a �-weakly lower semi-ontinuous trae ~� on M

+

.

Proof. We an assume that p 6= 0. Choose then a maximal family (p

i

)

i2I

of

pairwise orthogonal projetions in M, suh that p

i

� p for all i in I . Then, by

standard omparison theory, it follows that

X

i2I

p

i

= (p);

where (p) denotes the entral support of p in M. Choose next, for eah i in

I , a partial isometry v

i

in M, suh that

v

�

i

v

i

= p

i

and v

i

v

�

i

� p; (i 2 I):

De�ne then ~� : M

+

! [0;1℄, by the equation

~� (a) =

X

i2I

�(v

i

av

�

i

); (a 2 M

+

):

Clearly ~� is additive, homogeneous and �-weakly lower semi-ontinuous. To

show that ~� has the trae property, note �rst that sine pv

i

= v

i

for all i, we

have also that (p)v

i

= v

i

for all i. Sine (p) is in the enter of M, it follows

thus, that for any x in M,

~�(xx

�

) =

X

i2I

�

�

v

i

xx

�

v

�

i

�

=

X

i2I

�

�

(p)v

i

xx

�

v

�

i

�

=

X

i2I

�

�

v

i

x(p)x

�

v

�

i

�

=

X

i2I

X

j2I

�

�

(v

i

xv

�

j

)(v

j

x

�

v

�

i

)

�

;

and similarly

~� (x

�

x) =

X

j2I

X

i2I

�

�

(v

j

x

�

v

�

i

)(v

i

xv

�

j

)

�

:

But by the trae property of � on pMp, we have that

�

�

(v

i

xv

�

j

)(v

j

x

�

v

�

i

)

�

= �

�

(v

j

x

�

v

�

i

)(v

i

xv

�

j

)

�

;
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for all i; j, and sine all the terms in the above sums are positive, we an

permute their order without hanging the sums, and thus obtain

~� (xx

�

) = ~� (x

�

x):

Taken together, we have veri�ed that ~� is a �-weakly lower semi-ontinuous

trae onM

+

, and it remains thus to show that ~� oinides with � on

�

pMp

�

+

.

Given a from

�

pMp

�

+

, we have that v

i

a

1

2

2 pMp, for all i, and therefore

~� (a) =

X

i2I

�

�

(v

i

a

1

2

)(a

1

2

v

�

i

)

�

=

X

i2I

�

�

a

1

2

v

�

i

v

i

a

1

2

�

= �

�

a

1

2

(p)a

1

2

�

= �(a);

as desired. �

9.5 Lemma. Let M be a von Neumann algebra, and let 1

1

1 denote the unit of

M. Let furthermore p; q be projetions in M, that satisfy the following two

onditions:

(i) 1

1

1 2 I(p).

(ii) �(q) � �(p), for any normal, traial state � on M.

Then q � p.

Proof. LetM = eM� (1

1

1� e)M, be the deomposition ofM into a �nite part

eM and a properly in�nite part (1

1

1� e)M, by a entral projetion e. Sine any

normal, traial state onM must vanish on (1

1

1�e)M, ondition (ii) is equivalent

to the ondition

�(eq) � �(ep); for any normal traial state � on eM:

By omparison theory for �nite von Neumann algebras (f. e.g. [KR, Theo-

rem 8.4.3(vii)℄), this ondition implies that

eq � ep in eM; (9.2)

By Lemma 9.3, ondition (i) implies that there exists a k in N, suh that

1

1

1
 e

11

� p
 1

1

1

k

in M

k

(M);

where (e

ij

)

1�i;j�k

are the usual matrix units in M

k

(C ). Therefore, we have

also that

(1

1

1� e)
 e

11

� (1

1

1� e)p
 1

1

1

k

in M

k

((1

1

1� e)M):

At the same time, sine 1

1

1 � e is a properly in�nite projetion in M, we have

that

(1

1

1� e)
 e

11

� (1

1

1� e)
 1

1

1

k

in M

k

((1

1

1� e)M):

It follows thus, that

(1

1

1� e)q
1

1

1

k

� (1

1

1� e)
1

1

1

k

� (1

1

1� e)
 e

11

� (1

1

1� e)p
1

1

1

k

in M

k

((1

1

1� e)M);
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and by [KR, Exerise 6.9.14℄, this implies that

(1

1

1� e)q � (1

1

1� e)p in (1

1

1� e)M: (9.3)

Combining (9.2) and (9.3), it follows that q � p, as desired. �

9.6 Lemma. Let M be a von Neumann algebra, and let p; q be projetions in

M. Then the following two onditions are equivalent

(i) q � p.

(ii) q 2 I(p), and �(q) � �(p) for every �-weakly lower semi-ontinuous trae

� on M

+

.

Proof. Clearly (i) implies (ii). To show that (ii) implies (i), assume that (ii)

holds. By Lemma 9.3 there exists then a k in N, suh that hqi � khpi, i.e., suh

that

q 
 e

11

� q

0

� p
 1

1

1

k

;

for some projetion q

0

in M

k

(M). Consider now the von Neumann algebra

N =M

k

(pMp);

with unit 1

1

1

N

= p
1

1

1

k

. Set p

0

= p
 e

11

. Then p

0

; q

0

are both projetions in N ,

and

1

1

1

N

2 I

N

(p

0

); (9.4)

where I

N

(p

0

) is the ideal in N generated by p

0

.

We show next, that

�(q

0

) � �(p

0

); for any normal, traial state � on N : (9.5)

Indeed, if � is a normal, traial state on N , then by Lemma 9.4, the restrition

�

jN

+

of � to N

+

an be extended to a �-weakly lower semi-ontinuous trae ~�

on M

k

(M)

+

. Then the mapping

a 7! ~� (a
 e

11

); (a 2 M

+

);

is a �-weakly lower semi-ontinuous trae on M

+

, and hene the assumption

(ii) yields that

~� (q 
 e

11

) � ~� (p
 e

11

):

Sine q

0

� q 
 e

11

, p

0

= p
 e

11

and p

0

; q

0

2 N , it follows thus that

�(q

0

) = ~� (q

0

) = ~� (q 
 e

11

) � ~�(p
 e

11

) = ~� (p

0

) = �(p

0

);

whih proves (9.5).

Applying now Lemma 9.5, it follows from (9.4) and (9.5), that q

0

� p

0

in N ,

and hene that

q 
 e

11

� q

0

� p

0

= p
 e

11

in M

k

(M);

whih implies that q � p in M. �

Doumenta Mathematia 4 (1999) 341{450



440 U. Haagerup and S. Thorbj�rnsen

9.7 Proposition. Let A be a C

�

-algebra, and let p; q be projetions in A.

Then the following two onditions are equivalent:

(i) q � p in A

��

.

(ii) �(q) � �(p), for every (norm) lower semi-ontinuous trae � on A

+

.

Proof. (i) ) (ii) : Assume that q � p in A

��

, and hoose u in A

��

, suh that

u

�

u = q and uu

�

� p. Then kuk � 1, and hene by the Kaplansky Density

Theorem, we may hoose a net (u

�

)

�2B

from A, suh that ku

�

k � 1, for all

� in B, and u

�

! u in the strong (operator) topology.

De�ne now: v

�

= pu

�

q, (� 2 B), and note that v

�

! puq = u in the strong

(operator) topology, so that v

�

�

v

�

! u

�

u = q in the weak (operator) topology.

Sine kv

�

k � 1 for all �, this implies that atually

v

�

�

v

�

! q in the �-weak topology:

Note also, that sine ku

�

k � 1 for all �,

v

�

v

�

�

� p; (� 2 B): (9.6)

Reall now that the �-weak topology on A

��

is the weak* topology i.e., the

�(A

��

;A

�

)-topology, and hene its restrition to A is the weak topology, i.e.,

the �(A;A

�

)-topology. Sine v

�

2 A for all �, we have thus, that

v

�

�

v

�

! q in the �(A;A

�

)-topology:

Consider then the onvex hull K of fv

�

�

v

�

j � 2 Bg. Then q 2 K

��(A;A

�

)

,

but sine onvex sets in a Banah spae have the same losure in weak and

norm topology (f. [KR, Theorem 1.3.4℄), it follows that atually q 2 K

�norm

.

Hene, we may hoose a sequene (w

n

)

n2N

from K, whih onverges to q in

norm. Then, for any (norm) lower semi-ontinuous trae � : A

+

! [0;1℄,

�(q) � lim inf

n!1

�(w

n

) � sup

�2B

�(v

�

�

v

�

) = sup

�2B

�(v

�

v

�

�

) � �(p); (9.7)

and this proves (i).

(ii) ) (i) : Assume (ii) holds. We set out to show that ondition (ii) in

Lemma 9.6 is satis�ed, in the ase M = A

��

. Consider �rst the funtion

�

0

: A

+

! [0;1℄, de�ned by

�

0

(a) =

(

0; if a 2 I

A

(p)

+

;

1; if a 2 A

+

n I

A

(p)

+

:

Then �

0

is a (norm) lower semi-ontinuous trae on A

+

, and hene the as-

sumption (ii) yields that �

0

(q) � �

0

(p) = 0, whih means that q 2 I

A

(p)

+

.

Aording to Lemma 9.3, this implies that atually q 2 I

A

(p) � I

A

��

(p).

Note next, that for any �-weakly lower semi-ontinuous trae � on (A

��

)

+

, the

restrition �

jA

+

is a (norm) lower semi-ontinuous trae on A, and hene, by

the assumption (ii), �(q) � �(p).
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Taken together, we have veri�ed that the projetions p; q satisfy the ondition

(ii) in Lemma 9.6, in the ase M = A

��

, and hene this lemma yields that

q � p in A

��

, as desired. �

9.8 Corollary. Let A be a C

�

-algebra, and let p; q be projetions in A. Then

the following two onditions are equivalent:

(i) 9k 2 N : khqi � (k � 1)hpi in V (A

��

).

(ii) 9� > 0: �(q) � (1� �)�(p), for any (norm) lower semi-ontinuous trae �

on A

+

.

Proof. (i) ) (ii) : Assume that (i) holds, and de�ne, for the existing k, q

0

=

q 
 1

1

1

k

and p

0

= p


�

P

k�1

i=1

e

ii

�

. Then q

0

; p

0

are projetions in M

k

(A), and the

assumption (i) implies that

q

0

� p

0

in M

k

(A

��

): (9.8)

Given now any (norm) lower semi-ontinuous trae � on A

+

, note that the

expression

�

k

(a) =

k

X

i=1

�(a

ii

); (a = (a

ij

) 2M

k

(A)

+

);

de�nes a (norm) lower semi-ontinuous trae � on M

k

(A)

+

. Thus, by Propo-

sition 9.7, (9.8) implies that �

k

(q

0

) � �

k

(p

0

), i.e., that k�(q) � (k�1)�(p). This

shows that (ii) holds for any � in ℄0;

1

k

℄.

(ii) ) (i) : Assume that (ii) holds, and hoose, for the existing �, a k in N suh

that

1

k

� �. De�ne then, for this k, q

0

and p

0

as above.

Now, for any (norm) lower semi-ontinuous trae � on M

k

(A)

+

, the mapping

a 7! �(a
 e

11

); (a 2 A

+

);

is a (norm) lower semi-ontinuous trae on A

+

, and thus the assumption (ii)

yields that

�(q 
 e

11

) � (1� �)�(p
 e

11

) �

k�1

k

� �(p 
 e

11

);

and hene that

�(q

0

) = k � �(q 
 e

11

) � (k � 1) � �(p
 e

11

) = �(p

0

):

Aording to Proposition 9.7, this means that q

0

� p

0

inM

k

(A

��

)(=M

k

(A)

��

),

whih shows that (i) holds. �

9.9 Lemma. Let A be a C

�

-algebra, and let p; q be projetions in A. Then

the following two onditions are equivalent:

(i) There exists an � in ℄0;1[, suh that

�(q) � (1� �)�(p); for any (norm) lower semi-ontinuous trae � on A

+

:
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(ii) There exist � in ℄0;1[, r in N and a

1

; : : : ; a

r

in A, suh that

r

X

i=1

a

�

i

a

i

= q; and

r

X

i=1

a

i

a

�

i

� (1� �)p:

Proof. The proof follows the ideas of the �rst setion of [Haa℄.

Note �rst that (ii) learly implies (i). To show the onverse impliation, assume

that (i) holds. Then, by Corollary 9.8, there exists a k in N, suh that

q 
 1

1

1

k

� p


�

P

k�1

i=1

e

ii

�

in M

k

(A

��

);

i.e., suh that

u

�

u = q 
 1

1

1

k

; and uu

�

� p
 (

P

k�1

i=1

e

ii

�

; (9.9)

for some u = (u

ij

)

1�i;j�k

in M

k

(A

��

). For this u, we have then that

k

X

j=1

k

X

i=1

u

�

ij

u

ij

=

k

X

j=1

(u

�

u)

jj

= kq;

and that

k

X

i=1

k

X

j=1

u

ij

u

�

ij

=

k

X

i=1

(uu

�

)

ii

� (k � 1)p:

Thus, if b

1

; : : : ; b

k

2

2 A

��

denote the elements

1

p

k

u

ij

, i; j 2 f1; 2; : : : ; kg, listed

in any �xed order, then we have that

k

2

X

i=1

b

�

i

b

i

= q; and

k

2

X

i=1

b

i

b

�

i

�

k�1

k

p:

Note also, that (9.9) implies that b

i

2 pA

��

q for all i. Consider then the subset

K of A�A, de�ned by

K =

n�

P

r

i=1



�

i



i

; g +

P

r

i=1



i



�

i

�

�

�

�

r 2 N; 

1

; : : : ; 

r

2 pAq; g 2 (pAp)

+

o

:

Then K is learly losed under addition and multipliation by a non-negative

salar, and thus K is a onvex one in A�A.

Reall next, that the �-strong

�

topology on a von Neumann algebra M, is

generated by the semi-norms

x 7! '(x

�

x+ xx

�

)

1

2

; (' 2 (M

�

)

+

):

Sine the �-strong

�

ontinuous funtionals onM are also �-weakly ontinuous

(i.e., belong toM

�

; f. [Ta, Lemma II.2.4℄), any onvex set inM has the same

losure in �-strong

�

and �-weak topology. In partiular it follows that

pAq is �-strong

�

dense in pA

��

q; and (pAp)

+

is �-strong

�

dense in (pA

��

p)

+

:
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Thus, we may hoose a net (

�

1

; : : : ; 

�

k

2

; g

�

)

�2A

in

�

�

k

2

j=1

pAq

�

� (pAp), suh

that

� 

�

i

! b

i

, in the �-strong

�

topology, for all i in f1; 2; : : : ; k

2

g,

� g

�

� 0, for all �,

� g

�

!

k�1

k

p�

P

k

2

i=1

b

i

b

�

i

, in the �-strong

�

topology.

It follows then that

lim

�

�

k

2

X

i=1

(

�

i

)

�



�

i

�

= q; �-weakly;

and that

lim

�

�

g

�

+

k

2

X

i=1



�

i

(

�

i

)

�

�

=

k�1

k

p; �-weakly:

But sine the �-weak topology on A

��

is just the weak

�

-topology (i.e., the

�(A

��

;A

�

)-topology), its restrition to A is the weak topology (i.e., the

�(A;A

�

)-topology) on A. It follows thus that

�

q;

k�1

k

p

�

2 K

��(A�A;A

�

�A

�

)

:

But onvex sets in a Banah spae have the same losure in weak and norm

topology (f. [KR, Theorem 1.3.4℄), so it follows that in fat

�

q;

k�1

k

p

�

2 K

�norm

: (9.10)

Sine (1 � Æ)

�1

�

k�1

k

+ Æ

�

!

k�1

k

< 1, as Æ ! 0, we may hoose Æ; � in ℄0; 1[,

suh that

(1� Æ)

�1

�

k�1

k

+ Æ

�

= 1� �:

By (9.10), there exist then r in N, 

1

; : : : ; 

r

in pAq and g in (pAp)

+

, suh that







q �

P

r

i=1



�

i



i







< Æ and







k�1

k

p� g �

�

P

r

i=1



i



�

i

�







< Æ: (9.11)

The �rst inequality in (9.11) implies that

P

r

i=1



�

i



i

is invertible in the C

�

-

algebra qAq. Let h 2 (qAq)

+

denote the inverse of

P

r

i=1



�

i



i

in qAq. Sine

(1� Æ)q �

r

X

i=1



�

i



i

� (1 + Æ)q;

it follows then that

(1 + Æ)

�1

q � h � (1� Æ)

�1

q: (9.12)

De�ne now: a

i

= 

i

h

1

2

, i 2 f1; 2; : : : ; rg. Then

P

r

i=1

a

�

i

a

i

= q, and moreover,

by (9.12) and the seond inequality in (9.11),

r

X

i=1

a

i

a

�

i

=

r

X

i=1



i

h

�

i

� (1� Æ)

�1

r

X

i=1



i



�

i

� (1� Æ)

�1

�

g +

r

X

i=1



i



�

i

�

� (1� Æ)

�1

�

k�1

k

+ Æ

�

p = (1� �)p:
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Thus, it follows that (ii) holds. �

9.10 Theorem. Let A be an exat C

�

-algebra, and let p; q be projetions in

A. Assume that there exists � in ℄0;1[, suh that

�(q) � (1� �)�(p)

for any (norm) lower semi-ontinuous trae � : A

+

! [0;1℄:

Then there exists n in N, suh that

q 
 1

1

1

n

� p
 1

1

1

n

in M

n

(A):

Proof. By Lemma 9.9, we get (after multiplying the a

i

's from Lemma 9.9(ii)

by (1� �)

�

1

2

), that there exist  in ℄1;1[, r in N and a

1

; : : : ; a

r

in A, suh that

r

X

i=1

a

�

i

a

i

= q; and

r

X

i=1

a

i

a

�

i

� p: (9.13)

We may assume that A is a C

�

-subalgebra of B(H) for some Hilbert spae

H. Then (9.13) implies that we may onsider a

1

; : : : ; a

r

as elements of

B(q(H); p(H)), and that

r

X

i=1

a

�

i

a

i

= 1

1

1

q(H)

; and

r

X

i=1

a

i

a

�

i

� 1

1

1

p(H)

:

Moreover, the set

�

a

�

i

a

j

�

�

i; j 2 f1; 2; : : : ; rg

	

is ontained in the exat, uni-

tal C

�

-algebra qAq. Choosing now, for eah n in N, independent elements

Y

(n)

1

; : : : ; Y

(n)

r

of GRM(n; n;

1

n

), it follows from Theorem 8.7, that with

S

n

=

r

X

i=1

a

i


 Y

(n)

i

; (n 2 N);

we have that

lim inf

n!1

�

min

�

sp(S

n

(!)

�

S

n

(!))

	�

�

�

p

� 1

�

2

; for almost all ! in 
:

In partiular, there exists one(!) ! in 
, and an n in N, suh that S

n

(!)

�

S

n

(!)

is invertible in the C

�

-algebra M

n

(qAq). For this pair (!; n), we de�ne

u = S

n

(!)

�

S

n

(!)

�

S

n

(!)

�

�

1

2

;

where the inverse is formed w.r.t. M

n

(qAq). Then u 2M

n

(pAq), and

u

�

u = 1

1

1

q(H)


 1

1

1

n

= q 
 1

1

1

n

: (9.14)

Moreover, uu

�

2M

n

�

B(p(H))

�

, and sine u

�

u is a projetion inM

n

�

B(q(H))

�

,

uu

�

is a projetion in M

n

�

B(p(H))

�

, so that

uu

�

� 1

1

1

p(H)


 1

1

1

n

= p
 1

1

1

n

: (9.15)

Combining (9.14) and (9.15), we obtain the desired onlusion. �
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9.11 Corollary. If A is an exat, unital and simple C

�

-algebra, and p; q are

projetions in A, suh that p 6= 0 and �(q) < �(p) for all traial states � on A,

then for some n in N

q 
 1

1

1

n

� p
 1

1

1

n

in M

n

(A): (9.16)

Proof. By simpliity of A, �(p) > 0 for all traial states � on A, and hene by

weak* ompatness of the set of traial states on A, there exists � in ℄0;1[,

suh that

�(q) � (1� �)�(p);

for all traial states � on A. By the assumptions onA, A is algebraially simple.

Hene, every non-zero trae � : A

+

! [0;1℄ is either equal to +1 on all of

A

+

nf0g, or proportional to a traial state. Hene we an apply Theorem 9.10.

�

9.12 Remark. In the \inequality" (9.16) in Corollary 9.11, the tensoring with

1

1

1

n

an in general not be avoided. This follows from Villadsen's result in [Vi℄

that there exist nulear (and hene exat) unital simple C

�

-algebras with weak

perforation. Reall that a unital C

�

-algebra A has weak perforation, if there

exists x in K

0

(A), suh that x =2 K

0

(A)

+

, but nx 2 K

0

(A)

+

n f0g, for some

n in N. To see how Villadsen's result implies, that we annot, in general,

avoid tensoring with 1

1

1

n

in (9.16), let A be a unital exat simple C

�

-algebra,

and assume that x 2 K

0

(A), suh that x =2 K

0

(A)

+

and nx 2 K

0

(A)

+

n f0g,

for some positive integer n. Write then x in the form x = [p℄ � [q℄, where

p; q are projetions in M

k

(A) for some k in N. By the assumption that nx 2

K

0

(A)

+

n f0g, and the simpliity of A, it is not hard to dedue that

(� 
 tr

k

)(p) > (� 
 tr

k

)(q);

for all traial states � on A, and hene ~� (p) > ~� (q) for all traial states ~� on

M

k

(A). However, sine x =2 K

0

(A)

+

, q annot be equivalent to a sub-projetion

of p. �

9.13 Theorem. Let A be a unital, exat C

�

-algebra. Then the following two

onditions are equivalent:

(i) A has no traial states.

(ii) For some n in N there exist projetions p; q in M

n

(A), suh that

p ? q and p � q � 1

1

1

A


 1

1

1

n

:

Proof. Clearly, (ii) implies (i). To show the onverse impliation, assume that

(i) holds, and onsider then the two projetions p

0

; q

0

in M

2

(A) given by

p

0

=

�

1

1

1

A

0

0 0

�

; and q

0

=

�

1

1

1

A

0

0 1

1

1

A

�

:
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Sine A has no traial states, A

��

has no normal traial states, and hene A

��

is a properly in�nite von Neumann algebra. Therefore,

h1

1

1

A

i = 4h1

1

1

A

i in V (A

��

);

whih implies that

hp

0

i = 2hq

0

i in V

�

M

2

(A

��

)

�

:

Hene by Corollary 9.8 and Theorem 9.10, there exists an n in N, suh that

q

0


 1

1

1

n

� p

0


 1

1

1

n

in M

2n

(A):

Here, p

0


 1

1

1

n

�

�

1

1

1

A


 1

1

1

n

0

0 0

�

, and thus there exists u in M

2n

(A), suh that

u

�

u =

�

1

1

1

A


 1

1

1

n

0

0 1

1

1

A


 1

1

1

n

�

; and uu

�

�

�

1

1

1

A


 1

1

1

n

0

0 0

�

: (9.17)

The inequality in (9.17) implies that u has the form

u =

�

u

11

u

12

0 0

�

;

for suitable u

11

; u

12

from M

n

(A). The equality in (9.17) yields then subse-

quently that

u

�

11

u

11

= u

�

12

u

12

= 1

1

1

A


 1

1

1

n

; and u

�

11

u

12

= 0:

De�ning now

p = u

11

u

�

11

and q = u

12

u

�

12

;

it follows that p; q are orthogonal projetions in M

n

(A), suh that p � q �

1

1

1

A


 1

1

1

n

. This shows that (ii) holds. �

In partiular, Theorem 9.13 implies the validity of Theorem 9.1:

9.14 Corollary. If A is an exat, unital, stably �nite C

�

-algebra, then A

has a traial state.

Proof. This is an obvious onsequene of Theorem 9.13. �

Consider next an arbitrary unital C

�

-algebra A. A funtion ' : V (A) ! R is

said to be a state on V (A), if it satis�es the following three onditions:

� '(x) � 0, for all x in V (A).

� '(x + y) = '(x) + '(y), for all x; y in V (A).

� '

�

h1

1

1

A

i

�

= 1.

Similarly, a funtion  : K

0

(A)! R is said to be a state onK

0

(A), if it satis�es

the onditions:

�  (z) � 0, for all z in K

0

(A)

+

.

�  (z + w) =  (z) +  (w), for all z; w in K

0

(A).
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�  

�

[1

1

1

A

℄

�

= 1.

The set of states on V (A) (resp. K

0

(A)) is denoted by S(V (A)) (resp.

S(K

0

(A))). Note that S(V (A)) and S(K

0

(A)) are both onvex ompat sets

in \the topology of pointwise onvergene". Let � : V (A) ! K

0

(A) be the

natural map introdued in the beginning of this setion. Then it is lear, that

the map  7!  Æ �,  2 S(K

0

(A)), gives a one-to-one orrespondene between

the states on K

0

(A) and the states on V (A). Moreover, this map is an aÆne

homeomorphism of S(K

0

(A)) onto S(V (A)).

9.15 Lemma. Let A be a unital, exat C

�

-algebra, and let p; q be projetions

in A, suh that

�(q) � �(p); for any traial state � on A: (9.18)

Then for any k in N, there exists n in N, suh that

nkhqi � nkhpi+ nh1

1

1

A

i:

Proof. Let k from N be given, and onsider then the projetions p

0

; q

0

in

M

k+1

(A) de�ned by:

p

0

= p


�

P

k

i=1

e

ii

�

+1

1

1

A


 e

k+1;k+1

; and q

0

= q 


�

P

k

i=1

e

ii

�

:

Given now an arbitrary non-zero, bounded trae � on M

k+1

(A), note that the

mapping

a 7! �(a
 e

11

); (a 2 A);

is proportional to a traial state on A. It follows thus from the assumption

(9.18), that �(q 
 e

11

) � �(p 
 e

11

), and hene

�(q

0

) = k � �(q 
 e

11

) � k � �(p 
 e

11

) =

k

k+1

� �(p
 1

1

1

k+1

) �

k

k+1

� �(p

0

):

Sine 1

1

1

A


 e

11

� p

0

, any unbounded (lower semi-ontinuous) trae � on

M

k+1

(A) must take the value +1 at p

0

, and hene we have also in this ase,

that

�(q

0

) �

k

k+1

� �(p

0

):

Applying now Theorem 9.10, it follows that there exists an n in N, suh that

nhq

0

i � nhp

0

i, and hene suh that nkhqi � nkhpi+ nh1

1

1

A

i, as desired. �

Next, we need the following version of the Goodearl-Handelman theorem (see

[Bl2, 3.4.7℄, [Go1, 7.11℄ and [BR, Lemma 2.9℄).

9.16 Lemma. Let A be a unital C

�

-algebra, and onsider a onvex subset K of

S

�

V (A)

�

, whih is losed in \the topology of pointwise onvergene". Assume

furthermore that the following impliation holds

8x; y 2 V (A) :

�

8' 2 K : '(x) � '(y)

�

=)

�

8' 2 S

�

V (A)

�

: '(x) � '(y)

�

:

(9.19)

Then K = S

�

V (A)

�

.
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Proof. By the one-to-one orrespondene between states on K

0

(A) and states

on V (A), we an �nd a onvex ompat subset L of S(K

0

(A)), suh that

K = f Æ � j  2 Lg:

Sine K

0

(A) = �(V (A)) � �(V (A)), ondition (9.19) is equivalent to the on-

dition:

8z 2 K

0

(A) :

�

8 2 L :  (z) � 0

�

=)

�

8 2 S(K

0

(A)) :  (z) � 0

�

:

Thus by [Go1, Corollary 7.11℄, all the extreme points of S(K

0

(A)) are ontained

in L = L. Hene by Krein-Milman's theorem,

S(K

0

(A)) � onv(L) = L;

and therefore L = S(K

0

(A)), whih is equivalent to the equation: K =

S(V (A)). �

9.17 Theorem. Let A be a unital, exat C

�

-algebra. Then for any state ' on

V (A), there exists a traial state � on A, suh that

'(hpi) = (� 
 Tr

m

)(p); for all projetions p in M

m

(A); and m in N:

(9.20)

Proof. Let K denote the subset of S

�

V (A)

�

onsisting of those states on V (A),

that are given by (9.20) for some traial state � on A. Then K is learly a

onvex, ompat subset of S

�

V (A)

�

, and hene, by Lemma 9.16, it suÆes to

verify that K satis�es ondition (9.19). So onsider projetions p; q inM

1

(A).

We may assume that p; q 2M

m

(A), for some suÆiently large positive integer

m. Suppose then that

(� 
 Tr

m

)(q) � (� 
 Tr

m

)(p); for all traial states � on A:

Sine any traial state on M

m

(A) has the form

1

m

� � 
 Tr

m

, for some traial

state � on A, it follows then from Lemma 9.15, that for any k in N, there exists

an n in N, suh that

nkhqi � nkhpi+ nh1

1

1

A


 1

1

1

m

i:

Hene for any ' in S

�

V (A)

�

, and any k in N, we have that

'(hqi) � '(hpi) +

m

k

;

and this shows that K satis�es ondition (9.19). �

Using the one-to-one orrespondene between states on K

0

(A) and states on

V (A), Theorem 9.17 gives a new proof, not relying on quasitraes, for the

following

9.18 Corollary. Let A be a unital, exat C

�

-algebra. Then any state on

K

0

(A) omes from a traial state on A, i.e., for every state  on K

0

(A), there

exists a traial state � on A, suh that

 

�

[p℄

�

= (� 
 Tr

m

)(p); for all projetions p in M

m

(A); and all m in N: �
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