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1. Introduction

1.1. The main theorem. Let k be a �eld and X a scheme over k which admits an

ample line bundle (e.g. a quasi-projective variety). Let vec(X) denote the category

of algebraic vector bundles on X . We view vec(X) as an exact category in the sense

of Quillen [27]: By de�nition, a short sequence of vector bundles is admissible exact

i� it is exact in the category of sheaves on X . Moreover, the category vec(X) is

k-linear, i.e. it is additive and its morphism sets are k-vector spaces such that the

composition is bilinear. In [18], we have de�ned, for each k-linear exact category A, a

cyclic homology theory HC

der

�

(A). The superscript der indicates that the de�nition

is modeled on that of the derived category of A. In [loc. cit.] it was denoted by

HC

�

(A). As announced in [loc. cit.], in this article, we will show that the cyclic

homology of the scheme X coincides with the cyclic homology of the k-linear exact

category vec(X): There is a canonical isomorphism (cf. Corollary 5.2)

HC

�

(X)

�

! HC

der

�

(vec(X)):(1.1.1)

The de�nition of the cyclic homology of a scheme is an important technical point

which will be discussed below in 1.4. Note that by de�nition [27, Par. 7], there is an

analogous isomorphism in K-theory.
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232 Bernhard Keller

1.2. Motivation. Our motivation for proving the isomorphism 1.1.1 is twofold:

Firstly, it allows the computation of HC

�

(X) for some non-trivial examples. Indeed,

suppose that k is algebraically closed and that X is a smooth projective algebraic va-

riety. Suppose moreover that X admits a tilting bundle, i.e. a vector bundle without

higher selfextensions whose direct summands generate the bounded derived category

of the category of coherent sheaves on X . Examples of varieties satisfying these hy-

potheses are projective spaces, Grassmannians, and smooth quadrics [3], [12], [13],

[14]. In 5.3, we deduce from 1.1.1 that for such a variety, the Chern character induces

an isomorphism

K

0

X 


Z

HC

�

k

�

! HC

�

X:

Here the left hand side is explicitly known since the group K

0

X is free and admits

a basis consisting of the classes of the pairwise non-isomorphic indecomposable di-

rect summands of the tilting bundle. Cyclic homology of projective spaces was �rst

computed by Beckmann [2] using a di�erent method.

Our second motivation for proving the isomorphism 1.1.1 is that it provides fur-

ther justi�cation for the de�nition of HC

der

�

. Indeed, there is a `competing' (and

previous) de�nition of cyclic homology for k-linear exact categories due to R. Mc-

Carthy [22]. Let us denote by HC

McC

�

(A) the graded k-module which he associates

with A. McCarthy proved in [loc. cit.] a number of good properties for HC

McC

�

. The

most fundamental of these is the existence of an agreement isomorphism

HC

�

(A)

�

! HC

McC

�

(proj(A)) ;

where A is a k-algebra and proj(A), the category of �nitely generated projective A-

modules endowed with the split exact sequences. In particular, if we take A to be

commutative, we obtain the isomorphism

HC

�

(X)

�

! HC

McC

�

(vec(X))

for all a�ne schemes X = Spec(A) (to identify the left hand side, we use Weibel's

isomorphism [32] between the cyclic homology of an a�ne scheme and the cyclic

homology of its coordinate algebra). Whereas for HC

der

�

, this ismorphism extends

to more general schemes, this cannot be the case for HC

McC

�

. Indeed, for n � 0,

the group H

n

(X;O

X

) occurs as a direct factor of HC

�n

(X). However, the group

HC

McC

�n

vanishes for n > 0 by its very de�nition.

1.3. Generalization, Chern character. Our proof of the isomorphism 1.1.1

actually yields a more general statement: Let X be a quasi-compact separated scheme

over k. Denote by perX the pair formed by the category of perfect sheaves (4.1) on

X and its full subcategory of acyclic perfect sheaves. The pair perX is a localization

pair in the sense of [18, 2.4] and its cyclic homology HC

�

(perX) has been de�ned in

[loc. cit.]. We will show (5.2) that there is a canonical isomorphism

HC

�

(X)

�

! HC

�

(perX):(1.3.1)

If X admits an ample line bundle, we have an isomorphism

HC

der

�

(vec(X))

�

! HC

�

(perX)

so that the isomorphism 1.1.1 results as a special case.
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The �rst step in the proof of 1.3.1 will be to construct a map

HC

�

(perX)! HC

�

(X):

This construction will be carried out in 4.2 for an arbitrary topological space X

endowed with a sheaf of (possibly non-commutative) k-algebras. As a byproduct, we

therefore obtain a new construction of the Chern character of a perfect complex P .

Indeed, the complex P yields a functor between localization pairs

?


k

P : per pt! perX

and hence a map

HC

�

(per pt)! HC

�

(perX)! HC

�

(X):

The image of the class

ch([k]) 2 HC

�

(per pt) = HC

�

(k)

under this map is the value of the Chern character at the class of P . An analogous

construction works for the other variants of cyclic homology, in particular for negative

cyclic homology. The �rst construction of a Chern character for perfect complexes is

due to Bressler{Nest{Tsygan, who needed it in their proof [5] of Schapira-Schneiders'

conjecture [28]. They even construct a generalized Chern character de�ned on all

higher K-groups. Several other constructions of a classical Chern character are due

to B. Tsygan (unpublished).

1.4. Cyclic homology of schemes. Let k be a commutative ring and X a scheme

over k. The cyclic homology of X was �rst de�ned by Loday [20]: He shea��ed the

classical bicomplex to obtain a complex of sheaves CC(O

X

). He then de�ned the

cyclic homology of X to be the hypercohomology of the (total complex of) CC(O

X

).

Similarly for the di�erent variants of cyclic homology. There arise three problems:

(1) The complex CC(O

X

) is unbounded to the left. So there are (at least) two non-

equivalent possibilities to de�ne its hypercohomology: should one take Cartan-

Eilenberg hypercohomology (cf. [32]) or derived functor cohomology in the sense

of Spaltenstein [29] ?

(2) Is the cyclic homology of an a�ne scheme isomorphic to the cyclic homology of

its coordinate ring ?

(3) If a morphism of schemes induces an isomorphism in Hochschild homology, does

it always induce an isomorphism in cyclic homology ?

Problem (1) is related to the fact that in a category of sheaves, products are not exact

in general. We refer to [32] for a discussion of this issue.

In the case of a noetherian scheme of �nite dimension, Beckmann [2] and Weibel-

Geller [34] gave a positive answer to (2) using Cartan-Eilenberg hypercohomology.

By proving the existence of an SBI-sequence linking cyclic homology and Hochschild

homology they also settled (3) for this class of schemes, whose Hochschild homology

vanishes in all su�ciently negative degrees. Again using Cartan-Eilenberg hypercoho-

mology, Weibel gave a positive answer to (2) in the general case in [32]. There, he also

showed that cyclic homology is a homology theory on the category of quasi-compact

quasi-separated schemes. Problem (3) remained open.
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234 Bernhard Keller

We will show in A.2 that Cartan-Eilenberg hypercohomology agrees with Spal-

tenstein's derived functor hypercohomology on all complexes with quasi-coherent ho-

mology if X is quasi-compact and separated. Since CC(O

X

) has quasi-coherent ho-

mology [34], this shows that problem (1) does not matter for such schemes. As a

byproduct of A.2, we deduce in B.1 a (partially) new proof of Boekstedt-Neeman's

theorem [4] which states that for a quasi-compact separated schemeX , the unbounded

derived category of quasi-coherent sheaves on X is equivalent to the full subcategory

of the unbounded derived category of all O

X

-modules whose objects are the com-

plexes with quasi-coherent homology. A di�erent proof of this was given by Alonso{

Jerem��as{Lipman in [30, Prop. 1.3].

In order to get rid of problem (3), we will slightly modify Loday's de�nition:

Using sheaves of mixed complexes as introduced by Weibel [33] we will show that the

image of the Hochschild complex C(O

X

) under the derived global section functor is

canonically a mixed complex M(X). The mixed cyclic homology of X will then be

de�ned as the cyclic homology of M(X). For the mixed cyclic homology groups, the

answer to (2) is positive thanks to the corresponding theorem in Hochschild homology

due to Weibel{Geller [34]; the answer to (3) is positive thanks to the de�nition. The

mixed cyclic homology groups coincide with Loday's groups if the derived global

section functor commutes with in�nite sums. This is the case for quasi-compact

separated schemes as we show in 5.10.

1.5. Organization of the article. In section 2, we recall the mixed complex

of an algebra and de�ne the mixed complex M(X;A) of a ringed space (X;A). In

section 3, we recall the de�nition of the mixed complex associated with a localization

pair and give a `shea��able' description of the Chern character of a perfect complex

over an algebra. In section 4, we construct a morphism from the mixed complex

associated with the category of perfect complexes on (X;A) to the mixed complex

M(X;A). We use it to construct the Chern character of a perfect complex on (X;A).

In section 5, we state and prove the main theorem and apply it to the computation

of the cyclic homology of smooth projective varieties admitting a tilting bundle. In

appendix A, we prove that Cartan-Eilenberg hypercohomology coincides with derived

functor cohomology for (unbounded) complexes with quasi-coherent homology on

quasi-compact separated schemes. In appendix B, we apply this to give a (partially)

new proof of a theorem of Boekstedt-Neeman [4].

1.6. Acknowledgment. The author thanks the referee for his suggestions, which

helped to make this article more readable.

2. Homology theories for ringed spaces

Let k be a �eld, X a topological space, and A a sheaf of k-algebras on X . In

this section, we consider the possible de�nitions of the cyclic homology of (X;A). In

2.1 we recall the de�nition suggested by Loday [20]. In 2.2, we point out that with

this de�nition, it is not clear that a morphism inducing isomorphisms in Hochschild

homology also does so in cyclic homology and its variants. This is our main reason

for introducing the `mixed homologies'. These also have the advantage of allowing

a uni�ed and simultaneous treatment of all the di�erent homology theories. For the

sequel, the two fundamental invariants are the mixed complex of sheaves M(A) and

its image M(X;A) = R�(X;M(A)) under the derived global section functor. Both
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are canonical up to quasi-isomorphism and are therefore viewed as objects of the

corresponding mixed derived categories. In the case of a point and a sheaf given

by an algebra A, these complexes specialize to the mixed complex M(A) associated

with the algebra. The mixed cyclic homology HC

mix;�

(A) is de�ned to be the cyclic

homology of the mixed complex M(X;A).

2.1. Hochschild and cyclic homologies. Following a suggestion by Loday [20],

the Hochschild complex C(A), and the bicomplexes CC(A), CC

�

(A), and CC

per

(A)

are de�ned in [5, 4.1] by composing the classical constructions (cf. [21], for example)

with shea��cation. The Hochschild homology, cyclic homology : : : of A are then

obtained as the homologies of the complexes

R�(X;C(A)) ; R�(X;CC(A)) ; : : :

where R�(X; ?) is the total right derived functor in the sense of Spaltenstein [29] of

the global section functor.

2.2. Mixed cyclic homologies. Suppose that f : (X;A) ! (Y;B) is a morphism

of spaces with sheaves of k-algebras inducing isomorphisms in Hochschild homology.

With the above de�nitions, it does not seem to follow that f also induces isomorphisms

in cyclic homology, negative cyclic homology, and periodic cyclic homology. This is

one of the reasons why we need to replace the above de�nitions by slightly di�erent

variants de�ned in terms of the mixed complex associated with A. This complex was

introduced by C. Weibel in [33]. However, the `mixed homologies' we consider do not

always coincide with the ones of [33] (cf. the end of this section).

Let us �rst recall the case of ordinary algebras: For an algebra A, we denote by

M(A) the mapping cone over the di�erential 1 � t linking the �rst two columns of

the bicomplex CC(A). We endow M(A) with the operator B : M(A) ! M(A)[�1]

induced by the norm map N from the �rst to the second column of the bicomplex.

Then endowed with its di�erential d and with the operator B the complex M(A)

becomes a mixed complex in the sense of Kassel [15], i.e. we have

d

2

= 0 ; B

2

= 0 ; dB +Bd = 0:

The mixed complexM(A) completely determines the homology theories of A. Indeed,

we have a canonical quasi-isomorphism

C(A)!M(A);

which shows that Hochschild homology is determined by M(A). We also have canon-

ical quasi-isomorphisms

CC(A)

�

!M(A)


L

�

k ; CC

�

(A)

�

! RHom

�

(k;M(A))

where the right hand sides are de�ned by viewing mixed complexes as objects of the

mixed derived category, i.e. di�erential graded (=dg) modules over the dg algebra �

generated by an indeterminate " of chain degree 1 with "

2

= 0 and d" = 0 (cf. [15],

[16]). Finally, we have a quasi-isomorphism

CC

per

(A)! (R lim

 �

)P

k

[�2n]


�

M(A)

where P

k

is a co�brant resolution (= `closed' resolution in the sense of [17, 7.4]

=`semi-free' resolution in the sense of [1]) of the dg �-module k and the transition

map P

k

[�2(n + 1)] ! P

k

[�2n] comes from a chosen morphism of mixed complexes
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P

k

! P

k

[2] which represents the canonical morphism k ! k[2] in the mixed derived

category. For example, one can take

P

k

=

M

i2N

�[2i]

as a �-module endowed with the di�erential mapping the generator 1

i

of �[2i] to

"1

i�1

. The periodicity morphism then takes 1

i

to 1

i�1

and 1

0

to 0. Note that the

functor lim

 �

P

k

[�2n]


�

? is actually exact so that R lim

 �

may be replaced by lim

 �

in the

above formula.

Following Weibel [33, Section 2] we shea�fy this construction to obtain a mixed

complex of sheaves M(A). We view it as an object of the mixed derived category

DMix (X) of sheaves on X , i.e. the derived category of dg sheaves over the constant

sheaf of dg algebras with value �. The global section functor induces a functor from

mixed complexes of sheaves to mixed complexes of k-modules. By abuse of notation,

the total right derived functor of the induced functor will still be denoted byR�(X; ?).

The mixed complex of the ringed space (X;A) is de�ned as

M(X;A) = R�(X;M(A)):

The fact that the functor R�(X; ?) (and the mixed derived category of sheaves) is

well de�ned is proved by adapting Spaltenstein's argument of section 4 of [29]. Since

the underlying complex of k-modules of M(A) is quasi-isomorphic to C(A), we have

a canonical isomorphism

HH

�

(A)

�

! H

�

R�(X;M(A)):

We de�ne the `mixed variants'

HC

mix;�

(A) ; HC

�

mix;�

(A) ; HC

per

mix;�

(A)

of the homologies associated with A by applying the functors

?


L

�

k ; RHom

�

(k; ?) resp. R lim

 �

P

k

[�2n]


�

?

to M(X;A) and taking homology.

These homology theories are slightly di�erent from those of Bressler{Nest{

Tsygan [5], Weibel [32], [33], and Beckmann [2]. We prove in 5.10 that mixed cyclic

homology coincides with the cyclic homology de�ned by Weibel if the global section

functor R�(X; ?) commutes with countable coproducts and that this is the case if

(X;A) is a quasi-compact separated scheme.

For a closed subset Z � X , we obtain versions with support in Z by applying

the corresponding functors to R�

Z

(X;M(A)).

Now suppose that a morphism (X;A)! (Y;B) induces an isomorphism in HH

�

.

Then by de�nition, it induces an isomorphism in the mixed derived category

R�(X;M(A)) R�(Y;M(B))

and thus in HC

mix;�

, HC

�

mix;�

, and HC

per

mix;�

.

3. Homology theories for categories

In this section, we recall the de�nition of the cyclic homology (or rather: the

mixed complex) of a localization pair from [18]. We apply this to give a description

of the Chern character of a perfect complex over an algebra A (=sheaf of algebras
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over a point). This description will later be generalized to sheaves of algebras over a

general topological space.

A localization pair is a pair consisting of a (small) di�erential graded k-category

and a full subcategory satisfying certain additional assumptions. To de�ne its mixed

complex, we proceed in three steps: In 3.1, the classical de�nition for algebras is

generalized to small k-categories following an idea of Mitchell's [24]; then, in 3.2, we

enrich our small k-categories over the category of di�erential complexes, i.e. we de�ne

the mixed complex of a di�erential graded small k-category; by making this de�nition

relative we arrive, in 3.3, at the de�nition of the mixed complex of a localization pair.

For simplicity, we work only with the Hochschild complex at �rst.

We illustrate each of the three stages by considering the respective categories

associated with a k-algebra A : the k-category proj(A) of �nitely generated projec-

tive A-modules, the di�erential graded k-category C

b

(proj(A)) of bounded complexes

over proj(A), and �nally the localization pair formed by the category of all perfect

complexes over A together with its full subcategory of all acyclic perfect complexes.

The three respective mixed complexes are canonically quasi-isomorphic. Thanks to

this fact the mixed complex of an algebra is seen to be functorial with respect to exact

functors between categories of perfect complexes. This is the basis for our description

of the Chern character in 4.2.

3.1. k-categories. Let C be a small k-category, i.e. a small category whose mor-

phism spaces carry structures of k-modules such that the composition maps are bi-

linear. Following Mitchell [24] one de�nes the Hochschild complex C(C) to be the

complex whose nth component is

a

C(X

n

; X

0

)
 C(X

n�1

; X

n

)
 C(X

n�2

; X

n�1

)
 : : :
 C(X

0

; X

1

)(3.1.1)

where the sum runs over all sequences X

0

; : : : ; X

n

of objects of C. The di�erential is

given by the alternating sum of the face maps

d

i

(f

n

; : : : ; f

i

; f

i�1

; : : : ; f

0

) =

�

(f

n

; : : : ; f

i

f

i�1

; : : : f

0

) if i > 0

(�1)

n

(f

0

f

n

; : : : ; f

1

) if i = 0

For example, suppose that A is a k-algebra. If we view A as a category C with

one object, the Hochschild complex C(C) coincides with C(A). We have a canonical

functor

A! projA ;

where projA denotes the category of �nitely generated projective A-modules. By a

theorem of McCarthy [22, 2.4.3], this functor induces a quasi-isomorphism

C(A)! C(projA):

3.2. Differential graded categories. Now suppose that the category C is a

di�erential graded k-category. This means that C is enriched over the category of

di�erential Z-graded k-modules (=dg k-modules), i.e. each space C (X;Y ) is a dg

k-module and the composition maps

C (Y; Z)


k

C (X;Y )! C (X;Z)

are morphisms of dg k-modules. Then we obtain a double complex whose columns

are the direct sums of (3.1.1) and whose horizontal di�erential is the alternating sum
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of the face maps

d

i

(f

n

; : : : ; f

i

; f

i�1

; : : : ; f

0

) =

�

(f

n

; : : : ; f

i

f

i�1

; : : : f

0

) if i > 0

(�1)

(n+�)

(f

0

f

n

; : : : ; f

1

) if i = 0

where � = (deg f

0

)(deg f

1

+ � � �+ deg f

n�1

). The Hochschild complex C(C) of the dg

category C is by de�nition the (sum) total complex of this double complex. The dg

categories we will encounter are all obtained as subcategories of a category C(X ) of

di�erential complexes over a k-linear category X (a k-linear category is a k-category

which admits all �nite direct sums). In this case, the dg structure is given by the

complex Hom

�

X

(X;Y ) associated with two di�erential complexes X and Y .

Hence if A is a k-algebra, the category C

b

(projA) of bounded complexes of

�nitely generated projective A-modules is a dg category and the functor

projA! C

b

(projA)

mapping a module P to the complex concentrated in degree 0 whose zero component is

P becomes a dg functor if we consider projA as a dg category whose morphism spaces

are concentrated in degree 0. By [17, lemma 1.2], the functor projA ! C

b

(projA)

induces a quasi-isomorphism

C(projA)! C(C

b

(projA)):

3.3. Pairs of dg categories. Now suppose that C

0

� C

1

are full subcategories

of a category of complexes C(X ) over a small k-linear category X . We de�ne the

Hochschild complex C(C) of the pair C : C

0

� C

1

to be the cone over the morphism

C(C

0

)! C(C

1

)

induced by the inclusion (here both C

0

and C

1

are viewed as dg categories). For

example, let A be a k-algebra. Recall that a perfect complex over A is a complex

of A-modules which is quasi-isomorphic to a bounded complex of �nitely generated

projective A-modules. Let perA denote the pair of subcategories of the category of

complexes of A-modules formed by the category per

1

A of perfect A-modules and

its full subcategory per

0

A of acyclic perfect A-modules. Clearly we have a functor

projA! perA, i.e. a commutative diagram of dg categories

0

per

0

A

projA

per

1

A

-

?

?

-

This functor induces a quasi-isomorphism

C(projA)! C(perA)

by theorem 2.4 b) of [18].
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3.4. Mixed complexes and characteristic classes. In the preceding para-

graph, we have worked with the Hochschild complex, but it is easy to check that

everything we said carries over to the mixed complex (2.2). The conclusion is then

that if A is a k-algebra, we have the following isomorphisms in the mixed derived

category

M(A)

�

!M(projA)

�

!M(perA):

This shows thatM(A) is functorial with respect to morphisms of pairs perA! perB,

i.e. functors from perfect complexes over A to perfect complexes over B which respect

the dg structure and preserve acyclicity. For example, if P is a perfect complex over

A, we have the functor

?


k

P : per k ! perA

which induces a morphism

M(?


k

P ) :M(per k)!M(perA)

and hence a morphism

M(P ) :M(k)!M(A):

If we apply the functors H

0

resp. H

�

RHom

�

(k; ?) to this morphism we obtain

morphisms

HH

0

(k)! HH

0

(A) and HC

�

mix;�

(k)! HC

�

mix;�

(A)

which map the canonical classes in HH

0

(k) resp. HC

�

mix;�

(k) = HC

�

�

(k) to the Euler

class resp. the Chern character of the perfect complex P .

4. Characteristic Classes for Ringed spaces

Let k be a �eld, X a topological space, and A a sheaf of k-algebras on X . In

this section, we consider, for each open subset U of X , the localization pair of perfect

complexes on U denoted by perAj

U

. The mixed complexes M(perAj

U

) associated

with these localization pairs are assembled into a sheaf of mixed complexesM(}erA).

In 4.1, we show that this sheaf is quasi-isomorphic to the sheaf M(A) of mixed

complexes associated with A. In 4.2, this isomorphism is used to construct the trace

morphism

� :M(perA)! R�(X;M(A)):

The construction of the characteristic classes of a perfect complex is then achieved

using the functoriality of the mixed complexM(perA) with respect to exact functors

between localization pairs.

The main theorem (5.2) will state that � is invertible if (X;A) is a quasi-compact

separated scheme.

4.1. The presheaf of categories of perfect complexes. Recall that a strictly

perfect complex is a complex P of A-modules such that each point x 2 X admits an

open neighbourhood U such that P j

U

is isomorphic to a bounded complex of direct

summands of �nitely generated free Aj

U

-modules (note that such modules have no

reason to be projective objects in the category of Aj

U

-modules). A perfect complex is

a complex P of A-modules such that each point x 2 X admits an open neighbourhood

U such that P j

U

is quasi-isomorphic to a strictly perfect complex.
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We denote by perA the pair formed by the category of perfect complexes and

its full subcategory of acyclic perfect complexes. For each open U � X , we de-

note by perAj

U

the corresponding pair of categories of perfect Aj

U

-modules. Via

the restriction functors, the assignment U 7! M(per(Aj

U

)) becomes a presheaf of

mixed complexes on X . We denote by M(}erA) the corresponding sheaf of mixed

complexes.

For each open U � X , we have a canonical functor

projA(U)! perAj

U

;

whence morphisms

M(A(U))!M(projA(U))!M(perAj

U

)

and a morphism of sheaves

M(A)!M(}erA):

Key Lemma. The above morphism is a quasi-isomorphism

Remark 4.1. This is the analog in cyclic homology of lemma 4.7.1 of [5] (with the

same proof, as P. Bressler has kindly informed me).

Proof. We will show that the morphism induces quasi-isomorphisms in the stalks. Let

x 2 X . Clearly we have an isomorphism

M(}erA)

x

�

!M(lim

�!

perAj

U

) ;

where U runs through the system of open neighbourhoods of x. We will show that

the canonical functor

lim

�!

perAj

U

! perA

x

induces a quasi-isomorphism in the mixed complexes. For this, it is enough to show

that it induces equivalences in the associated triangulated categories, by [18, 2.4 b)].

Now we have a commutative square

lim

�!

perAj

U

perA

x

lim

�!

strperAj

U

strperA

x

-

-

6

6

Here, we denote by strper the pair formed by the category of strictly perfect

complexes and its subcategory of acyclic complexes. For an algebra A, we have

strperA = C

b

(projA) by de�nition. It is easy to see that the two vertical arrows

induce equivalences in the triangulated categories, and the bottom arrow is actually

itself an equivalence of categories. Indeed, we have the commutative square

lim

�!

strperAj

U

strperA

x

lim

�!

strperA(U)

strperA

x

-

6

-

6
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Here the right vertical arrow is the identity and the left vertical arrow and the bottom

arrow are clearly equivalences.

The claim follows since the composition of the morphism

M(A

x

)!M(lim

�!

perAj

U

)

with the quasi-isomorphism M(lim

�!

perAj

U

) ! M(perA

x

) is the canonical quasi-

isomorphism M(A

x

)!M(perA

x

).

p

4.2. Characteristic classes. By de�nition of M(}erA) we have a morphism of

mixed complexes M(perA)! �(X;M(}erA)). By the key lemma (4.1), the canon-

ical morphism M(A) ! M(}erA) is invertible in the mixed derived category. Thus

we can de�ne the trace morphism

� :M(perA)! R�(X;M(A))

by the following commutative diagram

M(perA) �(X;M(}erA))

R�(X;M(A)) R�(X;M(}erA))

-

?

�

?

-

Now let P be a perfect complex. It yields a functor

?


k

P : per k ! perA

and hence a morphism in the mixed derived category

M(k)

�

!M(per k)

M(P )

���!M(perA)

�

! R�(X;M(A)) =M(X;A):

If we apply the functorH

0

resp. RHom

�

(k; ?) to this morphism, we obtain morphisms

HH

0

(k)! HH

0

(A) resp. HC

�

�

(k) = HC

�

mix;�

(k)! HC

�

mix;�

(A)

mapping the canonical classes to the Euler class respectively to the Chern character

of the perfect complex P .

Remark 4.2. The trace morphism � :M(perA)!M(X;A) is a quasi-isomorphism if

X is a point (by 3.3) or if (X;A) is a quasi-compact separated scheme (by 5.2 below).

Remark 4.3. (B. Tsygan) Let P be a perfect complex and A = Hom

�

X

(P; P ) the dg

algebra of endomorphisms of P . So if P is �brant (cf. A.1), then the ith homology

of A identi�es with Hom

DX

(P; P [i]). The dg category with one object whose endo-

morphism algebra is A naturally embeds into per

1

A and we thus obtain a morphism

M(A)!M(per

1

A)!M(perA)

�

! R�(X;M(A))

whose composition with the canonical map M(k) ! M(A) coincides with the mor-

phism constructed above.
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4.3. Variant with supports. Let Z � X be a closed subset. Let per(A on X)

be the pair formed by the category of perfect complexes acyclic o� Z and its full

subcategory of acyclic complexes. For each open U � X denote by per(Aj

U

on Z) the

corresponding pair of categories of perfect Aj

U

-modules. Via the restriction functors,

the assignment U 7! M(per(Aj

U

on Z)) becomes a presheaf of mixed complexes on

X . We denote byM(}er (A on Z)) the corresponding sheaf of mixed complexes. We

claim that M(}er (A on Z))

x

is acyclic for x 62 Z. Indeed, if U � X n Z is an open

neighbourhood of x, then by de�nition, the inclusion

per

0

(Aj

U

on Z)! per

1

(Aj

U

on Z)

is the identity so thatM(per(Aj

U

on Z)) is nullhomotopic. It follows that the canon-

ical morphism M(}er (A on Z))!M(}erA) uniquely factors through

R�

Z

M(}erA)!M(}erA)

in DMix (X). Using the quasi-isomorphism M(A) ! M(}erA) we thus obtain a

canonical morphism M(}er (A on Z)) ! R�

Z

M(A) making the following diagram

commutative

M(}er (A on Z)) R�

Z

M(}erA) M(}erA)

R�

Z

M(A) M(A)

-

H

H

H

H

H

H

Hj

-

6

-

6

We now de�ne the trace morphism �

Z

: M(per(A on Z)) ! R�

Z

(X;M(A)) as the

composition

M(per(A on Z))! �(X;M(}er (A on Z)))! R�

Z

(X;M(A)):

We then have a commutative diagram

M(per(A on Z)) M(perA)

R�

Z

(X;M(A)) R�(X;M(A))

?

-

?

-

This yields a canonical lift of the classes constructed in section 4.2 to the theories

supported in Z. The trace morphism �

Z

is invertible if X and U = X n Z are quasi-

compact separated schemes (by 5.2 below).

5. The main theorem, examples, proof

This section is devoted to the main theorem 5.2. Let k be a �eld and X a

quasi-compact separated scheme over k. The mixed complex associated with X is

de�ned as M(X) = R�(X;M(O

X

)). The main theorem states that the trace map

� :M(perX)!M(X) of 4.2 is invertible in the mixed derived category.

In 5.1, we de�ne M(perX) and examine its functoriality with respect to mor-

phisms of schemes following [31]. In 5.2, we state the theorem and, as a corollary, the

case of quasi-projective varieties. As an application, we compute, in 5.3, the cyclic
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homology of smooth projective varieties admitting a tilting bundle as described in the

introduction.

The proof of the main theorem occupies subsections 5.4 to 5.9. It proceeds by

induction on the number of open a�nes needed to cover X . The case of a�ne X is

treated in section 5.4. The induction step uses a Mayer-Vietoris theorem (5.8) which

is based on the description of the �ber of the morphism of mixed complexes induced

by the localization at a quasi-compact open subscheme. This description is achieved

in 5.7. It is based on Thomason-Trobaugh's localization theorem, which we recall in

section 5.5 in a suitable form, and on the localization theorem for cyclic homology of

localization pairs [18, 2.4 c)], which we adapt to our needs in 5.6.

5.1. Definition and functoriality. We adapt ideas of Thomason-Trobaugh [31]:

Let X be a quasi-compact separated scheme over a �eld k. We put perX = perO

X

(cf. 4.1). We claim that the assignment X 7! M(perX) is a functor of X . Indeed,

let 
atperX be the pair formed by the category of right bounded perfect complexes

with 
at components and its subcategory of acyclic complexes. Then the inclusion


atperX ! perX

induces an equivalence in the associated triangulated categories (by [31, 3.5]) and

hence an isomorphism

M(
atperX)!M(perX)

by [18, 2.4 b)]. Now if f : X ! Y is a morphism of schemes, then f

�

clearly induces a a

functor 
atperY ! 
atperX and hence a morphism M(perY )!M(perX). Notice

that this morphism is compatible with the map M(perX) ! R�(X;M(}erX)) of

section 4.2.

Now suppose that X admits an ample family of line bundles. Then the inclusion

strperX ! perX

induces an equivalence in the associated triangulated categories [31, 3.8.3] and hence

an isomorphismM(strperX)!M(perX). Note that strperX is simply the category

of bounded complexes over the category vecX of algebraic vector bundles on X

(together with its subcategory of acyclic complexes). Hence we have the equality

M(strperX) = M(vecX) where M(vecX) denotes the mixed complex associated

with the exact category vecX as de�ned in [18]. In particular, if X = SpecA is a�ne,

we have canonical isomorphisms

M(A)

�

!M(projA)

�

!M(vecX)

�

!M(perX):

5.2. The main theorem. Let X be a quasi-compact separated scheme over a �eld

k. The mixed complex associated with X is de�ned as M(X) = R�(X;M(O

X

)).

Note that by de�nition, we have

HC

mix;�

(X) = HC

�

M(X) ; HC

�

mix;�

(X) = HC

�

mix;�

M(X) ; : : : :

Theorem. The trace morphism (4.2)

� :M(perX)!M(X)

is invertible. More generally, if Z is a closed subset of X such that U = X n Z is

quasi-compact, then the trace morphism

�

Z

:M(per(X on Z))! R�

Z

(X;M(O

X

))
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is invertible.

Corollary. Let X be a quasi-compact separated scheme over a �eld k. Then there

is a canonical isomorphism

HC

�

(perX)

�

! HC

�

(X):

In particular, if X admits an ample line bundle (e.g. if X is a quasi-projective vari-

ety), there is a canonical isomorphism

HC

der

�

(vecX)

�

! HC

�

(X):

The corollary was announced in [18, 1.10], where we wrote HC

�

(vecX) instead

of HC

der

�

(vecX). It is immediate from the theorem once we prove that for quasi-

compact separated schemes, there is an isomorphism

HC

�

(X)

�

! HC

mix;�

(X):

This will be done in 5.10.

The theorem will be proved in 5.9. The plan of the proof is described in the

introduction to this section.

5.3. The example of varieties with tilting bundles. Suppose that k is an

algebraically closed �eld and that X is a smooth projective algebraic variety. Sup-

pose moreover that X admits a tilting bundle, i.e. a vector bundle T without higher

selfextensions whose direct summands generate the bounded derived category of the

category of coherent sheaves on X as a triangulated category. Examples of vari-

eties satisfying these hypotheses are projective spaces, Grassmannians, and smooth

quadrics [3], [12], [13], [14].

Proposition. The Chern character induces an isomorphism

K

0

(X)


Z

HC

�

(k)! HC

�

(X):

Here the left hand side is explicitly known since the group K

0

(X) is free and

admits a basis consisting of the classes of the pairwise non-isomorphic indecomposable

direct summands of the tilting bundle. For example, if X is the Grassmannian of k-

dimensional subspaces of an n-dimensional space, the indecomposables are indexed by

all Young diagrams with at most k rows and at most n�k columns. Cyclic homology

of projective spaces was �rst computed by Beckmann [2] using a di�erent method.

The proposition shows that if X is a smooth projective variety such that

H

n

(X;O

X

) 6= 0 for some n > 0, then X cannot admit a tilting bundle. Indeed,

the group H

n

(X;O

X

) occurs as a direct factor of HC

�n

(X) and therefore has to

vanish if the assumptions of the proposition are satis�ed.

Proof. Let A be the endomorphism algebra of the tilting bundle T and r the Jacobson

radical of A. We assume without restriction of generality that T is a direct sum of

pairwise non-isomorphic indecomposable bundles. Then A=r is a product of copies

of k (since k is algebraically closed). We will show that the mixed complex M(X) is

canonically isomorphic to M(A=r). For this, consider the exact functor

?


A

: proj(A)! vec(X):

It induces an equivalence in the bounded derived categories

D

b

(proj(A))! D

b

(vec(X)):
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Indeed, we have a commutative square

D

b

(proj(A)) D

b

(vec(X))

D

b

(mod(A)) D

b

(coh(X))

-

?


A

T

? ?

-

L(?


A

T )

where mod(A) denotes the abelian category of all �nitely generated right A-modules

and coh(X) the abelian category of all coherent sheaves on X . Since T is a tilting

bundle, the bottom arrow is an equivalence. Since X is smooth projective, it follows

that A is of �nite global dimension. Hence the left vertical arrow is an equivalence.

Again because X is smooth projective, the right vertical arrow is an equivalence.

Hence the top arrow is an equivalence. So the functor

?


A

T : per(A)! per(X)

induces an equivalence in the associated triangulated categories and hence an isomor-

phism

M(per(A))

�

!M(per(X))

by [18, 2.4 b)]. Of course, it also induces an isomorphism K

0

(proj(A))

�

! K

0

(vec(X))

and the Chern character is compatible with these isomorphisms by its description in

4.2. So we are reduced to proving that the Chern character induces an isomorphism

K

0

(A)


Z

HC

�

(k)

�

! HC

�

(A):

For this, let E � A be a semi-simple subalgebra such that E identi�es with the quo-

tient A=r. The algebraE is a product of copies of k and of course, the inclusion E � A

induces an isomorphism in K

0

. It also induces an isomorphism in HC

�

by [17, 2.5]

since A is �nite-dimensional and of �nite global dimension. These isomorphisms are

clearly compatible with the Chern character and we are reduced to the corresponding

assertion for HC

�

(E). This is clear since E is a product of copies of k.

p

5.4. Proof of the main theorem in the affine case. Suppose that X =

SpecA. Then we know by section 5.2 that the canonical morphism M(A) !

M(perX) is invertible. Now Weibel-Geller have shown in [34, 4.1] that the canonical

morphism

M(A)! R

ce

�(X;M(O

X

))

is invertible where M(O

X

) is viewed as a complex of sheaves on X and R

ce

�(X; ?)

denotes Cartan-Eilenberg hypercohomology (cf. section A.2). Moreover, Weibel-

Geller have shown in [34, 0.4] that the complexM(O

X

) has quasi-coherent homology.

By section A.2, it follows that the canonical morphism

R�(X;M(O

X

))! R

ce

�(X;M(O

X

))
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is invertible. Using the commutative diagram

M(A) R

ce

�(X;M(O

X

))

M(perX) R�(X;M(O

X

))

?

-

-

6

we conclude that M(perX)! R�(X;M(O

X

)) is invertible for a�ne X .

5.5. Thomason-Trobaugh's localization theorem. Let X be a quasi-compact

quasi-separated scheme. We denote by T perX the full subcategory of the (un-

bounded) derived category of the category of O

X

-modules whose objects are the

perfect complexes. This category identi�es with the triangulated category associated

with the localization pair perX as de�ned in [18, 2.4]. Recall that a triangle functor

S ! T is an equivalence up to factors if it is an equivalence onto a full subcategory

whose closure under forming direct summands is all of T . A sequence of triangulated

categories

0! R ! S ! T ! 0

is exact up to factors if the �rst functor is an equivalence up to factors onto the kernel

of the second functor and the induced functor S=R ! T is an equivalence up to

factors.

Theorem. [31]

a) Let U � X be a quasi-compact open subscheme and let Z = X n U . Then the

sequence

0! T per(X on Z)! T perX ! T perU ! 0

is exact up to factors.

b) Suppose that X = V [W , where V and W are quasi-compact open subschemes

and put Z = X nW . Then the lines of the diagram

0

T per(X on Z) T perX T perW

0

0

T per(V on Z) T perV T per(V \W )

0

-

?

j

�

-

?

-

?

-

- - - -

are exact up to factors and the functor j

�

is an equivalence up to factors.

The theorem was proved in section 5 of [31]. Note that the �rst assertion of part

b) follows from a). The second assertion of b) is a special case of the main assertion

in [31, 5.2] (take U = V , Z = X nW in [loc.cit.]). A new proof of the theorem is due

to A. Neeman [25], [26].

5.6. Localization in cyclic homology of DG categories. In this section, we

adapt the localization theorem [18, 4.9] to our needs. Let

0! A

F

! B

G

! C ! 0
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be a sequence of small 
at exact DG categories such that F is fully faithful, GF = 0,

and the induced sequence of stable categories

0! A! B ! C ! 0

is exact up to factors (5.5).

Theorem. The morphism

Cone(M(A)

M(F )

���!M(B))!M(C)

induced by M(G) is a quasi-isomorphism.

Proof. The proof consists in extracting the relevant information from [18] : Indeed,

since F is fully faithful, we may consider A

F

! B as a localization pair and since

GF = 0, the square

A B

0

C

?

-

F

?

G

-

as a morphism of localization pairs, i.e. a morphism of the category L

b

str

of [18, 4.3].

By applying the completion functor ?

+

of [loc. cit.] we obtain a morphism

(A

F

! B)

+

(0! C)

+

?

(5.6.1)

of the category L. Applying the functor Cm to this morphism yields the morphism

(M(A)!M(B))

(0!M(C))

?

(0;M(G))

of DMorMix by the remarks following proposition 4.3 of [18]. On the other hand,

applying the functor I

�

of [18, 4.8] to the morphism (5.6.1) yields the identity of C

+

inM and applying M (denoted by C in [18]) yields the identity of M(C) in DMix .

By the naturality of the isomorphism of functors in [18, 4.9 a)], call it  , we obtain a

commutative square in DMix

Cone(M(A)!M(B)) M(C)

Cone(0!M(C)) M(C)

-

 

?

(0;M(G))

?

1

-

 

So the left vertical arrow of the square is invertible in DMix , which is what we had

to prove.

p
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5.7. Perfect complexes with support and local cohomology. Let X be a

quasi-compact quasi-separated scheme, U � X a quasi-compact open subscheme, and

Z = X n U . Let j : U ! X be the inclusion.

Proposition. The sequence

M(}er (X on Z))!M(}erX)! j

�

M(}er U)

embeds into a triangle of DMix (X). This triangle is canonically isomorphic to the Z-

local cohomology triangle associated withM(}erX). In particular, there is a canonical

isomorphism

M(}er (X on Z))

�

! R�

Z

(X;M(}erX)):

Moreover, the canonical morphisms �t into a morphism of triangles

M(per(X on Z)) M(perX) M(perU) M(per(X on Z))[1]

�

Z

M(}erX)) �M(}erX)) �M(}er U)) �

Z

M(}erX))[1]

?

-

?

-

?

-

?

- - -

in the mixed derived category, where � and �

Z

are short for R�(X; ?) and R�

Z

(X; ?).

Proof. Let V � X be open. Consider the sequence

M(per(V on Z))!M(perV )!M(per(V \ U)):(5.7.1)

If we let V vary, it becomes a sequence of presheaves on X . We will show that there

is a sequence of mixed complexes of presheaves

A

f

! B

g

! C(5.7.2)

such that

� we have gf = 0 in the category of mixed complexes of presheaves

� in the derived category of mixed complexes of presheaves, the sequence 5.7.2

becomes isomorphic to the sequence 5.7.1.

� for each quasi-compact open subscheme V � X , the canonical morphism from

the cone over the morphism A(V ) ! B(V ) to C(V ) induced by g is a quasi-

isomorphism.

This implies that �rstly, the sequence of sheaves associated with the sequence 5.7.2

embeds canonically into a triangle

~

A!

~

B !

~

C !

~

A[1] ;

where the tilde denotes shea��cation and the connecting morphism is constructed as

the composition

~

C

�

 Cone(

~

A!

~

B)!

~

A[1] ;
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and secondly we have a morphism of triangles

A(V ) B(V ) C(V ) A(V )[1]

R�(V;

~

A) R�(V;

~

B) R�(V;

~

C) R�(V;

~

A[1])

?

-

?

-

?

-

?

- - -

for each quasi-compact open subscheme V � X (to prove this last assertion, we use

that R�(V; ?) lifts to a derived functor de�ned on the category of all sequences

A

0

f

0

! B

0

g

0

! C

0

with g

0

f

0

= 0).

To construct the sequence 5.7.2, we have to (pre-) shea�fy a part of the proof of

[18, 2.4]. For this, let iperX denote the category of all �brant (A.1) perfect complexes.

Then the inclusion iperX ! perX induces an equivalence in the associated triangu-

lated categories and thus we have an isomorphismM(iperX)

�

!M(perX) in DMix .

Note that this even holds if X is an arbitrary ringed space. In particular, it holds

for each open subscheme V � X instead of X . Hence the presheaf V 7! M(perV )

is isomorphic in the derived category of presheaves to V 7!M(iperV ). Similarly for

the other terms of the sequence, so that we are reduced to proving the assertion for

the sequence of presheaves whose value at V is

M(iper(V on Z))!M(iperV )!M(iper(U \ V )):

For this, let I(V ) be the exact dg category [18, 2.1] of �brant (A.1) complexes on V

and let

~

I(V ) be the category whose objects are the exact sequences

0! K

i

! L

p

!M ! 0

of I(V ) such that i has split monomorphic components, K is acyclic o� Z and i

x

is a quasi-isomorphism for each x 2 Z. Then

~

I(V ) is equivalent to a full exact dg

subcategory of the category of �ltered objects of I(V ) (cf. example 2.2 d) of [18]).

Let

~

I(V on Z) be the full subcategory of

~

I(X) whose objects are the sequences

0! K

�

! L! 0! 0

and

~

I(U \ V ) the full subcategory whose objects are the sequences

0! 0!M

�

! L! 0:

Let G :

~

I(V )!

~

I(V \ U) be the functor

(0! K ! L!M ! 0) 7! (0! 0!M

1

!M ! 0)

and F :

~

I(V on Z)!

~

I(V ) the inclusion. Then the sequence

0!

~

I(V on Z)

F

!

~

I(V )

G

!

~

I(V \ U)! 0(5.7.3)

is an exact sequence of the category M

str

of [18, 4.4] and in particular we have

GF = 0. We take the subsequence of perfect objects : Let

g

iper(V on Z) be the full

subcategory of

~

I(V on Z) whose objects are the K

�

! L! 0 with K 2 iper(V on Z),

let

g

iper(V ) be the full subcategory of the K ! L ! M with M 2 perV , and let
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g

iper(V \ U) be the full subcategory of the 0 ! L ! M with M j

U

2 per(V \ U).

Consider the diagram

g

iper(V on Z)

g

iper(V )

g

iper(V \ U)

iper(V on Z) iper(V ) iper(V \ U);

-

F

?

-

G

? ?

- -

where the three vertical functors are given by

K

�

! L! 0 7! K

K ! L!M 7! M

0! L!M 7! M j

U

:

Its left hand square is commutative up to isomorphism and its right hand square is

commutative up to the homotopy [18, 3.3]

Lj

U

pj

U

��!M j

U

:

The vertical arrows clearly induce equivalences in the associated triangulated cate-

gories. By applying the functor M to the diagram and letting V vary we obtain a

commutative diagram in the derived category of presheaves of mixed complexes on

X . The vertical arrows become invertible and the top row becomes

M(

g

iper(V on Z))!M(

g

iper(V ))!M(

g

iper(V \ U))

where V runs through the open subsets of X . This is the sequence of presheaves

A ! B ! C announced at the beginning of the proof. Using theorem 5.5 a) and

theorem 5.6 one sees that it has the required properties.

p

5.8. Mayer-Vietoris sequences. Let X be a quasi-compact quasi-separated

scheme and V;W � X quasi-compact open subschemes such that X = V [W .

Proposition. There is a canonical morphism of triangles in the mixed derived cat-

egory

M(perX) M(perV )�M(perW ) M(per(V \W ))

�M(}erX) �M(}er V )� �M(}erW )) �M(}er (V \W ))

?

-

?

-

?

-

- - -

where � is short for R�(X; ?).

Proof. Put Z = X nW . The �rst line of the diagram is deduced from theorem 5.5 b)

using [18, 2.7]. Clearly the two squares appearing in the diagram are commutative.
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We have to show that the square involving the arrows of degree 1

M(per(V \W )) M(perX)[1]

�M(}er (V \W )) �M(}erX))[1]

?

-

?

-

is commutative as well. By [loc.cit.], the connecting morphism is the composition

M(per(X on Z)[1] M(perX)[1]

M(per(V \W )) M(per(V on Z))[1]

?

-

-

Here the vertical morphism is invertible by theorem 5.5 b) and [18, 2.4 b)]. The

second line of the diagram is the Mayer-Vietoris triangle for hypercohomology. So

the connecting morphism of the second line is obtained as the composition

�M(}er (V \W ))! �

Z

M(}er V )[1]

�

 �

Z

M(}erX)[1]! �M(}erX)[1] ;

where � and �

Z

are short for R�(X; ?) and R�

Z

(X; ?). Now it follows from proposi-

tion 5.7 that the rightmost square of the diagram of the assertion is commutative as

well.

p

5.9. Proof of theorem 5.1. Let V

1

; : : : ; V

n

be open a�nes covering X . If n = 1,

theorem 5.2 holds by section 5.4. If n > 1, we coverX by V = V

1

andW =

S

i=2:::n

V

i

.

The intersection V \W is then covered by the n � 1 sets V \ V

i

, 2 � i � n. These

are a�ne, since X is separated. So theorem 5.2 holds for V , W , and V \W by the

induction hypothesis. Thus it holds for X = V [W by proposition 5.8. The assertion

for �

Z

now follows by proposition 5.7.

5.10. Proof of corollary 5.1. In [32] (cf. also [33]), C. Weibel de�ned HC

�

(X)

as the homology of the complex of k-modules

R�

ce

(X;CC(O

X

))

where R�

ce

denotes Cartan-Eilenberg hypercohomology (cf. section A.2) and

CC(O

X

) is the shea��cation of the classical bicomplex. Now Weibel-Geller have

shown in [34] that the Hochschild complex C(O

X

) has quasi-coherent homology. Thus

each column of CC(O

X

) has quasi-coherent homology and hence (the sum total com-

plex of) CC(O

X

) has itself quasi-coherent homology. Hence by theorem A.2, the

above complex is isomorphic to

R�(X;CC(O

X

)):

Now, as in the case of an algebra (cf. [21, 2.5.13]), CC(O

X

) may also be viewed as

the (sum total complex of the) bicomplex BC(M(O

X

)) associated with the mixed

complex of sheaves M(O

X

) (cf. [33, Section 2]). What remains to be proved then is

that the canonical map

BC(R�(X;M(O

X

))! R�(X;BC(M(O

X

))
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is invertible in the derived category of k-vector spaces. Now indeed, more generally,

we claim that we have

BC(R�(X;M))

�

! R�(X;BC(M))

for any mixed complex of sheaves M with quasi-coherent homology. As the reader

will easily check, this is immediate once we know that the functor R�(X; ?) commutes

with countable direct sums when restricted to the category of complexes with quasi-

coherent homology. This follows from Corollary 3.9.3.2 in [19]. It may also be proved

by the argument of [26, 1.4]. For completeness, we include a proof : LetK

i

, i 2 I , be a

family of complexes with quasi-coherent homology. It is enough to prove thatH

0

(X; ?)

takes K =

L

K

i

to the sum of the H

0

(X;K

i

). Now �(X; ?) is of �nite cohomological

dimension on the category of quasi-coherent modules. Indeed, for an a�ne X , this

follows from Serre's theorem [9, III, 1.3.1], and for arbitraryX it is proved by induction

on the size of an a�ne cover ofX (here we use thatX is quasi-compact and separated).

It therefore follows from by theorem A.2 b), lemma A.3, and Serre's theorem [9, III,

1.3.1]. that we have an isomorphismH

0

(X;K

i

)

�

! H

0

(X; �

�n

K

i

) and similarly forK

for some �xed n < 0 (cf. the proof of theorem A.2 for the de�nition of the truncation

functor �

�n

). So we may assume that the K

i

and K are uniformly bounded below.

But then, we may compute the H

0

(X;K

i

) using resolutions K

i

! F

i

by uniformly

bounded below complexes of 
asque sheaves. The sum of the F

i

is again bounded

below with 
asque components and is clearly quasi-isomorphic to K. Now �(X; ?)

commutes with in�nite sums since X is quasi-compact, so the claim follows.

Appendix A. On Cartan-Eilenberg resolutions

We prove that Cartan-Eilenberg hypercohomology coincides with derived func-

tor hypercohomology on all (unbounded) complexes of sheaves with quasi-coherent

homology on a quasi-compact separated scheme. More precisely, we prove that in

this situation, Cartan-Eilenberg resolutions are actually K-injective resolutions in

the sense of [29].

A.1. Terminology. Let A be a Grothendieck category. Spaltenstein [29] de�ned a

complex I over A to be K-injective if, in the homotopy category, there are no non zero

morphisms from an acyclic complex to I . This is the case i� each morphism M ! I

in the derived category is represented by a unique homotopy class of morphisms of

complexes.

In [33, A.2], C. Weibel proposed the use of the term �brant for K-injective.

Indeed, one can show that a complex is K-injective i� it is homotopy equivalent to

a complex which is �brant for the `global' closed model structure on the category

of complexes in which co�brations are the componentwise monomorphisms. This

structure is an additive analogue of the global closed model structure on the category

of simplicial sheaves on a Grothendieck site. The existence of the global structure in

the case of simplicial sheaves was proved by Joyal [11] (cf. [10, 2.7]). We have not

been able to �nd a published proof of the fact that the category of complexes over

a Grothendieck category admits the global structure (an unpublished proof is due to

F. Morel). However, the key step may be found in [8, Prop. 1].

Whereas in the homotopy category, the notions of `�brant for the global structure'

and `K-injective' become essentially equivalent, there is a slight di�erence at the level
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of complexes: �brant objects for the global structure are exactly the K-injective

complexes with injective components.

We will adopt the terminology proposed by Weibel: We call a complex �brant i�

it is K-injective in the sense of Spaltenstein. This will not lead to ambiguities since

we will not use the global closed model structure.

A.2. Sheaves with quasi-coherent cohomology. Let X be a scheme and K

a complex of O

X

-modules (unbounded to the right and to the left). Let I be a

Cartan-Eilenberg resolution of K, i.e.

a) I is a Z�Z-graded O

X

-module endowed with di�erentials d

I

of bidegree (1; 0)

and d

II

of bidegree (0; 1) such that (d

I

+ d

II

)

2

= 0,

b) I

pq

vanishes for q < 0 and

c) I is endowed with an augmentation " : K ! I , i.e. a morphism of di�erential

Z � Z-graded O

X

-modules, where K is viewed as concentrated on the p-axis,

such that for each p, the induced morphisms K

p

! I

p;�

and H

p

K ! H

p

I

I are

injective resolutions.

It follows that for each p, the induced morphisms B

p

K ! B

p

I

K and Z

p

K ! Z

p

I

I are

injective resolutions and that the rows of I are products of complexes of the form

: : : 0!M ! 0 : : : or : : : 0!M

1

!M ! 0 : : : ;

where M is injective.

Let J =

d

Tot I denote the product total complex of I and � : K ! J the mor-

phism of complexes induced by ". The morphism � is called a total Cartan-Eilenberg

resolution of K. The Cartan-Eilenberg hypercohomology of K is the cohomology of

the complex

R�

ce

(X;K) = �(X; J):

The morphism � is usually not a quasi-isomorphism.

Theorem. a) The complex J is �brant (A.1).

b) If K has quasi-coherent homology, the morphism � : K ! J is a quasi-

isomorphism. Hence, Cartan-Eilenberg hypercohomology of K coincides with

derived functor hypercohomology of K in the sense of Spaltenstein [29].

Part a) holds more generally whenever K is a complex of objects over an abelian

category having enough injectives and admitting all countable products. This was

proved by C. Weibel in [32, A.3]. For completeness, we include a proof of a) below.

Part b) was proved by C. Weibel in [loc. cit.] for the case of complete abelian

categories with enough injectives and exact products, for example module categories.

The case we consider here is implicit in [29, 3.13]. Nevertheless, we thought it useful

to include the explicit statement and a complete proof.

In preparation of the proof, let us recall the notion of a homotopy limit (cf. [4]

for example) : If T is a triangulated category admitting all countable products and

: : :! X

p+1

f

p

! X

p

! : : :! X

0

; p 2 N ;

is a sequence in T , its homotopy limit holimX

p

is de�ned by the Milnor triangle [23]

holimX

p

!

Y

X

p

�

!

Y

X

q

! (holimX

p

)[1] ;
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where the morphism � has the components

Y

p

X

p

can

��! X

q+1

�X

q

[�f

q

;1]

����! X

q

:

Note that the homotopy limit is unique only up to non unique isomorphism. We will

encounter the following situation : Consider a sequence of complexes

: : :! K

p

f

p

! K

p�1

! : : :! K

0

over an additive category admitting all countable products such that the f

p

are com-

ponentwise split epi (or, more generally, for each n and p, the morphism X

n

p+k

! X

n

p

is split epi for some k � 0). Then we have a componentwise split short exact sequence

of complexes

0! lim

 �

K

p

!

Y

p

K

p

�

!

Y

q

K

q

! 0

and hence the inverse limit lim

 �

K

p

is then isomorphic to holimK

p

in the homotopy

category.

Proof of the theorem. a) Note that the bicomplex I is the inverse limit of its quotient

complexes I

�;q]

obtained by killing all rows of index greater than q. Let J

q

be the

product total complex of I

�;q]

. Then the sequence of the J

q

has inverse limit

d

Tot I

and its structure maps are split epi in each component. Hence I is isomorphic to

the homotopy limit of the sequence of the J

q

. Since the class of �brant complexes is

stable under extensions and products, it is stable under homotopy limits. Therefore

it is enough to show that the J

q

are �brant. Clearly the J

q

are iterated extensions of

rows of I (suitably shifted). So it is enough to show that the rows of I are �brant.

But each row of I is homotopy equivalent to a complex with vanishing di�erential

and injective components. Such a complex is the product of its components placed

in their respective degrees and is thus �brant.

b) For p 2 Z, de�ne �

�p

K to be the quotient complex of K given by

: : :! 0! K

p

=B

p

K ! K

p+1

! K

p+2

! : : :

and �

<p

K to be the subcomplex of K given by

: : :! K

p�2

! K

p�1

! B

p

K ! 0! : : : :

De�ne �

�p

J and �

<p

J by applying the respective functor to each row of J . Then

the morphism �

�p

K ! �

�p

J is a Cartan-Eilenberg resolution for each p 2 Z. Since

�

�p

K is left bounded, it follows that the induced morphism �

�p

K !

d

Tot �

�p

J is a

quasi-isomorphism for each p 2 Z. Now �x n 2 Z and consider the diagram

H

n

K

H

n

�

�p

K

H

n

d

TotJ H

n

d

Tot �

�p

J:

-

? ?

-

For p < n, the top morphism is invertible. It now su�ces to show that for p� 0, the

bottom morphism is invertible. Equivalently, it is enough to show that H

n

d

Tot �

<p

J
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vanishes for p � 0. For this let x 2 X . We have to show that (H

n

d

Tot �

<p

J)

x

vanishes. Since taking the stalk is an exact functor, this reduces to showing that

the complex (

d

Tot �

<p

J)

x

is acyclic in degree n. For this, it is enough to show that

(

d

Tot �

<p

J)(U) is acyclic in degree n for each a�ne neighbourhood of x. Now �

<p

J is

a Cartan-Eilenberg resolution of �

<p

K. Therefore, if we apply proposition A.3 below

to the functor F = �(U; ?), we see that (

d

Tot �

<p

J)(U) is acyclic in all degrees n � p.

Indeed, we have (R

i

F )(H

p

K) = 0 for all p and all i > 0 by Serre's theorem [9, III,

1.3.1], since H

p

K is quasi-coherent.

p

A.3. Unbounded complexes with uniformly bounded cohomology. Let A

be an abelian category with enough injectives which admits all countable products

and let F : A ! Ab be an additive functor commuting with all countable products.

Let K be a complex over A and let K ! J a Cartan-Eilenberg resolution.

Suppose that K

p

= 0 for all p > 0 and that there is an integer n with

(R

i

F )(H

p

K) = 0

for all i � n and all p 2 Z.

Lemma. We have H

p

F

d

TotJ = 0 for all p � n.

Note that this assertion is clear if K is (homologically) left bounded. The point

is that it remains true without this hypothesis.

Proof. De�ne �

�p

K and �

�p

J as in the proof of proposition A.2. The canonical

morphisms �

�p

J ! �

�p+1

J are split epi in each bidegree and J identi�es with the

inverse limit of the �

�p

J . Hence we have

d

Tot J = lim

 �

d

Tot �

�p

J and the morphisms

d

Tot �

�p

J !

d

Tot �

�p+1

J

are componentwise split epi. Since F commutes with countable products, we therefore

have F (

d

Tot J) = lim

 �

F

d

Tot �

�p

J . By lemma A.4 below, it is therefore enough to show

that the groups H

i

F (

d

TotL

p

) vanish for all i � n and all p where L

p

is the kernel

of the canonical morphism �

�p

J ! �

�p+1

J . Now L

p

is in fact a Cartan-Eilenberg

resolution of the kernel of the morphism �

�p

K ! �

�p+1

K, which is isomorphic to

the complex

: : : 0! K

p�1

=B

p�1

K ! Z

p

K ! 0! : : :

This complex is quasi-isomorphic to H

p

K placed in degree p. So

d

TotL

p

is homotopy

equivalent to an injective resolution of H

p

K shifted by p degrees. Hence

H

i

F

d

TotL

p

= H

i

RF (H

p

K[�p]) = (R

i�p

F )(H

p

K):

By assumption, this vanishes for i� p � n.

p

A.4. A Mittag-Leffler lemma. Let n be an integer and let

: : :! K

p+1

�

p+1

���! K

p

! : : :! K

0

�

0

! K

�1

= 0 ; p 2 N ;

be an inverse system of complexes of abelian groups such that the �

p

are surjective in

each component and H

i

K

0

p

= 0 for all i � n and all p, where K

0

p

is the kernel of �

p

.

Lemma. We have H

i

lim

 �

K

p

= 0 for all i � n.
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Proof. By induction, we �nd that H

i

K

p

= 0 for all i � n. Now we have exact

sequences

0! Z

i

K

p

! K

i

p

! Z

i+1

K

p

! 0 ;

for all i � n� 1. Since B

i

K

p

�

! Z

i

K

p

, the maps Z

i

K

p+1

! Z

i

K

p

are surjective for

i � n. The fact that H

n

K

0

p+1

= 0 implies that the maps Z

n�1

K

p+1

! Z

n�1

K

p

are

surjective as well. By the Mittag-Le�er lemma [9, 0

III

, 13.1], the sequence

0! lim

 �

Z

i

K

p

! lim

 �

K

i

p

! lim

 �

Z

i+1

K

p

! 0

is still exact for i � n�1. Since lim

 �

Z

i

K

p

�

 Z

i

lim

 �

K

p

, this means that H

i

lim

 �

K

p

= 0

for i � n.

p

Appendix B. A comparison of derived categories

B.1. Boekstedt-Neeman's theorem. Let X be a quasi-compact separated sche-

me, DQcohX the derived category of the category QcohX of quasi-coherent sheaves

on X , DX the derived category of all sheaves of O

X

-modules on X , and D

qc

X its full

subcategory whose objects are the complexes with quasi-coherent homology.

As an application of theorem A.2, we give a partially new proof of the following

result of Boekstedt-Neeman. We refer to [30, Prop. 1.3] for yet another proof.

Theorem. [4, 5.5] The canonical functor DQcohX ! D

qc

X is an equivalence of

categories.

The proof proceeds by induction on the size of an a�ne cover of X . The crucial

step is the case where X is a�ne. Our proof for this case is new. For completeness,

we have included the full induction argument.

Proof. In a �rst step, suppose thatX is a�ne : X = SpecA. We identify QcohX with

ModA and then have to show that the shea��cation functor F : DModA ! DX

induces an equivalence DModA ! D

qc

X . Clearly, the image of A (viewed as a

complex of A-modules concentrated in degree 0) is O

X

. By the lemma below, it

su�ces therefore to show that

a) We have A

�

! Hom

DX

(O

X

;O

X

) and Hom

DX

(O

X

;O

X

[n]) = 0 for each n 6= 0,

b) The object O

X

is compact in D

qc

X i.e. the associated functor

Hom

D

qc

X

(O

X

; ?)

commutes with in�nite direct sums.

c) An object K 2 D

qc

X vanishes if Hom

DX

(O

X

;K[n]) vanishes for all n 2 Z.

The three assertions a), b), and c) all follow easily from the fact that we have an

isomorphism

Hom

D

qc

X

(O

X

; ?)

�

! �(X;H

0

(?)) ;

which we will now prove : Indeed, let K 2 D

qc

X . By de�nition, we have

Hom

DX

(O

X

;K) = H

0

R�(X;K):

Now we have morphisms

H

0

R�(X;K)

�

 H

0

R�(X; �

�0

K)

�

! H

0

R�(X;H

0

K) = �(X;H

0

K):
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The morphism � is invertible because R�(X; ?) is a right derived functor. The mor-

phism � is invertible by theorem A.2 b), lemma A.3, and Serre's theorem [9, III,

1.3.1].

Now suppose that X is the union of n open a�ne sets U

1

; : : : ; U

n

. By induction

on n and the a�ne case, we may assume that the claim is proved for U = U

1

and

V =

S

i=2:::n

U

i

. Let j

1

: U ! X and j

2

: V ! X be the inclusions. Let Y = X n U

and let i : Y ! X be the inclusion. For any object K 2 D

qc

X , we have a triangle

R�

Y

K ! K ! j

1�

j

�

1

K ! R�

Y

K[1]:

Here the second morphism is the adjunction morphism and R�

Y

K is de�ned (up to

unique isomorphism) by the triangle. The object j

�

1

K is a complex of sheaves on U

and H

n

j

�

1

K = j

�

1

H

n

K is quasi-coherent. So j

�

1

K is in the faithful image of DQcohU .

Because X is separated, j

1�

preserves quasi-coherence (cf. [19, 3.9.2]). So the triangle

lies in D

qc

X . The subset Y � X is a closed subset of V and i = j

1

i

2

, where i

2

is the

inclusion of Y into V . This implies that R�

Y

K = j

2�

(R�

Y�V

K). The above triangle

thus shows that D

qc

X is generated by the j

1�

K

0

and the j

2�

K

00

, where K

0

belongs to

DQcohU and K

00

to DQcohV . It remains to be checked that morphisms between

j

1�

K

0

and j

2�

K

00

in DModO

X

are in bijection with those in DQcohX . Indeed, we

have

Hom

DX

(j

1�

K

0

; j

2�

K

00

) = Hom

DV

(j

�

2

j

1�

K

0

;K

00

):

By the induction hypothesis, the latter group identi�es with

Hom

DQcohV

(j

�

2

j

1�

K

0

;K

00

) = Hom

DQcohX

(j

1�

K

0

; j

2�

K

00

):

The same argument applies to morphisms from j

2�

K

00

to j

1�

K

0

. This ends the proof.

p

B.2. Derived categories of modules. Let A be a ring and T a triangulated

category admitting all (in�nite) direct sums. Suppose that F : DModA ! T is a

triangle functor commuting with all direct sums. For the convenience of the reader,

we include a proof of the following more and more well-known

Lemma. The functor F is an equivalence if and only if

a) We have A

�

! Hom

T

(FA; FA) and Hom

T

(FA; FA[n]) = 0 for all n 6= 0.

b) The object FA is compact in T , i.e. Hom

T

(FA; ?) commutes with in�nite direct

sums.

c) An object X of T vanishes i� Hom

T

(FA;X [n]) = 0 for all n 2 Z.

Proof. Let S � T be the smallest triangulated subcategory of T containing FA and

stable under forming in�nite direct sums. Then, since FA is compact, the inclusion

S ! T admits a right adjoint R by Brown's representability theorem [6] (cf. also

[16, 5.2], [26], [8]). Now if X 2 T and RX ! X ! X

0

! RX [1] is a triangle over

the adjunction morphism, then Hom

T

(FA;X

0

[n]) vanishes for all n 2 Z by the long

exact sequence associated with the triangle. So X

0

vanishes by assumption c) and S

coincides with T . So FA is a compact generator for T . Now the claim follows from

[16, 4.2].

p
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