On the Group $H^{3}(F(\psi, D) / F)$

Oleg T. Izhboldin and Nikita A. Karpenko

Received: August 14, 1997

Communicated by Ulf Rehmann

Abstract

Let F be a field of characteristic different from $2, \psi$ a quadratic F-form of dimension ≥ 5, and D a central simple F-algebra of exponent 2 . We denote by $F(\psi, D)$ the function field of the product $X_{\psi} \times X_{D}$, where X_{ψ} is the projective quadric determined by ψ and X_{D} is the Severi-Brauer variety determined by D. We compute the relative Galois cohomology group $H^{3}(F(\psi, D) / F, \mathbb{Z} / 2 \mathbb{Z})$ under the assumption that the index of D goes down when extending the scalars to $F(\psi)$. Using this, we give a new, shorter proof of the theorem [23, Th. 1] originally proved by A. Laghribi, and a new, shorter, and more elementary proof of the assertion [2, Cor. 9.2] originally proved by H. Esnault, B. Kahn, M. Levine, and E. Viehweg.

1991 Mathematics Subject Classification: 19E15, 12G05, 11E81.

Let ψ be a quadratic form and D be an exponent 2 central simple algebra over a field F (always assumed to be of characteristic not 2). Let X_{ψ} be the projective quadric determined by ψ, X_{D} the Severi-Brauer variety determined by D, and $F(\psi, D)$ the function field of the product $X_{\psi} \times X_{D}$.

A computation of the relative Galois cohomology group

$$
H^{3}(F(\psi, D) / F) \stackrel{\text { def }}{=} \operatorname{ker}\left(H^{3}(F, \mathbb{Z} / 2 \mathbb{Z}) \rightarrow H^{3}(F(\psi, D), \mathbb{Z} / 2 \mathbb{Z})\right)
$$

plays a crucial role in obtaining the results of [8] and [10] concerning the problem of isotropy of quadratic forms over the function fields of quadrics.

The group $H^{3}(F(\psi, D) / F)$ is closely related to the Chow group $\mathrm{CH}^{2}\left(X_{\psi} \times X_{D}\right)$ of 2-codimensional cycles on the product $X_{\psi} \times X_{D}$. The main result of this paper is the following theorem, where both groups are computed assuming $\operatorname{dim} \psi \geq 5$ and the index of D goes down when extending the scalars to the function field of ψ :

Theorem 0.1. Let D be a central simple F-algebra of exponent 2. Let ψ be a quadratic form of dimension ≥ 5. Suppose that ind $D_{F(\psi)}<$ ind D. Then Tors $\mathrm{CH}^{2}\left(X_{\psi} \times X_{D}\right)=0$ and $H^{3}(F(\psi, D) / F)=[D] \cup H^{1}(F)$.

A proof is given in $\S 8$. The essential part of the proof is Theorem 6.9, dealing with the special case where D is a division algebra of degree 8 . This theorem has two applications in the theory of quadratic forms. The first one is a new, shorter proof of the following assertion, originally proved by A. Laghribi ([23, Th. 1]):

Corollary 0.2. Let $\phi \in I^{2}(F)$ be an 8-dimensional quadratic form such that $\operatorname{ind} C(\phi)=8$. Let ψ be a quadratic form of dimension ≥ 5 such that $\phi_{F(\psi)}$ is isotropic. Then there exists a half-neighbor ϕ^{*} of ϕ such that $\psi \subset \phi^{*}$.

The other application we demonstrate is a new, shorter, and more elementary proof of the assertion, originally proved by H. Esnault, B. Kahn, M. Levine, and E. Viehweg ([2, Cor. 9.2]):

Corollary 0.3. Let $\phi \in I^{2}(F)$ be any quadratic form such that ind $C(\phi) \geq 8$. Let A be a central simple F-algebra Brauer equivalent to $C(\phi)$ and let $F(A)$ be the function field of the Severi-Brauer variety of A. Then $\phi_{F(A)} \notin I^{4}(F(A))$. In particular, $\phi_{F(A)}$ is not hyperbolic. Moreover, if $\operatorname{dim} \phi=8$ then $\phi_{F(A)}$ is anisotropic.

Our proofs of Corollaries 0.2 and 0.3 are given in $\S 7$.
An important part in the proof of Theorem 6.9 is played by the formula of Proposition 4.5, which is in fact applicable to a wide class of algebraic varieties.

A computation of the group $H^{3}(F(\psi, D) / F)$ in some cases not covered by Theorem 0.1 is given in [8] and [10].

1. Terminology, notation, and backgrounds

1.1. Quadratic forms. Mainly, we use notation of [24] and [30]. However there is a slight difference: we denote by $\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle$ the n-fold Pfister form

$$
\left\langle 1,-a_{1}\right\rangle \otimes \cdots \otimes\left\langle 1,-a_{n}\right\rangle
$$

The set of all n-fold Pfister forms over F is denoted by $P_{n}(F) ; G P_{n}(F)$ is the set of forms similar to a form from $P_{n}(F)$.

We recall that a quadratic form ψ is called a (Pfister) neighbor (of a Pfister form π), if it is similar to a subform in π and $\operatorname{dim} \phi>\frac{1}{2} \operatorname{dim} \pi$. Two quadratic forms ϕ and ϕ^{*} are half-neighbors, if $\operatorname{dim} \phi=\operatorname{dim} \phi^{*}$ and there exists $s \in F^{*}$ such that the sum $\phi \perp s \phi^{*}$ is similar to a Pfister form.

For a quadratic form ϕ of dimension ≥ 3, we denote by X_{ϕ} the projective variety given by the equation $\phi=0$ and we set $F(\phi)=F\left(X_{\phi}\right)$.
1.2. Generic splitting tower. Let γ be a non-hyperbolic quadratic form over F. Put $F_{0} \stackrel{\text { def }}{=} F$ and $\gamma_{0} \stackrel{\text { def }}{=} \gamma_{a n}$. For $i \geq 1$ let $F_{i} \stackrel{\text { def }}{=} F_{i-1}\left(\gamma_{i-1}\right)$ and $\gamma_{i} \stackrel{\text { def }}{=}\left(\left(\gamma_{i-1}\right)_{F_{i}}\right)_{a n}$. The smallest h such that $\operatorname{dim} \gamma_{h} \leq 1$ is called the height of γ. The sequence $F_{0}, F_{1}, \ldots, F_{h}$ is called the generic splitting tower of $\gamma([21])$. We need some properties of the fields F_{s} :

Lemma 1.3 ([22]). Let M / F be a field extension such that $\operatorname{dim}\left(\gamma_{M}\right)_{a n}=\operatorname{dim} \gamma_{s}$. Then the field extension $M F_{s} / M$ is purely transcendental.

The following proposition is a consequence of the index reduction formula [25].
Proposition 1.4 (see [6, Th. 1.6] or [5, Prop. 2.1]). Let $\phi \in I^{2}(F)$ be a quadratic form with $\operatorname{ind}(C(\phi)) \geq 2^{r}>1$. Then there is $s(0 \leq s \leq h(\phi))$ such that $\operatorname{dim} \phi_{s}=$ $2 r+2$ and ind $C\left(\phi_{s}\right)=2^{r}$.
Corollary 1.5. Let $\phi \in I^{2}(F)$ be a quadratic form with $\operatorname{ind}(C(\phi)) \geq 8$. Then there is $s(0 \leq s \leq h(\phi))$ such that $\operatorname{dim} \phi_{s}=8$ and ind $C\left(\phi_{s}\right)=8$.
1.6. Central simple algebras. We are working with finite-dimensional associative algebras over a field. Let D be a central simple F-algebra. We denote by X_{D} the Severi-Brauer variety of D and by $F(D)$ the function field $F\left(X_{D}\right)$.

For another central simple F-algebra D^{\prime} and for a quadratic F-form ψ of dimension ≥ 3, we set $F\left(D^{\prime}, D\right) \stackrel{\text { def }}{=} F\left(X_{D^{\prime}} \times X_{D}\right)$ and $F(\psi, D) \stackrel{\text { def }}{=} F\left(X_{\psi} \times X_{D}\right)$.
1.7. Galois cohomology. By $H^{*}(F)$ we denote the graded ring of Galois cohomology

$$
H^{*}(F, \mathbb{Z} / 2 \mathbb{Z})=H^{*}\left(\operatorname{Gal}\left(F_{\mathrm{sep}} / F\right), \mathbb{Z} / 2 \mathbb{Z}\right)
$$

For any field extension L / F, we set $H^{*}(L / F) \stackrel{\text { def }}{=} \operatorname{ker}\left(H^{*}(F) \rightarrow H^{*}(L)\right)$.
We use the standard canonical isomorphisms $H^{0}(F)=\mathbb{Z} / 2 \mathbb{Z}, H^{1}(F)=F^{*} / F^{* 2}$, and $H^{2}(F)=\operatorname{Br}_{2}(F)$.

We also work with the cohomology groups $H^{n}(F, \mathbb{Q} / \mathbb{Z}(i)), i=0,1,2$ (see e.g. [12] for the definition). For any field extension L / F, we set

$$
H^{*}(L / F, \mathbb{Q} / \mathbb{Z}(i)) \stackrel{\text { def }}{=} \operatorname{ker}\left(H^{*}(F, \mathbb{Q} / \mathbb{Z}(i)) \rightarrow H^{*}(L, \mathbb{Q} / \mathbb{Z}(i))\right)
$$

For $n=1,2,3$, the group $H^{n}(F)$ is naturally identified with

$$
\operatorname{Tors}_{2} H^{n}(F, \mathbb{Q} / \mathbb{Z}(n-1))
$$

1.8. K-theory and Chow groups. We are mainly working with smooth algebraic varieties over a field, although the smoothness assumption is not always essential.

Let X be a smooth algebraic F-variety. The Grothendieck ring of X is denoted by $K(X)$. This ring is supplied with the filtration "by codimension of support" (which respects multiplication); the adjoint graded ring is denoted by $G^{*} K(X)$. There is a canonical surjective homomorphism of the graded Chow ring $\mathrm{CH}^{*}(X)$ onto $G^{*} K(X)$; its kernel consists only of torsion elements and is trivial in the 0 -th, 1 -st and 2 -nd graded components ([32, §9]). In particular we have the following

Lemma 1.9. The homomorphism $\mathrm{CH}^{i}(X) \rightarrow G^{i} K(X)$ is bijective if at least one of the following conditions holds:

- $i=0,1$, or 2 ,
- $\mathrm{CH}^{i}(X)$ is torsion-free.

Let X be a variety over F and E / F be a field extension. We denote by $i_{E / F}$ the restriction homomorphism $K(X) \rightarrow K\left(X_{E}\right)$. We use the same notation for the restriction homomorphisms $\mathrm{CH}^{*}(X) \rightarrow \mathrm{CH}^{*}\left(X_{E}\right)$ and $G^{*} K(X) \rightarrow G^{*} K\left(X_{E}\right)$. Note that for any projective homogeneous variety X, the homomorphism $i_{E / F}: K(X) \rightarrow$ $K\left(X_{E}\right)$ is injective by [27].
1.10. Other notations. We denote by \bar{F} a separable closure of the field F. The order of a set S is denoted by $|S|$ (if S is infinite, we set $|S| \stackrel{\text { def }}{=} \infty$).

2. The group Tors $G^{*} K(X)$

Lemma 2.1. Let X be a variety over F and E / F be a field extension such that the homomorphism $i_{E / F}: K(X) \rightarrow K\left(X_{E}\right)$ is injective and the factor group $K\left(X_{E}\right) / i_{E / F}(K(X))$ is finite. Then

$$
\left\lvert\, \operatorname{ker}\left(G^{*} K(X) \rightarrow G^{*} K\left(X_{E}\right) \left\lvert\,=\frac{\left|G^{*} K\left(X_{E}\right) / i_{E / F}\left(G^{*} K(X)\right)\right|}{\left|K\left(X_{E}\right) / i_{E / F}(K(X))\right|}\right.\right.\right.
$$

Proof. The proof is the same as the proof of [15, Prop. 2].
Lemma 2.2. Let X be a variety, i be an integer, and E / F be a field extension such that the group $G^{i} K\left(X_{E}\right)$ is torsion-free. Then

$$
\operatorname{ker}\left(G^{i} K(X) \rightarrow G^{i} K\left(X_{E}\right)\right)=\operatorname{Tors} G^{i} K(X)
$$

Proof. Since $G^{i} K\left(X_{E}\right)$ is torsion-free, one has $\operatorname{ker}\left(G^{i} K(X) \rightarrow G^{i} K\left(X_{E}\right)\right) \supset$ Tors $G^{i} K(X)$.

To prove the inverse inclusion, let us take an intermediate field E_{0} such that the extension E_{0} / F is purely transcendental while the extension E / E_{0} is algebraic. The specialization argument shows that the homomorphism $G^{i} K(X) \rightarrow G^{i} K\left(X_{E_{0}}\right)$ is injective; the transfer argument shows that $\operatorname{ker}\left(G^{i} K\left(X_{E_{0}}\right) \rightarrow G^{i} K\left(X_{E}\right)\right) \subset$ Tors $G^{i} K\left(X_{E_{0}}\right)$. Therefore $\operatorname{ker}\left(G^{i} K(X) \rightarrow G^{i} K\left(X_{E}\right)\right) \subset$ Tors $G^{i} K(X)$.

Lemma 2.3. Let X be a smooth variety, i be an integer, and E / F be a field extension such that the group $\mathrm{CH}^{i}\left(X_{E}\right)$ is torsion-free. Then

- $\mathrm{CH}^{i}\left(X_{E}\right) \simeq G^{i} K\left(X_{E}\right)$ (and hence the group $G^{i} K\left(X_{E}\right)$ is torsion-free),
- $\mathrm{CH}^{i}\left(X_{E}\right) / i_{E / F}\left(\mathrm{CH}^{i}(X)\right) \simeq G^{i} K\left(X_{E}\right) / i_{E / F}\left(G^{i} K(X)\right)$.

Proof. The first assertion is contained in Lemma 1.9. The canonical homomorphism $\mathrm{CH}^{i}\left(X_{E}\right) \rightarrow G^{i} K\left(X_{E}\right)$ induces a homomorphism

$$
\mathrm{CH}^{i}\left(X_{E}\right) / i_{E / F}\left(\mathrm{CH}^{i}(X)\right) \rightarrow G^{i} K\left(X_{E}\right) / i_{E / F}\left(G^{i} K(X)\right)
$$

which is bijective since $\mathrm{CH}^{i}\left(X_{E}\right) \rightarrow G^{i} K\left(X_{E}\right)$ is bijective and $\mathrm{CH}^{i}(X) \rightarrow G^{i} K(X)$ is surjective.

Proposition 2.4. Suppose that a smooth F-variety X and a field extension E / F satisfy the following three conditions:

- the homomorphism $i_{E / F}: K(X) \rightarrow K\left(X_{E}\right)$ is injective,
- the factor group $K\left(X_{E}\right) / i_{E / F}(K(X))$ is finite,
- the group $\mathrm{CH}^{*}\left(X_{E}\right)$ is torsion-free.

Then

$$
\left|\operatorname{Tors} G^{*} K(X)\right|=\frac{\left|G^{*} K\left(X_{E}\right) / i_{E / F}\left(G^{*} K(X)\right)\right|}{\left|K\left(X_{E}\right) / i_{E / F}(K(X))\right|}=\frac{\left|\mathrm{CH}^{*}\left(X_{E}\right) / i_{E / F}\left(\mathrm{CH}^{*} K(X)\right)\right|}{\left|K\left(X_{E}\right) / i_{E / F}(K(X))\right|}
$$

Proof. It is an obvious consequence of Lemmas 2.1, 2.2, and 2.3.

3. Auxiliary lemmas

For an Abelian group A we use the notation $\operatorname{rk}(A)=\operatorname{dim}_{\mathbb{Q}}\left(A \otimes_{\mathbb{Z}} \mathbb{Q}\right)$.
Lemma 3.1. Let $A_{0} \subset A, B_{0} \subset B$ be free Abelian groups such that $\mathrm{rk} A_{0}=\operatorname{rk} A=r_{A}$, $\operatorname{rk} B_{0}=\operatorname{rk} B=r_{B}$. Then

$$
\left|\frac{A \otimes_{\mathbb{Z}} B}{A_{0} \otimes_{\mathbb{Z}} B_{0}}\right|=\left|\frac{A}{A_{0}}\right|^{r_{B}} \cdot\left|\frac{B}{B_{0}}\right|^{r_{A}}
$$

Proof. One has

$$
\begin{aligned}
(A \otimes B) /\left(A_{0} \otimes B\right) & \simeq\left(A / A_{0}\right) \otimes B \simeq\left(A / A_{0}\right) \otimes \mathbb{Z}^{r_{B}} \simeq\left(A / A_{0}\right)^{r_{B}} \\
\left(A_{0} \otimes B\right) /\left(A_{0} \otimes B_{0}\right) & \simeq A_{0} \otimes\left(B / B_{0}\right) \simeq \mathbb{Z}^{r_{A}} \otimes\left(B / B_{0}\right) \simeq\left(B / B_{0}\right)^{r_{A}}
\end{aligned}
$$

Therefore,

$$
\left|\frac{A \otimes B}{A_{0} \otimes B_{0}}\right|=\left|\frac{A \otimes B}{A_{0} \otimes B}\right| \cdot\left|\frac{A_{0} \otimes B}{A_{0} \otimes B_{0}}\right|=\left|\frac{A}{A_{0}}\right|^{r_{B}} \cdot\left|\frac{B}{B_{0}}\right|^{r_{A}} .
$$

The following lemma is well-known.
Lemma 3.2. Let A be an Abelian group with a finite filtration $A=\mathcal{F}^{0} A \supset \mathcal{F}^{1} A \supset$ $\cdots \supset \mathcal{F}^{k} A=0$. Let B be a subgroup of A with the filtration $\mathcal{F}^{p} B=B \cap \mathcal{F}^{p} A$. Let $G^{*} A=\bigoplus_{p \geq 0} \mathcal{F}^{p} A / \mathcal{F}^{p+1} A$ and $G^{*} B=\bigoplus_{p \geq 0} \mathcal{F}^{p} B / \mathcal{F}^{p+1} B$. Then

- $|A / B|=\left|G^{*} A / G^{*} B\right|$,
- if A is a finitely generated group then $\operatorname{rk} G^{*} A=\operatorname{rk} A$.

In the following lemma the term "ring" means a commutative ring with unit.
Lemma 3.3. Let A and B be rings whose additive groups are finitely generated Abelian groups. Let I be a nilpotent ideal of A such that $A / I \simeq \mathbb{Z}$. Let R be a subring of $A \otimes_{\mathbb{Z}} B$ and A_{R} be a subring of A such that $A_{R} \otimes 1 \subset R$. Then the following inequality holds

$$
\left|\frac{A \otimes_{\mathbb{Z}} B}{R}\right| \leq\left|\frac{A}{A_{R}}\right|^{r_{B}} \cdot\left|\frac{A \otimes_{\mathbb{Z}} B}{R+\left(I \otimes_{\mathbb{Z}} B\right)}\right|^{r_{A}}
$$

where $r_{A}=\operatorname{rk} A$ and $r_{B}=\operatorname{rk} B$.
Proof. Let us denote by B_{R} the image of R under the following composition $A \otimes B \rightarrow$ $(A / I) \otimes B \simeq \mathbb{Z} \otimes B \simeq B$. Obviously,

$$
\left|\frac{A \otimes_{\mathbb{Z}} B}{R+\left(I \otimes_{\mathbb{Z}} B\right)}\right|=\left|\frac{B}{B_{R}}\right|
$$

For any $p \geq 0$ we set $\mathcal{F}^{p} A=\left\{a \in A \mid \exists m \in \mathbb{N}\right.$ such that $\left.m a \in I^{p}\right\}$. Clearly, $\operatorname{Tors}\left(A / \mathcal{F}^{p} A\right)=0$, and so A / \mathcal{F}^{p} is a free Abelian group. Therefore all factor groups $\mathcal{F}^{p} A / \mathcal{F}^{p+1} A(p=0,1, \ldots)$ are free Abelian. Since $A / I \simeq \mathbb{Z}$, it follows that $\mathcal{F}^{1} A=I$. Thus $A / \mathcal{F}^{1} A \simeq \mathbb{Z}$. Since I is a nilpotent ideal of A, there exists k such that $I^{k}=0$. Then $\mathcal{F}^{k} A=0$. Thus the filtration $A=\mathcal{F}^{0} A \supset \mathcal{F}^{1} A \supset \mathcal{F}^{2} A \supset \ldots$ is finite and results of Lemma 3.2 can be applied.

Let $\mathcal{F}^{p} A_{R} \stackrel{\text { def }}{=} R \cap \mathcal{F}^{p} A, \mathcal{F}^{p}(A \otimes B) \stackrel{\text { def }}{=} \operatorname{im}\left(\mathcal{F}^{p} A \otimes B \rightarrow A \otimes B\right)$, and $\mathcal{F}^{p} R \stackrel{\text { def }}{=} R \cap$ $\mathcal{F}^{p}(A \otimes B)$. If K is one of the rings $A, A_{R}, A \otimes B$, or R, we set $G^{p} K \stackrel{\text { def }}{=} \mathcal{F}^{p} K / \mathcal{F}^{p+1} K$ and $G^{*} K \stackrel{\text { def }}{=} \bigoplus_{p \geq 0} \mathcal{F}^{p} K / \mathcal{F}^{p+1} K$. Obviously, $\mathcal{F}^{p} K \cdot \mathcal{F}^{q} K \subset \mathcal{F}^{p+q} K$ for all p and q.

Therefore, $K=\mathcal{F}^{0} K \supset \mathcal{F}^{1} K \supset \cdots \supset \mathcal{F}^{p} K \supset \ldots$ is a ring filtration. Hence, the adjoint graded group $G^{*} K$ has a graded ring structure. Since the additive group of B is free, we have a natural ring isomorphism $G^{*} A \otimes B \simeq G^{*}(A \otimes B)$.

Since $A_{R} \otimes 1 \subset R$, we have $G^{*} A_{R} \otimes 1 \subset G^{*} R$. Clearly $G^{0}(A \otimes B)=(A / I) \otimes B$, and $G^{0} R$ coincides with the image of the composition $R \rightarrow A \otimes B \rightarrow(A / I) \otimes B$. By definition of B_{R}, one has $G^{0} R=1_{G^{*} A} \otimes B_{R}$ (here $1_{G^{*} A}$ denotes the unit of the ring $G^{*} A$). Therefore $1_{G^{*} A} \otimes B_{R} \subset G^{*} R$. Since $G^{*} A_{R} \otimes 1 \subset G^{*} R, 1_{G^{*} A} \otimes B_{R} \subset$ $G^{*} R$, and $G^{*} R$ is a subring of $G^{*} A \otimes B$, we have $G^{*} A_{R} \otimes B_{R} \subset G^{*} R$. Therefore $\left|G^{*}(A \otimes B) / G^{*} R\right| \leq\left|\left(G^{*} A \otimes B\right) /\left(G^{*} A_{R} \otimes B_{R}\right)\right|$. Applying Lemmas 3.1 and 3.2, we have

$$
\begin{gathered}
\left|\frac{A \otimes B}{R}\right|=\left|\frac{G^{*}(A \otimes B)}{G^{*} R}\right| \leq\left|\frac{G^{*} A \otimes B}{G^{*} A_{R} \otimes B_{R}}\right|=\left|\frac{G^{*} A}{G^{*} A_{R}}\right|^{r_{B}} \cdot\left|\frac{B}{B_{R}}\right|^{r_{A}}= \\
=\left|\frac{A}{A_{R}}\right|^{r_{B}} \cdot\left|\frac{B}{B_{R}}\right|^{r_{A}}=\left|\frac{A}{A_{R}}\right|^{r_{B}} \cdot\left|\frac{A \otimes_{\mathbb{Z}} B}{R+\left(I \otimes_{\mathbb{Z}} B\right)}\right|^{r_{A}} .
\end{gathered}
$$

4. On the group $\mathrm{CH}^{*}(X \times Y)$

Let X be a smooth variety. We denote by $\mathcal{F}^{p} \mathrm{CH}^{*}(X)$ the group

$$
\bigoplus_{i \geq p} \mathrm{CH}^{i}(X) .
$$

Let Y be another smooth variety. For a subgroup A of $\mathrm{CH}^{*}(X)$ and a subgroup B of $\mathrm{CH}^{*}(Y)$, we denote by $A \boxtimes B$ the image of the composition $A \otimes B \rightarrow \mathrm{CH}^{*}(X) \otimes$ $\mathrm{CH}^{*}(Y) \rightarrow \mathrm{CH}^{*}(X \times Y)$.

The following assertion is evident (see also [20, §3] or [11]).
Proposition 4.1. Let X and Y be smooth varieties over F. Then

- the natural homomorphism $\mathrm{CH}^{*}(X \times Y) \rightarrow \mathrm{CH}^{*}\left(Y_{F(X)}\right)$ is surjective,
- the kernel of the homomorphism $\mathrm{CH}^{*}(X \times Y) \rightarrow \mathrm{CH}^{*}\left(Y_{F(X)}\right)$ contains the group $\mathcal{F}^{1} \mathrm{CH}^{*}(X) \boxtimes \mathrm{CH}^{*}(Y)$.

Corollary 4.2. If the natural homomorphism $\mathrm{CH}^{*}(X) \otimes \mathrm{CH}^{*}(Y) \rightarrow \mathrm{CH}^{*}(X \times Y)$ is bijective and $\mathrm{CH}^{*}(Y)$ is torsion-free, then the homomorphism $\mathrm{CH}^{*}(X \times Y) \rightarrow$ $\mathrm{CH}^{*}\left(Y_{F(X)}\right)$ induces an isomorphism

$$
\frac{\mathrm{CH}^{*}(X \times Y)}{\mathcal{F}^{1} \mathrm{CH}^{*}(X) \boxtimes \mathrm{CH}^{*}(Y)} \rightarrow \mathrm{CH}^{*}\left(Y_{F(X)}\right) .
$$

Proof. Since $\mathrm{CH}^{*}(X) \otimes \mathrm{CH}^{*}(Y) \simeq \mathrm{CH}^{*}(X \times Y)$ and $\mathrm{CH}^{*}(X) / \mathcal{F}^{1} \mathrm{CH}^{*}(X) \simeq \mathrm{CH}^{0}(X)$, the factor group $\mathrm{CH}^{*}(X \times Y) /\left(\mathcal{F}^{1} \mathrm{CH}^{*}(X) \boxtimes \mathrm{CH}^{*}(Y)\right)$ is isomorphic to $\mathrm{CH}^{0}(X) \otimes_{\mathbb{Z}}$ $\mathrm{CH}^{*}(Y) \simeq \mathbb{Z} \otimes_{\mathbb{Z}} \mathrm{CH}^{*}(Y) \simeq \mathrm{CH}^{*}(Y)$. Thus, it is sufficient to prove that the homomorphism $\mathrm{CH}^{*}(Y) \rightarrow \mathrm{CH}^{*}\left(Y_{F(X)}\right)$ is injective. This is obvious since $\mathrm{CH}^{*}(Y)$ is torsion-free.

Corollary 4.3. Let X and Y be smooth varieties and E / F be a field extension such that the natural homomorphism $\mathrm{CH}^{*}\left(X_{E}\right) \otimes \mathrm{CH}^{*}\left(Y_{E}\right) \rightarrow \mathrm{CH}^{*}\left(X_{E} \times Y_{E}\right)$ is bijective and $\mathrm{CH}^{*}\left(Y_{E}\right)$ is torsion-free. Then there exists an isomorphism

$$
\frac{\mathrm{CH}^{*}\left(X_{E} \times Y_{E}\right)}{i_{E / F}\left(\mathrm{CH}^{*}(X \times Y)\right)+\mathcal{F}^{1} \mathrm{CH}^{*}\left(X_{E}\right) \boxtimes \mathrm{CH}^{*}\left(Y_{E}\right)} \simeq \frac{\mathrm{CH}^{*}\left(Y_{E(X)}\right)}{i_{E(X) / F(X)}\left(\mathrm{CH}^{*}\left(Y_{F(X)}\right)\right)}
$$

Proof. Obvious in view of Corollary 4.2.
Remark 4.4. It was noticed by the referee that the conditions of Corollary 4.3 (which appear also in Proposition 4.5) hold, if the variety Y_{E} possess a cellular decomposition (see e.g. [13, Def. 3.2] for the definition of cellular decomposition). In the case of complete varieties X and Y, this statement follows e.g. from [19, Th. 6.5]. In the present paper, we shall apply Corollary 4.3 only to the case where Y_{E} is isomorphic to a projective space.

Proposition 4.5. Let X and Y be smooth varieties over F and E / F be a field extension such that the following conditions hold

- $\mathrm{CH}^{*}\left(X_{E}\right)$ is a free Abelian group of rank r_{X},
- $\mathrm{CH}^{*}\left(Y_{E}\right)$ is a free Abelian group of rank r_{Y},
- the canonical homomorphism $\mathrm{CH}^{*}\left(X_{E}\right) \otimes_{\mathbb{Z}} \mathrm{CH}^{*}\left(Y_{E}\right) \rightarrow \mathrm{CH}^{*}\left(X_{E} \times Y_{E}\right)$ is an isomorphism.
Then

$$
\left|\frac{\mathrm{CH}^{*}\left(X_{E} \times Y_{E}\right)}{i_{E / F}\left(\mathrm{CH}^{*}(X \times Y)\right)}\right| \leq\left|\frac{\mathrm{CH}^{*}\left(X_{E}\right)}{i_{E / F}\left(\mathrm{CH}^{*}(X)\right)}\right|^{r_{Y}} \cdot\left|\frac{\mathrm{CH}^{*}\left(Y_{E(X)}\right)}{i_{E(X) / F(X)}\left(\mathrm{CH}^{*}\left(Y_{F(X)}\right)\right)}\right|^{r_{X}}
$$

Proof. Let $A=\mathrm{CH}^{*}\left(X_{E}\right), A_{R}=i_{E / F}\left(\mathrm{CH}^{*}(X)\right)$ and $I=\bigoplus_{p>0} \mathrm{CH}^{p}\left(X_{E}\right)=$ $\mathcal{F}^{1} \mathrm{CH}^{*}\left(X_{E}\right)$. Let $B=\mathrm{CH}^{*}\left(Y_{E}\right)$. By our assumption, we have $\mathrm{CH}^{*}\left(X_{E} \times Y_{E}\right) \simeq$ $A \otimes_{\mathbb{Z}} B$. We denote by R the image of the composition $\mathrm{CH}^{*}(X \times Y) \rightarrow \mathrm{CH}^{*}\left(X_{E} \otimes\right.$ $\left.Y_{E}\right) \simeq A \otimes_{\mathbb{Z}} B$. Clearly, all conditions of Lemma 3.3 hold. Moreover,

$$
\left|\frac{\mathrm{CH}^{*}\left(X_{E} \times Y_{E}\right)}{i_{E / F}\left(\mathrm{CH}^{*}(X \times Y)\right)}\right|=\left|\frac{A \otimes_{\mathbb{Z}} B}{R}\right| \quad \text { and } \quad\left|\frac{\mathrm{CH}^{*}\left(X_{E}\right)}{i_{E / F}\left(\mathrm{CH}^{*}(X)\right)}\right|=\left|\frac{A}{A_{R}}\right|
$$

By Corollary 4.3 we have

$$
\left|\frac{A \otimes_{\mathbb{Z}} B}{R+\left(I \otimes_{\mathbb{Z}} B\right)}\right|=\left|\frac{\mathrm{CH}^{*}\left(Y_{E(X)}\right)}{i_{E(X) / F(X)}\left(\mathrm{CH}^{*}\left(Y_{F(X)}\right)\right)}\right| .
$$

To complete the prove it suffices to apply Lemma 3.3.

5. The group Tors $\mathrm{CH}^{2}\left(X_{\psi} \times X_{D}\right)$

The aim of this section is Corollary 5.6.
Proposition 5.1 (see [14, §2.1]). Let ψ be a $(2 n+1)$-dimensional quadratic form over a separably closed field. Set $X \stackrel{\text { def }}{=} X_{\psi}$ and $d \stackrel{\text { def }}{=} \operatorname{dim} X=2 n-1$. Then for all $0 \leq p \leq d$ the group $\mathrm{CH}^{p}(X)$ is canonically isomorphic to \mathbb{Z} (for other p the group $\mathrm{CH}^{p}(X)$ is trivial). Moreover,

- if $0 \leq p<n$, then $\mathrm{CH}^{p}(X)=\mathbb{Z} \cdot h^{p}$, where $h \in \mathrm{CH}^{1}(X)$ denotes the class of a hyperplane section of X;
- if $n \leq p \leq d$, then $\mathrm{CH}^{p}(X)=\mathbb{Z} \cdot l_{d-p}$, where l_{d-p} denotes the class of a linear subspace in X of dimension $d-p$, besides $2 l_{d-p}=h^{p}$.

Corollary 5.2. Let ψ be a $(2 n+1)$-dimensional quadratic form over F and let $X=X_{\psi}$. Then

- $\mathrm{CH}^{*}\left(X_{\bar{F}}\right)$ is a free Abelian group of rank $2 n$,
- if $0 \leq p<n$ then $\left|\mathrm{CH}^{p}\left(X_{\bar{F}}\right) / i_{\bar{F} / F}\left(\mathrm{CH}^{p}(X)\right)\right|=1$,
- if $n \leq p \leq 2 n-1$ then $\left|\mathrm{CH}^{p}\left(X_{\bar{F}}\right) / i_{\bar{F} / F}\left(\mathrm{CH}^{p}(X)\right)\right| \leq 2$,
- $\left|\mathrm{CH}^{*}\left(X_{\bar{F}}\right) / i_{\bar{F} / F}\left(\mathrm{CH}^{*}(X)\right)\right| \leq 2^{n}$.

Proposition 5.3. Let D be a central simple F-algebra of exponent 2 and of degree 8. Let $E / L / F$ be field extensions such that ind $D_{L}=4$ and ind $D_{E}=1$. Let $Y=\operatorname{SB}(D)$. For any $0 \leq p \leq \operatorname{dim} Y=7$, the group $\mathrm{CH}^{p}\left(Y_{E}\right)$ is canonically isomorphic to \mathbb{Z}. Moreover, the image of the homomorphism $i_{E / L}: \mathrm{CH}^{p}\left(Y_{L}\right) \rightarrow \mathrm{CH}^{p}\left(Y_{E}\right) \simeq \mathbb{Z}$ contains 1 if $p=0,4 ; 2$ if $p=1,2,5,6 ; 4$ if $p=3,7$.

Proof. Since $\operatorname{deg} D=8$ and ind $D_{E}=1, Y_{E}$ is isomorphic to \mathbb{P}_{E}^{7}. Hence, the group $\mathrm{CH}^{p}\left(Y_{E}\right) \cong \mathrm{CH}^{p}\left(\mathbb{P}_{E}^{7}\right)$ (where $p=0, \ldots, 7$) is generated by the class h^{p} of a linear subspace ([4]).

The rest part of the proposition is contained in [16, Th.]. For the reader's convenience, we also give a direct construction of the elements required. The class of Y_{L} itself gives $1 \in i_{E / L}\left(\mathrm{CH}^{0}\left(Y_{L}\right)\right)$. Let ξ be the tautological line bundle on the projective space $\mathbb{P}_{E}^{7} \simeq Y_{E}$. Since $\exp D=2$, the bundle $\xi^{\otimes 2}$ is defined over F and, in particular, over L. Its first Chern class gives $2 \in i_{E / L}\left(\mathrm{CH}^{1}\left(Y_{L}\right)\right)$. Since ind $D_{L}=4$, the bundle $\xi^{\oplus 4}$ is defined over L. Its second Chern class gives $6 \in i_{E / L}\left(\mathrm{CH}^{2}\left(Y_{L}\right)\right) .{ }^{1}$ Thus $2 \in i_{E / L}\left(\mathrm{CH}^{2}\left(Y_{L}\right)\right)$. The third Chern class of $\xi^{\oplus 4}$ gives $4 \in i_{E / L}\left(\mathrm{CH}^{3}\left(Y_{L}\right)\right)$. The fourth Chern class of $\xi^{\oplus 4}$ gives $1 \in i_{E / L}\left(\mathrm{CH}^{4}\left(Y_{L}\right)\right)$. Finally, taking the product of the cycles constructed in codimensions 1,2 , and 3 with the cycle of codimension 4 , one gets the cycles of codimensions 5,6 , and 7 required.

Corollary 5.4. Under the condition of Proposition 5.3, we have

$$
\left|\mathrm{CH}^{*}\left(Y_{E}\right) / i_{E / L}\left(\mathrm{CH}^{*}\left(Y_{L}\right)\right)\right| \leq 256
$$

Proof. $\prod_{p=0}^{7}\left|\mathrm{CH}^{p}\left(Y_{E}\right) / i_{E / L}\left(\mathrm{CH}^{p}\left(Y_{L}\right)\right)\right| \leq 1 \cdot 2 \cdot 2 \cdot 4 \cdot 1 \cdot 2 \cdot 2 \cdot 4=256$.
Proposition 5.5. Let D be a central division F-algebra of degree 8 and exponent 2. Let ψ be a 5-dimensional quadratic F-form. Suppose that $D_{F(\psi)}$ is not a skewfield. Then Tors $G^{*} K\left(X_{\psi} \times X_{D}\right)=0$.
Proof. Let $X=X_{\psi}$ and $Y=X_{D}$. Corollary 5.2 shows that $\mathrm{CH}^{*}\left(X_{\bar{F}}\right)$ is a free abelian group of rank $r_{X}=4$ and $\left|\mathrm{CH}^{*}\left(X_{\bar{F}}\right) / i_{\bar{F} / F}\left(\mathrm{CH}^{*}(X)\right)\right| \leq 2^{2}=4$.

Since D is a division algebra of degree 8 and $D_{F(\psi)}$ is not division algebra, it follows that ind $D_{F(X)}=4$. Applying Corollary 5.4 to the case $L=F(X), E=\bar{F}(X)$, we have $\left|\mathrm{CH}^{*}\left(Y_{\bar{F}(X)}\right) / i_{\bar{F}(X) / F(X)}\left(\mathrm{CH}^{*}\left(Y_{F(X)}\right)\right)\right| \leq 256$.

[^0]Since $Y_{\bar{F}}=\mathrm{SB}\left(D_{\bar{F}}\right) \simeq \mathbb{P}_{\bar{F}}^{7}$, the group $\mathrm{CH}^{*}\left(Y_{\bar{F}}\right)$ is a free Abelian of rank $r_{Y}=8$ and $\mathrm{CH}^{*}\left(X_{\bar{F}}\right) \otimes \mathrm{CH}^{*}\left(Y_{\bar{F}}\right) \simeq \mathrm{CH}^{*}\left(X_{\bar{F}} \times Y_{\bar{F}}\right)$ (see [3, Prop. 14.6.5]). Thus all conditions of Proposition 4.5 hold for $X, Y, E=\bar{F}$ and we have

$$
\left|\frac{\mathrm{CH}^{*}\left(X_{\bar{F}} \times Y_{\bar{F}}\right)}{i_{\bar{F} / F}\left(\mathrm{CH}^{*}(X \times Y)\right)}\right| \leq 4^{8} \cdot 256^{4}=2^{48}
$$

Using [29, Th. 4.1 of $\S 8]$ and [33, Th. 9.1], we get a natural (with respect to extensions of F) isomorphism

$$
\begin{aligned}
K(X \times Y) \simeq K\left((F ^ { \times 3 } \times C) \otimes _ { F } \left(F^{\times 4}\right.\right. & \left.\left.\times D^{\times 4}\right)\right) \simeq \\
& \simeq K\left(F^{\times 12} \times C^{\times 4} \times D^{\times 12} \times\left(C \otimes_{F} D\right)^{\times 4}\right)
\end{aligned}
$$

where $C \stackrel{\text { def }}{=} C_{0}(\psi)$ is the even Clifford algebra of ψ. Note that C is a central simple F-algebra of the degree 2^{2}. Since $D_{F(\psi)}$ is not a skew field, [25, Th. 1] states that $D \simeq C \otimes_{F} B$ with some central division F-algebra B. Therefore, ind $C=\operatorname{deg} C=2^{2}$ and ind $C \otimes D=\operatorname{ind} B=\operatorname{deg} B=2$. Hence

$$
\left|\frac{K\left(X_{\bar{F}} \times Y_{\bar{F}}\right)}{i_{\bar{F} / F}(K(X \times Y))}\right|=(\operatorname{ind} C)^{4} \cdot(\operatorname{ind} D)^{12} \cdot(\operatorname{ind} C \otimes D)^{4}=2^{2 \cdot 4+3 \cdot 12+1 \cdot 4}=2^{48}
$$

Applying Proposition 2.4 to the variety $X \times Y$ and $E=\bar{F}$, we have

$$
\left|\operatorname{Tors} G^{*} K(X \times Y)\right|=\frac{\left|\mathrm{CH}^{*}\left(X_{\bar{F}} \times Y_{\bar{F}}\right) / i_{\bar{F} / F}\left(\mathrm{CH}^{*}(X \times Y)\right)\right|}{\left|K\left(X_{\bar{F}} \times Y_{\bar{F}}\right) / i_{\bar{F} / F}(K(X \times Y))\right|} \leq \frac{2^{48}}{2^{48}}=1
$$

Therefore, Tors $G^{*} K(X \times Y)=0$.
Applying Lemma 1.9 we get the following
Corollary 5.6. Under the condition of Proposition 5.5, the group $\mathrm{CH}^{2}\left(X_{\psi} \times X_{D}\right)$ is torsion-free.

6. A special case of Theorem 0.1

In this section we prove Theorem 0.1 in the special case where D is a division algebra of degree 8 .

Proposition 6.1 ([1, Satz 5.6]). Let ψ be a quadratic F-form of dimension ≥ 5. The group $H^{3}(F(\psi) / F)$ is non-trivial iff ψ is a neighbor of an anisotropic 3-Pfister form.
Proposition 6.2 (see [28, Prop. 4.1 and Rem. 4.1]). Let D be a central division F algebra of exponent 2. Suppose that D is decomposable (in the tensor product of two proper subalgebras). Then $H^{3}(F(D) / F)=[D] \cup H^{1}(F)$.

Proposition 6.3. If D and D^{\prime} are Brauer equivalent central simple F-algebras, then the function fields $F(D)$ and $F\left(D^{\prime}\right)$ are stably equivalent. ${ }^{2}$

[^1]Proof. Since the algebras $D_{F\left(D^{\prime}\right)}$ and $D_{F(D)}^{\prime}$ are split, the field extensions

$$
F\left(D, D^{\prime}\right) / F\left(D^{\prime}\right) \quad \text { and } \quad F\left(D, D^{\prime}\right) / F(D)
$$

are purely transcendental. Therefore each of the field extensions $F(D) / F$ and $F\left(D^{\prime}\right) / F$ is stably equivalent to the extension $F\left(D, D^{\prime}\right) / F$.

Corollary 6.4. Fix a quadratic F-form ψ and integers $i, j \in \mathbb{Z}$. For any central simple F-algebra D, the groups $H^{i}(F(D) / F), H^{i}(F(D) / F, \mathbb{Q} / \mathbb{Z}(j)), H^{i}(F(\psi, D) / F)$, $H^{i}(F(\psi, D) / F, \mathbb{Q} / \mathbb{Z}(j))$ only depend on the Brauer class of D.

Proposition 6.5. Let D be a central simple F-algebra of exponent 2 and let ψ be a quadratic F-form. The group $H^{3}(F(\psi, D) / F, \mathbb{Q} / \mathbb{Z}(2))$ is annihilated by 2.

Proof. Let ψ_{0} be a 3-dimensional subform of ψ. Clearly,

$$
H^{3}(F(\psi, D) / F, \mathbb{Q} / \mathbb{Z}(2)) \subset H^{3}\left(F\left(\psi_{0}, D\right) / F, \mathbb{Q} / \mathbb{Z}(2)\right)
$$

Therefore, it suffices to show that the latter cohomology group is annihilated by 2. Replacing ψ_{0} by the quaternion algebra $C_{0}\left(\psi_{0}\right)$, we come to a statement covered by [7, Lemma A.8].

Corollary 6.6. In the conditions of Proposition 6.5, one has

$$
H^{3}(F(\psi, D) / F, \mathbb{Q} / \mathbb{Z}(2))=H^{3}(F(\psi, D) / F)
$$

Proposition 6.7. Let D be a central simple F-algebra of exponent 2 and let ψ be a quadratic F-form of dimension ≥ 3. Suppose that ind $D_{F(\psi)}<$ ind D. Then ψ is not a 3-Pfister neighbor and there is an isomorphism

$$
\frac{H^{3}(F(\psi, D) / F)}{H^{3}(F(\psi) / F)+[D] \cup H^{1}(F)} \simeq \operatorname{Tors~}_{\mathrm{CH}^{2}}\left(X_{\psi} \times X_{D}\right)
$$

Proof. By [9, Prop. 2.2], there is an isomorphism

$$
\begin{aligned}
\frac{H^{3}(F(\psi, D) / F, \mathbb{Q} / \mathbb{Z}(2))}{H^{3}(F(\psi) / F, \mathbb{Q} / \mathbb{Z}(2))+H^{3}(F(D) / F, \mathbb{Q} / \mathbb{Z}(2))} & \simeq \\
& \simeq \frac{\operatorname{Tors~CH}^{2}\left(X_{\psi} \times X_{D}\right)}{p r_{\psi}^{*} \operatorname{Tors~CH}^{2}\left(X_{\psi}\right)+p r_{D}^{*} \operatorname{Tors~CH}^{2}\left(X_{D}\right)} .
\end{aligned}
$$

By Corollary 6.6, we have $H^{3}(F(\psi, D) / F, \mathbb{Q} / \mathbb{Z}(2))=H^{3}(F(\psi, D) / F)$; by [9, Lemma 2.8], we have $H^{3}(F(\psi) / F, \mathbb{Q} / \mathbb{Z}(2))=H^{3}(F(\psi) / F)$; and by [7, Lemma A.8], we have $H^{3}(F(D) / F, \mathbb{Q} / \mathbb{Z}(2))=H^{3}(F(D) / F)$.

Let D^{\prime} be a division algebra Brauer equivalent to D. By Corollary 6.4, we have $H^{3}(F(D) / F)=H^{3}\left(F\left(D^{\prime}\right) / F\right)$; by [18, Prop. 1.1], we have $\operatorname{Tors~}_{\mathrm{CH}^{2}}\left(X_{D}\right) \simeq$ Tors $\mathrm{CH}^{2}\left(X_{D^{\prime}}\right)$. Since $D_{F(\psi)}^{\prime}$ is no more a skew field, there is a homomorphism of F algebras $C_{0}(\psi) \rightarrow D^{\prime}\left(\left[34\right.\right.$, Th. 1], see also [26, Th. 2]). Although the algebra $C_{0}(\psi)$ is not always central simple, it always contains a non-trivial subalgebra central simple over F. Therefore, D^{\prime} is decomposable, what implies $H^{3}\left(F\left(D^{\prime}\right) / F\right)=[D] \cup H^{1}(F)$ (Proposition 6.2) and Tors $\mathrm{CH}^{2}\left(X_{D^{\prime}}\right)=0([17$, Prop. 5.3]). Finally, the existence of a homomorphism $C_{0}(\psi) \rightarrow D^{\prime}$ implies that ψ is not a 3-Pfister neighbor; therefore Tors $\mathrm{CH}^{2}\left(X_{\psi}\right)=0([14$, Th. 6.1]).

Corollary 6.8. Let D be a central division F-algebra of degree 8 and exponent 2. Let ψ be a 5-dimensional quadratic F-form. Suppose that $D_{F(\psi)}$ is not a skew field. Then $H^{3}(F(\psi, D) / F)=[D] \cup H^{1}(F)$.

Proof. It is a direct consequence of Proposition 6.7, Corollary 5.6, and Proposition 6.1.

Theorem 6.9. Theorem 0.1 is true if D is a division algebra of degree 8 .
Proof. Let ψ_{0} be a 5-dimensional subform of ψ. Applying Corollary 6.8, we have $[D] \cup H^{1}(F) \subset H^{3}(F(\psi, D) / F) \subset H^{3}\left(F\left(\psi_{0}, D\right) / F\right)=[D] \cup H^{1}(F)$. Hence $H^{3}(F(\psi, D) / F)=[D] \cup H^{1}(F)$.

The assertion on Tors $\mathrm{CH}^{2}\left(X_{\psi} \times X_{D}\right)$ is Corollary 5.6.
Corollary 6.10. Let $\phi \in I^{2}(F)$ be a 8 -dimensional quadratic form such that ind $C(\phi)=8$. Let D be a degree 8 central simple algebra such that $c(\phi)=[D]$. Let ψ be a quadratic form of dimension ≥ 5 such that $\phi_{F(\psi)}$ is isotropic. Then

1) D is a division algebra;
2) $D_{F(\psi)}$ is not a division algebra;
3) $H^{3}(F(\psi, D) / F)=[D] \cup H^{1}(F)$.

7. Proof of Corollaries 0.2 and 0.3

We need several lemmas.
Lemma 7.1. Let $\phi \in I^{2}(F)$ be a 8-dimensional quadratic form and let D be an algebra such that $c(\phi)=[D]$. Then $\phi_{F(D)} \in G P_{3}(F(D))$.

Proof. We have $c\left(\phi_{F(D)}\right)=c(\phi)_{F(D)}=\left[D_{F(D)}\right]=0$. Hence $\phi_{F(D)} \in I^{3}(F(D))$. Since $\operatorname{dim} \phi=8$, we are done by the Arason-Pfister Hauptsatz.
Lemma 7.2. Let $\phi, \phi^{*} \in I^{2}(F)$ be 8-dimensional quadratic forms such that $c(\phi)=$ $c\left(\phi^{*}\right)=[D]$, where D is a triquaternion division algebra. ${ }^{3}$ Suppose that there is a quadratic form ψ of dimension ≥ 5 such that the forms $\phi_{F(\psi, D)}$ and $\phi_{F(\psi, D)}^{*}$ are isotropic. Then ϕ and ϕ^{*} are half-neighbors.

Proof. Lemma 7.1 implies that $\phi_{F(\psi, D)}, \phi_{F(\psi, D)}^{*} \in G P_{3}(F(\psi, D))$. By the assumption of the lemma, $\phi_{F(\psi, D)}$ and $\phi_{F(\psi, D)}^{*}$ are isotropic. Hence $\phi_{F(\psi, D)}$ and $\phi_{F(\psi, D)}^{*}$ are hyperbolic. Thus $\phi, \phi^{*} \in W(F(\psi, D) / F)$.

Let $\tau=\phi \perp \phi^{*}$. Clearly $\tau \in W(F(\psi, D) / F)$. Since $c(\tau)=c(\phi)+c\left(\phi^{*}\right)=$ $[D]+[D]=0$, we have $\tau \in I^{3}(F)$. Thus $e^{3}(\tau) \in H^{3}(F(\psi, D) / F)$. It follows from Corollary 6.10 that $e^{3}(\tau) \in[D] \cup H^{1}(F)$. Hence there exists $s \in F^{*}$ such that $e^{3}(\tau)=[D] \cup(s)$. We have $e^{3}(\tau)=[D] \cup(s)=c(\phi) \cup(s)=e^{3}(\phi\langle\langle s\rangle\rangle)$. Since $\operatorname{ker}\left(e^{3}: I^{3}(F) \rightarrow H^{3}(F)\right)=I^{4}(F)$, we have $\tau \equiv \phi\langle\langle s\rangle\rangle\left(\bmod I^{4}(F)\right)$. Therefore $\phi+\phi^{*}=\tau \equiv \phi\langle\langle s\rangle\rangle=\phi-s \phi\left(\bmod I^{4}(F)\right)$. Hence $\phi^{*}+s \phi \in I^{4}(F)$. Hence ϕ and ϕ^{*} are half-neighbors.

The following statement was pointed out by Laghribi ([23]) as an easy consequence of the index reduction formula [25].

[^2]Lemma 7.3. Let ψ be a quadratic form of dimension ≥ 5 and D be a division triquaternion algebra. Suppose that $D_{F(\psi)}$ is not a division algebra. Then there exists an 8-dimensional quadratic form $\phi^{*} \in I^{2}(F)$ such that $\psi \subset \phi^{*}$ and $c\left(\phi^{*}\right)=[D]$.

Proof of Corollary 0.2. Let D be triquaternion algebra such that $c(\phi)=[D]$. Since ind $C(\phi)=8$, it follows that D is a division algebra. Since $\phi_{F(\psi)}$ is isotropic, $D_{F(\psi)}$ is not a division algebra. It follows from Lemma 7.3 that there exists an 8-dimensional quadratic form $\phi^{*} \in I^{2}(F)$ such that $\psi \subset \phi^{*}$ and $c\left(\phi^{*}\right)=[D]$. Obviously, all conditions of Lemma 7.2 hold. Hence ϕ and ϕ^{*} are half-neighbors.

Lemma 7.4. Let D be a division triquaternion algebra over F. Then there exist a field extension E / F and an 8-dimensional quadratic form $\phi^{*} \in I^{2}(E)$ with the following properties:
(i) D_{E} is a division algebra,
(ii) $c\left(\phi^{*}\right)=\left[D_{E}\right]$,
(iii) $\phi_{E(D)}^{*}$ is anisotropic.

Proof. Let $\phi \in I^{2}(F)$ be an arbitrary F-form such that $c(\phi)=[D]$. Let $K=$ $F(X, Y, Z)$ and $\gamma=\phi_{K} \perp\left\langle\langle X, Y, Z\rangle\right.$ be a K-form. Let $K=K_{0}, K_{1}, \ldots, K_{h}$; $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{h}$ be a generic splitting tower of γ.

Since $\gamma \equiv \phi_{K}\left(\bmod I^{3}(K)\right)$, we have $c(\gamma)=c\left(\phi_{K}\right)=\left[D_{K}\right]$. Since K / F is purely transcendental, ind $D_{K}=$ ind $D=8$. Hence ind $C(\gamma)=8$. It follows from Corollary 1.5 that there exists s such that $\operatorname{dim} \gamma_{s}=8$ and ind $C\left(\gamma_{s}\right)=8$. We set $E=E_{s}$, $\phi^{*}=\gamma_{s}$.

We claim that the condition (i)-(iii) of the lemma hold. Since $c\left(\phi^{*}\right)=c\left(\gamma_{E}\right)=$ $c\left(\phi_{E}\right)=\left[D_{E}\right]$, condition (ii) holds. Since $\left[D_{E}\right]=c\left(\phi^{*}\right)=c\left(\gamma_{s}\right)$, we have ind $D_{E}=$ ind $C\left(\gamma_{s}\right)=8$ and thus condition (i) holds.

Now we only need to verify that (iii) holds. Let M_{0} / F be an arbitrary field extension such that $\phi_{M_{0}}$ is hyperbolic. Let $M=M_{0}(X, Y, Z)$. We have $\gamma_{M}=\phi_{M} \perp$ $\langle\langle X, Y, Z\rangle\rangle_{M}$. Clearly $\langle\langle X, Y, Z\rangle\rangle$ is anisotropic over M. Since ϕ_{M} is hyperbolic, we have $\left(\gamma_{M}\right)_{a n}=\langle\langle X, Y, Z\rangle\rangle_{M}$ and hence $\operatorname{dim}\left(\gamma_{M}\right)_{a n}=8$. Therefore $\operatorname{dim}\left(\gamma_{M}\right)_{a n}=$ $\operatorname{dim} \gamma_{s}$. By Lemma 1.3, we see that the field extension $M E / M=M K_{s} / M$ is purely transcendental. Hence $\operatorname{dim}\left(\gamma_{M E}\right)_{a n}=\operatorname{dim}\left(\gamma_{M}\right)_{a n}=8$. Since $\left(\phi_{M E}^{*}\right)_{a n}=\left(\gamma_{M E}\right)_{a n}$, we see that $\phi_{M E}^{*}$ is anisotropic. Since ϕ_{M} is hyperbolic, it follows that $\left[D_{M}\right]=$ $c\left(\phi_{M}\right)=0$. Hence $\left[D_{M E}\right]=0$ and therefore the field extension $M E(D) / M E$ is purely transcendental. Hence $\phi_{M E(D)}^{*}$ is anisotropic. Therefore $\phi_{E(D)}^{*}$ is anisotropic.

Lemma 7.5. Let $\phi, \phi^{*} \in I^{2}(F)$ be 8-dimensional quadratic forms such that $c(\phi)=$ $c\left(\phi^{*}\right)=[D]$, where D is a triquaternion division algebra. Suppose that $\phi_{F(D)}^{*}$ is anisotropic. Then $\phi_{F(D)}$ is anisotropic.

Proof. Suppose at the moment that $\phi_{F(D)}$ is isotropic. Then letting $\psi \stackrel{\text { def }}{=} \phi^{*}$, we see that all conditions of Lemma 7.2 hold. Hence ϕ and ϕ^{*} are half-neighbors, i.e., there exists $s \in F^{*}$ such that $\phi^{*}+s \phi \in I^{4}(F)$. Therefore $\phi_{F(D)}^{*}+s \phi_{F(D)} \in I^{4}(F(D))$. Since $\phi_{F(D)}$ is isotropic, it is hyperbolic and we see that $\phi_{F(D)}^{*} \in I^{4}(F(D))$. By the Arason-Pfister Hauptsatz, we see that $\phi_{F(D)}^{*}$ is hyperbolic. So we get a contradiction to the assumption of the lemma.

Proposition 7.6. Let $\phi \in I^{2}(F)$ be an 8-dimensional quadratic form such that ind $C(\phi)=8$. Let A be an algebra such that $c(\phi)=[A]$. Then $\phi_{F(A)}$ is anisotropic.

Proof. Let D be a triquaternion algebra such that $c(\phi)=[D]$. Since ind $C(\phi)=8$, D is a division algebra. Let E / F and ϕ^{*} be such that in Lemma 7.4. All conditions of Lemma 7.5 hold for E, ϕ_{E}, ϕ^{*}, and D_{E}. Therefore $\phi_{E(D)}$ is anisotropic. Hence $\phi_{F(D)}$ is anisotropic. Since $[A]=c(\phi)=[D]$, the field extension $F(A) / F$ is stably isomorphic to $F(D) / F$ (Proposition 6.3). Therefore $\phi_{F(A)}$ is anisotropic.

Proof of Corollary 0.3. Suppose at the moment that $\phi_{F(A)} \in I^{4}(F(A))$. Since ind $C(\phi) \geq 8$, it follows that $\operatorname{dim} \phi \geq 8$. By Corollary 1.5 there exists a field extension E / F such that $\operatorname{dim}\left(\phi_{E}\right)_{a n}=8$, ind $C\left(\phi_{E}\right)=8$. Since $\operatorname{dim}\left(\phi_{E}\right)_{a n}=8$ and $\phi_{E(A)} \in I^{4}(E(A))$, the Arason-Pfister Hauptsatz shows that $\left(\left(\phi_{E}\right)_{a n}\right)_{E(A)}$ is hyperbolic. We get a contradiction to Proposition 7.6.

8. Proof of Theorem 0.1

By Proposition 6.7, there is a surjection

$$
\frac{H^{3}(F(\psi, D) / F)}{[D] \cup H^{1}(F)} \rightarrow \operatorname{Tors~}^{2} \mathrm{CH}^{2}\left(X_{\psi} \times X_{D}\right)
$$

Thus, it suffices to prove the second formula of Theorem 0.1.
Proving the second formula, we may assume that $\operatorname{dim} \psi=5$ (compare to the proof of Theorem 6.9) and D is a division algebra (Corollary 6.4). Under these assumptions, we can write down D as the tensor product $C_{0}(\psi) \otimes_{F} B$ (using [25, Th. 1]). In particular, we see that $C_{0}(\psi)$ is a division algebra, i.e. ind $C_{0}(\psi)=\operatorname{deg} C_{0}(\psi)=4$.

If $\operatorname{deg} D<8$, then $D \simeq C_{0}(\psi)$. In this case, $\psi_{F(D)}$ is a 5 -dimensional quadratic form with trivial Clifford algebra; therefore $\psi_{F(D)}$ is isotropic; by this reason, the field extension $F(\psi, D) / F(D)$ is purely transcendental and consequently $H^{3}(F(\psi, D) / F(D))=0$. It follows that

$$
H^{3}(F(\psi, D) / F)=H^{3}(F(D) / F)=[D] \cup H^{1}(F)
$$

where the last equality holds by Proposition 6.2.
If $\operatorname{deg} D>8$, then ind $B \geq 4$. Applying the index reduction formula [31, Th. 1.3], we get

$$
\operatorname{ind} C_{0}(\psi)_{F(D)}=\min \left\{\operatorname{ind} C_{0}(\psi), \text { ind } B\right\}=4
$$

Therefore $\psi_{F(D)}$ is not a 3-Pfister neighbor and by Proposition 6.1 the group $H^{3}(F(\psi, D) / F(D))$ is trivial. Thus once again

$$
H^{3}(F(\psi, D) / F)=H^{3}(F(D) / F)=[D] \cup H^{1}(F)
$$

Finally, if $\operatorname{deg} D=8$, then we are done by Theorem 6.9 and Proposition 6.7.

References

[1] Arason, J. Kr. Cohomologische Invarianten quadratischer Formen. J. Algebra 36 (1975), 448-491.
[2] Esnault, H., Kahn, B., Levine, M., and Viehweg, E. The Arason invariant and mod 2 algebraic cycles. J. Amer. Math. Soc., to appear.
[3] Fulton, W. Intersection Theory. Springer-Verlag, 1984.
[4] Hartshorne, R. Algebraic Geometry. Springer-Verlag, 1977.
[5] Hoffmann, D. W. Splitting patterns and invariants of quadratic forms. Math. Nachr., to appear.
[6] Hurrelbrink, J., Rehmann, U. Splitting patterns of quadratic forms. Math. Nachr. 176 (1995), 111-127.
[7] Izhboldin, O. T. On the nonexcellence of the function fields of Severi-Brauer varieties. Max-Planck-Institut für Mathematik in Bonn, Preprint MPI 96-159 (1996), 1-28.
[8] Izhboldin, O. T., Karpenko, N. A. Isotropy of virtual Albert forms over function fields of quadrics. Prépublications de l'Équipe de Mathématique de Besançon 97/07 (1997), 1-11.
[9] Izhboldin, O. T., Karpenko, N. A. Isotropy of 6-dimensional quadratic forms over function fields of quadrics. Prépublications de l'Équipe de Mathématique de Besançon 97/12 (1997), 1-25.
[10] Izhboldin, O. T., Karpenko, N. A. Isotropy of 8-dimensional quadratic forms over function fields of quadrics. K-Theory Preprint Archives (http://www.math.uiuc.edu/K-theory/), Preprint N ${ }^{\circ} 219,1997$.
[11] Izhboldin, O. T., Karpenko, N. A. Some new examples in the theory of quadratic forms. K-Theory Preprint Archives (http://www.math.uiuc.edu/Ktheory/), Preprint $\mathrm{N}^{\circ} 234,1997$.
[12] Kahn, B. Descente galoisienne et K_{2} des corps de nombres. K-Theory 7 (1993), no. 1, 55-100.
[13] Kahn, B. Motivic cohomology of smooth geometrically cellular varieties. KTheory Preprint Archives (http://www.math.uiuc.edu/K-theory/), Preprint $\mathrm{N}^{\circ} 218,1997$.
[14] Karpenko, N. A. Algebro-geometric invariants of quadratic forms. Algebra i Analiz 2 (1991), no. 1, 141-162 (in Russian). Engl. transl.: Leningrad (St. Petersburg) Math. J. 2 (1991), no. 1, 119-138.
[15] Karpenko, N. A. On topological filtration for Severi-Brauer varieties. Proc. Symp. Pure Math. 58.2 (1995), 275-277.
[16] Karpenko, N. A. On topological filtration for Severi-Brauer varieties II. Transl. Amer. Math. Soc. 174 (1996), no. 2, 45-48.
[17] Karpenko, N. A. Codimension 2 cycles on Severi-Brauer varieties. Prépublications de l'Équipe de Mathémathiques de Besançon 96/40 (1996), 1-26. To appear in K-Theory.
[18] Karpenko, N. A. Cycles de codimension 2 en produits de variétés de SeveriBrauer. Publications Mathématiques de la Faculté des Sciences de Besançon Théorie des Nombres, Années 1994/95-1995/96, 1-15.
[19] Karpenko, N. A. Cohomology of relative cellular spaces and isotropic flag varieties. Preprint, 1997 (see http://www.uni-muenster.de/math/u/scharlau/publ).
[20] Karpenko, N. A., Merkurjev, A. S. Chow groups of projective quadrics. Algebra i Analiz 2 (1990), no. 3, 218-235 (in Russian). Engl. transl.: Leningrad (St. Petersburg) Math. J. 2 (1991), no. 3, 655-671.
[21] Knebusch, M. Generic splitting of quadratic forms I. Proc. London Math. Soc. 33 (1976), 65-93.
[22] Knebusch, M. Generic splitting of quadratic forms II. Proc. London Math. Soc. 34 (1977), 1-31.
[23] Laghribi, A. Formes quadratiques en 8 variables dont l'algèbre de Clifford est d'indice 8. K-Theory, to appear.
[24] Lam, T. Y. The Algebraic Theory of Quadratic Forms. Massachusetts: Benjamin 1973 (revised printing: 1980).
[25] Merkurjev, A. S. Simple algebras and quadratic forms. Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), 218-224 (in Russian). English transl.: Math. USSR Izv. 38 (1992), no. 1, 215-221.
[26] Merkurjev, A. S. K-theory of simple algebras. Proc. Symp. Pure Math. 58.1 (1995), 65-83.
[27] Panin, I. A. On the algebraic K-theory of twisted flag varieties. K-Theory 8 (1994), no. 6, 541-585.
[28] Peyre, E. Products of Severi-Brauer varieties and Galois cohomology. Proc. Symp. Pure Math. 58.2 (1995), 369-401.
[29] Quillen, D. Higher algebraic K-theory I. Lect. Notes Math. 341 (1973), 85-147.
[30] Scharlau, W. Quadratic and Hermitian Forms. Springer, Berlin, Heidelberg, New York, Tokyo (1985).
[31] Schofield, A., van den Bergh, M. The index of a Brauer class on a Brauer-Severi variety. Transactions Amer. Math. Soc. 333 (1992), no. 2, 729-739.
[32] Suslin, A. A. Algebraic K-theory and the norm residue homomorphism. J. Soviet Math. 30 (1985), 2556-2611.
[33] Swan, R. K-theory of quadric hypersurfaces. Ann. Math. 122 (1985), no. 1, 113154.
[34] Tignol, J.-P. Réduction de l'indice d'une algèbre simple centrale sur le corps des fonctions d'une quadrique. Bull. Soc. Math. Belgique 42 (1990), 725-745.
Oleg Izhboldin
Department of
Mathematics and Mechanics
St.-Petersburg
State University
Petrodvorets, 198904
Russia
oleg@izh.usr.pu.ru

Nikita Karpenko
Westfälische
Wilhelms-Universität
Mathematisches Institut
Einsteinstraße 62
D-48149 Münster
Germany
karpenk@math.uni-muenster.de

[^0]: ${ }^{1}$ In fact, it is enough only to know that the Grothendieck classes of the bundles $\xi^{\otimes 2}$ and $\xi^{\oplus 4}$ are in $K\left(Y_{L}\right)$ what can be also seen from the computation of the K-theory.

[^1]: ${ }^{2}$ Two field extensions E / F and E^{\prime} / F are called stably equivalent, if some finitely generated purely transcendental extension of E is isomorphic (over F) to some finitely generated purely transcendental extension of E^{\prime}.

[^2]: ${ }^{3} \mathrm{An} F$-algebra is called triquaternion, if it is isomorphic to a tensor product of three quaternion F-algebras.

