
Doc.Math. J.DMV 297

On the Group H

3

(F ( ;D)=F )

Oleg T. Izhboldin and Nikita A. Karpenko

Received: August 14, 1997

Communicated by Ulf Rehmann

Abstract. Let F be a �eld of characteristic di�erent from 2,  a quadratic

F -form of dimension � 5, and D a central simple F -algebra of exponent 2.

We denote by F ( ;D) the function �eld of the product X

 

� X

D

, where

X

 

is the projective quadric determined by  and X

D

is the Severi-Brauer

variety determined by D. We compute the relative Galois cohomology group

H

3

(F ( ;D)=F;Z=2Z) under the assumption that the index of D goes down

when extending the scalars to F ( ). Using this, we give a new, shorter

proof of the theorem [23, Th. 1] originally proved by A. Laghribi, and a new,

shorter, and more elementary proof of the assertion [2, Cor. 9.2] originally

proved by H. Esnault, B. Kahn, M. Levine, and E. Viehweg.

1991 Mathematics Subject Classi�cation: 19E15, 12G05, 11E81.

Let  be a quadratic form and D be an exponent 2 central simple algebra over a �eld

F (always assumed to be of characteristic not 2). Let X

 

be the projective quadric

determined by  , X

D

the Severi-Brauer variety determined by D, and F ( ;D) the

function �eld of the product X

 

�X

D

.

A computation of the relative Galois cohomology group

H

3

(F ( ;D)=F )

def

= ker

�

H

3

(F;Z=2Z)! H

3

(F ( ;D);Z=2Z)

�

plays a crucial role in obtaining the results of [8] and [10] concerning the problem of

isotropy of quadratic forms over the function �elds of quadrics.

The group H

3

(F ( ;D)=F ) is closely related to the Chow group CH

2

(X

 

�X

D

)

of 2-codimensional cycles on the product X

 

�X

D

. The main result of this paper is

the following theorem, where both groups are computed assuming dim � 5 and the

index of D goes down when extending the scalars to the function �eld of  :

Theorem 0.1. Let D be a central simple F -algebra of exponent 2. Let  be

a quadratic form of dimension � 5. Suppose that indD

F ( )

< indD. Then

TorsCH

2

(X

 

�X

D

) = 0 and H

3

(F ( ;D)=F ) = [D] [H

1

(F ).

A proof is given in x8. The essential part of the proof is Theorem 6.9, dealing

with the special case where D is a division algebra of degree 8. This theorem has two

applications in the theory of quadratic forms. The �rst one is a new, shorter proof of

the following assertion, originally proved by A. Laghribi ([23, Th. 1]):
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Corollary 0.2. Let � 2 I

2

(F ) be an 8-dimensional quadratic form such that

indC(�) = 8. Let  be a quadratic form of dimension � 5 such that �

F ( )

is isotropic.

Then there exists a half-neighbor �

�

of � such that  � �

�

.

The other application we demonstrate is a new, shorter, and more elementary

proof of the assertion, originally proved by H. Esnault, B. Kahn, M. Levine, and E.

Viehweg ([2, Cor. 9.2]):

Corollary 0.3. Let � 2 I

2

(F ) be any quadratic form such that indC(�) � 8. Let A

be a central simple F -algebra Brauer equivalent to C(�) and let F (A) be the function

�eld of the Severi-Brauer variety of A. Then �

F (A)

=2 I

4

(F (A)). In particular, �

F (A)

is not hyperbolic. Moreover, if dim � = 8 then �

F (A)

is anisotropic.

Our proofs of Corollaries 0.2 and 0.3 are given in x7.

An important part in the proof of Theorem 6.9 is played by the formula of

Proposition 4.5, which is in fact applicable to a wide class of algebraic varieties.

A computation of the group H

3

(F ( ;D)=F ) in some cases not covered by The-

orem 0.1 is given in [8] and [10].

1. Terminology, notation, and backgrounds

1.1. Quadratic forms. Mainly, we use notation of [24] and [30]. However there is

a slight di�erence: we denote by hha

1

; : : : ; a

n

ii the n-fold P�ster form

h1;�a

1

i 
 � � � 
 h1;�a

n

i :

The set of all n-fold P�ster forms over F is denoted by P

n

(F ); GP

n

(F ) is the set of

forms similar to a form from P

n

(F ).

We recall that a quadratic form  is called a (P�ster) neighbor (of a P�ster form

�), if it is similar to a subform in � and dim� >

1

2

dim�. Two quadratic forms � and

�

�

are half-neighbors, if dim� = dim�

�

and there exists s 2 F

�

such that the sum

�?s�

�

is similar to a P�ster form.

For a quadratic form � of dimension � 3, we denote by X

�

the projective variety

given by the equation � = 0 and we set F (�) = F (X

�

).

1.2. Generic splitting tower. Let  be a non-hyperbolic quadratic form over F .

Put F

0

def

= F and 

0

def

= 

an

. For i � 1 let F

i

def

= F

i�1

(

i�1

) and 

i

def

= ((

i�1

)

F

i

)

an

.

The smallest h such that dim 

h

� 1 is called the height of . The sequence

F

0

; F

1

; : : : ; F

h

is called the generic splitting tower of  ([21]). We need some properties

of the �elds F

s

:

Lemma 1.3 ([22]). Let M=F be a �eld extension such that dim(

M

)

an

= dim 

s

.

Then the �eld extension MF

s

=M is purely transcendental.

The following proposition is a consequence of the index reduction formula [25].

Proposition 1.4 (see [6, Th. 1.6] or [5, Prop. 2.1]). Let � 2 I

2

(F ) be a quadratic

form with ind(C(�)) � 2

r

> 1. Then there is s (0 � s � h(�)) such that dim�

s

=

2r + 2 and indC(�

s

) = 2

r

.

Corollary 1.5. Let � 2 I

2

(F ) be a quadratic form with ind(C(�)) � 8. Then there

is s (0 � s � h(�)) such that dim�

s

= 8 and indC(�

s

) = 8.
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1.6. Central simple algebras. We are working with �nite-dimensional associa-

tive algebras over a �eld. Let D be a central simple F -algebra. We denote by X

D

the Severi-Brauer variety of D and by F (D) the function �eld F (X

D

).

For another central simple F -algebra D

0

and for a quadratic F -form  of dimen-

sion � 3, we set F (D

0

; D)

def

= F (X

D

0

�X

D

) and F ( ;D)

def

= F (X

 

�X

D

).

1.7. Galois cohomology. By H

�

(F ) we denote the graded ring of Galois coho-

mology

H

�

(F;Z=2Z) = H

�

(Gal(F

sep

=F );Z=2Z):

For any �eld extension L=F , we set H

�

(L=F )

def

= ker(H

�

(F )! H

�

(L)).

We use the standard canonical isomorphisms H

0

(F ) = Z=2Z, H

1

(F ) = F

�

=F

�2

,

and H

2

(F ) = Br

2

(F ).

We also work with the cohomology groups H

n

(F;Q=Z(i)), i = 0; 1; 2 (see e.g.

[12] for the de�nition). For any �eld extension L=F , we set

H

�

(L=F;Q=Z(i))

def

= ker

�

H

�

(F;Q=Z(i))! H

�

(L;Q=Z(i))

�

:

For n = 1; 2; 3, the group H

n

(F ) is naturally identi�ed with

Tors

2

H

n

(F;Q=Z(n� 1)) :

1.8. K-theory and Chow groups. We are mainly working with smooth algebraic

varieties over a �eld, although the smoothness assumption is not always essential.

Let X be a smooth algebraic F -variety. The Grothendieck ring of X is denoted

byK(X). This ring is supplied with the �ltration \by codimension of support" (which

respects multiplication); the adjoint graded ring is denoted by G

�

K(X). There is a

canonical surjective homomorphism of the graded Chow ring CH

�

(X) onto G

�

K(X);

its kernel consists only of torsion elements and is trivial in the 0-th, 1-st and 2-nd

graded components ([32, x9]). In particular we have the following

Lemma 1.9. The homomorphism CH

i

(X) ! G

i

K(X) is bijective if at least one of

the following conditions holds:

� i = 0, 1, or 2,

� CH

i

(X) is torsion-free.

Let X be a variety over F and E=F be a �eld extension. We denote by i

E=F

the restriction homomorphism K(X) ! K(X

E

). We use the same notation for the

restriction homomorphisms CH

�

(X) ! CH

�

(X

E

) and G

�

K(X) ! G

�

K(X

E

). Note

that for any projective homogeneous variety X , the homomorphism i

E=F

: K(X) !

K(X

E

) is injective by [27].

1.10. Other notations. We denote by

�

F a separable closure of the �eld F . The

order of a set S is denoted by jSj (if S is in�nite, we set jSj

def

= 1).
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2. The group TorsG

�

K(X)

Lemma 2.1. Let X be a variety over F and E=F be a �eld extension such that

the homomorphism i

E=F

: K(X) ! K(X

E

) is injective and the factor group

K(X

E

)=i

E=F

(K(X)) is �nite. Then

j ker(G

�

K(X)! G

�

K(X

E

)j =

jG

�

K(X

E

)=i

E=F

(G

�

K(X))j

jK(X

E

)=i

E=F

(K(X))j

Proof. The proof is the same as the proof of [15, Prop. 2].

Lemma 2.2. Let X be a variety, i be an integer, and E=F be a �eld extension such

that the group G

i

K(X

E

) is torsion-free. Then

ker(G

i

K(X)! G

i

K(X

E

)) = TorsG

i

K(X) :

Proof. Since G

i

K(X

E

) is torsion-free, one has ker(G

i

K(X) ! G

i

K(X

E

)) �

TorsG

i

K(X).

To prove the inverse inclusion, let us take an intermediate �eld E

0

such that

the extension E

0

=F is purely transcendental while the extension E=E

0

is algebraic.

The specialization argument shows that the homomorphism G

i

K(X) ! G

i

K(X

E

0

)

is injective; the transfer argument shows that ker(G

i

K(X

E

0

) ! G

i

K(X

E

)) �

TorsG

i

K(X

E

0

). Therefore ker(G

i

K(X)! G

i

K(X

E

)) � TorsG

i

K(X).

Lemma 2.3. Let X be a smooth variety, i be an integer, and E=F be a �eld extension

such that the group CH

i

(X

E

) is torsion-free. Then

� CH

i

(X

E

) ' G

i

K(X

E

) (and hence the group G

i

K(X

E

) is torsion-free),

� CH

i

(X

E

)=i

E=F

(CH

i

(X)) ' G

i

K(X

E

)=i

E=F

(G

i

K(X)):

Proof. The �rst assertion is contained in Lemma 1.9. The canonical homomorphism

CH

i

(X

E

)! G

i

K(X

E

) induces a homomorphism

CH

i

(X

E

)=i

E=F

(CH

i

(X))! G

i

K(X

E

)=i

E=F

(G

i

K(X))

which is bijective since CH

i

(X

E

) ! G

i

K(X

E

) is bijective and CH

i

(X) ! G

i

K(X)

is surjective.

Proposition 2.4. Suppose that a smooth F -variety X and a �eld extension E=F

satisfy the following three conditions:

� the homomorphism i

E=F

: K(X)! K(X

E

) is injective,

� the factor group K(X

E

)=i

E=F

(K(X)) is �nite,

� the group CH

�

(X

E

) is torsion-free.

Then

jTorsG

�

K(X)j =

jG

�

K(X

E

)=i

E=F

(G

�

K(X))j

jK(X

E

)=i

E=F

(K(X))j

=

jCH

�

(X

E

)=i

E=F

(CH

�

K(X))j

jK(X

E

)=i

E=F

(K(X))j

Proof. It is an obvious consequence of Lemmas 2.1, 2.2, and 2.3.
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3. Auxiliary lemmas

For an Abelian group A we use the notation rk(A) = dim

Q

(A


Z

Q).

Lemma 3.1. Let A

0

� A, B

0

� B be free Abelian groups such that rkA

0

= rkA = r

A

,

rkB

0

= rkB = r

B

. Then

�

�

�

�

A


Z

B

A

0




Z

B

0

�

�

�

�

=

�

�

�

�

A

A

0

�

�

�

�

r

B

�

�

�

�

�

B

B

0

�

�

�

�

r

A

:

Proof. One has

(A
B)=(A

0


B) ' (A=A

0

)
B ' (A=A

0

)
Z

r

B

' (A=A

0

)

r

B

;

(A

0


B)=(A

0


B

0

) ' A

0


 (B=B

0

) ' Z

r

A


 (B=B

0

) ' (B=B

0

)

r

A

:

Therefore,

�

�

�

�

A
B

A

0


B

0

�

�

�

�

=

�

�

�

�

A
B

A

0


B

�

�

�

�

�

�

�

�

�

A

0


B

A

0


B

0

�

�

�

�

=

�

�

�

�

A

A

0

�

�

�

�

r

B

�

�

�

�

�

B

B

0

�

�

�

�

r

A

:

The following lemma is well-known.

Lemma 3.2. Let A be an Abelian group with a �nite �ltration A = F

0

A � F

1

A �

� � � � F

k

A = 0. Let B be a subgroup of A with the �ltration F

p

B = B \ F

p

A. Let

G

�

A =

L

p�0

F

p

A=F

p+1

A and G

�

B =

L

p�0

F

p

B=F

p+1

B. Then

� jA=Bj = jG

�

A=G

�

Bj,

� if A is a �nitely generated group then rkG

�

A = rkA.

In the following lemma the term \ring" means a commutative ring with unit.

Lemma 3.3. Let A and B be rings whose additive groups are �nitely generated Abelian

groups. Let I be a nilpotent ideal of A such that A=I ' Z. Let R be a subring of

A


Z

B and A

R

be a subring of A such that A

R


1 � R. Then the following inequality

holds

�

�

�

�

A


Z

B

R

�

�

�

�

�

�

�

�

�

A

A

R

�

�

�

�

r

B

�

�

�

�

�

A


Z

B

R+ (I 


Z

B)

�

�

�

�

r

A

where r

A

= rkA and r

B

= rkB.

Proof. Let us denote by B

R

the image of R under the following composition A
B !

(A=I)
B ' Z
B ' B. Obviously,

�

�

�

�

A


Z

B

R+ (I 


Z

B)

�

�

�

�

=

�

�

�

�

B

B

R

�

�

�

�

:

For any p � 0 we set F

p

A = fa 2 A j 9m 2 N such that ma 2 I

p

g. Clearly,

Tors(A=F

p

A) = 0, and so A=F

p

is a free Abelian group. Therefore all factor groups

F

p

A=F

p+1

A (p = 0; 1; : : : ) are free Abelian. Since A=I ' Z, it follows that F

1

A = I .

Thus A=F

1

A ' Z. Since I is a nilpotent ideal of A, there exists k such that I

k

= 0.

Then F

k

A = 0. Thus the �ltration A = F

0

A � F

1

A � F

2

A � : : : is �nite and

results of Lemma 3.2 can be applied.

Let F

p

A

R

def

= R\F

p

A, F

p

(A
B)

def

= im(F

p

A
B ! A
B), and F

p

R

def

= R\

F

p

(A
B). If K is one of the rings A, A

R

, A
B, or R, we set G

p

K

def

= F

p

K=F

p+1

K

and G

�

K

def

=

L

p�0

F

p

K=F

p+1

K. Obviously, F

p

K � F

q

K � F

p+q

K for all p and q.
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Therefore, K = F

0

K � F

1

K � � � � � F

p

K � : : : is a ring �ltration. Hence, the

adjoint graded group G

�

K has a graded ring structure. Since the additive group of

B is free, we have a natural ring isomorphism G

�

A
B ' G

�

(A
B).

Since A

R


 1 � R, we have G

�

A

R


 1 � G

�

R. Clearly G

0

(A
B) = (A=I)
B,

and G

0

R coincides with the image of the composition R ! A 
 B ! (A=I) 
 B.

By de�nition of B

R

, one has G

0

R = 1

G

�

A


 B

R

(here 1

G

�

A

denotes the unit of the

ring G

�

A). Therefore 1

G

�

A


 B

R

� G

�

R. Since G

�

A

R


 1 � G

�

R, 1

G

�

A


 B

R

�

G

�

R, and G

�

R is a subring of G

�

A 
 B, we have G

�

A

R


 B

R

� G

�

R. Therefore

jG

�

(A 
 B)=G

�

Rj � j(G

�

A 
 B)=(G

�

A

R


 B

R

)j. Applying Lemmas 3.1 and 3.2, we

have

�

�

�

�

A
B

R

�

�

�

�

=

�

�

�

�

G

�

(A
B)

G

�

R

�

�

�

�

�

�

�

�

�

G

�

A
B

G

�

A

R


B

R

�

�

�

�

=

�

�

�

�

G

�

A

G

�

A

R

�

�

�

�

r

B

�

�

�

�

�

B

B

R

�

�

�

�

r

A

=

=

�

�

�

�

A

A

R

�

�

�

�

r

B

�

�

�

�

�

B

B

R

�

�

�

�

r

A

=

�

�

�

�

A

A

R

�

�

�

�

r

B

�

�

�

�

�

A


Z

B

R+ (I 


Z

B)

�

�

�

�

r

A

:

4. On the group CH

�

(X � Y )

Let X be a smooth variety. We denote by F

p

CH

�

(X) the group

M

i�p

CH

i

(X) :

Let Y be another smooth variety. For a subgroup A of CH

�

(X) and a subgroup B

of CH

�

(Y ), we denote by A � B the image of the composition A 
 B ! CH

�

(X) 


CH

�

(Y )! CH

�

(X � Y ).

The following assertion is evident (see also [20, x3] or [11]).

Proposition 4.1. Let X and Y be smooth varieties over F . Then

� the natural homomorphism CH

�

(X � Y )! CH

�

(Y

F (X)

) is surjective,

� the kernel of the homomorphism CH

�

(X�Y )! CH

�

(Y

F (X)

) contains the group

F

1

CH

�

(X)� CH

�

(Y ).

Corollary 4.2. If the natural homomorphism CH

�

(X) 
 CH

�

(Y ) ! CH

�

(X � Y )

is bijective and CH

�

(Y ) is torsion-free, then the homomorphism CH

�

(X � Y ) !

CH

�

(Y

F (X)

) induces an isomorphism

CH

�

(X � Y )

F

1

CH

�

(X)� CH

�

(Y )

! CH

�

(Y

F (X)

):

Proof. Since CH

�

(X)
CH

�

(Y ) ' CH

�

(X�Y ) and CH

�

(X)=F

1

CH

�

(X) ' CH

0

(X),

the factor group CH

�

(X � Y )=(F

1

CH

�

(X) � CH

�

(Y )) is isomorphic to CH

0

(X) 


Z

CH

�

(Y ) ' Z


Z

CH

�

(Y ) ' CH

�

(Y ). Thus, it is su�cient to prove that the ho-

momorphism CH

�

(Y ) ! CH

�

(Y

F (X)

) is injective. This is obvious since CH

�

(Y ) is

torsion-free.
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Corollary 4.3. Let X and Y be smooth varieties and E=F be a �eld extension such

that the natural homomorphism CH

�

(X

E

) 
 CH

�

(Y

E

) ! CH

�

(X

E

� Y

E

) is bijective

and CH

�

(Y

E

) is torsion-free. Then there exists an isomorphism

CH

�

(X

E

� Y

E

)

i

E=F

(CH

�

(X � Y )) + F

1

CH

�

(X

E

)� CH

�

(Y

E

)

'

CH

�

(Y

E(X)

)

i

E(X)=F (X)

(CH

�

(Y

F (X)

))

Proof. Obvious in view of Corollary 4.2.

Remark 4.4. It was noticed by the referee that the conditions of Corollary 4.3 (which

appear also in Proposition 4.5) hold, if the variety Y

E

possess a cellular decomposition

(see e.g. [13, Def. 3.2] for the de�nition of cellular decomposition). In the case of

complete varieties X and Y , this statement follows e.g. from [19, Th. 6.5]. In the

present paper, we shall apply Corollary 4.3 only to the case where Y

E

is isomorphic

to a projective space.

Proposition 4.5. Let X and Y be smooth varieties over F and E=F be a �eld

extension such that the following conditions hold

� CH

�

(X

E

) is a free Abelian group of rank r

X

,

� CH

�

(Y

E

) is a free Abelian group of rank r

Y

,

� the canonical homomorphism CH

�

(X

E

) 


Z

CH

�

(Y

E

) ! CH

�

(X

E

� Y

E

) is an

isomorphism.

Then

�

�

�

�

CH

�

(X

E

� Y

E

)

i

E=F

(CH

�

(X � Y ))

�

�

�

�

�

�

�

�

�

CH

�

(X

E

)

i

E=F

(CH

�

(X))

�

�

�

�

r

Y

�

�

�

�

�

CH

�

(Y

E(X)

)

i

E(X)=F (X)

(CH

�

(Y

F (X)

))

�

�

�

�

r

X

:

Proof. Let A = CH

�

(X

E

), A

R

= i

E=F

(CH

�

(X)) and I =

L

p>0

CH

p

(X

E

) =

F

1

CH

�

(X

E

). Let B = CH

�

(Y

E

). By our assumption, we have CH

�

(X

E

� Y

E

) '

A 


Z

B. We denote by R the image of the composition CH

�

(X � Y ) ! CH

�

(X

E




Y

E

) ' A


Z

B. Clearly, all conditions of Lemma 3.3 hold. Moreover,

�

�

�

�

CH

�

(X

E

� Y

E

)

i

E=F

(CH

�

(X � Y ))

�

�

�

�

=

�

�

�

�

A


Z

B

R

�

�

�

�

and

�

�

�

�

CH

�

(X

E

)

i

E=F

(CH

�

(X))

�

�

�

�

=

�

�

�

�

A

A

R

�

�

�

�

:

By Corollary 4.3 we have

�

�

�

�

A


Z

B

R+ (I 


Z

B)

�

�

�

�

=

�

�

�

�

CH

�

(Y

E(X)

)

i

E(X)=F (X)

(CH

�

(Y

F (X)

))

�

�

�

�

:

To complete the prove it su�ces to apply Lemma 3.3.

5. The group TorsCH

2

(X

 

�X

D

)

The aim of this section is Corollary 5.6.

Proposition 5.1 (see [14, x2.1]). Let  be a (2n + 1)-dimensional quadratic form

over a separably closed �eld. Set X

def

= X

 

and d

def

= dimX = 2n � 1. Then for all

0 � p � d the group CH

p

(X) is canonically isomorphic to Z (for other p the group

CH

p

(X) is trivial). Moreover,

� if 0 � p < n, then CH

p

(X) = Z � h

p

, where h 2 CH

1

(X) denotes the class of a

hyperplane section of X;
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� if n � p � d, then CH

p

(X) = Z � l

d�p

, where l

d�p

denotes the class of a linear

subspace in X of dimension d� p, besides 2l

d�p

= h

p

.

Corollary 5.2. Let  be a (2n + 1)-dimensional quadratic form over F and let

X = X

 

. Then

� CH

�

(X

�

F

) is a free Abelian group of rank 2n,

� if 0 � p < n then jCH

p

(X

�

F

)=i

�

F=F

(CH

p

(X))j = 1,

� if n � p � 2n� 1 then jCH

p

(X

�

F

)=i

�

F
=F

(CH

p

(X))j � 2,

� jCH

�

(X

�

F

)=i

�

F=F

(CH

�

(X))j � 2

n

.

Proposition 5.3. Let D be a central simple F -algebra of exponent 2 and of degree 8.

Let E=L=F be �eld extensions such that indD

L

= 4 and indD

E

= 1. Let Y = SB(D).

For any 0 � p � dimY = 7, the group CH

p

(Y

E

) is canonically isomorphic to Z.

Moreover, the image of the homomorphism i

E=L

: CH

p

(Y

L

)! CH

p

(Y

E

) ' Z contains

1 if p = 0; 4; 2 if p = 1; 2; 5; 6; 4 if p = 3; 7.

Proof. Since degD = 8 and indD

E

= 1, Y

E

is isomorphic to P

7

E

. Hence, the group

CH

p

(Y

E

)

�

=

CH

p

(P

7

E

) (where p = 0; : : : ; 7) is generated by the class h

p

of a linear

subspace ([4]).

The rest part of the proposition is contained in [16, Th.]. For the reader's con-

venience, we also give a direct construction of the elements required. The class of

Y

L

itself gives 1 2 i

E=L

(CH

0

(Y

L

)). Let � be the tautological line bundle on the pro-

jective space P

7

E

' Y

E

. Since expD = 2, the bundle �


2

is de�ned over F and, in

particular, over L. Its �rst Chern class gives 2 2 i

E=L

(CH

1

(Y

L

)). Since indD

L

= 4,

the bundle �

�4

is de�ned over L. Its second Chern class gives 6 2 i

E=L

(CH

2

(Y

L

)).

1

Thus 2 2 i

E=L

(CH

2

(Y

L

)). The third Chern class of �

�4

gives 4 2 i

E=L

(CH

3

(Y

L

)).

The fourth Chern class of �

�4

gives 1 2 i

E=L

(CH

4

(Y

L

)). Finally, taking the product

of the cycles constructed in codimensions 1, 2, and 3 with the cycle of codimension

4, one gets the cycles of codimensions 5, 6, and 7 required.

Corollary 5.4. Under the condition of Proposition 5.3, we have

jCH

�

(Y

E

)=i

E=L

(CH

�

(Y

L

))j � 256 :

Proof.

7

Q

p=0

jCH

p

(Y

E

)=i

E=L

(CH

p

(Y

L

))j � 1 � 2 � 2 � 4 � 1 � 2 � 2 � 4 = 256 :

Proposition 5.5. Let D be a central division F -algebra of degree 8 and exponent 2.

Let  be a 5-dimensional quadratic F -form. Suppose that D

F ( )

is not a skew�eld.

Then TorsG

�

K(X

 

�X

D

) = 0.

Proof. Let X = X

 

and Y = X

D

. Corollary 5.2 shows that CH

�

(X

�

F

) is a free abelian

group of rank r

X

= 4 and jCH

�

(X

�

F

)=i

�

F
=F

(CH

�

(X))j � 2

2

= 4.

Since D is a division algebra of degree 8 and D

F ( )

is not division algebra, it

follows that indD

F (X)

= 4. Applying Corollary 5.4 to the case L = F (X), E =

�

F (X),

we have jCH

�

(Y

�

F
(X)

)=i

�

F
(X)=F (X)

(CH

�

(Y

F (X)

))j � 256.

1

In fact, it is enough only to know that the Grothendieck classes of the bundles �


2

and �

�4

are

in K(Y

L

) what can be also seen from the computation of the K-theory.
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Since Y

�

F

= SB(D

�

F

) ' P

7

�

F

, the group CH

�

(Y

�

F

) is a free Abelian of rank r

Y

= 8

and CH

�

(X

�

F

)
CH

�

(Y

�

F

) ' CH

�

(X

�

F

�Y

�

F

) (see [3, Prop. 14.6.5]). Thus all conditions

of Proposition 4.5 hold for X , Y , E =

�

F and we have

�

�

�

�

�

CH

�

(X

�

F

� Y

�

F

)

i

�

F
=F

(CH

�

(X � Y ))

�

�

�

�

�

� 4

8

� 256

4

= 2

48

:

Using [29, Th. 4.1 of x8] and [33, Th. 9.1], we get a natural (with respect to

extensions of F ) isomorphism

K(X � Y ) ' K

�

(F

�3

� C)


F

(F

�4

�D

�4

)

�

'

' K

�

F

�12

� C

�4

�D

�12

� (C 


F

D)

�4

�

where C

def

= C

0

( ) is the even Cli�ord algebra of  . Note that C is a central simple

F -algebra of the degree 2

2

. Since D

F ( )

is not a skew �eld, [25, Th. 1] states that

D ' C 


F

B with some central division F -algebra B. Therefore, indC = degC = 2

2

and indC 
D = indB = degB = 2. Hence

�

�

�

�

�

K(X

�

F

� Y

�

F

)

i

�

F=F

(K(X � Y ))

�

�

�

�

�

= (indC)

4

� (indD)

12

� (indC 
D)

4

= 2

2�4+3�12+1�4

= 2

48

:

Applying Proposition 2.4 to the variety X � Y and E =

�

F , we have

jTorsG

�

K(X � Y )j =

jCH

�

(X

�

F

� Y

�

F

)=i

�

F=F

(CH

�

(X � Y ))j

jK(X

�

F

� Y

�

F

)=i

�

F=F

(K(X � Y ))j

�

2

48

2

48

= 1 :

Therefore, TorsG

�

K(X � Y ) = 0.

Applying Lemma 1.9 we get the following

Corollary 5.6. Under the condition of Proposition 5.5, the group CH

2

(X

 

�X

D

)

is torsion-free.

6. A special case of Theorem 0.1

In this section we prove Theorem 0.1 in the special case where D is a division algebra

of degree 8.

Proposition 6.1 ([1, Satz 5.6]). Let  be a quadratic F -form of dimension � 5. The

group H

3

(F ( )=F ) is non-trivial i�  is a neighbor of an anisotropic 3-P�ster form.

Proposition 6.2 (see [28, Prop. 4.1 and Rem. 4.1]). Let D be a central division F -

algebra of exponent 2. Suppose that D is decomposable (in the tensor product of two

proper subalgebras). Then H

3

(F (D)=F ) = [D] [H

1

(F ).

Proposition 6.3. If D and D

0

are Brauer equivalent central simple F -algebras, then

the function �elds F (D) and F (D

0

) are stably equivalent.

2

2

Two �eld extensions E=F and E

0

=F are called stably equivalent, if some �nitely generated purely

transcendental extension of E is isomorphic (over F ) to some �nitely generated purely transcendental

extension of E

0

.
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Proof. Since the algebras D

F (D

0

)

and D

0

F (D)

are split, the �eld extensions

F (D;D

0

)=F (D

0

) and F (D;D

0

)=F (D)

are purely transcendental. Therefore each of the �eld extensions F (D)=F and

F (D

0

)=F is stably equivalent to the extension F (D;D

0

)=F .

Corollary 6.4. Fix a quadratic F -form  and integers i; j 2 Z. For any central

simple F -algebra D, the groups H

i

(F (D)=F ), H

i

(F (D)=F;Q=Z(j)), H

i

(F ( ;D)=F ),

H

i

(F ( ;D)=F;Q=Z(j)) only depend on the Brauer class of D.

Proposition 6.5. Let D be a central simple F -algebra of exponent 2 and let  be a

quadratic F -form. The group H

3

(F ( ;D)=F;Q=Z(2)) is annihilated by 2.

Proof. Let  

0

be a 3-dimensional subform of  . Clearly,

H

3

(F ( ;D)=F;Q=Z(2)) � H

3

(F ( 

0

; D)=F;Q=Z(2)) :

Therefore, it su�ces to show that the latter cohomology group is annihilated by 2.

Replacing  

0

by the quaternion algebra C

0

( 

0

), we come to a statement covered by

[7, Lemma A.8].

Corollary 6.6. In the conditions of Proposition 6.5, one has

H

3

(F ( ;D)=F;Q=Z(2)) = H

3

(F ( ;D)=F ) :

Proposition 6.7. Let D be a central simple F -algebra of exponent 2 and let  be a

quadratic F -form of dimension � 3. Suppose that indD

F ( )

< indD. Then  is not

a 3-P�ster neighbor and there is an isomorphism

H

3

(F ( ;D)=F )

H

3

(F ( )=F ) + [D] [H

1

(F )

' TorsCH

2

(X

 

�X

D

) :

Proof. By [9, Prop. 2.2], there is an isomorphism

H

3

(F ( ;D)=F;Q=Z(2))

H

3

(F ( )=F;Q=Z(2)) +H

3

(F (D)=F;Q=Z(2))

'

'

TorsCH

2

(X

 

�X

D

)

pr

�

 

TorsCH

2

(X

 

) + pr

�

D

TorsCH

2

(X

D

)

:

By Corollary 6.6, we have H

3

(F ( ;D)=F;Q=Z(2)) = H

3

(F ( ;D)=F ); by [9, Lemma

2.8], we have H

3

(F ( )=F;Q=Z(2)) = H

3

(F ( )=F ); and by [7, Lemma A.8], we have

H

3

(F (D)=F;Q=Z(2)) = H

3

(F (D)=F ).

Let D

0

be a division algebra Brauer equivalent to D. By Corollary 6.4, we

have H

3

(F (D)=F ) = H

3

(F (D

0

)=F ); by [18, Prop. 1.1], we have TorsCH

2

(X

D

) '

TorsCH

2

(X

D

0

). Since D

0

F ( )

is no more a skew �eld, there is a homomorphism of F -

algebras C

0

( ) ! D

0

([34, Th. 1], see also [26, Th. 2]). Although the algebra C

0

( )

is not always central simple, it always contains a non-trivial subalgebra central simple

over F . Therefore, D

0

is decomposable, what implies H

3

(F (D

0

)=F ) = [D] [ H

1

(F )

(Proposition 6.2) and TorsCH

2

(X

D

0

) = 0 ([17, Prop. 5.3]). Finally, the existence of

a homomorphism C

0

( ) ! D

0

implies that  is not a 3-P�ster neighbor; therefore

TorsCH

2

(X

 

) = 0 ([14, Th. 6.1]).
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Corollary 6.8. Let D be a central division F -algebra of degree 8 and exponent 2.

Let  be a 5-dimensional quadratic F -form. Suppose that D

F ( )

is not a skew �eld.

Then H

3

(F ( ;D)=F ) = [D] [H

1

(F ).

Proof. It is a direct consequence of Proposition 6.7, Corollary 5.6, and Proposition

6.1.

Theorem 6.9. Theorem 0.1 is true if D is a division algebra of degree 8.

Proof. Let  

0

be a 5-dimensional subform of  . Applying Corollary 6.8, we have

[D] [ H

1

(F ) � H

3

(F ( ;D)=F ) � H

3

(F ( 

0

; D)=F ) = [D] [ H

1

(F ). Hence

H

3

(F ( ;D)=F ) = [D] [H

1

(F ).

The assertion on TorsCH

2

(X

 

�X

D

) is Corollary 5.6.

Corollary 6.10. Let � 2 I

2

(F ) be a 8-dimensional quadratic form such that

indC(�) = 8. Let D be a degree 8 central simple algebra such that c(�) = [D].

Let  be a quadratic form of dimension � 5 such that �

F ( )

is isotropic. Then

1) D is a division algebra;

2) D

F ( )

is not a division algebra;

3) H

3

(F ( ;D)=F ) = [D] [H

1

(F ).

7. Proof of Corollaries 0.2 and 0.3

We need several lemmas.

Lemma 7.1. Let � 2 I

2

(F ) be a 8-dimensional quadratic form and let D be an algebra

such that c(�) = [D]. Then �

F (D)

2 GP

3

(F (D)).

Proof. We have c(�

F (D)

) = c(�)

F (D)

= [D

F (D)

] = 0. Hence �

F (D)

2 I

3

(F (D)). Since

dim� = 8, we are done by the Arason-P�ster Hauptsatz.

Lemma 7.2. Let �; �

�

2 I

2

(F ) be 8-dimensional quadratic forms such that c(�) =

c(�

�

) = [D], where D is a triquaternion division algebra.

3

Suppose that there is a

quadratic form  of dimension � 5 such that the forms �

F ( ;D)

and �

�

F ( ;D)

are

isotropic. Then � and �

�

are half-neighbors.

Proof. Lemma 7.1 implies that �

F ( ;D)

; �

�

F ( ;D)

2 GP

3

(F ( ;D)). By the assumption

of the lemma, �

F ( ;D)

and �

�

F ( ;D)

are isotropic. Hence �

F ( ;D)

and �

�

F ( ;D)

are

hyperbolic. Thus �; �

�

2 W (F ( ;D)=F ).

Let � = � ? �

�

. Clearly � 2 W (F ( ;D)=F ). Since c(�) = c(�) + c(�

�

) =

[D] + [D] = 0, we have � 2 I

3

(F ). Thus e

3

(�) 2 H

3

(F ( ;D)=F ). It follows from

Corollary 6.10 that e

3

(�) 2 [D] [ H

1

(F ). Hence there exists s 2 F

�

such that

e

3

(�) = [D] [ (s). We have e

3

(�) = [D] [ (s) = c(�) [ (s) = e

3

(� hhsii). Since

ker(e

3

: I

3

(F ) ! H

3

(F )) = I

4

(F ), we have � � � hhsii (mod I

4

(F )). Therefore

�+ �

�

= � � � hhsii = �� s� (mod I

4

(F )): Hence �

�

+ s� 2 I

4

(F ). Hence � and �

�

are half-neighbors.

The following statement was pointed out by Laghribi ([23]) as an easy conse-

quence of the index reduction formula [25].

3

An F -algebra is called triquaternion, if it is isomorphic to a tensor product of three quaternion

F -algebras.
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Lemma 7.3. Let  be a quadratic form of dimension � 5 and D be a division tri-

quaternion algebra. Suppose that D

F ( )

is not a division algebra. Then there exists

an 8-dimensional quadratic form �

�

2 I

2

(F ) such that  � �

�

and c(�

�

) = [D].

Proof of Corollary 0.2. Let D be triquaternion algebra such that c(�) = [D]. Since

indC(�) = 8, it follows that D is a division algebra. Since �

F ( )

is isotropic, D

F ( )

is

not a division algebra. It follows from Lemma 7.3 that there exists an 8-dimensional

quadratic form �

�

2 I

2

(F ) such that  � �

�

and c(�

�

) = [D]. Obviously, all

conditions of Lemma 7.2 hold. Hence � and �

�

are half-neighbors.

Lemma 7.4. Let D be a division triquaternion algebra over F . Then there exist a �eld

extension E=F and an 8-dimensional quadratic form �

�

2 I

2

(E) with the following

properties:

(i) D

E

is a division algebra,

(ii) c(�

�

) = [D

E

],

(iii) �

�

E(D)

is anisotropic.

Proof. Let � 2 I

2

(F ) be an arbitrary F -form such that c(�) = [D]. Let K =

F (X;Y; Z) and  = �

K

? hhX;Y; Zii be a K-form. Let K = K

0

;K

1

; : : : ;K

h

;



0

; 

1

; : : : ; 

h

be a generic splitting tower of .

Since  � �

K

(mod I

3

(K)), we have c() = c(�

K

) = [D

K

]. Since K=F is purely

transcendental, indD

K

= indD = 8. Hence indC() = 8. It follows from Corollary

1.5 that there exists s such that dim 

s

= 8 and indC(

s

) = 8. We set E = E

s

,

�

�

= 

s

.

We claim that the condition (i){(iii) of the lemma hold. Since c(�

�

) = c(

E

) =

c(�

E

) = [D

E

], condition (ii) holds. Since [D

E

] = c(�

�

) = c(

s

), we have indD

E

=

indC(

s

) = 8 and thus condition (i) holds.

Now we only need to verify that (iii) holds. Let M

0

=F be an arbitrary �eld

extension such that �

M

0

is hyperbolic. Let M =M

0

(X;Y; Z). We have 

M

= �

M

?

hhX;Y; Zii

M

. Clearly hhX;Y; Zii is anisotropic over M . Since �

M

is hyperbolic, we

have (

M

)

an

= hhX;Y; Zii

M

and hence dim(

M

)

an

= 8. Therefore dim(

M

)

an

=

dim 

s

. By Lemma 1.3, we see that the �eld extension ME=M =MK

s

=M is purely

transcendental. Hence dim(

ME

)

an

= dim(

M

)

an

= 8. Since (�

�

ME

)

an

= (

ME

)

an

,

we see that �

�

ME

is anisotropic. Since �

M

is hyperbolic, it follows that [D

M

] =

c(�

M

) = 0. Hence [D

ME

] = 0 and therefore the �eld extensionME(D)=ME is purely

transcendental. Hence �

�

ME(D)

is anisotropic. Therefore �

�

E(D)

is anisotropic.

Lemma 7.5. Let �; �

�

2 I

2

(F ) be 8-dimensional quadratic forms such that c(�) =

c(�

�

) = [D], where D is a triquaternion division algebra. Suppose that �

�

F (D)

is

anisotropic. Then �

F (D)

is anisotropic.

Proof. Suppose at the moment that �

F (D)

is isotropic. Then letting  

def

= �

�

, we see

that all conditions of Lemma 7.2 hold. Hence � and �

�

are half-neighbors, i.e., there

exists s 2 F

�

such that �

�

+ s� 2 I

4

(F ). Therefore �

�

F (D)

+ s�

F (D)

2 I

4

(F (D)).

Since �

F (D)

is isotropic, it is hyperbolic and we see that �

�

F (D)

2 I

4

(F (D)). By the

Arason-P�ster Hauptsatz, we see that �

�

F (D)

is hyperbolic. So we get a contradiction

to the assumption of the lemma.
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Proposition 7.6. Let � 2 I

2

(F ) be an 8-dimensional quadratic form such that

indC(�) = 8. Let A be an algebra such that c(�) = [A]. Then �

F (A)

is anisotropic.

Proof. Let D be a triquaternion algebra such that c(�) = [D]. Since indC(�) = 8,

D is a division algebra. Let E=F and �

�

be such that in Lemma 7.4. All conditions

of Lemma 7.5 hold for E, �

E

, �

�

, and D

E

. Therefore �

E(D)

is anisotropic. Hence

�

F (D)

is anisotropic. Since [A] = c(�) = [D], the �eld extension F (A)=F is stably

isomorphic to F (D)=F (Proposition 6.3). Therefore �

F (A)

is anisotropic.

Proof of Corollary 0.3. Suppose at the moment that �

F (A)

2 I

4

(F (A)). Since

indC(�) � 8, it follows that dim� � 8. By Corollary 1.5 there exists a �eld ex-

tension E=F such that dim(�

E

)

an

= 8, indC(�

E

) = 8. Since dim(�

E

)

an

= 8 and

�

E(A)

2 I

4

(E(A)), the Arason-P�ster Hauptsatz shows that ((�

E

)

an

)

E(A)

is hyper-

bolic. We get a contradiction to Proposition 7.6.

8. Proof of Theorem 0.1

By Proposition 6.7, there is a surjection

H

3

(F ( ;D)=F )

[D] [H

1

(F )

� TorsCH

2

(X

 

�X

D

) :

Thus, it su�ces to prove the second formula of Theorem 0.1.

Proving the second formula, we may assume that dim = 5 (compare to the proof

of Theorem 6.9) and D is a division algebra (Corollary 6.4). Under these assumptions,

we can write down D as the tensor product C

0

( ) 


F

B (using [25, Th. 1]). In

particular, we see that C

0

( ) is a division algebra, i.e. indC

0

( ) = degC

0

( ) = 4.

If degD < 8, then D ' C

0

( ). In this case,  

F (D)

is a 5-dimensional qua-

dratic form with trivial Cli�ord algebra; therefore  

F (D)

is isotropic; by this rea-

son, the �eld extension F ( ;D)=F (D) is purely transcendental and consequently

H

3

(F ( ;D)=F (D)) = 0. It follows that

H

3

(F ( ;D)=F ) = H

3

(F (D)=F ) = [D] [H

1

(F ) ;

where the last equality holds by Proposition 6.2.

If degD > 8, then indB � 4. Applying the index reduction formula [31, Th.

1.3], we get

indC

0

( )

F (D)

= minfindC

0

( ); indBg = 4 :

Therefore  

F (D)

is not a 3-P�ster neighbor and by Proposition 6.1 the group

H

3

(F ( ;D)=F (D)) is trivial. Thus once again

H

3

(F ( ;D)=F ) = H

3

(F (D)=F ) = [D] [H

1

(F ) :

Finally, if degD = 8, then we are done by Theorem 6.9 and Proposition 6.7.
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