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Abstract. We prove that if X is a smooth projective threefold with b

2

= 1

and Y is a Fano threefold with b

2

= 1, then for a non-constant map f : X !

Y , the degree of f is bounded in terms of the discrete invariants of X and

Y . Also, we obtain some stronger restrictions on maps between certain Fano

threefolds.
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1. Introduction

Let X , Y be smooth complex n-dimensional projective varieties with Pic(X)

�

=

Pic(Y )

�

=

Z. Let f : X ! Y be a non-constant morphism. It is a trivial conse-

quence of Hurwitz's formula

K

X

= f

�

K

Y

+R

that if Y is a variety of general type, then deg(f) is bounded in terms of the numerical

invariants of X and Y , and in particular all the morphisms from X to Y �t in a �nite

number of families.

If we drop the assumption that Y is of general type, then this assertion is no longer

quite true. Indeed, if Y is a projective space P

n

, for any X we can construct in�nitely

many families of maps X ! Y : take an embedding of X in P

N

by any very ample

divisor on X and then project the image to P

n

. However, one might ask if P

n

is the

only variety with this property (the following conjectures are suggested by A. Van de

Ven) :

Conjecture A: Let X, Y be as above and Y 6

�

=

P

n

. Then there is only �nitely many

families of maps from X to Y . Moreover, the degree of a map f : X ! Y can be

bounded in terms of the discrete invariants of X and Y .

A weaker version is the following
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196 E. Amerik

Conjecture B: Let X, Y be smooth n-dimensional projective varieties with b

2

(X) =

b

2

(Y ) = 1. Suppose Y 6

�

=

P

n

and, if n = 1, that Y is not an elliptic curve. Then the

degree of a map f : X ! Y can be bounded in terms of the discrete invariants of X

and Y .

Remark: If n = 1, the Conjecture A is empty and the Conjecture B is trivial. If

n = 2, one must check the Conjecture A with Y a K3-surface, and at the moment I

do not know how to do this. This problem, of course, does not arise for Conjecture B,

which again becomes a triviality in dimension two (note that if for a smooth complex

projective variety V we have b

1

(V ) 6= 0 and b

2

(V ) = 1, then V is a curve). The

assumption in the Conjecture B that Y is not an elliptic curve is , of course, necessary:

any torus has endomorphisms of arbitrarily high degree given by multiplication by an

integer.

Evidence: It seems likely that \the more ample is the canonical sheaf on Y , the more

di�cult it becomes to produce maps from X to Y ". Of course, the projective space

has the \least ample" canonical sheaf: K

P

n

= �(n+ 1)H , where H is a hyperplane.

The next case is that of a quadric: K

Q

n

= �nH with H a hyperplane section. For

n = 3, it has been proved by C.Schuhmann ([S]) that the degree of a map from a

smooth threefold X with Picard group Z to the three-dimensional quadric is bounded

in terms of the invariants of X . In [A], I have suggested a simpler method to prove

results of this kind, which also generalizes to higher dimensions.

The main purpose of this paper is to show by a rather simple method that for Fano

threefolds Y , at least for those with very ample generator of the Picard group, the

above Conjecture B is true (we also show that for many of such threefolds Conjecture

A holds). The boundedness results are proved in the next section. In Section 3,

we obtain in a similar way a strong restriction on maps between \almost all" Fano

threefolds with Picard group Z. This is related to the \index conjecture" of Peternell

which states that if f : X ! Y is a map between Fano varieties of the same dimension

with cyclic Picard group, then the index of Y is not smaller than that of X . This

conjecture is studied for Fano threefolds by C.Schuhmann in her thesis, and one of

her main results is that there are no maps from such a Fano threefold of index two to

a Fano threefold of index one with reduced Hilbert scheme of lines. An extension of

this result appears also in Theorem 3.1 of this paper ; however, there is at least one

Fano threefold of index one with non-reduced Hilbert scheme of lines, namely, Mukai

and Umemura's V

22

. The last section of this paper deals with this variety: it is proved

that a Fano threefold of index two with Picard group Z does not admit a map onto

it. One would think that the Mukai-Umemura V

22

is the only Fano threefold of genus

at least four with cyclic Picard group and non-reduced Hilbert scheme of lines. The

proof of this would be a solution to the \index conjecture" in the three-dimensional

case (recall that a Fano threefold of index one and genus at most three has the third

Betti number which is bigger than the third Betti number of any Fano threefold of

index two ([I1] ,table 3.5), so we do not have to consider the case of genus less than

four to prove the index conjecture). In fact even a weaker statement would su�ce

(see Theorem 3.1).
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This paper can be viewed as a very extensive appendix to [A], as a large part of the

method is described there.

We will often use the following notations: Generally, for X � P

n

, H

X

denotes the

hyperplane section divisor on X . Also, for X with cyclic Picard group, we will call

H

X

the ample generator of Pic(X) (in this paper it will mostly be assumed that H

X

is very ample). By V

k

, following Iskovskih, we will often denote a Fano threefold with

cyclic Picard group, which has index one and for which H

3

X

= k (k will be called the

degree of this Fano threefold). For Grassmann varieties, we use projective notation:

G(k; n) denotes the variety of projective k-subspaces in the projective n-space.

Finally, throughout the paper we work over the �eld of complex numbers.

Acknowledgments: I would like to thank Professor A. Van de Ven for many helpful

discussions. I am grateful to Frank-Olaf Schreyer for explaining me many facts on

V

22

and for letting me use his un�nished manuscript [Sch], and also to Aleksandr

Kuznetsov for giving me his master's thesis [K]. The �nal version of this paper was

written during my stay at the University of Bayreuth, to which I am grateful for its

hospitality and support.

2. Boundedness

Let Y be a Fano threefold such that Pic(Y )

�

=

Z, and suppose that the positive

generator of the Picard group is very ample. When speaking of deg(Y ) and other

notions related to the projective embedding ( e.g. the sectional genus g(Y ) of Y ) we

will suppose that this embedding is given by global sections of the generator.

It is well-known ([I],I, section 5 ) that if Y is of index two, then lines on Y are

parameterized by a smooth surface F

Y

(the Fano surface) on Y . A general line on Y

has trivial normal bundle, and there is a curve on F which parametrizes lines with

the normal bundle O

P

1

(�1)�O

P

1

(1) (let us call them (-1,1)-lines). If Y is of index

one, than Y contains a one-dimensional family of lines ([I], II, section 3); the normal

bundle of a line is then either O

P

1

(�1)�O

P

1

, or O

P

1

(�2)�O

P

1

(1). In the last case

such a line is of course a singular point of the Hilbert scheme. In the sequel we will

use the simple fact that if the Hilbert scheme of lines on a Fano threefold of index one

is non-reduced, i.e. every line of one of its irreducible components is (-2,1), then the

surface covered by the lines of this component is either a cone, or a tangent surface

to a curve.

If the generatorH

Y

of Pic(Y ) is not very ample, there still exist \lines" on Y : we call

a curve C a line if C � H

Y

= 1. In this case, however, there exist other possibilities

for the normal sheaf N

C;Y

. If Y is a threefold of index 2 and H

3

Y

= 1, C can even be

a singular curve and, moreover, if we want our \lines" to �t into a Hilbert scheme,

we must also allow embedded points ([T]).

At this point, it is convenient to recall from [I] which Fano threefolds have very

ample/not very ample generator of the Picard group. For index two, the threefolds

with very ample generator are cubics, intersections of two quadrics and the linear

section of G(1; 4); the other threefolds are double covers of P

3

branched in a quartic

(quartic double solids) and double covers of the Veronese cone branched in a cubic

section of it (double Veronese cones). For index one, we have nine families of threefolds
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with very ample generators, plus double covers of the quadric branched in a quartic

section and double covers of P

3

branched in a sextic.

Often we will assume here for simplicity that H

Y

is very ample, and discuss the other

case in remarks.

We start by proving the following

Proposition 2.1 A) If Y is a Fano threefold (with Pic(Y )

�

=

Z, H

Y

very ample) of

index 2 such that the surface U

Y

� Y which is the union of all (-1,1)-lines on Y is in

the linear system jiH

Y

j with i � 5, then for any threefold X, Pic(X)

�

=

Z, the degree

of a map f : X ! Y is bounded in terms of the discrete invariants of X.

B) If Y is a Fano threefold of index 1 with Pic(Y )

�

=

Z, H

Y

very ample, such that

the surface S

Y

� Y which is the union of all lines on Y is in the linear system iH

Y

with i � 3, then for any threefold X, Pic(X)

�

=

Z, the degree of a map f : X ! Y is

bounded in terms of the discrete invariants of X.

Proof: Let m be such that f

�

H

Y

= mH

X

. Notice that by Hurwitz' formula, our

conditions on U

Y

resp. S

Y

just mean that if deg(f) is big enough, then not the whole

inverse image of U

Y

resp. S

Y

is contained in the rami�cation. Indeed, if Y is, say, of

index one, we have K

Y

= �H

Y

. The Hurwitz formula reads

K

X

= �mH

X

+R:

If the whole inverse image of S

Y

is in the rami�cation, then R is at least

3

2

mH

X

,

so m cannot get very big. Therefore one gets that the inverse image D of a general

(-1,1)-line on Y (in the index-two case) or a general line on Y (in the index-one case)

has a reduced irreducible component C.

Let Y be a Fano threefold of index two satisfying U

Y

= iH

Y

with i � 5. For C and

D as above, there is a natural morphism

� : (I

C

=I

2

C

)

�

! (I

D

=I

2

D

)

�

j

C

= O

C

(m)�O

C

(�m);

and this map must be an isomorphism at a smooth point of D, i.e. at a su�ciently

general point of C, as C is reduced. Now, also due to the fact that C is reduced, the

natural map

 : T

X

j

C

! (I

C

=I

2

C

)

�

is a generic surjection. Therefore if we �nd an integer j such that T

X

(j) is globally

generated, we must have m � j.

Such j depends only on the discrete invariants of X . Indeed, let A be a very ample

multiple of H

X

. A linear subsystem of the sections of A gives an embedding of a

threefold X into P

7

. We have

T

X

(K

X

) = �

2




X

:

�

2




X

is a quotient of �

2




P

7

j

X

, and we deduce from this that �

2




X

(3A) is generated

by the global sections. So T

X

(K

X

+ 3A) is generated by the global sections, and j

can be taken such that K

X

+ 3A = jH

X

. So one only needs to know which multiple

of H

X

is very ample, and this can be expressed in terms of the discrete invariants of

X (see for example [D] for many results in this direction).
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Maps onto Certain Fano Threefolds 199

The case of index one is completely analogous: a normal bundle of any line on a Fano

threefold of index one has a negative summand.

Remark A: The assumption on the very ampleness of the generator of Pic(Y ) is

not really necessary to prove Proposition 2.1. Otherwise, we call \lines" curves C

satisfying C � H

Y

=1. These curves are rational. One has then to count with the

possibility that e. g. some of the \lines" on such a Fano 3-fold of index two can have

normal bundle O

P

1

(�2) � O

P

1

(2), but this is not really essential for the argument:

as soon as we can �nd su�ciently big 1-parameter family of smooth rational curves

with a negative summand in the normal bundle, our method works.

Examples of Fano threefolds Y satisfying our assumptions on S

Y

, U

Y

:

1) Y a cubic in P

4

and

2) Y an intersection of two quadrics in P

5

. To check this is more or less standard and

almost all details can be found in [CG] for a cubic and in [GH] (Chapter 6) for an

intersection of two quadrics. For convenience of the reader, we give here the argument

for Y an intersection of two quadrics in P

5

:

Let F � G(1; 5) be a surface which parametrizes lines on Y (Fano surface) , and let

U ! F be the family of these lines. The rami�cation locus of the natural �nite map

U ! Y consists exactly of (-1,1)-lines, that is, the surface M covered by (-1,1)-lines

on Y is exactly the set of points of Y through which there pass less than four lines

(of course there are four lines through a general point of Y ). F is the zero-scheme

of a section of the bundle S

2

U

�

� S

2

U

�

on G(1; 5). A standard computation with

Chern classes yields then that K

F

= O

F

(in fact, F is an abelian variety ([GH])).

For a general line l � Y consider a curve C

l

� F which is the closure in F of lines

intersecting l and di�erent from l. C

l

contains l i� l is (-1,1). C

l

is smooth for any

l ([GH]). By adjunction, C

l

has genus 2. So the rami�cation R of the natural 3:1

morphism h

l

: C

l

! l sending l

0

to l \ l

0

( with l general, i.e. not a (-1,1)-line) has

degree 8. The branch locus of h consists of intersection points of l and the surface

M of (-1,1)-lines, and so we have that this surface is in jiH

Y

j with i � 4 and i = 4

only if there are only 2 lines through a general point of M . This is again impossible:

otherwise, for l a (-1,1)-line, C

l

would be birational to l. In fact, one gets that i = 8.

3) Y a quartic double solid. The computations are rather similar, and the best

reference is [W]. Bitangent lines to the quartic surface give pairs of \lines" on Y as

their inverse images under the covering map. Welters proves the following results:

the Fano surface F

Y

has only isolated singularities (and is smooth for a general Y );

the curve C

l

for a general l is smooth except for one double point; there are 12 \lines"

through a general point of Y ; p

a

(C

l

) = 71. We use these results to conclude that Y

satis�es our assumptions.

4) Y is a \su�ciently general" Fano threefold of index one ( of course we assume that

Pic(Y )

�

=

Z and that the positive generator of Pic(Y ) is very ample), deg(Y ) 6= 22:

see [I], II, proof of th. 6.1. It is computed there that a Fano threefold Y of index one

(with very ample H

Y

) with reduced scheme of lines satis�es our assumption on S

Y

i� deg(Y ) 6= 22. By the classi�cation of Mukai ([M]), any Fano threefold of index one

as above except V

22

's is a hyperplane section of a smooth (Fano) fourfold. Clearly, a

general line on a Fano fourfold of index two has trivial normal bundle. So a general
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hyperplane section of such a fourfold has reduced Hilbert scheme of lines.

5) Y any Fano threefold of index one and genus 10: Prokhorov shows in [P] that the

Hilbert scheme of lines on any such threefold is reduced.

6) Y any Fano threefold V

14

of index one and genus 8: such a threefold is a linear

section of G(1; 5) in the Pl�ucker embedding. Iskovskih shows in [I], II, proof of th. 6.1

(vi), that on such a threefold with reduced scheme of lines, lines will cover a surface

which is linearly equivalent to 5H . So one sees that if the lines cover only H or 2H ,

the scheme of lines is non-reduced and the surface covered by lines consists of one

or two components which are hyperplane sections of Y . Moreover, as a V

14

does not

contain cones, all the lines in one of the components must be tangent to some curve

A. One checks easily that this curve is a rational normal octic. A is then the Gauss

image of a rational normal quintic B in P

5

([A], proof of Proposition 3.1(ii)). This

makes it possible to check that there is no smooth three-dimensional linear section of

G(1; 5) containing the tangent surface to A. Indeed, one can assume that B is given

as

(x

5

0

: x

4

0

x

1

: ::: : x

5

1

); (x

0

: x

1

) 2 P

1

;

one computes then that the Gauss image of B in G(1; 5) � P

14

(where G(1; 5) is

embedded to P

14

by Pl�ucker coordinates (z

i

), the order of which we take as follows:

for a line l through p = (p

0

: ::: : p

5

) and q = (q

0

: ::: : q

5

) we take z

0

= p

0

q

1

�p

1

q

0

; z

1

=

p

0

q

2

� p

2

q

0

; ...; z

5

= p

1

q

2

� p

2

q

1

; ...; z

14

= p

4

q

5

� p

5

q

4

) generates the linear subspace

L given by the following equations:

z

2

= 3z

5

; z

3

= 2z

6

; z

4

= 5z

9

;

z

7

= 3z

9

; z

8

= 2z

10

; z

11

= 3z

12

:

So we must consider all the projective 9-subspaces through L and prove that the

intersection of every such space with G(1; 5) is singular. This can be done for example

as follows: let L

�

=

P

5

be a parametrizing variety for these 9-subspaces. Notice that

the points x = (1 : 0 : ::: : 0) and y = (0 : ::: : 0 : 1) belong to our curve A. Notice

that if t is a point of A, then the set L

t

= fM 2 L : M \ G(1; 5) is singular at tg

is a hyperplane in L. If we see that these sets are di�erent at di�erent points t, we

are done. It is not di�cult to check explicitly (writing down the matrix of partial

derivatives) that for x = (1 : 0 : ::: : 0) 2 A and y = (0 : ::: : 0 : 1) 2 A, L

x

6= L

y

: if a

9-space M through L is given by the equations

a

1i

(z

2

� 3z

5

) + a

2i

(z

3

� 2z

6

) + a

3i

(z

7

� 3z

9

)+

+a

4i

(z

8

� 2z

10

) + a

5i

(z

11

� 3z

12

) + a

6i

(z

4

� 5z

9

) = 0

for i = 1; :::; 5, then M 2 L

x

if and only if

det(a

ki

)

i=1;2;3;4;5

k=1;2;3;4;6

= 0

and M 2 L

y

if and only if

det(a

ki

)

i=1;2;3;4;5

k=1;2;3;4;5

= 0:

These conditions are clearly di�erent.
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Examples of Fano threefolds not satisfying assumptions of Proposition

2.1:

1) Y is a linear section of G(1; 4) in the Pl�ucker embedding: the surface U

Y

has degree

10.

2) Y is a Fano variety of index one and genus 12 (V

22

). The surface of lines belongs

to j � 2K

Y

j for all V

22

's but one ([P]), for which the scheme of lines is non-reduced

and the surface covered by lines belongs to j �K

Y

j. This threefold with non-reduced

Hilbert scheme of lines (the Mukai-Umemura variety) will be denoted V

s

22

.

Question: Are these the only examples?

Remark B: Though any V

22

violates the assumption of the Proposition 2.1, for a

V

22

with the reduced Hilbert scheme of lines (therefore for all V

22

's but one) the

boundedness of the degree of a map f : X ! V

22

can be proved. The point is that

a general line on such a V

22

has the normal bundle O

P

1

� O

P

1

(�1), so if U is the

universal family of lines on V

22

and � : U ! V

22

is the natural map, then � is an

immersion along a general line. Now if the preimage of a general line l is not contained

in the rami�cation R, one can proceed as before. If it is, then let C be the reduction

of an irreducible component of f

�1

(l), and let k be such that at a general point of

the component of R containing C, the rami�cation index is k�1 (i.e. \k points come

together".) It turns out that using our observation about �, we can then estimate

the arithmetic genus of C (see [A], section 5). Namely, let f

�

H

V

22

= mH

X

and let

K

X

= rH

X

. We get then

2p

a

(C)� 2 � (r �

m

k

)CH

X

:

Suppose now that k � 1 is a smallest rami�cation index for R. Hurwitz' formula

implies that if r <

m

3

, then k = 2. So if m gets big, p

a

(C) becomes negative, and this

is impossible.

Concerning the remaining Fano threefolds (in particular, V

s

22

and G(1; 4)

T

P

6

), we

can prove a weaker result (as in Conjecture B):

Proposition 2.2 Let Y be a Fano threefold with Pic(Y ) = Z and with H

Y

very

ample, let X be a smooth threefold with b

2

(X) = 1 and let f : X ! Y be a morphism.

If either Y is of index two, or Y is of index one with non-reduced Hilbert scheme of

lines, then the degree of f is bounded in terms of the discrete invariants of X.

Proof: Consider for example the index one case. We have that Y has a one-dimensional

family of (�2; 1)-lines. If we take a smooth hyperplane section H through a line l of

this family, the sequence of the normal bundles

0! N

l;H

! N

l;Y

! N

H;Y

j

l

! 0

splits.

Therefore, if M is the inverse image of H and C is the inverse image of l (scheme-

theoretically), the sequence

0! N

C;M

! N

C;X

! N

M;X

j

C

! 0
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also splits.

It is not di�cult to see that for a general choice of l and H , the surface M has

only isolated singularities. As M is a Cartier divisor on a smooth variety X (say

M 2 jO

X

(m)j), M is normal.

Now we are in the situation which is very similar to that of the following

Theorem (R. Braun, [B]): Let W be a Cartier divisor on a variety V of dimension

n, 2 � n < N , in P

N

such that W has an open neighborhood in V which is locally a

complete intersection in P

N

. If the sequence of the normal bundles

0! N

W;V

! N

W;P

N ! N

V;P

N j

W

! 0 (�)

splits, then W is numerically equivalent to a multiple of a hyperplane section of V .

It turns out that if we replace here W , V , P

N

by C, M , X as in our situation, the

similar statement is true. The only additional assumption we must make is that M

is su�ciently ample, i.e. m is su�ciently big:

Claim: Let X be a smooth projective 3-fold with b

2

(X) = 1, and let M be a su�ciently

ample normal Cartier divisor on X. If C is a Cartier divisor on M and the sequence

0! N

C;M

! N

C;X

! N

M;X

j

C

! 0

splits, then C is numerically equivalent to a multiple of H

X

j

M

.

The proof of this claim is almost identical to that of Braun's theorem (which is itself

a re�nement of the argument of [EGPS] where the theorem is proved for V a smooth

surface). Recall that the main steps of this proof are:

1) The sequence (�) splits i� W is a restriction of a Cartier divisor from the second

in�nitesimal neighborhood V

2

of V in P

N

;

2)The image of the natural map Pic(V

2

)! Num(V ) is one-dimensional.

In the situation of the lemma, 1) goes through without changes with W , V , P

N

replaced by C,M , X (M

2

will of course denote the second in�nitesimal neighborhood

of M in X). The second step is an obvious modi�cation of that in [B], [EGPS]: as in

these works, it is enough to prove that the image of the natural map

Pic(M

2

)! H

1

(M;


1

M

)

is contained in a one-dimensional complex subspace, and this follows from the com-

mutative diagram

Pic(M

2

) Pic(M) Num(M)

H

1

(M;


1

M

)

H

1

(M

2

;


1

M

2

) H

1

(M;


1

M

2

j

M

)

H

1

(M;


1

X

j

M

)

-

restr:

?

dlog

- -

- -

�

�

�

�

�

�

�
�*

(where � exists because the sheaves 


1

M

2

j

M

and 


1

X

j

M

are isomorphic)
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and the fact that for su�ciently ample M ,

H

1

(M;


1

X

j

M

)

�

=

H

1

(X;


1

X

)

�

=

C

as follows from the restriction exact sequence

0! 


1

X

(�M)! 


1

X

! 


1

X

j

M

! 0:

Note that we can give an e�ective estimate for \su�cient ampleness" of M in terms

of numerical invariants of X using the Gri�ths vanishing theorem ([G]).

Applying this to our situation of a map onto a Fano threefold Y of index one with

non-reduced Hilbert scheme of lines, we get that C = f

�1

(l) must be numerically

equivalent to a multiple of the hyperplane section divisor on M = f

�1

(H) if the

number m (de�ned by f

�

H

Y

= mH

X

) is large enough. As it is easy to show that C

and the hyperplane section of M are independent in Num(M), it follows that m and

therefore deg(f) must be bounded. The case of index two is exactly the same (use

the existence of a divisor covered by (-1,1)-lines). So the Proposition is proved.

We summarize our results in the following

Theorem 2.3 Let X be a smooth projective threefold with b

2

(X) = 1, let Y be a Fano

threefold with b

2

(Y ) = 1 and very ample H

Y

and let f : X ! Y be a morphism. If

Y � P

3

, then the degree of f is bounded in terms of the discrete invariants of X;Y .

Proof: Indeed, there are only four possibilities:

a) Y is a quadric: this is proved in [S], [A].

b) Proposition 2.1 applies;

c) Y is V

22

with reduced scheme of lines: the boundedness for deg(f) is obtained in

Remark B;

d) Y is either G(1; 4) \ P

6

, or a Fano threefold with non-reduced Hilbert scheme of

lines: then Proposition 2.2 applies.

Notice that in the �rst three cases it is su�cient that Pic(X)

�

=

Z.

3. Maps between Fano threefolds

It turns out that we obtain especially strong bound if X is also a Fano variety. In

many cases,this even implies non-existence of maps:

Theorem 3.1 Let X, Y be Fano threefolds, Pic(X)

�

=

Pic(Y )

�

=

Z. Suppose that

H

X

, H

Y

are very ample. If either

i) Y is of index one and S

Y

is at least 2H

Y

,

or

ii) Y is of index two and U

Y

is at least 4H

Y

(where S

Y

, U

Y

are as in Proposition 2.1),

then for a non-constant map f : X ! Y we must have

f

�

(H

Y

) = H

X

;

i.e.

deg(f) =

H

3

X

H

3

Y

:
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Before starting the proof, we formulate the following result from [S]:

Let f : X ! Y be a non-trivial map between Fano threefolds with Picard group Z.

Then:

A) If X,Y are of index two, then the inverse image of any line is a union of lines;

B) If X,Y are of index one, then the inverse image of any conic is a union of conics;

C) If X is of index one and Y is of index two, then the inverse image of any line is

a union of conics;

D) If X is of index two and Y is of index one, then the inverse image of any conic is

a union of lines.

(here a conic is allowed to be reducible or non-reduced. Unions of lines and conics

are understood in set-theoretical sense, i.e. a line or a conic from this union can, of

course, have a multiple structure.)

We will also need some facts on conics on a Fano threefold V of index one, with very

ample �K

V

and cyclic Picard group. Iskovskih proves ([I],II, Lemma 4.2) that if C

is a smooth conic on such a threefold, then N

C;V

= O

P

1

(�a)�O

P

1

(a) with a equal

to 0,1,2 or 4. The following lemma is an almost obvious re�nement of this:

Lemma 3.2 a) Let C � V be a smooth conic. Then N

C;V

= O

P

1

(�4)�O

P

1

(4) if and

only if there is a plane tangent to V along C. In particular, such conics exist only if

V is a quartic.

b) Let C � V be a reducible conic: C = l

1

S

l

2

, l

1

6= l

2

. Let N be the (locally free

with trivial determinant) normal sheaf of C in V . Then N j

l

i

= O

P

1

(�a

i

)�O

P

1

(a

i

)

with 0 � a

i

� 2, and if a

i

= 2 for both i, then there is a plane tangent to V along C

(and V is a quartic ).

Proof: a) This is a simple consequence of the fact that for C � V � P

n

, N

C;V

�

N

C;P

n

, and the only subbundle of degree 4 in N

C;P

n

is N

C;P

with P the plane

containing C. One concludes that V is a quartic as all the other Fano threefolds V

considered here are intersections of quadrics and cubics which contain this V ([I], II,

sections 1,2) and therefore must contain this P , which is impossible.

b) We have embeddings

0! N

l

i

;V

! N j

l

i

;

this implies the �rst statement: 0 � a

i

� 2. If a

i

= 2, then l

i

should be a (-2,1)-line;

therefore there are planes P

i

tangent to V along l

i

, giving the degree 1 subbundle of

N

l

i

;V

and the exceptional section in P(N

l

i

;V

)

�

=

F

3

. In fact P

1

= P

2

. This is easy to

see using so-called \ elementary modi�cations" of Maruyama (of which I learned from

[AW] ,p.11): if we blow P(N

l

1

;V

) up in the point p corresponding to the direction of

l

2

and then contract the proper preimage of the �ber, we will get P(N j

l

1

). Under our

circumstances, p must lie on the exceptional section of P(N

l

1

;V

), so l

2

� P

1

. In the

same way, l

1

� P

2

, q.e.d..

Proof of the Theorem:

Let f : X ! Y be a �nite map between Fano threefolds as above.

Again, the condition on S

Y

, T

Y

means that not the whole inverse image of S

Y

, T

Y

can be contained in the rami�cation. If Y is of index one resp. index two, we will

denote by C be a reduced irreducible component of the inverse image of a general line
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resp. (-1,1)-line l on Y (so C is not contained in the rami�cation), and by D the full

scheme-theoretic inverse image of such a line.

Let f

�

O

Y

(1) = O

X

(m). If X is of index two, then T

X

(1) is globally generated. As

in the Proposition 2.1, we conclude that m = 1.

If X is of index one and Y is of index two, then, by the result quoted in the beginning

of this section, C is a line or a conic.

If C is a smooth conic, we look at the generic isomorphism

� : (I

C

=I

2

C

)

�

! (I

D

=I

2

D

)

�

j

C

= O

C

(m)�O

C

(�m):

Immediately we get that m is equal to one or two. Suppose m = 2. Then, by the

Lemma, X is a quartic and there is a plane P tangent to X along C. Choose the

coordinates so that P is given by x

3

= x

4

= 0. Then the equation of X can be written

as

(q(x

0

; x

1

; x

2

))

2

+ x

3

F + x

4

G = 0;

where q de�nes C and F;G are cubic polynomials. Denote as A and B the curves cut

out on P by these cubics. The necessary condition for smoothness of X is

A \B \X = ;:

Now recall that C resp. P varies in a one-dimensional (complete) family C

t

resp. P

t

.

A and B also vary, and for every t we must have

A

t

\ B

t

\X = ;:

This means that all the planes P

t

pass through the same point, not lying on X .

Projecting from this point, we see that the surface W formed by our conics C

t

is in

the rami�cation locus of this projection. The Hurwitz formula then givesW 2 jO

X

(i)j

with i � 3. Now Y is, by assumption, a cubic or an intersection of two quadrics. But

then, as we saw, the surface U

Y

of (-1,1)-lines is at least 5H

Y

, and an elementary

calculation shows that it is impossible that the inverse image of the surface of (-1,1)-

lines U

Y

consists only from W and the rami�cation.

If C is a line, then the argument is similar. One only needs to prove the following

Claim:In this situation, if m = 2, the scheme D has another reduced irreducible

component C

1

, which intersects C.

Then of course either C

1

, or C

S

C

1

is a conic, and one can proceed as above. The

proof of this claim is elementary algebra. We will sketch it after �nishing the following

last step of the Theorem:

If X and Y are both of index one, we have that the inverse image of a line l on Y

should consist of lines and conics; for C as above, we have a map

� : (I

C

=I

2

C

)

�

! O

C

�O

C

(�m);

if l is (0,-1), or

�

0

: (I

C

=I

2

C

)

�

! O

C

(m)�O

C

(�2m);

if l is (1,-2). As these maps must be generic isomorphisms, we get that in both cases

m = 1, whether C is a conic or a line.
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Proof of the claim: Notice that C must be (1,-2)-line. The cokernel of the natural

map

� : I

D

=I

2

D

j

C

! I

C

=I

2

C

is the sheaf I

C;D

=I

2

C;D

, supported on intersection points of C and other components

of D. We see from our assumptions that it must have length one (so be supported at

one point x). Suppose that C intersects non-reduced components of D at x. Let A

be a local ring of D at x and p � A a �ber of I

C;D

. Of course p=p

2

6= 0 by Nakayama.

To see that dimp=p

2

� 2, we �nd an ideal a � p, not contained in p

2

. For example,

we can take an ideal de�ning the union of C and the reduction of an irreducible but

non-reduced component of D intersecting C. We have a surjection

p=p

2

! (p=a)=(p

2

=(p

2

\ a))! 0;

which has non-trivial (again by Nakayama) image and non-trivial kernel, q. e. d..

Corollary 3.3 Let X, Y be Fano threefolds of index one as in Theorem 3.1 i). Then

any map between X and Y is an isomorphism.

Proof: Iskovskih computed the third Betti numbers of all Fano threefolds ( see also

[M]), and in fact as soon as deg(X) > deg(Y ), then b

3

(X) < b

3

(Y ), so a morphism

f : X ! Y cannot exist.

Remark C: Some part of the argument of Theorem 3.1 goes through without assump-

tions on the very ampleness of the generator H of the Picard group. For example,

when X is a quartic double solid, which is a Fano threefold of index two, all the

\lines" C on X except possibly a �nite number, have either trivial normal bundle, or

the normal bundle O

C

(H)�O

C

(�H) (in other words, the surface which parametrizes

lines on X , has only isolated singularities). One can then replace the words \T

X

(H)

is globally generated", which are not true in general, by some \normal bundle argu-

ments" as in the above proof. The same should hold for the Veronese double cone.

See [W], [T] for details. As for maps to the quartic double solid, the argument goes

through without changes.

Examples: Any cubic in P

4

satis�es the assumption we made on Y . By our Theorem

3.1 , we get that if a Fano threefold X of index one with cyclic Picard group is mapped

onto a cubic, then the degree of this map can only be

degX

3

. So if X admits such a

map, then deg(X) is divisible by 3. Of course there are Fano threefolds of index one

which admit a map onto a cubic: we can take an intersection of a cubic cone and

a quadric in P

5

. Theorem 3.1 shows that if a smooth complete intersection of type

(2,3) in P

5

maps to a cubic, then it is contained in a cubic cone and the map is the

projection from the vertex of this cone.

The same applies of course to maps from a complete intersection of three quadrics

in P

6

to a complete intersection of two quadrics in P

5

. Notice that any smooth

complete intersection of two quadrics in P

5

admits a map g onto a quadric in P

4

such

that the inverse image of the hyperplane section is the hyperplane section (any pencil

of quadrics with non-singular base locus contains a quadratic cone). Therefore if a

smooth intersection of three quadrics in P

6

can be mapped onto a smooth complete
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intersection of two quadrics in P

5

, it must lie in a quadric of corank 2 in P

6

. Of

course a general intersection of three quadrics in P

6

does not have this property, as

the space of quadrics of corank 2 is of codimension four in the space of all quadrics.

Additional examples of varieties satisfying the assumption of Theorem

3.1:

1) any complete intersection of a cubic and a quadric in P

5

or

2) any complete intersection of three quadrics in P

6

. Indeed, if lines on these varieties

cover only a hyperplane section divisor, then the scheme of lines must be non-reduced,

i.e. each line must have normal bundle O

P

1

(�2) � O

P

1

(1). So the surface of lines

is either a cone or the tangent surface to a curve. But one can check that these

varieties do not contain cones; neither do they contain a tangent surface to a curve

as a hyperplane section, because by a version of Zak's theorem on tangencies (see

for example [FL]), a hyperplane section of a complete intersection has only isolated

singularities.

3) Any V

22

with reduced Hilbert scheme of lines. By ([P]), there is exactly one V

22

such that its Hilbert scheme of lines is non-reduced.

4) any Fano threefold V

16

of index one and genus 9. This can be shown by the method

of Prokhorov ([P]) :

First, notice that if the lines on V

16

cover only a hyperplane section, the scheme of

lines is non-reduced. So all the lines are tangent to a curve. This is actually a rational

normal curve, so the lines never intersect.

For convenience of the reader, we recall from [I2] the notion of double projection from

a line and its application to V

16

:

Let X be a Fano threefold of index one, g(X) � 7, and let l be a line on X . On

~

X ,

the blow-up of X , we consider the linear system j�

�

H � 2Ej, where � is the blow-up,

H = K

Y

and E is the exceptional divisor. This is not base-point-free, namely, its

base locus consists of proper preimages of lines intersecting l, and, if l is (-2,1), from

the exceptional section of the ruled surface E

�

=

F

3

. However, after a op (i.e. a

birational transformation which is an isomorphism outside this locus) we can make it

into a base-point-free system j(�

�

H)

+

� 2E

+

j on the variety

~

X

+

.

If g(X) = 9, i.e.X is a V

16

, the variety

~

X

+

is birationally mapped by this linear

system onto P

3

. This map, say g, is a blow-down of the surface of conics intersecting

l to a curve Y � P

3

, which is smooth of degree 7 and genus three (smoothness of Y

is obtained from Mori's extremal contraction theory). Y lies on a cubic surface which

is the image of E

+

. Moreover, the inverse rational map from P

3

to X is given by the

linear system j7H � 2Y j.

One has therefore that the lines from X , di�erent from l, must be mapped by g

to trisecants of Y . Note that if lines on X form only a hyperplane section, the

desingularization of the surface of lines on X is rational ruled, and it remains so after

the blow-up and the op. So, as in [P], we must have a morphism F

e

! P

3

, which

is given by some linear system jC + kF j with C the canonical section and f a �ber,

such that the inverse image of Y belongs to the system j3C+ lF j. deg(Y ) = 7 implies

(3C + lF )(C + kF ) = �3e+ 3k + l = 7;
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and as degK

Y

= 4,

(C + (l � 2� e)F )(3C + lF ) = �6e+ 4l� 6 = 4;

Combining these two equations, we get

2k � e = 3;

However, we must have e � 0 and k � e, as otherwise the linear system jC + kF j

does not de�ne a morphism. This leaves only two possibilities for k and e: either

e = k = 3, or e = 1; k = 2. The �rst case actually cannot occur: this would imply

that Y is singular. So the image of F

e

= F

1

in P

3

is a cubic which is a projection of F

1

from P

4

. By assumption, Y is also contained in another irreducible cubic (the image

of E

+

). But one check that this cannot happen, using e.g. a theorem by d'Almeida

([Al]), which asserts that if a smooth non-degenerate curve Y of degree d � 6 and

genus g in P

3

satis�es H

1

(I

Y

(d � 4)) 6= 0, then Y has a (d-2)-secant provided that

(d; g) 6= (7; 0); (7; 1); (8; 0).

4. V

22

Let us now take Y = V

s

22

, i.e. the only variety of type V

22

which has non-reduced

Hilbert scheme of lines. This V

22

violates the assumptions of Theorem 3.1. However,

using Mukai's and Schreyer's descriptions of conics on varieties of type V

22

, it is still

possible to say something on maps from Fano threefolds onto Y . We will show the

following:

Proposition 4.1 A Fano threefold X of index two with cyclic Picard group and

irreducible Hilbert scheme of lines does not admit a map onto V

s

22

.

As for the last assumption on X , one believes that this is always satis�ed. In fact

this is easy to check (and well-known) for a cubic or a complete intersection of two

quadrics (the Hilbert scheme is smooth in this case, so it is enough to show that it

is connected). The irreducibility is also known for V

5

, in fact, the Hilbert scheme is

isomorphic to P

2

([I], I, Corollary 6.6). For a quartic double solid, see [W]. As for

a double Veronese cone, in [T] it is proven that a general double Veronese cone has

irreducible Hilbert scheme of lines. So the only possible exception could be a special

double Veronese cone.

In fact our argument will work for a su�ciently general V

22

, but for all of them except

V

s

22

this assertion is already proved in the last paragraph.

Proof: Let S be the Fano surface ( = reduced Hilbert scheme) of lines on X and T the

Fano surface of conics on the V

22

. If f : X ! V

22

is a �nite map, then, as Schuhmann

proves in [S], the inverse image of any conic is a union of lines, and, moreover, in this

way f induces a �nite surjective morphism g : S ! T ( thanks to irreducibility of S,

any line on X is in the inverse image of a conic on V

22

).

F.-O. Schreyer ([Sch]) gives the following description of a general conic on V

22

:

Consider V

22

as the variety of polar hexagons of a plane quartic curve C � P

2

(a polar

hexagon of C is the union of six lines l

1

; :::l

6

given by equations L

1

= 0; :::; L

6

= 0 ,
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such that L

4

1

+ ::: + L

4

6

= F where F = 0 de�nes C; \the variety of polar hexagons"

means here the closure of the set of 6-tuples l

1

; :::l

6

with L

4

1

+ ::: + L

4

6

= F in the

Hilbert scheme Hilb

6

(P

2

�

); a general V

22

is isomorphic to such a variety for a certain

curve C; V

s

22

is the variety of polar hexagons of a double conic). Then there is a

birational isomorphism between (P

2

)

�

and T given as follows:

for a general l � P

2

the curve of polar hexagons to C containing l is a conic on V

22

.

This description and the fact that through any point on a V

22

there is only a �nite

number of conics ([I], II, Theorem 4.4) gives that

there are six conics through a general point of V

22

.

In [M], Mukai claims that the Fano surface of conics on a V

22

is even isomorphic to

P

2

. Unfortunately, this paper does not contain a proof of this fact. The proof appears

in the paper of A. Kuznetsov ([K]): he uses another description of a general V

22

as

a subvariety of G(2; 6). Namely, if V and N are 7- and 3-dimensional vector spaces

respectfully and f : N ! �

2

V

�

is a general net of skew-symmetric forms on V , then

a general V

22

(including V

s

22

, [Sch]) appears as a set of all 3-subspaces of V which are

isotropic with respect to this net (i.e. to all forms of the net simultaneously). Let

U (resp. Q) denote restriction on a V

22

of the universal (resp. universal quotient)

bundle on G(2; 6). Kuznetsov proves that every (possibly singular) conic on a V

22

is

a degeneracy locus of a homomorphism U ! Q

�

; the Fano surface of conics is thus

P(Hom(U;Q

�

)) = P

2

.

Now if there is a �nite map f : X ! V

22

as above, then X must be a cubic: indeed,

a Fano threefold with cyclic Picard group and with 6 lines through a general point is

a cubic. Let f

�

H

V

22

= mH

X

, then one easily computes that the inverse image of a

general conic consists of deg(g) = s =

3

11

m

2

lines.

For simplicity, we will use the same notation for points of T (resp. S) and correspond-

ing conics on V

22

(resp. lines on X). We have T

�

=

P

2

. Let a be such that conics on

V

22

intersecting a given (general) conic A, form a divisor D

A

from jO

P

2
(a)j

On S, denote as E

L

the divisor of lines intersecting a given line L. It is well-known

and easy to compute that E

L

� E

M

= 5 for any L;M .

If g

�1

(A) = fL

1

; :::; L

s

g, then

g

�

(O

P

2

(a)) = O

S

(E

L

1

+ :::+E

L

s

):

We therefore have another formula for deg(g):

deg(g) =

5s

2

a

2

:

From the equality s =

5s

2

a

2

we get that (

m

a

)

2

=

11

15

, however, this is impossible as

11

15

is not a square of a rational number.
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