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Étale Cohomology of Rigid Analytic Spaces
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Abstract. The paper serves as an introduction to étale cohomology of
rigid analytic spaces. A number of basic results are proved, e.g. concerning
cohomological dimension, base change, invariance for change of base fields,
the homotopy axiom and comparison for étale cohomology of algebraic vari-
eties. The methods are those of classical rigid analytic geometry and along
the way a number of known results on rigid cohomology are re-established.

Key Phrases: ”étale cohomology”, ”rigid analytic spaces”, ”rigid cohomol-
ogy”, ”overconvergent sheaves”

1991 Mathematics Subject Classification: Primary 26E30, secondary 14F20.

1 Introduction

The origin of this paper lies in the questions on étale cohomology for rigid analytic
spaces posed in [S-S]. In that paper an étale site and a corresponding cohomology the-
ory for analytic varieties are defined. We prove here that the axioms for an ‘abstract
cohomology’ (as stated in [S-S]) hold for this cohomology theory. In addition, we prove
a (quasi-compact) base change theorem for rigid étale cohomology and a comparison
theorem comparing rigid and algebraic étale cohomology of algebraic varieties.
The main tools in this paper are analytic (resp. étale) points and rigid (resp.

étale) overconvergent sheaves. The rigid overconvergent sheaves on affinoids were first
introduced in [P82] and were called constructible in that paper. They were further
studied in [S93] and were called conservative there. The term ‘overconvergent’, also
used by P. Berthelot in recent work, seemed more appropriate this time.
In Section 2 we (re)introduce some basic notations concerning analytic points and

rigid overconvergent sheaves, which are needed later on. We (re)prove a number of
folklore results, most importantly: 1) Rigid cohomology agrees with Čech cohomology
on quasi-compact spaces. 2) The cohomological dimension of a paracompact space

1The research of Dr. A.J. de Jong has been made possible by a fellowship of the Royal Netherlands
Academy of Arts and Sciences.
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2 Johan de Jong and Marius van der Put

is at most its dimension. 3) A base change theorem for rigid spaces which is more
general than the results of [P82] or [S93].
The rest of the paper deals with étale sites and étale cohomology. Étale points

and étale overconvergent sheaves are introduced. A key point is the introduction of
special étale morphisms of affinoids U → X, analogous to rational subdomains in the
rigid case. Included in the paper is the proof by R. Huber that any étale morphism of
affinoids is special étale. This simplifies the original exposition somewhat. A structure
theorem for étale morphisms (3.1.2) allows us to give a proof of the étale base change
theorem following closely the proof in the rigid case. We calculate the cohomology
groups of one dimensional spaces in Section 4. This allows us to prove the basic
results mentioned at the beginning of this introduction (Sections 5, 6 and 7).
We have tried to be complete in the proofs of various statements. We hope that

this paper may serve as an introduction to rigid and étale cohomology of rigid analytic
spaces.
Berkovich, in the paper [B93], develops an étale cohomology theory for analytic

spaces. The category of analytic spaces used there was introduced in [B90] and
extended in [B93]. It is different from the category of rigid analytic spaces. For
this reason we have not borrowed from his work. However, we have to mention that
the approach taken here, in some sense, does not differ from his (although in this
paper we have to deal with non-overconvergent sheaves also, which do not correspond
to sheaves on the Berkovich analytic spaces). For example, Lemma 2.1.1, which
controls the étale stalk functors, is more or less equivalent to Theorems 2.1.5 & 2.3.3
of [B93]. Furthermore, using the equality of Berkovich cohomology with ours in the
case of paracompact varieties (see [Hu, Section 8.3]), all our results on cohomology
of overconvergent sheaves are in principle deducible from the references [B93, B94a,
B94b, B94c].
Étale cohomology theories for rigid analytic spaces were developed by O. Gabber

(unpublished) and K. Fujiwara, who proved Deligne’s conjecture using his theory.
As mentioned above R. Huber constructed an étale cohomology theory for his adic
spaces, this specializes to give a theory for rigid analytic spaces also.
We thank P. Schneider for sending his informal notes [S91] to the authors for

consultation.

1.1 Notations and conventions

• Unless stated otherwise k will be a complete non Archimedean valued field.

• As general reference for the basic facts and definitions concerning rigid analytic
varieties we take [BGR].

• All rigid analytic varieties occurring in this work will be quasi-separated analytic
varieties. This means that the diagonal morphismX → X×X is quasi-compact,
or equivalently that the intersection of any two affinoid subvarieties of X is a
finite union of affinoid subvarieties of X. It is clear that fibre products of such
are still quasi-separated.

• We work frequently with sites and associated topoi as in [SGA 4]. We recall
that a morphism of sites f : S1 → S2 is a continuous functor u : S2 → S1
(remark that u goes in the opposite direction!), which induces a morphism of

Documenta Mathematica 1 (1996) 1–56



Étale Cohomology of Rigid Analytic Spaces 3

associated topoi S∼1 → S∼2 (see [SGA 4, IV 4.9]). We remark that if S2 allows
finite projective limits then it suffices that u is continuous and preserves fibred
products.

• A sheaf F on a site S is said to be flabby if for any object U in S we have
Hq(U,F) = 0 for all q > 0. It is said to be flasque if for any morphism U → V
the restriction map F(V )→ F(U) is surjective. A flasque sheaf is flabby since
Čech cohomology may be used to determine whether a sheaf is flabby ([M80,
III 2.12]).

2 Analytic points and rigid overconvergent sheaves

In this section we will review the base change theorem for rigid analytic spaces (see
[P82, S93]). We will introduce our basic notations and reprove the statements of
[P82] (whose proofs are perhaps somewhat sketchy). We try to avoid using results
from [B90] except for the basic fact that the space M(X) (see below) is Hausdorff
and compact (this is not hard to prove). Finally, we prove a slightly stronger version
of the base change theorem, namely that it holds for arbitrary sheaves.

2.1 Sites, sheaves and analytic points on affinoids

LetX be an affinoid space over some complete non Archimedean valued field k. OnX
we consider the special Grothendieck topology given by the collection of finite unions
of open affinoid subspaces and the admissible coverings. (See [FP, GP], this is a G-
topology slightly stronger than the weak G-topology of X in [BGR, 9.1.4].) We will
write Xrigid for the following site:

1. The objects are the admissible open subsets of X. We choose here as admissible
opens the finite unions of open affinoid subsets. These will also be called the
special subsets of X.

2. A morphism between to objects is an inclusion between the admissible subsets.

3. For an object U the elements of Cov(U) are those set-theoretical coverings of U
by admissible opens which can be refined to finite coverings.

We use the special G-topology rather than the strong G-topology since it behaves
better with respect to base change and change of base field. We remark that this
gives the same category of sheaves.
It is sometimes easier to work with a subcategory Xrat

rigid of Xrigid. The objects

of Xrat
rigid are the rational subsets of X. A rational subset of X is a set of the form

{x ∈ X| |f1(x)| ≥ |fi(x)| for all i with 1 ≤ i ≤ n}

where f1, . . . , fn are elements of O(X) generating the unit ideal. We note that a
small change of the f1, . . . , fn does not affect the subset above. It is known that
every open affinoid subset of X is a finite union of rational subsets ([GG]). A rational
covering of a rational U ⊂ X is a covering of the form U = ∪mi=1Ui given by elements
f1, ...fm ∈ O(U) generating the unit ideal such that the Ui are the rational subsets
(of U and also of X) Ui := {x ∈ U | |fi(x)| ≥ |fj(x)| for all j}. This defines for every

Documenta Mathematica 1 (1996) 1–56



4 Johan de Jong and Marius van der Put

object the collection of coverings. The morphism of sites Xrigid → Xrat
rigid (given by

the inclusion functor Xrat
rigid → Xrigid, see our conventions) defines an isomorphism

of associated topoi, this follows from the fact that any special subset of X is a finite
union of rational subsets and any finite affinoid covering of an affinoid variety can be
refined to a rational covering (see for example [BGR, 8.2.2/2]).

It is well known that the set of ordinary points of X is too small to ”separate”
the sheaves on Xrigid. For this purpose one introduces new points, called analytic
points. (See [P82, S93]). We will adopt here the terminology of [S93].
An analytic point a of X is a semi-norm | |a : O(X) → R≥0 on the affinoid

algebra O(X) of X satisfying:

1. |f + g|a ≤ max(|f |a, |g|a) for all f, g ∈ O(X).

2. |fg|a = |f |a|g|a for all f, g ∈ O(X).

3. For λ ∈ k the value |λ|a is the absolute value of λ.

4. | |a : O(X)→ R≥0 is continuous with respect to the norm topology on O(X).

The filter of the analytic point a consist of the affinoid subdomains U of X for
which there exists a rational covering given by f1, ..., fn and an i such that U ⊃ Ui
and |fi|a ≥ |fj|a for all j. This is equivalent with the property that | |a extends to
a | |a : O(U) → R≥0, i.e., that a is also an analytic point of U . We write a ∈ U
to denote that U belongs to the filter of a. We will also need the concept of a wide
neighborhood of an analytic point a of X (see [S93, p. 131]). An element U of the
filter of a is a wide neighborhood of a if there exists an affinoid generating system
f1, . . . , fn of O(U) over O(X) such that |fi|a < 1 for all i.
LetM(X) denote the set of analytic points of X. We giveM(X) the coarsest

topology such that for every g ∈ O(X) the map M(Z) → R given by a 7→ |g|a is
continuous. For an analytic point a a fundamental system of neighborhoods is given
by the subsetsM(U) where U runs through the (affinoid) wide neighborhoods of a.
The space M(Z) is Hausdorff and compact for this topology. These results are not
hard to prove, they follow from 1.2.2 and 1.3.3 of [P82], but see [B90, §1], [S93, §1]
for more details. We will repeatedly make use of the following corollary of the above:
Suppose that {Xi}i∈I are affinoid subdomains of X such that for any analytic point a
of X some Xi is a wide neighborhood of a, then the covering X =

⋃
Xi is admissible,

i.e., finitely many of the Xi cover X.
The stalk of a sheaf S on Xrigid at an analytic point a is defined as Sa =

lim→ S(U) where the direct limit is taken over all U in the filter of a. The mod-
ified stalk of S at a is Smoda = lim→ S(U) where the limit is over the wide open
neighborhoods of a in X.
For every U in the filter of a the semi-norm | |a extends to a semi-norm on O(U).

Hence we get a semi-norm | |a on Oa the stalk of O = OX at a. A fundamental fact
that we will use is (see [P82, 1.3.1]) that for f ∈ O(X):

|f |a = inf{||f ||U}

where U runs through the filter of a. In fact it suffices to consider only wide open
neighborhoods of a (use that for U ⊂ X rational we have ||f ||U = infr>1 ||f ||U(r)

Documenta Mathematica 1 (1996) 1–56



Étale Cohomology of Rigid Analytic Spaces 5

where U(r) is defined as in 2.3 below). It follows from these considerations that the
ideal ma of elements f ∈ Oa satisfying |f |a = 0 is the unique maximal ideal of Oa
(and similar for Omoda ). The field Oa/ma will be denoted by ka. The semi-norm | |a
induces a valuation on ka. This valuation extends the valuation of the subfield k of
ka. In general the field ka is not complete and its completion is denoted by Fa. (The
same constructions give kmoda and Fmoda .)
Let φ : O(X)→ Fa denote the continuous homomorphism of k-algebras obtained

above from | |a. Then one sees that |f |a = |φ(f)|. This remark shows that our
definition of analytic point coincides with the equivalence classes of analytic points as
defined in [S93]. Every ordinary point of X is also an analytic point (with Fa = ka
a finite extension of k). The following lemma will be useful in our study of the étale
site of X.

Lemma 2.1.1 Notations are as above.

1. Oa and O
mod
a are Henselian local rings.

2. ka and k
mod
a are Henselian valued fields.

3. Fa is finite over a complete subfield K which has a dense subfield k(t1, ..., td)
with d ≤ the dimension of X.

4. The homomorphism Omoda → Oa is local, flat and induces an isomorphism
Fmoda

∼= Fa.

Proof. Let Oa ⊂ A be a finite free extension of rings. We claim the following: the
ring A⊗̂Fa has a nontrivial idempotent if and only if A has one. (We also claim a
similar result for Omoda .)
This immediately implies (1) (see [R70, I Proposition 5]). Statement (2) means

that the valuation ring of ka (resp. k
mod
a ) is an Henselian ring. Our claim implies

that a finite separable ring extension ka ⊂ k′ contains a copy of ka if and only if
the tensor product k′ ⊗ Fa contains a copy of Fa (use a lift Oa → A of the finite
extension ka → k′). This gives that any scheme étale over the valuation ring of ka
has a ka-valued point if and only if it has a Fa-valued point. This assertion combined
with the fact that the valuation ring of Fa is Henselian implies that ka is a Henselian
valued field (use the criterium of [R70, Proposition 3 page 76]).
To prove our claim, note that the ring extension Oa ⊂ A comes from a finite

free ring extension O(U) ⊂ AU for some U in the filter of a. Clearly, AU is an
affinoid algebra and hence determines a finite flat morphism φ : V = Spm(AU )→ U .
The fact that A⊗̂Fa ∼= AU⊗̂Fa has a nontrivial idempotent is equivalent to the
fact that φ−1(a) = b1, . . . , bs has at least two elements. Let us take disjoint wide
neighbourhoods Vi of the bi in V . There exists a smaller U

′ in the filter of a such
that φ−1(U ′) is contained in ∪Vi (see Lemma 3.1.6 below; the reader may check that
this lemma is not used before that lemma). Therefore the algebra AU ′ = AU ⊗O(U ′)
decomposes and hence so does A. The proof for Omoda is the same.
(3) After dividing O(X) by a prime ideal we may suppose that | |a is a norm on

O(X). The field of quotients of O(X) is a dense subfield of Fa. The algebra O(X) is
finite over some A := k〈T1, . . . , Td〉 with d equal to the dimension of X. Let K ⊂ Fa
denote the completion of the field of quotients of A with respect to | |a. The field Fa
is finite over K and K has k(T1, . . . , Td) as dense subfield with respect to | |a.

Documenta Mathematica 1 (1996) 1–56



6 Johan de Jong and Marius van der Put

(4) It is clear that the homomorphism Omoda → Oa is local and flat. Suppose
that ℘ is the kernel of the seminorm | |a on O(X). It is clear that the fraction field
of O(X)/℘ is dense in both Fa and F

mod
a . The result follows. 2

Remark 2.1.2 It follows from this lemma and its proof that there are equivalences
between the following categories: the category of finite separable extensions of Fa,
of finite separable extensions of ka, of finite separable extensions of k

mod
a , of finite

étale extensions of local rings Oa ⊂ A, and of finite étale extensions of local rings
Omoda ⊂ A. Furthermore, any such extension comes from a finite étale (see paragraph
4) morphism V → U where U is a wide neighbourhood of a.

It is clear that the above constructions are functorial in the following sense. If
f : Y → X is a morphism of affinoids over k, then we get a morphism of sites
Yrigid → Xrigid (resp. Y

rat
rigid → Xrat

rigid). Indeed, if U ⊂ X is an affinoid subdomain

(resp. rational subset) then so is f−1(U) ⊂ Y . Hence a functor Xrigid → Yrigid, U 7→
f−1(U), it is easy to see that this is continuous and compatible with fibre products
(i.e., intersections). The associated adjoint functors on sheaves are denoted f∗, f∗ as
usual.
The morphism f also induces a continuous map: M(Y ) → M(X). The semi-

norm O(Y )→ R≥0 is mapped to the composition O(X)→ O(Y )→ R≥0. We remark
that if f identifies Y with an affinoid subdomain of X then 1) Yrigid ∼= Xrigid/Y and
2) the analytic points of Y are identified with those analytic points a of X such that
Y is in the filter of a, i.e., a ∈ Y .

2.2 Sites, sheaves and analytic points for general X

To the analytic variety X we associate the site Xrigid by exactly the same definition
as for affinoid X’s. The objects are the finite unions of affinoid open subvarieties and
the coverings are coverings which can be refined to finite coverings. (Since X is quasi-
separated, the intersection of two affinoid open subvarieties is an object of the category
Xrigid, so thatXrigid is indeed a site.) We remark that the the associated toposX

∼
rigid

is again naturally isomorphic to the category of sheaves on X (as defined in [BGR,
9.2]). A morphism f : Y → X induces a morphism of topoi frigid : Y

∼
rigid → X∼rigid

but not in general a morphism of sites Yrigid → Xrigid. Indeed, this morphism of sites
exists if and only if f is quasi-compact.
The spaceX has some admissible covering {Xi} by affinoids subsets. The analytic

points of X are just the analytic points of the Xi, subject to the usual equivalence
relation. (For a more precise definition see [S93, §2].) We remark that our f : Y → X
induces a map on analytic points.
Finally, suppose f : Y → X is an open immersion (in the sense of [BGR, p. 354]).

It is easy to prove (using the above) that: 1) f induces an injection between the sets
of analytic points and 2) f induces an isomorphism Y ∼rigid → X∼rigid/Y (where Y
denotes the sheaf V 7→ MorX(V, Y ) on Xrigid). However, it is not true that any f
satisfying 1) and 2) is an open immersion.

2.3 Overconvergent sheaves on affinoids

Let X be an affinoid variety over k. The collection of analytic points of X is still not
large enough to ”separate” the Abelian sheaves on Xrigid. We can introduce a larger
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Étale Cohomology of Rigid Analytic Spaces 7

collection of points as in [P82] to remedy this fact. However, this larger collection of
points seems not to be of much use for questions like base change theorems et cetera.
We choose to work with a restricted collection of sheaves, namely the overconvergent
sheaves on Xrigid.
Suppose that V ⊂ U are special subsets of X. We will say that V is inner in U

(w.r.t. X), or that U is a wide neighborhood of V in X, if for any analytic point a
of V there is an affinoid wide neighborhood Ua of a in X with Ua ⊂ U . Notation:
V ⊂⊂X U . It is proved in [S93, §1 Proposition 23] that this agrees with the notion V is
relatively compact in U over X (see [BGR, 9.6.2]) if V and U are affinoid subdomains
of X: V ⊂⊂X U ⇔ there is an affinoid generating system f1, . . . , fr of O(U) over
O(X) such that

V ⊂ {x ∈ U ; |f1(x)| < 1, . . . , |fr(x)| < 1}.
Suppose V ⊂ X is rational in X given by the inequalities |g0| ≥ |g1|, ..., |gm|.

For r > 1 and r ∈ √|k∗| we define the rational set V (r) by the inequalities r|g0| ≥
|g1|, ..., |gm|. It is easy to see that V ⊂⊂X V (r). (The notation V (r) will be used even
if no explicit system g0, . . . , gm defining V and V (r) is indicated.)

Lemma 2.3.1 With notations as above.

1. The V (r) form a co-final system of (special) wide neighborhoods in X of the
rational set V .

2. If V1, . . . , Vn are rational in X then

V1 ∩ . . . ∩ Vm ⊂⊂X V1(r) ∩ . . . ∩ Vm(r)

(r > 1 and r ∈ √|k∗|) and this forms a co-final system of wide neighborhoods
of V1 ∩ . . . ∩ Vm. Similarly for V1 ∪ . . . ∪ Vm ⊂⊂X V1(r) ∪ . . . ∪ Vm(r).

Proof. Suppose that V ⊂⊂X U (with U a special subset ofX). We claim the covering
X = U ∪ (X \ V ) is admissible. This is proved in [P92, Lemma 1.1], but let us
indicate another proof: For any analytic point a of X, a 6∈ V choose an affinoid wide
neighborhoodWa of a with Wa ∩V = ∅ (just define Wa by suitable inequalities). For
an analytic point a ∈ V we choose the affinoid wide neighborhoodWa of a in X which
is contained in U . SinceM(X) is compact the covering X = ⋃Wa is admissible (see
3.1), hence so is X = U ∪ (X \ V ). This proves our claim. In particular there is a
special W ⊂ X \ V such that X = U ∪W .
Next, put Wi = {w ∈ W ; |gi(x)| ≥ |gj(x)| j = 0, . . . , n} for i = 1, . . . , n. Of

course W =
⋃
Wi since W ∩V = ∅. On Wi the function gi is invertible hence we can

put
ǫi = ||g0/gi||Wi and ǫ = max

i
ǫi.

By the maximum modulus principle on Wi and since W ∩ V = ∅ we get ǫi < 1 and
ǫ < 1. It is now clear that for any r ∈ √|k∗|, ǫ−1 > r > 1 we have V (r) ∩W = ∅ and
hence V (r) ⊂ U .
We prove 2) only in the case m = 2. Suppose that V1 is given by the inequalities

|g0| ≥ |g1|, . . . , |gn| and that V2 is given by the inequalities |f0| ≥ |f1|, . . . , |fn′ |. The
intersection V1(r)∩V2(r) is given by the inequalities r2|g0f0| ≥ |gifj|, i = 0, . . . , n, j =
0, . . . , n′. The result follows. The statement for unions is trivial from 1). 2
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8 Johan de Jong and Marius van der Put

At this point we are able to define the rigid overconvergent sheaves on our affinoid
variety X. A (pre)sheaf S (on Xrigid) is called (rigid) overconvergent if for every
admissible open V ⊂ X we have

S(V ) = lim−→
V⊂⊂XU

S(U).

It follows from the lemma above that if S is a sheaf then S is overconvergent if
and only if S(V ) = limS(V (r)) for any rational V ⊂ X. These sheaves were called
the constructible sheaves in [P82]; they agree with the conservative sheaves of [S93]
by [S93, §1 Lemma 25]. In [S93, §1] it is shown that these overconvergent sheaves
correspond to sheaves on the topological spaceM(X).

Lemma 2.3.2 (Properties of overconvergent sheaves.) In this lemma all (pre)sheaves
are (pre)sheaves of Abelian groups on the affinoid variety X.

1. The sheaf associated to a overconvergent presheaf is overconvergent.

2. For any overconvergent sheaf S the presheaves U 7→ Hi(U, S) are overconver-
gent.

3. The category of overconvergent sheaves is an exact subcategory of the category
of all sheaves.

4. If f : Y → X is a morphism of affinoids then f∗ and f∗ preserve overconvergent
sheaves. The same holds for Rqf∗.

5. If X =
⋃
Xi is written as the finite union of affinoid subdomains then a sheaf

S on X is overconvergent if and only if the restriction of S to any of the Xi is
overconvergent.

6. A overconvergent sheaf S is zero if and only if all of its stalks Sa at analytic
points of X are zero.

Proof. Let S be a overconvergent presheaf. Suppose V ⊂ X is the union of rational
subsets V1, . . . , Vm ofX. Denote by V = {Vi} the covering of V and by V(r) = {Vi(r)}
the covering of V (r) :=

⋃
i Vi(r). It is immediate from Lemma 2.3.1 that

C·(V, S) = lim
−→ r>1C·(V(r), S).

(These symbols denote Čech complexes.) It is therefore clear that the map

lim−→
V⊂⊂XU

Ȟp(U, S) −→ Ȟp(V, S)

is surjective.
Let us prove that it is also injective. Take a special U ⊂ X with V ⊂⊂X U , an

admissible covering U = {Ui} of U , a co-cycle ξ ∈ Cp(U , S) whose Čech cohomology
class maps to zero in Ȟp(V, S). This means there is a covering V = {Vj} of V which
refines U ∩ V , i.e., there is a function α such that Vj ⊂ Uα(j) ∩ V , and a chain
η ∈ Cp−1(V, S) with α(ξ)− dη = 0 ∈ Cp(V, S). Here α(ξ) is the image of ξ under the
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map Cp(U , S)→ Cp(V, S) determined by α. By refining U and V we may assume that
U and V are finite and that all Ui and Vj are rational subdomains of X.
By the above, the co-cycle ξ lifts to a co-cycle ξ′ ∈ Cp(U(r), S) for some r > 1.

Lemma 2.3.1 implies that there exists an r∗ > 1 such that Vj(r∗) ⊂ Uα(j)(r)∀j. For
an even smaller r∗, we may also assume η lifts to a chain η′ ∈ Cp−1(V(r∗), S). The
co-cycle α(ξ′) − dη′ ∈ Cp(V(r∗), S) maps to zero as a chain in Cp(V, S), thus it is
already zero in some Cp(V(r∗∗), S), r∗ > r∗∗ > 1. We conclude that the cohomology
class of ξ in Ȟp(V (r∗∗), S) is zero, which was what we wanted to show.
The isomorphism of Čech cohomologies above proves that the presheaf Ȟ0(S)

is overconvergent if S is overconvergent. Hence also the sheaf associated to S is
overconvergent. It proves (2) since Čech cohomology agrees with usual cohomology
for any special U ⊂ X. (See [P82, 1.4.4] or our Proposition 2.5.4.)
The third statement of our lemma means that the kernels and co-kernels of over-

convergent sheaves are overconvergent and that if a short exact sequence of sheaves
0→ S1 → S2 → S3 → 0 is given, S1 and S3 are overconvergent then so is S2. These
statements follow easily from (1) and (2).
(4) If V ⊂ X is a rational subset, then f−1(V ) is a rational subdomain of Y

and we have: f−1
(
V (r)

)
=
(
f−1(V )

)
(r). Thus it is clear from Lemma 2.3.1 that for

special V ⊂⊂X U in X we have f−1(V ) ⊂⊂Y f−1(U) and that these f−1(U) form a
co-final system of wide neighborhoods of f−1(V ).
Take an overconvergent sheaf S on Y . The sheaf Rqf∗S is the sheaf associated

to the presheaf U 7→ Hq(f−1(U), S). It is immediate from the remarks above and (2)
that this presheaf is overconvergent.
If S is a sheaf on X then f∗S is the sheaf associated to the presheaf P defined

as follows on V ∈ Xrigid:

P (V ) = lim−→
U∈Xrigid,f−1(U)⊃V

S(U)

Suppose S is overconvergent. If t ∈ P (V ), i.e., t comes from s ∈ S(U) for some U ⊂ X
as in the limit, then s comes from s′ ∈ S(U ′) for some U ′ ∈ Xrigid with U ⊂⊂X U ′.
By the above we see that V ⊂⊂Y f−1(U ′). We conclude that the map

lim−→
V⊂⊂Y V ′

P (V ′)→ P (V )

is surjective. Let us prove that it is injective: Suppose t′ ∈ P (V ′) comes from some
s′ ∈ S(U ′) with f−1(U ′) ⊃ V ′ and maps to zero in some S(U) with U ⊂ U ′ and
f−1(U) ⊃ V . There exists a wide neighborhood U ′′ of U ′ and s′′ ∈ S(U ′′) mapping
to s′. Since S is overconvergent there is a special U ′′′ with U ′′′ ⊂ U ′′, U ′′′ ⊃⊃X U
such that s′′ maps to zero in U ′′′. It is clear that V ′′ := V ′ ∩ f−1(U ′′′) is a wide
neighborhood of V in Y such that t′ maps to zero in P (V ′′). We have proved that P ,
hence f∗S, is overconvergent.
(5) This follows from (3) and (4) since any sheaf S on X fits into an exact

sequence

0 −→ S −→
⊕

i

S|Xi −→
⊕

i,j

S|Xi∩Xj .

Here S|Xi := j∗j∗S where j : Xi → X is the inclusion.
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(6) Take a section s ∈ Γ(X,S). By assumption any analytic point a in X has an
affinoid wide neighborhood Va ⊂ X such that s|Va = 0. By compactness of M(X)
we get that the covering X =

⋃
Va is admissible, hence s = 0. The same proof gives

that Γ(V, S) = 0 for arbitrary special V ⊂ X. 2

2.4 Overconvergent sheaves on general X

Let X be an arbitrary analytic variety over k. We will say that a sheaf S on X
is overconvergent if for any affinoid open subvariety V ⊂ X, the restriction S|V is
overconvergent on V . Suppose X =

⋃
Xi is an admissible affinoid covering. It follows

from Lemma 2.3.2 that S is overconvergent if and only if S|Xi is overconvergent for
all i.
Suppose f : Y → X is a morphism of rigid varieties. It is clear from Lemma

2.3.2 that f∗ preserves overconvergent sheaves. This is not true in general for f∗ or
Rqf∗. But it is true if f is quasi-compact.

Proposition 2.4.1 If f : Y → X is a quasi-compact morphism then f∗ and Rqf∗
preserve overconvergent presheaves.

Proof. Take an overconvergent sheaf S on Y . The question is local on X, hence
we may assume X affinoid. Thus Y is quasi-compact and hence by Lemma 2.5.3
we can find a finite admissible affinoid covering Y =

⋃
Yi such that all intersections

Yi0...iq := Yi0 ∩ . . . ∩ Yiq are affinoid. At this point we use the spectral sequence
(deduced from the Cartan-Leray spectral sequence [SGA 4, V 3.3]) {Epqn } abutting
to Rnf∗S and with E2-term:

Epq2 =
⊕

i0...iq

Rp
(
f |Yi0...iq

)
∗S|Yi0...iq

By Lemma 2.3.2 all its terms are overconvergent sheaves. Hence by the same lemma
we see that Rnf∗S is overconvergent too. 2

2.5 Cohomology and Čech cohomology

In this subsection we prove that cohomology agrees with Čech cohomology on quasi-
compact varieties. Further we prove that the cohomological dimension of such an
analytic variety is at most its dimension.

Lemma 2.5.1 Let X be an affinoid variety, V ⊂ X special and a an analytic point of
X. There exists a wide neighborhoodW =Wa of a such that W ∩V is a finite union
of Weierstrass domains, each defined by invertible functions.

Proof. Since V is a finite union of rational subsets of X we may assume that V is
rational itself. Say it is defined by the inequalities |g0| ≥ |g1|, . . . , |gn|, where the gi
generate the unit ideal of O(X). If a 6∈ V , then we can find a wide neighborhood W
of a disjoint with V . If a ∈ V then |g0|a ≥ |gi|a and since the gi generate the unit
ideal we get |g0|a > 0. Thus we may replace X by a wide neighborhood of a, so that
g0 becomes invertible. In this situation V is defined by 1 ≥ |fi| with fi = gi/g0, i.e.,
V is a Weierstrass domain in X. For those i such that ǫi := |fi|a < 1, we may replace
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X by the wide neighborhood of a defined by |fi| ≤ 1/2(1 + ǫ1) and drop fi. At this
point V ⊂ X is defined as 1 ≥ |fi| with |fi|a = 1 for all i. Hence the subset |fi| ≥ |π|,
π ∈ k, 0 < |π| < 1 defines a wide neighborhood of a such that fi is invertible on it. 2

Lemma 2.5.2 Suppose X is affinoid, V ⊂ X special. There exists a finite covering
X =

⋃
Xi by affinoids of X such that Xi ∩ V is affinoid for all i.

Proof. By compactness of M(X) and the lemma above we may assume V ⊂ X
is a finite union of Weierstrass domains, each given by invertible functions. Say
V =

⋃n
i=1 Vi and Vi is defined by 1 ≥ |f i1|, . . . , |f ini | and each f ij invertible.
Consider combinatorial data of the form A = (i, (j1, . . . , ĵi, . . . , jn)) where i ∈

{1, . . . , n} and jl ∈ {1, . . . , nl} for each l 6= i, l ∈ {1, . . . , n}. We put

VA =
{
x ∈ X; |f ij(x)| ≤ |f ljl(x)|, l = 1, . . . , î, . . . , n, j = 1, . . . , ni

}

Remark that X =
⋃
A VA since for any x ∈ X there is some i ∈ {1, . . . , n}

such that maxj |f ij(x)| ≤ maxj |f lj(x)| for all l 6= i. On the other hand, if

A = (i, (j1, . . . , ĵi, . . . , jn)) as above then

VA ∩ V ⊂ Vi,

and hence VA ∩ V = VA ∩ Vi is affinoid. This is immediate from the definitions. 2

We remark that in proving the lemmata above we proved something slightly
stronger: Suppose we had started with an admissible affinoid covering V =

⋃
Vi.

This we can refine to a finite covering V =
⋃
Vi with Vi ⊂ X rational. The proof

of Lemma 2.5.1 shows that we can cover X by finitely many affinoids Xj such that
each Xj ∩Vi is a Weierstrass domain in Xj defined by invertible functions. The proof
of Lemma 2.5.2 shows that we can cover each Xj by finitely many Xj,A’s such that
Xj,A ∩ (V ∩Xj) = Xj,A ∩ V is contained in some Vi. Thus we have proved the first
statement of the following lemma in the case that X is affinoid.

Lemma 2.5.3 Let X be a quasi-compact variety over k.

1. Given an admissible covering V : V = ⋃Vi of the special subset V of X, there
exists a finite affinoid covering U : X = ⋃Xj such that the covering U ∩ V
refines V. In addition we may assume Xj ∩ Vi affinoid for all j.

2. There exists a finite affinoid covering X =
⋃
Xj such that Xi ∩Xj is affinoid

for all i, j.

Proof. (1) This assertion follows immediately from the caseX affinoid (proved above)
by writing X as the finite admissible union of affinoids (use that X is quasi-separated
by our conventions).
(2) Take first an arbitrary finite affinoid covering X =

⋃
Xi. By (1) we can find

finite affinoid coverings Uij : Xi =
⋃
kXijk such that Xijk ∩ (Xi ∩Xj) is affinoid for

all k. Next we take a finite affinoid covering Ui : Xi =
⋃
lXil refining Uij for all j. It

is clear that Xil ∩Xjm = Xil ∩ (Xi ∩Xj)∩Xjm is affinoid (all intersections are taken
in X). Thus the covering X =

⋃
Xil works. 2
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Proposition 2.5.4 Suppose X is a quasi-compact (and quasi-separated) variety.
Čech cohomology agrees with cohomology on X.

Proof. The Leray spectral sequence relating Čech cohomology with cohomology
[SGA 4, V 3.4] shows that it suffices to prove: Ȟp(X,S) = 0 if S is a presheaf
whose associated sheaf is zero. Suppose V is some finite admissible covering of X and
ξ =

∏
ξio...ip ∈ Cp(V, S) =

∏
io...ip

S(Vio...ip). We can find a covering Vio...ip of Vio...ip
such that ξio...ip restricts to zero on each member of Vio...ip . By Lemma 2.5.3 we can
find a covering Ui : Vi =

⋃
Uij of Vi such that Ui ∩Vio...ip (some il = i) refines Vio...ip

for all choices of the il. Put U =
⋃Ui, it is an admissible covering of X and the map

α : C∗(V, S) −→ C∗(U , S)

is defined using Uij ⊂ Vi. It is clear that the chain ξ maps to zero under α. 2

Remark 2.5.5 By Lemma 2.5.3 this is a special case of [P82, 1.4.4]. The argument
in the proof of [P82, 1.4.5] together with Lemma 2.5.3 shows that Čech cohomology
agrees with cohomology on any (quasi-separated, see conventions) X which is of
countable type (see Definition 2.5.6 below).

We introduce some convenient topological notions for the Grothendieck topology
on our analytic varieties X.

Definition 2.5.6 Let X be an analytic variety over k.

1. We say that X is of countable type if there exists a countable admissible affinoid
covering of X.

2. Suppose that X =
⋃
Xi is an admissible affinoid covering of X. We say that

the covering is locally finite if each Xi meets finitely many Xj .

3. The variety X will be called paracompact if there exists an admissible locally
finite affinoid covering.

Lemma 2.5.7 A paracompact space X is the admissible disjoint union of paracom-
pact varieties of countable type. A connected paracompact variety X can be written
as the admissible union X =

⋃
n∈NXn, with Xn quasi-compact and Xi∩Xj = ∅ when

|i− j| ≥ 2.

Proof. Since any rigid analytic space is the admissible disjoint union of its connected
components, it suffices to prove the second statement. Therefore we assume that X
is connected and has a locally finite affinoid admissible covering X =

⋃
Xα. Let us

choose a fixed index α0. For any α we define the distance d(α) of α to α0 to be the
minimal length d of a sequence of indices α0, α1, . . . , αd = α such that Xαi ∩Xαi+1 6=
∅ for all i = 0, . . . , d − 1. Since X is connected all distances are finite. We put
Xn =

⋃
d(α)=nXα. Since the covering was locally finite the spaces Xn are quasi-

compact. The last condition of the lemma follows immediately from our definition of
distance. 2
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In the proof of the next proposition we need the relation of rigid analytic geometry
with formal geometry (see [R70] and [BL]). We recall that if X is a formal scheme of
finite type and flat over Spf(k◦) then there is canonically associated a quasi-compact
rigid analytic variety X = Xrig. If U ⊂ X is a formal open subscheme then Urig ⊂ Xrig
is an open subvariety. If X =

⋃
Ui then X

rig =
⋃
U
rig
i is an admissible covering (see

[BL, §4]). Thus we get a morphism of sites Xrigid = X
rig
rigid → XZar.

It is also possible to perform the construction X 7→ Xrig for formal schemes
X which are only locally of finite type over Spf(k◦). It is not true that any rigid
variety X comes from such a formal scheme. A counterexample can be constructed
by gluing a countable number of closed discs to a fixed closed disc along mutually
disjoint closed sub-discs. (This is also an example of a variety of countable type
which is not paracompact.) It can be proved using the lemma above and [BL] that
any paracompact X comes from a (paracompact) formal scheme X.

Proposition 2.5.8 (See [P82, 1.4.13]). IfX is a quasi-compact rigid analytic variety
of dimension d then Hp(X,S) = 0 for all p > d and all sheaves S on X.

Proof. Let us choose a formal scheme X with Xrig ∼= X (see [R70] or [BL, Theorem
4.1]). Let us denote by {Xα} the directed system of admissible blowing ups of X.
These all satisfy Xrigα

∼= X. Hence we get the morphism of sites πα : Xrigid → Xα,Zar.
Let us write Sα := πα,∗S. There is a mapHp

α := H
p(Xα,Zar, Sα)→ Hp(X,S) deduced

from the map π∗πα,∗S → S. It is proved in [BL, 4.4] that any finite covering of X
comes from a covering of some Xα. Therefore, by our result that Čech cohomology
agrees with cohomology on X, we see that any cohomology class in Hp(X,S) comes
from some Hp

α. At this point we just remark that the underlying Zariski topological
space associated to Xα is the underlying topological space of a scheme of finite type
over the field k̄ of dimension at most n. The result follows. 2

Remark 2.5.9 If we allow in Xrigid only finite coverings then it is true that
limXα,Zar ∼= Xrigid as sites (see letter of Deligne to Raynaud of 23 august 1992).
In this way it becomes clear that in fact limHp

α = Hp(X,S). This follows from the
following general fact: Suppose the site S is the direct limit of a directed system of
sites Sα. Then for any sheaf F on S there is a canonical isomorphism

lim−→
α

Hq(Sα,F|Sα) ∼= Hq(S,F).

This isomorphism is in fact easy to prove by induction on q, using the Cartan-Leray
spectral sequence and the fact that any cohomology class can be killed by some
covering.

Corollary 2.5.10 If X is paracompact and of dimension ≤ d then cohomology of
sheaves on X is zero in degrees ≥ d+ 1.

Proof. It suffices to do the case where X is connected. Choose a covering X =
⋃
Xn

as in Lemma 2.5.7. Put V1 =
⋃
n oddXn and V2 =

⋃
n evenXn. The spaces V1, V2 and

V1 ∩ V2 are admissible disjoint unions of quasi-compact varieties. Note that for any
sheaf S on X the maps Hd(Xn, S)⊕Hd(Xn+1, S)→ Hd(Xn ∩Xn+1, S) is surjective,
otherwise the sheaf S onXn∪Xn+1 would have a nontrivial d+1

th-cohomology group,
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a contradiction with the proposition. With these remarks the result of the corollary
follows from a consideration of the Cartan-Leray spectral sequence associated to the
covering X = V1 ∪ V2. 2

Remark 2.5.11 Any separated variety of dimension 1 is paracompact. See [LP].
Similarly, the analytic space associated to a scheme of finite type over Spec(k) is
paracompact.

2.6 General morphisms

Consider an extension of complete valued fields k ⊂ K. In [BGR, 9.3.6] there is
constructed a base change functor X 7→ X⊗̂K of analytic varieties over k to analytic
varieties over K. If X is affinoid then X⊗̂K is affinoid with algebra O(X)⊗̂kK. In
general, if X =

⋃
Xi is an admissible affinoid covering then X⊗̂K is defined as the

gluing of theXi⊗̂K. If V is an affinoid open subvariety ofX then so is V ⊗̂K ⊂ X⊗̂K.
In this way (use [BGR, 9.3.6/1& 2]) we see that there is a morphism of sites

ϕ = ϕK/k : (X⊗̂K)rigid → Xrigid.

Lemma 2.6.1 The functors ϕ∗, ϕ∗ and Rqϕ∗ preserve overconvergent sheaves.

Proof. There is a trivial reduction to the case that X is affinoid. Let V be a rational
subdomain of X. It is clear that V (r)⊗̂K =

(
V ⊗̂K

)
(r) for r > 1, r ∈ √|k∗| (see

[BGR, 9.3.6/1]). These form a co-final system of wide neighborhoods of V ⊗̂K since√|k∗| is dense in R≥0. Thus it is clear from Lemma 2.3.1 that for special V ⊂⊂X U
in X we have V ⊗̂K ⊂⊂X⊗̂K U⊗̂K and that these U⊗̂K form a co-final system of
wide neighborhoods of V ⊗̂K. The rest of the proof is exactly the same as the proof
of Lemma 2.3.2 part 4. 2

Let k ⊂ K denote an extension of complete valued fields. Let X (resp. Y ) denote
an arbitrary analytic variety over the field k (resp. K). The most convenient way
to define a general morphism f : Y → X is to say that f is a morphism of the
K-analytic spaces Y → X⊗̂K. If both X and Y are affinoid then this is simply
a continuous k-algebra homomorphism O(X) → O(Y ), since any such factors as
O(X) → O(X)⊗̂kK → O(Y ). By the above, a general morphism f : Y → X
gives rise to a morphism of topoi frigid : Y

∼
rigid → X∼rigid. The pullback functor,

written f∗, preserves overconvergent sheaves. We say that the morphism f is quasi-
compact if Y → X⊗̂K is quasi-compact. In this case f induces a morphism of sites
Yrigid → Xrigid and R

qf∗ preserves overconvergent sheaves for all q. (Use the lemma
above and Proposition 2.4.1.)

If, in addition, we are given a morphism Z → X of analytic varieties over k, then
we can form the fibre product:

Y ×X Z := Y ×X⊗̂K X⊗̂K

It is an analytic variety over K which satisfies a certain universal property regarding
general morphisms; we leave it to the reader to describe this property explicitly.
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2.7 Base change

The aim of the base change theorem is to compare Hq(Ya, S|Ya) with
(
Rqf∗S

)
a
for

sheaves S on Y . Here Ya is the fibre of a morphism f over the analytic point a. Let
us first define this fibre.
Consider a morphism f : Y → X of analytic varieties over k and let an analytic

point a of X be given. The fibre Ya of f over a is defined as the fibre product of
the general morphism Spm(Fa) → X with f . It can also be defined as the fibre of
f⊗̂Fa : Y ⊗̂Fa → X⊗̂Fa over the usual point a ∈ X⊗̂Fa. There results a general
morphism α : Ya → Y . We remark that α is quasi-compact; the morphism of sites
(Ya)rigid → Yrigid comes from the functor V 7→ Va on special subsets of Y . For a
sheaf S on Y we write S|Ya instead of α∗(S). Finally, we remark that if both X and
Y are affinoid then Ya is affinoid with algebra O(Y )⊗̂O(X)Fa.

Lemma 2.7.1 (Key lemma for the rigid case.) Let a morphism f : Y → X of affinoid
spaces over k be given together with an analytic point a of X. Write α : Ya → X for
the resulting general morphism.

1. For every admissible open V ⊂ Ya (i.e., V ∈ (Ya)rigid) there is an admissible
open W ⊂ Y such that V =Wa.

2. Suppose W,Z are admissible open in Y and Wa ⊂ Za. There is a U in the filter
of a such that W ∩ f−1(U) ⊂ Z.

Proof. (1) We may assume that V is a rational subset of Ya. Thus V is given by
inequalities |g1| ≥ |g1|, ..., |gm| with elements g1, ..., gm ∈ O(Ya) = O(Y )⊗̂O(X)Fa
generating the unit ideal. Say that f1g1 + . . . + fmgm = 1. We may suppose that
the gi come from elements gi ∈ O(Y ) ⊗O(X) ka. So there is some U in the filter of
a and elements Gi ∈ O(Y )⊗̂O(X)O(U) = O(f−1(U)) mapping to the gi. If we take
Fi ∈ O(Y )⊗̂O(X)O(U) = O(f−1(U)) mapping to elements close to the fi then we see
that F1G1+. . .+FmGm = 1+δ where δ maps to an element of O(Ya) = O(Y )⊗̂O(X)Fa
with small norm, say with spectral norm < 1. By Lemma 2.7.2 this implies that δ
gets spectral norm < 1 in O(Y )⊗̂O(X)O(U) = O(f−1(U)) for some smaller U in the
filter of a. Hence we see that G1, . . . , Gm generate the unit ideal in O(f

−1(U)). Thus
W ⊂ f−1U given by the inequalities |G1| ≥ |G1|, ..., |Gm| works.
(2) We may assume that W is a rational subdomain of Y . Next we write Z

as a finite union Z =
⋃
Zi of rational subdomains Zi of Y . The finite covering

Wa =
⋃
i Wa ∩ (Zi)a can be refined by a rational covering Wa =

⋃
j Vj given by a

number of elements g1, . . . , gm in O(Wa) generating the unit ideal. Arguing as above,
we may suppose that the gi come from Gi ∈ O(W ) generating the unit ideal, after
replacing X by some U in the filter of a. The rational subsets Wj of W defined
by |Gj | ≥ |G1|, ..., |Gm| cover W and each (Wj)a is contained in some (Zi)a. If
we solve the problem for all the pairs (Wj , Zi) with (Wj)a ⊂ (Zi)a then we solve
the problem for (W,Z). Thus we have reduced to the case that both W and Z are
rational subdomains of Y .
At this point we replace Z by Z ∩W , then we are in the situation that Z ⊂ W

is a rational subdomain, Za = Wa and we want to show that there is some U such
that W ∩ f−1(U) = Z ∩ f−1(U) ⊂ Z. Suppose that Z is given by inequalities
|h0| ≥ |h1|, ..., |hn| where h0, ..., hn generate the unit ideal in O(W ). In particular, h0
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is an invertible function on Z, hence on Za = Wa. Arguing as in (1), we may shrink
X and assume that h0 is invertible onW . Dividing by h0 we see that we may suppose
that Z is given by the inequalities |h1| ≤ 1, . . . , |hm| ≤ 1. The hi have norms ≤ 1 on
Wa. Hence, by Lemma 2.7.2, we can find a U in the filter of a such that the hi have
norm ≤ 1 on W ∩ f−1(U), i.e., such that W ∩ f−1(U) = Z ∩ f−1(U). 2

Lemma 2.7.2 Let f : Y → X be a morphism of afinoid spaces over k, let a be an
analytic point of X. Let g ∈ O(Y ) whose image α(g) ∈ O(Ya) has spectral norm ≤ 1
(resp. < 1). There is a U in the filter of a such that the spectral norm of g on f−1(U)
is ≤ 1 (resp. < 1).

Proof. Let us write O(Y ) = O(X)〈T1, ..., Tn〉/(G1, ..., Gm). With obvious notations
we have O(Ya) = Fa〈T1, ..., Tn〉/(G1(a), ..., Gm(a)). If the spectral norm of α(g) is
≤ 1 it follows that α(g) is integral over the ring Fa〈T1, ...Tn〉o. Let such an equation
be

α(g)e + ce−1α(g)
e−1 + ...+ c0 = 0

Write ci =
∑
ci,βT

β with all ci,β ∈ Fa satisfying |ci,β |a ≤ 1.
Choose some π ∈ k with 0 < |π| < 1. For the ci,β with |ci,β |a ≥ |π| (there are

only finitely many of these!) we take a suitable U in the filter of a and elements
Ci,β ∈ O(U) with images α(Ci,β) ∈ Fa such that |α(Ci,β) − ci,β |a < |π|. (This is
possible, the image of Oa is dense in Fa.) It follows that |α(Ci,β)|a ≤ 1. Thus the
inequalities |Ci,β | ≤ 1 define a smaller U in the filter of a where the elements Ci,β
have spectral norm ≤ 1. For convenience we replace X by U and Y by f−1U . The
Ci,β ∈ O(X) are elements with spectral norm ≤ 1. We consider the expression

R := ge + γ(
∑

Ce−1,βT
β)ge−1 + ...+ γ(

∑
C0,βT

β)

where γ denotes the map O(X)〈T1, ..., Tn〉 → O(Y ). This element R ∈ O(Y ) has an
image α(R) ∈ O(Ya) with spectral norm < |π|. If we can find a U in the filter of a
such that the spectral norm of R on f−1U is < 1 then we replace again X by U and
Y by f−1U . After this is done the spectral norm of R on Y is < 1 and the spectral
norms of the γ(

∑
Ci,βT

β) are ≤ 1. It follows at once that the spectral norm of g on
Y is ≤ 1.
In this way we have reduced the case ≤ 1 of the lemma to the case < 1. Let

us therefore assume that the spectral norm of α(g) is < 1. For some N ≥ 1 the
element α(gN ) ∈ O(Ya) has a pre-image g1 ∈ Fa〈T1, ..., Tn〉 with norm < 1. Take also
a g2 ∈ O(X)〈T1, ..., Tn〉 with image gN ∈ O(Y ). Then α(g2)− g1 ∈ Fa〈T1, ..., Tn〉 lies
in the ideal generated by the {G1(a), ..., Gm(a)} and we can write

α(g2)− g1 =
∑

i

Gi(a)(
∑

β

ai,βT
β)

where the coefficients ai,β ∈ Fa have limit 0. For the ai,β with |ai,β | ≥ |π| we choose
a U in the filter of a and elements Ai,β ∈ O(U) such that the difference of the image
of Ai,β and ai,β in Fa has absolute value < |π|. We may suppose again that U = X.
We suppose that π is chosen such that all coefficients of πGi(a) have norm < 1 (in
Fa). After changing g2 into g2 −

∑
iGi(

∑
β Ai,βT

β) ∈ O(X)〈T1, ..., Tn〉 we have the
situation that α(g2) − g1 ∈ Fa〈T1, ..., Tn〉 and α(g2) ∈ Fa〈T1, ..., Tn〉 are power series

Documenta Mathematica 1 (1996) 1–56
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with coefficients having absolute values < 1. For the finitely many coefficients in
O(X) of g2 with absolute value ≥ 1 we can find a U in the filter of a such that their
spectral norms on f−1U are < 1. After shrinking X to U and Y to f−1U we arrive
at the situation where all the coefficients of g2 are < 1. Hence the spectral norm of
gN on Y is < 1 and so the spectral norm of g on Y is < 1. 2

Lemma 2.7.3 In the situation of the Key Lemma.

1. The functor S 7→ S|Ya preserves flasque sheaves.

2. For any sheaf S on Y the sheaf α∗rigid(S) = S|Ya can be described as follows:

Γ(Wa, S|Ya) = lim−→
a∈U⊂X

S
(
W ∩ f−1(U)

)
.

Here W is any special subset of Y .

Proof. (1) This is clear from the first assertion of our Lemma 2.7.1. (2) From Lemma
2.7.1 it follows that for any S we have

Γ(Wa, S|Ya) = lim−→
Z⊂Y,Za=Wa

S
(
Z
)
.

The limit is over all admissible open Z ⊂ Y such that Za = Wa. From Lemma 2.7.1
part 2 it follows that the Z =W ∩ f−1(U) are co-final in this system. 2

Finally, we come to the base change theorem. To give a natural statement recall
that a δ-functor between to Abelian categories A and B is a sequence of functors
{Tn}n≥0 (equipped with certain boundary operators) such that any short exact se-
quence in A is transformed into a long exact sequence in B. (For a more precise
definition see for example [H77]).

Theorem 2.7.4 (Base change for rigid spaces.) Let f : Y → X be a quasi-compact
morphism of rigid analytic varieties over k. Take any analytic point a ofX and denote
by Ya the fibre of f over a. The functors S 7→ Hn(Ya, S|Ya) (resp. S 7→

(
Rnf∗S

)
a
)

on the category of Abelian sheaves on Yrigid form a δ-functor. These δ-functors are
isomorphic:

(
Rnf∗S

)
a
∼= Hn(Ya, S|Ya) for any Abelian sheaf S on Y .

Proof. The functor S 7→ S|Ya is exact and so is the functor F 7→ Fa on sheaves on X.
From this follows immediately that the functors under consideration form δ-functors.
Let us define the canonical morphisms:

(∗)
(
Rnf∗S

)
a
−→ Hn(Ya, S|Ya)

Since S|Ya = α∗(S) there are canonical homomorphisms Hn(X,S) → Hn(Ya, S|Ya)
and these form a transformation of δ-functors. For any open subvariety U ⊂ X, with
a ∈ U , we have f−1(U)a = Ya and

(
S|f−1(U)

)
|Ya = S|Ya . Hence the same argument

gives
Hn(f−1(U), S) −→ Hn(Ya, S|Ya).

Since
(
Rnf∗S

)
a
= limHn(f−1(U), S) (the limit is taken over U as above) we get the

desired map of δ-functors.
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18 Johan de Jong and Marius van der Put

To prove that (*) is an isomorphism we may assume that X is affinoid. Let us
first do the case that Y is affinoid. The result for n = 0 is Lemma 2.7.3 with W = Y .
For a flasque sheaf on Y both sides of (*) are zero for n ≥ 1 (use 2.7.3), hence the
standard argument gives the result for general n. (Inject S into a flasque sheaf and
argue by induction on n.)

There are two ways to get the result for general quasi-compact Y .
(1) Choose a finite affinoid covering Y =

⋃
Yi such that all Yi0...iq = Yi0 ∩ . . .∩Yiq are

affinoid (see 2.5.3). The maps (*) for Y and all Yi0...iq induce a morphism of spectral
sequences {1Epqn } → {2Epqn } abutting to the maps

(
Rp+qf∗S

)
a
−→ Hp+q(Ya, S|Ya)

and with as E2-terms the maps (*):

⊕

i0...iq

(
Rp
(
f |Yi0...iq

)
∗S
)
a
−→

⊕

i0...iq

Hp
(
(Yi0...iq )a, S|Yi0...iq

)

These maps are isomorphisms by the above hence we get the result.
(2) Here we just remark that the Key Lemma holds for f : Y → X with X affinoid
and Y quasi-compact. This follows immediately from the Key Lemma as it stands
now. The base change theorem now follows from the same argument as for the case
Y affinoid. 2

Remark 2.7.5 (1) The result is of course most useful for overconvergent sheaves S
since in that case the sheaves Rnf∗S are overconvergent too and hence ”determined”
by their stalks at analytic points.

(2) The proof given above is the one of [P82]. In [S93] the translation of rigid
overconvergent sheaves on Z to sheaves onM(Z) is used to translate the statement
into the topological base change theorem for the continuous map M(f) :M(Y ) →
M(X).
(3) One aim of this paper is to develop a theory of étale points and étale overcon-

vergent sheaves such that the base change theorem and related theorems are valid.

3 Étale points and étale overconvergent sheaves

A morphism f : Y → X of analytic spaces over k is called étale if for every y ∈ Y
the induced homomorphism of the local rings OX,f(y) → OY,y is flat and un-ramified.
The term un-ramified means that OY,y/mOY,y is a (finite) separable field extension
of the field OX,f(y)/m where m denotes the maximal ideal of OX,f(y).

This notion of étale morphism is somewhat complicated. First of all the image
of an étale morphism is in general not an admissible open subset. For affinoids Y,X
however, it has been shown in [M81] that f(Y ) is a finite union of affinoid subdomains
of X. We will give a proof of this fact below (see Proposition 3.1.7).

We define the étale site in 3.2 (see [S-S]) and we compare the étale topology with
the rigid topology. We define étale points and étale stalks in 3.3. In order to be able
to work with étale overconvergent sheaves we construct étale wide neighborhoods in
the affinoid case. The proof of the étale base change theorem is then similar to the
proof in the rigid case.
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3.1 Étale morphisms of affinoids

Let an extension of rings A → B be given. Let d : B → ΩfB/A denote the uni-
versal finite differential module of B over A. By definition ΩfB/A is a finitely gen-

erated B-module and every derivation of B/A into a finitely generated B-module

factors uniquely over d : B → ΩfB/A. This module exists in many cases where

the usual universal differential module of B over A is not a finitely generated mod-
ule. For affinoid algebras A,B over the same field k one can give B a presentation
B = A〈T1, ..., Tn〉/(G1, ..., Gm). In this case ΩfB/A exists and is the quotient of the
free B-module generated by dT1, ..., dTn by its submodule generated by dG1, ..., dGm.
Let m be a maximal ideal of B and n the corresponding maximal ideal of A. The
completions of the local rings are denoted by B̂m and Ân. One can show that Ω

f

B̂m/Ân

coincides with ΩfB/A ⊗ B̂m. In the situation Y = Spm(B) and X = Spm(A) and y, x
corresponding to m,n one has that B̂m, Ân are the completions of the local rings OY,y
and OX,f(y). The map between the last two local rings is un-ramified if and only if
the map between the completed rings is un-ramified. The last statement is equivalent
with Ωf

B̂m/Ân
= 0. From this and the fact that flatness is a local property one finds

the following:

Observation 3.1.1 A morphism of affinoid spaces Y → X is étale if and only if
O(X)→ O(Y ) is flat and ΩfO(Y )/O(X) = 0. Further Ω

f
O(Y )/O(X) = 0 if and only if the

n× n minors of the matrix (∂Gk∂Tl
) generate the unit ideal in O(Y ).

A special étale morphism of affinoid spaces f : Y → X is a morphism such that
O(Y ) has a presentation

O(Y ) = O(X)〈T1, ..., Tn〉/(G1, ..., Gn)

such that the functional determinant ∆ := det (∂Gi/∂Tj) is an invertible function
on Y . The morphism Y → X is indeed étale. We need only prove flatness. Let us
check this in a point y ∈ Y where Ti = 0. The completion of the local ring OY,y is
isomorphic to:

ÔX,f(y)[[T1, . . . , Tn]]/(G1, . . . , Gn)

Our assumption on ∆ gives that (G1, . . . , Gn) = (T1, . . . , Tn) in this ring. Hence
the map OX,f(y) → OY,y is flat and un-ramified since it induces an isomorphism on
completions (this is not true for general points y ∈ Y !).
We now present the proof by Huber of the fact that any étale morphism of

affinoids is special étale.
Let Y → X be an étale morphism of affinoids. Choose a surjection

O(X)〈T1, . . . , Tn〉 → O(Y ) with kernel I. Since the module of differentials of O(Y )
over O(X) is zero, there is an isomorphism

I/I2 −→ O(Y )dT1 ⊕ . . .⊕O(Y )dTn.

Thus we may choose G1, . . . , Gn ∈ I whose classes mod I2 are a basis of I/I2. It
follows that Sp

(
O(X)〈T1, . . . , Tn〉/(G1, . . . , Gn)

)
is equal to Y ∐ Z for some affinoid
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Z. Let us choose an element G ∈ O(X)〉T1, . . . , Tn〉 which is 1 on Y and 0 on Z. It
follows that O(Y ) has the presentation

O(Y ) = O(X)〈T, T1, . . . , Tn〉/(TG− 1, G1, . . . , Gn).

It follows immediately that Y is special étale over X.

Observation 3.1.2 [Hu, 1.7.1] Any étale morphism Y → X of affinoids is a special
étale morphism.

Let f : Y → X be an étale morphism of affinoids and choose a representation
O(Y ) = O(X)〈T1, . . . , Tn〉/(G1, . . . , Gn) such that {∆, G1, . . . , Gn} generate the unit
ideal of the algebra O(X)〈T1, . . . , Tn〉. If Z → X is a general morphism, where Z is
an affinoid variety over K, then the fibre product Z ×X Y is given by the affinoid
algebra:

O(Z)⊗̂O(X)O(Y ) = O(Z)〈T1, ..., Tn〉/(G1, ..., Gm)
Thus it is clear that Z ×X Y → Z is again special étale.

Observation 3.1.3 Étale morphisms of affinoids are preserved by general base
change. It follows that arbitrary étale morphisms f : Y → X are preserved by
general base change. In particular, if b is an analytic point with image a in X then
Fb is a finite separable extension of Fa.

The following proposition shows that any étale morphism of affinoids can locally
be embedded in a finite étale morphism.

Proposition 3.1.4 Let f : Y → X be an étale morphism of affinoids. There exists
a finite affinoid covering X =

⋃
Xj , finite étale morphisms gj : Zj → Xj and open

immersions hj : f
−1(Xj)→ Zj such that f |f−1(Xj) = gj ◦ hj .

Proof. Let us take an analytic point a of X. By compactness of M(X) we need
only to find a wide neighborhood of a in X over which f can be factored as in the
proposition. By Lemma 3.1.6 we may assume that f−1({a}) = {b} for some analytic
point b of Y . By the above the field extension Fa ⊂ Fb is finite separable. Hence we
can find a wide U in the filter of a and a finite étale morphism φ : V → U such that
φ−1({a}) consists of one analytic point v with Fv ∼= Fb as Fa extensions. See Remark
2.1.2. Let us consider the fibre product Y ×X V and its projections. The projection to
the first factor is a finite étale map onto f−1(U), the projection to the second factor is
étale to V and there is an analytic point c =”b×a v” with Fv = Fc = Fb. Thus by the
lemma below a wide neighborhood W of b is isomorphic to a wide neighborhood of c
which is mapped isomorphically to an affinoid subdomain of a wide neighborhood of
v. Lemma 3.1.6 shows that replacing U by a smaller wide U we get that f−1(U) ⊂W
is isomorphic to an affinoid open subdomain of V . 2

Lemma 3.1.5 Let f : Y → X be an étale morphism of affinoids and b an analytic
point of Y . Put a = f(b). If Fa ∼= Fb then there exists a wide U in the filter of a such
that f−1(U) = V ∐W where V is a wide neighborhood of b in Y and the morphism
V → U is an open immersion. If f is finite then V → U is an isomorphism.
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Proof. In the case that f is finite we may assume that f−1({a}) = {b} by replacing
X by U as in Lemma 3.1.6 and Y by a connected component of f−1(U). Now O(Y )
is a finite locally free O(X)-module which we may assume to have constant rank
by replacing X by one of its connected components. Our assumptions imply that
Fa ∼= O(Y )⊗̂O(X)Fa ∼= O(Y )⊗O(X) Fa hence this rank must be one. This proves the
finite case.
The general case. We may replace X by a U as in the lemma below and Y

by one of its connected components, hence we may assume that f−1({a}) = {b}.
Let us consider the fibre product Y ×X Y . Since f is étale, the diagonal △(Y ) is a
union of connected components of Y ×X Y : △ is a closed immersion and it is étale
(look at local rings!), hence by the finite case above it is also open immersion. Put
Z = Y ×X Y \ △(Y ), it is an affinoid variety. By assumption, b is not in the image
of pr1|Z : Z → Y . Hence we can find a wide neighborhood V of b in Y such that
pr−11 (V )∩Z = ∅. (Use that the spacesM(Z) andM(Y ) are Hausdorff and compact.)
Next we replace X by a wide neighborhood U of a such that f−1(U) ⊂ V (see lemma
below) and Y by f−1(U). We see that Y ×X Y ∼= Y . Thus Y → X is an open
immersion ([BGR, 7.3.3], look at complete local rings in ordinary points of Y ) and
we have won. 2

Lemma 3.1.6 Suppose f : Y → X is a morphism of affinoids and a is an analytic
point of X.

1. If Ya =
⋃
Yi is the decomposition of the fibre of f into connected components,

then there is a wide U in the filter of a such that f−1(U) =
∐
Vi with (Vi)a = Yi.

2. If Ya = {b1, . . . , bs} and we are given wide neighborhoods Wi ⊂ Y of bi then we
may choose U such that f−1(U) ⊂ ⋃Wi.

Proof. The first assertion is a direct consequence of the base change theorem com-
bined with the fact that f∗Z is overconvergent. For 2) take neighborhoods W ′i of bi
in Y such that W ′i ⊂⊂Y Wi. By our Key Lemma we can find a neighborhood U

′ of a
such that f−1(U ′) ⊂ ⋃W ′i . For some U ⊂ X with U ′ ⊂⊂X U we get f−1(U) ⊂ ⋃Wi.
(Since

⋃
W ′i ⊂⊂Y

⋃
Wi, compare with proof of Lemma 2.3.2 part 4.) 2

Proposition 3.1.7 Let f : Y → X be an étale morphism with Y quasi-compact.

1. The image f(Y ) of f is a special subset of X, i.e., it is a finite union of open
affinoid subvarieties of X.

2. An analytic point a of X comes from an analytic point of f(Y ) if and only if
there exists an analytic point of Y mapping to a.

3. The formation of the image of f commutes with general base change: if X ′ → X
is a general morphism then f(Y ×X X ′) = f(Y )×X X ′.

Proof. We remark that the last assertion follows from the other two.
Let us take an admissible affinoid covering X =

⋃
Xj . The admissible covering

Y =
⋃
f−1(Xj) has a finite affinoid refinement Y =

⋃n
i=1 Yi. It suffices to prove the

proposition for the maps Yi → Xα(i). Thus we may assume that both X and Y are
affinoid. At this point let us prove the assertion on analytic points assuming proven
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the result on the image. Take an analytic point a of X. If a is not an analytic point
of f(Y ) then there exists a neighborhood U ⊂ X of a such that U ∩ f(Y ) = ∅. Hence
f−1(U) = ∅ and so Ya = ∅. On the other hand, if a = f(b) for some analytic point b
of Y then for any U in the filter of a, f−1(U) 6= ∅. Hence U ∩ f(Y ) 6= ∅, hence a is
an analytic point of f(Y ).

Let us prove the first assertion. Using our preceding proposition we may assume
that f factors as Y → Z → X where Y → Z is an open immersion and Z → X is
finite étale. We may also assume that Y is a rational subdomain of Z. We have a
morphism

ϕ : Z −→ (Pn)an

with Y = ϕ−1(R) where R = {(x0, . . . , xn); |x0| ≥ |xi|}.
Suppose the degree of Z → X is constant and equal to d. Consider the d-fold

fibre product

Zd := Z ×X Z × . . .×X Z

The diagonals △ij = {(z1, . . . , zd) ∈ Zd|zi = zj} are unions of connected components
of Zd since Z → X is étale. We put

W := Zd \
⋃

i,j

△ij

It is an affinoid variety, finite étale over X endowed with an action of Sd (the sym-
metric group on d letters). The quotient of W under this action is X in the sense
that Γ(W,OW )

Sd = Γ(X,OX). (Since Z → X is finite we are doing just algebraic
geometry here.) There is a Sd-equivariant map

ϕ× . . .× ϕ :W −→ Pann × . . .× Pann

which descends to a morphism

Sd(ϕ) : X →
(
(Pn)

d/Sd
)an

.

It is clear that f(Y ) = Sd(ϕ)
−1(R(d)/Sd

)
with

R(d) =
⋃

i

Pann × . . .×R× . . .Pann .

There is an obvious formal scheme (Pdn,k◦)
∧ giving rise to (Pdn)

an and R(d) corresponds
to a Sd-stable formal open subscheme of it, namely:

U :=
⋃

i

(Pn,k◦)
∧ × . . .× (An,k◦)∧ × . . .× (Pn,k◦)∧

It follows that R(d)/Sd corresponds to the formal open subscheme U/Sd of (Pdn,k◦)∧.
Thus R(d)/Sd is a special subset of

(
(Pn)d/Sd

)an
and hence so is Sd(ϕ)

−1 of it. 2
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3.2 The étale site

Let X be an analytic variety over k. In this subsection we recall the definition of
the étale site of X (see [S-S, p. 58]). We give a criterium for a presheaf to be a
sheaf and we give some examples of étale sheaves. Finally, we prove Hilbert 90 in
our situation and we prove that étale cohomology of coherent O-modules agrees with
rigid cohomology.
The underlying category of the site Xétale will be the category of étale morphisms

f of analytic varieties f : Y → X. A morphism of f into f ′ is a morphism g : Y → Y ′

such that f ′ ◦ g = f ; the morphism g is automatically étale.
We say that a family of étale morphisms {gi : Zi → Y }i∈I is an étale covering if

it has the following property:

For any (some) choice of admissible affinoid coverings Zi =
⋃
j Zi,j we have

Y =
⋃
i,j gi(Zi,j) and this is an admissible covering in the G-topology of Y .

This makes sense since the subsets gi(Zi,j) are admissible (special) subsets (see Propo-
sition 3.1.7). We remark that the property is local on Y in the following sense: if
Y =

⋃
Yl is an admissible affinoid covering then {gi : Zi → Y } is an étale covering

if and only if {gi : g−1i (Yl) → Yl} is an étale covering for all l. This is so since both
assertions are equivalent to the following assertion:

For each l there are finitely many (iα, jα), α = 1, . . . , n
such that Yl ⊂

⋃n
α=1 giα(Ziα,jα).

From this it also immediately follows that if {Zi → Y } is an étale covering and
{Xi,j → Zi} are étale coverings then {Xi,j → Y } is an étale covering.

Lemma 3.2.1 Suppose {Yi → X} is an étale covering and Z → X is a general
morphism. The fibre product {Z ×X Yi → Z} is an étale covering.

Proof. This follows immediately from the definition, the remarks above and Propo-
sition 3.1.7. 2

It follows from the above that the category Xétale, equipped with the family of
étale coverings as defined above is a site. It is also clear from the lemma that any
(general) morphism f : Z → X defines a morphism of sites Zétale → Xétale (given
by the functor (Y → X) 7→ (Z ×X Y → Z)). The functors on étale sheaves will be
denoted by f∗ and f∗ as usual.
For any object Y → X of Xétale we get a morphism of sites

rY/X : Xétale −→ Yrigid,

comparing rigid and étale topologies. It is defined by the inclusion of categories
Yrigid ⊂ Xétale, if S is a sheaf on Xétale then Γ(V, (rY/X)∗S) = Γ(V, S). Sometimes
we will use the notation S|Yrigid in stead of (rY/X)∗S; we will also use this notation
for presheaves S onXétale. If Y = X the morphism rX/X will be denoted r : Xétale →
Xrigid. If a is an analytic point of X then we put Sa := (S|Xrigid )a = r∗(S)a.

Proposition 3.2.2 The presheaf S on Xétale is a sheaf if and only if the following
two conditions hold:
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1. For any Y in Xétale the presheaf S|Yrigid is a sheaf.

2. For any surjective finite étale morphism Y ′ → Y of affinoids in Xétale the
sequence ∅ → S(Y )→ S(Y ′)→→S(Y

′ ×Y Y ′) is exact.

Proof. Suppose S satisfies 1) and 2). We claim that S also satisfies 2) for any finite
étale morphism Y ′ → Y in Xétale with Y quasi-compact. Just cover Y by affinoids
as in Lemma 2.5.3 and use 1) to show that it suffices to know 2) for all the resulting
affinoid finite étale coverings.
Let us take a morphism ϕ : Z → U in Xétale such that

1. ϕ is surjective,

2. Z and U are quasi-compact,

3. ϕ factors as Z → V → U with V → U finite étale and Z → V an open
immersion.

We claim that for any such ϕ the sequence

∅ → S(U)→ S(Z)
→
→S(Z ×U Z)

is exact. We prove this by induction on the degree of the morphism V → U . (If it is 1
then ϕ is an isomorphism and our claim trivial.) Suppose therefore that the degree of
V → U is d and that we have proved our claim in the cases where the corresponding
degree is less than d.
Since V → U is finite étale we have that the diagonal △(V ) ⊂ V ×U V is

a union of connected components of V ×U V . Its complement W ⊂ V ×U V is
thus a quasi-compact variety and the morphism pr2 : W → V is finite étale of
degree < d. Put Z ′ = Z ×U V ∩ W and U ′ = pr2(Z

′), both are quasi-compact
(see Proposition 3.1.7). The surjective étale morphism ϕ′ = pr2 : Z

′ → U ′ factors
through V ′ := W ∩ pr−12 (U ′) → U ′ which is finite étale of degree < d. Furthermore,
it is clear that V = U ′ ∩ Z.
We have the following commutative diagram:

∅ −→ S(U) −→ S(Z) −→
−→ S(Z ×U Z)

↓ ↓ ↓
∅ −→ S(U ′) −→ S(Z ′) −→

−→ S(Z ′ ×′U Z ′)

The diagram shows that any element s ∈ S(Z) such that p∗1(s) = p∗2(s) gives a unique
element (by induction) s′ ∈ S(U ′) such that s′|Z′ = s|Z′ . It is also true that s′|U ′∩Z =
s|U ′∩Z (use induction hypothesis for the morphism (ϕ′)−1(U ′ ∩ Z)→ U ′ ∩ Z). Hence
by 1) for the covering V = Z ∪ U ′ we get a unique section sV ∈ S(V ) with sV |Z = s
and sV |U ′ = s′. We want to show that p∗1(sV ) = p∗2(sV ) on V ×U V . Remark that
V ×U V has the following admissible special covering

V ×U V = Z ×U Z ∪ U ′ ×U Z ∪ Z ×U U ′ ∪ U ′ ×U U ′.

Hence by 1) we need only to prove p∗1(sV ) = p∗2(sV ) on each of these. For the most
difficult case, namely U ′ ×U U ′, we remark that the morphism Z ′ ×U Z ′ → U ′ ×U U ′
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is the composition Z ′ ×U Z ′ → U ′ ×U Z ′ → U ′ ×U U ′ of morphisms to which our
induction hypothesis applies. Hence the map S(U ′×U U ′)→ S(Z ′×U Z ′) is injective.
At this point the commutative diagram

S(Z) −→
−→ S(Z ×U Z)

↓ ↓
S(Z ′) −→

−→ S(Z ′ ×′U Z ′)

gives the desired result.

To prove that the presheaf S is a sheaf we have to show that any étale covering
{gi : Zi → Y } in Xétale gives an exact sequence

∅ −→ S(Y ) −→
∏

S(Zi)
−→
−→

∏
S(Zi ×Y Zj).

By choosing an admissible affinoid covering Y =
⋃
Yj and using 1) it is easy to

reduce to the case Y affinoid. Similarly we may reduce to the case all Zi affinoid
also. Using propositions 3.1.4 and 3.1.7 we may assume that each Zi → Y factors
as Zi → Vi → Ui ⊂ Y as above. It is now easy to deduce the result from our claim
above. Compare also with [M80, II 1.5]. 2

Examples of sheaves on the étale site. It follows easily from the criterium
given above that the following presheaves are sheaves. A general object of Xétale will
be denoted by f : Y → X.

1. The structure sheaf Ga defined by Y 7→ Γ(Y,OY ).

2. The sheaf Gm defined by Y 7→ Γ(Y,O∗Y ).

3. For any real number r we can look at the subsheaf of Ga given by Y 7→ {f ∈
Γ(Y,OY ) : |f(y)| ≤ r∀y ∈ Y }. We can also replace the ≤-sign by the < sign. If
r ≤ 1 we can define a subsheaf of Gm by inequalities of the form |1− f(y)| ≤ r.

4. Any representable sheaf Y 7→MorX(Y,Z) given by some variety Z over X.

5. For any Abelian group A we have the constant sheaf AX with stalks A defined
by: Y 7→ the set of maps Y → A constant on connected components of Y . (This
is in fact a representable sheaf, namely represented by

∐
a∈AX.)

6. If n is prime to the characteristic of k then we define µn as the kernel of the ho-
momorphism Gm → Gm given by multiplication by n. If k contains a primitive
nth root of unity ζ then µn ∼= Z/nZX · ζ. There is a Kummer exact sequence

1 −→ µn −→ Gm −→ Gm −→ 1.

7. Suppose that F is a coherent sheaf of OX -modules on X. We define a sheaf
W (F) of Ga-modules on Xétale as follows: Y 7→ Γ(Y, f∗F), here f∗ denotes
pullback of coherent O-modules: f∗F := f∗(F) ⊗f∗OX OY . It is clear that
W (OX) = Ga.
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Suppose that we are given an étale covering {Yi → X}. We claim that this
coverings allows effective descent of coherent O-modules. This means the following:
suppose we are given for each i a coherent OYi -module Fi and descent data. This
means isomorphisms of coherent sheaves

ϕij : pr
∗
1Fi −→ pr∗2Fj

on Yi ×X Yj satisfying the co-cycle relation ϕij ◦ ϕjk = ϕik on Yi ×X Yj ×X Yk. In
this situation there exists a unique coherent sheaf of OX -modules F giving rise to
Fi on each Yi and inducing the isomorphisms ϕij . In addition, homomorphisms of
systems (Fi, ϕij) as above should correspond to homomorphisms of the corresponding
sheaves F . The proof of this is gotten by paraphrasing the proof of Proposition
3.2.2 in this case. Indeed, the question we are considering is whether the association
Y 7→ the category of coherent OX -modules defines a sheaf of categories. It is clear
that rigid coverings and finite étale coverings allow effective descent for coherent O-
modules and hence the reasoning of the Proposition applies.

Corollary 3.2.3 Any descent datum for coherent sheaves over an étale covering of
X is effective.

Corollary 3.2.4 For any analytic variety X we have the following isomorphisms:

H1(X,Gm) ∼= H1(X,O∗X) ∼= Pic(X)

Proof. Of course the group Pic(X) is the group of isomorphism classes of line bundles
on X. Since H1 = Ȟ1 any element in H1(X,Gm) can be considered as descent data
for invertible O-modules. By the above these are effective and hence come from an
element of H1(X,O∗X). 2

Proposition 3.2.5 Suppose F is a coherent sheaf ofOX -modules. The natural maps
Hi(Xrigid,F)→ Hi(X,W (F)) are isomorphisms.

Proof. The maps arise from the identification r∗W (F) ∼= F and the adjunction map
r∗F = r∗r∗W (F) → W (F). Hence the result for i = 0. We are going to prove the
proposition by induction on i. Take n and suppose the proposition is proven for all
X,F and i ≤ n− 1.
For any f : Y → X in Xétale consider the map

Hn(Y, f∗F) = Hn(Y, (rY/X)∗W (F)) −→ Hn(Y,W (F)).

This map is injective: by induction hypothesis the sheaves Ri(rY/X)∗W (F) on Yrigid
are zero for i = 1, . . . , n − 1 (they are the sheaves associated to the presheaves
U 7→ Hi(U,W (F))). Thus the spectral sequence Hj(Y,Ri(rY/X)∗W (F)) ⇒
Hi+j(Y,W (F)) gives the result. Consider the presheaf Hn on Xétale defined by

Y 7−→ Hn := Coker
(
Hn(Y, f∗F)→ Hn(Y,W (F))

)
.

The sheaf associated to this presheaf is zero since any cohomology class in
Hn(Y,W (F)) can be killed by an étale covering. Therefore, if we show that Hn
is a sheaf then we are done. To do this we use the criterium from Proposition 3.2.2.
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Take any admissible covering U : Y = ⋃Yj of some étale f : Y → X. We have the
morphism of spectral sequences

Ȟi(U ,Hj
(
f∗F)

)
⇒ Hi+j

(
Y, f∗F

)

↓ ↓
Ȟi(U ,Hj

(
W (F))

)
⇒ Hi+j

(
Y,W (F)

)

(see for example [M80, III Proposition 2.7]). We leave it to the reader to verify that
this and our induction hypothesis immediately imply that

0 −→ Hn(Y ) −→
∏
Hn(Yj) −→

∏
Hn(Yi ∩ Yj)

is exact.
Finally, let Z → Y be a finite étale morphism of affinoids in Xétale. Put A =

O(Y ), B = O(Z) andM = Γ(Y,W (F)). We use the notation Zn = Z×XZ×. . .×XZ.
It is an affinoid variety. Thus we have that Hi(Znrigid,F ⊗ OnZ) = 0 for all i, n.
Furthermore, the complex

0 −→M −→M⊗̂AB −→M⊗̂AB⊗̂AB −→ . . .

is exact. (As the ring extension A ⊂ B is finite we may replace the completed tensor
products by usual ones and then the result is classical.) Thus the spectral sequence
Ȟi(U ,Hj(W (F))) ⇒ Hi+j(Y,W (F)) for the covering U = {Z → Y } and induction
hypothesis gives that

0 −→ Hn
(
Y,W (F)

)
−→ Hn

(
Z,W (F)

)
−→ Hn

(
Z ×Y Z,W (F)

)

is exact. We have won. 2

Corollary 3.2.6 Suppose the homomorphism A→ B of affinoid algebras defines a
surjective étale morphism of affinoids. For any finite A-module M the complex

0 −→M −→M⊗̂AB −→M⊗̂AB⊗̂AB −→ . . .

is exact.

3.3 Étale points and stalks

Let us define an étale point of the analytic variety X. An étale point e above the
analytic point a of X is a separable closure Fa ⊂ He of Fa. We will always denote
by Fe the completion of He. Note that the field Fe is algebraically closed (see [BGR,
3.4.1/6]). Therefore an étale point e over a also corresponds to an algebraically closed
complete extension Fa ⊂ Fe such that the algebraic closure of Fa lies dense in Fe.
The group Gal(He/Fa) is equal to the group of continuous Fa-isomorphisms Fe → Fe;
this pro-finite group will be denoted Ge.
An étale neighborhood of e is a triple (Y, b, φ), where Y is a variety étale over

X, the analytic point b of Y maps to a and φ : Fb → Fe is an Fa-embedding. A
morphism (Y, b, φ)→ (Y ′, b′, φ′) is a morphism g : Y → Y ′ over X such that g(b) = b′

and φ′ = φ ◦ g∗. Two étale neighborhoods (Y1, b1, φ1) and (Y2, b2, φ2) are dominated
by a third one: take Y = Y1 ×X Y2, take the point b in Y corresponding to some
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factor of Fb1 ⊗Fa Fb2 and φ = φ1 ⊗ φ2. In this way we see that the category of all
étale neighborhoods of e give a filtered system.
The stalk Se of a sheaf S on Xétale at the étale point e is defined by the formula:

Se := lim−→
(Y,b,φ)

S(Y )

The limit is take over the category of étale neighborhoods of e. If e′ (given by Fa ⊂
Fe′) is another étale point lying over a, we get by choosing a continuous isomorphism
ψ : Fe → Fe′ a functor (Y, b, φ) 7→ (Y, b, ψ ◦ φ) of the category of étale neighborhoods
of e to the category of étale neighborhoods of e′. This gives an isomorphism of stalks

Se := lim−→
(Y,b,φ)

S(Y )
ψ∗−→ Se′ := lim−→

(Y,b,φ)

S(Y )

s ∈ S(Y ) w.r.t. (Y, b, φ) 7−→ s ∈ S(Y ) w.r.t. (Y, b, ψ ◦ φ)

In particular we get an action of Ge on the stalk functor S 7→ Se. It is clear that this
action is continuous (with the discrete topology on Se), since any φ is stabilized by
an open subgroup of Ge.
Let us construct some étale neighborhoods of e. Take a finite Galois extension

Fa ⊂ L, say with group G, contained in Fe. By Remark 2.1.2 we can find an affinoid
neighborhood U of a in X and a finite étale morphism g : V → U , such that G acts
on V over U , g−1({a}) = {v} and Fv ∼= L (G-equivariant). We may also assume that
V and U are connected. It is clear that (V, v, Fv → L ⊂ Fe) is an étale neighborhood
of e. We claim that these étale neighborhoods are cofinal in the system of all étale
neighborhoods of e.
Indeed, given an arbitrary (Y, b, φ) take L such that it contains φ(Fb). The fibre

product Y ×X V contains a point c with pr1(c) = b, pr2(c) = v and Fb → Fc ∼= Fv ∼=
L ⊂ Fe equals φ. Using Lemma 3.1.5 we see that there is a commutative diagram

V ′ −→ Y
↓ ↑
V ←− Y ×X V

where V ′ ⊂ V is an affinoid subdomain containing v. By the Key Lemma we can find
a smaller affinoid neighborhood U ′ of a in X such that g−1(U ′) ⊂ V ′. It is clear that
(g−1(U ′), v, Fv → L ⊂ Fe) is of the form described above and dominates (Y, b, φ).

Lemma 3.3.1 In the situation above.

1. The association S 7→ Se is an exact functor of the category of étale sheaves on
X to the category of continuous Ge-sets.

2. For any étale neighborhood (Y, b, φ) we have

(
S|Yrigid

)
b
=
(
(rY/X)∗S

)
b
= H0(Gal(He/φ(Fb)), Se).

In particular Sa = (r∗S)a = H0(Ge, Se).

3. The cohomological dimension cd(Ge) of the pro-finite group Ge = Gal(He/Fa)
is less than or equal to dimX + cd(Gal(ksep/k)).
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Proof. (1) We have to show that a surjection of étale sheaves S → T induces a
surjection Se → Te. Take an element t ∈ T (Y ) for some étale neighborhood (Y, b, φ).
There is some étale covering {Zi → Y } of Y and elements si ∈ S(Zi) such that si
maps to the element t|Zi in T (Zi). By Lemma 3.2.1 the family {(Zi)b → b} is a
covering, hence there is some i0 and analytic point bi0 ∈ Zi0 mapping to b. Thus
(Zi0 , bi0 , χ) is a neighborhood of e (here χ is some extension of φ) and si0 gives an
element of Se lifting t. (Another proof follows from the result Se ↔ i∗aS below.)
(2) We only do the case X = Y , a = b. Take an element s ∈ Se, which is fixed

by the group Ge. By our results above we may assume that s ∈ S(V ) for some special
neighborhood (V, v, Fv → L ⊂ Fe) constructed above. Our assumption is that s is
stable under the action of G acting on S(V ) via its action on V . If we show that
V ×U V = V ×X V is isomorphic to V × G then the sheaf property of S will imply
that s comes from a unique section of S over U and hence we will be done. However,
this again is a consequence of Remark 2.1.2 at least after shrinking U a bit.
(3) We use the notations of Lemma 2.1.1. By [S64, II 4.1] we may replace Fa

by K, since this can at most increase the cohomological dimension. The field K is
the completion of k(t) = k(t1, . . . , td) for some valuation and some d ≤ dimX. But
then the group Gal(Ksep/K) is a closed subgroup of the group Gal(k(t)sep/k(t)). We
conclude by [S64, I Proposition 14, II Proposition 11]. 2

There is a more canonical way to understand the étale stalks Se. Consider the
general morphism

ia : a = Spm(Fa) −→ X.

It is clear that the category of sheaves on aétale is equivalent to the category of
discrete Ge-sets. (Compare [M80, II 1.9].) Therefore i∗a is a functor of sheaves on
Xétale to the category of discrete Gal− cont(Fe/Fa)-sets. This functor is precisely
our functor S 7→ Se. The functor (ia)∗ has the following description: if M is a set
with a continuous Ge-action, then

Γ(Y, (ia)∗M) =
∏

b∈Ya

(
HomFa(Fb, Fe)×M

)Ge

We leave it to the reader as a nice exercise that this functor is exact. It follows from
the yoga of adjoint functors that S 7→ (ia)∗S = Se transforms injective sheaves into
injective Ge-modules.

Corollary 3.3.2 There are canonical isomorphisms

(
Rqr∗S

)
a
∼= Hq(Ge, Se).

Proof. For q = 0 this is the lemma above. It follows for general q by the usual
argument using that if S is injective then both sides are zero. (See above.) 2

As in the rigid case we do not have enough étale points to separate étale sheaves.
To overcome this difficulty we introduce the étale overconvergent sheaves: A sheaf S
on Xétale is said to be (étale) overconvergent if S|Yrigid is overconvergent for all Y
in Xétale. Before we can prove interesting properties of these sheaves we need some
technical preparations; these will be done in the next section.
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3.4 Étale overconvergent sheaves on affinoids

In this section X will be an affinoid variety. Let f : Y → X be a morphism with Y
affinoid and let b be an analytic point of Y . We will say that Y is a wide neighborhood
of b over X if there exists an affinoid generating system f1, . . . , fn of O(Y ) over O(X)
such that |fi|b < 1 for all i = 1, . . . , n. Note that this agrees with our definition in
§3.1 in the case that f is an open immersion.
Next we define the notion of relative compactness over X. Let us take a quasi-

compact analytic variety Z over X and a quasi-compact open subvariety Y ⊂ Z. We
say that Y is relatively compact in Z over X, or that Z is a wide neighborhood of Y
over X, if for any analytic point b of Y there is an affinoid neighborhood V ⊂ Z of
b which is a wide neighborhood of b over X. Notation: Y ⊂⊂X Z. Remark that if
Y ⊂⊂Z Y ′ in this situation then also Y ⊂⊂X Y ′. We note that if both Y and Z are
affinoid then this agrees with the definition of [BGR, p. 394] (proof same as proof of
[S93, Proposition 23], see also [B90, §2.5]).
Suppose that f : Y → X is an étale morphism with Y quasi-compact. We want

to construct wide neighborhoods of f . We only do this in the case that f is an étale
morphism of affinoids. Thus Y is affinoid and O(Y ) has a presentation:

O(Y ) = O(X)〈T1, . . . , Tn〉
/
(G1, . . . , Gn)

such that ∆ = det(∂Gi
/
∂Tj) generates the unit ideal of O(Y ). A fundamental prop-

erty of special étale morphisms is that we may always choose this presentation such
that G1, . . . , Gn ∈ O(X)[T1, . . . , Tn]. This follows immediately from the proposition
below; in it we use |R| for the supremum norm of an element R ∈ O(X)〈T1, . . . , Tn〉.

Lemma 3.4.1 In the situation above there exists an ǫ > 0 such that if we take any
R1, . . . , Rn ∈ O(X)〈T1, . . . , Tn〉 with |Ri| < ǫ then we have:

1. The affinoid algebra O(X)〈T1, . . . , Tn〉/(G1+R1, . . . , Gn+Rn) defines a special
étale morphism f ′ : Y ′ → X.

2. There exists an isomorphism Y ∼= Y ′ of analytic varieties over X.

Proof. Let us write ∆ + R for the determinant of the matrix
(
∂(Gi +Ri)

/
∂Tj

)
. It

is clear that if the Ri have small norm then R has small norm. Since ∆, Gi generate
the unit ideal of O(X)〈T1, . . . , Tn〉 it follows that ∆ + R,Gi + Ri also generate the
unit ideal if |Ri| is small enough. This proves (1).
We claim there exists for any positive δ < 1 an ǫ > 0 such that for any affinoid

O(X)-algebra A the following holds: If there are a1, ..., an ∈ A with all |ai| ≤ 1 and
all |Gi(a1, ..., an)| < ǫ, then there are b1, . . . , bn ∈ A such that all |ai − bi| < δ and all
Gi(b1, ..., bn) = 0.
We suppose given a1, ..., an ∈ A with all |ai| ≤ 1 and all |Gi(a1, ..., an)| < ǫ, the

size of ǫ will be determined later. For an element b = (b1, ..., bn) ∈ An we write ‖b‖ =
max |bi|. Further G = (G1, ..., Gn) is seen as a map from {b ∈ An; ‖b‖ ≤ 1} to An.
Let ∂G/∂T denote the Jacobian matrix of G. Note that |(∂G/∂T )| is bounded from
below away from zero on Y , hence is bounded from below by η > 0 in a neighborhood
of the form |Gi| ≤ ǫ0, some ǫ0 > 0. We apply Newton’s method; consider the map
Z : b 7→ b − (∂G/∂T (b))−1G(b). By the remark above, and by considering a power
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series expansion of the map G, we see that for δ small enough (so that the quadratic
and higher order terms of the power series are negligible) and ǫ < ηδ (for the constant
terms) this defines a selfmap of the set S := {b ∈ An; ‖b−a‖ ≤ δ}. Moreover it is then
clear that the map Z : S → S is a contraction. The fixed point b of the contraction
satisfies G(b) = 0.
We apply this claim to A = O(X)〈T1, ..., Tn〉/(G1 + R1, ..., Gn + Rn) with

the |Ri| < ǫ and where ai, i = 1, ..., n is the image of Ti in A. There re-
sults a morphism of affinoid O(X)-algebras α : O(X)〈T1, ..., Tn〉/(G1, ..., Gn) →
O(X)〈T1, ..., Tn〉/(G1 + R1, ..., Gn + Rn), with α(Ti) close to Ti. We can do the
same in the other direction to get β : O(X)〈T1, ..., Tn〉/(G1 + R1, ..., Gn + Rn) →
O(X)〈T1, ..., Tn〉/(G1, ..., Gn), with β(Ti) close to Ti. The composition is an endo-
morphism of O(Y ) = O(X)〈T1, ..., Tn〉/(G1, ..., Gn) as an O(X)-algebra which is close
to the identity. It follows that this must be the identity by looking at the graph of it in
the fibre product Y ×X Y , where the diagonal is a union of connected components. 2

Let us take an étale morphism of affinoids f : Y → X and take a presentation
O(Y ) = O(X)〈T1, . . . , Tn〉/(G1, . . . , Gn) with Gi ∈ O(X)[T1, . . . , Tn]. The functional
determinant of this presentation ∆ = det(∂Gi/∂Tj) is viewed as a function on X ×
AN,an. We define a morphism f(r) : Y (r)→ X for r ∈ √|k∗|, r > 1 as follows:

Y (r) =
{
(x, t1, . . . , tn) ∈ X × An,an; |ti| ≤ r and Gi(x, t1, . . . , tn) = 0

}

We claim that if our r is close to 1 then f(r) will again be special étale. To see this
we note that there is a presentation:

O(Y (r)) = O(X)〈S1, . . . , Sn, T ′1, . . . , T ′n〉
/(
(T ′i )

m − π−m+1Si, Gi(πT ′1, . . . , πT ′n)
)

Here π is an element of k with rm = |π| and the relation of the coordinates is that
Si = π−1Tmi and T

′
i = π−1Ti. The functional determinant of this presentation is

π−mn∆|Y (r). It is therefore clear that Y (r) → X is special étale as soon as ∆ ∈
Γ(Y (r), OY (r)) is invertible; this will be the case for r sufficiently close to 1 (the zero
locus of ∆ lies a positive distance away from Y !). Finally it is clear that Y ⊂⊂X Y (r).
We will use the notation Y (r) even if no explicit presentation of O(Y ) is given, the
number r will always denote an element of

√|k∗| bigger than 1 and small enough.
At this point we want to prove the analog of Lemma 2.3.1 in this situation.

However, we need to be careful since any étale U → X has many non-separated wide
neighborhoods, so the wide neighborhoods Y ⊂ Y (r) can only be cofinal in the system
of separated wide neighborhoods. Although this is in fact true, we restrict ourselves
to the case of affinoid varieties.

Lemma 3.4.2 With notations as above.

1. Let W , U ⊂⊂X V be affinoid varieties étale over X and f : V → W a mor-
phism over X. If V ′ is a wide neighborhood of U in V , then f(V ′) is a wide
neighborhood of f(U) in W . For varying V ′ these give a cofinal system of wide
neighborhoods of f(U). If f |U is an isomorphism U → f(U) then for some
U ⊂⊂V V ′ f induces an isomorphism V ′ → f(V ′).

2. If U ⊂⊂X V are affinoid varieties étale over X and ϕ : Y → U is a morphism
then for some r > 1 there exists an extension ϕ(r) : Y (r) → V of ϕ. This
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extension is unique if r is sufficiently close to 1. In particular the Y (r), r > 1
form a cofinal system of affinoid wide neighborhoods of Y over X.

3. Suppose that Yi → X, i = 1, . . . , n is étale and Yi affinoid. We have:

Y1(r)×X . . .×X Yn(r) =
(
Y1 ×X . . .×X Ym

)
(r)

Proof. Suppose we show that if b is an analytic point of U (with image a in W ), then
there is a wide neighborhood Vb of b in V

′ such that f(Vb) is a wide neighborhood
of a in W . This immediately implies the first statement of (1). The statement on
co-finality then follows immediately by letting V ′ run through the inverse images of
such a system of wide neighborhoods of f(U). Let Z denote the complement of the
diagonal in V ×W V ; it is a union of connected components and hence affinoid. Under
the last assumption of (1) we have pr1(Z)∩U = ∅. Thus for some wide neighborhood
V ′ of V we have V ′ ×W V ′ ∼= V ′ and hence it will map isomorphically onto f(V ′)
(compare with Lemma 3.1.5).
Let us construct the neighborhood Vb. By assumption there exists an affinoid

generating system f1, . . . , fr of O(V ) over O(X) such that |fi|b < 1. Take a wide
neighborhood Vb of b such that ||fi||Vb < 1. By Lemma 3.1.6 we can find a wide
neighborhood Wa of a in W such that f−1(Wa) =

⋃
Vi as in 3.1.6.1 and V1 ⊂ Vb is

a wide neighborhood of b. Thus we may replace W by Wa and V by V1 and assume
that ||fi||V < 1 for a generating system f1, . . . , fr of O(V ) over O(W ). But then V
is finite over W [BGR, 9.6.3/6], so we get the existence of Vb by Lemma 3.1.5.
To prove (2) we apply (1) to the projection Y (r) ×X V → Y (r). We see that

there exists a wide neighborhood of the graph Γϕ ⊂ Y ×X U ⊂ Y (r) ×X V which
maps isomorphically onto a wide neighborhood Y ′ of Y in Y (r). Hence we can find
some r′, 1 < r′ < r such that Y (r′) ⊂ Y ′ (see Lemma 2.3.1). This r′ works.
The proof of (3) is formal. 2

The lemma above allows us to work with étale morphisms of affinoids only. There-
fore we introduce the special étale site of X. (Recall that X is affinoid.) It is denoted
Xsp
étale and is defined as follows:

1. Objects are étale morphisms Y → X with Y affinoid, i.e. special étale ones.

2. Morphisms are morphisms of analytic spaces over X.

3. Coverings are those finite families of morphisms {fi : Yi → Y } such that⋃
fi(Yi) = Y .

It follows from the remarks made after the definition of special étale morphisms and
Lemma 3.2.1 that this is indeed a site. It is functorial with respect to (general)
morphisms of affinoids: Z → X induces a morphism of sites Zspétale → Xsp

étale.
The morphism of site Xétale → Xsp

étale, given by the inclusion functor, induces an
equivalence of associated topoi. (Use 3.1.2.)

Lemma 3.4.3 The topos of sheaves on Xsp
étale is coherent (see [SGA 4, Exposé VI]).

In particular, étale cohomology of étale Abelian sheaves on X commutes with filtered
direct limits, see [Ibid, 5.2].
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Proof. In the site Xsp
étale finite fibered products are representable and any object is

quasi-compact (see [Ibid, Definition 1.1]). Since it also has a final object we are done,
see [Ibid, 2.4.1]. 2

The following lemma characterizes overconvergent étale sheaves on X in terms
of the site Xsp

étale.

Lemma 3.4.4 A sheaf S on Xsp
étale corresponds to an overconvergent sheaf on Xétale

if and only if the natural map

lim−→
r>1

S(Y (r)) −→ S(Y )

is an isomorphism for all Y → X affinoid étale.

Proof. Suppose that S is overconvergent. In this case S|Y (r0) is overconvergent for
some r0 > 1. Hence 3.4.4 is an isomorphism since Y ⊂⊂Y (r0) Y (r), 1 < r < r0 forms
a cofinal system of wide neighborhoods of Y in Y (r0).
Conversely suppose 3.4.4 is an isomorphism always. Let Y → X be an étale

morphism of affinoids. We have to show that S|Y is rigid overconvergent. Let U ⊂ Y
be a rational subset of Y . Choose some r0 > 1 such that Y ⊂⊂X Y (r0) and Y (r0)
is étale over X. Denote for r > 1 by U(r) the wide neighborhood of U in Y (r0)
defined in §3.3. It follows easily from Lemma 3.4.2 that these wide neighborhoods
U ⊂⊂X U(r) form a cofinal system of affinoid étale wide neighborhoods of U over X.
Hence our assumption gives the isomorphism limS(U(r)) = S(U).
However, we want to show that the map limS(U(r) ∩ Y )→ S(U) is an isomor-

phism. It is clear from the above that this is a surjection. Using for all the rational
subdomains U(r)∩Y of Y the bijectivity of the map S

(
(U(r)∩Y )(r′)

)
→ S(U(r)∩Y ),

it also follows that the map is injective. This proves our lemma. 2

We will say that a presheaf on Xsp
étale is overconvergent if the map 3.4.4 is always

an isomorphism. At this point we introduce a useful method to produce overconver-
gent (pre)-sheaves on Xsp

étale. Let S be a presheaf on X
sp
étale. We define the presheaf

cS on Xsp
étale as follows:

Γ(Y, cS) = cS(Y ) := lim−→
r>1

Γ(Y (r), S)

for any Y in Xsp
étale. Note that Lemma 3.4.2 implies that this is independent of the

chosen representation of O(Y ) over O(X) and that cS is indeed a presheaf. The
construction c is a functor, there is an obvious functorial arrow cS → S and the map
ccS → cS is an isomorphism. Hence the presheaf cS is overconvergent. It is therefore
clear that the functor c is a right adjoint of the inclusion functor: overconvergent
presheaves on Xsp

étale → presheaves on X
sp
étale.

Lemma 3.4.5 With notations as above.

1. If S is a sheaf then cS is a (overconvergent) sheaf. The functor S 7→ cS is a
right adjoint of the inclusion functor: overconvergent sheaves on X → sheaves
on X. The functor S 7→ cS is left exact on the category of sheaves on Xsp

étale.
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2. If J is an injective sheaf on Xsp
étale and U = {Yi → Y } is a covering in Xsp

étale

then
Ȟi(U , cJ ) = 0 ∀i > 0.

It follows that cJ is a flabby sheaf on Xsp
étale.

3. Any overconvergent sheaf can be embedded into a sheaf of the form cJ with J
injective.

Proof. Let U = {gi : Yi → Y } be a covering inXsp
étale. We want to show the following:

there exists a set of coverings Uα such that for any (pre)sheaf S we have a canonical
isomorphism:

(∗) lim−→
α

Č(Uα, S) ∼= Č(U , cS)

(The symbols Č denote Čech-complexes.) It is clear that this will prove that cS is a
sheaf if S is a sheaf and it will prove the second assertion of the lemma. We leave the
adjointness property to the reader, as well as the third part of the lemma.
We will only prove the above in the case that the covering U = {g : Z → Y } is

given by one map. Since for an arbitrary (and hence finite) covering in Xsp
étale there

exists a covering consisting of a single morphism giving an isomorphic Čech-Complex
there is no loss of generality. To do this we fix r0 > 1 small enough such that Y (r0)
is étale over X and a r1 > 1 small enough such that g extends to g̃ : Z(r1)→ Y (r0).
Next, for any r2, 1 < r2 < r1, we choose a r3(r2), 1 < r3(r2) < r0 such that
Y (r3(r2)) ⊂ g̃(Z(r2)). This is possible by Lemma 3.4.2, which also implies that we
may choose r3(r2) to be a decreasing function of r2, decreasing to 1 in fact.
We put Zr2 = Z(r2) ∩ g̃−1

(
Y (r3(r2))

)
. The coverings we are looking for are

Ur2 = {Zr2 → Y (r3(r2))}. Note that there are commutative diagrams for 1 < r′2 < r2:

Z −→ Zr′2 −→ Zr2
↓ ↓ ↓
Y −→ Y (r3(r

′
2)) −→ Y (r3(r2))

Hence we get the map (*). To show that (*) is an isomorphism we only need to prove
that

Z ×Y . . .×Y Z ⊂⊂X Zr2 ×Y (r3(r2)) . . .×Y (r3(r2)) Zr2
forms a cofinal system of wide neighborhoods of Z ×Y . . . ×Y Z as r2 decreases to
1. This is clear from the following three facts: 1) Zr2 ×X . . .×X Zr2 forms a cofinal
system of wide neighborhoods of Z×X . . .×X Z (see Lemma 3.4.2), 2) Z×Y . . .×Y Z
is a union of connected components of Z ×X . . . ×X Z and 3) the intersection of
Zr2 ×Y (r3(r2)) . . .×Y (r3(r2)) Zr2 with Z ×X . . .×X Z is Z ×Y . . .×Y Z. 2

Lemma 3.4.6 (Properties of overconvergent sheaves on Xsp
étale.) In this lemma all

(pre-)sheaves are (pre-)sheaves of Abelian groups.

1. The sheaf associated to an overconvergent presheaf is overconvergent.

2. For any overconvergent sheaf S the presheaves Y 7→ Hq(Y, S) are overconver-
gent; for any q the rigid sheaf Rq(rX/Y )∗S is overconvergent on Y , in particular
the sheaves Rqr∗S are overconvergent on Xrigid.
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3. The category of overconvergent sheaves is an exact subcategory of the category
of all sheaves on Xsp

étale.

4. If f : Z → X is a general morphism of affinoids then f∗ and f∗ preserve
overconvergent sheaves. The same holds for Rqf∗ for any q.

5. If {fi : Xi → X} is a special étale covering of X then a sheaf on Xsp
étale is

overconvergent if and only if each f∗i (S) is overconvergent.

6. An overconvergent sheaf S is zero if and only if its étale stalks Se are zero for
all étale points e of X.

Proof. 1) Let a(S) denote the sheaf associated to S. The map S → a(S) factors as
S → ca(S)→ a(S) since S is overconvergent. By the universal property of aS we get
a section a(S)→ ca(S) (as ca(S) is a sheaf). It follows that a(S) is a direct summand
of the overconvergent sheaf ca(S) and hence overconvergent.
2) Embed S in an overconvergent flabby sheaf as in the preceding lemma: 0 →

S → cJ . The quotient presheaf is overconvergent hence so is the quotient sheaf Q by
1). For any affinoid Y étale over X we get the exact sequence

0 −→ H0(Y, S) −→ H0(Y, cJ ) −→ H0(Y,Q) −→ H1(Y, S) −→ 0

and isomorphisms Hq(Y, S) ∼= Hq−1(Y,Q) for q > 1. It follows immediately that the
presheaf Y 7→ H1(Y, S) is overconvergent and the usual induction on q does the rest.
3) Follows from 1) and 2) and the results on rigid overconvergent sheaves.
4) Remark that if Y → X is affinoid étale then Y (r)×X Z ∼=

(
Y ×X Z

)
(r). The

rest of the argument is completely analogous to the proof of Lemma 2.3.2 part 4.
5) Same argument as in the rigid case.
6) This is immediate from Lemma 3.3.1 combined with the result for rigid over-

convergent sheaves. 2

3.5 Étale overconvergent sheaves on general X

Let X be an arbitrary analytic variety over k. Recall that a sheaf S on Xétale is
overconvergent if S|Y is rigid overconvergent for any Y étale over X. It is clear from
Lemma 3.4.6 that this condition is local in the étale topology on X.
There are now a number of easy consequences of the above which we list here:

1. If f : Z → X is an arbitrary (general) morphism then f∗ preserves overconver-
gent sheaves.

2. If f : Z → X is quasi-compact then Rqf∗ preserves overconvergent sheaves.
(Compare proof of Proposition 2.4.1.)

3. For any overconvergent sheaf S onX the rigid sheavesRq(rY/X)∗S (in particular
Rqr∗S) are overconvergent.

Finally, we have the following result.

Proposition 3.5.1 If X is paracompact and S is an overconvergent torsion sheaf
on Xétale then H

q(X,S) = 0 for all q > 2 dimX + cd(k), where cd(k) denotes the
cohomological dimension of k.
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Proof. Consider the spectral sequence with E2-term Hi(Xrigid, R
jr∗S) converging

to Hi+j(X,S). By Corollary 3.3.2 and Lemma 3.4.6 we get that the sheaves Rjr∗S
are zero for j > dimX + cd(k). Hence we get the result from Corollary 2.5.10. 2

3.6 Galois action on cohomology

Let us take a separable closure ksep of k and let us denote by K the completion of
ksep with respect to the absolute value | |. Note that K is algebraically closed (see
e.g. [BGR, 3.4]). We remark that the group G := Gal(ksep/k) can be identified with
the group of continuous automorphisms of K over k.
Take an analytic varietyX over k and an étale sheaf S on it. Consider the variety

X⊗̂K over K and the general morphism α : X⊗̂K → X. For any σ ∈ G there is an
obvious general morphism ϕσ : X⊗̂K → X⊗̂K. This is not a morphism of analytic
varieties over K unless σ = idK ; it lies over the continuous field homomorphism
σ : K → K. Since it is clear that α = α ◦ ϕσ, we get an isomorphism α∗(S) ∼=
(α ◦ ϕσ)∗(S) ∼= (ϕσ)∗α∗(S). Thus we get

ϕ∗σ : H
i(X⊗̂K,α∗S) −→ Hi(X⊗̂K,α∗S).

This defines an action of G on Hi(X⊗̂K,α∗S).
Another way to get a G-module is to consider the morphism

p : X → Sp(k)

As was noted above the sheaves Rip∗S correspond to G-modules (Rip∗S)e. It will be
shown below that these two Galois modules agree in the case thatX is quasi-compact.

3.7 Étale base change

Let f : Y → X be a quasi-compact morphism of analytic varieties over k and S an
étale sheaf on Y . The étale base change theorem compares the cohomology of S on
the étale fibre Ye with the étale stalks at e of the sheaves R

qf∗S. The étale fibre is
just defined as Ya⊗̂Fe, or as the fibre product of the general morphism Sp(Fe)→ X
with the morphism Y → X. The result will be an isomorphism of Ge-modules. As in
the rigid case the theorem will follow formally from a lemma describing the étale site
of the fibre Ye in the affinoid case.
Therefore we suppose that f : Y → X is a morphism of affinoids over k and we

fix an étale point e lying over the analytic point a of X. For any étale neighborhood
(U, b, φ) of e with U affinoid we can consider the special étale site of YU := Y ×X U .
Using φ we can see e as an étale point of U lying over b and then it is clear that
(YU )e = Sp(Fe) ×U YU ∼= Sp(Fe) ×X Y = Ye. Thus a general morphism Ye → YU
which gives rise to the functor

(
YU
)sp
étale

−→
(
Ye
)sp
étale

V → YU 7−→ Ve → Ye.

On the other hand, if the affinoid étale neighborhood (U ′, b′, φ′) dominates (U, b, φ),
there is clearly a functor (YU )

sp
étale → (YU ′)

sp
étale compatible with the functor described

above.
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Lemma 3.7.1 The functors above define an equivalence of sites:

lim−→
(U,b,φ)

(
YU
)sp
étale

∼=
(
Ye
)sp
étale

.

Proof. Note that all functors defined above underly morphisms of sites in the reverse
directions. The statement follows from the following three assertions:

1. For any étale morphism V → Ye with V affinoid there exists an affinoid étale
neighborhood (U, b, φ) and an étale W → YU morphism of affinoids such that
We
∼= V as varieties over Ye.

2. Given two étale morphisms Wi → YU , Wi affinoid (i = 1, 2 and U as above)
and a morphism ψe : W1,e → W2,e there exists an affinoid étale neighborhood
(U ′, b′, φ′) dominating (U, b, φ) and a morphism ψU ′ :W1,U ′ →W2,U ′ such that
ψU ′,e = ψe. This ψU ′ is unique if U

′ is small enough.

3. If {gi : Wi → W} is a finite set of morphisms in (YU )spétale and {Wi,e → We} is
an étale covering then {Wi,U ′ →WU ′} is an étale covering if U ′ is small enough.
Let us prove 1). By definition O(V ) has a presentation

O(V ) ∼= O(Ye)〈T1, . . . , Tn〉/(G1, . . . , Gn)

such that ∆ := det(∂Gi/∂Tj) is invertible. By Lemma 3.4.1 we may suppose that
the Gi are polynomials. Since O(Ye) = O(Y )⊗̂O(X)Fe we can approximate the Gi by
polynomials with coefficients in O(Y )⊗O(X)L for some finite separable field extension
Fa ⊂ L ⊂ Fe. By Lemma 3.4.1 we may assume Gi ∈ O(Y ) ⊗O(X) L[T1, . . . , Tn].
We can construct (U, b, φ) such that φ(Fb) ⊃ L (see 3.3); for this U we can find
polynomials Pi ∈ O(Y )⊗̂O(X)O(U)[T1, . . . , Tn] mapping to the Gi. The function
∆(P ) := det(∂Pi/∂Tj) on

W := Sp(O(Y )⊗̂O(X)O(U)〈T1, . . . , Tn〉/(P1, . . . , Pn)

is such that its restriction to We is invertible. Hence, ∆(P ) is invertible onWb, hence
by Lemma 2.7.2 or 2.7.1 we get that ∆(P ) is invertible on W after shrinking U . This
gives that W → YU is special étale and We

∼= V by construction.
Next we do 2). Note that the morphism ψe : W1,e → W2,e gives rise to a graph

morphism Γe : W1,e → (W1 ×YU W2)e and that this morphism identifies W1,e with
a union of connected components of (W1 ×YU W2)e. Hence Γe is an étale morphism
of affinoids. By 1) there exists a smaller étale neighborhood (U ′, b′, φ′) and an étale
morphism of affinoids ΓU ′ : W → (W1 ×YU W2) ×U U ′ ∼= W1,U ′ ×YU′ W2,U ′ with
We
∼= W1,e and ΓU ′,e = Γe. We replace (U, b, φ) by (U

′, b′, φ′) and hence we have
Γ : W → W1 ×YU W2. Consider p2 = pr2 ◦ Γ. By the above we have that (p2)e is an
isomorphism. It follows that (p2)b is a bijective (on analytic points) étale morphism
of affinoids and hence an isomorphism. Thus for any analytic point c ∈W1,b we have
that p−12 (c) consists of one analytic point c

′ ∈W with Fc ∼= Fc′ . Lemma 3.1.5 implies
that p2 is an open immersion in a wide open neighborhoodW1(c) of c in W1. Finitely
many W1(c)b’s cover W1,b and Wb = W1,b hence by the key lemma for the rigid case
we may shrink U and get that p2 is an isomorphism (apply the key lemma to both
W and W1). Clearly, the morphism pr1 ◦ Γ ◦ (p2)−1 :W1 →W2 does the job.
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The uniqueness follows easily from the rigid key lemma by looking at graphs as
above.
Finally, if the assumptions are as in 3) then We =

⋃
i gi,e(Wi,e) implies Wb =⋃

gi,b(Wi,b), since formation of image commutes with arbitrary base change, see
Lemma 3.1.7. Thus the statement follows from the rigid case, i.e., if U small enough
then W =

⋃
gi(Wi). 2

This was the hard part of the proof of the base change theorem in the étale case.
We can deduce the following analog of 2.7.3.

Corollary 3.7.2 Consider the general morphism α : Ye → Y .

1. The functor α∗ preserves flabby sheaves.

2. For any sheaf S on Y spétale, any (U, b, φ) and any W → YU as above we have:

Γ(We, α
∗S) = lim−→

(U ′,b′,φ′)≥(U,b,φ)
Γ(W ×U U ′, S)

Proof. For any S on Y spétale we have H
q(Ye, α

∗S) = limHq(YU , S), by Remark 2.5.9
and the previous lemma. The same argument gives Hq(We, α

∗S) = limHq(WU , S)
for W as in 2). The results of the corollary follow directly from this. 2

Theorem 3.7.3 Let f : Y → X be a quasi-compact morphism of analytic spaces
over k. Take an étale point e of X and denote by Ye the (étale) fibre of f at e. The
functors

S 7→ Hq(Ye, α
∗S) resp. S 7→ (Rqf∗S)e

are δ-functors of the category of Abelian sheaves on Yétale to the category of continuous
Ge-modules. These δ-functors are isomorphic.

Proof. Remark that Ye = Ya⊗̂Fe and that α∗S is the pullback of S|Ya,étale via the
general morphism Ye → Ya. Thus we see by 3.6 that the groups H

q(Ye, α
∗S) indeed

have a Galois module structure. In the same way as in the proof of the rigid base
change theorem it is proved that the functors under consideration form δ-functors.
The maps (

Rqf∗S
)
e
−→ Hq(Ye, α

∗S)

are defined similarly as in the proof of Theorem 2.7.4. These maps commute with
Galois action since the action on both sides is defined through the action of Ge on Fe.
Let us prove that these maps are isomorphisms only in the case that both X and

Y are affinoid. The general case then follows as it did in the rigid case. The result
for q = 0 is just Corollary 3.7.2 part 2) with W = Y . The general result follows by
induction on q and the fact that α∗ preserves flabby sheaves. 2

Corollary 3.7.4 If f : Y → X is quasi-compact and has finite fibres then Rqf∗S is
zero for q ≥ 1 and any overconvergent sheaf S on Yétale. In particular the cohomology
of S on Y is equal to the cohomology of f∗S on X.
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Corollary 3.7.5 (Hochschild-Serre spectral sequence.) Let K be a completion of a
separable closure ksep of k. Let G = Gal(ksep/k) denote the continuous Galois group
of K over k. For any quasi-compact variety X over k and any Abelian sheaf S on
Xétale there is a spectral sequence

Hi(G,Hj(X⊗̂K,α∗S))⇒ Hi+j(X,S).

Here α : X⊗̂K → X is as in 3.6 and Hq(G,−) denotes continuous cohomology.

Proof. Let us write p : X → Sp(k) as in 3.6. Let a denote the unique analytic
point of Sp(k) and let e be an étale point lying over a. First we note that (if S is
overconvergent)

Hq(X⊗̂K,α∗S) ∼= (Rqp∗S)e
as G-modules by the theorem above. This shows that the G-module on the left has a
continuous G-action if it is given the discrete topology. It also proves that

H0(G,H0(X⊗̂K,α∗S)) = H0(G, (p∗S)e) = (p∗S)a = H0(Sp(k), p∗S) = H0(X,S).

Here we used Lemma 3.3.2. Hence we only need to show that the functor which maps
S to the Galois module H0(X⊗̂K,α∗S) transforms an injective sheaf S on X into an
acyclic G-module. Since we are taking continuous cohomology we have:

Hq(G,H0(X⊗̂K,α∗S)) = lim−→
k⊂k′

Hq(Gal(k′/k),H0(X⊗̂K,α∗S)G′),

where the limit runs over all finite Galois extensions k ⊂ k′ contained in K. By an
argument as above this is the limit over the groups

Hq(Gal(k′/k),H0(X ⊗ k′, S)).

But since S is injective these groups compute the cohomology groups Hq(X,S) (com-
pare [M80, Theorem 2.20]) and these are zero for q ≥ 1. 2

4 Cohomology of varieties of dimension at most 1

In this section we suppose that the field k is algebraically closed. Let p ≥ 1 denote
the characteristic of the residue field of k. We put p = 1 if the residue field of k
contains the field of rational numbers. Further X will denote an analytic space over
k of dimension ≤ 1.

4.1 Some general results

For n > 1 which is not divisible by the characteristic of k, we consider the exact
sequence

0 −→ µn −→ Gm n−→ Gm −→ 0
of sheaves on Xétale. This sequence induces the following distinguished triangle of
complexes on Xrigid:

−→ Rr∗µn −→ Rr∗Gm −→ Rr∗Gm −→ Rr∗µn[1]
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We already know quite a lot about the homology sheaves of these complexes: We
know that Rqr∗µn = 0 for all q ≥ 2 by Lemma 3.3.1 and Corollary 3.3.2 combined
with the fact that Rqr∗µn are overconvergent (Lemma 3.4.6). Further we know that
R1r∗Gm = 0 by Corollary 3.2.4. The following result is a formal consequence of this.

Lemma 4.1.1 In the derived category of Abelian sheaves on Xrigid we have the fol-
lowing isomorphism

Rr∗µn ∼=
(
O∗X

n−→ O∗X
)
,

where the first term on the right is placed in degree 0.

Lemma 4.1.2 Let X be connected paracompact (and still have dimension ≤ 1). We
denote by Z/nZX the constant sheaf with fibre Z/nZ on Xétale, where n is prime to
the characteristic of k. We have H0(X,Z/nZX) = Z/nZ and Hq(X,Z/nZX) = 0 for
q ≥ 3.

1. There is an exact sequence

0 −→ H1(Xrigid,Z/nZ) −→ H1(X,Z/nZX) −→ H0(Xrigid, R
1r∗Z/nZX)→ 0

and we have H2(X,Z/nZX) = H1(Xrigid, R
1r∗Z/nZX).

2. A choice of a primitive nth-root of unity determines an exact sequence

0 −→ O(X)∗/O(X)∗ n −→ H1(X,Z/nZX) −→ ker(n, P ic(X)) −→ 0

and an isomorphism H2(X,Z/nZX) = Pic(X)/nPic(X).

Proof. The statement on H0 is trivial. Consider the spectral sequence with E2-
terms Hp(Xrigid, R

qr∗Z/nZX) abutting to Hp+q(X,Z/nZX). Clearly 1) follows since
Rqr∗Z/nZX = (0) for q ≥ 2 and cohomology of rigid sheaves is zero on X in dimen-
sions ≥ 2 by Corollary 2.5.10.
A choice of a primitive nth-root of unity determines an isomorphism of sheaves

Z/nZX ∼= µn. Thus statement 2) follows from the lemma above and the vanishing of
rigid cohomology in degrees ≥ 2 on X. 2

4.2 The cohomology of Z/nZ with (n, p) = 1

In this subsection we will determine the cohomology of X in certain cases where X
is smooth and irreducible. We will use the word curve to denote a separated analytic
variety of pure dimension 1. Recall that we are working over an algebraically closed
field.

Proposition 4.2.1 Let C be a nonsingular projective curve of genus g. We compute
the cohomology with values in Z/nZ for (n, p) = 1 of an open subvariety X of C as
follows.

1. If X = C, then H1(X,Z/nZX) ∼= (Z/nZ)2g and H2(X,Z/nZX) ∼= Z/nZ.

2. If X is the complement of finitely many points c1, . . . , ca (a > 0) in C, then
H1(X,Z/nZX) ∼= (Z/nZ)2g+a−1 and H2(X,Z/nZX) = 0.
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3. Suppose X is C \ (D1 ∪ . . . ∪Da) where the Di are disjoint open discs in C. In
this case H1(X,Z/nZX) ∼= (Z/nZ)2g+a−1 and H2(X,Z/nZX) = 0.

In all of these cases, for any extension of algebraically closed complete valued fields
k ⊂ K, the natural map Hq(X,Z/nZX)→ Hq(XK ,Z/nZXK ) is an isomorphism.

Proof. Part 1) follows from Lemma 4.1.2 part 2) and the fact that Pic(C) corresponds
to the algebraic Picard group of C by GAGA. Note that the isomorphism for H2 is
given by the isomorphism Pic(C)/nPic(C) ∼= Z/nZ induced by taking degrees of line
bundles on C.
Note that in case 2) the space X is the admissible increasing union X =

⋃
Xn

of affinoid spaces Xn as in 3). Just take Di,n to be smaller and smaller open discs in
C with center ci. Thus if we prove 3) then 2) will follow by considering the Cartan-
Leray spectral sequence associated to the covering X =

⋃
Xn. (Here we also need

that the maps Hi(Xn+1)→ Hi(Xn) are isomorphisms; this follows from the proof of
3) below.)
Let us assume X is as in 3). Any line bundle on X is the restriction of a

line bundle of degree zero on C. In other terms, Pic0(C)→ Pic(X) is surjective. In
particular Pic(X) is a divisible group and by Lemma 4.1.2 we getH2(X,Z/nZX) = 0.
For the calculation of the group H1(X,Z/nZX) we start with the case where X is
the closed unit disk B := {z ∈ k; |z| ≤ 1}.
Now H1(B,Gm) = Pic(B) = 0 and by 4.1.2 one has H1(B,Z/nZB) =

O(B)∗/O(B)∗n. The invertible functions on B are of the form λ(1 + f) with λ ∈ k∗
and f ∈ O(B) has a norm < 1. The condition on n implies that such a function has
an n-th root. Hence H1(B,Z/nZB) = 0.
Next, we want to investigate a ring domain (or annulus) ∂B := {z ∈ k; |z| =

1}. Again Pic(∂B) = 0. Further every invertible function on ∂B has uniquely the
form λzs(

∑
m amz

m) where λ ∈ k∗, s ∈ Z and where the Laurent series satisfies
a0 = 1, |am| < 1 for all m 6= 0 and lim |am| = 0. It follows that H1(∂B,Z/nZ∂B) =
O(∂B)∗/O(∂B)∗n = Z/nZ, a generator is given by the class of z. Clearly this is
independent of the base field k.
Now we start proving the general statement. The pre-sheaves U 7→

Hi(Uetale,Z/nZC) are overconvergent on Crigid. Hence it suffices to prove the state-
ment for all wide neighborhoods X ′ of X in C. For such an X ′ we can find closed
unit discs Bi ⊂ Di such that X

′ ∩Bi is isomorphic to a ring domain ∂B. If we have
this then the covering

C = X ′ ∪
⋃
Bi

will be admissible. In particular it is also an étale covering of C. Therefore, we have
the Mayer-Vietoris sequence exact sequence [M80, p. 110]

0 −→ H1(C,Z/nZC) −→ H1(X ′,Z/nZC)⊕
⊕

H1(Bi,Z/nZC)

−→
⊕

H1(X ′ ∩Bi,Z/nZC) −→ H2(C,Z/nZC) −→ 0.

The zero on the right follows by the vanishing of H2 on affinoid curves proved above
and the zero on the left is trivial to establish. The result follows by the computation
of cohomology of B and ∂B given above.
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For a precise definition of the map Hq(X,Z/nZX) → Hq(XK ,Z/nZXK ) see 5.1
below. The invariance of cohomology under extension of base field for X follows from
the invariance of cohomology for the algebraic curve C and the spaces B, resp. ∂B. 2

Remark 4.2.2 Let k0 ⊂ k denote a complete subfield of k such that k is the com-
pletion of the separable algebraic closure of k0. Suppose that the g.c.d.(n, p) = 1.
Let ∂B be the ring domain {z ∈ k0; |z| = 1} over k0. The Galois action (see 3.6) on
H1(((∂B)⊗̂k0k), µn) = Z/nZ is trivial. By the proof above this cohomology group is
canonically isomorphic to O(∂B⊗̂k0k)∗/O(∂B⊗̂k0k)∗ n. The generator of this group is
the class of the invertible function z. This is clearly invariant under the Galois group.

Remark 4.2.3 The open unit disc D is the increasing union of closed discs. Thus we
see, by the argument that proved part 2 of the proposition, that Hq(D,Z/nZD) = 0
for q ≥ 1. This result is partially generalized in the corollary below.

Corollary 4.2.4 Let L be a compact subset of P1k and put X = P1k \ L. Then
H1(X,Z/nZX) coincides with the group of Z/nZ-valued currents on the tree of X
(or the tree of L). More generally, for any connected open subspace X of P1k, the
group H1(X,Z/nZX) is equal to O(X)

∗/O(X)∗n.

Proof. The line bundles on any open subspace X of P1k are trivial (see [FP]) and
hence H1(X,Z/nZX) ∼= O(X)∗/O(X)∗n. (Use Lemma 4.1.2.) The structure of the
group O(X)∗ is well known if X = P1k −L. Namely, there is an exact sequence

0 −→ k∗ −→ O(X)∗ −→ C(T )→ 0,

where T denotes the tree of L and where C(T ) denotes the group of currents with
values in Z on T . (See [FP].) It follows that O(X)∗/O(X)∗n = C(T )/nC(T ) is the
group of currents on T with values in Z/nZ. 2

Proposition 4.2.5 If X is a connected smooth affinoid curve then there is an em-
bedding X ⊂ C as in Proposition 4.2.1 part 3) above. We deduce from this the
following results. Let A be an Abelian torsion group of exponent n, with (n, p) = 1.

1. There are natural isomorphisms Hq(X,Z/nZX)⊗A ∼= Hq(X,AX).

2. The cohomology groups Hq(X,AX) are invariant under algebraically closed
extensions of base fields.

Proof. The existence of such an embedding X → C is proved in [P80]. The group A
is the direct limit of its finite subgroups. Taking cohomology commutes with direct
limits (3.4.3), hence it suffices to do the case A is finite. Writing A as the direct sum
of cyclic subgroups it follows that we may assume A ∼= Z/n′Z where n′|n. In this case
both 1) and 2) follow easily from Proposition 4.2.1. 2

Remark 4.2.6 Other constant sheaves.

1. The cohomology of QX . Since in this case the rigid sheaves Rqr∗QX for q ≥ 1
are both torsion (by 3.3.2 and 3.4.6) and sheaves of Q-vector spaces, they are
zero. Hence we have

Hq(X,QX) ∼= Hq(Xrigid,Q)
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for all q. If X is a separated quasi-compact smooth curve then we have

H1(X,QX) = H
1(Xrigid,Q) = Q

b,

where b is the Betti number of the graph of a semi-stable reduction of X. A
semi-stable reduction of X is defined as follows: take a separated formal scheme
X of finite type over Spf(k◦), whose associated rigid space Xrig is isomorphic
to X. (See [R74] or [BL].) By blowing up X a bit we may assume that the
singularities of the special fibre are ordinary double points. This special fibre
is a semi-stable reduction of X. Since any other such formal scheme X′ may
be compared with X by a sequence of blow ups and blow downs in points it
follows that the associated graphs have the same homotopy type. The result
now follows from Remark 2.5.9 and a computation of the Zariski cohomology of
a constant sheaf on an algebraic semi-stable curve.

2. The constant sheaf Z/pZX .

(a) Let the characteristic of k be p > 1. We will give a calculation of
H1(B,Z/pZX) where B is the closed unit disk. Consider the Artin-Schreier
exact sequence

0 −→ Z/pZB −→ Ga φ−→ Ga −→ 0

on Xétale. Here of course φ(f) = fp − f . On cohomology we get an exact
sequence

0 −→ Z/pZ −→ O(B)
φ−→ O(B) −→ H1(B,Z/pZB) −→ 0,

since H1(B,Ga) = (0) by 3.2.5. The co-kernel of φ : O(B) → O(B) is a
rather large group and is not invariant under algebraically closed extensions
of base fields. This reflects the fact that the closed disk has many p-cyclic
un-ramified coverings.

(b) Here the characteristic of k is zero, but the characteristic of the residue
field k̃ is p > 1. With the methods above it follows that H1(B,Z/pZB) =
O(B)∗/O(B)∗p. This is again a very large group not invariant under base
field extensions. It can be shown that every (algebraic) finite étale covering
of the affine line over k̃ lifts to a finite étale covering of B. The conjecture of
S.S.Abhyankar on the coverings of the affine line in characteristic p (proved
by M.Raynaud) implies that the totality of nontrivial finite étale coverings
of B is very large.

5 Base change revisited

In this section we prove a general base change theorem for quasi-compact morphisms
and overconvergent étale sheaves. In order to be able to apply Theorem 3.7.3 we have
to prove invariance of cohomology under extensions of algebraically closed base fields.
This is done below for rigid and étale cohomologies and overconvergent sheaves.
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5.1 A change of fields, étale case.

Let k ⊂ K be an extension of complete and algebraically closed fields. For any
analytic space X over k we denote by pK : XK = X⊗̂kK → X the general morphism
associated to the change of fields. For an étale sheaf S on X we have the étale sheaf
p∗KS on XK and comparison maps

Hq(X,S) −→ Hq(XK , p
∗
KS).

We would like to know when these are isomorphisms. As before we put p ≥ 1 equal
to the characteristic of the residue field of k (and p = 1 if char(k̃) = 0).

Theorem 5.1.1 The canonical maps Hq(X,S) −→ Hq(XK , p
∗
KS) are isomorphisms

if S satisfies the following conditions:

1. The sheaf S is overconvergent.

2. All étale stalks Se of S are torsion groups, with torsion prime to p.

Proof. By taking an admissible affinoid covering of X we see that it suffices to do the
case that X is affinoid. Let us consider S as a sheaf on the site Xsp

étale. For any n ∈ N
with (n, p) = 1 let Sn ⊂ S be the subsheaf of S consisting of sections annihilated by

n, i.e., Sn := Ker(S
n→ S) is also overconvergent. By our two conditions on S and

Lemma 3.3.1 we see that any section s ∈ S(Y ) is torsion (Y → X is special étale,
hence Y affinoid, hence quasi-compact). Thus we see that S =

⋃
Sn. By looking at

stalks we see that (p∗KS)n = p∗KSn, hence also p
∗
KS =

⋃
p∗KSn. Since cohomology

commutes with direct limits (3.4.3) it suffices to do the case that S is a sheaf of
Z/nZ-modules.
Consider fields L with k ⊂ L ⊂ K, which are complete and algebraically closed.

We say that L has topological transcendence degree ≤ r over k if there exist elements
t1, . . . , tr ∈ L such that L is the completion of the algebraic closure of k(t1, . . . , tr).
The reasoning of Lemma 3.7.1 shows that the site (XK)

sp
étale is the direct limit of

the sites (XL)
sp
étale, taken over all L of finite topological transcendence degree over

k. Therefore it suffices to prove Hq(X,S) = Hq(XL, p
∗
LS) for k ⊂ L of topological

transcendence degree ≤ r. By induction on r it suffices to do the case: k ⊂ K of
topological transcendence degree 1.
Take an element t ∈ K such that K is the completion of the algebraic closure of

k(t). We may assume that |t| ≤ 1. Consider the continuous k-algebra homomorphism
k〈T 〉 → K mapping T to t. This determines an étale point e of the closed unit disc
B over k with Fe = K.
The problem we are studying may now be formulated with the help of the fol-

lowing diagram of analytic spaces and general morphisms.

XK −→ X × B p1−→ Xy
yp2

yq2
Sp(K)

e−→ B
q1−→ Sp(k).

There is a general base change morphism (see [SGA 4, Exp. XVII 4.1.5])

q∗1R
q(q2)∗S −→ Rq(p2)∗p

∗
1S (1).
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The comparison map from the theorem is the base change map for the big rectangle
of the diagram. Our étale base change theorem 3.7.3 asserts that the base change
map for the left square with p∗1S is an isomorphism. By the functoriality properties
of the base change morphism it will suffice to prove that (1) is an isomorphism.
Let V → B be étale and V affinoid. Put p : X × V → X equal to the projection.

We write Hm(V ) = Hm(V,Z/nZV ) and Hm(V )X is the constant sheaf with fibre
Hm(V ) on Xétale. There is a natural map

Hm(V )X ⊗Z/nZ S −→ Rmp∗p
∗S. (2)

It is the composition

Hm(V )X ⊗ S −→ Rmp∗(Z/nZX×V )⊗ S −→ Rmp∗p
∗S,

the first map given by base change, the second deduced from S → p∗p∗S by the cup-
product Rmp∗(Z/nZX×V )⊗R0p∗p∗S → Rmp∗p∗S associated to Z/nZX×V ⊗ p∗S →
p∗S. By étale base change 3.7.3 the stalk of Rmp∗p∗S in the étale point f of X is
Hm(V ⊗̂Ff , (Sf )V ⊗̂Ff ). Hence, by Proposition 4.2.5 (2) is an isomorphism on étale
stalks for all f . Since both sides of (2) are overconvergent we get that (2) is an
isomorphism. Thus we get that Rmp∗p∗S = (0) for n ≥ 2. Finally, since p : X×V →
X has a section, the maps Hm(X,S)→ Hm(X ×V, p∗S) have sections. We conclude
that the spectral sequence Hi(X,Rjp∗p∗S)⇒ Hi+j(X×V, S) degenerates and gives:

Hm(X × V, S) ∼= Hm(X,H0(V )X ⊗ S) ⊕ Hn−1(X,H1(V )X ⊗ S)
∼= H0(V )⊗Hm(X,S) ⊕ H1(V )⊗Hn−1(X,S)

Therefore, the sheaf associated to the presheaf V 7→ Hm(X × V, S) (on Bspétale) is the
constant sheaf with fibre Hm(X,S). Clearly this means that the right side of (1) is
constant and hence that (1) is an isomorphism (look at fibres over 0 ∈ B). 2

5.2 A change of fields, rigid case.

We think it is quite amusing that a similar theorem also holds for the rigid case.
Notations are as in 5.1.

Theorem 5.2.1 Let S be an overconvergent sheaf on Xrigid. The canonical maps

Hq(Xrigid, S) −→ Hq((XK)rigid, p
∗
KS)

are isomorphisms.

Proof. As in the proof of the étale case we may assume that X is affinoid and k ⊂ K
of topological transcendence degree 1 (using Xrat

rigid in stead of X
sp
étale). We consider

subfields L ⊂ K, which are complete and are the completion of a function field of
transcendence degree 1 over k. In this case we remark that (XK)

rat
rigid is the direct

limit of the sites (XL)
rat
rigid for such fields L. Again it suffices to do the case K = L.

(The field K is no longer algebraically closed!)
Suppose Z is a nonsingular projective irreducible curve over k, whose function

field k(Z) is a dense subfield of K. The embedding k(Z) → K defines an analytic
point a of Z with Fa = K.
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Observation 5.2.2 There is an affinoid subdomain U ⊂ Z in the filter of a with
the following property: For every affinoid V ⊂ U and any constant sheaf T on U the
cohomology groups Hn(V, T ) are zero for n ≥ 1.

This follows quite easily from the stable reduction of Z. As was noted in Remark
4.2.6 part 1) the cohomology of a rigid constant sheaf on an affinoid smooth curve
depends only on the Betti number of the graph of its stable reduction. Thus we take
for U the pre-image of a Zariski open W of the stable reduction of Z, such that W
contains no cycles. The assertion of the observation then holds for V = U . But also
for any such V ⊂ U it holds, since this corresponds to a Zariski open part in a blow
up of the stable model of Z. Blow ups do not introduce extra cycles.
The rest of the proof of the theorem is similar to the proof of Theorem 5.1.1:

just replace B by U and étale by rigid cohomology. 2

Remark 5.2.3 Both theorems are false when k is not algebraically closed. Just take
X = Sp(k′) where k ⊂ k′ is a finite Galois extension and S = Z/nZX . In this case
H0(X,S) = Z/nZ and H0(XK , p

∗
KS) = (Z/nZ)

[k′:k]. Even if X is a geometrically
connected smooth projective curve and S is a constant sheaf the result is false in
general. (Both rigid and étale case.)

Corollary 5.2.4 Suppose that S is an overconvergent sheaf of Z[1/p]-modules on
Xétale. The canonical comparison mapsH

q(X,S)→ Hq(XK , p
∗
KS) are isomorphisms.

Proof. There is an exact sequence

0 −→ Stors −→ S −→ S ⊗Q −→ Q −→ 0

By Theorem 5.1.1 the result is true for both Stors and Q. Since H
q(X,S ⊗Q) agrees

with Hq(Xrigid, r∗S ⊗Q) (compare Remark 4.2.6) we see the result is true for S ⊗Q
also by the theorem above. The snake lemma gives the result for the sheaf S. 2

5.3 Quasi-compact base change.

By a combination of our previous results we can now prove a general base change
theorem for quasi-compact morphisms.

Theorem 5.3.1 (Quasi-compact base change.) Consider a diagram

Z ×X Y
g′−→ Yyf ′

yf
Z

g−→ X

and an overconvergent sheaf of Z[1/p]-modules S on Yétale. Here f is a quasi-compact
morphism of analytic varieties over k and g is a (arbitrary) general morphism of
analytic varieties. The base change morphism [SGA 4, Exposé XVII]

g∗Rf∗S −→ Rf ′∗(g
′)∗S

is a quasi-isomorphism.
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Proof. We only have to show that this morphism induces an isomorphism on the
étale stalks of the overconvergent sheaves g∗Rqf∗S and Rqf ′∗(g

′)∗S. Any étale point
e′ of Z lies over an étale point e of X, i.e., such that Fe ⊂ Fe′ . By the étale base
change theorem 3.7.3 the map on the stalks is the map 5.1 between

(
g∗Rqf∗S

)
e′
=
(
Rqf∗S

)
e
= Hq(Ye, S|Ye)

and (
Rqf ′∗(g

′)∗S
)
e′
= Hq(Ye′ , (g

′)∗S|Ye′ ) = Hq(Ye⊗̂Fe′ , p∗Fe′ (S|Ye)).
The statement follows from Corollary 5.2.4. 2

6 The axioms for cohomology

Let k be a complete valued field. An ‘abstract’ cohomology theory for rigid analytic
spaces over k is defined in [S-S, section 2] to be a cohomology theory X 7→ H∗(X)
satisfying four axioms. There is also given a candidate for such a cohomology theory.
Let A be a finite ring of order prime to the residue field of k. Let K be the completion
of the algebraic closure of k. We put

H∗(X) := H∗(X⊗̂K,AX⊗̂K).

As remarked in [S-S, p. 58], the nontrivial axioms to check in this case are the ‘ho-
motopy axiom’ and the axiom concerning the cohomology of the projective space. In
this section we will prove those axioms.
The homotopy axiom states that H∗(X ×D) ∼= H∗(X) for an open disc D. This

follows immediately from the following theorem.

Theorem 6.0.2 (The homotopy axiom.) Let X be an analytic space over k. Let S
be an overconvergent sheaf of Z[1/p]-modules on Xétale. Suppose D is an open or
closed disc over k; let p : X × D → X denote the projection. The canonical maps
Hq(X,S)→ Hq(X ×D, p∗S) are isomorphisms.

Proof. If the disc D is open then it is the admissible union D =
⋃
Bn of closed discs

Bn of radius ρn ∈
√|k∗|. The covering X × D = ⋃X × Bn is the also admissible.

Therefore, it suffices to prove the theorem for a closed disc B.
In this case we prove that p∗p∗S ∼= S and that Rqp∗p∗S = (0) for q ≥ 1.

By the étale base change theorem the étale stalk at e of these sheaves are equal to
Hq(B⊗̂Fe, (Se)B⊗̂Fe). Note that B⊗̂Fe ∼= B, the closed unit disc of radius 1 over Fe.
If we prove that Hq(B, AB) = (0) for q ≥ 1 for any Z[1/p]-module A then we are done.
A standard argument, compare with 4.2.5, reduces to the cases A = Q or A = Z/nZ.
These cases where done in Remark 4.2.6 and Proposition 4.2.1. 2

For the formulation of the following theorem, we need to be more precise about
the Galois action on the cohomology groups. Let K denote the completion of the
separable closure ksep of k. The symbol G = Gal(ksep/k) denotes the continuous
Galois group of K over k. See 3.6. The finite ring A is given the trivial G action.
For any i ∈ Z we define A(i) := A⊗

(
µn(K)

)⊗i
as a G-module, where n = #G. The

following result also follows from the comparison theorem in the following section.
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Theorem 6.0.3 (Cohomology of Pd.) Let Pd denote the d-dimensional projective
space over k. We have as Galois modules

Hq(Pd) = Hq(PdK , APdK ) =

{
A(−q/2) for q even, 0 ≤ q ≤ 2d,
(0) otherwise.

Proof. The calculation of the cohomology is done by applying the Mayer-Vietoris
sequence to the covering {U0, U1} of Pd given by U0 = {(z0; ...; zd)| |zj| ≤ |z0| for all j}
and U1 = {(z0; ...; zd)| |z0| ≤ max(|z1|, ..., |zd|)}. The space U0 is a product of disks
and has therefore trivial cohomology. The spaces U1 and U0 ∩U1 respectively, admit
a surjective morphism to Pd−1 given by (z0; ...; zd) 7→ (z1; ...; zd). The fibres are disks
or ring domains respectively and the fiberings are locally trivial. Base change, with
respect to the first map, yields Hi(U1)

∼→ Hi(Pd−1). Base change applied to the
second map gives rise to an exact sequence

0 −→ Hi(U1) −→ Hi(U0 ∩ U1) −→ Hi−1(Pd−1)(−1) −→ 0.

The (−1) in the last cohomology group is a consequence of the Galois action on the
cohomology of a ring domain. See 4.2.2. Induction on d and the Mayer-Vietoris
sequence imply that Hi(Pd) ∼= Hi−2(Pd−1)(−1) for i ≥ 2 and the expected values of
H0 and H1. 2

7 Purity and comparison

Let X be a scheme of finite type over the complete valued field k. We write Xét for
the small étale site of the scheme X. Further, Xan denotes the rigid analytic variety
associated to X. There is a morphism of sites

ǫ : Xan
étale −→ Xét

comparing the algebraic and rigid étale sites. It is given by the functor that associates
to the scheme Y étale over X the analytic space Y an étale over Xan. We want to
compare sheaves on both sides and their cohomology. It will turn out that if the
characteristic of k is zero then we get results as proved in [SGA 4] comparing étale
cohomology and classical cohomology over C. However, if the characteristic is p > 1,
only a weaker version holds. We will give counterexamples for the full statement.
In order to prove the statements above we use a purity result for rigid étale

cohomology. It tells us what the cohomology of the complement of a smooth divisor
in a smooth rigid analytic variety is.

7.1 A preliminary result

We start by proving that sheaves of the form ǫ∗S are overconvergent.

Lemma 7.1.1 For any sheaf S on Xét the sheaf ǫ
∗S is overconvergent.

Proof. Let Y → X be an algebraic étale morphism, with Y affine. We also denote
by Y the sheaf on Xét it defines. We only need to show that the sheaf ǫ

∗(Y ) is
overconvergent. (The sheaves Y generate the category of sheaves on Xét and the
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direct limit of overconvergent sheaves is overconvergent.) By Zariski’s main theorem
we can embed Y as a Zariski open set in a scheme Y finite over X. Suppose U ⊂ Xan

is an affinoid subdomain and V → U is an étale morphism of affinoids. The notation
V (r) → U is as in 3.4. We have to show that any morphism ϕ : V → Y an over Xan

extends (uniquely) to some V (r) → Y an. See 3.4.4. By Lemma 3.4.2 it suffices to
show that ϕ(V ) ⊂⊂U Y an ×Xan U . Clearly, we have that ϕ(V ) ⊂⊂U Y

an ×Xan U ,
since the last space is finite over U . The result follows since Y an ×Xan U is Zariski
open in Y

an ×Xan U . See for example [S93, §3 Proposition 3]. 2

7.2 Purity for rigid étale cohomology

Let i : Z → X be a closed immersion of analytic varieties over k. Let U = X \ Z
denote the admissible open subvariety of X which is the complement of Z. As usual
j : U → X denotes the open immersion of U intoX. We want to prove that sheaves on
Zétale correspond to sheaves S on Xétale such that j

∗S is a final object in the category
of sheaves on U , i.e., a sheaf which has exactly one section over each object of Uétale.
This means that the category of sheaves on Z can be viewed as the closed sub-topos
of X∼étale complementary to the open sub-topos U

∼
étale. Compare [SGA 4, Exposé IV

9.3.5]. Although this follows easily for overconvergent sheaves, we need the result in
general for the proof of purity below. It implies in particular that Ri∗F ∼= i∗F for
any Abelian sheaf F on Zétale.

Lemma 7.2.1 The functor i∗ identifies the category of sheaves (of sets) on Z with
the category of sheaves S on X such that j∗S is a final object of U∼étale.

Proof. Let us take an admissible affinoid covering X =
⋃
Xi of X and admissible

affinoid coverings Xi ∩Xj =
⋃
Xijk. Any sheaf on X is given by sheaves on Xi glued

on the Xijk, whereas a sheaf on Z (resp. U) is given by sheaves on Z ∩ Xi (resp.
U ∩Xi) glued on the Z ∩Xijk (resp. U ∩Xijk). In this way one reduces to the case
that X is affinoid.
In this case we work with the sites Xsp

étale and Z
sp
étale. The functor X

sp
étale → Zspétale

is denoted W 7→WZ = Z ×X W . Consider the following statements:

1. For any étale W0 → Z, W0 affinoid, there exists an étale W → X morphism of
affinoids such that W0 ∼=WZ .

2. If V,W ∈ Xsp
étale and φ0 : WZ → VZ is a morphism over Z then there is a

Weierstrass domain W ′ ⊂ W with W ′Z = WZ and a morphism φ : W ′ → V
lifting φ0.

3. If W ∈ Xsp
étale then any special étale covering {Wi,0 → WZ} may be lifted to a

special étale covering of W .

Let us first prove that these imply the lemma.
We denote by e a final object of (Uétale)

∼. Further for any sheaf S on X we
denote by P (S) the presheaf on Zspétale defined by the formula:

P (S)(W0) = lim−→
V,φ0:W0→VZ

Γ(V, S)

Documenta Mathematica 1 (1996) 1–56



50 Johan de Jong and Marius van der Put

By definition, i∗S is the sheaf associated to the presheaf P (S). It is clear from 1) and
2) above that P (S) may be described as follows

P (S)(WZ) = lim−→
W ′⊂W as in 2)

Γ(W ′, S).

Such a subdomain W ′ is automatically a wide neighborhood of WZ in W , since WZ

is closed in W . Therefore there exists a special subset V ⊂ W , disjoint with WZ

such that W = W ′ ∪ V . This means that if S has the property that j∗S ∼= e then
Γ(W,S) = Γ(W ′, S) since both Γ(V, S) and Γ(V ∩ W ′, S) consist of one element.
In particular we see that for such S we have P (S)(WZ) = Γ(W,S). Property 3)
above implies that P (S) is a sheaf in this case and hence i∗(S) = P (S). It follows
immediately that i∗i∗S ∼= S for such sheaves S.
Conversely, if F is a sheaf on Z, it is immediate that j∗i∗F ∼= e. Hence by the

above we have that i∗i∗F = P (i∗F) and

Γ(WZ , i
∗i∗F) = Γ(W, i∗F) = Γ(WZ ,F).

We have proved that i∗ and i∗ are mutually inverse functors defining the desired
equivalence of categories.
Let us prove 1). Let Y0 → Z be an étale morphism of affinoids. We can choose

a presentation (see Lemma 3.4.1)

O(Y0) = O(Z)〈T1, . . . , Tn〉/(G1, . . . , Gn)

with G1, . . . , Gn ∈ O(Z)[T1, . . . , Tn] such that the determinant ∆0 = det
(
∂Gj

/
∂Ti
)

is invertible in O(Z). Let us lift the polynomials Gi to polynomials Fi ∈
O(X)[T1, . . . , Tn]. Put ∆ = det

(
∂Fj

/
∂Ti
)
. Take π ∈ k∗ such that |π| is smaller

than the infimum of |∆0| on Z. We consider the algebra

O(X)〈T0, T1, . . . , Tn〉
/
(F1, . . . , Fn,∆T0 − π).

This defines a special étale morphism Y → X since the corresponding functional
determinant is ∆2, which is invertible. The isomorphism Y0 ∼= Z ×X Y follows by
construction.
The proof of 2) is similar to the proof of 2) in Lemma 3.7.1. We consider the

product V ×X W and the graph morphism Γ0 : WZ → (V ×X W )Z . This morphism
is étale. By 1) (with W ×X V in stead of X) we can find Γ : Y → V ×X W such
that YZ ∼= WZ and ΓZ = Γ0. Next argue as in the proof of 3.7.1 to see that there is
some wide neighborhood W ′ ⊂ W of WZ such that pr1 ◦ Γ : Γ−1(V ×X W ′) → W ′

is an isomorphism. Thus we get W ′ → V . Finally, the Weierstrass domains in W
are cofinal in the set of neighborhoods of WZ in W . To see this apply the rigid key
lemma to a morphism f :W → Bn with WZ = f

−1(0).
For 3) we first note that by 1) we may lift each of the special étale Wi,0 → WZ

to special étale fi : Wi → W . The special subset
⋃
fi(Wi) is a neighborhood of WZ

in W , hence a wide neighborhood, hence there exists some special V ⊂W such that
V ∩WZ = ∅ and W = V ∪ ⋃ fi(Wi). Write V =

⋃
Vj as a finite union of rational

subdomains of W , then the special étale covering of W we are looking for is the
covering {Wi →W,Vj →W}. 2
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Next, we prove some kind of purity in the rigid étale case. Let X be a smooth
rigid variety over k. let i : H → X be a closed immersion, with H smooth over k
and everywhere in X of co-dimension 1. Thus it is a smooth divisor in X. Let U
denote the admissible open subset X \H of X and let j denote the open immersion
j : U → X.

Theorem 7.2.2 (Purity.) With the notations as above and with n prime to the
characteristic of k we have

Rqj∗Z/nZU =




Z/nZX q = 0
i∗(µ⊗−1n ) q = 1
(0) q ≥ 2.

Proof. The statement is local on X, hence we may assume X affinoid. Locally on X
(in the Zariski topology) the ideal of H is generated by a single function, hence we
may assume that H is given as f = 0 for some f ∈ O(X). By [K68] we can find an
affinoid neighborhood of H in X which has an admissible covering by affinoids of the
form Hi × B. Here B is the closed unit ball over k with coordinate z. Thus we may
assume that X = H × B and U = H × B∗ where B∗ is the punctured unit disc. Let
us write f̄ : X → H for the projection and f = f̄ |U so that we have the following
commutative diagram:

U
j−→ X

i←− H
f ց

yf̄ ւ id

H

We note that the sheaves Rqj∗Z/nZU for q ≥ 1 have are zero restricted to U ,
hence are of the form i∗Fq for certain sheaves Fq on H (use lemma above). Further,
it is clear that j∗Z/nZU = Z/nZX on X. We study the spectral sequence associ-
ated to the isomorphism Rf∗ ∼= Rf̄∗ ◦ Rj∗. For the sheaf Z/nZU its E2-terms are
Eab2 = Raf̄∗Rbj∗Z/nZU and it abuts to Ra+bf∗Z/nZU . In view of the fact that
Rbj∗Z/nZU = i∗Fb ∼= Ri∗Fb for b ≥ 1 (by 7.2.1), we see that Eab2 = 0 for a, b ≥ 1
and E0b2 = Fb for b ≥ 1. Also we have Ea02 = Raf̄∗Z/nZX . This is an overconvergent
sheaf, whose étale stalks are Ha(B,Z/nZB), over various algebraically closed base
fields. Hence, by Lemma 4.1.2 and since Pic(B) = (0), we see that Raf̄∗Z/nZX = (0)
for a ≥ 2. The upshot of all of this is: 1) we have R0f∗Z/nZU = Z/nZH , 2) there is
an exact sequence

0 −→ R1f̄∗Z/nZX −→ R1f∗Z/nZU −→ F1 −→ 0
and 3) there are isomorphisms Rqf∗Z/nZU ∼= Fq for q ≥ 2.
We have already used the morphism

Rf̄∗Z/nZX −→ Rf∗Z/nZU .

In addition, there is a map

Z/nZH [−1] −→ Rf∗µn,

which associates to 1 ∈ Z/nZ the section of R1f∗µn corresponding to the µn-torsor
of U = H × B∗ given by the equation yn = z. We claim that together these induce a
quasi-isomorphism

Rf̄∗Z/nZX ⊕ µ⊗−1n [−1] −→ Rf∗Z/nZU . (1)
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From the considerations above it follows that this implies the theorem.
To prove the claim we may assume that n is a prime power n = pr. Let us treat

the case that p equals the characteristic of k. In this case k is a p-adic field. The
other cases are easier and similar arguments work.
Let us take c ∈ N large enough. For m ∈ N we put Rm = {x ∈ B; |x| ≥ |pcm|},

a ring domain. Put Um = H × Rm, note that the covering U =
⋃
Um is admissible.

Let us write fm : Um → H for the projection. We will study the overconvergent sheaf
Rqfm,∗µn. Its étale fibres are Hq(Rm⊗̂Fe, µn). These are zero for q ≥ 2 and equal to
µn for q = 0. Note that

P1 = {|z| ≥ |pcm|} ∪ {|z| ≤ 1},
hence that we have an exact sequence

0 −→ F ∗e −→ O∗(|z| ≥ |pcm|)⊕O∗(|z| ≤ 1) −→ O∗(Rm) −→ Z −→ 0.
This follows by the computation of cohomology of P1, use for example Lemma 4.1.2.
We see immediately that

H1(Rm⊗̂Fe) = Z/nZ⊕H1(|z| ≤ 1)⊕H1(|z| ≥ |pcm|).
This implies a corresponding decomposition of the overconvergent sheaf

R1fm,∗µn = Z/nZH ⊕R1f̄∗µn ⊕Restm.
The maps Restm+1 → Restm are zero, since by [L93, Theorem 2.1] the maps on the
étale fibres H1(|z| ≥ |pc(m+1)|)→ H1(|z| ≥ |pcm) are zero if c is large enough.
This means that for any V → H affinoid étale we have a decomposition

Hq(V ×Rm) = Hq−1(V, µ⊗−1n )⊕Hq(V × B)⊕Restm,
the transition maps Hq(V ×Rm+1)→ Hq(V ×Rm) are the identity on the first two
summands, zero on the last one. This proves that

lim
←−

Hq(V ×Rm) = Hq−1(V, µ⊗−1n )⊕Hq(V × B)

and the derived limit
lim
←−

(1)Hq(V ×Rm) = (0).

We conclude that Hq(V × B∗) = Hq−1(V, µ⊗−1n ) ⊕ Hq(V × B), hence (1) is an iso-
morphism. 2

7.3 Comparison

In this section X will denote a variety of finite type over over the complete valued
field k. We state the results corresponding to [SGA 4, Exposé XI Theorem 4.4] in our
case. Further, we will indicate the necessary changes in the proof given there so that
it will work in our case also.

Theorem 7.3.1 Suppose the characteristic of k is zero. There is an equivalence
between the category of locally constant sheaves on Xét with finite stalks and the
category of locally constant sheaves on Xan

étale with finite stalks. The equivalence is
given by the functors ǫ∗ and ǫ∗.
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Étale Cohomology of Rigid Analytic Spaces 53

Proof. Since sheaves of this kind are representable by finite étale coverings we see
that it suffices to prove the following statement: If Y → Xan is finite étale then there
exists a (unique) finite étale morphism of schemes Z → X such that Y ∼= Zan. This
was recently proved by Lütkebohmert, see [L93]. 2

In the next theorem k is no longer of characteristic zero.

Theorem 7.3.2 Let X be smooth over Spec(k) and let k be algebraically closed.
Suppose S is an Abelian locally constant sheaf on Xét with finite stalks where all or-
ders of torsion are prime to the characteristic of k. In this case we have Rqǫ∗ǫ∗S = (0)
for q ≥ 1. The canonical morphisms Hq(Xét, S)→ Hq(Xan

étale, ǫ
∗S) are isomorphisms.

In particular we have

Hq(Xét,Z/nZ) ∼= Hq(Xan,Z/nZXan).

Proof. With the results proved above, we can use the proof of [SGA 4, Exposé XI
Theorem 4.4 part (ii)]. In stead of the ‘calcul direct’ of line 1 on page 13 we use
Theorem 7.2.2. The only other fact used in the proof which is not immediately clear
is the following: Suppose f̄ : X̄ → S is a family of smooth projective curves over
the scheme S, which is of finite type over k, suppose n is relatively prime to the
characteristic of k. In this case R1f̄an∗ Z/nZX̄an is a locally constant sheaf on S

an
étale.

However, this is immediately clear from: 1) The corresponding fact in the algebraic
case. 2) The base change map ǫ∗R1f∗Z/nZ → R1f̄an∗ Z/nZX̄an is an isomorphism
(look at étale fibres). 2

Remark 7.3.3 The more general results proved in [SGA 4, Exposé XVI §4] should
hold true for the rigid analytic case also. At least if the characteristic of k is zero
then it should be possible with some effort to follow the reasoning of locus citatus in
this case.

7.4 Counterexamples in characteristic p > 0.

Take k algebraically closed of characteristic p > 0. Riemann’s existence theorem is
no longer valid in this case. We give an example of this.

Lemma 7.4.1 Consider the covering ψ : Y → A1 an, given by the equation T p − T =
F :=

∑
i≥0 aiz

pi , where the series F converges on A1 an. We suppose that there are
infinitely many non zero ai and that for every k ≥ 0 one has

|ak + apk−1 + a
p2

k−2 + ...+ a
pk

0 | = max 0≤i≤k(|ai|p
k−i

).

Then Y is not isomorphic to Zan for any covering Z → A1.

Proof. Any p-cyclic (un-ramified) covering of the unit disk D is given by an equation
T p−T = f with f ∈ O(D). Two functions f1, f2 ∈ O(D) define isomorphic coverings
if and only if λ1f1 + λ2f2 = h

p − h holds with λ1, λ2 ∈ F∗p and h ∈ O(D). Using that
the structure sheaf O on the analytic space A1,an has trivial cohomology, one finds
for A1,an similar results. Namely: Any p-cyclic analytic covering of A1 an is given by
an equation T p − T = f with f a holomorphic function on A1 an. Two holomorphic
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functions f1, f2 define the same p-cyclic extension if and only if there is a λ ∈ Fp such
that the equation T p − T = λ1f1 + λ2f2 has a holomorphic solution.
If Y = Zan then Z is a p-cyclic covering of A1 given by an equation of the

form Up − U = g with g ∈ zk[z]. Let the equation T p − T = −G := F − λg have
a holomorphic solution h =

∑
i≥1 hiz

i. In some disk around 0 the spectral norm

of G is less than 1. Therefore
∑
i≥0G

pi converges and is on this disk a solution

of T p − T = −G. So h coincides with ∑i≥0G
pi on this disk and the power series

expansion of h is equal to the power series expansion of
∑
i≥0G

pi . One takes a
disc D(0, R) around 0 such that 1 < B := ‖G‖R = ‖F‖R > ‖g‖R. After replacing
z by zλ for a suitable λ ∈ k∗, we may suppose that R = 1. First we look at∑
i≥0 F

pi =
∑
k≥0 Akz

pk with Ak = (ak + a
p
k−1 + a

p2

k−2 + ... + a
pk

0 ). A calculation
shows that for N >> 0 one has |AN | = |AN−1|p and |AN | ≥ B. Then we look at∑
i≥0 g

pi =
∑
k≥1 bkz

k. One can calculate that the absolute value of bpk grows less
fast than |Ak|. This implies that the power series representing h is not convergent on
D(0, 1). This contradiction ends the proof. 2

Corollary 7.4.2 The map

H1(A1et,Z/pZ) −→ H1(A1 anetale,Z/pZ)

is injective but not surjective. In particular Theorem 7.3.2 is not valid for sheaves
consisting of p-torsion.

Corollary 7.4.3 Let n > 1 with p|φ(n) and with n not divisible by p. There is a
locally constant sheaf S on A1 anétale with stalk Z/nZ, which is not of the form ǫ∗T .

Proof. We consider the p-cyclic analytic covering ψ : Y → A1 an of Lemma 7.4.1.
Let σ denote the generator of the Galois group G of this extension. LetM denote the
constant étale sheaf on Y with stalk Z/nZ. Let a ∈ Z/nZ∗ be an element of order
p. We define an action G on Z/nZ by σ(i) = ai. This induces an action of G on
Z/nZ×Y by σ((i, y)) = (ai, σ(y)). The quotient by this group action is a sheaf S on
A1 anétale which is locally the constant sheaf with stalk Z/nZ. (And of course ψ

∗S is the
constant sheaf on Y ). However, there is no étale covering {Yi} of A1 which trivializes
S. Indeed, such an étale covering would give a trivialization of Y → A1 an. 2
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Abstract. It is shown that the order of the torsion subgroup in the 4-
codimensional Chow group CH4(Xϕ) of a projective quadric Xϕ is at most
4 provided that the dimension of the corresponding quadratic form ϕ is
greater than 8.

Consider a non-degenerate quadratic form ϕ over a field F of characteristic differ-
ent from 2 and the corresponding projective quadric Xϕ. We always assume that
dimXϕ ≥ 1, i.e. dimϕ ≥ 3. It is an open problem to describe the torsion subgroup
of the Chow group CH∗(Xϕ) (this is the group of algebraic cycles on Xϕ modulo
rational equivalence graded by co-dimension of cycles [1, 2]).
Generally speaking computation of the Chow group of an algebraic variety is

an interesting and important problem of algebraic geometry. However the class of
varieties for which this problem is solved is rather small. Chow groups and K-theory
of quadrics were studied first by R. Swan. Although the K-theory was completely
computed [13] the question on the Chow group remained open.
A new motivation grew out of the attempts to solve the norm residue homo-

morphism problem. During the work on this problem it became clear that a decisive
progress could be achieved by computation of the so called K-cohomology groups
[10, 12] for quadrics and in particular of their Chow groups.
In [4] Chow groups of small-dimensional quadrics were computed. An interest-

ing phenomenon was found: some Chow groups have torsion and the problem of
computing the whole Chow group reduces to finding the torsion.
Let us consider some first gradation components. The group CH1(Xϕ) is always

torsion-free. The next group— CH2(Xϕ) is computed in [4]. In particular, it turns out

that #TorsCH2(Xϕ) ≤ 2 for any form ϕ; moreover, TorsCH2(Xϕ) = 0 if dimϕ > 8

[4, theorem (6.1)]. In co-dimension 3 one has: #TorsCH3(Xϕ) ≤ 2 for any ϕ [5,
theorem] and TorsCH3(Xϕ) = 0 if dimϕ > 12 [6, theorem 6.1]. As to co-dimension

4, it is known today that TorsCH4(Xϕ) = 0 if dimϕ > 24 [6, theorem 8.5]; however,
one has an example of a 7-dimensional form ϕ (defined over an appropriate F ) with
infinite TorsCH4(Xϕ) [7, theorem 6.5].

1Support and hospitality of Sonderforschungsbereich 343 (Bielefeld University) are gratefully
acknowledged.

Documenta Mathematica 1 (1996) 57–65



58 Nikita A. Karpenko

Here we prove that
#TorsCH4(Xϕ) ≤ 4

for any ϕ of dimension greater than 8 (4.1). Notice that TorsCH4(Xϕ) = 0 if dimϕ =

6 [14], [4, (2.6)] and CH4(Xϕ) = 0 if dimϕ < 6; so, the “exceptional” dimensions
are only 7 and 8. We also reproduce (with small simplifications) the proof that
#TorsCH3(Xϕ) ≤ 2.
This note grew out from a remark of B. Kahn that TorsCH4(Xϕ) is finite if

dimϕ > 8.

1. An exact sequence

We consider (Quillen’s) K-cohomology Hp(Xϕ,Kq) and the Grothendieck group
K ′0(Xϕ) which we denote simply by K(Xϕ) and supply with the so called topological
filtration

K(Xϕ) = K(Xϕ)
(0) ⊃ K(Xϕ)

(1) ⊃ . . . .
We denote by ϕ̃ the form ϕ over a field extension F̃ of F which completely (so much
as possible by the dimension reason) splits ϕ.

Proposition 1.1. One has an exact sequence

Ker
(
H2(Xϕ,K3)→ H2(Xϕ̃,K3)

)
→ CH4(Xϕ)→ K(Xϕ)

(4/5) → 0 .
Proof. The kernel of the canonical epimorphism CH4(Xϕ) →→ K(Xϕ)

(4/5) is con-
trolled by certain differentials of the BGQ-spectral sequence Ep,q2 = Hp(Xϕ,K−q)
[10, §7]. Since CH4(Xϕ) = E4,−42 , the differentials in question start from E0,−14 ,

E1,−23 and E2,−32 . Since

E0,−12 = H0(Xϕ,K1) = F
× and

E1,−22 = H1(Xϕ,K2) = F
× (if dimϕ > 4) [4, theorem (4.1)]

all the differentials starting from E0,−1r and E1,−2r with r ≥ 2 are 0. Hence we have
an exact sequence

H2(Xϕ,K3)
d→ CH4(Xϕ)→ K(Xϕ)

(4/5) → 0 .
Using pull-back with respect to the embedding of Xϕ in the enveloping projective

space P, one can define a homomorphism

F× = H2(P,K3)→ H2(Xϕ,K3)

which is easily checked to be an isomorphism in the case when ϕ splits and dimϕ > 6.
For an arbitrary ϕ we obtain a commutative square

F× −−−−→ H2(Xϕ,K3)y
y

F̃× −−−−→ H2(Xϕ̃,K3)

which produce a decomposition

H2(Xϕ,K3) = F
× ⊕Ker

(
H2(Xϕ,K3)→ H2(Xϕ̃,K3)

)

provided that dimϕ > 6. Since d|F× = 0, we are done in this case. The case dimϕ ≤ 6
is trivial and not of use for the consequent.
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2. The left-hand side term

There is a description of the left-hand side term of (1.1).

Proposition 2.1 ([8, prop. 1]). Suppose that dimϕ ≥ 5 and ϕ is not a 3-Pfister
neighbor (i.e. not similar to a subform of an anisotropic 3-Pfister form). The kernel
of the restriction

H2(Xϕ,K3) −→ H2(Xϕ̃,K3)

is naturally isomorphic to the kernel of the Galois cohomology map

H4(F,Z/2) −→ H4
(
F (ϕ),Z/2

)
.

Remark 2.2. The assumption that ϕ is not a 3-Pfister neighbor is likely superfluous.

Definition 2.3. Denote by P4(ϕ) the subset of H
4(F,Z/2) consisting of 0 and all

cup-products (a, b, c, d) with a, b, c, d ∈ F× such that ϕ is similar to a subform of the
4-Pfister form 〈〈a, b, c, d〉〉 (the latter means as usual the product 〈1,−a〉 ⊗ 〈1,−b〉 ⊗
〈1,−c〉 ⊗ 〈1,−d〉).
Proposition 2.4 ([3]). If ϕ is any quadratic form with dimϕ ≥ 5 then

Ker
(
H4(F,Z/2)→ H4

(
F (ϕ),Z/2

))
= P4(ϕ) .

Corollary 2.5. If dimϕ > 8 one can rewrite the sequence (1.1) as follows:

P4(ϕ)→ CH4(Xϕ)→ K(Xϕ)
(4/5) → 0 .

3. The right-hand side term

In order to control the right-hand side term of (2.5), we need some general facts on
the subsequent quotients of the topological filtration on the Grothendieck group of a
quadric. Most results of this § are from [5].

We are going to use the following notation.
We put for shortness K = K(Xϕ).

The quotient K(p/p+1) will be denoted by GpK.
We put forever d = dimXϕ = dimϕ− 2.
Sometimes it is more convenient to use the lower indexes for the topological

filtration by meaning dimension instead of co-dimension, i.e. K(p) = K
(d−p). All the

graded groups appearing in this § are graded “by co-dimension”; by that reason the
asterisk stays always as a superscript. However, sometimes it is more convenient to
refer to a component of a graded group by giving its “dimension”; in this case we use
the subscript. For instance, GpK will stay for the p-dimensional component of the
graded group G∗K; it is the same as Gd−pK.
Let h ∈ K be the class of a hyperplane section of Xϕ. This h does not depend

on the choice of the hyperplane, moreover h = 1− [OXϕ(−1)].
For any x ∈ K we define dimension dimx of x as the infimum of p such that

x ∈ K(p). For instance, dim 0 = −∞, dim h = d − 1. Any 0 6= x ∈ K determines an
element 0 6= x̄ ∈ G∗K, namely the residue class in GdimxK.
The subring of K generated by h will be denoted by H. It contains [O(n)] for all

integers n. As a group, H is freely generated by 1, h, h2, . . . , hd. The filtration on
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H induced from K is just the “filtration by powers of h”. In particular, the adjoint
graded group G∗H is torsion-free.

Definition 3.1. Let us define an integer s = s(ϕ) in the following way. If ϕ 6∈ I2(F )
(where I(F ) stays for the ideal of the even-dimensional forms in the Witt ring of
F ) then the even Clifford algebra C0(ϕ) is simple, so it is isomorphic to the algebra
Mn(D) of (n×n)-matrices over a skew-fieldD; in this case we take s such that n = 2s.
If ϕ ∈ I2(F ), we take s such that C0(ϕ) ≃M2s(D)×M2s(D).
There is a trivial observation

Lemma 3.2. If ϕ 6∈ I2(F ) then K
(
C0(ϕ)

)
is freely generated by the class of a (unique

up to an isomorphism) simple C0(ϕ)-module P ; moreover,

[C0(ϕ)] = 2
s(ϕ) · [P ] ∈ K

(
C0(ϕ)

)
.

If ϕ ∈ I2(F ) then K
(
C0(ϕ)

)
is freely generated by the classes of two non-isomorphic

simple C0(ϕ)-modules P and P
′; moreover,

[C0(ϕ)] = 2
s(ϕ) ·

(
[P ] + [P ′]

)
∈ K

(
C0(ϕ)

)
.

Lemma 3.3 ([4, lemma (3.6)]). Let U be the Swan’s sheaf on Xϕ [13, p. 126]. Then
in K

[U(d)] = hd + 2hd−1 + · · ·+ 2d−1h+ 2d .
Since the sheaf U has a (right) action of C0(ϕ) the class [U ] ∈ K is divisible by

2s (3.2), so the following definition is correct (take also in account that the group K
is torsion-free by [13, theorem 1] and (3.2)).

Definition 3.4. For any 0 ≤ i < s we define an element li ∈ K as

li =
1

2i+1
(
hd + 2hd−1 + · · ·+ 2ihd−i

)
;

for a certain convenience reason we also put l−1 = 0.

What these elements are explains the following

Lemma 3.5. The element li is equal to the class of an i-dimensional linear subspace
on Xϕ if such a subspace lies on Xϕ (i.e. if the form ϕ contains an (i+1)-dimensional
totally isotropic subspace, i.e. if the Witt index of ϕ is at least i+ 1).

Proof. Let Li ⊂ Xϕ be an i-dimensional linear subspace of Xϕ and in : Xϕ →֒ P
the embedding of Xϕ into the projective space as a hypersurface. First assume that
dimϕ is odd. Then using [13, theorem 1] it is easy to see that the push-forward in∗ :
K(Xϕ)→ K(P) is injective, so it would be enough to check that in∗([Li]) = in∗(li).
The left-hand side is just [Li] ∈ K(P) while the right-hand side can be rewritten with
using the projection formula as

1

2i+1
(
ld + 2ld−1 + · · ·+ 2ild−i

)
· [Xϕ]

where li denotes the class of an i-co-dimensional linear subspace of P. Computing

[Xϕ] = 1− [OP(−2)] = 2l1 − l2
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and multiplying we get ld−i+1 what is the same as the required [Li] because dimP =
d+ 1.
Now assume that dimϕ is even. Take any non-singular hyperplane section Y of

Xϕ containing Li (it is really possible to find such a Y because i 6= d/2 (3.4)). Since
Y is an odd-dimensional quadric we know from the previous paragraph that

[Li] =
1

2i+1
(hd−1 + 2hd−2 + · · ·+ 2ihd−1−i) ∈ K(Y ) .

Applying the push-forward with respect to the embedding Y →֒ Xϕ and using once
again the projection formula for the right-hand side we get

[Li] =
1

2i+1
(hd−1 + 2hd−2 + · · ·+ 2ihd−1−i) · [Y ] ∈ K(Xϕ) .

Since [Y ] = h we are done.

Lemma 3.6. For any 0 ≤ i < s one has:

• 2li = hd−i + li−1;
• hli = li−1;
• dim li > dim li−1;
• if ϕ is anisotropic then dim li > i.

Proof. The first two properties are obvious from the formula (3.4) defining li. Since
the multiplication in K respects the filtration and h ∈ K(1) the second property
implies the third one. If ϕ is anisotropic, the degree of any closed point on Xϕ is even
whence l0 6∈ K(0), i.e. dim l0 > 0; thus dim li ≥ i+ dim l0 > i.

Corollary 3.7. If ϕ is anisotropic every element l̄i ∈ G∗K, 0 ≤ i < s has order 2.

Proof. By an agreement in the beginning of § we denote by l̄i the class of li ∈ K in
Gdim liK. By (3.6) 2li = hd−i + li−1, dim li > dim li−1 and dim li > i = dim hd−i.
Thus dim li > dim 2li, i.e. 2l̄i = 0.

Definition 3.8. Let us denote by I∗ ⊂ TorsG∗K the subgroup generated by all l̄i,
0 ≤ i < s. The quotient TorsG∗K/I∗ will be denoted by II∗.
Theorem 3.9. Assume that the quadratic form ϕ is anisotropic. There exits an exact
sequence of graded groups

0→ I∗ → TorsG∗K → II∗ → 0
where I∗ and II∗ have the following properties:
• #Ip ≤ 2 for any p;
• #I∗ = 2s where s = s(ϕ) is defined in (3.1);
• if ϕ 6∈ I2(F ) then II∗ = 0;

moreover, in the case ϕ ∈ I2(F ) it holds:
• for every p the group IIp is cyclic;
• IIp = 0 for p ≥ d/2;
• if there exists a field extension of degree 2n which completely splits ϕ then #II∗
divides 2n+s−d/2;
• if II0 = II1 = · · · = IIp = 0 for some p < d/2 then I0 = I1 = · · · = Ip =
Ip+1 = 0.
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Proof. The graded groups I∗ and II∗ are defined in (3.8). The group I∗ has exactly s
non-trivial components: these are components of dimensions dim li, i = 0, 1, . . . , s−
1 (by (3.6) all the numbers dim li are distinct). Every non-trivial component has order
2 because it is generated by an element l̄i (3.7). So, two first statements of the theorem
hold by the very definition of I∗.
Suppose that ϕ 6∈ I2(F ). If we consider on H and K/H the filtrations induced

from K the exact sequence 0→ H → K → K/H → 0 will give an exact sequence of
the adjoint graded groups:

0→ G∗H → G∗K → G∗(K/H)→ 0 .
Since G∗H is torsion-free we obtain an injection TorsG∗K →֒ G∗(K/H). Note that
[13, theorem 1], (3.2) and (3.3) imply #K/H = 2s. Since TorsG∗K ⊃ I∗, #I∗ = 2s
and #G∗(K/H) = #K/H = 2s we obtain that TorsG∗K = I∗, i.e. II∗ = 0.
Now suppose that ϕ ∈ I2(F ). Denote by N the subgroup of K generated by

H and 2−s[U ]. Considering on N and K/N the induced filtrations we get an exact
sequence of the adjoint graded groups

0→ G∗N → G∗K → G∗(K/N)→ 0 .
So, the torsion subgroups are connected by the exact sequence:

0→ TorsG∗N → TorsG∗K → TorsG∗(K/N) .
The same arguments as above show that TorsG∗N = I∗. Thus the latter exact
sequence produces an embedding II∗ →֒ G∗(K/N). Since the quotient K/N is a
cyclic group every component Gp(K/N) is cyclic too; whence the fourth statement of
the theorem.
Since rkGd/2K = 2 [4, (3.1),(2.2),(2.7)] and rkGd/2N = 1 we have

rkGd/2(K/N) = 1 ;

thereby Gp(K/N) = 0 for p ≥ d/2 whence the fifth statement of the theorem.
Suppose that there exists a field extension of degree 2n completely splitting ϕ,

let ϕ̃ be the form ϕ over this extension. Let P̃ be a simple C0(ϕ̃)-module. Put ũ =

[U⊗P̃ ] ∈ K(Xϕ̃). The multiple 2
d/2−sũ of ũ lies in K(Xϕ) and generates the quotient

K(Xϕ)/N(Xϕ). Considering the element ũ itself in the quotient K(Xϕ̃)/N(Xϕ̃) one

has: ũ ∈
(
K(Xϕ̃)/N(Xϕ̃)

)(d/2)
. Taking the transfer we get:

2nũ ∈
(
K(Xϕ)/N(Xϕ)

)(d/2)
.

Consequently, #TorsG∗
(
K(Xϕ)/N(Xϕ)

)
divides 2n+s−d/2 and we have proved the

sixth statement.
Let us prove the seventh one. Denote by ld/2 ∈ K(Xϕ̃) the class of a (d/2)-

dimensional linear subspace Ld/2 lying on Xϕ̃. Applying the projection formula to
the embedding Ld/2 →֒ Xϕ̃ and using (3.5) one gets: hld/2 = ld/2−1. It follows from
[13, theorem 1] that 2d/2−sK(Xϕ̃) ⊂ K(Xϕ). In particular, l := 2

d/2−sld/2 ∈ K(Xϕ).

Lemma 3.10. One has in K(Xϕ): dim l ≥ m, dim2nl = m (here 2n is as above the
degree of a field extension completely splitting ϕ) and dim ls−1 < dim l.
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Proof. Two first properties are evident. The last one holds since

hl = h(2d/2−sld/2) = 2
d/2−sld/2−1 ≡ ls−1 mod H(d/2−1) .

Let Ip be the non-trivial component of I∗ of maximal dimension and suppose
that p ≥ d/2. To prove the last statement of the theorem it suffices to find a number
q > p with TorsGqK(Xϕ) 6= 0. Put q = dim l. Since p = dim ls−1 we have by the
lemma: q > p. The group GqK(Xϕ) contains a non-zero element l̄, moreover 2

n l̄ = 0
by the lemma. Thus TorsGqK(Xϕ) 6= 0 and we are done.
Corollary 3.11. If for some p

TorsG0K = TorsG1K = · · · = TorsGpK = 0
then the group TorsGp+1K is cyclic.

Proof. According to the theorem a group TorsGp+1K might be non-cyclic only in the
case when ϕ ∈ I2(F ) and p < d/2. In this case we can apply the last statement of
the theorem.

4. Torsion in CH4

Theorem 4.1. If dimϕ > 8 then #TorsCH4(Xϕ) ≤ 4.
Proof. If ϕ is isotropic, say ϕ ≃ H⊥ψ then CH4(Xϕ) ≃ CH3(Xψ) [11, proposition 1],

[4, (2.2)]; by [5, theorem] (see also (5.1)) #TorsCH3(Xψ) ≤ 2 always.
Below in the proof we assume that ϕ is anisotropic.

Suppose that ϕ is not a 4-Pfister neighbor. Then by (2.5) we have an isomorphism
CH4(Xϕ) ≃ G4K(Xϕ). If ϕ 6∈ I2(F ) or dimϕ ≤ 10 then #TorsG4K(Xϕ) = #I4 ≤ 2
by (3.9). So, only the case ϕ ∈ I2(F ) and dimϕ ≥ 12 is left.
If dimϕ > 12 all the groups CHp(Xϕ) with p ≤ 3 are torsion-free. Hence

the groups GpK(Xϕ) with p ≤ 3 are torsion-free too and thereby G4K(Xϕ) is
cyclic (3.11). If dimϕ > 14 let us take a quadratic extension L/F such that ϕL
is isotropic. Then CH4(XϕL) ≃ CH3Xψ for a quadratic form ψ with dimψ > 12

whence TorsCH4(XϕL) ≃ TorsCH3(Xψ) = 0. Applying the transfer we get

2TorsCH4(Xϕ) = 0, i.e. #TorsCH
4(Xϕ) ≤ 2 in this case.

If dimϕ = 14 we take a biquadratic extension L/F such that the Witt in-
dex of ϕL is at least 2. Then CH

4(XϕL) ≃ CH2Xψ for a quadratic form ψ with

dimψ = 10 whence TorsCH4(XϕL) ≃ TorsCH2(Xψ) = 0 and by the transfer argu-

ment 4TorsCH4(Xϕ) = 0, i.e. #TorsCH
4(Xϕ) ≤ 4.

For a 12-dimensional quadratic form ϕ lying in I2(F ) let us compute the order
of the second kind torsion II∗ ⊂ G∗K(Xϕ). Let L/F be a field extension of degree

2d/2−s (d = 10 now) splitting the Clifford invariant of the form ϕ. Since ϕL is a
12-dimensional from from I3(L) it (completely) splits in a quadratic extension E/L
[9, Satz 14]. Putting n = log2[E : F ] = d/2− s+ 1 in the formula from (3.9) we get
#II∗ ≤ 2. Since TorsGpK(Xϕ) = 0 for p ≤ 2 we have: TorsG3K(Xϕ) = II3 (3.9).
Now we can argue as follows: if II3 6= 0 then II3 = II∗, in particular II4 = 0, so
TorsG4K(Xϕ) = I4 has the order at most 2; otherwise, if II3 = 0 the group I4 is
zero (3.9) and so TorsG4K(Xϕ) = II4 has the order at most 2 again.
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We have completed the case when ϕ is not a 4-Pfister neighbor. Now assume
the opposite. Since a Pfister neighbor uniquely determines the Pfister superform the
left-hand side term of (2.5) has now the order 2. By this cause we have to show
that the right-hand side term, i.e. the group TorsG4K(Xϕ) is of order at most 2.
Looking at the previous part of the current proof we see that it is always the case
except when ϕ ∈ I2(F ) and dimϕ = 14. But since a 14-dimensional quadratic form
of trivial discriminant is evidently not able to be an (anisotropic!) Pfister neighbor
this exception does not occurs.

Remark 4.2. The proof of the theorem contains in fact a more precise information
on what TorsCH4(Xϕ) for a particular ϕ can be. One can also handle the case of
dimϕ = 7, 8 if ϕ is not similar to a subform of an anisotropic 4-Pfister form — see
(2.2).

5. Torsion in CH3

Theorem 5.1 ([6]). For any ϕ, one has #TorsCH3(Xϕ) ≤ 2.

Proof. If ϕ is isotropic, say ϕ = H⊥ψ, then CH3(Xϕ) ≃ CH2(Xψ). Since

#TorsCH2 ≤ 2 for any quadric [4, theorem (6.1)] we are done in this case. From
now on we suppose that ϕ is anisotropic.
Arguments like (1.1) show that CH3(Xϕ) ≃ G3K(Xϕ) [4, corollary (4.5)]. If

ϕ 6∈ I2(F ) or dimϕ ≤ 8 then
#TorsG3K(Xϕ) ≤ 2

by (3.9). From now on we consider only the case ϕ ∈ I2(F ) and dimϕ ≥ 10.
Since dimϕ ≥ 10, the groups GpK(Xϕ) for p ≤ 2 are torsion-free (for p =

2 it holds according to the computation of CH2(Xϕ) [4, theorem (6.1)]). Hence

TorsG3K(Xϕ) = II3 (3.9) which is a cyclic group. The last we need to show is
2TorsCH3(Xϕ) = 0. For this it would suffice to find a quadratic extension L/F such

that the group CH3(XϕL) = 0 is torsion-free (then one can use the transfer argument).
Take simply an arbitrary quadratic extension L/F which partially splits (i.e.

makes isotropic) the form ϕ, say ϕL = H⊥ψ. We have: CH3(XϕL) ≃ CH2(Xψ). If

TorsCH2(Xψ) = 0 we are done.

If not then according to the computation of CH2 the form ψ is similar to a 3-
Pfister form. In this case we can compute the order of the second kind torsion II∗ ⊂
G∗K(Xϕ) by using the formula from (3.9). We have: d = 8, s(ϕ) = 3 (if s(ϕ) = 4
then ϕ should be isotropic as a 10-dimensional form from I3) and since one can split
ϕ by a field extension of degree 4 we can put n = 2. Thus #II∗ ≤ 22+3−8/2 = 2. In
particular, #TorsG3K(Xϕ) = #II3 ≤ 2.
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Abstract. Let F be a field of characteristic 6= 2. In this paper we in-
vestigate quadratic forms ϕ over F which are anisotropic and of dimension
2n, n ≥ 2, such that in the Witt ring WF they can be written in the form
ϕ = σ − π where σ and π are anisotropic n- resp. m-fold Pfister forms,
1 ≤ m < n. We call these forms twisted Pfister forms. Forms of this type
with m = n− 1 are of great importance in the study of so-called good forms
of height 2, and such forms with m = 1 also appear in Izhboldin’s recent
proof of the existence of n-fold Pfister forms τ over suitable fields F , n ≥ 3,
for which the function field F (τ) is not excellent over F . We first derive
some elementary properties and try to give alternative characterizations of
twisted Pfister forms. We also compute the Witt kernel W (F (ϕ)/F ) of a
twisted Pfister form ϕ. Our main focus, however, will be the study of the
following problems: For which forms ψ does a twisted Pfister form ϕ become
isotropic over F (ψ) ? Which forms ψ are equivalent to ϕ (i.e., the function
fields F (ϕ) and F (ψ) are place-equivalent over F ) ? We also investigate how
such twisted Pfister forms behave over the function field of a Pfister form
of the same dimension which then leads to a generalization of the result of
Izhboldin mentioned above.

1991 Mathematics Subject Classification: Primary 11E04; Secondary 11E81,
12F20.

1 Introduction

Let F be a field of characteristic 6= 2. WF denotes the Witt ring of non-degenerate
quadratic forms over F (which we will simply call forms over F ). PnF (resp. GPnF )
denotes the set of all forms isometric (resp. similar) to n-fold Pfister forms, i.e., forms

1This research has been carried out during stays at the Mathematics Department of the Uni-
versity of Kentucky, Lexington and the Sonderforschungsbereich 343: “Diskrete Strukturen in der
Mathematik”, Universität Bielefeld. I would like to thank both institutions for their hospitality.
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of the type 〈〈a1, · · · , an〉〉 = 〈1, a1〉 ⊗ · · · 〈1, an〉. We say that ϕ is a Pfister neighbor
if there exists π ∈ PnF for some n such that ϕ is similar to a subform of π and
dimϕ > 1

2 dimπ = 2
n−1. In this case, we say that ϕ is a Pfister neighbor of π. Any

π ∈ PnF can be written as π ≃ 〈1〉 ⊥ π′. The form π′ is called the pure part of π
and it is uniquely determined up to isometry.

An important part of the algebraic theory of quadratic forms deals with the
behavior of forms over F under a field extension K/F . Of particular interest is the
case where K = F (ψ) is the function field of a form ψ over F . If ψ is isotropic
then F (ψ)/F is purely transcendental. This situation is of not much interest with
regard to the questions we will consider since one of our main goals lies in determining
whether an anisotropic form ϕ over F becomes isotropic over K, something which
cannot happen if K/F is purely transcendental. The extension K/F is said to be
excellent if for any form ϕ over F the anisotropic part (ϕK)an of ϕ over K is defined
over F , i.e., there exists a form ϕ̃ over F such that (ϕK)an ≃ ϕ̃K . Knebusch has
shown in [K 2, Theorem 7.13] that if F (ψ)/F is excellent where ψ is an anisotropic
form, then ψ is a Pfister neighbor. As for the converse of this statement, it suffices
to consider Pfister forms. This is because if ψ is a Pfister neighbor of τ then F (ψ)
and F (τ) are (place-)equivalent over F which implies that F (ψ) is excellent iff F (τ)
is excellent. So let K = F (τ) for some anisotropic τ ∈ PnF . It is easy to show that
K/F is excellent for n = 1, and for n = 2 this was shown by Arason in [ELW1,
Appendix II]. It was an open problem whether K/F is always excellent for n ≥ 3
until recently, when Izhboldin [I] gave a negative answer. In fact, he proved the even
stronger result that to any anisotropic τ ∈ PnF , n ≥ 3, there always exists a field
extension E/F , some σ ≃ 〈1〉 ⊥ σ′ ∈ PnE and some d ∈ Ė = E \ {0} not a square
such that σ′ ⊥ 〈d〉 is anisotropic, it becomes isotropic over E(τ), but its anisotropic
part over E(τ) is not defined over E. In particular, E(τ)/E is not excellent.

Let us now turn to a seemingly unrelated problem. It is well-known that if
ϕ is an anisotropic form over F then ϕF (ϕ) is hyperbolic iff ϕ ∈ GPnF for some
n. Going one step further, what can one say about an anisotropic form ϕ over F
for which ϕ1 ≃ (ϕF (ϕ))an does not vanish but where (ϕ1)F1(ϕ1) becomes hyperbolic
where F1 = F (ϕ). Such a form is said to be of height 2. By the above, we know that
ϕ1 ∈ GPmF1 for some m ≥ 1 and we say that ϕ has degree m. We call ϕ good if
there exists some ρ ∈ PmF such that ϕ1 ≃ aρF1 for some a ∈ Ḟ1. If one can choose
a ∈ Ḟ already then ϕ is an excellent form in the sense of Knebusch [K2, Section 7],
and in this case one knows how ϕ has to look like (cf. [K 2, Lemma 10.1(i)]). An open
problem is to classify anisotropic good non-excellent forms of height 2. It is believed
that if ϕ is of that type and of degree n − 1 then there exists some α ∈ Pn−2F and
some 4-dimensional form β over F such that ϕ ≃ α⊗ β and α⊗ 〈〈−d〉〉 is anisotropic
where d = d±β is the signed discriminant of β. This conjecture has been proved for
n = 2 (cf. [K 2, Theorem 10.3]), n = 3 (cf. [F 2, Theorem 1.6]), and n = 4 (cf. [Ka,
Théorème 2.12]). (It is easy to show that if ϕ is of this type α ⊗ β then ϕ is good
non-excellent of height 2.)

What do these forms α ⊗ β of height 2 and Izhboldin’s examples σ′ ⊥ 〈d〉 have
in common? In both cases we are dealing with anisotropic forms ϕ of dimension 2n.
If ϕ ≃ α⊗ β and if we write β ≃ 〈d, u, v, uv〉 (possibly after scaling), then in WF we
have

ϕ = α⊗ 〈〈u, v〉〉 − α⊗ 〈〈−d〉〉 .
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If ϕ ≃ σ′ ⊥ 〈d〉 then in WF we have

ϕ = σ − 〈〈−d〉〉 .

We observe that in these situations ϕ can be written as the difference of an n-fold
Pfister form and an (n−1)-fold resp. 1-fold Pfister form. We aim at a unifying concept
which includes both types of forms α⊗ β and σ′ ⊥ 〈d〉. This leads us quite naturally
to what we call twisted Pfister forms. ϕ is said to be a twisted Pfister form if ϕ is
anisotropic of dimension 2n for some n, such that inWF it can be written as ϕ = σ−π
for some anisotropic forms σ ∈ PnF and π ∈ PmF , 1 ≤ m < n. The above examples
represent twisted Pfister forms at the extreme ends of the spectrum: m = n− 1 and
m = 1. These examples also serve as a motivation for our in-depth study of these
forms. It should be emphasized that Izhboldin’s striking results in [I] and his clever
constructions there gave the initial impulse to our present investigations.

As simple as the structure of twisted Pfister forms appears, this class of forms
leads in our opinion to a wealth of interesting results and new problems as the above
examples indicate. This is somewhat surprising considering their “proximity” to or-
dinary Pfister forms.

In the next section, we will recall some of the important facts about function
fields and generic splitting of quadratic forms which we will need rather extensively
in what will follow. Starting with the basic notion of linkage of Pfister forms in
Section 3, we will then give the precise definition of twisted Pfister forms and derive
some of their fundamental properties as well as some alternative characterizations.
For completeness’ sake, we included a short Section 4 in which we compute the Witt
kernel W (F (ϕ)/F ) of a twisted Pfister form ϕ. These results have been previously
obtained by Fitzgerald [F 1]. In Section 5 we attack the problem of determining those
forms ψ for which a twisted Pfister form ϕ becomes isotropic over F (ψ). In Section 6
we will determine in some cases the equivalence class of a twisted Pfister form ϕ (here,
we mean that ϕ is equivalent to ψ, ϕ ∼ ψ, if ϕF (ψ) and ψF (ϕ) are isotropic). Some
of our results in Sections 5 and 6 apply to an even bigger class of forms than twisted
Pfister forms. The results in these two sections can be regarded as an extension and
generalization of our earlier work in [H 4]. In Section 7, we consider the case of a
twisted Pfister form ϕ of dimension 2n and an anisotropic τ ∈ PnF . We generalize
Izhboldin’s results in [I] on when (ϕF (τ))an is defined over F and add some remarks
about so-called F (τ)-minimal forms. Finally, in Section 8, we explicitly construct
τ ∈ PnF , n ≥ 3, such that F (τ)/F is not excellent where F is purely transcendental
of degree n−1 over Q. We also generalize Izhboldin’s construction of a field extension
E/F such that E(τ)/E is not excellent where one starts with an arbitrary field F
permitting an anisotropic Pfister form τ ∈ PnF , n ≥ 3. Our construction is still
based on Izhboldin’s original ideas used in [I].

2 Some basic facts

In our notations and terminology we follow Lam’s book [L 1] and Scharlau’s book [S].
ϕ ≃ ψ denotes isometry of the forms ϕ and ψ over F , whereas ϕ = ψ stands for
equality in the Witt ring WF . We write ϕan for the anisotropic part of ϕ and iW (ϕ)
for its Witt index. Thus, if we denote the hyperbolic plane 〈1,−1〉 by H and put
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i = iW (ϕ), we have ϕ ≃ ϕan ⊥ (i × H). If ϕ is a subform of ψ, i.e., if there exists a
form η such that ψ ≃ ϕ ⊥ η, then we write ϕ ⊂ ψ for short.
If K/F is a field extension and if ϕ is a form over F , then we denote the form

which one obtains from ϕ by scalar extension by ϕK . The Witt kernel W (K/F ) is
the kernel of the natural map WF → WK induced by scalar extension. We put
DK(ϕ) = {a ∈ K̇ | 〈a〉 ⊂ ϕK} and GK(ϕ) = {a ∈ K̇ | aϕK ≃ ϕK} (we omit the
subscript if K = F ). K/F is said to be excellent if for any form ϕ over F there exists
a form ϕ̃ over F such that (ϕK)an ≃ ϕ̃, i.e., the anisotropic part of ϕ over K is defined
over F . A form ϕ over F is called K-minimal if ϕ is anisotropic, ϕK is isotropic, and
ηK is anisotropic for any η ⊂ ϕ with dim η < dimϕ. Two field extensions K and L of
F are called equivalent if there exist F -places λ : K → L ∪∞ and µ : L → K ∪∞,
we write K ∼ L for short. In this situation, K/F is excellent iff L/F is excellent (this
follows from [K 1, Proposition 3.1], see also [ELW1, Corollary 2.8]), and K-minimal
forms are exactly the L-minimal forms. ϕ is said to be round (or multiplicative) if
D(ϕ) = G(ϕ). If ϕ is a Pfister form then ϕ is multiplicative and either anisotropic or
hyperbolic (cf. [L 1, Ch. 10, Corollaries 1.6, 1.7] or [S, Ch. 4, Corollary 1.5]).

Let now ϕ be a form over F such that dimϕ ≥ 2 and ϕ 6≃ H. The function field
F (ϕ) of ϕ is the function field of the projective quadric defined by ϕ = 0. To avoid
case distinctions, we put F (ϕ) = F if dimϕ ≤ 1 or ϕ ≃ H. If dimϕ = n ≥ 2 then
F (ϕ)/F is a purely transcendental extension of degree n − 2 over F followed by a
quadratic extension, and F (ϕ)/F is purely transcendental iff ϕ is isotropic ([S, Ch. 4,
Remark 5.2(vi)]). F (ϕ) is a generic zero (or isotropy) field of ϕ over F , i.e., if K is
any field extension of F with ϕK isotropic then there exists a place λ : F (ϕ)→ K∪∞
over F . We say that two forms ϕ and ψ are equivalent if F (ϕ) ∼ F (ψ), and we write
ϕ ∼ ψ. In the following proposition, we collect some more results about function
fields of quadratic forms which we will need later on.

Proposition 2.1 Let ϕ and ψ be anisotropic forms over F .

(i) ([K 1, Theorem 3.3].) ϕF (ψ) and ψF (ϕ) are both isotropic iff F (ϕ) ∼ F (ψ),
i.e., iff ϕ ∼ ψ.

(ii) ([S, Ch. 4, Theorem 5.4(i)].) ϕF (ϕ) is hyperbolic iff ϕ ∈ GPnF for some
n ≥ 1.

(iii) ([L 1, Ch. 7, Lemma 3.1], [S, Ch. 2, Lemma 5.1].) If dimψ = 2 then ϕF (ψ) is

isotropic iff aψ ⊂ ϕ for some a ∈ Ḟ .
(iv) (Cassels-Pfister subform theorem, [S, Ch. 4, Theorem 5.4(ii)].) If ϕF (ψ) is

hyperbolic then aψ ⊂ ϕ for any a ∈ D(ϕ)·D(ψ).
(v) ([S, Ch. 4, Theorem 5.4(iv)].) If ψ is a Pfister neighbor of the Pfister form π,

then ϕF (ψ) is hyperbolic iff there exists a form γ over F such that ϕ ≃ π⊗γ.
In particular, W (F (ψ)/F ) = πWF .

(vi) ([H 3, Theorem 1].) If dimϕ ≤ 2n < dimψ for some n then ϕF (ψ) stays
anisotropic.

(vii) ([H 3, Proposition 2].) If ψ is a Pfister neighbor of the Pfister form π then
ϕ ∼ ψ iff ϕ is a Pfister neighbor of π.

(viii) ([L 2, Theorem 10.1].) Let ρ be another form over F . If ϕF (ψ) is isotropic
and if ψF (ρ) is isotropic then ϕF (ρ) is isotropic.
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(ix) ([K 2, Theorem 7.13] or [ELW1, Examples 2.2(i)].) If F (ψ)/F is excellent
then ψ is a Pfister neighbor.

(x) (Cf. part (iii) of this proposition and [ELW1, Appendix II by Arason].) If
ψ is a Pfister neighbor of an n-fold Pfister form, n = 1 or 2, then F (ψ)/F
is excellent.

Let now ϕ be a form over F which is not hyperbolic. We define inductively
fields Fi, i ≥ 0, and forms ϕi over Fi as follows. Let ϕ0 ≃ ϕan and F0 = F . For
i ≥ 1 we put Fi = Fi−1(ϕi−1) and ϕi ≃ ((ϕi−1)Fi−1)an. The smallest h for which
dimϕh ≤ 1 is called the height of ϕ. The tower F0 ⊂ F1 ⊂ · · · ⊂ Fh is called a
generic splitting tower of ϕ over F , Fh is a generic splitting field of ϕ over F , and
Fh−1 is called the leading field of ϕ over F . ϕj is called the j-th kernel form of ϕ and
iW (ϕFj ) = ij(ϕ) the j-th Witt index of ϕ. By the splitting pattern of ϕ we mean the
sequence {dimϕ0,dimϕ1, · · · ,dimϕh} (this definition is different from the one given
in [HuR]). The degree of ϕ is defined as follows. If dimϕ is odd we put degϕ = 0.
Otherwise, we know by Proposition 2.1(ii) that ϕh−1 ∈ GPnFh−1 for some n ≥ 1. In
this case we put degϕ = n. Let τ ∈ PnFh−1 such that ϕh−1 is similar to τ . Then τ
is called the leading form of ϕ. If the leading form is defined over F we say that ϕ is
a good form (in this case there actually exists σ ∈ PnF such that τ ≃ σFh−1 , cf. [K 2,
Proposition 9.2]).
There are two natural filtrations of the Witt ring. One is given by the n-th powers

InF of the ideal IF of even-dimensional forms in WF . InF is additively generated
by the n-fold Pfister forms. One has I2F = {ϕ ∈ IF | d±ϕ = 1 ∈ Ḟ /Ḟ 2}, where d±ϕ
denotes the signed discriminant of a form ϕ, and by Merkurjev’s theorem [M] one
has I3F = {ϕ ∈ I2F | c(ϕ) = 1} where c(ϕ) denotes the Clifford invariant of ϕ which
is an element in the Brauer group BrF of F . The other filtration is given by the
ideals JnF = {ϕ ∈ WF | degϕ ≥ n} (cf. [K 1, Theorem 6.4] for the fact that these
sets are ideals, see also [S, Ch. 4, Theorem 7.3]). One has InF ⊂ JnF for all n ≥ 0
(cf. [K 1, Corollary 6.6], [S, p. 164]). This is essentially the Arason-Pfister Hauptsatz
which in its original form states that if 0 6= ϕ ∈ InF is anisotropic then dimϕ ≥ 2n,
and furthermore, if ϕ ∈ InF is anisotropic and dimϕ = 2n then ϕ ∈ GPnF (see [AP,
Hauptsatz and Korollar 3]). If we define deg′ ϕ = n if ϕ ∈ InF \ In+1F , we thus have
deg′ ϕ ≤ degϕ. It is still an open problem whether InF = JnF for all n and all F .
This is known to be true for n ≤ 4 (cf. [Ka, Théorème 2.8] and the references there).
We will mainly work with the ideals JnF .

Proposition 2.2 Let ϕ and ψ be forms over F with ϕ not hyperbolic, and let F =
F0 ⊂ F1 ⊂ · · · ⊂ Fh be a generic splitting tower of ϕ as defined above.

(i) ([K 1, Proposition 6.9 and Corollary 6.10], see also [S, Ch. 4, Theorem 7.5].)
ImFJnF ⊂ Jm+nF for all m,n ≥ 0. Furthermore, deg(ϕ ⊗ ψ) = degϕ iff
dimψ is odd.

(ii) ([AK, Satz 18].) If degϕF (ψ) > degϕ then dimψ ≤ 2n, and if furthermore
dimψ = 2n then ψ ∈ GPnF and ϕ ≡ ψ (mod Jn+1F ). In particular,
ψFh−1 is similar to the leading form of ϕ.

(iii) ([K 1, Corollary 3.9 and Proposition 5.13].) Let K/F be a field extension.
Let K ·Fj be the free composite of K and Fj over F . If iW (ϕK) ≥ ij(ϕ)
then K ·Fj is purely transcendental over K.
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3 Twisted Pfister forms

The following result is well-known (cf. [EL, Theorem 1.4]). Since we will use it quite
often without always referring to it explicitly, we will include a proof at this point for
the reader’s convenience.

Lemma 3.1 Let α ∈WF be a round form, i.e., G(α) = D(α). Let ϕ ∈WF . If α⊗ϕ
represents a ∈ Ḟ , then there exists ψ ∈WF with a ∈ D(ψ) such that α⊗ϕ ≃ α⊗ψ.
Furthermore, if dimϕ ≥ 2 and α⊗ ϕ is isotropic, then then there exists an isotropic
ψ ∈WF such that α⊗ ϕ ≃ α⊗ ψ.

Proof. Let ϕ ≃ 〈a1, · · · , an〉 so that α ⊗ ϕ ≃ a1α ⊥ · · · ⊥ anα. Since a ∈ D(α ⊗ ϕ)
there are xi ∈ D(α), not all 0, such that a = a1x1 + · · · + anxn. Say, x1, · · · , xm 6=
0, m ≤ n. As α is round, xiα ≃ α for 1 ≤ i ≤ m. Thus, α ⊗ 〈a1, · · · , am〉 ≃
α ⊗ 〈a1x1, · · · , amxm〉. By the above, a is represented by 〈a1x1, · · · , amxm〉. Hence,
〈a1x1, · · · , amxm〉 ≃ 〈a, a′2, · · · , a′m〉 and thus α⊗ϕ ≃ α⊗〈a, a′2, · · · , a′m, am+1, · · · , an〉.
Now suppose that dimϕ ≥ 2 and that α⊗ ϕ is isotropic. Write ϕ ≃ ϕ′ ⊥ 〈−x〉.

By assumption, there exists y ∈ Ḟ such that y is represented both by α⊗ ϕ′ and by
xα. This is clear if both forms are anisotropic because their difference is isotropic. If
either one of them is isotropic, it is universal and therefore represents any non-zero
element represented by the other form. By the above, α⊗ϕ′ ≃ α⊗ψ′ with y ∈ D(ψ′)
and xα ≃ yα. In particular, the form ψ ≃ ψ′ ⊥ 〈−y〉 is isotropic and α⊗ ϕ ≃ α⊗ ψ.
2

To gain a better understanding of the definition of twisted Pfister forms which
we will give later it seems useful to recall another well-known result due to Elman
and Lam [EL, Theorem 4.5].

Lemma 3.2 Let σ ∈ PnF and π ∈ PmF be anisotropic with m ≤ n. Let a, b ∈ Ḟ .
Then i := iW (aσ ⊥ bπ) = 0 or 2r for some integer r with 0 ≤ r ≤ m. Furthermore,
i ≥ 1 iff there exists x ∈ Ḟ such that (aσ ⊥ bπ)an ≃ x(σ ⊥ −π)an. If i = 2r ≥ 1
then there exist α ∈ PrF , σ1 ∈ Pn−rF , and π1 ∈ Pm−rF such that σ ≃ α ⊗ σ1 and
π ≃ α⊗ π1.

Proof. We may assume that i ≥ 1. Then there exist u ∈ D(σ) and v ∈ D(π) such
that au+ bv = 0. The roundness of σ and π implies that uσ ≃ σ and vπ ≃ π. Thus,
with x = au = −bv, we have

aσ ⊥ bπ ≃ auσ ⊥ bvπ ≃ xσ ⊥ −xπ.

Thus, (aσ ⊥ bπ)an ≃ x(σ ⊥ −π)an.
Now if i = 1 there is nothing else to show. So let us assume that i ≥ 2 and

let α′ be a common Pfister neighbor of σ and π of maximal dimension. Since i ≥ 2
we have dimα′ ≥ 2 as both forms have at least a common 2-dimensional form, and
every such 2-dimensional form is trivially a Pfister neighbor. Say, α′ is a Pfister
neighbor of α ∈ PnF . Since α

′ becomes isotropic over F (α), it follows that σF (α)
and πF (α) are also isotropic and hence hyperbolic. By the Cassels-Pfister subform
theorem and because 1 is represented by σ, π, and α, there exist forms σ0 and π0
such that σ ≃ α ⊥ σ0 and π ≃ α ⊥ π0, cf. Proposition 2.1(iv). The maximality of
dimα′ implies that dimα = dimα′. Suppose i > dimα. Then σ0 ⊥ −π0 is isotropic

Documenta Mathematica 1 (1996) 67–102



Twisted Pfister Forms 73

and there exists a w ∈ Ḟ which is represented both by σ0 and π0. In particular, the
Pfister neighbor α ⊥ 〈w〉 of α⊗〈〈w〉〉 is a common subform of σ and π, a contradiction
to the maximality of dimα′ = dimα. Thus, i = dimα = 2r for some r ≥ 1. As for
the remaining statement, there is nothing else to show if dimα = dim σ. So suppose
dimσ0 > 0 and let v ∈ D(σ0). Thus, the Pfister neighbor α ⊥ 〈v〉 of α ⊗ 〈〈v〉〉 is a
subform of σ, and by an argument similar to above, we get that σ ≃ α⊗〈〈v〉〉 ⊥ σ̃. The
existence of σ1 ∈ Pn−rF now follows by an easy induction on dimσ0. The existence
of π1 can be shown in the same way. 2

Definition 3.3 Let σ, π be anisotropic Pfister forms. If iW (σ ⊥ −π) = 2r, r ≥ 0,
then r is called the linkage number of σ and π. We write ln(σ, π) = r. A form α ∈ PrF
such that σ ≃ α⊗ σ1 and π ≃ α⊗ π1 for suitable Pfister forms σ1, π1 is called a link
of σ and π.

It should be remarked that a link α is generally not uniquely determined up to isom-
etry.
We now consider the case of an anisotropic form ϕ of dimension 2n such that in

WF we have ϕ = aσ + bπ, where a, b ∈ Ḟ and σ ,π are Pfister forms with dimσ ≥
dimπ. In view of Lemma 3.2, we then have that ϕ ≃ x(σ ⊥ −π)an for some x ∈ Ḟ .
We want to exclude the case where ϕ ∈ GPnF . An easy check then shows that we
may assume σ ∈ PnF and π ∈ PmF are both anisotropic with 1 ≤ m < n and we
have ln(σ, π) = m− 1. We now come to the definition of twisted Pfister forms and of
what we will call weakly twisted Pfister forms, a type of form which will also appear
frequently throughout the paper.

Definition 3.4 (i) Let 1 ≤ m < n. A form ϕ over F is called a twisted (n,m)-
Pfister form (or simply (n,m)-Pfister form) if there exist anisotropic forms σ ∈ PnF
and π ∈ PmF such that ln(σ, π) = m − 1 and such that ϕ ≃ (σ ⊥ −π)an. In this
case we say that the (n,m)-Pfister form ϕ is defined by (σ, π). The set of all forms
isometric (resp. similar) to (n,m)-Pfister forms is denoted by Pn,mF (resp. GPn,mF ).
ϕ is called a twisted Pfister form if ϕ ∈ GPn,mF for some (n,m) with 1 ≤ m < n.
(ii) Let 1 ≤ m < n. A form ϕ over F is called a weakly twisted (n,m)-Pfister

form if ϕ is anisotropic, dimϕ = 2n, and ϕ ≡ π⊗η (mod JnF ) for some anisotropic
π ∈ PmF and some odd-dimensional η ∈ WF . We call π the twist of ϕ. The set of
all weakly twisted (n,m)-Pfister forms will be denoted by Pwn,mF .

Remark 3.5 (i) Let 1 ≤ m < n. In view of Lemma 3.2 and by the remarks preceeding
the definition, ϕ ∈ GPn,mF iff ϕ is anisotropic, dimϕ = 2n, and there exist anisotropic
σ ∈ GPnF and π ∈ GPmF such that ϕ = σ + π in WF . If this is the case, then
ϕ /∈ GPnF . In fact, ϕ ≡ σ + π ≡ π 6≡ 0 (mod JnF ) because σ ∈ GPnF ⊂ JnF and
π ∈ GPmF is anisotropic and thus, since dimπ = 2m < 2n and by the Arason-Pfister
Hauptsatz, π /∈ JnF . Similarly, ϕ ≡ π 6≡ 0 (mod InF ).
(ii) Let now ϕ ∈ Pn,mF be defined by (σ, π). Let α be a link of σ and π, i.e.,

α ∈ Pm−1F and there exist σ1 ∈ Pn−m+1F and d ∈ Ḟ such that σ ≃ α ⊗ σ1 and
π ≃ α ⊗ 〈〈−d〉〉. Let σ′1 denote the pure part of σ1, i.e., σ1 ≃ 〈1〉 ⊥ σ′1. Then
ϕ ≃ α⊗ (〈d〉 ⊥ σ′1).
(iii) If ϕ ∈ Pn,mF is defined by (σ, π) then ϕ ≡ σ−π ≡ −π (mod JnF ). Hence,

GPn,mF ⊂ Pwn,mF . This is generally a proper inclusion if m ≤ n − 3 (see, e.g.,

Documenta Mathematica 1 (1996) 67–102



74 Detlev W. Hoffmann

Example 5.13), but it is an equality if 1 ≤ n − 2 ≤ m ≤ n − 1 ≤ 3 (cf. Proposition
3.17 below).

Before we continue, let us mention some of the properties of twisted Pfister forms
which will be useful later. In fact, we state these results for a possibly wider class of
forms (see also Conjecture 3.9 below).

Proposition 3.6 Let 1 ≤ m < n. Let ϕ ∈ WF be anisotropic and dimϕ = 2n.
Suppose that ϕ ≡ xπ (mod JnF ) for some anisotropic π ∈ PmF and some x ∈ Ḟ .
Then the following holds.

(i) ϕF (π) is anisotropic and in GPnF (π). In particular, if ϕ ∈ Pn,mF is defined
by (σ, π), then ϕF (π) ≃ σF (π) is anisotropic.

(ii) ϕ is good with leading form defined by π. We have

ht(ϕ) =

{
2 if m = n− 1,
3 if m < n− 1.

In particular, i1(ϕ) = 2
m−1 and the splitting pattern of ϕ is {2n, 2n−1, 0} if

m = n− 1 and {2n, 2n − 2m, 2m, 0} if m < n− 1.
These statements hold in particular if ϕ ∈ GPn,mF .

Proof. (i) First note that πF (π) = 0 and thus ϕF (π) ∈ JnF (π). If ϕF (π) is anisotropic
then, since dimϕ = 2n, this implies ϕF (π) ∈ GPnF (π). So suppose ϕF (π) is isotropic.
Then dim(ϕF (π))an < 2

n and by the Arason-Pfister Hauptsatz, ϕF (π) is hyperbolic.

Thus, there exists γ ∈ WF , dim γ = 2n−m, such that ϕ ≃ π ⊗ γ. Since n > m we
have that dim γ is even, i.e., γ ∈ IF . But π ∈ PmF ⊂ ImF . Hence, ϕ ≃ π ⊗ γ ∈
Im+1F ⊂ Jm+1F . But clearly, ϕ ≡ xπ 6≡ 0 (mod Jm+1F ), a contradiction.
If ϕ ∈ Pn,mF is defined by (σ, π), then in WF we have ϕ = σ − π and thus, in

WF (π), ϕF (π) = σF (π). Now ϕ ≡ −π (mod JnF ) and by Remark 3.5(i) and by the
above, it is clear that ϕF (π) ≃ σF (π) is anisotropic.
(ii) Since dimϕ = 2n but ϕ /∈ GPnF , we have ht(ϕ) ≥ 2. Let F0 = F , F1, and

F2 be the first three fields in a splitting tower of ϕ, and let ϕ1 and ϕ2 be the first
two kernel forms of ϕ. Clearly, 0 < dimϕ1 < 2

n and (ϕ1)F1(π) ≡ 0 (mod JnF1(π)).
Hence, by the Arason-Pfister Hauptsatz, (ϕ1)F1(π) is hyperbolic. Thus, there exists
γ ∈ WF1 such that ϕ1 ≃ πF1 ⊗ γ. Comparing dimensions shows that 1 ≤ dim γ ≤
2n−m−1. This shows in particular that i1(ϕ) ≥ 2m−1. Define ψ ∈WF1 by ψ ≃ ϕ1 ⊥
−xπF1 ≃ πF1 ⊗ (γ ⊥ 〈−x〉). Note that dimψ ≤ 2n and

ψ ≡ ϕ1 − xπF1 ≡ ϕF1 − xπF1 ≡ xπF1 − xπF1 ≡ 0 (mod JnF ).

Thus, by the Arason-Pfister Hauptsatz, either ψ is hyperbolic or ψ is anisotropic and
in GPnF1.
Suppose that ψ is hyperbolic. Let µ ≃ (ϕ ⊥ −xπ)an over F . By definition, µ ≡ 0
(mod JnF ). Note that ϕ and π are anisotropic and dimϕ = 2

n > dimπ = 2m.
Hence, 0 < 2n − 2m ≤ dimµ ≤ 2n + 2m < 2n+1. Therefore, by the Arason-Pfister
Hauptsatz, 2n ≤ dimµ < 2n+1 and we must have deg µ = n. Over F1 = F (ϕ) we have
µF1 = ϕF1 − xπF1 = ψF1 = 0 and thus degµF1 = ∞ > deg µ = n. Now dimϕ = 2n

and Proposition 2.2(ii) yields ϕ ∈ GPnF , obviously a contradiction.
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It follows that ψ ≃ ϕ1 ⊥ −xπF1 ∈ GPnF1 is anisotropic. Furthermore, dimϕ1 =
2n − 2m. In particular, ψF1(π) is isotropic and hence hyperbolic and thus (ϕ1)F1(π)
is hyperbolic as well. If m = n − 1 then dimϕ1 = dimπ = 2n−1 which immediately
yields that ϕ1 is similar to πF1 , which in turn implies that ϕ is good of height 2 with
leading form defined by π. Now if m < n− 1 then dimϕ1 = 2n − 2m > 2n−1. Thus,
ϕ1 is a Pfister neighbor with complementary form −xπF1 . It follows readily that
ϕ2 ≃ xπF2 and that ϕ is a good form of height 3 with leading form defined by π. In
fact, the second kernel form is defined by xπ already over F . 2

It should be remarked that the fact that the leading form of ϕ is defined by π
also follows directly from ϕ ≡ xπ ≡ π (mod Jm+1F ) by [K2, Theorem 9.6]. In our
proof, we also wanted to determine the height of ϕ explicitly.

Corollary 3.7 Let 1 ≤ m < n. Let ϕ ∈ Pwn,mF with twist π ∈ PmF . Then ϕF (π) is
anisotropic and in GPnF (π), i1(ϕ) = 2

m−1, and ϕ is good with leading form defined
by π. Furthermore, if F (π)/F is excellent, then there exists σ ∈ GPnF such that
ϕF (π) ≃ σF (π).

Proof. Write ϕ ≡ π ⊗ η (mod JnF ) with dim η odd. That ϕF (π) is anisotropic
and in GPnF (π) can be shown as in Proposition 3.6, using the fact that π ⊗ η 6≡ 0
(mod JnF ) as π is anisotropic and dim η is odd and hence deg(π⊗η) = deg π = m <

n (see Proposition 2.2(i)). Similarly as before, we get that i1(ϕ) ≥ 2m−1. We want to
show that we have equality and also that ϕ is good with leading form defined by π. We
may assume that after scaling d±η = 1. It is clear that ϕ ≡ π⊗η ≡ π (mod Jm+1F )
and it follows from [K2, Theorem 9.6] that ϕ is good with leading form defined by
π. Let L be the leading field of π ⊗ η and K = F (π). Since (π ⊗ η)K = 0 we have
that the free composite KL is purely transcendental over K (see Proposition 2.2(iii)).
Since ϕK is anisotropic, we therefore have that ϕKL is anisotropic and hence ϕL is
anisotropic as well. Now (π⊗ η)L = πL in WL by [K 1, Proposition 6.12]. Hence, ϕL
is anisotropic, dimϕL = 2

n, and ϕL ≡ πL (mod JnL). By Proposition 3.8, we have
i1(ϕL) = 2

m−1. But i1(ϕL) ≥ i1(ϕ) ≥ 2m−1. Hence, i1(ϕ) = 2m−1.
Finally, if F (π)/F is excellent, then the existence of some σ ∈ GPnF such that

ϕF (π) ≃ σF (π) follows from [ELW1, Proposition 2.11]. 2

Corollary 3.8 Let 1 ≤ m < n. Let ϕ ∈ Pwn,mF . Let ψ ⊂ aϕ for some a ∈ Ḟ and
dimψ > 2n − 2m−1. Then ψF (ϕ) is isotropic and ϕ ∼ ψ.

Proof. We have i1(ϕ) = iW (ϕF (ϕ)) = 2
m−1 by the previous proposition. Since ψ is

similar to a subform of ϕ and dimψ > dimϕ− i1(ϕ), it follows readily that ψF (ϕ) is
isotropic. Clearly, ψF (ψ) and hence ϕF (ψ) are isotropic as well. Thus, ϕ ∼ ψ. 2
We finish this section with some conjectures and a characterization of forms in

GPn,mF . As already remarked, if ϕ ∈ Pn,mF is defined by (σ, π), then ϕ ≡ −π
(mod JnF ). It would be interesting to know whether a converse of this also holds,
i.e., is the following conjecture always true?

Conjecture 3.9 Let 1 ≤ m < n. Let ϕ be an anisotropic form over F with dimϕ =
2n. If there exists an anisotropic π ∈ GPmF such that ϕ ≡ π (mod JnF ) then
ϕ ∈ GPn,mF .
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This conjecture is related to the following well-known conjecture (see, for example,
[Ka, Conj. 9]).

Conjecture 3.10 Let ψ ∈ JnF be anisotropic and dimψ < 2n + 2n−1. Then
dimψ = 2n and ψ ∈ GPnF .

By the definition of degree it is clear that dimψ ≥ 2n and that ψ ∈ GPnF if dimψ =
2n. Note also that if ψ ≃ (π1 ⊥ −π2)an where πi ∈ PnF and ln(π1, π2) = n − 2,
then dimψ = 2n + 2n−1. So the conjecture essentially states that there is a gap in
the dimensions of anisotropic forms in JnF between 2

n and 2n + 2n−1. We have the
following results concerning these two conjectures.

Proposition 3.11 (i) Conjecture 3.10 implies Conjecture 3.9.
(ii) Conjecture 3.10 holds for n ≤ 4.
(iii) Conjecture 3.9 holds for n ≤ 4.

Proof. (i) Let ϕ be anisotropic, dimϕ = 2n, and ϕ ≡ π (mod JnF ) for some an-
isotropic π ∈ GPmF where 1 ≤ m < n. If m = n − 1 then, for all x ∈ Ḟ , π ≡ xπ
(mod JnF ) so that in this case we may assume (after possibly scaling) that there
exists u ∈ D(ϕ) ∩ D(π). Consider σ ≃ (ϕ ⊥ −π)an. We clearly have σ ∈ JnF .
Furthermore, 0 < 2n − 2m ≤ dimσ ≤ 2n + 2n−1 − 2. The last inequality is obvious if
m < n − 1, and it follows for m = n− 1 since we assumed that ϕ and π represent a
common element u ∈ Ḟ . If Conjecture 3.10 holds, we have that σ ∈ GPnF . Hence,
in WF , ϕ = σ − π with σ ∈ GPnF and π ∈ GPmF . By Remark 3.5(i) we have
ϕ ∈ GPn,mF .
(ii) The case n = 2 is trivial and the case n = 3 is essentially due to Pfister

(cf. [P, Satz 14] or [S, Ch. 2, Theorem 14.4], the result is usually given in terms of
I3F ). The case n = 4 can be found in [H 7], again in terms of I4F . Here, we use that
InF = JnF for n ≤ 4.
(iii) follows from (ii) and (i). 2

The next little result shows that Conjecture 3.9 is at least “stably” true.

Proposition 3.12 Let 1 ≤ m < n. Let ϕ be an anisotropic form over F with
dimϕ = 2n. If there exists an anisotropic π ∈ GPmF such that ϕ ≡ π (mod JnF )
then ϕ ∈ GPn,mK for some field extension K/F .

Proof. Let K be the leading field of ϕ ⊥ −π. Since 0 6= ϕ ⊥ −π ∈ JnF and dim(ϕ ⊥
−π) < 2n+1, we have that deg(ϕ ⊥ −π) = n, i.e., ((ϕ ⊥ −π)K)an ≃ σ ∈ GPnK.
Since K is obtained by taking function fields of dimension > 2n (in case K 6= F ), ϕK
and πK are anisotropic by [H 3, Theorem 1]. Also, ϕK = σ + πK in WK. It is now
obvious by Remark 3.5(i) that ϕ ∈ GPn,mK. 2

Corollary 3.13 Let 1 ≤ m < n. Let ϕ ∈ Pwn,mF with twist π ∈ PmF . Then
ϕ ∈ GPn,mK for some field extension K/F .

Proof. Write ϕ ≡ π ⊗ η (mod JnF ) with dim η odd. Without loss of generality, we
may assume that d±η = 1. Let L be the leading field of π ⊗ η. As in the proof of
Corollary 3.7, we have that ϕL is anisotropic and ϕL ≡ πL (mod JnL). The claim
now follows immediately from Proposition 3.12. 2
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We know by Proposition 3.11(i) that Conjecture 3.10 implies Conjecture 3.9. It
would be interesting to know whether the converse holds as well, i.e., whether these
two conjectures are equivalent. At least a partial answer is given by the following.

Proposition 3.14 (i) If Conjecture 3.9 holds for (n,m) = (n, 1), n ≥ 3, then there
are no anisotropic forms of dimension 2n + 2 in JnF .
(ii) If Conjecture 3.9 holds for (n,m) = (n, 1) and for (n,m) = (n, 2), n ≥ 4,

then there are no anisotropic forms of dimension 2n + 2 and 2n + 4 in JnF .

Proof. (i) Let ψ ∈ JnF and suppose that dimψ = 2n + 2 and that ψ is anisotropic.
Write ψ ≃ ϕ ⊥ −π with dim π = 2. Obviously, both π ∈ GP1F and ϕ are anisotropic,
dimϕ = 2n and ϕ ≡ π (mod JnF ). By assumption, this implies that ϕ ∈ GPn,1F .
Thus, there exist σ ∈ GPnF and τ ∈ GP1F such that in WF we have ϕ = σ + τ .
Hence, ψ = σ + τ − π ∈ WF . Now ψ and σ ∈ JnF . Therefore, τ − π ∈ JnF . But
dim τ +dimπ = 4 < 2n which, by the Arason-Pfister Hauptsatz, yields that τ −π = 0
inWF . Hence, inWF we have ψ = σ. But dimσ = 2n < dimψ. Thus, ψ is isotropic,
a contradiction.
(ii) By part (i), forms of dimension 2n + 2 in JnF are isotropic. So let ψ ∈ JnF

and suppose that dimψ = 2n + 4 and that ψ is anisotropic. Write ψ ≃ ψ′ ⊥ −δ with
dim δ = 2. Let d = d±δ so that δ is similar to 〈1,−d〉. Let L = F (

√
d). We have

that ψL = ψ
′
L ∈ JnL. Now dimψ′ = 2n + 2 and by assumption and part (i), we have

that ψ′L is isotropic. Hence, ψ
′ contains a subform similar to δ, say, ψ′ ≃ ϕ ⊥ xδ.

Let −π ≃ δ ⊥ xδ ∈ GP2F . Then we have ψ ≃ ϕ ⊥ −π and thus, ϕ ≡ π (mod JnF )
with anisotropic π ∈ GP2F , anisotropic ϕ, dimϕ = 2n. By assumption, this implies
that ϕ ∈ GPn,2F . With a reasoning analogous to the one in the proof of part (i), we
conclude again that ψ is isotropic, a contradiction. 2

The following result shows that the existence of a large enough Pfister neighbor
as a subform of the form ϕ in Conjecture 3.9 is equivalent to ϕ being in GPn,mF .

Proposition 3.15 Let 1 ≤ m < n. Let ϕ be an anisotropic form over F with
dimϕ = 2n. Suppose there exists an anisotropic π ∈ GPmF such that ϕ ≡ π
(mod JnF ). Then ϕ ∈ GPn,mF iff ϕ contains a Pfister neighbor of dimension
2n−1 + 1.

Proof. Say, ϕ ∈ Pn,mF . Then it follows readily from Remark 3.5(ii) (and with the
notations there) that ϕ contains the Pfister neighbor α⊗σ′1 of dimension 2n−2m−1 ≥
2n−1 + 1.
Conversely, let µ ⊂ ϕ be a Pfister neighbor of dimension 2n−1 + 1 of, say, σ ∈

PnF , and let x ∈ Ḟ such that µ ⊂ xσ. Define ψ ≃ (ϕ ⊥ −xσ)an. Then dimψ ≤
dimϕ + dimσ − 2 dimµ = 2n − 2. Note that ψ ≡ ϕ − xσ ≡ ϕ ≡ π (mod JnF )
and hence ψF (π) ≡ 0 (mod JnF (π)). By the Arason-Pfister Hauptsatz, this implies
that ψF (π) = 0 in WF (π) and there exists η ∈ WF such that ψ ≃ π ⊗ η. Since
dimψ ≤ 2n − 2 we must therefore have dimψ ≤ 2n − 2m. As ψ ⊥ −π ∈ JnF and
dim(ψ ⊥ −π) ≤ 2n, the Arason-Pfister Hauptsatz yields two cases. Either ψ ⊥ −π =
0 inWF . Then ϕ = ψ+xσ = π+xσ inWF and thus ϕ ∈ GPn,mF by Remark 3.5(i).
Or ψ ⊥ −π ≃ τ ∈ GPnF is anisotropic. In this case, ϕ = ψ−xσ = τ−xσ+π = γ+π,
where γ ≃ (τ ⊥ −xσ)an. Now dimϕ = 2n and dimπ = 2m, τ, xσ ∈ GPnF , and ϕ, π,
and γ are all anisotropic. By Lemma 3.2, dim γ = 0, 2n, or ≥ 2n+2n−1. We consider
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two cases. If m ≤ n − 2 then in order to have ϕ = γ + π, i.e., γ = ϕ − π, we must
have dim γ = 2n as

0 < 2n − 2m ≤ dim(ϕ ⊥ −π)an ≤ 2n + 2m < 2n + 2n−1 .

But γ ∈ InF and thus necessarily γ ∈ GPnF . Since ϕ = γ + π we therefore have
ϕ ∈ GPn,mF . Ifm = n−1 then ψ ⊥ −π ∈ GPnF implies that ψ ≃ yπ for some y ∈ Ḟ .
Hence, ϕ = ψ+xσ = yπ+xσ inWF which readily implies ϕ ∈ GPn,mF = GPn,n−1F .
2

Let us finish this section by showing that in certain cases “weakly twisted” implies
“twisted” as mentioned already in Remark 3.5(iii). First, we show a very easy lemma.

Lemma 3.16 Let n ≥ 2, π ∈ Pn−2F and η̃ ∈WF . Then there exists a form η ∈WF
with dim η ≤ 2 and dim η ≡ dim η̃ (mod 2) such that π ⊗ η̃ ≡ π ⊗ η (mod JnF ).

Proof. We may assume that dim η̃ ≥ 3. Let us first consider the case where dim η̃
is even. Let a = d±η̃. Then η̃ ⊥ −〈〈−a〉〉 ∈ I2F and thus, since π ∈ Jn−2F ,
π ⊗ (η̃ ⊥ −〈〈−a〉〉) ∈ JnF or π ⊗ η̃ ≡ π ⊗ 〈〈−a〉〉 (mod JnF ) and we put η ≃ 〈〈−a〉〉.
Let us now consider the case where dim η̃ is odd. After scaling, we may assume

that η̃ ≃ 〈1〉 ⊥ η′. Let now a = d±η′. By a similar argument as above, we get

π ⊗ η̃ ≡ π + π ⊗ η′ ≡ π + π ⊗ 〈〈−a〉〉 ≡ π ⊗ 〈〈1,−a〉〉+ aπ ≡ aπ (mod JnF )

because π ⊗ 〈〈1,−a〉〉 ∈ GPnF ⊂ JnF . Here, we put η ≃ 〈a〉. 2
The final result in this section now follows readily from this lemma together with

Proposition 3.11.

Proposition 3.17 Let 1 ≤ n− 2 ≤ m ≤ n− 1. Let ϕ ∈ Pwn,mF with twist π ∈ PmF .
Then there exists x ∈ Ḟ such that ϕ ≡ xπ (mod JnF ). In particular, if Conjecture
3.9 holds for (n,m) (m as above) then Pwn,mF = GPn,mF . Thus, this equality holds
whenever 1 ≤ n− 2 ≤ m ≤ n− 1 ≤ 3.

4 The Witt kernel of the function field of a twisted Pfister form

We already used several times that if π ∈ PnF is anisotropic and if ϕ ∈W (F (π)/F )
is anisotropic, then there exists a form γ over F such that ϕ ≃ π ⊗ γ. In particular,
W (F (π)/F ) is a strong n-Pfister ideal, i.e., every anisotropic form in W (F (π)/F ) is
isometric to an orthogonal sum of forms similar to n-fold Pfister forms inW (F (π)/F ),
in this case forms similar to π itself. We will show that if ϕ ∈ Pn,mF thenW (F (ϕ)/F )
is a strong (n+ 1)-Pfister ideal, and we will determine the (n+ 1)-fold Pfister forms
in W (F (ϕ)/F ). These results are implicitly contained in the work of Fitzgerald [F 1].
We will nevertheless provide a proof for the reader’s convenience.

Theorem 4.1 Let ϕ ∈ Pn,mF be defined by (σ, π). Let α ∈ Pm−1F be a link of σ
and π and let d ∈ Ḟ such that π ≃ α ⊗ 〈〈−d〉〉. Let η be an anisotropic form over F .
Then η ∈W (F (ϕ)/F ) if and only if there exist an integer k ≥ 1, ri, si ∈ Ḟ , 1 ≤ i ≤ k,
such that si ∈ D(〈d〉 ⊥ −α) and

η ≃ ⊥
i=1

k

riσ ⊗ 〈〈si〉〉 .
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This theorem follows from the following more general result.

Theorem 4.2 Let σ ≃ 〈1〉 ⊥ σ′ ∈ PnF , n ≥ 2, be anisotropic and let γ1, γ2 ∈ WF
such that γ1 ⊂ σ′, dim γ1 > 2n−1, and γ1 ⊥ γ2 ≃ σ. Let d ∈ Ḟ such that ψ ≃ γ1 ⊥ 〈d〉
is anisotropic and not a Pfister neighbor. Let η be an anisotropic form over F . Then
η ∈W (F (ψ)/F ) if and only if there exist an integer k ≥ 1, ri, si ∈ Ḟ , 1 ≤ i ≤ k, such
that si ∈ D(〈d〉 ⊥ −γ2) and

η ≃ ⊥
i=1

k

riσ ⊗ 〈〈si〉〉 .

Proof. To show the “if”-part, it suffices to show that if s ∈ D(〈d〉 ⊥ −γ2) then
σ ⊗ 〈〈s〉〉 ∈ W (F (ψ)/F ). Now s being represented by 〈d〉 ⊥ −γ2 is equivalent to
d being represented by 〈s〉 ⊥ γ2 (Witt cancellation!). Now clearly sσ represents s.
Hence,

ψ ≃ γ1 ⊥ 〈d〉 ⊂ γ1 ⊥ γ2 ⊥ 〈s〉 ⊂ σ ⊥ sσ ≃ σ ⊗ 〈〈s〉〉 .
It is now obvious that σ ⊗ 〈〈s〉〉 is isotropic and hence hyperbolic over F (ψ).
As for the converse, let η ∈ W (F (ψ)/F ) be anisotropic. Since γ1 ⊂ ψ we have

that η also becomes hyperbolic over F (γ1). But γ1 is a Pfister neighbor of σ, i.e.,
γ1 ∼ σ and thus η ∈W (F (σ)/F ). Hence, there exists a form τ over F with η ≃ σ⊗τ .
After scaling, we may assume that τ represents 1, i.e., τ ≃ 〈1〉 ⊥ τ ′ and η ≃ σ ⊥ σ⊗τ ′.
Now dimψ > 2n−1 and ψ is not a Pfister neighbor. In particular, ψ is not similar to
a subform of σ ∈ PnF and therefore σF (ψ) stays anisotropic. Hence, we must have
dim τ ′ ≥ 1. As ηF (ψ) = 0, the Cassels-Pfister subform theorem yields that for every
a ∈ D(η)·D(ψ) we have aψ ⊂ η. Since ψ and σ and therefore also η have the subform
γ1 in common, they represent common elements. Hence, we may choose a = 1 and
we get that ψ ⊂ η, i.e.,

ψ ≃ γ1 ⊥ 〈d〉 ⊂ η ≃ σ ⊥ σ ⊗ τ ′ ≃ γ1 ⊥ γ2 ⊥ σ ⊗ τ ′ .
Hence, there exists u ∈ D(γ2) ∪ {0} and s ∈ D(σ ⊗ τ ′) ∪ {0} such that d = u + s.
Note that d /∈ D(γ2) because otherwise ψ ≃ γ1 ⊥ 〈d〉 ⊂ γ1 ⊥ γ2 ≃ σ, i.e., ψ is a
Pfister neighbor of σ, in contradiction to the definition of ψ. Hence, we must have
s 6= 0, i.e., s ∈ D(σ ⊗ τ ′). By Lemma 3.1, we may in fact assume that s ∈ D(τ ′) so
that τ ′ ≃ 〈s〉 ⊥ τ ′′. Hence, we get

η ≃ σ ⊥ sσ ⊥ σ ⊗ τ ′′ ≃ σ ⊗ 〈〈s〉〉 ⊥ σ ⊗ τ ′′ .
Now s = d − u ∈ D(〈d〉 ⊥ −γ2). We have already shown that in this case, σ ⊗ 〈〈s〉〉
becomes hyperbolic over F (ψ). Therefore, σ⊗ τ ′′ also has to become hyperbolic over
F (ψ) because η does. The proof can now easily be finished by induction on dim τ . 2

Proof of Theorem 4.1. As in Remark 3.5(ii), we write σ ≃ α ⊗ σ1 for some σ1 ≃
〈1〉 ⊥ σ′1 ∈ Pn−m+1F , so that we get ϕ ≃ α⊗ (〈d〉 ⊥ σ′1). Let ψ ≃ α⊗ σ′1 ⊥ 〈d〉 ⊂ ϕ.
We have dimψ = 2n − 2m−1 + 1. Hence, by Corollary 3.8, ϕ ∼ ψ and therefore
W (F (ϕ)/F ) = W (F (ψ)/F ). Note that ψ is not a Pfister neighbor because ϕ is
not a Pfister neighbor and the only forms equivalent to Pfister neighbors are Pfister
neighbors themselves (cf. Proposition 2.1(vii)). Note also that σ ≃ α ⊗ σ′1 ⊥ α.
Now α ≃ 〈1〉 ⊥ α′ and hence σ′ ≃ α ⊗ σ′1 ⊥ α′ contains α ⊗ σ′1 as a subform. The
assumptions in Theorem 4.2 on ψ are then fulfilled by putting γ1 ≃ α⊗σ′1 and γ2 ≃ α.
The claim of the theorem now follows immediately from Theorem 4.2 with σ, d, ψ,
γ1 and γ2 given as above. 2
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5 Isotropy of twisted Pfister forms over function fields of quadratic
forms

Let ϕ be an anisotropic Pfister form over F and ψ ∈WF be anisotropic with dimψ ≥
2. The fact that Pfister forms are either anisotropic or hyperbolic plus the Cassels-
Pfister subform theorem imply that ϕ becomes isotropic over F (ψ) iff ψ is similar to
a subform of ϕ. Now suppose ϕ is a twisted Pfister form and ψ is as above. When is
ϕ isotropic over F (ψ) ? The problem turns out to be considerably more complicated
and we are only able to obtain partial results. Let us start with a useful observation.

Proposition 5.1 Let 1 ≤ m < n. Let ϕ ∈ Pwn,mF with twist π ∈ PmF . Let ψ ∈WF
be anisotropic with dimψ ≥ 2 and assume that D(ϕ) ∩ D(ψ) 6= ∅. Then ϕF (ψ) is
isotropic iff ψF (π) ⊂ ϕF (π). In particular, if ϕ ∈ Pn,mF is defined by (σ, π) and if
D(ϕ) ∩D(ψ) 6= ∅ or D(σ) ∩D(ψ) 6= ∅, then ϕF (ψ) is isotropic iff ψF (π) ⊂ σF (π).

Proof. The second statement clearly follows from the first one since if ϕ ∈ Pn,mF
is defined by (σ, π) then ϕ ≡ σ − π ≡ −π (mod JnF ) and ϕF (π) ≃ σF (π), see
Proposition 3.6(i).
To prove the first statement, we note that by Corollary 3.7 we have that ϕF (π) ∈

GPnF (π) is anisotropic. If ϕF (ψ) is isotropic then ϕF (π)(ψ) is also isotropic and hence
hyperbolic, and the Cassels-Pfister subform theorem together with D(ϕ) ∩D(ψ) 6= ∅
implies that ψF (π) ⊂ ϕF (π).
Conversely, suppose that ψF (π) ⊂ ϕF (π). Clearly, ϕF (π)(ψ) is isotropic and hence

hyperbolic because ϕF (π) ∈ GPnF (π). Note that F (π)(ψ) ≃ F (ψ)(π). Suppose
ϕF (ψ) is anisotropic. Then, by Proposition 2.1(v) and since ϕF (ψ)(π) = 0, there exists

γ ∈WF (ψ) such that ϕF (ψ) ≃ γ⊗πF (ψ). Now dim γ = 2n−m is even and π ∈ GPmF .
In particular, γ⊗πF (ψ) ∈ Jm+1F (ψ) by Proposition 2.2(1). Now if we write ϕ ≡ π⊗η
(mod JnF ) with dim η odd, we readily get ϕ ≡ π ⊗ η ≡ π (mod Jm+1F ). Hence
we have

ϕF (ψ) ≡ πF (ψ) ≡ γ ⊗ πF (ψ) ≡ 0 (mod Jm+1F (ψ))
which yields πF (ψ) = 0 in WF (ψ). But then F (ψ)(π)/F (ψ) is purely transcendental.
Thus, the anisotropic form ϕF (ψ) stays anisotropic over F (ψ)(π), a contradiction to
ϕF (ψ)(π) = 0. 2

This result gives us a criterion to decide whether ϕ becomes isotropic over F (ψ),
however, it only works over F (π). Although function fields of Pfister forms have a
somewhat nicer behavior than function fields of arbitrary forms, it seems desirable to
find criteria which, at least in principle, work over F itself. What we would like to
have is some sort of descent from F (π) to F where π is an anisotropic Pfister form.
This can easily be achieved if F (π)/F is an excellent field extension which is always
the case for m = 1 and 2, but generally not for m ≥ 3, see also Proposition 2.1(x)
and Corollary 8.4.

Proposition 5.2 Let 1 ≤ m < n. Let ϕ ∈ Pwn,mF with twist π ∈ PmF . Let
ψ ∈WF be anisotropic with dimψ ≥ 2 and assume that D(ϕ) ∩D(ψ) 6= ∅. Suppose
furthermore that F (π)/F is excellent. Then ϕF (ψ) is isotropic iff there exists a form

ψ̃ ∈ WF , dim ψ̃ = 2n, such that ψ ⊂ ψ̃ and ψ̃F (π) ≃ ϕF (π). In particular, if
ϕ ∈ Pn,mF is defined by (σ, π) and if D(ϕ) ∩ D(ψ) 6= ∅ or D(σ) ∩ D(ψ) 6= ∅, then
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ϕF (ψ) is isotropic iff there exists a form ψ̃ ∈ WF , dim ψ̃ = 2n, such that ψ ⊂ ψ̃ and

ψ̃F (π) ≃ σF (π) ≃ ϕF (π).

Proof. The “if”-part follows directly from Proposition 5.1 even without the excellence
assumption. As for the converse, consider ϕ ⊥ −ψ. Since ϕF (ψ) is isotropic, we know
by Proposition 5.1 that ψF (π) ⊂ ϕF (π). This plus the excellence of F (π)/F imply
that there exists χ ∈ WF , dimχ = 2n − dimψ, such that ϕF (π) ≃ ψF (π) ⊥ χF (π),

and with ψ̃ ≃ ψ ⊥ χ over F , we get ψ̃F (π) ≃ ϕF (π). 2

Remark 5.3 The previous proposition provides indeed a criterion which, at least in
principle, can be checked over F . This is because ψ̃F (π) ≃ ϕF (π) means that ψ̃ ⊥
−ϕ ∈W (F (π)/F ). In other words, with ϕ and ψ as above, ϕF (ψ) is isotropic iff there
exist forms ψ̃ and τ inWF with dim ψ̃ = 2n such that ψ ⊂ ψ̃ and (ψ̃ ⊥ −ϕ)an ≃ π⊗τ .

We do not know whether Proposition 5.2 holds in general without the assumption
on F (π)/F being excellent. However, this result at least indicates that in order to
decide if ϕ becomes isotropic over F (ψ), it seems to be important to characterize
those forms ψ over F of dimension 2n for which ψF (π) ≃ ϕF (π). This will be the focus
of most of the remainder of this section.
We will eventually be interested in characterizing those forms ψ ∈WF of dimen-

sion 2n which become isometric to some ϕ ∈ Pn,mF over F (π), where ϕ is defined by
(σ, π). Our aim is to make this description as precise as possible, something which,
in general, doesn’t seem to be easy and which we will only do in the cases m = n− 1
and m = n − 2. In fact, the case m = n − 1 has been dealt with in [H 4, Theorem
3.3]. We have the following result.

Theorem 5.4 Let ϕ ∈ Pn,n−1F be defined by (σ, π). Let ψ ∈WF with dimψ = 2n.
Then the following are equivalent.

(i) ϕF (ψ) is isotropic.

(ii) ψF (π) is similar to ϕF (π) ≃ σF (π).
(iii) Either ψ is similar to ϕ or ψ is similar to some τ ∈ PnF and ϕ contains a

Pfister neighbor of τ .

Proof. The equivalence of (i) and (ii) is clear from Proposition 5.1. Clearly, (iii)
implies (i). That (iii) follows from any of the other statements was shown in [H 4,
Theorem 3.3] under the additional assumption that ψ contains a Pfister neighbor of
dimension 2n−1 + 2n−2. By Proposition 5.8, (ii) implies that there exist α ∈ Pn−2F
and ψ1 ∈ WF , dimψ1 = 4, such that ψ ≃ α ⊗ ψ1. Let ψ′ ⊂ ψ1 with dimψ

′ = 3.
Then ψ′ is a Pfister neighbor of some β ∈ P2F and α⊗ ψ′ ⊂ ψ is a Pfister neighbor
of dimension 2n−1 + 2n−2 of α ⊗ β ∈ PnF and we can apply [H 4, Theorem 3.3] as
desired. 2

Corollary 5.5 Let ϕ ∈ Pn,n−1F be defined by (σ, π) and suppose that F (π)/F is
excellent (which always holds if n− 1 = 1 or 2). Let ψ ∈WF with dimψ ≥ 2. Then
ϕF (ψ) is isotropic iff ψ is similar to a subform of ϕ or ψ is similar to a subform of
some τ ∈ PnF and ϕ contains a Pfister neighbor of τ .
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Proof. This is a direct consequence of Proposition 5.2 and the previous theorem. 2

Part (iii) of the previous theorem tells us that in order to decide whether ϕF (ψ)
is isotropic (where dimψ = 2n), it suffices to look only at ϕ and ψ and how they
relate to each other over F . The form π isn’t really needed explicitly. It turns out
that if ϕ ∈ Pn,mF with m < n− 1 then the situation is not quite so nice anymore as
the form π will play a more prominent role. Let us start with a simple observation.

Proposition 5.6 Let 1 ≤ m < n. Let ϕ ∈ Pwn,mF with twist π ∈ PmF . Let ψ ∈WF
be anisotropic with dimψ = 2n. Suppose that ϕF (ψ) is isotropic. Then there exists
µ ∈WF such that ψ ≡ π⊗µ (mod JnF ). In particular, degψ ≥ m, and degψ = m
iff dimµ is odd (i.e., iff ψ ∈ Pwn,mF with twist π). Furthermore, If m = n − 1 (resp.
m = n− 2) then there exists such µ with dimµ ≤ 1 (resp. dimµ ≤ 2).
Proof. Write ϕ ≡ π ⊗ η (mod JnF ) with dim η odd. After scaling, we may assume
that D(ψ) ∩ D(ϕ) 6= ∅. Since ϕF (ψ) is isotropic we have by Proposition 5.1 that
ψF (π) ≃ ϕF (π). Let χ ≃ (ψ ⊥ −ϕ)an. Then χ ∈ W (F (π)/F ) and there exists
µ̃ ∈WF with χ ≃ π ⊗ µ̃. Let us put µ ≃ µ̃ ⊥ η. Then we have

ψ ≡ χ+ ϕ ≡ π ⊗ µ̃+ π ⊗ η ≡ π ⊗ µ (mod JnF ) .

We have deg(π ⊗ µ) = deg π = m if dimµ is odd (cf. Proposition 2.2(i)), in which
case degψ = deg(π⊗µ) = m as m < n. If dimµ is even, we have deg(π⊗µ) ≥ m+1.
Since n ≥ m+ 1 we thus also have degψ ≥ m+ 1.
The remaining statements for n − 2 ≤ m ≤ n − 1 follow readily from Lemma

3.16. 2

Remark 5.7 In the above proof, we have dimχ ≤ 2n+1− 2 and one obtains dim µ̃ ≤
2n+1−m−1 or dimµ ≤ 2n+1−m−1+dim η. If ϕ ∈ GPn,mF or if F (π)/F is excellent,
then we know that there exists σ ∈ GPnF such that ϕF (π) ≃ σF (π) ∈ GPnF (π)
(cf. Corollary 3.7 in the case where F (π)/F is excellent). We can slightly improve
the estimate of dimµ for general m in this case. After scaling, we may assume
that σ ∈ PnF and D(σ) ∩ D(ψ) 6= ∅. Since ϕF (ψ) is isotropic we then have by
Proposition 5.1 that ψF (π) ≃ σF (π). Let χ ≃ (ψ ⊥ −σ)an. Then dimχ ≤ 2n+1 − 2
as D(ψ) ∩D(σ) 6= ∅, and also χ ∈ W (F (π)/F ). Hence, there exists µ ∈ WF with
χ ≃ π ⊗ µ. Since 2m dimµ = dimχ ≤ 2n+1 − 2 we have dimµ ≤ 2n+1−m − 1.
Furthermore, σ ∈ PnF and we get

χ ≡ ψ − σ ≡ ψ ≡ π ⊗ µ (mod JnF ) .

In the case where ϕ is a twisted Pfister form, we can be more precise about how
ψ has to look like.

Proposition 5.8 Let ϕ ∈ Pn,mF be defined by (σ, π). Let α ∈ Pm−1F , σ1 ∈
Pn−m+1F , and d ∈ Ḟ such that σ ≃ α⊗ σ1 and π ≃ α⊗ 〈〈−d〉〉 (see Remark 3.5(ii)).
Let ψ ∈WF with dimψ = 2n. Then the following holds.
(i) If ψF (π) ≃ ϕF (π) then there exists ψ1 ∈ WF , dimψ1 = 2

n−m+1, such that

ψ ≃ α⊗ ψ1. In particular, ψ ∈ ImF , i.e., deg′ ψ ≥ m.
(ii) If ψ ∈ PnF and ψF (π) ≃ ϕF (π) then there exist s ∈ Ḟ , σ2, ψ2 ∈ Pn−mF ,

such that σ ≃ α⊗ 〈〈s〉〉 ⊗ σ2 and ψ ≃ α ⊗ 〈〈s〉〉 ⊗ ψ2. In particular, ln(ψ, σ) ≥ m and
ln(ψ, π) = m− 1.
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Proof. First, let us recall that ϕF (π) ≃ σF (π), so that in both parts we actually
assume that ψF (π) ≃ σF (π) and therefore, we may assume that ψ represents 1 already
over F after possibly scaling (this is of course always true if ψ ∈ PnF ).
(i) If m = 1, i.e., dimα = 1, there is nothing to show. So let us assume that

m ≥ 2 so that we have αF (α) = 0. Since ψF (π) ≃ σF (π) we clearly have ψF (α)(π) ≃
σF (α)(π) ≃ (α⊗σ1)F (α)(π) = 0. Similarly, πF (α) = 0 which implies that F (α)(π)/F (α)
is purely transcendental. Hence, we must already have ψF (α) = 0. Note that ψ is
anisotropic as ψF (π) ≃ ϕF (π) is anisotropic. Hence, by Proposition 2.1(v), there exists
ψ1 ∈ WF , dimψ1 = 2

n−m+1, such that ψ ≃ α ⊗ ψ1. Since α ∈ Im−1F and dimψ1
even, i.e., ψ1 ∈ IF , we have ψ ∈ ImF , i.e., deg′ ψ ≥ m.
(ii) Let γ ≃ (ψ ⊥ −σ)an ∈ InF . By assumption, γ ∈ W (F (π)/F ). Also,

dim γ ≤ 2n+1 − 2 as 1 ∈ D(ψ) ∩ D(σ). Thus, by Proposition 2.1(v), there exists
β ∈ WF , dimβ < 2n+1−m, such that γ ≃ π ⊗ β. Since γ ∈ InF and π ∈ PmF
with 1 ≤ m < n, we must have that dimβ is even. Therefore, dimβ ≤ 2n+1−m − 2,
i.e., dim γ ≤ 2n+1 − 2m+1. Hence, iW (ψ ⊥ −σ) ≥ 2m and the existence of s ∈ Ḟ ,
σ2, ψ2 ∈ Pn−mF such that σ ≃ α ⊗ 〈〈s〉〉 ⊗ σ2 and ψ ≃ α ⊗ 〈〈s〉〉 ⊗ ψ2 now follows
from Lemma 3.2 (cf., in particular, the proof of Lemma 3.2 and use the fact that we
already have σ ≃ α⊗ σ1 and ψ ≃ α⊗ ψ1 by part (i)).
Clearly, ln(ψ, σ) ≥ m since α ⊗ 〈〈s〉〉 ∈ PmF divides both ψ and σ. It is also

obvious that m ≥ ln(ψ, π) ≥ m − 1 as α ∈ Pm−1F divides both ψ and π. Now
ln(ψ, π) = m would imply that π ⊂ ψ and thus ψF (π) ∈ PnF (π) would be hyperbolic,
a contradiction to ψF (π) ≃ ϕF (π) being anisotropic. 2
Before we state our theorem about forms in Pn,n−2F which parallels in a certain

sense Theorem 5.4, we will provide a lemma which we will need in the proof of this
theorem.

Lemma 5.9 Let 1 ≤ m ≤ n−2 and let ϕ ∈WF be anisotropic with dimϕ = 2n such
that ϕ ≡ π (mod JnF ) for some anisotropic π ∈ GPmF . Assume furthermore that
ϕ ≃ α ⊗ β for some α ∈ Pm−1F and some β ∈ WF , dimβ = 2n−m+1. If Conjecture
3.9 holds for (n,m+ 1) then ϕ ∈ GPn,mF .

Proof. After scaling, we may assume that π ∈ PmF . First, we note that there exists
d ∈ Ḟ such that π ≃ α⊗〈〈−d〉〉. This is obvious ifm = 1, i.e., α ≃ 〈1〉 ∈ P0F . Ifm > 1
we have that αF (α) = 0, thus ϕF (α) = 0 as well, which in turn yields πF (α) ∈ JnF (α).
Since π ∈ PmF and m < n we must have πF (α) = 0. The existence of d ∈ Ḟ such that
π ≃ α⊗ 〈〈−d〉〉 follows immediately from Proposition 2.1(v). Write β ≃ 〈x〉 ⊥ β′ and
define β̃ ≃ 〈xd〉 ⊥ β′ and ϕ̃ ≃ α ⊗ β̃. Then dim ϕ̃ = dimϕ = 2n and ϕ̃ = ϕ − xπ in
WF . In particular, one gets ϕ̃F (π) ≃ ϕF (π) which is anisotropic by Proposition 3.6.
Hence, ϕ̃ is anisotropic. Furthermore,

ϕ̃ ≡ ϕ− xπ ≡ π − xπ ≡ π ⊗ 〈〈−x〉〉 (mod JnF ) .

We have two cases. If π⊗〈〈−x〉〉 is isotropic and hence hyperbolic, then ϕ̃ ∈ JnF and
thus ϕ̃ ∈ GPnF as dim ϕ̃ = 2n. In WF , we get ϕ = ϕ̃ + xπ which readily implies
that ϕ ∈ GPn,mF as ϕ̃ ∈ GPnF and xπ ∈ GPmF (cf. Remark 3.5(i)). If π ⊗ 〈〈−x〉〉
is anisotropic then by our assumption ϕ̃ ∈ GPn,m+1F and there exists σ ∈ GPnF
and ρ ∈ GPn,m+1F such that ϕ̃ = σ + ρ in WF . In particular, ϕ̃ ≡ ρ ≡ π ⊗ 〈〈−x〉〉
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(mod JnF ), and it readily follows that there exists y ∈ Ḟ such that ρ ≃ yπ⊗〈〈−x〉〉
(recall that m+ 1 < n). Hence, in WF ,

ϕ− π = ϕ̃+ xπ − π = σ + yπ ⊗ 〈〈−x〉〉 + xπ − π
= σ + π ⊗ 〈y,−xy, x,−1〉 = σ − π ⊗ 〈〈−x,−y〉〉 .

Suppose first that m+ 2 < n. Then ϕ− π ≡ 0 ≡ −π ⊗ 〈〈−x,−y〉〉 (mod JnF ), i.e.,
π ⊗ 〈〈−x,−y〉〉 ∈ JnF , which implies π ⊗ 〈〈−x,−y〉〉 = 0 as π ⊗ 〈〈−x,−y〉〉 ∈ Pm+2F
and m+ 2 < n. We then have ϕ = σ + π with σ ∈ GPnF and π ∈ PmF which yields
that ϕ ∈ GPn,mF as desired.
Finally, if m+2 = n, we have that σ, π⊗〈〈−x,−y〉〉 ∈ GPnF . By Lemma 3.6 we

then get dim(σ ⊥ −π ⊗ 〈〈−x,−y〉〉)an = 0, 2n, or ≥ 2n + 2n−1. On the other hand,

0 < 2n − 2m = dimϕ− dimπ ≤ dim(ϕ ⊥ −π)an ≤
≤ dimϕ+ dim π = 2n + 2m < 2n + 2n−1 .

Now (σ ⊥ −π ⊗ 〈〈−x,−y〉〉)an ≃ (ϕ ⊥ −π)an and we therefore must have dim(σ ⊥
−π ⊗ 〈〈−x,−y〉〉)an = 2n. As σ ⊥ −π ⊗ 〈〈−x,−y〉〉 ∈ JnF it follows that (σ ⊥
−π ⊗ 〈〈−x,−y〉〉)an ≃ τ ∈ GPnF . Hence, ϕ = τ + π with τ ∈ GPnF and π ∈ PmF
and again ϕ ∈ GPn,mF . 2

Theorem 5.10 Suppose that Conjecture 3.9 holds for (n, n − 1). Let ϕ ∈ Pn,n−2F
be defined by (σ, π). Let ψ ∈ WF with dimψ = 2n. Then the following are equiva-
lent.

(i) ϕF (ψ) is isotropic.

(ii) ψF (π) is similar to ϕF (π) ≃ σF (π).
(iii) There exists τ ∈ PnF such that τF (π) ≃ σF (π) and either

• ψ is similar to τ , or

• there exist x ∈ Ḟ and ρ ∈ Pn,n−1F such that ρ is defined by (τ, π⊗〈〈x〉〉)
and ψ is similar to ρ, or

• there exists χ ∈ Pn,n−2F such that χ is defined by (τ, π) and ψ is
similar to χ.

Proof. The equivalence of (i) and (ii) is clear from Proposition 5.1. One readily
checks that (iii) implies that ψF (π) is similar τF (π) ≃ σF (π) and we are in (ii). Finally,
(i) implies by Proposition 5.6 that ψ ≡ π ⊗ µ (mod JnF ) for some µ ∈ WF , 0 ≤
dimµ ≤ 2. If dimµ ∈ {0, 2} then ψ ∈ GPnF or ψ ∈ GPn,n−1F (the latter only
if π ⊗ µ 6= 0 and because we assumed that Conjecture 3.9 holds for (n, n − 1)). If
dimµ = 1 we have ψ ∈ GPn,n−2F by Lemma 5.9 together with Proposition 5.8(i).
All this together with the fact that ψF (π) is similar to σF (π) readily imply (iii) and
we leave the details to the reader. 2

Corollary 5.11 Let ϕ ∈ Pn,n−2F be defined by (σ, π). Let ψ ∈WF with dimψ =
2n. Suppose that n ≤ 4 or that ψ contains a Pfister neighbor of dimension 2n−1 + 1.
Then the following are equivalent.

(i) ϕF (ψ) is isotropic.

(ii) ψF (π) is similar to ϕF (π) ≃ σF (π).
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(iii) There exists τ ∈ PnF such that τF (π) ≃ σF (π) and either
• ψ is similar to τ , or

• there exist x ∈ Ḟ and ρ ∈ Pn,n−1F such that ρ is defined by (τ, π⊗〈〈x〉〉)
and ψ is similar to ρ, or

• there exists χ ∈ Pn,n−2F such that χ is defined by (τ, π) and ψ is
similar to χ.

Proof. This is an immediate consequence of the previous theorem and Propositions
3.11 and 3.15. 2

Corollary 5.12 Suppose that Conjecture 3.9 holds for (n, n−1). Let ϕ ∈ Pn,n−2F
be defined by (σ, π) and suppose that F (π)/F is excellent. Let ψ ∈WF with dimψ ≥
2. Then the following are equivalent.

(i) ϕF (ψ) is isotropic.

(ii) ψF (π) is similar to a subform of ϕF (π) ≃ σF (π).
(iii) There exists τ ∈ PnF such that τF (π) ≃ σF (π) and

• ψ is similar to a subform of τ , or

• there exist x ∈ Ḟ and ρ ∈ Pn,n−1F such that ρ is defined by (τ, π⊗〈〈x〉〉)
and ψ is similar to a subform of ρ, or

• there exists χ ∈ Pn,n−2F such that χ is defined by (τ, π) and ψ is
similar to a subform of χ.

In particular, the equivalence of (i), (ii) and (iii) always holds for n ≤ 4.

Proof. This is an immediate consequence of Theorem 5.10 and Proposition 5.2. Fur-
thermore, if n ≤ 4 then Conjecture 3.9 holds by Proposition 3.11, and F (π)/F is
excellent since π is of fold ≤ 2. 2
Corollaries 5.5 and 5.12 give us a fairly complete picture for which forms ψ ∈WF

a given form ϕ ∈ Pn,mF , which is defined by (σ, π), becomes isotropic over F (ψ) in
the cases (n,m) ∈ {(2, 1), (3, 1), (3, 2), (4, 2)}. In a certain sense, we know this in
general in the case (n,m) = (n, 1) or (n, 2) by Propositions 5.1 and 5.2. It comes
down to characterizing those forms ψ̃ of dimension 2n for which ψ̃F (π) ≃ σF (π). In
the cases (2, 1) and (3, 2) we have a very precise description by Corollary 5.5. In the
cases (3, 1) and (4, 2) we can essentially reduce this problem to the determination of
those τ ∈ PnF with τF (π) ≃ σF (π) or τ ⊥ −σ ∈W (F (π)/F ). This narrows down the
set of forms we have to look at quite considerably.
The following example shows that if ϕ ∈ Pn,mF with n−m ≥ 3 and if ψ ∈WF ,

dimψ = 2n, then ϕF (ψ) being isotropic does generally not imply that ψ is similar to
a Pfister form or a twisted Pfister form, something which cannot happen in the cases
considered above.

Example 5.13 Let F = R(t) be the rational function field in one variable t over the
reals. Let m ≥ 1 and n−m ≥ 3. Let σ ≃ 〈〈1, · · · , 1〉〉 ∈ PnF and π ≃ 〈〈1, · · · , 1,−t〉〉 ∈
PmF . We then have

ϕ ≃ (σ ⊥ −π)an ≃ 〈1, · · · , 1︸ ︷︷ ︸
2n−2m−1

, t, · · · , t︸ ︷︷ ︸
2m−1

〉 ∈ Pn,mF .
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Let
ψ ≃ (σ ⊥ −〈1, 1, 1〉 ⊗ π)an ≃ 〈 1, · · · , 1︸ ︷︷ ︸

2n−3·2m−1

, t, · · · , t︸ ︷︷ ︸
3·2m−1

〉 .

One easily sees that ϕ and ψ are anisotropic (for example by passing to the power
series field R((t)) ⊃ F and applying Springer’s theorem [L 1, Ch. 6, Proposition 1.9],
[S, Ch. 6, Corollary 2.6(i)]). Clearly, ψF (π) ≃ σF (π) ≃ ϕF (π). Thus, by Proposition
5.1, ϕF (ψ) is isotropic. We claim that ψ is neither similar to a Pfister form nor to a
twisted Pfister form. First, using that σ, 〈〈1, 1〉〉 ⊗ π ∈ Jm+2F , we note that

ψ ≡ σ − 〈1, 1, 1〉 ⊗ π ≡ −〈1, 1, 1〉 ⊗ π + 〈〈1, 1〉〉 ⊗ π ≡ π 6≡ 0 (mod Jm+2F ) .

Hence, degψ = deg π = m. Clearly, ψ is not similar to a Pfister form. Furthermore, ψ
is also not similar to twisted Pfister form. For otherwise, since degψ = m, we have ψ ∈
GPn,mF and by definition, there exist anisotropic forms τ ∈ GPnF and ρ ∈ GPmF
such that ψ = τ+ρ inWF . Thus, τ+ρ = σ−〈1, 1, 1〉⊗π or ρ+〈1, 1, 1〉⊗π = σ−τ in
WF and we get dim(ρ ⊥ 〈1, 1, 1〉 ⊗ π)an = dim(σ ⊥ −τ)an. Now dim(σ ⊥ −τ)an = 0
or ≥ 2n by Lemma 3.2. We also have dim ρ = 2m and dim 〈1, 1, 1〉⊗ π = 3·2m. Thus,

0 < 2m+1 = dim 〈1, 1, 1〉 ⊗ π − dim ρ ≤ dim(ρ ⊥ 〈1, 1, 1〉 ⊗ π)an ≤
≤ dim 〈1, 1, 1〉 ⊗ π + dim ρ = 2m+2 < 2n .

This obviously yields a contradiction. Note, however, that ψ ∈ Pwn,mF . 2

6 The equivalence class of a twisted Pfister form

Recall that two forms ϕ and ψ over F are called equivalent, we write ϕ ∼ ψ, if
ϕF (ψ) and ψF (ϕ) are isotropic. Since the function field of an isotropic form is purely
transcendental over the ground field and since anisotropic forms stay anisotropic over
purely transcendental extensions, the question whether ϕ ∼ ψ holds is of interest only
in the case of anisotropic forms. Let us denote the equivalence class of a form ϕ over
F with respect to “∼” by Equiv(ϕ).
We know by Proposition 2.1(vii) that if ϕ is an anisotropic Pfister form then

Equiv(ϕ) = {ψ ∈ WF |ψ is a Pfister neighbor of ϕ}. The equivalence classes of
forms of dimension ≤ 5 and certain forms of dimension 6, 7, and 8 have been de-
termined in [W], [H 1], [H 2], [H 4], [Lag]. Furthermore, for forms in Pn,n−1F we have
the following result (cf. [H 4, Corollary 3.4, Theorem 4.4]).

Theorem 6.1 Let n ≥ 2 and let ϕ ∈ Pn,n−1F .
(i) Let ψ ∈WF with dimψ = 2n. Then ϕ ∼ ψ iff ψ is similar to ϕ.
(ii) Let n ≤ 3. Then

Equiv(ϕ) = {ψ ∈WF |xψ ⊂ ϕ for some x ∈ Ḟ and dimψ > 2n − 2n−2} .

In view of part (ii) of this theorem, the following conjecture seems natural (see
also [H 4, Conjecture 4.3]).

Conjecture 6.2 Let n ≥ 2 and ϕ ∈ Pn,n−1F . Then

Equiv(ϕ) = {ψ ∈WF |xψ ⊂ ϕ for some x ∈ Ḟ and dimψ > 2n − 2n−2} .
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Let us right away state what we propose as the corresponding conjecture for
forms in Pn,n−2F and which we will prove to be correct in the cases n ≤ 4 (see
Corollary 6.11).

Conjecture 6.3 Let n ≥ 3 and let ϕ ∈ Pn,n−2F be defined by (σ, π). Let ψ ∈WF .
Then the following statements are equivalent.

(i) ψ ∈ Equiv(ϕ).
(ii) There exists χ ∈ Pn,n−2F such that

• χ is defined by (τ, π) for some τ ∈ PnF with τF (π) ≃ σF (π),
• xψ ⊂ χ for some x ∈ Ḟ , and
• dimψ > 2n − 2n−3.

It will be crucial to determine first those ψ ∈ WF of dimension 2n such that
ψ ∼ ϕ, and we will start with some more general results.

Theorem 6.4 Let 1 ≤ m < n. Let ϕ ∈ Pwn,mF with twist π ∈ PmF . Let ψ ∈ WF
be anisotropic with dimψ = 2n. Then the following are equivalent.

(i) ψ ∈ Equiv(ϕ) (i.e., ψ ∼ ϕ).
(ii) ψF (π) is similar to ϕF (π) and ψ ∈ Pwn,mF with twist π.
(iii) ψF (π) is similar to ϕF (π) and degψ = m.

Proof. We clearly may assume that ψ is anisotropic.

(ii)⇒(i). Since ψF (π) is similar to ϕF (π), and since ϕ ≡ π ⊗ η (mod JnF ) and
ψ ≡ π ⊗ µ (mod JnF ) with dim η ≡ dimµ ≡ 1 (mod 2), it follows directly from
Proposition 5.1 and the symmetry of the situation that ϕF (ψ) and ψF (ϕ) are both
isotropic. Hence, ϕ ∼ ψ.
(i)⇒(ii). Let now ϕ ∼ ψ. Then, because ϕF (ψ) is isotropic, ψF (π) is similar to

ϕF (π) by Proposition 5.1 and ψ ≡ π⊗µ (mod JnF ) for some µ ∈WF by Proposition
5.6. Suppose dimµ is even so that we have deg(π ⊗ µ) ≥ m+ 1. Let K = F (π) and
let L be the generic splitting field of π⊗µ as defined in Section 2. Then (π⊗µ)K = 0
in WK and it follows that the free composite M = KL is purely transcendental
over K (cf. Proposition 2.2(iii)). Since ϕK is anisotropic we have that ϕKL is also
anisotropic and thus, ϕL is anisotropic as well. Since ϕ ∼ ψ, it follows that ψL stays
also anisotropic. But ψL ≡ (π ⊗ µ)L ≡ 0 (mod JnL) and dimψ = 2n. This yields
that ψ ∈ GPnL. Now ϕ ∼ ψ also implies that ϕL ∼ ψL and we conclude that ϕL is
similar to ψL, in particular, ϕL ∈ GPnL and degϕL = n > m = degϕ. But [AK,
Satz 20] implies that degϕL = degϕ = m because L is a generic splitting field of
π⊗µ and deg(π⊗µ) ≥ m+1 > m since dimµ is even. This is clearly a contradiction
and we therefore have that dimµ is odd.

(ii)⇔(iii). The condition that ψF (π) is similar to ϕF (π), which appears in both
statements, implies that ϕF (ψ) is isotropic by Proposition 5.1, and thus we get ψ ≡
π ⊗ µ (mod JnF ) for some µ ∈ WF in both (ii) and (iii). The equivalence of (ii)
and (iii) now follows from the easy observation that degψ = m iff deg(π ⊗ µ) = m iff
dimµ is odd. 2
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Corollary 6.5 Let n ≥ 3. Let ϕ ∈ Pn,n−2F be defined by (σ, π). Let ψ ∈ WF be
anisotropic with dimψ = 2n. Then ϕ ∼ ψ iff ψF (π) is similar to ϕF (π) and ψ ≡ xπ

(mod JnF ) for some x ∈ Ḟ .
In particular, if Conjecture 3.9 holds for (n, n− 2) or (n, n− 1) (which is fulfilled

if n ≤ 4), or if ψ contains a Pfister neighbor of dimension 2n−1 + 1, then ϕ ∼ ψ iff ψ
is similar to some χ ∈ Pn,n−2F which is defined by (τ, π) such that τF (π) ≃ σF (π).

Proof. This follows from Theorem 6.4 together with Propositions 3.6, 3.11, 3.15, 5.6,
5.8 and Lemma 5.9. We leave the details to the reader. 2

Definition 6.6 Let 1 ≤ m < n. Let ϕ ∈ Pwn,mF with twist π ∈ PmF . We define
E(ϕ) to be the set of all ψ ∈ WF with dimψ > 2n − 2m−1 for which there exist
ψ̃ ∈ Pwn,mF with twist π such that

• ψ ⊂ ψ̃, and

• ψ̃F (π) is similar to ϕF (π).

In view of Theorem 6.4 and Corollary 3.8, we conjecture the following.

Conjecture 6.7 Let 1 ≤ m < n. Let ϕ ∈ Pwn,mF with twist π ∈ PmF . Then
Equiv(ϕ) = E(ϕ).

Proposition 6.8 Let 1 ≤ m < n. Let ϕ ∈ Pwn,mF with twist π ∈ PmF . Then
E(ϕ) ⊂ Equiv(ϕ).

Proof. Let ψ ∈ E(ϕ). Then there exist ψ̃, µ ∈ WF with dim ψ̃ = 2n, dimµ odd,
such that ψ̃F (π) is similar to ϕF (π) and ψ̃ ≡ π ⊗ µ (mod JnF ). By Theorem 6.4

this implies ψ̃ ∼ ϕ. Furthermore, ψ̃ has the property that ψ ⊂ ψ̃, and we also have
dimψ > 2n − 2m−1. Hence, ψ ∼ ψ̃ by Corollary 3.8 and therefore ψ ∼ ψ̃ ∼ ϕ, i.e.,
ψ ∈ Equiv(ϕ). 2
The main result of this section is the following.

Theorem 6.9 Conjecture 6.7 holds for m ≤ 2.

Before we prove the theorem, we consider a special case.

Lemma 6.10 Let ϕ ∈ Pn,mF be defined by (σ, π) and let ψ ⊂ ϕ with dimψ ≤
2n−2m−1. Then there exists a field extension K/F such that ϕK ∈ Pn,mK is defined
by (σK , πK) and ψK ⊂ σK . In particular, ψF (ϕ) is anisotropic. If m = 1 such a K
can be chosen to be of the form K = F (β) for some β ∈ P2F .

Proof. Let K/F be a field extension. If ϕK , σK and πK all stay anisotropic then one
easily concludes that one still has ϕK ∈ Pn,mK and that it is defined by (σK , πK).
To prove this lemma, we may assume that dimψ = 2n − 2m−1. Let ψ′ ∈ WF ,
dimψ′ = 2m−1 such that ϕ ≃ ψ ⊥ ψ′. Then, in WF , we have ϕ = σ − π = ψ + ψ′

or σ ⊥ −ψ = ψ′ ⊥ π. Note that dimψ′ = 2m−1 = 1
2 dimπ = 2

m. By [H 3, Remark 1
and Theorem 4], there exists a field K in the generic splitting tower of ψ′ ⊥ π such
that iW ((ψ

′ ⊥ π)K) = 2
m−1, i.e., −ψ′K ⊂ πK , and πK is anisotropic (see also [HuR,
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Corollaries 1.9 and 1.12]). In particular, dim((ψ′ ⊥ π)K)an = 2
m−1. By comparing

dimensions, we get σK ≃ ψK ⊥ ((ψ′ ⊥ π)K)an and hence ψK ⊂ σK .
Note that if m = 1 then dim(ψ′ ⊥ π) = 3, so ψ′ ⊥ π is a Pfister neighbor of some

β ∈ P2F . In our construction, the field K in the splitting tower of ψ′ ⊥ π is either
F itself if ψ′ ⊥ π is already isotropic in which case F (β)/F is purely transcendental,
or it is F (ψ′ ⊥ π) if ψ′ ⊥ π is anisotropic. In this case, the field F (ψ′ ⊥ π) is
equivalent to F (β) since ψ′ ⊥ π is a Pfister neighbor of β. In any case, the field in
the splitting tower which we consider is equivalent to F (β) and thus we may as well
choose K = F (β).
It remains to show that ϕK and σK are anisotropic. Since dimψ

′ = 2m−1 <
dimπ, it follows from [H 3, Theorem 1] that ψ′F (π) is anisotropic. Now πF (π) = 0 and

thus ((ψ′ ⊥ π)F (π))an ≃ ψ′F (π) and we have iW ((ψ
′ ⊥ π)F (π)) = 2

m−1 = iW ((ψ
′ ⊥

π)K). By Proposition 2.2(iii), we have that L = K·F (π) is purely transcendental over
F (π). Now ϕF (π) ≃ σF (π) is anisotropic. Hence, ϕL ≃ σL stays anisotropic which
clearly implies that ϕK and σK are anisotropic. By our remark at the beginning, we
have that ϕK ∈ Pn,mK is defined by (σK , πK). Since ϕK ∈ Pn,mK we have that ϕK
cannot be similar to a subform of σK . Therefore, σK(ϕ) stays anisotropic and thus,
ψK(ϕ) stays also anisotropic. This obviously yields that ψF (ϕ) is anisotropic. 2

We added the additional statement in the case m = 1 because we will need this
particular fact later on in the proof of Proposition 7.8

Proof of Theorem 6.9. Let 1 ≤ m ≤ 2 and m < n. Let ϕ ∈ WF be anisotropic
and dimϕ = 2n. Suppose that ϕ ≡ π⊗ η (mod JnF ) for some anisotropic π ∈ PmF
and some η ∈ WF with dim η odd. By Proposition 6.8, it remains to show that
Equiv(ϕ) ⊂ E(ϕ).
So let ψ ∈ WF with ψ ∼ ϕ. Clearly, dimψ ≥ 2. Now ψ ∼ ϕ implies that ϕF (ψ)

is isotropic. Since m ≤ 2 we have that F (π)/F is excellent. Proposition 5.2 implies
that then there exists ψ̃ ∈ WF , dim ψ̃ = 2n, such that ψ ⊂ ψ̃ and, possibly after
scaling, ψ̃F (π) ≃ ϕF (π). By Proposition 5.1, we have that ϕF (ψ̃) is isotropic. Now

ψ̃F (ψ) is isotropic as ψ ⊂ ψ̃. We also have that ψF (ϕ) is isotropic because ψ ∼ ϕ.

Hence, ψ̃F (ϕ) is isotropic as well (cf. Proposition 2.1(viii)), and therefore ϕ ∼ ψ̃. By

Theorem 6.4, there exists µ ∈WF , dimµ odd, such that ψ̃ ≡ π⊗µ (mod JnF ). By
Corollary 3.13, there exists a field extension K/F such that ψ̃K ∈ GPn,mK. We have
already seen that ψ ∼ ϕ ∼ ψ̃. In particular, ψF (ψ̃) is isotropic which clearly yields

that ψK(ψ̃) is also isotropic. Now ψK ⊂ ψ̃K ∈ GPn,mK. Lemma 6.10 implies that
dimψ > 2n − 2m−1. This completes the proof. 2

Corollary 6.11 Conjecture 6.3 holds for n ≤ 4.

Proof. This is an immediate consequence of Corollary 6.5 and Theorem 6.9. 2

Example 6.12 We return to the forms ϕ and ψ over F = R(t) which we defined in
Example 5.13. We had ϕ ∈ Pn,mF being defined by (σ, π) where n − m ≥ 3. We
showed that ψF (π) ≃ ϕF (π) and by our construction we had that ψ ≡ −〈1, 1, 1〉 ⊗ π
(mod JnF ). Hence, by Theorem 6.4, ϕ ∼ ψ. However, we also showed that ψ 6∈

GPn,mF . This shows that if ϕ ∈ Pn,mF and ψ ∼ ϕ with dimψ = dimϕ = 2n then
generally this does not imply ψ ∈ GPn,mF if n−m ≥ 3. 2
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We know that two anisotropic Pfister forms are equivalent iff they are isometric.
To finish this section, we would like to say something about equivalence of twisted
Pfister forms. Since their dimensions are always 2-powers, equivalent twisted Pfister
forms must be of the same dimension. We have the following.

Proposition 6.13 Let 1 ≤ m, ℓ < n. Let ϕ ∈ Pn,mF be defined by (σ, π), and let
ψ ∈ Pn,ℓF be defined by (τ, ρ). Then ϕ ∼ ψ iff π ≃ ρ and σF (π) ≃ τF (π). Furthermore,
if this is the case then we have the following.

(i) If m = n− 1 then ϕ is similar to ψ.
(ii) If m ≤ n− 2 then ϕ is similar to ψ iff σ ≃ τ .

Proof. We have degϕ = deg π = m, degψ = deg ρ = ℓ and ϕ ≡ −π (mod JnF ),
ψ ≡ −ρ (mod JnF ). If ϕ ∼ ψ then, by Theorem 6.4, m = ℓ and π ≡ ϕ ≡ ψ ≡ ρ
(mod Jm+1F ) which readily yields π ≃ ρ. Also by Theorem 6.4, we have that

ϕF (π) ≃ σF (π) is similar to ψF (π) ≃ τF (π) (here, we already use π ≃ ρ), which
immediately implies σF (π) ≃ τF (π). This shows the “only if” part. The converse
follows also easily from Theorem 6.4.
Let us now assume that ϕ ∼ ψ. If m = n − 1 we know from Theorem 6.1 that

ϕ is similar to ψ. So let us finally assume that m ≤ n − 2. If σ ≃ τ then obviously
ϕ ≃ ψ by definition of a twisted Pfister form. Conversely, suppose that ϕ ≃ aψ for
some a ∈ Ḟ . Then, in WF ,

0 = ϕ− aψ = σ − π − a(τ − π)
= σ − aτ − π ⊗ 〈〈−a〉〉 .

Now σ, τ ∈ PnF and π ⊗ 〈〈−a〉〉 ∈ Pm+1F with m + 1 < n. We therefore get 0 ≡
−π⊗〈〈−a〉〉 (mod InF ) and the Arason-Pfister Hauptsatz implies that π⊗〈〈−a〉〉 = 0.
Hence, 0 = σ − aτ or σ ≃ aτ which implies that σ ≃ τ as σ and τ are both n-fold
Pfister forms. 2

This little result has a nice application. It is of interest to determine Equiv(ϕ)
for a given anisotropic form ϕ ∈ WF , dimϕ ≥ 2. Clearly, if ψ is similar to ϕ then
ψ ∼ ϕ. More generally, if aψ ⊂ ϕ for some a ∈ Ḟ and dimψ > dimϕ − i1(ϕ), then
ψF (ϕ) is easily seen to be isotropic. Obviously, so is ϕF (ψ). Hence, ψ ∼ ϕ. Even more
generally, if there exists an anisotropic γ ∈ WF such that aϕ ⊂ γ and bψ ⊂ γ for
some a, b ∈ Ḟ such that dimϕ, dimψ > dim γ − i1(γ), then by the same reasoning as
above, ϕ ∼ γ ∼ ψ.
Another situation where we have ϕ ∼ ψ (both forms anisotropic) is when dimϕ =

dimψ ≥ 2 and there exists a ∈ Ḟ such that ϕ ⊥ aψ is similar to some π ∈ PnF .
Clearly, we have dimϕ = dimψ = 2n−1. Then π is isotropic and hence hyperbolic over
F (ϕ) and F (ψ). In particular, ϕF (ϕ) ≃ −aψF (ϕ) and ϕF (ψ) ≃ −aψF (ψ). Comparing
dimensions and Witt indices, we conclude that ϕF (ψ) and ψF (ϕ) are both isotropic,
i.e., ϕ ∼ ψ.
This leads to the following definitions.

Definition 6.14 Let ϕ, ψ ∈ WF be anisotropic. Then ϕ and ψ are neighbors if
there exists an anisotropic γ ∈ WF , dim γ ≥ 2, such that ϕ and ψ are similar to
subforms of γ and dimϕ, dimψ > dim γ − i1(γ).

ϕ and ψ are called conjugate if dimϕ = dimψ and there exists a ∈ Ḟ such that
ϕ ⊥ aψ ∈ GPnF for some n.

Documenta Mathematica 1 (1996) 67–102



Twisted Pfister Forms 91

If in the definition of neighbor the form γ is a similar to a Pfister form, then
we have that ϕ and ψ are both Pfister neighbors of the same Pfister form. So this
definition of neighbor is a natural generalization of a Pfister neighbor. Our definition
of conjugate forms is slightly more general than the definition of conjugate forms in
[K2, Definition 8.7].

Remark 6.15 Let ϕ and ψ be anisotropic forms over F .
(i) If ϕ and ψ are similar, say, ϕ ≃ aψ, then ϕ and ψ are neighbors. If in addition

dimϕ = dimψ = 2n then ϕ and ψ are also conjugate. This is because ϕ ⊥ −aψ is
isometric to the hyperbolic (n+ 1)-fold Pfister form.
(ii) Suppose that ϕ and ψ are neighbors and that dimϕ = dimψ = 2n. If

dim γ > 2n then ϕF (γ) and ψF (γ) are anisotropic, see Proposition 2.1(vi). A form γ
as in the definition above with dim γ > 2n can therefore not exists. So if γ is such a
form as in the definition, we must have dim γ = 2n which immediately implies that ϕ
is similar to ψ. Hence, two anisotropic forms of dimension 2n are similar iff they are
neighbors.
(iii) Suppose that dimϕ = dimψ = 2n. Then ϕ and ψ are similar or conjugate

iff there exists an a ∈ Ḟ such that ϕ ⊥ aψ ∈ W (F (ϕ)/F ) ∩W (F (ψ)/F ) (cf. [K 2,
Theorem 8.8]).

Generally, conjugate forms are not similar. In a forthcoming paper, we will
investigate such examples and the relationship between conjugacy and similarity.
The first examples known to us of forms ϕ and ψ with ϕ ∼ ψ but where ϕ and

ψ are neither neighbors nor conjugate were given by twisted Pfister forms.

Proposition 6.16 Let n ≥ 3 and 1 ≤ m ≤ n− 2. Let ϕ, ψ ∈ Pn,mF be defined by
(σ, π) and (τ, π), respectively, and assume that σF (π) ≃ τF (π) but σ 6≃ τ . Then ϕ ∼ ψ
but ϕ and ψ are neither neighbors nor conjugate.

Proof. By Proposition 6.13, we know that ϕ ∼ ψ and that ϕ is not similar to ψ. By
Remark 6.15(ii), ϕ and ψ are not neighbors.
Suppose that ϕ and ψ are conjugate, i.e., ϕ ⊥ aψ ∈ GPn+1F for some a ∈ Ḟ .

Then
0 ≡ ϕ+ aψ ≡ σ − π + a(τ − π) ≡ −π ⊗ 〈〈a〉〉 (mod InF )

because ϕ ⊥ aψ ∈ GPn+1F ⊂ InF and σ, τ ∈ PnF ⊂ InF . Since dim(π ⊗ 〈〈a〉〉) =
2m+1 < 2n, the Arason-Pfister Hauptsatz implies π⊗〈〈a〉〉 = 0 and thus ϕ ⊥ aψ = σ ⊥
aτ in WF . Comparing dimensions and because ϕ ⊥ aψ ≃ ρ ∈ GPn+1F we get that
σ ⊥ aτ ≃ ρ ∈ GPn+1F . Hence, ρF (σ) becomes isotropic and therefore hyperbolic.
Thus, in WF (σ),

0 = ρF (σ) = σF (σ) + aτF (σ) = aτF (σ)

which yields that σ is similar to a subform of τ . This in turn implies that σ ≃ τ , a
contradiction. 2

In the last section, we will construct examples of forms σ, τ , and π which satisfy
the conditions in Proposition 6.16. Let us conclude this section with another example
of equivalent forms which are neither neighbors nor conjugate.

Example 6.17 Let F = R(t) and let ϕ and ψ be the anisotropic forms in Example
5.13. Then ϕ ∼ ψ but ϕ and ψ are neither neighbors nor conjugate. We leave the
details to the reader. 2
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7 Twisted Pfister forms over the function field of a Pfister form

Let ϕ ∈ Pn,mF be defined by (σ, π), i.e., σ ∈ PnF and π ∈ PmF are anisotropic,
ln(σ, π) = m − 1, and ϕ ≃ (σ ⊥ −π)an. Let τ ∈ PnF . We know by Proposition 5.1
that σF (τ) is isotropic iff σF (π) ≃ τF (π). So let us from now on assume that σF (τ) is
isotropic, i.e., σF (π) ≃ τF (π). This also implies by Proposition 5.8 that there exists
α ∈ Pm−1F which divides π, σ, and τ .
Izhboldin [I] used twisted Pfister forms in his construction of Pfister forms which

yield non-excellent function field extensions. More precisely, he essentially showed
that for ϕ and τ as above and in the particular case where m = 1 and ln(σ, τ) = 1,
then (ϕF (τ))an is not defined over F . It is our aim to generalize this result. First, let
us note the following.

Lemma 7.1 Let ϕ ∈ Pn,mF be defined by (σ, π) and let τ ∈ PnF with σF (π) ≃ τF (π),
i.e., ϕF (τ) is isotropic. Then

dim(ϕF (τ))an =

{
2m if σ ≃ τ
2n − 2m if σ 6≃ τ

Proof. Suppose first that σ ≃ τ . Then σF (τ) = 0 and πF (τ) is anisotropic because
m < n, and inWF (τ) we have ϕF (τ) = σF (τ)−πF (τ) = −πF (τ). It follows immediately
that (ϕF (τ))an ≃ −πF (τ) and dim(ϕF (τ))an = 2m.
Now suppose that σ 6≃ τ . Then σF (τ) is anisotropic and thus we have, using ϕ =

σ−π in WF and ϕF (τ) isotropic, that 2
n > dim(ϕF (τ))an ≥ dimσ−dimπ = 2n−2m.

By Proposition 3.6 we therefore have dim(ϕF (τ))an = 2
n − 2m. 2

We now come to the main result of this section

Theorem 7.2 Let ϕ ∈ Pn,mF be defined by (σ, π) and let τ ∈ PnF with σF (π) ≃
τF (π), i.e., ϕF (τ) is isotropic. Then the following are equivalent.

(i) There exists a Pfister neighbor χ of τ such that χ ⊂ ϕ.
(ii) There exists a Pfister neighbor χ of τ with dimχ = 2n−1 + 2m−1 such that

χ ⊂ ϕ.
(iii) (ϕF (τ))an is defined over F .

(iv) ln(σ, τ) ≥ n− 1.

Proof. (i)⇒(ii). Let a ∈ Ḟ and χ ⊂ ϕ with dimχ ≥ 2n−1 + 1 such that χ ⊂ aτ . Let
η ≃ (ϕ ⊥ −aτ)an. Then dim η ≤ dimϕ + dim τ − 2 dimχ ≤ 2n − 2. Note that we
have η ≡ ϕ − aτ ≡ σ − π − aτ ≡ −π (mod InF ) as σ, τ ∈ PnF ⊂ InF . Thus, we
get ηF (π) ≡ 0 (mod InF (π)) and the Arason-Pfister Hauptsatz implies ηF (π) = 0 or
ηF (π) ∈ W (F (π)/F ). Hence, by Proposition 2.1(v), there exists µ ∈ WF such that
η ≃ µ⊗π. Thus, dimπ = 2m divides dim η and therefore dim η = dim(ϕ ⊥ −aτ)an ≤
2n − 2m or iW (ϕ ⊥ −aτ) ≥ 2n−1 + 2m−1. In particular, ϕ and aτ have a common
subform of dimension 2n−1 + 2m−1.
(ii)⇒(iii). If σ ≃ τ we have already seen in the proof of Lemma 7.1 that

(ϕF (τ))an ≃ −πF (τ) and we are done. Hence, we may assume that σ 6≃ τ and thus

dim(ϕF (τ))an = 2
n − 2m by Lemma 7.1. Let χ ⊂ ϕ such that dimχ = 2n−1 + 2m−1
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and χ ⊂ aτ for some a ∈ Ḟ . Write ϕ ≃ χ ⊥ ϕ̃ and aτ ≃ χ ⊥ τ̃ for suitable ϕ̃,
τ̃ ∈WF . In WF (τ), we have

ϕF (τ) = (ϕ ⊥ −aτ)F (τ) = (ϕ̃ ⊥ −τ̃)F (τ) .

Now an easy check shows that dim(ϕ̃ ⊥ −τ̃) = 2n − 2m = dim(ϕF (τ))an. Therefore,
we must have (ϕF (τ))an ≃ (ϕ̃ ⊥ −τ̃)F (τ) and we see that (ϕF (τ))an is defined over F
by ϕ̃ ⊥ −τ̃ .
(iii)⇒(iv). Let η ∈ WF such that (ϕF (τ))an ≃ ηF (τ). By Lemma 7.1 we have

2m ≤ dim η ≤ 2n − 2m and thus 0 < dim(ϕ ⊥ −η)an < 2n+1. Also, by our choice of
η, (ϕ ⊥ −η)an ∈ W (F (τ)/F ) and by Proposition 2.1(v) there exists a ∈ Ḟ such that
(ϕ ⊥ −η)an ≃ aτ . Hence, in WF we get aτ = ϕ− η = σ−π− η or σ ⊥ −aτ = π ⊥ η.
Now dim(π ⊥ η) ≤ 2m + 2n − 2m = 2n and we get that iW (σ ⊥ −aτ) ≥ 2n−1. By
Lemma 3.2, ln(σ, τ) ≥ n− 1.
(iv)⇒(i) This is rather obvious in the case where σ ≃ τ , i.e., ln(σ, τ) = n.
So let us assume that ln(σ, τ) = n− 1 and let ρ ≃ (σ ⊥ −τ)an. Then dim ρ = 2n

and in fact ρ ∈ GPnF as ρ ∈ InF . Let ψ ≃ (ϕ ⊥ −τ)an. Then, in WF ,

ψ = ϕ− τ = σ − π − τ = ρ− π .

This yields

2n − 2m = dim ρ− dimπ ≤ dimψ ≤ dim ρ+ dimπ = 2n + 2m .

On the other hand, in WF (π),

ψF (π) = ϕF (π) − τF (π) = σF (π) − τF (π) − πF (π) = 0

as σF (π) ≃ τF (π) and πF (π) = 0. Thus, there exists γ ∈ WF with ψ ≃ γ ⊗ π by
Proposition 2.1(v). Now dim γ must be odd for otherwise ψ ∈ Im+1F , but ψ ≡
σ − π − τ ≡ −π 6≡ 0 (mod Im+1F ). Hence, there are two cases. Either dimψ =
2n − 2m or dimψ = 2n + 2m. If dimψ = 2n − 2m then by the definition of ψ we
get iW (ϕ ⊥ −τ) = 1

2 (dimϕ + dim τ − dimψ) = 2n−1 + 2m−1. Thus, ϕ and τ have a
common subform of dimension 2n−1 + 2m−1 and we are done.
So let us finally assume that dimψ = 2n + 2m so that in fact ψ ≃ (ϕ ⊥ −τ)an ≃

ρ ⊥ −π. Now π divides ψ and we have that π also divides ρ. But ρ ∈ GPnF . Hence,
there exist δ ∈ Pn−mF and x ∈ Ḟ such that ρ ≃ xπ ⊗ δ. Thus,

xψ ≃ π ⊗ (δ ⊥ 〈−x〉) ⊂ π ⊗ δ ⊗ 〈〈−x〉〉 ∈ Pn+1F .

This shows that ψ is a Pfister neighbor of β ≃ π ⊗ δ ⊗ 〈〈−x〉〉 ∈ Pn+1F . Since ψ is
anisotropic, β is anisotropic as well. Also, ψF (τ) = ϕF (τ) − τF (τ) = ϕF (τ) in WF (τ).
Comparing dimensions, we conclude that ψF (τ) is isotropic and that therefore also
βF (τ) is isotropic and hence hyperbolic, which in turn implies that β ≃ τ ⊗ 〈〈t〉〉 for
some t ∈ Ḟ . Since xψ ⊂ β we get ψ ⊂ xβ ≃ τ ⊗ 〈x, xt〉. Now ψ ⊥ τ = ϕ in WF
and by comparing dimensions we see that ψ ⊥ τ is isotropic. In particular, there
exists y ∈ D(ψ) ⊥ D(−τ). Since y ∈ D(ψ) ⊂ D(τ ⊗ 〈x, xt〉) and since τ ∈ PnF , we
may assume by Lemma 3.1 that for suitable z ∈ Ḟ we have τ ⊗ 〈x, xt〉 ≃ τ ⊗ 〈y, z〉.
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But −y ∈ D(τ) = G(τ). If we write τ ⊗ 〈x, xt〉 ≃ ψ ⊥ µ for suitable µ ∈ WF with
dimµ = 2n+1 − dimψ = 2n − 2m, we obtain

ψ ⊥ µ ≃ τ ⊗ 〈x, xt〉 ≃ yτ ⊥ zτ ≃ −τ ⊥ zτ

and thus, in WF ,
µ = zτ − τ − ψ = zτ − ϕ

(here we use ψ = ϕ − τ .) In particular, (zτ ⊥ −ϕ)an ≃ µ (recall that ψ ⊥ µ is
similar to the anisotropic Pfister form β and that therefore µ is also anisotropic),
which implies that iW (zτ ⊥ −ϕ) = 1

2 (dim τ + dimϕ − dimµ) = 2n−1 + 2m−1, i.e.,
ϕ and zτ have a common subform of dimension 2n−1 + 2m−1 which is obviously a
Pfister neighbor of τ . 2

Remark 7.3 If ϕ contains a Pfister neighbor of τ of dimension > 2n−1 + 2m−1 then
σ ≃ τ . For in this case, there exists a ∈ Ḟ such that iW (ϕ ⊥ −aτ) > 2n−1 + 2m−1
or dim(ϕ ⊥ −aτ)an < 2n − 2m. But in WF we have ϕ ⊥ −aτ = σ ⊥ −aτ ⊥ −π
and we must necessarily have dim(σ ⊥ −aτ)an < 2n which, by Lemma 3.1, implies
ln(σ, τ) = n, in other words σ ≃ τ .
Conversely, if σ ≃ τ then the largest Pfister neighbor of τ contained in ϕ has

dimension 2n − 2m−1. That ϕ contains such a Pfister neighbor of this dimension
follows readily from Remark 3.5(ii) (using the notation there, one may take α⊗ σ′1).
On the other hand ϕ does not contain any Pfister neighbor of dimension > 2n−2m−1.
For suppose otherwise. Let χ ⊂ ϕ be such a Pfister neighbor of some χ̃ ∈ PnF with
dimχ > 2n − 2m−1. Then χ̃ ∼ χ ∼ ϕ, the first equivalence because χ is a Pfister
neighbor of χ̃, the second one by Corollary 3.8. But this is absurd since ϕ is clearly
not a Pfister neighbor of χ̃.

Corollary 7.4 Let ϕ ∈ Pn,n−1F and τ ∈ PnF . Then (ϕF (τ))an is defined over F .

Proof. If ϕF (τ) stays anisotropic then there is nothing to show. So let us assume that
ϕF (τ) is isotropic. By Proposition 5.1, we have that ϕF (π) ≃ σF (π) ≃ τF (π). It follows
immediately from Proposition 5.8(ii) that ln(σ, τ) ≥ n− 1. The desired result follows
now from Theorem 7.2. 2

Statements (i) resp. (ii) of Theorem 7.2 essentially say that the obstruction to
(ϕF (τ))an being defined over F is the non-existence of a Pfister neighbor of τ as a
subform of ϕ, and by Corollary 7.4 this can only happen if n ≥ 3 and (n,m) 6=
(n, n − 1). This is not at all obvious as the case of the function field of a 2-fold
Pfister form η shows. There are many examples of fields F with anisotropic forms
ψ ∈ WF and η ∈ P2F such that ψF (η) is isotropic but ψ does not contain a Pfister
neighbor of η (for such examples we refer to [LVG], [HLVG], [HVG]). However, since
F (τ)/F is excellent we have, by definition of excellence, that (ψF (η))an is defined over
F . Conversely, if τ ∈ PnF ≥ 3 such that F (τ)/F is not excellent then there might
still be many forms ψ which contain Pfister neighbors of τ but where (ψF (τ))an is not
defined over F . For example, let ϕ be such that (ϕF (τ))an is not defined over F and
put ψ ≃ τ ⊥ ϕ. Then (ψF (τ))an ≃ (ϕF (τ))an is not defined over F , but ψ contains τ
itself as a subform.
Twisted Pfister forms also yield new non-trivial examples of F (τ)-minimal forms

where τ ∈ PnF , n ≥ 3. Recall that for a field extension K/F we say that ϕ is
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K-minimal if ϕ is anisotropic, ϕK is isotropic, and if η ⊂ ϕ with dim η < dimϕ
then ηK is anisotropic. We are interested in the case where K = F (τ) for some
anisotropic τ ∈ PnF . If n = 1 the K-minimal forms are exactly the scalar multiples
of τ , cf. Proposition 2.1(iii). For n = 2, one can show that K-minimal forms are
always of odd dimension ≥ 3. One can even construct a field F with some τ ∈ P2F
such that to each odd integer m ≥ 3 there exists a K-minimal form of dimension m,
cf. [HVG].
Not much is known about K-minimal forms in the case K = F (τ) with τ ∈ PnF ,

n ≥ 3. The following is known.

Theorem 7.5 ([H 3, Theorem 3], [H 2, Corollary 4.2].) Let τ ∈ PnF be anisotropic
and K = F (τ).

(i) The K-minimal forms of dimension ≤ 2n−1+1 are exactly the Pfister neigh-
bors of τ of dimension 2n−1 + 1.

(ii) If n ≤ 3 then the K-minimal forms of dimension ≤ 2n−1 + 2 are exactly
the Pfister neighbors of τ of dimension 2n−1 + 1. In particular, if ϕ ∈ WF
is anisotropic with dimϕ ≤ 2n−1 + 2, then ϕK is isotropic iff ϕ contains a
Pfister neighbor of τ .

In view of this result, Lemma 7.1 and Theorem 7.2, we get the following.

Proposition 7.6 Let n ≥ 3 and 1 ≤ m ≤ n−2. Let ϕ ∈ Pn,mF be defined by (σ, π)
and let τ ∈ PnF such that τF (π) ≃ σF (π) and ln(σ, τ) ≤ n − 2. Then each F (τ)-
minimal form χ contained in ϕ has dimension 2n−1 + 2 ≤ dimχ ≤ 2n − 2m−1 + 1.
Moreover, if (n,m) = (3, 1) then 7 ≤ dimχ ≤ 8.

Proof. By Lemma 7.1, iW (ϕF (τ)) = 2
m−1. Thus, any subform of ϕ of dimension

2n − 2m−1 + 1 becomes isotropic over F (τ). Hence, if χ ⊂ ϕ is F (τ)-minimal we
must necessarily have dimχ ≤ 2n − 2m−1 + 1. We know by Theorem 7.2 that ϕ does
not contain any Pfister neighbor of τ . Therefore, by Theorem 7.5(i), we must have
dimχ ≥ 2n−1 + 2, and if n = 3 then Theorem 7.5(ii) even implies that dimχ ≥ 7. 2
In fact, Izhboldin [I] showed that with ϕ, σ, τ as in Proposition 7.6, if m = 1 and

if ln(σ, τ) = 1 then ϕ itself is F (τ)-minimal. This leads us to conjecture the following.

Conjecture 7.7 Let n ≥ 3 and 1 ≤ m ≤ n− 2. Let ϕ ∈ Pn,mF be defined by (σ, π)
and let τ ∈ PnF such that τF (π) ≃ σF (π) and ln(σ, τ) = m. Let χ ⊂ ϕ. Then χ is
F (τ)-minimal iff dimχ = 2n − 2m−1 + 1.

Note that τF (π) ≃ σF (π) implies that ln(σ, τ) ≥ m, cf. Proposition 5.8. In our
conjecture, we require that the linkage of σ and τ is at the lower end, i.e., ln(σ, τ) = m.
This will be needed in the proof of the conjecture in the case m = 1 and it is for this
reason that we imposed this condition in the conjecture.

Proposition 7.8 (Izhboldin [I].) Let n ≥ 3. Let ϕ ∈ Pn,1F be defined by (σ, π) and
let τ ∈ PnF such that τF (π) ≃ σF (π) and ln(σ, τ) = 1. Then ϕ is F (τ)-minimal.

Proof. ϕF (τ) is isotropic by Proposition 5.1. To prove that ϕ is F (τ)-minimal it
suffices to show that if η ⊂ ϕ and dim η = 2n − 1, then ηF (τ) stays anisotropic.
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By Lemma 6.10, there exists β ∈ P2F such that for K = F (β) we have that σK
is anisotropic and ηK ⊂ σK . Suppose ηF (τ) is isotropic. Then ηK(τ) is isotropic and
hence, σK(τ) is isotropic and therefore hyperbolic. This implies that τK is similar and
thus isometric to σK . Let ψ ≃ (σ ⊥ −τ)an. Clearly, ψ ∈ W (K/F ) and hence there
exists γ ∈ WF such that ψ ≃ β ⊗ γ. Now ln(σ, τ) = 1 and thus dimψ = 2n+1 − 4.
Hence, dim γ = 2n−1 − 1 is odd and one readily concludes that ψ ≡ β ⊗ γ ≡ β 6≡ 0
(mod I3F ) as β ∈ P2F is anisotropic (if β were isotropic, the anisotropic form

ψ would stay anisotropic over K = F (β)). But ψ = σ − τ ∈ InF with n ≥ 3, a
contradiction. 2

Remark 7.9 The reason why this proof works so smoothly in the case m = 1 is
that the field K from Lemma 6.10 is of a very nice form which just fits the situation.
One would hope that with the field K from Lemma 6.10 one could give a similar
proof also for m > 1. Consider the situation in Conjecture 7.7. To show that the
conjecture is true it suffices to show that if η ⊂ ϕ with dim η = 2n− 2m−1 then ηF (τ)
is anisotropic. One might want to proceed as in the proof above. Let K be as in
Lemma 6.10 such that ηK ⊂ σK and ϕK , σK , πK stay anisotropic. The problem is
to show that τK 6≃ σK . This worked for m = 1 because one can choose K = F (β) for
some β ∈ P2F . If m > 1 then our construction in the proof of Lemma 6.10 generally
leads to a field K for which it is not so clear why τK 6≃ σK should hold.

8 Constructions of twisted Pfister forms

In this section we explicitly construct examples of ϕ ∈ Pn,mF defined by (σ, π), and
τ ∈ PnF such that ln(σ, τ) = k for some m ≤ k ≤ n− 2 such that σF (π) ≃ τF (π). By
Proposition 5.8 we then have ln(τ, π) = m − 1 and thus, we get a form ψ ∈ Pn,mF
defined by (τ, π) simply by putting ψ ≃ (τ ⊥ −π)an. By Proposition 6.16 this shows
the existence of ϕ,ψ ∈ Pn,mF such that ϕ ∼ ψ but ϕ and ψ are neither neighbors
nor conjugate, and by Theorem 7.2 it also shows the existence of ϕ ∈ Pn,mF and
τ ∈ PnF such that (ϕF (τ))an is not defined over F . Note that by the symmetry of
the situation we also have that (ψF (σ))an is not defined over F . Hence, F (τ)/F and
F (σ)/F are both non-excellent field extensions.
In the first example, we will achieve this over a purely transcendental extension

of the rationals Q, and in the second example we will actually generalize Izhboldin’s
approach in [I].

Example 8.1 Let 1 ≤ m ≤ k ≤ n−2. To simplify notations, let ℓ = n−2−k so that
k + ℓ+ 2 = n. Let F = Q(x1, · · · , xk, y0, · · · , yℓ) be the rational function field in the
k + ℓ+ 1 = n− 1 variables xi and yj over the rationals Q. Let p0, · · · , pℓ be distinct
prime numbers with pi ≡ 7 (mod 8). We now define Pfister forms σ, τ ∈ PnF and
π ∈ PmF as follows:

σ ≃ 〈〈1, x1, · · · , xk, y0, · · · , yℓ〉〉 ;
τ ≃ 〈〈2, x1, · · · , xk, p0y0, · · · , pℓyℓ〉〉 ;
π ≃ 〈〈x1, · · · , xm−1,−xm〉〉 .

One easily sees that σ, τ , and π are anisotropic (for instance by passing to the iterated
power series field in the variables xi, yj, and then repeatedly applying Springer’s
theorem [L 1, Ch. 6, Proposition 1.9], [S, Ch. 6, Corollary 2.6(i)]).
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Claim 1: ln(σ, τ) = k.
Proof.

σ ⊥ −τ ≃ 〈〈x1, · · · , xk〉〉 ⊗ (〈〈1, y0, · · · , yℓ〉〉 ⊥ −〈〈2, p0y0, · · · , pℓyℓ〉〉)︸ ︷︷ ︸
γ

.

For ∅ 6= I ⊂ {0, · · · , ℓ} we define YI =
∏
i∈I yi and PI =

∏
i∈I pi. We find that

γ ≃ 〈1, 1,−1,−2〉 ⊥ ⊥
∅6=I⊂{0,···,ℓ}

YI〈1, 1,−PI ,−2PI〉 .

By Springer’s theorem, we get

iW (γ) = iW (〈1, 1,−1,−2〉) +
∑

∅6=I⊂{0,···,ℓ}
iW (〈1, 1,−PI ,−2PI〉) ,

where the Witt indices of the forms on the right hand side is computed over Q.
Now iW (〈1, 1,−1,−2〉) = 1 as 〈1, 1,−1,−2〉 ≃ H ⊥ 〈1,−2〉 and 〈1,−2〉 is anisotropic
over Q. By passing to the local field Qpi for some i ∈ I, we get for the Legendre
symbols

(−2
pi

)
6= 1 and

(−1
pi

)
6= 1 as pi ≡ 7 (mod 8). Hence, 〈1, 1〉 and 〈1, 2〉 are

anisotropic over Qpi and thus also 〈1, 1,−PI ,−2PI〉 because pi divides PI exactly
to the first power (note that all the pj ’s in the product PI are distinct !). Hence,
iW (〈1, 1,−PI ,−2PI〉) = 0 and we have iW (γ) = 1. Again by Springer’s theorem, we
readily conclude that

iW (σ ⊥ −τ) = iW (〈〈x1, · · · , xk〉〉 ⊗ γ) = 2kiW (γ) = 2k .

Hence, ln(σ, τ) = k.

Claim 2: ln(σ, π) = ln(τ, π) = m − 1. In particular, ϕ ≃ (σ ⊥ −π)an, ψ ≃ (τ ⊥
−π)an ∈ Pn,mF .
Proof. This can be shown in a similar way as before.

σ ⊥ −π ≃ 〈〈x1, · · · , xm−1〉〉 ⊗ (〈〈1, xm, · · · , xk, y0, · · · , yℓ〉〉 ⊥ −〈〈−xm〉〉) ,

and by Springer’s theorem we obtain that

〈〈1, xm, · · · , xk, y0, · · · , yℓ〉〉 ⊥ −〈〈−xm〉〉 ≃ H ⊥ 〈〈1, xm, · · · , xk, y0, · · · , yℓ〉〉′ ⊥ 〈xm〉

has Witt index 1 as 〈〈1, xm, · · · , xk, y0, · · · , yℓ〉〉′ ⊥ 〈xm〉 is anisotropic (here, ρ′ denotes
the pure part of a Pfister form ρ), and that therefore

iW (σ ⊥ −π) = dim 〈〈x1, · · · , xm−1〉〉 = 2m−1

which in turn implies that ln(σ, π) = m−1. A similar argument shows that ln(τ, π) =
m− 1 and we omit the details. It is now obvious that ϕ ≃ (σ ⊥ −π)an and ψ ≃ (τ ⊥
−π)an have dimension 2n and are in Pn,mF .
Claim 3: σF (π) ≃ τF (π).
Proof. Let K = F (π). We have

0 = πK = 〈〈x1, · · · , xm−1〉〉K ⊥ −xm〈〈x1, · · · , xm−1〉〉K
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and therefore 〈〈x1, · · · , xm−1〉〉K ≃ xm〈〈x1, · · · , xm−1〉〉K . Hence,

〈〈x1, · · · , xm−1, xm〉〉K ≃ 〈〈x1, · · · , xm−1, 1〉〉K .

Note also that 〈〈1, 2〉〉 ≃ 〈〈1, 1〉〉 and that 〈〈1, 1〉〉 ≃ a〈〈1, 1〉〉 for any positive a ∈ Q̇. In
particular, 〈〈1, 1, yi〉〉 ≃ 〈〈1, 1, piyi〉〉. All this together yields

σK ≃ 〈〈1, x1, · · · , xm−1, xm, xm+1, · · · , xk, y0, · · · , yℓ〉〉K
≃ 〈〈1, x1, · · · , xm−1, 1, xm+1, · · · , xk, y0, · · · , yℓ〉〉K
≃ 〈〈1, x1, · · · , xm−1, 1, xm+1, · · · , xk, p0y0, · · · , pℓyℓ〉〉K
≃ 〈〈2, x1, · · · , xm−1, 1, xm+1, · · · , xk, p0y0, · · · , pℓyℓ〉〉K
≃ 〈〈2, x1, · · · , xm−1, xm, xm+1, · · · , xk, p0y0, · · · , pℓyℓ〉〉K
≃ τK . 2

This completes our first example. Similar examples can be constructed also if
one replaces Q by any global field K of characteristic 6= 2 and with the iterated
power series field F = K((x1)) · · · ((xk))((y0)) · · · ((yℓ)). For the u-invariant of such a
field we get u(F ) = 2k+ℓu(K) = 4 ·2n−1 = 2n+1. Thus, we can construct examples
of (non-formally real) fields F with u(F ) = 2n+1 and τ ∈ PnF such that F (τ)/F
is not excellent. If F is non-formally real and u(F ) < 2n + 2n−1 then examples
of the type we constructed above cannot exist. For in order for examples of this
type to exist one needs two n-fold Pfister forms σ, τ such that ln(σ, τ) ≤ n − 2 or
dim(σ ⊥ −τ)an ≥ 2n + 2n−1. So the question is: Are there (non-formally real) fields
F with u(F ) < 2n+2n−1 such that there exists τ ∈ PnF with F (τ)/F not excellent ?
In [H 5] it was shown that if F is linked (which implies that u(F ) ∈ {0, 1, 2, 4, 8}) then
F (τ)/F is excellent for all Pfister forms τ over F (here, F may be formally real or
non-formally real). Among the many other results in [H 5] let us only mention that
if τ is a Pfister form over a field F and if the Hasse number of F , ũ(F ), is ≤ 6 or
if dim τ ≥ 2ũ(F ), then F (τ)/F is excellent. This is of course mainly of interest in
the case where F is formally real. For if F is non-formally real then there are no
anisotropic forms of dimension > ũ(F ).

Corollary 8.2 To each n ≥ 3 there exists a field F such that there are anisotropic
n-fold Pfister forms ρ, σ over F with F (ρ)/F excellent and F (σ)/F not excellent.

Proof. We only show this for n = 3 to keep the notations simple. Let F = Q((x))((y)).
The previous example shows that for σ ≃ 〈〈1, x, y〉〉 we have that F (σ)/F is not
excellent. Let ρ ≃ 〈〈1, 1, 1〉〉. Since ρ is defined over Q, it is not hard to see that
the field E = F (ρ) = Q((x))((y))(ρ) is contained in L = Q(ρ)((x))((y)). Let ψ be an
anisotropic form over F . By Springer’s theorem, we can write ψ ≃ ψ0 ⊥ xψ1 ⊥ yψ2 ⊥
xyψ3 where the ψi are forms over Q which are uniquely determined up to isometry
over Q. Let K = Q(ρ) ⊂ E. It is known that function fields of Pfister forms over
global fields are always excellent (cf. [ELW2], [H 5], see also the remarks preceding
this corollary). Hence, there are forms µi defined over Q such that (µi)K ≃ ((ψi)K)an.
In WE we obviously have

(ψ0)E ⊥ x(ψ1)E ⊥ y(ψ2)E ⊥ xy(ψ3)E = (µ0)E ⊥ x(µ1)E ⊥ y(µ2)E ⊥ xy(µ3)E .

The right hand side is defined over F by µ0 ⊥ xµ1 ⊥ yµ2 ⊥ xyµ3. To show excellence,
it remains to show that (µ0)E ⊥ x(µ1)E ⊥ y(µ2)E ⊥ xy(µ3)E is anisotropic. Indeed,
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this form is anisotropic over the bigger field L. This is because L = K((x))((y)), the
(µi)K are anisotropic and by Springer’s theorem we have that (µ0)L ⊥ x(µ1)L ⊥
y(µ2)L ⊥ xy(µ3)L is anisotropic. Thus, we have shown that (ψF (ρ))an is defined over
F by µ0 ⊥ xµ1 ⊥ yµ2 ⊥ xyµ3, which in turn proves the excellence of F (ρ)/F . 2
The next example generalizes Izhboldin’s construction in [I] which was carried

out only in the case m = ln(σ, τ) = 1. However, we will show that his arguments
can be applied, after some minor modifications, to the more general situation where
m can be any positive integer ≤ n − 2 and ln(σ, τ) = k can be any integer with
m ≤ k ≤ n− 2.

Example 8.3 Let n ≥ 3 and let 1 ≤ m ≤ k ≤ n−2. Let τ ∈ PnF be anisotropic. We
will construct a unirational field extensionE/F such that there exist anisotropic forms
π ∈ PmE and σ ∈ PnE with ln(σ, π) = ln(τE , π) = m − 1 and ln(σ, τE) = k (note
that τ will stay anisotropic over any unirational field extension), and furthermore
σE(π) ≃ τE(π). We then get a form ϕ ≃ (σ ⊥ −π)an ∈ Pn,mE, and by Theorem 7.2
we have that (ϕE(τ))an is not defined over E. In particular, E(τ)/E is not excellent.
Our construction will involve various field extensions of F . Their relations among
each other are shown in a diagram below.
As for the construction of E, let this time ℓ = n− k ≥ 2 and write

τ ≃ 〈〈a1, · · · , ak, b1, · · · , bℓ〉〉

for suitable ai, bj ∈ Ḟ . Let F0 = F (y1, · · · , yℓ) and F1 = F0(x) = F (x, y1, · · · , yℓ) be
rational function fields in the variables x, y1, · · · , yℓ over F . Let

σ ≃ 〈〈a1, · · · , ak, y1, · · · , yℓ〉〉 ∈ PnF0
π ≃ 〈〈x, a2, · · · , am〉〉 ∈ PmF1

After passing to the iterated power series field in the variables x, y1, · · · , yℓ and by
repeatedly applying Springer’s theorem, one readily checks that τF1 , σF1 , πF1 are
anisotropic and that ln(σF1 , τF1) = k and ln(σF1 , πF1) = ln(τF1 , πF1) = m − 1. We
leave the details to the reader. The aim is to construct E/F1 such that σE(π) ≃ τE(π),
such that this form and πE stay anisotropic and such that ln(σE , τE) = k. Note that
we will have m ≥ ln(σE , πE) ≥ ln(σF1 , πF1) = m − 1. Now ln(σE , πE) = m implies
that πE divides σE and thus σE(π) = 0, a contradiction to its anisotropy. Hence, we
will still have ln(σE , πE) = m− 1 and similarly ln(τE , πE) = m− 1.
To get this field E, we first define the following forms over F1 which again are

easily seen to be anisotropic:

τ̃ ≃ 〈〈x, a2, · · · , ak, b1, · · · , bℓ〉〉
σ̃ ≃ 〈〈x, a2, · · · , ak, y1, · · · , yℓ〉〉 .

Let E be the generic splitting field of the anisotropic form defined by (σ−τ)− (σ̃− τ̃)
in WF1. Then, in WE, (σ − τ)E − (σ̃ − τ̃)E = 0 or (σ − τ)E = (σ̃ − τ̃)E . As π
divides both σ̃ and τ̃ , we get that σ̃E(π) = τ̃E(π) = 0, hence, (σ − τ)E(π) = 0, i.e.,
σE(π) ≃ τE(π).
We first show that σE(π) ≃ τE(π) is anisotropic. Let F2 = F1(

√−x). Then
F2/F0 is purely transcendental and thus σF2 and τF2 stay anisotropic and we still
have ln(σF2 , τF2) = ln(σF0 , τF0) = k. Furthermore, 〈〈x〉〉F2 = 〈〈−1〉〉F2 = 0 and hence
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πF2 = σ̃F2 = τ̃F2 = 0 in WF2. Let K be the generic splitting field over F2 of
(σ ⊥ −τ)F2 . Clearly, (σ − τ)K = 0 in WK, i.e., σK ≃ τK . We claim that σK ≃ τK
is anisotropic. Now ln(σF2 , τF2) = k < n and thus σF2 6≃ τF2 , i.e., (σ ⊥ −τ)F2 6= 0.
Clearly, deg(σ ⊥ −τ)F2 ≥ n. Suppose that σK ≃ τK = 0. Then by [AK, Satz 20]
it follows that deg(σ ⊥ −τ)F2 = n and (σ ⊥ −τ)F2 ≡ σF2 (mod Jn+1F2). Hence,
−τF2 ≡ 0 (mod Jn+1F2) and the Arason-Pfister Hauptsatz implies that τF2 = 0, a
contradiction.

Obviously, σ̃K(π) = τ̃K(π) = 0. Thus, (σ− τ)K(π) − (σ̃− τ̃)K(π) = 0. Since E/F1
is the generic splitting field of (σ−τ)−(σ̃− τ̃) ∈WF1, we have by Proposition 2.2(iii)
that E ·K(π)/K(π) is purely transcendental. But K(π)/K is purely transcendental
as well because πK = 0. Hence, E ·K(π)/K is purely transcendental and therefore
σE·K(π) ≃ τE·K(π) is anisotropic because σK ≃ τK is anisotropic. Since E(π) ⊂
E ·K(π) we have that σE(π) ≃ τE(π) is anisotropic.
Let now F3 = F1(

√
a1X). Again, we clearly have that F3/F0 is purely tran-

scendental. Furthermore, σF3 ≃ σ̃F3 and τF3 ≃ τ̃F3 as a1 = X in Ḟ3/Ḟ
2
3 . Hence,

(σ − τ)F3 − (σ̃ − τ̃)F3 = 0 in WF3 and we have that E ·F3/F3 is purely transcenden-
tal by the same reason as before. Hence, E ·F3/F0 is purely transcendental as well
and thus, since F0 ⊂ E ⊂ E ·F3, we conclude that E/F0 is unirational. Therefore,
ln(σE , τE) = ln(σF0 , τF0) = k as desired. Obviously, E/F is also unirational as F0/F
is purely transcendental. This completes Izhboldin’s construction. 2

F

F0 = F (y1, · · · , yℓ)

F1 = F0(x)

E

F3 = F1(
√
a1x)

E ·F3

c
cc

c
cc

E(π)

F2 = F1(
√−x)

K

K(π)

E ·K(π)

#
##

c
cc

Corollary 8.4 (Izhboldin [I].) Let τ ∈ PnF be anisotropic, n ≥ 3. Then there
exists a unirational field extension E/F such that E(τ)/E is not excellent.
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Abstract. We study the convex hull PA of the 0-1 incidence vectors of
all triangulations of a point configuration A. This was called the universal
polytope in [4]. The affine span of PA is described in terms of the co-
circuits of the oriented matroid of A. Its intersection with the positive
orthant is a quasi-integral polytope QA whose integral hull equals PA. We
present the smallest example where QA and PA differ. The duality theory
for regular triangulations in [5] is extended to cover all triangulations. We
discuss potential applications to enumeration and optimization problems
regarding all triangulations.
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1 Introduction

We are interested in the set of all triangulations of a configurationA = {a1, . . . , an} ⊂
Rd
. The subset of regular triangulations is well-understood thanks to its bijection

with the vertices of the secondary polytope (see [7, Chapter 7] and [16, Lecture 9]).
But non-regular triangulations remain a mystery: for instance, it is still unknown
whether any two triangulations of A can be connected by a sequence of bistellar flips
[12]. Non-regular triangulations are abundant: if A is the vertex set of the cyclic
polytope C4n−4(4n), there are at least 2n triangulations (Proposition 5.10 in this
article), while the number of regular triangulations is O(n4).
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One approach in understanding non-regular triangulations is to replace the sec-
ondary polytope by a larger polytope PA whose vertices are in bijection with all tri-
angulations of A. The polytope PA is isomorphic to the universal polytope introduced
by Billera, Filliman and Sturmfels [4]. They expressed the secondary polytope as a
projection of PA and they showed dim(PA) =

(
n−1
d+1

)
when A is in general position.

We shall now fix some notation, and define the polytope PA.

Throughout this paper A ⊂ Rd
will denote a d-dimensional configuration of n

possibly repeated points. By a k-simplex we mean a sub-configuration of A consisting
of k + 1 affinely independent points. A triangulation of A is a collection T of d-
simplices whose convex hulls cover conv(A) and intersect properly: for any σ and τ
in T we have conv(σ ∩ τ) = conv(σ) ∩ conv(τ). Let ∆(A) denote the collection of
d-simplices in A. We define PA as the convex hull in R∆(A) of the set of incidence
vectors of all triangulations of A. For a triangulation T the incidence vector vT has
coordinates (vT )σ = 1 if σ ∈ T and (vT )σ = 0 if σ 6∈ T . We also consider the

polytope QA = aff(PA) ∩ R∆(A)+ , which is the linear programming relaxation of
PA. We denote by M(A) the oriented matroid of affine dependencies of the point
configuration A.
We first present linear equations defining the affine hull aff(PA) of PA. These

equations involve the cocircuits (see [6, Chapter 1] or [16, Lecture 6]) ofM(A): for any
τ which is a (d−1)-simplex of A, let Hτ be the hyperplane that contains τ and let H

+
τ

and H−τ denote the two open half-spaces defined by Hτ . We recall that the cocircuits
of the oriented matroid M(A) are the resulting partitions (A∩H+τ ,A∩Hτ ,A∩H−τ )
of A. Consider the following linear form:

Coτ :=
∑

σ=τ∪{a}, a∈A∩H+τ

xσ −
∑

σ=τ∪{a}, a∈A∩H−τ

xσ (1)

We call Coτ the cocircuit form associated with the (d−1)-simplex τ . If conv(τ) ∩
int(conv(A)) 6= ∅ , we say that τ is an interior (d − 1)-simplex. In this case neither
of the two sums in (1) is void. Moreover, every triangulation T of A contains either
no d-simplex containing τ or exactly two, one in the first sum and one in the second.
Thus Coτ vanishes at the incidence vector vT of every triangulation of A, and hence,
on aff(PA). We call the equations Coτ = 0, for interior (d−1)-simplices τ , the interior
cocircuit equations. We summarize our main results:

Theorem 1.1 Let A be a point configuration with the above conventions.

(i) The affine span of PA in R
∆(A)

is defined by the linear equations Coτ = 0
for every interior (d− 1)-simplex τ , together with one non-homogeneous linear
equation valid on PA.

(ii) PA coincides with the integral hull of QA; i.e., the lattice points in QA are
precisely the incidence vectors of triangulations of A.

(iii) Two triangulations T1 and T2 of A are neighbors in the edge graph of PA if and
only if they are neighbors in the edge graph of QA.

(iv) For the case of the n-gon and configurations with at most d+3 points, we have
QA = PA. This is not true in general for n ≥ d+ 4 ≥ 6.
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The following three types of non-homogeneous equations may be used to complete
the description of aff(PA) in part (i) of Theorem 1.1: If τ is a non-interior (d − 1)-
simplex and conv(τ) is a facet of conv(A), then the cocircuit form Coτ has constant
value equal to ±1 on PA. This produces new valid equations for aff(PA) which we
call boundary cocircuit equations. They can be expressed in the form

∑

σ=τ∪{a}, a∈A\τ
xσ = 1. (2)

Another set of valid equations for aff(PA) can be obtained as follows: let p ∈
conv(A) be a point not lying in the convex hull of any (d − 1)-simplex of A. Every
triangulation of A satisfies the equation:

∑

σ∈∆(A), p∈conv(σ)
xσ = 1. (3)

Recall that the chamber complex of A is the common refinement of all triangulations
of A (see [1],[5]). We call the equations of type (3) chamber equations, because the
simplices in the sum only depend on the chamber in which p lies. Note that the
boundary cocircuit equations (2) are a particular case of chamber equations.

Finally, if we denote by vol(·) the standard volume form on Rd
, the following

volume equation is satisfied by every triangulation of A:
∑

σ∈∆(A)
vol(conv(σ))xσ = vol(conv(A)). (4)

Remark 1.2 The (interior and boundary) cocircuit equations depend only on the
oriented matroidM(A) of affine dependencies of A. This holds neither for the volume
equation nor for chamber equations: for example, all configurations consisting on the
six vertices of a convex planar hexagon have the same oriented matroid, while the
number of chambers can be 24 or 25, depending on the coordinates of the vertices.
Clearly, if A has no simplicial facets, then there are no boundary cocircuit equa-

tions. However, every configuration A has some chamber equations which can be
obtained from the oriented matroid M(A). (Such chambers arise from lexicographic
extensions; see [6, Figure 7.2.2, page 296].) Any of them, together with the interior
cocircuit equations, will provide a description of aff(PA) in terms of M(A). Part (ii)
of Theorem 1.1 implies that this yields a description of PA itself in terms of M(A).

In Section 2 we examine the affine span of PA and we prove part (i) of Theorem
1.1. A surprising consequence (Corollary 2.3) is that aff(PA) is spanned by the
regular triangulations only. This implies the formula dim(PA) =

(
n−1
d+1

)
when A is

in general position. Section 3 contains the proof of parts (ii) and (iii) in Theorem
1.1. As a consequence of part (iii) we obtain a combinatorial characterization of
the edges of PA (Theorem 3.3). Section 4 contains the proof of part (iv). We also
discuss computational issues regarding the enumeration of triangulations and the
optimization of linear cost functions over PA. In Section 5 we present a duality
theory relating (non-regular) triangulations of A with (virtual) chambers in the Gale
transform of A.
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2 Equations defining the affine span of PA

We introduce now some basic definitions and properties concerning regular triangu-
lations. For a more detailed description and the relevant background the reader may
consult [4],[5],[7, Chapter 7],[9] and [16].
A regular triangulation of A is a triangulation which is obtained by projecting

the lower envelope of a (d+1)-dimensional simplicial polytope onto conv(A). In other
words, a triangulation is regular if it supports a piecewise convex linear functional.
In [7, Chapter 7] the collection of regular triangulations of a point configuration

is identified with the vertex set of a polytope Σ(A) of dimension n− d− 1 embedded
in Rn

. This polytope, called the secondary polytope, is a projection of PA [4]. The

projection map π :R∆(A) →RA is given by π(eσ) = vol(σ)
∑
a∈σ ea, where eσ and

ea denote the standard basis vectors.
A characterization of the edges of Σ(A) is given in [7, Chapter 7]. This uses

the notions of circuits and bistellar flips. We only define bistellar flips in the general
position case: a circuit of the point configuration A is a minimal affinely dependent
set. If A is in general position circuits are subsets of cardinality d + 2. The unique
(up to scaling factor) affine dependency equation satisfied by a circuit Z splits it into
two subsets Z+ and Z− consisting of the points which have positive and negative
coefficients respectively. Any circuit Z has exactly two triangulations t(Z)+ = {Z \
{a}, a ∈ Z+} and t(Z)− = {Z \ {a}, a ∈ Z−}. If a triangulation T of A contains
one of the two triangulations of a circuit Z (say t(Z)+), then T ′ = T \ t(Z)+∪ t(Z)−

is again a triangulation of A. The operation that passes from T to T ′ (or vice versa)
is called a bistellar flip. Two regular triangulations are neighbors in the 1-skeleton of
the secondary polytope Σ(A) if and only if they differ by a bistellar flip. This implies
that any two regular triangulations can be transformed to one another by a finite
sequence of bistellar flips. It is unknown whether this property is true for non-regular
triangulations.

Our next goal is to prove part (i) of Theorem 1.1. We first state a lemma
about the behavior of triangulations under the matroidal operations of deletion A 7→
A\ai and contraction A 7→ A/ai, where ai is a vertex of A. We regard A/ai as a
configuration of typically n−1 points (maybe less, if ai was a repeated point) in affine
(d− 1)-space. The convex hull of A/ai is the vertex figure of conv(A) at ai.

Lemma 2.1 Let a1 ∈ A be a vertex of conv(A). Every triangulation of A\a1 can
be extended to a triangulation of A. Every regular triangulation of A/a1 can be
extended to a triangulation of A. The latter fails for non-regular triangulations.

Proof: Every (regular or non-regular) triangulation T ′ of A\a1 can be extended to a
triangulation T of A by the placing operation described on page 444 in [9]. In this
situation T is regular if and only if T ′ is regular.
The extension property of regular triangulations for contractions follows from

the identification of the secondary fan of A with the chamber complex of B, where B
is a Gale transform of A (see [5], in particular Lemma 3.2 and the paragraph after
Lemma 3.4). The reasoning is this: let T ′ be a regular triangulation of A/a1. It
corresponds to a chamber CT ′ of B\b1, where b1 ∈ B is the point corresponding to
a1 in the Gale transform. The chamber CT ′ may split into smaller chambers when
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passing to the chamber complex of B and any such smaller chamber CT corresponds
to a triangulation T of A with T/a1 = T ′.
To see that regularity is necessary in the previous paragraph, let A ⊂ R3 be

the configuration a1 = (20, 0, 1), a2 = (1, 20, 0), a3 = (0, 1, 20), a4 = (10, 0, 0),
a5 = (0, 10, 0), a6 = (0, 0, 10) and a7 = (−10,−10,−10). Let T ′ be the triangulation
of A/a7 given by the triangles {1, 2, 5}, {1, 3, 4}, {1, 4, 5}, {2, 3, 6}, {2, 5, 6}, {3, 4, 6}
and {4, 5, 6}. There is no triangulation T of A such that T/a7 = T ′. The non-convex
polyhedron with vertices a1, . . . , a6 and triangular faces determined by the above list,
together with the triangle {1, 2, 3}, is the Schönhardt polyhedron [13] which cannot be
triangulated without adding a new point.

Part (i) of Theorem 1.1 is a consequence of the following theorem and the exis-
tence of non-homogeneous forms vanishing on PA.

Theorem 2.2 Let h =
∑
σ∈∆(A) cσxσ (cσ ∈R) be any homogeneous linear form on

R∆(A). The following properties are equivalent:

(i) h is a linear combination of the interior cocircuit forms Coτ (1).

(ii) h vanishes on (the incidence vector of) every triangulation of A.

(iii) h vanishes on (the incidence vector of) every regular triangulation of A.

Proof: (i)⇒(ii)⇒(iii) are obvious. We prove (iii)⇒(i).
Let P regA denote the convex hull of all points vT where T is a regular triangulation

of A. Thus P regA ⊂ PA. Let h =
∑
cσxσ be any linear form which vanishes on P

reg
A .

We shall prove that h is a linear combination of the interior cocircuit forms using a
double induction on n = |A| and d = dim(A). Assume that the statement is true for
any configuration of smaller cardinality or smaller dimension.

Let a1 be a vertex of conv(A). Let us suppose that A\a1 still spans Rd
. Oth-

erwise P regA and P regA\a1 are affinely isomorphic and the theorem follows by induction.

The interior cocircuit forms Coτ vanish on P
reg
A . If a1 6∈ τ then Coτ involves at most

one d-simplex of the form σ = {a1} ∪ τ . Subtracting appropriate multiples of those
Coτ from h we get another linear form h1 in which the variables xσ corresponding to
these simplices do not appear. That is,

h1 =
∑

σ:a1∈σ

conv(σ\a1)⊂ boundary(conv(A))

cσxσ +
∑

σ:a1 6∈σ
c′σxσ.

The second sum h2 =
∑
σ:a1 6∈σ c

′
σxσ is a linear form vanishing on P

reg
A\a1 . Indeed, let

T ′ be any regular triangulation of A\a1. Pick a regular triangulation T of A that
extends T ′ as in Lemma 2.1. Since a1 is a vertex of conv(A), the triangulation T
cannot contain a simplex σ of the form {a1} ∪ τ where conv(τ) is in the boundary of
conv(A). This fact together with h1(vT ) = 0 implies h2(vT ) = 0, and consequently
h2(vT ′) = 0.
Every cocircuit form Coτ of A\a1 is either a cocircuit form of A as well or can

be extended to a cocircuit form of A by adding a single variable x{a1}∪τ with the
appropriate sign. By induction hypothesis, h2 is a linear combination of the cocircuit
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forms of A\a1. We extend this presentation to a linear combination of cocircuit forms
of A, which vanishes on P regA . We subtract it from h1 to get a new form h3 which
vanishes on P regA and involves only d-simplices σ of the form a1 ∪ τ :

h3 =
∑

σ:a1∈σ
c′′σxσ.

The assignment τ 7→ {a1}∪τ defines a bijection between the simplices of A/a1 and the
simplices of A containing a1. Therefore we can interpret h3 as a linear form on P regA/a1 .
Lemma 2.1 guarantees that h3 vanishes on P

reg
A/a1 . By the induction hypothesis, h3

is a linear combination of cocircuit forms Coτ of A/a1. We replace each variable xτ
in this linear combination by the corresponding variable x{a1}∪τ . This transforms
cocircuit forms of A/a1 into cocircuit forms Co{a1}∪τ of A. Therefore h3 is a linear
combination of cocircuit forms of A. This proves Theorem 2.2 and Theorem 1.1 (i).

Corollary 2.3 The linear subspace of R∆(A) parallel to aff(PA) is spanned by all
vectors vT −vT ′ where T and T ′ are regular triangulations of A differing by a bistellar
flip.

Proof: It follows from Theorem 2.2 that the linear subspace in question is spanned
by all vectors vT − vT ′ where T and T ′ are regular triangulations. Since every pair
of regular triangulations is connected by a sequence of bistellar flips, the corollary
follows.

Theorem 2.2 implies dim(PA) = |∆(A)| − R − 1, where R is the rank of the
interior cocircuit forms. If the points ofA are in general position then |∆(A)| =

(
n
d+1

)
.

In this case the vector vT − vT ′ , where T and T
′ are regular triangulations of A

differing by a bistellar flip, equals vt(Z)+ −vt(Z)− , where t(Z)+ and t(Z)− are the two
triangulations of the circuit Z on which the bistellar flip is supported.

Theorem 2.4 Let A ⊂ Rd
be a configuration of n points in general position. Let

a1 ∈ A and R be the rank of the interior cocircuit forms.

(i) The (interior and boundary) cocircuit forms Coτ for which a1 6∈ τ form a basis
for the space of linear forms vanishing on the linear space parallel to PA. Thus,
R+ 1 =

(
n−1
d

)
.

(ii) The vectors vt(Z)+ −vt(Z)− , for the circuits Z containing a1, form a basis of the
linear space parallel to PA. Thus, dim(PA) =

(
n−1
d+1

)
.

Proof: The cocircuit forms Coτ for the (d − 1)-simplices τ not containing a1 are
linearly independent, because each simplex σ containing a1 appears in exactly one
of them. Thus, R + 1 ≥

(
n−1
d

)
. Likewise the vectors vt(Z)+ − vt(Z)− for the circuits

Z containing a1 are linearly independent, because each simplex σ not containing a1
appears in exactly one of them. Thus dim(PA) ≥

(
n−1
d+1

)
. This together with the

formula dim(PA) =
(
n
d+1

)
−R− 1 finishes the proof.
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Proposition 2.5 If A is a configuration in general position, then aff(PA) is defined
by the chamber equations (3).

Proposition 2.5 is generally false for configurations in special position, because
a collection of d-simplices may uniquely cover all open chambers without being a
triangulation. For example, the configuration consisting of the four vertices of a
quadrilateral plus the intersection of its diagonals has 3 triangulations (dim(PA) = 2)
while the chamber equations have 7 non-negative integer solutions whose convex hull
is a 4-dimensional polytope. For the vertex set of the 3-cube we have calculated that
dim(PA) = 29 but the chamber equations define an affine space of dimension 35.
Proposition 2.5 is implied by Theorem 2.2 and the following lemma, which expresses
interior cocircuit forms as differences of chambers.

Lemma 2.6 Let A be a configuration in general position in Rd
. Let C1 and C2 be

two neighboring maximal chambers and τ the unique (d− 1)-simplex containing their
common facet. Then

∑

σ:C1⊂conv(σ)
xσ −

∑

σ:C2⊂conv(σ)
xσ = Coτ .

Proof: Let H be the hyperplane defined by τ , with half-spaces H+ ⊃ C1 and H
− ⊃

C2. If σ is any d-simplex which contains C1, then either σ contains C2 as well or
σ = a ∪ τ where a ∈ H+ (similarly for C2).

If A is in special position then more than one (d − 1)-simplex may contain the
common facet of C1 and C2. Call Ω the collection of them. In this case, with similar
arguments one can prove that the formula in Lemma 2.6 has to be corrected by
substituting

∑
τ∈ΩCoτ for Coτ .

Remark 2.7 Let M be the incidence matrix of the chambers and the d-simplices of
A. If A is in general position then Proposition 2.5 implies that

aff(PA) = {x ∈R∆(A) :M · x = 1}.

Row and column bases of M have been studied in [1] and [2] and a formula is given
for rank(M) in [2]. The formulae in Theorem 2.4 are a special case of that formula.

3 The relation between PA and QA

Part (i) of Theorem 1.1 implies that the linear programming relaxation QA of PA is
defined by the interior cocircuit equations Coτ = 0 plus an extra non-homogeneous
equation satisfied on PA, and the inequalities xσ ≥ 0 for each simplex σ of A. Clearly
PA ⊂ QA. We shall examine the relationship between these two polytopes.
We call support of a point v ∈ R∆(A) (and denote it supp(v)) the collection of

d-simplices σ for which vσ 6= 0.

Lemma 3.1 (i) QA is a subpolytope of the unit cube conv(x : x ∈ {0, 1}∆(A)).

(ii) Every vertex of PA is also a vertex of QA.
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(iii) If v is any point in QA then supp(v) covers conv(A), i.e.,
⋃

σ:σ∈supp(v)
conv(σ) = conv(A).

(iv) A vertex v of QA is a vertex of PA if and only if its support contains a trian-
gulation.

Proof: The chamber equations (3) are valid for QA, and they imply part (iii). Also,
since every xσ appears in at least one of them, the non-negativity constraints imply
xσ ≤ 1 for all σ. This proves part (i) which, in turn, implies part (ii). The only-
if-direction of (iv) is obvious. For the if-direction, suppose first that supp(v) is the
support of a triangulation T . Then the chamber equations imply that v is the inci-
dence vector of T , hence is a vertex of PA. If supp(v) strictly contains a triangulation
T then it cannot be a vertex of QA because vε :=

v−εvT
1−ε is still a point in QA, for a

sufficiently small positive ε. But then v = (1− ε)vε + εvT is not a vertex of QA.

Theorem 3.2 Every integral point of QA is the incidence vector of a triangulation
of A; i.e., PA is the integral hull of QA.

Proof: Let v be an integral point of QA. By Lemma 3.1 (iii) we only need to prove
that any two simplices in supp(v) intersect properly. Suppose this is not the case for
two simplices σ1 and σ2 in supp(v), i.e.:

conv(σ1 ∩ σ2) 6= conv(σ1) ∩ conv(σ2).

Take a point a in (conv(σ1) ∩ conv(σ2))\conv(σ1 ∩ σ2). Then the minimal face
(subset) F of σ1 with a ∈ conv(F ) is not a face of σ2. For each simplex σ of supp(v)
having F as a face, consider the convex polyhedral cone

c(σ) := a+ pos(conv(σ) − a) = {λp+ (1− λ)a : p ∈ conv(σ), λ ≥ 0 }.

Note that the facets of c(σ) are in 1-to-1 correspondence with the facets of σ which
contain F . We claim that conv(A) is contained in the union of such cones. Suppose
a point b of conv(A) lies outside their union. Then b “sees” a facet of some cone
c(σ), where σ ∈ supp(v). Let τ be the corresponding facet of σ, which contains F .
By the choice of τ , there is no d-simplex in supp(v) having τ as a facet and lying in
the half-space containing b. This violates the interior cocircuit equation Coτ (v) = 0,
since v ≥ 0. Therefore an open neighborhood of a in conv(A) is covered by those
simplices in supp(v) which have F as a face. The interior of one of these simplices
intersects the interior of conv(σ2). This violates the chamber equations for v.

We next prove that the edges of PA are also edges of QA. A different proof for
this theorem can be derived from more general results about 0− 1 polytopes due to
Matsui and Tamura [10]. Here we present a self-contained proof in the context of
triangulations.

Theorem 3.3 Let T1 and T2 be two distinct triangulations of A. The following state-
ments are equivalent:
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(i) vT1 and vT2 are not neighbors in QA.

(ii) vT1 and vT2 are not neighbors in PA.

(iii) There exist two triangulations T3 and T4 of A (different from T1 and T2) such
that vT1 + vT2 = vT3 + vT4 .

(iv) There exist partitions T1 = R1 ∪ L1 and T2 = R2 ∪ L2 such that L1 ∪ R2 and
R1 ∪ L2 are two other triangulations of A, different from T1 and T2.

Proof: (iv)⇒(iii)⇒(ii)⇒(i) are obvious. We only need to show (i)⇒(iv). We define a
graph G whose nodes are the d-simplices of T1. Two d-simplices of T1 are adjacent in
G if and only if they share a common facet and this facet is not a facet of any d-simplex
of T2. The graph G has the following property: If H is a connected component of
G then the (topological) boundary of ∪σ∈H conv(σ) is the union of (d− 1)-simplices
which are faces of both T1 and T2.
Next we will construct L1, L2, R1 and R2. Let σ0 be a simplex of T1 which is not

in T2. Let L1 be the collection of d-simplices in the same connected component of G as
σ0 and let R1 = T1\L1. Moreover, let |R| = ∪σ∈R1conv(σ) and |L| = ∪σ∈L1conv(σ).
Finally, let L2 (resp. R2) be the collection of d-simplices of T2 whose convex hull
intersect the interior of |L| (resp. of |R|). By the property of G mentioned above, no
simplex of T2 can intersect the interiors of both |L| and |R|. Thus T2 is the disjoint
union of R2 and L2. Also, by the same property, the simplices of L1 ∪ R2 (same
for R1 ∪ L2) intersect properly. Moreover, they cover conv(A), because their union
covers conv(A) twice. We conclude that the disjoint unions L1 ∪ R2 and L2 ∪ R1
are triangulations of A. Clearly L1 6= L2, because σ0 ∈ L1\L2. Let us assume that
R1 = R2 and prove that then vT1 and vT2 are neighbors in QA. This will finish the
proof of the theorem.
Let v be a point in the minimal face F of QA containing vT1 and vT2 . This face

is defined setting all coordinates not appearing in vT1 or vT2 equal to zero. Thus,
supp(v) ⊂ T1 ∪ T2. The entry of v corresponding to any d-simplex in R1 = R2 equals
1, because of the chamber equations. On the other hand, for any two d-simplices σ1
and σ2 adjacent in G, the interior cocircuit equations imply vσ1 = vσ2 , since these
two simplices are the only ones in T1 ∪ T2 having τ = σ1 ∩ σ2 as a facet. Thus, the
entries of v corresponding to simplices in L1 have a constant value ε. With this, the
chamber equations imply that the entries corresponding to simplices in L2 have a
constant value 1− ε. Thus, v = εvT1 + (1− ε)vT2 . This implies that F is a segment,
i.e., that vT1 and vT2 are neighbors.

The above theorem implies that any two integral vertices of QA (triangulations)
are connected by a path of integral vertices. Note that it is still conceivable that we
could have two triangulations of A which are not connected by bistellar flips.

4 Examples and applications

Our linear programming relaxation QA is generally not a lattice polytope. Therefore
PA is strictly contained in QA. In this section we will exhibit some cases where
PA = QA and the smallest configuration for which PA 6= QA.
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Theorem 4.1 Let A ⊂ Rd
be a configuration of n points. The equality PA = QA

holds in the following cases:

(i) d = 2 and all points lie on the boundary of a convex polygon.

(ii) d = 1.

(iii) n ≤ d+ 3.

Proof: (i) Let v be a vertex of QA. Let S be a subset of supp(v) where all triangles
in S intersect properly and cover a convex sub-polygon of conv(A). Suppose that S
is maximal with these two properties. Let e be an edge of the sub-polygon covered
by S. Then S is contained in one of the two half-planes defined by e. By maximality
of S and the interior cocircuit equations, e must be a segment on the boundary of
conv(A). This proves that S covers conv(A) and hence is a triangulation. Lemma
3.1 (iv) implies that v is a vertex of PA.
(ii) The proof is a minor variation of case (i).
(iii) Let S = {T1, . . . , Tk} be the collection of all triangulations of A. By Corollary
5.9 below, every triangulation Ti of A contains a simplex σi which is not contained in
any other triangulation. Therefore, setting the coordinate of σi equal to zero defines
a facet of PA that contains every triangulation but Ti. Thus, PA is a (k− 1)-simplex.
The fact that all facets of PA are defined by setting coordinates equal to zero implies
that PA = QA.

Example 4.2 A fractional vertex of QA.
For any A with PA 6= QA we must have n ≥ d+4 ≥ 6. A minimal example is provided
by the vertices 1, . . . , 5 of a regular pentagon plus its center 0. This configuration is
in general position and has 20 triangles and 16 triangulations. Consider the vector

v ∈ R20 with coordinates v{123} = v{234} = v{345} = v{145} = v{125} = v{013} =
v{024} = v{035} = v{014} = v{025} = 1/2 and all other coordinates zero. It satisfies
the interior and boundary cocircuit equations. Therefore v lies in QA. Since supp(v)
does not contain any triangulation, PA 6= QA. This fractional point is the only vertex
of QA which is not in PA.

Remark 4.3 The property PA = QA is neither sufficient nor necessary for a config-
uration A to have all triangulations regular. In Example 4.2 all triangulations are
regular but PA 6= QA. For the canonical example of the planar configuration which has
non-regular triangulations (six points which form two triangles with parallel edges)
we still have PA = QA.

Let Cn be the vertex set of a planar n-gon. The following proposition gives an
irredundant inequality presentation of the

(
n−1
3

)
-dimensional polytope PCn = QCn .

Proposition 4.4 For n ≥ 5 the facets of PCn are defined by xσ = 0 where σ is a
triangle with at most one of its edges lying on the boundary of Cn.

Proof: We call a triangle external if it has two edges on the boundary of Cn. We first
show that, for any external triangle σ, xσ = 0 does not define a facet of PCn . Without
loss of generality we can assume σ = {1, 2, n}. Suppose that xσ = 0 defines a facet of
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PCn . Then
(
n−1
3

)
affinely independent triangulations not involving σ together with a

triangulation T that contains σ will affinely span aff(PCn). The triangulation T con-
tains a triangle {i, 2, n} for some i 6= 1. Since n ≥ 5 there exists another triangulation
S which contains {j, 2, n} where j 6= 1, i. But then S cannot be expressed as an affine
combination of the above set of triangulations since {j, 2, n} cannot appear in any of
them. This contradiction shows that an external triangle does not define a facet of
QCn .
For n = 5 a direct investigation shows that the five non-external triangles corre-

spond to facets. For n > 5, suppose σ is a non-external triangle. Then there exists a
vertex i such that Cn−1 := Cn\i contains σ as a non-external triangle. Without loss of
generality we can assume i = 1. Let τ be the external triangle {1, 2, n}. By induction,
xσ = 0 defines a facet of Cn−1. In other words, there are

(
n−2
3

)
affinely independent

triangulations of Cn−1 which do not contain σ. This set of affinely independent tri-
angulations can be extended to triangulations of Cn by adding τ . Now we need to
produce

(
n−2
2

)
additional affinely independent triangulations which do not contain σ:

for each j and k such that 2 < j < k < n, we can construct a triangulation which
contains the triangles {1, 2, j}, {1, j, k} and {1, k, n} (and hence not τ), and which
does not contain σ. Similarly, for each 2 < l < n we can construct triangulations
which contain {1, 2, l} and {1, l, n}. These additional

(
n−2
2

)
triangulations together

with the previous ones form a set of
(
n−1
3

)
affinely independent points in PCn , none

of them containing σ.

Remark 4.5 The argument that xσ = 0 does not define a facet of QCn whenever
σ is an external triangle can be generalized. The “external” simplices of a point
configuration A in general position are the following: if any vertex ai of conv(A) is
deleted, then the point configuration A\ai will again be in general position. Each
facet of conv(A\ai) that is visible from ai together with ai will form a simplex σ
which will not define a facet for QA. The argument is identical to the one above.

We close this section with remarks about using QA to enumerate the triangula-
tions of A and to solve optimization problems over PA. If A is in general position
then, by Remark 2.7

QA = {x ∈R∆(A)+ :M · x = 1} ,
PA = conv{x ∈ {0, 1}∆(A) :M · x = 1}.

This means that PA is a set partitioning polytope. Even if A is not in general position,
by introducing extra variables for the interior (d−1)-simplices ofA, PA can be realized
as a set partitioning polytope. This has important implications for enumeration and
optimization purposes. For example, Trubin [15] shows that if P is a set partitioning
polytope and Q its linear relaxation then P is quasi-integral, i.e., every edge of P is
also an edge of Q. Balas and Padberg [3] and Matsui and Tamura [10] have given
a characterization of adjacency between vertices of P . This leads to an algorithm
for optimizing linear functionals over P using Q. Starting from an integral vertex of
Q the algorithm finds the optimal solution visiting only integral vertices of Q in a
fashion similar to the simplex method in linear programming. The same adjacency
characterization can be used to enumerate the vertices of P as well.
Unfortunately, no implementation of the Balas-Padberg procedure is known to us.

Moreover enumerating the triangulations of A using the existing vertex enumeration
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packages has two major drawbacks. First of all, an inequality presentation of PA is
either hard to get or it might involve too many constraints. Secondly if one uses QA
instead of PA then there is an excessive number of fractional vertices which have to be
enumerated too. Our experiments using several vertex enumeration packages allowed
us only to compute small examples. However the situation is more promising for
optimization problems over PA thanks to the efficient implementations of branch-and-
bound and branch-and-cut algorithms for integer programming. Finding triangulations
using minimum or maximum number of simplices, or finding a minimum/maximum
cost triangulation fall into the category of these optimization problems. In order to
illustrate the sizes of the problems one can attempt to solve and the efficiency of using
linear and integer programming techniques over PA we give the following example.
Triangulating the d-dimensional cube with minimal number of simplices is important
for their use in algorithms for the computation of fixed points of continuous maps [14].
This is equivalent to minimizing the functional

∑
xσ over PA where A is the vertex

set of the d-cube. In the case of the 4-cube (d = 4, n = 16) the system defining QA has
1257 equations and 3008 variables. Using CPLEX 3.0 on a SPARC10 workstation, it
takes 150 seconds to verify that the 4-cube’s minimal triangulation has 16 simplices.
The size of the corresponding linear programs for the d-cube with d ≥ 5 gets too
big. In this case one should formulate a smaller linear program which exploits the
symmetries of the d-cube. This was done successfully for d = 5, 6 in [8].

5 Duality

In this section we extend the duality theory in [5] to cover all triangulations. Two
applications are included: a short proof of Carl Lee’s result that every triangulation
of a configuration of d + 3 points is regular [9] and an exponential lower bound for
the number of triangulations of the cyclic polytope C4n−4(4n).
Following [5], we now consider a configuration A = {a1, a2, . . . , an} of vectors

spanningRd+1
. Thus |∆(A)| ≤

(
n
d+1

)
and equality holds if A is in general position. If

there exists an affine hyperplane H (0 6∈ H) which intersects pos(ai) for every ai ∈ A,
then we can consider A as a d-dimensional point configuration in H (identified with
Rd
). If this is the case A is said to be acyclic, and we are in the setting of the

previous sections. For the non-acyclic case see Remark 5.2 below.

Let B = {b1, b2, . . . , bn} be a spanning subset ofRn−d−1
which is a Gale trans-

form of A. This means that ∑n
i=1 ai ⊗ bi = 0 in R

d+1 ⊗Rn−d−1
. In particular,

M(B) is the oriented matroid dual to M(A).
Let T (A) ⊂ {0, 1}∆(A) be the set of incidence vectors of all triangulations of A

and Treg(A) the subset corresponding to regular triangulations. Similarly let Γ(A) ⊂
{0, 1}∆(A) be the set of all chambers of A. By the results in [5],

Treg(A) = Γ(B) and Treg(B) = Γ(A). (5)

We identify each cocircuit form Coτ ofA with its coefficient vector in {0,+1,−1}∆(A).
Let Co(A) denote the collection of all cocircuit vectors Coτ , where τ runs over all
linearly independent d-subsets ofA, and let Coint(A) be the subset of interior cocircuit
vectors. Recall that Coτ is interior if and only if both +1 and −1 appear among
the coordinates of Coτ . Dually, let ρ be any spanning (d + 2)-subset of A. Then ρ
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contains a unique signed circuit Z = (Z+, Z−) of A. We define the circuit vector

Ciρ :=
∑

i∈Z−
eρ\i −

∑

j∈Z+
eρ\j .

(The eρ\i are standard basis vectors inR
∆(A)
.) We say that Ciρ is an interior circuit

vector if Z+ 6= ∅ and Z− 6= ∅. Let Ci(A) denote the set of all circuit vectors and
Ciint(A) the subset of interior circuit vectors. A is acyclic if and only if Ci(A) =
Ciint(A). We fix the standard inner product 〈 · , · 〉 on R∆(A). Here is our first
duality theorem.

Theorem 5.1 Let A ⊂Rd+1
and B ⊂Rn−d−1

be Gale transforms of each other.

(i) Circuit and cocircuit vectors satisfy Ci(A) = Co(B) and Ci(B) = Co(A).

(ii) If A is in general position then the subspaces spanned by Ci(A) and Co(A) are
orthogonal complements in R∆(A).

Proof: Recall the following two facts from oriented matroid duality: A (d + 2)-
subset of A is spanning if and only if the complementary (n − d − 2)-subset of B is
linearly independent. The signed circuits of A are the signed cocircuits of B and vice
versa. These two facts imply assertion (i).
(ii) Let Ciρ be a circuit vector and let Coτ be a cocircuit vector. If supp(Ciρ) ∩
supp(Coτ ) = ∅ then 〈Coτ , Ciρ〉 = 0. Otherwise supp(Ciρ) ∩ supp(Coτ ) = {σ1, σ2}
where σ1 = {τ, i} = ρ\j and σ2 = {τ, j} = ρ\i. If ai and aj are in different half-spaces
defined by τ then {τ, i} and {τ, j} have the same sign in Ciρ since they appear in the
same triangulation of ρ. If ai and aj are in the same half-space then {τ, i} and {τ, j}
have opposite signs in Ciρ since they do not belong to the same triangulation of ρ.
This shows

〈Coτ , Ciρ〉 = 0 for all Coτ ∈ Co(A) , Ciρ ∈ Ci(A). (6)

If A is acyclic, by the proof of Theorem 2.4 we have dim(Co(A)) =
(
n−1
d

)
and

dim(Ci(A)) =
(
n−1
d+1

)
. We conclude that Ci(A) and Co(A) span orthogonal comple-

ments. If A is in general position but not acyclic, then B is acyclic and the result
follows from (i).

The orthogonality relation (6) need not hold for configurations A in special po-
sition. For example, let A = {a1, a2, . . . , a6} be the vertex set of the regular octahe-
dron where a5 and a6 are not connected by an edge. If we choose τ = {1, 2, 3} and
ρ = {1, 2, 3, 4, 5}, then 〈Coτ , Ciρ〉 6= 0.

Remark 5.2 The main results of Section 2 and 3 can be extended to vector config-
urations. The dimension formula given for point configurations in general position
should be corrected to dim(PA) =

(
n−1
d+1

)
−1 whenever A is a non-acyclic configuration

in general position. This can be proved using duality.

Proposition 5.3 For every vector configuration A, the orthogonal complement of
Ci(A) is contained in Co(A) and vice versa.
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Proposition 5.3 can be deduced from the following theorem.

Theorem 5.4 For a vector X ∈ {0, 1}∆(A) the following are equivalent:

(a) ∀T ∈ Treg(A) 〈X,T 〉 = 1 and ∀Ciρ ∈ Ciint(A) 〈X,Ciρ〉 = 0.

(b) ∀T ∈ T (A) 〈X,T 〉 = 1 and ∀Ciρ ∈ Ciint(A) 〈X,Ciρ〉 = 0

(c) X is the incidence vector of a triangulation of B, that is, the set of all (n−d−1)-
subsets σ satisfying X{1,...,n}\σ = 1 defines a triangulation of B.

Proof: The equivalence of (a) and (b) follows from aff(Treg(A)) = aff(T (A)) which is
a consequence of Corollary 2.4. Using Theorem 5.1 (i) and equation (5) we see that
(a) is equivalent to

∀C ∈ Γ(B) 〈X,C〉 = 1 and ∀Coτ ∈ Coint(B) 〈X,Coτ 〉 = 0.
The 0-1-solutions X to this are the triangulations of B by Theorem 1.1.

Corollary 5.5 If A is in general position then for a vector X ∈ {0, 1}∆(A) the
following are equivalent:

(a) 〈X,T 〉 = 1 for all T ∈ Treg(A) .

(b) 〈X,T 〉 = 1 for all T ∈ T (A) .

(c) X is the incidence vector of a triangulation of B.

The chambers of A constitute a (generally proper) subset of the vectors X ⊂
{0, 1}∆(A) characterized by the three equivalent conditions in Theorem 5.4. We pro-
pose the following interpretation for the remaining solutions:

Definition 5.6 The solutions X ∈ {0, 1}∆(A) to the system (a) in Theorem 5.4,
viewed as collections of (d+1)-subsets in A, are called the virtual chambers of A.
Writing Γvirt(·) for the set of virtual chambers, we have

T (A) = Γvirt(B) and T (B) = Γvirt(A). (7)

Remark 5.7 There are two kinds of virtual chambers in Γvirt(B) \ Γ(B): the first
kind of these can become real chambers in a different realization of M(B). These
correspond to the triangulations of A which are regular in some other realization
of M(A). The second kind, the “truly” virtual chambers, will never show up as real
chambers and thus they correspond to non-regular triangulations which never become
regular. An example of the second kind can be found in Proposition 9.6.4 in [6].

We now present two applications of our duality results.

Proposition 5.8 (Carl Lee, [9]) If A is a vector configuration in Rd+1
with |A| ≤

d+ 3 then every triangulation of A is regular.
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Figure 1: A Gale diagram of C12(8)

Proof: If |A| = d + 1, there is a trivial triangulation which is regular. The case
|A| = d+2 is still very easy, since the linear transform B of A is one-dimensional. Let
us assume that |A| = d+ 3. Then B is two-dimensional and its simplices are pairs of
independent vectors. Let C be a virtual chamber of B and let {b1, b2} be a simplex
in the support of C. We have the following:

(a) if b′ ∈ B is such that pos(b1, b2) ⊂ pos(b1, b′) then {b1, b′} is in the support of C.
(b) if b′ ∈ B lies in pos(b1, b2), then exactly one of {b1, b′} and {b′, b2} is in the support
of C.

Both properties follow from ∀Ciρ ∈ Ciint(B), 〈C,Ciρ〉 = 0. Moreover, since
∀T ∈ T (B), 〈C, T 〉 = 1, a simplex {bi, bj} where pos(bi, bj) 6⊆ pos(b1, b2) cannot be in
C. From these we conclude that there is a unique minimal simplex lying in C. This
implies that C is a real chamber.

Corollary 5.9 If A is a vector configuration in Rd+1
with |A| ≤ d+3, then every

triangulation of A contains a simplex which is not used in any other triangulation of
A.

Proof: For |A| = d + 1 and for |A| = d + 2 the statement is again trivial. For the
case |A| = d+ 3, the minimal simplex of C in the proof of the Theorem 5.8 is such a
simplex.

The triangulations of all cyclic polytopes Cd(n) are known to be connected by
bistellar flips [11]. We close the paper with a result about the abundance of non-
regular triangulations of Cd(n).

Proposition 5.10 If A is the vertex set of C4n−4(4n), then A has O(n4) regular
triangulations and has at least 2n triangulations.
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Figure 2: A perturbation that creates a chamber

Proof: The fact that A has O(n4) regular triangulations was established in [4], Theo-
rem 5.7 (note that their “d” corresponds to the “d + 1” in our notation). A Gale
transform B = {b1, b2, . . . , b4n} of A can be depicted as a (4n)-gon under tak-
ing the antipodals of {b2, b4, . . . , b4n} (see Figure 1 and also compare with Figure
1 in [5]). That configuration can be assumed to be a regular 4n-gon, in particu-
lar, the sub-configuration {b1, b3, . . . , b4n−1} is a regular 2n-gon. Hence, the cones
pos(bi, bi+2n), 1 ≤ i ≤ 2n− 1 and i odd, intersect in a half-line L. Now by perturbing
the vertices of this 2n-gon, we can create 2n different chambers which correspond to
2n distinct triangulations of A (see Figure 2). These chambers are virtual chambers
of A, because the small perturbation does not change the oriented matroid. This
shows that C4n−4(4n) has at least 2n non-regular triangulations. All of them become
regular for some point configuration combinatorially equivalent to A.
Acknowledgments: We thank Victor Reiner for helpful remarks and questions. We
are also grateful to David Avis for his help on using his vertex enumeration package
RS.
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Abstract. A re-make, not of the construction, but of its description.

By an ordered graph will be meant a triple of sets (P,N,E) together with a pair of
structure maps, N ← E → P . These data are to be thought of as ‘positive vertices’,
‘negative vertices’, ‘edges’, and ‘incidence relations’, respectively.
An ordered graph is a sort of ordered simplicial complex. It can be made into a

simplicial set by adding degenerate simplices. The details of this step can be neatly
described by means of an auxiliary category CΓ associated to the ordered graph Γ.
The set of objects of CΓ is the disjoint union N

.∪P ; the set of non-identity morphisms
is the set E, and the source and target functions on E are given by the two maps
E → N and E → P , respectively. The category is a little unusual insofar as no
two morphisms in it can be composable unless at least one of them is an identity
morphism.
The nerve construction produces a simplicial set N(CΓ) now: an m-simplex is a

functor [m]→ CΓ (where [m] denotes the ordered set (0 < 1 < · · · < m), regarded as

a category). The set of m-simplices is thus a disjoint union N
.∪E .∪ . . . .∪E .∪P , with

one entry “E ” for each surjective monotone map [m]→ [1]. The simplicial set N(CΓ)
is 1-dimensional in the sense that every non-degenerate simplex has dimension ≤ 1.
Instead of N(CΓ) we will henceforth write N(Γ) for this simplicial set.
The geometric realization |N(Γ)| is a CW complex of dimension ≤ 1. The 0-cells

of |N(Γ)| are indexed by the set N .∪ P (disjoint union), and the 1-cells are indexed
by the set E.
We will suppose now that the ordered graph Γ is connected (equivalently, that the

CW -complex |N(Γ)| is) and pointed ( i.e., equipped with the choice of an element
x ∈ P ). We may then speak of the fundamental group π1(Γ, x). It can be described
as the fundamental group of the CW -complex |N(Γ)| based at |x| or else, in somewhat
more combinatorial terms, as the edge path group of Γ based at x.
We may also speak of the universal covering of Γ (with respect to the chosen

basepoint x). This is an ordered graph Γ̃. It comes equipped with an action of

π1(Γ, x), and with a map Γ̃ → Γ; and these two pieces of data are such that they
make Γ̃ into a principal π1(Γ, x)-bundle over Γ (by definition, this means that the
action is free, and that the quotient by the action is identified to Γ by the given map).

The construction of all this is as follows, by covering space theory. An element of Ñ

(a ‘negative vertex’ of Γ̃) consists of a pair of data in Γ, namely (i) a ‘negative vertex’
v of Γ and (ii) a homotopy class of paths connecting v to the chosen basepoint x. The

map Ñ → N is defined as the forgetful map which forgets the path; and the action of

π1(Γ, x) on Ñ is given by composing the path with the loop in question. The other
data are given similarly.
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As we have implicitly used before, the ordered graphs are the objects of a category
in an evident way: a map in this category is a triple of maps of sets, P → P ′,
N → N ′, E → E′, so that these maps are compatible to the structure maps of the
two ordered graphs in question. It makes sense, consequently, to speak of a simplicial
ordered graph, a simplicial object in the category of ordered graphs. We note that
a simplicial ordered graph will give rise to a bisimplicial set, by nerve, and hence to
a CW -complex, by geometric realization (this particular geometric realization uses
‘prisms’; an equivalent construction, up to canonical isomorphism, would be to pass
to the diagonal simplicial set first and then take the geometric realization of that
diagonal simplicial set). We are in a position now to describe our basic construction.
The construction is implicit in Kan’s paper [1], but it was not made explicit there.

Construction. Let X: ∆op → (sets), [n] 7→ Xn, be a simplicial set. There is an
associated simplicial ordered graph. It has Pn = Xn, Nn = X0, En = Xn+1, and the
maps En → Pn and En → Nn are given by the ‘last face’ map and ‘last vertex’ map,
respectively. This simplicial ordered graph will be denoted ΓX.

(Here are some more details. The simplicial set P. is defined to be isomorphic to
X itself, while N. is defined as the set X0 considered as a simplicial set in a trivial
way. Concerning E., if α : [n]→ [n′] is a monotone map then α∗ : En′ → En is defined
to be the map Xn′+1 → Xn+1 induced from α ∪ {∞} : [n] ∪ {∞} → [n′] ∪ {∞} . The
map En → Pn is defined to be the map Xn+1 → Xn induced from the injective map
[n] → [n+1] which misses n+1, and the map En → Nn is defined to be the map
Xn+1 → X0 induced from the map [0]→ [n+1] taking 0 to n+1.)
Considering X as a simplicial ordered graph in a trivial way (no edges, no negative

vertices) we have a natural inclusion X → ΓX. The following will be shown later.
Lemma. The map X → ΓX is a weak homotopy equivalence.
We will suppose now that the simplicial set X is connected and that it is equipped

with a basepoint (that is, the choice of an element in X0). Then ΓnX, the ordered
graph in degree n of the simplicial ordered graph ΓX, will also be connected (a proof
of this fact will be given below) and it will be equipped with a basepoint xn (namely
the degenerate in degree n of the chosen element inX0). ΓX can thus be considered as
a simplicial object of pointed ordered graphs, and we can therefore define a simplicial
group G = G(X),

[n] 7→ Gn : = π1(ΓnX,xn) .

Theorem. The simplicial group G is a loop group for X.

Proof. In view of the lemma it will suffice to show that there is a principal G-bundle
over ΓX with weakly contractible total space (‘weakly contractible’ means that the
map to the one-point-space is a weak homotopy equivalence). For by pulling back
such a bundle along the map X → ΓX we can obtain a principal G-bundle over X,
and the total space of the latter bundle will again be weakly contractible. (This is
so since, for example, a map of principal bundles of simplicial sets is also a map of
Kan fibrations [2, Satz 9.5] and the geometric realization of a Kan fibration is a Serre
fibration [3]. So the Whitehead theorem applies.)
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The universal covering of a pointed ordered graph, as described above, is functorial.

Hence we have a simplicial ordered graph [n] 7→ Γ̃nX, it is obtained from [n] 7→ ΓnX
(that is, from ΓX) by taking the universal covering degreewise. This simplicial ordered
graph is weakly contractible in every degree; hence (by [4, Appendix A] for example)
it is also weakly contractible globally.

The desired principal bundle is now obtained by observing that the simplicial group

G acts on Γ̃X, that the action is free, and that the quotient of Γ̃X by the action is
just ΓX again.

Proof of Lemma. We give two proofs, both fairly self-contained. The short proof
is in an appendix; here is the pedestrian one.

The category of ordered graphs, as well as the category of simplicial sets, is a functor
category , namely the category ofտր-shaped, respectively of ∆op-shaped, diagrams in
the category of sets; and colimits in such a functor category are computed ‘pointwise’.
It results that the functor X 7→ ΓX commutes with colimits and, what is more to
the point here, that the functor X 7→ N(ΓX) (and therefore also X 7→ |N(ΓX)| )
does so, too. We can apply this fact in two ways. First, by direct limit, we can
reduce to proving the lemma for those simplicial sets which are finite; that is, there
are only finitely many non-degenerate simplices. Next, a finite simplicial set can be
obtained from a ‘smaller’ one by the attaching of a simplicial set standard k-simplex,
for some k; by induction and the gluing lemma we can therefore reduce to proving
the lemma for just the latter kind of simplicial set. In other words, we are reduced
now to showing that |N(Γ∆k)| is contractible.
To show this, we will work out the cell structure of the CW -complex |N(Γ∆k)|

explicitly. The cells in this complex are of three kinds. First, there are the cells
coming from the positive vertices; these contribute the copy of |∆k| coming from the
inclusion ∆k → N(Γ∆k). Next, there are the cells coming from the negative vertices;
these cells are all 0-dimensional, and there is one such for every vertex of ∆k.

And, finally, there are the cells coming from the non-degenerate edges; of these
there is a ‘basic’ edge for every negative vertex. Namely suppose that the negative
vertex corresponds to the l-th vertex of ∆k. Let frontl(∆

k) denote the copy of ∆l

inside ∆k whose vertices are the vertex l and its predecessors. Then the last degenerate
of the generating simplex of frontl(∆

k) gives an l-dimensional edge of the simplicial
ordered graph, and this edge is non-degenerate. Conversely, every non-degenerate
edge is either of this kind or is a face of one such. Indeed, suppose the edge corresponds
to a simplex y of ∆k and suppose that l is the highest vertex of ∆k occurring in y. If
any vertex < l occurs twice in y, or if the vertex l occurs more than twice, then the
edge associated to y is degenerate—contrary to assumption. If, on the other hand,
some vertex < l does not occur at all, or if the vertex l occurs only once rather than
twice, then the edge associated to y is a proper face of one of higher dimension.

Returning to the ‘basic’ edge, we note that the associated cell has dimension l+1.
Its closure is the image of a copy of |∆l|× |∆1| which is mapped in such a way that all
of |∆l| × 0 is identified to a point (corresponding to the negative vertex in question),
while |∆l| × 1 is identified to the geometric realization of frontl(∆k). By induction,
there are no identifications over faces of ∆k which are not of this kind. It results that
|N(Γ∆k)| is the union of the cones on |∆0|, |∆1|, . . . , |∆k|, each glued along its base
to the appropriate subsimplex in |∆k|. This complex is indeed contractible.
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Appendix (on generators and relations ).

If the groups Gn = π1(ΓnX,xn) are expressed as edge path groups, one obtains a
sort of description of the simplicial group G in terms of the structure of X. This de-
scription occurs as a definition of the loop group in [1, section 12]. Another definition
of the loop group is given in [1, sections 7 and 9] in terms of generators and relations.
The equivalence of the two definitions can be explained by combinatorial group the-
ory. Namely, in a connected graph one can choose a maximal tree. The fundamental
group of the graph can then be identified to the free group freely generated by the
edges of the graph not in that maximal tree; equivalently, the fundamental group can
be identified to the group generated by all the edges of the graph, where, however,
the edges of the chosen maximal tree are also introduced as relations.

To make this description effective, one needs to know what a maximal tree in
the ordered graph ΓnX will look like. The answer is as follows. If the simplicial
set X is reduced (that is, if X0 , the set of 0-simplices, has only one element) then
there is a maximal tree in ΓnX which is such that it contains exactly those edges
where the corresponding simplex of X is a last degenerate. In the general case of a
connected, but not necessarily reduced X, one has to choose a maximal tree in X
first (a sub-simplicial-set which contains all of X0 and whose geometric realization is
a simply-connected CW -complex of dimension ≤1); the pieces in ΓnX coming from
this sub-simplicial-set are then, additionally, in the maximal tree in ΓnX.

We will justify this description of the maximal tree now (for much of the following,
cf. [1, Lemma 9.1] and [1, section 14] in particular). We begin by explaining why,
for connected X and for every n, the graph ΓnX is connected. First, every positive
vertex of ΓnX can be connected to some negative vertex. Indeed, if the positive vertex
corresponds to x ∈ Xn then the last degenerate of x gives an edge in ΓnX which will
connect this positive vertex to a negative vertex (namely the one associated with
the ‘last vertex’ of that last degenerate or, what amounts to the same thing, the
‘last vertex’ of x itself). Next, all the negative vertices of ΓnX come from Γ0X, by
degeneracy, hence it will suffice to show that they can be connected to each other
inside Γ0X. It will, in fact, suffice to show this in the special case of two negative
vertices where the associated 0-simplices of X are adjacent (in making this reduction
we are using the assumed fact that X is connected). We are thus in the special case
now where the two 0-simplices of X are the faces of some y ∈ X1. We see that in
this case the two negative vertices can be connected to each other by an edge path of
length 2 in Γ0X; the two edges in the path are provided by the simplex y on the one
hand and by the 1-dimensional degenerate of the last face of y on the other.

Next, suppose that the simplicial set X is a tree. We want to show that, in this
case, the ordered graph ΓnX is a tree, too, for every n. Now the nerve N(ΓnX) is
1-dimensional, and connected; so it will be a tree if (and only if) it is acyclic. To
prove the latter, since the functor X 7→ N(ΓnX) commutes with colimits, we can
further reduce, by direct limit and (inductively) the gluing lemma, to dealing with
just the two cases where X = ∆0 or X = ∆1. We will write Pn, En, Nn, respectively,
for the sets of positive vertices, edges, and negative vertices of ΓnX. In the case
X = ∆0, each of these sets has exactly one element, so N(Γn∆

0) is isomorphic to ∆1.
In the case X = ∆1, the set Pn has n+2 elements which we denote p0, p1, . . . , pn+1
(where pn+1 stands for the map [n] → [1] with image consisting of only 0 ∈ [1] and
where, otherwise, pi stands for the monotone map [n]→ [1] having the property that
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i ∈ [n] is the smallest element whose image is 1 ∈ [1] ); the set En has n+3 elements,
e0, e1, . . . , en+2, and the set Nn has two elements, n0 and n1. The map En → Pn
takes ei to pi for all i ≤ n+1, and, in addition, it takes en+2 to pn+1. The map
En → Nn takes the element en+2 into n0 and it takes all other elements of En into
n1. We see that N(Γn∆

1) is a one-point-union of n+1 copies of ∆1, together with
one extra copy of ∆1 hanging on to one of the whiskers. It is a tree indeed.
Let X be a connected simplicial set now. Choose a maximal tree T in X. Let P ′,

E′, N ′ denote, respectively, the sets of positive vertices, edges, and negative vertices
of ΓnT . Let P

′′ denote the subset of Xn which is complementary to the subset Tn.
Let E′′ be defined as the subset of Xn+1 given by the image of P

′′ under the ‘last
degeneracy’ map. One of the structure maps of ΓnX restricts to a map E

′′ → N ′ (all
the negative vertices of ΓnX are contained in N

′ since T contains all the 0-simplices
of X), and the other structure map restricts to a map E′′ → P ′′. The latter map is
given by the ‘last face’ map, and is actually inverse to the above map P ′′ → E′′; in
particular it is an isomorphism. In view of this fact, and using the fact established
above, that the ordered graph

N ′ , E′ , P ′ , N ′ ← E′ → P ′

is indeed a tree, we can now conclude that the sets, and maps,

N ′ , E′ ∪E′′ , P ′ ∪ P ′′ , N ′ ← E′ ∪E′′ → P ′ ∪ P ′′

do form a tree, too. The isomorphisms N ′ ≈ X0 and P
′ ∪ P ′′ ≈ Xn show that this

tree contains all the vertices of ΓnX. It is therefore a maximal tree.

Appendix (another view at the lemma).

The geometric realization |ΓX| may be identified to the double mapping cylinder
of the following diagram (the terms involved have been defined in connection with
the definition of ΓX),

|P.| ←− |E.| −→ |N.| .
As a consequence, the assertion of the lemma, that the inclusion

|X| ≈ |P.| −→ |ΓX|

is a homotopy equivalence, will therefore result once one knows that the map

E. −→ N.

is a (weak) homotopy equivalence. But this is a well known fact: E. is obtained from
the simplicial set X by shifting , it is a sort of path space on X, and it is homotopy
equivalent to the subspace of constant paths; that is, the set X0 regarded as a simpli-
cial set in a trivial way. The latter statement is in fact true with the strongest possible
interpretation of homotopy equivalence, namely simplicial homotopy equivalence. An
account can be found in [4, proposition 1.5]; another in [5, lemma 1.5.1].
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universally excellent if and only if ϕ is a Pfister neighbor of dimension ≤ 4.
Keywords and Phrases: Quadratic forms, Pfister forms, excellent field exten-
sions.

1991 Mathematics Subject Classification: Primary 11E04; Secondary 11E81,
12F20.

Let F be a field of characteristic different from 2 and ϕ be a non-degenerate quadratic
form on an F -vector space V , by which V gets the structure of a non-degenerate
quadratic space. Choosing an orthogonal basis of V we can write ϕ in the form
a1x

2
1 + · · ·+ adx2d. In this case we use the notation ϕ = 〈a1, . . . , ad〉.
A quadratic form or space ϕ is called isotropic if ϕ(v) = 0 for some nonzero vector

v ∈ V . We say that ϕ is anisotropic otherwise. Up to isometry, there is exactly
one non-degenerated isotropic 2-dimensional quadratic space, namely the hyperbolic
plane H equipped with the form 〈1,−1〉. A non-degenerate quadratic space is called
hyperbolic if it is isometric to the orthogonal sum of hyperbolic planes mH = H ⊥
· · · ⊥ H.
According to Witt’s main theorem any non-degenerate quadratic space V can be

decomposed in the orthogonal sum V = Van ⊥ Vh, where Van is anisotropic and
Vh ∼= mH is a hyperbolic space. (We will use ∼= to denote isometry of quadratic forms
or spaces.) Moreover the quadratic space Van is uniquely determined up to isometry.
The restriction ϕ|Van is called the anisotropic part (or anisotropic kernel) of ϕ and is
denoted by ϕan. The number m =

1
2 dimVh is called the Witt index of ϕ.

For any quadratic space V and any field extension L/F one can provide VL =
V ⊗F L with a structure of a quadratic space. The corresponding quadratic form we
shall denote by ϕL. We say that a quadratic form ϕ over L is defined over F if there
is a quadratic form ξ over F such that ϕ ∼= ξL.
1This work was partially supported by grant GAP300 of The International Science Foundation.
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It is an important problem to study the behavior of the anisotropic part of forms
over F under a field extension L/F . It occurs sometimes that any anisotropic form
over F is still anisotropic over L (for example if L/F is of odd degree). In this case
for any quadratic form ϕ over F the anisotropic part (ϕL)an of ϕ over L coincides
with (ϕan)L and hence is defined over F .

However, very often ϕ becomes isotropic over L. In this case we do not know if
the anisotropic part of ϕ over L is defined over F .

A field extension L/F is called excellent if for any quadratic form ϕ over F the
anisotropic part (ϕL)an of ϕ over L is defined over F (i.e., there is a form ξ over F
such that (ϕL)an ∼= ξL).
It is well known that any quadratic extension is excellent. Since any anisotropic

quadratic form ψ over F is still anisotropic over the field of rational functions F (t),
every purely transcendental field extension is excellent.

Among all field extensions the fields F (ϕ) of rational functions on the quadric
hyper-surface defined by the equation ϕ = 0 are of special interest in the theory of
quadratic forms. One of the important problems is to find a condition on ϕ so that
the field extension F (ϕ)/F is excellent.

We say that F (ϕ)/F is universally excellent if for any extension K/F the extension
K(ϕ)/K is excellent.

If ϕ is isotropic then F (ϕ)/F is purely transcendental, and it follows from Springer’s
theorem that F (ϕ)/F is excellent and moreover is universally excellent. Thus it is
sufficient to consider only the case of anisotropic forms ϕ.

In [Kn] Knebusch has proved that if ϕ is an anisotropic form such that F (ϕ)/F
is excellent then ϕ is a Pfister neighbor. This means that there is a quadratic form
π = 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉 (called n-fold Pfister form) such that ϕ is similar to a
subform of π and dim(ϕ) > 1

2 dim(π). This result gives rise to the natural question
whether the field extension F (ϕ)/F is excellent for any Pfister neighbor ϕ. This
problem can be easily reduced to the case of an n-fold Pfister forms ϕ.

If n = 1 then F (ϕ)/F is obviously excellent since F (ϕ)/F is a quadratic extension.
Arason [ELW1, Appendix II] has proved that, for n = 2, F (ϕ)/F is always excellent
(see also [R], [LVG]). Thus the answer to our question is yes for n-fold Pfister forms
with n ≤ 2. It was an open problem whether F (ϕ)/F is excellent for any field F and
any n-fold Pfister form ϕ over F (with n ≥ 3).
In [ELW2] some special cases of this problem were considered: for an n-fold Pfister

form ϕ with n ≥ 3, the excellence of the field extension F (ϕ)/F was proved for all
fields with ũ(F ) ≤ 4. In [H2] Hoffmann considered another special case of the problem.
An extension L/F is called d-excellent if for any quadratic form ψ of dimension ≤ d
the anisotropic part (ψL)an of ψ over L is defined over F . Hoffmann has proved that
the extension F (ϕ)/F is 6-excellent for any Pfister neighbor ϕ.

In this paper we prove that for any n ≥ 3 there is a field F and an n-fold Pfister
form ϕ such that the field extension F (ϕ)/F is not excellent. Moreover Theorem 1.1
of our paper says that F (ϕ)/F is universally excellent if and only if ϕ is a Pfister
neighbor of an n-fold Pfister form with n ≤ 2, (i.e., either dimϕ ≤ 3 or ϕ is a 4-
dimensional form with det(ϕ) = 1). In §3 we use the main construction of the paper
to study “splitting pairs” ϕ, ψ of quadratic forms. More precisely, we construct a
“non standard pair” ϕ, ψ such that ϕ is isotropic over the function field F (ψ) of the
quadric ψ.
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Remark. Some results of this paper were developed further by D. Hoffmann in
[H4].

1. Main Theorem

We will use the following notation throughout the paper: by ϕ ⊥ ψ, ϕ ∼= ψ, and [ϕ]
we denote respectively orthogonal sum of forms, isometry of forms, and the class of
ϕ in the Witt ring W (F ) of the field F . The maximal ideal of W (F ) generated by
the classes of even dimensional forms is denoted by I(F ). We write ϕ ∼ ψ if ϕ is
similar to ψ, i.e., kϕ = ψ for some k ∈ F ∗. The anisotropic part of ϕ is denoted by
ϕan and iW (ϕ) denotes the Witt index of ϕ. We denote by 〈〈a1, . . . , an〉〉 the n-fold
Pfister form

〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉

and by Pn(F ) the set of all n-fold Pfister forms. The set of all forms similar to n-fold
Pfister forms we denote by GPn(F ). For any field extension L/F we put ϕL = ϕ⊗L,
W (L/F ) = ker(W (F )→W (L)).

Main Theorem 1.1. Let ϕ be an anisotropic form over F . Then the following
conditions are equivalent.

(i) The field extension F (ϕ)/F is universally excellent, i.e., for any field exten-
sion E/F the extension E(ϕ)/E is excellent.

(ii) Either dim(ϕ) ≤ 3 or ϕ ∈ GP2(F ).

Proof of (ii) ⇒ (i). The case dim(ϕ) = 2 is obvious. If dim(ϕ) = 3 or ϕ ∈ GP2(F )
the excellence of the extension E(ϕ)/E was proved by Arason (see the introduction).

Proof of (i) ⇒ (ii). Since E(ϕ)/E is excellent for any extension E/F , we see that
F (ϕ)/F is excellent. It was shown in [Kn, 7.13] that for F (ϕ)/F to be excellent it
is necessary that ϕ is a Pfister neighbor. Let ϕ be a Pfister neighbor of the n-fold
Pfister form π. Since F (ϕ) and F (π) are F -equivalent, we can replace ϕ by π, i.e.,
we can suppose that ϕ = π is an n-fold Pfister form. Thus it is sufficient to prove
the following proposition.

Proposition 1.2. Let π be anisotropic n-fold Pfister form over the field F . If n ≥ 3
then there is a field extension E/F such that E(π)/E is not excellent.

2. Proof of Proposition 1.2

Lemma 2.1. Let π and τ be anisotropic n-fold Pfister forms over the field F . Then
there is a field extension K/F such that the following conditions hold.

a) πK = τK ,
b) πK and τK are anisotropic.

Proof. Let ϕ be a Pfister neighbor of τ of dimension 2n−1 + 1. It follows from [H3,
Theorem 4] that there exists a field extension K/F such that πK is anisotropic and
ϕK ⊂ πK . Hence ϕK is a Pfister neighbor of πK . Since ϕK is a Pfister neighbor of
τK , we have πK = τK . �
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Lemma 2.2. Let τ and π be anisotropic n-fold Pfister forms over F . Suppose that
there is a ∈ F ∗ such that τF (√a) and πF (√a) are isotropic. Then there is an extension
E/F and x ∈ E∗ such that the following conditions hold.
1) πE(

√
x) = τE(

√
x),

2) πE(
√
x) and τE(

√
x) are anisotropic,

3) E/F is unirational.

Remark: We say that E/F is unirational, if there is a purely transcendental finitely
generated field extension K/F such that F ⊂ E ⊂ K.

Proof. Since τ is an n-fold Pfister form and τF (
√
a) is isotropic, we can write τ

in the form τ = 〈〈a, b1, . . . , bn−1〉〉. Similarly, we can write π in the form π =

〈〈a, c1, . . . , cn−1〉〉. Let F̃ = F (A,B1, . . . , Bn−1, C1, . . . , Cn−1) be the rational func-
tion field in 2n− 1 variables over F̃ .
Put τ̃ = 〈〈A,B1, . . . , Bn−1〉〉 and π̃ = 〈〈A,C1, . . . , Cn−1〉〉. Let γ = τ ⊥ −π and

γ̃ = τ̃ ⊥ −π̃. Let E/F̃ be the universal field extension such that γE = γ̃E , i.e.,

E = F̃h, where F̃ = F̃0, F̃1, . . . , F̃h is a generic splitting tower of the quadratic form
γ ⊥ −γ̃.
It is well known that the following universal property of E holds: For any field

extension K/F̃ the condition γK = γ̃K implies that EK/K is purely transcendental.

Now we prove that conditions 1)–3) of the lemma hold for x = A.

1) We have [τE(
√
A)]− [πE(√A)] = [γE(√A)] = [γ̃E(√A)] = [τ̃E(√A)]− [π̃E(√A)] = 0.

Hence [τE(
√
A)] = [πE(

√
A)].

2) Let K/F be as in Lemma 2.1, i.e., τK , πK are anisotropic and τK = πK . We
have [γK ] = [τK ]− [πK ] = 0
Let K̃ = K(A,B1, . . . , Bn−1, C1, . . . , Cn−1) be the rational function field in 2n− 1

variables over K. We have [γK̃(
√
A)] = [τK̃(

√
A)] − [πK̃(√A)] = 0 and [γ̃K̃(√A)] =

[τ̃K̃(
√
A)]−[π̃K̃(√A)] = 0. Therefore [γK̃(√A)] = [γ̃K̃(√A)]. Using the universal property

of E/F̃ we see that EK̃(
√
A)/K̃(

√
A) is purely transcendental.

It is clear that K̃(
√
A)/K is purely transcendental. Therefore EK̃(

√
A)/K is

purely transcendental. Hence τEK̃(
√
A) and πEK̃(

√
A) are anisotropic. Therefore

τE(
√
A) and πE(

√
A) are anisotropic.

3) Let L = F̃ (
√
A/a,

√
B1/b1, . . . ,

√
Bn−1/bn−1,

√
C1/c1, . . . ,

√
Cn−1/cn−1). It is

clear that πL = π̃L and τL = τ̃L. Therefore γL = γ̃L. Using the universal property

of E/F̃ we see that EL/L is purely transcendental. It is clear that L/F is purely
transcendental. Hence EL/F is purely transcendental. Since E ⊂ EL we see that
E/F is unirational. �

Lemma 2.3. Let F be a field and π be anisotropic n-fold Pfister form over F . Then
there are a unirational extension E/F , an n-fold Pfister form τ over E, and x ∈ E∗
such that the following conditions hold.

1) πE(
√
x) = τE(

√
x),

2) πE(
√
x) and τE(

√
x) are anisotropic,

3) dim(πE ⊥ −τE)an = 2n+1 − 4.
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Proof. Write π in the form π = 〈〈a, b1, b2, . . . , bn−1〉〉. Let F̃ = F (T1, . . . , Tn−1) be the
rational function field in n−1 variables over F . Let τ = 〈〈a, T1, . . . , Tn−1〉〉. Obviously

(πF̃ ⊥ −τ)an = 〈〈a〉〉〈〈b1, . . . , bn−1〉〉′F̃ ⊥ −〈〈a〉〉〈〈T1, . . . , Tn−1〉〉
′.

Therefore dim(πF̃ ⊥ −τ)an = 2n+1 − 4.
The quadratic forms πF̃ (

√
a) and τF̃ (

√
a) are hyperbolic, i.e., all the conditions of

Lemma 2.2 hold for F̃ , π, τ . Hence there is a unirational extension E/F̃ such that

1) πE(
√
x) = τE(

√
x),

2) πE(
√
x) and τE(

√
x) are anisotropic,

Since E/F̃ is unirational, we have dim(πE ⊥ −τE)an = dim(πF̃ ⊥ −τ)an = 2n+1− 4.
Finally E/F is unirational since E/F̃ is unirational and F̃ /F is purely transcenden-
tal. �

Lemma 2.4. Let E be a field, n ≥ 3, x ∈ E∗. Let π, τ ∈ Pn(E) be such that
1) πE(

√
x) = τE(

√
x).

2) πE(
√
x) and τE(

√
x) are anisotropic.

3) dim(π ⊥ −τ)an = 2n+1 − 4.
Let ψ = τ ′ ⊥ 〈x〉 where τ ′ is such that τ = τ ′ ⊥ 〈1〉.
Then

a) ψ is anisotropic.
b) ψE(π) is isotropic.
c) There is no quadratic form γ over E such that (ψE(π))an = γE(π).
d) For any subform ξ ( ψ the form ξF (π) is anisotropic, i.e., ψ is a minimal

F (π)-form.

Proof. a) Obviously ψE(
√
x) = τE(

√
x). By assumption we see that τE(

√
x) is anisotro-

pic. Hence ψE(
√
x) is anisotropic. Therefore ψ is anisotropic too.

b) Suppose that ψE(π) is anisotropic. Since ψE(
√
x) = τE(

√
x) = πE(

√
x) we have

[ψE(π)(
√
x)] = [πE(π)(

√
x)] = 0. Since ψE(π) is anisotropic and ψE(π)(

√
x) is hyperbolic,

we conclude that ψE(π) = 〈〈x〉〉ξ where ξ is a quadratic form overE(π). Since dim(ξ) =
2n−1 is even, we have ξ ∈ I(E(π)). Therefore ψE(π) = 〈〈x〉〉ξ ∈ I2(E(π)). Hence

ψ ∈ I2(E). Therefore [〈〈x〉〉] = [τ ] − [ψ] ∈ I2(E), a contradiction.
c) Suppose that (ψE(π))an = γE(π) where γ is a quadratic form over E. It is clear

that dim(γ) ≤ 2n− 2. We have (ψ ⊥ −γ)an ∈W (E(π)/E). Since π is a Pfister form
we conclude that (ψ ⊥ −γ)an = πµ, with µ a quadratic form over E.
Since 2 = 2n − (2n − 2) ≤ dim(ψ ⊥ −γ)an = 2n + (2n − 2) = 2n+1 − 2 and

dim(π) = 2n divides dim(πµ) we conclude that dim(µ) = 1. Writing µ in the form
µ = 〈k〉 we have (ψ ⊥ −γ)an = kπ. Hence [kπ] = [ψ]− [γ]. Therefore

[τ ⊥ −kπ] = [τ ]− [kπ] = ([ψ] + [〈〈x〉〉]) − ([ψ]− [γ]) = [〈〈x〉〉 ⊥ γ].

Hence τ and kπ contain a common subform of dimension

1

2
(dim(τ) + dim(kπ)− dim(〈〈x〉〉 ⊥ γ)) ≥ 1

2
(2n + 2n − 2n) = 2n−1 ≥ 23−1 = 4 > 3.
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Therefore there is a 3-dimensional form ρ such that ρ ⊂ τ , ρ ⊂ kπ. Let a, b ∈ E be
such that ρ ∼ 〈1,−a,−b〉. Let ε = 〈〈a, b〉〉. Obviously τE(ε) and πE(ε) are isotropic.
Since τ , π, and ε are anisotropic Pfister forms, we conclude that ε ⊂ τ and ε ⊂ π.
Therefore dim(π ⊥ −τ)an ≤ dim(π) +dim(τ)− 2 dim(ε) = 2n+2n− 2 · 4 = 2n+1− 8,
a contradiction.

d) We can suppose that ξ is a (2n − 1)-dimensional subform of ψ. let k ∈ E∗ be
such that ξ ⊥ 〈−k〉 = ψ. Set ξ̃ = ξ ⊥ 〈−xk〉. We have

[τ ]− [ξ̃] = [τ ]− ([ξ]− [〈xk〉]) = ([ψ] + [〈〈x〉〉]) − ([ψ] + [〈k〉]− [〈xk〉]) = [〈〈x, k〉〉].

Let ρ = 〈〈x, k〉〉. We have [τE(ρ)] = [ξ̃E(ρ)]. Comparing dimensions we see that
τE(ρ) = ξ̃E(ρ). Therefore τE(ρ,π) = ξ̃E(ρ,π).

Our goal is to prove that ξE(π) is anisotropic. Let us suppose that ξE(π) is isotropic.

Then ξ̃E(ρ,π) is isotropic too. Therefore τE(ρ,π) is isotropic. Hence the Pfister form
τE(ρ) becomes isotropic over the function field of the Pfister form πE(ρ). Therefore
either τE(ρ) or τE(ρ) = πE(ρ) is hyperbolic.

Suppose first that τE(ρ) is hyperbolic. Since ρE(√x) = 〈〈x, k〉〉E(√x) is isotropic we
conclude that τE(

√
x) is isotropic. This contradicts the assumption in this lemma.

Let now τE(ρ) = πE(ρ). Then (τ ⊥ −π)an ∈ W (E(ρ)/E). Hence (τ ⊥ −π)an = ρλ
with λ a quadratic form over E ([S, Ch.4,5.6]). Since dim(τ ⊥ −π)an = 2n − 4 and
dim(ρ) = 4 we conclude that dim(λ) = (2n − 4)/4 = 2n−2 − 1. Since n ≥ 3 we
see that dim(λ) is odd and hence [λ] ≡ [〈1〉] (mod I(E)). Since ρ ∈ I2(E) we have
[ρλ] ≡ [ρ] (mod I3(E)). Since τ, π ∈ Pn(E) and n ≥ 3, we see that [(τ ⊥ −π)an] ≡ 0
(mod I3(E)). We have

[ρ] ≡ [ρλ] = [(τ ⊥ −π)an] ≡ 0 (mod I3(E)).

Since dim(ρ) = 4 < 8 we conclude that ρ is hyperbolic. Therefore (τ ⊥ −π)an = ρλ
is hyperbolic. However dim(τ ⊥ −π)an = 2n − 4 > 0, a contradiction. �

Corollary 2.5. Let π be an anisotropic n-fold Pfister form over the field F . If
n ≥ 3 then there is a unirational extension E/F such that E(π)/E is not excellent. �

This corollary completes the proof of Proposition 1.2 and Theorem 1.1.

Corollary 2.6. Let n ≥ 3. Then there are a field E, an n-fold Pfister form π over
E, and a 2n-dimensional form ψ over E such that ψ is an E(π)-minimal form. �

Corollary 2.7. Let n ≥ 3. Then there are a field E and 2n-dimensional forms ψ
and π over E such that ψ is an E(π)-minimal form and ψ is not similar to π. �

3. Nonstandard Splitting

An important problem in the theory of quadratic forms is to determine when an
anisotropic quadratic form ϕ over F becomes isotropic over the function field F (ψ)
of another form ψ. There are some well-known situations when this occurs and we
list some of them in the following two definitions.
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Definition 3.1. Let ϕ and ψ be anisotropic quadratic forms. We say that the or-
dered pair ϕ, ψ is elementary splitting (or elementary) if one of the following conditions
holds.

1) There is a k ∈ F ∗ such that kψ ⊂ ϕ;
2) There is a k ∈ F ∗, such that kϕ ⊂ ψ and dim(ϕ) > dim(ψ)− i1(ψ);
3) There is a ρ ∈W (F (ψ)/F ) such that dim(ρ) < 2 dim(ϕ) and kϕ ⊂ ρ for some

k ∈ F ∗.

Definition 3.2. Let ϕ and ψ be anisotropic quadratic forms. We say that the
ordered pair ϕ, ψ is standard if there is a collection

ϕ0 = ϕ,ϕ1, . . . , ϕn−1, ϕn = ψ

such that the pair ϕi−1, ϕi is elementary for each i = 1, 2, . . . , n.

It is clear that if the pair (ϕ, ψ) is elementary splitting or standard, then ϕF (ψ) is
isotropic.

Examples 3.3. Let ϕ and ψ be anisotropic quadratic forms such that ϕF (ψ) is
isotropic. Suppose that at least one of the following conditions holds

a) ϕ is a Pfister neighbor;
b) dim(ψ) ≤ 3, or ψ ∈ GP2(F );
c) dim(ϕ) ≤ 5;

Then the pair ϕ, ψ is elementary.

Proof. a) Let ϕ be a Pfister neighbor of ρ. Then condition 3) of Definition 3.1 is
fulfilled.
b) By the excellence property of the field extension F (ψ)/F there exists an aniso-

tropic form ξ over F such that (ϕF (ψ))an = ξF (ψ). Setting ρ = ϕ ⊥ −ξ one can see
that condition 3) of Definition 3.1 holds.
c) Let dim(ϕ) ≤ 5. We can suppose that ϕ is not a Pfister neighbor and ψ /∈

GP2(F ) (see a), b) ). Then ϕF (ψ) is isotropic if and only if ϕ contains a subform
similar to ψ (see [H1, Th. 1, Main Theorem]). Therefore condition 1) of Definition 3.1
holds. �

Example 3.4. Let F = R(T ), ϕ = 〈T, T, T, 1, 1, 1, 1, 1〉, ψ = 〈T, T, 1, 1, 1, 1, 1, 1〉.
Then the pair ϕ, ψ is standard but not elementary.

Proof. Let ρ = 〈T, T, 1, 1, 1, 1, 1〉. Since ρ ⊂ ϕ, the pair (ϕ, ρ) is elementary. Since
ρ ⊂ ψ and dim(ρ) = 7 > 8 − 2 = dim(ψ) − i1(ψ), we see that the pair (ρ, ψ) is
elementary. Since the pairs (ϕ, ρ) and (ρ, ψ) are elementary, we see that the pair
(ϕ, ψ) is standard. It follows from Lemma 3.7 below that the pair (ϕ, ψ) is not
elementary. �

In this section we construct a pair of anisotropic forms ϕ and ψ with ϕF (ψ) isotropic
which is not standard.

Lemma 3.5. Let F be a field, n ≥ 3, x ∈ F ∗. Let π, τ ∈ Pn(F ) be such that
1) π 6= τ ,
2) πF (

√
x) = τF (

√
x),

3) πF (
√
x) and τF (

√
x) are anisotropic.

Documenta Mathematica 1 (1996) 127–136



134 O. T. Izhboldin

Let ϕ = π′ ⊥ 〈x〉 and ψ = τ ′ ⊥ 〈x〉. Then
a) ψ and ϕ are anisotropic,
b) ϕF (ψ) and ψF (ϕ) are isotropic,
c) ϕ 6∼ ψ.

Proof. a) Obviously ψF (
√
x) = πF (

√
x) and ψF (

√
x) = τF (

√
x). It follows from condition

3) that ϕ and ψ are anisotropic.
b) Let us suppose that ϕF (ψ) is anisotropic. Since ϕF (√x) = πF (√x) and ψF (√x) =

τF (
√
x) = πF (

√
x) we see that ϕF (ψ,

√
x) = πF (π,

√
x). Since π ∈ Pn(F ) we conclude that

ϕF (ψ,
√
x) is hyperbolic. Therefore ϕF (ψ) = 〈〈x〉〉ξ where ξ is a quadratic form over

F (ψ). Since dim(ξ) = 2n−1 is even, we have ξ ∈ I(F (ψ)). Therefore ψF (ψ) = 〈〈x〉〉ξ ∈
I2(F (ψ)). Hence ψ ∈ I2(F ). Therefore [〈〈x〉〉] = [τ ]− [ψ] ∈ I2(F ), a contradiction.
c) Suppose that kϕ = ψ. Then [kπ]− [k〈〈x〉〉] = [kϕ] = [ψ] = [τ ]− [〈〈x〉〉]. Therefore

[〈〈x, k〉〉] = [τ ]−[kπ] ∈ In(F ) ⊂ I3(F ). Since dim(〈〈x, k〉〉) = 4 < 8, we have [τ ]−[kπ] =
[〈〈x, y〉〉] = 0. Hence τ ∼ π. Since τ, π ∈ Pn(F ) we see that τ = π, a contradiction. �
Lemma 3.6. Let π ∈ P3(F ) and x ∈ F ∗ (x /∈ F ∗2) be such that πF (√x) is anisotropic.
Let ϕ = π′ ⊥ 〈x〉. Suppose that ψ is an anisotropic quadratic form such that ψF (ϕ)
and ϕF (ψ) are isotropic. Then dim(ψ) = 8.

By C(ϕ) (resp. C0(ϕ)) we will denote the Clifford algebra (resp. even Clifford
algebra) of the quadratic form ϕ. If they are central simple we denote their classes in
the Brauer group of the underlying field by [C(ϕ)] (resp. [C0(ϕ)]).

Proof. Since dim(ϕ) = 8 and ϕF (ψ) is isotropic, it follows from Hoffmann’s theorem
[H3, §1, Theorem 1] that dim(ψ) ≤ 8.
Suppose that dim(ψ) ≤ 6. Since dim(ϕ) = 8 and ψF (ϕ) is isotropic, it follows

from Hoffmann’s theorems [H1], [H2] that ϕ ∈ GP3(F ). Therefore x = det(ϕ) = 1, a
contradiction.
Consider now the case dim(ψ) = 7. Since πF (ψ,

√
x) = ϕF (ψ,

√
x) is isotropic we see

that ψF (√x) is a Pfister neighbor of πF (√x). Therefore [C0(ψ)F (√x)] = 0. Hence

there is y ∈ F ∗ such that [C0(ψ)] = [
(
x,y
F

)
]. Let ρ = 〈〈x, y〉〉.

We claim that ψF (ρ) is an anisotropic Pfister neighbor. To prove this we consider

the quadratic form ψ̃ = ψ ⊥ 〈det(ψ)〉. Since dim(ψ̃) = 8 and [C(ψ̃F (ρ))] = [
(
x,y
F (ρ)

)
] = 0

we have ψ̃F (ρ) ∈ GP3(F (ρ)). If ψF (ρ) is isotropic then ψ̃F (ρ) is isotropic too and hence
hyperbolic. Therefore, (ψ̃)an = ρµ. Since dim(ψ̃) = 6 or 8 we must have dimµ = 2

which implies ψ̃an = ψ̃ ∈ GP3(F ). Therefore [C(ρ)] = [C0(ψ)] = [C(ψ̃)] = 0. Hence,
ρ is hyperbolic and ψ stays anisotropic over F (ρ), a contradiction.
Since ψF (ϕ) is isotropic, ψF (ρ) becomes isotropic over the functional field of the

form ϕF (ρ). Since ψF (ρ) is an anisotropic Pfister neighbor and dim(ϕF (ρ)) = 8 we

see that ϕF (ρ) ∈ GP3(F (ρ)) ⊂ I2(F (ρ)). Since W (F )/I2(F )→W (F (ρ))/I2(F (ρ)) is

injective we have ϕ ∈ I2(F ). Hence x = det(ϕ) = 1, a contradiction. �
Lemma 3.7. Let ϕ and ψ be anisotropic 8-dimensional quadratic form such that
ψ /∈ GP3(F ) and the pair ϕ, ψ is elementary. Then ϕ ∼ ψ.
Proof. Since the pair ϕ, ψ is elementary, one of conditions 1)–3) of Definition 3.1
holds. Since dim(ϕ) = dim(ψ), both the conditions 1), 2) imply that ϕ ∼ ψ. Now
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we suppose that condition 3) holds, i.e., there is ρ ∈W (F (ψ)/F ) such that dim(ρ) <
2 dim(ϕ) = 16 and kϕ ⊂ ρ. Since dim(ψ) > 4, the homomorphism W (F )/I3(F ) →
W (F (ψ))/I3(F (ψ)) is injective. Hence ρ ∈ I3(F ). Let σ ∈ P2(F ) be such that
ψ contains a Pfister neighbor of σ. Then ρ ∈ W (F (ψ)/F ) ⊂ W (F (σ)/F ) and
thus ρan ∼= σµ for some µ. If dimµ is odd then σ ≡ σµ = ρ ≡ 0 (mod I3(F )), a
contradiction. Thus dimµ is even and 8|dim(ρan). Therefore dim(ρan) = 8. Hence
ρan ∈ GP3(F ). Since ρF (ψ) is hyperbolic, ψ is a Pfister neighbor in ρan. Since
dim(ψ) = dim(ρan) = 8 we have ψ ∼ ρan ∈ GP3(F ), a contradiction. �
Lemma 3.8. Let n = 3, and let ϕ, ψ be as in Lemma 3.5. Then the pair ϕ, ψ is not
standard.

Proof. Assume that the pair ϕ, ψ is standard. Then there is a collection

ϕ0 = ϕ,ϕ1, . . . , ϕn−1, ϕn = ψ

such that the pair ϕi−1, ϕi is elementary for each i = 1, 2, . . . , n. Obviously, the
quadratic forms ϕF (ϕi) and (ϕi)F (ψ) are isotropic. Since ψF (ϕ) is isotropic (see
Lemma 3.5) and (ϕi)F (ψ) is isotropic, we see that (ϕi)F (ϕ) is isotropic too. Thus
ϕF (ϕi) and (ϕi)F (ϕ) are isotropic. It follows from Lemma 3.6 that dim(ϕi) = 8.
Consider first the case ψi ∈ GP3(F ). Since (ϕi)F (ϕ) and is isotropic, ϕ is a Pfister

neighbor of ψi. Since dim(ϕ) = dim(ψi) = 8 we have ϕ ∼ ψi. Hence ϕ ∈ GP3(F ), a
contradiction.
Thus we have proved that dim(ϕi) = 8 and ψi /∈ GP3(F ) for each i = 1, 2, . . . , n.

It follows from Lemma 3.7 that ϕi−1 ∼ ϕi. We have

ϕ = ϕ0 ∼ ϕ1 ∼ · · · ∼ ϕn = ψ.

On the other hand, it follows from Lemma 3.5 that ϕ 6∼ ψ. The contradiction obtained
proves the lemma. �

Theorem 3.9. For any field F there is a unirational field extension E/F and a
pair of 8-dimensional anisotropic quadratic forms ϕ and ψ over E such that ϕE(ψ) is
isotropic, but the pair ϕ, ψ is not standard.

Proof. Let n = 3. Let E, π and τ be such as in Lemma 2.3. Set ϕ = π′ ⊥ 〈x〉,
ψ = τ ′ ⊥ 〈x〉. It is clear that all the conditions of Lemma 3.5 hold. Now the desired
result follows immediately from Lemma 3.5 and Lemma 3.8. �
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Abstract. Oriented matroids are a combinatorial model for configurations
in real vector spaces. A central role in the theory is played by the realizability
problem: Given an oriented matroid, find an associated vector configuration.
In this paper we present two closely related oriented matroids Ω+14 and Ω

−
14

of rank 3 with 14 elements that have interesting properties with respect to
realizability. Ω+14 and Ω

−
14 differ in exactly one basis orientation.

The realizable oriented matroid Ω+14 has at least two interesting proper-
ties: First it has a combinatorial symmetry that has no metric realization,
and second it has a disconnected realization space. In other words, there
are different realizations of Ω+14 that cannot be continuously deformed into
each other while staying in the same isotopy class. The oriented matroid
Ω−14 is non-realizable but it has no bi-quadratic final polynomial. In other
words, the only known effective algorithmic method fails to prove the non-
realizability of Ω−14.

1991 Mathematics Subject Classification: Primary 52B40; Secondary 14P10,
51A25, 52B30.

1 Introduction

Oriented matroids are combinatorial models for vector configurations in vector spaces
over ordered fields. They form a basic combinatorial concept for treating many differ-
ent objects on the borderline of combinatorics and geometry — such as convex poly-
topes, simplicial complexes, hyperplane-arrangements, quasi-crystals, etc. The real-
izability question is of fundamental importance in this theory: When does a discrete
structure have a geometric representation? What does the space of all representations
look like? Questions of this type occur in many different mathematical contexts (e.g.
embedding of polyhedral manifolds, the theory of moduli spaces, Cairns’ smoothing
theory, etc.). The basic effects that arise here are often due to the properties of the

1Supported by a DFG Gerhardt-Hess-Forschungsförderungspreis awarded to G.M. Ziegler
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underlying oriented matroids, and they can be profitably studied in this model. A
systematic study of “small” oriented matroids that have interesting behavior with re-
spect to realizability is a fruitful source for producing examples and counterexamples
in many different mathematical disciplines. Here we present two new such oriented
matroids.
Every vector configuration has an associated oriented matroid, but the converse is

not true: there are oriented matroids that have no corresponding vector configuration.
An oriented matroids is realizable if it corresponds to a vector configuration, and non-
realizable otherwise. In this paper we present two closely related oriented matroids
Ω+14 and Ω

−
14 of rank 3 with 14 elements that are interesting because of their properties

with respect to realizability.
The oriented matroid Ω+14 is realizable, but its realization space is not connected.

The realization space of an oriented matroid χ is the set of all vector configurations
X that have the associated oriented matroid χ, modulo linear equivalence. (For a
more formal definition of realization spaces see Section 2). For a long time it was an
outstanding open question whether oriented matroids with disconnected realization
space exist. This problem was solved by N.E. Mnëv in a surprising way [6, 7]. He
proved that for any basic semi-algebraic set V (defined over the rationals) there is an
oriented matroid whose realization space is stably equivalent (in the sense of [9]) to V .
Thus realization spaces can be homotopy equivalent to any finite simplicial complex
(in particular they may have an arbitrary number of connected components). The
examples produced by Mnëv’s method in general involve a large number of points. At
the same time P.Y. Suvorov [12] constructed an example of rank 3 with disconnected
realization space that contains only 14 elements.
The oriented matroid Ω+14 shares these properties with Suvorov’s example, but it

has the following additional nice properties:

• Ω+14 is constructible. (After fixing the position of the points x1, . . . , x4 that form
a projective basis and choosing a point x5 = (t + 1)x3 + (t − 1)x4 each point
xi for i = 6, . . . , 14 is of the form (xa ∨ xb) ∧ (xc ∨ xd) where “∨” is the join
operator and “∧” is the meet operator and a, b, c, d are indices that are smaller
than i.)

• up to stable equivalence (see [9]) the realization space of Ω+14 is an open interval
from which one point has been deleted.

• Ω+14 has rational realizations.

• Ω+14 has a combinatorial symmetry of order two that has no metric realization.
(The smallest example with this property, known so far, with 90 points, was
constructed by P. Shor [11].)

It is still an open question whether there exists an oriented matroid with discon-
nected realization space and less than 14 points.

If we switch the orientation of one particular basis in Ω+14 we obtain the non-
realizable oriented matroid Ω−14. This oriented matroid has a remarkable property.
It is the first known example of a non-realizable oriented matroid for which non-
realizability cannot be proved by a bi-quadratic final polynomial.
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Final polynomials [3, 5] are certificates for the non-realizability of matroids and
oriented matroids. However, no algorithmic method for computing final polynomials
is known to be both generally applicable and effective. Indeed, this is not surprising
since the realizability problem is known to be NP-hard [11]. Bi-quadratic final poly-
nomials (as introduced in [2] and [8]) are special kinds of final polynomials which can
be computed very efficiently. The method of bi-quadratic final polynomials for the
oriented matroid case was originally inspired by J. Bokowski [5], who suggested that
one consider only inequalities of the form [. . .][. . .] < [. . .][. . .] which are consequences
of three-term Graßmann-Plücker polynomials and the signature of the oriented ma-
troid. These inequalities have to be satisfied in the realizable case. If this system of
these inequalities is inconsistent one has a bi-quadratic final polynomial. Deciding
whether an oriented matroid has a bi-quadratic final polynomial can be translated
into an LP-feasibility-problem and therefore solved in polynomial time. This is the
first example of a non-realizable oriented matroid which cannot be certified to be
non-realizable by a bi-quadratic final polynomial.

2 Realization spaces

Oriented matroids are combinatorial models for vector configurations in linear vector
spaces over ordered fields. For an extensive introduction into oriented matroid theory
we recommend [1] and [10]. Throughout the paper we will restrict ourselves to the
case of vector configurations in IR3, the case of oriented matroids of rank 3. Let
X = (x1, . . . , xn) ∈ IR3n be a configuration consisting of n vectors in IR3. We set
E = {1, . . . , n}. To every triple of indices (i, j, k) ∈ E3 we assign a sign

χ
X
(i, j, k) = sign det(xi, xj , xk).

The map χ
X
:E3 → {−1, 0,+1} is called the oriented matroid of X. We omit the

general definition of an oriented matroid (it can be found in [1] and [10]).
For us it is sufficient to know that an oriented matroid χ:E3 → {−1, 0,+1}

is a sign map that models the combinatorial behavior of signs of determinants. In
particular χ always satisfies the alternating determinant rules:

χ(i, j, k) = χ(k, i, j) = χ(j, k, i) = −χ(j, i, k) = −χ(k, j, i) = −χ(i, k, j).

Since χ is alternating it is sufficient to specify χ on the set

Λ(E, 3) = {(i, j, k) ∈ E3 | i < j < k}.

An oriented matroid χ is realizable if there is a vector configuration X with χ
X
= χ.

If there is no such vector configuration, then χ is called non-realizable. Deciding the
question whether an oriented matroid is realizable or not algorithmically is known to
be an NP-hard problem [11].
For a realizable oriented matroid one is often interested not only in a particular re-

alization, but also in the space of all realizations. There are various ways of describing
this space, depending on how much of the actions on IR3n that preserve the oriented
matroid of X are factored out. If at least a linear basis is fixed all these descriptions
turn out to be isomorphic up to stable equivalence (compare [9]). We here use the
version where a projective basis is fixed. Reorientation of a point i (i.e. reversing all
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signs χ(a, b, c) with i ∈ {a, b, c}) does not change the behavior of χ with respect to
realizability: if X = (x1, . . . , xn) is a realization of χ then we get a realization of the
reversed situation if we replace xi by −xi. Hence, we may (up to relabeling, reorienta-
tion of points 1, 2, 3 or 4 and the assumption that χ has at least four points in general
position) assume that we have χ(1, 2, 3) = χ(1, 2, 4) = χ(1, 3, 4) = χ(2, 3, 4) = 1.

Definition 2.1. Let χ:E3 → {−1, 0,+1} be a rank 3 oriented matroid that sat-
isfies χ(1, 2, 3) = χ(1, 2, 4) = χ(1, 3, 4) = χ(2, 3, 4) = 1. Let x1 = (1, 0, 0), x2 =
(0, 1, 0), x3 = (1, 0, 1), and x4 = (0, 1, 1). The realization space of χ is the set of all

(x5, . . . , xn) ∈ IR3(n−4) with χX = χ for X = (x1, . . . , xn).

3 Ω+14 has disconnected realization space

The configuration that we will study here is defined by the following construction
sequence. The oriented matroid Ω+14 is the underlying oriented matroid for choices of
the parameter t in (−3 +

√
8, 0) ∪ (0, 3−

√
8).

x1 = (1, 0, 0),
x2 = (0, 1, 0),
x3 = (1, 0, 1),
x4 = (0, 1, 1),
x5 = (1− t)x3 + (1 + t)x4,
x6 = x5x2 ∧ x1x4 = (1− t, 2, 2),
x7 = x5x1 ∧ x2x3 = (−2,−1− t,−2),
x8 = x6x3 ∧ x5x1 = (3− 2 t− t2, 2 + 2 t, 4),
x9 = x7x4 ∧ x5x2 = (2− 2 t, 3 + 2 t− t2, 4),
x10 = x3x4 ∧ x8x2 = (−3 + 2 t+ t2,−1− 2 t− t2,−4),
x11 = x3x4 ∧ x9x1 = (−1 + 2 t− t2,−3− 2 t+ t2,−4),
x12 = x7x10 ∧ x11x2 = (1− 2 t2 + t4,−1 + 4 t+ 10 t2 + 4 t3 − t4, 4 + 8 t+ 4 t2),
x13 = x6x11 ∧ x10x1 = (−1− 4 t+ 10 t2 − 4 t3 − t4, 1− 2 t2 + t4, 4− 8 t+ 4 t2),
x14 = x1x3 ∧ x2x4 = (0, 0, 1)

Here xαxβ denotes the “join” of xα and xβ , and a ∧ b denotes the “meet”. Both
operations can be computed in terms of the standard cross-product in IR3.
After fixing a projective basis consisting of the points x1, . . . , x4 the whole con-

struction only depends on the choice of the parameter t. The following matrix gives
coordinates for the situation t = 0 (the situation where x5 is in the middle of x3 and
x4).

X0 =



1 0 1 0 1 1 2 3 2 3 1 1 −1 0
0 1 0 1 1 2 1 2 3 1 3 −1 1 0
0 0 1 1 2 2 2 4 4 4 4 4 4 1




We can visualize the situation if we normalize the last coordinate for x3, . . . , x14
to 1 by multiplying each vector with a suitable positive scalar. The situation in
the plane {(x, y, 1) | x, y ∈ IR} gives an affine image of our vector configuration in
IR3. Figure 1 shows the affine situation for a value t slightly smaller than zero. The
points x1 and x2 are the points at infinity that lie on the x-axis and y-axis. The little
displacement of x5 away from the symmetric position forces that the lines (1, 3), (2, 4)
and (12, 13) not to be concurrent (as in the case t = 0).

Documenta Mathematica 1 (1996) 137–148



Two Interesting Oriented Matroids 141

→ 1

2
↑

3

4

5

6

78

9

10

11

12

13

14

Figure 1

The whole construction sequence has a combinatorial symmetry that is induced
by the permutation

π =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 1 4 3 5 7 6 9 8 11 10 13 12 14

)
.

Evaluating the determinant det(x12, x13, x14) we get

det(x12, x13, x14) = 32 t
2 − 64 t4 + 32 t6 = 32t2(t2 − 1)2,

a polynomial that has a root which is actually a minimum at t = 0.

-1 -0.5 0.5 1

1

2

3

4

Figure 2
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The fact that this polynomial is symmetric in t is already a consequence of the
symmetry of the underlying construction of the configuration and of the symmetric
choice of our basis x1, . . . , x4. A graph of this polynomial is given in Figure 2.

We now define for all (i, j, k) ∈ Λ({1, . . . , 14}, 3) and σ ∈ {−1, 0,+1}

Ωσ14(i, j, k) :=

{
σ if (i, j, k) = (12, 13, 14),
χ
X0
(i, j, k) otherwise.

The oriented matroids Ωσ14 have a combinatorial symmetry which is induced by π.
For all (i, j, k) ∈ Λ({1, . . . , 14}, 3) and σ ∈ {−1, 0,+1} we have

Ωσ14(π(i), π(j), π(k)) = −Ωσ14(i, j, k).

A realization X of Ωσ14 is symmetric if there is a linear involution R: IR
3 → IR3 with

R(xi) = xπ(i) for i ∈ {1, . . . , 14}.

Theorem 3.1. The oriented matroids Ωσ14 have the following properties:

(i) There is a polynomial function f from ((0, 1)\{ 12})× (0,∞)10 to the realization
space of Ω+14 that is an isomorphism of semi-algebraic sets.

(ii) Ω+14 has no symmetric realization.

(iii) Ω+14 has rational realizations.

(iv) Ω−14 is not realizable.

Proof. The construction sequence at the beginning of this section shows that after
the choice of the parameter t all points are determined up to multiplication by a
positive number. The signs that are identical in Ω+14, Ω

0
14, and Ω

−
14 are exactly taken

for values of t in the open interval (−3+
√
8, 3−

√
8). (The basis that collapse at the

end points of this open interval are (x1, x3, x12) and (x2, x4, x13).) We get realizations
of Ω+14 exactly for all choices of t in I = (−3 +

√
8, 0) ∪ (0, 3−

√
8). For t = 0 we get

a realization of Ω014. The factor (0,∞)10 in (i) is due to the fact that multiplication
of any of the points x5, . . . , x14 by a positive scalar does not change the underlying
oriented matroid. This proves (i).

Assume that there was a symmetric realization X of Ω+14. After a suitable pro-
jective transformation we may assume that x1, . . . , x4 are located at (1, 0, 0), (0, 1, 0),
(1, 0, 1), (0, 1, 1), respectively, and that the reflection R is given by R(x, y, z) =
(y, x, z). Since x5 is a fix-point of R it must be of the form (x, x, z) 6= (0, 0, 0).
Up to a positive multiple the only possible choice for x5 is induced by t = 0 in our
construction sequence. For t = 0 the determinant det(x12, x13, x14) evaluates to zero.
Hence, there is no symmetric realization. This proves (ii).

If we choose t as a rational number in (−3+
√
8, 0)∪ (0, 3−

√
8) we get a rational

realization, as stated in (iii). Fact (iv) is a direct consequence of the fact that for
t ∈ (−3 +

√
8, 3 −

√
8) the determinant det(x12, x13, x14) is always positive or zero.
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4 Final polynomials

Bi-quadratic final polynomials [2, 8] are special final polynomials that can be found
by linear programming. They provide an effective tool to prove non-realizability for a
large class of oriented matroids. Here we restrict ourselves to the case of realizability
over IR and to the case of oriented matroids in rank 3 on a ground set E = {1, . . . , n}.
Our starting point is the structure of three-term Graßmann-Plücker polynomials. For
this the brackets [i, j, k] with i, j, k ∈ E are considered as formal variables. We identify
brackets according to the alternating determinant rules:

[i, j, k] = [k, i, j] = [j, k, i] = −[j, i, k] = −[k, j, i] = −[i, k, j].

The polynomial ring in all brackets IR[{[λ] | λ ∈ E3}] modulo these identifications
is abbreviated B3,n. (This is a polynomial ring in

(
n
3

)
generators.) For an oriented

matroid χ and a bracket monomial [λ1] · [λ2] · . . . · [λk] we write

χ([λ1] · [λ2] · . . . · [λk]) := χ(λ1) · χ(λ2) · . . . · χ(λk).

For a vector configuration X = (x1, . . . , xn) ∈ IR3n and (i, j, k) ∈ E3 we write

[i, j, k]X = det(xi, xj , xk).

Definition 4.1. Let χ be a rank 3 oriented matroid on a finite set E of cardinality
n > 3, let τ ∈ E, λ = (a, b, c, d) ∈ E4 with |{τ, a, b, c, d}| = 5 and let

A := (τ, a, b), B := (τ, c, d),
C := (τ, a, c), D := (τ, b, d),
E := (τ, a, d), F := (τ, b, c).

(1) The pair (τ, λ) is called χ-normalized if

χ([A][B]) ≥ 0, χ([C][D]) ≥ 0, χ([E][F ]) ≥ 0.

(2) A χ-normalized pair (τ, λ) is called χ-non-degenerate if χ([C][D]) > 0.

(3) For a χ-non-degenerate pair (τ, λ) we call

[A][B] < [C][D] a bi-quadratic inequality if χ([E][F ]) > 0,
[A][B] = [C][D] a bi-quadratic equation if χ([E][F ]) = 0,
[E][F ] < [C][D] a bi-quadratic inequality if χ([A][B]) > 0,
[E][F ] = [C][D] a bi-quadratic equation if χ([A][B]) = 0.

In fact (as a consequence of the oriented matroid axioms) for any τ ∈ E and λ ∈ E4
there is always a suitable permutation π ∈ S4 of the elements in λ such that (τ, π(λ))
is χ-normalized. Furthermore, if [A][B] = [C][D] is a bi-quadratic equation, [C][D] =
[A][B] is a bi-quadratic equation as well.
The set of all bi-quadratic inequalities of χ will be denoted by Bχ and the set of all
its bi-quadratic equations will be denoted by Aχ. Each element in Bχ ∪ Aχ is called
a bi-quadratic expression. The bi-quadratic expressions can be considered as natural
consequences of Graßmann-Plücker relations in the realizable case, as we will see now.
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Lemma 4.2. For a vector configuration X ∈ (IRd)n and its corresponding oriented
matroid χ

X
we have

(i) [A]X [B]X < [C]X [D]X for all [A][B] < [C][D] ∈ Bχ
X
.

(ii) [A]X [B]X = [C]X [D]X for all [A][B] = [C][D] ∈ Aχ
X

Proof.
(i): Assume that [A][B] < [C][D] is a bi-quadratic inequality and let (τ, λ) be the
corresponding χ-non-degenerate pair. Let A, . . . , F be defined as in Definition 4.1.
We have χ([E][F ]) = 1. The polynomial [A][B] − [C][D] + [E][F ] is a Graßmann-
Plücker-polynomial. Hence its evaluation is identical to zero for every configuration
X ∈ (IRd)n:

[A]X [B]X − [C]X [D]X + [E]X [F ]X = 0.
Since χ([E][F ]) = 1, in any realization X of χ we have [A]X [B]X − [C]X [D]X < 0.
This proves the first part of the lemma.
(ii): Let [A][B] = [C][D] be a bi-quadratic equation and let (τ, λ), E, F be defined as
above. Then we have χ([E][F ]) = 0. Therefore in any realization X of χ we have
[A]X [B]X − [C]X [D]X = 0.

The following definition of bi-quadratic final polynomials is more general than the
one given in [2], where only the uniform case (no zero determinants) was considered.

Definition 4.3. For an oriented matroid χ a non-empty collection of bi-quadratic
inequalities

[Ai][Bi] < [Ci][Di] ∈ Bχ; 1 ≤ i ≤ k
together with a (possibly empty) collection of bi-quadratic equations

[Ai][Bi] = [Ci][Di] ∈ Aχ; k + 1 ≤ i ≤ l

is called a bi-quadratic final polynomial if the following equality holds within the ring
B3,n (where brackets are identified according to the alternating determinant rule):

l∏

i=1

[Ai][Bi] =
l∏

i=1

[Ci][Di].

Lemma 4.4. [2, Lemma 4.1] If χ admits a bi-quadratic final polynomial, then χ is
not realizable over IR.

Proof. Assume on the contrary that χ admits a bi-quadratic final polynomial as
defined above, and χ is realizable, i.e χ = χ

X
for a suitable vector configuration X.

By Lemma 4.2 we have

[Ai]X [Bi]X < [Ci]X [Di]X for all 1 ≤ i ≤ k, and
[Ai]X [Bi]X = [Ci]X [Di]X for all k + 1 ≤ i ≤ l.
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At least one proper inequality appears. By definition the products on the left side
are all positive and the products on the right side are positive as well. If we multiply
all right and all left sides we obtain:

l∏

i=1

[Ai]X [Bi]X <
l∏

i=1

[Ci]X [Di]X .

On the other hand the fact that we have a bi-quadratic final polynomial implies

l∏

i=1

[Ai]X [Bi]X =
l∏

i=1

[Ci]X [Di]X .

This contradicts the assumption that χ was realizable.

5 Ω−14 has no bi-quadratic final polynomial

The main result of this section is:

Theorem 5.1. Let χ0, χ+, χ− be three oriented matroids that differ in exactly one
basis µ ∈ Λ(E, 3) with χσ(µ) = σ. If χ0 and χ− are realizable and χ+ is not, then
χ+ cannot have a bi-quadratic final polynomial.

Proof. Assume that a bi-quadratic final polynomial for χ+ exists. Let

{[Ai][Bi] < [Ci][Di] | 1 ≤ i ≤ k} ⊆ Bχ+

together with
{[Ai][Bi] = [Ci][Di] | k + 1 ≤ i ≤ l} ⊆ Aχ+

be a bi-quadratic final polynomial for χ+ consisting of k > 0 bi-quadratic inequalities
and l − k ≥ 0 bi-quadratic equations. Since [τ, b, c][τ, e, f ] = [τ, c, b][τ, f, e] holds,
we may assume that every bracket in the bi-quadratic final polynomial has positive
signature. In each bi-quadratic expression the bracket [µ] can be contained at most
once (since each three-term Graßmann-Plücker-polynomial contains each bracket at
most once). Since we have a bi-quadratic final polynomial the overall number r of
occurrences of [µ] on the right sides of the expressions equals the number of overall
occurrences of [µ] on the left sides. Thus we may assume that the bi-quadratic ex-
pressions are sorted in a way that each expression of the form [Ai][Bi] ≤ [Ci][Di] with
µ ∈ {Ai, Bi} is directly followed by an expression [Ai+1][Bi+1] ≤ [Ci+1][Di+1] with
µ ∈ {Ci+1, Di+1} (indices taken modulo r).
With suitable τi ∈ E and λi := (λi1, . . . , λi4) ∈ E4 we have

Ai := (τi, λi1, λi2), Bi := (τi, λi3, λi4),
Ci := (τi, λi1, λi3), Di := (τi, λi2 , λi4).

With this choice the Graßmann-Plücker polynomials

{τi|λi} := [Ai][Bi]− [Ci][Di] + [Ei][Fi]
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are χ-normalized and χ-non-degenerate. By Definition 4.1 we know that χ([Ei][Fi])
is +1 for 1 ≤ i ≤ k and 0 for k + 1 ≤ i ≤ l. Furthermore χ([Ai][Bi]) = 1 and
χ([Ci][Di]) = 1 for all 1 ≤ i ≤ l. We define monomials

mi :=
i−1∏

j=1

([Ai][Bi]) ·
l∏

j=i+1

([Ci][Di])

and consider the polynomial

p :=
l∑

i=1

(
mi · {τi|λi}

)
.

We have
mi · [Ai][Bi] = mi+1 · [Ci+1][Di+1].

Furthermore, since all bi-quadratic expressions together form a bi-quadratic final
polynomial, we also have

ml · [Al][Bl] =
l∏

i=1

([Ai][Bi]) =
l∏

i=1

([Ci][Di]) = m1 · [C1][D1].

Thus, canceling pairwise vanishing summands in p yields:

p =
l∑

i=1

(
mi · [Ei][Fi]

)
.

(In fact p is an ordinary final polynomial for χ+ in the sense of Bokowski & Sturmfels
[1, 5].) Since all Graßmann-Plücker-polynomials that are involved were χ-normalized
we get:

χ(mi · [Ei][Fi]) = 1 for i = 1, . . . , k
and

χ(mi · [Ei][Fi]) = 0 for i = k + 1, . . . , l.
By our assumption on the order of the bi-quadratic expressions in each of the

monomials mi = [µ]
r ·m′i the bracket [µ] occurs with degree r (the total number of

occurrences of [µ] on the right side of bi-quadratic expressions). Thus if we consider
the polynomial

p′ :=
l∑

i=1

(
m′i · {τi|λi}

)
=

l∑

i=1

(
m′i · [Ei][Fi]

)
.

each summand m′i · [Ei][Fi] is either linear in [µ] (in case that µ ∈ {Ei, Fi}) or does
not contain [µ] at all. Furthermore (since χ+(µ) = 1) we have χ(m′i · [Ei][Fi]) = 1 for
i = 1, . . . , k and χ(m′i · [Ei][Fi]) = 0 for i = k + 1, . . . , l. Thus we have

p′ = [µ] ·
s∑

i=1

pi +
l−s∑

i=1

qi
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with χ(pi) and χ(qi) all either zero or positive and at least one of these monomials
positive. Observe that the pi and qi are independent on [µ] thus the corresponding
signs χ(pi) and χ(qi) are identical for χ

+, χ0 and χ−.
We now replace the brackets of p′ by the values of the actual determinants of a

realization of χ0 (we know that such a realization does exist). The polynomial p′ is
a linear combination of Graßmann-Plücker-polynomials, hence this expression must
evaluate to zero. Since χ0([µ]) = 0 and the monomials qi evaluate to a non-negative
number we can conclude that χ(qi) = 0 for all i = 1, . . . , l− s.
Using this information we now consider the case where we replace the brackets

of p′ by the values of the actual determinants of a realization of χ− (we know that
such a realization does also exist). The summands qi for all i = 1, . . . , l − s evaluate
to zero. Each of the summands [µ] · pi for i = 1, . . . , s evaluates either to zero or to a
number with sign since χ−([µ]) = −1. At least one non-zero summand occurs. Thus
we have a non-empty collection of negative numbers summing up to zero.

Corollary 5.2. The oriented matroid Ω−14 is not realizable and does not admit a
bi-quadratic final polynomial.

Proof. The non-realizability of Ω−14 was proved in Theorem 3.1. Since Ω
+
14 and Ω

0
14

are realizable Theorem 5.1 applies and the corollary follows.
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Introduction

If F is a formally real field then it is well known that the intersection of the real
valuation rings of F is a Prüfer domain H, and that H has the quotient field F . {A
valuation ring is called real if its residue class field is formally real.} H is the so called
real holomorphy ring of F , cf. [B, §2], [S], [KS, Chap.III §12]. If F is the function field
k(V ) of an algebraic variety V over a real closed field k (e.g. k = R), suitable overrings
of H in R can tell us a lot about the algebraic and the semi-algebraic geometry of
V (k).

These rings, of course, are again Prüfer domains. A very interesting and – to our
opinion – still mysterious role is played by some of these rings which are related to
the orderings of higher level of F , cf. e.g. [B2], [B3]. Here we meet a remarkable
phenomenon. For orderings of level 1 (i.e. orderings in the classical sense) the usual
procedure is to observe first that the convex subrings of ordered fields are valuation
rings, and then to go on to Prüfer domains as intersections of such valuation rings, cf.
e.g. [B], [S], [KS]. But for higher levels, up to now, the best method is, to construct
directly a Prüfer domain A in F from a “torsion reordering” of F , and then to obtain
the valuation rings necessary for analyzing the reordering as localizations Ap of A, cf.
[B2, p.1956 f], [B3]. Thus there is a two way traffic between valuations and Prüfer
domains.

Less is done up to now for F the function field k(V ) of an algebraic variety V over a
p-adically closed field k (e.g. k = Qp). But work of Kochen and Roquette (cf. §6 and
§7 in the book [PR] by Prestel and Roquette) gives ample evidence, that also here
Prüfer domains play a prominent role. In particular, every formally p-adic field F
contains a “p-adic holomorphy ring”, called the Kochen ring, in complete analogy to
the formally real case [PR, §6]. Actually the Kochen ring has been found and studied
much earlier than the real holomorphy ring ([Ko], [R1]).

If R is a commutative ring (with 1) and k is a subring of R then we can still define
a real holomorphy ring H(R/k) consisting of those elements a of R which on the
real spectrum of R (cf. [BCR], [B1], [KS]) can be bounded by elements of k. {If
R is a formally real field F and k the prime ring of F this coincides with the real
holomorphy ring H from above}. These rings H(R/k) have proved to be very useful
in real semi-algebraic geometry. In particular, N. Schwartz and M. Prechtel have used
them in order to complete a real closed space and, more generally, to turn a morphism
between real closed spaces into a proper one in a universal way ([Sch, Chap V, §7],
[Pt]).

The algebra of these holomorphy rings turns out to be particularly good natured
if we assume that 1 + ΣR2 ⊂ R∗, i.e. that all elements 1 + a21 + · · · + a2n (n ∈
N, ai ∈ R) are units in R. This is a natural condition in real algebra. The rings used
by Schwartz and Prechtel, consisting of abstract semi-algebraic functions, fulfill the
condition automatically. More generally, if A is any commutative ring (always with
1) then the localization S−1A with respect to the multiplicative set S = 1 + ΣA2 is
a ring R fulfilling the condition, and R has the same real spectrum as A. Thus for
many problems in real geometry we may replace A by R.

Recently V. Powers has proved that, if 1 + ΣR2 ⊂ R∗, the real holomorphy ring
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H(R/k) with respect to any subring k is an R-Prüfer ring, as defined by Griffin in
1973 [G2].

∗) More generally V. Powers proved that, if 1 + ΣR2d ⊂ R∗ for some even
number 2d, every subring A of R containing the elements 1

1+q with q ∈ ΣR2d is
R-Prüfer ([P, Th.1.7], cf. also [BP]).

An R-Prüfer ring is related to Manis valuations on R in much the same way as a
Prüfer domain is related to valuations of its quotient field. Why shouldn’t we try to
repeat the success story of Prüfer domains and real valuations on the level of relative
Prüfer rings and Manis valuations? Already Marshall in his important paper [Mar]
has followed such a program. He has worked there with “Manis places” in a ring R
with 1 + ΣR2 ⊂ R∗, and has related them to the points of the real spectrum SperR.
We mention that Marshall’s notion of Manis places is slightly misleading. By his
definition these places do not correspond to Manis valuations but to a broader class
of valuations which we call “special valuations”, cf. §1 of the present paper. But then
V. Powers (and independently one of us, D.Z.) observed that, in the case 1+ΣR2 ⊂ R∗,
the places of Marshall in fact do correspond to the Manis valuations of R [P]. {In
§1 of the present paper we prove that every special valuation of R is Manis under a
much weaker condition on R, cf. Theorem 1.1.}
The program to study Manis valuations and relative Prüfer rings in rings of real
functions has gained new impetus and urgency from the fact, that the theory of
orderings of higher level has recently been pushed from fields to rings leading to
real spectra of higher level. These spectra in turn have already proved to be useful
for ordinary real semi-algebraic geometry. We mention an opus magnum by Ralph
Berr [Be], where spectra of higher level are used in a fascinating way to classify the
singularities of real semi-algebraic functions.

p-adic semi-algebraic geometry seems to be accessible as well. L. Bröcker and H.-J.
Schinke have brought the theory of p-adic spectra to a rather satisfactory level by
studying the “L-spectrum” L-spec A of a commutative ring A with respect to a given
non-Archimedean local field L (e.g. L = Qp). There seems to be no major obstacle in
sight which prevents us from defining and studying rings of semialgebraic functions
on a constructible (or even pro-constructible) subset X of L-spec A. Here “semi-
algebraic” means definability in a model theoretic sense plus a suitable continuity
condition. Relative Prüfer subrings of such rings should be quite interesting.

The present paper is the first version of Chapter I of a book in preparation, devoted
to a study of relative Prüfer rings and Manis valuations, with an eye to applications
in real and p-adic geometry. In this chapter we present the basic theory and some
examples.

Now, there exists already a rich theory of “Prüfer rings with zero divisors” also started
by Griffin [G1], cf. the books [LM], [Huc], and the literature cited there. But this
theory seems not to be tailored to geometric needs. A Prüfer ring with zero divisors
A is the same as an R-Prüfer ring with R = QuotA, the total quotient ring of A.
While this is a reasonable notion from the viewpoint of ring theory it may be artificial
from a geometric viewpoint. A typical situation in real geometry is the following. R

∗) The definition by Griffin needs a slight modification, cf. Def.1 in §5 below.
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is the ring of (continuous) semialgebraic functions on a semialgebraic set M over a
real closed field k or, more generally, the set of abstract semialgebraic functions on a
pro-constructible subset X of a real spectrum (cf. [Sch], [Sch1]). Although the ring R
has very many zero divisors we have experience that in some sense R behaves nearly
as well as a field, cf. e.g. our notion of “convenient ring extensions” in §6 of the
present paper. Now, if A is a subring of R, then it is natural and interesting from
a geometric viewpoint to study the R-Prüfer rings B ⊃ A, while the total quotient
rings QuotA and QuotB seem to bear little geometric relevance.

Except in a paper by P.L. Rhodes from 1991 [Rh] very little seems to be done on
relative Prüfer rings in general, and in the original paper of Griffin the proofs of im-
portant facts [G2, Prop.6, Th.7] are omitted. Moreover the paper by Rhodes has a
gap in the proof of his main theorem. {[Rh, Th.2.1], condition (5b) there is appar-
ently not a characterization of Prüfer extensions. Any algebraic field extension is a
counterexample.} Thus we have been careful about a foundation of this theory.

In §1 and §2 we gather what we need about Manis valuations. Then in §3 and §4
we develop an auxiliary theory of “weakly surjective” ring homomorphisms. These
form a class of epimorphisms in the category of commutative rings close to the flat
epimorphisms studied by D. Lazard and others in the sixties, cf. [L], [Sa1], [A]. In
§5 the up to then independent theories of Manis valuations and weakly surjective
homomorphisms are brought together to study Prüfer extensions. {We call a ring
extension A ⊂ R Prüfer, if A is R-Prüfer in the sense of Griffin.} It is remarkable
that, although Prüfer extensions are defined in terms of Manis valuations (cf. §5, Def.1
below), they can be characterized entirely in terms of weak surjectivity. Namely, a
ring extension A ⊂ R is Prüfer iff every subextension A ⊂ B is weakly surjective
(cf. Th.5.2 below). A third way to characterize Prüfer extensions is by multiplicative
ideal theory, as we will explicate in Chapter II of our planned book.

Our first major result on Prüfer extensions is Theorem 5.2 giving various charac-
terizations of these extensions which sometimes make it easy to recognize a given
ring extension as Prüfer, cf. the examples in §6. We then establish various perma-
nence properties of the class of Prüfer extensions. For example we prove for Prüfer
extensions A ⊂ B and B ⊂ C that A ⊂ C is again Prüfer (Th.5.6).

At the end of §5 we prove that any commutative ring A has a universal Prüfer ex-
tension A ⊂ P (A) which we call the Prüfer hull of A. Every other Prüfer extension
A →֒ R can be embedded into A →֒ P (A) in a unique way. The Prüfer rings with
zero divisors are just the rings A with P (A) containing the total quotient ring QuotA.
Prüfer hulls mean new territory leading to many new open questions. We will pursue
some of them in later chapters of our planned book.

In §6 we prove theorems which give us various examples of Manis valuations and
Prüfer extensions. We illustrate how naturally they come up in algebraic geometry
over a field k which is not algebraically closed (§6, Example 5, Th.6.5, Th.6.9), and in
real algebraic and semialgebraic geometry (§6, Examples 3 and 10). Perhaps our best
result here is Theorem 6.8 giving a far-reaching generalization of an old lemma by A.
Dress (cf. [D, Satz 2′]). This lemma states for F a field, in which −1 is not a square,
that the subring of F generated by the elements 1/(1 + a2), a ∈ F , is Prüfer in F .
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Dress’s innocent looking lemma seems to have inspired generations of real algebraists
(cf. e.g. [La, p.86], [KS, p.163]) and also ring theorists, cf. [Gi1].

We finally prove in §7 for various Prüfer extensions A ⊂ R that, if a is a finitely
generated A-submodule of R with Ra = R, then some power ad (with d specified) is
principal. Our main result here (Theorem 7.8) is a generalization of a theorem by P.
Roquette [R, Th.1] which states this for R a field (cf. also [Gi1]). Roquette used his
theorem to prove by general principles that the Kochen ring of a formally p-adic field
is Bézout [loc.cit]. Similar applications should be possible in p-adic semialgebraic ge-
ometry. Roquette’s paper has been an inspiration for our whole work since it indicates
well the ubiquity of Prüfer domains in algebraic geometry over a non algebraically
closed field.

Important topics missing in the present paper are multiplicative ideal theory, the
characterization of a given Prüfer extension A ⊂ R by a suitable lattice of ideals of A,
approximation theory for Manis valuations and, finally, the construction of a “Manis
valuation spectrum”, i.e. a suitable space whose points are the Manis valuations of
a given ring R. (One needs a condition on the ring R to establish this spectrum,
otherwise one has to be content with the valuation spectrum SpevR, cf. [HK].) We
will deal with these topics in later chapters of our planned book. A good deal of
multiplicative ideal theory and the characterization business has already been done
by Rhodes [Rh].

We have been forced to change some of the terminology used by ring theorists, say in
the books of Larsen-McCarthy [LM] and of Huckaba [Huc]. While these authors mean
by valuation on a ring a Manis valuation we use the word “valuation” in the much
broader sense of Bourbaki [Bo, Chap.VI, §3]. It is true that Manis valuations are the
really good ones for computations. But the central notion is the Bourbaki valuation,
since only with these valuations one can build an honest spectral space, the valuation
spectrum [HK]. Valuation spectra have already proved to be immensely useful both
in algebraic geometry (cf. [HK]) and rigid analytic geometry (e.g. [Hu1], [Hu2]). The
closely related real valuation spectra (cf. [Hu3, §1]) seem to be the natural basic
spaces for endeavors in real algebra concerning valuations and Prüfer extensions.

Some notations. In this paper all rings are commutative with 1. For A a ring we
denote the group of units of A by A∗. We denote the total quotient ring of A by
QuotA. For p a prime ideal of A we denote the field Quot(A/p) by k(p).

N = {1, 2, 3, . . .}, N0 = N ∪ {0}. If A and B are sets then A ⊂ B means that A is a
subset of B and A ⊂= B means that A is a proper subset of B. If two subsets M and
N of some set X are given then M \N denotes the complement of M ∩N in M .

§1 Valuations on rings

Let R be a ring and Γ an (additive) totally ordered Abelian group. We extend Γ
to an ordered monoid Γ ∪ ∞: = Γ ∪ {∞} by the rules ∞ + x = x +∞ = ∞ for all
x ∈ Γ ∪∞ and x <∞ for all x ∈ Γ.
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Definition 1 (Bourbaki [Bo, VI. 3.1]).
A valuation on R with values in Γ is a map v:R→ Γ ∪∞ such that:
(1) v(xy) = v(x) + v(y) for all x, y ∈ R.
(2) v(x+ y) ≥ min{v(x), v(y)} for all x, y ∈ R.
(3) v(1) = 0 and v(0) =∞.

If v(R) = {0,∞} then v is said to be trivial, otherwise v is called non-trivial.
We recall some very basic facts1) about valuations on rings and fix notations. Let
v:R→ Γ ∪∞ be a valuation on R.
The subgroup of Γ generated by v(R) \ {∞} is called the value group of v and is
denoted by Γv. The set v

−1(∞) is a prime ideal of R. It is called the support of v and
is denoted by supp v. v induces a valuation v̂: k(supp v)→ Γ∪∞ on the quotient field
k(supp v) of R/supp v. We denote by ov the valuation ring of k(supp v) corresponding
to v̂, by mv its maximal ideal, and by κ(v) its residue class field, κ(v) := ov/mv.

Notice that v̂(ov) = (Γv)+∪{∞}, where (Γv)+ denotes the set of nonnegative elements
in Γv. (We use such a notation for any ordered Abelian group.)

We further denote by Av the set {x ∈ R | v(x) ≥ 0} and by pv the set {x ∈ R | v(x) >
0}. Clearly Av is a subring of R and pv is a prime ideal of Av. We call Av the valuation
ring of v and pv the center of v.

Definition 2. Two valuations v, w on R are said to be equivalent, in short, v ∼ w,
if the following equivalent conditions are satisfied:

(1) There is an isomorphism f : Γv ∪ {∞} → Γw ∪ {∞} of ordered monoids with
w(x) = f(v(x)) for all x ∈ R.

(2) v(a) ≥ v(b)⇐⇒ w(a) ≥ w(b) for all a, b ∈ R.
(3) supp v = suppw and ov = ow.

By abuse of language we will often regard equivalent valuations as “equal”.

Definition 3. a) The characteristic subgroup cv(Γ) of Γ with respect to v is the
smallest convex subgroup of Γ (convex with respect to the total ordering of Γ) which
contains all elements v(x) with x ∈ R, v(x) ≤ 0. Clearly cv(Γ) is the set of all γ ∈ Γ
such that v(x) ≤ γ ≤ −v(x) for some x ∈ R with v(x) ≤ 0.
b) v is called special,2) if cv(Γv) = Γv. (We replaced Γ by Γv.)

If H is any convex subgroup of Γ containing cv(Γ) then we obtain from v a new
valuation v|H:R → Γ∞ putting (v|H)(x) = v(x) if v(x) ∈ H and v(x) = ∞ else.
Taking H = cvΓ we obtain from v a special valuation w = v|cvΓ. Notice that
Aw = Av, pw = pv.

Definition 4 (cf. [M]). v is called a Manis valuation on R, if v(R) = Γv ∪∞.3)

1) For this we refer to [Bo, VI.3.1] and [HK, §1]
2) The word “special” alludes to the fact that such a valuation has no proper primary specialization

in the valuation spectrum of R, cf. [HK, §1].
3) Since we often identify equivalent valuations we have slightly altered the definition in [M]. Manis

demands that v(R)=Γ∪∞.
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Manis valuation will be in the focus of the present paper. Notice that every Manis
valuation is special, but that the converse is widely false.

Example. Let R be the polynomial ring k[x] in one variable x over some field k.
Consider the valuation v:R→ Z ∪∞ with v(f) = − deg f for any f ∈ R \ {0}. This
valuation is special but definitely not Manis.

One of our primary observations is that nevertheless there are many interesting rings,
on which every special valuation is Manis. For example this holds if for every x ∈ R
the element 1 + x2 is a unit in R. More generally we have the following theorem.

Theorem 1.1. Let k be a subring of R. Assume that for every x ∈ R \ k there exists
some monic polynomial F (T ) ∈ k[T ] (one variable T ) with F (x) ∈ R∗. Then every
special valuation v on R with Av ⊃ k is Manis.

Proof. We may assume that v is non trivial. Let x ∈ R be given with v(x) 6= 0,∞.
We have to find some y ∈ R with v(y) = −v(x). Since v is special there exists some
a ∈ R with v(ax) < 0. Let F (T ) = T d + c1T

d−1 + · · · + cd be a polynomial with
c1, . . . , cd ∈ k and F (ax) ∈ R∗. Since v(ax) < 0, but v(ci) ≥ 0 for i = 1, . . . , d, we
have v(F (ax)) = dv(ax). The element y: = adxd−1

F (ax) does the job.
4) q.e.d.

We return to valuations in general. Up to the end of this section we will keep the
following

Notations. v:R → Γ ∪ ∞ is a valuation on some ring R, A: = Av, p: = pv, q: =
supp v, R̄: = R/q, Ā: = A/q, p̄: = p/q. π:R → R̄ is the evident epimorphism from R
to R̄. We have a unique valuation v̄: R̄→ Γ ∪∞ on R̄ such that v̄ ◦ π = v.

We have Av̄ = Ā, pv̄ = p̄, supp v̄ = {0}, Γv̄ = Γv, ov = ov̄. It is evident that v is
special iff v̄ is special, and that v is Manis iff v̄ is Manis. Looking at the valuation v̂
on the quotient field k(q) of R̄ (which extends v̄) one now obtains by an easy exercise

Proposition 1.2.

a) v is Manis iff k(q) = R̄ · o∗v.
b) v is special iff k(q) = R̄ · ov.
Here R̄ · o∗v (resp. R̄ · ov) denotes the set of products xy with x ∈ R̄, y ∈ o∗v (resp.
ov). The set R̄ · ov is also the subring of k(q) generated by R̄ and ov.

Definition 5. v is called local if the pair (A, p) is local, i.e. p is the unique maximal
ideal of A.

Proposition 1.3 (cf. [G2, Prop. 5]).The following are equivalent.

i) v is Manis and local.
ii) The pair (R, q) is local.
iii) v is local and q is a maximal ideal of R.

4) We are indebted to Roland Huber for this simple argument.
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Proof. i) ⇒ ii): Let x ∈ R \ q be given. Since v is Manis there exists some y ∈ R
with v(xy) = 0. Since v is local this implies that xy is a unit of A, hence also a unit
of R. Thus x is a unit of R.
ii) ⇒ i): v̄ is a valuation of the field R̄. Thus v̄ is Manis, which implies that v is
Manis. Let x ∈ A \ p be given. Then x is a unit in R. We have v(x−1) = −v(x) = 0.
Thus x−1 ∈ A, x ∈ A∗.
i), ii) ⇒ iii): trivial.
iii)⇒ i): v̄ is a valuation of the field R̄. From this we conclude again that v is Manis.

If S is any multiplicative subset of R with S ∩ q = ∅ then we denote by vS the unique
“extension” of v to a valuation on S−1R, defined by

vS
(a
s

)
= v(a) − v(s) (a ∈ R, s ∈ S).

For w = vS we have Γw = Γv and cw(Γ) ⊃ cv(Γ). Thus if v is Manis then vS is Manis
and if v is special then vS is special. vS has the support S

−1q.

We now consider the special case S = A \ p. Then

vS

(a
s

)
= v(a) (a ∈ R, s ∈ S).

Thus for w = vS we now have Aw = S−1A = Ap and pw = S−1p = pp, and we see
that vS is a local valuation. Moreover A \ p is the smallest saturated multiplicative
subset S of R such that vS is local. We write S

−1R = Rp.

Definition 6. The valuation vS with S = A \ p is called the localization of v, and is
denoted by ṽ.

We have ṽ(Rp) = v(R), Γṽ = Γv, cvΓ = cṽΓ. Thus v is Manis iff ṽ is Manis and v is
special iff ṽ is special. Applying Proposition 3 5) to ṽ we obtain

Proposition 1.4. The following are equivalent.

i) v is Manis.
ii) q is the unique ideal of R which is maximal among all ideals of R which do not
meet A \ p.

iii) q is maximal among all ideals of R which do not meet A \ p.

If S is a (non empty) multiplicative subset of R then we denote by SatR(S) the set
of all elements of R which divide some element of S (“saturum of S in R”). Recall
from basic commutative algebra that, if T is a second multiplicative subset of R, then
S−1R = T−1R iff SatR(S) = SatR(T ).

The following characterization of Manis valuations can be deduced from Proposition
4, but we will give an independent proof.

5) Reference to Prop.1.3 in this section. In later sections we will refer to this proposition as

“Prop.1.3”, instead of “Prop.3”.
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Proposition 1.5. The following are equivalent.

i) v is Manis.
ii) SatR(A \ p) = R \ q.
iii) Rp = Rq.

Proof. The multiplicative set R \ q is saturated. Thus the equivalence ii) ⇐⇒ iii) is
evident from what has been said above.
i) ⇐⇒ ii): v is Manis ⇐⇒ For every x ∈ R \ q there exists some y ∈ R with
v(x) + v(y) = 0, i.e. with xy ∈ A \ p⇐⇒ R \ q = SatR(A \ p).

Proposition 1.6. If v is Manis then ov = Āp̄.

Proof. We may pass from v to v̄. Thus we assume without loss of generality that
q = 0. We have ov = oṽ and v is Manis iff ṽ is Manis. Thus we may assume without
loss of generality that v is also local. Now R is a field (cf. Prop. 3), and ov = A = Ap.

Definition 7. We say that v has maximal support if q is a maximal ideal of R.

Proposition 1.7. v has maximal support iff v̄ is local and Manis. Then v is also a
Manis valuation on R.

Proof. If v has maximal support, then v̄ is a valuation on the field R̄. Thus v̄ is
certainly Manis and local. Since v̄ is Manis, also v is Manis.

If v̄ is local and Manis then, applying Proposition 3 to v̄, we learn that the pair
(R̄, {0}) is local. This means that q is a maximal ideal of R.

Definition 8. An additive subgroup M of R is called v-convex, if for any elements
x ∈M , y ∈ R with v(x) ≤ v(y)(≤ v(0) =∞) it follows that y ∈M .
If M is a v-convex additive subgroup of R, then certainly ax ∈ M for any a ∈ A,
x ∈ M , i.e. M is an A-submodule of R. We now have a closer look at the v-convex
ideals of A.

Clearly q is a v-convex ideal of A and is contained in any other v-convex ideal of A.
Also p is v-convex and I ⊂ p for every v-convex ideal I 6= A.

Proposition 1.8. If v has maximal support then every A-submodule of R containing
q is v-convex.

Proof. Let I be an A-submodule of R containing q, and Ī := I/q. It is easy to see
that I is v-convex iff Ī is v̄-convex. Since v has maximal support, v̄ is a valuation on
the field R̄ := R/q. From classical valuation theory we conclude that Ī is v̄-convex.

Corollary 1.9. If v is a local Manis valuation then every A-submodule of R con-
taining q is v-convex.

Proof. By Proposition 3 we know that v has maximal support.
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Proposition 1.10. [M, Prop. 3]. Assume that the valuation v is Manis. Then a
prime ideal r of A is v-convex iff q ⊂ r ⊂ p.

Proof. Replacing v by v̄ we assume without loss of generality that q = 0. Since
v(A\ p) = {0} it is evident that the v-convex prime ideals r of A correspond uniquely
with the ṽ-convex prime ideals r′ of Ap via r′ = rp. Thus we may pass from v to ṽ and
assume without loss of generality that v is local. All prime ideals (in fact, all ideals)
of A are v-convex (Cor. 9). q.e.d.

Proposition 1.11. Assume that v is a non trivial Manis valuation. The following
are equivalent.

i) Every ideal I of A with q ⊂ I ⊂ p is v-convex.
ii) Any two ideals I, J of A with q ⊂ I ⊂ p and q ⊂ J ⊂ p are comparable by
inclusion.

iii) Ā is a (Krull)valuation domain.
iv) p is the unique maximal ideal of A which contains q.
v) v has maximal support.
vi) Every ideal I of A containing q is v-convex.

Proof. We assume without loss of generality that q = {0}. Now R is an integral
domain.

i) ⇒ ii) is evident, since for any two v-convex ideals I and J of A we have I ⊂ J or
J ⊂ I. (This holds more generally for v-convex additive subgroups I, J of R.)
ii) ⇒ iii): We verify: If x ∈ A, y ∈ A then Ax ⊂ Ay or Ay ⊂ Ax. This will imply
that A is a valuation domain. We assume without loss of generality that v(x) ≤ v(y).
If x ∈ p then also y ∈ p. The ideals Ax and Ay are comparable by our assumption ii).
There remains the case that x 6∈ p. We choose an element c 6= 0 in p. Then xc ∈ p
and v(xc) ≤ v(yc). As we have proved this implies Ayc ⊂ Axc or Axc ⊂ Ayc. Since
R is a domain we conclude that Ay ⊂ Ax or Ax ⊂ Ay.
iii) =⇒ iv): trivial. iv) =⇒ v) is evident by Proposition 7, and v) =⇒ vi) is evident
by Proposition 8. Clearly vi) ⇒ i).

Definition 9. A valuation w:R → Γ′ ∪∞ is called coarser than v (or a coarsening
of v) if there exists an order preserving homomorphism6) f : Γv → Γw such that, for
all x ∈ R, w(x) = f(v(x)) (put f(∞) =∞).
If H is a convex subgroup of Γ then the quotient Γ/H is a totally ordered Abelian
group in such a way that the natural projection from Γ to Γ/H is an order preserving
homomorphism. We have (Γ/H)+ = (Γ+ + H)/H. From v we obtain a coarsening
w:R → (Γ/H) ∪∞ putting w(x):= x+H for all x ∈ R. (Read ∞ +H = ∞.) This
valuation w is denoted by v/H.

Remarks 1.12. a) v/H has the center pH : = {x ∈ R | v(x) > H}, and this is a v-
convex prime ideal of A. {v(x) > H means v(x) > γ for every γ ∈ H}. If Γ+ ⊂ v(R)

6) This means f is a homomorphism of Abelian groups with f(α)≥f(β) if α≥β. The homomorphism
f is necessarily surjective.
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(e.g. v is Manis and Γ = Γv) then the v-convex prime ideals r of A correspond
uniquely with the convex subgroups H of Γ via r = pH .

b) Assume (without loss of generality) that Γ = Γv. The coarsenings w of v corre-
spond, up to equivalence, uniquely with the convex subgroups H of Γ via w = v/H.
We have A ⊂ Aw, p ⊃ pw, suppw = q, ŵ = v̂/H, w̄ = v̄/H, w̃ = (ṽ/H)∼. If S is a
multiplicative subset of R with S ∩ q = ∅ then vS/H = (v/H)S . If v is special then
v/H is special. If v is Manis then v/H is Manis.

All this is either trivial or can be verified in a straightforward way.

How do we obtain the ringAw fromAv = A if w = v/H? In order to give a satisfactory
answer, at least in special cases, we need a definition which will be widely used also
later on.

Definition 10. Let B be a subring of R, let S be a multiplicative subset of B and
let jS :R → S−1R denote the localization map x 7→ x

1 of R with respect to S. For
any B-submodule M of R we define

M[S]: = j
−1
S (S

−1M).

Clearly M[S] is the set of all x ∈ R such that sx ∈ M for some s ∈ S. We call M[S]
the saturation of M (in R) by S.7) In the case S = B \ r with r a prime ideal of B
we usually write jr and M[r] instead of jS , M[S].

Notice that B[S] is a subring of R andM[S] is a B[S]-submodule of R. IfM is an ideal
of B then M[S] is an ideal of B[S]. If M is a prime ideal of B with M ∩ S = ∅ then
M[S] is a prime ideal of B[S].

Proposition 1.13. Let S be a multiplicative subset of A \ q, and let H denote
the convex subgroup of Γ generated by v(S), i.e. the smallest convex subgroup of Γ
containing v(S). Let w: = v/H and r: = pH . Then

Aw = A[S] = A[r],

pw = r = {x ∈ R | v(x) > v(S)}.

Proof. We already stated above that pw = pH = r. This ideal coincides with the
set of all x ∈ R with v(x) > v(S). It is evident that A[S] ⊂ Aw. Let now x ∈ Aw be
given. There exists some element γ ∈ H+ with v(x) ≥ −γ, and some element s ∈ S
with γ ≤ v(s). We obtain v(xs) ≥ 0, i.e. xs ∈ A. This proves that Aw = A[S]. We
have S ⊂ A \ r, thus A[S] ⊂ A[r]. Let x ∈ A[r] be given. We choose y ∈ A \ r with
xy ∈ A. There exists some γ ∈ H+ with v(y) ≤ γ and some s ∈ S with γ ≤ v(s). We
have

0 ≤ v(x) + v(y) ≤ v(x) + v(s) = v(sx).
Thus sx ∈ A, x ∈ A[S]. This proves A[S] = A[r]. q.e.d.

7)
M[S] is called the “S-component of M” in [LM].
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Remark. The converse of Proposition 13 for the case of non-trivial Manis valuations
is also true (Th.2.6.ii).

Corollary 1.14. Assume that Γ+ ⊂ v(R) (e.g. v Manis and Γv = Γ). Let H be a
convex subgroup of Γ, w: = v/H and r: = pH . We have Aw = A[r] and pw = r.

Proof. Apply Prop. 13 to the set S: = {x ∈ R | v(x) ∈ H+}.

Proposition 1.15. Let I be an A-submodule of R with q ⊂ I. Assume that v is
Manis. Then I is v-convex iff I = I[p].

Proof. Assume first that I is v-convex. We have I ⊂ I[p]. Let x ∈ I[p] be given. We
choose d ∈ A \ p with dx ∈ I. We have v(x) = v(dx). Since I is v-convex this implies
x ∈ I. Thus I = I[p].
Assume now that I = I[p]. This means I = j

−1
p (Ip) with jp the localization map from

R to Rp. As always let ṽ:Rp → Γ∪∞ denote the localization of v. We have Aṽ = Ap,
supp ṽ = qp. Since ṽ is local, every Ap-submodule of Rp containing qp is ṽ-convex
(Cor. 1.9). In particular Ip is ṽ-convex. Since I = j

−1
p (Ip) and v = ṽ ◦ jp we conclude

that I is v-convex.

We briefly discuss a process of restriction which gives us special valuations on subrings
of R.

Let B be a subring of R. The restriction u = v|B:B → Γ∪∞ of the map v:R→ Γ∪∞
is a valuation on B. Let ∆:= cu(Γ) and w: = u|∆. Then w:B → ∆ ∪∞ is a special
valuation on B.

Definition 11. We call w the special restriction of v to B, and denote this valuation
by v|

B
.

For w = v|
B
we have Aw = A ∩ B, pw = p ∩ B, suppw ⊃ q ∩ B. Notice also that

v|
B
= (v|cvΓ)|B. Thus in essence our restriction process deals with special valuations.

In the case that v is Manis the question arises, under which conditions on B the
special restriction v|

B
is again Manis. We need an easy lemma.

Lemma 1.16. If v:R→ Γ ∪∞ is special and (Γv)+ ⊂ v(R), then v is Manis.

Proof. This is a consequence of Proposition 2. By that proposition k(q) = R̄ov.
From (Γv)+ ⊂ v(R) = v̄(R̄) we conclude that ov ⊂ R̄o∗v, hence k(q) = R̄o∗v, and this
means that v is Manis.

Proposition 1.17. Assume that v is Manis and that B is a subring of R containing
p = pv. Then the special restriction v|B :B → ∆ ∪ ∞ of v is again Manis. If v is
surjective (i.e. Γ = Γv) then v|B is surjective.

Proof. We assume without loss of generality that v is surjective. Let u: = v|B and
w: = v|

B
. Let γ ∈ ∆ be given with γ > 0. There exists some a ∈ pv with v(a) = γ.

Since pv ⊂ B we have a ∈ B, hence v(a) = u(a) = w(a). {Recall that for any x ∈ B
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with u(x) ∈ ∆ we have w(x) = u(x).} This proves that ∆+ ⊂ w(B). By the lemma
w is Manis.

Scholium 1.18. Let v:R → Γ ∪∞ be a Manis valuation and H a convex subgroup
of Γ. Let w: = v/H and B: = Aw. We have

Aw = {x ∈ R | v(x) ≥ h for some h ∈ H} =:AH
pw = {x ∈ R | v(x) > h for all h ∈ H} =: pH .

Let vH :B → ∆ ∪∞ denote the special restriction v|B of v. Here ∆ = cv|B(Γ) ⊂ H.
vH has support pH , hence gives us a Manis valuation vH :AH/pH → ∆∪∞ of support
zero. If v is surjective then ∆ = H.

The proof of all this is a straightforward exercise. Later we will prove a converse to
these statements (Prop. 2.8).

Using Lemma 16 from above we can prove a converse to Proposition 6.

Proposition 1.19. Assume that the valuation v on R is special and that ov = Āp̄
(cf. notations above). Then v is Manis.

Proof. Replacing A by Ā = A/q and v by v̄ we assume without loss of generality
that q = 0. Now R is an integral domain, and A ⊂ R ⊂ K with K the quotient
field of R. We also assume without loss of generality that Γ = Γv. The valuation
v:R→ Γ∪∞ extends to the valuation v̂:K −→−→ Γ∪∞, and v̂ has the valuation ring
ov. We have v(A \ p) = {0}, hence v(A) = v̂(Ap) = v̂(ov) = Γ+. By Lemma 16 we
conclude that v is Manis.

§2 Valuation subrings and Manis pairs

As before let R be a ring (commutative, with 1).

Definition 1. a) A valuation subring of R is a subring A of R such that there
exists some valuation v:R→ Γ ∪∞ with A = Av. A valuation pair in R (also called
“R-valuation pair”) is a pair (A, p) consisting of a subring A of R and a prime ideal
p of A such that A = Av, p = pv for some valuation v of R.
b) We speak of a Manis subring A of R and a Manis pair (A, p) in R respectively if
here v can be chosen as a Manis valuation of R.

Two bunches of questions come to mind immediately. 1) How can a valuation subring
or a Manis subring of R be characterized ring theoretically? Ditto for pairs.
2) How far is a valuation v determined by the associated ring Av or pair (Av, pv)?

As stated in §1 the pair (Av, pv) does not change if we pass from v to the associated
special valuation v|cvΓ. Thus, starting from now, we will concentrate on special
valuations.
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If A = R then a special valuation v with Av = A must be trivial, and any prime
ideal p of R occurs as the center (= support) of such a valuation v. The valuation
v is completely determined by (R, p) and is Manis. These pairs (R, p) are called the
trivial Manis pairs in R.

If A 6= R and A is a valuation subring of R then clearly R \ A is a multiplicatively
closed subset of R. P. Samuel started an investigation of such subrings of R. We
quote one of his very remarkable results.

Definition 2. Let A be a subring of R with A 6= R and S: = R \A multiplicatively
closed. We define the following subsets pA and qA of A. pA is the set of all x ∈ A
such that there exists some s ∈ S with sx ∈ A, and qA is the set of all x ∈ A with
sx ∈ A for all s ∈ R \A.
Clearly qA ⊂ pA. Also qA = {x ∈ R | rx ∈ A for all r ∈ R}. Thus qA is the biggest
ideal of R contained in A, called the conductor of A in R.

Theorem 2.1. [Sa, Th.1 and Th.2]. Let A be a proper subring of R with R \ A
multiplicatively closed.
i) pA is a prime ideal of A and qA is a prime ideal both of A and R.
ii) A is integrally closed in R.
iii) If R is a field then A is a valuation domain, and R is the quotient field of A.

If v is a special nontrivial valuation then the support of v is determined by the ring
Av alone. More precisely we have the following proposition, whose proof is an easy
exercise.

Proposition 2.2. Let v be a non trivial valuation on R and A: = Av. Then qA ⊃
supp v. The valuation v is special iff qA = supp v.

We cannot expect that a special valuation v is determined up to equivalence by the
pair (A, p):= (Av, pv), as is already clear from the example in §1. But this holds if v
is Manis. Indeed, if v is also non trivial, then we see from Prop. 2 and Prop.1.6 that
ov = Āp̄ with Ā = A/qA, p̄ = p/qA. Even more is true. The following proposition
implies that v is determined up to equivalence by A alone. The proof is again an easy
exercise.

Proposition 2.3. Let v be a non trivial valuation on R and A: = Av. Then pA ⊂ pv.
If v is Manis then pA = pv.

We have the following important characterization of Manis pairs.

Theorem 2.4 ([M, Prop. 1], or [Huc, Th. 5.1]). Let A be a subring of R and p a
prime ideal of A. The following are equivalent.

i) (A, p) is a Manis pair in R.
ii) If B is a subring of R and q a prime ideal of B with A ⊂ B and q ∩A = p then

A = B. 1)

1) In [M] and [Huc] it is not assumed that q is a prime ideal. It can be proved easily that their

condition can be changed to our condition (ii).
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iii) For every x ∈ R \A there exists some y ∈ A with xy ∈ A \ p.
There also exists a satisfying characterization of the valuation subrings of R in ring
theoretic terms, due to Samuel and Griffin [e.g.Huc, Th.5.5], but we do not need this
here.

We give a characterization of local Manis pairs in a classical style.

Theorem 2.5. Let A ⊂ R be a ring extension, A 6= R.
i) The following are equivalent

(1) Every x ∈ R \A is a unit in R and x−1 ∈ A.
(2) A has a unique maximal ideal p (hence is local) and (A, p) is Manis in R.
ii) If (1), (2) hold, then R is a local ring with maximal ideal q: = qA and Aq = Rp = R.
Moreover, p = q ∪ {x−1|x ∈ R \A}.

Proof. Assume that (1) holds. Then R \ A is closed under multiplication. Indeed,
let x, y ∈ R \A be given. Then (xy)y−1 ∈ R \A, but y−1 ∈ A, hence xy ∈ R \A. We
introduce the prime ideals p: = pA and q: = qA (cf. Def. 2). IfM is any maximal ideal
of R thenM∩(R\A) = ∅, since R\A ⊂ R∗, andM ⊂ A. ThusM is contained in the
conductor q of A in R, and we conclude thatM = q. Thus q is the only maximal ideal
of R. Let K denote the field R/q and A the subring A/q of K. For every z ∈ K \A
the inverse z−1 is contained in A. Thus A is a valuation domain with quotient field
K. We conclude that A is Manis in R, and then, that (A, p) is a Manis pair in R (cf.
Prop. 3). Since (R, q) is local we learn from Proposition 1.3 that (A, p) is local.

Now assume that (2) holds. We know from Proposition 1.3 that R is local with
maximal ideal q: = qA. Thus R \A ⊂ R \ q = R∗. Since (A, p) is Manis in R we have
x−1 ∈ p ⊂ A for every x ∈ R \A, and it is also clear that p = q ∪ {x−1|x ∈ R \A}.
We have A \ q ⊂ R∗, hence Aq ⊂ R. If x ∈ R \ A then x = 1

y with y ∈ A \ q. Thus
x ∈ Aq. This proves that Aq = R. Since A \ p ⊂ R∗ also Rp = R.
Assume now that (2) holds. We know from Proposition 1.3 that R is local with
maximal ideal q: = qA. Thus R \A ⊂ R \ q = R∗. Since (A, p) is Manis in R we have
x−1 ∈ p for every x ∈ R \A, a fortiori x−1 ∈ A.

Let v : R −→ Γ∪∞ and w be valuations on R. We have called w coarser than v if w
is equivalent to v/H for some convex subgroup H of v (§1, Def. 9 and Remark 1.12).
How can the coarsening relation be expressed in terms of the pairs (Av, pv), (Aw, pw)
if both v and w are Manis?

Theorem 2.6 (cf. [M, Prop.4] for a weaker statement). Assume that v : R −→ Γ∪∞
and w are two non-trivial Manis valuations of R.

i) The following are equivalent:
(1) w is coarser than v.
(2) supp (v) = supp (w) and ov ⊂ ow.
(3) Av ⊂ Aw and pw ⊂ pv.
(4) pw is an ideal of Av contained in pv.
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ii) Let A := Av, p := pv, and let r be a prime ideal of A with supp v ⊂ r ⊂ p. Let
H denote the convex subgroup of Γ generated by v(A \ r) and w := v/H. Then
r = pH = pw and A[r] = Aw = AH .

2)

Proof: (1) ⇐⇒ (2): We may assume in advance that supp v = suppw. It is now
evident that w is coarser than v iff ŵ is coarser than v̂. By classical valuation theory
this holds iff the valuation ring ov of v̂ is contained in ow.

(2) =⇒ (3): Replacing R by R/supp v we assume without loss of generality that
supp v = suppw = {0}. In the quotient fieldK ofR we have ov∩R = Av, ow∩R = Aw,
mv ∩R = pv and mw ∩R = pw. By assumption ov ⊂ ow. This implies mv ⊃ mw. We
conclude that Av ⊂ Aw and pv ⊃ pw.
(3) =⇒ (2): We verify first that supp (v) = supp (w). We know that supp (v) = {x ∈
R | xR ⊂ Av} and supp (w) = {x ∈ R | xR ⊂ Aw} (cf. Proposition 2). Using the
assumption Av ⊂ Aw we conclude supp v ⊂ suppw. Since v, w are Manis valuations,
it is also evident that supp (v) = {x ∈ R | xR ⊂ pv} and supp (w) := {x ∈ R | xR ⊂
pw}. Using the assumption pv ⊃ pw we conclude that supp v ⊃ suppw. Thus indeed
supp (v) = supp (w).

In order to prove that ov ⊂ ow we may replace R by R/supp v. Thus we may assume
that supp v = suppw = {0}. Now we know from Proposition 1.6 that ov = (Av)pv
and ow = (Aw)pw . The inclusions Av ⊂ Aw and pv ⊃ pw imply that ov ⊂ ow.
(3) =⇒ (4): trivial.
(4) =⇒ (3): Since w is Manis we have Aw = {x ∈ R | xpw ⊂ pw}. Now pw is an ideal
of Av. Thus Av ⊂ Aw.
ii): We know from Prop.1.10 that the ideal r is v-convex, and from Remark 1.12.a that
r = pH . Let w := v/H and B := Aw. We have B = AH (cf. 1.18) and pw = pH = r.

It remains to prove that B = A[r]. Let x ∈ A[r] be given. We choose some d ∈ A \ r
with dx ∈ A. Since A ⊂ Aw, r = pw, we have w(dx) ≥ 0, w(d) = 0, hence w(x) ≥ 0,
i.e. x ∈ B. This proves that A[r] ⊂ B. Let now x ∈ B be given. Suppose that
x 6∈ A[r]. Since x 6∈ A there exists some x′ ∈ p with xx′ ∈ A \ p ⊂ A \ r ⊂ A. Since
x 6∈ A[r] we have x′ ∈ r. Thus xr 6⊂ r. This is a contradiction, since r is an ideal of B
and x ∈ B. Thus x ∈ A[r]. We have proved B = A[r]. q.e.d.

Corollary 2.7. Let v : R→ Γ∪∞ be a Manis valuation and A := Av, p = pv. The
coarsenings w of v correspond uniquely, up to equivalence, with the prime ideals r of
A between supp v and p via r = pw. Also A[r] = Aw.

Proof. If v is trivial then supp v = p, and all assertions are evident. Assume now
that v is not trivial. For the trivial coarsening t of v we have pt = supp t = supp v
and A[pt] = R. If w is a non trivial coarsening of v then pw is an ideal of A with
supp v ⊂= pw ⊂ p (cf. Th.6.i). This ideal is prime in A since it is prime in the ring
Aw ⊃ A. Conversely, if r is a prime ideal of A with supp v ⊂= r ⊂ p then, by Theorem
6.ii, there exists a coarsening w of v with pw = r, Aw = A[r], and w is not trivial.

2) Recall the notations from 1.12 and 1.18.
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Finally, if w and w′ are two nontrivial coarsenings of v with pw = pw′ = r, then
Aw = {x ∈ R | xr ⊂ r} = Aw′ , and we learn from (3) in Theorem 6.i (or by a direct
argument), that w ∼ w′.

We establish a converse to the construction 1.18.

Proposition 2.8. Let w be a non-trivial Manis valuation on R and u a Manis
valuation on Aw/pw. Let A and p denote the pre-images of Au and pu in Aw under
the natural homomorphism ϕ:Aw → Aw/pw.

i) (A, p) is a Manis pair in R iff suppu = {0}.
ii) If this holds, let v:R −→−→ Γ ∪∞ be a surjective valuation with Av = A, pv = p.
Then Γ has a convex subgroup H, uniquely determined by w and u, such that w is
equivalent to v/H and u is equivalent to vH (cf. 1.18).

Proof. We have pw ⊂ p ⊂ A ⊂ Aw ⊂ R.
a) We assume that suppu = {0} and prove that the pair (A, p) is Manis in R. Let
x ∈ R \A be given. By Theorem 4 we are done if we find some y ∈ p with xy ∈ A\ p.
Case 1: x ∈ Aw. Since ϕ(x) 6∈ Au there exists some y ∈ p with ϕ(x)ϕ(y) ∈ Au \ pu,
hence xy ∈ A \ p.
Case 2: x ∈ R\Aw. Since w is Manis there exists some y ∈ pw with xy ∈ Aw \pw. We
have ϕ(xy) 6= 0. Since u has support zero there exists some z ∈ Aw with ϕ(xy)ϕ(z) ∈
Au \ pu, hence xyz ∈ A \ p. Clearly yz ∈ pw ⊂ p.
b) Assume now that (A, p) is Manis in R, and that v:R −→−→ Γ ∪ ∞ is a surjective
valuation with Av = A, pv = p. We verify that u has support zero and prove the
second part of the proposition. Since w is not trivial, we know from Theorem 6 that
w is a coarsening of v. There is a unique convex subgroup H of Γ with w ∼ v/H, and
Aw = AH , pw = pH (notations from 1.18). We obtain from v andH a Manis valuation
vH :Aw −→−→ H ∪∞ with support pw, as explained in 1.18. The pair associated to vH
is (A, p). Thus vH ∼ u ◦ ϕ and vH ∼ u. In particular suppu = supp vH = {0}.

We now consider the following situation: A is a subring of R and p is a prime ideal
of A. We are looking for criteria that the pair (A[p], p[p]) (cf. §1, Def. 10) is Manis.
We need an easy lemma.

Lemma 2.9. a) Rp = R(p[p]).
b) If M is an A-submodule of R then Mp = (M[p])p[p] .
c) If M is an A-submodule of R and r is a prime ideal of A contained in p, then

M[r] = (M[p])[r[p]].

Proof. We have Rp = S−1R and R(p[p]) = T−1R with S = A \ p, T = A[p] \ p[p].
Notice that S ⊂ T . Let x ∈ T be given. Choose some d ∈ S with dx ∈ A. Then
dx ∈ A \ p = S. This proves that SatR(S) = SatR(T ), and we conclude that S−1R =
T−1R.
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IfM is an A-submodule of R, thenM[p] is an A[p]-submodule of R, andMp = S
−1M ,

(M[p])p[p] = T−1M[p]. Clearly S
−1M ⊂ T−1M[p]. (N.B. Both are subsets of S−1R =

T−1R.) Also T−1M[p] = S−1M[p]. Let z ∈ S−1M[p] be given. Write z =
x
s with

x ∈ M[p], s ∈ S. We choose some d ∈ S with dx = m ∈ M . We have z = m
sd ∈ Mp.

This proves part b) of the lemma. The last statement c) follows from the obvious
equality Mr = (Mp)rp by taking pre-images under the various localization maps.

Proposition 2.10. (A[p], p[p]) is a Manis pair in R iff (Ap, pp) is a Manis pair in Rp.
In this case, if (A[p], p[p]) comes from the Manis valuation v on R, then (Ap, pp) comes
from the localization ṽ of v defined in §1 (Def. 6). {Recall from the lemma that Ap =
(A[p])p[p] , pp = (p[p])p[p] .} With q: = A ∩ supp v we have supp v = q[p], supp ṽ = qp.

Proof. a) Assume first that there exists a Manis valuation v:R → Γ ∪ ∞ with
Av = A[p], pv = p[p]. Let ṽ:Rpv → Γ∪∞ denote the localization of v. Then ṽ is again
Manis and Aṽ = (Av)pv , pṽ = (pv)pv , supp ṽ = (supp v)pv (cf. §1). By part a) of the
lemma above we have Rpv = Rp, Aṽ = Ap, pṽ = pp. Let q: = A ∩ supp v. Certainly
q[p] ⊂ supp v. Let x ∈ supp v be given. We have x ∈ Av = A[p]. We choose some
d ∈ A \ p with dx ∈ A. Then v(dx) = ∞, thus dx ∈ A ∩ supp v = q, x ∈ q[p]. This
proves supp v = q[p]. Using part b) of the lemma we obtain supp ṽ = qp.
b) Assume finally that w:Rp → Γ ∪∞ is a Manis valuation with Aw = Ap, pw = pp.
Let jT :R→ Rp denote the localization map of R with respect to T : = A[p] \ p[p]. Let
v denote the valuation w ◦ jT on R. We have v(T ) = {0}. Thus v(R) = w(Rp) = Γw,
and we conclude that v is Manis. Also Av = j−1T (Aw) = A[p], pv = j−1T (pw) = p[p],
and w coincides with the localization ṽ of v. q.e.d.

Proposition 2.11. Let r be a prime ideal of A contained in p. Assume that v:R→
Γ ∪ ∞ is a valuation with Av = A[p], pv = p[p], A ∩ supp v ⊂ r. Let H denote the
convex subgroup of Γ generated by v(A \ r) and let w: = v/H. Then Aw = A[r],
pw = r[p] = r[r]. Thus, if (A[p], p[p]) is a Manis pair in R the same holds for (A[r], r[r]).

Proof. By the last statement in Prop. 10 we have supp v ⊂ r[p]. It follows from
Proposition 1.13 and part c) of lemma 9 above that Aw = A[r], pw = r[p]. It is evident
that r[p] ⊂ r[r] ⊂ pw. Thus r[p] = r[r].

We now state a criterion which will play a key role for the theory of relative Prüfer
rings in §5.

Theorem 2.12. Assume thatA is integrally closed inR. The following are equivalent.

i) (A[p], p[p]) is a Manis pair in R.
ii) For each x ∈ R there exists some polynomial F [T ] ∈ A[T ] \ p[T ] with F (x) = 0.

Proof. i) ⇒ ii): We first consider the case that x ∈ A[p]. We choose some s ∈ A \ p
with sx = a ∈ A. The polynomial F (T ):= sT − a fulfills the requirements. Let
now x ∈ R \ A[p]. Since (A[p], p[p]) is a Manis pair there exists some y ∈ p[p] with
xy ∈ A[p] \ p[p]. We choose elements s and t in A \ p with ty ∈ p, sxy ∈ A. We have
sxy ∈ A\p. Put a0: = sty ∈ p, a1: = −stxy ∈ A\p. The polynomial F (T ):= a0T+a1
fulfills the requirements.
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ii) ⇒ i): We verify the property (iii) in Theorem 4. Let x ∈ R \ A[p] be given. We
look for an element y ∈ p[p] with xy ∈ A[p] \ p[p]. Let

F (T ):= a0T
n + a1T

n−1 + · · ·+ an
be a polynomial of minimal degree n ≥ 1 in A[T ]\p[T ] with F (x) = 0. From F (x) = 0
we deduce that b: = a0x is integral over A. Thus b ∈ A. Since x 6∈ A[p] we conclude
that a0 ∈ p. Suppose that n > 1. We put

G(T ):= a0T − b in the case b 6∈ p,
and

G(T ):= (b+ a1)T
n−1 + a2T

n−2 + · · ·+ an
in the case b ∈ p. In both cases

G(T ) ∈ A[T ] \ p[T ] and G(x) = 0.

This contradicts the minimality of n. Thus n = 1, F (T ) = a0T + a1. Since a0 ∈ p,
certainly a1 ∈ A \ p. For y: = a0 we have y ∈ p[p], xy ∈ A[p] \ p[p]. q.e.d.

Essentially as a consequence of Theorems 4 and 12 we derive still another criterion
for a pair (A[p], p[p]) to be Manis in R. In the case of Krull valuation rings (i.e. R
a field) such a criterion had been observed by Gilmer [Gi, Th. 19.15]. We need (a
special case of) an easy lemma.

Lemma 2.13. Let (B, q) be a Manis pair in R. Let I be a B-submodule of R with
I ∩B ⊂ q. Then I ⊂ q.

Proof. Suppose there exists an x ∈ I with x 6∈ q, hence x 6∈ B. Since (B, q) is Manis
there exists some y ∈ B with xy ∈ B \ q. Then xy 6∈ I. On the other hand x ∈ I and
y ∈ B, a contradiction.

Theorem 2.14 (cf. [Gi, Th. 19.15] for R a field). Assume that A is integrally closed
in R, and let p be a prime ideal of A. The following are equivalent.

i) (A[p], p[p]) is a Manis pair in R.

ii) If B is a subring of R containing A[p] and q, q
′ are prime ideals of B with q ⊂ q′

and q ∩A[p] = q′ ∩A[p] ⊂ p[p], then q = q′.
ii′) If B is a subring of R containing A[p] and q ⊂ q′ are prime ideals of B lying over
p[p], then q = q

′.

iii) If B is a subring of R containing A and q, q′ are prime ideals of B with q ⊂ q′
and q ∩A = q′ ∩A ⊂ p then q = q′.

iii′) If B is a subring of R containing A and q ⊂ q′ are prime ideals of B lying over p
then q = q′.

iv) There exists only one Manis pair (B, q) in R over (A, p), i.e. with A ⊂ B and
q ∩A = p.

Documenta Mathematica 1 (1996) 149–197



168 Manfred Knebusch and Digen Zhang

v) For every subring B of R containing A there exists at most one prime ideal q of
B over p.

vi) For every Manis pair (B, q) in R over (A, p) the field extension k(p) ⊂ k(q) is
algebraic.

Proof. The implication i)⇒ ii) is evident by the preceding lemma. The implications
ii) ⇒ ii′) and iii) ⇒ iii′) are trivial.
ii′) ⇒ iii′): If q and q′ are prime ideals of B over p with q ⊂ q′, then q[p] and q′[p] are
prime ideals of B[p] over p[p] with q[p] ⊂ q′[p]. Thus q[p] = q′[p]. Intersecting with B we
obtain q = q′. ii) ⇒ iii): The proof is similar.
iii′)⇒ i): Suppose that (A[p], p[p]) is not Manis in R. By Theorem 12 there exists some
x ∈ R such that F (x) 6= 0 for every polynomial F (T ) ∈ A[T ]\p[T ]. We introduce the
subring B: = A[x] of R and the surjective ring homomorphism ϕ:A[T ] −→ B over A
with ϕ(T ) = x. The kernel of ϕ is contained in p[T ]. This implies that the ideals q
and q′ of B defined by

q: = ϕ(p[T ]) = p[x] = pB, q′: = ϕ(p+ TA[T ]) = p+ xB = q+ xB,

both are prime and lie over p. Since q 6= q′ this contradicts the assumption iii′). Thus
(A[p], p[p]) is Manis in R.

i) ⇒ iv): Let (B, q) be a Manis pair in R over (A, p). It is easily verified that (B, q)
is a pair over (A[p], p[p]). Since (A[p], p[p]) is Manis in R we conclude by Theorem 4
that (B, q) = (A[p], p[p]).

iv) ⇒ v): Assume that B is a subring of R containing A and q1, q2 are prime ideals
of B over p. We extend the pairs (B, q1) and (B, q2) to maximal pairs (C, q

′
1) and

(D, q′2) in R. These pairs are Manis in R by Theorem 4. They both lie over (A, p),
hence (C, q′1) = (D, q

′
2). Intersecting with B we obtain q1 = q2.

v) ⇒ iii′): trivial.
i) ⇒ vi): Since (i) and (iv) hold we know that (B, q):= (A[p], p[p]) is the only Manis
pair in R over (A, p). We have k(p) = k(q).

vi) ⇒ iii′): Suppose that (B, q1) and (B, q2) are pairs in R over (A, p) with q1 ⊂= q2.
We choose a maximal pair (C, r) in R over (B, q1). Then (C, r) is Manis, hence k(r) is
algebraic over k(p). It follows that k(q1) is algebraic over k(p). We choose an element
x ∈ q2 \ q1. Since k(q1) is algebraic over k(p) we have a relation

(∗)
n∑

i=0

aix
i = b

with a0, a1, . . . , an ∈ A, an 6∈ p, b ∈ q1. Let B′ denote the subring A[b, anx] of
B, and q′1: = q1 ∩ B′, q′2: = q2 ∩ B′. We have q′1 ⊂= q

′
2, since anx ∈ q′2 \ q′1. But

q′1 ∩A = q′2 ∩A = p. We learn from the relation (∗) that B′/q′1 is integral over A/p.
But the ring B′/q′1 contains the prime ideal q

′
2/q
′
1 6= {0} with (q′2/q′1) ∩ A/p = {0}.

Such a situation is impossible in an integral ring extension (cf. [Bo, V §2, no 1]).
Thus (iii′) is valid.
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§3 Weakly surjective homomorphisms

In section §5 we will start our theory of “Prüfer extensions”. In the terminology
developed there the Prüfer rings (with zero divisors) of the classical literature (e.g.
[LM], [Huc]) are those commutative rings A which are Prüfer in their total quotient
rings QuotA. In the present section and the following one we develop an auxiliary
theory of “weakly surjective” ring extensions. The inclusions A ⊂ QuotA are (very
special) examples of such extensions.

Definition 1. i) Let ϕ:A → B be a ring homomorphism. We call ϕ locally sur-
jective (abbreviated: ls) if for every prime ideal q of B the induced homomorphism
ϕq:Aϕ−1(q) → Bq is surjective. We call ϕ weakly surjective (abbreviated: ws) if for
every prime ideal p of A with pB 6= B the induced homomorphism ϕp:Ap → Bp is
surjective.
ii) If A is a subring of a ring B, then we say that A is locally surjective in B (resp.
weakly surjective in B) if the inclusion mapping A →֒ B is ls (resp. ws).

At first glance “locally surjective” seems to be a more natural notion than “weakly
surjective”, but it is the latter notion which will be needed below.

Of course, a surjective homomorphism is both weakly surjective and locally surjective.
We now prove that weak surjectivity is a stronger property than local surjectivity.

Proposition 3.1. If ϕ:A→ B is weakly surjective then ϕ is locally surjective.

This follows from

Lemma 3.2. Let ϕ:A→ B be a ring homomorphism. Let q be a prime ideal of B and
p: = ϕ−1(q). Assume that ϕp:Ap → Bp is surjective. Then the natural map Bp → Bq
is an isomorphism, in short, Bp = Bq. Furthermore pBp = pBq = qBq.

Proof of the lemma. One easily retreats to the case that A is a subring of B and
ϕ is the inclusion A →֒ B. Now p = q∩A and Ap = Bp. We have pAp = pBp ⊂ qBp.
Since pAp is the maximal ideal of Ap and (qBp) ∩ B = q, hence qBp 6= Bp, we have
pBp = qBp. The natural homomorphism B → Bp maps B \ q into the group of units
of Bp, hence factors through a homomorphism from Bq to Bp. This homomorphism
is inverse to the natural map from Bp to Bq.

Example 3.3. If S is a multiplicative subset of a ring A then the localization map
A→ S−1A is weakly surjective.

Example 3.4. Let K be a field. The diagonal homomorphism K → K ×K, x 7→
(x, x), is locally surjective but not weakly surjective, as is easily verified.

Proposition 3.5. If ϕ:A→ B is locally surjective and B is an integral domain then
ϕ is weakly surjective.

Proof. Let p be a prime ideal of A with pB 6= B. We choose a prime ideal q of B
containing pB. Let r: = ϕ−1(q). We have a natural commuting triangle
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Ar
ϕr−→ Br

ϕq ց ւ ψ

Bq .

ϕq is surjective since ϕ is ls. On the other hand ψ is injective since B is a domain.
Thus ψ is bijective and ϕr is surjective. (We have Br = Bq, ϕr = ϕq.) Since p ⊂ r
also ϕp is surjective.

Proposition 3.6. Every locally surjective homomorphism is an epimorphism in the
category R of rings (commutative, with 1).

Proof. Assume that ϕ:A→ B is locally surjective, and that ψ1:B → C, ψ2:B → C
are two ring homomorphisms with ψ1 ◦ ϕ = ψ2 ◦ ϕ. For every prime ideal q of B the
map ϕq:Aϕ−1(q) → Bq is surjective, thus ψ1q = ψ2q. We conclude that ψ1 = ψ2 (cf.
[Bo, Chap II, §3]).

A fortiori every ws map is an epimorphism in R. We now verify that this class of
epimorphisms has pleasant formal properties.

Proposition 3.7. Let ϕ:A→ B and ψ:B → C be ring homomorphisms.
a) If both ϕ and ψ are weakly surjective then ψ ◦ ϕ is weakly surjective.
b) If ψ ◦ ϕ is weakly surjective then ψ is weakly surjective.

Proof. a): Let p be a prime ideal of A with pC 6= C. We choose a prime ideal r of C
containing pC. Let q: = ψ−1(r) and p̃: = ϕ−1(q). The map ϕp̃:Ap̃ → Bp̃ is surjective.
By lemma 3.2 we know that Bq = Bp̃. Thus also Cp̃ = C⊗AAp̃ = C⊗B (B⊗AAp̃) =
C ⊗B Bp̃ = C ⊗B Bq = Cq, and ψp̃ = ψq, which is surjective. We conclude that
(ψ ◦ ϕ)p̃ = ψp̃ ◦ ϕp̃ is surjective.
b): Let q be a prime ideal of B with qC 6= C. Let p: = ϕ−1(q). The map ψp ◦ ϕp =
(ψ◦ϕ)p is surjective. Thus ψp is surjective. Since ϕ(A\p) ⊂ B\q also ψq is surjective.

Proposition 3.8. If ϕ:A→ B and ψ:B → C are ring homomorphisms and ϕ is ws
then ψϕ(A) is ws in ψ(B).

Proof. We have a commuting square

A
ϕ−→ B

p ↓ ↓ q
ψϕ(A) →֒

i
ψ(B)

with i an inclusion mapping and surjections p and q. Since ϕ and q are ws, the
composite q ◦ ϕ = i ◦ p is ws. Thus also i is ws.

Corollary 3.9. Let ϕ:A→ B a ring homomorphism. ϕ is ws iff ϕ(A) is ws in B.

Proof. Applying Proposition 8 with ψ = idB we see that weak surjectivity of ϕ
implies weak surjectivity of the inclusion mapping i:ϕ(A) →֒ B. Conversely, if i is
ws, then ϕ is ws, since ϕ = i ◦ p with p a surjection.
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It is also easy to verify the corollary directly by using Definition 1.

Proposition 3.10. Let

A
ϕ−→ B

α ↓ ↓ β
C −→

ψ
D

be a commuting square of ring homomorphisms. Assume that ϕ is ws and D =
β(B) · ψ(C). Then ψ is ws.

Proof. Let q ∈ SpecC be given with ψ(q)D 6= D, and let p: = α−1(q). The
commuting square above “extends” to a commuting square

Ap
ϕ̃−→ Bp

α̃ ↓ ↓ β̃
Cq −→

ψ̃

Dq

with ϕ̃ = ϕp, ψ̃ = ψq. We have pB 6= B. The map ϕ̃ is surjective. We are done, if we
verify that ψ̃ is surjective.

Let ξ ∈ Dq be given. Write ξ = x
s with x ∈ D, s ∈ C \ q. Since D = β(B)ψ(C) we

have an equation

x =
∑

i∈I
β(bi)ψ(ci)

with finite index set I, bi ∈ B, ci ∈ C. This equation gives us

ξ =
∑

i∈I
β̃
(bi
1

)
ψ̃
(ci
s

)
.

Since ϕ̃ is surjective we have elements ai ∈ A (i ∈ I) and an element t ∈ A \ p with
bi
1 = ϕ̃(

ai
t ) for every i ∈ I. Then

ξ = ψ̃
( y

sα(t)

)

with y: =
∑
α∈I

α(ai)ci. This proves that ψ̃ is surjective.

In order to understand weakly surjective homomorphisms it suffices by Cor. 9 to
analyze weakly surjective ring extensions.

In the following R is a ring and A is a subring of R.

Definition 2. An R-overring of A is a subring B of R with A ⊂ B.

Proposition 3.11.
a) Let B1 and B2 be R-overrings of A. If A is ws both in B1 and B2 then A is ws
in B1B2.
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b) There exists a unique R-overring M(A,R) of A such that A is ws in M(A,R)
and M(A,R) contains every R-overring of A in which A is ws.

Proof. a) Since A →֒ B1 is ws, the inclusion B2 →֒ B1B2 is ws, as follows from
Proposition 10. Since also A →֒ B2 is ws, the composite A →֒ B2 →֒ B1B2 is ws
(Prop. 7).
b) Let A denote the set of all R-overrings of A in which A is ws. Then A is an upward
directed system of subrings of R. LetM(A,R) denote the union of all these subrings,
which is again a subring of R. A is ws in M(A,R) by the following general remark,
which is immediate from Definition 1.

Remark 3.12. Let (Bi|i ∈ I) be an upward directed system of R-overrings of A. If
A is ws in each Bi then A is ws in

⋃
i∈I

Bi.

Definition 3. We call M(A,R) the weakly surjective hull of A in R.

We now derive criteria for a homomorphism to be weakly surjective. Without essential
loss of generality we concentrate on ring extensions. Let R be a ring and A a subring
of R. Recall from §2 that for p a prime ideal of A we denote by A[p] the pre-image of
Ap under the localization map R→ Rp.

Notation. If x ∈ R then (A:x) denotes the ideal of A consisting of all a ∈ A with
ax ∈ A.

Theorem 3.13 (cf. [G1, Prop. 10] in the case R = QuotA). Let B be an R-overring
of A. The following are equivalent.

(1) A is weakly surjective in B.
(2) B[q] = A[q∩A] for every prime ideal q of B.
(2′) B[q] = A[q∩A] for every maximal ideal q of B.
(3) B ⊂ A[p] for every prime ideal p of A with pB 6= B.
(4) (A:x)B = B for every x ∈ B.

Proof. (1) ⇐⇒ (3): We verify the following: For any p ∈ SpecA

B ⊂ A[p] ⇐⇒ Bp = Ap.

Then we will be done according to Def. 1.

⇒: If B ⊂ A[p], then Bp ⊂ (A[p])p = Ap.
⇐: If Bp = Ap then the pre-image A[p] of Ap under the localization map R → Rp
contains B.

(3) ⇒ (2): Let q ∈ SpecB and p: = q ∩ A. Of course, A[p] ⊂ B[q]. In order to prove
the converse inclusion we first remark that pB ⊂ q, hence pB 6= B. By hypothesis
B ⊂ A[p]. Let x ∈ B[q] be given. Choose b ∈ B \ q with bx =: b1 ∈ B. We then have
elements a, a1 in A \ p with ab ∈ A, a1b1 ∈ A. Since a ∈ B \ q, also ab ∈ B \ q, hence
ab ∈ A ∩ (B \ q) = A \ p. Also a1ab ∈ A \ p. From (a1ab)x = a(a1bx) = a(a1b1) ∈ A
we see that x ∈ A[p].
(2) ⇒ (2′): trivial.
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(2′) ⇒ (4): Let x ∈ B be given. Suppose that (A:x)B 6= B. We choose a maximal
ideal q of B containing (A:x)B. Let p: = q∩A. Then (A:x) ⊂ p. But it follows from
(2′) that x ∈ A[p], i.e. (A:x) 6⊂ p. This contradiction proves that (A:x)B = B.
(4) ⇒ (3): Let p be a prime ideal of A with pB 6= B. Suppose there exists some
x ∈ B with x 6∈ A[p]. Then (A:x) ⊂ p. Thus (A:x)B ⊂ pB ⊂= B. This contradicts
the assumption (4). We conclude that B ⊂ A[p].

Remarks. In the case of domains Richman [Ri, §2] has studied the properties (3), (4)
under the name “good extensions”. If A ⊂ B and B is a domain then good means the
same as weakly surjective and as locally surjective. Theorem 13 has a close relation
to work of Lazard [L, Chap. IV] and Akiba [A], cf. Theorem 4.4 in the next section.

Definition 4. [Lb, §2.3].
a) An ideal a of a ring C is called dense in C if its annulator ideal AnnC(a) is zero.
b) A ring of quotients of A is a ring B ⊃ A such that (A:x)B is dense in B for
every x ∈ B.

We recall the following important fact from Lambek’s book [Lb, §2.3]. For any ring
A there exists a ring of quotients Q(A) of A, explicitly constructed in [Lb], such that
for any other ring of quotients B of A there exists a unique homomorphism from B
to Q(A) over A. Every such homomorphism is injective. Q(A) is called the complete
ring of quotients of A. Of course Q(A) contains the total quotient ring Quot(A)
{also called the “classical” quotient ring of A}. For A Noetherian it is known that
QuotA = Q(A), cf. [A, Prop. 1], but in general these two extensions of A may be
different.

From condition (4) in Theorem 13 it is clear that, if A ⊂ B is a weakly surjective
ring extension, then B is a ring of quotients of A. Thus every weakly surjective ring
extension of A embeds into Q(A) in a unique way.

Definition 5. The weakly surjective hull M(A) of A is defined as the ws hull
M(A,Q(A)) of A in Q(A).

From our discussion of the hulls M(A,R) above the following is evident.

Proposition 3.14. For every weakly surjective ring extension A ⊂ B there exists a
unique homomorphism B →M(A) over A, and this is a monomorphism.

Thus, without serious abuse, we may regard any ws extensionA ⊂ B as a subextension
of A ⊂M(A). In particular, A ⊂ QuotA ⊂M(A).

Remark 3.15. If C is any subring of M(A) containing A then M(C) = M(A). In
particular, MM(A) =M(A).

Proof. Since C is ws in M(A) we have embeddings C ⊂M(A) ⊂M(C). Now A is
ws inM(A) andM(A) is ws inM(C), hence A is ws inM(C). Due to the maximality
of M(A) we have M(C) =M(A).

Caution. In general, if C is a subring ofM(A) containing A, then A is not necessarily
ws in C (cf. §5).
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Corollary 3.16. Let A ⊂ B1 and A ⊂ B2 be weakly surjective extensions. Then
there exists at most one homomorphism λ:B1 → B2 over A, and λ is injective.

Proof. We have unique homomorphisms µi:Bi → M(A) over A (i = 1, 2), and
they both are injective. If λ:B1 → B2 is a homomorphism over A, this implies that
µ2 ◦ λ = µ1. Thus λ is injective and is uniquely determined by µ1 and µ2.

Of course, the uniqueness of λ is a priori clear, since A →֒ B1 is an epimorphism
(Prop. 6).

§4 More on weakly surjective extensions

Having set the stage we discuss some properties of weakly surjective ring extensions.
We are mainly interested in functorial properties and the behavior of ideals.

In the following we assume that A ⊂ B is a weakly surjective ring extension.

Proposition 4.1. Every weakly surjective ring extension A ⊂ B is flat (i.e., B is a
flat A-module).

Proof. Let α:M ′ →M be an injective homomorphism of A-modules.
We verify that α⊗AB:M ′⊗AB →M ⊗AB is again injective. Let q be a prime ideal
of B and p: = q ∩A. Then Ap = Bq, thus

(α⊗A B)q = (α⊗A B)⊗B Bq = α⊗A Bq = α⊗A Ap.

Since A → Ap is flat the homomorphism (α ⊗A B)q is injective. Since this holds for
every q ∈ SpecB we conclude that α⊗A B is injective.

Proposition 4.2. Let A ⊂ B1 and A ⊂ B2 be weakly surjective ring extensions.
a) Then the natural map A → B1 ⊗A B2 is injective and weakly surjective, hence
may be regarded as a ws extension.

b) If both A ⊂ B1 and A ⊂ B2 are subextensions of a ring extension A ⊂ R, then
the natural map B1 ⊗A B2 → B1B2 is an isomorphism, in short, B1 ⊗A B2 = B1B2.

Proof. a) Since B1 is flat over A the natural map B1 → B1⊗AB2 is injective. Also
B2 → B1 ⊗A B2 and A→ B1 ⊗B2 are injective. We regard A,B1, B2 as subrings of
B1 ⊗A B2 and conclude from Propositions 3.7.a and 3.8. that A is ws in B1 ⊗B2.
b) In the situation B1 ⊂ R, B2 ⊂ R the ring A is also ws in B1B2. The natural map
λ:B1 ⊗A B2 → B1B2 is a surjective homomorphism over A. By Cor.3.16 λ is also
injective, hence is an isomorphism.

Example 4.3. If ϕ:A → B is a weakly surjective homomorphism then the natural
map B ⊗A B −→ B, x⊗ y 7−→ xy, is an isomorphism.
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This follows from the proposition since B⊗AB = B⊗ϕ(A)B. The statement is just a
reformulation of the fact, already known to us (Prop. 3.6), that ϕ is an epimorphism,
cf. e.g. [St, p. 380].

We now invoke the important work of Lazard in his thesis [L] and of Akiba [A]. We
have seen that every injective weakly surjective homomorphism is a flat epimorphism
(in the category R of rings). By [L, IV. Prop. 2.4] or [A, Th.1] the converse also
holds.

Theorem 4.4 (Lazard, Akiba). An injective homomorphism ϕ is weakly surjective
iff ϕ is a flat epimorphism.

Proposition 4.5. Let A ⊂ B be a weakly surjective extension and C a subring of
B containing A. Then A ⊂ C is weakly surjective iff C is flat over A.

Proof. We know already that weak surjectivity of A →֒ C implies flatness. Con-
versely, if A →֒ C is flat then A →֒ C is epimorphic by the theory of Lazard [L, IV
Cor. 3.2], hence is ws.

Up to very minor points also the results to follow, up to Proposition 10, are contained
in Lazard’s thesis [L], and many more. For the convenience of the reader we give
short proofs in the present frame work. Our focus is different from Lazard’s, since we
only strive for the understanding of a special class of flat epimorphic extensions, the
Prüfer extensions to be defined in §5.
As before we are given a ws extension A ⊂ B.

Proposition 4.6. Let b be an ideal of B and a: = b ∩A. Then b = aB.

Proof. Let c: = aB. Then c ⊂ b and c ∩ A = a. We have a commuting triangle of
natural homomorphisms

B/c
αր

A/a ↓ λ
β
ց
B/b

with α and β injective (and λ surjective). Both α and β are ws. Thus λ is injective
(hence an isomorphism) by Cor. 3.16. This means that c = b.

The nil radical of a ring C will be denoted by NilC.

Example 4.7. NilB = (NilA)B.

Indeed, we have (NilB) ∩A = NilA.

Theorem 4.8. Let p be a prime ideal of A with pB 6= B. Then q: = pB is a prime
ideal of B. This is the unique prime ideal of B lying over p. If B is given as a
subextension of an extension A ⊂ R then q = p[p] ∩B.
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Proof. We have Ap = Bp. Thus pBp is the unique maximal ideal of Bp. Let q
denote the pre-image of pBp under the localization map B → Bp. From the natural
commuting triangle

A →֒ B
ց ւ
Ap = Bp

we read off that q ∩ A = p. By Prop. 6 we have pB = q. Thus pB is a prime ideal.
Now assume that A ⊂ B ⊂ R. Then B ⊂ A[p] by Theorem 3.13. q

′: = p[p] ∩ B is a
prime ideal of B with q′ ∩A = p[p] ∩A = p. Thus q′ = q.

Remark 4.9. If pB = B then certainly pB 6= p[p] ∩B.

Let X(B/A) denote the image of the restriction map q 7→ q∩A from SpecB to SpecA.
We endow X(B/A) with the subspace topology in SpecA. It follows from Theorem 8
that X(B/A) is the set of all p ∈ SpecA with pB 6= B.

Proposition 4.10. The restriction map SpecB → SpecA is a homeomorphism from
SpecB to X(B/A). The set X(B/A) is pro-constructible and dense in SpecA. It is
closed under generalizations in SpecA.

Proof. We use the framework of spectral spaces, cf. [Ho] or e.g. [KS, Chap. III].
The restriction map SpecB → SpecA is spectral. Thus X(B/A) is pro-constructible
in SpecA, hence is itself a spectral space. Again by Theorem 8 the restriction map
r: SpecB → X(B/A) is bijective. If x, y ∈ SpecB and r(y) is a specialization of r(x)
then y is a specialization of x. Since r is spectral this implies that r is a homeomor-
phism.

Since A is a subring of B, the image X(B/A) of the restriction map contains all
minimal prime ideals of A and is dense in SpecA. If p ∈ SpecA and pB 6= B, then
rB 6= B for the prime ideals r of A contained in p. Thus X(B/A) is closed under
generalizations. {This already follows from the fact that A →֒ B is flat, hence the
“going down theorem” holds for prime ideals.}

We briefly discuss relations between weakly surjective extensions and integral exten-
sions.

Proposition 4.11(cf. [G1, Prop. 11]). If a ring homomorphism ϕ:A → B is both
weakly surjective and integral then ϕ is surjective.

Proof. Replacing A by ϕ(A) we assume without loss of generality that A ⊂ B and
ϕ is the inclusion mapping. We have to prove that A = B.

Suppose there exists an element x ∈ B \A. Then (A:x) is a proper ideal of A. Since
B is integral over A, this implies that (A:x)B 6= B. This contradicts property (4) in
Theorem 3.13. Thus A = B.

Proposition 4.12. ([Ri, §4] for R a field, [G1, Prop. 11] for R = QuotA). Assume
that A ⊂ B ⊂ R are ring extensions, and that A is weakly surjective in B. For the
integral closures Ã and B̃ of A and B in R the following holds.
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i) B̃ = Ã ·B.
ii) Ã is weakly surjective in B̃.

Proof. The argument in [Ri] (p.797, proof of Prop.1) extends to our more general
situation.

§5 Basic theory of relative Prüfer rings

Let R be a ring and A a subring of R.

Definition 1 [G2, §4] ∗) A is called an R-Prüfer ring, or a Prüfer subring of R, if
(A[p], p[p]) is a Manis pair in R for every maximal ideal p of A. We then also say that
A is Prüfer in R, or that R is a Prüfer extension of A.

N.B. According to Prop. 2.10 this holds iff (Ap, pp) is a Manis pair in Rp for every
maximal ideal p of A.

In particular, if R is a field, we arrive at the classical notion of a Prüfer domain.

Proposition 5.1. Assume that A is Prüfer in R.

i) For every prime ideal p of A the pair (A[p], p[p]) is Manis in R.
ii) The following are equivalent.

(1) A is a Manis subring of R.
(2) A is a valuation subring of R.
(3) R \A is multiplicatively closed, i.e. (R \A)(R \A) ⊂ R \A.
Moreover, if A 6= R and (1) – (3) hold then (A, pA) is a Manis pair of R. {pA had
been defined in §2, Def.2.}

Proof. i) Let p be a prime ideal of A. We choose a maximal ideal m ⊃ p. There
exists a Manis valuation v on R with Av = A[m], pv = m[m]. If A ∩ supp v 6⊂ p, then
we choose some s ∈ (supp v) ∩ (A \ p). We have sR ⊂ A[m] ⊂ A[p], and we conclude
that A[p] = R. Thus (A[p], p[p]) is certainly Manis in R in this case. Assume now that
A ∩ supp v ⊂ p. Then it follows from Prop.2.11 that (A[p], p[p]) is Manis in R.
In assertion (ii) the implications (1)⇒ (2)⇒ (3) are trivial. We prove (3)⇒ (1). We
may assume A 6= R. Let p: = pA. Let x ∈ A[p] be given. There exists some d ∈ A \ p
with dx ∈ A. If x 6∈ A this would imply d ∈ p by definition of p = pA. Thus x ∈ A.
This proves A[p] ⊂ A, i.e. A[p] = A. Then p[p] ⊂ A, hence p = p[p] ∩ A = p[p]. Since
A is Prüfer in R we conclude that the pair (A, p) is Manis in R.

∗) It turned out that Griffin’s definition is not quite “correct”. He only demands that the A[p] are
Manis subrings of R. For a reasonable theory it is necessary to include a condition on the p[p], cf.

also [Gr, p.285].
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The following theorem gives a bunch of criteria for a given ring extension A ⊂ R to
be Prüfer. It is here that the theory of Manis valuations and the theory of weakly
surjective ring extensions, displayed in §1, §2 and in §3, §4 respectively, come together.

Theorem 5.2. The following are equivalent.

(1) A is an R-Prüfer ring.
(2) A is weakly surjective in every R-overring.
(2′) A is weakly surjective in A[x] for every x ∈ R.
(3) If B is any R-overring of A then (A:x)B = B for every x ∈ B.
(4) Every R-overring of A is integrally closed in R.
(5) A is integrally closed in R, and A[x] = A[xn] for every x ∈ R and n ∈ N.
(5′) A is integrally closed in R, and A[x] = A[x2] for every x ∈ R.
(6) A is integrally closed in R. For every x ∈ R there exists a polynomial F [T ] =

d∑
i=0

aiT
i with all ai ∈ A, aj = 1 for at least one index j, such that F (x) = 0.

(7) A is integrally closed in R. For every x ∈ R and every maximal ideal p of A
there exists a polynomial Fx,p(T ) ∈ A[T ] \ p[T ] such that Fx,p(x) = 0.

(8) (A:x) + x(A:x) = A for every x ∈ R.
(9) A is integrally closed in R. For every overring B of R the restriction map

SpecB → SpecA is injective.
(9′) A is integrally closed in R. If B is an R-overring of A and q ⊂ q′ are prime

ideals of B with q ∩A = q′ ∩A then q = q′.
(10) A is integrally closed in R. For every prime ideal p of A there exists a unique

Manis pair (B, q) in R over (A, p), i.e. with A ⊂ B, q ∩A = p.
(11) For every R-overring B of A the inclusion map A →֒ B is an epimorphism (in

the category of rings).
(11′) For every x ∈ R the inclusion map A →֒ A[x] is an epimorphism.

Remarks. The equivalence of (1), (2), (3), (4) had already been stated by Griffin
[G2, Prop.6, Th.7], but he made additional assumptions and did not present the
proofs. On the other hand, Griffin weakened the hypothesis that our rings have unit
elements. The equivalence of (1), (4), (8) has been proved by Eggert for R = Q(A),
the complete ring of quotients of A [Eg, Th.2]. The equivalence of (1) and any of the
conditions (4) - (7) is a generalization of classical results for R a field (cf. e.g. [E,
Th.11.10]). The equivalence of (1) and (11) for R a field has been proved by Storrer
[St1]. The equivalence of (1), (2), (4), (8) has been stated in full generality by Rhodes
[Rh, Th.2.1]. Unfortunately his proof contains a gap (cf. Introduction to the present
paper). E.D. Davis studied extensions A ⊂ R with property (4) under the name
“normal pairs”. In the case of domains some of our results in this section can be read
off from his paper [Da].

Proof. (1) ⇒ (2): Let B be an R-overring of A and q a prime ideal of B. Let
p: = q ∩ A. We verify that A[p] = B[q] and then will be done by Theorem 3.13. Of
course, A[p] ⊂ B[q]. Let x ∈ R \A[p] be given. We prove that x 6∈ B[q], and then will
be done.

Since (A[p], p[p]) is a Manis pair in R there exists an element y of p[p] with xy ∈
A[p] \ p[p]. We choose elements a and c in A \ p with a(xy) ∈ A and cy ∈ p. We
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have a(xy) ∈ A \ p. Suppose that x ∈ B[q]. Then there exists some b ∈ B \ q with
bx ∈ B. We have a(bx)(cy) ∈ q. On the other hand, a(bx)(cy) = bc(axy) ∈ B \ q.
This contradiction proves that x 6∈ B[q].
(2) ⇒ (2′): trivial.
(2) ⇔ (3): Clear from Th. 3.13.
(2′) ⇒ (3): Let x ∈ B. Then (A:x)A[x] = A[x]. A fortiori (A:x)B = B.
(2) ⇒ (4): Let B be an R-overring of A, and let C = B̃ denote the integral closure
of B in R. By (2) A is ws in C. Thus B is ws in C (Prop. 3.7.b). Prop. 4.11 tells us
that C = B, i.e. B is integrally closed in R.

(4)⇒ (5): x is integral over A[xn]. By assumption (4) the subring A[xn] is integrally
closed in R. Thus x ∈ A[xn].
(5) ⇒ (5′): trivial.

(5′) ⇒ (6): For every x ∈ R we have a relation x =
m∑
i=0

aix
2i with m ∈ N0, ai ∈ A.

(6) ⇒ (7): trivial.
(7) ⇒ (1): Theorem 2.12 tells us that (A[p], p[p]) is a Manis pair in R for every
p ∈ SpecA.
(1) ⇒ (8): Suppose there exists some x ∈ R with I: = (A:x) + x(A:x) 6= A. We
choose a maximal ideal m of A containing I. Then x ∈ R \A[m] since (A:x) ⊂ m. By
(1) and Theorem 2.4 (iii) there exists some x′ ∈ m[m] with xx′ ∈ A[m] \m[m]. We then
choose some d ∈ A \ m with dx′ ∈ m and dxx′ ∈ A \ m. It follows that dx′ ∈ (A:x)
and dxx′ ∈ x(A:x) ⊂ m, a contradiction. Thus (8) holds.
(8)⇒ (1): We prove for a given prime ideal p of A that the pair (A[p], p[p]) is Manis in
R by verifying condition (iii) in Theorem 2.4. Let x ∈ R \A[p]. Then (A:x) ⊂ p. By
(8) we know that x(A:x) 6⊂ p. Thus there exists some x′ ∈ (A:x) ⊂ p with xx′ ∈ A\p.
The equivalence of (1), (9), (9′), (10) is evident from Theorem 2.14. The implication
(2′)⇒ (11′) follows from the fact that every weakly surjective map is an epimorphism
(cf. Prop.3.6).
(11′) ⇒ (11): Suppose there exists an R-overring B of A such that the inclusion map
A →֒ B is not an epimorphism. Then there exist two ring homomorphisms ϕ1, ϕ2
from B to some ring C with ϕ1|A = ϕ2|A but ϕ1 6= ϕ2. We choose some x ∈ B with
ϕ1(x) 6= ϕ2(x). The restrictions ϕ1|A[x] and ϕ2|A[x] are different, but ϕ1|A = ϕ2|A.
This contradicts the assumption (11′).
(11) ⇒ (4): Let B be an R-overring of A, and let x ∈ R be integral over B. We
want to prove that x ∈ B. The inclusion A →֒ B[x] is an epimorphism. Thus (for
purely categorial reasons) also the inclusion B →֒ B[x] is an epimorphism. By an
easy proposition of Lazard [L, Chap. IV, Prop.1.7], B[x] = B.

From condition (4) in this theorem one obtains immediately

Corollary 5.3. Let B be an R-overring of A. If A is Prüfer in R then B is Prüfer
in R and A is Prüfer in B.

From condition (8) in the theorem we obtain
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Corollary 5.4. If A is Prüfer in R then for any x ∈ R the ideal (A:x) is generated
by two elements.

Indeed, we have elements a and b in (A:x) with 1 = a + xb. If u ∈ (A:x) then
u = ua+ (ux)b. Thus (A:x) = Aa+Ab.

Theorem 2 contains the fact that every R-Prüfer ring is integrally closed in R. The
reader might ask for a more direct proof of this statement. Indeed this follows from
the definition of R-Prüfer rings and an elementary fact which holds without any
assumption about our subring A of R.

Remark 5.5. If M is an A-submodule of R, then

M =
⋂

p∈Ω
A[p] ·M =

⋂

p∈Ω
M[p],

with Ω denoting the set of maximal ideals of A. In particular A =
⋂
p∈Ω

A[p].

Proof. Of course, M ⊂ A[p]M ⊂ M[p] for every p ∈ Ω. Let x ∈
⋂
p∈Ω

M[p] be given.

Consider the ideal a: = {a ∈ A | ax ∈M}. For every p ∈ Ω the intersection a∩ (A\p)
is not empty, i.e. a 6⊂ p. Thus a = A, i.e. x ∈M .

We now look for permanence properties of relative Prüfer rings.

Theorem 5.6 [Rh, Prop.3.1.3]. Assume that A is a Prüfer subring of B and B is a
Prüfer subring of C. Then A is Prüfer in C.

Proof (cf. [Rh, loc.cit]). We verify for a given prime ideal p of A that the pair
(Ap, pp) is Manis in Cp. Replacing A,B,C by Ap, Bp, Cp we assume without loss of
generality that A is local and p is the maximal ideal of A. We will apply Theorem 2.5.
By this theorem (or Prop.1.3) B is local, and the maximal ideal q of B is contained
in p. Let x ∈ C \A be given. If x ∈ B then, by Theorem 2.5, x ∈ B∗ and x−1 ∈ p. If
x 6∈ B then, by the same theorem, x ∈ C∗ and x−1 ∈ q ⊂ p. Thus in both cases x is
a unit in C and x−1 ∈ A. We conclude, again by Theorem 2.5, that (A, p) is Manis
in C.

Proposition 5.7. Assume that A is a Prüfer subring of B. Then, for any ring
homomorphism ψ:B → D the ring ψ(A) is Prüfer in ψ(B).

Proof. Let C′ be a subring of ψ(B) containing ψ(A). We verify that ψ(A) is
weakly surjective in C′, and then will be done by condition (2) in Theorem 2. Indeed,
C: = ψ−1(C′) is a subring of B containing A. Thus A is weakly surjective in C. By
Proposition 3.8 ψ(A) is weakly surjective in ψ(C) = C′.

Proposition 5.8 [Rh, Prop.3.1.1]. Let A ⊂ R be a ring extension and I an ideal of
R contained in A. Then A is Prüfer in R iff A/I is Prüfer in R/I.
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Proof. If A is Prüfer in R then the preceding proposition tells us that A/I is Prüfer
in R/I. Assume now that the latter holds. We verify condition (4) in Theorem 2 and
then will be done.

Let B be an R-overring of A. Then B/I is an R/I-overring of A/I. Thus B/I is
integrally closed in R/I. Let x ∈ R be integral over B. Then x + I ∈ B/I. Since
I ⊂ B we conclude that x ∈ B. Thus B is integrally closed in R.

Theorem 5.9. Let ϕ:R→ R′ be an integral ring homomorphism. Let A be a Prüfer
subring of R, and let A′ denote the integral closure of ϕ(A) in R′. Then A′ is a Prüfer
subring of R′.

Proof. We verify condition (7) in Theorem 2. Let an element x of R′ and a prime
ideal q of R′ be given. Let p: = ϕ−1(q). We look for a polynomial G(T ) ∈ A[T ] \
p[T ] with Gϕ(x) = 0, where Gϕ(T ) denotes the polynomial obtained from G(T ) by
applying ϕ to the coefficients.

We start with a polynomial

F (T ) = Tn + a1T
n−1 + · · ·+ an ∈ R[T ]

such that Fϕ(x) = 0. Such a polynomial exists since ϕ is integral. Let v:R −→−→ Γ∪∞
denote the Manis valuation on R with Av = A[p], pv = p[p]. We choose an index
r ∈ {1, . . . , n} with v(ar) = Min{v(ai) | 1 ≤ i ≤ n}. We distinguish two cases.

Case 1: v(ar) = ∞. Now certainly ai ∈ A[p] for i = 1, 2, . . . , n. We choose some
d ∈ A \ p with dai ∈ A for all i. The polynomial G(T ):= dF (T ) does the job.

Case 2: v(ar) <∞. We choose some b ∈ R with v(bar) = 0. This is possible since v
is Manis. We have

bai ∈ A[p] for every i ∈ {1, . . . , n}
and bar 6∈ p[p]. We choose some c ∈ A \ p with cbai ∈ A for i = 1, . . . , n. The
polynomial G(T ):= cbF (T ) does the job.

Remark. Since ϕ(A) is weakly surjective in ϕ(R) we conclude from Prop.4.12 that
R′ = A′ · ϕ(R).

Theorem 5.10. Let A be a subring of R and B,C be two R-overrings of A. Assume
that A is Prüfer in B and weakly surjective in C. Then C is Prüfer in BC.

Proof. We pick a prime ideal q of C and verify that (Cq, qq) is a Manis pair in
(BC)q.

Let p: = q∩A. Then Ap = Cp = Cq and qq = qp = pp (cf. Lemma 3.2). Thus C \ q is
the saturum of the multiplicative set A\p in C. Notice also that BC = B⊗AC (Prop.
4.2). Thus (BC)p = Bp ⊗Ap Cp = Bp, more precisely, the subrings (BC)p and Bp of
Rp are equal. We conclude that Bq = Bp, (BC)q = (BC)p = Bp, (Cq, qq) = (Ap, pp).
Since A is Prüfer in B, the pair (Cq, qq) is Manis in (BC)q.
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Corollary 5.11. Let A be a subring of R and B,C be two R-overrings of A. If A
is Prüfer in B and in C, then A is Prüfer in BC.

This follows from theorems 10 and 6.

Counterexample 5.12. If A ⊂ B is a Prüfer extension and A ⊂ C is a flat ring
extension then C is not necessarily Prüfer in B ⊗A C. Here is a simple example:
Let A be a non trivial valuation ring of a field K. Then A is Prüfer in K, but the
polynomial ring A[T ] in one variable T is not Prüfer in K[T ].

Indeed, let m be the maximal ideal of A and let M : = m+TA[T ], which is a maximal
ideal of C: = A[T ]. In the extension K[T ] of C we have C[M] = C, M[M] = M , as is
easily verified. The pair (C,M) is not Manis in K[T ].

Remark 5.13. Let A ⊂ R be a ring extension and (Bi|i ∈ I) an upward directed
family of R-overrings of A. Assume that A is Prüfer in every Bi. Then A is Prüfer
in B: =

⋃
i∈I

Bi.

Proof. Let C be an R-overring of A contained in B. We verify that A is weakly
surjective in C and then will be done by Theorem 2. Now C is the union of the
upward directed family of subrings (C ∩ Bi|i ∈ I). A is weakly surjective in C ∩ Bi
for every i ∈ I. Thus A is weakly surjective in C (Remark 3.12). q.e.d.

We now have the means to establish a theory of “Prüfer hulls” analogous to the theory
of weakly surjective hulls in §3.

Theorem 5.14. Let A ⊂ R be a ring extension. Then there exists a unique R-
overring Pr(A,R) of A such that A is Prüfer in Pr(A,R), and Pr(A,R) contains every
R-overring of A in which A is Prüfer.

This follows from Corollary 11 and Remark 13 (cf. the proof of Prop. 3.11).

Definition 2. We call Pr(A,R) the Prüfer hull of A in R.

Of course, Pr(A,R) is contained in the weakly surjective hull M(A,R) of A in R, and
Pr(A,R) = Pr(A,C) for every R-overring C with C ⊃ Pr(A,R). Also Pr(A,R) =
Pr(B,R), if B is any R-overring of A contained in Pr(A,R).

Definition 3. For any ring A the Prüfer hull P (A) of A is defined as the Prüfer hull
of A in the complete quotient ring Q(A) (cf. §3), P (A):= Pr(A,Q(A)).
Of course, P (A) is contained in the weakly surjective hullM(A). The classical Prüfer
rings (with zero divisors) are precisely the rings A with QuotA ⊂ P (A). If A′ is a
weakly surjective ring extension of A, contained in M(A) without loss of generality,
then
A′ · P (A) ⊂ P (A′) by Theorem 10 above.

Example 5.15. Let V be an affine algebraic variety over some real closed field k. The
ring R of (k-valued, continuous) semialgebraic functions on V (k) is “Prüfer closed”,
i.e. P (R) = R. This has been proved recently by Niels Schwartz [Sch2] within the
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framework of his theory of real closed rings. His proof would take us here too far
afield.

Let d be a natural number. In §6 we will see that R is Prüfer over the subring
A = k

[
1

1+x2d
|x ∈ R

]
generated by k and the elements 1

1+x2d
, x ∈ R, cf. Th.6.8. Thus

R = P (A).

§6 Examples of convenient ring extensions and relative Prüfer rings

In this section R is a ring and A is a subring of R. We are looking for handy
criteria which guarantee that A is Manis or Prüfer in R, and we will discuss examples
emanating from some of these criteria.

Theorem 6.1. Assume that A is integrally closed in R. Assume further that for
every x ∈ R \ A there exists a monic polynomial F (T ) ∈ A[T ] and a unimodular
polynomial G(T ) ∈ A[T ] (i.e. the ideal of A generated by all coefficients of G(T ) is
A), such that F (x) ∈ R∗, degG < degF and G(x)/F (x) ∈ A. Then A is Prüfer in R.

Proof. We verify that for a given element x of R and a given maximal ideal m of A
there exists a polynomial H(T ) ∈ A[T ] \ m[T ] with H(x) = 0, and then will be done
by Theorem 5.2.

If x ∈ A we take H(T ) = T − x. Now let x ∈ R \ A. We choose polynomials
F (T ), G(T ) as indicated in the theorem. We put b: = G(x)/F (x) ∈ A and take
H(T ):= bF (T )−G(T ). Then H(x) = 0. If b ∈ m then H(T ) 6∈ m[T ], since G(T ) is
unimodular. If b 6∈ m then again H(T ) 6∈ m[T ], since degG < degF . q.e.d.

Definition 1. We call a valuation v onR a Prüfer-Manis valuation (or PM-valuation,
for short), if v is Manis and Av is Prüfer in R. We call a subring B of R a Prüfer-
Manis subring of R if B = Av for some Prüfer-Manis valuation v on R. We then also
say that the ring B is Prüfer-Manis (or PM, for short) in R.

If A is Prüfer in R and B is an R-overring of A which is Manis in R, then, of course,
B is PM in R. Thus the valuations which really matter in the theory of relative
Prüfer rings are the PM-valuations and not just the Manis valuations. We defer a
systematic theory of PM-subrings of R to later chapters, but now look for examples
of such rings.

Theorem 6.2. Assume that A 6= R and the set S: = R \A is multiplicatively closed.
Assume further that for every x ∈ R\A there exists a monic polynomial F (T ) ∈ A[T ]
of degree ≥ 1 with F (x) ∈ R∗. Then A is PM in R.

Proof. We verify that A is Prüfer in R and then will be done by Prop. 5.1.ii. We
know from Theorem 2.1 that A is integrally closed in R. Let x ∈ R \A be given. We
choose a polynomial F (T ) ∈ A[T ] as indicated in the theorem. Certainly F (x) ∈ R\A,
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since A is integrally closed in R. We conclude from the equation 1 = F (x) · F (x)−1
that 1/F (x) ∈ A, since otherwise we would get the contradiction 1 ∈ R \ A. Now
Theorem 1 tells us that A is Prüfer.

Definition 2. a) Let k be a subring of R. We say that R is convenient over k, if
every R-overring A of k which has a multiplicatively closed complement R \A is PM
in R.
b) We call the ring R convenient, if R is convenient over its prime ring Z · 1.

Example 1. Every field is a convenient ring.

The idea behind Definition 2 is that, as far as valuations are concerned, a convenient
ring is nearly as “convenient” as a field. If R is only convenient over some subring
k then at least this should be true for the (special) valuations v with Av ⊃ k. In
particular we expect that for a convenient ring extension k ⊂ R we have a theory of
R-Prüfer rings A ⊃ k nearly as good as in the field case.
From Theorem 2 we extract

Scholium 6.3. Let k be a subring of R with the following property.
(∗) For every x ∈ R \ k there exists some monic polynomial Fx(T ) ∈ k[T ], Fx 6= 1,
with Fx(x) ∈ R∗.
Then R is convenient over k.

We give some examples of ring extensions which are convenient and, up to the first
and the last one, even fulfill condition (∗).

Example 2 (Generalization of Example 1). If R has Krull dimension zero then R is
convenient.

Proof. Let A be a subring of R with A 6= R and R \A multiplicatively closed. We
prove that A is Prüfer in R. Then it will follow from Prop. 5.1.ii that A is also Manis
in R.

The ring A is integrally closed in R by Theorem 2.1.ii. Given an element x ∈ R we
prove that there exists a unimodular polynomial F (T ) ∈ A[T ] with F (x) = 0. Then
we will be done by Theorem 5.2.

If x ∈ A take F (T ) = T − x. Now let x ∈ R \ A. There exists some n ∈ N and
y ∈ R with xn+1y = xn, cf. [Huc, Th.3.5]. Then (xy)n+1 = (xy)n. Since A is
integrally closed in R, this implies xy ∈ A. Since R \A is closed under multiplication
we conclude that y ∈ A. The polynomial F (T ) = yT n+1 − Tn fits our needs.

Example 3. Every ring R with 1 + ΣR2 ⊂ R∗ is convenient. Indeed, it suffices to
know that 1 +R2 ⊂ R∗ in order to conclude that R is convenient.

Comment. This is the most important class of rings we have in mind for use in
real algebra. Recall that for every ring A the localization Σ−1A with respect to the
multiplicative set Σ:= 1 + ΣA2 is such a ring, and that A and Σ−1A have the same
real spectrum. For many problems in real algebra we may replace A by Σ−1A and
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thus arrive at a convenient ring. {If A is not real, i.e. −1 ∈ ΣA2, then Σ−1A is the
null ring, but this does not bother us.}

Subexample 3 bis. If A is any ring and X is a pro-constructible subset of the real
spectrum SperA then the ring C(X,A) of abstract semialgebraic functions on X (cf.
[Sch]) is convenient, since in this ring R we have 1 + ΣR2 ⊂ R∗. In general C(X,A)
has very many zero divisors.

Example 4. If more generally R is a ring such that, for every x ∈ R, there exists a
natural number d with 1 + xd ∈ R∗, then R is convenient.
Such rings (with d even) seem to be important in the theory of orderings of higher
level and higher real spectra (cf. e.g. [B2], [B3], [P], [BP], [Be]).

Example 5. Let A be an affine algebra over a field k which is not algebraically closed.
Let V (k) denote the set of rational points of the associated k-variety V . {We may
identify V (k) = Homk(A, k).} Let U be a k-Zariski-open subset of V (k). {In other
words, U is open in the subspace topology of V (k) in SpecA.} Let finally S be the
multiplicative set consisting of all a ∈ A with a(p) 6= 0 for every p ∈ U . Then S−1A
is convenient over k.

Proof. We choose a monic polynomial F (T ) ∈ k[T ], F 6= 1, in one variable T which
has no zeros in k. Let x ∈ S−1A be given. Write x = a

s with a ∈ A, s ∈ S, and

F (T ) = T d+c1T
d−1+ · · ·+cd. We have F (x) = b

sd
with b = ad+c1a

d−1s+ · · ·+cdsd.
For every point p ∈ U we have b(p)

s(p)d
= F

(a(p)
s(p)

)
6= 0, hence b(p) 6= 0. Thus b ∈ S and

F (x) is a unit in S−1A.

Definition 3. We call this ring S−1A the ring of regular functions on U .

If the field k is real closed and U = V (k) then S is the set of divisors of the elements
in Σ:= 1 + ΣA2, as is well known (e.g. [BCR, Cor. 4.4.5.], [KS, p.142]). Thus
S−1A = Σ−1A, and we are back to Example 3.

Example 6. If R is a semi-local ring containing an infinite field k then R is convenient
over k. Indeed, if R has the maximal ideals m1, . . . ,mr, then for a given x ∈ R we
find some λ ∈ k with x− λ 6∈ mi for i = 1, . . . , r, hence x− λ ∈ R∗.

If k is any ring and (Rα|α ∈ I) is a direct system of k-algebras fulfilling condition (∗)
from above then the same holds for the inductive limit lim

−→
Rα. Thus Example 6 can

be amplified to

Example 7. An inductive limit of semi-local k-algebras over some infinite field k
is convenient over k. In particular, if R is a semi-local algebra over some infinite
field k, the infinite Galois extensions of R (cf. e.g. [K], there called “coverings”) are
convenient over k.

Example 8. Assume that R is the total quotient ring of A, R = QuotA. The ring
A is called additively regular [Huc, p.32], if for every x ∈ R there exists some a ∈ A
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such that x+ a is a “regular element”, i.e. a unit in R. Of course then condition (∗)
is satisfied for k: = A, and thus R is convenient over A. As Huckaba observes [Huc,
p.32 f], if A is Noetherian or, more generally, if the set of zero divisors of A is a union
of finitely many prime ideals, then A is additively regular [Huc, p.32 f].

Example 9. Assume again that R = QuotA. The ring A is called a Marot ring
[Huc, p.31], if each ideal of A which contains a non zero divisor is generated by a
set of non zero divisors. Marot rings form a very broad class of rings. In particular,
every additively regular ring is Marot [Huc, p.33 f]. If A is Marot then R = QuotA
is convenient over A, cf. [Huc, Th.7.7 and Cor.7.8]. But now condition (∗) may be
violated, as we can show by examples.

As before R denotes a ring and A a subring of R. We return to the search for Prüfer
subrings of R which are not necessarily Manis in R.

If R is a field then the intersection of finitely many valuation subrings of R is Prüfer
in R, as is well known. Does the same hold if k ⊂ R is a convenient extension and if
all the valuation rings contain k? Or does this at least hold if the extension k ⊂ R
fulfills the stronger condition (∗) in 6.3? We can only prove the following result.

Theorem 6.4. Let k be a subring of R with the following property.
(∗∗) For every x ∈ R \ k there exists a monic polynomial Fx(T ) ∈ k[T ], Fx 6= 1, with
Fx(x) ∈ R∗ and constant term Fx(0) ∈ k∗.
Let v1, . . . , vn be valuations on R with Avi ⊃ k for all i. Then the intersection A of
the rings Avi is Prüfer in R.

Proof. A is integrally closed in R. Let x ∈ R\A be given. We prove that there exists
a monic polynomial H(T ) ∈ k[T ] of degree ≥ 1 with H(x) ∈ R∗ and 1/H(x) ∈ A,
and then will be done by Theorem 1.

For every index i with 1 ≤ i ≤ n we choose a monic polynomial Fi(T ) ∈ k[T ] with
vi(Fi(x)) > 0, if such a polynomial exists. Otherwise we put Fi(T ):= 1.
Let G(T ):= TF1(T ) · · ·Fn(T ) and y: = G(x). Certainly y 6∈ A, since x 6∈ A and A
is integrally closed in R. A fortiori y 6∈ k. We claim that the polynomial H(T ):=
Fy(G(T )) fits our needs (with Fy as indicated in the theorem).

Certainly H(T ) is monic and H(x) = Fy(y) ∈ R∗. Given i ∈ {1, . . . , n} we verify that
vi(1/H(x)) ≥ 0, and then will be done.
Case 1. vi(x) < 0. Now vi(H(x)) = (degH) · vi(x) < 0, since H(T ) is monic and has
coefficients in Avi . Thus vi(1/H(x)) > 0.

Case 2. vi(x) ≥ 0. Then vi(H(x)) ≥ 0. Suppose that vi(H(x)) > 0. Then vi(Fi(x)) >
0, hence vi(y) > 0. But Fx(T ) = T d + c1T

d−1 + · · ·+ cd has constant term cd ∈ k∗.
Thus H(x) = yd + c1y

d−1 + · · ·+ cd has value vi(H(x)) = 0. This is a contradiction.
We conclude that vi(H(x)) = 0, hence vi(1/H(x)) = 0.

Notice that, for k a subfield of a ring R, the previous condition (∗) (cf. 6.3) implies
(∗∗). In particular (∗∗) holds in the examples 5 – 7 above. (∗∗) holds also in the
examples 1, 3, 4 for k the prime ring in R.
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Definition 4. Let F (T ) ∈ R[T ] be a non-constant monic polynomial. Let v be a
valuation on R. We call v an F -valuation, if v(c) ≥ 0 for every coefficient c of F and
F (T ) has no zero in the residue class field κ(v) = ov/mv. {Of course, this means that
the image polynomial F̄ (T ) ∈ κ(v)[T ] has no zero in κ(v).}

Theorem 6.5. Let (vi|i ∈ I) be a family of valuations on R. Assume that A is the
intersection of the valuation rings Avi (i ∈ I). Assume also that for each x ∈ R \ A
there exists a monic polynomial Fx(T ) ∈ A[T ] of degree dx ≥ 1, such that Fx(x) ∈ R∗
and every vi is an Fx-valuation. Then A is Prüfer in R.

Proof. Each Avi is integrally closed in R. Thus A is integrally closed in R. By
Theorem 1 we are done if we verify that 1/Fx(x) ∈ A for each x ∈ R \ A, i.e.
vi(Fx(x)) ≤ 0 for each x ∈ R\A and i ∈ I. If vi(x) < 0 then vi(Fx(x)) = dx ·vi(x) < 0.
If v(xi) ≥ 0 then x ∈ Avi , and vi(Fx(x)) = 0 since vi is an Fx-valuation.

Here we quote the seminal paper [R] by Peter Roquette, which in the case, that R is
a field, bears close connection to Theorem 5. Roquette also obtained results on class
groups which allow to conclude in important cases that A has trivial class group,
hence is a Bezout ring. Our Theorem 5 generalizes the first part of [R, Theorem 1].
The second part, dealing with the class group of A, will be generalized in §7.
We now aim to criteria that A is Prüfer in R, which do not assume in advance that A
is integrally closed in R. A prototype of the criteria to follow is a lemma of A. Dress,
which states for R a field of characteristic not 2, that the subring of R generated by
the elements 1/(1 + a2) with a ∈ F , a2 6= −1, is Prüfer in R, cf. [D, Satz 2′], [KS,
Chap III §12], [La, p.86].∗)

Theorem 6.6. Assume that for every x ∈ R \A there exists some monic polynomial
F (T ) ∈ A[T ] of degree ≥ 1 with F (x) ∈ R∗, 1

F (x) ∈ A, x
F (x) ∈ A. Then A is Prüfer in

R.

Proof. Let B be an R-overring of A and S: = A ∩ B∗. We verify that B = S−1A.
Then we know that A is weakly surjective in every R-overring, and will be done by
Theorem 5.2.
Of course, S−1A ⊂ B. Let x ∈ B \ A be given. We choose a polynomial F (T ) as
indicated in the theorem. s: = 1

F (x) ∈ A ⊂ B. Also F (x) ∈ B, hence s ∈ S. By

assumption a: = x
F (x) ∈ A. Thus x = a

s ∈ S−1A.

The following remark sheds additional light both on Theorem 6 and Theorem 1.

Remark 6.7. Assume that A is integrally closed in R (e.g. A is Prüfer in R). Let
x ∈ R and let F (T ) ∈ A[T ] be a monic polynomial of degree n ≥ 1 with F (x) ∈ R∗
and 1

F (x) ∈ A. Then xr

F (x) ∈ A for 0 ≤ r ≤ n.

Proof (cf. [Gi, p.154 ]). We proceed by induction on r. For r = 0 the assertion is
trivial. Assume that 1 ≤ r ≤ n and that xs

F (x) ∈ A for 0 ≤ s < r.

∗) Actually Dress made the slightly stronger assumption that -1 is not a square in F .
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We write

F (T )r = Tnr +
n∑

j=1

hj(T )T
(n−j)r

with polynomials hj(T ) ∈ A[T ] of degree < r. The relation

1

F (x)n−r
=
F (x)r

F (x)n
=
( xr

F (x)

)n
+

n∑

j=1

1

F (x)j−1
hj(x)

F (x)
·
( xr

F (x)

)n−j

proves that xr

F (x) is integral over A, since by induction hypothesis
hj(x)
F (x) ∈ A for every

j ∈ {1, . . . , n}. Thus xr

F (x) ∈ A.

Theorem 6.8. Let k be a subring of R. (We will often take for k the prime ring in
R.) Let F (T ) ∈ k[T ] be a monic polynomial of degree d ≥ 1. Assume that d! ∈ R∗
and that F (x) ∈ R∗ for every x ∈ R with F (x) 6∈ k. The subring A of R generated
by k, the element 1/d! and the set {1/F (x)|x ∈ R, F (x) 6∈ k} is Prüfer in R.

Proof. a) Let B: = Ã, the integral closure of A in R. By Theorem 1 B is Prüfer
in R. We now verify that for a given prime ideal q of B and p: = q ∩ A we have
A[p] = B[q]. Since over every prime ideal p of A there lies a prime ideal q of B we
then may conclude (Remark 5.5) that

B =
⋂

q∈SpecB
B[q] ⊂

⋂

p∈SpecA
A[p] = A,

hence A = B, and we will be done.

b) We first prove that for any x ∈ B[q] we have F (x) ∈ A[p]. Put y: = F (x) − 1.
Suppose F (x) 6∈ A[p], hence y 6∈ A[p]. Clearly F (x) 6∈ k. By hypothesis 1 + y =

F (x) ∈ R∗ and 1
1+y ∈ A. Also

y
1+y = 1− 1

1+y ∈ A. Since y 6∈ A[p] we conclude that
1
1+y ∈ p. On the other hand

y
1+y = y · ( 11+y ) ∈ (B[q] · p)∩A ⊂ q[q] ∩A = p. We arrive

at the contradiction 1 = 1
1+y +

y
1+y ∈ p. Thus indeed F (x) ∈ A[p].

c) For ℓ = 0, 1, 2, . . . we successively define polynomials ∆ℓF (T ) by

∆0F (T ):= F (T ), ∆ℓ+1F (T ):= ∆ℓF (T + 1)−∆ℓF (T ).

For every x ∈ B[q] we have F (x) ∈ A[p], thus also ∆
ℓF (x) ∈ A[p] for any ℓ ∈ N.

But ∆d−1F (T ) = d!T + c with c ∈ k. Thus (d!)x ∈ A[p] for every x ∈ B[q]. Since
1/d! ∈ A ⊂ A[p], we conclude that A[p] = B[q], q.e.d.

Example 10. We denote the prime ring in R by Z · 1. Let d ∈ N. Assume that
d! ∈ R∗ and 1 + xd ∈ R∗ for all x ∈ R with xd 6∈ Z · 1. The subring A of R generated
by 1/d! and the elements 1/(1 + xd) with x ∈ R, xd 6∈ Z · 1 is Prüfer in R.

N.B. For d = 2 and R a field this example states a slight improvement of Dress’s
lemma cited above.
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Remark. The condition d! ∈ R∗ cannot be omitted. For example, let R: = F2[T ]/(1+
T 2) with F2 the field consisting of 2 elements. Let A be the subring of R generated
by the elements 1/(1 + x2) for all x ∈ R with x2 6= 1. Then A = F2, and this not
Prüfer in R, since F2 is not integrally closed in R.

As an illustration what has been done so far we return to Example 5. Thus let V
be an affine variety over some field k which is not algebraically closed. Let U be a
k-Zariski-open subset of V (k), and let R be the ring of regular functions on U . We
choose a monic polynomial F (T ) ∈ k[T ], F 6= 1, which has no zeros in k.
Let B be any subring of R containing k (e.g. B = k). Let H0 denote the subring
B[ 1F (x) | x ∈ R] of R generated by B and the functions 1

F (x) for all x ∈ R. Let H
denote the integral closure of H0 in R.

Theorem 6.9. i) H is an R-Prüferring.
ii) H is the set of all x ∈ R such that v(x) ≥ 0 for every Manis F -valuation v on R
with v(b) ≥ 0 for all b ∈ B.

iii) H = B[ x
i

F (x) | x ∈ R, 0 ≤ i ≤ 1].
iv) If the characteristic of k is zero or exceeds d, then H = H0.

Proof. H is an R-Prüferring by Theorem 1. Thus H is the intersection of the
valuation rings Av with v running through the set Ω of all Manis valuations on R
with Av ⊃ H.
Let v be a Manis valuation on R. Then v ∈ Ω iff Av ⊃ H0. This means that Av ⊃ B
and v

(
1

F (x)

)
≥ 0 for every x ∈ R. If x 6∈ Av then v(F (x)) < 0, hence v

(
1

F (x)

)
> 0

automatically. Let x ∈ Av. Then v
(
1

F (x)

)
≥ 0 iff v(F (x)) = 0 iff F̄ (x̄) 6= 0 for F̄ (T )

the image of F (T ) in κ(v)[T ] and x̄ the image of x in κ(v). Thus Ω is the set of all
Manis F -valuations v on R with Av ⊃ B.
The ring H ′: = B

[
xi

F (x) | x ∈ R, 0 ≤ i ≤ 1
]
is Prüfer in R by Theorem 6. Every

valuation v ∈ Ω has nonnegative values on H ′. Thus H0 ⊂ H ′ ⊂ H. Since H ′ is
integrally closed in R, we have H ′ = H. If d! ∈ k∗, then we know from Theorem 8
that H0 is Prüfer in R and conclude that H0 = H.

§7 Principal ideal results

We start out for a generalization of the second half of Roquette’s theorem 1 in [R]
mentioned in §6. We will rely on techniques developed by Alan Loper in the case of
subrings of fields [Lo1], [Lo2].

In the following we fix a ring A and a monic polynomial F (T ) ∈ A[T ] of degree d ≥ 1.

Definition 1 (cf. [Lo1]). Let ϕ:A → B be a ring extension of A. We call the
polynomial F unit valued in B (abbreviated: uv in B), if F (b) ∈ B∗ for every b ∈ B.
{Of course, F (b):= Fϕ(b) with Fϕ(T ) the image polynomial of F (T ) in B[T ].}
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More precisely we then should call F “uv with respect to ϕ”, but in the following it
will be always clear which homomorphism ϕ from A to B is taken.

N.B. If F is uv in some extension B of A different from the null ring then certainly
d ≥ 2.

Proposition 7.1 (cf. [Lo1, Prop.1.14]). Let m be a maximal ideal of A. Then F (T )
is uv in Am iff F (A) ⊂ A \m.

Proof. If there exists some a ∈ A with F (a) ∈ m, then certainly F (T ) is not uv in
Am. Assume now that F (A) ⊂ A \m. Suppose that F (T ) is not uv in Am. We have
some a ∈ A, s ∈ A \m with F

(
a
s

)
∈ mAm. Since the ideal m is maximal there exists

some t ∈ A with st ≡ 1 mod m. Then in Am
F (at)

1
≡ F

(a
s

)
≡ 0 mod mAm,

hence F (at) ∈ m. This contradiction proves that F (T ) is uv in Am.

Corollary 7.2. F (T ) is uv in A iff F (T ) is uv in Am for every maximal ideal m of
A.

We write F (T ) = T d+c1T
d−1+· · ·+cd with ai ∈ A, and introduce the homogenization

G(X,Y ) ∈ A[X,Y ] of F ,

G(X,Y ):= Y dF
(X
Y

)
= Xd + c1X

d−1Y + · · ·+ cdY d.

Proposition 7.3. Let p be a prime ideal of A. The following are equivalent.

i) F is uv in Ap.
ii) F is uv in k(p) = Quot(A/p), i.e. F has no zero in k(p).
iii) If x, y ∈ A and G(x, y) ∈ p, then y ∈ p.
iv) If x, y ∈ A and G(x, y) ∈ p, then x ∈ p and y ∈ p.

Proof. i) ⇔ ii) is evident. iv) ⇒ iii) is trivial, and iii) ⇒ iv) is evident, since the
form G(X,Y ) contains the term Xd.
i) ⇒ iii): Let x, y ∈ A and G(x, y) ∈ p. Suppose y 6∈ p. Then we have in Ap

F
(x
y

)
=
G(x, y)

yd
∈ pAp.

This contradicts the assumption that F is uv in Ap.
iii) ⇒ i): Let a ∈ A, s ∈ A \ p be given. Then G(a, s) ∈ A \ p. Thus

F
(a
s

)
=
G(a, s)

sd
∈ A∗p.

Proposition 7.4 (cf. [Lo2, Cor.2.3]). Assume that (A, p) is a Manis pair in some
ring R. Let v denote a Manis valuation on R with Av = A, pv = p. The following are
equivalent.

Documenta Mathematica 1 (1996) 149–197



Manis Valuations and Prüfer Extensions I 191

i) F is uv in Ap.
ii) v is an F -valuation.
iii) v(G(x, y)) = dmin(v(x), v(y)) for all x, y ∈ R.

Proof. The equivalence i) ⇔ ii) is clear from i) ⇔ ii) in Proposition 3.
i) ⇒ iii): Let x, y ∈ R be given. The formula is a priori valid if v(x) < v(y), since
G(X,Y ) contains the term Xd. It is also valid if v(x) = v(y) =∞. Assume now that
v(x) ≥ v(y) 6= ∞. We choose some z ∈ R with v(yz) = 0. This is possible since v is
Manis. Then v(xz) ≥ 0. Thus xz ∈ A and yz ∈ A \ p. We know from Prop. 3 that
G(xz, yz) = zdG(x, y) ∈ A \ p. Thus v(G(x, y)) = −dv(z) = dv(y).
iii) ⇒ i): Let x, y ∈ A and G(x, y) ∈ p. Then the formula in iii) tells us that x ∈ p
and y ∈ p. Thus F is uv in Ap by Proposition 3.

We now study finitely generated A-submodules a of R with Ra = R. These submod-
ules should be viewed as analogues of the finitely generated fractional ideals in the
classical case that A is a domain and R its quotient field. We are looking for criteria
that some power ad is a principal module, i.e. ad = Rb with some b ∈ R∗.

Definition 2. Let (a1, . . . , an) be a finite sequence in R. The F -transform of this
sequence is the sequence (b1, . . . , bn) in R defined inductively by

b1: = a1, bi: = G(bi−1, a
di−2

i ) (i > 1).

In the following lemmas (a1, . . . , an) is a sequence in R and (b1, . . . , bn) is its F -
transform.

Lemma 7.5. Assume that all ai ∈ A. Let p be a prime ideal of A such that F is uv
in Ap. Then Aa1 + · · ·+Aan ⊂ p iff bn ∈ p.

Proof. If x, y ∈ A and t ∈ N, then Ax+Ay ⊂ p iff Ax+Ayt ⊂ p. By Proposition 3
the latter is equivalent to G(x, yt) ∈ p. The lemma follows from this by induction on
n.

Lemma 7.6 (cf. [Lo2, Cor.2.4]). Assume that A is the valuation ring Av of a Manis
valuation v on some ring R which is also an F -valuation. Then

v(bn) = d
n−1min{v(a1), . . . , v(an)}.

The proof goes by induction on n using the formula in Proposition 4.iii.

Lemma 7.7. Let a: = Aa1 + · · ·+Aan. Assume that F is uv in R. Then

Ra = R⇐⇒ bn ∈ R∗.

Proof. ⇐: This is evident since bn ∈ a.
⇒: Suppose bn 6∈ R∗. We choose a maximal ideal M of R containing bn. Our
polynomial F is uv in R hence uv in RM by Corollary 2. Now Lemma 5, applied to
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F as a polynomial over R, tells us that Ra1 + · · · + Ran ⊂M. This contradicts the
assumption Ra = R. Thus bn ∈ R∗.

Now we are prepared to prove a generalization of the theorem by Roquette mentioned
in §6.

Theorem 7.8 (cf. [R, Th.1] for R a field). Assume that S is a set of Manis valuations
on a ring R and thatA =

⋂
v∈S

Av. Assume further that there exists a monic polynomial

F (T ) ∈ A[T ] of degree d ≥ 1 with the following two properties:
(i) F (T ) is uv in R.
(ii) Every v ∈ S is an F -valuation.
Then A is Prüfer in R. If a is any finitely generated A-submodule of R with Ra = R
then there exists some t ∈ N such that adt is principal. More precisely, if a1, . . . , an
is a system of generators of a and (b1, . . . , bn) is the F -transform of the sequence
(a1, . . . , an), then

ad
n−1

= Abn.

Proof. Theorem 6.5 tells us that A is Prüfer in R. Let a1, . . . , an be a system of
generators of a and (b1, . . . , bn) the F -transform of (a1, . . . , an). Lemma 7 tells us
that bn ∈ R∗.
It is evident that bn ∈ ad

n−1

. The module ad
n−1

is generated over A by the monomials
ae11 . . . a

en
n with ei ≥ 0, e1 + · · ·+ en = dn−1. We now verify that

v(ae11 . . . aenn ) ≥ v(bn) (∗)

for every such monomial and every v ∈ S. It then follows that ae11 . . . aenn /bn is an
element of Av for every v ∈ S, hence of A, and we conclude that ad

n−1

= Abn. The
verification of (∗) is immediate by use of Lemma 6. Let γ: = min{v(a1), . . . , v(an)}.
Then v(ae11 . . . a

en
n ) ≥ (e1 + · · ·+ en)γ = dn−1γ = v(bn).

In part II of the paper we will see that for A a Prüfer subring of a ring R the finitely
generated A-submodules a of R with Ra = R form an Abelian group. The quotient of
this group by the subgroup of principal modules should be called the class group of A
in R. Starting with Theorem 8 it is possible to get bounds on the torsion of the class
group in good cases in much the same way as Roquette has explicated for R a field
[R]. Here we only quote the following theorem which is an immediate consequence of
Theorem 8.

Theorem 7.9 (cf.[R, Th.2]). Assume again that A =
⋂
v∈S

Av for a set S of Manis

valuations on some ring R. Assume further that there exist non-constant monic
polynomials F1(T ), . . . , Fr(T ) with coefficients in A (r ≥ 1), such that for every
j ∈ {1, . . . , r} the following holds
(1) Fj is uv in R.
(2) Every v ∈ S is an Fj-valuation.
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Let d denote the greatest common divisor of the degrees of F1, . . . , Fr. Then A is
Prüfer in R, and for each finitely generated A-submodule a of R with Ra = R there
exists some t ∈ N such that adt is principal.

Example 7.10. Let R be a ring such that Xd + 1 is uv in R for some (even) d ∈ N
and d! is a unit in R. Let A be a subring of R which contains 1/d! and the elements
1/(1 + xd) for all x ∈ R. Then A is Prüfer in R by Example 10 in §6. For every
finitely generated A-submodule a of R with aR = R there exists some t ∈ N with adt
principal.

Proof. A is the intersection of the rings A[m] with m running through the maximal

ideals of A (Remark 5.5). These rings are Manis in R. The polynomial Xd + 1 is uv
in Am for every m (Cor.2), and thus the Manis valuations giving the rings A[m] are

(Xd + 1)-valuations. Theorem 8 applies.

In an important more special situation this result can be improved. Assume that
1 + ΣRd ⊂ R∗. A subring A of R containing the elements 1/(1 + q) with q ∈ ΣRd
is Prüfer in R. If a = Ax1 + · · · + Axn is a finitely generated submodule of R with
Ra = R, then ad = A(xd1 + · · ·+xdn). This has been proved recently by E. Becker and
V. Powers [BP, Cor. 5.11, Cor.5.13].

A slight expansion of the techniques used so far will give us a theorem containing this
result of Becker and Powers as a special case, together with a proof which is rather
different from the one in [BP].

Definition 3. Let H(X1, . . . , Xn) ∈ A[X1, . . . , Xn] be a form, i.e. a homogeneous
polynomial over A in n ≥ 2 variables. Let ϕ:A→ K be a homomorphism into a field
K. We call H isotropic over K, if the image form Hϕ(X1, . . . , Xn) ∈ K[X1, . . . , Xn]
is isotropic, i.e. has a non trivial zero in Kn, and we call H anisotropic over K
otherwise.

In the following it will be always clear which homomorphism ϕ is under consideration.
Thus the impreciseness in this definition will do no harm.

Theorem 7.11. Let S be a set of Manis valuations on a ring R and A: =
⋂
v∈S

Av.

Assume there is given a form H(X1, . . . , Xn) over A in n ≥ 2 variables of degree d ≥ 1
with the following properties:

i) For every maximal ideal M of R the form H is anisotropic over R/M.
ii) For every v ∈ S the form H is anisotropic over κ(v).

Then A is Prüfer in R. If a is an A-submodule of R generated by n elements x1, . . . , xn
and Ra = R then ad = H(x1, . . . , xn)A.

Proof. a) We start with a proof of the second claim. Suppose that H(x1, . . . , xn) is
not a unit in R. Then there exists a maximal ideal M of R with H(x1, . . . , xn) ∈M.
Since Rx1+· · ·+Rxn = R we conclude that H is isotropic over R/M, in contradiction
to assumption (i) above. Thus H(x1, . . . , xn) ∈ R∗.
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b) Let v ∈ S be given. We verify that

(∗) v(H(x1, . . . , xn)) = dmin{v(x1), . . . , v(xn)}.

This is obvious if v(xi) =∞ for all i ∈ {1, . . . , n}. Assume now that
γ: = min{v(x1), . . . , v(xn)} < ∞. We choose some z ∈ R with v(z) = −γ, which is
possible, since v is Manis. Then v(zxi) ≥ 0 for all i ∈ {1, . . . , n} and v(zxi) = 0 for at
least one i. Since H is anisotropic over κ(v) we conclude that v(H(zx1, . . . , zxn)) = 0,
hence v(H(x1, . . . , xn)) = −dv(z) = dγ, as desired.
c) Now we see, as in the proof of Theorem 8, that

v(xe11 . . . xenn ) ≥ v(H(x1, . . . , xn))

for any integers ei ≥ 0 with e1 + · · · + en = d and any v ∈ S, and we conclude that
xe11 . . . x

en
n /H(x1, . . . , xn) ∈ A. This proves that ad = H(x1, . . . , xn)A.

d) Let
G(X,Y ):= H(X, . . . ,X, Y ) = c0X

d + c1X
d−1Y + · · ·+ cdY d.

c0 = H(1, . . . , 1, 0) is a unit in A, since the elements 1, . . . , 1, 0 generate the ideal
a = A and ad = H(1, . . . , 1, 0)A. We consider the monic polynomial

F (T ):= c−10 G(T, 1) ∈ A[T ].

F is uv in R, since H(x, . . . , x, 1) ∈ R∗ for every x ∈ R. If v(x) ≥ 0 for some v ∈ S,
then v(H(x, . . . , x, 1)) = v(1) = 0. Thus every v ∈ S is an F -valuation. We conclude
by Theorem 6.5 that A is Prüfer in R.

Remark. The multiplicative ideal theory to be developed in part II of this paper
will give a more natural proof that A is Prüfer in R.

In order to exploit Theorem 11 in the real algebraic setting, we need an easy lemma.

Lemma 7.12. Let H(X1, . . . , Xn) be a form over a ring A of degree d ≥ 1 in n ≥ 2
variables. For each i ∈ {1, . . . , n} we define

Fi(T1, . . . , Tn−1):= H(T1, . . . , Ti−1, 1, Ti, . . . , Tn−1).

The following are equivalent

(1) H is anisotropic over A/m for every maximal ideal m of A.
(2) Fi(x1, . . . , xn−1) ∈ A∗ for all x1, . . . , xn−1 ∈ A and 1 ≤ i ≤ n.

Proof. (1) =⇒ (2): Let x1, . . . , xn−1 ∈ A and i ∈ {1, . . . , n}. Then
H(x1, . . . , xi−1, 1, xi, . . . , xn−1) 6∈ m for every maximal ideal m of A. Thus
Fi(x1, . . . , xn−1) ∈ A∗.
(2) =⇒ (1): Suppose there exists a maximal ideal m of A such that H is isotropic
over A/m. Then there exist elements a1, . . . , an ∈ A with H(a1, . . . , an) ∈ m but
ai 6∈ m for some i. We choose an element bi ∈ A with aibi ≡ 1 mod m. We have
bdiH(a1, . . . , an) = H(a1bi, . . . , anbi) ≡ Fi(a1bi, . . . , ai−1bi, ai+1bi, . . . , anbi) mod m.
Thus, Fi(a1bi, . . . , ai−1bi, ai+1bi, . . . , anbi) ∈ m, a contradiction.
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Corollary 7.13 (cf. [BP]). Let d ∈ N and let R be a ring with 1 + ΣR2d ⊂ R∗.
Then the subring

H: = Hd(R) = Z
[ 1
1 + q

|q ∈ ΣR2d
]

is Prüfer in R. For each finitely generated H-submodule a = Hx1 + · · ·+Hxn of R
with aR = R we have a2d = (x2d1 + · · ·+ x2dn )H.

Proof. Applying Theorem 6.8 with F (T ) = 1 + T 2d we see that H is Prüfer in R
(cf. §6, Example 10). For every maximal ideal m of H we choose a Manis valuation
v on R with Av = H[m], pv = m[m]. Let S denote the set of these valuations. Then
H =

⋂
v∈S

Av (cf. 5.5). Now, if v ∈ S, Av = H[m], then H/m = H[m]/m[m], as is easily

checked, and we learn from Proposition 1.7 that κ(v) is the quotient field of H/m.
Since H/m is already a field, we have κ(v) = H/m. Let n ≥ 2. Using Lemma 12 we
see that the form X2d1 + · · ·+X2dn is anisotropic in R/M for every maximal ideal M
of R, and also anisotropic in H/m for every maximal ideal m of H. Now Theorem 11
gives the second claim above.

Becker and Powers have proved that 1+ΣR2d ⊂ R∗ implies 1 +ΣR2 ⊂ R∗, and that
then H: = Hd(R) coincides with H1(R) and the “real holomorphy ring” of R [BP,
Prop.5.1 and Prop.5.7]. Thus, if a is a finitely generated H-submodule of R with
Ra = R, then already a2 is a principal submodule.
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[Bo] N. Bourbaki, Algèbre commutative, Chap.1–7, Hermann Paris, 1961 – 1965.
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[Lo2] A. Loper, On Prüfer non-D-rings, J. Pure and Applied Algebra 96 (1994),
pp. 271–278.

[M] M. E. Manis, Valuations on a commutative ring, Proc. Amer. Math. Soc. 20
(1969), pp. 193–198.

Documenta Mathematica 1 (1996) 149–197



Manis Valuations and Prüfer Extensions I 197
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Abstract. Consider the parabolic problem

ut − div (a(u,∇u)∇u) = −u−p (1)

for t > 0, x ∈ Rn under initial and boundary conditions u = 1, say. Since p
is assumed positive, the right hand side becomes singular as u → 0. When
u reaches zero in finite or infinite time, one says that the solution quenches
in finite or infinite time. This article gives a survey of results on this kind
of problem and emphasizes those that have been obtained at the SFB 123
in Heidelberg. It is an updated version of an invited survey lecture at the
International Congress of Nonlinear Analysts in Tampa, August 1992. To
be specific, I shall cover existence and nonexistence of quenching points,
asymptotic behaviour of the solutions in space and time near the quenching
points, qualitative behaviour, application to mean curvature flow and phase
transitions, reaction in porous medium flow etc..

The tools are variational methods and suitable maximum principles. Many of
the results presented in this article were obtained with my coauthors Acker,
Dziuk, Fila, Kersner and Levine, but related results will also be mentioned.

1991 Mathematics Subject Classification: 35K65, 35K57, 35K60, 35B05,
35B65

Model Problems

For the sake of simplicity I shall discuss four special cases of (1), namely:

ut −∆u = −u−p, (A)

ut − (ϕ(ux))x = −u−p, (B)

ut −
uxx
1 + u2x

= − 1
u
, (B′)

ut − (um)xx = −u−p. (C)

Note that for n = 1 case (A) is a special case of both (B) and (C). Equation (B′) is a
special case of (B), which has a significant application in the mathematical description
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of mean curvature flow of rotationally symmetric twodimensional surfaces in R3. To
see this imagine the x-axis to be the axis of a revolutionary body whose surface at
time t is described by u(t, x). Then (see Figure 1) its inward velocity v is given by

v =
ut√
1 + u2x

,

Figure 1: Derivation of (B′)

while its principle curvatures are

uxx√
1 + u2x

3 in x−direction,

− 1
u

1√
1 + u2x

in v−direction.

Therefore, after rescaling time by a factor of two, the mean curvature flow of our
surface is described by

ut =
uxx
1 + u2x

− 1
u
= (arctan ux)x −

1

u
,

and, incidentally, this is how one can see that (B′) is a particular case of (B).
Chronologically ordered, my coauthors and I wrote the following papers on Prob-

lems (A), (B) and (C). Problem (A) was dealt with in [AK, KP, FK1, FK2] and [K],
Problem (B′) was studied in [DK,K], Problem (B) was treated in [FKL] and Problem
(C) in [KK].
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Quenching Occurs

Let us first consider Problem (A):

ut −∆u = −u−p, x ∈ Ω, t > 0,
u = 1 on the parabolic boundary

(2)

Here Ω is a bounded domain in Rn. For n = 1 and p = 1 this problem was studied
by Kawarada [Ka] and he stated the following result.

Theorem 1: If there are no stationary solutions to (2), i.e. if Ω is too large, then
i) u reaches zero in some point x0 in finite time T.
ii) ut(t, x0)→ −∞ as tր T .

Statement i) has been derived for numerous more general situations, e.g. by Acker
and Walter, Levine and Montgomery or Lieberman to higher dimension, hyperbolic
equations, nonlinear boundary conditions such as (∂u/∂n) = −u−p and so on. One
can prove i) by energy methods or by comparison principles. The proof of ii) was
wrong as stated by Kawarada. This was noted and corrected by Chan and Kwong,
and by Acker and myself in 1987. Moreover, it was shown in [AK] that both statements
of Theorem 1 hold for general n ∈ N and p > 0, provided Ω is a ball. In this case x0
is uniquely determined and is the center of the ball.
In the same year I discovered why quenching and blow up problems have so much

in common. In fact one can be transformed into the other, see [KP]. The fact that
both classes of problems are amenable to similar techniques had puzzled people, e.g.
Bandle and Stakgold [BS] or Friedman and Herrero [FH], who had studied equations
like (A) with p ∈ (−1, 0], a less singular case than ours. This observation was useful,
because now one could try to mimic blow-up results like the ones of Friedman and
McLeod for quenching problems. And in fact, using techniques from [FM], Deng
and Levine were able to show in 1988 that both statements of Theorem 1 could be
extended from balls to convex domains Ω. A year later Fila and I found the blow up
rate of |ut|.

Time Asymptotics

Let u be a solution of (2) and suppose that u quenches at t = T, x = 0. Then the
following estimates are known.
There exists a constant c ≥ 0 such that for t < T

c ≤ min
x∈Ω
{u(t, x)}(T − t)−1/(1+p) ≤ (1 + p)1/(1+p). (3)

Moreover, if Ω is convex, c > 0, see [FK1]. Relation (3) holds for general n ∈ N, p > 0
and Ω.
For any positive constant C and for t < T , |x| ≤ C(T − t)1/2 we have

lim
t→T

u(t, x)(T − t)−1/(1+p) = (1 + p)1/(1+p) . (4)

Documenta Mathematica 1 (1996) 199–208



202 Bernd Kawohl

This result was first established for n = 1 and p ≥ 3 by Guo in 1988, and subsequently
generalized to n = 1 and p ≥ 1 by Fila and Hulshof, and to general n, nonnegative p
and Ω a ball by Fila, Hulshof and Quittner.
Time asymptotics of this nature have been extended to equations of type (B)

and (B′), see [FKL] or [SS]. It is also possible to extend such results to equation (C),
see [KK].
How does one get the upper bound in (3)? This one is easy. In a spatial minimum

we have ∆u ≥ 0, so there ut ≤ −u−p, or equivalently

1

p+ 1
(up+1)t = u

p ut ≤ −1. (5)

An integration of (5) from t to T yields 0−up+1(t) ≤ −(p+1)(T − t), i.e the desired
upper bound for u. To derive the lower bound in (3) one shows

ut + δu
−p ≤ 0

for some δ > 0 and for (t, x) in some subcylinder of (0, T )×Ω. Here the idea of proof
is essentially due to [FM].

Space Asymptotics at t = T

Consider equation (A) and suppose that Ω ⊂ Rn is a ball with center in the origin.
For simplicity, suppose that u(0, x) ≡ 1. Then the following inequalities were derived
in 1989 by M.Fila and myself, see [FK1].

u(T, r) ≤
[
(p+ 1)2

2(1− p)

]1/(1+p) (
r2
)1/(1+p)

for 0 < p < 1, (6)

u(t, r) ≥ Cε
(
r2
)ε+1/(1+p)

for 0 < p, (7)

for t < T . These inequalities tell us, that for p < 1 the function u(T, ·) is of class C1
at the origin, while for p > 1 it has a cusp-singularity and is merely Hölder continuous
in the origin, see Figure 2.

Figure 2: Shape of u(·, T )
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This distinction is consistent with the observation that p < 1 means less absorp-
tion than p > 1. Inequalities (6) and (7) are an ε apart. So the exact profile was still
to be found. I had conjectured, but was unable to prove that for p = 1 the solution
should develop a corner in the origin, like u(r, T ) ≈ |r|. I had been wrong, because in
1991 Filippas and Guo were able to find the exact asymptotics in the case n = 1 as
follows

u(t, x) =

[
(p+ 1)2

8p

]1/(1+p) ( |x|2
| ln |x||

)1/(1+p)
(1 + o(1)) (8)

as |x| → 0. This is definitely a sharper result. Again the method of proof relied
on a corresponding blow up result, this time due to Herrero and Velazquez. In 1991
Fila, Levine and I generalized estimates (6) and (7) to equations (B) and (B’). In the
context of equation (B’) and for p = 1 one can interpret (7) as characterizing the rate
at which the curvature of a rotational surface blows up. In fact, differential geometers
like Huisken have found similar estimates for mean curvature flow in nonrotational
settings as well.
Why is the assumption p < 1 made in (6)? To see this and to present another

popular trick consider a solution u of the equation

ut −∆u = −f(u)

and set

P (t, x) =
1

2
|∇u|2 − F (u),

where F ′(u) = f(u). The letter P stands for L.Payne, who made this trick widely
known, see [S]. A straightforward calculation shows that P satisfies the differential
equation

Pt −∆P + b · ∇P ≤ 0 (9)

with b = |∇u|−2(2f(u)∇u − ∇P ) in L∞loc({(t, x) | 0 < t < T, |∇u(t, x)| 6= 0}). Now
for p < 1 we have P = −F (u) = − 1

1−pu
1−p ≤ 0 in those points where |∇u| = 0.

Thus, by the maximum principle, P must attain its maximum initially or on the
lateral boundary of [0, T ] × Ω. Since for convex Ω one can rule out that P attains
its maximum on the boundary, and since P (0, x) ≤ 0, we know P (t, x) ≤ 0 or, in the
case that Ω is a ball

u2r ≤
2

1− pu
1−p.

But now u(p−1)/2ur ≤
√
2/(1− p) or

∂

∂r

(
u(p+1)/2

)
=

(
1 + p

2

)
u(p−1)/2ur ≤

(
1 + p

2

)√
2/(1− p) = 1 + p√

2(1− p)
.

An integration at t = T yields

u(p+1)/2(T, r) − u(p+1)/2(T, 0) ≤
[
1 + p√
2(1− p)

]
r,
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that is (6)

u(T, r) ≤ r2/(1+p)
[
1 + p√
2(1− p)

]2/(1+p)
.

Location of Quenching Points

Can one predict the points where a solution will quench? This question is related to
the prediction of blow up points, and one of the early results on blow up stated single
point blow up, see Weissler [W]. For the case of equation (A) and Ω being a ball, and
under restrictions on the initial data, in 1987 Acker and I derived the inequalities

ut ≤ 0
rur = x · ∇u ≥ 0

urt ≥ 0

in the parabolic time space cylinder (0, T )×Ω, and this implied that u quenches only
in the origin, so one has a single point quenching result.
But more can sometimes be said for general initial data. In fact, for n = 1 and

p < 0, Chen, Matano and Mimura have been able to derive finite point quenching
results. They used lap-number type arguments to justify the occurrence of finitely
many spatial oscillations of u after short time; and then they localized the above type
of inequalities. This was nontrivial, because spatial minima of u can move in time.
Of course single point quenching results can also be shown for more general

equations such as (B) or (B’), see [DK,FKL,AAG]. It is important to note though
that in general it is necessary that ut ≤ 0 when u gets small.

Life after Quenching

What happens after t = T to a solution u of (1)? The answer depends on the notion
of solution that we are willing to accept and on p. Suppose that the nonlinearity
u−p is regularized by the finite nonlinearity u/(ε+ up+1). One can hope that then a
classical global solution uε of (1) exists for every positive ε, that uε is decreasing in
ε, and that it has a limit U as ε → 0, which coincides with u for t < T . This hope
has been replaced by a proof
a) in case of equation (A) and for p < 1 by D.Phillips [P], and
b) in case of equation (C) and for p < m, m ≥ 1 in [KK].
In both cases there are regions in which U = 0, and in case a) the ω-limit set of

U consists of equilibria or steady states, see [FLV,KK]. Moreover U is a global weak
solution of

ut −∆(um) = −u−pχ{u>0},
for which uniqueness still appears to be open. So much for the case 0 < p < 1.

If p > 1 and n = 1 I conjecture total quenching, that means I believe that
limε→0 uε(x, T + δ) = 0 for every x ∈ Ω and every δ > 0. The heuristic reason for
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this conjecture is the nonintegrability of u−p as well as a corresponding total blow up
result of Baras and Cohen. For n ≥ 2 the situation is more complicated, see [FK1].
If Ω is convex, then

∫

Ω

u−q dx

{
<∞ for q < N

2 (1 + p)

=∞ for q ≥ N
2 (1 + p)

as t→ T.

Another indication for complete quenching was kindly pointed out to the author by
the referee. Using a transformation as in [KP], Galaktionov and Vazquez [GV1,GV2]
converted the quenching problem to a blow-up problem. After deriving blow up results
for the Cauchy problem and quasi-linear parabolic equations they were recently able
to confirm my conjecture on total quenching for the Cauchy problem on Rn ×R+ for
equations of type (B) and (C).

If p = 1, little seems to be known for equations (A) and (C), but much is known
for (B’). In fact, if u(x, t) describes the radius of a compact rotational surface moving
by mean curvature, then ux = ±∞ on the boundary of the support of u. So near
this boundary, the dependent and independent variable can be interchanged and the
surface could also be described by a function v(r), see Figure 3.

Figure 3: u(t) and v(r, t)

The equation (B’) for the horizontal graph

ut =
uxx
1 + u2x

− 1
u

(B′)

is then transformed into almost the same equation for the vertical graph, see [AAG],

vt =
vrr
1 + v2r

+
1

r
vr . (10)

So we have a parabolic equation, i.e. (B’), whose solution exhibits a hyperbolic
phenomenon: finite speed of propagation of the free boundaries. This is reminiscent of
phenomena described in [BD]. Nevertheless, equation (10) enables one to continue the
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analysis until the surface completely collapses. Eventually, it collapses into isolated
points but u can stay non-concave in x until the time of collapse, see [AAG].
If one tries to apply the same transformation trick to equation (A), the outcome

looks as follows

vt =
1

v2r
vrr +

vr
rp
. (11)

Now (11) is totally different in nature from (10), because on the free boundary r =
0 we have vr = 0, and so (11) reflects a very degenerate situation with “infinite”
diffusion, while vr = 0 causes no problems in the coefficients of (10). Again infinite
diffusion seems to support the idea of total quenching mentioned above.
It is interesting to note that equation (11) can be rewritten in divergence form

as

vt = −
(

vr
|vr|2

)

r

+
vr
rp
,

and this in turn is equivalent to

vt = −div(|∇v|q−2∇v) +
vr
rp

with q = 0 . (12)

Now (12) looks like a backward heat equation with the Laplacian replaced by ∆q for
q = 0. Forward equations with Laplacian replaced by ∆q and q > 1 are somewhat
understood, see [EV], but (12) is far away from this situation. Therefore studying
the operator ∆q for q = 0 appears to be worthwhile and not just another academic
exercise.
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I. Introduction

Let C be a composition algebra over a field of characteristic different from 2, let V
be its pure subspace (consisting of the vectors orthogonal to 1) and let d = dimV .
We show that the following relation holds in the groundfield:

d(d− 1)(d− 3)(d− 7) = 0.

This is not very surprising since the only possibilities for C are either the ground field,
a separable quadratic extension, a quaternion algebra, or an octonion algebra. The
proof of the relation given in this note seems to be different from former approaches
(cf. [1], [2]). It works on a tensor categorical level. In characteristic 0 one recovers
the determination of the possible dimensions of a composition algebra.
Our starting problem was to understand composition algebras from a tensor cat-

egorical point of view. Instead of composition algebras we looked at the equivalent
notion of vector product algebras. These algebras can be obtained be rewriting the
axioms of a composition algebra in terms of the pure vectors. Vector product alge-
bras allow to use diagrammatic tensor calculus in a handy way. Using a graphical
technique we found—just by playing around—a proof of the relation on dimV . These
notes contain alone the algebraic calculations which were extracted from the graph
considerations. After these notes had been written, we noticed an identity in vector
product algebras which perhaps makes the result less mysterious. So there is more to
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say about the topic than explained in this text. We hope to come back to this at an-
other place. Anyway, the text is completely self-contained and contains an argument
on the possible dimensions.
Throughout the paper we assume char 6= 2.
Acknowledgements: I am indebted to B. Eckmann and T. A. Springer for useful
comments. T. A. Springer suggested to use the relation (3.3) which reduced the
amount of the calculations considerably. Moreover I thank the FIM at ETH Zürich
for its hospitality.

II. Composition Algebras and Vector Products

We first recall a definition.

(1) Composition algebras.
A composition algebra consists of a vector space C together with

(1.1) a nondegenerate symmetric bilinear form 〈 , 〉 on C,
(1.2) a linear map C ⊗ C → C, x⊗ y 7→ x · y,
(1.3) an element 0 6= e ∈ C,
such that (with N(x) = 〈x, x〉)
(1.4) e · x = x · e = x,
(1.5) N(x · y) = N(x)N(y).

For our purpose we have to consider the following algebraic structure.

(2) Vector product algebras.
A vector product algebra consists of a vector space V together with

(2.1) a nondegenerate symmetric bilinear form 〈 , 〉 on V ,
(2.2) a linear map V ⊗ V → V , x⊗ y 7→ x× y,
such that

(2.3) 〈x× y, z〉 is alternating in x, y, z,
(2.4) (x× y)× x = 〈x, x〉y − 〈x, y〉x.

The vector product × is anti-commutative, since (2.3) implies x × x = 0. Therefore
x× (y× x) = (x× y)×x. Hence the choice of the arrangement of the brackets in the
lefthand side of (2.4) is not essential.

B. Eckmann has considered (continous) vector products in [B. Eckmann, Stetige
Lösungen linearer Gleichungssysteme, Comment. Math. Helv. 15 (1942/43), 318–339],
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see also [B. Eckmann, Continous solutions of linear equations — An old problem, its
history and its solution, Expo. Math. 9 (1991), 351–365]. He used the axioms

〈x× y, x〉 = 〈x× y, y〉 = 0, N(x× y) = det
∣∣∣∣
〈x, x〉 〈x, y〉
〈y, x〉 〈y, y〉

∣∣∣∣ .

They are perhaps more close to the intuitive idea of a vector product. Under presence
of (2.1)–(2.2) they are easily seen to be equivalent to (2.3)–(2.4).

Vector product algebras and composition algebras are equivalent notions.

Namely, given a composition algebra C, let V = 〈e〉⊥ and put

(i) x× y = 1
2
(x · y − y · x).

Conversely, given a vector product algebra V , put C = 〈e〉⊥V and define the product
on C by

(ii) (ae+ x) · (be+ y) =
(
ab− 〈x, y〉

)
e+ ay + bx+ x× y.

The rewriting formulas (i) and (ii) identify composition algebras and vector product
algebras on a “tensor categorical” level. This means that the composition rule (1.5)
gives after polarization and decomposition with respect to C = 〈e〉⊥V the same tensor
equations as (2.3) and the polarization of (2.4).

This equivalence between composition algebras and vector product algebras seems to
provide a convenient way to comprise some wellknown rules in composition algebras.

For the associator in C one finds

(x · y) · z − x · (y · z) = 2
(
(x× y)× z − 〈x, z〉y + 〈y, z〉x

)

for x, y, z ∈ V .

III. A Relation for the Contraction of 〈 , 〉

Let V be a finite-dimensional vector product algebra and let (ei)i be an orthonormal
basis of V over some algebraic closure. Put

d =
∑

i

〈ei, ei〉.

(3) Proposition. One has the relation

d(d− 1)(d− 3)(d− 7) = 0.

In the following we will tacitly apply (2.3) in the formulation

(2.3a) 〈x× y, z〉 = 〈x, y × z〉,
(2.3b) y × x = − x× y.
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The relation (2.4) will be used also in the following forms which are obtained by
polarizing and from (2.3):

(x× y)× z + x× (y × z) = 2〈x, z〉y − 〈x, y〉z − 〈z, y〉x,(2.4a)

〈x× y, z × t〉+ 〈y × z, t× x〉 =
(2.4b)

2〈x, z〉〈y, t〉 − 〈x, y〉〈z, t〉 − 〈y, z〉〈t, x〉.
Other relations to be used are

(3.1)
∑

i

ei × (v × ei) =
∑

i

〈ei, ei〉v −
∑

i

〈ei, v〉ei = dv − v = (d− 1)v

and

(3.2)
∑

i,j

〈ei × ej , ei × ej〉 =
∑

i,j

〈
ei, ej × (ei × ej)

〉
= (d− 1)

∑

i

〈ei, ei〉 = d(d− 1).

To warm up, we first consider vector product algebras which correspond to associative
composition algebras.

(4) Proposition. Suppose that the following sharpening of (2.4) holds:

(4.1) (x× y)× z = 〈x, z〉y − 〈y, z〉x.
Then

d(d− 1)(d− 3) = 0.

Proof. Consider
A =

∑

i,j,k

〈
ei × (ek × ei), ej × (ek × ej)

〉
.

By (3.1) we have

A =
∑

k

(d− 1)2〈ek, ek〉 = d(d− 1)2.

On the other hand, using (4.1) and (3.2) one finds

A =
∑

i,j,k

〈(
ei × (ek × ei)

)
× ej , ek × ej

〉

=
∑

i,j,k

〈
〈ei, ej〉ek × ei − 〈ek × ei, ej〉ei, ek × ej

〉

=
∑

i,k

〈ek × ei, ek × ei〉 −
∑

i,j,k

〈ek × ei, ej〉〈ei × ek, ej〉

= 2
∑

i,k

〈ek × ei, ek × ei〉 = 2d(d− 1).

So
0 = A−A = d(d− 1)(d− 3). �
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Let us start with the proof of Proposition 3.

Put
h(u, v) =

∑

i

(u× ei)× (ei × v).

The following formula has been introduced by T. A. Springer.

(3.3) h(u, v) = (d− 4)u× v.
To check it one uses (2.4a) with x = u, y = ei and z = ei × v and finds

h(u, v) = −
∑

i

u×
(
ei × (ei × v)

)
+ 2

∑

i

〈u, ei × v〉ei

−
∑

i

〈u, ei〉ei × v −
∑

i

〈ei × v, ei〉u

= (d− 1)u× v + 2
∑

i

〈v × u, ei〉ei

− u× v −
∑

i

〈v, ei × ei〉u

= (d− 1)u× v − 2u× v − u× v − 0 = (d− 4)u× v.

Formulas (3.3) and (3.2) make it easy to compute the sum

B =
∑

i,k

〈
h(ei, ek), h(ek, ei)

〉

= (d− 4)2
∑

i,k

〈ei × ek, ek × ei〉 = −d(d− 1)(d− 4)2

We next compute B in a different way. One has

B =
∑

i,j,k,l

〈
(ei × ej)× (ej × ek), (ek × el)× (el × ei)

〉
.

Applying (2.4b) shows
B +B′ = 2C −D −D′,

where

B′ =
∑

i,j,k,l

〈
(ej × ek)× (ek × el), (el × ei)× (ei × ej)

〉
,

C =
∑

i,j,k,l

〈ei × ej , ek × el〉〈ej × ek, el × ei〉,

D =
∑

i,j,k,l

〈ei × ej , ej × ek〉〈ek × el, el × ei〉,

D′ =
∑

i,j,k,l

〈ej × ek, ek × el〉〈el × ei, ei × ej〉.
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By reindexing one finds B = B′ and D = D′. Therefore

B = C −D.
We compute C and D:

C =
∑

i,j,k,l

〈
ei, ej × (ek × el)

〉〈
(ej × ek)× el, ei

〉

=
∑

j,k,l

〈
ej × (ek × el), (ej × ek)× el

〉

=
∑

j,k,l

〈(
ej × (ek × el)

)
× (ej × ek), el

〉

= −
∑

k,l

〈
h(ek × el, ek), el

〉
= −(d− 4)

∑

k,l

〈
(ek × el)× ek, el

〉

= −(d− 1)(d− 4)
∑

l

〈el, el〉 = −d(d− 1)(d− 4),

D =
∑

i,j,k,l

〈
ei, ej × (ej × ek)

〉〈
(ek × el)× el, ei

〉

=
∑

j,k,l

〈
ej × (ej × ek), (ek × el)× el

〉

=
∑

k

(d− 1)(d− 1)〈ek, ek〉 = d(d− 1)2.

Hence
B = −d(d− 1)(d− 4)− d(d− 1)2 = −d(d− 1)(2d− 5).

Finally

0 = B −B = −d(d− 1)(2d− 5) + d(d− 1)(d− 4)2

= d(d− 1)(d2 − 10d+ 21) = d(d− 1)(d− 3)(d− 7). �

References
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Abstract. We consider global attractors of infinite dimensional dynamical
systems given by dissipative partial differential equations

ut = uxx + f(x, u, ux)

on the unit interval 0 < x < 1 under separated, linear, dissipative boundary
conditions. Global attractors are called orbit equivalent, if there exists a
homeomorphism between them which maps orbits to orbits. The global
attractor class is the set of all equivalence classes of global attractors arising
for dissipative nonlinearities f . We show that the global attractor class does
not depend on the choice of boundary conditions. In particular, Dirichlet
and Neumann boundary conditions yield the same global attractor class.

The results are based on joint work with Carlos Rocha.

1 Attractor classes

Parabolic partial differential equations modelling reaction, diffusion, and drift are
an important class of nonlinear infinite dimensional dynamical systems. Aside from
applied motivation, much of the mathematical interest has centered on the dynamics
of their finite dimensional global attractors. See for example [Hal88], [Lad91], [BV89],
[Tem88], and the references there. The influence of boundary conditions has mainly
been investigated in connection with stability of equilibria and shape of the underlying
spatial domain, see for example [MM83], [Mat84].
Equations in one-dimensional domains have been studied in much detail, see

for example [Cha74], [CI74], [Mat79], [Mat82], [Mat88], [Hen81], [Hen85], [Ang86],
[Ang88], [BF88], [BF89], [AF88], [FMP89], [Nad90], [FP90]; mostly under Dirichlet
or under Neumann boundary conditions, separately. In the present paper, we follow an
approach developed more recently by [FR91], [Fie94], [FiRo94]. There the emphasis
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is on Neumann boundary conditions. Here, we indicate the necessary adaptations
for general separated, linear, dissipative boundary conditions. Although the global
attractors for a given nonlinearity will in general depend on our choice of boundary
conditions, [HR87], we will show that the set of their orbit equivalence classes does
not.

To be specific, we consider scalar equations

ut = uxx + f(x, u, ux) (1.1)

on the unit interval 0 ≤ x ≤ 1. Fixing 0 ≤ τ0, τ1 ≤ 1, we impose boundary conditions

(1− τι)u+ τι∂νu = 0 (1.2)

at x = 0, 1. Here ι = 0, 1; ∂νu = ±ux indicates the outward ”normal“ derivative with
+ at x = 1, − at x = 0, and subscripts t, x indicate partial derivatives of solutions
u = u(t, x). For the nonlinearities f ∈ C2 we impose dissipation conditions

f(x, u, 0) · u < 0, (1.3)

for |u| ≥ C1 and, with continuous functions a, b as well as an exponent γ < 2

|f(x, u, p)| ≤ a(u) + b(u)|p|γ (1.4)

at all arguments (x, u, p) of f . The estimators C1, a, b, γ are allowed to depend on f .
This setting is fixed throughout this paper.
The dissipation conditions (1.3), (1.4) guarantee the local semiflow of x-profiles

of solutions u(t, ·) ∈ Xτ , t ≥ 0, to be globally defined and dissipative: any solution
eventually remains in a fixed large ball B ⊆ Xτ . See [Ama85], theorem 5.3 for a
reference. In fact, we can choose B such that |u| < C1 and |p| < C2 on B. The
state space Xτ is the Sobolev space H2 intersected with boundary conditions (1.2),
τ = (τ0, τ1).
By dissipativeness, equations (1.1), (1.2) possess a global attractor Aτf ⊆ Xτ .

This is the maximal compact invariant subset of Xτ or, here equivalently, the set of
bounded solutions u(t, ·), t ∈ IR. Yes, including negative t. This global attractor is
our principal object of study here. We call a global attractor Aτf orbit equivalent to
Aσg ,

Aτf ∼= Aσg , (1.5)

if there exists a homeomorphism H : Aτf → Aσg which maps orbits {u(t, ·) | t ∈ IR}
on Aτf onto orbits in Aσg . Obviously, ∼= is an equivalence relation and defines orbit
equivalence classes of global attractors.

Let Eτf denote the set of equilibrium solutions ut = 0 of (1.1), (1.2). Clearly,
Eτf ⊆ Aτf . We assume all equilibria to be hyperbolic: all eigenvalues of corresponding
Sturm-Liouville eigenvalue problem are nonzero, for linearizations at equilibria. This
is a generic nondegeneracy condition on f , for any given τ .

For given boundary conditions τ , we define the attractor class A(τ) as the set
of orbit equivalence classes of global attractors Aτf . Here f ∈ C2 are assumed to be
dissipative, as in (1.3), (1.4), with only hyperbolic equilibria.
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Theorem 1.1 In the above setting, the global attractor class A(τ) does not depend
on the boundary conditions (1.2) given by τ = (τ0, τ1) ∈ Q := [0, 1]2. In other words,
let τ, σ ∈ Q. Then

A(τ) = A(σ). (1.6)

Specifically, for any dissipative f ∈ C2 with hyperbolic equilibria Eτf there exists a
dissipative g ∈ C2, also with hyperbolic equilibria Eσg , such that the respective global
attractors Aτf ,Aσg are orbit equivalent

Aτf ∼= Aσg , (1.7)

in the sense of definition (1.5).

In section 2 we prove theorem 1.1. We conclude with a discussion of our result,
in section 3.
For σ, τ ∈ (0, 1]2, excluding the Dirichlet cases, the theorem is very easy to prove.

We use a rescaling argument by Rafael Ortega. Let

u(x) = A(x) v(x) (1.8)

with some smooth amplitude function A > 0 satisfying

τιA(ι) = σι
(1− τι)A(ι) + τιδνA(ι) = 1− σι (1.9)

at ι = 0, 1. Then the transformation (1.8) defines a linear isomorphism between the
state spaces u ∈ Xτ and v ∈ Xσ associated to boundary conditions τ and σ. Also,
v satisfies an equation (1.1) with an appropriately rescaled dissipative nonlinearity
g instead of f . Therefore Aτf

∼= Aσg , by (1.8), (1.9), and A(τ) = A(σ) in the non-
Dirichlet cases. (Strictly speaking, though, the transformation does not preserve the
precise form (1.3) of our dissipation condition.) Our slightly more involved proof,
given in section 2, will include even the Dirichlet case. In particular, the Neumann
and the Dirichlet attractor classes will be shown to coincide. Note that all spaces
Xτ , including the Dirichlet cases, are closed linear subspaces of X = H2 depending
continuously on the parameters τ ; in particular all these spaces are isomorphic from
an abstract view point.
We briefly outline the Morse-Smale structure behind our proof of theorem 1.1,

in the remainder of the present section. Following [FiRo96], we first normalize f , for
simplicity, such that

f(x, u, p) = −u (1.10)

for |x| ≥ C1 or |p| ≥ C2. Such a normalization can be achieved without changing
Aτf or the flow on it, by dissipation conditions (1.3), (1.4). For u ∈ Xτ consider
functionals

V (u) :=

∫ 1

0

F (x, u, ux)dx. (1.11)

Following [Mat88] we observe that

d

dt
V (u(t, ·)) = −

∫ 1

0

Fpp · u2tdx (1.12)
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along solutions u(t, x) of (1.1), (1.2), if F satisfies

pFppu − fFppp + Fppx = fpFpp, (1.13)

for all (x, u, p) and obeys the boundary condition

Fp · ut = 0 (1.14)

at x = 0, 1. By the standard method of characteristics, [Joh82], it is easy to find a
solution w = w(x, u, p) of the first order equation

pwu − fwp + wx = fp; (1.15)

see also (2.1). In fact, normalization condition (1.10), guarantees global solvability
of the characteristic equation of (1.15) which is studied in more detail in section 2
below. Solving then

Fpp = exp(w) (1.16)

we have solved (1.13). The boundary conditions (1.14) hold trivially in the Dirichlet
case. We require Fp = 0, as an initial condition for (1.16) with respect to p, along
the lines in (x, u, p)-space given by the boundary conditions (1.2), in all other cases.
By this construction, Fpp = exp(w) is positive. In particular the functional V

becomes a Lyapunov functional on Xτ which decreases strictly along non-equilibrium
orbits. With respect to the Riemannian metric on Xτ defined by Fpp, the semiflow
(1.1), (1.2) is in fact gradient, or Morse with respect to V.
The functional V reveals that the global attractor Aτf consists entirely of equi-

libria Eτf and heteroclinic or connecting orbits. These orbits, by definition, limit onto
(different) equilibria ũ, u for t → +∞, t → −∞, respectively. They can be viewed
as intersections of unstable and stable manifolds Wu(u) ∩W s(ũ). Note that

Aτf = Eτf ∪
⋃

u∈Eτ
f

Wu(u). (1.17)

Although this will not be very visible below, we emphasize the importance of
nodal properties in our proof of theorem 1.1. Based on observations for linear equa-
tions, they imply that

t 7→ z(u1(t, ·)− u2(t, ·)) (1.18)

is nonincreasing along solutions u1(t, ·), u2(t, ·) of (1.1), (1.2). Here z, the zero num-
ber, denotes the number of strict sign changes of x-profiles. The zero number in (1.18)
drops strictly whenever a multiple zero of the x-profile is encountered. Historically,
the use of nodal properties dates back as far as [Stu36]. In [Mat82], their impor-
tance for infinite dimensional nonlinear dynamics was first realized. A comprehensive
modern account of zero numbers is given in [Ang88].
The most striking consequence of nodal properties for our global attractors Aτf is

the Morse-Smale property. The Morse structure is generated by the Lyapunov func-
tional V, as discussed above. By [Hen85], [Ang86], the intersections between stable
and unstable manifolds which make up the global attractors Aτf are automatically
transverse, without further genericity assumption on f or τ :

Wu(u)∩ W s(ũ), (1.19)
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without any nondegeneracy assumptions except hyperbolicity of the equilibria Eτf .
Structural stability is the most important consequence of this Morse-Smale prop-

erty. In fact, let g be C2-near f and satisfy dissipation conditions (1.3), (1.4). Let
also σ ∈ Q = [0, 1]2 be near τ. Then

Aσg ∼= Aτf , (1.20)

as claimed in (1.7). For reference see [P69], [PS70], [PdM82], and for the infinite
dimensional case [Oli92]. Since the argument is local in f, τ, this does not prove our
theorem, of course.

2 Proof of theorem 1.1

If all equilibria Eτf are hyperbolic, then the global attractor is Morse-Smale and there-
fore structurally stable, as we have seen at the end of the previous section. We give a
geometric criterion for hyperbolicity of Eτf , in lemma 2.1. The criterion is based on a
shooting approach to equilibria. In lemma 2.2, we relate global attractors for different
boundary conditions, by an augmentation argument. Piecing these elements together,
we finally prove theorem 1.1 by a homotopy argument which uses the Morse-Smale
property.
Our geometric criterion for hyperbolicity is a slight adaptation of an argument

in [Roc91]. Equilibria u ∈ Eτf are solutions of

u̇ = p
ṗ = −f(x, u, p)
ẋ = 1

(2.1)

which in addition satisfy the boundary conditions

l0 : (1− τ0)u− τ0p = 0, at x = 0,
l1 : (1− τ1)u+ τ1p = 0, at x = 1.

(2.2)

In passing we note that (2.1), together with ẇ = fp(x, u, p), are the equations of the
characteristics of (1.15). For any real a, let u(x, a), p(x, a) denote the solution of
(2.1) with initial condition

u(0, a) := τ0a
p(0, a) := (1− τ0)a (2.3)

at x = 0. By normalization (1.10), these solutions are globally defined. Define the
shooting surface Sτf ⊆ [0, 1]× IR2 as

Sτf := {(x, u, p) | u = u(x, a), p = p(x, a), a ∈ IR}. (2.4)

The sections Sτ,xf ⊆ IR2 of Sτf for given x are called shooting curves . The shooting
curves are planar C1 Jordan curves, parametrized by the shooting parameter a ∈ IR.
The set Eτf of equilibria is given by precisely those values a ∈ IR where the shooting
curve Sτ,xf at x = 1 intersects the line l1 of boundary conditions at x = 1.
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Lemma 2.1 An equilibrium in Eτf given by the shooting parameter a is hyperbolic if,
and only if, the shooting curve Sτ,x=1f intersects the target line l1 transversely, at the
intersection value a.

Proof: Consider the equilibrium u(x, a) corresponding to the intersection value a,
or vice versa. The partial derivative (ua(x, a), pa(x, a)) is the nontrivial solution of
the linearized equation which satisfies the homogeneous linear boundary condition
l0. (Well, we could take constant multiples instead.) Clearly, u is nonhyperbolic
if, and only if, this partial derivative also satisfies the other boundary condition l1,
at x = 1. Reinterpreting geometrically, nonhyperbolicity is then equivalent to the
tangent vector of the shooting curve Sτ,x=1f : a 7→ (u(1, a), p(1, a)) being parallel to
the line l1. This is exactly nontransversality of intersection, and the lemma is proved.

2

Augmentation works as follows. We append new segments

I0 := [−ξ0, 0)
I1 := (1, 1 + ξ1]

(2.5)

ξ0, ξ1 > 0, to the original x-interval x ∈ [0, 1]. In the appended intervals, we define f
by

f(x, u, p) := −λ2(x)u, (2.6)

where λ2(x) := λ2ι > 0 is constant for x ∈ Iι. We will specify λ = (λ0, λ1) below. In
Iι the shooting equation (2.1) becomes the hyperbolic linear equation

u̇ = p
ṗ = λ2ιu

(2.7)

In (u, p)-space, this linear equation induces a flow on the lines of boundary conditions

l(τι) : (1− τι)u± τιp = 0. (2.8)

Here ι = 1 carries the plus-sign, whereas ι = 0 requires a minus. The boundary
condition parameters τι(x) are now considered to depend on x ∈ Iι, with their values
at x = ι taken from the original boundary conditions (1.2). The flow induced by
(2.7), (2.8) on τι is

τ̇ι = ±(λ2ι τ2ι − (1− τι)2), (2.9)

by direct calculation. This equation plays a central role in the proof of the following
lemma.
For abbreviation, let F denote the set of dissipative nonlinearities f, g ∈ C2 with

hyperbolic equilibria as specified in theorem 1.1.

Lemma 2.2 Let f ∈ F and consider arbitrary boundary conditions τ ∈ (0, 1)2, in the
interior of the closed unit square Q = [0, 1]2, and σ ∈ Q. Then there exists g ∈ F
such that the global attractors Aτf ,Aσg are orbit equivalent,

Aτf ∼= Aσg (2.10)
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Proof: We will use augmentation (2.5)–(2.9) to construct g on an interval x ∈
[−ξ0, 1 + ξ1]. Rescaling x by a scaling factor s := 1/(1 + ξ0 + ξ1) and adjusting σ
accordingly, first, we will not lose generality. As a main step, we will then construct a
dissipative homotopy from (f, τ) to (g, σ), by augmentation, such that hyperbolicity
of equilibria is preserved throughout the homotopy. In a final, third step we address
the issue of C2-regularization of our piecewise defined nonlinearities, by smoothing.
By Morse-Smale structural stability, the homotopy which preserves hyperbolicity of
equilibria then proves the lemma.
Rescaling x to x̃ by x = s(x̃+ ξ) transforms the x-interval [0, 1] to an x̃-interval

[−ξ, 1 + ξ], if we choose s = (1 + 2ξ)−1 ∈ (0, 1). Simultaneously, boundary conditions
σ = (σ0, σ1) at x = 0, 1 get transformed to boundary conditions σ̃ = (σ̃0, σ̃1), for
ũ(t, x̃) := u(t, x), which are given explicitly by

σ̃ι =
sσι

1− σι + sσι
. (2.11)

Note that σ̃ι = 0, 1 for σι = 0, 1, respectively.
We consider the case 0 ≤ σι < 1 first. Fix ξ = ξ̄ > 0 large enough or, equivalently,

s = (1 + 2ξ̄)−1 small enough, such that in particular

0 ≤ σ̃ι < τι < 1. (2.12)

Now consider the τι flow (2.9) in an equation which is augmented according to (2.6).
We choose λι > 0, ι = 0, 1, such that the time which the τι flow (2.9) takes from τι to
σ̃ι coincides with the large prescribed value ξ̄ :

σ̃ι = τι(±ξ̄) (2.13)

for the initial values τι(0) = τι at x = ι. Indeed this can be achieved by choosing
λι > 0 such that the unique equilibrium

τ∗ι = (1 + λι)
−1 (2.14)

of (2.9) in (0, 1) is slightly above τι < 1.
In the remaining Neumann case σ̃ι = σι = 1, we simply choose τ

∗
ι > 0 slightly

below τι > 0, and (2.13) remains valid.
We describe our homotopy of attractors in terms of changing the boundaries

x = −ξ, 1 + ξ, simultaneously, from their original value ξ = 0 to their final values
ξ = ξ̄. On these larger x-intervals the nonlinearity f is augmented to f ξ by (2.6).
The boundary conditions τ = τ(ξ) are adjusted, according to (2.9), in parallel with
the homotopy parameter ξ. Note that by a rescaling of x with factor s = 1/(1 + 2ξ),
this induces a homotopy of global attractors for rescaled nonlinearities in the class F .
Clearly, dissipativeness is preserved. In view of Morse-Smale structural stability, it
therefore only remains to prove that hyperbolicity of equilibria is preserved throughout
the homotopy.
Hyperbolicity of equilibria follows from lemma 2.1. Indeed, transversality of the

shooting curve S
τ(ξ),x

fξ
, at x = 1 + ξ, to the line l(τ1(ξ)) follows in three steps, using

(2.5)–(2.9). First, in I0 = [−ξ, 0), the initial line l(σ̃0) = l(τ0(ξ)) = S
τ(ξ),−ξ
fξ

gets
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mapped diffeomorphically to the line l(τ0(0)) = l(τ0) = l0. Second, in x ∈ [0, 1], we
obtain the original f -shooting curve

Sτ,1f ∩ l(τ1). (2.15)

Here we use hyperbolicity of Eτf and lemma 2.1. Third, in I1 = (1, 1 + ξ], the line
l1 = l(τ1) = l(τ1(0)) and the f -shooting curve S

τ,1
f get mapped onto

S
τ(ξ),1+ξ

fξ
∩ l(σ̃1), (2.16)

by the shooting diffeomorphism. Transversality is inherited from (2.15). A final
application of lemma 2.1 proves that hyperbolicity of equilibria is preserved during
our homotopy 0 ≤ ξ ≤ ξ̄. Of course, rescaling of x does not affect hyperbolicity.
Smoothing the discontinuities of our augmentation of f , at x = 0, 1, we obtain

a C2-augmentation. Making the x-intervals, where smoothing acts, small enough,
we can guarantee transversality (2.16) to hold throughout our homotopy 0 ≤ ξ ≤ ξ̄.
In particular, all f ξ are Morse-Smale. Defining g as (the rescaled version of) f ξ̄,
structural stability of Morse-Smale systems finally implies

Aτf ∼= Aσg . (2.17)

In (2.17) we have used that rescaling does not change the orbit type of the global
attractor and, simultaneously, transforms σ̃ = τ(ξ̄) to the boundary condition σ by
(2.11). This proves the lemma. 2

In the previous lemma we have shown A(τ) = A(σ), for attractor classes with
τ, σ ∈ (0, 1)2. (The transformation (1.8) would even allow for τ, σ ∈ (0, 1]2.) To
complete the proof of theorem 1.1, anyway, it remains to address the case of τ or σ
in the boundary ∂Q of the square Q = [0, 1]. If g ∈ F , σ ∈ ∂Q, then local structural
stability of Morse Smale systems shows that for f := g and any τ ∈ (0, 1)2 close to σ
we have orbit equivalence Aσg ∼= Aτf . Therefore A(σ) ⊆ A(τ). To complete the proof
of theorem 1.1 it remains to show that, conversely,

A(σ) ⊇ A(τ), (2.18)

for some τ ∈ (0, 1)2. By lemma 2.2, claim (2.18) actually holds for all τ ∈ (0, 1)2, σ ∈
Q. This completes our proof of theorem 1.1. 2

3 Discussion

We begin our discussion with remarks on x-dependent diffusion and on another at-
tempt of simplifying our proof, by transformation of x. We then indicate why periodic
boundary conditions x ∈ S1 produce a class of Morse-Smale attractors quite different
from the class A(τ) of separated boundary conditions τ = (τ0, τ1) ∈ Q = [0, 1]2.
We conclude with a few comments on global attractors in the case of higher space
dimension, dim x > 1, and the case of systems, dim u > 1.
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Transforming x to y = η(x) ∈ [0, 1] in (1.1), (1.2) and denoting v(y) := u(x)
yields an equation

D(y)−1 vt = vyy + g(y, v, vy) (3.1)

with transformed boundary conditions

(1− σι)v ± σι vy = 0 (3.2)

at y = ι = 0, 1. Explicitly, we have

D(y) = (ηx(x))
2 > 0,

σι = (1 + 1−τιτι
ηx)
−1.

(3.3)

Given τ ∈ (0, 1)2 we can clearly reach all σ ∈ (0, 1)2 by a proper choice of the function
η. The standard linear homotopy from D(y)−1vt to vt, in (3.1), is a Morse-Smale
homotopy of attractors which does not change the equilibria. Indeed, the shooting
surface never changes, during the homotopy, because D(y)−1 only multiplies the time
derivative. Therefore we conclude Aσg ∼= Aτf , as stated in lemma 2.2.
A main disadvantage of this rather simple argument is the fact that Neumann as

well as Dirichlet boundary conditions τι = 0, 1 remain unchanged by the transforma-
tion η; see (3.3). It is the case σ ∈ ∂Q, where we really seem to need the augmentation
in lemma 2.2.
Of course we could have discussed orbit equivalence of attractors in the class

of pairs (f,D), allowing for space–dependent diffusion from the very start. Fixing
D ≡ 1, though, provides a stronger statement in theorem 1.1. Parenthetically we
note that introducing D > 0 does not produce any additional global attractors, by
the above arguments. As we have argued in the discussion section of [FiRo96], we
do not expect additional global attractors to arise, even in fully nonlinear, uniformly
parabolic, dissipative cases.
Passing to higher-dimensional domains x ∈ Ω ⊆ IRd, with ∂Ω smooth and

bounded, we may again consider dissipative scalar equations

ut = ∆u+ f(x, u,∇u) (3.4)

on Ω, under mixed boundary conditions

(1− τ)u+ τ∂νu = 0. (3.5)

Now τ = τ(x) ∈ [0, 1] is a given function on ∂Ω. A transformation u(x) = A(x)v(x)
is still feasible, normalizing τ ∈ (0, 1] to become a uniform Neumann condition σ ≡ 1
for v; see (1.8), (1.9). But we have lost variational structure, nodal properties, and
Morse-Smale when passing to (3.4), (3.5). Essentially arbitrary finite-dimensional
flows occur in (3.4), see [Pol95]. Even if we assume the global attractor Aτf to be
structurally stable, there is no reason to believe that its orbit equivalence class is
determined by the equilibria, alone.
To include the Dirichlet cases, it is tempting to try and augment Ω, by attaching

a collar outside ∂Ω, such that boundary conditions on the enlarged region differ from
the original ones. A structurally stable attractor Aσ,Ωf should still be recovered in
the enlarged region Ω′. If Ω is starshaped with respect to the origin, a homothety
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Ω′ = sΩ by a scaling factor s > 1 comes to mind. In the annular region A = Ω′ \Ω we
can determine an eigenfunction for a positive eigenvalue λ of the Laplacian ∆ with
boundary conditions

(1− τ)u− τ∂ν′u = 0 on ∂Ω
(1− σ)u+ σ∂ν′u = 0 on ∂Ω′.

(3.6)

Here ν′ denotes the outward normal of A; on ∂Ω we have ν′ = −ν. In the one-
dimensional case, this eigenfunction was the crucial shooting augmentation in the
”annulus“ A = I0 ∪ I1. The task remains open to augment the PDE (3.4) in A in
such a ”singular way“ that the original attractor Aτ,Ωf is recovered on Ω′ with new

boundary conditions σ. For systems, u ∈ IRk, a similar problem arises. Even in the
case of one-dimensional x, though, is is not yet clear how to properly recover Aτf on
the enlarged interval Ω′ then.
Jacobi systems are the spatially discrete ODE analogue to our scalar PDE (1.1),

(1.2) in one space dimension; see [FO88]. Specifically, Jacobi systems have the tri-
diagonal nonlinear form

u̇i = fi(ui−1, ui, ui+1), (3.7)

i = 0, . . . , n, with strictly positive partial derivatives of the nonlinearities fi with re-
spect to the off-diagonal entries ui−1, ui+1. For convenience we impose linear bound-
ary conditions in the following form

(1 + τ0)u−1 − 2τ0u0 = 0
(1 + τ1)un+1 − 2τ1un = 0.

(3.8)

System (3.7), (3.8) may, but need not, arise by finite difference semidiscretization
in space of (1.1), (1.2). Then τι = 1, ι = 0, 1 corresponds to Neumann boundary
conditions, as before, and τι = 0 are Dirichlet conditions

u−1 = un+1 = 0. (3.9)

Only boundary conditions 0 ≤ τι ≤ 1 arise by discretization of dissipatively admissible
PDE boundary conditions. Note, however, that the choice τι = −1 again corresponds
to Dirichlet boundary conditions

u0 = un = 0, (3.10)

at least formally.
For τι 6= −1, the state space of our system (3.7), (3.8) is u = (u0, · · · , un) ∈ X =

IR
n+1. A natural dissipation condition is

ui · fi(ui, ui, ui) < 0 (3.11)

for all i = 0, · · · , n, provided |ui| ≥ C. Here C is a large constant. Under boundary
conditions (3.8) with

|τ0|, |τ1| ≤ 1, (3.12)

condition (3.11) ensures that ‖u‖ := max |ui| decreases to level C or below, eventu-
ally. If τ0 or τ1 violate condition (3.12), then max |ui| may grow indefinitely on the
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boundary, in spite of dissipation condition (3.11). Therefore we restrict attention to
the region (3.12).
For Neumann condition τι = 1, it was argued in [FiRo96], theorem 8.2, that

the attractor class Adis(τ) for Jacobi systems (3.7), (3.8) coincides with the PDE
attractor class Acon(τ) := A(τ) of our present theorem 1.1. Here Adis(τ) ranges over
all Jacobi systems of any dimension n. For 0 ≤ τι ≤ 1, we expect similar arguments
to provide

Adis(τ) = Acon(τ) (3.13)

to be τ -independent, by theorem 1.1.
Augmentation to i ∈ {−2,−1, · · · , n + 1, n + 2} also seems a viable approach

to discrete attractor classes. Consider the new left boundary u−2, u−1, for example.
Comparing a new boundary condition σ = (σ0, σ1) with the old τ -condition (3.8), at
the left end, we obtain

(1 + τ0)u−1 − 2τ0u0 = 0
(1 + σ0)u−2 − 2σ0u−1 = 0.

(3.14)

Adding the two equations with real coefficients −β, α we obtain the right hand side
of an augmentation

u̇−1 = α(1 + σ0)u−2 − (2ασ0 + β(1 + τ0))u−1 + 2βτ0u0. (3.15)

This augmentation is Jacobi and dissipative, for |σι|, |τι| ≤ 1, if

α > 0
βτ0 > 0

α(1− σ0) < β(1− τ0)
(3.16)

Note that equilibrium shooting, u̇−1 ≡ 0, maps the σ0 boundary condition to the τ0
condition under our choice (3.15) of augmentation.
Let An(τ) denote the attractor class for Jacobi systems (3.7), (3.8), this time

with fixed dimension n+1. In view of theorem 1.1 and (3.13) it seems natural to ask
whether An(τ) can be independent of τ , at least for 0 ≤ τι ≤ 1. More daringly: let
Aconn denote the set of attractor classes in Acon of dimension at most n+1. Is it true,
for 0 ≤ τι ≤ 1 and at least for large n, that

An(τ) = Aconn ? (3.17)

In particular An(τ) would not depend on τ , of course.
Transforming the boundary value at i = −1 by sũ−1 := u−1 requires 0 < s < 1

to remain in the class of dissipative Jacobi systems where (3.11) holds. For 0 < |τ0| ≤
|σ0| ≤ 1 of equal sign we obtain an embedding

An(τ0, τ1) ⊆ An(σ0, σ1), (3.18)

which does not quite answer our question. Dissipative Jacobi augmentation (3.15),
(3.16) does not provide an answer, either. Some modest conclusions are

An(τ0, τ1) ⊆ An+1(1, τ1)
An(τ0, τ1) ⊆ An+1(σ0, τ1). (3.19)
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Again |τι|, |σι| ≤ 1. In addition we require τ0 6= 0 and, in the second equation, τ0 6= 1.
Aside from these constraints, τ and σ are arbitrary. Replacing i by n − i we also
observe symmetry for all τ ,

An(τ0, τ1) = An(τ1, τ0). (3.20)

For example, this implies Neumann embedding

An(τ0, τ1) ⊆ An+2(1, 1), (3.21)

for τ0, τ1 6= 1. Similarly, for τ0, τ1 6= 0, 1 and all σ we obtain

An(τ) ⊆ An+2(σ) (3.22)

from (3.19), (3.20).
Note that independence of An+1(σ) from σ might break down, at least for

σ0 ց −1. In that case, the boundary condition (3.14) collapses to u−1 = 0, formally.
This is equivalent to the Dirichlet attractor class An(0, σ1) of Jacobi systems in one
lower dimension.
As a final remark, we emphasize that periodic boundary conditions x ∈ S1 gen-

erate sets Acon(per), An(per) of attractor classes which are much richer than their
colleagues Acon(τ) = Acon(sep) living in separated boundary conditions. In fact, the
Neumann class can be shown to be contained in the periodic class τ = (1, 1), by
reflection through the boundary and smoothing:

Acon(sep) ⊂ Acon(per), (3.23)

again by theorem 1.1. As remarked in [AF88], even for nonlinearities f = f(u, p)
independent of x, time periodic rotating waves can arise inAcon(per), which simply do
not possess any counterpart in the gradient case Acon(sep). In particular, Lyapunov
functionals like V fail. A similar remark applies to the spatially discrete case An(per)
of cyclic Jacobi systems i (mod (n + 1)). Since reflection through the boundary for
Neumann condition yields only an embedding

An(1, 1) 6⊆ A2n+1(per),

the characterization of attractor classes in the case of periodic boundary conditions
remains wide open.
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[FP90] B. Fiedler and P. Poláčik. Complicated dynamics of scalar reaction diffu-
sion equations with a nonlocal term. Proc. Royal Soc. Edinburgh A, 115:
167–192, (1990).

[FR91] G. Fusco and C. Rocha. A permutation related to the dynamics of a scalar
parabolic PDE. J. Diff. Eq., 91: 75–94, (1991).

[FiRo94] B. Fiedler and C. Rocha. Heteroclinic orbits of semilinear parabolic equa-
tions. Preprint, to appear in J. Diff. Eqs., (1994).

[FiRo96] B. Fiedler and C. Rocha. Orbit equivalence of global attractors of semi-
linear parabolic differential equations. Preprint, (1996).

[Hal88] J.K. Hale. Asymptotic Behavior of Dissipative Systems. Math. Surv. 25.
AMS Publications, Providence, 1988.

[Hen81] D. Henry. Geometric Theory of Semilinear Parabolic Equations. Lect.
Notes Math. 840. Springer-Verlag, New York, 1981.

[Hen85] D. Henry. Some infinite dimensional Morse-Smale systems defined by
parabolic differential equations. J. Diff. Eq., 59: 165–205, (1985).

[HR87] J. Hale and C. Rocha. Interaction of diffusion and boundary conditions.
Nonlinear Analysis: 11: 633–649, (1987).

[Joh82] F. John. Partial Differential Equations. Springer-Verlag, New York, 1982.

[Lad91] O.A. Ladyzhenskaya. Attractors for Semi-groups and Evolution Equa-
tions. Cambridge University Press, 1991.

[Mat79] H. Matano. Asymptotic behavior and stability solutions of semilinear
diffusion equations. Publ. Res. Inst. Math. Sc. Kyoto Univ., 15: 401–454,
(1979).

Documenta Mathematica 1 (1996) 215–228



228 Bernold Fiedler

[Mat82] H. Matano. Nonincrease of the lap-number of a solution for a one-
dimensional semi-linear parabolic equation. J. Fac. Sci. Univ. Tokyo Sec.
IA, 29: 401–441, (1982).

[Mat84] H. Matano. Existence of nontrivial unstable sets for equilibriums of
strongly order-preserving systems. J. Fac. Sci. Univ. Tokyo Sec. IA-Math.,
3: 645–673, (1984).

[Mat88] H. Matano. Asymptotic behavior of solutions of semilinear heat equations
on S1. In Nonlinear Diffusion Equations and their Equilibrium States II.
Springer Verlag, New York, 1988.

[MM83] H. Matano and M. Mimura. Pattern formation in competition-diffusion
systems in nonconvex domains. Publ. Res. Inst. Math. Sci., 19: 1049–
1079, (1983).

[Nad90] N.S. Nadirashvili. On the dynamics of nonlinear parabolic equations.
Soviet Math. Dokl., 40: 636–639, (1990).

[Oli92] W.M. Oliva. Stability of Morse-Smale maps. Preprint, (1992).

[P69] J. Palis Jr. On Morse-Smale dynamical systems. Topology, 8: 385–404,
(1969).

[PdM82] J. Palis Jr. and W. de Melo. Geometric Theory of Dynamical Systems.
Springer Verlag, New York, 1982.
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Abstract. Let G be a split simply connected semisimple algebraic group
over a field F and let C be the center of G. It is proved that the maximal
index of the Tits algebras of all inner forms of GL over all field extensions
L/F corresponding to a given character χ of C equals the greatest common
divisor of the dimensions of all representations of G which are given by the
multiplication by χ being restricted to C. An application to the discriminant
algebra of an algebra with an involution of the second kind is given.

1991 Mathematics Subject Classification: Primary 20G15.

Let G be an adjoint semisimple algebraic group defined over a field F , let π : G̃→ G

be the universal covering and let C = ker(π) denote the center of G̃. In [13] Tits has
constructed a homomorphism

β : C∗(F )→ Br(F )
where C∗(F ) is the group of characters of C defined over F and Br(F ) is the Brauer
group of F . For any character χ ∈ C∗(F ) one can choose a central simple algebra
A (called the Tits algebra), representing the class β(χ) ∈ Br(F ), in such a way that
there is a group homomorphism

G̃→ GL1(A)
restricting to the character χ on the center C and inducing an irreducible represen-
tation over a separable closure Fsep of the field F . It follows from the representation
theory of semisimple algebraic groups that the index ind(A) of the algebra A divides

the dimension of any irreducible representation ρ : G̃q → GL(V ) of a quasisplit inner
form G̃q of G̃ such that the restriction of ρ to the center Cq of G̃q is given by the
multiplication by χ (we identify the Galois modules of the character groups C∗ and
Cq∗). Therefore, if we denote by nχ(G) the greatest common divisor of the dimensions
of all such representations, then ind(A) divides nχ(G). The numbers nχ(G) depend
only on the class of the inner forms of G, i.e. on the Dynkin diagram D = Dyn(Gsep),
and the action of the absolute Galois group of F on Aut(D). In particular, if G is of

1I would like to thank the Université de Franche-Comté at Besançon and the Alexander von
Humboldt-Stiftung for financial support.

Documenta Mathematica 1 (1996) 229–243



230 A. S. Merkurjev

inner type, then the numbers nχ(G) depend only on the isomorphism class of G over
Fsep and were computed in [5].
It was proved in [5], case by case, that, for a group G of inner type, the maximal

possible index of the Tits algebra A corresponding to χ reaches its upper bound
nχ(G). More precisely, there is a field extension E/F and an inner form G′ of the
group G ×F E over E such that for any character of the center of the universal
covering of G′, defined over E, the index of the Tits algebra A corresponding to χ
equals nχ(G) = nχ(G

′).
We give here a uniform proof of this statement for all adjoint semisimple algebraic

groups G (not necessarily of inner type). The field E appears as a function field of a
“classifying variety” Y for the corresponding adjoint quasisplit group Gq.
The universal property of the variety Y asserts that any inner form of G over

an arbitrary field extension L/F arises from some L-point of Y . Hence, the Tits
algebras over the function field E = F (Y ) are generic ones, and, therefore, are of
maximal index. It follows that, if the index of the Tits algebra A corresponding to χ
reaches the upper bound nχ(G) over some field extension, then it does so over F (Y ).
In the first part of the paper we define, for a group scheme G, the dual group

scheme G′ with respect to a G-torsor. This construction is a slight generalization of
the corollary of Prop. 34 in [10]. For an adjoint semisimple algebraic group G over a
field F we construct a classifying variety Y over F such that the scheme G′, dual to
G ×F Y with respect to a certain torsor, represents the algebraic family of all inner
forms of G.
In section 4 we define Tits algebras and give a list of all Tits algebras for all

absolutely simple groups of classical types.
The main result is formulated in section 5. The rest of the paper is devoted to

the proof of the theorem. In the last section we give an application of the theorem in
the case of groups of outer type A2n−1 which was not covered in [5].
All the group schemes considered in the paper are assumed to be flat affine of

finite type over a Noetherian separated base scheme Y .
For a field F we denote by Fsep a separable closure and by Γ the absolute Galois

group Gal(Fsep/F ). The split 1-dimensional torus SpecF [t, t
−1] is denoted by Gm.

1. Dual group scheme with respect to a torsor

Let G be a group scheme over a scheme Y , and let π : X → Y be a (left) G-torsor [7].
Denote by AutG(X) the group of all G-automorphisms of X over Y . If X = G is a
trivial torsor, then the map G(Y ) → AutG(X) given by the rule g 7→ (g′ 7→ g′ · g−1)
is clearly a group isomorphism.
Consider the sheaf of groups in the flat topology Yfl on Y :

S(Z) = AutG×Y Z(X ×Y Z).
Proposition 1.1. The sheaf S is represented by a group scheme over Y .

Proof. Since π : X → Y is faithfully flat, it is sufficient to prove that the restriction
of S on X is represented by a group scheme (by faithfully flat descent, [7, Th.2.23]).
But over X the torsor π×Y id : X ×Y X → X is trivial, hence for any scheme Z over
X we have a canonical isomorphism S(Z)

∼→ G(Z) and therefore the restriction of S
on X is represented by G ×Y X.
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We denote by G′ the group scheme over Y representing S and call G′ the group
scheme dual to G with respect to the G-torsor π : X → Y . It follows from the proof of
proposition 1.1 that the group schemes G′ ×Y X and G ×Y X are isomorphic over X.
By definition the group scheme G′ acts on X over Y .

Proposition 1.2. The morphism π : X → Y is a G′-torsor.
Proof. By faithfully flat descent we may assume that X = G is a trivial G-torsor.
Then the action of G′ ∼→ G on X clearly leads to the structure of a trivial G′-torsor
on X.

There is a natural bijection of the set of isomorphism classes of G-torsors π :
X → Y over Y and the set H1fl(Y,G) (see [7]).
Let f : G → G1 be a morphism of group schemes over Y , and let π : X → Y be

a G-torsor. A G1-torsor π1 : X1 → Y representing the image of the class of π under
the map

H1fl(Y,G)→ H1fl(Y,G′)
is called the image of the G-torsor π : X → Y under f . Let G′ (resp. G′1) be the
group scheme dual to G (resp. G1) with respect to the torsor π : X → Y (resp.
π1 : X1 → Y ). The natural group homomorphism

AutG(X)→ AutG1(X1)
induces a group scheme homomorphism f ′ : G′ → G′1 over Y of the dual group schemes.

2. PGL-torsors

Let p : V → Y be a vector bundle over Y and E = EndY (V) (viewed as a vector
bundle over Y ). Consider the group scheme G = PGL(V) over Y . Let π : X → Y
be a G-torsor. The group scheme G acts on E and on X over Y , hence on E ×Y X.
Denote by SecG(E) the Γ(Y,OY )-algebra of G-invariant sections X → E ×Y X of the
vector bundle E ×Y X → X. Consider the sheaf T of algebras on Yfl:

T (Z) = SecG×Y Z(E ×Y Z).
Proposition 2.1. The sheaf T is represented by the total space of an Azumaya alge-
bra over Y .

Proof. By faithfully flat descent we may assume that X = G is a trivial torsor. Then
for any scheme Z over Y we have T (Z) = MorY (Z, E), hence T is represented by
E which is the total space of the associated locally free sheaf EndY (V) of Azumaya
algebras.

We call an Azumaya algebra A over Y whose total space represents T the algebra
associated to the G-torsor π : X → Y . It follows from the proof of proposition 2.1
that the OX -algebra π∗A is isomorphic to π∗(EndY (V)).
Consider the sheaf of sets on Yfl:

U(Z) = IsoOZ−alg(λ
∗A, λ∗EndY (V))

for any λ : Z → Y . The group G(Z) acts naturally on U(Z) making U a G-torsor.
Proposition 2.2. The sheaf U is represented by the G-torsor π : X → Y .
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Proof. A morphism µ : Z → X over Y defines a trivialization of the torsor
X ×Y Z → Z and, hence, an isomorphism of OZ -algebras (πµ)∗A and
(πµ)∗(EndY (V)). Therefore, we get a map X(Z) → U(Z) which gives rise to a
map of sheaves

MorY (∗, X)→ U.

To prove that this map is a bijection, by faithfully flat descent one may assume that
X is a trivial torsor. By the Skolem-Noether theorem in this case the statement is
clear.

Remark 2.3. Proposition 2.2 shows how to reconstruct the G-torsor π : X → Y
out of the algebra A. Thus, we have a bijection between the set of isomorphism
classes of Azumaya algebras A over Y such that π∗A ∼→ π∗(EndY (V)) and the set of
isomorphism classes of PGL(V)-torsors over Y .
The group scheme PGL1(A) over Y acts naturally on the sheaf U , and the

action commutes with that of G. Hence, we have a group scheme homomorphism
PGL1(A)→ G′ where G′ is the group scheme dual to G with respect to the G-torsor
π : X → Y . To prove that this homomorphism is an isomorphism, by faithfully flat
descent, one may consider the split situation in which our statement is clear. Hence,

G′ = PGL(V)′ = PGL1(A).
Now let G be an arbitrary group scheme over Y , let π : X → Y a G-torsor and

let

f : G → PGL(V)
be a projective representation over Y , where V is a vector bundle over Y . Denote
by A the Azumaya algebra on Y associated to the PGL(V)-torsor, which is equal to
the image of π under f . We call A the algebra associated to the G-torsor π and the
projective representation f . There is a natural group scheme homomorphism

f ′ : G′ → PGL1(A)
where G′ is the group scheme dual to G with respect to π.

3. Inner forms

Let G be a semisimple algebraic algebraic group defined over a field F with center
Z(G). Denote by G the corresponding adjoint group G/Z(G). An algebraic group G′

over F is called a twisted form of G if G′sep ≃ Gsep. The set of isomorphism classes

of twisted forms of G is in 1–1 correspondence with the set H1(F,Aut(Gsep)) ([10]).
The natural homomorphism

G(Fsep)→ Aut(Gsep), ḡ 7→ (g′ 7→ gg′g−1)

induces the map

α : H1(F,G(Fsep))→ H1(F,Aut(Gsep)).

A twisted form G′ of the group G is called an inner form of G if the cocycle
corresponding to G′ belongs to the image of α. The group G is called of inner type if
G is an inner form of a split group.
Assume now that G is an adjoint group, i.e. G = G. Let X be a G-torsor over

F . It corresponds to some element ξ ∈ H1(F,G(Fsep)) ([10]). It is straightforward
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to check that the group G′, dual to G with respect to the torsor X, corresponds to
α(ξ) ∈ H1(F,Aut(Gsep)).
We have proved

Proposition 3.1. Let G and G′ be adjoint semisimple algebraic groups over a field
F . Then G′ is an inner form of G iff there is a G-torsor X over F such that G′ is
the dual group with respect to the G-torsor X.

Remark 3.2. The second condition of proposition 3.1 can be taken as the definition
of an inner form of an adjoint group (in order to avoid referring to cocycles).

4. Tits algebras

Let G be an adjoint semisimple algebraic group defined over a field F , let G̃→ G be
the universal covering, and C the kernel of the covering. It is known that C, being

the center of G̃, is a closed subscheme of G̃ of multiplicative type (not necessarily
reduced) ([2],[12]). Denote by C∗ the finite Γ-module Hom(Csep,Gm) of characters.
The group G is an inner form of some quasisplit group defined over F ([1],[12]).

By proposition 3.1, there exists a G-torsor X over F such that the group G′, dual
to G with respect to X, is quasisplit. The choice of a point of X over Fsep defines

an isomorphism Gsep
∼→ G′sep which is uniquely determined up to conjugation. This

isomorphism extends uniquely to an isomorphism G̃sep
∼→ G̃′sep where G̃

′ is the uni-
versal covering of G′ over F ([12]). Hence, we obtain an isomorphism of the centers
ϕ : Csep

∼→ C′sep. One can easily see that this isomorphism is defined over F (hence,

induces an isomorphism of Γ-modules ϕ∗ : C∗
∼→ C

′∗) and depends only on the choice
of the G-torsor X (which is not unique in general) but not on the point of X over
Fsep.

Denote by B a Borel subgroup in G̃′ defined over F , by T a maximal torus in B
defined over F and by Λ the subgroup in T ∗ generated by roots of G̃ relative to T .
The restriction map induces the natural isomorphism of Γ-modules

T ∗/Λ
∼→ C∗.

There is a partial ordering on T ∗: we write α > β for α, β ∈ T ∗ if α − β is a sum of
roots of B. In each coset of T̃ ∗/Λ there is a unique minimal element with respect to
this ordering called the minimal weight.
Choose a character χ ∈ C∗ defined over F and put χ′ = ϕ∗(χ) ∈ C′∗. By the

representation theory of quasisplit semisimple groups (see [13]) there is an irreducible

representation ρ̃ : G̃′ → GL(V ) such that the restriction of ρ̃ to C′ is given by
multiplication by χ′. Consider a central simple F -algebra A associated to the G-
torsor X and the projective representation ρ : G′ → PGL(V ) induced by ρ̃ (section
2). The algebra A is called the Tits algebra of the group G corresponding to the
representation ρ. Its class in Br(F ) depends only on the choice of character χ ∈ C∗
([13]) and is called the Tits class of the group G corresponding to χ. By construction,
the index of A divides dimV . Denote by nχ(G) the greatest common divisor of the

numbers dimV for all representations ρ̃ : G̃′ → GL(V ) such that the restriction of ρ̃
on C′ is given by multiplication by χ′. We have observed that indA divides nχ(G)
(see [5]). If χ = 0, then nχ(G) = 1.
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Let χ ∈ C∗(F ) ≃ (T ∗/Λ)Γ and µ ∈ T ∗ be the minimal weight in the coset χ. Let
ρ̃ : G̃′ → GL(V ) be a representation (unique up to an isomorphism) with the highest
weight µ called the minimal representation. The Tits algebra corresponding to ρ is
called the minimal Tits algebra of G and is denoted by Aχ. The algebra Aχ is the
canonical representative of the Tits class corresponding to χ. For example, if χ = 0,
then Aχ = F . Any Tits algebra is Brauer equivalent to a minimal one.

Remark 4.1. The isomorphism ϕ : Csep
∼→ C′sep depends on the choice of the G-

torsor X. Another choice of X changes ϕ by an automorphism of C′ induced by an
(outer) automorphism of G′, but clearly does not change the numbers nχ(G).

Remark 4.2. By definition, the numbers nχ(G) depend only on the quasisplit inner
form of G and hence do not change if we replace G by any inner form of it. In turn,
the class of inner forms of G is uniquely determined by the isomorphism class of G
over Fsep and the action of Γ on the group of outer automorphisms

Out(Gsep) = Aut(Gsep)/ Int(Gsep) = Aut(Dyn(Gsep))

of the group Gsep. If we change F by a field extension E/F such that F is separably
closed in E, the numbers nχ(G) do not change. If G is a group of inner type (i.e.
G′ is a split group, or equivalently, Γ acts trivially on Out(Gsep)) then the numbers
nχ(G) depend only on the isomorphism class of G over Fsep and are computed in [5].

We would like to classify the Tits classes of all adjoint semisimple algebraic
groups. A Tits algebra of the product of adjoint semisimple groups is the tensor
product of the Tits algebras of factors. Since any adjoint semisimple group is the
product of the groups G1 = RL/F (G) where G is an absolutely simple adjoint group
over a finite separable field extension L/F ([12]), it suffices to describe the Tits alge-

bras of G1. If G̃→ G is the universal covering of G with kernel C, then

G̃1 = RL/F (G̃)→ RL/F (G) = G1

is the universal covering of G1 with kernel C1 = RL/F (C).
Let F ⊂ L ⊂ Fsep, Γ0 = Gal(Fsep/L) ⊂ Γ. We have a canonical isomorphism

θ : C∗(L) = (C∗)Γ0
∼→ (C∗1 )Γ = C∗1 (F ),

and for any χ0 ∈ C∗(L) the Tits algebra Aχ with χ = θ(χ0) for the group G1 equals
the corestriction in the extension L/F of the Tits algebra Aχ0 of G ([13]). Hence, it
is sufficient to classify the Tits classes of absolutely simple adjoint groups.
Below is the list of minimal Tits algebras and numbers nχ(G) for absolutely

simple adjoint groups. We use the notation and the computations from [4] and [5].

4.1. Type An. An adjoint simple algebraic group of the type An, defined over F , is
isomorphic to the projective unitary group G = PGU(B, τ), where B is an Azumaya
algebra of degree n + 1 over an étale quadratic extension L/F with an involution τ
of the second kind trivial on F . Its universal covering is the special unitary group

G̃ = SU(B, τ)
Assume first that L splits, i.e. L ≃ F × F . In this case B ≃ A × Aop with the

switch involution τ where A is a central simple algebra of degree n+1 over F , where
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G̃ = SL1(A) and G = PGL1(A). Then C = µn+1, and C
∗ = Z/(n + 1)Z with the

trivial Γ-action. For any i = 0, 1, . . . , n, consider the natural representation

ρi : G̃→ GL1(λiA)
where λiA are external powers of A (see [4]). In the split case, ρi is the i-th ex-
ternal power representation known as a minimal representation. Hence, λiA for
i = 0, 1, . . . , n are minimal Tits algebras of G. If χ = i + (n + 1)Z ∈ C∗, then
nχ = (n+ 1)/gcd(i, n+ 1).

Now let G̃ = SU(B, τ), where B is a central simple algebra of degree n+1 with a
unitary involution over a quadratic separable field extension L/F . The group Γ acts
on C∗ = Z/(n+ 1)Z by x 7→ −x through Gal(L/F ). The only non-trivial element in
C∗(F ) is χ = n+1

2 + (n+ 1)Z (when n is odd). There is a natural homomorphism

ρ : G̃→ GL1(D(B, τ)),
where D(B, τ) is the discriminant algebra (see section 10). In the split case ρ is the
external n+12 -power representation. Hence, the algebra D(B, τ) is the minimal Tits
algebra for the group G corresponding to χ. The number nχ equals 2 if (n + 1) is a
2-power and equals 4 otherwise (see section 10).

4.2. Type Bn. An adjoint simple algebraic group of type Bn, defined over F , is
isomorphic to the special orthogonal group G = O+(V, q) where (V, q) is a non-
degenerate quadratic form of dimension 2n + 1. Its universal covering is the spinor

group G̃ = Spin(V, q). Then C = µ2, C
∗ = Z/2Z = {0, χ}. The embedding

G̃ →֒ GL1(C0(V, q)),
where C0(V, q) is the even Clifford algebra of (V, q), is, in the split case, the spinor
representation known as a minimal representation. Hence, the even Clifford algebra
C0(V, q) is the minimal Tits algebra Aχ. The number nχ equals 2

n.

4.3. Type Cn. An adjoint simple algebraic group of type Cn, defined over F , is
isomorphic to the group of projective similitudes G = PGSp(A, σ), where A is a
central simple algebra of degree 2n with a symplectic involution σ. Its universal

covering is the symplectic group G̃ = Sp(A, σ). Then C = µ2 and C
∗ = Z/2Z =

{0, χ}. The embedding
G̃ →֒ GL1(A)

is, in the split case, a minimal representation. Hence, A is the minimal Tits algebra
Aλ. The number nχ is the largest 2-power which divides 2n.

4.4. Type Dn. An adjoint simple algebraic group of type Dn, defined over F (of non-
trialitarian type if n = 4), is isomorphic to the group of proper projective similitudes
G = PGO+(A, σ, f) where A is a central simple, algebra of degree 2n with an orthog-

onal pair (σ, f) (see [4]). Its universal covering is the spinor group G̃ = Spin(A, σ, f).
Then C∗ = {0, χ, χ+, χ−} where χ factors through the special orthogonal group
O+(A, σ, f). The composition

Spin(A, σ, f)→ O+(A, σ, f) →֒ GL1(A)
is, in the split case, the standard minimal representation. Hence, A is the minimal
Tits algebra Aχ. The number nχ equals the largest 2-power which divides 2n.

Documenta Mathematica 1 (1996) 229–243



236 A. S. Merkurjev

Assume that the discriminant of σ is trivial (i.e. the center Z of the Clifford
algebra C(A, σ, f) splits). The group Γ acts trivially on C∗. The natural compositions

Spin(A, σ, f) →֒ GL1(C(A, σ, f))→ GL1(C±(A, σ, f))
where C±(A, σ, f) are simple components of C(A, σ, f), are, in the split case,
semispinor minimal representations. Hence, C±(A, σ, f) are minimal Tits algebras
Aχ± . The numbers nχ± equal 2

n−1.
If the discriminant of σ is not trivial, then Γ interchanges χ+ and χ− and χ is

the only nontrivial Γ-invariant character.

4.5. Exceptional types.

4.5.1. Trialitarian type D4. The image of the map Γ→ Aut(C∗) contains a subgroup
of order 3. It implies that C∗(F ) = 0 and there are no nontrivial characters and Tits
algebras.

4.5.2. Type E6. In this case C
∗ ≃ Z/3Z and for a nontrivial character χ ∈ C∗(F ) one

has nχ = 27.

4.5.3. Type E7. In this case C
∗ ≃ Z/2Z and for a nontrivial character χ ∈ C∗(F ) one

has nχ = 8.

4.5.4. Types E8, F4 and G2. In these cases C
∗ = 0 and there are no nontrivial

characters and Tits algebras.

5. The classifying variety of a group

Let G be an adjoint semisimple algebraic group over a field F and Y be a scheme
over F . Consider the group scheme G = G ×F Y over Y , and an arbitrary G-torsor
π : X → Y . Denote by G′ the dual scheme with respect to this torsor. For any
rational point y ∈ Y (F ) the fiber G′y of G′ over y is dual to Gy = G with respect to
the G-torsor πy : Xy → SpecF . Hence, by proposition 3.1, an algebraic group G′y is
an inner form of G. So, we can view the scheme G′ as the algebraic family of inner
forms of G.
Now we take a specific scheme Y . Let G →֒ GLn be any faithful representation

over F . Consider the homogeneous variety Y = GLn /G and the canonical G-torsor
π : GLn → Y . The variety Y is called the classifying variety of G. The universal
property of Y asserts that any inner form of G is a member of the algebraic family
G′ over Y :
Proposition 5.1. For any inner form G′ of G over F there exists a rational point
y ∈ Y (F ) such that G′ ≃ G′y over F .
Proof. This follows from Hilbert’s Theorem 90 and the exact sequence of pointed sets
([7],[10])

Y (F )→ H1(F,G(Fsep))→ H1(F,GLn(Fsep))

induced by the exact sequence

1→ G(Fsep)→ GLn(Fsep)→ Y (Fsep)→ 1.
Now let G1 be any adjoint semisimple algebraic group over F , and G be its

quasisplit inner form. Consider the classifying variety Y = GLn /G and the group
scheme G′ dual to G = G ×F Y with respect to the G-torsor π : GLn → Y . By
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proposition 5.1, we have G1 ≃ G′y for some y ∈ Y (F ). Let ξ ∈ Y be the generic point.
The generic fiber G′ξ is an adjoint semisimple algebraic group over the function field
F (Y ). The G-torsor π enables us to identify the character module C∗ of the center of
the universal coverings of the groups G1, G and G′ξ.
Now we formulate the main result.

Theorem 5.2. For any character χ ∈ C∗(F ), the index of the Tits class of the group
G′ξ corresponding to χ equals nχ(G1) = nχ(G) = nχ(G′ξ).
Corollary 5.3. For any adjoint semisimple algebraic group G1 over a field F there
exists a field extension E/F and an inner form G2 of the group G1⊗F E over E such
that F is separably closed in E and for any character χ of the center of the universal
covering of G2, with χ defined over E, the index of the Tits class of the group G2
corresponding to χ equals nχ(G1) = nχ(G2).

6. G-modules

Let G be a group scheme over a scheme Y . Assume that G acts on a scheme X over
Y . The morphism of the G-action on X we denote by

θ : G ×Y X → X.

A G-module F on X is a quasicoherent OX -module F together with an isomorphism
of OG×YX -modules

ϕ : θ∗F ∼→ p∗2F
(where p2 : G ×Y X → X is the projection), satisfying the cocycle condition

p∗23(ϕ) ◦ (id× θ)∗(ϕ) = (m× id)∗(ϕ)
where m : G ×Y G → G is the multiplication.
Giving a G-module structure on a quasicoherent OX -module F is equivalent

to giving, naturally in Y -schemes Z, a homomorphism of the group G(Z) into the
automorphism group of the pair (X ×Y Z,F ⊗Y Z) ([8],[11]).
Assume that G acts on an Azumaya algebra B over X, i.e. the structure of

G-module B is given by an OG×YX -algebra isomorphism
ψ : θ∗B ∼→ p∗2B.

Denote byM(G, X,B) the abelian category of G-modules F on X, which are also
left B-modules and coherent OX -modules, such that the following diagram commutes:

θ∗B ⊗ θ∗F −−−−→ θ∗F
ψ⊗ϕ

y
yϕ

p∗2B ⊗ p∗2F −−−−→ p∗2F ,
where the horizontal maps are given by the action of B on F . Morphisms in the
category are morphisms of B- and G-modules.
If the algebra B is trivial, i.e. B = OX , then the category is simply denoted by

M(G, X).
Let A be an Azumaya algebra on Y . Consider the Azumaya algebra B = π∗A

on X, where π : X → Y is the structure morphism, and the category M(Y,A) of
left A-modules which are coherent OY -modules. ForM ∈ M(Y,A) the OX -module
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F = π∗M has a natural structure of a B-module. Since πθ = πp2, it follows that we
also have a natural G-module structure on F given by the isomorphisms

ϕ : θ∗F ≃ (πθ)∗M = (πp2)∗M≃ p∗2F .
Thus, we have obtained a functor

π∗ :M(Y,A)→M(G, X,B), M 7→ (π∗M, ϕ).

Proposition 6.1. If π : X → Y is a G-torsor then π∗ is an equivalence of categories.
Proof. Under the isomorphisms

G ×Y X ∼→ X ×Y X, (g, x) 7→ (gx, x)

G ×Y G ×Y X ∼→ X ×Y X ×Y X, (g1, g2, x) 7→ (g1g2x, g2x, x)
the action morphism θ is identified with the first projection p1 : X ×Y X → X and
morphismsm× id, id×θ are identified with the projections p13, p12 : X×Y X×Y X →
X ×Y X. Hence, the isomorphism ϕ giving a G-module structure on an OX -module
F can be identified with descent data, i.e. with an isomorphism

ψ : p∗1F
∼→ p∗2F

of OX×YX -modules satisfying the usual cocycle condition
(p∗23ψ) ◦ (p∗12ψ) = p∗13ψ.

The statement follows now by faithfully flat descent ([7, Prop.2.22]).

7. Modules under groups of multiplicative type

Let C be a diagonalizable group scheme over a field F , and let C∗ = Hom(C,Gm)
be the character group. It is known that C = SpecF [C∗], where F [C∗] is the group
algebra of C∗ over F , and the comorphism

m : F [C∗]→ F [C∗]⊗F F [C∗]
of the multiplication is given by the formula m(χ) = χ⊗ χ ([2]).
To introduce an action of C on an affine scheme X = SpecA over F is the same

as to give a C∗-graded structure on the F -algebra A ([3]):

A =
∐

χ∈C∗
Aχ.

The comorphism of the action of C on X,

θ : A→ F [C∗]⊗F A
is given by the formula

θ(
∑

χ∈C∗
aχ) =

∑

χ∈C∗
(χ⊗ aχ).

The trivial action corresponds to the trivial graded structure: Aχ = 0 for χ 6= 0.
Let M be an A-module. A C-module structure of the associated OX -module

F = M̃ is given by an isomorphism of F [C∗]⊗F A-modules
ϕ : (F [C∗]⊗F A)⊗A,θM

∼→ (F [C∗]⊗F A)⊗A,p2 M,

Documenta Mathematica 1 (1996) 229–243



Maximal Indexes of Tits Algebras 239

satisfying the cocycle condition. Let ϕ(1 ⊗ 1 ⊗ m) = ∑χ∈C∗(χ ⊗ 1 ⊗ mχ), where

mχ,m ∈ M . Since (e⊗ id)∗ϕ = id ([11]), where e : SpecF → G is the group unit, it
follows that

m =
∑

χ∈C∗
mχ. (∗)

It is easy to check that the cocycle condition implies that (mχ)ρ equalsmχ if χ = ρ and
equals 0 if χ 6= ρ. Hence, the equality (∗) gives rise to the direct sum decomposition

M =
∐

χ∈C∗
Mχ

making M a C∗-graded A-module. Therefore, the categoryM(C,X) is equivalent to
the category of finitely generated C∗-graded modules.
Let an algebraic group G over a field F act on an affine scheme X over F and

on an Azumaya algebra B on X. Assume that a closed central group subscheme
C ⊂ G of multiplicative type acts trivially on X and B. Denote by C∗ the Γ-module
of characters Hom(Csep,Gm). Since the group Csep is diagonalizable, it follows that
for any F ∈M(G,X,B) we have a decomposition

Fsep =
∐

χ∈C∗
(Fsep)χ (∗∗)

into a direct sum of Gsep-submodules (Fsep)χ on Xsep (since C is central and acts
trivially on X and B).
Choose any Γ-invariant character χ ∈ C∗ (defined over F ). Clearly, (Fsep)χ

and its direct complement in (∗∗) are defined over F , hence we have a canonical
decomposition

F = Fχ ⊕Fχ
into a direct sum of G-submodules on X. In other words, these submodules are
uniquely determined by the property that c− χ(c) is trivial on Fχ and invertible on
Fχ for all c in C.
Consider the full subcategories Mχ(G,X,B) and M

χ
(G,X,B) in M(G,X,B)

consisting of all G-modules F such that F = Fχ and F = Fχ respectively. It is clear
that

M(G,X,B) ≃Mχ(G,X,B)×M
χ
(G,X,B).

If χ = 0 is the trivial character then the category Mχ(G,X,B) is equivalent to the
category M(G/C,X,B).

8. Equivariant algebraic K-theory

The K-groups of the category M(G, X,B) (see section 6) we denote by K∗(G, X,B).
These groups are clearly contravariant with respect to flat G-morphisms in X. If
B = OX is the trivial algebra we simply write K∗(G, X).
Let G be an algebraic group over F acting on a scheme X over F . We will

need the following particular cases of the localization theorem [11, th. 2.7] and the
homotopy invariance theorem [11, cor. 4.2] in equivariant algebraic K-theory.

Proposition 8.1. Let U ⊂ X be an open G-equivariant subscheme. Then the re-
striction homomorphism K0(G,X)→ K0(G,U) is surjective.
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Proposition 8.2. Assume that G acts linearly on an affine space AnF over F . Then
the structure morphism p : AnF → SpecF induces an isomorphism

p∗ : K∗(G,SpecF )
∼→ K∗(G,A

n
F ).

The category M(G,SpecF ) is equivalent to the category of finite dimensional
representations of G over F . The group K0(G,SpecF ) we denote by R(G).
Assume that G acts on an Azumaya algebra B over X and contains a closed

central subscheme C over F of multiplicative type, acting trivially on X and B. For
χ ∈ C∗(F ) the K-groups of the category Mχ(G,X,B) we denote by Kχ

∗ (G,X,B).
SinceKχ

∗ (G,X,B) is a canonical direct summand ofK∗(G,X,B) (section 7), it follows
that the statements of propositions 8.1 and 8.2 still hold if we replace K∗ by K

χ
∗ .

The group Kχ
0 (G,SpecF ) we simply denote by R

χ(G). It is generated by the
classes of all representations ρ : G → GL(V ) such that the restriction of ρ to C is
given by χ.

9. Proof of the theorem

Let G1 be an adjoint semisimple group over a field F , let G be the quasisplit inner

form of G1 with universal covering G̃→ G, and let C be the kernel of the covering.
Choose a faithful representation G →֒ GLn over F and consider the classifying

variety Y = GLn /G over F and the group scheme G′ over Y dual to G = G ×F Y
with respect to the G-torsor π : GLn → Y . Let ξ be the generic point of Y . The
G-torsor π enables us to identify the character modules C∗ and C′∗, where C′ is the
kernel of the universal covering of G′ξ. Choose a character χ′ ∈ C

′∗ defined over F (Y )
and denote by χ ∈ C∗ the corresponding character over F .
Consider a representation ρ̃ : G̃ → GL(V ) such that the restriction of ρ̃ to C is

given by χ. Consider also the Azumaya algebra A on Y associated to the G-torsor
π and the projective representation ρ : G → PGL(V ) induced by ρ̃ (section 2). We
know that there is an isomorphism of G-algebras

π∗(A) ≃ π∗(End(V ×F Y ))
on GLn (section 2) and that Aξ is the Tits algebra corresponding to the character χ′
(section 4). We have to show that indAξ = nχ(G).
Consider the homomorphism

δ : K0(Aopξ )→ Z,
taking an Aopξ -module M to dimF (Y )M . It is easy to see that

im(δ) = indAξ · degA · Z.
Consider also the homomorphism γ : Rχ(G̃) → Z, taking a representation space U
to dimF U . It is clear that im(γ) = nχ(G) · Z. For the proof of the theorem it is
sufficient to find a surjective homomorphism

α : Rχ(G̃)→ K0(Aopξ )
such that the composition δ ◦ α equals degA · γ = dimV · γ. The homomorphism α
will be found as a composite of seven epimorphisms α1, α2, . . . , α7.

Consider GLn as an open subvariety of the affine space A = An
2

F of all n ×
n-matrices over F on which the group G (and hence G̃) acts linearly. The open
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embedding GLn →֒ A is clearly G̃-equivariant. By proposition 8.2 (see also a remark
at the end of section 8) the structure morphism A→ SpecF induces an isomorphism

α1 : R
χ(G̃) = Kχ

0 (G̃,SpecF )
∼→ Kχ

0 (G̃,A).

By proposition 8.1, the restriction homomorphism

α2 : K
χ
0 (G̃,A)→ Kχ

0 (G̃,GLn)

is surjective.
Denote by B the algebra π∗End(V ×F Y ) = OGLn⊗F EndV on GLn. The group

G̃ clearly acts on B. Consider two functors

Mχ(G̃,GLn)
u
⇄
v
M0(G̃,GLn,Bop),

u(F) = V ∗ ⊗F F , v(M) = V ⊗EndV ∗M,

where V ∗ is the F -vector space dual to V . The canonical isomorphisms V⊗EndV ∗V ∗ ≃
F and V ∗ ⊗F V ≃ EndV ∗ show that u and v are mutually inverse equivalences of
categories. Hence, the functor u induces an isomorphism

α3 : K
χ
0 (G̃,GLn)

∼→ K00(G̃,GLn,Bop).

Since the center C of G̃ acts trivially on GLn and B, it follows that the categories
M0(G̃,GLn,Bop) and M(G,GLn,Bop) are equivalent. Hence, we have an isomor-
phism

α4 : K
0
0(G̃,GLn,Bop)

∼→ K0(G,GLn,Bop).
The isomorphism G×F X ≃ G ×Y X shows that the categoriesM(G,GLn,Bop)

and M(G,GLn,Bop) are equivalent. Hence, we have an isomorphism

α5 : K0(G,GLn,Bop) ∼→ K0(G,GLn,Bop).
Since π : GLn → Y is a G-torsor and B ≃ π∗A, it follows from proposition 6.1

that the functor

π∗ :M(Y,Aop)→M(G,GLn,Bop)
is an equivalence of categories. Hence, π∗ induces an isomorphism

α6 : K0(G,GLn,Bop) ∼→ K0(Y,Aop).
By localization (Proposition 8.1), the functor

M(Y,Aop)→M(Aopξ ), F 7→ stalk of F at the generic point ξ
induces an epimorphism

α7 : K0(Y,Aop)→ K0(Aopξ ).
It can be easily checked that the composition α = α7 ◦α6 ◦ · · ·◦α1 takes the class

of a representation space U of the group G̃ to the generic stalk Fξ where
π∗F = V ∗ ⊗F U ⊗F OGLn

and hence satisfies the desired condition.
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10. Examples

Let L/F be a Galois quadratic field extension, Π = Gal(L/F ), and let B be a central
simple algebra over L of degree 2n with involution τ of the second kind trivial on F .

Consider the special unitary group G̃ = SU(B, τ) over F . The group G̃(F ) of F -

points of G̃ consists of all elements b ∈ B× such that τ(b) ·b = 1 and Nrd(b) = 1 where
Nrd is the reduced norm homomorphism. The Galois group Γ acts on C∗ ≃ Z/2nZ
through its factor group Π = {1, π} by π(k + 2nZ) = −k + 2nZ (see section 4). The
Tits algebra corresponding to the only nontrivial character χ = n+2nZ ∈ C∗(F ) can
be constructed as follows (see [4],[5]).
Consider the Severi-Brauer variety X over L corresponding to the algebra B and

the canonical locally free sheaf J of rank 2n onX, so B = EndX(J) [9]. The canonical
nondegenerate bilinear form on the nth-exterior power of J

ΛnJ ⊗ ΛnJ → Λ2nJ ≃ OX
induces in the usual way an involution σ of the first kind on the algebra λnB =
EndOX (λ

nJ) over L. One can check that the involutions σ and τ ′ = λnτ on λnB
commute. Therefore, the set {x ∈ λnB : σ(x) = τ ′(x)} is a central simple algebra
over F . We denote this algebra by D(B, τ) and call it the discriminant algebra of
(B, τ) ([4]). It is the Tits algebra corresponding to the character χ.
The discriminant algebra enjoys the following properties:
1. The degree of D(B, τ) equals

(
2n
n

)
.

2. The restriction of σ to D(B, τ) is an involution of the first kind. In particular,
the exponent of D(B, τ) divides 2.
3. D(B, τ) ⊗F L ≃ λnB ∼ B⊗n. Since exp(B⊗n) divides 2, it follows that

ind(B⊗n) also divides 2, and hence indD(B, τ) divides 4.
Let G̃′ be the quasisplit inner form of G̃. It is the special unitary group of the

hyperbolic hermitian form over the quadratic extension L/F ([12]). Since G̃′sep ≃
SL2n(Fsep) it follows that

R(G̃′sep) ≃ Z[t1, t2, . . . , t2n−1]

where ti is the class of the i
th-exterior power of the standard representation of SL2n.

This ring is C∗ = Z/2nZ-graded, the degree of ti being equal to i (mod 2n). The rank
map R(G̃′sep) → Z takes ti to

(
2n
i

)
. The action of the Galois group Π on R(G̃′sep) is

given by π(ti) = t2n−i. We have also ([13]):

R(G̃′) ≃ Z[t1, t2, . . . , t2n−1]Π.
Using this description of the ring R(G̃′) and the fact that the image of the map

Rχ(G̃′)→ Z, taking a representation space U of the group G̃′ to dimF U , equals nχ ·Z,
one can easily compute the number nχ(G) for G = G̃/C (see [6]): nχ(G) is equal to
2 if n is a 2–power and equals 4 otherwise. Hence, the corollary of the theorem gives
in this case the following

Proposition 10.1. For any Galois quadratic field extension L/F and n ∈ N there
is a field extension E/F and a central simple algebra B of degree 2n over E ⊗F L
with involution τ of the second kind trivial on E such that indD(B, τ) = 2 if n is a
2-power and equals 4 otherwise.
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[1] A. Borel, J. Tits. Groupes réductifs. Publ. Math. I. H. E. S. 27 (1965), 55–151.
[2] M. Demazure, P. Gabriel. Groupes Algébriques Linéares. Masson, Paris, 1970.
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Introduction

This paper is an exposition on the use of the topos theoretic principle of Boolean lo-
calization in demonstrating the existence of closed model structures for the categories
of simplicial sheaves and presheaves on a Grothendieck site C.
Explicitly, a closed model category is a categoryM equipped with three classes of
maps, called cofibrations, fibrations and weak equivalences, such that the following
list of axioms is satisfied:

CM1: M is closed under all finite limits and colimits.

CM2: Suppose that the following diagram commutes inM:

X w

g
N

N

N

NPh

Y






�

f

Z.

If any two of f , g and h are weak equivalences, then so is the third.

CM3: If f is a retract of g and g is a weak equivalence, fibration or cofibration, then
so is f .

CM4: Suppose that we are given a commutative solid arrow diagram

U w

u

i

X

u

p

V w

i

i

i

ij

Y
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where i is a cofibration and p is a fibration. Then the dotted arrow exists,
making the diagram commute, if either i or p is also a weak equivalence.

CM5: Any map f : X → Y may be factored:

(a) f = p · i where p is a fibration and i is a trivial cofibration, and
(b) f = q · j where q is a trivial fibration and j is a cofibration.

Here, and as usual, one says that a map is a trivial cofibration (respectively trivial
fibration) if it is both a cofibration (respectively fibration) and a weak equivalence.
The fundamental example of a closed model category is the category S of simplicial
sets [11], [12], [2]: the cofibrations of S are the monomorphisms, the weak equivalences
are the maps which induce isomorphisms in all possible homotopy groups of associated
realizations, and the fibrations are the Kan fibrations. Recall that a Kan fibration
is a map q : X → Y of simplicial sets which has the “right lifting property” with
respect to all inclusions Λnk ⊂ ∆n of horns in simplices. Here, the kth horn Λnk is the
subcomplex obtained from the boundary ∂∆n of the standard n-simplex by deleting
the kth face from its list of generators.
This paper addresses the various flavours of homotopy theory that arise from con-
travariant simplicial set-valued diagrams, or presheaves of simplicial sets, defined
on small categories equipped with Grothedieck topologies. The list of all possible
Grothendieck topologies includes the option of having no topology at all, so the the-
ory includes that of ordinary small diagrams of simplicial sets.
There are both local and global homotopy theories for simplicial presheaves. The
local theory is a theory of local weak equivalences and local fibrations. In particular,
if one is working in a context so civilized as the category of simplicial presheaves
on the category of open subsets of a topological space X, then a map (ie. natural
transformation) f : Y → Z is a local fibration if each of the induced maps fx :
Yx → Zx, x ∈ X, in stalks is a Kan fibration of simplicial sets. Similarly, a local
weak equivalence in this case is a map which induces weak equivalences in all stalks.
One uses the same notion of local weak equivalence in the global theory (so that
the two theories induce equivalent homotopy categories), along with cofibrations, or
monomorphisms of simplicial presheaves, and then global fibrations are defined by a
lifting property. There is a difference between the two theories: the Eilenberg-Mac
Lane objects K(A,n) associated to sheaves of abelian groups A are certainly locally
fibrant, but almost never globally fibrant. A globally fibrant model of K(A,n) is most
properly thought of as a type of injective resolution of the abelian sheaf A, up to a
degree shift.
The main results of this paper (Theorems 18, 27) together assert that the cofi-
brations, local weak equivalences and global fibrations determine closed model struc-
tures on the categories of simplicial presheaves and simplicial sheaves on an arbi-
trary Grothendieck site, and that the homotopy categories associated to simplicial
presheaves and sheaves on any such site are equivalent. In all of this, one of the main
technical difficulties is to arrange for a definition of local weak equivalence which
specializes to the stalkwise notion in cases where the underlying topos has enough
points. Historically, this was done for simplicial presheaves in a somewhat ad hoc way
[4], by using sheaves of homotopy groups for associated presheaves of Kan complexes.
Here, one finds an alternative definition of local weak equivalence and proofs of the
main results which are based on the method of Boolean localization. The proof in the
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simplicial sheaf case is roughly what Joyal had in mind in his letter to Grothendieck
[7] of 1984, except that it’s been somewhat reverse engineered so that the relationship
between sheaves of homotopy groups and weak equivalences comes out only after the
fact.
Stated bluntly, the Boolean localization principle asserts that every Grothendieck
topos can be faithfully imbedded in a topos that satisfies the axiom of choice. The
applicability of Boolean localization in homotopy theory was first noticed by Van
Osdol [14] in the 1970’s, in his proof of what was then called the Illusie conjecture
[3], but the descriptions of the underlying topos theory in the literature remained
fragmentary until the appearance of the Mac Lane-Moerdijk book [9] in 1992. Even
so, the principle as stated in [9] has to be reinterpreted somewhat to achieve the form
that is used in this paper. This is done in the first section below. This reinterpretation
is trivial for a topos theorist, but quite opaque to almost everybody else.
The reader who is familiar with the “Simplicial presheaves” paper [4] will notice
minor technical improvements here and there, particularly in the statement and proof
of Lemma 12, and in the proof of Lemma 14, along with a more aggressive use of
Kan’s Ex∞ functor throughout. The basic thrust of using a transfinite small object
argument to prove the factorization axiom CM5 survives, and the local fibration
concept continues to be an essential building block of the theory.
The idea appearing in the third section, that homotopy groups should really be
fibred group objects, is due to Joyal as far as I can tell. Such objects, combinatorially
defined, are exactly the right kind of thing to feed to a Boolean localization functor.
They also have other uses: in particular, fibred homotopy group objects appear im-
plicitly (the π∗-Kan condition) in the proof of the Bousfield-Friedlander theorem [1],
[2] that recognizes homotopy cartesian diagrams of bisimplicial sets. One can also
express the theory of long exact sequences for fibrations in these terms.
The writeup that follows assumes that the reader knows the basic exactness prop-
erties of a topos, and is familiar with the nuts and bolts of the associated sheaf
construction. In this connection, there is one notational oddity: I use the notation
L2F to denote the associated sheaf of a presheaf F . There is some precedent for this
in the literature – see [13], for example. The notation is used in order to avoid the
repeated appearance of some rather ugly very wide tildes. It is also assumed that the
reader is familiar with the ordinary homotopy theory of simplicial sets [10], [2].

1. Boolean localization.

Suppose that C is an arbitrary small Grothendieck site, and let E denote the sheaf
category Shv(C) on the site C. A Boolean localization of E is a complete Boolean
algebra B and a geometric topos morphism ℘ : Shv(B) → E , such that the inverse
image functor ℘∗ : E → Shv(B) is faithful.
The definition is a bit of a mouthful. A complete Boolean algebra B can be charac-
terized as a poset having at least a terminal object 1 and an initial object 0 such that
0 6= 1. Furthermore, B is required to have all limits (meets) and all colimits (joins),
such that

(1) B is complemented in the sense that every element x has a complement ¬x
satisfying

x ∨ ¬x = 1 and x ∧ ¬x = 0,
and
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(2) B satisfies the distributive law

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

The word “complete” refers to the fact that B is required to have all meets as opposed
to all finite meets. Complete Boolean algebras also satisfy the infinite distributive law:

x ∧ (
∨

i∈I
yi) =

∨

i∈I
(x ∧ yi)

(see [9, p.51,114]). Finally, in B a family of subobjects yi ≤ x of x is said to be
covering if

∨
i∈I yi = x. The infinite distributive law guarantees that the covering

families of B satisfy the axioms for a pretopology, and hence give rise to a category
of sheaves Shv(B).
Boolean localizations exist for all Grothendieck toposes E : this is a major theorem
of topos theory (Mac Lane and Moerdijk call it Barr’s Theorem [9, p.513], but a
result of Diaconescu plays a major part – see [9, p.511]). It’s also important to know,
so we don’t leave the realm of small sites, that the construction doesn’t blow up: if
the cardinality of the set of morphisms of the underlying site C is bounded by some
infinite cardinal β, then |B| < β.
Boolean localization is a vast generalization of what it means for a topos to have
enough points. Specifically, the topos E has enough points if there is a collection
xi : Sets→ E of geometric morphisms such that two maps f, g : F → G of E coincide
if and only if x∗i f = x∗i g for all i ∈ I. The set category Sets is equivalent to the
sheaf category Shv({0, 1}) on the Boolean algebra {0, 1}; more generally, the product
category

∏
i∈I Sets is equivalent to Shv(P(I)) where P(I) is the complete Boolean

algebra determined by the set of all subsets of the set I. Finally, any collection of
points xi : Sets → E determines a geometric morphism x : Shv(P(I)) → E which is
a Boolean localization for E if the collection of points is big enough. In other words,
the topos E has enough points if and only if there is a Boolean localization of the
form Shv(P(I))→ E for some set I.
We shall discuss the homotopy theoretic consequences of the existence of Boolean
localizations here, and defer to the Mac Lane-Moerdijk text for its proof. The ap-
plications depend explicitly on the fact that the topos Shv(B) satisfies the axiom of
choice in the sense that every epimorphism in Shv(B) has a section; we begin by
giving an explicit proof of this result (Proposition 2).

Lemma 1. Suppose that F is a sheaf (of sets) on a complete Boolean algebra B. Then
the category Sub(F ) of subobjects of F is a complete Boolean algebra.

Proof: The category Sub(F ) has all meets and joins, and satisfies the infinite dis-
tributive law, by an argument on the presheaf level. Given G ∈ Sub(F ), define

¬G =
∨

H∧G=∅
H.

It’s clear that G ∧ ¬G = ∅; the interesting bit is to show that G ∨ ¬G = F .
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First of all, we show that every subobject G ≤ hom( , B) of a representable sheaf
is representable. In effect,

G = lim−→
φ:hom( ,A)→G

hom( , A),

and the category of morphisms φ : hom( , A) → G is small, since it can be identi-
fied with a subcategory of subobjects of B in the Boolean algebra B. There is an
isomorphism ∨

φ:hom( ,B)→G
B ∼= lim−→

φ:hom( ,B)→G
B

in B, and so G is represented by the object
∨

φ:hom( ,B)→G
B.

It follows that Sub(hom( , B)) is a complete Boolean algebra. Every subobject
F ≤ hom( , B) is represented by a subobject A ≤ B of B, and ¬A in Sub(B) is the
subobject (¬A) ∧ B. Observe that (¬A) ∧ B is terminal among all subobjects of B
which miss A, so that hom( , (¬A) ∧ B) = ¬hom( , B) in the category of subobjects
of hom( , B).
It’s certainly the case, in general, that G ∨ ¬G ≤ F in the category of subobjects
of the sheaf F . Take a sheaf morphism φ : hom( , A) → F , and form the pullback
diagram

φ−1(G) w

u

G

u

hom( , A) w

φ
F

Then there is an induced diagram

φ−1(G) ∨ ¬φ−1(G) w

u

∼=

G ∨ ¬G

u

hom( , A) w

φ
F

Such diagrams exist for all such maps φ, and F is a colimit of representables, so that
the morphism G ∨ ¬G ≤ F has a section, and is therefore an isomorphism.
Proposition 2. Suppose that B is a complete Boolean algebra. Then every epimor-
phism in the sheaf category Shv(B) has a section.
Proof: Suppose that π : F → G is an epimorphism of Shv(B). Sheaf epimorphisms
are defined by the existence of partial lifts along covering families, so by looking at
the terminal object, one finds an object A ∈ B such that A 6= 0 and there is a lifting
diagram

F

u

π

hom( , A)
[

[

[

[]

w G.
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Observe that the map hom( , A) → G defines hom( , A) as a subobject of G, since
hom( , A) is a subobject of the terminal sheaf ∗. It follows that the set of all partial
lifts

F

u

π

N
h

h

h

hj

s

y w G

defined on subobjects N of G is non-empty. This set has maximal elements, by Zorn’s
Lemma.

Suppose that

F

u

π

M

h

h

h

hj

s

y w G

is such a maximal element, and suppose that M 6= G. Then M has a non-empty
complement ¬M in G, and we can form the pullback diagram

π−1(¬M) w

u

π∗

F

u

π

¬M w G

Then the map π∗ is an epimorphism, and so there is a diagram

π−1(¬M)

u

π∗

hom( , C)
h

h

h

hj

s′

y w ¬M

for some representable subobject hom( , C) of ¬M with C 6= 0. Finally, hom( , C) ∧
M = φ, so that M 6= hom( , C) ∨M , and there is a lift

F

u

π

hom( , C) ∨M
[

[

[

[]

s′ ∨ s

y w G,

contradicting the maximality of the lifting s.

Generally, a map f : X → Y of presheaves on a Grothendieck site C is said to
be a local epimorphism if for all sections y ∈ Y (U), U ∈ C, there is a covering sieve
R ⊂ hom( , U) and elements xφ ∈ X(V ) for each morphism φ : V → U in R, such
that y lifts to X along R in the sense that φ∗(y) = f(xφ) in Y (V ) for all φ ∈ R, as in
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the picture

X(U) w

φ∗

u

f

X(V )

u

f

xφ

u

Y (U) w

φ∗
Y (V )

y w φ∗(y)

In cases where there is an adequate notion of stalk, local epimorphisms are stalkwise
epimorphisms: the point is that all sections should be “liftable” up to local refinement.
Examples of local epimorphisms of presheaves include all sheaf epimorphisms and
the associated sheaf map η : X → L2X. It’s easy to show that local epimorphisms
are closed under composition and that a map f : X → Y is a local epimorphism if
and only if the induced map f∗ : L2X → L2Y is an epimorphism of sheaves.
There is a dual notion of local monomorphism: a map g : A→ B of presheaves is a
local monomorphism if for all x, y ∈ A(U), U ∈ C, g(x) = g(y) implies that there is a
covering sieve R ⊂ hom( , U) such that φ∗(x) = φ∗(y) ∈ A(V ) for all maps φ : V → U
in R. Again, the associated sheaf map η : X → L2X is a local monomorphism, local
monomorphisms are closed under composition, and a map g is a local monomorphism
if and only if the induced map g∗ of associated sheaves is a monomorphism of sheaves.
Now suppose that ℘ : Shv(B) → E is a fixed Boolean localization, where E =

Shv(C). This means, in particular, that the inverse image functor ℘∗ : E → Shv(B)
is faithful. The functor ℘∗ also preserves finite limits and all colimits – this is part
of the definition of a geometric morphism. The combination of these properties for
℘∗, together with basic exactness properties of Grothendieck topoi, has the following
rather powerful consequence:

Lemma 3. Suppose that ℘ : F → E is a geometric morphism of Grothendieck topoi.
Then the following are equivalent:

(1) The inverse image functor ℘∗ : E → F is faithful.
(2) The functor ℘∗ reflects isomorphisms.

(3) The functor ℘∗ reflects epimorphisms.

(4) The functor ℘∗ reflects monomorphisms.

Proof: Suppose that ℘∗ is faithful. This means that ℘∗(f1) = ℘∗(f2) for f1, f2 :
A → B implies that f1 = f2. Then ℘

∗ reflects monics. In effect, suppose that
m : B → C is a morphism of E such that ℘∗(m) is a monomorphism of F . Suppose
that m ◦ f1 = m ◦ f2. Then ℘∗(m)℘∗(f1) = ℘∗(m)℘∗(f2) implies ℘∗(f1) = ℘∗(f2),
so that f1 = f2 in E . Similarly, ℘∗ reflects epimorphisms. A morphism of E is an
isomorphism if and only if it is both a monomorphism and an epimorphism, so it
follows that ℘∗ reflects isomorphisms.
To see that (3) implies (1), observe that the maps f1, f2 : A→ B coincide if and only
if their equalizer m : C → A is an isomorphism. Suppose that ℘∗(f1) = ℘∗(f2). Then
℘∗(m) is the equalizer of ℘∗(f1) and ℘∗(f2), by exactness of ℘∗, so that ℘∗(m) is an
isomorphism. Thus, by assumption, m is an epimorphism and hence an isomorphism,
so that f1 = f2. Statement (4) implies statement (1) by a dual argument.
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2. Closed model structures.

In this section, we show that any fixed Boolean localization ℘ : Shv(B) → Shv(C)
determines a class of local weak equivalences of simplicial presheaves on the site C.
We further show that this class, along with the cofibrations (or monomorphisms) of
simplicial presheaves, creates closed model structures for both simplicial presheaves
and simplicial sheaves on C, in such a way that the associated homotopy theories are
equivalent (Theorem 18). These closed model structures are seen to be independent
of the choice of Boolean localization ℘ in the next section.
The definition of local weak equivalence is based on universally defined notions of
local fibration and trivial local fibration for simplicial presheaves on arbitrary sites,
which specialize to Kan fibrations (respectively trivial Kan fibrations) in all sections
in the case of morphisms of simplicial sheaves on a complete Boolean algebra B, via
the axiom of choice. With cofibrations and local weak equivalences in hand, one
defines global fibrations by a right lifting property with respect to all maps which are
both cofibrations and local weak equivalences, thus effectively forcing the factorization
axiom CM5 to be the non-trivial part of Theorem 18. To prove it, one shows that a
map is a global fibration if and only if it has the right lifting property with respect
to some set of trivial cofibrations (Lemma 15). These are the α-bounded trivial
cofibrations, defined with respect to a cardinal number α which is sufficiently large
(and in particular larger than the cardinality of the set of morphisms of C). The most
interesting part, technically, is the proof of Lemma 12.

Suppose that K is a finite simplicial set, and that Y is a simplicial presheaf on the
Grothendieck site C. Write Y K for the presheaf defined by simplicial set morphisms
in sections via the formula

Y K(U) = homS(K,Y (U))

Observe that Y K is a sheaf if Y is a simplicial sheaf, and that any exact functor
preserves this definition, so that, for example, the sheaf associated to Y K is canon-
ically isomorphic to (L2Y )K . Also, any geometric topos morphism preserves this
construction.
One says that a map p : X → Y of simplicial presheaves is a local fibration if the
induced maps

(1) X∆
n (i∗,p∗)−−−−→ XΛ

n
k ×

Y
Λn
k
Y ∆

n

are local epimorphisms of presheaves for n > 0. Implicitly, a map p : Z →W of sim-
plicial sheaves is a local fibration if and only if the maps (1) are sheaf epimorphisms.
More than this is true in the Boolean topos setting:

Lemma 4. A map p : Z →W of simplicial sheaves on a complete Boolean algebra B
is a local fibration if and only if the induced maps in sections

p : Z(b)→W (b)

are Kan fibrations of simplicial sets for all b ∈ B.
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Proof: The sheaf epimorphisms

Z∆
n (i∗,p∗)−−−−→ ZΛ

n
k ×

W
Λn
k
W∆n

have sections, by Proposition 2, so that the maps

Z∆
n

(b)
(i∗,p∗)−−−−→ ZΛ

n
k (b)×

W
Λn
k (b)

W∆n(b)

in sections are surjective, for all b ∈ B.
One says that a map f : X → Y of simplicial presheaves has the local right lifting
property with respect to the simplicial set inclusions ∂∆n ⊂ ∆n if all of the maps

X∆
n (i∗,f∗)−−−−→ X∂∆n ×Y ∂∆n Y ∆

n

are local epimorphisms. One can speak, as well, about local right lifting properties
with respect to more general collections of inclusions K ⊂ L of finite simplicial sets.
In particular, a local fibration is a map which has the local right lifting property with
respect to all inclusions Λnk ⊂ ∆n.
Suppose that X is a simplicial presheaf. The simplicial presheaf ExmX has n-
simplices defined by

(ExmX)n = hom(sd
m∆n, X).

with simplicial structure maps induced by precomposition with the induced simplicial
set maps sdm∆k → sdm∆n. The subdivision functor that we use here is the classical
one: the subdivision sd∆n is the nerve of the poset of non-degenerate simplices of
∆n, and the subdivision sdK of a simplicial set K is a colimit of simplicial sets
sd∆m, indexed over the simplices ∆m → K of K. The collection of “last vertex”
maps sd∆m → ∆m, m ≥ 0, induce a natural map X → ExX, and iteration of the
construction produces a sequence of simplicial presheaf maps

X → ExX → Ex2X → Ex3X → . . .

The simplicial presheaf Ex∞X is defined to be the filtered colimit of these maps in
the simplicial presheaf category. Write ν : X → Ex∞X for the canonical map.
To put it a different way, Kan’s original Ex∞-construction [8], [2] is natural, so
that it certainly applies to simplicial presheaves, and that’s all we’re doing here. In
particular, the map ν : X → Ex∞X consists of weak equivalences ν : X(U) →
Ex∞X(U), U ∈ C, in all sections.
Now, fix a Boolean localization ℘ : Shv(B)→ E , and consider the functors

SPre(C)
L2

−→ SE
℘∗

−→ SShv(B)
relating the categories of simplicial objects in the categories Pre(C) of presheaves on
C and the toposes E and Shv(B), where L2 is the associated sheaf functor. We shall
say that a map f : X → Y of SShv(B) is a pointwise weak equivalence if it induces
weak equivalences

f : X(b)→ Y (b)

of simplicial sets for all b ∈ B. A map f : X → Y of simplicial presheaves on C is said to
be a local weak equivalence if the induced map ℘∗L2(f) : ℘∗L2Ex∞X → ℘∗L2Ex∞Y
is a pointwise weak equivalence.
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Remark 5. All of the decorations that appear in the definition of local weak equiv-
alence are necessary. The categories of simplicial presheaves and sheaves on the site
defined by the power set P(I) of an infinite set I are very good examples to keep
in mind. The power set P(I) is, of course, a complete Boolean algebra, so that the
Boolean localization ℘ can be taken to be the identity in this case. A simplicial
presheaf X on P(I) is nothing more than a contravariant functor defined on the cat-
egory of subsets of I, and taking values in simplicial sets. The stalks of the simplicial
presheaf X are the simplicial sets Xi = X({i}) corresponding to sections in the var-
ious singleton subsets of I, and the associated sheaf L2X is defined in sections at a
subset U of I by

L2X(U) =
∏

i∈U
Xi.

One says that a map f : X → Y of simplicial sheaves on P(I) is a stalkwise weak
equivalence if all induced maps fi : Xi → Yi, i ∈ I are weak equivalences of simplicial
sets. Observe that all induced maps in sections for the simplicial sheaf map f have
the form ∏

fi :
∏

i∈U
Xi →

∏

i∈U
Yi

for U ⊂ I. It is known that infinite products do not necessarily preserve weak equiv-
alences (see the next paragraph), so that a stalkwise weak equivalence f of simplicial
sheaves may not induce weak equivalences of simplicial sets in all sections. Infinite
products do, however, preserve weak equivalences when all of the spaces Xi and Yi
are Kan complexes. The assertion that all of the Xi, i ∈ I, are Kan complexes is
exactly what it means for the simplicial sheaf (or presheaf) X on P(I) to be locally
fibrant. Thus, local weak equivalences as defined above coincide with stalkwise weak
equivalences for simplicial sheaves and presheaves defined on P(I), and the implicit
passage to locally fibrant models is fundamental.

Example 6. Here’s an example of a countable collection of contractible simplicial
sets Xn, n ≥ 0, such that the product

∏
i≥0Xi is not contractible. Let Xn be the

subcomplex of ∆n which is the union of the 1-simplices ∆1 ⊂ ∆n defined by pairs of
vertices (i, i+ 1). The sequence of simplicial sets can therefore be identified with the
graphs

0, 0→ 1, 0→ 1→ 2, . . .
with no compositions allowed. Then the vertices (0, 0, 0, 0, . . . ) and (0, 1, 2, 3, . . . )
cannot be in the same path component of the product

∏
n≥0Xn. This observation

can be expanded to a calculation of the homotopy type of the product: its path
components are contractible, and two vertices x = (xn), y = (yn) of

∏
n≥0Xn are in

the same path component if and only if the list of combinatorial distances d(xn, yn) =
|yn−xn| (ie. number of 1-simplices between them in Xn) has a finite uniform bound.

Lemma 7. Suppose, for a map f : X → Y of SPre(C), the preheaf maps

X∆
n (i∗,f∗)

−−−−→ X∂∆n ×Y ∂∆n Y ∆
n

are local epimorphisms for n ≥ 0. Then f is a local weak equivalence and a local
fibration.
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Proof: If f has the local right lifting property with respect to all ∂∆n ⊂ ∆n, then
f has the local right lifting property with respect to all inclusions of finite simplicial
sets K ⊂ L. In effect, the morphisms

℘∗L2X∆
n (i∗,f∗)−−−−→ ℘∗L2X∂∆n ×℘∗L2Y ∂∆n ℘∗L2Y ∆

n

are sheaf epimorphisms in Shv(B), and hence pointwise epimorphisms, so that all
maps ℘∗L2X(b) → ℘∗L2Y (b) in sections are trivial Kan fibrations. But this means
that the sheaf maps

℘∗L2XL
(i∗,f∗)−−−−→ ℘∗L2XK ×℘∗L2Y K ℘∗L2Y L

are pointwise epimorphisms by standard nonsense about trivial Kan fibrations, and
are therefore sheaf epimorphisms. It follows that the maps

XL
(i∗,f∗)−−−−→ XK ×YK Y L

are local epimorphisms. In particular, the map f is a local fibration.
Also, if f has the local right lifting property with respect to all ∂∆n ⊂ ∆n, then f
has the local right lifting property with respect to all induced inclusions sdm∂∆n ⊂
sdm∆n, so that Exmf : ExmX → ExmY has the local right lifting property with
respect to all ∂∆n ⊂ ∆n. But then Ex∞f has the same local lifting property, and
so does ℘∗L2Ex∞f . In particular, ℘∗L2Ex∞f is a pointwise trivial fibration of
simplicial sheaves on B, and is therefore a weak equivalence.

Corollary 8. For any simplicial presheaf X, the canonical map η : X → L2X
has the local right lifting property with respect to all inclusions ∂∆n ⊂ ∆n, and is
therefore a local fibration and a local weak equivalence.

Lemma 9. Suppose that a map f : X → Y of simplicial presheaves on C is a pointwise
weak equivalence in the sense that all maps in sections

f : X(U)→ Y (U), U ∈ C,

are weak equivalences of simplicial sets. Then f is a local weak equivalence.

Proof: The canonical map ν : X → Ex∞X is a pointwise weak equivalence of
simplicial presheaves, so it’s enough to assume that f : X → Y is a pointwise weak
equivalence of presheaves of Kan complexes, and then deduce that the map ℘∗L2f :
℘∗L2X → ℘∗L2Y is a pointwise weak equivalence of simplicial sheaves on B.
Since X and Y are presheaves of Kan complexes, the classical method of replacing
a map by a fibration gives a factorization

X w

i
�

�

�

�

�

�

�

��

f

X ×Y hom(∆1, Y )

u

p

Y
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of f in the simplicial presheaf category SPre(C), where p is a map which is a pointwise
Kan fibration and a pointwise weak equivalence, and the map i is right inverse to a
map π which is a pointwise Kan fibration and a pointwise weak equivalence. The
maps p and π have the local lifting property with respect to all inclusions ∂∆n ⊂
∆n, so both maps are local fibrations and local weak equivalences by Lemma 7.
In particular, the maps ℘∗L2i and ℘∗L2p are pointwise weak equivalences, so that
℘∗L2f = (℘∗L2p)(℘∗L2i) is a pointwise weak equivalence.

Corollary 10. A map f : X → Y is a local weak equivalence of SPre(C) if and
only if ℘∗L2f : ℘∗L2X → ℘∗L2Y is a local weak equivalence of SShv(B).
Proof: Observe that (by definition, and with respect to the Boolean localization
1 : Shv(B) → Shv(B)) a map g : Z → W of SShv(B) is a weak equivalence if and
only if the map L2Ex∞g : L2Ex∞Z → L2Ex∞W is a pointwise weak equivalence of
SShv(B)
Also notice that there are natural isomorphisms

L2Ex∞℘∗L2X ∼= ℘∗L2Ex∞X

for X ∈ SPre(C). Thus, L2Ex∞℘∗L2f is a pointwise weak equivalence if and only if
℘∗L2Ex∞f is a pointwise weak equivalence.

Generally, for a fixed property P of simplicial sets, one says that a map f : X → Y
has the property P pointwise if each of the simplicial set maps f : X(U)→ Y (U), U ∈
C, in sections has the property P . The class of pointwise weak equivalences appearing
in the statement of Lemma 9 is a common example. Pointwise (Kan) fibrations and
pointwise trivial fibrations also occur frequently: a map f : X → Y of simplicial
presheaves is a pointwise fibration (respectively pointwise trivial fibration) if all of
the maps f : X(U) → Y (U), U ∈ C, are fibrations (respectively trivial fibrations) of
simplicial sets. We have already met such maps in the context of simplicial presheaves
on a complete Boolean algebra B.
We shall also need the following partial converse to Lemma 7:

Lemma 11. Suppose that X and Y are locally fibrant simplicial presheaves on C, and
that the map q : X → Y is a local fibration and a local weak equivalence. Then q has
the local right lifting property with respect to all inclusions ∂∆n ⊂ ∆n.
Proof: It suffices to assume that X and Y are locally fibrant simplicial sheaves, since
the associated sheaf functor L2 preserves local fibrations and local weak equivalences,
and reflects the desired local right lifting property.
The induced map

℘∗L2Ex∞q : ℘∗L2Ex∞X → ℘∗L2Ex∞Y

is a pointwise weak equivalence of simplicial sheaves on B, since q is assumed to be
a local weak equivalence. There is a natural isomorphism ℘∗L2Ex∞ ∼= L2Ex∞℘∗, so
the map

L2Ex∞℘∗q : L2Ex∞℘∗X → L2Ex∞℘∗Y

is a pointwise weak equivalence. The simplicial sheaf ℘∗X is a presheaf of Kan
complexes on B, as is the object Ex∞℘∗X. Furthermore, the natural map L2ν :
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℘∗X → L2Ex∞℘∗X can be identified with the effect of applying the associated sheaf
functor L2 to the canonical pointwise weak equivalence ν : ℘∗X → Ex∞℘∗X. If we
can prove that the associated sheaf functor on B preserves pointwise weak equivalences
between presheaves of Kan complexes, then we’d be done, since then L2ν would be a
pointwise weak equivalence, and so the map ℘∗q : ℘∗X → ℘∗Y would be a pointwise
Kan fibration and a pointwise weak equivalence, and would therefore have the local
right lifting property with respect to all inclusions ∂∆n ⊂ ∆n. Finally, our faithful
functor ℘∗ reflects this local right lifting property.
Suppose that f : Z → W is a pointwise weak equivalence between presheaves of
Kan complexes on B, and form a diagram of simplicial presheaf maps

Z w

i
4

4

4

46f

Z

u

π

W

such that π is a pointwise trivial fibration and i is right inverse to a pointwise trivial
fibration π′ : Z → Z. The associated sheaf functor L2 preserves the local right lifting
property with respect to the maps ∂∆n ⊂ ∆n, and of course Shv(B) satisfies the
axiom of choice, so that the maps L2π and L2π′ are pointwise trivial fibrations, and
so L2f is a pointwise weak equivalence.

Pick some infinite cardinal α such that α is strictly larger than the cardinality of the
set of morphisms of the site C. A simplicial presheaf X on C is said to be α-bounded
if

|Xn(U)| < α

for all n ≥ 0 and all objects U of C. Standard cardinal arithmetic implies that if X is
α-bounded, then so is its associated simplicial sheaf L2X.

Suppose that K is a simplicial set and U is an object of C. Then the simplicial
presheaf LUK is defined for V ∈ C by

LUK(V ) =
⊔

φ:V→U
K.

Observe that morphisms of simplicial presheaves LUK → X are in one to one corre-
spondence with simplicial set maps of the form K → X(U). If the simplicial set K is
α-bounded in the sense that |Kn| < α for n ≥ 0, then the simplicial presheaf LUK is
α-bounded.

Lemma 12. Suppose that f : X → Y is a local weak equivalence of simplicial
presheaves on C, and that pullback along f preserves α-bounded subcomplexes in the
sense that if T is an α-bounded subcomplex of Y then T ×Y X is an α-bounded sub-
complex of X. Suppose that there is a simplicial presheaf monomorphism i : Z →֒ Y
where Z is α-bounded. Then i has a factorization Z ⊂ W ⊂ Y such that W is
α-bounded and such that the projection map f∗ : W ×Y X → W is a local weak
equivalence.
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Proof: First of all, one sees that any map of simplicial presheaves f : X → Y has a
factorization

X
�

�

�

��

i∗

u

f X
4

4

4

47 p∗
Y

such that p∗ is a pointwise Kan fibration and i∗ is a pointwise weak equivalence, and
that this factorization is natural and preserves filtered colimits in f . In effect, take
the standard factorization

Ex∞X
�

�

�

��

i

u

Ex∞f Ex∞X ×Ex∞Y hom(∆1, Ex∞Y )
A

A

A

AD

p

Ex∞Y

and pull it back to Y using the diagram

X w

ν

u

f

Ex∞X

u

Ex∞f

Y wν Ex∞Y,

so that
X = Y ×Ex∞Y Ex∞X ×Ex∞Y hom(∆1, Ex∞Y ).

Note finally that if X and Y are α-bounded simplicial presheaves, then so is X.
The pulled back map p∗ has the local right lifting property with respect to all
inclusions ∂∆n ⊂ ∆n, since Lemma 9 implies that p is a local weak equivalence as
well as a pointwise fibration, so that Lemma 11 applies.
This means explicitly that given any diagram of simplicial set maps of the form

∂∆n w

a
y

u

X(U)

u

p∗

∆n w

b
Y (U),

there is a covering sieve R ⊂ hom( , U) such that for each φ : V → U in R, there is a
commutative diagram

∂∆n w

φ∗a
y

u

X(V )

u

p∗

∆n w

φ∗b

[

[

[

[]xφ

Y (V ).
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Suppose given a diagram

(2)

∂∆n w

y

u

Z ×Y X(U) w

u

p∗

X(U)

u

p∗

∆n w Z(U) w Y (U).

Then X is a filtered colimit of simplicial presheaves of the form T ×Y X, where
T is an α-bounded subobject of Y containing Z. It follows that there is an α-
bounded S containing Z such that all the liftings xφ corresponding to the outer

square live in S ×Y X. Taking the union of all such subcomplexes S over the α-
bounded set of diagrams of the form (2) gives an α-bounded subcomplex Z1 of Y
such that Z ⊂ Z1 ⊂ Y , and such that all local lifting problems (2) are solved in
Z1 ×Y X. Repeat the construction to obtain a sequence of α-bounded subobjects

Z = Z0 ⊂ Z1 ⊂ Z2 ⊂ . . .
such that all local lifting problems

∂∆n w

y

u

Zi ×Y X(U)

u

p∗

∆n w Zi(U)

are solved over Zi+1.
Let W = ∪iZi. Then the map p∗ : W ×Y X → W is a local weak equivalence by
Lemma 7. Furthermore, f∗ :W ×Y X → W is a composite

W ×Y X w

i∗
�

�

�

�

��f∗

W ×Y X

u

p∗

W,

where i∗ is a pointwise weak equivalence. The map i∗ is therefore a local weak
equivalence by Lemma 9, so that f∗ is also a local weak equivalence.

Corollary 13. Suppose that f : X → Y is a local weak equivalence of simplicial
sheaves which satisfies the boundedness condition of Lemma 12, and that there is
a simplicial sheaf monomorphism i : Z →֒ Y where Z is α-bounded. Then i has a
factorization Z ⊂ W ⊂ Y such that W is α-bounded and such that the projection
map f∗ :W ×Y X →W is a local weak equivalence.

Proof: Apply the associated sheaf functor to the output of Lemma 12.

A cofibration of simplicial presheaves is a monomorphism A →֒ B of simplicial
presheaves. A map of simplicial presheaves which is both a cofibration and a local
weak equivalence is called a trivial cofibration. A global fibration is a morphism p :
X → Y of simplicial presheaves which has the right lifting property with respect to
all trivial cofibrations. Finally a map which is simultaneously a global fibration and
a local weak equivalence is said to be a trivial global fibration.
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Lemma 14.

(1) Trivial cofibrations of simplicial presheaves are closed under pushout.

(2) Suppose that γ is an limit ordinal, thought of as a poset, and that there is a
functor X : γ → SPre(C) such that for each morphism i ≤ j of γ, the induced
map X(i)→ X(j) is a trivial cofibration. Then the canonical maps

X(i)
τi−→ lim−→

j∈γ
X(j)

are trivial cofibrations.

(3) Suppose that the morphisms fi : Xi → Yi are local weak equivalences for i ∈ I.
Then the morphism ⊔

i∈I
fi :

⊔

i∈I
Xi →

⊔

i∈I
Yi

is a local weak equivalence.

Proof: It suffices, by Corollary 10 and Corollary 8, to prove all three statements for
the category SPre(B) of simplicial presheaves on the complete Boolean algebra B.
For statement (1), suppose that the diagram

A w

u

i

C

u

i∗

B w B ∪A C

is a pushout of simplicial presheaves on B, where i is a cofibration and a local weak
equivalence. To show that i∗ is a local weak equivalence, it suffices to show that the
map i′ in the pushout diagram of simplicial presheaves

L2Ex∞A w

u

L2Ex∞i

L2Ex∞C

u

i′

L2Ex∞B w L2Ex∞B ∪L2Ex∞A L2Ex∞C

is a local weak equivalence. To see this, one invokes the ordinary patching lemma for
simplicial sets and Corollary 8. But then the map i′ is a pointwise weak equivalence
since L2Ex∞i is a pointwise weak equivalence, so we’re done.

For (2), let X : γ → SPre(B) be a functor as in the statement, and form a new
functor Ex∞X with Ex∞X(i) defined in the obvious way for i ∈ γ, and consider the
natural transformation ν : X → Ex∞X arising from the pointwise weak equivalences

ν : X(i)→ Ex∞X(i), i ∈ γ.
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Then each morphism i ≤ j of γ induces a trivial cofibration Ex∞X(i) → Ex∞X(j)
by Lemma 9, and there is a commutative diagram

X(i) w

τi

u

ν

lim−→X(i)

u

ν∗

Ex∞X(i) wτi
lim−→Ex∞X(i)

where the filtered colimits are formed in the presheaf category, so that ν∗ is a pointwise
weak equivalence. It follows from Lemma 9 that one instance of τi in the diagram is
a local weak equivalence if and only if the other is, so it suffices to assume that each
of the simplicial presheaves X(i) is a presheaf of Kan complexes.
Now suppose that X is a diagram of presheaves of Kan complexes, and form the
diagram

X(i) w

τi

u

η

lim−→X(i) w

η

u

η∗

L2(lim−→X(i))

u

∼=

L2X(i) wτi
lim−→L2X(i) wη L2(lim−→L2X(i))

which is induced the comparison transformation η : X → L2X induced by the as-
sociated sheaf construction. The induced morphisms L2X(i) → L2X(j) are local
weak equivalences of locally fibrant simplicial sheaves on the complete Boolean alge-
bra B, and are therefore pointwise weak equivalences, so that the simplicial presheaf
maps τi : L

2X(i) → lim−→L2X(i) are pointwise weak equivalences and therefore local

weak equivalences, by Lemma 9. The associated sheaf maps η are local weak equiva-
lences by Corollary 8, so that the original maps τi : X(i) → lim−→X(i) are local weak

equivalences as well.

In the case of statement (3), the Ex∞ construction preserves disjoint unions of
simplicial sets, so it suffices to assume that the simplicial presheaves Xi and Yi are
presheaves of Kan complexes. In that case, the induced morphisms L2fi : L

2Xi →
L2Yi are local weak equivalences of locally fibrant simplicial sheaves on B, so that
they are all pointwise weak equivalences. It follows that the induced morphism

⊔

i∈I
L2Xi

⊔
L2fi

−−−−→
⊔

i∈I
L2Yi

are pointwise and hence local weak equivalences. One finishes by observing that there
is a natural commutative diagram

⊔

i∈I
Xi w

⊔
i η

u

η

⊔

i∈I
L2Xi

u

η

L2(
⊔

i∈I
Xi) w∼= L2(

⊔

i∈I
L2Xi)
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in the category of simplicial presheaves on B, so that the morphism ⊔i η is a natural
local weak equivalence by Corollary 8.

A cofibration A →֒ B of simplicial presheaves is said to be an α-bounded cofibration
if the target simplicial presheaf B is α-bounded.

Lemma 15. A map p : X → Y of simplicial presheaves is a global fibration if and only
if it has the right lifting property with respect to all α-bounded trivial cofibrations.

Proof: Suppose that p has the right lifting property with respect to all α-bounded
trivial cofibrations, and consider the diagram

U w

u

i

X

u

p

V w Y,

where i is a trivial cofibration. We shall assume that U 6= V . Consider the set of all
partial lifts

(3)

U w

y

u

j
X

u

pU ′
4

4

4

46

y

u

i′

V w Y

where i′j = i, U ′ 6= U , and j is a trivial cofibration. This set is non-trivial: take
x ∈ V (W )− U(W ) for some W ∈ C, and observe that x sits inside some α-bounded
subcomplex C of V , namely the image of the map LW∆

m → V which classifies x.
By Lemma 12, there is an α-bounded subcomplex B ⊂ V such that C ⊂ B and such
that the induced cofibration j : B ∩ U →֒ B is a local weak equivalence. Form the
diagram

B ∩ U
u

j
w U w

y

u

j∗
X

u

pB w B ∪ U
5

5

5

56

y

u

i′

V w Y
and observe that the indicated lift exists because j∗ is a pushout of the α-bounded
trivial cofibration j. Then x is a section of B ∪ U , so that B ∪ U 6= U . Furthermore,
j∗ is a trivial cofibration: this is a consequence of Lemma 14.
The set of all partial lifts has maximal elements, by Zorn’s lemma and part (2) of
Lemma 14. Any maximal element must be a lift

U w

u

i

X

u

p

V w

h

h

h

hj

Y

by the argument (applied to maps of the form i′ in (3)) that is used to demonstrate
the existence of partial lifts.
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Lemma 16. Every simplicial presheaf map f : X → Y has a factorization

X w

f
h

h

hji

Y

Z

'

'

')

p

where p is a global fibration and i is a trivial cofibration.

Proof: The proof is a transfinite small object argument.
Take a cardinal β > 2α, where α is the cardinality of the set of morphisms of the
site C. We define a functor F : β → SPre(C) ↓ Y by first setting F (0) = f : X → Y .
We let

X(ζ) = lim−→
γ<ζ

X(γ)

for limit ordinals ζ. Finally, the map X(γ) → X(γ + 1) is defined by taking the set
of all diagrams

D :

UD w

u

iD

X(γ)

u

F (γ)

VD w Y

such that iD is an α-bounded trivial cofibration, and then forming the pushout
⊔

D

UD w

u

⊔
D iD

X(γ)

u

i∗

⊔

D

VD w X(γ + 1)

Then i∗ is a trivial cofibration, by Lemma 14, as is the map iβ in the resulting diagram

X w

f
h

h

hjiβ

Y

X(β),

'

'

')

F (β)

where X(β) = lim−→γ<β
X(γ), and F (β) is induced by all maps F (γ). In any diagram

U w

g

u

i

X(β)

u

F (β)

V w

i

i

i

ij

Y

where i is a trivial α-bounded cofibration, the simplicial presheaf U is α-bounded, so
that g must factor through some subcomplex X(γ) ⊂ X(β) with γ < β. It follows
that the dotted arrow exists, making the diagram commute.
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Lemma 17. Any simplicial presheaf map f : X → Y has a factorization

X w

f
h

h

hjj

Y

W

'

'

')

q

where q is a trivial global fibration and j is a cofibration.

Proof: First of all, if a map f : X → Y has the right lifting property with respect
to all morphisms of the form A ⊂ LU∆n, then f is a global fibration and a local weak
equivalence. In effect, f has the right lifting property with respect to all cofibrations
by an argument similar to that of Lemma 15, so that f is a global fibration, and f has
the right lifting property with respect to all cofibrations of the form LU∂∆

n ⊂ LU∆n,
so that f is a pointwise weak equivalence and hence a local weak equivalence by
Lemma 9.
The existence of the required factorization is now a consequence of a transfinite
small object argument similar to that given for Lemma 16.

Theorem 18. With respect to the definitions of cofibration, weak equivalence and
global fibration given above,

(1) the category SPre(C) of simplicial presheaves is a closed model category,
(2) the category SShv(C) is a closed model category,
(3) the inclusion SShv(C) ⊂ SPre(C) induces an equivalence

Ho(SShv(C)) ≃ Ho(SPre(C))
of the associated homotopy categories.

Proof: The only non-trivial parts of the respective demonstrations are the factor-
ization axiom and CM4, for both simplicial presheaves and simplicial sheaves. But
the factorization axioms follow from Lemma 16 and Lemma 17, and their simplicial
sheaf counterparts (which have the same arguments), and CM4 is a consequence of
the assertion that every trivial global fibration has the right lifting property with
respect to all cofibrations, for both categories.
For the latter, observe that if p : X → Y is a global fibration and a local weak
equivalence, then the proof of Lemma 17 shows that p has a factorization

X w

p
h

h

hjj

Y

W,

'

'

')

q

where j is a cofibration and q has the right lifting property with respect to all cofi-
brations and is a local weak equivalence. But then j is a trivial cofibration, so that
there is a commutative diagram

X w

1X

u

j

X

u

p

W wq

h

h

h

hj

Y,
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and so p is a retract of q.
The equivalence of categories

Ho(SShv(C)) ≃ Ho(SPre(C))

is induced by the inclusion SShv(C) ⊂ SPre(C) and its left adjoint, the associated
sheaf functor L2 : SPre(C) → SShv(C). Both of these functors preserve local weak
equivalences, and the canonical simplicial presheaf map X → L2X is a weak equiva-
lence, by Corollary 8.

Suppose that X is a simplicial presheaf and that K is a simplicial set. There is a
simplicial presheaf hom(K,X), which is defined in sections by

hom(K,X)(U) = hom(K,X(U)), U ∈ C,

where hom(K,X(U)), denotes the ordinary function space object in the category of
simplicial sets. The simplicial presheaf hom(∆1, X) is the path object that was used
in the proof of Lemma 9.
The ordinary exponential law for simplicial sets induces a natural isomorphism of
the form

hom(X,hom(K,Y )) ∼= hom(X ×K,Y ),
where the indicated morphisms are in the category of simplicial presheaves, andX×K
is the simplicial presheaf defined in sections by

(X ×K)(U) = X(U)×K, U ∈ C.

The main homotopical result about function spaces of this type is the following:

Lemma 19. Suppose that q : X → Y is a local fibration of simplicial presheaves on
C, and that i : K →֒ L is a cofibration of simplicial sets where L is finite in the sense
that it has only finitely many non-degenerate simplices. Then the induced simplicial
presheaf map

hom(L,X)
(i∗,q∗)

−−−−→ hom(K,X)×hom(K,Y ) hom(L, Y )

is a local fibration, and this map is a local weak equivalence if q is a local weak
equivalence or if i is a trivial cofibration of simplicial sets.

Proof: There is a natural isomorphism

℘∗L2hom(K,X) ∼= hom(K,℘∗L2X)

for all finite simplicial sets K and simplicial presheaves X, since the associated sheaf
functor L2 and the Boolean localization functor ℘∗ both preserve finite limits. The
map ℘∗L2q : ℘∗L2X → ℘∗L2Y is a pointwise Kan fibration, so that the map

hom(L,℘∗L2X)
(i∗,℘∗L2q∗)−−−−−−−→ hom(K,℘∗L2X)×hom(K,℘∗L2Y ) hom(L,℘∗L2Y )

is a pointwise Kan fibration, which is a pointwise weak equivalence if i is a trivial
cofibration or if ℘∗L2q is pointwise trivial.
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Corollary 20. Suppose that X is a locally fibrant simplicial presheaf, and that
i : K →֒ L is a cofibration of finite simplicial sets. Then the induced map

i∗ : hom(L,X)→ hom(K,X)

is a local fibration. The map i∗ is a local weak equivalence if i is a trivial cofibration.

Remark 21. Corollary 20 is the central device behind the path object and associated
local fibration constructions that appear in the proof of Lemma 9.

Suppose that X and Y are simplicial presheaves. The function space hom(X,Y )
is the simplicial set defined by having n-simplices

hom(X,Y )n = hom(X ×∆n, Y ),

where the morphism set on the right is in the category of simplicial presheaves. The
standard exponential law for the simplicial set category also induces a natural iso-
morphism

hom(X ×K,Y ) ∼= homS(K,hom(X,Y )),
so that the category of simplicial presheaves acquires the structure of a simplicial
category in the sense of Quillen.
Similar observations obtain for the category of simplicial sheaves on C. In that case,
one writes X ⊗K = L2(X ×K) for X ∈ SShv(C). Then, if Y is a simplicial sheaf,
there is an isomorphism

hom(X ⊗K,Y ) ∼= homS(K,hom(X,Y )),

so that the category of simplicial sheaves on C also has the structure of a simplicial
category.

Lemma 22. Suppose that i : A → B is a cofibration and q : X → Y is a global
fibration of simplicial presheaves. Then the induced simplicial set map

hom(B,X)
(i∗,q∗)−−−−→ hom(A,X)×hom(A,Y ) hom(B, Y )

is a Kan fibration which is trivial if either i or q is a local weak equivalence.

Proof: The map
(B × Λnk) ∪(A×Λnk ) (A×∆

n) ⊂ B ×∆n

is a cofibration and a pointwise weak equivalence; it is therefore a local weak equiv-
alence by Lemma 9. Finish the argument that (i∗, q∗) is a Kan fibration with the
standard adjointness trick [11], [2].
It remains to show that the cofibration

(B × ∂∆n) ∪(A×∂∆n) (A×∆n) ⊂ B ×∆n

is a local weak equivalence in the case where the cofibration i : A→ B is a local weak
equivalence.
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One should know first that the functor X 7→ X ×K preserves local weak equiva-
lences in simplicial presheaves X, for all simplicial sets K. For this, there are natural
local equivalences

℘∗L2(X ×K)
℘∗L2(ν×K)
−−−−−−−→ ℘∗L2(Ex∞X ×K) ∼= L2(℘∗L2Ex∞X ×K).

The functor X 7→ ℘∗L2Ex∞X ×K takes local weak equivalences to pointwise weak
equivalences, and so the desired result follows from Corollary 10.
It follows that, in the diagram

A×∆n

u

i∗

h

h

h

h

h

h

h

h

hj

i×∆n

(B × ∂∆n) ∪(A×∂∆n) (A×∆n) y w B ×∆n,
the maps i×∆n and i∗ are trivial cofibrations.
There is a corresponding statement about simplicial sheaves, which is an immediate
corollary of Lemma 22.

Corollary 23. The simplicial presheaf category SPre(C) and the simplicial sheaf
category SShv(C) are both closed simplicial model categories.
One says that a closed model category is proper if weak equivalences are preserved
by pullback along fibrations and by pushout along cofibrations.

Theorem 24. The simplicial presheaf category SPre(C) and the simplicial sheaf
category SShv(C) are proper closed simplicial model categories.
Properness is very commonly used: it is fundamental to all patching lemmas [2, 2.8],
and is essential for constructing stable homotopy theories for simplicial presheaves
[1], [5], [6].

Proof of Theorem 24: Suppose that the diagram of simplicial presheaf morphisms

Z ×Y X w

g∗

u

X

u

q

Z wg Y

is a pullback with q a global fibration and g a local weak equivalence. To show that
g∗ is a local weak equivalence, it suffices, by Corollary 8 and Corollary 10, to assume
that X, Y , and Z are simplicial sheaves on the complete Boolean algebra B. By
Corollary 8 and exactness, applying the composite functor L2Ex∞ doesn’t change
the problem, so it suffices to assume that X, Y and Z are locally fibrant simplicial
sheaves on B. But then g is a pointwise weak equivalence, so that g∗ is a pointwise,
hence local, weak equivalence.
Suppose given a pushout diagram

A w

f

y

u

i

X

u

B w

f∗
B ∪A X
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with i a cofibration and f a local weak equivalence. By the patching lemma for
simplicial sets, Corollary 8 and Corollary 10, it suffices to assume that A, B and
X are locally fibrant simplicial sheaves on B and that the pushout is formed in the
category of simplicial presheaves on B. In that case, f is a pointwise weak equivalence,
so that f∗ is a pointwise hence local weak equivalence, by Lemma 9.

3. Homotopy groups.

Traditionally, weak equivalences of simplicial sheaves and presheaves have been de-
fined via sheaves of homotopy groups, which we haven’t even mentioned yet. We have
so far used a definition of weak equivalence that appears to depend on a fixed Boolean
localization ℘ : Shv(B) → E = Shv(C). In this section we will show that this ap-
parent dependence on ℘ can be removed by introducing a notion of fibred homotopy
group objects which is preserved by the inverse image functor ℘∗ and specializes to
the standard homotopy groups for ordinary simplicial sets over all vertices (but see
also Remark 28 below). These homotopy group objects are made up of sheaves of
homotopy groups in the usual sense, and our definition of weak equivalence is seen to
coincide with the familiar one.

Suppose that X is a Kan complex, with base point x. The set underlying the
homotopy group πn(X,x) can be identified with the set of path components π0Fn,xX,
where the Fn,xX is defined by the pullback diagram

Fn,xX w

u

hom(∆n, X)

u

i∗

∗ wx hom(∂∆n, X)

and i∗ is the fibration induced by the inclusion i : ∂∆n →֒ ∆n. Note, in particular,
that Fn,xX is a Kan complex, so that π0Fn,xX can be identified with a set of homotopy
classes of vertices.
To collect all such definitions together, use the notationX0 for the discrete simplicial
set

⊔
x∈X0 ∗ on the set of vertices of X as well as for the set of vertices itself, and

form the pullback

FnX w

u

hom(∆n, X)

u

i∗

X0 w hom(∂∆n, X),

where the map X0 → hom(∂∆n, X) takes the vertex x to the map x : ∂∆n → X
which factors through x. The simplicial set X0 is a Kan complex, so that

FnX ∼=
⊔

x∈X0
Fn,xX

is a Kan complex fibred over X0, and we write

πnX = π0FnX =
⊔

x∈X0
π0Fn,xX =

⊔

x∈X0
πn(X,x).
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There is a canonical function

πnX = π0FnX → X0

which gives πnX a fibred structure over the set of vertices X0.
To see the group multiplication, let Λ[0,n−2] ⊂ ∆n+1 be the subcomplex which
is generated by the simplices di : n → n+ 1, 0 ≤ i ≤ n − 2, and write Kn =
Λ[0,n−2] ∪ skn−1∆n+1 let j denote the inclusion Kn ⊂ ∆n+1. Form the pullback
diagram

GnX w

u

hom(∆n+1, X)

u

j∗

X0 w hom(Kn, X)

in the category of simplicial sets. The maps di : ∆n → ∆n+1 induce morphisms
di : GnX → FnX of spaces fibred over X0 for n − 1 ≤ i ≤ n + 1. Furthermore, the
induced map (dn−1, dn+1) : GnX → FnX×X0 FnX is surjective, since it is induced by
pulling back a trivial fibration hom(∆n+1, X)→ hom(∆n×∆n−1∆n, X). By looking
at vertices and taking path components one sees, via the standard constructions, that
there is a unique map m : π0FnX ×X0 π0FnX → π0FnX of objects fibred over X0
making the following diagram commute:

GnX0 w

dn∗

u

u

(dn−1, dn+1)∗

FnX0 ww π0FnX

(FnX ×X0 FnX)0
u

u

π0FnX ×X0 π0FnX
A

A

A

A

A

A

A

A

A

AC

m

Observe that the map m can be identified with the map

⊔

x∈X0
πn(X,x)× πn(X,x)→

⊔

x∈X0
πn(X,x)

that one obtains by collecting all of the ordinary homotopy group multiplication maps
together.
The group inverse σ : πnX → πnX is defined as a fibred map over X0 by letting
Λn+1n−1,n+1 be the subcomplex of ∆

n+1 generated by the simplices di for i 6= n−1, n+1,
and forming the pullback

HnX w

u

hom(∆n+1, X)

u

X0 w hom(Λn+1n−1,n+1, X)

The maps dn−1 and dn+1 induce functions dn−1∗, dn+1∗ : HnX → FnX of spaces
fibred over X0, and both of these maps are surjective because they are induced by
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trivial fibrations of the form (dj)∗ : hom(∆n+1, X) → hom(∆n, X). Then σ is the
unique map of sets fibred over X0 which makes the following diagram commute:

HnX0 ww

dn+1∗

u

u

dn−1∗

FnX0 ww π0FnX

FnX0

u

u

π0FnX
[

[

[

[

[

[

[

[

[

[

[]

σ

Again, the map σ can be identified with the map
⊔

x∈X0
πn(X,x)→

⊔

x∈X0
πn(X,x)

which consists of the group inverses for the regular homotopy groups.
The identity e : X0 → πnX is the section of the structure map πnX → X0 which
is induced by the canonical section of the simplicial set map FnX → X0. Of course
e specializes to the map ∗ → πn(X,x) which picks out the identity map of the group
πn(X,x) over each summand of X0.
The defining axioms for the group structures on the various πn(X,x) can now be
used to show that the fibred objects πnX → X0, together with the multiplication
map m, the inverse map σ and the identity section e, give πnX the structure of a
group object in the category of sets fibred over X0. This group object is abelian if
n ≥ 2. The existence of the group object isn’t news by itself, but the descriptions of
the maps m, σ and e are combinatorial and functorial, and are therefore more broadly
applicable.
Observe that a map f : X → Y of Kan complexes is a weak equivalence if and only
if

(1) the induced map f∗ : π0X → π0Y of path components is a bijection, and

(2) the induced diagrams

πnX w

f∗

u

πnY

u

X0 w

f
Y0

are pullbacks for n ≥ 1.
This is easily verified, given that the displayed group objects consist of ordinary
homotopy groups.

Suppose that Y is a simplicial presheaf, and define a presheaf πp0Y by forming the
coequalizer diagram

Y1 w

d0
w

d1
Y0 w

c πp0Y

in the presheaf category. Let π0Y denote the associated sheaf for π
p
0 ; one oftens says

that π0Y is the sheaf of path components of Y . Observe that the canonical map
Y → L2Y from Y to its associated sheaf induces an isomorphism π0Y ∼= π0L2Y .
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Lemma 25. Suppose thatX is a locally fibrant simplicial sheaf on a complete Boolean
algebra B. Then the associated sheaf map

η : πp0X → π0X

is an isomorphism of presheaves.

Proof: The locally fibrant simplicial sheaf X is a presheaf of Kan complexes, by
Lemma 4. It follows that the canonical presheaf map

X1
(d1,d0)−−−−→ X0 ×πp0X X0

is a pointwise epimorphism.
Form the comparison diagram

X1
O

O

O

OP

ww

(d1, d0)
X0 ×πp0X X0

w

w

u

η

X0 w

c

u

1X0

πp0X

u

η

X0 ×π0X X0
w

w

X0 w

L2c
π0X

The bottom sequence is a coequalizer in the sheaf category, while the top sequence is
a coequalizer in the presheaf category.
The sheaf epimorphism L2c is a pointwise epimorphism, by the axiom of choice
(Proposition 2), so that the canonical presheaf map η : πp0X → π0X is also a pointwise
epi. The composite map displayed by the dotted arrow can be identified with the sheaf
map associated to the presheaf epimorphism (d0, d1), so it’s a sheaf epi and hence a
pointwise epi, again by the axiom of choice. If L2c(x) = L2c(y) in π0X, then (x, y)
defines an element of X0 ×π0X X0, and so there is a section z of X1 which maps to
(x, y) under the dotted composite. But then x = d1z and y = d0z, so that x and y
represent the same element of πp0X. The associated sheaf map η : π

p
0X → π0X is

therefore pointwise monic as well as pointwise epi.

Suppose that X is a locally fibrant simplicial sheaf on the site C. The homotopy
group sheaves πnX → X0 are defined as sheaves fibred over the sheaf of vertices X0
by letting FnX be the locally fibrant simplicial sheaf defined by the pullback diagram

FnX w

u

hom(∆n, X)

u

i∗

X0 w hom(∂∆n, X),

and then by defining πnX = π0FnX, where the latter denotes the sheaf of path
components of the simplicial sheaf FnX, as above. The group object multiplication
m : πnX×X0 πnX → πnX is defined by analogy with the group object multiplication
for Kan complexes: define a locally fibrant simplicial sheaf GnX by requiring that
the diagram

GnX w

u

hom(∆n+1, X)

u

j∗

X0 w hom(Kn, X)
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is a pullback, and then consider the resulting diagram

R

u u

GnX0 w

dn∗

u

u

(dn−1, dn+1)∗

FnX0 ww π0FnX

(FnX ×X0 FnX)0
u

u

π0FnX ×X0 π0FnX
B

B

B

B

B

B

B

B

B

BC

m

We haven’t exactly shown that the morphism m exists yet, but the indicated mor-
phisms R ⇒ GnX0 are supposed to denote the kernel pair of the composite sheaf
epimorphism

GnX0 → π0FnX ×X0 π0FnX.

A unique morphism m : π0FnX ×X0 π0FnX → π0FnX exists and makes the diagram
commute if it can be shown that the horizontal composite GnX0 → π0FnX equalizes
the arrows R⇒ GnX0 in the sense that it gives the same result when composed with
each of them. This is shown by applying the Boolean localization functor ℘∗. This
functor commutes with the constructions π0, Fn and Gn, and ℘

∗X is a presheaf of
Kan complexes. There is an isomorphism π0Fn℘

∗X ∼= πp0Fn℘
∗X by Lemma 25, so

that the ordinary group object structure on the presheaves of homotopy group objects
for the presheaf of Kan complexes ℘∗X determines a map

m : π0Fn℘
∗X ×℘∗X0 π0Fn℘∗X → π0Fn℘

∗X.

In other words, applying the functor ℘∗ to the map GnX0 → π0FnX gives a morphism
which equalizes the induced maps ℘∗R ⇒ ℘∗GnX0. The functor ℘∗ is faithful, so
that GnX0 → π0FnX equalizes the morphisms R ⇒ GnX0, and the multiplication
map m is defined uniquely.

The inverse map σ : π0FnX → π0FnX of sheaves over X0 exists by a completely
analogous argument, and the identity e : X0 → π0FnX is a canonical section. Finally,
the maps m, σ and e define a group object structure on π0FnX = πnX → X0: just
use the fact that ℘∗ is faithful (and exact) again, together with the observation that
the corresponding group object structure for πn℘

∗X already exists, since ℘∗X is a
presheaf of Kan complexes, and the sheaves of homotopy groups for ℘∗X coincide
with their underlying presheaves.

Lemma 26. A map f : X → Y of simplicial presheaves on a site C is a weak equiva-
lence if and only if

(1) the induced map

f∗ : π0L
2Ex∞X → π0L

2Ex∞Y

is an isomorphism of sheaves, and
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(2) the diagrams

πnL
2Ex∞X w

f∗

u

πnL
2Ex∞Y

u

(L2Ex∞X)0 w

f∗
(L2Ex∞Y )0

are pullbacks for n ≥ 1.

Proof: The map f is a local weak equivalence if and only if the induced map f∗ :
L2Ex∞X → L2Ex∞Y is a local weak equivalence, so it’s enough to show that a map
f : X → Y of locally fibrant simplicial sheaves on C is a weak equivalence if and only
if the map

f∗ : π0X → π0Y

is a sheaf isomorphism, and all of the diagrams

πnX w

f∗

u

πnY

u

X0 w

f∗
Y0

are pullbacks. The Boolean localization functor ℘∗ reflects isomorphisms and pull-
backs, so that these conditions are equivalent to the assertions that

℘∗f∗ : π0℘
∗X → π0℘

∗Y

is a sheaf isomorphism, and all diagrams

πn℘
∗X w

℘∗f∗

u

πn℘
∗Y

u

℘∗X0 w

℘∗f∗
℘∗Y0

are pullbacks. The simplicial sheaves ℘∗X and ℘∗Y are presheaves of Kan complexes,
and their associated presheaves of homotopy group objects coincide with the respec-
tive sheaves of homotopy group objects, so these last conditions are jointly equivalent
to the assertion that ℘∗f : ℘∗X → ℘∗Y is a pointwise weak equivalence.

We can now give our independence result:

Theorem 27. Suppose that C is an arbitrary Grothendieck site. Say that a cofi-
bration of simplicial presheaves on C is a pointwise monomorphism, a local weak
equivalence is a map satisfying the conditions of Lemma 26, and a global fibration is
a map which has the right lifting property with respect to all maps which are simul-
taneously cofibrations and local weak equivalences. Then, with these definitions, the
categories SPre(C) and SShv(C), respectively, of simplicial presheaves and simplicial
sheaves on the site C satisfy the axioms for a proper closed simplicial model category.
Furthermore, the associated sheaf functor induces an equivalence

Ho(SPre(C)) ≃ Ho(SShv(C))
between the associated homotopy categories.
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Suppose that U is an object of the site C and that x is a vertex of the simplicial set
X(U), where X is a locally fibrant simplicial sheaf. Then there is a pullback diagram

πn(X|U , x)(U) w

u

πnX(U)

u

∗ wx X0(U)

where πn(X|U , x) is the nth ordinary sheaf of homotopy groups for the restricted
simplicial sheaf X|U on the site C ↓ U of objects over U , based at the global section
x. Also if f : X → Y is a map of locally fibrant simplicial sheaves, then the diagram

πnX w

f∗

u

πnY

u

X0 w

f∗
Y0

is a pullback if and only if all of the induced maps

πn(X|U , x)
f∗−→ πn(Y |U , f(x))

are isomorphisms for U ∈ C, x ∈ X0(U), so the definition of local weak equivalence
given here coincides with the standard form.

Remark 28. There is another, much easier, way to see the independence result for
the closed model structure on SPre(C). The key point is a combination of Lemma 7,
Lemma 9, and Lemma 11: if f : X → Y is a map of SPre(C), then there is a
commutative diagram of the form

X w

ν

u

f

Ex∞X

u

Ex∞f

�

�

�

��

i

Z
4

4

4

47 q

Y wν Ex∞Y

where i is a pointwise weak equivalence and a cofibration, and q is a pointwise Kan
fibration. The maps ν are pointwise weak equivalences, so Lemma 9 says that f is
a local weak equivalence if and only if the pointwise Kan fibration q is a local weak
equivalence. The objects Z and Ex∞Y are presheaves of Kan complexes, so that one
infers from Lemma 7 and Lemma 11 that q is a local weak equivalence if and only if
it has the local right lifting property with respect to all inclusions ∂∆n ⊂ ∆n. This
local right lifting property is an internal criterion for simplicial presheaves on the site
C, and is independent of any Boolean localization.
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Introduction

MultirelativeK-groupsKn(R, a1, . . . , am) of anm-tuple (a1, . . . , am) of ideals of a ring
R are recently used to derive properties of the absolute K-groups, e.g. by Levine [4]
and by Bloch and Lichtenbaum [1]. Here it is shown how K-theory as defined in [3]
can easily be extended to the multirelative case and that some of its properties can
be taken as axioms for the K-theory of rings. Special types of m-tuples of ideals—
the ‘normal’ m-tuples—play a crucial role. In fact we will only define multirelative
K-groups for such m-tuples. The notion of normal m-tuple of ideals is introduced in
Section 2. It already appeared in 1981 in a paper by Dayton and Weibel [2] on the
K-theory of affine glued schemes under the name of ‘condition (CRT)’ (= Chinese
Remainder Theorem).
In Section 4 we review briefly higher K-theory as defined in [3]. In Section 6

multirelative K-groups are defined, and in Section 7 it is shown that from some of
their properties one can reconstruct the K-theory of rings.

1 Notations

In this paper ‘ring’ stands for a non-unital ring. Non-unital rings form a category
which is denoted by R.
Since the functors GL, E and K1 are product preserving functors from unital

rings to groups, they can be extended to functors defined on R in the usual way: if
T is one of these functors, then put

T (R) := Ker(T (R+)→ T (Z)),
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where R+ = R× Z with multiplication given by

(r, k)(s, l) = (rs + ks+ lr, kl)

is a ring with (0, 1) as unity element.
Here ‘ideal’ will always stand for ‘twosided ideal’.
By A we will denote the category of Abelian groups, by G the category of all

groups, and by S the category of sets. The category of simplicial objects in a category
C is denoted by sC.

2 m-cubes and normal m-tuples

In this section the notion of normality of an m-tuple of ideals is considered. Only
the group structure is involved in its definition, and since we can use later a similar
notion for groups instead of rings we give a more general definition. By m we will
denote the set {1, . . . ,m}.

Definition 1. An m-tuple (B1, . . . , Bm) of normal subgroups of a group A—also
denoted as (A,B1, . . . , Bm)—is called normal if for all subsets I and J of m

⋂

i∈I
Bi ·

∏

j∈J
Bj =

⋂

i∈I

(
Bi ·

∏

j∈J
Bj

)
.

The condition is trivially fulfilled when I ∩ J 6= ∅. In the case of Abelian groups
it reads in the additive notation as

⋂

i∈I
Bi +

∑

j∈J
Bj =

⋂

i∈I

(
Bi +

∑

j∈J
Bj

)
.

Note that in the special case of an m-tuple of ideals in a commutative ring the
condition is a local one since it involves only intersections and sums of ideals.
The subsets of m are ordered by inclusion. This ordered set determines in the

usual way a category Cm. For every pair (I, J) of subsets with I ⊆ J there is the
unique morphism ρIJ from I to J in Cm.

Definition 2. Let D be a category. An m-cube in D is a functor

D : Cm → D, I 7→ DI , ρIJ 7→ rIJ .

The morphisms in Cm are generated by the ρIJ , where #J = #I +1. An m-cube
in a category D is a commutative diagram in D having the shape of an m-dimensional
cube. The edges of the cube correspond to the images of these generating morphisms.

Definition 3. Let D : Cm → D be an m-cube in D. It is said to be a split m-cube if
for every pair of subsets (I, J) ofm satisfying I ⊆ J there is a morphism sJI : DJ → DI

in D such that

(S1) sJI s
K
J = s

K
I for all I ⊆ J ⊆ K,

(S2) rIJs
J
I = 1DJ for all I ⊆ J ,
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(S3) rI∩JJ sII∩J = s
I∪J
J rII∪J for all I and J .

(Of course such a split m-cube can also be seen as a functor defined on a category
which is obtained from Cm by adjoining extra morphisms σJI : J → I.)

In condition (S3) one only needs the case where #(I \J) = #(J \ I) = 1. It then
reads

(S3’) rII∪{k}s
I∪{j}
I = s

I∪{j,k}
I∪{k} r

I∪{j}
I∪{j,k} for all j, k /∈ I with j 6= k.

This can easily be seen as follows. Put K = I ∩ J , I \K = {i1, . . . , ip} and J \K =
{j1, . . . , jq}. Then the result follows from the diagram

DK −−−−→ DK∪{i1} −−−−→ · · · −−−−→ DIx
x

x

DK∪{j1} −−−−→ DK∪{i1,j1} −−−−→ · · · −−−−→ DI∪{j1}x
x

x
...

...
...

x
x

x

DJ −−−−→ DJ∪{i1} −−−−→ · · · −−−−→ DI∪J

where the horizontal maps are r-maps and the vertical maps are s-maps.

Definition 4. An m-tuple T = (A,B1, . . . , Bm) of normal subgroups determines an
m-cube in G:

I 7→ TI = A

/∏

i∈I
Bi.

When I ⊆ J , then ∏i∈I Bi ⊆ J and 1A induces a grouphomomorphism rIJ : TI → TJ .
This m-cube is said to be induced by the m-tuple T . Similarly for anm-tuple of ideals
in a ring.

Proposition 2.1. Let D : Cm → D be an m-cube in G, which is split as an m-cube
in S. Then D is induced by a normal m-tuple of normal subgroups of D∅.
Proof. For i ∈ m put

Bi = Ker
(
r∅{i} : D∅ → D{i}

)
.

We will first show that the cube is induced by the m-tuple (D∅, B1, . . . , Bm). Since
the cube splits in S, the homomorphisms D∅ → DI are surjective. To show that for
each I ⊆ m

Ker(D∅ → DI) =
∏

i∈I
Bi.

This can be done by induction on #(I). For #(I) = 0 it is trivial. Let #(I) > 0.
Choose k ∈ I. By induction hypothesis

Ker
(
D∅ → DI\{k}

)
=

∏

i∈I\{k}
Bi.
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Since the cube splits in S we have a commutative diagram with exact rows and
columns:

1 1 1
y

y
y

1 −−−−→ Bk ∩
∏
i∈I\{k}Bi −−−−→ Bk −−−−→ Ker

(
r
I\{k}
I

)
−−−−→ 1

y
y

y

1 −−−−→ ∏
i∈I\{k}Bi −−−−→ D∅ −−−−→ DI\{k} −−−−→ 1
y

y
y

1 −−−−→ Ker
(
r
{k}
I

)
−−−−→ D{k} −−−−→ DI −−−−→ 1

y
y

y

1 1 1

Hence

Ker(r∅I )/Bk ∼=
∏

i∈I\{k}
Bi

/(
Bk ∩

∏

i∈I\{k}
Bi

)
∼=
∏

i∈I
(Bi/Bk),

and therefore,

Ker(r∅I ) =
∏

i∈I
Bi.

For the normality of the m-tuple let I, J ⊆ m and consider the commutative square

D∅
(r∅{i})−−−−→ ×i∈I D∅/Biyr∅J

y(r{i}J∪{i})

D∅

/∏
j∈J Bj

(rJJ∪{i})−−−−−→ ×i∈I D∅

/∏
j∈J∪{i}Bj .

Since the m-cube is split in S the vertical homomorphisms have compatible sections
in S. So r∅J induces a surjective homomorphism on the kernels of the horizontal ho-
momorphisms. This holds for all I, J ⊆ m. Therefore, the m-tuple (D∅, B1, . . . , Bm)
is normal.

For the Abelian case we also prove the converse.

Proposition 2.2. Let T = (A,B1, . . . , Bm) be a normal m-tuple of subgroups of an
Abelian group A. Then the induced m-cube is split in the category S.
Proof. By taking kernels of the surjective homomorphisms in the induced m-cube it
can be extended to a diagram of 3m Abelian groups. We will give a detailed description
of this diagram and show how a splitting of the cube can be obtained from it.
For each pair (I, J) of disjoint subsets of m define

CIJ =
⋂

i∈I
Bi +

∑

j∈J
Bj

/∑

j∈J
Bj .
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Then for each such pair (I, J) and each k /∈ I∪J we have a surjective homomorphism
CIJ → CIJ∪{k}, induced by r

J
J∪{k} : AJ → AJ∪{k}, where we use the notation

AJ = A

/∑

j∈J
Bj .

Thus AJ = C
∅
J . The kernel of the surjective homomorphism CIJ → CIJ∪{k} is

(⋂

i∈I
Bi +

∑

j∈J
Bj

)
∩
(
Bk +

∑

j∈J
Bj

) /
Bk +

∑

j∈J
Bj .

We have the inclusions

⋂

i∈I∪{k}
Bi +

∑

j∈J
Bj ⊆

(⋂

i∈I
Bi +

∑

j∈J
Bj

)
∩
(
Bk +

∑

j∈J
Bj

)
⊆

⋂

i∈I∪{k}

(
Bi +

∑

j∈J
Bj

)
.

By normality these groups are equal, so we have a short exact sequence

0→ C
I∪{k}
J → CIJ → CIJ∪{k} → 0.

For each pair (I, J) of disjoint subsets of m satisfying I ∪J = m choose a section

tIJ : C
I
J → CI∅ (⊆ C∅∅ = A)

of the map CI∅ → CIJ induced by r
∅
J : A → AJ and satisfying t

I
J (0) = 0. Next define

maps tIJ : C
I
J → CI∅ for every disjoint pair (I, J) using induction to the number of

elements of the complement of I ∪ J . So, let (I, J) be a disjoint pair of subsets of m
with #(I ∪ J) = n < m and assume that sections tKL : C

K
L → CK∅ have already been

defined for pairs (K,L) with K ∪ L having more than n elements.
Choose k ∈ m \ (I ∪ J). Let x ∈ CIJ , then for y = r∅J tIJ∪{k}rJJ∪{k}(x) we have

rJJ∪{k}(y) = r
∅
J∪{k}t

I
J∪{k}r

J
J∪{k}(x) = r

J
J∪{k}(x),

so, x− y ∈ CI∪{k}J . Now define tIJ by

tIJ (x) = t
I∪{k}
J (x− y) + tIJ∪{k}rJJ∪{k}(x).

It easily verified that this map is a section of r : CI∅ → CIJ . Furthermore it is indepen-

dent of the choice of k: if also l /∈ I ∪ J , then in both cases the image of an x ∈ CIJ
under tIJ is determined in the same way by the images of the same elements in the
following four groups

C
I∪{l,k}
J , C

I∪{l}
J∪{k}, C

I∪{k}
J∪{l} , and C

I
J∪{k,l} :
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0 0 0
y

y
y

0 −−−−→ C
I∪{l,k}
J −−−−→ C

I∪{l}
J −−−−→ C

I∪{l}
J∪{k} −−−−→ 0y

y
y

0 −−−−→ C
I∪{k}
J −−−−→ CIJ −−−−→ CIJ∪{k} −−−−→ 0y

y
y

0 −−−−→ C
I∪{k}
J∪{l} −−−−→ CIJ∪{l} −−−−→ CIJ∪{k,l} −−−−→ 0y

y
y

0 0 0

Thus we obtain a splitting of the cube, where the sections sJI of the homomor-
phisms rIJ , where I ⊆ J , are the maps r∅I t

∅
J . In particular, condition (S3’) follows

from the above diagram for I = ∅.

3 Operations on normal m-tuples of ideals

By Rm we will denote the category of all normal m-tuples of ideals. Such an m-
tuple is denoted as (R, a1, . . . , am), where R is a ring and a1, . . . , am are ideals of
R. A morphism φ : (R, a1, . . . , am) → (S, b1, . . . , bm) is just a ringhomomorphism
φ : R→ S satisfying φ(ai) ⊆ bi for all i ∈ m.
The following notations will simplify notations for long exact sequences of mul-

tirelative K-theory. Another advantage will be that they are useful to indicate fun-
toriality properties.
For each m ≥ 1 the functor D : Rm → Rm−1 is the functor that deletes the last

ideal:

D(R, a1, . . . , am) = (R, a1, . . . , am−1)

and which has no effect on morphisms.
For each m ≥ 1 the functor M : Rm →Rm−1 is the functor that deletes the last

ideal and that takes the ring and the other ideals modulo this ideal:

M(R, a1, . . . , am) = (R/am, a1, . . . , am−1),

where aj = aj + ai/ai, and which maps a morphism to the induced morphism.
A functor morphism φ : D → M of the functors D,M : Rm → Rm−1 is defined

as follows: let A = (R, a1, . . . , am), then φA : D(A)→ M(A) is the canonical ringho-
momorphism R→ R/am.
Every A ∈ Rm has an underlying ideal I(A), which is defined as the intersection

of the m ideals in A: when A = (R, a1, . . . , am), then

I(A) = a1 ∩ · · · ∩ am.

Thus defined, I(A) is functorial in A.
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4 Higher K-theory of rings

In [3] the definition of higher K-groups is as follows. Let R ∈ R. Choose a simplicial
ring R with an augmentation ε : R→ R such that

• R is aspherical, i.e. πn(R) = 0 for all n ≥ 1,

• Rm is free for all m ≥ 0, say Rm is free on a set Xm of generators,

• the sets Xm of free generators are stable under degeneracies: sj(Xm) ⊆ Xm+1

for all m ≥ 0,

• the augmentation ε induces an isomorphism π0(R)
∼−→ R.

Then for n ≥ 3 the group Kn(R) is defined as the (n− 2)nd homotopy group of the
simplicial group GL(R), and the groups K1(R) and K2(R) are given by the exactness
of

0→ K2(R)→ π0(GLR)→ GL(R)→ K1(R)→ 0.
The groups Kn(R) for n ≥ 3 are Abelian because GL(R) is a simplicial group. The
group K1(R) is Abelian since it is the cokernel of GL(R0)→ GL(R), and K2(R)
is Abelian because it is the cokernel of GL(R1)→ GL(Z0), where Z0 = { (x0, x1) |
ǫ(x0) = ǫ(x1) }. In [3] it is shown using a comparison theorem that the higher K-
groups are thus well-defined and that they are actually functors. For the purpose of
this paper we will confine to a functorial resolution Fr(R) of a ring R, which we now
describe. Let F : S → R the free ring functor and let U : R → S be the underlying set
functor, then the functor FU : R → R together with the obvious functor morphisms
ν : FU → (FU)2 and η : FU → I is a cotriple. Put

Frn = (FU)
n+1.

Face and degeneracy morphisms are given by

di = (FU)
iη(FU)n−1−i and sj = (FU)

iν(FU)n−1−i.

The augmentation is then given by η.
A property of this functorial resolution is that, when applied to a surjective

ringhomomorphism R → S, it gives a dimensionwise surjective homomorphism
FrR→ FrS of simplicial rings, and since the ringhomomorphisms are dimensionwise
split it also gives a surjective simplicial grouphomomorphism GL(FrR)→ GL(FrS).
This is often convenient when considering homotopy fibres, because surjective simpli-
cial grouphomomorphisms are fibrations themselves. So instead of taking a homotopy
fibre one just takes a fibre, i.e. the kernel of the simplicial group homomorphism.

5 Cubes in a simplicial group

Let A be a simplicial group with augmentation d0 : A0 → A. It is a contravariant
functor A : Ωop+ → G from the category Ω+ of finite ordered sets

[n] = {0, . . . , n} (n ≥ −1)
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(where [−1] = ∅) and monotone (= order preserving) maps to the category of groups.
(Here we use the notation A−1 = A.) We will show that A determines an m-cube of
groups for every nonnegative integer m. In stead of the ordered set of subsets of m
for the description of an m-cube the ordered set of subsets of [m− 1] will be used for
this purpose.
Let Ω(m) be the category of injective monotone maps

α : [k]→ [m− 1].

A morphism from α : [k]→ [m− 1] to β : [l]→ [m− 1] is a monotone map γ : [k]→ [l]
such that βγ = α. It exists if and only if Im(α) ⊆ Im(β), and it is unique if it exists.
For each I ⊆ [m− 1] there is a unique injective monotone map

αI : [k]→ [m− 1],

where k = m − 1 − #(I) and Im(αI) = [m − 1] \ I. If I ⊆ J ⊆ [m − 1], then
Im(αI) ⊇ Im(αJ) , so then there is a unique

γJI : αJ → αI ,

i.e. a monotone γJI : [m− 1−#(J)]→ [m− 1−#(I)] such that αIγJI = αJ .

Definition 5. Let A be an augmented simplicial group and let m be a nonnegative
integer. Then the m-cube of A is the m-cube A(m) : Cm → G with

{
A(m)I = A[m−1−#(I)] for all I ⊆ [m− 1],
rIJ = A(γ

J
I ) : A(m)I → A(m)J for all I ⊆ J ⊆ [m− 1].

Lemma 5.1. Let the augmentation d0 : A0 → A−1 induce a surjective homomorphism
π0(A)→ A−1. Then for all integers i, j,m such that 0 ≤ j < i ≤ m

d
(m)
i

(
Ker

(
d
(m)
j

))
= Ker

(
d
(m−1)
j

)
.

Proof. Let x ∈ Ker
(
d
(m)
j

)
. Then, since i > j, djdi(x) = di−1dj(x) = 1. So

di(Ker(dj)) ⊆ Ker(dj). Now, let y ∈ Ker
(
d
(m−1)
j

)
. There is an x ∈ Am such that

dj(x) = 1 and di(x) = y. For m > 1 this is the case because a simplicial group is a
Kan-complex, while for m = 1 it follows from the condition on the augmentation.

Proposition 5.1. Let A be a simplicial group with an augmentation d0 : A → A
that induces an isomorphism π0(A) → A. Then for all m ≥ 1 the m-cube A(m) is
induced by the m-tuple

(Am−1,Ker(d0), . . . ,Ker(dm−1)).

Proof. All face maps are surjective, so it remains to show that for all J ⊆ [m− 1]

Ker(r∅J ) =
∏

j∈J
Ker

(
d
(m−1)
j

)
.
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For J = ∅ this is trivially true. Let J be nonempty and proceed by induction. Let
x ∈ Ker(r∅J ). Let k ∈ J be maximal. Then r∅{k}(x) = dk(x) ∈ Ker

(
r
{k}
J

)
. By

induction this group is equal to
∏
j∈J′ Ker

(
d
(m−2)
j

)
, where J ′ = J \ {k}. (Here we

used the maximality of k in J and the same result for the (m − 1)-cube A(m − 1).)
By the lemma we have

dk

(∏

j∈J′
Ker

(
d
(m−1)
j

))
=
∏

j∈J′
Ker

(
d
(m−2)
j

)
.

Choose y ∈ ∏j∈J′ Ker(d
(m−1)
j such that dk(y) = dk(x). Then xy

−1 ∈ Ker(dk). It
follows that

Ker(r∅J ) ⊆
∏

j∈J
Ker

(
d
(m−1)
j

)
.

For the other inclusion note that dj = r
∅
{j} and

r
{j}
J r∅{j} = r

∅
J .

Proposition 5.2. Let A be as in Proposition 5.1 and assume moreover that A is
aspherical. Then the m-tuple

(Am−1,Ker(d0), . . . ,Ker(dm−1))

is normal.

Proof. The edges of the m-cube are face maps of the simplicial group (A). Normality
means that these maps preserve intersections of (the images of) the normal subgroups

Ker(d0), . . . ,Ker(dm−1). By induction it suffices to show this for the face maps d
(m−1)
i .

Let J ⊆ [m− 1]. Then to show that

di

(⋂

j∈J
Ker(dj)

)
=
⋂

j∈J
di(Ker(dj)).

for i /∈ J . The inclusion of the left hand side in the right hand side is trivial. So let
x ∈ ⋂j∈J di(Ker(dj)). Then for j ∈ J there is an yj ∈ Ker(dj) such that x = di(yj).
For j < i it follows that dj(x) = djdi(yj) = di−1dj(xj) = 1. Similarly for j > i we
have dj−1(x) = 1. So, since a simplicial group is a Kan-complex and for J = [m− 1]
since A is aspherical, there is a y ∈ Am−1 such that dj(y) = 1 for all j ∈ J and

di(y) = x. This shows that x ∈ di
(⋂

j∈J Ker(dj)
)
.

6 Multirelative K-theory

A normal m-tuple of ideals A = (R, a1, . . . , am) induces an m-cube in R

A : I 7→ R

/∑

i∈I
ai,
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which by Proposition 2.2 is split in S. Application of Fr to this m-cube gives an
m-cube of simplicial rings which is dimensionwise split in R. Put

Fr(R, ai) := Ker(Fr(R)→ Fr(R/ai)).

This is a simplicial ideal. The m-cube is then induced by the m-tuple

(Fr(R),Fr(R, a1), . . . ,Fr(R, am)),

of simplicial ideals, an object of the category sRm of normal m-tuples of simplicial
ideals. We also define the simplicial ideal

Fr(R, a1, . . . , am) :=
m⋂

i=1

Fr(R, ai).

Application of GL gives an m-cube of simplicial groups, which is dimensionwise split
in G. This m-cube is induced by the m-tuple

(GLFr(R), GLFr(R, a1), . . . , GLFr(R, am))

of simplicial normal subgroups. For n ≥ 3 we define multirelative Kn by

Kn(R, a1, . . . am) := πn−2(GLFr(R, a1, . . . , am)).

Multirelative K2 and K1 are then given by the exactness of

0→ K2(R, a1, . . . am)→ π0(GLFr(R, a1, . . . , am))→
GL(a1 ∩ · · · ∩ am)→ K1(R, a1, . . . am)→ 0.

These multirelative K1 and K2 are Abelian groups for the same reason as in the
absolute case.
Now let A ∈ Rm with m ≥ 1. Then φ∗ : GLFr(DA) → GLFr(MA) is a fi-

bration with fibre GLFr(A). The long exact sequence of homotopy groups is a long
exact sequence of multirelative K-groups which can easily be extended to include
multirelative K2 and K1.

Proposition 6.1. Let A ∈ Rm with m ≥ 1. Then we have a functorial exact se-
quence

· · · → Kn(A)→ Kn(DA)→ Kn(MA)→ Kn−1(A)→ · · · → K1(MA).

The connecting map Kn(MA) → Kn−1(A) will be denoted by δ and the map
Kn(A)→ Kn(DA) by ι. To put it in an even more functorial way, we have an exact
sequence of functors and functor morphisms

· · · → Kn
ι−→ KnD

Kn(φ)−−−−→ KnM
δ−→ Kn−1 → · · · → K1M.

In the remaining part of this section multirelative K0 is defined and the long
exact sequence for multirelative K-theory is extended with multirelative K0-groups.
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Definition 6. For a normal m-tuple A of ideals we define

K0(A) = K0(IA).

Thus defined, K0 is a functor from Rm to A.

For m = 1 we take the long exact sequence to be the long exact sequence of an
ideal in a ring. Now assume that m ≥ 1 and that we have an extended long exact
sequence

· · · → K1D → K1M → K0 → K0D → K0M

of functors Rm → A. We will show that there is also such a sequence of functors
Rm+1 → A.
Let A = (R, a1, . . . , am+1) ∈ Rm+1. Put b = IA =

⋂m+1
i=1 ai . We have exact

sequences for the following m-tuples of ideals

B = DA = (R, a1, . . . , am),

B = (R/b, a1/b, . . . , am/b)

and

(R, a1, . . . , am−1, b).

These m-tuples are normal and their K-groups fit into a commutative diagram

K1(DB)

  

A

A

A

A

A

A

A

A

}

}

}

}

}

}

}

}

}

}

}   

B

B

B

B

B

B

B

B

B

B

B

K1(MB)

��

?

?

?

?

?

?

?

K1(B)

??

�

�

�

�

�

�

�

��

>

>

>

>

>

>

>

K1(DB)

>>

|

|

|

|

|

|

|

|

  

B

B

B

B

B

B

B

B

K0(B)

��

?

?

?

?

?

?

?

K2(MB)

??

�

�

�

�

�

�

�

?

?

?

?

?

?

?

?

?

? ??

�

�

�

�

�

�

�

�

�

�

K1(B)

>>

}

}

}

}

}

}

}

}

A

A

A

A

A

A >>

|

|

|

|

|

|

K0(b)

??

�

�

�

�

�

�

�

?

?

?

?

?

?

?

?

?

? ??

�

�

�

�

�

�

�

�

�

�

K0(DA).

Let the dashed arrow be the composition K1(B) → K1(DB) → K0(b). By an easy
diagram chase we see that the sequence with the dashed arrow is exact as well. The
identity on R is a morphism

(R, a1, . . . , am, b)→ A
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in Rm+1. So we have a commutative diagram with exact rows:

K1(R, a1, . . . , am, b) −−−−→ K1(B) −−−−→ K1(B) −−−−→ K0(b)y
y1

yα

K1(A) −−−−→ K1(DA) −−−−→ K1(MA).

It now suffices to show that the morphism α in this diagram is an isomorphism. The
(m+ 1)-tuple (R/b, a1/b, . . . , am+1/b) induces an exact sequence

K1(R/b, a1/b, . . . , am+1/b)→ K1(B)→ K1(MA).

The group K1(R/b, a1/b, . . . , am+1/b) is a quotient of GL((a1/b)∩ · · · ∩ (am+1/b)) =
{1}, so α is injective. On the other hand, since the (m + 1)-tuple A of ideals is
normal, the identity on R induces an isomorphism I(B)→ I(MA) and hence also an
isomorphism

GL(I(B))
∼−→ GL(I(MA)).

Since the multirelative K1 is a quotient of the general linear group of the underlying
ideal, the map α is surjective. This proves:

Theorem 1. Let A ∈ Rm for m ≥ 1. Then we have a functorial exact sequence

· · · → Kn(A)→ Kn(DA)→ Kn(MA)→ Kn−1(A)→ · · · → K0(MA).

7 Axioms for multirelative K-theory

It will be shown in this section that an axiomatic approach to multirelative K-theory
is possible. We take some of the properties of multirelative K-groups as axioms and
show that they determine all of multirelative K-theory.

Axioms

Multirelative K-theory consists of functors

Kn : Rm → A for m and n integers ≥ 0,

morphisms
δ : Kn+1M → Kn (for m and n integers ≥ 0)

of functors Rm+1 → A and morphisms

ι : Kn → KnD (for m and n integers ≥ 0)

of functors Rm+1 → A, such that
(MK1) the following sequence is an exact sequence of functors Rm+1 → A for all

non-negative integers m and n

Kn+1D
Kn+1φ−−−−→ Kn+1M

δ−→ Kn
ι−→ KnD

Knφ−−−→ KnM.
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(MK2) Kn(R) = 0 for all n ≥ 0 and all free associative non-unital rings R,

(MK3) K0(A) = K0(IA) for all A ∈ Rm for all m.

Loosely speaking, the multirelative K-groups are only defined for normal m-
tuples of ideals and they fit into exact sequences the way one can expect, the (absolute)
K-groups of free non-unital rings are trivial and the multirelative K0 is just the
Grothendieck group of the intersection of the ideals.
Let (R, a1, . . . , am) be a normal m-tuple of ideals. It induces an m-cube

I 7→ RI = R

/∑

i∈I
ai,

which is split in S. Application of Fr gives an m-cube

I 7→ Fr(RI)

of aspherical simplicial rings, which is dimensionwise split in R.

Proposition 7.1. Let m and n be positive integers. Then the (m+ n)-tuple

(
Fr(R)n−1,Fr(R, a1)n−1, . . . ,Fr(R, am)n−1,Ker

(
d
(n−1)
0

)
, . . . ,Ker

(
d
(n−1)
n−1

))

is normal.

Proof. First we show that the induced (m+ n)-cube is

(I1, I2) 7→ Fr(RI1)n−1−#(I2),

where the cube is indexed by pairs of subsets of m and [n − 1]. This set of pairs is
ordered by componentwise inclusion:

(I1, I2) ≤ (J1, J2) ⇐⇒ I1 ⊆ J1 and I2 ⊆ J2.

The homomorphism
Fr(R)n−1 → Fr(RI1)n−1−#(I2)

is the composition

Fr(R)n−1 → Fr(RI1)n−1 → Fr(RI1)n−1−#(I2),

the first map being induced by ∅ ⊆ I1 and the second by [n− 1] \ I2 ⊆ [n− 1]. Both
homomorphisms are surjective. The first one has kernel

⋂
i∈I1 Fr(R, ai)(n−1) and the

second one
⋂
i/∈I2 Ker(di), where the di are face maps of Fr(RI1). Since Fr(R) and

Fr(RI1) are both aspherical, elements of the second kernel can be lifted to elements
of
⋂
i/∈I2 Ker(di), where the di are face maps of Fr(R).
For the (m+n)-tuple to be normal it suffices that the intersections of the images

of the m+n ideals are preserved under the maps on the edges of the induced (m+n)-
cube. These are the homomorphisms

Fr(RJ )l → Fr(RJ∪{k})l,
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where J ⊆ m, k ∈ m \ J and l ∈ [n− 1], and also the face maps

di : Fr(RJ)p → Fr(RJ)p−1,

where p ∈ [n − 1] and 0 ≤ i ≤ p. Without loss of generality we may assume that
J = m, l = n− 1 and p = n− 1.
Because the m-cube J 7→ Fr(RJ ) is dimensionwise split we have short exact

sequences

0→
⋂

i∈I∪{k}
Fr(R, ai)→

⋂

i∈I
Fr(R, ai)→

⋂

i∈I
Fr(R/ak, ai)→ 0

of aspherical simplicial rings. It follows that for all J ⊆ [n− 1] we have
⋂

i∈I
Fr(R, ai)n−1 ∩

⋂

j∈J
Ker(dj) =

⋂

j∈J
Ker(d′j),

where the d′j are the face maps of
⋂
i∈I Fr(R, ai). Under Fr(R) → Fr(R/ak) this

maps onto ⋂

j∈J
Ker(d′′j ) =

⋂

i∈I
Fr(R/ak, ai)n−1 ∩

⋂

j∈J
Ker(d′′′j ),

where the d′′j are the face maps of
⋂
i∈I Fr(R/ak, ai) and d

′′′
j those of

⋂
i∈I Fr(R/ak).

Because the simplicial rings
⋂
i∈I Fr(R, ai) are aspherical also the face maps

di : Fr(R)n−1 → Fr(R)n−2 preserve intersections
⋂

i∈I
Fr(R, ai)n−1 ∩

⋂

j∈J
Ker(dj).

Theorem 2. Let A = (R, a1, . . . , am) ∈ R. Then for all n ≥ 0 it follows from the
axioms (MK1) and (MK2) that Kn(A) is naturally isomorphic to K0 of the following
object of Rm+n:

(Fr(R)n−1,Fr(R, a1)n−1, . . . ,Fr(R, am)n−1,Ker(d0), . . . ,Ker(dn−1)).

From axiom (MK3) it then follows that Kn(A) is determined. So (MK1), (MK2) and
(MK3) can be taken as axioms for the (multirelative) K-theory of rings.

Proof. The proof follows from the following three lemmas.

Lemma 7.1. Let m ≥ −1 and q, n ≥ 0. Then

Kq(Fr(R)n,Fr(R, a1)n, . . . ,Fr(R, am)n) = 0.

Proof. Since for m ≥ 0 the (m− 1)-tuples D(A) and M(A) are of the same type, the
proof reduces by (MK1) to the case m = −1. For m = −1 the lemma follows from
(MK2).
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Put

A[n, p] = (Fr(R)n,Fr(R, a1)n, . . . ,Fr(R, am)n,Ker(d0), . . . ,Ker(dp)),

where −1 ≤ p ≤ n. It is an object of Rm+p+1.

Lemma 7.2. For all p < n and all q > 0 we have

Kq(A[n, p]) = 0.

Proof. For p ≥ 0 we have

D(A[n, p]) = A[n, p− 1] and M(A[n, p]) = A[n− 1, p− 1].

By (MK1) the problem reduces to the case p = −1, which is covered by the previous
lemma.

Lemma 7.3. For all q, n ≥ 0 we have

Kq(A[n, n]) ∼= Kq+1(A[n− 1, n− 1]).

Proof. This follows from (MK1) and the previous lemma.

From this lemma the theorem follows:

Kn(A) = Kn(A[−1,−1]) ∼= Kn−1(A[0, 0]) ∼= · · · ∼= K0(A[n− 1, n− 1]).
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Abstract. In 1980, Lusztig posed the problem of showing the existence of
a unipotent support for the irreducible characters of a finite reductive group
G(Fq). This is defined in terms of certain average values of the irreducible
characters on unipotent classes. The problem was solved by Lusztig [16]
for the case where q is a power of a sufficiently large prime. In this paper
we show that, in general, these average values can be expressed in terms of
the Green functions of G. In good characteristic, these Green functions are
given by polynomials in q. Combining this with Lusztig’s results, we can
then establish the existence of unipotent supports whenever q is a power of
a good prime.
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1 Introduction

Let G be a connected reductive group defined over the finite field with q elements,
and let F : G → G be the corresponding Frobenius map. We are interested in the
average values of the irreducible characters of the finite group of Lie type GF on the
F -fixed points of F -stable unipotent classes of G. In 1980, Lusztig [9] has stated the
following problem.

Problem 1.1 Let ρ be an irreducible character of GF . Show that there exists a unique
F -stable unipotent class C of maximal possible dimension such that the average value
of ρ on CF is non-zero, that is,

r∑

j=1

[GF : CG(uj)
F ] ρ(uj) 6= 0,

where u1, . . . , ur ∈ GF are representatives for the GF -conjugacy classes contained
in CF and CG(uj) denotes the centralizer of uj. If this is the case, we call C the
unipotent support of ρ.
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In 1992, Lusztig [16] addressed this problem in the framework of his theory of
character sheaves and its application to Kawanaka’s theory [8] of generalized Gelfand-
Graev representations. In this context, one is lead to consider the following related
question.

Problem 1.2 Let ρ be an irreducible character of GF . Show that there exists a unique
F -stable unipotent class C of maximal possible dimension such that

r∑

j=1

[A(uj) : A(uj)
F ] ρ(uj) 6= 0,

where A(uj) denotes the group of components of CG(uj).

Assuming that q is a sufficiently large power of a sufficiently large prime p, Lusztig
proves in [16], (9.11), a formula which expresses a ‘modified’ average value as above
in terms of the scalar products of the Alvis–Curtis–Kawanaka dual of ρ with the
characters of the various generalized Gelfand-Graev representations corresponding
to C. (The bound on p comes from the condition that, roughly speaking, one wants
to operate with the Lie algebra of G as if it were in characteristic 0.) It is then an
easy consequence of [16], Theorem 11.2, that Problem 1.2 has a positive solution.
Using the results in [16] and [6], we shall prove in Proposition 2.5 below a for-

mula which expresses an average value as in Problem 1.1 in similar terms as above.
Then the solution of Problem 1.11 also is an easy and formally completely analogous
consequence of [16], Theorem 11.2. For this argument we have to assume, as in [loc.
cit.], that q and p are large enough. It is one purpose of this paper to show that this
condition on p can be relaxed so that Problem 1.1 and Problem 1.2 have a positive
solution (and yield the same unipotent class) whenever p is a good prime for G. It
may be true that, eventually, no condition on p will be needed but this seems to
require some new arguments. (I have checked, using [19], that things go through for
exceptional groups in characteristic p 6= 2. A more detailed discussion of the bad
characteristic case appears in [7], where it is shown that Problem 1.2 always has a
positive solution – Problem 1.1 in bad characteristic remains open.)
The idea of our argument is as follows. It is clear that an average value as in

Problem 1.1 is given by the scalar product of ρ with the class function fC on G
F such

that

fC(g) =

{
|GF | if g ∈ CF ,
0 if g ∈ GF \ CF .

A similar interpretation can also be given for the modified average value in Prob-
lem 1.2, using the class function f ′C on G

F with support on CF and such that

f ′C(uj) = [A(uj) : A(uj)
F ]|CG(uj)F | for 1 ≤ j ≤ r,

where (as above) u1, . . . , ur ∈ CF are representatives for the GF -classes contained
in CF .
The statement concerning fC in the following result was already conjectured by

Lusztig in [9], (2.16). For large p, it follows easily from the results on Green functions
in [17] (see also Kawanaka [8], (1.3.8)).

1Lusztig has informed me that this solution was known to him, but it was not included in [16]
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Proposition 1.3 The functions fC and f
′
C are uniform, that is, they can be written

as linear combinations of various Deligne-Lusztig generalized characters RGT,θ.

The proof of this result in (3.6) below will be based on Proposition 3.5, where we
show that the known algorithm for computing the ordinary Green functions in [17]
works without any restriction on p and q. This may also be of independent interest. It
uses heavily the description of this algorithm in terms of Lusztig’s character sheaves
in [13], Section 24. The (mild) restrictions on p in [loc. cit.] can be removed by using
Shoji’s results [18] on cuspidal character sheaves in bad characteristic and the fact,
also proved in [18], that the ordinary Green functions of GF always coincide with
those defined in terms of character sheaves.
It then follows that in order to compute our average values we only need to

consider the uniform projection of ρ. We can also reduce to the case where G has
a connected center and is simple modulo its center, see Lemmas 5.1 and 5.2. Then
our average values can be expressed as linear combinations of Green functions of GF

where the coefficients are ‘independent of q’, by [11], Main Theorem 4.23. Up to this
point we don’t need any assumption on p or q.
Let now q be a power of a prime p which is good for G. Recall that this is the

case if p is good for each simple factor involved in G, and that the conditions for the
various simple types are as follows.

An : no condition,
Bn, Cn, Dn : p 6= 2,

G2, F4, E6, E7 : p 6= 2, 3,
E8 : p 6= 2, 3, 5.

Then the Green functions of GF are given by evaluating certain well-defined polyno-
mials at q (see [17]), and we obtain a similar statement for our average values. We can
then replace a given q by a power of a larger prime p for which the results in [16] are
applicable and thus deduce results about these average value polynomials being zero
or not. Finally, we deduce from the formulae in Proposition 2.5 that our polynomials
have the property that if one of them is non-zero then its evaluation at every prime
power is non-zero. The details and the precise formulation of this argument can be
found in Section 4, especially Proposition 4.4. Then the main result of this paper will
be established in Section 5.

Theorem 1.4 Assume that q is a power of a good prime p for G. Let ρ be an
irreducible character of GF .

(a) Both Problem 1.1 and Problem 1.2 have a positive solution for ρ, and they yield
the same unipotent class, C say.

(b) The p-part in the degree of ρ is given by qd where d is the dimension of the
variety of Borel subgroups of G containing a fixed element in C.

The characterization of the p-part of ρ in terms of C was also conjectured in [9].
Lusztig [16] proves the following refinement (again assuming that q is a power of a
large enough prime): Let g ∈ GF be any element such that ρ(g) 6= 0. Then the
unipotent part of g lies in the unipotent support C of ρ or in a unipotent class of
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strictly smaller dimension than C. Note that it is not clear how to pass from results
about the vanishing or non-vanishing of individual character values to results about
the non-vanishing of average values.
We remark that, as far as this refinement is concerned, the situation definitely

is different in the bad characteristic case. Consider, for example, the simple group G
of type G2 defined over a finite field of characteristic 3. Let C be the class of regular
unipotent elements. Then there exist unipotent characters of GF which are non-zero
on some element in CF but whose average value on CF is zero (see the character
table in [5]).
Completing earlier results of Lusztig’s (see [14]), A.-M. Aubert [1] has shown

that such a refinement holds for classical groups in good characteristic and with g
unipotent. For that purpose, one has to use the full power of the theory of character
sheaves and Shoji’s proof of Lusztig’s conjecture about almost characters and charac-
teristic functions of character sheaves (see [18]). I have checked that this also works
for exceptional groups in good characteristic. This will be discussed elsewhere.
I thank A.-M. Aubert for carefully reading earlier versions of this paper.

2 Generalized Gelfand-Graev representations and average values

Let G be a connected reductive group defined over Fq, with corresponding Frobenius
map F . All of our characters and class functions will have values in an algebraic
closure of Ql, where l is prime not dividing q. If f, f ′ are two class functions on GF

we denote by

(f, f ′) :=
1

|GF |
∑

g∈GF
f(g)f ′(g)

their usual hermitian product, where x 7→ x̄ is a field automorphism which maps roots
of unity to their inverses. We denote by Guni the set of unipotent elements in G. For
each element g ∈ G we let Cg denote the G-conjugacy class of g. There is a canonical
partial order on the set of unipotent classes of G: if C,C′ are two such classes we
write C ≤ C′ if C is contained in the Zariski closure of C′. We write C < C′ if C ≤ C′
but C 6= C′.

2.1 Unipotently supported class functions on GF

Let C be an F -stable unipotent class in G. Let u ∈ CF and A(u) be the group of
components of CG(u). If we twist u with any element y ∈ A(u) we obtain an element
uy ∈ CF , well-defined up to GF -conjugacy. If we choose representatives for the F -
conjugacy classes of A(u) we obtain in this way a full set of representatives of the
GF -classes contained in CF ; denote such a set of representatives by u1, . . . , ur ∈ CF ,
where we let u1 = u.
Let I(C)F be the set of pairs i = (C,E) where E is an irreducible representation

of A(u) over Q̄l (given up to isomorphism) for which there exists an automorphism
αE : E → E of finite order such that αE ◦ y = F (y) ◦ αE for all y ∈ A(u). We define
a class function Yi : G

F → Q̄l by

Yi(g) =

{
Trace(αE ◦ y,E) if g is GF -conjugate to uy for some y ∈ A(u),

0 otherwise.
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These functions form a basis of the space of class functions of GF with support on CF .
(Note that they are only well-defined up to non-zero scalar multiples.) For each j let
aj := |A(uj)F |. The order of A(uj) is independent of j; we denote it by a. With this
notation we have the following orthogonality relations:

r∑

j=1

a

aj
Yi(uj)Yi′(uj) = aδii′ and

∑

i∈I0(C)F
Yi(uj)Yi(uj′) = ajδjj′ ,

for all i, i′ ∈ I(C)F , or all 1 ≤ j, j′ ≤ r, respectively.
The trivial module for A(u) always satisfies the above condition. The corre-

sponding pair will be denoted i0 = (C, Q̄l), and the isomorphism αE can be chosen
so that the function Yi0 is identically 1 on C

F . Thus, we have

fC = |GF |Yi0 with i0 = (C, Q̄l).

On the other hand, using the definition of f ′C and the above orthogonality relations
we compute that

(f ′C , Yi) = aδi,i0 for all i ∈ I(C)F .
Note that these relations determine f ′C uniquely.

2.2 GGGR’s

Recall that if q is a power of a good prime for G then Kawanaka [8] has defined
generalized Gelfand-Graev representations (GGGR’s for short) for every unipotent
class in GF . (Usually, we will identify a GGGR with its character.) Very roughly, this
is done as follows. Let C be an F -stable unipotent class in G. Using the corresponding
weighted Dynkin diagram we can associate with C a pair of unipotent subgroups
U2 ⊆ U1 where U1 is the unipotent radical of an F -stable parabolic subgroup P of G
and U2 is an F -stable closed normal subgroup in P . Furthermore, C ∩ U2 is dense
in U2 and the centralizer in G of any element u ∈ U2 ∩ C is already contained in P .
(Note that Kawanaka [8] has checked that these statements indeed are true whenever
the characteristic is good.) Hence the subgroup UF2 contains representatives for all
GF -classes in CF . Using a Killing type form on U2 we can associate with each such
representative u ∈ C ∩ UF2 a certain linear character λu of UF2 such that

IndG
F

UF2
(λu) = [U

F
1 : U

F
2 ]
1/2Γu,

where Γu is the GGGR associated with u. With the notation in (2.1), we can assume
that uj ∈ U2 for 1 ≤ j ≤ r. As in [16], (7.5), we define the following ‘twisted’ version
of GGGR’s:

Γi =
r∑

j=1

a

aj
Yi(uj)Γuj for i ∈ I(C)F .

2.3 Basic properties of GGGR’s

We shall need two basic properties of GGGR which we now explain. Denote by DG

the Alvis–Curtis–Kawanaka duality operation on the character ring of GF .
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Assume that p and q are large enough so that the results in [16] are applicable.

(a) For all g ∈ GFuni we have

DG(Γi)(g) 6= 0 ⇒ C ≤ Cg.

(b) For all i, i′ ∈ I(C)F we have

(DG(Γi), Yi′) = aζ
′
iq
diδi,i′

where ζ′i is a certain 4-th root of unity and di is half a certain integer.

Proofs of (a) and (b) can be obtained by combining [16], (8.6), with [16], (6.13)(i),
and (6.13)(iii), respectively. Properties (a) and (b) are also contained in [6], Corol-
lary 3.6(b) and Lemma 3.5. (Actually, the formula in the latter reference involves a
certain function Xi′ instead of Yi′ , but Xi′ is zero on all elements g ∈ GFuni unless
Cg ≤ C and coincides with Yi′ on C

F ; using (a) we can therefore take Yi′ .) Note
also that in [16] it is generally assumed that G is a split group, and the results in
[6] referred to above are also proved under this assumption. However, by [16], (8.7),
everything goes through for non-split groups as well, with only minor changes. Es-
pecially, properties (a) and (b) remain valid. Finally, we have the following special
property of the numbers ζ′, di appearing in (b).

(c) If i0 = (C, Q̄l) then ζ′i0 = 1 and di0 = −d where d is the dimension of the variety
of Borel subgroups of G containing u.

For the proof see [6], Lemma 3.5, and the remarks concerning equation (a) in the
proof of [16], Theorem 11.2. We also use the formula dimG− dimC = rank(G) + 2d
(see [3], Theorem 5.10.1).

Lemma 2.4 Assume that p and q are large enough so that the results in [16] are
applicable. Let fC and f

′
C be the functions introduced in Section 1. Then the following

hold.

fC(g) = qd
r∑

j=1

[GF : CG(uj)
F ]DG(Γuj )(g) for all g ∈ CF ,

f ′C(g) = qdDG(Γi0)(g) = q
d

r∑

j=1

a

aj
DG(Γuj )(g) for all g ∈ CF .

Proof. Let i ∈ I(C)F and Yi the corresponding class function as in (2.1). Since the
various functions Yi form a basis of the space of class functions on G

F with support
on CF it will be sufficient to show that the scalar product of Yi with the left and right
hand sides of the above expressions are equal.
Consider at first fC . The scalar product with the left hand side is just (fC , Yi).

On the other hand, using the orthogonality relations in (2.1), we conclude that

Γuj =
1

a

∑

i′∈I(C)F
Yi′(uj)Γi′ for all 1 ≤ j ≤ r.
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Inserting this into the expression on the right hand side we obtain that

(r.h.s., Yi) = qd
r∑

j=1

1

a
[GF : CG(uj)

F ]
∑

i′∈I(C)F
Yi′(uj)(DG(Γi′), Yi)

= qd+diζ′i

r∑

j=1

[GF : CG(uj)
F ]Yi(uj) by (2.3)(b)

= qd+diζ′i(fC , Yi) by definition of the scalar product.

Hence it remains to prove that if (fC , Yi) 6= 0 then ζ′i = 1 and di = −d. This follows
from the fact that the set I(C)F can be partitioned into ‘blocks’ according to the gen-
eralized Springer correspondence (see [16], (4.4)) and that the scalar product between
(Yi, Yi′) is zero unless i, i

′ lie in the same block (see [16], (6.5)). Now remember that
fC = |GF |Yi0 . Hence, if (fC , Yi) 6= 0 then i lies in the same block as i0. In this case,
ζ′i = ζ

′
i0
and di = di0 by [6], Lemma 3.5. So we are done by (2.3)(c).

Now consider f ′C . By (2.1) we have (f
′
C , Yi) = aδi,i0 . The scalar product with

the right hand side evaluates to the same expression using (2.3)(b) and (c).

Proposition 2.5 (Cf. [16], (9.11)) Assume that p and q are large enough so that
the results in [16] are applicable. Let ρ be an irreducible character of GF such that

(*) ρ(g) = 0 for all g ∈ GFuni with C < Cg.

Then we have

(ρ, fC) =
r∑

j=1

[GF : CG(uj)
F ] ρ(uj) = qd

r∑

j=1

[GF : CG(uj)
F ] (Γuj , DG(ρ̄)),

(ρ, f ′C) =
r∑

j=1

[A(u) : A(uj)
F ] ρ(uj) = qd

r∑

j=1

[A(u) : A(uj)
F ] (Γuj , DG(ρ̄)).

Since these expressions are rational integers the above formulae are also valid with ρ
instead of ρ̄ on the right hand side.

Proof. It is clear that in order to evaluate the left hand sides of the above expressions
we only need to know the values of ρ on CF . Let us check that the same also holds
for the expressions on the right hand side. We start by looking at the scalar product
of ρ̄ with DG(Γi), for i ∈ I(C)F , that is, the expression

(DG(Γi), ρ̄) =
1

|GF |
∑

g∈GF
DG(Γi)(g)ρ(g).

First, the sum need only be extended over g ∈ GFuni since Γi, and hence also its dual,
is zero outside GFuni. Now assume that g ∈ GFuni gives a non-zero contribution to the
above sum. On one hand, by (2.3)(a), we must have C ≤ Cg. On the other hand,
our assumption (*) then forces C = Cg. Hence, in order to evaluate the above scalar
product we only need to look at the values of ρ and DG(Γi) on C

F . A similar remarks
holds, of course, if we consider Γuj instead of Γi. Using the self-adjointness of DG
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we can therefore conclude that the right hand sides of our desired equalities are also
determined by the restriction of ρ to CF .
To complete the proof, it remains to use the expressions for fC and f

′
C which are

given in Lemma 2.4.

Corollary 2.6 (Lusztig) Assume that p and q are large enough so that the results
in [16] are applicable. Let ρ be an irreducible character of GF . Then both Problem 1.1
and Problem 1.2 have a positive solution for ρ, and the corresponding unipotent classes
are equal.

Proof. (Compare with the argument in the last part of the proof of [16], Theo-
rem 11.2.) Let ρ′ be the irreducible character such that ρ′ = ±DG(ρ). By [16],
Theorem 11.2, there exists an F -stable unipotent class C such that the following two
conditions hold (among others).

(1) There exists some u ∈ CF such that (Γu, ρ′) 6= 0.
(2) If C′ is an F -stable unipotent class such that ρ(g) 6= 0 for some g ∈ C′F then
dimC′ ≤ dimC with equality only if C = C′.

We show that C satisfies the requirements for both Problem 1.1 and Problem 1.2.
If C′ is some F -stable unipotent class such that an average value on C′F as in

Problem 1.1 or Problem 1.2 is non-zero then ρ has a non-zero value on some element
in C′F and (2) implies that dimC′ ≤ dimC.
Recall that our average values are given by (ρ, fC) and (ρ, f

′
C), respectively. It

remains to prove that these two scalar products are non-zero. By (2), assumption (*)
in Proposition 2.5 is satisfied. So we have

(ρ, fC) = ±qd
∑

j

[GF : CG(uj)
F ] (Γuj , ρ

′),

(ρ, f ′C) = ±qd
∑

j

[A(uj) : A(uj)
F ] (Γuj , ρ

′).

In both cases all terms in the sums on the right hand sides are non-negative and at
least one of them is non-zero by (1). Hence there are no cancellations and the left
hand sides must be non-zero, too. This completes the proof.

Example 2.7 Assume that p and q are large enough so that the above results are
applicable. Let ρ be an irreducible character of GF and C its unipotent support.
The assumption (*) in Proposition 2.5 is satisfied (see Property (2) in the proof of
Corollary 2.6). Assume that the centralizer of an element in C is connected. In this
case we have r = 1 in the formulae in Proposition 2.5 and the left and the right hand
sides contain just one summand. So we find that

ρ(u) = qd(Γu, DG(ρ)).

In particular, the character value ρ(u) is an integer divisible by qd. In fact, using
a similar argument as in [6], Proposition 5.4, one can show that the scalar product
between DG(ρ) and Γu must be ±1. Hence we have

ρ(u) = ±qd where the sign is such that ±DG(ρ)(1) > 0.

Theorem 1.4 and the results in Section 4 will imply that this last formula holds
whenever q is a power of a good prime p. We omit further details.
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3 Average values and uniform functions

The first aim of this section is to prove Proposition 1.3. We then derive in Corollary 3.8
a formula for the scalar products of an irreducible character of GF with the functions
fC and f

′
C for an F -stable unipotent class C. This will be in terms of Lusztig’s

parametrization of irreducible characters in [11].
We shall now introduce some notation and recall some facts from [13] which will

be needed for the proof of Proposition 1.3. With each F -stable maximal torus T in G,
we can associate two types of Green functions: one is the ordinary Green function QGT
defined as the restriction of a corresponding Deligne-Lusztig generalized character to
GFuni; the other is a special case of a more general construction of generalized Green
functions which are defined in terms of characteristic functions of F -stable character
sheaves on G (see [13], (8.3.1)). Shoji has shown in [18], Theorem 5.5 (part II), that
these two types of Green functions coincide (without any restriction on p or q).
We shall need some more detailed properties about the values of Green functions.

For this purpose we take a closer look at Lusztig’s algorithm in [13], Theorem 24.4, for
the computation of all generalized Green functions. The properties that we need can
be obtained from this algorithmic description. However, there is a mild restriction
on p in [loc. cit.] which comes from the fact that certain properties of character
sheaves on G are not yet established in complete generality. We will now go through
[13], Section 24, and check that everything works without any restriction on p, if
we only consider those generalized Green functions which correspond to the ordinary
Green functions. This will use in an essential way Shoji’s results in [18] on cuspidal
character sheaves in bad characteristic.

3.1 The generalized Springer correspondence

Let I be the set of all pairs (C, E) where C is a unipotent class in G and E is an
irreducible G-equivariant Q̄l-local system, given up to isomorphism. If i = (C, E) and
i′ = (C′, E ′) are elements in I we write i ≤ i′ if C ≤ C′, and i ∼ i′ if C = C′. With
each pair i ∈ I there is associated a triple (L,C1, E1) consisting of a Levi subgroup L
in some parabolic subgroup of G and (C1, E1) is a pair like i for L, but where E1 is
‘cuspidal’ (in the sense of [12]). The pairs in I associated with a fixed triple as above
are parameterized by the irreducible characters of a groupWG(L,C1, E1) which is the
inertia group of the pair (C1, E1) in the normalizer of L. This correspondence is the
generalized Springer correspondence defined and studied in [12].
A pair i ∈ I which corresponds to a triple where the Levi subgroup L is a maximal

torus, the class C1 is the trivial class and the local system E1 is trivial, will be called
uniform (see the remark following [13], Theorem 24.4). In this case, the inertia group
WG(T, {1}, Q̄l) is nothing but the Weyl group of G with respect to T , and the above
correspondence reduces to Springer’s original correspondence. We will denote by I0
the subset of I consisting of uniform pairs.

Remark 3.2 Let i0 = (C, Q̄l) ∈ I where Q̄l denotes the trivial local system. Then
i0 is uniform.

Proof. This is a general property of the generalized Springer correspondence. Let i =
(C, E) ∈ I and BGu be the variety of Borel subgroups containing a fixed element u ∈ C.
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Recall from [12] that E corresponds to an irreducible representation of A(u), and that i
is uniform if and only if that representation appears with non-zero multiplicity in the
permutation representation of A(u) on the irreducible components of BGu .
Now the trivial local system on C corresponds to the trivial representation

of A(u), and this certainly appears with non-zero multiplicity in any permutation
representation of A(u). Hence i0 = (C, Q̄l) is uniform.

3.3 Basic relations

The Frobenius map F acts naturally on I. An F -stable pair i = (C, E) ∈ IF gives
rise to a pair in I(C)F as in (2.1) and hence to a function Yi (cf. the proof of [13],
(24.2.7).) This function can be extended to a function Xi on the Zariski closure of C
by the construction in [10], (24.2.8), so that we have equations of the form

Xi =
∑

i′∈IF
Pi′,iYi′ with Pi′,i ∈ Q̄l for all i, i′ ∈ IF ,

and where Pi,i = 1 and Pi′,i = 0 if i
′ 6≤ i or if i′ ∼ i, i′ 6= i. Now we also have

‘contragredient’ versions of these functions which will be denoted by X̃i and Ỹi (see
[13], (24.2.12) and (24.2.13)). We have Ỹi = Y i, see [13], (25.6,4). Correspondingly,
we have similar equations as above with coefficients P̃i′,i. The various class functions
introduced so far are only well-defined up to some scalar multiple, but [13], (24.2.1)
and (24.2.2), singles out a certain ‘good’ normalization which we also assume chosen
here. Finally, we define

λi,i′ := (Yi, Yi′) and ωi,i′ :=
1

|GF |
∑

g∈GF
uni

Xi(g)X̃i′(g) for all i, i′ ∈ IF .

As in [13], (24.3), we see that λi,i′ = 0 unless i ∼ i′, and that the matrix (λi,i′)i,i′∈IF
is invertible. (The functions Yi form a basis of the space of class functions on G

F
uni.)

We obtain the following basic relations:

∑

i′1,i
′
2∈IF

Pi′
1
,i1 P̃i′2,i2λi′1,i′2 = ωi1,i2 for all i1, i2 ∈ IF .

Theorem 24.4 in [13] states that the coefficients Pi′,i, P̃i′,i and λi′,i are determined by
this system of equations once the right hand side coefficients ωi′,i are known. Now,
under some mild restriction on p, the coefficient ωi′,i is given by the equation [13],
(24.3.4) (arising from a scalar product formula for characteristic functions of character
sheaves). In general, we can at least obtain the following information.

Lemma 3.4 Assume that the center of G is connected. Let i ∈ IF0 and i′ ∈ IF . Then
the following hold.

(i) If i′ 6∈ IF0 then ωi′,i = ωi,i′ = 0.

(ii) If i′ ∈ IF0 then ωi′,i = ωi,i′ is a rational number.
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Proof. Given any i, i′ ∈ IF the relevant scalar product formula for the evaluation of∑
gXi(g)X̃i′(g) (sum over all g ∈ GFuni) can be found in [13], Theorem 10.9. Let

(L,C1, E1) and (L′, C′1, E ′1) be the triples associated with i and i′, and K1, K ′1 the
corresponding cuspidal perverse sheaves on L,L′, respectively. One of the assumptions
for the validity of [13], Theorem 10.9, is that K1 and K

′
1 must be ‘strongly cuspidal’

(see the description of these assumptions in [13], (10.7)).
We claim that a cuspidal perverse sheaf on any group G with a connected center

is always strongly cuspidal (hence in particularK1 and K
′
1; note that L,L

′ also have a
connected center). This can be seen as follows. By [13], (7.1.6), it is sufficient to show
that a cuspidal perverse sheaf onG is a character sheaf. By the reduction arguments in
[13], (17.10) and (17.11), we can reduce to the case where G is simple of adjoint type.
If p is an almost good prime the result is already covered by [13], Theorem 23.1(b).
For G of type E6 or E7, see [13], Proposition 20.3. It remains to consider G of type
G2, F4, E8. The result in this case is contained in [18], Theorem 7.3(a) in part I and
Proposition 5.3 in part II. So our claim is established.
Another assumption for the validity of [13], Theorem 10.9, is that if L,L′ are

conjugate in G then K1, K
′
1 must be ‘clean’ (see again [13], (7.7)). Now if i, i

′ ∈ I0
then both L and L′ are maximal tori and the ‘cleanness’ is clear (we have to consider
the trivial local system on the trivial class). If one of i, i′ is uniform and the other
is not, then one of the Levi subgroups L,L′ is a maximal torus and the other is not,
hence the above condition is vacuous. In combination with the ‘good’ normalization
of Xi, Xi′ mentioned in (3.3), this proves both (i) and (ii) (cf. [13], (24.3.5)).

Now we can state the analogue of [13], Theorem 24.4, for uniform pairs i ∈ I0.

Proposition 3.5 Assume that the center of G is connected. Let i ∈ IF0 and i′ ∈ IF .
Then the following hold.

(i) Pi′,i = P̃i′,i and λi′,i = λi,i′ are rational numbers.

(ii) Pi′,i and λi′,i are zero if i
′ 6∈ IF0 .

Moreover, the coefficients Pi′,i and λi′,i (for i, i
′ ∈ IF0 ) are determined from the

basic relations in (3.3) by an algorithm as described in [13], Theorem 24.4 or [17],
Remark 5.4.

Proof. This is almost completely analogous to the proof of [13], Theorem 24.4, with
some minor changes concerning the ordering of the arguments. We will go through
that proof and check that things go through as desired for uniform pairs in IF0 . For
any integer δ consider the following two statements.

(Aδ) If i
′ = (C′, E ′) ∈ IF with dimC′ ≤ δ and if i ∈ IF , then Pi′,i = P̃i′,i is a rational

number if i or i′ is uniform, and it is zero if one of i, i′ is uniform and the other
is not.

(Bδ) If i
′ = (C′, E ′) ∈ IF with dimC′ ≤ δ and if i ∈ IF , then λi′,i = λi,i′ is a rational

number if i or i′ is uniform, and it is zero if one of i, i′ is uniform and the other
is not.

It is clear that these statements are true if δ < 0. As in [loc. cit.] we first show that
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if δ ≥ 0 and (Aδ−1), (Bδ) are true then (Aδ) is true.
Let us just describe this in more detail. Let i ∈ IF and i′ ∈ IF such that dimC′ = δ.
If i′ 6≤ i or if i ∼ i′, i 6= i′ then Pi′,i = P̃i′,i = 0. So we may assume that i′ < i. From
the basic relations in (3.3) we derive, as in [loc. cit.], the following equations for any
a ∈ IF with a ∼ i′.

∑

i′2∼i′
P̃i′
2
,iλa,i′

2
= ωa,i −

∑

i′1<i
′,i′2∼i′1

Pi′
1
,aP̃i′

2
,iλi′

1
,i′
2
,

∑

i′2∼i′
Pi′2,iλi′2,a = ωi,a −

∑

i′1<i
′,i′2∼i′1

Pi′2,iP̃i′1,aλi′2,i′1 .

We denote the right hand sides of these two equations by r̃(a) and r(a), respectively.
We claim that

(1) if a and i are uniform then r(a) = r̃(a) is a rational number, and

(2) if one of a, i is uniform and the other is not then r̃(a) = r(a) = 0.

This is proved as follows. Lemma 3.4 shows that it is sufficient to consider the sum
over i′1, i

′
2 in each of the defining equations for r(a) and r̃(a). At first let us consider

r(a), and assume that there exists some i′1, i
′
2 such that the corresponding term is

non-zero. Then Pi′
2
,i 6= 0, P̃i′

1
,a 6= 0, and λi′

2
,i′
1
6= 0. For each of these terms we

can apply (Aδ−1) or (Bδ−1). If one of a, i is uniform and the other is not we obtain
a contradiction; while if both of a, i are uniform we obtain a summand which is a
rational number. We can argue similarly for r̃(a). Moreover, if both a and i are
uniform this analysis shows that r(a) = r̃(a) is a rational number. Our claim is
proved.
We have already mentioned above that the matrix of coefficients (λa,a′) (where

a, a′ ∈ IF , a ∼ a′ ∼ i′) is invertible. Let (λ′a,a′) be the coefficients in the inverse of
this matrix. Then we obtain that

P̃i′,i =
∑

i′2∼i′
P̃i′2,i

(∑

a∼i′
λ′i′,aλa,i′2

)
=
∑

a∼i′
r̃(a)λ′i′,a,

Pi′,i =
∑

i′2∼i′
Pi′
2
,i

(∑

a∼i′
λi′
2
,aλ
′
a,i′

)
=
∑

a∼i′
r(a)λ′a,i′ .

By (Bδ) we know that λa,a′ is zero if one of a, a
′ is uniform and the other is not;

moreover, λa,a′ = λa′,a is a rational number if both a, a
′ are uniform. It follows that

the matrix of coefficients (λ′a,a′) has the analogous properties. Hence, if i
′ is uniform

(respectively, not uniform) we can restrict the above sums to those a which are also
uniform (respectively, not uniform).
Now assume that both i, i′ are uniform. As we have just seen, we can assume

that a in the above sums is uniform, and then r(a) = r̃(a) by (1). Moreover, λ′i′,a =

λ′a,i′ is a rational number. Hence also Pi′,i = P̃i′,i is a rational number.
Next assume that i is uniform and i′ is not uniform. We can now assume that a

in the above sums is not uniform. By (2), we know that then both r(a) and r̃(a) are
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zero. Hence Pi′,i = P̃i′,i = 0. A similar argument shows that this is also the case if i
′

is uniform and i is not uniform. This completes the proof of (Aδ).
In a completely similar way, we can also prove that

if δ ≥ 0 and (Aδ−1), (Bδ−1) are true then (Bδ) is true.
We can then proceed as in [loc. cit.] to complete the proof.

3.6 Uniform pairs and uniform functions

We claim that (without any assumptions on the center of G or on p, q)

(a) the pair i ∈ IF is uniform (cf. (3.1)) if and only if Yi is a uniform function,
and

(b) we have λi,i′ = (Yi, Yi′) = 0 if one of i, i
′ ∈ IF is uniform and the other is not.

Before we prove this let us check that this implies Proposition 1.3.
Let C be an F -stable unipotent class and i0 = (C, Q̄l) ∈ IF . By Remark 3.2 we

know that i0 is uniform. By (2.1) we have fC = |GF |Yi0 (for a suitable normalization)
hence (a) implies that this is a uniform function and we are done. Now consider f ′C .
We can write f ′C =

∑
i biYi where the sum is over all i ∈ I(C)F and bi ∈ Q̄l. By the

orthogonality relations in (2.1) we have

aδi′,i0 = (f
′
C , Yi′) =

∑

i∈I(C)F
bi(Yi, Yi′) =

∑

i∈I(C)F
biλi,i′ for all i′ ∈ I(C)F .

The matrix (λi,i′) (where i
′, i ∈ I(C)F ) is invertible. Let (λ′i,i′) denote its inverse.

Then the above equations imply that bi = aλ
′
i0,i. Now (b) shows that λi,i′ = 0 if one

of i′, i is uniform and the other is not. The coefficients λ′i,i′ in the inverse matrix then
have the analogous property. Since i0 is uniform we conclude that bi = 0 unless i is
uniform. Hence f ′C is uniform. This completes the proof of Proposition 1.3.

We now prove (a). Recall that a class function on GFuni is uniform if and only it is
a linear combination of the Green functions of GF . Since the functions {Yi | i ∈ IF }
form a basis of the space of class functions on GFuni it will therefore be sufficient to
show that the Green functions can be expressed as linear combinations of the functions
{Yi | i ∈ IF0 } and vice versa.
Assume at first that G has a connected center. By Proposition 3.5, we can write

Xi =
∑

i′∈IF0

Pi′,iYi′ for all i ∈ IF0 .

If we choose a total order on I0 which refines the order relation i
′ ≤ i, we see that the

matrix of coefficients Pi′,i has a triangular shape with 1’s along the diagonal. Hence
these equations can be inverted, and every Yi (for i ∈ IF0 ) can be expressed as a linear
combination of the functions Xi′ , for various i

′ ∈ IF0 .
By [13], (10.4.5), and the character formula in [13], Theorem 8.5, a functionXi for

which i ∈ IF is uniform can be expressed as a linear combination of generalized Green
functions corresponding to various F -stable maximal tori in G. (This is because i is
uniform; otherwise, one would have to use generalized Green functions corresponding
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to Levi subgroups in G which are not maximal tori.) But now [18], Theorem 5.5
(part II), states that these generalized Green functions (corresponding to maximal
tori) coincide with the ordinary Green functions ofGF . Moreover, this can be reversed
and hence every Green function is a linear combination of the functions {Xi | i ∈ IF0 }.
Combining this with the above relations among the Xi and Yi we see that, indeed,
the Green functions can be expressed in terms of the functions {Yi | i ∈ IF0 } and vive
versa.
If the center of G is not connected let ι : G→ G′ be a regular embedding. Recall

from [15] that this means that ι is a homomorphism of connected reductive groups over
Fq such that G′ has a connected center, ι is an isomorphism onto a closed subgroup of
G′, and ι(G), G′ have the same derived subgroup. To simplify notation, we identify G
and its image ι(G).
The embedding G ⊆ G′ defines a bijection between the F -stable unipotent classes

in G and in G′. Let u ∈ CF and consider the canonical quotient CG′(u) → AG′(u).
Since G′ = GZ(G′) the restriction of this map to CG(u) defines a surjective map
AG(u) → AG′(u) whose kernel is given by the image of Z(G) in AG(u). Via this
surjection (which is compatible with the action of F ) we also obtain a canonical
injective map IG′(C)

F → IG(C)
F . Since this holds for all F -stable unipotent classes

C we obtain an injective map IFG′ → IFG . The characterization of uniform pairs in
terms of multiplicities in permutation representations as in the proof of Remark 3.2
immediately shows that i ∈ IFG certainly is uniform if i is the image of a uniform pair
in IFG′ under this map. On the other hand the number of uniform pairs in I

F
G is always

given (via the Springer correspondence) by the number of irreducible characters of
the Weyl groupW which are invariant under the action of F . Since the latter number
is the same for G and G′ we conclude that the uniform pairs in IFG are precisely the
images of the uniform pairs in IFG′ .
It follows from the definitions that for all i ∈ IFG′ we have

ResG
′

G (Y
G′

i ) = Y
G
i where we also regard i as an element in I

F
G .

Now it is also known (see [17]) that the Green functions for GF are the restrictions

of the Green functions for G′F . Hence we can use the results from the connected
center case to conclude that the Green functions of GF are linear combinations of the
functions {Y Gi | i ∈ IFG uniform} and vice versa. This completes the proof of (a).
Finally, let us consider (b). If the center of G is connected then this is already

contained in Proposition 3.5(ii). If the center of G is not connected we use a regular
embedding G ⊆ G′ as above. Recall that we then have a surjective map AG(u) →
AG′(u) with kernel given by the image of Z(G) in AG(u). Using the definitions this
easily implies that (Yi, Yi′) = 0 if one of i, i

′ ∈ IFG lies in the image of the map
IFG′ → IFG and the other does not. This implies (b), and the proof is complete.

3.7 Series of irreducible characters

We assume for the rest of this section that the center of G is connected. (We will see
in Section 5 that this is no loss of generality as far as Problem 1.1 and Problem 1.2
are concerned.) Let T ⊆ G be an F -stable maximal torus contained in some F -stable
Borel subgroup of G, and W be the Weyl group of G with respect to T . Let G∗ be a
group dual to G (see [11], (8.4)). Then G∗ is also defined over Fq and we denote again
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by F the corresponding Frobenius map. We can identify W with the Weyl group of
an F -stable maximal torus T ′ ⊆ G∗ dual to T ; note that the actions of the Frobenius
maps of G and G∗ on W are inverse to each other.

(a) Let s ∈ T ′ be a semisimple element such that the G∗-conjugacy class of s
is F -stable. Let Ws be the stabilizer of s in W . Then Ws is a reflection subgroup
of W . Let w1 ∈ W be the unique element of minimal length in the coset Zs = {w ∈
W | F (s) = w(s)}. Then we have an induced automorphism γ : Ws →Ws defined by
γ−1(w) = F (w1ww

−1
1 ) for all w ∈Ws (see [11], (2.15) and the remarks in [11], p.258).

Let X̄(Ws, γ) be the parameter set defined in [11], (4.21.12); this set only depends on
Ws and γ.

(b) If s ∈ T ′ is as in (a), we let W̃s =Ws〈σ〉 be the semidirect product of W and
the cyclic group 〈σ〉 with generator σ such that σwσ−1 = γ(w) for all w ∈Ws. Let ψ
be an irreducible character of Ws which can be extended to W̃s; we fix one possible
extension of ψ and denote it by ψ̃. As in [11], (3.7), we define

Rs[ψ̃] :=
1

|Ws|
∑

w∈Ws
ψ̃(σw)RGTw1w,θs ,

where Tw1w ⊆ G is an F -stable maximal torus obtained from T by twisting with
w1w and θs is an irreducible character of T

F
w1w in ‘duality’ with s. (This ‘duality’ is

described in [11], proof of Lemma 6.2 and the remarks on p.257.)

(c) The irreducible characters of GF are divided into series corresponding to
conjugacy classes of F -stable semisimple elements in G∗. If s ∈ T ′ is as in (a), we
denote by Es the corresponding series. By [11], Main Theorem 4.23, there exists a
bijection

Es ↔ X̄(Ws, γ), ρ↔ x̄ρ,

such that the scalar product

(ρ,Rs[ψ̃])

is a rational number depending only on w1Ws, ψ, and x̄ρ ∈ X̄(Ws, γ). Let us denote
this number by a(w1Ws, ψ, x̄ρ).

(d) Consider the special case where s = 1. Then Ws =W , w1 = 1 and σ is given
by the action of F . We denote by Irr(W )F the set of irreducible characters of W
which can be extended to W̃ , and we assume chosen once and for all a fixed extension
for such a character. The corresponding functions Rs[φ̃] will be denoted by Qφ, where
φ ∈ Irr(W )F . (These are the same as the functions in [17], Remark 5.5(i).)
With this notation we can now state the following result, which expresses our

average values as linear combinations of Green functions with coefficients ‘independent
of q’.

Corollary 3.8 Assume that the center of G is connected. Let s ∈ T ′ be as in
(3.7a) and ρ ∈ Es. Let C be an F -stable unipotent class in G and u1, . . . , ur be
representatives for the GF -classes contained in CF . Then there exists constants
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b(w1Ws, φ, x̄ρ) ∈ Q̄l (depending only on w1Ws, φ, x̄ρ) such that

(ρ, fC) =
r∑

j=1

∑

φ

[GF : CG(uj)
F ] b(w1Ws, φ, x̄ρ)Qφ(uj),

(ρ, f ′C) =
r∑

j=1

∑

φ

[A(uj) : A(uj)
F ] b(w1Ws, φ, x̄ρ)Qφ(uj),

where in both formulae the second sum is over all φ ∈ Irr(W )F .

Proof. Let ρunif denote the uniform projection of ρ. By Proposition 1.3 we know that
fC and f

′
C are uniform. Hence we can replace ρ by ρunif in order to evaluate the

scalar products with fC and f
′
C .

The various functions Rs[ψ̃] have norm 1 and are mutually orthogonal. The
uniform projection of ρ is given by projecting ρ on the space generated by the various
Rs[ψ̃]. Hence we have

ρunif =
∑

ψ

a(w1Ws, ψ, x̄ρ)R
s[ψ̃]

where the sum is over all irreducible characters ψ ofWs which can be extended to W̃s.
We insert the defining equation for Rs[ψ̃] and note that the value of a Deligne-Lusztig
generalized character at a unipotent element is the value of the corresponding Green
function. Now the Green functions for GF can be re-written in terms of the functions
Qφ, where φ ∈ Irr(W )F and where the coefficients are given by the entries in the
inverse of the matrix of values (φ̃(Fw)). This yields the above expressions for the
average values.
Finally note that the coefficients in these linear combinations involve the con-

stants a(w1Ws, ψ, x̄ρ), the character values ψ̃(σw), and the entries in the inverse of

the matrix of values (φ̃(Fw)). Having chosen fixed extensions of the various char-
acters involved we see that these coefficients only depend on w1Ws, φ and x̄ρ. This
completes the proof.

4 Considering q as a variable

We continue to assume that G has a connected center. We have seen in Corollary 3.8
that average values of irreducible characters of GF as in Problem 1.1 and Problem 1.2
can be expressed in terms of certain combinatorial objects associated with various
reflection subgroups of the Weyl group of G and the values of the Green functions of
GF . There is a sense in which the latter are given by ‘polynomials in q’, and hence
the same holds for our average value. In this section we will give a precise formulation
for this statement, and this will eventually allow us to remove the assumption on p
and q in Corollary 2.6. It will be technically simpler if our group G is simple modulo
its center. (In Section 5 below we will see that this is no loss of generality as far as
Problem 1.1 and Problem 1.2. are concerned.)
For the remainder of this section, our group G has a connected center and is

simple modulo its center. As remarked above we will want to say that certain quan-
tities or objects associated with GF are given by ‘polynomials in q’ or are classified
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‘independently of q’. In order to make this precise, we let Ψ be the root datum of G
with respect to a fixed F -stable maximal torus T contained in some F -stable Borel
subgroup of G. We denote by W the Weyl group of G with respect to T ; this only
depends on Ψ. Let X = X(T ) be the character group of T . Then F acts as q times an
automorphism F0 of finite order on X, and the pair (G,T ) together with the Frobe-
nius map F is determined by (Ψ, F0) and the choice of the prime power q. We now
assume given, once and for all, the root datum Ψ, the corresponding Weyl group W ,
and the automorphism F0. Then each choice of a prime power q1 determines a pair
(G1, T1) and a Frobenius map F1 such that G1 has root datum Ψ and F1 acts as q1
times F0 on the character group of T1.

4.1 Classification of unipotent classes

We summarize the known results on the classification of unipotent classes in good
characteristic, as follows. There exists a finite index set A and a map A → N0,
α 7→ dα, depending only on (Ψ, F0) and having the following properties. If q is a
power of a good prime and G is the corresponding group over Fq, there is a map

A→ GFuni, α 7→ uα,

such that {uα | α ∈ A} is a set of representatives for the F -stable unipotent classes
in G and dα = dimCα where Cα is the class of G containing uα. (This is contained,
for example, in [3], Chapter 5).
Moreover, there is a collection of finite groups (Aα)α∈A such that the map A→

GFuni can be chosen to have the following additional properties.

(i) For each α, the group of components of the centralizer of uα is isomorphic to Aα,
and the action of F on this group is trivial.

(ii) For each α, the element uα is split in the sense of [17], Remark 5.1, except
possibly when G is of type E8, q ≡ −1 mod 3, and uα lies in the class D8(a3)
(notation of the table in [3], pp.405).

Each uα is uniquely determined up to G
F -conjugacy by (i) and (ii). This follows in

all cases where split elements exist, see Shoji [17] and the references there. For type
E8, see Kawanaka [8], (1.2.1); the uniqueness of uα in this case is mentioned in [2],
p.590.
For each α ∈ A we let Cl(Aα) be a set of representatives of the conjugacy classes

of Aα. By property (i), the set Cl(Aα) parametrizes the various G
F -classes contained

in CFα (for q and G as above). If j ∈ Cl(Aα) we denote by uα,j an element in CFα
which is obtained from the representative uα by twisting with j.

4.2 Values of Green functions

We summarize the known results about the values of Green functions in good char-
acteristic as follows. For δ = 0,±1 there exist maps

Qδ : Irr(W )F ×
∐

α∈A
Aα → Z[t] and hδ :

∐

α∈A
Cl(Aα)→ Q[t]
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depending only on (Ψ, F0) and having the following properties. If q is a power of a
good prime such that q ≡ δ mod 3 and G is the corresponding group over Fq then

Qφ(uα,j) = Q
δ(φ, α, j)(q) for all w ∈W , α ∈ A and j ∈ Cl(Aα),

where φ ∈ Irr(W )F and uα,j is an element in CFα obtained by twisting the repre-
sentative uα with j. Moreover, h

δ(α, j)(q) is the size of the GF -conjugacy class of
uα,j.
The results concerning the Green functions are contained in [17]. The existence of

the polynomials hδ(α, j) follows, for example, from the algorithm for the computation
of generalized Green functions in [13], Theorem 24.4. These polynomials (for fixed α)
all have the same degree which is the integer dα = dimCα. Note that the parameter
δ makes a difference only for G of type E8.

4.3 The average value polynomials

Fix δ = 0,±1. Let q be any power of a good prime with q ≡ δ mod 3 and G
the corresponding group over Fq with dual group G∗. Let s ∈ T ′, Ws ⊆ W and
w1 ∈ W as in (3.7a). Then w1 has minimal length in the coset w1Ws and we have
F (w1Wsw

−1
1 ) = Ws. The cosets w1Ws arising in this way (for various choices of q

and elements s ∈ T ′) will be called the δ-admissible cosets of W .
Let w1W

′ be a δ-admissible coset. We define the automorphism γ : W ′ →W ′ and
the corresponding semidirect product W̃ ′ analogously as in (3.7a). The constructions
in [11], Chapter 4, yield a parameter set X̄(W ′, γ) and rational numbers a(w1W ′, φ, x̄)
(as in (3.7b)) for all irreducible characters φ of W ′ which can be extended to W̃ ′.
Moreover, we obtain constants b(w1Ws, φ, x̄) (for φ ∈ Irr(W )F ) by the rewriting
process as in the proof of Corollary 3.8. We now define two polynomial functions
A× X̄(W ′, γ)→ Q[t] by

AVδ(1.1)(α, x̄) :=
∑

j∈Cl(Aα)

∑

φ∈Irr(W )F
hδ(α, j) b(w1W

′, φ, x̄)Qδ(φ, α, j),

AVδ(1.2)(α, x̄) :=
∑

j∈Cl(Aα)

∑

φ∈Irr(W )F
[Aα : CAα(j)] b(w1W

′, φ, x̄)Qδ(φ, α, j).

Given α and x̄ we call the corresponding polynomials the average value polynomials
of type (1.1) and (1.2), respectively.
The relevance of this definition is as follows. Let q be a power of a good prime

with q ≡ δ mod 3, andG the corresponding group over Fq. Let s ∈ T ′ andWs, w1, γ be

as in (3.7a). Then w1Ws is a δ-admissible coset, hence AV
δ
(1.1)(α, x̄) and AV

δ
(1.2)(α, x̄)

are defined for all α ∈ A and x̄ ∈ X̄(Ws, γ). Corollary 3.8 can now be rephrased by
saying that if ρ ∈ Es we have

(ρ, fC) = AV
δ
(1.1)(α, x̄ρ)(q) and (ρ, f ′C) = AV

δ
(1.2)(α, x̄ρ)(q).

Proposition 4.4 Let w1W
′ be a δ-admissible coset and x̄ a fixed element in the

corresponding parameter set X̄(W ′, γ).

(i) There exists a unique α ∈ A with maximal possible value dα such that the
polynomial AVδ(1.1)(α, x̄) is non-zero.
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(ii) There exists a unique α̃ ∈ A with maximal possible value dα̃ such that the
polynomial AVδ(1.2)(α̃, x̄) is non-zero.

(iii) We have α = α̃.

(iv) AVδ(1.1)(α, x̄)(q) 6= 0 and AVδ(1.2)(α, x̄)(q) 6= 0 for all good prime powers q such
that q ≡ δ mod 3.

(Recall from (4.1) that dα = dimCα.)

Proof. Let M be the set of integers q which are powers of various good primes and
such that the following conditions are satisfied.

(a) All elements in M are congruent to δ modulo 3.

(b) If an average value polynomial is non-zero then it is non-zero when evaluated
at every q ∈M .

(c) If q ∈M and G is the corresponding group over Fq with Frobenius map F the
results in Section 2 are applicable.

(d) If q ∈M and G is the corresponding group over Fq with Frobenius map F then
the coset w1W

′ arises from an F -stable semisimple class in G as in (3.7a).

The set M contains infinitely many elements. Indeed, condition (b) holds for all but
finitely many good prime powers since we only have a finite number of average value
polynomials; condition (c) holds for all large enough powers of large enough primes.
Using Dirichlet’s Theorem on primes in an arithmetic progression, the setM1 of good
prime powers satisfying (a), (b), (c) is infinite. Finally, Deriziotis has shown in [4],
Theorem 3.3, that condition (d) either holds for none of for all but finitely many good
prime powers q in a fixed congruence class modulo a certain integer depending only
on (Ψ, F0). The definition of δ-admissibility therefore implies that the set of elements
in M1 which also satisfy (d) is still infinite.

Let us prove (i). Let q ∈ M and G the corresponding group over Fq. By
condition (d), the coset w1W

′ arises from some F -stable semisimple class (s) in G∗

as in (3.7a). Let ρ be an irreducible character of GF in the corresponding series Es
such that x̄ρ is the given element x̄ ∈ X̄(W ′, γ). By (c) we can apply Corollary 2.6
and conclude that there exists a unique α ∈ A with maximal possible value dα such
that

(ρ, fC) = AV
δ
(1.1)(α, x̄)(q) 6= 0.

But then property (b) implies that (i) holds. The proof of (ii) is completely analogous,
and yields the same class Cα by Corollary 2.6. This also proves (iii).

Now we prove (iv). For this purpose note that the class Cα has the properties (1)
and (2) in the proof of Corollary 2.6. By [16], Theorem 11.2, we also have the following
additional property.

(1’) For all u ∈ CFα , the absolute value of (Γu, DG(ρ)) is ≤ |Aα||W |.
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Recall that property (2) implies that assumption (*) in Proposition 2.5 is satisfied
for the character ρ and the class Cα, and this holds for each choice of q ∈ M . The
formulae in Proposition 2.5 yield that

AVδ(1.1)(α, x̄)(q) = qd
∑

j∈Cl(Aα)
hδ(α, j)(q)Nj(q) and

AVδ(1.2)(α, x̄)(q) = qd
∑

j∈Cl(Aα)
[Aα : CAα(j)]Nj(q),

where Nj(q) denotes the multiplicity of DG(ρ) in the GGGR associated with the
representative in Cα corresponding to j. Property (1’) gives a bound on the absolute
value of Nj(q) ‘independently of q’. So there exists an infinite subset M

′ ⊆ M such
that (Nj(q))j∈Cl(Aα) is constant for all q ∈ M ′. Let Nj denote this constant for
j ∈ Cl(Aα). We conclude that

AVδ(1.1)(α, x̄)(q) = qd
∑

j∈Cl(Aα)
hδ(α, j)(q)Nj for all q ∈M ′,

AVδ(1.2)(α, x̄)(q) = qd
∑

j∈Cl(Aα)
[Aα : CAα(j)]Nj for all q ∈M ′.

So we actually obtain identities of polynomials in Q[t]:

AVδ(1.1)(α, x̄) = td
∑

j∈Cl(Aα)
hδ(α, j)Nj ,

AVδ(1.2)(α, x̄) = td
∑

j∈Cl(Aα)
[Aα : CAα(j)]Nj .

Since ±DG(ρ̄) is an irreducible character, either all numbers Nj are non-negative or
all numbers −Nj are non-negative, and by (i) at least one Nj must be non-zero. So
the expression

td
∑

j∈Cl(Aα)
[Aα : CAα(j)]Nj

is a non-zero constant times td. Hence, in particular, its value at any q as in (iv) is
non-zero. A slight modification of this argument also works for the other expression.
Indeed, since hδ(α, j) gives a strictly positive integer when evaluated at any good
prime power (namely the size of a conjugacy class), we conclude that the expression

td
∑

j∈Cl(Aα)
hδ(α, j)Nj

is a polynomial with the property that if we evaluate it at any good prime power then
we obtain a strictly positive or a strictly negative number as a result. Again we are
done.

5 Proof of Theorem 1.4

Let q be a power of a prime p and G be a connected reductive group defined over Fq,
with corresponding Frobenius map F . For the moment we make no assumption on p
or on the center of G.
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Lemma 5.1 Let G ⊆ G′ be a regular embedding of G into a connected reductive
group G′ over Fq with a connected center and such that G, G′ have the same derived
subgroup. Then Problem 1.1 (respectively, Problem 1.2) has a positive solution for G
if and only if it has a positive solution for G′.

Proof. At first note that the embedding G ⊆ G′ defines a bijection between the F -
stable unipotent classes of G and those of G′. Let C be any F -stable unipotent class
of G, let ρ′ be an irreducible character of G′F , and let ρ be an irreducible component
of the restriction of ρ′ to GF . By Clifford’s Theorem the restriction of ρ′ to GF is
a sum of irreducible characters of GF which are of the form ρx := ρ ◦ cx, where cx
denotes the automorphism of GF induced by conjugation with an element x ∈ G′F .
It is clear that the function fC defined with respect to G is [G

′F : GF ] times
the restriction of the corresponding function defined with respect to G′. Hence fC is
invariant under G′F and we have fxC = fC for all x ∈ G′

F
.

Using the methods in (3.6) it can be easily seen that a similar statement also

holds for the function f ′C on G
F . Hence it is also invariant under G′F and we have

(f ′C)
x = f ′C for all x ∈ G′

F
.

We conclude that the scalar product of ρx with fC (respectively, with f
′
C) is

the same as the scalar product of ρ with fC (respectively, with f
′
C). Using Clifford’s

Theorem in the above form, we see that the scalar product of ρ′ with fC (respectively,
with f ′C) is a non-zero multiple of the scalar product of ρ with fC (respectively, with
f ′C). This implies the desired equivalence.

So from now on, we can assume that the center of G is connected. The next
result shows that we can reduce to the case where G is simple modulo its center.

Lemma 5.2 Let p be a fixed prime. Assume that Problem 1.1 (respectively, Prob-
lem 1.2) has a positive solution for all groups G which are defined over a finite field
of characteristic p, which have a connected center and which are simple modulo their
center. Then Problem 1.1 (respectively, Problem 1.2) has a positive solution for all
groups defined over a finite field of characteristic p.

Proof. Let G be any group defined over Fq, where q is a power of p. By Lemma 5.1
we may assume that the center of G is connected. The following reasoning is almost
entirely analogous to that in [11], (8.8).
We can find a surjective homomorphism f : G′ → G of algebraic groups over

Fq such that the center of G′ is connected, the kernel of f is a central torus, and
the derived subgroup of G′ is semisimple and simply-connected. We claim that if
Problem 1.1 (respectively, Problem 1.2) has a positive solution for G′ then it also has
a positive solution for G. Indeed, the map f induces a bijection between the unipotent
classes of G′ and G. Since the kernel of f is connected this bijection also works on
the level of the finite groups, and we have f(G′F ) = GF . So, if ρ is an irreducible

character of GF then ρ′ := ρ ◦ f is an irreducible character of G′F . Furthermore, the
function fC (respectively, f

′
C) lifts to the analogously defined function of G

′F . This
implies the claim.
Hence we may now also assume that the derived group Gder of G is simply-

connected.
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Let us write Gder = Rf1(G1) × . . . × Rfn(Gn) where each Gi is a closed simple
simply-connected subgroup and Rf denotes restriction of scalars from Fqf to Fq (for
some f ≥ 1). We can embed each Gi regularly (over Fqfi ) into a connected reductive
group G′′i with a connected center and which is simple modulo its center. Let G

′′ :=
Rf1(G

′′
1 )× . . .×Rfn(G′′n). Then we also have a regular embedding Gder → G′′ (over

Fq).
Finally, as in [loc. cit.], there exists a connected reductive group G′′′ with con-

nected center and defined over Fq and there exist regular embeddings G → G′′′,
G′′ → G′′′ (over Fq) which are compatible with the regular embedding Gder → G′′.
Now we can argue as follows. Using Lemma 5.1 twice we see that Problem 1.1

(respectively, Problem 1.2) has a positive solution for G if and only if this is the
case for G′′′ if and only if this is the case for G′′. Now G′′ has a decomposition into
a direct product of various factors of the form Rfi(Gi), and this leads to a similar
decomposition on the level of the finite groups. Correspondingly, the irreducible
characters of G′′F are exterior tensor products of irreducible characters for the various
factors, and it follows easily that Problem 1.1 (respectively, Problem 1.2) has a positive
solution for G′′ if this is the case for each factor Gi. Hence we are reduced to groups
which have a connected center and are simple modulo their center. This completes
the proof.

We are now ready for the proof of Theorem 1.4.

5.3 Existence of unipotent supports

Let G be as in the first sentence of this section, and assume that p is good.
Let us first show that Problem 1.1 has a positive solution (that is, the unipotent

support of an irreducible character exists). By Lemmas 5.1 and 5.2 we may assume
that G has a connected center and is simple modulo its center. Then we can apply
the formalism of Section 4. Let ρ be an irreducible character of GF contained in the
series Es, say. Let w1Ws and X̄(Ws, γ) as in (3.7a). By Proposition 4.4(i), there
exists a unique α ∈ A with maximal possible value for dα such that the average value
polynomial AVδ(1.1)(α, x̄ρ) is non-zero (where q ≡ δ mod 3). By Proposition 4.4(iv),
we also have ∑

g∈CFα

ρ(g) = AVδ(1.1)(α, x̄ρ)(q) 6= 0.

Now let β ∈ A be any element such that the average value of ρ on CFβ is non-zero.
Then, clearly, the corresponding average value polynomial itself is non-zero hence
Proposition 4.4(i) implies that dimCβ = dβ ≤ dα = dimCα with equality only for
α = β. Hence the class Cα is the unipotent support of ρ.
A completely analogous argument shows that also Problem 1.2 has a positive

solution, and Proposition 4.4(iii) proves that we obtain the same class as before. This
proves part (a) in Theorem 1.4.

5.4 The p-parts of character degrees

Let again G be as in the first sentence of this section, with p good. Now we turn
to Theorem 1.4(b), that is, the problem concerning the p-part in the degree of an
irreducible character ρ of GF . We know already by (5.3) that ρ has a unipotent
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support, C say. Now we must show that the p-part in the degree of ρ is qd where d is
the dimension of the variety of Borel subgroups containing a fixed element in C. By
the dimension formula in [3], Theorem 5.10.1, we have d = (2N − dimC)/2 where N
is the number of positive roots in the root system of G.
We can use a similar reasoning as before to reduce to the case where G has a

connected center and is simple modulo its center. Indeed, let G ⊆ G′ be a regular
embedding and ρ′ an irreducible character of G′F whose restriction to GF contains ρ
as a constituent. Then ρ′ also has unipotent support C (see Lemma 5.1). Since the
index of GF in G′F is certainly prime to p, Clifford’s Theorem implies that the degree
of ρ′ is a multiple (coprime to p) of the degree of ρ. So the characters ρ and ρ′ have the
same p-part in their degrees and the dimensions of the unipotent supports are equal.
Hence it is sufficient to consider groups G with a connected center. It is then also
straightforward to check that the constructions in the proof of Lemma 5.2 behave well
with respect to p-parts in character degrees and dimensions of unipotent supports.
(This is certainly the case for the first reduction to groups G with a connected center
and such that the derived group Gder is simply-connected; note that the remaining
constructions just involve taking regular embeddings and direct products.)
Let us now assume that G has a connected center and is simple modulo its center.

We use again the formalism of Section 4. Let q ≡ δ mod 3 and ρ be an irreducible
character of GF contained in the series Es, say. Let X̄(Ws, γ) be the associated
parameter set as in (3.7a), and x̄ = x̄ρ be the element in this set corresponding to ρ.
Let A be as in (4.1) and α0 ∈ A be the unique element such that dα0 = 0 (so that
Cα0 is the class of the trivial element in G). We define

deg(ρ) := AVδ(1.1)(α0, x̄ρ) ∈ Q[t].

Then, by the formula (4.4), the value of deg(ρ) at q is the degree of ρ. Let a = a(x̄) ≥ 0
such that ta is the maximal power of t dividing deg(ρ). We claim that qa is the p-part
in the degree of ρ. Indeed, from the explicit description of the Fourier coefficients in
[13], Chapter 4, and the formulae [13], (4.26.1) and (4.26.3), we deduce that there
exists a positive integer d which is divisible by bad primes only and a monic polynomial
f ∈ Z[t] such that deg(ρ) = (1/d)taf and f ≡ ±1 mod t. This implies our claim since
p is good.
Thus, we have described the p-part in the degree of ρ purely in terms of our

average value polynomials. On the other hand, we know by Proposition 4.4 and the
argument in (5.3) that the unipotent support of ρ is also characterized purely in terms
of the average value polynomials corresponding to our fixed x̄ = x̄ρ. Therefore, it will
be sufficient to prove the following statement.

Given a δ-admissible coset w1W
′ and x̄ ∈ X̄(W ′, γ) let α ∈ A be as in

Proposition 4.4(i). Show that a(x̄) = (2N − dα)/2.

Since this statement only concerns properties of the average value polynomials and
dimensions of unipotent classes we can assume, without loss of generality, that q and
p are large enough so that the results in [16] are applicable. Then the unipotent
support C = Cα of our character ρ can also be characterized in terms of the map

ξ : {irreducible characters of GF } → {F -stable unipotent classes in G}
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defined in [11], (13.4), or [16], (11.1). Indeed, by [16], Theorem 11.2, we have

Cα = ξ(ρ
′) where ρ′ = ±DG(ρ).

The above statement is an immediate consequence of the properties of the map ξ, as
we will now check.
The first step in defining ξ is to associate with ρ′ a so-called special conjugacy

class in G∗ (see [11], (13.2), for the precise definition). This is done as follows. With
the character ρ′ there is associated a family F of representations ofWs, and we let E1
be the unique special representation in the family sign⊗F (cf. [11], (13.1.3)). By the
Springer correspondence, we can associate with E1 the class of a unipotent element
v ∈ CG∗(s). Then the G∗-conjugacy class C′ of the element sv is the desired special
class in G∗. Next, Lusztig [11], (13.3), defines a map Φ from special classes in G∗ to
unipotent classes in G, and we have ξ(ρ′) = Φ(C′). The main property of the map Φ
that we need is that it preserves the dimensions of classes. So we can conclude that

dα = dimCα = dim ξ(ρ
′) = dimΦ(C′) = dimC′,

and it remains to check that a(x̄) = (2N −dimC′)/2. Translating this back using the
dimension formula in [3], Theorem 5.10.1, we see that we must show that a(x̄) equals
the dimension of the variety of Borel subgroups of CG∗(s) containing the unipotent
element v. By [11], (13.1.1), the latter dimension is equal to the integer aE1 associated
with the special representation E1 as in [11], (4.1). So, eventually, we see that we
must show that

aE1 = a(x̄).

Now since ρ′ = ±DG(ρ) and F is the family associated with ρ′, the results in [11],
(8.6), imply that the family associated with ρ is sign ⊗ F . But then the formula in
[11], (4.26.3), just says that a(x̄) = aE1 , and we are done.
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Summary

The paper considers generalities for localization complexes for varieties. Examples of
these complexes are given by the Gersten resolutions in various contexts, in particular
in K-theory and in étale cohomology. The paper gives a general notion of coefficient
systems for such complexes, the so called cycle modules. There are the corresponding
“complexes of cycles with coefficients” and their homology groups, the “Chow groups
with coefficients”. For these some general constructions are developed: proper push-
forward, flat pull-back, spectral sequences for fibrations, homotopy invariance and
intersection theory.
If one specializes the material to the case of Milnor’s K-theory as coefficient

system, one obtains in particular an elementary development of intersections for the
classical Chow groups. This treatment is somewhat different to former approaches.
The main tool is still the deformation to the normal cone. The major difference is
that homotopy invariance is not established alone for the Chow groups, but for the
“cycle complex with coefficients in Milnor’s K-Theory”. This enables one to keep
control in fibered situations. The proof of associativity of intersections is based on a
doubled version of the deformation to the normal cone.

Conventions and Notations

We work over a ground field k and a base schemeB → Spec k. The word scheme means
a localization of a separated scheme of finite type over k. (This includes schemes of
finite type over a field finitely generated over k.) From Section 8 on all schemes are
of finite type over a field. Moreover all schemes and morphisms are defined over B
(with exceptions in Section 14). The letter M stands from Section 3 on for a cycle
module. If not mentioned otherwise, it is defined over B (in Sections 3–5) or over X
(in Sections 7–13).
For x ∈ X we denote by dim(x,X) the dimension of the closure {x} of x in X

and by codim(x,X) the dimension of the localization X(x). The set of points of X of

dimension (resp. codimension) p is denoted by X(p) (resp. X
(p)). We make free use

of some basic facts from commutative algebra and refer for this to (Hartshorne 1977;
Matsumura 1980) and, in particular, to (Fulton 1984, App. A, App. B).
In Sections 6, 8, 9, and 11–13 we use the special notation X p→ Y for certain

maps between the cycle complexes. This is explained in (3.8).
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Introduction

The classical Chow groups CHp(X) of p-dimensional cycles on a variety X may be
defined as the cokernel of the divisor map

∐

x∈X(p+1)
κ(x)∗

d−→
∐

x∈X(p)
Z.

Here X(p) is the set of points of X of dimension p and κ(x) is the residue class field
of x. This paper studies complexes C∗(X;M) of the following type:

· · · d−→
∐

x∈X(p+1)
M
(
κ(x)

) d−→
∐

x∈X(p)
M
(
κ(x)

) d−→
∐

x∈X(p−1)
M
(
κ(x)

) d−→ · · · .

Here M is what we call a cycle module. This is a functor F → M(F ) on fields to
abelian groups equipped with four structural data (the even ones: restriction and
corestriction; the odd ones: multiplication with K1 and residue maps for discrete
valuations). Moreover there is imposed a list of certain rules and axioms. A particular
example of a cycle module is M = K∗, given by Milnor’s (or Quillen’s) K-ring

K∗F = Z⊕ F ∗ ⊕K2F ⊕ · · · .

Other examples are provided by Galois cohomology, specifically

M(F ) =
∐

n≥0
Hn(F ;D ⊗ µ⊗nr )

with D a Galois module over a ground field k with char k prime to r.
The complex C∗(X;M) is called the chain complex of cycles on X and its ho-

mology groups Ap(X;M) are called the Chow groups of X (with coefficients in M).
The Chow groups Ap(X;M) enclose various familiar objects. The classical Chow

group CHp(X) is a direct summand of Ap(X;K∗). The E2-terms of the local-
global spectral sequences in étale cohomology and in Quillen’s K-theory are of type
Ap(X;M). For proper smooth X of dimension d the group Ad(X;M) is a birational
invariant—the “M -valued” analogue of unramified Galois cohomology.

The paper develops some basic constructions for the cycle complexes
C∗(X;M) and the Chow groups A∗(X;M) for schemes X of finite type over a field.
There are proper push-forward, flat pull-back and homotopy invariance. Moreover
intersection theory is available: for regular imbeddings and morphisms to smooth
varieties there is a pull-back map. Finally for a morphism π: X → Z there is a
spectral sequence

E2p,q = Ap(Z;Aq[π;M ]) =⇒ Ap+q(X;M).

Here the Aq[π;M ] are certain cycle modules obtained from taking homology in the
fibers. All the mentioned functorial behavior extends for appropriate fiber diagrams
to the cycle modules Aq[π;M ] and the spectral sequences.
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The constructions are carried out on complex level in a pointwise manner.
The treatment has some parallels to a standard development of homology of CW-
complexes. This analogy should not be taken too serious, but may give a first impres-
sion about the sort of technicalities. In this picture our “cells” are just all points of
the variety in question. The patching data for the “cells” are given by the (geomet-
ric) valuations on the residue class field of one point having center in another point.
The appropriate local coefficient systems are the cycle modules. However, the nature
of these coefficient systems is more complicated than in topology. First of all, their
ground ring is provided by Milnor’s K-theory of fields. Moreover, besides the usual
functorial behavior, there is need for transfer maps (basically because one has to deal
with non algebraically closed fields) and there are residue maps for valuations (to give
passage from one point of a variety to its specializations).

The material of this paper grew out from considerations concerning the bijectivity
of the norm residue homomorphism and Hilbert’s Satz 90 for Milnor’s Kn. There the
computation of the Chow groups of certain norm varieties and quadrics plays an
important role. As a general technique (see also Karpenko and Merkurjev 1991) we
used a spectral sequence for morphisms π: X → Z relating the Chow groups of the
total space to something like “the Chow groups of the base with coefficients in the
Chow groups of the fibers”; moreover these spectral sequences should be compatible
with intersection operations. The goal of the paper was to present an appropriate
framework in a fairly direct manner.

With the remarks following, we have tried to draw the line of development of
the paper. In the discussion of intersection theory, we restrict for simplicity to typi-
cal situations and with Milnor’s K-theory as coefficient system, although the actual
treatment is more general.

Even if one is interested in classical Chow groups alone, one is led to consider
some more general versions of Chow groups. To start with a simple situation, let
Y ⊂ X be a closed subvariety. Then there is an exact sequence

CHp(Y )→ CHp(X)→ CHp(X \ Y )→ 0.

For concrete computations as well as for general considerations, there appears the
problem to extend this sequence to the left in a reasonable way by a sort of higher
variants of Chow groups. Similarly, let π: X → Z be a morphism of varieties and
try to relate the Chow groups of X with the Chow groups of Z and of the fibers.
When working within the classical Chow groups alone, there will be no good answer
in general.

In this paper the approach to these problems is provided by Milnor’s K-theory.
For a variety X one forms for n ∈ Z the complex♦ C∗(X;n) with

Cp(X;n) =
∐

x∈X(p)
Kn+pκ(x)

♦ The complex of cycles with coefficients in Milnor’s K-theory to be considered later splits up as
a direct sum C∗(X;K∗) =

∐
n
C∗(X;n) according to the grading of Milnor’s K-ring.
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where KnF is Milnor’s n-th K-group of a field F . The homology groups of the
complex C∗(X;n) are denoted by Ap(X;n). For n = −p ≤ 0 it ends up with

· · · d−→
∐

x∈X(p+2)
K2κ(x)

d−→
∐

x∈X(p+1)
K1κ(x)

d−→
∐

x∈X(p)
K0κ(x) −→ 0

and one has CHp(X) = Ap(X;−p).
Then for a subvariety Y ⊂ X there is a long exact sequence

· · · → Ap+1(X \ Y ;n)→ Ap(Y ;n)→ Ap(X;n)→ Ap(X \ Y ;n)→ · · · .

Moreover let π: X → Z be a morphism. The filtration of the set X(p) given by
the dimension of the image gives rise to a filtration of the complex C∗(X;n). The
corresponding E1-spectral sequence looks like

(1) E1p,q =
∐

z∈Z(p)
Aq(Xz;n+ p) =⇒ Ap+q(X;n)

with Xz = X ×Z Specκ(z).
A major problem in intersection theory is to produce for a regular imbedding

f : X ′ → X a pull-back map f
q

on the Chow groups having the geometric meaning of
intersecting cycles on X with X ′. (For a general account on intersections we refer to
Fulton 1984)
These maps are in the actual context of type

f
q

: Ap(X;n)→ Ap−d(X
′;n+ d)

with d = codim(f).
In the paper the maps f

q

are defined by first constructing homomorphisms of
complexes

I(f): C∗(X;n)→ C∗−d(X
′;n+ d)

and then passing to homology. In a fibered situation (that is f lies over some map
Z ′ → Z with appropriate smoothness conditions), the maps I(f) can be chosen
to respect the filtrations, thereby inducing homomorphisms on the corresponding
spectral sequences.
As the reader might guess, the maps I(f) cannot be defined canonically in

terms of f . Namely, I(f) gives in particular a lift of the classical pull-back map
f
q

: CHp(X) → CHp−d(X ′) to the cycle groups. But if a cycle W on X does not
meet X ′ properly, there is in general no way to define W ∩X ′ by a canonical cycle.
It may be surprising that one can handle with such pull-back maps I(f) on

complex level in a reasonable way. Therefore we will discuss here the nature of these
maps in some detail.
When working with the complexes C∗(X;n), it turns out that the necessary

constructions can be described in terms of four basic operations. These, called the
“four basic maps”, are of the following type.
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For a morphism f : X → Y , there is a push-forward map

f∗: Cp(X;n)→ Cp(Y ;n).

For a morphism g: X → Y with fiber dimension s, there is a pull-back map

g∗: Cp(Y ;n)→ Cp+s(X;n− s).

Moreover there is “multiplication with K1”: for a global unit a on X, there is a
map

{a}: Cp(X;n)→ Cp(X;n+ 1)

given by pointwise multiplication with a(x) ∈ κ(x)∗ = K1κ(x).
Finally for a closed immersion there is a canonical “boundary map”

∂: Cp(X \ Y ;n)→ Cp−1(Y ;n).

All these maps are defined in a pointwise manner. If f is proper and g is flat, the
maps f∗ and g∗ commute with the differentials of the complexes. One uses f∗ also
for open immersions f and g∗ also for closed immersions g (then f∗ and g∗ are just
the corresponding projections and don’t commute with the differentials). The maps
{a} and ∂ anti-commute with the differentials.
In fact, the four basic maps are enough to define intersections on complex level:

by their very definition, the maps I(f) are sums of compositions of the four basic
maps. For the construction of the I(f), the first major tool is the deformation to the
normal cone. This yields a canonical “deformation map”

C∗(X;n)→ C∗(N ;n)

where N is the normal cone of f . The next step is to define for a vector bundle
π: V → X of dimension d a homotopy inverse

C∗(V ;n)→ C∗−d(X;n+ d)

to the pull-back map π∗. It is at this place where one needs some extra noncanonical
choices. The choice to be made is (at most) that of what we call a “coordination”
of π. This is a stratification of X together with bundle trivializations on the strata.
In the end there is a canonical procedure which starts from the choice of a co-

ordination of the normal bundle of f and yields a map I(f) as desired, defined in
terms of the four basic maps. Different choices lead to homotopic maps I(f), with
the homotopies again expressible in terms of the four basic maps. In a fibered situ-
ation, one may arrange things to end up with filtration preserving maps I(f). Once
having made the necessary choices, the construction is quite functorial. For example,
it is compatible with respect to base change and localization. In order to establish
functoriality (namely I(f ◦ f ′) should be homotopic to I(f ′)◦ I(f), if necessary under
a filtration preserving homotopy), we use a kind of doubled deformation space.
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The viewpoint of the paper is to put the four basic maps in the center. In
particular the maps {a}, ∂ are treated as if they were a kind of morphisms in their own
right, of equal rank as the more familiar push-forward and pull-back maps. This has
at least technical advantages. For example, in order to check various compatibilities
concerning the maps f

q

, it is very convenient to reduce to a separate treatment of the
four basic maps.
The reader may ask why we insist to stay on complex level although one is

interested mainly in the Chow groups. Over some range this is quite natural from the
material. However, the proof of homotopy invariance with respect to vector bundles
is much simpler for the Chow groups (using the spectral sequences) than for the cycle
complexes themselves (where one has to construct explicit homotopy inverses).
The major motive for keeping the complex level throughout was to keep control

on the filtrations in fibered situations.
Besides this, we hope that our method is of some interest concerning questions

for correspondences between arbitrary varieties. To give an example let f : X̃ → X
be a proper birational morphism with X smooth. Then there are pull-back maps

I(f): C∗(X;n)→ C∗(X̃;n)

similar to the I(f) above. The I(f) are unique up to homotopy and have the standard
push-forward map f∗ as left inverse. In particular, I(f) identifies C∗(X;n) as a
subcomplex of C∗(X̃;n). In the case of a blow up in a point x, the choice to be made
in the construction of I(f) is (at most) that of a system of parameters around x.
We think of the maps I(f) as a sort of generalized correspondences. One can make

this more precise in a further development which we call bivariant theory of cycles.
There the four basic maps find their place as morphisms of varieties in an appropriate
differential category and (the homotopy classes of) the maps I(f) appear rather as
morphisms in a category of varieties admitting products, than just as homomorphisms
of complexes (as in this paper).

The motive of introducing a general notion of coefficient systems for cycles ap-
pears when looking at the spectral sequence (1). Its E2-terms are the homology
groups of complexes of type

· · · d−→
∐

z∈Z(p)
Aq(Xz;n+ 1)

d−→
∐

z∈Z(p−1)
Aq(Xz ;n)

d−→ · · · .

We interpret this by saying that the collection of functors (with n ∈ Z)
Aq[π;n]: F 7→ Aq(X ×Z SpecF ;n),

defined on fields F over Z, appear as new coefficient systems. This process of creating
coefficient systems may in fact be iterated.
Therefore it seems convenient to have available some appropriate general notion

of coefficient systems. The class considered in this paper is provided by the notion
of what we call cycle modules. Its definition is formal and somewhat ad hoc. The
important thing for us is, that it contains standard functors like Milnor’s (or Quillen’s)
K-theory and Galois cohomology (as indicated above), that it is closed under processes
like M → Aq[π;M ] and that it allows intersection theory. Anyway it might be of at
least heuristic interest, that many general constructions (intersections, also the proof
of acyclicity for smooth local rings) can be based on pure formal properties—at least
if one starts from Milnor’s K-theory of fields.

Documenta Mathematica 1 (1996) 319–393



326 Markus Rost

Milnor’s K-theory is the fundamental base of the whole paper. This was at first
suggested by our original problem, Hilbert’s Satz 90 for Milnor’s Kn. Besides this,
Milnor’s K-theory seems to give the minimal framework needed in order to express
the considerations on intersections discussed above. By the way, it seems likely that
the general method works also with Milnor’s K-theory replaced by the Witt ring of
quadratic forms of fields of characteristic different from 2.

Milnor’s K-theory has a simple definition in terms of generators and relations.
Despite this fact, it is by no means a simple and well understood functor. Already
to define the norm homomorphisms takes some effort. An even more serious and in
general an unsolved problem is for example the computation of the torsion in Mil-
nor’s K-groups. These problems are related with Hilbert’s Satz 90 (Merkurjev and
Suslin 1982, 1986) and are part of a broader picture (Beilinson conjectures, motivic co-
homology). In this context there appear other and more general higher versions of the
classical Chow groups than the groups Ap(X;n) based on Milnor’s K-theory, namely
motivic cohomology (Bloch’s higher Chow groups and Suslin’s singular homology) and
also K-cohomology (Bloch 1986; Quillen 1973; Suslin and Voevodsky 1996). Milnor’s
K-theory forms a central part of motivic cohomology and of Quillen’s K-theory. In
fact, in the smooth case there are natural maps from the motivic cohomology of X
to the groups A∗(X;n) and from A∗(X;n) to the K-cohomology of X, both of which
are isomorphisms in some low degrees. On the other hand, motivic cohomology and
Quillen’s K-theory give rise to cycle modules in our sense. (In the case of Quillen’s
K-theory this is made more precise in Sections 1, 2 and 5). These functors are def-
initely necessary for a full understanding of Milnor’s K-theory. For the purpose of
this paper however, it turned out to be enough to rely on elementary properties of
Milnor’s K-theory.

The paper may be roughly divided in four parts. In Sections 1–2 the notion
of cycle modules is defined. Here we have lent some weight to a discussion of the
axioms. In Sections 3–5 the cycle complexes, the Chow groups and their basic func-
torial behavior are established; Section 6 is a side remark concerning the acyclicity
of Gersten-type resolutions. Sections 7–8 treat the spectral sequences. Sections 9–14
are concerned with intersection theory.

I am indebted to Inge Meier for typesetting a first version of this paper.
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1. Cycle Premodules

Cycle premodules are roughly said functors on fields which have transfer, are modules
over Milnor’s K-theory, are equipped with residue maps for discrete valuations and
satisfy the “usual rules”. The definition is quite formal. It forms the local dimension 1
part of the notion of cycle modules. A major difference to cycle modules is that cycle
premodules do not have to obey laws involving an infinite number of valuations like
the sum formula for P1.
Cycle premodules are defined by a list of data and rules. These are just usual

properties, quite familiar to standard examples. Equivalently, one may define cycle
premodules as the additive functors on a certain category which has an explicit de-
scription in terms of Milnor’s K-theory and valuations (see Remark 1.10). This point
of view is perhaps more satisfying. It tells that our list of data and rules is in a sense
a complete list. However, it would take some effort to establish the composition rule
in the category and we omit therefore a detailed discussion. Moreover, in order to
establish certain functors as cycle premodules, it is more convenient to refer to the
explicit lists of properties.
The viewpoint of the four basic maps mentioned in the introduction would at

first lead to functors F → M(F ), such that each M(F ) is a module over the tensor
algebra TF ∗. However, the existence of norm maps and the homotopy property leads
one to pass to modules over Milnor’s K-ring (see Remark 2.7).

We first recall basic facts from Milnor’s K-theory. Let F be a field. By definition
Milnor’s K-ring (Milnor 1970) of F is♦

K∗F = TF
∗/J

where F ∗ is the multiplicative group of F , TF ∗ is the tensor algebra of F ∗ as abelian
group and J is the two-sided ideal of TF ∗ generated by the set

{ a⊗ b | a, b ∈ F ∗, a+ b = 1 }.

The standard grading on TF ∗ induces a grading

K∗F =
∐

n≥0
KnF .

KnF is the n-th Milnor’s K-group of F . By definition K0F = Z and K1F = F ∗.
The elements of KnF represented by tensors a1 ⊗ · · · ⊗ an, ai ∈ F ∗, are called
symbols and denoted by {a1, . . . , an}. The group law in KnF is written additively,
e.g., {ab} = {a}+ {b}. There are the rules {a,−a} = 0 and {a, b}+ {b, a} = 0, see
(Milnor 1970). In particular, K∗F is an anti-commutative ring with respect to the
natural Z/2-grading.
For a homomorphism of fields ϕ: F → E there is the ring homomorphism

ϕ∗: K∗F → K∗E,

ϕ∗({a1, . . . , an}) = {ϕ(a1), . . . , ϕ(an)}.
♦ In the literature one often uses the notation KM∗ F for Milnor’s K-ring, while K∗F stands for

Quillen’s K-ring.
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If ϕ is finite, there is the norm homomorphism

ϕ∗: K∗E → K∗F.

ϕ∗ preserves the Z-grading. Its component Z→ Z in degree 0 is multiplication with
degϕ = [E :F ]. In degree 1 it is the usual norm map Nϕ: E

∗ → F ∗ for the finite field
extensions. ϕ∗ has been defined by Bass and Tate (1972) with respect to a choice of
generators of E over F ; it is in fact independent of such a choice (Kato 1980). For a
characterization of ϕ∗ see the remark after Theorem 1.4.
For a valuation v: F ∗ → Z we denote by Ov, mv, κ(v) its ring, maximal ideal and

residue class field, respectively. For nontrivial v there is the residue homomorphism
∂v: K∗F → K∗κ(v), see (Milnor 1970). ∂v is of degree −1. It has the characterizing
properties

∂v({π, u1, . . . , un}) = {ū1, . . . , ūn},
∂v({u1, . . . , un}) = 0

for a prime π of v and for v-units ui with residue classes ūi ∈ κ(v)∗. Define

sπv : K∗F → K∗κ(v),

sπv (x) = ∂v({−π} · x).

sπv is a ring homomorphism and is characterized by

sπv ({u1, . . . , un}) = {ū1, . . . , ūn},
sπv ({π, u1, . . . , un}) = 0.

Rules between the maps ϕ∗, ϕ∗, ∂v and the multiplicative structure of K∗ are com-
prised below in Theorem 1.4.

Let B be a scheme over a field k (recall our conventions). In the following we
mean by a field over B a field F together with a morphism SpecF → B such that F
is finitely generated over k. By a valuation over B we mean a discrete valuation v
of rank 1 together with a morphism SpecOv → B such that v is of geometric type
over k. The latter means that Ov is the localization of an integral domain of finite
type over k in a regular point of codimension 1. Alternatively, valuations of geometric
type may be characterized by: k ⊂ Ov, the quotient field F and the residue class field
κ(v) are finitely generated over k and tr.deg(F |k) = tr.deg(κ(v)|k) + 1.
This geometric setting is convenient for our later purposes. We impose its re-

strictive conditions from the beginning in order to keep things straight. For some
purposes one may consider also arbitrary fields and valuations (discrete, of rank 1
and eventually not equicharacteristic) over an arbitrary scheme B.

In the following, the letters ϕ, ψ stand for homomorphisms of fields over B and
all maps between various M(F ), M(E), . . . are understood as homomorphisms of
graded abelian groups.

(1.1) Definition. Let F(B) be the class of fields over B. A cycle premodule M
consists of an object function M : F(B) → A to the class of abelian groups together
with a Z/2-grading M =M0⊕M1 or a Z-grading M =

∐
nMn and with the following

data D1–D4 and rules R1a–R3e.
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D1: For each ϕ: F → E there is ϕ∗: M(F )→M(E) of degree 0.
D2: For each finite ϕ: F → E there is ϕ∗: M(E)→M(F ) of degree 0.
D3: For each F the group M(F ) is equipped with a left K∗F -module structure

denoted by x · ρ for x ∈ K∗F and ρ ∈ M(F ). The product respects the
gradings: KnF ·Mm(F ) ⊂Mn+m(F ).

D4: For a valuation v on F there is ∂v: M(F )→M
(
κ(v)

)
of degree −1.

For a prime π of v on F we put

sπv : M(F )→M
(
κ(v)

)
,

sπv (ρ) = ∂v({−π} · ρ).

R1a: For ϕ: F → E, ψ: E → L one has (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.
R1b: For finite ϕ: F → E, ψ: E → L one has (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.
R1c: Let ϕ: F → E, ψ: F → L with ϕ finite. Put R = L ⊗F E. For p ∈ SpecR

let ϕp: L → R/p, ψp: E → R/p be the natural maps. Moreover let lp be the
length of the localized ring R(p). Then

ψ∗ ◦ ϕ∗ =
∑

p

lp · (ϕp)∗ ◦ (ψp)∗.

R2: For ϕ: F → E, x ∈ K∗F , y ∈ K∗E, ρ ∈ M(F ), µ ∈ M(E) one has (with ϕ
finite in the projection formulae R2b and R2c):

R2a: ϕ∗(x · ρ) = ϕ∗(x) · ϕ∗(ρ),
R2b: ϕ∗

(
ϕ∗(x) · µ

)
= x · ϕ∗(µ),

R2c: ϕ∗
(
y · ϕ∗(ρ)

)
= ϕ∗(y) · ρ.

R3a: Let ϕ: E → F and let v be a valuation on F which restricts to a nontrivial
valuation w on E with ramification index e. Let ϕ̄: κ(w)→ κ(v) be the induced
map. Then

∂v ◦ ϕ∗ = e · ϕ̄∗ ◦ ∂w.
R3b: Let ϕ: F → E be finite and let v be a valuation on F . For the extensions w

of v to E let ϕw: κ(v)→ κ(w) be the induced maps. Then

∂v ◦ ϕ∗ =
∑

w

ϕ∗w ◦ ∂w.

R3c: Let ϕ: E → F and let v be a valuation on F which is trivial on E. Then

∂v ◦ ϕ∗ = 0.

R3d: Let ϕ, v be as in R3c, let ϕ̄: E → κ(v) be the induced map and let π be a
prime of v. Then

sπv ◦ ϕ∗ = ϕ̄∗.
R3e: For a valuation v on F , a v-unit u and ρ ∈M(F ) one has

∂v({u} · ρ) = −{ū} · ∂v(ρ).

�
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The maps ϕ∗, ϕ∗ are called the restriction and corestriction homomorphisms, respec-
tively. We use the notations ϕ∗ = rE|F , ϕ

∗ = cE|F if there is no ambiguity.

Note that R2c with y = 1 ∈ K0E gives
R2d: For finite ϕ: F → E one has

ϕ∗ ◦ ϕ∗ = (degϕ) · id.
Moreover R1c implies

R2e: For finite totally inseparable ϕ: F → E one has

ϕ∗ ◦ ϕ∗ = (degϕ) · id.
We consider M(F ) also as a right K∗F -module via

ρ · x = (−1)nmx · ρ
for x ∈ KnF and ρ ∈Mm(F ).

The maps ∂v are called the residue homomorphisms and the maps s
π
v are called the

specialization homomorphisms. It is easy to check that R3e implies

R3f: For a valuation v on F , x ∈ KnF , ρ ∈M(F ) and a prime π of v one has
∂v(x · ρ) = ∂v(x) · sπv (ρ) + (−1)nsπv (x) · ∂v(ρ) + {−1} · ∂v(x) · ∂v(ρ),
sπv (x · ρ) = sπv (x) · sπv (ρ).

If π′ is another prime and u is the v-unit with π′ = πu, then

sπ
′

v (x) = s
π
v (x) − {ū} · ∂(x).

From this and the rule R3c it follows in particular that the rule R3d holds for every
prime π.

More remarks concerning these formulae and the residue homomorphisms in general
are given below.

All relevant cycle premodules M known to us are Z-graded with Mn = 0 for
n < 0. Within the general theory however there is need only for a Z/2-grading and
we will understand this case if not mentioned otherwise.
A morphism f : B′ → B defines a transformation F(B′)→ F(B) and the restric-

tion of a cycle premodule M over B to F(B′) is a cycle premodule over B′. It will
be sometimes denoted by f∗M but mostly by M as well. If B = SpecR is affine, we
call a cycle premodule over B a cycle premodule over R. If R is a field, we speak of
a constant cycle premodule. The reference to the base B will be often dropped.

(1.2) Definition. A pairing M ×M ′ →M ′′ of cycle premodules over B is given by
bilinear maps for each F in F(B)

M(F )×M ′(F )→M ′′(F ),

(ρ, µ) 7→ ρ · µ
which respect the gradings and which have the properties P1–P3 stated below.
A ring structure on a cycle premodule M is a pairing M×M →M which induces

on each M(F ) an associative and anti-commutative ring structure.
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P1: For x ∈ K∗F , ρ ∈M(F ), µ ∈M ′(F ) one has
P1a: (x · ρ) · µ = x · (ρ · µ),
P1b: (ρ · x) · µ = ρ · (x · µ).

P2: For ϕ: F → E, η ∈M(F ), ν ∈M(E), ρ ∈M ′(F ), µ ∈M ′(E) one has (with ϕ
finite in P2b, P2c)

P2a: ϕ∗(η · ρ) = ϕ∗(η) · ϕ∗(ρ),
P2b: ϕ∗

(
ϕ∗(η) · µ

)
= η · ϕ∗(µ),

P2c: ϕ∗
(
ν · ϕ∗(ρ)

)
= ϕ∗(ν) · ρ.

P3: For a valuation v on F , η ∈Mn(F ), ρ ∈M ′(F ) and a prime π of v one has

∂v(η · ρ) = ∂v(η) · sπv (ρ) + (−1)nsπv (η) · ∂v(ρ) + {−1} · ∂v(η) · ∂v(ρ).

�

Note that P3 implies

sπv (η · ρ) = sπv (η) · sπv (ρ).

(1.3) Definition. A homomorphism ω: M →M ′ of cycle premodules over B of even
resp. odd type is given by homomorphisms

ωF : M(F )→M ′(F )

which are even resp. odd and which satisfy (with the signs corresponding to even resp.
odd type)

(1) ϕ∗ ◦ ωF = ωE ◦ ϕ∗,
(2) ϕ∗ ◦ ωE = ωF ◦ ϕ∗,
(3) {a} · ωF (ρ) = ±ωF ({a} · ρ) ,
(4) ∂v ◦ ωF = ±ωκ(v) ◦ ∂v.

A unit a on B provides a simple example of a homomorphism of odd type, namely
{a}: M →M given by {a}F (ρ) = {aF} · ρ where aF ∈ F ∗ is the restriction of a.
The cycle premodules over B together with the notion of homomorphism of

Definition 1.3 form an (Z/2-graded) abelian category.

(1.4) Theorem. Milnor’s K-theory K∗ together with the data

ϕ∗, ϕ∗, multiplication, ∂v

is a Z-graded cycle premodule over any field k. With its multiplication, K∗ is a cycle
premodule with ring structure. �

This statement is a compact form of results in (Bass and Tate 1972; Kato 1980;
Milnor 1970); we omit a detailed deduction.

Documenta Mathematica 1 (1996) 319–393



332 Markus Rost

Theorem 1.4 holds also in the setting of arbitrary fields and valuations (discrete
of rank 1 and with a restriction in R3b, see Remark 1.8 below).
Given the rings K∗F for each F in F(Spec k), the maps ϕ∗, ϕ∗ and ∂v are

uniquely determined by R1b, R1c, P2, P3 and

(1) ϕ∗(1) = 1,
(2) ϕ∗({a}) = {ϕ(a)} ,
(3) ϕ∗(1) = degϕ · 1,
(4) ϕ∗({a}) =

{
N
(
ϕ(a)

)}
,

(5) ∂v(1) = 0,
(6) ∂v({a}) = v(a),
(7) ∂v

(
{a, b}

)
=
{
(−1)v(a)v(b)bv(a)a−v(b) mod mv

}
.

Here v denotes a normalized valuation: v(π) = 1.
This statement is trivial for the maps ϕ∗ and ∂v; for the uniqueness of the maps ϕ∗

see in particular (Bass and Tate 1972, p. 40).

The multiplication maps of the K∗F -module structures onM(F ) for each F give
rise to a pairing of cycle premodules

K∗ ×M →M .

Here the axioms P1, P2, and P3 follow from D3, R2, and R3f.

In order to establish a cycle premodule it is convenient to use the following
reduction.

(1.5) Lemma. For the validity of R3d it suffices (under presence of the other rules
of Definition 1.1) to require R3d for the case E = κ(v).

Proof : By R1a the rule R3d holds for E if it holds for some extension E′ of E with
E′ ⊂ Ov. Moreover by R3a we may replace Ov by any unramified extension O′v with
the same residue class field (we don’t want to pass to the henselization limO′v, since
our fields should be finitely generated over k). Now by lifting a transcendence base of
κ(v) over E to Ov we may assume that κ(v) is finite over E. Moreover we may assume
that E is algebraically closed in any O′v as above. Then κ(v) is totally inseparable
over E. Suppose p = charF > 0. We argue by induction on [κ(v) :E]. Let a ∈ E∗
such that E1 = E(

p
√
a) is contained in κ(v) but not in any O′v. Then the extension v1

of v to F1 = F (p
√
a) has ramification index p, has the same residue class field and

[κ(v1) :E1] < [κ(v) :E]. Using R2c, R3b, R3c and R3e it is now easy to see that R3d
holds for the pair (v,E) if it holds for the pair (v1, E1) (use the fact that the norm of
a prime for v1 is a prime for v). �

The rest of this section will not be used later within the general theory. However
the following remarks may be of at least heuristic interest and we will refer to them
partially in later side-remarks.

(1.6) Remark. There is the following point of view concerning R3f. See also (Bass
and Tate 1972; Milnor 1970, remark at the end of p. 323).
For a valuation v: F ∗ → Z let

K∗(v) = K∗F
/
{1 +mv} ·K∗F .
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Consider the ring homomorphisms

p̃: K∗F → K∗(v),

i: K∗κ(v)→ K∗(v)

given by projection resp. by the formula

i({ū1, . . . , ūn}) = p̃({u1, . . . , un})

for v-units ui. There is an exact sequence

0 −→ K∗κ(v)
i−→ K∗(v)

∂−→ K∗κ(v) −→ 0

with ∂v = ∂ ◦ p̃. Any prime π gives rise to a section y 7→ p̃({π}) · i(y) of ∂.
We put

M(v) = K∗(v)⊗K∗κ(v)M
(
κ(v)

)
.

Then there is an exact sequence

0 −→M
(
κ(v)

) i−→M(v)
∂−→M

(
κ(v)

)
−→ 0,

and the splittings above give for every π a decomposition of K∗κ(v)-modules

M(v) =M
(
κ(v)

)
⊕M

(
κ(v)

)
.

We define

p: M(F )→M(v),

p(ρ) = 1⊗ sπv (ρ) + p̃({π})⊗ ∂v(ρ).

Note that p is independent of the choice of π. One has ∂v = (∂ ⊗ 1) ◦ p.
Now R3f may be reformulated by saying that p is a module homomorphism over

the ring homomorphism p̃. Similarly one may understand P3 via pairings

M(v)⊗K∗(v)M ′(v)→M ′′(v).

(1.7) Remark. A particular consequence of R3e is the fact that the subgroup

{1 +mv} ·M(F )

is killed whenever one passes to M
(
κ(v)

)
. This seems to be a reasonable condition

from a geometric point of view. However note that the continuous Steinberg symbol
K2Q → Z/2 corresponding to the 2-adic valuation on Q (Milnor 1971, § 11) maps
{5, 2} to the nontrivial element.

(1.8) Remark. If one wants to consider arbitrary valuations (discrete and of rank 1),
one has to require in R3b that the integral closure of Ov in E is finite over Ov. This
condition holds for geometric and for complete valuation rings, see (Serre 1968). By
looking at completions and using R1c and R3a one may then derive for arbitrary
valuations a formula

∂v ◦ ϕ∗ =
∑

w

lw · ϕ∗w ◦ ∂w

with certain integers lw. This remark applies in particular to Milnor’s K-theory.
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(1.9) Lemma. In the situation of R3a let π be a prime of v, let τ be a prime of w
and let u be the v-unit with πe = τu. Then

sπv ◦ ϕ∗ = ϕ̄∗ ◦ sτw − {ū} · ϕ̄∗ ◦ ∂w.

Proof : First note that the validity of the statement does not depend on the choices
of π and τ . Moreover, if E ⊂ K ⊂ F is an intermediate field, we may restrict to
consider the extensions K|E and F |K.
If F |E is unramified (e = 1), we may take π = τ and the claim follows from R2a

and R3a.
After lifting a transcendence base of κ(v) over κ(w) to Ov we may therefore

assume that F is finite over E.
If e = [F :E] (case of total ramification, see Serre 1968, Chap. I, § 6), we may

take τ = −Nϕ(−π); then ū = 1 and the claim follows from R2c and R3b. We have
now already covered totally inseparable extensions.
For a separable finite extension F |E, let L|E be a Galois extension containing F ,

fix some extension of v to L and let D(L|F ) ⊂ D(L|E) ⊂ Gal(L|E) be the decompo-
sition groups.
Then F ′ = LD(L|F ) is unramified over F with the same residue class field; by R3a

we are reduced to consider the extension F ′|E. The field E′ = LD(L|E) is contained
in F ′; since it is unramified over E, we know the claim for E′|E and we are reduced
to consider F ′|E′. Let K = LU where

U = { g ∈ Gal(L|E′) | g acts trivially on κ(v) }

is the inertia group. Then K|E′ is unramified and F ′|K is totally ramified. �

(1.10) Remark. The rules and Lemma 1.9 show that every composite of maps be-
tween various M(F ) given by the data D1–D4 is a sum of composites of the form

ψ∗ ◦ (x · ) ◦ ϕ∗ ◦ ∂vr ◦ · · · ◦ ∂v1 ◦ (y · ).

This kind of normal form for composites can be made more precise as follows. There
is a category F̃ with objects the class of arbitrary fields and with morphism groups

Hom(F,E) =
∐

v

∐

H

K∗H⊗̂K∗κ(v)K∗(v).

Here v runs through the valuations on F with value groups Zr with lexicographical
order and with r ≥ 0. The groups K∗(v) are defined exactly as above for r = 1.
Moreover H runs through those composites of κ(v) and E which are finite over E
(and ⊗̂ denotes the graded tensor product).
Restricting to the class F(B) and to geometric higher rank valuations one ob-

tains a category F̃(B). The cycle premodules over B may be then characterized as
the additive functors on F̃(B). In this alternative definition all the rules including
Lemma 1.9 are hidden in the composition law of F̃ .
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(1.11) Remark. — Galois cohomology as cycle premodule. Any torsion étale sheaf
on B (with the torsion prime to chark) gives rise via Galois cohomology to a cycle
premodule over B. For simplicity we restrict here to the case B = Spec k with k a
field and to finite Galois modules over k. For generalities of Galois cohomology we
refer to (Serre 1968, 1994; Shatz 1972).
Let k̄ be a separable closure of k, let r be prime to chark, let µr ⊂ k̄∗ be the group

of r-th roots of unity and let D be a finite continous Gal(k̄|k)-module of exponent r.
For a field F over k let F̄ be a separable closure containing k̄. Then µr and D are
Gal(F̄ |F )-modules via Gal(F̄ |F )→ Gal(k̄|k). Put

H̃∗(F ;D) =
∐

n≥0
Hn(F ;D ⊗ µ⊗nr ).

Here we use for a finite Galois module C the notation

Hn(F ;C) = Hn(Gal(F̄ |F );C) = lim
−→

Hn(Gal(L|F );C)

where L runs through the finite Galois subextensions of F̄ |F such that Gal(F̄ |L) acts
trivially on C.

H̃∗(F ;Z/r) is a ring and H̃∗(F ;D) is a module over H̃∗(F ;Z/r) via cup products.

The object function H∗[D] on F(k) given by H∗[D](F ) = H̃∗(F ;D) is in a
natural way a Z-graded cycle premodule over k. This statement is just a collection
of well-known properties of Galois cohomology. In the following we restrict ourselves
to a description of the data D1–D4. The rules follow from standard properties of the
cohomology of finite groups and from standard ramification theory.
D1 and D2: For ϕ: F → E let ϕ̄: F̄ → Ē be some extension over k̄ and let

ϕ̃: Gal(Ē|E) → Gal(F̄ |F ) be the induced map. Define ϕ∗ as the usual restriction
homomorphism induced from ϕ̃. For finite ϕ define ϕ∗ as the usual transfer homo-
morphism induced from ϕ̃ times the degree of inseparability [E :E ∩ ϕ̄(F̄ )] (cf. Serre
1992).

D3: The K∗F -module structure on H̃∗(F ;D) is given by cup products and the
norm residue homomorphism

hF : K∗F/rK∗F → H̃∗(F ;Z/r).

hF is the Z-graded ring homomorphism which in degree 1 is given by the Kummer
isomorphism F ∗/(F ∗)r → H1(F ;µr). For the rule hF ({a})˘

hF ({1−a}) = 0 see for
example (Tate 1976) or Remark 2.7.
D4: Let E be the completion of F with respect to v. Then there is a natural

exact sequence

1→ I → Gal(Ē|E)→ Gal(κ̄|κ)→ 1

where I is the inertia group. Put Dn = D ⊗ µ⊗nr and consider the corresponding
Hochschild-Serre spectral sequences

Ep,q2 = Hp(κ;Hq(I;Dn)) =⇒ Hp+q(E;Dn).
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The cohomology of the inertia group I is given by H0(I;Dn) = Dn, H
1(I;Dn) =

Hom(µr, Dn) = Dn−1 and Hq(I;Dn) = 0 for q ≥ 2 (Serre 1968, Chap. IV). Hence
the spectral sequences give rise to homomorphisms

∂̃v: H
n(E;Dn)→ Hn−1(κ;Dn−1).

Composing with Hn(F ;Dn)→ Hn(E;Dn) defines the desired maps
♦

∂v: H
n[D](F )→ Hn−1[D](κ).

(1.12) Remark. — Quillen’s K-theory as cycle premodule. We denote by K ′∗F =∐
nK

′
nF Quillen’s K-ring of a field F . Hereby we understand the definition K

′
nF =

πn+1
(
BQMod(F )

)
of (Quillen 1973) with the product as defined in (Grayson 1978).

(Here Mod(F ) is the category of finite dimensional F -modules. For generalities of
Quillen’s K-theory see also Grayson 1976; Srinivas 1991.)

The object function F → K ′∗F defines a Z-graded cycle premodule with ring
structure over any field k. Its data are given as follows.

D1 and D2: One takes the pull-back map ϕ̄∗ resp. the push-forward map ϕ̄∗ of
(Quillen 1973, § 7) where ϕ̄: SpecE → SpecF is the morphism corresponding to ϕ.
D3: One uses the natural homomorphism ω: K∗F → K ′∗F from Milnor’s to

Quillen’sK-theory. To define ω, one may refer to K ′nF = πn(BGL(F )
+) and the com-

putations π1(BGL(F )
+) = H1(GL(F ),Z) = K1F , π2(BGL(F )

+) = H2(E(F );Z) =
K2F (Matsumoto’s theorem, see Milnor 1971). Another possibility is to define directly
a homomorphism ω1: F

∗ → K ′1F and then to check the rule ω1({a}) ·ω1({1− a}) = 0
using the arguments of Remark 2.7.

D4: One uses the connecting map of the long exact localization sequence for Ov
(Quillen 1973, § 7).
The verification of the rules is omitted. It is a lengthy but straightforward exercise

to deduce them from (Grayson 1978; Quillen 1973).

♦ According to the conventions made for the cup product and the spectral sequence, one may
have different signs in the product rules for the differentials. This affects rule R3e, so if necessary,
one should replace ∂v by an appropriate sign (depending alone on n).

Documenta Mathematica 1 (1996) 319–393



Chow Groups with Coefficients 337

2. Cycle Modules

In this section we define the notion of a cycle module and derive important properties:
the homotopy property for A1 and the sum formula for proper curves. Moreover we
give a simplification of the axioms for a constant cycle module over a perfect field.
The axioms of a cycle module are basic for all further considerations. Therefore we
have included discussions on various related properties to a much larger extent than
is actually needed in the following sections.

Throughout the section,M denotes a cycle premodule over some scheme B (recall
our conventions).
For a scheme X over B we write M(x) = M

(
κ(x)

)
for x ∈ X. The generic

point of an irreducible scheme X is denoted by ξ or ξX . If X is normal, then for
x ∈ X(1) the local ring of X at x is a valuation ring; let ∂x: M(ξX) → M(x) be the
corresponding residue homomorphism.
For x, y ∈ X we define

∂xy : M(x)→M(y)

as follows. Let Z = {x}. If y 6∈ Z(1), then ∂xy = 0. Otherwise let Z̃ → Z be the
normalization and put

(2.1.0) ∂xy =
∑

z|y
cκ(z)|κ(y) ◦ ∂z

with z running through the finitely many points of Z̃ lying over y.

(2.1) Definition. A cycle module M over B is a cycle premodule M over B which
satisfies the following conditions (FD) and (C).

(FD): Finite support of divisors. Let X be a normal scheme and ρ ∈M(ξX).
Then ∂x(ρ) = 0 for all but finitely many x ∈ X(1).

(C): Closedness. Let X be integral and local of dimension 2. Then

0 =
∑

x∈X(1)
∂xx0 ◦ ∂ξx: M(ξX)→M(x0)

where ξX is the generic and x0 is the closed point of X.

Many remarks and definitions of Section 1 are understood accordingly for cycle mod-
ules. For example a homomorphism of cycle modules is a homomorphism of the
underlying cycle premodules.
Of course (C) has sense only under presence of (FD) which guarantees finiteness in

the sum. More generally, note that if (FD) holds, then for anyX, x ∈ X and ρ ∈M(x)
one has ∂xy (ρ) = 0 for all but finitely many y ∈ X.
If X is integral and (FD) holds for X, we put

d = (∂ξx)x∈X(1) : M(ξX) −→
∐

x∈X(1)
M(x).
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In the following, F denotes a field over B and A1F = SpecF [u] is the affine line
over F with function field F (u). Proofs of Proposition 2.2 and Theorem 2.3 are given
after Remark 2.6.

(2.2) Proposition. Let M be a cycle module over B. Then the following properties
(H) and (RC) hold for all fields F over B.

(H): Homotopy property for A1. The sequence

0 −→M(F )
r−→M

(
F (u)

) d−→
∐

x∈A1
F(0)

M(x) −→ 0

is an exact complex (with r = rF (u)|F ).

(RC): Reciprocity for curves. Let X be a proper curve over F . Then

M(ξX)
d−→

∐

x∈X(0)
M(x)

c−→M(F )

is a complex: c ◦ d = 0 (with c =∑ cκ(x)|F ).

The properties (FD), (C), (H), (RC) are all what we need in further sections. Axiom
(FD) enables one to write down the differentials d of the complexes C∗(X;M), axiom
(C) guarantees that d ◦ d = 0, property (H) yields the homotopy invariance of the
Chow groups A∗(X;M) and finally property (RC) is needed to establish proper push-
forward. For the material from Section 3 on the reader may take (H) and (RC) just
as additional axioms of cycle modules and skip without much harm everything after
Remark 2.6 below.
For another example of the fundamental role of axioms like (RC) in formal defi-

nitions of functors on fields see also (Somekawa 1990).
For integral X we put

A0(X;M) = kerd =
⋂

x∈X(1)
ker ∂ξx ⊂ M(ξX).

One may think of A0(X;M) as the group of “unramified M -valued functions” on X.

(2.3) Theorem. Let M be a cycle premodule over a perfect field k. Then M is a
cycle module over k if and only if the following properties (FDL) and (WR) hold for
all fields F over k.

(FDL): Finite support of divisors on the line. Let ρ ∈ M
(
F (u)

)
. Then

∂v(ρ) = 0 for all but finitely many valuations v of F (u) over F .

(WR): Weak reciprocity. Let ∂∞ be the residue map for the valuation of
F (u)|F at infinity. Then

∂∞
(
A0(A1F ;M)

)
= 0.

One implication here is obvious from Proposition 2.2, since trivially (FD) ⇒ (FDL)
and (RC) ⇒ (WR). Conditions (FDL) and (WR) are comparatively weak: they deal
only with the affine line and involve no corestriction maps. For nonconstant cycle
modules (i.e., B is not the spectrum of a field) we don’t know any similar simplification
of the axioms (FD) and (C).
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Further properties of cycle modules are

(Co): Continuity. Let X be smooth and local and let Y → X be the blow up
in the unique closed point x0. Then

A0(X;M) ⊂ A0(Y ;M).

In other words, if v is the valuation corresponding to the exceptional fiber
over x0, then

∂v
(
A0(X;M)

)
= 0.

(E): Evaluation. In the situation of (Co) there is a unique homomorphism

ev: A0(X;M)→M(x0)

(“evaluation at x0”) such that

rκ(v)|κ(x0) ◦ ev = sπv |A0(X;M)

for any prime π of v.

The validity of these two properties will follow from the construction of the pull-back
maps f

q

: A0(X;M) → A0(Z;M) for morphisms f : Z → X in Section 12. Namely,
the inclusion of (Co) is given by f

q

with f : Y → X the blow up. Moreover in (E) one
has ev = f

q

with f : Specκ(x0)→ X the inclusion. See also Remark 2.8 below.

(2.4) Remark. A basic example of a cycle module over any field k is Milnor’s K-
ring K∗. Axiom (FD) follows as for classical divisors. For (H) see (Milnor 1970). The
validity of (RC) for X = P1 is intrinsic to the definition of the norm homomorphisms
in (Bass and Tate 1972). Kato (1986) has used (RC) to prove (C) by passing to
completions.

(2.5) Remark. The cycle premodules H∗[D] and K ′∗ of Remarks 1.11 and 1.12 are
cycle modules. Axioms (FD) and (C) are contained in (Bloch and Ogus 1974) and in
(Quillen 1973, § 7, Sect. 5), respectively.
For H∗[D] one may use here alternatively Theorem 2.3 and Tsen’s Theorem as

follows (see also Serre 1992). (FDL) follows from the fact that every finite exten-
sion of F (u) is ramified only in finitely many places of F (u)|F . One has trivially
(H) ⇒ (WR). If F is separably closed, then (H) follows from Tsen’s Theorem (i.e.,
Hq(F (u);µr) = 0 for q ≥ 2; see for example Shatz 1972) and the Kummer isomor-
phism K1F (u)/r = H1(F (u);µr). To deduce (H) for arbitrary F one applies the
Hochschild-Serre spectral sequence for the extension F̄ (u)|F (u).

(2.6) Remark. Probably the considerations of this section (and of the whole paper)
may be developed in characteristic 6= 2 also for a version of cycle modules which
are modules over the Witt ring of quadratic forms instead over Milnor’s K-ring. A
transferring would be not at all formal because the residue maps for the Witt ring
depend on choices of parameters.
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In the following proofs of Proposition 2.2 and Theorem 2.3 we use the notations
A1 = SpecF [u], A2 = SpecF [s, t] and Z = A2(<s,t>), the localization of A

2 at 0.

Moreover y, z ∈ Z(1) ⊂ A2(1) denote the points with parameters s, t, respectively.
We proceed in several steps.

Step 1 : (FD) + (C) ⇒ (WR). Given ρ ∈ A0(A1;M) put
η = {t} · ρ(t/s) ∈M

(
F (s, t)

)

or, more precisely, η = {t} · ϕ∗(ρ) with ϕ: F (u) → F (s, t), ϕ(u) = t/s. Using R2
and R3 one finds

∂x(η) = 0 for x ∈ Z(1) \ {y, z},
∂y(η) = −{t} · rκ(y)|F

(
∂∞(ρ)

)
,

∂z(η) = ∂z
(
ϕ∗({u} · ρ) + {s} · ϕ∗(ρ)

)

= rκ(z)|F ◦ ∂0({u} · ρ)− {s} · rκ(z)|F
(
∂0(ρ)

)
.

(C) and ∂0(ρ) = 0 give

0 =
∑

x∈Z(1)
∂x0 ◦ ∂x(η) = ∂y0 ◦ ∂y(η) = −∂∞(ρ). �

Step 2 : (FDL) + (WR) ⇒ (H). Note that d ◦ r = 0 by R3c. Moreover any special-
ization map for an F -rational point on P1 is a left inverse to r by R3d.
Surjectivity of d: For a closed point x ∈ A1 let

Φx: M(x)→M
(
F (u)

)
,

Φx(µ) = cκ(x)(u)|F (u)
(
{u− u(x)} · rκ(x)(u)|κ(x)(µ)

)

and let
Φ =

∑

x

Φx:
∐

x∈A1
(0)

M(x) −→M
(
F (u)

)
.

Then d ◦ Φ = id by R3b–R3e.
Exactness at M(F (u)): Given ρ ∈ A0(A1;M), put

η = {t} ·
(
ρ(u+ t)− ρ(u)

)
∈M(F (u)(t)).

More precisely: Let E = F (u), let i, ϕ: E → E(t) be the homomorphisms over F with
i(u) = u, ϕ(u) = u+ t and put η = {t} ·

(
ϕ∗(ρ)− i∗(ρ)

)
.

We compute ∂w(η) for the valuations w of E(t) overE. One finds easily ∂w(η) = 0
for w 6= 0,∞. But also ∂0(η) = 0 by R3d, since the valuation at t = 0 restricts trivially
under i and ϕ and since the induced homomorphisms E → κ(0) coincide. Hence (WR)
tells ∂∞(η) = 0. On the other hand one has

∂∞
(
{t} · i∗(ρ)

)
= −ρ,

∂∞
(
{t} · ϕ∗(ρ)

)
= ∂∞

(
({t/(u+ t)}+ {u+ t}) · ϕ∗(ρ)

)

= −{t/(u+ t)} · ∂∞
(
ϕ∗(ρ)

)
+ ∂∞

(
ϕ∗({u} · ρ)

)

= 0+ rE|F
(
∂∞({u} · ρ)

)

by making particular use of R3d and R3e (note that t/(u + t) has residue class 1 ∈
κ(∞)). So

ρ = rE|F
(
∂∞({u} · ρ)

)
∈ rE|F

(
M(F ))

)
. �
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Step 3 : (FD) + (H) ⇒ (RC). There is a finite morphism X → P1 over F . Using
this and R3b one reduces to the case X = P1. Then it suffices to check

∑

u∈P1
(0)

cκ(u)|F ◦ ∂u ◦ Φx = 0

for Φx as in Step 2. This equation follows from the computation d ◦ Φ = id and

∂∞ ◦ Φx = −cκ(x)|F ,

a consequence of R3b and R3d. �

The proof of Proposition 2.2 is now complete. We next consider the nontrivial
implication of Theorem 2.3. We will refer at some places to Sections 3 and 4, but
only in a mild way. Note that (H) is available by Step 2.

Step 4 : (FDL) ⇒ (FD) for X = An. Let pi: An → An−1 be the n standard pro-
jections. Then

An(1) ⊂
⋃

i

p−1i (ξ)

where ξ is the generic point of An−1. (FD) follows from (FDL) applied to F = κ(ξ). �

Step 5 : (FD) for X = A2 + (WR) ⇒ (C) for X = Z. As in Step 2 we have

M(ξZ) =M
(
F (s)

)
+

∑

x∈
(
A1
F (s)

)
(0)

Φx
(
M(x)

)

with

Φx(µ) = cκ(x)(t)|F (s,t)
(
{t− t(x)} · rκ(x)(t)|κ(x)(µ)

)
.

(C) holds obviously on M
(
F (s)

)
. Let us verify (C) on the image of Φx for fixed x.

By d ◦ Φ = id in Step 2 we are reduced to check

∂y0 ◦ ∂y ◦ Φx = −∂x0 .

Let v run through the valuations on κ(x)(t) which restrict on F [s, t] to the valuation
with parameter s (and corresponding to y). Let v̄ be the restriction of v to κ(x) and let
c(v̄) ∈ {x} be the center of v̄. If c(v̄) 6= 0, then t(x) is a v̄-unit with residue t(c(v̄)).
Suppose 0 ∈ {x} and let Rx be the residue class ring of x localized at 0. The
valuations v with c(v̄) = 0 restrict in a one-to-one manner to the valuations w of κ(x)
with Rx ⊂ Ow. For these one has v̄(t(x)) > 0 (since t(x) is nilpotent in Rx/sRx).
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In the following, u runs through {x} ∩ {y} \ {0}. One finds

∂y ◦ Φx(µ) =
∑

v

cκ(v)|κ(y) ◦ ∂v
(
{t− t(x)} · rκ(x)(t)|κ(x)(µ)

)

= −
∑

v,c(v̄)6=0
cκ(v)|κ(y)

(
{t− t

(
c(v̄)

)
} · rκ(v)|κ(v̄) ◦ ∂v̄(µ)

)

− {t(y)} ·
∑

v,c(v̄)=0

cκ(v)|κ(y) ◦ rκ(v)|κ(v̄) ◦ ∂v̄(µ)

= −
∑

u

cκ(u)(t)|κ(y)
(
{t− t(u)} · rκ(u)(t)|κ(u) ◦ ∂xu(µ)

)

− {t(y)} · rκ(y)|F ◦ ∂x0 (µ).

Since t(u) 6= 0 the sum vanishes under ∂y0 and we are done by R3d. �

Step 6 : Reduction of (C) to the case κ(x0) ⊂ OX . Let X be as in (C) and
write X = SpecR. Lift a transcendence base of κ(x0) over k to elements ti ∈ R
and put K = k(t1, . . . , tn) ⊂ R. Then κ(x0) is a finite extension of K. Since k is
perfect, we may take here a transcendence base such that κ(x0) is separable over K.
Let X ′ = SpecR ⊗K κ(x0), let u ∈ X ′ be the canonical lift of x0 and let X ′′ be the
localization of X ′ in u. We assume that (FD) holds for X and X ′′. Consider the pull-
back along the flat map X ′′ → X, see Section 3. The induced map M(x0) → M(u)
is injective, since x0 and u have the same residue class fields. An application of R3a
and R3b (see Proposition 4.6.2) shows that (C) holds for X if (C) holds for X ′′. �

We know now in particular that (C) holds for every localization of A2 in some
closed point.

Step 7 : Proof of (FD). There exists a generically finite separable rational map
X → Ank . All but finitely many x ∈ X(1) correspond to points of An(1). The argument
of Step 4 yields a reduction to a plane curveX over some field K. So consider the case
X = {x} for some x ∈ A2(1). We may assume that X maps dominantly to SpecF [s]
so that Φx as in Step 5 is defined. Put η = Φx(ρ). We have ∂x(η) = ρ. Moreover
∂u(η) 6= 0 only for finitely many u (Step 4). The closure of u 6= x meets X only
in finitely many points. Now, since (C) holds for every localization of A2, we have
∂ξw(ρ) = 0 for all but finitely many w ∈ X(1) ⊂ A2(0). �

Step 8 : Proof of (C). By Step 6 we may assume that F = κ(x0) is contained in OX .
Choose a closed (2-dimensional) subscheme Y ⊂ PnF such that X is the localization
of Y in a (F -rational) point y. We consider the generic projection from PnF to P

2
F .

More precisely: let T be the Grassmannian of 3-codimensional linear subspaces of PnF ,
let E = F (T ), let H ⊂ PnE be the tautological subspace and let π: PnE \H → P2E be
a linear projection. Then H ∩ YE = ∅ and π restricts to a proper map p: YE → P2E .
Let D = p−1

(
p(y)

)
. Then D is the intersection of YE with a generic 2-codimensional

linear subspace passing through y. Hence

D \ {y} ⊂ YE \ Y .
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In particular D ∩ Y(0) = {y}. Now we consider flat pull-back along the base change
q: YE → Y followed by the push-forward along p, see Section 3. One finds (see (1)
and (2) of Proposition 4.6) for ρ ∈M(ξX):

rE|F
( ∑

x∈X(1)
∂xx0 ◦ ∂ξx(ρ)

)
=

∑

u∈U(1)
∂up(u) ◦ ∂u

(
p∗ ◦ q∗(ρ)

)

where U is the localization of P2E in p(y). The right hand side vanishes by Step 5
and rE|F is injective since E|F is a rational extension. �

We conclude with some more considerations concerning the axioms of cycle mod-
ules. These have been included here more for illustration than for application. In
order not to be too tiring, we have taken here the freedom to be a bit vague about
our actual assumptions.

(2.7) Remark. In the datum D3 of cycle premodules there is hidden a strong rule,
namely the relation {a, 1−a} = 0 of Milnor’sK-theory. The main justification within
this paper for using Milnor’s K-theory is that it works well. Asking naively, one may
try to weaken D3 by requiring only the existence of bilinear pairings

K1F ×M(F )→M(F ),
(
{a}, ρ

)
7→ {a} · ρ

and restricting to x ∈ K1E, y ∈ K1F in R2. Then M(F ) would be a TF ∗-module.
However, if one wants to develop a geometric theory, one is in the end led to

pass to modules over Milnor’s K-theory. A reasoning for this is given by the following
little game. It refers in a mild way to the rules of cycle premodules and to a part of
the homotopy property (H).
Let ρ ∈M(F ), let L be an overfield of F , let u ∈ L \ {0, 1} and consider

η(u) = {u} ·
(
{1− u} · rL|F (ρ)

)
∈M(L).

Our aim is to conclude η(u) = 0 for the case L = F . Assuming reasonable special-
ization maps, this follows from the generic case L = F (u) with u a variable. To treat
this case, our strategy is to argue that η(u) is unramified on the whole affine line.
Then, by homotopy invariance, η(u) is constant. An extra argument finally shows
η(u) = 0.
To be specific first a little calculation (which provides by the way already the

divisibility of η(u) referring only to the existence of norm maps and the projection
formula). Let L′ = F (u′) be the function field in the variable u′ and let L = F (u) ⊂ L′
with u = u′n. Then 1− u = NL′|L(1− u′) and the projection formulae R2b and R2c
give

η(u) = {u} ·
(
{NL′|L(1− u′)} · rL|F (ρ)

)

= {u} · cL′|L
(
{1− u′} · rL′|F (ρ)

)

= cL′|L
(
{u′n} ·

(
{1− u′} · rL′|F (ρ)

))

= n · cL′|L
(
η(u′)

)
.
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We want to conclude that ∂v
(
η(u)

)
= 0 for all finite places v of L|F . This is

quite natural to assume as long as u and 1 − u are v-units. For the place at u = 0
(and similarly at u = 1) one may argue as follows.
Let α = ∂0

(
η(u)

)
∈ M(F ) be the residue for the valuation of L|F at u = 0.

Similarly let α′ = ∂0
(
η(u′)

)
, now with respect to the valuation of L′|F at u′ = 0. A

change of variables u → u′ shows α = α′. But the above computation and rule R3b
yields α = n · α′. Taking n = 2 gives α = 0.
Now (H) tells that η(u) comes from M(F ), that is η(u) = rL|F (η) for some

η ∈ M(F ). Naturality with respect to the homomorphisms L → L over F with
u→ −u and u→ u2 gives

η(u) = η(−u) = η(u2).
On the other hand one has

η(u2) = 2η(u) + 2η(−u),

just by linearity. One concludes 3η(u) = 0. But then 3η(u′) = 0 as well and the above
computation for n = 3 tells η(u) = 0.

(2.8) Remark. As already mentioned, the properties (Co) and (E) of cycle modules
follow from the material in Section 12. The considerations there use the deformation
to the normal cone and homotopy inverses. But things simplify considerably if one
may pass to the limits X = Spec k[[t1, . . . , tn]]. In the following we consider the
case X = Spec k[[s, t]], tacitly assuming that our cycle modules are defined on an
appropriate category of schemes. In fact we could have taken also more general
schemes as basis for our notions, say excellent schemes over a perfect field (however
one should then be careful with Theorem 2.3).

(C) ⇒ (Co): Let E = F (u) and T = SpecE[[s, t]]. Given ρ ∈ A0(X;M) put

η = {t− us} · rE((s,t))|F ((s,t))(ρ) ∈M(ξT ).

One may then calculate ∑

z∈T (1)
∂z0 ◦ ∂z(η) = ∂v(ρ).

Hence ∂v(ρ) = 0 by (C).

(C) ⇒ (E): By the last argument we may use (Co). It follows that for ρ ∈ A0(X;M)
the value of sπv (ρ) is independent of the choice of the prime π. Since κ(v) = F (t/s) is
rational, one is by (H) reduced to check

∂w ◦ sπv (ρ) = 0

for all valuations w of F (t/s) over F except the one with w(t/s) = −1. Every w
defines a point in the exceptional fiber of the blow up Y → X. One calculates for
the w in question

0 =
∑

y∈Y (1)
∂yw ◦ ∂y({s} · ρ) = ∂w ◦ ∂v({s} · ρ).

Finally note sπv (ρ) = ∂v({s} · ρ) for the choice π = −s.
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(2.9) Remark. In the case of a constant cycle premodule one may derive (C) from
(Co) under presence of (FD). This tells that axiom (C) appears naturally in our
framework if we require the existence of pull-back maps f

q

. As in Remark 2.8 we
consider here the case X = Spec k[[s, t]].

(Co) ⇒ (C): To derive (C) from (Co) for constant M and for X = Spec k[[s, t]]
one argues first similarly as for Step 5 above as follows. Let y be the point with
parameter s and define for x ∈ X(1) \ {y}:

Φx: M(x)→M(ξX),

Φx(µ) = rF ((s,t))|F ((s))(t) ◦ cκ(x)(t)|F ((s))(t)
(
{t− t(x)} · rκ(x)(t)|κ(x)(µ)

)
.

As in Step 5 one has ∂x ◦ Φx = id and ∂z ◦ Φx = 0 for z 6= x, y; moreover one finds
∂y ◦ Φx = −{t} · rF ((t))|F ◦ ∂x0 . This shows that (C) holds on the image of the Φx.
In order to verify (C) for ρ̃ ∈M(ξX) we may arrange things such that ∂y(ρ̃) = 0.

We are reduced to check (C) for

ρ = ρ̃−
∑

x 6=y
Φx ◦ ∂x(ρ̃).

Using the above computations one finds

∂x(ρ) =

{
0 for x 6= y,

{t} · rκ(y)|F (θ) for x = y

for some θ ∈M(F ).
We must show θ = 0. Put E = F (r) and—written in a somewhat sloppy form—

η = ρ(rs, rt) − ρ(s, t)− {s, r} · θ ∈M
(
E((s, t))

)
.

One computes η ∈ A0(SpecE[[s, t]];M) and

∂v(η) = −{r} · θ ∈M
(
E(s/t)

)
.

(Co) gives {r} · θ = 0 in M
(
F (r, s/t)

)
. Applying appropriate specialization and

residue maps shows θ = 0.

Documenta Mathematica 1 (1996) 319–393



346 Markus Rost

3. The Four Basic Maps

The purpose of this section is to introduce the cycle complexes and all the types of
operations on them needed further on (except the cross products to be defined in
Section 14).

LetM be a cycle module over X, let N be a cycle module over Y and let U ⊂ X,
V ⊂ Y be subsets. For a homomorphism

α:
∐

x∈U
M(x) −→

∐

y∈V
N(y)

we write αxy : M(x)→ N(y) for the components of α.

(3.1) Change of coefficients. Let ω: M → N be a homomorphism of cycle mod-
ules over X and let U ⊂ X be a subset. We put

ω#:
∐

x∈U
M(x) −→

∐

x∈U
N(x)

where (ω#)
x
x = ωκ(x) and (ω#)

x
y = 0 for x 6= y.

(3.2) Cycle complexes. For a cycle module M over X and an integer p let

Cp(X;M) =
∐

x∈X(p)
M(x).

We define
d = dX : Cp(X;M)→ Cp−1(X;M)

by dxy = ∂
x
y with ∂

x
y as in (2.1.0). This definition has sense by axiom (FD).

(3.3) Lemma. dX ◦ dX = 0.
Proof : One has to check (d ◦ d)xz = 0 for x ∈ X(p+1), z ∈ X(p−1). This is trivial

if z 6∈ {x}. Otherwise let Y be the localization of {x} in z. Since our schemes are
catenary, we have X(p) ∩ Y = Y(1) and dimY = 2. Now apply axiom (C) to Y . �

The complex C∗(X;M) = (Cp(X;M), dX)p≥0 is called the complex of cycles
on X with coefficients in M .

When developing a theory of cycles, first natural questions are the following.
Given a proper morphism f : X → Y , what is the push-forward map f∗ on cycles?
Or, given a flat morphism g: Y → X, what is the pull-back map g∗ on cycles? In
fact, we will define such maps. However these questions are not our guiding point of
view. We rather fix schemes X, Y and numbers p, q and then ask: what is the class
of maps

Cp(X;M)→ Cq(Y ;M)
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which we should consider? Our answer is then motivated by what we want to do with
the complexes, namely developing intersection theory etc. This leads to the “four
basic maps” as defined in (3.4)–(3.7).

The definitions of the basic maps “multiplication withK1” and “boundary maps”
in (3.6) and (3.7) are easy to understand. However our way of introducing push-
forward and pull-back maps as in (3.4) and (3.5) deserves some words of comment. It
turns out that these maps (denoted by f∗ and [A, g, s]) are sums of compositions of
maps of simpler type, namely push-forwardmaps f∗ for proper morphisms f , pull-back
maps g∗ for flat morphisms g and the projections i∗ and inclusions j∗ corresponding
to closed (or open) subvarietes (see 3.10). This fact (which we will not prove) seems
to be however only of heuristic interest. In fact it would be a nuisance if we had to
consider at each step such a reduction of the language expressing the maps between
the cycle complexes.

(3.4) Push-forward. For a morphism f : X → Y of schemes of finite type over a
field we define

f∗: Cp(X;M)→ Cp(Y ;M)

as follows. If y = f(x) and if κ(x) is finite over κ(y), then (f∗)xy = cκ(x)|κ(y). Otherwise
(f∗)xy = 0.

(3.5) Pull-back. Our main interest is to define the particular types of pull-back
maps as considered in (3.5.5) below. In our general definition in (3.5.3) we define
pull-back maps Cp(X;M) → Cq(Y ;M) associated to any morphism g: Y → X of
relative dimension ≤ q − p. Moreover we use coherent sheaves A on Y as modifiers
of the arising multiplicities. This construction gives great technical flexibility and is
useful in Section 4.

(1) For a morphism g: Y → X let

s(g) = max
{
dim(y, Y )− dim

(
g(y), X

)
| y ∈ Y

}
.

Moreover let Yx = Y ×X Spec κ(x) for x ∈ X.
Note that if x ∈ X(p), y ∈ Y(q), g(y) = x and s(g) ≤ q − p, then necessarily

y ∈ Y (0)x .

(2) Let g: Y → X be a morphism and let A be a coherent sheaf on Y . For x ∈ X
and y ∈ Y (0)x we define an integer

[A, g]xy ∈ Z

as follows. The localization Yx,(y) of Yx in y is the spectrum of an artinian ring R

with only residue class field κ(y). Let Ã be the pull-back of A via Yx,(y) → Yx → Y

and define [A, g]xy = lR(Ã) as the length of Ã considered as R-module (for the notion
of length and further properties we refer to Fulton 1984, App. A).
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(3) Fix s ∈ Z. Let g: Y → X be a morphism with s(g) ≤ s and let A be a coherent
sheaf on Y . We define homomorphisms

[A, g, s]: Cp(X;M)→ Cp+s(Y ;M)

by

[A, g, s]xy =
{
[A, g]xy · rκ(y)|κ(x) if g(y) = x,

0 otherwise.

Here κ(x) is considered as a subfield of κ(y) via g.

(4) Let F be a field, let g: Y → SpecF be a morphism and let

0→ A′ → A→ A′′ → 0

be an exact sequence of coherent sheaves over Y . Then

[A′, g, s]− [A, g, s] + [A′′, g, s] = 0.

This follows from the additivity of length with respect to short exact sequences.

(5) For some particularly interesting cases we use the following notations. Let F → E
be a homomorphism of fields, let X be of finite type over F and let g: Y = X ×SpecF
SpecE → X be the base change. Then we put g∗ = [OY , g, 0].
A morphism g: Y → X of schemes of finite type over a field is said to have

(constant) relative dimension s if all fibers are either empty or equidimensional of
dimension s. In this case we write dim(g) = s and put

g∗ = [OY , g,dim(g)].

Particular cases are here open and closed immersions (with s = 0).

(3.6) Multiplication with units. For global units a1, . . . , an ∈ O∗X we define
homomorphisms

{a1, . . . , an}: Cp(X;M)→ Cp(X;M)

by

{a1, . . . , an}xy(ρ) =
{
{a1(x), . . . , an(x)} · ρ for x = y,

0 otherwise.

This definition turns Cp(X;M) into a module over the tensor algebra of O
∗
X . If X is

defined over some field F , then Cp(X;M) becomes via F
∗ ⊂ O∗X a module over K∗F .

(3.7) Boundary maps. Let X be of finite type over a field, let i: Y → X be a closed
immersion and let j: U = X \ Y → X be the inclusion of the open complement. We
will refer to (Y, i,X, j, U) as a boundary triple and define

∂ = ∂UY : Cp(U ;M)→ Cp−1(Y ;M)

by taking for ∂xy the definition in (2.1.0) with respect to X. The map ∂
U
Y is called the

boundary map associated to the boundary triple, or just the boundary map for the
closed immersion i: Y → X.
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We conclude this section with a few notations and remarks concerning the four
basic maps.

(3.8) Generalized correspondences. We introduce the notation

α: X p→ Y

to denote homomorphisms

α: C∗(X;M)→ C∗(Y ;M)

which are sums of composites of the four basic maps f∗, g∗, {a} and ∂ for schemes of
finite type over a field.

This notation is made for the sake of simplification. It also stresses the fact that
we think of the maps in question rather as a sort of morphisms of varieties than just
maps of complexes associated to everyM . As mentioned in the introduction, this can
be made more precise in a further development. (The differential dX is not subject
to this notation convention—we rather think of dX as a part of the inner structure
of X. Similarly for homomorphisms induced by a change of coefficients.)

(3.9) Gradings. The Z/2-gradings on M induces a Z/2-grading on C∗(X;M) by

Cp(X;M,n) =
∐

x∈X(p)
Mn+p(x)

with n ∈ Z/2. Suppose α: X p→ Y respects this grading in the sense that

α
(
C∗(X;M,n)

)
⊂ C∗(Y ;M,n+ r)

for some r ∈ Z/2. In this case we write sgn(α) = (−1)r. One has sgn(f∗) = sgn(g∗) =
+1, sgn({a1, . . . , an}) = (−1)n and sgn(∂) = −1. Moreover we put

δ(α) = d ◦ α− sgn(α) · α ◦ d.

Then
sgn
(
δ(α)

)
= − sgn(α),

δ ◦ δ(α) = 0,
δ(α ◦ β) = δ(α) ◦ β + sgn(α) · α ◦ δ(β).

All the maps α to be considered will respect the Z/2-grading. Moreover, if M is
Z-graded, then the α will respect the corresponding Z-gradings on the complexes.
Additionally they respect the natural Z-gradings given by dimension. So if M is
Z-graded, there is an underlying Z × Z-grading (see also Section 5). In the general
treatment however there is need only for the Z/2-grading.
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(3.10) Boundary triples. Let (Y, i,X, j, U) be a boundary triple. The set theoretic
union X(p) = Y(p) ∪ U(p) yields a natural decomposition
(3.10.1) Cp(X;M) = Cp(Y ;M)⊕ Cp(U ;M)
of abelian groups. Here the complex C∗(Y ;M) is a subcomplex of the complex
C∗(X;M) with C∗(U ;M) as quotient complex. The maps i∗, j∗ and i∗, j∗ are the
corresponding inclusions and projections, respectively. In a formal way, the situation
is described by the following formulae:

∂ = i∗ ◦ dX ◦ j∗,
i∗ ◦ i∗ = idY , j∗ ◦ j∗ = idU ,
i∗ ◦ j∗ = 0, j∗ ◦ i∗ = 0,
i∗ ◦ i∗ + j∗ ◦ j∗ = idX ,
δ(j∗) = i∗ ◦ ∂, δ(i∗) = −∂ ◦ j∗,
∂ = i∗ ◦ δ(j∗) = −δ(i∗) ◦ j∗,
δ(i∗) = 0, δ(j∗) = 0, δ(∂) = 0.

Later on we will make free use of these simple rules, in particular in Sections 6
and 9. The canonical decomposition (3.10.1) is the source of our formal treatment of
intersection theory on complex level.

4. Compatibilities

In this section we establish the basic compatibilities for the maps considered in the
last section. All arguments are simple in nature or at least familiar to cycle theories.
They are basically of local nature. As usual the treatment of flat pull-back causes
most of the technicalities.
Rules among the maps of (3.4)–(3.7) are formulated in (4.1)–(4.5). Proposi-

tion 4.6 is concerned with the compatibility with the differentials. The compatibilities
with change of coefficients are obvious and we don’t make a point of them here and
further.

(4.1) Proposition.

(1) For f : X → Y , f ′: Y → Z as in (3.4) one has (f ′ ◦ f)∗ = f ′∗ ◦ f∗.
(2) Let g: Y → X and g′: Z → Y be morphisms. Let s ≥ s(g) and s′ ≥ s(g′)
and let A, A′ be coherent sheaves on Y , Z, respectively, with A′ flat over Y . Then
s+ s′ ≥ s(g ◦ g′) and

[g′∗A⊗OZ A′, g ◦ g′, s+ s′] = [A′, g′, s′] ◦ [A, g, s].
In particular

(g ◦ g′)∗ = g′∗ ◦ g∗

for g, g′ as in (3.5.5) with g′ flat.
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(3) Consider a pull-back diagram

U
g′−→ Z

yf ′
yf

Y
g−→ X

with f and f ′ as in (3.4). Let s ≥ s(g), s(g′) and let A be a coherent sheaf on Y .
Then

[A, g, s] ◦ f∗ = f ′∗ ◦ [f ′∗A, g′, s].
In particular

g∗ ◦ f∗ = f ′∗ ◦ g′∗

for g as in (3.5.5).

Proof : (1) is immediate from the definitions and R1a.

Proof of (2): The inequality is obvious. Let x ∈ X, y ∈ Yx, z ∈ Zy with
dim(y, Y ) = dim(x,X) + s, dim(z, Z) = dim(y, Y ) + s′. We have to check

[g′∗A⊗OZ A′, g ◦ g′]xz = [A′, g′]yz · [A, g]xy .
We may assume X = Specκ(x) and Y = SpecR with R as in (3.5.2). By devisage
using the flatness of A′ over R and (3.5.4) we may reduce to the case A = κ(y). Now
the claim is trivial.

Proof of (3): Let δ = [A, g, s] ◦ f∗− f ′∗ ◦ [f ′∗A, g′, s]. We have to show δzy = 0 for
z ∈ Z(p) and y ∈ Y(p+s).
This obvious if f(z) 6= g(y). Otherwise let x = f(z) = g(y). Our assumptions

give dim(x,X) ≤ dim(z, Z) and dim(x,X) ≥ dim(y, Y )−s(g) ≥ p; hence dim(x,X) =
dim(z, Z) = p and κ(z) is finite over κ(x).
Let u ∈ Uz be a maximal point of the fiber over z. Our assumptions give

dim(u, U) ≥ dim(y, Y ) = p + s and dim(u, U) ≤ dim(z, Z) + s(g′) ≤ p + s; hence
u ∈ U(p+s). This shows that δzy remains unchanged if we replace X by Spec κ(x), Z
by Specκ(z), Y by Yx,(y) = SpecR (see 3.5.2) and p, s by 0. Then f is finite and flat.
Hence f ′ is flat and by devisage using (3.5.4) we may assume A = κ(y) as R-module.
But then it suffices to consider the case Y = Specκ(y) and the claim follows from
rule R1c. �

(4.2) Lemma. Let f : Y → X be as in (3.4).

(1) If a is a unit on X, then

f∗ ◦ {f∗(a)} = {a} ◦ f∗.
(2) Let f be finite and flat and let a be a unit on Y . Then

f∗ ◦ {a} ◦ f∗ = {f̃∗(a)}.
Here f̃∗: O∗Y → O∗X is the standard transfer map.

Proof : (1) is immediate from R2b. For (2) we may assume X = SpecF with F a
field. Then for y ∈ Y let ly be the length of Oy,Y . By R2c we have

f∗ ◦ {a} ◦ f∗ =
∑

y

ly · cκ(y)|F
(
{a(y)}

)

and the claim follows. �
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(4.3) Lemma. Let a be a unit on X.

(1) For g: Y → X as in (3.5.5) one has

g∗ ◦ {a} = {g∗a} ◦ g∗.
(2) For a boundary triple (Y, i,X, j, U) one has

∂UY ◦ {j∗(a)} = −{i∗(a)} ◦ ∂UY .

Proof : (1) follows from R2a and (2) from R2b and R3e. �

Let h: X → X ′ be a morphism of schemes of finite type over a field and let
Y ′ →֒ X ′ be a closed immersion. Consider the induced diagram given by U ′ = X ′ \Y ′
and pull-back:

(4.4.0)

Y −֒→ X ←−֓ U
yh̄

yh
y¯̄h

Y ′ −֒→ X ′ ←−֓ U ′

(4.4) Proposition.

(1) If h is proper, then

h̄∗ ◦ ∂UY = ∂U
′

Y ′ ◦ ¯̄h∗.
(2) If h is flat (of constant relative dimension), then

h̄∗ ◦ ∂U ′Y ′ = ∂UY ◦ ¯̄h
∗
.

Proof : Immediate from Proposition 4.6.1 and 4.6.2 below. �

(4.5) Lemma. Let g: Y → X be a smooth morphism of schemes of finite type over a
field of constant fiber dimension 1, let σ: X → Y be a section to g and let t ∈ OY be
a global parameter defining the subscheme σ(X). Moreover let g̃: Y \ σ(X) → X be
the restriction of g and let ∂ be the boundary map associated to σ. Then

∂ ◦ g̃∗ = 0 and ∂ ◦ {t} ◦ g̃∗ = (idX)∗.

Proof : One reduces to X = SpecE and applies R3c and R3d. �

(4.6) Proposition.

(1) For proper f : X → Y as in (3.4) one has

dY ◦ f∗ = f∗ ◦ dX .

(2) Let g: Y → X be a morphism and let A be a coherent sheaf on Y flat over X.
Then

dY ◦ [A, g, s] = [A, g, s] ◦ dX
for s ≥ s(g). In particular

g∗ ◦ dX = dY ◦ g∗

for flat g as in (3.5.5).

Documenta Mathematica 1 (1996) 319–393



Chow Groups with Coefficients 353

(3) For a unit a on X one has

dX ◦ {a} = −{a} ◦ dX .

(4) For a boundary triple (Y, i,X, j, U) one has

dY ◦ ∂UY = −∂UY ◦ dU .

Proof : (3) follows as Lemma 4.3.2 and (4) follows from Lemma 3.3.

Proof of (1): Let δ(f∗) = dY ◦ f∗ − f∗ ◦ dX . We have to show δ(f∗)xy = 0 for

x ∈ X(p) and y ∈ Y(p−1). Let z = f(x) and q = dim(z, Y ). If y 6∈ {z}, the claim is
obvious. If y = z, we first replace Y by Specκ(y) and then X by {x}. This is the
case of a proper curve over a field considered in (RC) of Section 2. If y ∈ {z} and
y 6= z, we must have q = p and κ(x) is finite over κ(z). We may assume Y = {z} and
X = {x}. Consider the diagram

X̃
g−→ X

yf̃
yf

Ỹ
h−→ Y

where g and h are the normalizations. Let x̃ ∈ X̃ and z̃ ∈ Ỹ be the generic points
(lying over x and z, respectively). We have δ(g∗) |M(x̃) = 0 by the very definition of
the differentials; similarly δ(h∗) |M(z̃) = 0. This and 4.1.1 show

δ(f∗) ◦ g∗ |M(x̃) = (dY ◦ h∗ ◦ f̃∗ − f∗ ◦ g∗ ◦ dX̃) |M(x̃)

= h∗ ◦ δ(f̃∗) |M(x̃).

Since g∗ |M(x̃) is an isomorphism onto M(x) we are reduced to show δ(f̃∗)x̃ỹ = 0 for
ỹ ∈ Ỹ(p−1). Let ũ ∈ X̃ be a point over ỹ. We have ũ ∈ X̃(1). Now δ(f̃∗)x̃ỹ = 0 follows
from rule R3b, the properness of f̃ and the fact that the local rings of ỹ and of all
the preimages ũ are valuation rings.

Proof of (2): Let δ = dY ◦ [A, g, s] − [A, g, s] ◦ dX . We have to show δxy = 0 for

x ∈ X(p), y ∈ Y(p+s−1). Put z = g(y). If z 6∈ {x}, the claim is obvious. If z = x, then
for u ∈ Yx all valuations on κ(u) with center y are trivial on κ(x); the claim follows
from rule R3c. We are now reduced to the case z ∈ {x}, z 6= x. Then z ∈ X(p−1)
since dim(z,X) ≥ dim(y, Y ) − s = p − 1. We may assume X = {x}. Moreover
by Propositions 4.1.3 and 4.6.1 we may additionally assume that X is normal. Let

U =
{
u ∈ Y (0)x | y ∈ {u}

}
. Then

δxy =
∑

u∈U
∂uy ◦ [A, g, s]xu − [A, g, s]zy ◦ ∂xz .

We may replace X and Y by its localizations in z and y, respectively. Then X =
SpecR with R a valuation ring, Y = SpecS with S local of dimension ≤ 1 and
U = Y(1).
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In this case we have by definition

δxy =
∑

u∈U
lS(u)(A(u)) · ∂uy ◦ rκ(u)|κ(x) − lS(A/πA) · rκ(y)|κ(z) ◦ ∂xz

where S(u), A(u) are the localizations at u and where π is a prime element of R.
For u ∈ U let S̃u be the normalization of S/u. For a S̃u-module H of finite length

we define

Lu(H) =
∑

w

lS̃(w)(H(w)) · [κ(w) :κ(y)]

where w runs through the maximal prime ideals of S̃u and where S̃(w) resp. H(w) are

the localizations of S̃u resp. H at w. We claim that Lu(H) is the length of H as
S-module:

Lu(H) = lS(H).

To prove this use devisage to reduce to the trivial case H = κ(w) for some w.
Moreover we have

lS(S̃u/πS̃u) = lS(S/u+ πS).

This follows from the fact that the cokernel and the (trivial) kernel of S/u → S̃u
have finite S-length and π is a nonzero divisor of S/u and S̃u (see Fulton 1984,
Lemma A.2.4).
We have for fixed u:

∂uy ◦ rκ(u)|κ(x) =
∑

w

cκ(w)|κ(y) ◦ ∂uw ◦ rκ(u)|κ(x)

=
∑

w

lS̃(w)(S̃(w)/πS̃(w)) · cκ(w)|κ(y) ◦ rκ(w)|κ(z) ◦ ∂
x
z

= Lu(S̃u/πS̃u) · rκ(y)|κ(z) ◦ ∂xz .

Here we used the definition of ∂uy and R3a, R1b, R2d.

Putting things together one finds that δxy = 0 follows from

lS(A/πA) =
∑

u∈U
lS(u)(A(u)) · lS(S/u+ πS).

This formula is exactly the formula of (Fulton 1984, Lemma A.2.7) because the map
A→ A, a 7→ πa is injective by the flatness of A over R. �
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5. Cycle Complexes and Chow Groups

This section contains notations and a few remarks and examples. In Section 3 we
have introduced for a cycle module M over X the complexes

Cp(X;M) =
∐

x∈X(p)
M(x)

with differentials
d = dX : Cp(X;M)→ Cp−1(X;M).

Sometimes it is convenient to use the codimension index instead of the dimension
index. We put

Cp(X;M) =
∐

x∈X(p)
M(x)

and define
d = dX : C

p(X;M)→ Cp+1(X;M)

again by dxy = ∂
x
y with ∂

x
y as in (2.1.0). Similar as in Lemma 3.3 one finds d ◦ d = 0.

The choice between the dimension and codimension index depends on the matter.
Our basic interest is in schemes X of finite type over a field F . In this case the
dimension setting is in general appropriate, since then the dimension of a point x is
an absolute notion independent of the ambient space: dim(x,X) = tr.deg(κ(x)|F ) .
If X is in addition equidimensional of dimension d, then X(p) = X(d−p) and

Cp(X;M) = Cd−p(X;M) . Then we will freely switch between the two notions if
it is convenient (in particular if we consider intersections in the smooth case). The
codimension setting will also be used for certain schemes not necessarily of finite type
over a field, e.g., for spectra of local rings. In this case we understand the material of
Section 4 to be transferred from the dimension to the codimension setting via finite
type models.

In practice, all M have a Z-grading and one likes to keep track on it. We put for
Z-graded M

Cp(X;M,n) =
∐

x∈X(p)
Mn+p(x),

Cp(X;M,n) =
∐

x∈X(p)
Mn−p(x).

with n ∈ Z. Then there are decompositions of complexes

C∗(X;M) =
∐

n

C∗(X;M,n),

C∗(X;M) =
∐

n

C∗(X;M,n).

(In the introduction we have used the notation C∗(X;n) = C∗(X;K∗, n)).
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The Chow group of p-dimensional cycles with coefficients in M is defined as the
p-th homology group of the complex C∗(X;M) and denoted by Ap(X;M). Similarly
we define Ap(X;M), Ap(X;M,n) and Ap(X;M,n) according to the notations used
for the complexes.

The homomorphisms f∗ for proper f , g∗ for flat g, {a1, . . . , an}, ∂UY and ω# of
Section 3 (anti-)commute with the differentials (see Proposition 4.6). The induced
maps on the (co-)homology groups will be denoted by the same letters. The compat-
ibilities of (4.1)–(4.5) carry over (for proper f , f ′ and flat g).

It is obvious from (3.10) that for a boundary triple (Y, i,X, j, U) there is the long
exact sequence

· · · ∂−→ Ap(Y ;M)
i∗−→ Ap(X;M)

j∗−→ Ap(U ;M)
∂−→ Ap−1(Y ;M)

i∗−→ · · · .

We conclude by mentioning a few examples. H∗[D] and K ′∗ denote the cycle
modules given by Galois cohomology and Quillen’s K-theory as considered in Sec-
tions 1–2.

(5.1) Remark. — Classical Chow groups. We understand here CHp(X) as the group
of p-cycles modulo rational equivalence as defined in (Fulton 1984, Sect. 1.3; denoted
by Ap(X)). From this definition

♦ it is obvious that

Ap(X;K∗,−p) = CHp(X).

For the Chow group CHp(X) of p-codimensional cycles (for smooth irreducible X say)
our notations give

Ap(X;K∗, p) = CH
p(X).

(5.2) Remark. — Unramified cohomology. For a proper smooth variety X over a
field k and a cycle module M over k, the group

A0(X;M) ⊂M
(
k(X)

)

is a birational invariant of the field extension k(X)|k (see Corollary 12.10). A well-
known example here is the unramified Brauer group of k(X)|k. Its n-torsion subgroup
is in our notations given by A0(X;H∗[µ⊗−1n ], 2).

(5.3) Remark. — Relations with local-global spectral sequences. In Quillen’s K-
theory as well as in étale cohomology there are spectral sequences given by codi-
mension of support (see Quillen 1973, Sect. 5; Bloch and Ogus 1974). The corre-
sponding E1-terms together with the d

1-differentials may be identified with the com-
plexes C∗(X;K ′∗, n) and C

∗(X;H∗[D], n). The corresponding E2-terms are of the
form Ep,q2 = Ap(X;K ′∗,−q) and Ep,q2 = Ap(X;H∗[D ⊗ µ⊗−qr ], q), respectively (where
r ·D = 0).

♦ Namely the definition of CHp(X) mentioned in the first sentence of the introduction.
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(5.4) Remark. — The map from Milnor’s to Quillen’s K-theory. The natural ho-
momorphisms K∗F → K ′∗F form a homomorphism of cycle modules. It is an isomor-
phism in degrees ≤ 2. Moreover for a valuation v on F one has ∂v(K3F ) = ∂v(K ′3F ),
see (Merkurjev and Suslin 1987). It follows that the induced homomorphisms

Ap(X;K∗, n)→ Ap(X;K
′
∗, n)

are bijective for n+ p ≤ 2.

6. Acyclicity for Smooth Local Rings

The following observations have been included to underpin the notion of cycle mod-
ules. They are not needed in further sections. M is a cycle module over a field k.

(6.1) Theorem. Let X be smooth and semi-local. Then

Ap(X;M) = 0 for p > 0.

This theorem is known in Quillen’s K-theory (Quillen 1973, § 7, Theorem 5.11) and
in étale cohomology (Bloch and Ogus 1974) and has been proved by O. Gabber for
Milnor’sK-theory. The main step in these proofs is sometimes called “Quillen’s trick”
and carries over to cycle modules as well. Here we follow essentially this method but
with a simplification due to I. Panin.

Let V be a vector space over k and let A(V ) be the associated affine space. For
a linear subspace W of V let

πW : A(V )→ A(V/W ),
πW (v) = v +W

be the projection.

(6.2) Lemma. Let X ⊂ A(V ) be an equidimensional closed subvariety with dimX = d
and let Y ⊂ X be a closed subvariety with dimY < d. Moreover let S ⊂ Y be a finite
subset such that X is smooth in S. Then for a generic (d − 1)-codimensional linear
subspace W of V the following conditions hold.

(1) The restriction
πW | Y : Y → A(V/W )

is finite.

(2) The restriction
πW |X : X → A(V/W )

is locally around S smooth of relative dimension 1.
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Proof : (Panin) We extend the situation to the projective closure A(V ) ⊂ P(V ⊕ k)
with P(V ) ⊂ P(V ⊕ k) as hyperplane at infinity. Let

π̄W : P(V ⊕ k) \ P(W )→ P(V/W ⊕ k),
π̄W ([v, t]) = [v +W, t]

be the projection. π̄W is an affine bundle over P(V/W ⊕ k) which extends the affine
bundle πW over A(V/W ).
Let Y ⊂ P(V ⊕ k) be the closure of Y and let Y∞ = Y ∩ P(V ). Then dimY∞ <

d−1. Hence for generic (d−1)-codimensionalW we have Y∞∩P(W ) = ∅. Therefore
there is the map

π̄W | Y : Y → P(V/W ⊕ k).

This map is finite since it is proper and since π̄W is an affine bundle. This shows (1)
because πW | Y is the pull-back of π̄W | Y along A(V ) ⊂ P(V ⊕ k).
For condition (2) one just needs to guarantee that πW maps for each s ∈ S the

tangent space TsX ⊂ V of X in s epimorphically onto the tangent space V/W of
A(V/W ) in πW (s). This is again an open condition for W . �

This lemma is very close to (Quillen 1973, § 7, Lemma 5.12.) and suffices for all
applications I know. The existence of such a space W is not clear over finite ground
fields and needs some extra discussion. However, if one is in the end interested in
(co-)homology groups, there is usually no problem with replacing the ground field k
by a rational extension k(t1, . . . , tr). In this case one may take for W for example
the tautological subspace of V defined over the function field of the Grassmannian of
(d− 1)-codimensional subspaces of V . In our situation we refer here to the following
remark.

(6.3) Lemma. Let X be a variety over k and let g: Xk(t) → X be the base change.
Then

g∗: Aq(X;M)→ Aq(Xk(t);M)

is injective.

This lemma will be become obvious in the next section where we show that F →
Aq(XF ;M) is a cycle module. Then g

∗ is just the restriction map rk(t)|k for this cycle
module and any specialization sπv at a rational point of P

1 yields a left inverse. (What
one really uses here is Lemma 4.5 with Y = X × P1 and Proposition 4.6.2.)

(6.4) Proposition. Let X be a smooth variety over a field and let Y ⊂ X be a closed
subscheme of codimension ≥ 1. Then for any finite subset S ⊂ Y there is an open
neighborhood X ′ of S in X such that the map

i∗: A∗(Y ∩X ′;M)→ A∗(X
′;M)

is the trivial map. Here i: Y ∩X ′ → X ′ is the inclusion.
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Proof : We may assume that X is affine. By Lemma 6.2 we find a diagram (at least
after replacing k by a rational extension)

Y
i−→ X

ց ւ
A

with Y → A finite and with X → A smooth of relative dimension 1 in S.

Put Z = Y ×A X and consider the diagram

Z
gւրσ ցπ

Y
i−−→ X

where g and π are the projections and σ is the diagonal. Note that π is finite, g is
smooth of relative dimension 1 in S and that σ is a section to g and a lift of the immer-
sion i. Moreover after a localization to an open subset X ′ ⊂ X containing S we may
assume that there is a global parameter t ∈ OZ defining the closed subscheme σ(Y ).
Let (Y, σ, Z, j,Q) be the boundary triple given by σ (with Q = Z \ σ(Y )) and let

g̃: Q→ Y be the restriction of g. Now consider the composite

H: Y
g̃∗
p−→ Q

{t}
p−→ Q

j∗
p−→ Z

π∗p−→ X.

One finds
δ(H) = π∗ ◦ σ∗ ◦ ∂QY ◦ {t} ◦ g̃∗ = π∗ ◦ σ∗ = i∗

by Lemma 4.5. Therefore i∗ is nullhomotopic. �

Proof of Theorem 6.1: We may assume that X is connected. Put d = dimX.
Consider pairs (U, S) where U is a smooth d-dimensional variety of finite type over k
and S ⊂ U is a finite subset such that X is the localization of U in S. Then

Cp(X;M) = lim−→
(U,S)

Cp(U ;M).

Moreover
Cp(U ;M) = Cd−p(U ;M) = lim−→

Y

Cd−p(Y ;M)

where Y runs over the closed p-codimensional subsets of U . Hence

Ap(X;M) = lim
−→
(U,S)

Ap(U ;M) = lim
−→
(U,S)

lim
−→
Y

Ad−p(Y ;M).

But Proposition 6.4 tells that Ad−p(Y ;M) → Ap(U ;M) → Ap(U ′;M) is the trivial
map for small enough U ′ ⊂ U . �
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In the smooth case we sheafify cycle modules as follows. For a smooth variety X
letMX be the Zariski sheaf on X given by

MX(U) = A
0(U ;M) ⊂M(ξX)

for open subsets U of X.

(6.5) Corollary. For a smooth variety X over k there are natural isomorphisms

Ap(X;M) = Hp
Zar(X;MX).

Proof : Define the Zariski sheaves Cp on X by
Cp(U) = Cp(U ;M).

Then there is a complex of sheaves

0 −→MX −→ C0 d−→ C1 d−→ · · · .
The complex is exact. This holds at MX and at C0 by the very definitions. Theo-
rem 6.1 implies exactness at positive dimensions. The corollary follows, since the Cp
are flasque. �

The resolution of MX considered in this proof has nice functorial properties.
Namely, we will define for morphisms f : Y → X maps of complexes (Section 12)

I(f): Cp(X;M)→ Cp(Y ;M)

and, under presence of a ring structure for M , a pairing of complexes (Section 14)

C∗(X;M)× C∗(X;M)→ C∗(X;M).

These are functorial with respect to localizations. Therefore the isomorphisms of
Corollary 6.5 are compatible with pull-backs and with products.

The following example is a nice illustration of Corollary 6.5. Let X be smooth
and define the Zariski sheaf Kn on X by

Kn(U) = A0(U ;K∗, n) ⊂ Knk(X).

The sheaf Kn has a comparatively simple definition: it just refers to the definition
of Milnor’s K-groups for fields and of the residue maps for valuations. Corollary 6.5
yields the following interpretation of the classical Chow groups on a smooth variety:

(6.6) CHp(X) = Hp
Zar(X;Kp).

The same result holds with Milnor’s K-theory replaced by Quillen’s K-theory.
The corresponding sheaf K′n coincides with the sheaf induced from the presheaf U →
KQ
n (U) where K

Q
n (U) denotes the n-th Quillen’s K-group of the category of vector

bundles on U . In this context (6.6) is known as Bloch’s formula (see Quillen 1973,
Thm. 5.19; Grayson 1978).
Another special case of Corollary 6.5 for M = K∗ is

A0(X;K∗, n) = H
d
Zar(X;Kn+d),

with d = dimX. This interpretation of the “Chow groups of zero cycles on X with
coefficients in Kn” was obtained already in (Kato 1986).
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7. The Cycle Modules Aq[ρ;M ]

In this section we show that new cycle modules can be obtained from the Chow groups
of the fibers of a morphism. It was in fact this process of forming local coefficient
systems for cycles which motivated the notion of cycle modules.

Let ρ: Q→ B be a morphism of finite type and let M be a cycle module over Q.
For fields F over B let QF = Q ×B SpecF . We define an object function Aq[ρ,M ]
on F(B) by

Aq[ρ;M ](F ) = Aq(QF ;M).

Our aim is to show that Aq[ρ,M ] is in a natural way a cycle module over B.

All the properties of cycle modules except axiom (C) hold already on complex
level, i.e., for the groups Cq(QF ;M). It is appropriate to establish first the corre-
sponding object function as a cycle premodule.

So let M̂ be the object function on F(B) defined by

M̂(F ) = Cq(QF ;M).

We first describe its data as a cycle premodule. These will be denoted by ϕ̂∗, ϕ̂∗, ∂̂v,
r̂E|F , ĉE|F , etc. in order to distinguish them from the data ϕ∗, ϕ

∗, ∂v, etc. of M .
For a homomorphism of fields ϕ: F → E let ϕ̄: QE → QF be the induced mor-

phism. We define the data D1 and D2 by

ϕ̂∗ = ϕ̄
∗: Cq(QF ;M)→ Cq(QE ;M),

ϕ̂∗ = ϕ̄∗: Cq(QE ;M)→ Cq(QF ;M).

For D3 we take the K∗F -module structure on Cq(QF ;M) described in (3.6). To

establish D4 put Q̃v = Q×B SpecOv. It has over SpecOv the generic fiber QF and
the special fiber Qκ(v). Define

∂̂v: Cq(QF ;M)→ Cq(Qκ(v);M)

by (∂̂v)
x
y = ∂

x
y with ∂

x
y as in (2.1.0) with respect to the scheme Q̃v.

(7.1) Theorem. Together with these data, M̂ is a cycle premodule over B.

Proof : All the required properties follow from the rules and axioms for M and from
Section 4.
Below we consider R3a in detail. Here is a sketch for the other (less complicated)

cases:
for R1a use (4.1.2); for R1b use (4.1.1);
for R1c use (4.1.3) and a length consideration;
for R2a use (4.3.1); for R2b use (4.2.1); for R2c use R1c and R2c;
for R3b use (4.6.1); for R3c use R3c;
for R3d use (1.5) and R3d; for R3e use R2b and R3e.
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Proof of R3a: Let gξ: QF → QE and g0: Qκ(v) → Qκ(w) be the projections. We
have to show that the following diagram is commutative:

Cq(QF ;M)
∂̂v−→ Cq(Qκ(v);M)xg∗ξ

xe·g∗0
Cq(QE ;M)

∂̂w−→ Cq(Qκ(w);M).

We want to apply Proposition 4.6.2 to the projection g: Q̃v → Q̃w. The pull-back
of g along SpecE → SpecOw is gξ. Let

ḡ0: Q̄κ(v) = Q̃v ×SpecOw Specκ(w)→ Qκ(w)

be the pull-back of g along Specκ(w) → SpecOw. Note that Q̄κ(v) and Qκ(v) have
the same reductions and therefore the same cycle groups.
We claim ḡ∗0 = e · g∗0 . Let R = Ov ⊗Ow κ(w). Note that g0, ḡ0 are the pull-

backs along Qκ(w) → Specκ(w) of the morphisms Specκ(v)→ Specκ(w), SpecR →
Specκ(w), respectively. The claim follows from e = lR(R) and a standard length
consideration.
It remains to show that the diagram commutes with e · g∗0 replaced by ḡ∗0 . This

follows (cum grano salis, see the following remark) from Proposition 4.6.2.
Remark. When applying here Proposition 4.6 in a formal way, there appears

an artificial problem caused by the fact that the dimension index does not behave
perfectly well for schemes over local rings like Q̃v. However, note that to check a
commutativity like ∂v ◦ g∗ξ = ḡ∗0 ◦ ∂w it suffices to restrict to the components cor-
responding to points x ∈ QE(q) with {x} ∩

(
Qκ(w)

)
(q) 6= ∅ . For these points one

has x ∈ (Q̃w)(q+1) by the dimension inequality (Matsumura 1980, p. 85). A similar
remark applies to Q̃v. Therefore the desired identity follows from d ◦ g∗ = g∗ ◦ d on
Cq+1(Q̃w;M). One may avoid these considerations by looking more closely to the
proof of Proposition 4.6. �

We have to relate the differentials for the cycle premodule M̂ to the differentials
for the cycle module M .
Let X → B be a scheme over B and let X̃ = Q×B X. Then for x, y ∈ X there

is the map
∂̂xy : M̂(x)→ M̂(y)

according to (2.1.0). By definition this is a map

∂̂xy : Cq(Qκ(x);M)→ Cq(Qκ(y);M)

between cycle groups with coefficients in M .

(7.2) Proposition. Let x̃, ỹ ∈ X̃ be points lying over x, y ∈ X, respectively, and
suppose x̃ ∈

(
Qκ(x)

)
(q) and ỹ ∈

(
Qκ(y)

)
(q). Denote by (∂̂

x
y )
x̃
ỹ the component of ∂̂

x
y with

respect to x̃ and ỹ. Then

(∂̂xy )
x̃
ỹ = ∂

x̃
ỹ : M(x̃)→M(ỹ).
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Proof : We may assume ỹ ∈ {x̃}(1), since otherwise both sides are trivial. The dimen-
sion inequality (Matsumura 1980, p. 85) shows then y ∈ {x}(1). Let v run through
the valuations of κ(x) with center y in X. Moreover let w run through the valuations
on κ(x̃) with center ỹ in X̃. The restriction of any w to κ(x) is one of the valuations v.

Let w̃ ∈ Qκ(v) be the center of w in X̃ ×X SpecOv. Now the claim follows from

(∂̂xy )
x̃
ỹ = (

∑

v

ĉκ(v)|κ(y) ◦ ∂̂v)x̃ỹ

=
∑

v

∑

w|v
(ĉκ(v)|κ(y))

w̃
ỹ ◦ (∂̂v)x̃w̃

=
∑

v

∑

w|v
cκ(w̃)|κ(ỹ) ◦ cκ(w)|κ(w̃) ◦ ∂w

=
∑

w

cκ(w)|κ(ỹ) ◦ ∂w = ∂x̃ỹ . �

It follows from Proposition 4.6 that the data of the cycle premodules M̂ (for
various q) commute resp. anti-commute with the differentials of the complexes
C∗(QF ;M). Passing to homology we obtain data D1–D4 for the object functions
Aq[ρ;M ].

(7.3) Theorem. Together with these data, Aq[ρ;M ] is a cycle module over B.

Proof : The rules for the data of the cycle premodule Aq[ρ;M ] are immediate from

the rules for M̂ . Moreover axiom (FD) for M and Proposition 7.2 show that (FD)

holds for M̂—consequently also for Aq[ρ;M ]. It remains to verify axiom (C).
Consider the maps♦

Cq(Qκ(ξ))
Θ−→ Cq−1(Qκ(ξ))⊕

∐

x∈X(1)
Cq(Qκ(x))⊕ Cq+1(Qκ(x0))

Θ−→ Cq(Qκ(x0))

defined by Θzy = ∂
z
y with ∂

z
y as in (2.1.0) with respect to the scheme Q×B X.

By Proposition 7.2 we are reduced to show Θ ◦ Θ = 0. It suffices to check
(Θ ◦Θ)zy = 0 for z ∈

(
Qκ(ξ)

)
(q) and y ∈

(
Qκ(x0)

)
(q) with y ∈ {z}(2) (here {z} is the

closure of z in X̃). The dimension inequality (Matsumura 1980, p. 85) shows

Z(1) ⊂
(
Qκ(ξ)

)
(q−1) ∪

⋃

x

(
Qκ(x)

)
(q) ∪

(
Qκ(x0)

)
(q+1)

with Z = {z}(y). We are done by axiom (C) for M . �

In the following proposition we formulate some functorial properties of the con-
struction ρ→ Aq[ρ;M ]. Let

(7.4.0)

Y
h−→ X

ηց ւρ

B

♦ Here the indication of the cycle module M has been dropped.
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be a commutative diagram with η and ρ of finite type and let M be a cycle module
over X. For a field F over B let

hF : YF → XF

be the morphism induced by h.

(7.4) Proposition. The following transformations are homomorphisms of cycle
modules over B:

(1) For proper h let
[h∗]: Aq[η;M ]→ Aq[ρ;M ]

with [h∗]F = (hF )∗.

(2) For flat h of relative dimension s let

[h∗]: Aq[ρ;M ]→ Aq+s[η;M ]

with [h∗]F = [h∗F ].

(3) For a global unit a on X let

[{a}]: Aq[ρ;M ]→ Aq[ρ;M ]

with [{a}]F = {a |XF }.
(4) For a boundary triple (Y, i,X, j, U) let

[∂] = [∂UY ]: Aq[ρ ◦ j;M ]→ Aq−1[ρ ◦ i;M ]

with [∂]F the boundary map for YF → XF .

Proof : One has to check the compatibility with D1–D4. This follows for (1) from
(4.1.3), (4.1.1), (4.2.1) and (4.6.1); for (2) from (4.1.2), (4.1.3), (4.3.1) and (4.6.2);
for (3) from (4.2.1), (4.3.1), the anti-commutativity of K∗ and (4.6.3); for (4) from
(4.6.1), (4.6.2), (4.6.3) and (C). �

Let ρ: Q → B be flat and not necessarily of finite type. One may then define
cycle modules Aq[ρ;M ] with

Aq[ρ;M ](F ) = Aq(QF ;M).

To establish these cycle modules one proceeds analogous to the Aq[ρ;M ] above. Al-
ternatively one may reduce to the consideration of the Aq[ρ;M ] as follows. If ρ is of
finite type, one may assume that it is of constant dimension s. In this case one has
Aq[ρ;M ] = As−q[ρ;M ]. For the general case note that (at least locally with respect
to B) one has Aq(QF ;M) = lim−→

Aq(Q′F ;M) where ρ
′: Q′ → B runs through the flat

finite type models of ρ.
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8. Fibrations

In this section we consider the spectral sequence associated to a morphism and formu-
late some basic functorial properties. A first application yields the homotopy property
for vector bundles.

From now on all schemes are assumed to be of finite type over a field and M is
(with exceptions in Section 14) a cycle module over X.

For a morphism ρ: X → X ′ we put

Cp,l(ρ) =
∐

x∈X(p,l)
M(x) ⊂ Cl(X;M)

where

X(p,l) =
{
x ∈ X(l) | dim

(
ρ(x), X ′

)
≤ p

}
.

Then

· · · ⊂ Cp−1,∗(ρ) ⊂ Cp,∗(ρ) ⊂ · · · ⊂ C∗(X;M)

is a finite filtration of C∗(X;M) by subcomplexes. This filtration has the subquotients

∐

u∈X′
(p)

C∗(Xκ(u);M).

Let
(
Enp,q(ρ)

)
n
be the associated spectral sequence (see e.g. Hilton and Stamm-

bach 1971). The differential for X restricts on C∗(Xκ(u);M) to the differential
for Xκ(u). Therefore

E1p,q(ρ) =
∐

u∈X′
(p)

Aq(Xκ(u);M).

(8.1) Proposition. The differential d1p,q of this spectral sequence equals the differ-
ential dX′ for the cycle module Aq[ρ;M ].

Proof : For u′ ∈ X ′(p), y
′ ∈ X ′(p−1) we have to check equality of the corresponding

components of d1p,q and dX′ :

(
d1p,q

)u′
y′
= (dX′)

u′

y′ : Aq(Xκ(u′);M)→ Aq(Xκ(y′);M).

The map (d1p,q)
u′

y′ is by definition induced from the map

Θ: Cq(Xκ(u′);M)→ Cq(Xκ(y′);M)

where Θuy = ∂
u
y for u, y ∈ X lying over u′, y′, respectively.

The claim follows from Proposition 7.2. �

Documenta Mathematica 1 (1996) 319–393



366 Markus Rost

(8.2) Corollary. There is a convergent spectral sequence

E2p,q(ρ) = Ap(X
′;Aq[ρ;M ]) =⇒ Ap+q(X;M).

If X ′ is equidimensional and ρ is flat, then there is a convergent spectral sequence

Ep,q2 (ρ) = A
p(X ′;Aq[ρ;M ]) =⇒ Ap+q(X;M). �

Here the second statement follows from the first by a formal switch to codimension
index. In this codimension setting one may drop the finite type hypotheses.

(8.3) Remark. We will use the following dictions. Let ρ: X → X ′, η: Y → Y ′ be
morphisms. Then α: X p→ Y is called filtration preserving (with respect to ρ, η) of
degree (r, t), if

α
(
Cp,l(ρ)

)
⊂ Cp+r,l+t(η).

If δ(α) = 0 (see Sec. 3 for the definition of δ), then α is homomorphism of filtered
complexes and induces maps (denoted by the same letter)

α: Enp,q(ρ)→ Enp+r,q+t−r(η).

Two filtration preserving maps α, β: X p→ Y of degree (r, t) are called homotopic, α ≃
β, if there is a filtration preserving H: X p→ Y of degree (r + 1, t + 1) such that
α − β = δ(H). If δ(α) = δ(β) = 0 and α ≃ β, then the induced maps on the E2-
terms coincide. If the homotopy H can be chosen of degree (r, t + 1), then already
the induced maps on the E1-terms coincide. This follows from a little calculation
working for arbitrary filtered complexes.

Let

(8.4.0)

Y
f−→ X

yη
yρ

Y ′
f ′−→ X ′

be a commutative diagram of morphisms. The following statement is trivial.

(8.4) Lemma.

(1) One has
f∗
(
Cp,l(η)

)
⊂ Cp,l(ρ).

(2) Suppose f has relative dimension t and let s ≥ s(f ′), see (3.5.1). Then

f∗
(
Cp,l(ρ)

)
⊂ Cp+s,l+t(η).

(3) If a is a unit on X, then

{a} ·
(
Cp,l(ρ)

)
⊂ Cp,l(ρ).
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(4) Let (Y, i,X, j, U) be a boundary triple. Then

∂UY
(
Cp,l(ρ ◦ j)

)
⊂ Cp,l−1(ρ ◦ i).

(5) For the diagram (4.4.0) one has

∂UY
(
Cp,l(

¯̄h)
)
⊂ Cp−1,l−1(h̄). �

Let

(8.5.0)

Y
f̂−→ Ŷ

f̄−→ X
yη

yρ̂
yρ

Y ′ == Y ′
f ′−→ X ′

be the natural decomposition of diagram (8.4.0) with Ŷ = Y ′ ×X′ X and f = f̄ ◦ f̂ .
We call the diagram (8.4.0) a flat square if f̂ and f ′ are flat of some constant relative
dimensions. This holds then also for f .
We use the natural identification

Aq[ρ̂; (f̄)
∗M ] = (f ′)∗Aq[ρ;M ]

of cycle modules over Y ′.

(8.5) Proposition.

(1) If f and f ′ are proper, then the map

f∗: E
2
p,q(η)→ E2p,q(ρ)

corresponding to (8.4.1) equals the composite

Ap(Y
′;Aq[η;M ])

[f̂∗]#−−→ Ap(Y
′;Aq[ρ;M ])

f ′∗−−→ Ap(X
′;Aq[ρ;M ]).

(2) Suppose the square (8.4.0) is flat and put r = dim(f ′), s = dim(f̂). Then the map

f∗: E2p,q(ρ)→ E2p+r,q+s(η)

corresponding to (8.4.2) equals the composite

Ap(X
′;Aq[ρ;M ])

(f ′)∗−−→ Ap+r(Y
′;Aq[ρ;M ])

[f̂∗]#−−→ Ap+r(Y
′;Aq+s[η;M ]).

(3) For a global unit a on X the map

{a}: E2p,q(ρ)→ E2p,q(ρ)

corresponding to (8.4.3) equals [{a}]#.
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(4) The map
∂: E2p,q(ρ ◦ j)→ E2p,q−1(ρ ◦ i)

corresponding to (8.4.4) equals [∂UY ]#.

(5) The map

∂: E2p,q(
¯̄h)→ E2p−1,q(h̄)

corresponding to (8.4.5) equals the map

∂U
′

Y ′ : Ap(U
′;Aq[h;M ])→ Ap−1(Y

′;Aq[h;M ]).

Proof : (3) is trivial. (5) follows from Proposition 8.1. In (1) and (2) one may suppose

either f = f̂ or f = f̄ .

Proof of (1) for f = f̂ : Here X ′ = Y ′ and the map

f∗: Cl(Y ;M)→ Cl(X;M)

is the family of maps

(fκ(u))∗: Cq(Yκ(u);M)→ Cq(Xκ(u);M)

with u ∈ X ′(p) and p+ q = l. On the other hand

[f̂∗]#: Cp(X
′;Aq[η;M ])→ Cp(X

′;Aq[ρ;M ])

is componentwise induced by the maps (fκ(u))∗.

Proof of (1) for f = f̄ : Here we have a pull-back diagram, Y = Y ′ ×X′ X. We
consider the maps induced by

f∗: Cl(Y ;M)→ Cl(X;M)

on the E1-terms. These are maps (with p+ q = l)
∐

y′∈Y ′
(p)

Cq(Xκ(y′);M) −→
∐

x′∈X′
(p)

Cq(Xκ(x′);M).

Their components are the corestrictions cκ(y)|κ(x) with y ∈
(
Xκ(y′)

)
(q), y

′ ∈ Y ′(p) and
f(y) ∈

(
Xκ(x′)

)
(q), x

′ = f ′(y′) ∈ X(p). Here κ(y′) is necessarily finite over κ(x′), since
both fields have the same transcendence degree. Therefore the maps on the E1-terms
are given by the maps

(f ′y′)∗: Cq(Xκ(y′);M)→ Cq(Xκ(f ′(y′));M)

with y′ ∈ Y ′(p) such that κ(y′)|κ(f ′(y′)) is finite and where

f ′y′ : Xκ(y′) → Xκ(f ′(y′))

is the associated finite morphism. On the other hand

f ′∗: Cp(Y
′;Aq[ρ;M ])→ Cp(X

′;Aq[ρ;M ])

is induced exactly by the maps f ′y′ .
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Proof of (2) for f = f̂ : One argues as for (1) and notes that

f∗: Cl(X;M)→ Cl+s(Y ;M)

is the family of maps

(fκ(u))
∗: Cq(Xκ(u);M)→ Cq+s(Yκ(u);M)

with u ∈ X ′(p) and p+ q = l.
Proof of (2) for f = f̄ : The map

f∗: Cl(X;M)→ Cl+r(Y ;M)

is the family of maps

[OY , f ]xy · rκ(y)|κ(x): M(x)→M(y)

with y ∈ Y(l+r), x ∈ X(l) and f(y) = x.
The map

(f ′)∗: Cp(X
′;Aq[ρ;M ])→ Cp+r(Y

′;Aq[ρ;M ])

is the family of maps induced by the maps

[OY ′ , f ′]x
′

y′ · (f ′y′)∗: Cq(Xκ(x′);M)→ Cq(Xκ(y′);M)

with y′ ∈ Y ′(p+r), x′ ∈ X ′(p), f ′(y′) = x′ and where f ′y′ : Xκ(y′) → Xκ(x′) is the natural

map. Moreover (f ′y′)
∗ is the family of maps

[OX ⊗OX′ κ(y′), f ′y′ ]xy · rκ(x)|κ(y): M(x)→M(y)

with y ∈ Y(p+q+r) lying over x ∈ X(p+q) and over y′.
The claim amounts to show for such points y′, x′, y, x the equality

l
(
(κ(x) ⊗OX′ OY ′)(y)

)
= l
(
(κ(x′)⊗OX′ OY ′)(y′)

)
· l
(
(κ(x)⊗OX′ κ(y′))(y)

)
.

For this see (Fulton 1984, A.4.1).

Proof of (4): The map

∂UY : Cl(U ;M)→ Cl−1(Y ;M)

is on the subquotients of the filtrations given by the family of maps

∂u: Cq(Uκ(u);M)→ Cq−1(Yκ(u);M)

with u ∈ X ′(p), p+ q = l and where ∂u is the boundary map for the closed immersion
Yκ(u) → Xκ(u). On the other hand

[∂UY ]#: Cp (X
′;Aq[ρ ◦ j;M ])→ Cp (X

′;Aq[ρ ◦ i;M ])

is componentwise induced by the maps ∂u. �
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By an affine bundle of dimension n we mean a bundle π: V → X which is locally
on X isomorphic to X × An → X with affine transition maps. (In applications we
are mainly interested in the special case of vector bundles.)

A first application of the spectral sequence is

(8.6) Proposition. Let π: V → X be an affine bundle of dimension n. Then

π∗: Ap(X;M)→ Ap+n(V ;M)

is bijective for all p. If X is equidimensional, then

π∗: Ap(X;M)→ Ap(V ;M)

is bijective for all p.

Here again the second statement follows from the first and one may drop in the
codimension setting the finite type hypothesis.

Proof : By Corollary 8.2 and Proposition 8.5.2 applied to Y ′ = X ′ = X, Y = V ,
f = f̂ = π, all we need to show is

Aq[π;M ] = 0 for q 6= n

and that

[π∗]: M = A0[idX ;M ]→ An[π;M ]

is an isomorphism of cycle modules over X.

Therefore we are reduced to the case X = SpecF . Then V is a trivial bundle,
V = AnF . For n = 1 the claim is (H) of Section 2. So we know Proposition 8.6 for
line bundles over an arbitrary base. But then the case V = AnF follows by induction
on n. �
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9. Homotopy

We have just observed the homotopy property for affine bundles. In this section we
show that this fact can be made more precise on cycle level by means of a homotopy
inverse.

A homomorphism α: X p→ Y with δ(α) = 0 is called a strong homotopy equiva-
lence if there is r: Y p→ X and H: Y p→ Y such that

δ(r) = 0,(9.0.1)

r ◦ α = id,(9.0.2)

H ◦ α = 0,(9.0.3)

δ(H) = id− α ◦ r.(9.0.4)

The pair (r,H) will be called h-data for α.
Let π: V → X be an affine bundle. We will show that π∗: X p→ V is a strong

homotopy equivalence. A crucial point here is the treatment of the case V = X ×A1.
The general case is then more or less clear in view of the decomposition of the cycle
complexes corresponding to boundary triples. We give here explicit formulas in order
to make clear compatibility with base change and filtrations.
By a coordination τ = (Xi, τi) of an affine bundle π: V → X of dimension n we

mean a sequence ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xk = X of closed subsets of X together with
trivializations

τi: V | (Xi \Xi−1)→ (Xi \Xi−1)× An.

(We use the notation V | U = V ×W U for U ⊂ W and a scheme V → W over W ).
Coordinations clearly exist since X is noetherian. For a morphism f : Y → X we
denote by f∗τ the induced coordination on the pull-back bundle f∗V .
In the following we construct in several steps h-data

r(τ): Cp(V ;M)→ Cp−n(X;M),

H(τ): Cp(V ;M)→ Cp+1(V ;M)

for π∗ depending on a coordination τ .

(9.1) The case V = X × A1. h-data (r,H) for π∗: X p→ X × A1 are given by the
composites

r: X×A1 j∗
p−→ X×(A1\{0}) {−1/t}

p−−−→ X×(A1\{0}) ∂∞p−→ X,

H: X×A1 p∗2p−→ X×(A1×A1\∆) {s−t}
p−−−→ X×(A1×A1\∆) p1∗p−→ X×A1.

Here t is the coordinate of A1 = SpecZ[t] and s, t are the coordinates of A1 ×A1 =
SpecZ[s] × SpecZ[t] . Moreover ∆ = {s − t = 0} is the diagonal, j is the standard
inclusion, p1 and p2 are given by the standard projections and ∂∞ is induced by
X = X ×∞ ⊂ X × (P1 \ {0}) with open complement X × (A1 \ {0}).
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We have to verify for (r,H) the defining properties of h-data. (9.0.1) and (9.0.3)
are immediate and (9.0.2) follows from Lemma 4.5. To check (9.0.4) consider the
decomposition

(p1)∗: X × (A1 × A1 \∆) q∗
p−→ X × A1 × P1 p̄1∗p−→ X × A1

where q is the inclusion and p̄1 is the projection. p̄1 is proper and therefore

δ(H) = (p̄1)∗ ◦ δ(q∗) ◦ {s− t} ◦ p∗2.

Moreover
δ(q∗) = (i∆)∗ ◦ ∂∆ + (i∞)∗ ◦ ∂∞

where i∆: X×∆→ X×A1×P1 , i∞: X×A1×∞→ X×A1×P1 are the inclusions
and ∂∆, ∂∞ are the boundary maps for X × ∆ → X × A1 × A1 , X × A1 ×∞ →
X × (A1 × P1 \∆) , respectively.
Since s− t is a parameter for ∆ one finds

(p̄1)∗ ◦ (i∆)∗ ◦ ∂∆ ◦ {s− t} ◦ p∗2 = id

by Lemma 4.5.
Let W = A1 × P1 \ (∆ ∪ A1 × 0) . Moreover let p̃2 be the restriction of p2 to

U = X × (W \ A1 × ∞) and let ∂̃∞ be the boundary map corresponding to the
inclusion X × A1 ×∞ → X ×W . Then

∂∞ ◦ {s− t} ◦ p∗2 = ∂̃∞ ◦ {s− t} ◦ p̃∗2.

Since (s− t)/(−t) is a unit on W with constant value 1 on X × A1 ×∞ one has

∂̃∞ ◦ {s− t} ◦ p̃∗2 = ∂̃∞ ◦ {−t} ◦ p̃∗2.

The compatibility of the boundary maps with flat pull-back now gives

(p̄1)∗ ◦ (i∞)∗ ◦ ∂∞ ◦ {s− t} ◦ p∗2 = −π∗ ◦ r.

Putting things together yields (9.0.4).

(9.2) The case V = X × An. Let πn: X × An → X be the projection and put
πnX = π∗n: X p→ X × An . By induction on n we define h-data (rnX ,Hn

X) for π
n
X .

Let Y = X × A1 so that Y × An−1 = X × An . Note that πnX = πn−1Y ◦ π∗ where
π: Y → X is the projection. Put

rnX = r ◦ rn−1Y ,

Hn
X = H

n−1
Y + πn−1Y ◦H ◦ rn−1Y .

Here (r,H) are the h-data for π∗ from (9.1); moreover, r0Y = π
0
Y = id

∗
Y and H

0
Y = 0.
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The properties (9.0.1) and (9.0.2) can be easily verified. For (9.0.3) note that

Hn
X ◦ πnX = Hn

X ◦ πn−1Y ◦ π∗

= (Hn−1
Y ◦ πn−1Y ) ◦ π∗ + πn−1Y ◦H ◦ (rn−1Y ◦ πnY ) ◦ π∗

= 0 + πn−1Y ◦ (H ◦ π∗) = 0.

Finally (9.0.4) follows from

δ(Hn
X) = δ(H

n−1
Y ) + πn−1Y ◦ δ(H) ◦ rn−1Y

= 1− πn−1Y ◦ rn−1Y + πn−1Y ◦ (1− π∗ ◦ r) ◦ rn−1Y

= 1− πnX ◦ rnY .

(9.3) Glueing. Let π: V → X be an affine bundle, let Y ⊂ X be closed, let
U = X \ Y and put V ′ = V | Y , V ′′ = V | U . For given h-data (r′,H ′) for
(π | V ′)∗: Y p→ V ′ and (r′′,H ′′) for (π | V ′′)∗: U p→ V ′′ we define h-data (r,H) for
π∗: X p→ V by the formulae:

r =

(
r′ −r′ ◦ ∂ ◦H ′′
0 r′′

)
, H =

(
H ′ −H ′ ◦ ∂ ◦H ′′
0 H ′′

)
.

Here the matrix notation refers to the natural decompositions

C∗(X;M) = C∗(Y ;M)⊕ C∗(U ;M),
C∗(V ;M) = C∗(V

′;M)⊕ C∗(V ′′;M).

Moreover ∂: V ′′ p→ V ′ is the boundary map corresponding to V ′ ⊂ V . The verifi-
cation of (9.0.1)–(9.0.4) is straightforward and omitted.

(9.4) The general case. Given a coordination τ one uses iteratively the recipe of
(9.3) to construct h-data

(
r(τ),H(τ)

)
for π∗.

It turns out that the glueing process of (9.3) is “associative” in the sense that(
r(τ),H(τ)

)
does not depend on the ordering in which the different pieces are glued

together. However, this is not at all important for us; one should just decide oneself
for some fixed standard ordering.

(9.5) Functoriality. The construction of
(
r(τ),H(τ)

)
is compatible with manip-

ulations on the base given by the four types of maps f∗, g∗, {a} and ∂. We omit a
formulation, since this will be used only in the trivial case of open immersions g.

(9.6) Proposition.

(1) Let π: V → X be an affine bundle of dimension n with coordination τ and let
ρ: X → X ′ be a morphism. Then

r(τ)
(
Cp,l(ρ ◦ π)

)
⊂ Cp,l−n(ρ),

H(τ)
(
Cp,l(ρ ◦ π)

)
⊂ Cp,l+1(ρ).
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(2) Let
V

π−→ X
yη

yρ

V ′
π′−→ X ′

be a pull-back diagram with π′ an affine bundle of dimension n and let τ ′ be a coor-
dination for π′. Then

r(ρ∗τ ′)
(
Cp,l(η)

)
⊂ Cp−n,l−n(ρ),

H(ρ∗τ ′)
(
Cp,l(η)

)
⊂ Cp+1,l+1(ρ).

Proof : This is straightforward (but nevertheless tedious) by following the construc-
tions. �

In order to define h-data as above one needs less than the choice of a coordination.
For example, in (9.2) one refers alone to trivializations of the one-dimensional bundles
X × Am+1 → X × Am .
We have not tried to describe the precise amount of information of a coordination

needed in order to perform the above construction.

10. Deformation to the Normal Cone

This section describes three general constructions associated to closed imbeddings:
the normal cone, the deformation space and the double deformation space.
For the general role of the deformation space in intersection theory, we refer to

(Fulton 1984). The double deformation space will be our tool to verify associativity
of the intersection operations.

We first fix notations and describe some significant properties. Explicit descrip-
tions are given in (10.3)–(10.5) below.

Let Z → Y → X be closed imbeddings.
The normal cone to Y in X is denoted by N = NYX = N(X,Y ). There is the

projectionNYX → Y and the inclusion Y → NYX. If Y → X is a regular imbedding,
then NYX is a vector bundle over Y with the inclusion as zero section.
The deformation space D = D(X,Y ) is a scheme over X ×A1. It is flat over A1.

Over A1 \ {0} ⊂ A1 one has

D | (A1 \ {0}) = X × (A1 \ {0}).

Furthermore the projection D | {0} → X×{0} factors through Y → X×{0} and one
has

D | {0} = NYX
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as schemes over Y . (Our D is in Fulton 1984, Chap. 5 denoted by M0; moreover we
have taken 0 instead of ∞ as the basepoint of the special fiber.)
The double deformation space D = D(X,Y, Z) is a scheme over X × A2. It is

flat over A2 and one has the following canonical identifications of schemes over A2,
assuming in (10.0.3)–(10.0.5) that Z → Y → X are regular imbeddings.

D | A1 × (A1 \ {0}) = D(X,Y )× (A1 \ {0}),(10.0.1)

D | (A1 \ {0})× A1 = (A1 \ {0})×D(X,Z),(10.0.2)

D | A1 × {0} = D(NZX,NZY ),(10.0.3)

D | {0} × A1 = D(NYX,NYX | Z).(10.0.4)

Moreover the projection D | {(0, 0)} → X × {(0, 0)} factors through Z → X and one
has

(10.0.5) D | {(0, 0)} = N(NZX,NZY ) = N(NYX,NYX | Z)

as schemes over Z.

There is a more symmetric but less general version of the double deformation
space. Namely, let Y , Y ′ be closed subschemes of X and let Z be the intersection
of Y and Y ′, i.e., Z = Y ×X Y ′. Then there is a double deformation space D̃ =
D̃(X;Y, Y ′) → X × A2 relating (in the transversal case) all five inclusions induced
from Z ⊂ Y, Y ′ ⊂ X . The deformation space D̃ is flat over A2 and symmetric with
respect to a simultaneous interchange of Y , Y ′ and of the factors of A2 = A1 × A1.
Suppose that Y and Y ′ meet transversally. Then

D̃ | (A1 \ {0})× A1 = D(X,Y )× A1,

D̃ | {0} × A1 = D(NYX,NYX | Z).

Moreover one has D̃ | L = D(X,Z) for any line L ⊂ A2 through the origin as long as
L is different from the two axes.

In the case Z = Y ×X Y ′, the space D(X,Y, Z) is the pull-back of the space
D̃(X;Y, Y ′) along the affine blow up A2 → A2, (t, s)→ (ts, s). We don’t need D̃, but
we have included below its definition, since it might be a bit simpler to understand
than D.

We have to recall facts from local algebra. Remark 10.1 is a special version of
the local criterion of flatness (Matsumura 1980, (20.G), p. 152). Remark 10.2 may be
deduced by considering locally regular sequences for J containing regular sequences
for I (see Serre 1957). For a compact account of other facts needed in the following
we refer to (Fulton 1984, App. A, App. B).

(10.1) Remark. A morphism U → V × A1 is flat if and only if the morphisms
U ×A1 (A1 \ {0})→ V × (A1 \ {0}) , U ×A1 {0} → V × {0} and U → A1 are flat. �
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(10.2) Remark. If Z → Y and Y → X are regular imbeddings, then Z → X is a
regular imbedding. If X is affine, and if X = SpecA and I ⊂ J ⊂ A are the ideals
corresponding to Y and Z, respectively, then

InJm ∩ Jm+n+1 = InJm+1,(1)

InJm ∩ In+1 = In+1Jm−1.(2)

Here we understand n, m ∈ Z with In = Jn = A for n ≤ 0. �

We next give the definitions of N , D, D and D̃ for affine X. From the naturality
of the affine constructions it will be obvious that they extend to global ones.
We keep the notations of Remark 10.2. Moreover we use the coordinates A1 =

Spec k[t] and A2 = Spec k[t, s]. The indices n, m always run in Z.

(10.3) The normal cone. N = NYX is defined as the spectrum of the ring

ON =
∐

n

In/In+1.

ON is a ring over OY = A/I and projection to the degree zero summand gives a
homomorphism ON → OY .

(10.4) The deformation space. D = D(X,Y ) is defined as the spectrum of the
subring

OD =
∑

n

In · t−n ⊂ A[t, t−1].

OD is a finitely generated ring over A[t] (with generators xit
−1 if xi are generators

of I). After inverting t one has

OD[t
−1] = A[t, t−1].

Since t is not a zero divisor, it follows that OD is flat over k[t]. Moreover

OD / t ·OD =
∐

n

In/In+1 = ON .

For later purposes we are very precise about this identification: for x ∈ In the residue
of x · t−n mod In+1 · t−n corresponds to (−1)nx mod In+1. (This sign convention
will avoid some other signs later on.)

(10.5) The double deformation space. D = D(X,Y, Z) is the spectrum of the
subring

OD =
∑

n,m

InJm−n · t−ns−m ⊂ A[t, s, t−1, s−1].

OD is finitely generated over A[s, t]. After inverting s or t one has (with D
′ =

D(X,Z))

OD[s
−1] =

∑

n,m

In · t−ns−m = OD[s, s−1],

OD[t
−1] =

∑

n,m

Jm · t−ns−m = OD′ [t, t−1].
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This shows (10.0.1) and (10.0.2). For (10.0.3) note first

OD / s ·OD =
∐

n,m

[InJm−n/InJm−n+1] · t−ns−m.

In order to make clear the ring structures (in particular as ring over k[t, s]) we keep
here the terms t−ns−m, having now merely the meaning of symbols.
Moreover NZX and NZY are the spectra of

R =
∐

m

[Jm/Jm+1] · s−m,

R′ =
∐

m

[(Jm + I)/(Jm+1 + I)] · s−m,

The projection R→ R′ yields an inclusion NZY → NZX.
Let Ĩ = ker(R→ R′). By Remark 10.2.2 one has Jm∩I ⊂ I ·Jm−1 and therefore

Ĩ =
∐

m

[(I · Jm−1 + Jm+1)/Jm+1] · s−m

and
Ĩn =

∐

m

[(In · Jm−n + Jm+1)/Jm+1] · s−m.

Hence D(NZX,NZY ) is the spectrum of
∐

n

Ĩn =
∐

n,m

[(In · Jm−n + Jm+1)/Jm+1] · t−ns−m.

(10.0.3) follows now from Remark 10.2.1.
For (10.0.4) note first

OD / t ·OD =
∐

n,m

[InJm−n/In+1Jm−n−1] · t−ns−m.

For the ring of NYX we write now

ON =
∐

n

[In/In+1] · u−n.

Let J̃ ⊂ ON be the ideal corresponding to the closed subscheme NYX |Z. Its powers
are

J̃m =
∐

n

[(JmIn + In+1)/In+1] · u−n.

Hence D(NY Z,NYX | Z) is the spectrum of
R′′ =

∐

n,m

[(JmIn + In+1)/In+1] · u−ns−m.

Define
ϕ: OD / t ·OD → R′′,

(x mod In+1Jm−n−1) · t−ns−m → (x mod In+1) · u−ns−m+n.
It is easy to see that ϕ is a surjective ring homomorphism over k[s]. Moreover ϕ
is injective by Remark 10.2.1. The map ϕ gives the identification of (10.0.4). Now
(10.0.5) is obvious. The flatness over A2 (not needed in the following) may be deduced
from Remark 10.1.
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(10.6) The double deformation space D̃. We just give the definition. Let I ′ ⊂ A
be the ideal corresponding to Y ′ → X. One puts

O
D̃
=
∑

n,m

InI ′m · v−ns−m ⊂ A[v, s, v−1, s−1].

One may handle with D̃ similar as with D in (10.5). In the transversal case one has

OD = OD̃ ⊗k[v,s] k[t, s]

where k[v, s] ⊂ k[t, s] via v → ts, s→ s and with J = I + I ′.

11. The Basic Construction

For a closed immersion i: Y → X we define

J(i) = J(X,Y ): X p→ NYX

as the composite of

X
π∗
p−→ X × (A1 \ {0}) {t}p−→ X × (A1 \ {0}) ∂

p−→ NYX.

Here π: X × (A1 \ {0})→ X is the projection, A1 = Spec k[t] and ∂ is the boundary
map for NYX → D(X,Y ). One has δ

(
J(X,Y )

)
= 0 so that J(X,Y ) is a homomor-

phism of complexes C∗(X;M)→ C∗(NYX;M) .
IfM = K∗, then the restriction of J(X,Y ) to the classical cycle groups coincides

with the specialization homomorphisms σ of (Fulton 1984, Chap. 5.2); this may be
deduced from the description of σ in (Fulton 1984, Prop. 5.2) via Cartier divisors.
As for classical cycles, one may think of J(X,Y ) as the pull-back along tubular
neighborhoods followed by a linearization process. In the following we have collected
the remarks on J(X,Y ) which are needed in further sections. We have not tried to
give a detailed geometrical description.
The construction of J(X,Y ) is local in the sense that

J(U, Y ∩ U) ◦ j∗ = ̃∗ ◦ J(X,Y )

where j: U → X is an open immersion and ̃: NYX | (Y ∩U)→ NYX is the induced
inclusion.

(11.1) Lemma. Let σ: Y → NYX be the inclusion. Then

J(X,Y ) ◦ i∗ = σ∗.

Proof : The statement follows from Lemma 4.5 and the fact that the closure of Y ×
(A1 \ {0}) in D(X,Y ) is Y × A1. �
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Let X be normal, y ∈ X(1) and Y = {y}. Moreover let F and E be the function
fields ofX andNYX, respectively. We want to compute the codimension 0 component

J0: M(F )→M(E)

of J(X,Y ). The problem is purely local in y. Let v be the valuation on F corre-
sponding to y and let κ = κ(y) = κ(v). Moreover let m be the ideal of y, let π ∈ m
be a prime and let π̄ ∈ m/m2 be its image. The normal cone NYX is the spectrum of

κ[π̄] =
∐

n

mn/mn+1

and one has E = κ(π̄).
The following lemma shows that there is a factorization

J0: M(F )
p→M(v)→M(E)

where p is from Remark 1.6.

(11.2) Lemma.
J0 = rE|κ ◦ sπv + {π̄} · rE|κ ◦ ∂v.

Proof : We may suppose X = SpecA and that the ideal I corresponding to y is
generated by π. Then D(X,Y ) is the spectrum of

A[t, πt−1] ⊂ A[t, t−1].
By definition we have

J0 = ∂w ◦ {t} ◦ rF (t)|F
where w is the valuation on F (t) corresponding to the principal ideal t · A[t, πt−1].
Note that E = κ(w) and that π̄ is the residue of the w-unit −πt−1 (by the sign
convention in 10.4). The claim follows now from

∂w ◦ {t} ◦ rF (t)|F (ρ) = ∂w ◦ {−π} ◦ rF (t)|F (ρ)− ∂w ◦ {−πt−1} ◦ rF (t)|F (ρ)

= ∂w ◦ rF (t)|F ({−π} · ρ) + {π̄} ◦ ∂w ◦ rF (t)|F (ρ)
and the fact that w restricts on F to v. �

The preceding remarks yield a complete description of J(X,Y ) for smooth
curves X.

The rest of the section contains a series of technical lemmata.

(11.3) Lemma. Let Y → X be a closed immersion, let g: V → X be flat (of constant
relative dimension) and let

N(g): N(V, Y ×X V ) = N(X,Y )×X V → N(X,Y )

be the projection. Then

J(V, Y ×X V ) ◦ g∗ = N(g)∗ ◦ J(X,Y ).

Proof : This follows from the flatness of D(V, Y ×X V )→ D(X,Y ). �
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(11.4) Lemma. Let U → V be a closed immersion and let p: V →W be flat. Suppose
that the composite

q: NUV → U → V →W

is flat of the same relative dimension as p. Then

J(V,U) ◦ p∗ = q∗: W p→ NUV .

Proof : Let π: W × (A1 \ {0})→W be the projection and let f be the composite

f : D(V,U) −→ V × A1 p×id−−→W × A1.

Then, by definition,

J(V,U) ◦ p∗ = ∂ ◦ {t} ◦
(
f | V × (A1 \ {0})

)∗ ◦ π∗.

Now f is flat by Remark 10.1 and f |NUV = q. Hence

J(V,U) ◦ p∗ = q∗ ◦ ∂′ ◦ {t} ◦ π∗

where ∂′ is the boundary map corresponding toW×{0} →֒W×A1. But ∂′◦{t}◦π∗ =
id by Lemma 4.5. �

(11.5) Lemma. Let U → V be a regular imbedding, let p: V → W be smooth of con-
stant relative dimension and suppose p ◦ i is a regular imbedding. Then the projection

q: NUV → NUW

is an epimorphism of vector bundles and

J(V,U) ◦ p∗ = q∗ ◦ J(W,U).

Proof : Use the flatness of D(V,U)→ D(W,U). �

(11.6) Lemma. Let ρ: T → T ′ be a morphism, let T ′1, T
′
2 ⊂ T ′ be closed subschemes

and let Ti = T ×T ′ T ′i for i = 1, 2.
Put T3 = T \ (T1∪T2) , T0 = T1∩T2 , T̃1 = T1 \T0 , T̃2 = T2 \T0 and let ∂31 , ∂10 ,

∂32 , ∂
2
0 be the boundary maps for the closed immersions

T̃1 → T \ T2, T0 → T1, T̃2 → T \ T1, T0 → T2,

respectively. Then

0 ≃ ∂10 ◦ ∂31 + ∂20 ◦ ∂32 : T3 p→ T0

under a filtration preserving homotopy of degree (−1,−1).
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Proof : Corresponding to the set theoretic decomposition of T we have

C∗(T ;M) = C∗(T0;M)⊕ C∗(T̃1;M)⊕ C∗(T̃2;M)⊕ C∗(T3;M).

Let
∂30 : T3

p→ T0

be the corresponding component of dT . Then dT ◦ dT = 0 gives

δ(∂30) + ∂
1
0 ◦ ∂31 + ∂20 ◦ ∂32 = 0.

Hence − ∂30 is a homotopy as required. �

Let T = D = D(X,Y, Z) , T1 = D |({0}×A1) , T2 = D |(A1×{0}) . We keep the
notations of Lemma 11.6. Then T3 = X× (A1 \{0})× (A1 \0) and T0 = D | {(0, 0)} .
Let π: T3 → X be the projection and let t, s be the coordinates of A2 (as in (10.5),
so that T1 = {t = 0} , T2 = {s = 0} ).

(11.7) Lemma. Let Z → Y → X be regular imbeddings. Then

∂10 ◦ ∂31 ◦ {t, s} ◦ π∗ = J(NYX,NYX | Z) ◦ J(X,Y ),
∂20 ◦ ∂32 ◦ {s, t} ◦ π∗ = J(NZX,NZY ) ◦ J(X,Z).

Proof : Let

πi: X × (A1 \ {0})× (A1 \ {0})→ X × (A1 \ {0}), πi: X × (A1 \ {0})→ X

be the projections with

π1(x, t, s) = (x, s), π1(x, s) = x,

π2(x, t, s) = (x, t), π2(x, t) = x.

One finds (using in particular Lemma 11.3):

∂10 ◦ ∂31 ◦ {t, s} ◦ π∗ = ∂10 ◦ {s} ◦ ∂31 ◦ {t} ◦ π∗1 ◦ π1∗

= ∂10 ◦ {s} ◦ J
(
X × (A1 \ 0);Y × (A1 \ {0})

)
◦ π1∗

= ∂10 ◦ {s} ◦
(
NYX × (A1 \ {0})→ NYX

)∗ ◦ J(X,Y )
= J(NYX,NYX | Z) ◦ J(X,Y ),

∂20 ◦ ∂32 ◦ {s, t} ◦ π∗ = ∂20 ◦ {t} ◦ ∂21 ◦ {s} ◦ π∗2 ◦ π2∗

= ∂20 ◦ {t} ◦ J
(
X × (A1 \ {0}), Z × (A1 \ {0})

)
◦ π2∗

= ∂20 ◦ {t} ◦
(
NZX × (A1 \ {0})→ NZX

)∗ ◦ J(X,Z)
= J(NZX,NZY ) ◦ J(X,Z). �
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12. The Pull-back Map

In this section we define the pull-back maps for morphisms to smooth varieties. Some
properties are formulated, in particular the functoriality of the spectral sequences.
We conclude with applications and discussions concerning birational questions. The
proofs of Theorems 12.1 and 12.7 are given in the next section.

In the following all schemesX, Y , X ′, . . . are flat overB of some constant relative
dimension denoted by dimBX, . . . . All products Y ×X, Y ′×X ′, . . . are taken over B
and cycle modules will be induced via projection to the second factor (projection to
the first factor does not exist for us). We use the notations TSX = NX(X ×SX) and
TX = TBX. We are primarily interested in the case B = Spec k, but we don’t have
to pay much for considering arbitrary B. M is a cycle module over X.

Let X be smooth over B. Then TX is a vector bundle on X. For a morphism
f : Y → X let

f : Y
i−→ Y ×X p−→ X

be the factorization with i(y) =
(
y, f(y)

)
and p(y, x) = x. Then i is a regular

imbedding and NY (Y ×X) = f∗TX.
We choose a coordination τ on TX and define

I(f) = I(f ; τ) = r(f∗τ) ◦ J(Y ×X,Y ) ◦ p∗: X p→ Y .

Note that the construction is local in the sense that for an open immersion j: U → X
one has

I(f̃ ; j∗τ) ◦ j∗ = ̃∗ ◦ I(f ; τ)
where f̃ : f−1(U)→ U is the restriction of f and ̃: f−1(U)→ Y is the inclusion.
One has δ

(
I(f)

)
= 0 and

I(f)
(
Cp(X;M)

)
⊂ Cp+r(Y ;M)

where r = dimB Y − dimBX. If B is equidimensional, then

I(f)
(
Cp(X;M)

)
⊂ Cp(Y ;M).

We define
f
q

: Ap(X;M)→ Ap+r(Y ;M)

and
f
q

: Ap(X;M)→ Ap(Y ;M)

as the induced maps on (co-)homology. f
q

does not depend on the choice of τ . One
has the following properties.

(12.1) Theorem. For g: Z → Y and f : Y → X with X and Y smooth over B one
has (f ◦ g) q = g q ◦ f q.
For the proof see the next section.
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(12.2) Proposition. If f is flat, then I(f) = f∗.

Proof : It suffices to show

J(Y ×X,Y ) ◦ p∗ = π∗ ◦ f∗

where π: f∗TX → Y is the projection. For this apply Lemma 11.4 with U = Y ,
V = Y ×X and W = X. �

(12.3) Proposition. If i: Y → X is a regular imbedding and X is smooth over B,
then I(i) is homotopic to r ◦ J(i) where r is any retraction to Y p→ NYX.

Proof : Apply Lemma 11.5 with U = Y , V = Y ×X and W = X. �

The following corollary applied to the blow up at x0 implies (together with The-
orem 12.1) property (E) of Section 2.

(12.4) Corollary. Let X be smooth over B = Spec k, let x ∈ X(p) and let

ix: {x} → X

be the inclusion. Moreover let π1, . . . , πp be any regular sequence at x and let
v1, . . . , vp be the induced sequence of valuations with the fraction fields k(X),
κ(v1), . . . , κ(vp−1) and with the (residue classes of ) π1, . . . , πp as primes. Then

i
q

x: A
0(X;M)→ A0({x};M)

is the restriction of

sπpvp ◦ · · · ◦ sπ1v1 : M
(
k(X)

)
→M

(
κ(x)

)
.

Proof : Let X = X0 ⊃ X1 ⊃ · · · ⊃ Xp be the sequence of smooth schemes locally
around x with Xi defined by 〈π1, . . . , πi〉. Using Theorem 12.1 one reduces to p = 1.
This case follows from Proposition 12.3 and Lemma 11.2. �

(12.5) Proposition. (Projection formula.) Consider a pull-back square

Y
f̄−→ X

yh̃
yh

Y
f−→ X

with h smooth and proper and with X smooth over B. Then

h̃∗ ◦ f̄ q = f q ◦ h∗.
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Proof : One considers the diagram

Y −→ Y ×X −→ X
∥∥∥

yĥ
∥∥∥

Y −→ Y ×X −→ X
yh̄

y
yh

Y −→ Y ×X −→ X.

Here the bottom diagram is the pull-back along h and ĥ = h̃ × idX . We have three
maps X p→ Y : the first is constructed along D(Y ×X,Y ) and is given by pull-back
to Y × X and specialization to Y followed by push-forward; the second goes along
D(Y ×X,Y ) and is given by pull-back to Y ×X and specialization to Y followed by
push-forward; the third goes along D(Y ×X,Y ) and is given by push-forward, pull-
back to Y ×X and specialization to Y . The first two may be related using Lemma 11.5
(with U = Y , V = Y ×X, and W = Y ×X), the last two by the compatibility of the
constructions with proper push-forward. �

Consider the triangle (7.4.0) and assume that ρ is smooth and η is flat. Define

[h/B]: Ap[ρ;M ]→ Ap[η;M ]

by [h/B]F = (hF )
q

. Here we understand B = SpecF in the definition of (hF )
q

.

(12.6) Proposition. [h/B] is a homomorphism of cycle modules over B.

Proof : We apply Proposition 7.4. Since the projection π: N(Y × X,Y ) → Y is a
vector bundle we know that

[π∗]: Aq[η]→ Aq[η ◦ π]
is an isomorphism of cycle modules. Moreover

[π∗] ◦ [h/B] = [∂] ◦ [{t}] ◦ [p∗]
where p: Y × X × (A1 \ {0}) → X is the projection and ∂ is the boundary for
N(Y ×X,Y )→ D(Y ×X,Y ) . �

(12.7) Theorem. Consider the square (8.4.0) and its decomposition (8.5.0). Suppose
that B is equidimensional, η is flat, ρ is smooth and X ′ (hence also X) is smooth
over B. Then the spectral sequences

Ep,q2 (ρ) = A
p(X ′;Aq[ρ;M ]) =⇒ Ap+q(X;M),

Ep,q2 (η) = A
p(Y ′;Aq[η;M ]) =⇒ Ap+q(Y ;M)

commute with the maps

Ap(X ′;Aq[ρ;M ])
(f ′)

q

−−→ Ap(Y ′;Aq[ρ;M ])
[f̂/Y ′]#−−−−→ Ap(Y ′;Aq[η;M ]),

f
q

: Ap(X;M)→ Ap(Y ;M).

For the proof see the next section. Switching to dimension indices this theorem holds
without the equidimensionality assumption on B.
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For the rest of the section we assume B = Spec k.

(12.8) Lemma. Let X be smooth, let Y be integral, let f : Y → X be a dominant
morphism and let ϕ: k(X) → k(Y ) be the induced homomorphism of the function
fields. Then

I(f) |M
(
k(X)

)
= ϕ∗: M

(
k(X)

)
→M

(
k(Y )

)
.

Proof : After replacing Y by an open subset we may assume that f is flat. The claim
follows from Proposition 12.2. �

(12.9) Lemma. Assume in (12.8) additionally that f is proper and that ϕ is an iso-
morphism. Then f∗ ◦ I(f) = id.
Proof : Let

f̄ : D(Y ×X,Y )→ D(X ×X,X)
be the proper map induced from f . There is the commutative diagram

X p−→ Y ×X × (A1 \ {0}) ∂◦{t}
p−−−→ f∗TX

r(f∗τ)
p−−−→ Y

py=
pyf̃∗

pyf̂∗
pyf∗

X p−→ X ×X × (A1 \ {0}) ∂◦{t}
p−−−→ TX

r(τ)
p−−−→ X

where f̃ , f̂ are the restrictions of f̄ . The diagram shows f∗ ◦ I(f) = I(id). But
I(id) = id by Proposition 12.2. �

Lemma 12.9 shows in particular that for any blow up Y → X the complex
C∗(X;M) is a direct summand of C∗(Y ;M). This splitting via I(f) depends alone
on the choice of a coordination of TX near the singular locus and is unique up to
homotopy.

(12.10) Corollary. Let X be a proper smooth variety over k and let M be a cycle
module over k. Then the group A0(X;M) is a birational invariant of X.

Proof : If X1, X2 are proper and birational isomorphic there exist a proper Y and
birational morphisms Y → Xi (take for Y the closure in X1 × X2 of a common
open subset of the Xi). Then as subgroups of M(ξXi) = M(ξY ) one has the trivial
inclusions A0(Y ;M) ⊂ A0(Xi;M) ; Lemma 12.8 shows A

0(Xi;M) ⊂ A0(Y ;M) . �

For an illustration let X be a smooth and proper variety over k with function
field F . Then for any geometric valuation v on F (of rank 1) there is a birational
morphism f : Y → X such that v has center y in Y (1) with κ(v) = κ(y). The map I(f)
yields a formula

(12.11) ∂v =
∑

x∈X(1)
αxv ◦ ∂x

where
αxv : M

(
κ(x)

)
→M

(
κ(v)

)

equals the component I(f)xy .
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This formula is a sort of higher dimensional analogue of the sum formula for
one-dimensional function fields. It has the following properties:

— it is local, that is x runs only through X
(1)
(z) where z is the center of v in X (in

other words: αxv = 0 for x 6∈ X(1)(z) ).
— it is not unique, but depends only on the choice of a coordination of the tangent
bundle of X restricted to X(z).

— it is universal in the sense that the αxv can be written as sums of compositions of the
data of cycle modules, independent ofM . This is quite obvious from the construction
of I(f). One can make this more precise by interpreting the αxv as morphisms in the

category F̃ of Remark 1.10. In this way the category F̃ appears as the natural place
for the coefficients αxy of formulas like (12.11).

Exercise: Describe the αxv for dimX = 2 and v the valuation corresponding to the
exceptional fiber of the blow up in a closed point (see Remark 2.8).

Birational invariants like A0(X;M) have been considered in various contexts
like étale cohomology and K-theory, see (Colliot-Thélène 1992) for a survey. The
advantage of the method of proof of Corollary 12.10 lies in its general and essentially
simple nature (after having established the functors in question as cycle modules);
moreover the formula (12.11) makes things perhaps more enlightening. A similar
method works probably for functors related with the Witt ring of quadratic forms.

To mention a particular example, let π: Z → Spec k be proper and let M
(resp. N) be the Z-graded cycle module over k given as the cokernel (resp. image) of

[π∗]: A0[π;K∗]→ A0[idSpeck;K∗] = K∗.

By Corollary 12.10 the group A0(X;M, 1) (which is a subquotient of k(X)∗) is a
birational invariant for proper smooth X over k. The proof of this fact was the main
aim of (Rost 1990). There it was achieved by a different method using the triviality of

A1(X̃;N, 1) for smooth local X̃ (proved in this paper in more generality in Section 6).
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13. Intersection Theory for Fibrations

The purpose of this section is to prove Theorems 12.1 and 12.7. We define pull-back
maps on complex level for regular imbeddings and for morphisms to smooth varieties
in fibered situations. Moreover we establish functoriality of the constructions. Most
of the work has been done already in Sections 7–11.

Consider a commutative square

(∆)

Y
f−→ X

yη
yρ

Y ′
f ′−→ X ′.

The square ∆ is called a regular imbedding, if f and f ′ are regular imbeddings of
some constant codimensions and if the induced map

p: NYX → η∗NY ′X
′

is an epimorphism of vector bundles over Y . The kernel bundle of p is denoted by N∆.
We consider p also as vector bundle and identify it with q∗N∆ where q: η∗NY ′X ′ → Y
is the projection.

Let ∆ be a regular imbedding and let τ̃ and τ̃ ′ be coordinations of N∆ → Y and
of NY ′X

′ → Y ′, respectively. We define

J(∆): X p→ Y

by
J(∆) = J(∆, τ̃ , τ̃ ′) = r(η∗ τ̃ ′) ◦ r(q∗ τ̃) ◦ J(X,Y ).

The following is clear from Sections 8–9. One has δ
(
J(∆)

)
= 0 and

J(∆)
(
Cp,l(ρ)

)
⊂ Cp+s,l+t(η)

with s = − codim(f ′) and t = − codim(f). Moreover the homotopy class of J(∆)
(with respect to the degree (s, t)) does not depend on the choice of τ̃ and τ̃ ′.
In the definition of J(∆) we wanted to be as canonical as possible. If one is

interested only in the homotopy class, one may put J(∆) = r ◦ J(X,Y ) for any
filtration preserving retraction r to NYX → X (“filtration preserving” means always
with respect to the natural degrees).

Next consider a diagram

(13.1.0)

Z
f1−→ Y

f2−→ X
yµ

yη
yρ

Z ′
f ′1−→ Y ′

f ′2−→ X ′.

We denote the left square by ∆1, the right square by ∆2 and the composed square
by ∆3.
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(13.1) Theorem. If ∆1 and ∆2 are regular imbeddings, then ∆3 is a regular imbed-
ding and

J(∆1) ◦ J(∆2) ≃ J(∆3)
under a filtration preserving homotopy.

Proof : The first statement is straightforward. In the following deduction of the second
statement the letters ri stand for some filtration preserving retractions. We make use
of Lemma 11.3 for the homotopy (1), of Lemmata 11.6 and 11.7 for the homotopy (2)
and of Lemma 11.4 for the equality (3).

J(∆1) ◦ J(∆2) ≃ r1 ◦ J(Y,Z) ◦ r2 ◦ J(X,Y )

≃ r3 ◦
(
N(NYX,NYX | Z)→ N(Y,Z)

)∗ ◦ J(Y,Z) ◦ r2 ◦ J(X,Y )
(1)≃ r3 ◦ J(NYX,NYX | Z) ◦ (N(Y,X)→ Y )∗ ◦ r2 ◦ J(X,Y )

≃ r3 ◦ J(NYX,NYX | Z) ◦ J(X,Y )
(2)≃ r3 ◦ J(NZX,NZY ) ◦ J(X,Z)

≃ r3 ◦ J(NZX,NZY ) ◦ (NZX → Z)∗ ◦ r4 ◦ J(X,Z)
(3)
= r3 ◦

(
N(NZX,NZY )→ Z

)∗ ◦ r4 ◦ J(X,Z)

≃ r5 ◦ J(X,Z)

≃ J(∆3). �

The square ∆ is called admissible if η is flat, ρ is smooth and X ′ is smooth
over B. Consider the diagram

Y
i−→ Y ×X ρ−→ X

yη
y

yρ

Y ′
i′−→ Y ′ ×X ′ ρ′−→ X ′

and denote the left square by ∆i and the right square by ∆p. If ∆ is admissible, then
∆i is a regular imbedding and ∆p is a flat square (see (8.5.0)). Moreover the normal
bundles of i and i′ are given by f∗TX and f ′∗TX ′, respectively, and N∆i is given
by f∗TX′X.

Let ∆ be admissible and let τ and τ ′ be coordinations of TX′X and TX ′, respec-
tively. We define

I(∆): X p→ Y

by
I(∆) = I(∆, τ, τ ′) = J(∆i, f

∗τ, f ′∗τ ′) ◦ p∗.
One has δ

(
I(∆)

)
= 0 and

I(∆)
(
Cp,l(ρ)

)
⊂ Cp+s,l+t(η)

with s = dimB Y
′ − dimBX ′ and t = dimB Y − dimBX. Moreover the homotopy

class of I(∆) (with respect to the degree (s, t)) does not depend on the choice of τ
and τ ′.
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(13.2) Theorem. If in (13.1.0) the squares ∆1 and ∆2 are admissible, then the
square ∆3 is admissible and

I(∆3) ∼= I(∆1) ◦ I(∆2)

under a filtration preserving homotopy.

Proof : The first statement is trivial. For the second we consider the diagrams

Z
i1−→ Z × Y i4−→ (Z × Y )×X

yp1
yp4

Y
i2−→ Y ×X

yp2

X,

Z
i3−→ Z ×X i5−→ (Z × Y )×X p5−→ X.

The regular imbeddings ij lie over accordingly defined regular imbeddings i
′
j ; the

corresponding squares are denoted by Σj .
The Σj are regular imbeddings. An application of Lemma 11.3 and Theorem 13.1

shows that (by noting i4 ◦ i1 = i5 ◦ i3 and p2 ◦ p4 = p5)

I(∆1) ◦ I(∆2) ≃ J(Σ3) ◦ J(Σ5) ◦ p∗5.

By definition we have

I(∆3) ≃ J(Σ3) ◦ (p5 ◦ i5)∗.

Finally Lemma 11.4 shows

J(Σ5) ◦ p∗5 = (p5 ◦ i5)∗. �

Theorem 13.2 implies Theorem 12.1 by passing to homology. For a proof of
Theorem 12.7 we consider six squares with the top arrows

Y
i1−→ Y ×X′ X i2−→ Y ×X

yp1
yp2

Y ′ ×X′ X i3−→ Y ′ ×X p3−→ X

lying over the bottom arrows

Y ′ == Y ′
i′−→ Y ′ ×X ′

∥∥∥
∥∥∥

Y ′
i′−→ Y ′ ×X ′ p′−→ X ′.
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Let Σj be the square corresponding to ij for j = 1, 2, 3. The Σj are regular imbed-
dings. The map f

q

is induced from I(∆). By the definition of I(∆) and Theorem 13.1
we have

I(∆) ≃ J(Σ1) ◦ J(Σ2) ◦ p∗2 ◦ p∗3.
Lemma 11.3 shows that

J(Σ2) ◦ p∗2 ≃ p∗1 ◦ J(Σ3).
Therefore f

q

is the composition of the maps induced by J(Σ1) ◦ p∗1 and by J(Σ3) ◦ p∗3.
Next note that p1◦i1 = f̂ . An application of Proposition 8.5 shows that J(Σ1)◦

p∗1 induces on the E
2-terms the map [f̂/Y ′]# . Finally note that p′ ◦ i′ = f ′ and that

the squares under i3 and p3 are pull-back squares. An application of Proposition 8.5
shows that J(Σ3) ◦ p∗3 induces on the E2-terms the map (f ′)

q

. �

14. Products

In this section M is a cycle module over B and N is a cycle module over k. We
assume that either N = K∗ or thatM = N is a cycle module with ring structure over
B = Spec k. So in any case we are given a pairing N ×M → M of cycle modules
over B.
The restriction to these special cases are made for simplification. For example,

in forming intersections of cycles with coefficients in a cycle module M with ring
structure, one needs to know that its pairing factors through a cycle module over
B×B. However, the existence of a corresponding appropriate notion of tensor product
of cycle modules is not clear to me (and a settling of this question would lead to far here
anyway). The problem could be avoided in the following by assuming the necessary
factorizations, but this is somewhat tiring.

(14.1) Cross products. Let Y be a scheme over k and let Z be a scheme over B
(all of finite type over k). We define the cross product

× : Cp(Y ;N)× Cq(Z;M)→ Cp+q(Y × Z;M)

as follows. For y ∈ Y let Zy = Specκ(y)×Z, let πy: Zy → Z be the projection and let
iy: Zy → Y × Z be the inclusion. For z ∈ Z we understand similarly Yz, πz : Yz → Y
and iz: Yz → Y × Z. We give the following two equivalent definitions:

ρ× µ =
∑

y∈Y(p)
(iy)∗

(
ρy · π∗y(µ)

)
,

ρ× µ =
∑

z∈Z(q)
(iz)∗

(
π∗z (ρ) · µz

)
.

Here ρy ∈ N(y) is the y-component of ρ and the product is understood after pointwise
restriction of ρy. The map

(iy)∗: Cq(Zy;M)→ Cp+q(Y × Z;M)
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is the inclusion corresponding to Zy(q) ⊂ (Y × Z)(p+q). Similarly we understand
µz ∈M(z) and

(iz)∗: Cp(Yz ;M)→ Cp+q(Y × Z;M).
To check equality of the two definitions consider the u-components for u ∈ Y ×Z. Let
y, z be the images of u under the projections Y ×Z → Y , Z and let R = κ(y)⊗k κ(z).
Then the u-components are either trivial or u is a minimal prime of R. In the latter
case the u-components are given by

(ρ× µ)u = rκ(u)|κ(y)(ρy) · rκ(u)|κ(z)(µz) · lR(R(u)).
(14.2) Associativity. Additionally let X be of finite type over k and let η ∈
Cr(X;N). Then

η × (ρ× µ) = (η × ρ)× µ.
For a proof consider the u-components for u ∈ X × Y × Z. Let x, y, z be the
images of u in X, Y , Z, respectively, and let R = κ(x) ⊗k κ(y) ⊗k κ(z). Then the
u-components are either trivial or u is a minimal prime of R. In the latter case it
follows from standard rules for length that the u-components are given by

(η × ρ× µ)u = rκ(u)|κ(x)(ηx) · rκ(u)|κ(y)(ρy) · rκ(u)|κ(z)(µz) · lR(R(u)).
(14.3) Commutativity. SupposeM = N is a cycle module with ring structure over
B = Spec k. Let τ : Y ×Z → Z×Y be the interchange of factors. For ρ ∈ Cp(Y ;M,n)
and µ ∈ Cq(Z;M,m) one has

τ∗(ρ× η) = (−1)nmη × ρ ∈ Cp+q(Z × Y ;M,n+m).

This is immediate from the definitions.

(14.4) Chain rule. For ρ ∈ Cp(Y ;N,n) and µ ∈ Cq(Z;M,m) one has

d(ρ× µ) = d(ρ)× µ+ (−1)nρ× d(µ).
For a proof we may assume ρ ∈ M(y), µ ∈ M(z) for some y ∈ Y(p) and z ∈ Z(q).
Consider for u ∈ Y × Z the u-components of the three terms. If one of them is
nontrivial, we must have dim(u, Y ×Z) = p+ q−1 and the images y′, z′ of u must be
in the closures of y, z, respectively. Dimension reasons show y′ = y or z′ = z. Now the
claim follows from one of the two definitions of the cross product and Proposition 4.6.2.

(14.5) Compatibility. The cross product is compatible with the four basic types
of maps f∗, g∗, {a} and ∂ acting on one of the two factors. This follows from the
compatibility with flat pull-back and Definition 1.3. We omit a detailed formulation.

We conclude with a consideration of the intersection pairing for cycles on a
smooth variety. Let X be smooth over k and let τ be a coordination of TX. We
define

IX : C
∗(X;N)× C∗(X;M)→ C∗(X;M),

IX(ρ, µ) =
(
r(τ) ◦ J(X ×X,X)

)
(ρ× µ).

By (14.4) this is a pairing of complexes. Let

˘
: A∗(X;N)×A∗(X;M)→ A∗(X;M)

be the induced pairing.
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The next theorem follows from the preceding remarks and in particular from
Theorem 12.1. It holds accordingly on chain level up to homotopy.

(14.6) Theorem. If M = N is a cycle module with ring structure over B = Spec k,
the pairing

˘
turns A∗(X;M) into an anti-commutative associative ring. If N = K∗,

the pairing
˘
turns A∗(X;M) into a module over A∗(X;K∗). �

We have defined in particular a ring structure on the classical Chow groups

CH∗(X) =
∐

p

Ap(X;K∗, p)

of a smooth variety. This ring structure coincides with the classical one. This
may be deduced from the remark at the beginning of Section 11 and (Fulton 1984,
Chaps. 5, 6, 8).
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Introduction

Let F be a field and X be a smooth, geometrically integral variety over F . In [6,
prop. 3.6], Colliot-Thélène and Raskind produced an exact sequence:

(1) H1Zar(X,K2)→ H1Zar(X,K2)GF

→ H1(F,K2(F (X))/H
0
Zar(X,K2))→ Ker(CH2X → CH2X)

→ H1(F,H1Zar(X,K2))→ H2(F,K2(F (X))/H
0
Zar(X,K2)).

Here, X denotes the variety X viewed over the separable closure F of F , K2 is
the Zariski sheaf associated to the presheaf U 7→ K2(U) and GF is the absolute Galois
group of F . On the other hand, in [17, th. 3.1], we produced an isomorphism

H1(F,K2(F (X))/K2(F )) ≃ Ker(H3(F,Q/Z(2))→ H3(F (X),Q/Z(2))).(2)
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In (2), the coefficients Q/Z(2) are

lim−→µ⊗2n if charF = 0 and lim−→
(n,charF )=1

µ⊗2n ⊕ lim−→
r

WrΩ
2
log[−2] if charF > 0,

where WrΩ
2
log is the weight-two logarithmic part of the de Rham-Witt complex over

the big étale site of SpecF [13] (see comments at the end of the introduction).

When X is a complete rational variety, i.e. the extension F (X)/F is
purely transcendental, the group H0Zar(X,K2) coincides with K2(F ). One
may therefore replace the group H1(F,K2(F (X))/H

0
Zar(X,K2)) in (1) by

Ker(H3(F,Q/Z(2)) → H3(F (X),Q/Z(2))) in this case. The resulting exact se-
quence has been used in [29] and [30].

Moreover, the left map in (1) is injective when X is a complete rational variety
([6, prop. 4.3] in characteristic 0, [24, prop. 1.5] in general). Putting all this together,
one therefore gets an exact sequence:

0→ H1Zar(X,K2)→ H1Zar(X,K2)GF

→ Ker(H3(F,Q/Z(2))→ H3(F (X),Q/Z(2)))

→ Ker(CH2X → CH2X)→ H1(F,H1Zar(X,K2))
for any complete rational variety X.

In this paper, we use the Lichtenbaum complex Γ(2) of [22], [23] to recover this
exact sequence directly, and extend it to the right. Our main result is:

Theorem 1. Let X be a smooth variety over F .
a) Assume that K2(F )

∼−→ H0Zar(X,K2). Let us denote by
η : H3(F,Q/Z(2)) −→ H0Zar(X,H3(Q/Z(2)))

ξ : CH2X −→ (CH2X)GF

cl2X : CH
2X ⊗Q/Z −→ H4(X,Q/Z(2))

the natural maps and the divisible cycle class map. Then there is an exact sequence

0→H1Zar(X,K2)→H1Zar(X,K2)GF→Ker η→Ker ξ→H1(F,H1Zar(X,K2)).(3)

b) Assume moreover that H0Zar(X,H3(Q/Z(2))) is p-primary torsion, where p is the
characteristic exponent of F and H3(Q/Z(2)) is the Zariski sheaf associated to the
presheaf U 7→ H3ét(U,Q/Z(2)) (if charF = 0, this means H

0
Zar(X,H3(Q/Z(2))) = 0).

Then the exact sequence (3) extends to a complex

Ker ξ → H1(F,H1Zar(X,K2))→ H4(F,Q/Z(2))→ Coker cl2X .(4)

Let A (resp. B) denote the homology of (4) at H1(F,H1Zar(X,K2)) (resp. at
H4(F,Q/Z(2))). Then there is another complex

0→Coker η ⊗ Z[1/p]→Coker ξ ⊗ Z[1/p]→H2(F,H1Zar(X,K2))⊗ Z[1/p](5)

whose homology at Cokerη ⊗ Z[1/p] (resp. at Coker ξ ⊗ Z[1/p]) is A⊗ Z[1/p] (resp.
B ⊗ Z[1/p]).
If H0Zar(X,H3(Q/Z(2))) = 0, we can remove ⊗Z[1/p] everywhere.
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Remark. The assumptions are satisfied if X is a complete rational variety,
but also if it is a torsor under a semi-simple, simply connected algebraic group
[7]. If chark = p > 0, in the second case the group H0Zar(X,H3(Q/Z(2)) is in
general nonzero, as higher logarithmic Hodge-Witt cohomology is not homotopy
invariant; hence the complicated statement of theorem 1. However, we do have
H0Zar(X,H3(Q/Z(2)) = 0 in the first case (compare corollaries 5.3 and 6.2 c)).

Corollary. Let X be as in theorem 1 b).
1) Suppose cdF ≤ 3. Then there is an exact sequence
0→ H1Zar(X,K2)→ H1Zar(X,K2)GF → Ker η → Ker ξ → H1(F,H1Zar(X,K2))

→ Cokerη → Coker ξ → H2(F,H1Zar(X,K2))
after tensorisation by Z[1/p]. The part of this sequence up to H1(F,H1Zar(X,K2))
exists and is exact without tensoring by Z[1/p].
2) Suppose cdF ≤ 2. Then there is an isomorphism

H1Zar(X,K2)
∼−→ H1Zar(X,K2)GF

and an exact sequence

0→ Ker ξ → H1(F,H1Zar(X,K2))
→ H0Zar(X,H3(Q/Z(2)))→ Coker ξ → H2(F,H1Zar(X,K2))

after tensorisation by Z[1/p]. The injection Ker ξ →֒ H1(F,H1Zar(X,K2)) holds
without tensoring by Z[1/p].
If H0Zar(X,H3(Q/Z(2))) = 0, the results hold without tensoring by Z[1/p].

To try and get a relationship between theorem 1 and the last term in (1), we
observe that a closer examination of the spectral sequence used in [17, proof of th.
3.1] yields an exact sequence:

(6) H3(F,Q/Z(2))→ Ker(H3(F (X),Q/Z(2))→ H3(F (X),Q/Z(2)))

→ H2(F,K2(F (X))/K2(F ))→ H4(F,Q/Z(2))→ H4(F (X),Q/Z(2)).

How to derive theorem 1 from sequence (6) does not seem obvious, however.

This paper is organized as follows. In section 1, we compute the étale hy-
percohomology of X with coefficients in Γ(2): this is done in theorem 1.1, which
is of independent interest. In sections 2 and 3, we introduce two relative com-
plexes Γ(F (X)/X, 2) (over Xét) and Γ(X/F, 2) (over (SpecF )ét). Considering the
Hochschild-Serre spectral sequence for the hypercohomology of Γ(F (X)/X, 2), we
get back the Colliot-Thélène-Raskind exact sequence (1) in a straightforward manner
(see proposition 2.2). To prove theorem 1, we similarly examine the Hochschild-Serre
spectral sequence for the hypercohomology of X with coefficients Γ(X/F, 2) (see
section 3). In sections 4, 5 and 6, we respectively prove a purity theorem, compute
the motivic cohomology of a projective bundle and prove a Bloch-Ogus type theorem.
Finally, in section 7, we look at projective homogeneous varieties.

The proof of the isomorphism (2) in [17] consisted of considering the Hochschild-
Serre spectral sequence for the hypercohomology of F with coefficients in a relative
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Lichtenbaum complex Γ(F (X)/F, 2), relative to the extension F/F . What we do
here can be considered as a refinement of this method, by factoring the morphism
SpecF (X)→ SpecF into

SpecF (X) −→ X −→ SpecF.
Remarks on characteristic p. We have to be a little careful if charF > 0 when
defining the coefficients Q/Z(2). In characteristic 0, they are defined as lim−→µ⊗2n . If

charF = p > 0, we set Z/pr(2) = WrΩ
2
log[−2], where WrΩ

2
log is the sheaf of loga-

rithmic de Rham-Witt differentials over the big étale site of SpecF , defined as the
subsheaf of the de Rham-Witt sheaf WrΩ

2 generated locally for the étale topology
by sections of the form d log x1 ∧ d log x2 [13, I.5.7]. So Z/pr(2) is a complex of étale
sheaves concentrated in degree 2. The Verlagerung maps V : WnΩ

2 → Wn+1Ω
2 pre-

serve logarithmic differentials, hence can be used to define Qp/Zp(2) as lim−→
r

Z/pr(2).

Corollaires I.3.5 and I.5.7.5 of [13] yield exact sequences of étale sheaves

0→ Z/pr(2) V s−−→ Z/pr+s(2)→ Z/ps(2)→ 0(7)

hence exact sequences

0→ Z/pr(2)→ Qp/Zp(2) pr−→ Qp/Zp(2)→ 0.(8)

We now define Q/Z(2) as lim−→
(n,charF )=1

µ⊗2n ⊕Qp/Z2(2). We sometimes abbreviate

Q/Z(2) by ‘2’.

Notation. We denote by ΓZar(2) (resp. Γét(2)) the complex of sheaves over the big
Zariski (resp. étale) site of SpecF associated to the presheaf U 7→ Γ(U, 2) of [22].
When necessary, we denote by ΓZar(X, 2) (resp. Γét(X, 2)) the restriction of ΓZar(2)
(resp. Γét(2)) to the small Zariski (resp. étale) site of a scheme X. We drop indices
when the context makes it clear what site we are in.

1. Motivic cohomology of smooth varieties

Let X be a smooth, connected variety over a field F . We compute the étale hyperco-
homology groups H∗ét(X,Γ(2)) = H

∗
ét(X,Γét(2)):

1.1. Theorem. Hiét(X,Γ(2)) is

(i) 0 for i ≤ 0.
(ii) K3(F (X))ind for i = 1.
(iii) H0Zar(X,K2) for i = 2.
(iv) H1Zar(X,K2) for i = 3
(v) Coker cl2X for i = 5
(vi) Hi−1

ét (X,Q/Z(2)) for i ≥ 6
where cl2X is defined in theorem 1. Moreover, for i = 4 there is a short exact sequence:

0→ CH2X → H4ét(X,Γ(2))→ H0Zar(X,H3(Q/Z(2)))→ 0.(9)

As an immediate application, we get:

1.2. Corollary. In characteristic 0, weight-two étale motivic cohomology is homo-
topy invariant. In characteristic >0, this is still true up to (cohomological) degree3.
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To prove theorem 1.1, we shall use the Leray spectral sequence

Ep,q2 = Hp
Zar(X,R

qα∗Γ(2)) =⇒ Hp+qét (X,Γ(2))(10)

associated to the change-of-sites map α : Xét → XZar. For the convenience of the
reader, we prove a well-known general lemma:

1.3. Lemma. Let η
j−→ X be the generic point of the irreducible normal scheme X,

and let A be an étale sheaf over η. Then the cohomology groups Hq
ét(X, j∗A) are

torsion for all q > 0.

Proof. Let η = SpecK. Consider the Leray spectral sequence for j

Ep,q2 = H
p
ét(X,R

qj∗A) =⇒ Hp+q
ét (K,A).

Since the abutment is Galois cohomology, it is torsion for p+ q > 0 and we have to
prove that Rqj∗A is torsion for all q > 0. But since X is normal, it is geometrically
unibranch and the stalks of Rqj∗A are Galois cohomology of the strict Henselizations
of K relatively to the points of X, hence the claim. 2

1.4. Lemma. The Zariski sheaves Rqα∗Γ(2) are as follows:

(i) 0 for q ≤ 0.
(ii) The constant sheaf K3(F (X))ind for q = 1.
(iii) K2 for q = 2.
(iv) 0 for q = 3.
(v) Hq−1(Q/Z(2)) for q ≥ 4.

Proof. (i) is obvious, (iii) is proved in [23, th. 2.10]) and (ii) (resp. (iv)) is proved
in [23, prop. 2.11] (resp. in [23, prop. 2.12]) but only up to 2-torsion. This partially
comes from the insistence to deal with gr2γK3 rather than with K3,ind. We give proofs
of (ii), (iv) and (v).

Denote by K3,ind (resp. H
1(Γ(2))) the étale sheaf associated to the presheaf

R 7→ K3(R)ind (resp. R 7→ H1(Γ(R, 2))) for étale SpecR→ X. Let x ∈ X. We claim
that there is a chain of isomorphisms

(11) H1ét(OX,x,Γ(2))
∼−→ H0ét(OX,x,H1(Γ(2)))

∼←− H0ét(OX,x,K3,ind)
∼−→ H0ét(K,K3,ind)

∼←− K3(K)ind.
The first isomorphism (from the left) simply comes from the fact thatHi(Γ(2)) =

0 for i ≤ 0. The last one is proven in [26, prop. 11.4] (see also [21, th. 4.13]). By
[16, theorem], if A is a local ring of a smooth variety, then K3(A)ind → K3(K)ind
is bijective, where K is the field of fractions of A. Letting j : SpecK →֒ X be the
inclusion of the generic point, this shows that the map K3,ind → j∗j∗K3,ind is an
isomorphism, hence the third isomorphism in (11). Finally, by [22, prop. 1.8], for any
local ring A whose residue field contains more than 2 elements, there is a surjection

K3(A)ind −→→ H1(Γ(A, 2))

which is bijective if A is a field. Therefore, the commutative diagram

K3(OshX,x)ind −→→ H1(Γ(OshX,x, 2))
≀
y

y

K3(K
sh
x )ind

∼−−−−→ H1(Γ(Ksh
x , 2))
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where OshX,x is the strict Henselisationes of OX,x and Ksh
x is its field of fractions,

shows that K3(OshX,x)ind → H1(Γ(OshX,x, 2)) is an isomorphism (we used [16] again for
the left vertical isomorphism). This proves the second isomorphism in (11), which
proves lemma 1.4 (ii).

We note that (iv) follows from (iii), the Merkurjev-Suslin theorem for the local
rings ofX [22, th. 9.1], the fact that R3α∗Γ(2) is torsion [22, th. 9.2] and the triangles

Γ(2)
n−−−−→ Γ(2)

տ ւ

µ⊗2n

Γ(2)
pr−−−−→ Γ(2)

տ ւ

Z/pr(2)

(12)

in the derived category (the second triangle in the case charF = p > 0). The first
triangle is proven exact in [22] and [23] only for n odd, relying on the computation of
torsion and cotorsion in K3,ind [22, lemma 8.2]. However, the proof goes through just
as well for n even by using the isomorphism from [16] already mentioned. The second
triangle is proven exact in [23, lemma 2.7] only for r = 1 and p > 2 (this fact was
overlooked in [17]). However, the proof of [23, lemma 2.7] carries over in the same

way, using (ii) and the Bloch-Gabber-Kato isomorphism K2(E)/p
r ∼−→ WrΩ

2
E,log for

any field E of characteristic p [2, cor. 2.8].

Finally, let us prove (v). By the triangle (12), we have a long exact sequence of
Zariski sheaves

· · · → Ri−1α∗Γ(2)⊗Q→ Ri−1α∗Q/Z(2)→ Riα∗Γ(2)→ Riα∗Γ(2)⊗Q→ . . .

so that it is enough to see that Riα∗Γ(2) is torsion for i ≥ 3. For i = 3, this is (iv).
For i > 3, we have a long exact sequence of sheaves

· · · → Ri−1α∗K3,ind → Riα∗Γ(2)→ Ri−2α∗K2 → . . .

so it is enough to see that Riα∗K3,ind and Riα∗K2 are torsion for i > 0. In view of
the isomorphism (see above)

K3,ind
∼−→ j∗j

∗K3,ind

the first one follows from lemma 1.3. We are left with proving that Riα∗K2 is torsion
for i > 0. As in [23, proof of lemma 2.2], we have a “Gersten resolution”

0→ K2 → j∗K2,K →
∐

x∈X(1)
i∗xGm →

∐

x∈X(2)
i∗xZ→ 0.

This complex of étale sheaves is not exact, but up to torsion it is. Therefore, up
to torsion, there is a spectral sequence of Zariski sheaves

Ep,q1 = Rqα∗C
p =⇒ Rp+qα∗K2

where Cp is the p-th term of the above “resolution” of K2. Since C
0 is of the form

j∗F , the same argument as above shows that E0,q1 is torsion for q > 0. The stalks of

E1,q1 and E2,q1 are sums of Galois cohomology groups, so are torsion for q > 0. This
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shows that Ep,q2 is torsion for p+ q > 0, except perhaps when q = 0. But, for x ∈ X,
the stalks of E1,02 and E2,02 at x are the cohomology groups of the complex

H0(K,K2(K))→
∐

y∈Y (1)
F (y)∗ →

∐

y∈Y (2)
Z→ 0(13)

where Y = SpecOX,x. Comparing with the exact sequence (Gersten’s conjecture)
K2(K)→

∐

y∈Y (1)
F (y)∗ →

∐

y∈Y (2)
Z→ 0

and using the fact that the map K2(K) → H0(K,K2(K)) has torsion kernel and
cokernel, we get that (13) has torsion cohomology groups, which concludes the proof
of lemma 1.4 (v). 2

Proof of theorem 1.1. As indicated above, we use the spectral sequence (10).
(i) is obvious in view of lemma 1.4 (i) and so is (ii) in view of the isomorphism

H1ét(X,Γ(2))
∼−→ H0Zar(X,R

1α∗Γ(2))

and lemma 1.4 (ii). To get further, we observe that Ep,12 = 0 for p > 0 since R1α∗Γ(2)
is constant, and Ep,32 = 0 for all p in view of lemma 1.4 (iv). This and lemma 1.4 (iii)
immediately imply (iii) and (iv). Still by lemma 1.4 (iii) and Gersten’s conjecture,

Ep,22 = 0 for p > 2 and E2,22 ≃ CH2X; this and lemma 1.4 (v) (for q = 4) gives
the exact sequence (9). We now note that the above information and lemma 1.4 (v)
imply that Hiét(X,Γ(2)) is torsion for i ≥ 5. (v) and (vi) now follow from (9) and the
long exact sequence

· · ·→Hi−1ét (X,Γ(2))⊗Q→Hi−1
ét (X,Q/Z(2))→Hiét(X,Γ(2))→Hiét(X,Γ(2))⊗Q→· · ·

2

1.5. Remark. The same computation gives the cohomology sheaves of ΓZar(X, 2):

H1(ΓZar(X, 2)) = K3(K)ind
H2(ΓZar(X, 2)) = K2
Hi(ΓZar(X, 2)) = 0 for i 6= 1, 2.

From this, we deduce a triangle, precising [23, prop. 3.1]:

ΓZar(2) −−−−→ Rα∗Γét(2)

տ ւ

τ≥3(Rα∗Q/Z(2))[−1]
In particular,

ΓZar(2)⊗Q ∼−→ Rα∗Γét(2)⊗Q.(14)

We also get the following analogue of theorem 1.1:

1.6. Theorem. HiZar(X,ΓZar(2)) =





K3(K)ind if i = 1

Hi−2
Zar (X,K2) if 2 ≤ i ≤ 4
0 otherwise.2
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2. Relative motivic cohomology, I

Let j : SpecF (X) →֒ X be the inclusion of the generic point and Γ(F (X)/X, 2) be
the homotopy fibre of the morphism

Γét(X, 2)→ Rj∗Γét(F (X), 2).

Denote the hypercohomology group Hiét(X,Γ(F (X)/X, 2)) by H
i(F (X)/X,Γ(2)), so

that we have a long exact sequence

→ Hi(F (X)/X,Γ(2))→ Hiét(X,Γ(2))→ Hiét(F (X),Γ(2))→ Hi+1(F (X)/X,Γ(2))→
This gives:

2.1. Lemma. The groups Hi(F (X)/X,Γ(2)) are 0 for i ≤ 2; there are exact sequences:
0→ K2(F (X))/H

0
Zar(X,K2)→ H3(F (X)/X,Γ(2))→ H1Zar(X,K2)→ 0

H4(F (X)/X,Γ(2))
∼−→ CH2X

(15) 0→ H0Zar(X,H3(2))→ H3ét(F (X), 2)

→ H5(F (X)/X,Γ(2))→ Coker cl2X → H4ét(F (X), 2).

Proof. The first claim is clear for i ≤ 0; for i = 1 and 2 it follows from theorem 1.1
and the injectivity of H0Zar(X,H2) → K2(F (X)). For i = 3, it follows from theorem
1.1 again, plus the vanishing of H3(F (X),Γ(2)). For i = 4, 5, we have a cross of exact
sequences:

0
y

H4(F (X)/X,Γ(2))
y

0 −−−−→ CH2X −−−−→ H4ét(X,Γ(2)) −−−−→ H0Zar(X,H3(2)) −−−−→ 0y

H3ét(F (X), 2)y

H5(F (X)/X,Γ(2))
y

Coker cl2Xy

H4ét(F (X), 2)

The map H4ét(X,Γ(2)) → H3ét(F (X), 2) factors through H0Zar(X,H3(2)) →
H3ét(F (X), 2), which is injective. A diagram chase concludes the proof. 2
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For simplicity, let us denote by K2(F (X)) the group K2(F (X))/H
0
Zar(X,K2).

Using the “Hochschild-Serre” (hypercohomology) spectral sequence

Hp
ét(F,H

q(F (X)/X,Γ(2)))⇒ Hp+q(F (X)/X,Γ(2))
and the vanishing of Hi(F (X)/X,Γ(2)) for i ≤ 2, we get an isomorphism

H3(F (X)/X,Γ(2))
∼−→ H0(F,H3(F (X)/X,Γ(2)))

and an 5-terms exact sequence

0→ H1(F,H3(F (X)/X,Γ(2)))→ H4(F (X)/X,Γ(2))
→ H0(F,H4(F (X)/X,Γ(2)))→ H2(F,H3(F (X)/X,Γ(2)))→ H5(F (X)/X,Γ(2))
hence, using lemma 2.1:

2.2. Proposition. There are exact sequences:

0→ K2(F (X))→ K2(F (X))
GF → H1Zar(X,K2)→ H1Zar(X,K2)GF

→ H1(F,K2(F (X)))→ H1(F,H3(F (X)/X,Γ(2))

→ H1(F,H1Zar(X,K2))→ H2(F,K2(F (X)))

0→ H1(F,H3(F (X)/X,Γ(2))→ CH2X → (CH2X)GF

→ H2(F,H3(F (X)/X,Γ(2))→ H5(F (X)/X,Γ(2)).
2

The exact sequence (1) follows immediately. Moreover, we also get [6, lemma 4.1].

3. Relative motivic cohomology, II

We recall some notation:

• As above, Hi(X, j) (resp. Hi(j)) is shorthand for Hi
ét(X,Q/Z(j)) (resp. for

Hi(Q/Z(j))).
• η is the map H3(F, 2)→ H0(X,H3(2)).
• ξ is the map CH2X → (CH2X)GF .
We also denote by H

0
(X,K2) the group H0(X,K2)/K2(F ).

Let π : X → SpecF be the structural morphism and Γ(X/F, 2) be the homotopy
fibre (in the derived category) of the morphism

Γét(F, 2)→ Rπ∗Γét(X, 2).

Denote the hypercohomology group Hiét(F,Γ(X/F, 2)) by H
i(X/F,Γ(2)), so that

we have a long exact sequence

· · · → Hi(X/F,Γ(2))→ Hiét(F,Γ(2))→ Hiét(X,Γ(2))→ Hi+1(X/F,Γ(2))→ · · ·
(16)

This gives:

3.1. Lemma. The groups Hi(X/F,Γ(2)) are:

(i) 0 for i ≤ 1.
(ii) K3(F (X))ind/K3(F )ind for i = 2.
(iii) H0Zar(X,K2)/K2(F ) for i = 3.
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Moreover, there is a complex

(17) 0→ H1Zar(X,K2)→ H4(X/F,Γ(2))→ Ker η
→ CH2X → H5(X/F,Γ(2))→ H4(F,Q/Z(2))→ Coker cl2X .

This complex is exact, except perhaps at H5(X/F,Γ(2)), where its homology is
Cokerη. In particular, we have an isomorphism

H1Zar(X,K2)
∼−→ H4(X/F,Γ(2))

and a short exact sequence

0→ CH2X → H5(X/F,Γ(2))→ H0Zar(X,H3(2))→ 0.(18)

Proof. (i), (ii) and (iii) immediately follow from theorem 1.1 and the exact sequence
(16). The complex (17) and the value of its homology follow from the cross of exact
sequences ((9) and (16))

0
y

H1Zar(X,K2)y

H4(X/F,Γ(2))
y

H3ét(F, 2)y η ց

0 −−−−→ CH2X −−−−→ H4ét(X,Γ(2)) −−−−→ H0Zar(X,H3(2)) −−−−→ 0y

H5(X/F,Γ(2))
y

H4ét(F, 2)y

Coker cl2X

and the “lemma of the 700th” [27]. 2

We now consider the hypercohomology spectral sequence

Hp(F,Hq(X/F,Γ(2))) =⇒ Hp+q(X/F,Γ(2)).(19)

Note that Ep,22 = 0 for p > 0, since the group K3(F (X))ind/K3(F )ind is uniquely
divisible by [26, prop. 11.6]. Hence we get an isomorphism

H
0

Zar(X,K2)
∼−→ H

0

Zar(X,K2)GF
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and an exact sequence

0→ H1(F,H
0

Zar(X,K2))→ H4(X/F,Γ(2))
→ H1Zar(X,K2)GF → H2(F,H

0

Zar(X,K2))

(noting that H4(X/F,Γ(2)) = H1Zar(X,K2) by lemma 3.1). The isomorphism is
Suslin’s [32, cor. 5.9], but we get it here by a formal argument, in the vein of [17, th.
3.1 (a)]. The cross of complexes (the above exact sequence and (17)):

0y
H1Zar(X,K2)y

0→ H1(F,H
0

Zar(X,K2))→H4(X/F,Γ(2))→H1Zar(X,K2)GF → H2(F,H
0

Zar(X,K2))y
Ker ηy
CH2Xy

H5(X/F,Γ(2))y
H4ét(F, 2)y
Coker cl2X

contains, via the lemma of the 700th, all the information one can easily get in this
generality.

Assume now that H
0

Zar(X,K2) = 0. Then the exact row in the above diagram
reduces to an isomorphism H4(X/F,Γ(2))

∼−→ H1Zar(X,K2)GF , hence we get a com-
plex:

(20) 0→ H1Zar(X,K2)→ H1Zar(X,K2)GF → Ker η → CH2X

→ H5(X/F,Γ(2))→ H4ét(F, 2)→ Coker cl2X

with homology Cokerη at H5(X/F,Γ(2)) and 0 elsewhere.

Moreover the spectral sequence (19) and lemma 3.1 give an exact sequence

0→ H1(F,H1Zar(X,K2))→ H5(X/F,Γ(2))
→ (H5(X/F,Γ(2)))GF → H2(F,H1Zar(X,K2)).

Putting (20) and () together, we get a cross of complexes (the horizontal one
exact, the vertical one exact except perhaps at the crossing point):
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0y
H1Zar(X,K2)y
H1Zar(X,K2)GFy

Ker ηy
CH2Xy ξ′ ց

0→H1(F,H1Zar(X,K2))→H5(X/F,Γ(2))→ (H5(X/F,Γ(2)))GF→H2(F,H1Zar(X,K2))y
H4ét(F, 2)y
Coker cl2X .

Note that Ker ξ = Ker ξ′ by (18). We get theorem 1 a) from this cross and the latter
remark, by a diagram chase analogous to the lemma of the 700th. The same diagram
chase gives us the complex (4), and shows that its cohomology coincides with that of
a complex

0→ Cokerη → Coker ξ′ → H2(F,H1Zar(X,K2)).
Notice the short exact sequence from (18)

0→ Coker ξ → Coker ξ′ → H0Zar(X,H3(2))GF .
Using this exact sequence, we easily conclude the proof of theorem 1. 2

4. Purity

In this section, we establish a purity theorem for Zariski and étale weight-two motivic
cohomology, generalizing results of [23]. Recall that Γ(1) is defined as Gm[−1] and
Γ(0) as Z[0] (in both the Zariski and étale topologies). We also need such complexes
for i < 0:

4.1. Definition. For i < 0, we define:

ΓZar(i) = 0;

Γét(i) = Q/Z(i)[−1] (no p-primary part in characteristic p).

The following theorem extends and precises [23, th. 4.5]; the method of proof is
different.

4.2. Theorem. Let X be a smooth variety over a field and let Z
i−→ X be a closed

immersion, with Z smooth of codimension c.
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a) There is an isomorphism (in the derived category of complexes of sheaves over
ZZar)

ΓZar(Z, 2− c)[−2c] ∼−→ Ri!ZarΓZar(X, 2).

b) There is a map (in the derived category of complexes of sheaves over Zét)

Γét(Z, 2− c)[−2c]→ Ri!étΓét(X, 2)

whose homotopy cofibre is concentrated in degree c + 4 and has p-primary torsion
cohomology, where p is the characteristic exponent of F . In particular, if charF = 0,
this map is an isomorphism.

4.3. Lemma. Let Z
i−֒→ X be a smooth subvariety of X of codimension c. Then:

a) For any constant sheaf A over XZar, R
pi!ZarA = 0 for all p.

b) For any n, Rpi!ZarKn =
{
0 for p 6= c
Kn−c for p = c,

where Kn−c := 0 if n < c.

Proof. a) is trivial and b) follows in a well-known way from Gersten’s conjecture
(e.g. [9, § 7]). 2

Proof of theorem 4.2 a). Apply Ri! to the triangle

(K3)ind[−1] −−−−→ ΓZar(2)

տ ւ

K2[−2]
and apply lemma 4.3, noting that the Zariski sheaf (K3)ind is constant.

For the proof of theorem 4.2 b), we need some facts on étale cohomological purity.
For all m ≥ 1, there is a morphism

Z/m(2− c)[−2c]→ Ri!étZ/m(2).(21)

For m prime to the characteristic exponent of F , this morphism is the classical
purity isomorphism of SGA4, e.g. [28, th. 6.1]. For charF = p > 0 and m a power
of p, it is comes from Gros’ thesis [10, II.3.5]: its homotopy cofibre is concentrated
in degree c+ 3. In the general case, we define the morphism component-wise, on the
prime-to-p and p-primary parts.

The following rather trivial lemma is very useful:

4.4. Lemma. a) Let f : S → T be a morphism of sites and Rf∗ : D+(S)→ D+(T ) the
functor induced from the bounded below derived category of Abelian S-sheaves to that
of Abelian T -sheaves. Let C be a bounded below complex of Abelian groups, that we
view as a complex of constant sheaves over S. Then there is a natural isomorphism
of functors

Rf∗ ◦ (C
L
⊗?) ≈ C

L
⊗(Rf∗?)

and a natural morphism of functors

f∗ ◦ (C
L
⊗?)→ C

L
⊗(f∗?).
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b) Denote by iλ (λ = Zar or ét) the map corresponding to i from Zλ to Xλ (small
sites). Then, with C as in a), there is a natural isomorphism of functors

Ri!λ ◦ (C
L
⊗?) ≈ C

L
⊗(Ri!λ?).

Proof. a) For A,B two Abelian groups, let A *B denote Tor
Z
1 (A,B). We note that

* is left exact and its unique nonzero higher derived functor is R
1
* = ⊗. Hence there

is a natural isomorphism

C
L
⊗D ≈ C R

*D[1]

for all C,D ∈ D(Ab).

Therefore the natural isomorphism of the lemma is equivalent to a natural iso-
morphism of functors

Rf∗ ◦ (C
R

*?) ≈ C
R

*(Rf∗?)

which in turn will follow from a natural isomorphism

f∗(A *F) ≈ A * f∗F(22)

for any Abelian group A and any sheaf F over S. Note that, since * is left exact,
the presheaf U 7→ A *G(U) is a sheaf for any sheaf G over any site. Therefore, given
U ∈ S, both sides of (22) evaluated on U are A *F(f−1(U)). Finally, the second
natural transformation, say, follows from the first one by adjunction.

b) Follows from a), considering the triangle of functors (with j : X−Z →֒ X the
complementary open immersion)

i∗Ri
! → IdXλ → Rj∗j

∗ → i∗Ri
![1](23)

and the fact that i∗ is fully faithful. Here we dropped the index λ for notational
simplicity. 2

Note that the triangle (12) and its analogues for i = 0, 1 can be reformulated as
quasi-isomorphisms

Γét(i)
L
⊗Z/m ∼−→ Z/m(i) (0 ≤ i ≤ 2)(24)

over the big étale site of SpecF . Note also the obvious quasi-isomorphisms

α∗ΓZar(i)
∼−→ Γét(i) (0 ≤ i ≤ 2).(25)

Using (24) and lemma 4.4, they give by adjunction morphisms

ΓZar(i)
L
⊗Z/m→ Rα∗Z/m(i) (o ≤ i ≤ 2)(26)

over the big Zariski site of SpecF .

Let finally αX : Xét → XZar and αZ : Zét → ZZar be the natural morphisms of
(small) sites. Note the natural isomorphism of functors

Ri!ZarR(αX)∗
∼−→ R(αZ)∗Ri

!
ét(27)

over the small Zariski site of Z. (It can be obtained for example with the help of
(23); compare [14, II.6.14].)
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There is a diagram

ΓZar(Z, 2− c)[−2c]
L
⊗Z/m −−−−→ Ri!ZarΓZar(X, 2)

L
⊗Z/m

y
y

R(αZ)∗Z/m(2− c)[−2c] −−−−→ Ri!ZarR(αX)∗Z/m(2)

(28)

where the vertical maps are given by (26), the top horizontal map by theorem 4.2 a)
and the bottom horizontal map is defined by applying R(αZ)∗ to (21) and using (27).
The notation in the top right corner is unambiguous, thanks to lemma 4.4.

4.5. Lemma. Diagram (28) commutes up to sign.

Proof. As in the proof of lemma 4.3, this boils down to the fact that the Gersten
complex for K-theory is compatible with the Gersten complex for étale cohomology
via the Galois symbol (m prime to charF ) or the differential symbol (m a power of
charF ). The first case is well-known; see [11, cor. 1.6 and proof of lemma 4.11] for
the second one. 2

Proof of theorem 4.2 b). We first construct the map. There is a tautological
natural transformation (stemming from (27))

α∗ZRi
!
Zar → Ri!étα

∗
X(29)

hence a morphism (in the derived category of étale sheaves over Z)

α∗ZΓZar(Z, 2− c)[−2c]→ Ri!étΓét(X, 2)(30)

where we used a) and (25). On the other hand, the triangle

Γ(2) −−−−→ Γ(2)⊗Q

տ ւ

Q/Z(2)

(31)

deduced from (12) yields a map

Ri!étQ/Z(2)[−1]→ Ri!étΓét(X, 2).(32)

Passing to the colimit in (21), we get a morphism

Q/Z(2− c)[−2c]→ Ri!étQ/Z(2)(33)

whose homotopy cofibre is concentrated in degree c + 3 and has p-primary torsion
cohomology. Shifting and composing with (32), we get a morphism

Q/Z(2− c)[−1− 2c]→ Ri!étΓét(X, 2).(34)

For c ≤ 2, we use (30) to define the map of b), noting that it becomes then
Γét(Z, 2− c)[−2c]→ Ri!étΓét(X, 2)

via (25). For c > 2, we use (34) to define this map.

We now prove the property of the map of b) as claimed in the statement of
theorem 4.2. It is enough to do this after tensoring (30) and (34) by Q and Z/m for
all m (in the derived sense). Since R(αZ)∗ is fully faithful, we may even apply this
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functor to the situation.

Suppose first that c ≤ 2. Using (27), (14) and a), we see that the morphism
R(αZ)∗Γét(Z, 2− c)[−2c]⊗Q→ R(αZ)∗Ri

!
étΓét(X, 2)⊗Q

is a quasi-isomorphism. On the other hand, there is a ±-commutative diagram

Γét(Z, 2− c)
L
⊗Z/m[−2c] → α∗ZRi

!
ZarΓZar(X, 2)

L
⊗Z/m → Ri!étΓét(X, 2)

L
⊗Z/my≀

y ≈ւ
Z/m(2− c)[−2c] → Ri!étZ/m(2).

In this diagram, the left square is obtained via (25) and (27) by applying adjunction
to (28) and using lemma 4.5; the right triangle is obtained via (25) and (29). The
left vertical map and the southwest map come from the triangle (12).

The bottom horizontal map is none else than (21): its homotopy cofibre is
p-primary torsion and concentrated in degree c + 3. The left vertical map and the
south-west map are quasi-isomorphisms by (24), hence the top composite has the
same cofibre as the bottom map. This proves theorem 4.2 b) in the case c ≤ 2.

Suppose now that c > 2. We first have

R(αZ)∗Ri
!
étΓét(X, 2)⊗Q ≈ Ri!ZarR(αX)∗Γét(X, 2)⊗Q ≈ Ri!ZarΓZar(X, 2)⊗Q = 0

by (14) and a). On the other hand, tensoring (34) by Z/m and using (31) yields

Z/m(2− c)[−2c]→ Ri!étΓét(X, 2)
L
⊗Z/m.

Using (24), we get a composition

Z/m(2− c)[−2c]→ Ri!étΓét(X, 2)
L
⊗Z/m ∼−→ Ri!étZ/m(2)

which is clearly (33). This concludes the proof of theorem 4.2 b). 2

5. Cohomology of projective bundles

Let E → X be a vector bundle of rank n, and P
π−→ X the associated projective

bundle. Our aim in this section is to compute Rπ∗ΓZar(P, 2) and Rπ∗Γét(P, 2).

In order to state the theorem, we remark that there are pairings (i ≤ 2):

ΓZar(i− 1)
L
⊗ΓZar(1)→ ΓZar(i)(35)

over the big Zariski site of SpecF , if F has more than two elements, and

Γét(i− 1)
L
⊗Γét(1)→ Γét(i)(36)

over the big étale site of SpecF .

For i = 2, (35) and (36) are the pairings of [22, prop. 2.5]; for i = 1 they are
tautological. For i < 0 (and in the étale case), the triangle analogous to (31) for Γ(1)
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shows that, for all i, the morphism Q/Z(i− 1)
L
⊗Q/Z(1)[−1]→ Q/Z(i− 1)

L
⊗Γét(1)

is a quasi-isomorphism. Therefore it suffices to define morphisms

Q/Z(i− 1)
L
⊗Q/Z(1)→ Q/Z(i)[1]

for all i ∈ Z. This is nothing else than Tate twists of the natural isomorphisms (in
D(Ab))

Ql/Zl
L
⊗Ql/Zl ≈ Ql/Zl[1]

for l 6= charF . Finally, for i = 0, the pairing is defined similarly, using the natural
map

Q/Z[−1]→ Z[0] = Γét(0).
Let L be a line bundle over an F -scheme S. Let λ = Zar or ét. Via (36), its class

[L] ∈ H1λ(S,Gm) = H2λ(S,Γ(1)) defines morphisms of complexes

Γλ(i− j)|S [−2j]
[L]j−−→ Γλ(i)|S

where |S means “restriction to the big λ site of S”. In particular, for S = P and
L = O(1), we get maps

Γλ(2− j)|P [−2j]
[O(1)]j−−−−→ Γλ(2)|P (j ≥ 0)

hence, by adjunction, a morphism

n∐

j=0

Γλ(2− j)|X [−2j]
ρλ−→ Rπ∗(Γλ(2)|P ).(37)

We are now ready to state the result:

5.1. Theorem. The morphism ρλ is a quasi-isomorphism for λ = Zar or ét (for
λ = Zar, assume F has more than two elements).

Proof. We proceed as in the last section, first proving the Zariski case. Let A be
a local ring of X, and K be its field of fractions. The restriction of E to SpecA is
trivial, hence P| SpecA ≃ PnA. Looking at the maps induced by ρZar on cohomology
sheaves and using theorem 1.6, we can identify them to:

K3(K)ind → K3(K(T1, . . . , Tn))ind

K2(A)→ H0Zar(P
n
A,K2)

A∗ → H1Zar(P
n
A,K2)

Z→ H2Zar(P
n
A,K2).

We have to show that all these maps are isomorphisms. The first one is an
isomorphism because K3,ind is invariant under rational extensions. The other ones
follow from [9, lemma 8.11].

In the étale case, it is enough to check that ρ is a quasi-isomorphism after
tensoring by Q and by Z/l for all prime l. In the case of Q, we reduce to the Zariski
case as above, by applying Rα∗ and using (14).
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For Z/l, we first need a lemma. Note that there are products:

Z/l(i− 1)
L
⊗Z/l(1) −→ Z/l(i).(38)

For l 6= charF , they are nothing else than Tate twists of the natural product in
D(Ab). For l = charF (and i > 0), they come from the products

Ωi−1log ⊗ Ω1log → Ωilog.

5.2. Lemma. For any prime l and any i ≤ 2, the diagram

Γét(i− 1)
L
⊗Γét(1)

L
⊗Z/l −−−−→ Γét(i)

L
⊗Z/l

y
y

Z/l(i− 1)
L
⊗Z/l(1) −−−−→ Z/l(i)

commutes, where the top horizontal map is (36)
L
⊗Z/l, the bottom horizontal map is

(38) and the vertical maps are deduced from (24).

Proof. For l 6= charF , this follows from [22]. For l = charF , it follows from
the definition of the logarithmic symbol, since (for i = 1) the étale sheaf K3,ind is
uniquely l-divisible. 2

If l 6= charF , using lemma 5.2, ρ
L
⊗Z/l becomes the map γ of [15, th. 2.2.1],

which is a quasi-isomorphism, Tate-twisted twice. If p = charF , still using lemma

5.2, ρ
L
⊗Z/p becomes the map

Z/p[−2]⊕ (Ω1log)|X [−1]⊕ (Ω2log)|X −→ Rπ∗(Ω
2
log)|P

shifted, which is an isomorphism by [10, cor. I.2.1.12]. 2

5.3. Corollary. H0Zar(X,H3(2))
∼−→ H0Zar(P,H3(2)).

Proof. (We don’t really need Γ(2) for this.) Consider the commutative diagram
with exact rows

0 −−−−→ CH2X −−−−→ H4ét(X,Γ(2)) −−−−→ H0Zar(X,H3(2)) −−−−→ 0y
y

y

0 −−−−→ CH2P −−−−→ H4ét(P,Γ(2)) −−−−→ H0Zar(P,H3(2)) −−−−→ 0

where the rows come from (9). Using theorem 5.1 and the analogous result for Chow
groups, the bottom left horizontal map can be rewritten

CH0(X)⊕ CH1(X)⊕ CH2(X)→ H0ét(X,Γ(0))⊕H2ét(X,Γ(1))⊕H4ét(X,Γ(2)).

The result now comes from the fact that CHi(X) → H2iét(X,Γ(i)) is an isomor-
phism for i = 0, 1. 2
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6. The coniveau spectral sequence and Gersten’s conjecture

By the standard procedure, we can construct a coniveau spectral sequence ([3], [5])

Ep,q1 =
∐

x∈X(p)
Hq+px (Xét,Γ(2)) =⇒ Hp+qét (X,Γ(2))

where Hq+px (Xét,Γ(2)) = lim−→
U∋x
Hq+p{x}∩U(Uét,Γ(2)).

Applying theorem 4.2, we get, for x ∈ X(p):

Hq+px (Xét,Γ(2)) =





Hq(F (X),Γ(2)) for p = 0

Hq−2(F (x),Gm) for p = 1 and q 6= 4, 5
Hq−2(F (x),Z) for p = 2 and q 6= 4, 5
Hq−p−1(F (x),Q/Z(−p)) for p > 2 and q 6= 4, 5.

Moreover, we have exact sequences:

0→ H3−p(F (x),Q/Z(2− p))→ Hp+4x (Xét,Γ(2))→ H0(F (x),F)
→ H4−p(F (x),Q/Z(2− p))→ Hp+5x (Xét,Γ(2))→ 0

where F is an l-primary torsion sheaf if charF = l > 0 (and is 0 if charF = 0). For
p > 2, the map H0(F (x),F)→ H4−p(F (x),Q/Z(2− p)) has to be 0, so the sequence
splits into

0→ H3−p(F (x),Q/Z(2− p))→ Hp+4x (Xét,Γ(2))→ H0(F (x),F)→ 0
H4−p(F (x),Q/Z(2− p)) ∼−→ Hp+5x (Xét,Γ(2)).

This shows that Ep,51 = 0 for p ≥ 5 and Ep,41 is l-primary torsion for p ≥ 4. For
q 6= 4, 5, Ep,q1 = 0 for p ≥ q, except for E2,21 = Z2(X) (codimension 2 cycles). Note
also that

Ep,31 = 0 for all p.

Using theorem 5.1 for P = P1X , the arguments of [8], [5] show that Gersten’s
conjecture holds for étale weight-two motivic cohomology. Therefore we get a Bloch-
Ogus-type theorem:

6.1. Theorem. The Ep,q2 term of the coniveau spectral sequence for weight-two mo-
tivic cohomology coincides with Hp(XZar, R

qα∗Γ(2)) =: H
p
Zar(X,Hq(Γ(2))). 2

6.2. Corollary. For any i ≥ 0,
a) The functor X 7→ Hiét(X,Γ(2)) satisfies “codimension 1 purity” for regular local
rings of a smooth variety in the sense of [4, def. 2.1.4 (b)].
b) H0Zar(X,Hi(Γ(2))) is a birational invariant of smooth, proper varieties X/F .
c) For any proper morphism P

f−→ X of smooth, integral F -varieties such that the
generic fibre of f is F (X)-rational,

H0Zar(X,Hi(Γ(2)))
∼−→ H0Zar(P,Hi(Γ(2))).

Proof. a) follows from theorem 6.1. b) follows from theorem 6.1 and [4, prop.
2.1.8]. Finally, c) follows from b) and corollary 5.3. (In [5, §8], we give a general
proof of these properties for suitable “cohomology theories with supports”.) 2
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Remark. As for corollary 5.3, we could prove this without having recourse to Γ(2),
in view of lemma 1.4. More precisely, we could “merely” use Gersten’s conjecture for
K-theory (Quillen [31]), étale cohomology with coefficients in twisted roots of unity
(Bloch-Ogus [3]) and logarithmic Hodge-Witt cohomology (Gros-Suwa [11]).

7. Projective homogeneous varieties

Let X be a projective homogeneous variety in the sense of [25] and [30]. In
particular X is rational, so the assumptions of theorem 1 are satisfied, including
H0Zar(X,H3(2)) = 0 by corollary 6.2 c). Moreover, we have Kj−i(F ) ⊗ CHiX

∼−→
Hi
Zar(X,Kj) for all i ≤ j (loc. cit.). Finally, the GF -modules CHiX are permutation
modules, hence torsion-free [30]. In particular:

H1(F,H1Zar(X,K2)) = 0
Ker ξ = (CH2X)torsion.

Let E be the étale F -algebra associated to X as in [25]. We get the following
corollary of theorem 1, containing [25, Theorem] and [30, th. 1]:

7.1. Corollary. If X is projective homogeneous, there is an exact sequence:

0→ H1Zar(X,K2)→ E∗
ρ−→ Kerη → (CH2X)torsion → 0

and a complex
0→ Cokerη → Coker ξ → Br(E)

which is exact, except perhaps at Coker ξ, where its homology is Ker(H4(F, 2) →
Coker cl2X).

The map ρ in corollary 7.1 is described by Merkurjev [25]: there is an Azumaya
E-algebra A associated to X, and ρ is cup-product by [A] followed by transfer.

7.2. Corollary. Cokerη is finite.

Indeed, Coker ξ is finite, as a torsion quotient of the finitely generated group
(CH2X)GF . 2

In [19] we show that Cokerη is isomorphic to Ker cl2X .

Acknowledgements. I wish to thank Jean-Louis Colliot-Thélène, Hélène Esnault,
Marc Levine, Eckart Viehweg and the referee for useful comments.
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Abstract. According to the numerical Iitaka dimension ν(X,D) and c2(X) ·
D, fibered Calabi-Yau threefolds Φ|D| : X → W (dimW > 0) are coarsely
classified into six different classes. Among these six classes, there are two
peculiar classes called of type II0 and of type III0 which are characterized
respectively by ν(X,D) = 2 and c2(X) · D = 0 and by ν(X,D) = 3 and
c2(X) · D = 0. Fibered Calabi-Yau threefolds of type III0 are intensively
studied by Shepherd-Barron, Wilson and the author and now there are a
satisfactory structure theorem and the complete classification. The purpose
of this paper is to guarantee a complete structure theorem of fibered Calabi-
Yau threefolds of type II0 to finish the classification of these two peculiar
classes. In the course of proof, the log minimal model program for threefolds
established by Shokurov and Kawamata will play an important role. We shall
also introduce a notion of quasi-product threefolds and show their structure
theorem. This is a generalization of the notion of hyperelliptic surfaces to
threefolds and will have other applicability, too.

1991 Mathematics Subject Classification: Primary: 14J, secondary 14D.

Introduction

Let us start this introduction by recalling a global picture of fibered Calabi-Yau
threefolds known at the present and then state the Main Theorem precisely.

Throughout this paper, by a Calabi-Yau threefold, we mean a normal projective
complex threefold X with only Q−factorial terminal singularities (so that isolated)
and with OX(KX) ≃ OX and πalg1 (X) = {1}. The last condition is equivalent to
πalg1 (X − SingX) = {1}, because the local fundamental group of three dimensional
terminal Gorenstein singularities is trivial ([Kw3]). This also implies h1(OX) = 0
([O1]). We define

c2(X) ·D := c2(X ′) · ν∗(D)

for any resolution ν : X ′ → X of Sing (X).
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It is known by Miyaoka that c2(X) ·D is non-negative if D is nef ([Mi]).
A surjective morphism Φ : X → W is called a fibered Calabi-Yau threefold if X

is a Calabi-Yau threefold, W is a normal projective variety (of positive dimension)
and Φ has connected fibers. Note that Φ is nothing but Φ|D| if D is the pull back of
(any) very ample divisor H on W .

Fibered Calabi-Yau threefolds Φ|D| : X → W are divided into six classes by the
numerical invariants ν(X,D) and c2 ·D:
Type I0 : ν(X,D) = 1 and c2 ·D = 0; Type I+ : ν(X,D) = 1 and c2 ·D > 0;

Type II0 : ν(X,D) = 2 and c2 ·D = 0; Type II+ : ν(X,D) = 2 and c2 ·D > 0;

Type III0 : ν(X,D) = 3 and c2 ·D = 0; Type III+ : ν(X,D) = 3 and c2 ·D > 0.

The following (more or less tautological) coarse classification is proved in [O1].

Theorem 1 ([O1]). Each class of fibered Calabi-Yau threefolds Φ(= Φ|D|) : X →W
defined above is characterized as follows.

Type I0: General fibers are smooth Abelian surfaces and W = P1,
Type I+: General fibers are smooth K3 surfaces and W = P1,
Type II0: General fibers are smooth elliptic curves and W is a normal projective
rational surface with only quotient singularities and with KW ≡ 0,
Type II+: General fibers are smooth elliptic curves and W is a normal projective
rational surface with only quotient singularities and with KW + ∆ ≡ 0 for some
non-zero effective Q-divisor ∆ such that (W,∆) is klt,
Type III0: Φ is a birational morphism and W is a normal projective threefold with
only canonical singularities and with OW (KW ) ≃ OW and c2(W )(:= Φ∗c2(X)) = 0
as a linear form on Pic(W ),

Type III+: Φ is a birational morphism and W is a normal projective threefold with
only canonical singularities and with OW (KW ) ≃ OW and c2(W ) 6= 0.
Moreover, if Φ : X → W is a fibered Calabi-Yau threefold of type II0 and H is

a general very ample divisor on W , then the induced elliptic surface Φ−1(H) → H
has no singular fibers while Φ−1(H)→ H has at least one singular fiber composed of
rational curves if Φ : X →W is of type II+.

Theorem 1 shows that fibered Calabi-Yau threefolds of type III0 or of type II0
have rather special nature.

The following two theorems give a complete picture of fibered Calabi-Yau three-
folds of type III0.

Theorem 2 ([SW]). Let Φ : X → X be a fibered Calabi-Yau threefold of type III0.
Then, there exist an Abelian threefold A and a finite Gorenstein automorphism group
G of A such that

(1) A[G] is a non-empty finite set, and
(2) X = A/G.
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Theorem 3 ([O3]). Two fiber spaces Φ3 : X3 → X3 and Φ7 : X7 → X7 defined in
the following (1) and (2) are fibered Calabi-Yau threefolds of type III0.

(1) Let Eζ3 be the elliptic curve with period ζ3 := exp (2πi/3). Setting X3 :=

E3ζ3/〈diag (ζ3, ζ3, ζ3)〉, we define Φ3 : X3 → X3 to be a unique crepant (toric)

resolution of X3.
(2) Let A7 be the Jacobian threefold of the Klein quintic curve C := (x0x

3
1 +

x1x
3
2 + x2x

3
0 = 0) ⊂ P2[x0:x1:x2] and g7 the automorphism of A7 induced by

the automorphism of C given by [x0 : x1 : x2] 7→ [x10 : x21 : x42]. Setting
X7 := A7/〈g7〉, we define Φ7 : X7 → X7 to be a unique crepant (toric)
resolution of X7.

Conversely, any fibered Calabi-Yau threefold of type III0 is isomorphic to either Φ3 :
X3 → X3 or Φ7 : X7 → X7 as fiber spaces.
In particular, there are exactly two fibered Calabi-Yau threefolds of type III0 and

both of them are smooth and rigid.

Now it is interesting to study another peculiar class of fibered Calabi-Yau three-
folds called of type II0.

Base surfaces W of fibered Calabi-Yau threefolds Φ : X → W of type II0 are
classified into two classes by the global canonical covering π : T → W , for which we
have either

(1) T is a smooth Abelian surface, or
(2) T is a (projective) K3 surface with only Du Val singularities.

In case (1) (resp. (2)), a fibered Calabi-Yau threefold Φ : X →W of type II0 is called
of type II0A (resp. of type II0K).

The following theorem gives a complete classification of fibered Calabi-Yau three-
folds of type II0A.

Theorem 4 ([O2]).

(1) Let Φ3 : X3 → E3ζ3/diag (ζ3, ζ3, ζ3) be as in Theorem 3 and p : X3 →
E2ζ3/diag (ζ3, ζ3) the natural map given by the composite of Φ3 and the natural

projection p12 : E
3
ζ3
/diag (ζ3, ζ3, ζ3)→ E2ζ3/diag (ζ3, ζ3). Then, any composite

of flops f : X3 · ·· → X ′3 along curves in p
−1(Sing (E2ζ3/diag (ζ3, ζ3))) gives a

fibered Calabi-Yau threefolds p ◦ f−1 : X ′3 → E2ζ3/diag (ζ3, ζ3) of type II0A.

In this case, E2ζ3 is nothing but the global canonical cover of the base surface

E2ζ3/diag (ζ3, ζ3).

(2) Conversely, every fibered Calabi-Yau threefolds of type II0A is obtained by
the above process up to isomorphisms as fiber spaces. In particular, every
fibered Calabi-Yau threefolds of type II0A is smooth and rigid. Moreover,
there are exactly 14 different fibered Calabi-Yau threefolds of type II0A up to
isomorphism as fiber spaces.

The purpose of this paper is to show the following structure theorem of fibered
Calabi-Yau threefolds of type II0K. This theorem tells us how to construct all the
fibered Calabi-Yau threefolds of type II0K.
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Main Theorem. Let us prepare

(i) a smooth elliptic curve E with a fixed origin 0,
(ii) a projective K3 surface S with only Du Val singularities and its minimal
resolution µ : S′ → S, and

(iii) two groups
G ∈ {{1},Z2,Z3,Z4,Z5,Z6,Z7,Z8, (Z2)2, (Z3)2, (Z4)2,Z2 × Z4,Z2 × Z6},
and
〈g〉 ≃ ZI ∈ {Z2,Z3,Z4,Z6},

such that G̃ := G ⋊ 〈g〉 (semi-direct product) acts faithfully on both E and S (and
then on S′ and E × S′) in such a way that
(iv) G ∋ a : E × S′ → E × S′, (x, y) 7→ (x + aE , aS′(y)) with aE ∈ (E)ord (a) and

a∗S′ωS′ = ωS′ , where ωS′ is a nowhere vanishing regular 2 form on S
′,

(v) g : E × S′ → E × S′, (x, y) 7→ (ζ−1I x, gS′(y)) with g
∗
S′ωS′ = ζIωS′ , and

(vi) (S′)[G̃] ⊂ Exc(µ) except for finitely many points in (S′)[G̃], that is, (S)[G̃] is a
finite set.

Note that G̃ is a finite Gorenstein automorphism group of E × S′. Let

ν : Y (E,S, G̃)→ (E × S′)/G̃

be a crepant resolution (whose existence is now guaranteed by Roan [Ro]) and

p : Y (E,S, G̃)→ S/G̃

the natural projection given by the composite of ν : Y (E,S, G̃) → (E × S′)/G̃,
p2 : (E × S′)/G̃→ S′/G̃, and µ/G̃ : S′/G̃→ S/G̃.
Then,

(1) any composite of flop f : Y (E,S, G̃) · ·· → Y ′ along curves in p−1(Sing (S/G̃))
gives a fibered Calabi-Yau threefold p◦f−1 : Y ′ → S/G̃ of type II0K provided

that πalg1 (Y ) = {1}. In this case S/G gives the global canonical cover of the
base space S/G̃.

(2) Conversely, every fibered Calabi-Yau threefold of type II0K is obtained by

the above process for some triplet (E,S, G̃) satisfying the conditions (i)-(vi)
up to isomorphisms as fiber spaces. In particular, every fibered Calabi-Yau
threefold of type II0K is smooth.

This together with Theorems 2, 3 and 4 will complete the structure theorem of
the two peculiar classes of fibered Calabi-Yau threefolds called of types II0 and III0.

Remark. Investigating the actions of G and 〈g〉 on E, we easily see that
(1) G̃ is uniquely determined by G and 〈g〉 as an abstract group, and
(2) among 52 possibilities of (G, 〈g〉) in the Main Theorem, the following 18 com-
binations do not occur:
(Z4,Z3), (Z5,Z3), (Z6,Z3), (Z8,Z3), (Z2 × Z6,Z3), (Z2 × Z8,Z3),
(Z3,Z4), (Z4,Z4), (Z6,Z4), (Z7,Z4), (Z2 × Z8,Z4),
(Z2,Z6), (Z4,Z6), (Z5,Z6), (Z6,Z6), (Z8,Z6), (Z2 × Z6,Z6), (Z2 × Z8,Z6).
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Remark. There are examples of non-rigid fibered Calabi-Yau threefolds of type II0K
and the number of fibered Calabi-Yau threefolds of type II0K is not finite any more
([O1]).

Remark. It is interesting to compare Theorems 2, 3, 4 and main theorem with the
so called Bogomolov decomposition theorem (see for example [Bo]). These look very
similar, while our proof is free from the Bogomolov decomposition theorem.

The Main Theorem and Theorem 4 immediately imply

Corollary. Let Φ : X →W is a fibered Calabi-Yau threefold of type II0. Then the
global canonical index of W is either 2, 3, 4 or 6.

Corollary. Let Φ : X → W be a fibered Calabi-Yau threefold of type II0K (resp.
of type II0A). Then, there is a composite of flops Y → W of Φ : X → W over W
such that Y has at least two different fiber space structures, Y → W of type II0K
(resp. of type II0A) and Y → P1 of type I+ (resp. of type I0).
Very little is known for a fibered Calabi-Yau threefold of type I0, that is, a Calabi-

Yau threefold with an Abelian fibration. However, our main theorem and Theorem 4
show

Corollary. Let X be a Calabi-Yau threefold with at least two different Abelian
fibrations. Then, X is a Calabi-Yau threefold described as in either the Main Theorem
(2) or Theorem 4(2). In particular, X is smooth and birational to either a quotient
of an Abelian threefolds or that of the product of a K3 surface and an elliptic curve.

In fact, if Φ|Di| : X → P1 (i = 1, 2) are two different Abelian fibrations on X,
then Φ|m(D1+D2)| : X →W is of type II0 for some m.

The outline of this paper is as follows.

In section 1, we introduce the notion of quasi-product threefolds ((1.1)) and show
their structure theorem ((1.3)). This plays an important role for our proof of the
Main Theorem.
Sections 2 - 4 are devoted to prove the Main Theorem. Since Main Theorem (1)

is quite clear, we prove only Main Theorem (2).
Let ΦT : XT := X×W T → T be the base change of a fibered Calabi-Yau threefold

Φ : X → W of type II0K to the global canonical cover π : T → W . Since Φ always
has a two dimensional fibers ([O1]), XT has very bad singularities and ΦT itself is a
very complicated map in general.
In section 2, we apply the log minimal model program established by Shokurov

and Kawamata or Kollár et al. [Sh] and [Kw4] (also [Ko3]) to find a good birational
(canonical) model f : Z → T of ΦT : XT → T over T such that

(1) Gal(T/W ) := 〈g〉 acts regularly on f : Z → T and
(2) Φ : X →W is birational to the quotient (f : Z → T )/〈g〉.

Moreover applying the result in section 1, we show that there are a smooth elliptic
curve E, a normal projective surface S which is either an Abelian surface or a K3
surface with only Du Val singularities, and a finite automorphism group G of the fiber
space p2 : E × S → S such that (f : Z → T ) = (p2 : E × S → S)/G.
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In section 3, we show that the action of 〈g〉 on f : Z → T lifts to that on its
covering p2 : E × S → S in an equivariant way. This is a rather special phenomenon,
because a composite of Galois extensions is not Galois in general.
Till section 3, the main part of our proof of the Main Theorem is completed. It

remains only to show the impossibility for S to be a smooth Abelian surface. This

problem is treated in section 4. This requires our assumption πalg1 (X) = {1} and
forces rather minute analysis of automorphism groups of an Abelian surface.
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Notation and Convention

Throughout this paper, we work over the complex number field C.
We will employ standard notion and notation in minimal model program ([KMM]

or [Ko3]) freely.
By a minimal threefold, we mean a normal projective threefold V with only

Q−factorial terminal singularities and with nef canonical (Weil) divisor KV .
A surjective morphism Φ : V → W is said to be relatively minimal if V has only

Q−factorial terminal singularities and the canonical divisor KV is relatively nef with
respect to Φ.
We often use the notion of klt (Kawamata log terminal) given in [Ko3]. This is

same as the notion of log terminal in [KMM].
By a fiber space on a normal projective variety V , we mean a surjective morphism

Φ : V → W to a normal projective variety W with connected fibers. Note that Φ
is not equi-dimensional in general. By Φ−1(w) (w ∈ W ), we denote the scheme
theoretic fiber over w. We denote its reduction by Φ−1(w)red. This is in some sense
a set theoretical fiber.
Two fiber spaces Φ : V → W and Φ′ : V ′ →W ′ are said to be isomorphic if there

are isomorphisms F : V → V ′ and f :W →W ′ such that Φ′ ◦ F = f ◦ Φ.
For two morphisms Φ : V → W and π : T → W , we sometimes denote natural

morphisms V ×W T → T and V ×W T → V by ΦT : VT → T and πV : VT (= TV )→ V
respectively.
The primitive n−th root of unity exp(2πi/n) is denoted by ζn.
We denote the cyclic group of order n by Zn.
The elliptic curve with period τ ∈ H is written as Eτ .
The n−torsion group of an Abelian variety A with origin 0 is denoted by (A)n.

By global coordinates around a point P of an n−dimensional Abelian variety A, we
mean those of its universal cover Cn or, equivalently, those of the tangent space TA,P .
For a faithful group action of G on a variety V , we set

V [G] := {x ∈ V | ∃g ∈ G− {1}, g(x) = x},
while,

HG := {v ∈ H | ∀g ∈ G, g∗(v) = v}
for any cohomology group H of V .
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Similarly, for an automorphism g of a variety V , we set

V g := {x ∈ V | g(x) = x}.

An equivariant action of a finite group G on a fibration Φ : V → W induces a
new fibration Φ(modG) : X/G → W/G. We sometimes abbreviate this fibration by
(Φ : V →W )/G.
We say that G acts on Φ : V → W over W if the action of G is equivariant and

is trivial on W .
An automorphism groupG of a variety V with OV (KV ) ≃ OV is called Gorenstein

if the action of G on H0(V,OV (KV )) is trivial, that is, all elements g of G satisfy
g∗ωV = ωV for a generator ωV of H0(V,OV (KV )).
For the automorphism group Aut (V ) of a variety V and a subset B in V , we

often consider the subgroup {g ∈ Aut (V ) | g(B) = B}. We denote this group by
Aut (X,B). For example, if A is an Abelian variety with origin 0, then Aut (A, {0})
is nothing but the so called Lie automorphism group of A.

§1. Quasi-product threefolds
In this preliminary section, we shall introduce the notion of quasi-product threefolds
and prove their structure theorem (Theorem (1.3)). This is a rather wide generalisa-
tion of the notion of hyperelliptic surfaces to threefolds.

Definition (1.1). A normal projective threefold V with only rational singularities
is called a quasi-product threefold with distinguished morphisms a and f if

(1) V has a fiber space structure a : V → A over a smooth elliptic curve A,
(2) V has a fiber space structure f : V → T over a normal projective surface T
with only rational singularities and with H1(OT ) = 0 such that f−1(t)red is
a smooth elliptic curve for any t ∈ T , and that f−1(t) itself is smooth except
at most finitely many points t ∈ T .

Example (1.2). Let S be a normal projective surface with only rational singularities
and E a smooth elliptic curve. Assume that a finite group of translations G of E
acts faithfully on S in such a way that S[G] is finite and H1(OS)G = 0. Then
the quotient threefold (E × S)/G is a quasi-product threefold with distinguished
morphisms p1 : (E × S)/G→ E/G and p2 : (E × S)/G→ S/G.

Conversely, we shall show

Theorem (1.3). Let V be a quasi-product threefold with two distinguished mor-
phisms a : V → A and f : V → T . Let S be a general fiber of a.
Then, there exist an elliptic curve E and a finite subgroup G ⊂ E, that is, a finite

group of translations of E (and then is isomorphic to either Zm or Zn × Zm with
(n|m)) such that
(1) there is an injective homomorphism ι : G→ Aut (S),
(2) V = (E × S)/G under the (free) action of G on E × S defined by

G ∋ g : E × S ∋ (u, v) 7→ (u+ g, ι(g)v) ∈ E × S,
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(3) two distinguished morphisms a : V → A and f : V → T are given by the
natural projections

p1 : (E × S)/G→ E/G

and

p2 : (E × S)/G→ S/ι(G)

respectively.

As a result, S can be replaced by any fiber of a. We set GS := ι(G)(≃ G).

Moreover, if OV (KV ) ≃ OV , then,
(4) any fiber S of a is either a K3 surface with only Du Val singularities or a
smooth Abelian surface,

(5) GS is a finite Gorenstein automorphism of S,
(6) if S is a K3 surface with only Du Val singularities, then S[GS] is a non-empty
finite set and GS(≃ G) is isomorphic to either one of the following groups;
{1}, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z2×Z2, Z2×Z4, Z2×Z6, Z3×Z3, or Z4×Z4,

(7) if S is a smooth Abelian surface, then S[GS] is a non-empty finite set and
GS(≃ G) is isomorphic to either one of the following groups;
{1}, Z2, Z3, Z4, Z6, or Z2 × Z2, Z2 × Z4, Z3 × Z3.
In addition, if GS ≃ Zm, then GS ⊂ Aut (S, {0}) for an appropriate origin 0
of S, while, if GS ≃ Zn × Zm (n|m), then Zn ⊂ (S)n and Zm ⊂ Aut (S, {0})
for an appropriate origin 0 of S. Moreover, Sing (S/GS) is described as follows
for each GS ([Kt]).

(GS ,Sing (S/GS)) = (Z2, 16A1), (Z2 × Z2, 16A1), (Z3, 9A2), (Z3 × Z3, 9A2)
(Z4, 4A3 + 6A1), (Z2 × Z4, 4A3 + 6A1), (Z6, A5 + 4A2 + 5A1).

Remark. Let ν : S′ → S be the minimal resolution of S. Then G induces an
equivariant free action on id × ν : E × S′ → E × S. The induced morphism (E ×
S′)/G→ (E × S)/G gives a resolution of (E × S)/G.

Remark. Our proof given here basically follows the argument of Bombieri and Mum-
ford for hyperelliptic surfaces([BM]). However, since we work at threefolds, we should
keep the following two essential differences in mind:

(1) f may not be flat over T ,
(2) three dimensional relatively minimal models are not unique among their bi-
rational models (even if they exist) so that rational actions on a relatively
minimal model are not necessarily regular in general.

Proof. Set B := {t ∈ T | either f−1(t) is not reduced or T is singular at t}, and denote
Ct := f

−1(t)(t ∈ T ) and Sx := a−1(x) (x ∈ A). By our assumption, B is a finite set.
Let us fix a general point 0 ∈ A and regard this point as an origin of A. Set S := S0.
Then S is a normal surface with only rational singularities. Put n := (Ct · S). This
is independent of t ∈ T − B (because T − B is smooth and f |f−1(T−B) is a smooth
morphism over T −B.)
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Claim (1.4). at := a|Ct : Ct → A is surjective for each t ∈ T − B. In particular, at
is an isogeny of elliptic curves of degree n := (Ct · S) for each t ∈ T − B (and then
n > 0).

Proof of Claim (1.4). Assume the contrary that a(Ct) is a point on A for some t ∈
T −B. Then, a(Ct′) must be a point for every t′ ∈ T −B because f is flat over T −B.
Thus, a induces a morphism a : T − B → A. This gives a rational map a : T · · → A
with a = a◦f . Let T ′ → T be a resolution of both singularities of T and indeterminacy
of a. Since T has only rational singularities, we have h1(OT ′) = h1(OT ) = 0. Thus,
a◦ν(T ′) is a point. Hence a is a morphism and a(T ) is a point. Then, a(V ) would be
a point because a = a ◦ f . But this contradicts the surjectivity of a. q.e.d. for (1.4).

Let t be an arbitrary point on T − B. Then, by (1.4), A acts on Ct via the
composite of the group homomorphism A ≃ Pic0(A)→ Pic0(Ct) given by a

∗
t and the

natural action of Pic0(Ct) on Ct. More concretely, this action is written as

A ∋ x : Ct ∋ P 7→ P + x1 + ...+ xn − 01 − ...− 0n ∈ Ct,

where {x1, ..., xn} := a−1t (x) = Ct ∩ Sx and {01, ..., 0n} := a−1t (0) = Ct ∩ S. Note
that f has a local section over T − B. Thus, gluing these together, we get a regular
action of A on ∪t∈T−BCt = f−1(T −B) over T −B. This gives a rational action on
V over T . But, since the possible indeterminacy f−1(B) of this action on V consists
of elliptic curves (then no rational curves) and since V has only rational singularities,
this action of A on V must be regular. Let us denote this action by σ : A× V → V .
By construction, σ stabilizes each fiber of f . Set τ := σ|A×S : A × S → V . Since at
is an isogeny, we have

at(P + x1 + ...+ xn − 01 − ...− 0n) = at(P ) + nx

for t ∈ T −B and x ∈ A. So, once we define a new action of A on A by

A ∋ x : A→ A; y 7→ y + nx,

that is, by n × (translation), then A induces an equivariant action on the fibration
V − f−1(B) → A. By the same reason as before, this action of A is extended to an
equivariant regular action on the whole space a : V → A.
By definition, we have x(S)(= x(S0)) = Snx (x ∈ A). In particular, τ : A×S → V

is surjective. Moreover, the action of the n−torsion group (A)n of A on V stabilizes
S = S0. This induces a group homomorphism ι : (A)n → Aut (S).
The following claim ([BM]) is now proved formally.

Claim (1.5). Let (x, v) and (x′, v′) be points on A×S. Then, the following (1) and
(2) are equivalent to one another.

(1) τ(x, v) = τ(x′, v′),
(2) (x, v) and (x′, v′) are in the same orbit of the action

(A)n ∋ k : A× S → A× S; (x, v) 7→ (x− k, ι(k)v).
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Proof of Claim (1.5). Since τ(x − k, ι(k)v) = σ(x − k, σ(k, v)) = σ(x − k + k, v) =
τ(x, v), (2) implies (1). We prove the converse. Since τ(x, v) ∈ Snx and τ(x′, v′) ∈
Snx′ , it follows that nx = nx

′, or equivalently, k := x−x′ ∈ (A)n. We may show that
ι(k)(v) = v′. Using τ(x, v) = τ(x′, v′), that is, σ(x, v) = σ(x′, v′), we calculate

v′ = σ(−x′, σ(x′, v′)) = σ(−x′, σ(x, v)) = σ(x− x′, v).

This is nothing but the desired equality, ι(k)(v) = v′. q.e.d. for (1.5).

By (1.5), we get V = (A × S)/(A)n. Moreover, just by construction, we see that
f : (A × S)/(A)n → T factors through the natural projection p2 : (A × S)/(A)n →
S/(A)n. In fact, f factors through p2 at least over T −B. But, since B is finite and
S/(A)n is normal, this is so over the whole T . Let µ : S/(A)n → T be the induced
morphism. Since both f and p2 have only one dimensional connected fibers, µ must
be a finite birational morphism. Thus, by the Zariski main theorem, µ is isomorphism
and then f = p2 under the identification T = S/(A)n. Similarly, a : (A×S)/(A)n → A
factors through p1 : (A× S)/(A)n → A/(A)n = A. Now the equality a = p2 is shown
by the same argument as before.
It only remains to make ι injective to complete the first half part of (1.3). But this

is done as follows. Let G = (A)n/Ker ι. Then, (A × S)/(A)n = (A/(Ker ι) × S)/G
and A/(A)n = (A/Ker ι)/G, in which G acts on translation group of an elliptic curve
A/Ker ι. Now replacing A, (A)n and ι by E = A/(Ker ι), G, and the injection
ι ◦ (−1) : G→ Aut (S), we are done. Here we will compose (−1) only to change the
sign − in (1.5) into + as in (1.3).
From now on, we shall prove the latter half part of (1.3). It is obvious that S

is either a K3 surface with only Du Val singularities or a smooth Abelian surface.
Moreover, since G acts on E as a translation group and OV (KV ) ≃ OV , it follows
that GS must be a Gorenstein automorphism group of S. In the rest we denote GS
simply by G if no confusion seems to arise.

Assume first that S is a K3 surface with only Du Val singularities. Let S′ → S
be the minimal resolution of S. Then G gives a commutative Gorenstein action on
S′. Now the result follows from the Nikulin’s classification ([Ni]). Note that two
groups (Z2)3 and (Z2)4 in his list are excluded because G is isomorphic to either Zn
or Zn × Zm (n|m).
Finally, assuming that S is a smooth Abelian surface, we show that G satisfies

the condition in (1.3)(7). Since G is a finite Gorenstein automorphism group of
S with T = S/G and since h1(T,OT ) = 0, it follows that S[G] is a non-empty
finite set. Choose an appropriate origin 0 of S and identify S with its translation
automorphism group. Set Aut0(S) := {σ ∈ Aut (S)|σ∗ωS = ωS}, Aut0(S, {0}) :=
{σ ∈ Aut0(S)|σ(0) = 0}, where ωS is a non-zero global regular two form on S.
Then, Aut0(S) = S ⋊ Aut0(S, {0}) and G ⊂ Aut0(S). Identifying Aut0(S, {0}) =
Aut0(S)/S, we denote the natural projection by p : Aut0(S) → Aut0(S, {0}). If
we choose global coordinates around 0, we can explicitly write down the action of
g ∈ Aut0(S) in its affine form

g(x) =Mgx+ tg,Mg ∈ SL(2,C), tg ∈ S.
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Then p is nothing but the map taking the matrix part, that is, g 7→ Mg. It follows
from this expression that

(1) as an abstract group, p(G) is independent of the choice of an origin of S,
(2) a finite Gorenstein automorphism g ∈ Aut0(S) has a fixed point if and only if

g is not a translation.

On the other hand, Katsura’s classification ([Kt]) of possible finite subgroups of
Aut0(S, {0}) shows that the commutative group p(G) is isomorphic to either Z2, Z3,
Z4 or Z6.
Thus we can choose g ∈ G and 0 ∈ S such that p(g) generates p(G) and g(0) = 0.

From now on, we regard this point 0 as the origin of S.

Claim (1.6).

(1) H := Ker(p) consists of translations in G, that is, H ⊂ S,
(2) 〈g〉 ≃ p(G).
(3) G is isomorphic to H × 〈g〉.
(4) H is a subgroup of Sg (under the inclusion H ⊂ S).

Proof of (1.6). The assertion (1) follows fromMh = id for h ∈ H. By definition, p|〈g〉 :
〈g〉 → p(G) is surjective group homomorphism. Let h be an element of Ker(p|〈g〉).
Then, h(0) = 0 and h ∈ H. Combining this with (1), we get h = id. Thus, p|〈g〉
is isomorphism. This shows that G is a semi-direct product of H and 〈g〉. Since G
is commutative, this must be the direct product. The last statement now directly
follows from the relation gh = hg (h ∈ H). q.e.d. of (1.6).
Claim (1.7). According to ord (g) = 2, 3, 4, 6, Sg is isomorphic to (Z2)4, (Z3)2, (Z2)2

and {0}.
Proof of (1.7). If ord (g) = 2, then Sg = (S)2. Since (S)2 ≃ (Z2)4, we are done.
Assume that ord (g) = 3. Then, using appropriate global coordinates (x, y) around

0, we can write g = diag (ζ3, ζ
−1
3 ). In particular, 1+g+g

2 = 0. Thus, 3p = p+p+p =
p+ g(p) + g2(p) = (1+ g+ g2)(p) = 0 for p ∈ (S)g. Hence Sg ⊂ (S)3 and Sg ≃ (Z3)k
for some non negative integer k. On the other hand, by the Lefschetz fixed point
formula, we have ♯Sg =

∑4
i=0(−1)itr(g∗|Hi(S,C)). Recall that

H1(S,C) = Cdx⊕ Cdy ⊕ Cdx⊕ Cdy,

and

Hi(S,C) = ∧iH1(S,C).

Now an explicit calculation based on g = diag (ζ3, ζ
−1
3 ) shows tr(g

∗|H0(S,C)) =
1,−2, 3,−2, 1 according to i = 0, 1, 2, 3, 4. Thus, ♯Sg = 9. This implies Sg ≃ (Z3)2.
Assume that ord(g) = 4. Since Sg ⊂ Sg

2 ≃ (Z2)4, it follows that Sg ≃ (Z2)k for
some non negative integer k. As in the case of ord (g) = 3, we can choose appropriate
global coordinates (x, y) around 0 such that g = diag (ζ4, ζ

−1
4 ). Then, again using the

Lefschetz fixed point formula, we calculate ♯Sg = 4. This implies Sg ≃ (Z2)2.
Finally assume that ord (g) = 6. Then, it follows from the previous observation

that Sg ⊂ Sg2 ∩ Sg3 ⊂ (S)2 ∩ (S)3 = {0}. q.e.d. of (1.7).
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Now Claims (1.6), (1.7) and the fact that G is a finite Abelian group of the form
Zn or Zn×Zm (n|m) together with the fundamental theorem on finite Abelian groups
imply the assertion (1.3)(7).

The only remaining problem is to study Sing (S/G) for each G. If G is isomorphic
to Zm, the result follows from Katsura’s table ([Kt]). Next, consider the case when
Zn × Zm for some n and m (with n|m). Since S/G ≃ (S/Zn)/Zm and since (S/Zn)
is again an Abelian surface, the assertion follows from the first case.

Now we are done. Q.E.D. of (1.3).

§2. Good model over the global canonical covering
Let us fix a fibered Calabi-Yau threefold Φ : X → W of type II0K. Define I :=
min{n ∈ N|OW (nKW ) ≃ OW } and denote the global canonical cover of W by π :
T →W ([Kw1, Z]). By our assumption, T is a projective K3 surface with only Du Val
singularities. Set W0 :=W − Sing (W ). It is well known by [Kw1, Z] that π : T →W
is a cyclic Galois covering of order I(W ) and is étale over W0. Moreover, there is a
generator g of the Galois group Gal(T/W ) such that g∗ωT = ζIωT , where ωT is a
nowhere vanishing regular two form on T , that is, a generator of H0(OT (KT )).

We fix these notation till the end of Section 4.

Set ΦT : XT := X ×W T → T . Then, the Galois group Gal(T/W ) = 〈g〉 acts on
this fibration by g : (x, y) 7→ (x, g(y)) and induces an isomorphism

(Φ : X →W ) ≃ (ΦT / : XT → T )/〈g〉.
However, XT itself has very bad singularities in general.

The goal of this section is to prove the following

Key Lemma (2.1). There is a normal projective threefold Z such that

(1) Z has only Q−factorial canonical singularities with OZ(KZ) ≃ OZ ,
(2) Z is a quasi-product threefold ((1.1)) with two distinguished morphisms f :

Z → T and a : Z → A, where the latter map is the Albanese morphism
of Z (see [Kw2] for the definition of the Albanese variety and the Albanese
morphism for varieties with rational singularities), and

(3) there is a regular action of the Galois group of 〈g〉 on the fibration f : Z → T
such that W = T/〈g〉 and (Φ : X →W ) is birational to (f : Z → T )/〈g〉 over
W = T/〈g〉. Moreover, these are isomorphic over W − Sing (W ).

The plan of proof of Key Lemma is as follows. First, applying the log minimal
model program, we find a birational model f : Z → T of ΦT : XT → T with property
(1) in (2.1). Then, we check that f : Z → T also satisfies (2) and (3).

In order to carry out this plan, we start by observing some general lemmas.

Proposition (2.2). Let ϕ : V → S be a surjective morphism from a normal pro-
jective Q−factorial threefold V to a normal projective surface S. Let {Ei}i∈I be the
set of all two-dimensional irreducible components in fibers of ϕ. Set E = Σi∈IEi.
Assume that

(1) V is not covered by rational curves,
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(2) KV = Σi∈IaiEi (as a Weil divisor on V) for some ai ∈ Z≥0,
(3) (V, ǫE) is klt for some positive small rational number ǫ.

Then, there are a normal projective threefold V (n) and a surjective morphism ϕ(n) :
V (n) → S such that

(4) V (n) has only Q−factorial canonical singularities with OV (n)(KV (n)) ≃ OV (n) ,
(5) ϕ(n) : V (n) → S is birational to ϕ : V → S over S and is isomorphic except
over a finite set ϕ(E), and

(6) ϕ(n) : V (n) → S is an equi-dimensional elliptic fibration.

Proof. First, we remark

Claim (2.3). KV + ǫE is not nef unless E = 0 as a divisor.

Proof of (2.3). Let H be a general very ample divisor on V . Then H is a normal
surface and the restriction ϕ|H : H → S is surjective. Since (KV + ǫE)|H ≡ Σi∈I(ai+
ǫ)Ei|H and since Ei|H are contracted by ϕH , we get

((KV + ǫE)
2 ·H) = ((KV + ǫE)|H)2 = (Σi∈I(ai + ǫ)Ei|H)2 < 0

unless E = 0. q.e.d. of (2.3).

Let us apply the log minimal model program for a klt divisor KV + ǫE. If E 6=
0, then KV + ǫE is not nef by (2.3). Thus, there is a log extremal ray R such
that (KV + ǫE) · C < 0 for any curve C belonging to R. Let contR : V → W be
the contraction morphism associated to R. This is a birational morphism by our
assumption (1). Since 0 > (KV + ǫE) ·C = Σ(ai+ ǫ)(Ei ·C), there is a prime divisor
Ei such that Ei · C < 0. This implies C ⊂ Ei. Thus contR is defined over S. Let
φ :W → S be the induced morphism.
If contR is a divisorial contraction, setting V

(1) := W , ϕ(1) := φ and changing E
by its strict transform E(1) on V (1), we see that ϕ(1) : V (1) → S and E(1) satisfy all
the assumptions in (2.2) (without any change of coefficients).
If contR is a small contraction, then we apply a log flip for contR to get cont

+
R :

V + →W .
The existence of log flips for threefolds is guaranteed by [Sh].
Now, setting V (1) := V +, ϕ(1) := φ◦cont+R and changing E by its strict transform

E(1) on V (1), we see that ϕ(1) : V (1) → S and E(1) also satisfy all the assumptions in
(2.2).
Putting V (0) := V , ϕ(0) := ϕ and E(0) := E and repeating this process, say, for

n(≥ 0) times, we finally get ϕ(n) : V (n) → S and the strict transform E(n) of E to
V (n) such that

(1) ϕ(n) : V (n) → S and E(n) satisfy all the assumptions in (2.2), and
(2) KV (n) + ǫE

(n) is nef.

This is due to the termination of log flips for threefolds shown by [Kw4].
Then E(n) = 0 by (2.3). This implies the equi-dimensionality of ϕ(n). Note

that all modifications are done over ϕ(E). Thus ϕ(n) : V (n) → S and ϕ : V → S
coincide over S−ϕ(E). Set V0 := V −E−Sing (V ). Then the assumption (2) implies
OV0(KV0) ≃ OV0 . Let ν : V · · → V (n) be the birational map obtained by the above
process. Since ν|V0 : V0 → ν(V0) is an isomorphism, we have Oν(V0)(Kν(V0)) ≃ Oν(V0).
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Since the codimension of V (n) − ν(V0) in V (n) is at least two by E(n) = 0 and since
V (n) is normal, this isomorphism gives OV (n)(KV (n)) ≃ OV (n) . Note that V (n) has
only rational singularities, because (V (n), E(n)) = (V (n), 0) is klt. Thus V (n) has only
rational Gorenstein singularities, that is, canonical singularities of index one. Now
the remaining assertion is obvious. Q.E.D. of(2.2).

The next two lemmas are concerned with singular fibers of certain elliptic three-
folds.

Lemma (2.4). Let ϕ : V → S be a fiber space such that

(1) V is a normal projective threefold with only Q−factorial terminal singularities
and with KV ≡ 0,

(2) S is a normal projective surface with only quotient singularities and with
KV ≡ 0.

Then, ϕ−1(s) is a smooth elliptic curve if s ∈ S − Sing (S). In particular, ϕ is a
smooth morphism over S − Sing (S).

Proof. We make use of the following theorem due to Nakayama.

Theorem (2.5)([Na1 also Na2]). Let f : V∆2 → ∆2 be a relatively minimal
projective elliptic fibration over a two-dimensional (small) polydisk

∆2 := {(x, y) ∈ C2 | |x| < ǫ, |y| < ǫ}.

Assume that f has (singular) fibers of type Ia (a ≥ 0) over (x = 0)−{(0, 0)} and those
of type Ib (b ≥ 0) over (y = 0) − {(0, 0)}. (Here we employed Kodaira’s notation.)
Then f−1((0, 0)) is a (singular) fiber of type Ia+b. In particular, if f is smooth over
∆2−{(0, 0)}, then f−1((0, 0)) is a smooth elliptic curve and f is a smooth morphism
over the whole ∆2.

First, we show

Claim (2.6). ϕ : V → S is an elliptic fibration and has singular fibers only over a
finite set of points of S.

Proof of (2.6). Note that a general fiber of ϕ is a smooth elliptic curve. Let H be
a general very ample divisor on S. Set VH := ϕ−1(H). Since V has only isolated
singularities and sinceH is general, we may assume thatH∩(Sing (S)∪ϕ(Sing (V ))) =
φ and both H and VH are smooth. Let ϕ|VH : VH → H be the induced elliptic
fibration. Using the adjunction formula, we calculate KH ≡ H|H and KVH = (KV +
VH)|VH ≡ ϕ∗(KH). Comparing this with the canonical bundle formula of an elliptic
surface (for example see [BPV]), we find that ϕ|VH is a smooth morphism. This
implies the result. q.e.d of (2.6).

Let s ∈ S be an arbitrary smooth point of S and take a sufficiently small polydisk
∆2 ⊂ S around s. By (2.6), ϕ is smooth over ∆2 − {s}. Now applying (2.5) for an
elliptic fibration ϕ|ϕ−1(∆2) : ϕ−1(∆2)→ ∆2, we get (2.4). Q.E.D. of (2.4).
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Lemma (2.7). Let ϕ : V → S be a fiber space such that

(1) V is a normal projective threefold with only canonical singularities and with
OV (KV ) ≃ OV ,

(2) S is a normal projective surface with only Du Val singularities and with
OS(KS) ≃ OS ,

(3) ϕ is an equi-dimensional fibration, and
(4) ϕ is smooth except over a finite set of points of S.

Then, the reduction of each fiber ϕ−1(s)red (s ∈ S) is a smooth elliptic curve. More-
over, if s is a smooth point of S, then, ϕ−1(s) itself is a smooth elliptic curve. In
particular, ϕ is a smooth morphism over S − Sing (S).
Proof. Let s ∈ S be an arbitrary point of S. Since S has only Du Val singularities,
we can choose a small neighborhood U around s such that

U = ∆2/G, s = (0, 0)(modG).

Here ∆2 is a two dimensional small polydisk and G is a finite Gorenstein automor-
phism group of ∆2 each of whose element fixes only the origin (0, 0). We may also
assume by (4) that ϕ is smooth over U − {s}.
Letting ϕU : VU → U be the restriction of ϕ, we consider the fiber product

ϕ∆2 : V∆2 := VU ×U ∆2 → ∆2.

Since ∆2 → U is étale over U − {s} and ϕU is smooth over U − {s}, it follows that
ϕ∆2 : V∆2 → ∆2 is smooth over ∆2 − {(0, 0)}.
Take a resolution ν : V (1) → V∆2 of V∆2 and set ϕ

(1) := ϕ ◦ ν : V (1) → ∆2. Note
that ϕ and ϕ(1) coincide over ∆2 − {(0, 0)}.
Applying a relatively minimal model program with respect to KV (1) over ∆

2

([Mo]), we get a relatively minimal model

ϕ(2) : V (2) → ∆2

of ϕ(1) : V (1) → ∆2. Since each fiber of ϕ(1) over ∆2 − {(0, 0)} is a smooth elliptic
curve, ϕ(2) coincides with ϕ(1) (and then ϕ∆2) over ∆

2−{(0, 0)}. This together with
(2.5) implies that (ϕ(2))−1((0, 0)) is also a smooth elliptic curve and that ϕ(2) is
smooth over whole ∆2. In particular, V (2) is also smooth. Since ϕ∆2 and ϕ

(2) are
birational over ∆2, the natural action of G on ϕ∆2 : V∆2 → ∆2 induces a rational
action on

ϕ(2) : V (2) → ∆2.
On the other hand, since each fiber of ϕ(2) is an elliptic curve, it follows that ϕ(2)

is a unique relatively minimal model. Thus this action of G on ϕ(2) : V (2) → ∆2 is
regular and induces

ϕ(2) : V (2)/G→ ∆2/G = U.
This is birational to ϕU : VU → U over U and is isomorphic over U − {s}. Denote
this birational map over U by

µ : VU · · → V (2)/G.
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Then, µ gives an isomorphism

VU − ϕ−1U (s) ≃ V (2)/G− (ϕ(2))−1(s).

Since OVU−ϕ−1U (s)(KVU ) ≃ OVU−ϕ−1U (s) by our assumption (1) and since (ϕ
(2))−1(s) is

of codimension two in a normal variety it follows that

OV (2)/G(KV (2)/G) ≃ OV (2)/G.

This shows that the action of G on V (2) is Gorenstein. Since each element of G fixes
the origin (0, 0) of ∆2, G stabilizes a smooth elliptic curve E := (ϕ(2))−1((0, 0)). Since
G is also Gorenstein on ∆2, so is on E. That is, G acts on E as a translation group.

Thus (ϕ(2))−1(s)red = E/G is a smooth elliptic curve.
Now, in order to complete the first part of (2.7), it is enough to show that µ :

VU · · → V (2)/G is actually an isomorphism. But, now, this immediately follows from
the facts that VU has only rational singularities and that V

(2)/G is Q−factorial.
If s is a smooth point of S, then we can take G = {1} and then VU = V (2) over

U = ∆2. This implies the last half of (2.7). Q.E.D. of (2.7).

The next lemma is a slight generalization of Kollár’s result (in the three dimen-
sional case), which should be known by specialists. However, because of the lack of
suitable references, we give here a brief proof based on the Kollár’s original result.

Lemma (2.8). Let ϕ : V → S be a fiber space such that

(1) V is a normal projective threefold with only canonical singularities,
(2) S is a normal surface with only Du Val singularities.

Let ωV and ωS be the dualizing sheaves on V and S. Then, R
1ϕ∗ωV ≃ ωS.

Assume furthermore that

(3) OV (KV ) ≃ OV and
(4) S is a K3 surface with only Du Val singularities.

Then h1(OV ) = 1.
Remark. Kollár proved the first part of (2.8) under the assumption that both V and
S are smooth ([Ko1]).

Proof. We want to reduce our proof to the smooth case.

Consider the following commutative diagram,

V ′
ν−−−−→ V

Φ

y
yϕ

S′ −−−−→
µ

S

where µ : S′ → S is the minimal resolution of S′ and ν : V ′ → V is a resolution of
both the singularities of V and indeterminacy of µ−1 ◦ ϕ.
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Then Riν∗ωV ′ = 0 for i > 0. Moreover, ν∗ωV ′ = ωV because V has only canonical
singularities. Thus, from the Leray spectral sequence

Rpϕ∗(R
qν∗ωV ′)⇒ Rp+q(ϕ ◦ ν)∗ωV ′

we get
Rpϕ∗ωV ≃ Rp(ϕ ◦ ν)∗ωV ′ ≃ Rp(µ ◦ Φ)∗ωV ′ .

In particular,
R1ϕ∗ωV ≃ R1(µ ◦ Φ)∗ωV ′ .

On the other hand, the edge sequence of another Leray spectral sequence

Rpµ∗(R
qΦ∗ωV ′)⇒ Rp+q(µ ◦ Φ)∗ωV ′

gives an exact sequence

0→ R1µ∗(Φ∗ωV ′)→ R1(µ ◦ Φ)∗ωV ′ → µ∗(R
1Φ∗ωV ′)→ R2µ∗(Φ∗ωV ′).

Note that R2µ∗(Φ∗ωV ) = 0 and that R1µ∗(Φ∗ωV ′) is a torsion sheaf, because µ :
S′ → S is a birational morphism between surfaces.
On the other hand, since V ′ is smooth, R1(µ ◦ Φ)∗ωV ′ is a torsion free sheaf by

[Ko1]. Then, chasing the above exact sequence, we get

R1µ∗(Φ∗ωV ′) = 0

and
R1(µ ◦ Φ)∗ωV ′ ≃ µ∗(R1Φ∗ωV ′).

Since V ′ and S′ are smooth, Kollár’s original result implies

R1Φ∗ωV ′ ≃ ωS′ .

Thus,
R1(µ ◦ Φ)∗ωV ′ ≃ µ∗ωS′ .

Moreover, since S has only canonical singularities, it follows that

µ∗ωS′ ≃ ωS .
Thus,

R1(µ ◦ Φ)∗ωV ′ ≃ ωS .
Combining these, we get

R1(µ ◦ Φ)∗ωV ′ ≃ ωS .
This completes the proof of the first part.

We show the second part. Since ωV ≃ OV and ωS ≃ OS , the first part of (2.8)
gives

R1ϕ∗OZ ≃ OS .
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Substituting this into the edge sequence of the Leray spectral sequence

Hp(Rqϕ∗OV )⇒ Hp+q(OV ),
we get an exact sequence

0→ H1(OS)→ H1(OV )→ H0(OS).
This implies

h1(OV ) ≤ h1(OS) + h0(OS) = 0 + 1 = 1.
We show that h1(OV ) ≥ 1. Considering the pullback of the regular two forms by Φ
and using Hodge theory, we calculate

h2(OV ′) = h2,0(V ′) ≥ h2,0(S′) = 1.
On the other hand, using the fact that V has only rational singularities and the Serre
duality, we see that

h2(OV ′) = h2(OV ) = h1(OV ).
Combining these, we get the desired inequality h1(OV ) ≥ 1. Q.E.D. of (2.8).

We return back to Key Lemma (2.1). This is now proved by a simple combination
of the previous lemmas.

Proof of Key Lemma.

Set W0 :=W −Sing (W ) as before and denote the restrictions of Φ : X → W and
π : T →W to W0 by

Φ0 : X0 := Φ
−1(W0)→W0

and
π0 : T0 := π

−1(W0)→W0.

Note that Φ0 is a smooth morphism by (2.4) and π0 is an étale morphism by definition.
We consider the Cartesian product defined by Φ and π

XT := X ×W T
πX−−−−→ X

ΦT

y
yΦ

T −−−−→
π

W

and its restriction over W0

(XT )0 := X0 ×W0 T0 −−−−→ X0y
y

T0 −−−−→ W0

Since W0 is smooth and since each morphism in the second diagram is smooth or
étale, it follows that

Sing (X) ⊂ Φ−1(W −W0),
and

Sing (XT ) ⊂ π−1X (Sing (X)) ⊂ (πX ◦ Φ)−1(W −W0) = Φ−1T (T − T0).
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In what follows, we apply several birational modifications on the first diagram
keeping everything in the second diagram invariant.
Since all singularities in the first diagram are supported over W −W0, we find a

commutative diagram

X ′T
π′X−−−−→ X ′

νXT

y
yνX

XT −−−−→
πX

X

such that

(1) X ′ and X ′T are smooth,
(2) νX : X

′ → X is a birational modification only over W −W0, and that
(3) νXT : X

′
T → XT is a birational modification only over T − T0.

Let {Ei}i∈I be the set of all the two dimensional irreducible components of fibers
of Φ′T := ΦT ◦ νXT : X ′T → XT → T . Set E := Σi∈IEi. By construction, E is
supported only over T − T0.
Claim (2.10).

(1) X ′T is not covered by rational curves.
(2) KX′

T
= Σi∈IaiEi for some non-negative integers ai.

(3) (X ′T , ǫE) is klt if ǫ > 0 is sufficiently small.

Proof of (2.10). The assertions (1) and (3) are clear. We show the assertion (2). Since
X has only terminal singularities, Sing (X) ⊂ X −X0, and KX = 0 as a divisor, we
see that

KX′ = ΣcjE
′
j ,

where cj are some positive integers and E
′
j are some irreducible divisors supported in

ν−1X (X −X0).
On the other hand, since π′XT : X

′
T → X ′ ramifies only at E, the ramification

formula gives
KX′

T
= (π′XT )

∗(KX′) + Σi∈IbiEi,

for some non-negative integers bi. Since (π
′
XT
)∗E′i are effective divisors supported in

E, substituting the first equality into the second, we get the result. q.e.d. of (2.10).

Now we can apply (2.2) for Φ′T : X
′
T → T to get a fiber space f : Z → T such that

(1) Z has only Q−factorial canonical singularities with OZ(KZ) ≃ OZ ,
(2) f : Z → T is birational to ΦT : XT → T over T and is isomorphic over T0,
(3) f : Z → T is an equi-dimensional elliptic fibration.

Recall that T is a K3 surface with only Du Val singularities, and that ΦT is smooth
over T0.
Now using (2.7) and (2.8), we see that

(4) f−1(t)red is a smooth elliptic curve for each t ∈ T,
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(5) f−1(t) itself is smooth if t is a smooth point of T (in particular, if t ∈ T0),
(6) h1(OZ) = 1.

Thus, it follows from (1) and (6) and [Kw2] that

(7)A := Alb (Z) is a smooth elliptic curve and the Albanese morphism a : Z → A
is a fiber space.

By (2), the natural action of 〈g〉 on ΦT : XT → T induces a rational action of G
on f : Z → T which is regular over T0. By virtue of (1) and (4), we can apply the
same argument as in the last part of the proof of (2.7) to conclude

(8) 〈g〉 induces a regular action on f : Z → T and

(9) (f : Z → T )/〈g〉 is birational to Φ : X → W and is isomorphic over W0 =
T0/〈g〉.
Now these statements (1) - (9) imply the Key Lemma. Q.E.D. of Key Lemma.

§3. Lifting the group action on a fiber space to its covering
In this section, we continue to employ the same notation given at the beginning of
Section 2.

Let f : Z → T be the quasi-product threefold found in (2.1) for a fibered Calabi-
Yau threefold Φ : X →W of type II0K.

Then (f : Z → T ) ≃ (p2 : E × S → S)/G, where

(1) E is a smooth elliptic curve,
(2) S is either a (projective) K3 surface with only Du Val singularities or a smooth
Abelian surface, given as (any) fiber of the Albanese morphism a : Z → A,

(3) G is a finite commutative Gorenstein automorphism group of E × S as is
described in Theorem (1.3).

We want to lift the action of 〈g〉 on f : Z → T to one on p2 : E × S → S in an
equivariant way.

Lemma (3.1). There is a point 0 on A such that 〈g〉 stabilizes a−1(0).

Proof. Since the Albanese morphism is an intrinsically and uniquely defined object,
〈g〉 acts on the Albanese morphism a : Z → A. This induces a fibration

a : Z/〈g〉 → A/〈g〉.

On the other hand, since X and Z/〈g〉 are birational and since both of them have
only rational singularities, it follows that h1(OZ/〈g〉) = h1(OX) = 0. This implies
A/〈g〉 = P1. Thus, A〈g〉 6= φ. Since A is an elliptic curve, this is equivalent to
Ag 6= φ. Hence we can choose such a point 0 in Ag. Q.E.D. of (3.1).

Let us take a−1(0) as S. Then g induces an action gS := g|S : S → S. Since
g acts on the fiber space f : Z → T , 〈gS〉 and 〈g〉 give an equivariant action on
qT := f |S : S → T . Note that qT is nothing but the quotient map S → T = S/G.
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Lemma (3.2). g∗SωS = ζIωS , where ωS is a nowhere vanishing regular two form on
S, that is, a generator of H0(S,OS(KS)).

Proof. Let ωT be a nowhere vanishing regular two form on T . Then, ωS := q∗TωT is
a nowhere vanishing regular two form on S. Thus,

g∗SωS = g
∗
S ◦ q∗TωT = q∗T ◦ g∗ωT = q∗T ζIωT = ζIωS .

This implies the result. Q.E.D. of (3.2).

Lemma (3.3). There is an automorphism gE×S of E × S such that gE×S , gS and g
give an equivariant action on the commutative diagram

E × S p2−−−−→ S

q′
y

yqT

Z −−−−→
f

T

where q and q′ are natural quotient maps.

Proof. Let us consider the fiber product

Z ×T S p2−−−−→ S

p1

y
yqT

Z −−−−→
f

T

Define the action of 〈g′〉 on Z ×T S by

g′ : Z ×T S ∋ (u, v) 7→ (g(u), gS(v)) ∈ Z ×T S.

Then, g′, 〈gS〉 and 〈g〉 give an equivariant action on this fiber product.
By the definition of fiber product, there is a surjective morphism ν : E × S →

Z ×T S which factors through the quotient map q : E ×S → Z = (E ×S)/G and the
second projection p2 : E × S → S.

Claim (3.4). ν : E × S → Z ×T S is the normalization of Z ×T S.
Proof of (3.4). Obvious. q.e.d. of (3.4).

Since normalization is an intrinsically and uniquely defined notion, the action
〈g′〉 on Z ×T S lifts to the action 〈gE×S〉 on E × S equivariantly with respect to
ν : E × S → Z ×T S. This gives a desired action on E × S. Q.E.D. of (3.3).

Corollary (3.5). ord (gS) = ord (gE×S) = I(:= ord (g)).

Proof. Since gS is a restriction of g, it follows that ord (gS) ≤ ord (g). On the other
hand, since τ : S → T is surjective and since gS and g induce an equivariant action
on τ , we see that ord (gS) ≥ ord (g). This implies ord (gS) = ord (g). Now it follows
from the construction of gE×S that ord (gE×S) = ord (g′) = ord (g). Q.E.D. of (3.5).
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Define G̃ to be the subgroup of Aut (E × S) generated by G and gE×S found in
(3.3). Then G̃ acts on the fiber space p2 : E×S → S. Thus, there is a (unique) group

homomorphism ρ : G̃→ Aut (S) such that p2◦h = ρ(h)◦p2. By construction, we have
ρ(G) = GS and ρ(gE×S) = gS . Corollary (3.5) shows that ρ|〈gE×S〉 : 〈gE×S〉 → 〈gS〉
is a group isomorphism as is ρ|G : G→ GS . Set G̃S = ρ(G̃).

Lemma (3.6).

(1) GS is a normal subgroup of G̃S .

(2) G̃S = GS ⋊ 〈gS〉.
(3) G is a normal subgroup of G̃.

(4) G̃ = G⋊ 〈gE×S〉.
(5) ρ : G̃→ G̃S is an isomorphism.

Proof. For the assertion (1), it is enough to show that there is an h′ ∈ GS such that
gS ◦ h = h′ ◦ gS for each h ∈ GS . Let s ∈ S be a point on S such that gS(s) 6∈ SGS .
Using g ◦ qT = qT ◦ gS and T = S/GS , we calculate

qT ◦ gS ◦ h(s) = g ◦ qT ◦ h(s) = g ◦ qT (s) = qT ◦ gS(s).

Thus, for each s ∈ S, there is hs ∈ GS such that gS ◦ h(s) = hs ◦ gS(s). Such an hs
is uniquely determined by s because gS(s) 6∈ SGS . Thus, we find a continuous map
S − R → GS defined by s 7→ hs. Since GS is discrete, the image must be one point,
say h′. Then, gS ◦ h = h′ ◦ gS over S − g−1S (SGS). Taking the closure, we find that
gS ◦ h = h′ ◦ gS whole over S. This finishes the proof of (1).
Applying the same argument for E×S → (E×S)/G = Z (instead of T = S/GS),

we can also show assertion (3).

We show assertion (2). By (1), we have G̃S/GS = 〈gS(modGS)〉. Consider the
natural representation G̃S on H

0(S,OS(KS))

ζ : G̃→ C×, h 7→ ζ(h)

defined by h∗ωS = ζ(h)ωS . Since GS is a Gorenstein automorphism group of S, this
factors

ζ : G̃S/GS = 〈gS(modGS)〉 → C×.
Since ζ(gS(modGS)) = ζ(gS) = ζI by (3.3), it follows that ord (gS(modGS)) ≥ I =
ord (gS). Thus, the natural surjective group homomorphism 〈gS〉 → 〈gS(modGS)〉
must be isomorphism. This implies the assertion (2).
Finally, we show assertions (4) and (5).

By (3), we see that G̃/G ≃ 〈gE×S(modG)〉. Combining this with (3.5), we get

♯G̃ = (♯G) · (♯〈gE×S(modG)〉) ≤ (♯G) · (♯〈g〉).

On the other hand, by (2) and (3.5), we have

♯G̃S = (♯GS) · (♯〈gS〉) = (♯G) · (♯〈g〉).

However, since G̃S is an image of G̃, it follows that

♯G̃ ≥ ♯G̃S .
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Combining these three we get ♯G̃ = ♯G̃S . This implies that the surjective group
homomorphism ρ : G̃→ G̃S is an isomorphism. Combining this together with (2), we

get G̃ = G⋊ 〈gE×S〉. This completes the proof. Q.E.D. of (3.6).

From now on, we denote the equivariant actions G̃ and G̃S on the fiber space
p2 : E × S → S simply by G̃. We also set g̃ := gE×S for consistency of notation.
If no confusion seems to arise, we also identify gS and GS with g̃ and G (under the
isomorphism ρ).
The following corollary is an immediate consequence of Lemma (3.6).

Corollary (3.7).

(f : Z → T )/〈g〉 = (p2 : E × S → S)/G̃.

Thus, the fiber space Φ : X →W is birational to (p2 : E ×S → S)/G̃ over W = S/G̃
and is isomorphic over W0.

Now this together with the next lemma and the corollary completes the proof of
Main Theorem (2) modulo impossibility for S to be a smooth Abelian surface.

Lemma (3.8). Assume that S is a K3 surface with only Du Val singularities. Then,
the action of g̃ on E × S is written as follows:

g̃ : E × S ∋ (x, y) 7→ (ζ−1I x, gS(y)) ∈ E × S

for an appropriate origin 0 of E.

Proof. Since 〈g̃〉 acts on p2 : E × S → S, there is a homomorphic map

c : S → Aut (E) = E ⋊Aut (E, {0})

defined by s 7→ (p1((x, s)) 7→ p1(g̃(x, s))).
On the other hand, since h1(OS) = 0 and S has only Du Val singularities, the

Albanese variety of S is trivial. Thus c must be constant map. That is, g̃ = (gE , gS)

for some gE ∈ Aut (E). Since X is isomorphic to (E × S)/G̃ over W0 and since

(E×S)/G̃→ W is equidimensional, OX(KX) ≃ OX implies O(E×S)/G̃(K(E×S)/G̃) ≃
O(E×S)/G̃. This means G̃ is a Gorenstein automorphism of E × S. In particular,
so is g̃. Combining this with g∗SωS = ζIωS , we get g

∗
EωE = ζ−1I ωE. In particular,

EgE 6= φ. Now, choosing the origin 0 of E in EgE , we get the desired expressions of
g̃. This completes the proof of (3.8). Q.E.D.

Combining (3.8) and (3.7), we get

Corollary(3.9). Assume that S is a K3 surface with only Du Val singularities.
Then,

(1) the global canonical index I = I(W ) of W is either 2, 3, 4, or 6,
(2) if ν : S′ → S is a minimal resolution of S, then the action 〈g̃〉 on E × S lifts
to E × S′ in an equivariant way and Φ : X →W is birational to

(p2 ◦ (id.× ν) : E × S′ → S)/G̃

over W = S/G̃ and is isomorphic over W0.
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§4. Impossibility for S to be a smooth abelian surface
We continue to employ the same notation given in the previous sections 2 and 3. In
this section, we show that each surface S (found at the beginning of section 3) is not
a smooth abelian surface if Φ : X →W is a Calabi-Yau threefold of type II0K. This
completes the proof of Main Theorem (2).

Thoughout this section, assuming the contrary that S is a smooth abelian surface,
we shall derive a contradiction.

For simplicity, we denote G̃S , GS and gS by G̃, G and g̃ respectively. Under this
notation, we have T = S/G, W = T/〈g〉 = S/G̃ and I = ord (g) = ord (g̃). As before,
we denote by qT : S → T the natural quotient morphism. This has an equivariant
action of 〈g̃〉 and 〈g〉. Recall also that all the possibilities of G are listed up in (1.3)(4).
The next Lemma is shown by [O2].

Lemma (4.1). I is either 2, 3, 4, 6, or 12.

By virtue of this Lemma, the next two Claims will give a contradiction.

Key Claim (4.2). I is not divided by 2.

Key Claim (4.3). I 6= 3.
The following obvious lemma and its corollaries will be frequently used to prove

these claims.

Lemma (4.4). Let q : S1 → S2 be a surjective finite morphism between normal
projective surfaces with KS1 ≡ 0 and KS2 ≡ 0. Then q ramifies only at finitely many
points.

Corollary (4.5). The quotient map S →W (= S/G̃) ramifies only at finitely many

points. In particular, SG̃S is a finite set.

Corollary (4.6). Let h be a non-Gorenstein involution in G̃. Then, Sh = φ. In

particular, if I = 2k is even, then S g̃
k

= φ and S g̃ = φ.

Proof. Assuming Sh 6= φ, we take a point P in Sh. Since h is an involution with
h∗ωS = −ωS, it follows that h = diag (−1, 1) under appropriate coordinates (x, y) of
S around P . But then h would have a fixed curve (x = 0), contradiction. q.e.d. of
(4.6).

Corollary (4.7). If I is either 2, 3, or 4, then T g 6= φ. If I = pq where p = 2
or 4 and q = 3, then T g

p 6= φ and T g
q 6= φ. Moreover, if I is either 2 or 4, then

(φ 6=)T g ⊂ Sing (T ).
Proof. Since I is the least common multiple of the local canonical indices of W , the
first part of the assertion is obvious. Assume that I is either 2 or 4. The first half
part shows T g 6= φ. Assume the contrary that there is a smooth point Q in T g. Then,
arguing similarly as in (4.6), we see that gI/2 = diag (−1, 1) under appropriate local
coordinates around P . Then, gI/2 has a fixed curve. On the other hand, Lemma (4.4)
shows T →W (= T/〈g〉) has no ramification divisor, contradiction. q.e.d. of (4.7).
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We return back to the key claims (4.2) and (4.3).

Proof of Key Claim (4.2).

Assume the contrary that I = 2k for some integer k. We set h := g̃k. Then h
is a non-Gorenstein involution on S. Dividing into the following five cases, we shall
derive a contradiction:

Case 1. G ≃ Z3 or Z3 × Z3,
Case 2. G ≃ Z6,
Case 3. G ≃ Z2,
Case 4. G ≃ Z2 × Z2,
Case 5. G ≃ Z4 or Z2 × Z4.

Case 1. Since g acts on the set B consisting of nine singular points of type A3 on
T ((1.3)(4)), 〈g̃〉 acts on q−1T (B). Since ♯q−1T (B) is either 9 or 27, h has a fixed points.
This contradicts (4.6).

Case 2. Consider the unique singular point Q of type A5 on T ((1.3)(4)). Then,
q−1T (Q) consists of one point, say, P . Since g(Q) = Q, it follows that g̃(P ) = P . But
this contradicts (4.6).

Case 3. By (4.7), T g
k 6= φ. On the other hand, since gk is a non-Gorenstein

involution on T , the same argument as in (4.7) implies that T g
k ⊂ Sing (T ). Let

Q ∈ T g
k

. Then Q is a singular point of type A1 and then q
−1
T (Q) consists of one

point, say, P ((1.3)(4)). But then h(P ) = P , contradiction.

Case 4. The same argument as in case 3 shows that T g
k 6= φ and T gk ⊂ Sing (T ).

LetQ ∈ T gk . Then, Q is a singular point of typeA1 and q−1T (Q) is written as {P, r(P )}
for some point P and a translation r in G ((1.3)(4)). Since h acts on this set, we have
either h(P ) = P or h(P ) = r(P ). The first equality contradicts (4.6). Consider the
second case. Set h′ := r ◦ h. Then h∗ωS = −ωS. Since the translation subgroup of G
is just 〈r〉 and since h−1 ◦ r ◦h is a translation in G (because G is a normal subgroup
of G̃), it follows that h−1 ◦ r ◦ h ∈ 〈r〉 and then 〈r, h〉 = 〈r〉 × 〈h〉 ≃ (Z2)2. Thus h′ is
a non-Gorenstein involution with h′(P ) = P . But this contradicts (4.6).

Case 5. We treat the following three cases separately:

Case 5a. 3|I, Case 5b. I = 4, and Case 5c. I = 2.
Case 5a. In this case, I = 6m for some integer m. Set j := g̃m. This is of order

6. Since g acts on the set consisting of 4 singular points of type A3 on T ((1.3)(4)),
j2 acts on the inverse image of these points. This consists of either 4 or 8 points.
Thus, j2 has a fixed point among these points. Let P be such a fixed point. Then,
j2(P ) = P . Since (j2)∗ωS = ζ3ωS and j

2 has at most finite fixed points by (4.5),
an easy coordinate calculation shows that j2 = diag (ζ23 , ζ

2
3 ) under appropriate global

coordinates (x, y) around P . Thus, the eigen value of the matrix part of j is in
{ζ3,−ζ3}. Thus, j has a fixed point on S, say Q. Since h = j3, Q is also a fixed point
of h. But this contradicts (4.6).

Case 5b. By (4.7), we can take a point Q in T g. Again by (4.7) and (1.3)(4), Q
is either a singular point of type A3 or of type A1.
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If Q is a singular point of type A3, then q
−1
T (Q) is written as {P} (in the case

when G ≃ Z4) and {P, r(P )} for a translation r in G (in the case when G ≃ Z2×Z4).
In the first case, we have g̃(P ) = P . But this contradicts (4.6). In the second case,
we have either g̃(P ) = P or g̃(P ) = r(P ). Since r is of order two, in each case, we
get h(P ) = g̃2(P ) = P , contradiction.
If Q is a singular point of type A1, then q

−1
T (Q) is written as {P, u2(P )} (if

G = 〈u〉 ≃ Z4) and {P, u2(P ), r(P ), r ◦ u2(P )} (if G ≃ Z2 × Z4). In the second case,
r is the unique translation in G and u is some (suitable) generator of G.
In anyway, we have g̃(P ) = P or g̃(P ) = t(P ), where t is an involution in G.

Thus, h(P ) = g̃2(P ) = P , contradiction.

Case 5c. First consider the case G = 〈u〉 ≃ Z4.
Since G̃ = 〈u〉 ⋊ 〈g̃〉 is of order 8, elementary group theory shows that G̃ is

isomorphic to either

(1) D8, the dihedral group of order 8, or
(2) Z4 × Z2.
Assume first that G̃ ≃ D8. Then, g̃ ◦ u is a non-Gorenstein involution. Take a

point Q in T g. Then, Q is a singular point either of type A3 or of type A1.
If Q is of type A3, then q

−1
T (Q) = {P}, a one point set. But then g̃(P ) = P ,

contradiction.
If Q is of type A1, then q

−1
T (Q) is written as {P, u(P )} and g̃ stabilizes this set.

If g̃(P ) = P , then we get the same contradiction as before. If g̃(P ) = u(P ), then
g̃ ◦u(P ) = P . Since g̃ ◦u is a non-Gorenstein involution, we again get a contradiction.
In any case, we found a contradiction if G̃ ≃ D8.
Next consider the case when G̃ ≃ Z4×Z2, that is, G̃ = 〈u〉×〈g̃〉. Then 〈u〉 ≃ G̃/〈g̃〉

acts on p2 : (E × S)/〈g̃〉 → S/〈g̃〉. Note that (E × S)/〈g̃〉 is also a smooth threefold,
because S[〈g̃〉] = φ by (4.6) so that (E × S)[〈g̃〉] = φ.
Claim. (E × S/〈g̃〉)[〈u〉] = φ.
Proof of Claim. Since u is of order 4, it is sufficient to show that

(E × S/〈g̃〉)u2 = φ.

Assume the contrary that P ∈ (E × S/〈g̃〉)u2 . Set p2(P ) = Q. Then u2(Q) =
Q. Thus u2 acts on the fiber EQ := (p2)

−1(Q). On the other hand, the fiber of
E × S → (E × S/〈g̃〉) over Q is written as {R, g̃(R)} and u2 also acts on this set.
If u2(R) = g̃(R), then u2 ◦ g̃(R) = R on S. But, since u2 ◦ g̃ is a non-Gorenstein
involution on S, this contradicts (4.6). Thus u2(R) = R. Let ER be the fiber of
p2 : E × S → S over R. Then the natural projection E × S → E × S/〈g̃〉 (of degree
two) induces an isomorphism ER ≃ EQ, because Eg̃(R) is also mapped to EQ. Since

u2 gives an equivariant action on this isomorphism and since u2 acts on ER as a
translation of order two by (1.3), we see that u2 also acts on EQ as a translation of

order two. Thus Eu
2

Q = φ. But this is absurd, because P ∈ EQ is a fixed point of u2.
q.e.d. of Claim.

Thus Y := ((E × S)/〈g̃〉)/〈u〉 = (E × S)/G̃ is also a smooth threefold (with
OY (KY ) ≃ OY ). Since X is birational to Y , X is connected with Y by flops. Then
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X is also smooth and π1(X) ≃ π1(Y ) ([Ko2]). Thus X has a non-trivial finite étale

covering, because so does Y . But this contradicts our assumption πalg1 (X) = {1}.
Therefore, we get a contradiction even in the case G ≃ Z4.
We consider the remaining case G = 〈t〉×〈u〉 ≃ Z2×Z4. Reducing to the previous

case G ≃ Z4, we find a contradiction.
Since the translation group of G is just 〈t〉 and since G is a normal subgroup

of G̃, the same argument as before shows 〈t〉 is a normal subgroup of G̃. Thus
G̃/〈t〉 ≃ 〈u1〉⋊ 〈g̃1〉, where u1 := u(mod 〈t〉) and g̃1 := g̃(mod 〈t〉). Observe that u1 is
of order four and g̃1 is of order two.
On the other hand, since 〈t〉 acts on p2 : E × S → S, we get a new fiber space

p2 : (E × S)/〈t〉 → S/〈t〉,

on which 〈u1〉 × 〈g̃1〉 gives an equivariant action. Since 〈t〉 is a translation group on
both E × S and S, it follows that (E × S)/〈t〉 is an Abelian threefold and S/〈t〉 is
an Abelian surface. Set S1 := S/〈t〉 and V := (E × S)/〈t〉. Then, T = S1/〈u1〉 and
W = S1/〈u1, g̃1〉.
Observe that g̃∗1ωS1 = −ωS1, u∗1ωS1 = ωS1 and that u1 acts on each fiber over

Su11 (6= φ) as a translation of order 4. The last statement follows from (1.3) and a
similar argument as is given in the last claim. Thus we can apply the same argument
as in the previous case (G ≃ Z4) for p2 : (E × S)/〈t〉 → S/〈t〉 and S1 → T → W to
get a contradiction. This finishes the proof of case 5c.

Now we have completed the proof of (4.2). Q.E.D. of (4.2).

Proof of Key Claim (4.3).

Assuming the contrary that I = 3 and dividing into the following five cases, we
shall derive a contradiction.
Case 1. G ≃ Z4 or Z2 × Z4,
Case 2. G ≃ Z2 or Z2 × Z2,
Case 3. G ≃ Z6,
Case 4. G ≃ Z3,
Case 5. G ≃ Z3 × Z3.
Case 1. Since g acts on the set of singular points of type A3 and since this set

consists of 4 points, g has a fixed point, say Q, in this set. Then, g̃ acts on q−1T (Q).
Since q−1T (Q) consists of one or two points, g̃ has a fixed point in q

−1
T (Q). Denote

this point by 0. Since g̃∗ωS = ζ3ωS , g̃(0) = 0 and since g̃ has only finitely many
fixed points, we can apply [CC, also O2] to get S ≃ E2ζ3 and g̃ = ζ23 , the scalar

multiplication by ζ23 . On the other hand, the stabilizer of 0 in G is a cyclic group
of order 4. We denote this group by 〈u〉. Then u = diag (ζ4, ζ−14 ) under appropriate
global coordinates around 0. Set H := 〈u, g̃〉. Then, H ⊂ Aut (S, {0}). Moreover
H is a cyclic group of order 12, because g̃ = ζ23 so that u ◦ g̃ = g̃ ◦ u. In particular
H ∋ −1. But this is impossible by Fujiki’s classification ([Fu, Table 6]).
Case 2. Just by the same argument as in case 1, we see that g̃ has a fixed point

0 (over some singular point of type A1 of T ) and then S = E2ζ3 and g̃ = ζ23 . Set

Stab {0}(G) = 〈u〉. This is a cyclic group of order two and u = diag (−1,−1) under
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appropriate global coordinates around 0. Thus u ◦ g̃ = g̃ ◦ u. Since G̃ gives an
equivariant action on p2 : E × S → S, g̃ and u act on the fiber E := p−12 (0). Since
g̃ is a Gorenstein automorphism of E × S, the matrix part of g̃ on E is ζ23 so that g̃
acts on E by

g̃ : E ∋ x 7→ ζ23x ∈ E,
if we fix an origin 0E of E in E

g̃(6= φ). On the other hand, by (1.3), the action of u
on E is written as

u : E ∋ x 7→ x+ P ∈ E,
where P ∈ (E)2 − {0}. Since u ◦ g̃ = g̃ ◦ u in G̃, we calculate

g̃(x) + g̃(P ) = g̃ ◦ u(x) = u ◦ g̃(x) = g̃(x) + P.

Thus, P ∈ Eg̃ = Eζ3 ⊂ (E)3. But this is impossible because (E)3 ∩ ((E)2−{0}) = φ.
Case 3. Let Q be the unique singular point of type A5 on T . Then, q

−1
T (Q)

consists of one point, say, 0. Since g(Q) = Q, it follows that g̃(0) = 0. Thus, just by
the same argument as before, we get g̃ = ζ23 . Set Stab {0}(G) = 〈u〉. This is a cyclic
group of order 6 and u = diag (ζ6, ζ

−1
6 ) under an appropriate global coordinates (x, y)

around 0. it follows that g̃ ◦ u2 = diag (1, ζ3). Then g̃ ◦ u2 has a fixed curve (y = 0),
contradiction.

Case 4. SetG = 〈u〉. Since G̃ = 〈u〉⋊〈g̃〉 is of order 9, it follows that G̃ = 〈u〉×〈g̃〉.
Let Q be a point in T g. Then ♯q−1T (Q) is either one or three. If q

−1
T (Q) = {P}, a

one point set, then g̃(P ) = P . If q−1T (Q) = {P1, P2, P3}, then, g̃(P1) = Pj for some
j = 1, 2, or 3. Since 〈u〉 acts on {P1, P2, P3} transitively, we find that ui(P1) = Pj for
some i. Set h := u−i ◦ g̃. Then, h(P1) = P1. Note that h is of order 3 and satisfies

h∗ωS = ζ3ωS and G̃ = 〈u〉 × 〈h〉. In addition, h and g give an equivariant action on
qT : S → T . Thus, we may replace g̃ by h in the second case. Then g̃(P1) = P1 in
each case. We regard this point P1 as an origin of S and denote it by 0S .
Since g̃ has only isolated fixed points ((4.5)), the same argument as before shows

that S = E2ζ3 and g̃ = ζ
2
3 . This implies (S)

g̃ ∩ (S)u = φ. (In fact, otherwise, choosing
a point P in (S)g̃ ∩ (S)u, we find appropriate coordinates (x, y) around P such that
u = diag (ζ3, ζ

−1
3 ). Then, g̃ ◦u = diag (1, ζ3) has a fixed curve (y = 0), contradiction.)

Since G̃ is a Gorenstein automorphism of E×S and gives an equivariant action on
p2 : E × S → S, g̃ induces an automorphism on the fiber E := p−12 (0S) whose matrix
part is ζ23 . Thus E = Eζ3 and then E × S = E3ζ3 . Moreover, choosing an origin 0E of
E in Eg̃, we get g̃ = ζ23 on E. Now, taking 0 := (0S , 0E) as an origin of E ×S = E3ζ3 ,
we have g̃ = ζ23 on E

3
ζ3
. Let us consider the quotient threefolds (Eζ3)

3/〈g̃〉 and its
crepant resolution ν : Y → (Eζ3)3/〈g̃〉. Note that 〈u〉 ≃ G̃/〈g̃〉 acts on (Eζ3)3/〈g̃〉.
Note also that ν is unique. (In fact, one of such ν is given by replacing each of 27
singular points of type 1/3(1, 1, 1) of (Eζ3)

3/〈g̃〉 by P2 and then has no flopping curves
in the exceptional divisor.) Thus, 〈u〉 induces a regular action on Y .
Claim. 〈u〉 acts freely on Y .
Proof of Claim. Since ord (u) = 3, it is sufficient to show that Y u = φ. Assume
the contrary that P ∈ Y u. Put Q := ν(P ). Then u(Q) = Q. Denote the natural
quotient map E3ζ3 → (Eζ3)3/〈g̃〉 by τ . Then, Q /∈ τ((E3ζ3)

g̃). (In fact, otherwise,
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τ−1(Q) = {R}(⊂ (E3ζ3)g̃), a one point set. Thus, u(R) = R and g̃(R) = R on (Eζ3)3.
Set R′ := p2(R). Then, u(R

′) = R′ and g̃(R′) = R′, because G̃ gives an equivariant
action on p2 : E × S → S. But this contradicts (S)g̃ ∩ (S)u = φ.)
Thus, τ−1(Q) consists of three points, say, R1, R2 and R3. Since u(Q) = Q, u acts

on {R1, R2, R3}. Since 〈u〉 acts freely on E3ζ3 by (1.3), we may assume without loss of
generality that u(R1) = R2. On the other hand, {R1, R2, R3} is the orbit space of R1
by 〈g̃〉, it follows that g̃i(R1) = R2 for some i = 1, 2. Set again R

′ := p2(R1). Then,
g̃i(R′) = u(R′)(= p2(R2)) so that u

−1 ◦ g̃i(R′) = R′. Since the matrix part of u−1

is diag (ζ3, ζ
−1
3 ) under some appropriate global coordinates around R

′, we calculate
u−1 ◦ g̃i = diag (1, ζ3). Thus u−1 ◦ g̃i has a fixed curve (y = 0), contradiction. q.e.d.
of Claim.

By this claim Y/〈u〉 is a smooth threefold with OY/〈u〉(KY/〈u〉) ≃ OY/〈u〉 and with
non-trivial étale covering. On the other hand, by construction, our original Calabi-
Yau threefold X is birational to Y and then is connected with Y by flops. Thus X is
also smooth and π1(X) ≃ π1(Y ) by [Ko2]. This implies that X has also non-trivial

finite étale covering. But this contradicts our assumption πalg1 (X) = {1}.
Case 5. As in case (5c) in Claim (4.2), reducing to the previous case 4, we

find a contradiction. Set G = 〈t〉 × 〈u〉, where t is a translation of order 3. Since
the translation group of G is just 〈t〉, and G is a normal subgroup of G̃, the same
argument as in case 4 in Claim (4.2) implies that 〈t〉 is a normal subgroup of G̃. Thus,
G̃/〈t〉 = 〈u1〉 × 〈g̃1〉 ≃ (Z3)2, where u1 := u(mod 〈t〉) and g̃1 := g̃(mod 〈t〉).
By the way, since 〈t〉 acts on p2 : E × S → S, we get a new fiber space

p2 : (E × S)/〈t〉 → S/〈t〉,

on which 〈u1〉 × 〈g̃1〉 gives an equivariant action. Since 〈t〉 is a translation group on
both E×S and S, (E×S)/〈t〉 is an Abelian threefold and S/〈t〉 is an Abelian surface.
Set S1 := S/〈t〉 and V := (E × S)/〈t〉. Then, T = S1/〈u1〉 and W = S1/〈u1, g̃1〉.
Moreover g̃∗1ωS1 = ζ3ωS1 while u

∗
1ωS1 = ωS1 . Now applying the same argument as in

case 4 for S1 → T → W , we find that S1 = E2ζ3 and g̃1 = ζ23 (after replacing g̃1 by

ui1 ◦ g̃1 so that S g̃11 6= φ and then fixing the origin 0 of S1 in S
g̃1
1 (6= φ)). Note that

〈u1, g̃1〉 gives a Gorenstein action on V . Then letting E := p2−1(0) and applying the
same argument as in case 4, we see that E = Eζ3 and the action of g̃1 on E is g̃1 = ζ

2
3

(after fixing an origin 0E of E in E
g̃1(6= φ)). Thus, regarding 0E as an origin 0 of V ,

we get g̃1 = ζ23 under appropriate global coordinates around 0. This together with
[CC also O2] implies V = E3ζ3 . Now again applying the same argument as in case
4 for p2 : V → S1, we finally get a contradiction that X is birational to a smooth
threefold Y with non-trivial finite étale covering.

Now this completes the proof of Claim (4.3).

Now we are done. Q.E.D. of Main Theorem (2).
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Abstract. A ring homomorphism e0 : W (X)→ EX from the Witt ring of
a scheme X into a proper subquotient EX of the Grothendieck ring K0(X)
is a natural generalization of the dimension index for a Witt ring of a field.
In the case of an even dimensional projective quadric X, the value of e0 on
the Witt class of a bundle of an endomorphisms E of an indecomposable
component V0 of the Swan sheaf U with the trace of a product as a bilinear
form θ is outside of the image of composition W (F ) → W (X) → E(X).
Therefore the Witt class of (E , θ) is not extended.

Introduction

An important role in the quadratic form theory is played by the first (0-dimensional)
cohomological invariant, the dimension index e0 : W (F ) → Z/2Z, which maps a
Witt class of a symmetric bilinear space (V, β) over a field F onto dimV mod 2. A
straightforward generalization of this map for symmetric bilinear spaces over rings or
schemes, which assigns to a Witt class the rank of its supporting module or bundle, is
commonly used. We define a better invariant e0 in Section 1 below. It is a variant of
the construction used in [8] and [9]. The map e0 defined in Section 1 assigns to a Witt
class of a symmetric bilinear space (V, β) a class [V] of V in the group EX, attached
functorially to a scheme X. The group EX consist of the self-dual (i.e., stable under
dualization) elements of the Grothendieck group K0(X) up to the split self-dual ones
(i.e., sums of a class and its dual). Thus the rank mod 2 may be obtained by passing
to the generic stalk. The group EX carries much more information on the Witt
group W (X) than Z/2Z, and so does the map e0 defined here when compared to the
rank mod 2. In particular, we use it here to show that certain Witt classes are not
extended, i.e., are not of the form (V ⊗ OX , β ⊗ 1) for a symmetric bilinear space
(V, β) over a base field.
In the Section 1 basic facts on dualization in the Grothendieck group, definition

and elementary properties of the group EX and map e0 are given. Theorem 1.1
describes EX for a smooth curve X. In the geometric case (algebraically closed base
field) the group EX appears to coincide with the Witt groupW (X) of curve X itself.
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Moreover, it is shown that Witt classes of line bundles of order two in Picard group
are not extended from the base field.
Section 2 contains a number of examples to show that EX may be actually

computed: the affine space - Proposition 2.1.1, the projective space over a field -
Proposition 2.1.3, the projective space over a scheme - Proposition 2.1.5.
The main objective of this paper is to prove that on the projective quadric of even

dimension d 6= 2 defined by a hyperbolic form, there exist nonextended Witt classes.
For this purpose, a close look at the Swan computation of the K-theory of a quadric
hypersurface is needed. Section 3 contains all needed facts on Clifford algebras and
modules, the construction of the Swan bundle, its behavior under dualization, and
how to find a canonical resolution of a regular bundle.
In Section 4, we develop a combinatorial method for operations with resolutions

using generating functions. Next we use the classical computation of the Chow ring
of a split quadric X to establish the ring structure of K0(X). Theorem 4.3 gives the
description of EX for a split quadric.
Thus, in Section 5, we show in Theorem 5.1 that, in case of even dimension d > 2

of a quadric the bundle of endomorphisms of each indecomposable component of the
Swan bundle carries a canonical symmetric bilinear form, whose Witt class is not
extended from the base field, since its invariant e0 has a value outside the image of
the composite map W (F )→W (X)→ EX.
The first version of this paper contained only an explicit computation for a

quadric of dimension 4. The referee made several suggestions for simplification of
proofs and computations. These remarks led author to the present more general re-
sults. The author would like to thank very much the referee for generous assistance.
The author is glad to thank Prof. W. Scharlau for helpful discussions and Prof. K.
Szymiczek, who suggested several improvements of the exposition.

1 The group EX and the invariant e0

1.1 Notation.

If X is a scheme with the structural sheaf OX , andM, N are coherent locally free
sheaves of OX -modules (vector bundles on X), φ : M→N is a morphism, then we
write

M∧ = HomOX (M,OX) and φ∧ : N∧ →M∧

for the duals.
A symmetric bilinear space (M, β) consists of a coherent locally free sheaf M

and a morphism β : M→M∧, which is self-dual, i.e. β∧ = β.
For a subbundle (a subsheaf which is locally a direct summand) ι : N → M

define its orthogonal complement N⊥ as a kernel of composition ι∧ ◦ β :

N⊥ = Ker(M β−→M∧ ι∧−→ N∧).

Thus β induces an isomorphism N⊥ ∼= (M/N )∧.
There are two important special cases: the first, when N has trivial intersection

with N⊥ or is non-singular, then β induces an isomorphism N ∼= N∧ ; the second,
when N = N⊥, and in this case N is said to be a Lagrangian subbundle.
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A symmetric bilinear space (M, β) is said to be metabolic if it possesses a La-
grangian subbundle, i.e., if there exists an exact sequence

0→N ι−→M ι∧◦β−−−→ N∧ → 0 (1.1.1)

for some subbundle N .
Direct sum and tensor product are defined in the set B(X) of isomorphism classes

of symmetric bilinear spaces, and in its Grothendieck ring G(X) the set M(X) of
differences of classes of metabolic spaces forms an ideal.
The Witt ring W (X) of X is the factor ring G(X)/M(X). The Witt class of

a symmetric bilinear space (M, β) is its coset in W (X). Two symmetric bilinear
spaces (M1, β1) and (M2, β2) areWitt equivalent, (M1, β1) ≈ (M2, β2) iff their Witt
classes are equal, or - equivalently - iff (M1 ⊕M2, β1 + (−β2)) is metabolic. Each
Witt class (an element ofW (X)) contains a symmetric bilinear space andX 7→W (X)
is a contravariant functor on schemes, namely for arbitrary morphism f : Y → X of
schemes the inverse image functor f∗ induces a ring homomorphism f∗ : W (X) →
W (Y ). In fact, f∗(M∧) = (f∗(M))∧ and f∗ is an exact functor. In the affine case
X = SpecR, Y = SpecS, f# : R → S a ring homomorphism, f∗ : W (X) →
W (Y ) is simply the scalar extension S⊗R− : W (R) → W (S). Important special
cases are localization or taking a stalk at a point x ∈ X, i.e., the inverse image for
SpecOX,x → X, and the extension, i.e., taking the inverse image for the structure
map f : X → SpecF for a variety X over a field F . In the latter case a Witt class
of the form (f∗M, f∗β) = (M⊗F OX , β ⊗ 1) for genuine bilinear space (M, β) over
F is said to be extended or induced from the base field F .

1.2 Rank mod 2

In the affine case X = SpecR, we write as usual W (R) instead of W (SpecR). The
classical situation is if R = F is a field of characteristic different from two. In this
case there is a ring homomorphism

e0 : W (F )→ Z/2Z , e0(M, β) = dim M mod 2,

known as dimension index. One may put the definition of e0 into a K-theoretical
framework as follows:
The map e : (M, β) 7→ [M] induces a ring homomorphism

G(F )
e−→ K0(F )

∼=−→ Z

which is surjective, since each vector space over F carries a symmetric bilinear form.
Any metabolic form (M, β) is hyperbolic, i.e., the sequence 1.1.1 splits, and

(M, β) ∼= (N ⊕N ,
[
0 1
1 0

]
).

Since each vector space is self-dual, e(M(F )) = 2K0(F ) ∼= 2Z, so e0 is the induced
ring homomorphism

W (F )
e0−→ K0(F )/2K0(F ) ∼= Z/2Z.
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In general the forgetful functor (M, β) 7→ [M] induces a ring homomorphism
which in general neither is surjective nor maps M(X) into 2K0(X) . We shall show
below how to handle this using a proper subquotient of K0(X) .

1.3 The involution ∧ and the group E(X)

Denote by P(X) the category of locally free coherent OX -modules. The dualization
functor ∧ is an exact additive functor ∧ : P(X) → P(X)op, which preserves tensor
products and commutes with inverse image functors. Since

K∗(P(X)) = K∗(P(X)
op) = K∗(X),

the functor ∧ induces a homomorphism on K-groups, known also as the Adams op-
eration ψ−1 . We shall denote it by ∧:

Definition 1.3.1. ∧ : K∗(X)→ K∗(X) is the homomorphism induced by the exact
functor ∧ : P(X)→ P(X)op .

Proposition 1.3.2. The homomorphism ∧ : K∗(X)→ K∗(X) enjoys the following
properties:

i) ∧ is an involution, ∧ ◦ ∧ = 1;

ii) ∧ is a graded ring automorphism of K∗(X) : (α · β)∧ = α∧ · β∧ ;

iii) if f : Y → X is a morphism of schemes, then f∗ ◦ ∧ = ∧ ◦ f∗;

iv) if i : Z → X is a closed immersion and X is regular of finite dimension,
then (i∗(K0(Z)))∧ = i∗(K0(Z)).

Proof. iv) Consider a finite resolution of i∗(M) by vector bundles for a bundleM on
Z. The stalk of this resolution at any point outside Z is exact, so its dual is exact.
Hence the class of the alternating sum of the members of the resolution vanishes
outside Z.

We focus our attention on the Grothendieck group K0(X). The main object of
this paper are the homology groups of the following complex:

· · · → K0(X)
1+∧−−→ K0(X)

1−∧−−−→ K0(X)
1+∧−−→ K0(X)

1−∧−−−→ · · · (1.3.1)

Definition 1.3.3.

EX = Ker(1− ∧)/ Im(1 + ∧)
E−X = Ker(1 + ∧)/ Im(1− ∧).

We shall define a natural homomorphism e0 : W (X) → EX. The group
E−X will play only a technical role here, although one may consider a natural map
L2k+1(X)→ E−X . The EX is the group of ”symmetric” or ”self-dual” elements in
K0(X) modulo ”split self-dual” elements, i.e., elements of the form [M] + [M∧]. The
following observations are obvious:
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Proposition 1.3.4. i) Ker(1−∧) is a subring ofK0(X) and the groups Im(1+∧),
Ker(1 + ∧), Im(1− ∧) are Ker(1− ∧)-modules;

ii) EX is a ring and E−X is an EX-module;

iii) an arbitrary morphism f : Y → X of schemes induces a ring homomorphism
f∗ : EX → EY and an EX-module homomorphism f∗ : E−X → E−Y ;

iv) for a regular Noetherian X, EX and E−X carry a natural filtration, induced
by the topological filtration of K0(X) = K

′
0(X) ;

v) 2EX = 0 and 2E−X = 0.

Note that the forgetful functor (M, β) 7→ [M] induces a ring homomorphism
G(X) 7→ K0(X) which admits values in Ker(1− ∧) and maps M(X) onto Im(1 + ∧),
since for a metabolic space (M, β) there is exact sequence 1.1.1, i.e., the equality
[M] = [N ] + [N∧] holds in K0(X).

Definition 1.3.5. e0 : W (X) → EX is the ring homomorphism induced by the
forgetful functor (M, β) 7→ [M] .

This notion enjoys nice functorial properties.

Proposition 1.3.6. Let f : X → Y be a morphism of schemes. Then the following
diagram commutes:

W (X)
e0−−−−→ EX

f∗
x

xf∗

W (Y )
e0−−−−→ EY

Example 1.3.7. Let X be an irreducible scheme with the function field F (X), and
let j : SpecF (X) → X be the embedding of the generic point. Then there is a
commutative diagram

W (F (X))
e0−−−−→ E(F (X)) = Z/2Z

j∗
x

xj∗

W (X)
e0−−−−→ EX

and the composition j∗ ◦e0 = e0 ◦j∗ is rank mod 2, usually used instead of e0. Since
OX carries the standard symmetric bilinear form < 1 >, the surjection j∗ : EX →
Z/2Z splits canonically. The kernel of the map j∗ : EX → Z/2Z has been used in
[9]. It is easy to see that this kernel is a nilpotent ideal of a ring EX for a regular
Noetherian X of finite dimension.
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Example 1.3.8. Retain the notation of example 1.3.7, and assume in addition that
X is a variety over a field F , charF 6= 2. Let f : X → Spec F be the structure map.
Thus we have a commutative diagram:

e0

W (F (X)) - Z/2Z

@
@

@
@

@
@

@@I

�
�
�
�
�
�
���

e0

W (X) - EX id

6

�
�
�
�
�
�
���

e0 @
@

@
@

@
@

@@I

6

W (F ) - Z/2Z

The values of e0 ◦ f∗ are inside the direct summand Z/2Z[OX ] of EX. If we
produce a variety X with nontrivial (i.e., having more than two elements) EX, and
a symmetric bilinear space with a nontrivial value of e0, then the Witt class of this
space must be non-extended.

1.4 Curves

The case dimX = 1 is exceptional for several reasons, so we treat it here as an
illustration. The following theorem covers the classical case of (spectra of) Dedekind
rings.

Theorem 1.1. Let X be an irreducible regular Noetherian scheme of dimension one.
Then

i) EX = Z/2Z[OX ] ⊕ I, where I · I = 0 and I is canonically isomorphic to the
group 2Pic(X) of the elements of order ≤ 2 in the Picard group;

ii) E−X is canonically isomorphic to Pic(X)/2Pic(X);

iii) the map e0 : W (X)→ EX is surjective.

Proof. The rank map (i.e., the restriction to the generic point) yields the splitting

K0(X) = Z · [OX ]⊕ F1K0(X)

where 0 ⊂ F1K0(X) ⊂ K0(X) is the topological filtration on K0(X). The map
∧

maps each direct summand onto itself.
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Under assumptions on X the map
∧
: F1K0(X) → Pic(X), induced by taking

the highest exterior power of a bundle, is an isomorphism. An arbitrary element α of
the group F1K0(X) may be expressed as a difference of the classes of two bundles of
the same rank r:

α = [M]− [N ].

The isomorphism
∧
maps α onto the class of a line bundle L ,

L =
r∧
M⊗

r∧
N∧

in Pic(X). The isomorphism
∧
maps [L]− [OX ] onto the class L in Pic(X), too. So,

any element a of F1K0(X) may be expressed as a difference of a line bundle and the
trivial line bundle:

α = [L]− [OX ].

Moreover, for arbitrary line bundles L1, L2

([L1]− [OX ]) · ([L2]− [OX ]) = [L1 ⊗L2]− [OX ].

Hence the involution ∧ acts on F1K0(X) as taking the opposite, and it acts
trivially on Z · [OX ]. Therefore

Ker(1− ∧) = Z · [OX ]⊕ 2F1K0(X) , Im(1 + ∧) = 2Z · [OX ],
Ker(1 + ∧) = F1K0(X) , Im(1− ∧) = 2F1K0(X),

and assertions i), ii) follow.
To prove iii) note that a line bundle L which has order two in Pic(X) is isomorphic

to its inverse L∧, so is automatically endowed with a nonsingular bilinear form µ :
L → L∧. This form must be symmetric locally at any point, hence is symmetric
globally. Finally, e0 maps the Witt class of (L, µ) ⊕ (OX , < 1 >) onto the class of L
in 2 Pic(X) via

∧
.

Remark 1.4.1. If R is a Dedekind ring, X = SpecR, then Pic(X) = Pic(R) is sim-
ply the ideal class group H(R); the claim on the form of element of F 1K0(X) is
a consequence of the structural theorem for projective modules: if rank(P ) = r,
then there exist fractional ideals I1, ..., Ir such that P ∼= I1 ⊕ ... ⊕ Ir; moreover,
P ∼= Rr−1 ⊕ I1 · ... · Ir ∼= Rr−1 ⊕∧r P . In this case L1(X) ∼= Pic(X)/2Pic(X) and
L1(X) is isomorphic to E−X via obvious generalization of e0.

Remark 1.4.2. If 2Pic(X) is nontrivial, 2Pic(X) 6= 0, then there exist non-extended
Witt classes on X.

Corollary 1.4.3. If X is a smooth projective curve of genus g over an algebraically
closed field F , then

i) if charF 6= 2, then EX ∼= (Z/2Z)1+2g;

ii) the degree map induces isomorphism E−X ∼= Z/2Z.
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Remark 1.4.4. The result in Corollary 1.4.3. i) has been pointed out to author by W.
Scharlau.

Remark 1.4.5. The proposition 2.1 of [3] states that for F = C the Witt groupW (X)
of a smooth projective curve X is itself isomorphic to (Z/2Z)1+2g, but the proof
remains valid for an arbitrary algebraically closed field F provided charF 6= 2. So
under assumptions of Corollary 1.4.3.i) the map e0 : W (X)→ EX is an isomorphism.

2 The map e0 : W (X)→ EX for certain quasiprojective X.

2.1

We shall show now that the group EX may be actually computed, and compare the
result with known Witt rings. The simplest case is following:

Proposition 2.1.1. If R is a regular ring, and X = AnR, the affine space, then the
inverse image functor f∗ for the structure map f : X → SpecR induces isomorphisms
W (R)→W (X), ER→ EX, E−R→ E−X.

Proof. By the homotopy property of K-theory, the map f∗ : K0(R) → K0(X)
is an isomorphism and commutes with ∧, so the assertion on E and E− follows.
The assertion on W (X) is a consequence of the Karoubi theorem, see [6], Ch. VI.2,
Corollary 2.2.2.

Now let X be a quasiprojective variety over a field F , charF 6= 2, with the
structure map f : X → SpecF . Consider the commutative diagram

W (X)
e0−−−−→ EX

f∗
x f∗

x

W (F ) −−−−→
e0

EF

(2.1.1)

We shall refer to ”left f∗” and ”right f∗” in 2.1.1 for various X.
Next, fix a projective embedding i : X → PnF and denote:

1 = [OX ] - the unit element in K0(X); (2.1.2)

OX(−1) = i∗OPn
F
(−1); (2.1.3)

H = 1− [OX(−1)] - the class of hyperplane section in K0(X). (2.1.4)

We summarize some technicalities as follows:

Lemma 2.1.2. If d = dimX, then

i) Hd+1 = 0;

ii) [OX(1)] = (1−H)−1 =
d∑

i=0

Hiin K0(X) (here H0 = 1);

iii) H∧ =
−H
1−H = −

d∑

i=1

Hi;

iv) (Hk)∧ =

( −H
1−H

)k
= (−1)kHk

d−k∑

i=0

(
k + i− 1

i

)
Hi;

v) (Hd)∧ = (−1)dHd.
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Proof. H = 1 − [OX(−1)], so [OX(−1)] = 1 − H, [OX(1)] = (1 − H)−1, H being
nilpotent. Thus H∧ = 1− [OX(1)] = ([OX(−1)]− 1) · [OX(1)] = −H · (1−H)−1 and
(Hk)∧ = (−H)k(1−H)−k.
In the case i = id, X = PdF , the family 1, H, . . . , H

d forms a basis of a free
Abelian group K0(X), which allows us to compute EX, E

−X:

Proposition 2.1.3. If X = PdF , the projective space, then:

i) both vertical arrows in the diagram 2.1.1 are isomorphisms;

ii) E−X = Z/2Z · [Hd] for odd d and E−X = 0 for even d.

Proof. The left f∗ in the diagram 2.1.1 is an isomorphism by Arason’s theorem [1].
Note that the statements on EX, E−X are valid for d = 0, and - by Theorem 1.1
above - for d = 1. Consider Y = Pd−1F and a closed embedding k : Y → X of Y as a
hyperplane in X. There is an exact sequence

0→ Z ·Hd → K0(X)
k∗−→ K0(Y )→ 0

since k∗OX(i) = OY (i). Thus we have a short exact sequence of complexes:

· · · 1−
∧

−−−→ K0(Y )
1+∧−−→ K0(Y )

1−∧−−−→ · · ·
k∗
x k∗

x
· · · 1−

∧

−−−→ K0(X)
1+∧−−→ K0(X)

1−∧−−−→ · · ·x
x

· · · 1−(−1)
d

−−−−−→ Z ·Hd 1+(−1)d−−−−−→ Z ·Hd 1−(−1)d−−−−−→ · · ·

and an induced exact sequence in homology. For even d this looks like

· · · → 0→ E−X → E−Y → Z/2Z · [Hd]
∂−→ EX → EY → 0→ · · ·

and if - by induction - the proposition holds for Y , then ∂ maps the generator of
E−Y = Z/2Z · [Hd−1] onto Hd mod 2Z ·Hd, so the proposition holds for X: E−X =
0, k∗ : EX → EY is an isomorphism. In case of an odd d we have an exact sequence

· · · → 0→ EX → EY
∂−→ Z/2Z · [Hd]→ E−X → E−Y → 0→ · · ·

in homology. By induction EY = Z/2Z · [OX ], ∂ = 0, so k∗ : EX → EY is an
isomorphism. Thus Z/2Z · [Hd]→ E−X is an isomorphism, since E−Y = 0.

Remark 2.1.4. The idea of this proof is due to the referee.

Proposition 2.1.5. For an arbitrary variety Y let X = PdF × Y and let
p1 : X → PdF , p2 : X → Y be the projections. Then

EX = (p∗1(E(P
d
F ))⊗ p∗2(EY ))⊕ (p∗1(E−(PdF ))⊗ p∗2(E−Y ))

E−X = (p∗1(E(P
d
F ))⊗ p∗2(E−Y ))⊕ (p∗1(E−(PdF ))⊗ p∗2(EY )).
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Proof. By the projective bundle theorem p∗1, p
∗
2 yield the identification K0(X) =

K0(PdF )⊗K0(Y ). Denote

A = Ker(K0(P
d
F )

1−∧−−−→ K0(P
d
F )), B = (1− ∧)K0(PdF ).

The complex 1.3.1 for X = PdF ×Y may be included into the short exact sequence
of complexes:

· · · 1−
∧

−−−→ B ⊗K0(Y ) 1+∧−−→ B ⊗K0(Y ) 1−∧−−−→ · · ·
(1−∧)⊗1

x (1−∧)⊗1
x

· · · 1−
∧

−−−→ K0(X)
1+∧−−→ K0(X)

1−∧−−−→ · · ·x
x

· · · 1−
∧

−−−→ A⊗K0(Y ) 1+∧−−→ A⊗K0(Y ) 1−∧−−−→ · · ·

Note that 1± ∧ restricted to A⊗K0(Y ) coincides with 1⊗ (1± ∧) and induces
1⊗ (1∓ ∧) on B ⊗K0(Y ). Therefore the exact hexagon in homology

EX

�
�
�
��� @

@
@
@@R

A⊗EY B ⊗E−Y
∂1

x
y∂2

B ⊗EY A⊗E−Y

@
@

@
@@I �

�
�

��	
E−X

breaks into short split exact sequences:

0→ E(PdF )⊗E−Y → E−X → E−(PdF )⊗EY → 0 (2.1.5)

0→ E(PdF )⊗EY → EX → E−(PdF )⊗E−Y → 0. (2.1.6)

Example 2.1.6. Put d = 1, Y = P1F , i.e., X = P
1
F × P1F . Then

EX = Z/2Z · [OX ]⊕ Z/2Z · [H ⊠H] (2.1.7)

E−X = Z/2Z · [H ⊠ 1]⊕ Z/2Z · [1⊠H] (2.1.8)

where ⊠ is induced by operation F ⊠ G = p∗1F ⊗ p∗2G. Since Witt ring is an invariant
of birational equivalence in the class of smooth projective surfaces over a field F ,
charF 6= 2 ([2], Theorem 3.4) and X = P1F × P1F is birationally equivalent to P2F , the
left f∗ in the diagram 2.1.1 is an isomorphism while the right f∗ is not. This example
shows that e0 : W (X)→ EX need not be surjective in general.
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Remark 2.1.7. Probably there exists a skew symmetric bilinear space (M, β) on X =
P1F × P1F such that [M] = [H ⊠H] in EX.
Remark 2.1.8. X = P1F × P1F may be embedded into P3F by Segre immersion as a
quadric surface x0x1 − x2x3 = 0. In fact in the preliminary version of this paper this
example was given using Swan’s description of the K-theory of a quadric. The idea
to use inverse images for projections was pointed out to author by the referee.

Remark 2.1.9. Note that we know W (X) and EX for three quadrics of maximal
index:

X equation W (X) EX E−X
two points z20 − z21 = 0 W (F )×W (F ) Z/2Z⊕ Z/2Z 0
P1F z20 − z21 + z22 = 0 W (F ) Z/2Z Z/2Z

P1F × P1F x0x1 − x2x3 = 0 W (F ) Z/2Z⊕ Z/2Z Z/2Z⊕ Z/2Z

We shall compute EX and E−X for all projective quadrics of maximal index.
To do this, some preparational work is required.

3 The Swan K-theory of a split projective quadric.

To compute EX and E−X, we need some facts on dualization of vector bundles on
quadrics. All needed information is known in fact, since indecomposable components
of a Swan sheaf correspond to spinor representations. Nevertheless we give here
complete proofs of the needed facts.
We shall apply the results of [11] in the simplest possible case of a split quadric:

X is a projective quadric hypersurface over a field F , charF 6= 2, defined by the
quadratic form of maximal index.

3.1 Notation

Consider a vector space V with basis v0, v1, . . . , vd+1 over a field F , charF 6= 2.
Denote z0, z1, . . . , zd+1 the dual basis of V

∧. Let q be the quadratic form

q =
d+1∑

i=0

(−1)iz2i .

Moreover, let ei =
1
2 (v2i − v2i+1), fi = 1

2 (v2i + v2i+1) for all possible values of i.
Thus if d is even, d = 2m, then e0, f0, e1, f1, . . . , em, fm form a basis of V with
the dual basis x0, y0, x1, y1, . . . , xm, ym and

q =
m∑

i=0

xiyi.

If d is odd, d = 2m + 1, then f0, e1, f1, . . . , em, fm, vd+1 form a basis of V
with the dual basis x0, y0, x1, y1, . . . , xm, ym, zd+1 and

q =
m∑

i=0

xiyi + z
2
d+1.
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We shall compute EX and E−X for a d-dimensional projective quadricX defined
by equation q = 0 in Pd+1F , i.e., for

X = ProjS(V ∧)/(q) ∼= ProjF [z0, z1, . . . , zd+1]/(q).

3.2 The Clifford algebra

In case of an odd d = 2m + 1 the even part C0 = C0(q) of the Clifford algebra
C(q) is isomorphic to the matrix algebra MN (F ), where N = 2

m+1. In particular,
Kp(C0) ∼= Kp(F ).
In case of an even d = 2m, the algebra C0 has the center F ⊕ F · δ, where

δ = v0 · v1 · . . . · vd+1 and δ2 = 1. Thus 12 (1 + δ), 12 (1 − δ) are orthogonal central
idempotents of C0, so

C0 =
1

2
(1 + δ)C0 ⊕

1

2
(1− δ)C0

where each direct summand is isomorphic to the matrix algebra M2m(F ). For even
d = 2m, consider the principal antiautomorphism ℑ : C0 → C0 :

ℑ(w1 · w2 · . . . ·wk) = (−1)kwk ·wk−1 · . . . ·w1 for w1, w2, . . . , wk ∈ V.

Note that

ℑ(δ) = (−1)m+1δ. (3.2.1)

Moreover, for every anisotropic vector w ∈ V , the reflection α 7→ −wαw−1 in V
induces an automorphism ρw of C0, which interchanges δ with its opposite:

ρw(δ) = −δ. (3.2.2)

Regarding subscripts i mod 2 denote

Pi = (1 + (−1)iδ)C0 for even d.

Lemma 3.2.1. In case of an even d = 2m:

i) the involution ℑ of the algebra C0 provides an identification of the left C0-
module Pi

∧ = HomF (Pi, F ) with the right C0-module Pi+m+1;

ii) for any anisotropic vector w ∈ V , the reflection ρw interchanges Pi’s: ρw(Pi) =
Pi+1.

3.3 Swan K-theory of a quadric

Recall some basic facts and notation of [11]. Denote by C1 the odd part of the Clifford
algebra C(q). We shall use mod 2 subscripts in Ci. Recall the definition of the Swan
bundle U . Put

φ =
d+1∑

i=0

zi ⊗ vi, φ ∈ Γ(X,OX(1)⊗ V ).
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The complex

· · · φ·−→ OX(−n)⊗ Cn+d+1 φ·−→ OX(1− n)⊗ Cn+d
φ·−→ OX(2− n)⊗ Cn+d−1 φ·−→ · · ·

(3.3.1)

is exact and locally splits ([11], Prop. 8.2.(a)).

Definition 3.3.1.

Un = Coker(OX(−n− 2)⊗ Cn+d+3 φ·−→ OX(−n− 1)⊗ Cn+d+2),
U = Ud−1.

Since the complex 3.3.1 is - up to a twist - periodical with period two, we have

Un+2 = Un(−2).

Consider the exact sequences

OX(−n− 2)⊗ Cn+d+3 φ·−→ OX(−n− 1)⊗ Cn+d+2 → Un → 0

for two consecutive values n; twist the first one by 1. For any anisotropic vector w ∈ V
the isomorphism given by right multiplication by 1 ⊗ w fits into the commutative
diagram:

OX(−n− 2)⊗ Cn+d+4 φ·−−−−→ OX(−n− 1)⊗ Cn+d+3 −−−−→ Un+1(1) −−−−→ 0

∼=
y·1⊗w ∼=

y·1⊗w

OX(−n− 2)⊗ Cn+d+3 φ·−−−−→ OX(−n− 1)⊗ Cn+d+2 −−−−→ Un −−−−→ 0.

Thus we have proved the following lemma:

Lemma 3.3.2.

Un+1 ∼= Un(−1) and Un ∼= U0(−n)

for arbitrary integer n.

There is an exact sequence

0→ U0 φ−→ OX ⊗C0 → U−1 → 0 (3.3.2)

where an isomorphism ·(1⊗ w) was used to replace OX ⊗C1 by OX ⊗C0 for even d.

Lemma 3.3.3. EndX(Un) ∼= C0 acts on Un from the right.

Proof. [11], Lemma 8.7.
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3.4

We are now ready to compute Un∧.

Lemma 3.4.1. Un∧ ∼= Un(2n+ 1), in particular U∧ ∼= U(2d− 1).

Proof. We have chosen a basis v0, v1, . . . , vd+1 of V in 3.1 above. The set of naturally
ordered products of several vi’s in an even number forms a basis of C0. Define a
quadratic form Q on C0 as follows: let the distinct basis products be orthogonal to
each other and

Q(vi1 · vi2 · . . . · vik) = q(vi1) · q(vi2) · . . . · q(vik).

The form Q is nonsingular and defines - by scalar extension - a nonsingular
symmetric bilinear form ∆ on OX ⊗C0. Since (q(vi))2 = 1, a direct computation
shows that Im(OX(−1)⊗C1 φ−→ OX ⊗C0) = φ ·U0 ∼= U0 is a totally isotropic subspace
of OX ⊗C0. Therefore

U0 ∼= φ · U0 = (φ · U0)⊥ ∼= ((OX ⊗C0)/(φ · U0))∧ ∼= U−1∧

follows quickly from sect. 1.1 above and the exactness of 3.3.2. Thus

U0∧ ∼= U−1 ∼= U0(1)

and, in general

Un∧ ∼= (U0(−n))∧ ∼= U0∧(n) ∼= U0(n+ 1) ∼= Un(2n+ 1).

Remark 3.4.2. This argument was pointed out to the author by the referee.

Corollary 3.4.3. i) [U∧] = [U(2d − 1)] and [U(d − 1)] + [U(d − 1)]∧ = 2d + 1
in K0(X);

ii) rankU = 1
2 dimC0 = 2

d.

In case of an even d = 2m the algebra EndX(U) = C0 splits into the direct
product of subalgebras defined in 3.2 above: C0 = P0 × P1.

Definition 3.4.4. In case of an even d:

U ′n = Un⊗C0P0, U ′′n = Un⊗C0P1,
U ′ = U⊗C0P0, U ′′ = U⊗C0P1.

Note that Un = U ′n ⊕ U ′′n , U = U ′ ⊕ U ′′. U ′0 and U ′′0 correspond to spinor repre-
sentation and we shall copy here the standard argument on dualization (compare [4],
sect. 4.3).
In case of an even d = 2m another property of φ and the quadratic form Q

introduced in the proof of Lemma 3.4.1 may be verified by direct computation:
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Lemma 3.4.5. In case of an even d = 2m

i) if m is even, then Pi = (1± δ)C0 are orthogonal to each other, hence self-dual;
ii) if m is odd, then Pi = (1± δ)C0 are totally isotropic, hence dual to each other;
iii) φ(1± δ) = (1∓ δ)φ.

Corollary 3.4.6. In case of an even d = 2m

i) U ′∧ ∼= U ′(2d− 1) and U ′′∧ ∼= U ′′(2d− 1) for even m;
ii) U ′∧ ∼= U ′′(2d− 1) and U ′′∧ ∼= U ′(2d− 1) for odd m;
iii) EndX(U ′) ∼= EndX(U ′′) ∼=M2m(F );
iv) the exact sequence 3.3.2 splits into two exact parts

0→ U ′0
φ·−→ OX ⊗P0 → U ′′0 (1)→ 0

0→ U ′′0
φ·−→ OX ⊗P1 → U ′0(1)→ 0

The standard way to determine indecomposable components is tensoring with
the simple left module over an appropriate endomorphism algebra. We will use (from
here onwards) superscript for the direct sum of identical objects.

Definition 3.4.7.
i) in case of an odd d = 2m+ 1 V = U⊗C0F 2

m+1

;
ii) in case of an even d = 2m V0 = U ′⊗M2m (F )F 2

m

,
V1 = U ′′⊗M2m (F )F 2

m

.

For convenience we will use mod 2 subscripts in Vi. Since Mn(F ) = (F
n)n

as a left Mn(F )-module, indecomposable components inherit properties of the Swan
bundle: we have

Proposition 3.4.8. a) In case of an odd d = 2m+ 1:

i) U ∼= V2m+1;
ii) V∧ = V(2d− 1);
iii) EndX(V) ∼= F and rankV = 2m;
iv) [V(d− 1)] + [V(d)] = 2m in K0(X).

b) In case of an even d = 2m:

i) U ′ = V2m0 and U ′′ = V2m1 ;
ii) Vi∧ = Vi+m(2d− 1);
iii) EndX(Vi) ∼= F and rankVi = 2m−1
iv) [Vi(d− 1)] + [Vi+1(d)] = 2m in K0(X).
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In particular there is no global morphism Vi → Vi+1.
Corollary 3.4.9. In case of an even d = 2m following identities hold in K0(X):

i) ([V0]− [V1]) ·H = 0;
ii) ([V0]− [V1]) · [OX(n)] = [V0]− [V1];
iii) ([V0]− [V1])∧ = (−1)m([V0]− [V1]).
Proof. Proposition 3.4.8.b) iv) yields

[V0(d− 1)] + [V1(d)] = [V1(d− 1)] + [V0(d)].

Tensoring with OX(−d) one obtains

[V0]− [V1] = ([V0]− [V1]) · [OX(−1)],

hence i) and ii). Thus iii) results from 3.4.8. b) ii).

Proposition 3.4.10. K∗(X) is a free K∗(F )-module of the rank 2m+ 2; moreover

i) in case of an odd d = 2m+1 the classes [OX ], [OX(−1)], . . . , [OX(1− d)], [V]
form a basis of K∗(X);

ii) in case of an even d = 2m the classes [OX ], [OX(−1)], . . . , [OX(1− d)], [V0],
[V1] form a basis of K∗X.

Proof. Apply Theorem 9.1 of [11].

We have expressed the action of ∧ on K0(X) in terms of a twist. We need a plain
expression in order to determine EX and E−X.

3.5

We recall here several facts known from section 6 of [11] needed for establishing plain
formulas for the action of ∧.
Every regular sheaf F on X has a canonical resolution (infinite in general):

· · · → OX(−p)kp → · · · → OX(−1)k1 → OXk0 → F → 0

where superscript kp means a direct sum of kp copies. One may compute the coeffi-
cients kp and the differentials recursively as follows: put Z−1 = F . Since a regular
sheaf is generated by its global sections, put kp = dimΓ(X,Zp−1(p)) and define Zp
as the twisted kernel in

0→ Zp(p)→ OkpX → Zp−1(p)→ 0.

Then Zp(p+ 1) is a regular sheaf. Therefore the sequence

0→ Zp(p)→ OXkp → · · ·OX(p− 1)k1 → OX(p)k0 → F(p)→ 0

is exact. Twisting it by 1 one obtains an exact sequence of regular sheaves

0→ Zp(p+ 1)→ OX(1)kp → · · · → OX(p)k1 → OX(p+ 1)k0 → F(p+ 1)→ 0.
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Since the functor of global sections is exact on regular sheaves, there is following
recurrence for kp+1 = dimΓ(X,Zp(p+ 1)):

dimΓ(X,F(p+ 1))− k0 · dimΓ(X,OX(p+ 1)) + · · ·
+ (−1)p−1kp · dimΓ(X,OX(1)) + (−1)pkp+1 = 0. (3.5.1)

In case of a −1- regular F to obtain an expression for [F ] ∈ K0(X) in terms of
the basis from Proposition 3.4.10 one truncates the canonical resolution of F :

0→ Zd−1 → OX(1− d)kd−1 → · · · → OX(−1)k1 → OXk0 → F → 0

and replaces Zd−1 by U⊗C0 HomX(U ,Zd−1) ∼= Zd−1. Then in K0(X)

[F ] =
d−1∑

i=1

[OX(−i)] + [U⊗C0 HomX(U ,Zd−1)].

Depending on the parity of d we have there

[U⊗C0 HomX(U ,Zd−1)] = a[V]

or

[U⊗C0 HomX(U ,Zd−1)] = a[V0] + b[V1],

where the integers a, b in turn depend on the decomposition of HomX(U ,Zd−1) into
a direct sum of simple left C0 - modules. Conversely, for a given F the equality

[F ] =
d−1∑

i=1

[OX(−i)] +W

holds, where W is either a[V] or a[V0] + b[V1], then k0 is the Euler characteris-
tic
∑
(−1)i dimHi(X,F) of F . So if F is regular, then k0 = dimΓ(X,F). Next,

Z0(1) = Ker(OX(1)k0 → F(1)) is regular, and iterating yields that for a regular F
the congruence

[F ] ≡ [OX(−i)] mod Im(K0(C0)→ K0(X))

holds if and only if integers ki satisfy 3.5.1. In case of an odd d = 2m+ 1, in order
to express a class [F ] of a regular sheaf F in terms of the basis of Proposition 3.4.10,
it is enough to know the dimensions of Γ(X,F(i)) for i = 0, 1, 2, . . . , d − 1 to
determine the ki’s and the rank F to determine the coefficient a of [V]. An analogous
statement remains valid for an arbitrary sheaf F with Euler characteristic of F(i) in
place of dimΓ(X,F(i)). In case of an even d = 2m, in view of Corollary 3.4.9 ii) and
Proposition 3.4.8 ii), the bundles V0 and V1 have the same Euler characteristic, rank
and even the highest exterior power. Thus, without special considerations, one can
express a class [F ] in terms of basis of the Proposition 3.4.10 only up to a multiple
of [V0]− [V1].
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4 The group EX for a split projective quadric

4.1 A Poincaré series of a sheaf

We introduce here a method for the determination of the coefficients of the canonical
resolution of a large enough class of regular sheaves. A Poincaré series ΠF(t) of a
sheaf F is the formal power series

ΠF (t)
def
=

∞∑

i=0

dimΓ(X,F(i)) · ti ∈ Z[[t]].

The Poincaré series ΠS(t) of a variety S is the Poincaré series of its structural
sheaf:

ΠS(t)
def
= ΠOS (t).

In particular if S = ProjA for a graded algebra A, then ΠS(t) is the usual
Poincaré series of A.

Example 4.1.1. If S is the projective space, S = PnF , then dimΓ(S,OS(i)) =(
n+ i

i

)
, so

Pn(t)
def
= ΠS(t) =

∞∑

i=0

(
n+ i

i

)
· ti = (1− t)−n−1.

Example 4.1.2. Let f be a homogeneous polynomial of degree k in homogeneous
coordinates in Pd+1F = ProjB, B = F [x0, x1, . . . , xd+1], A = B/(f), S = ProjA -

a hypersurface f = 0 in Pd+1F . Since the exact sequence

0→ Bn
f ·−→ Bn+k → A→ 0

splits for every n, the following equality holds:

ΠS(t) = Pd+1(t)− tkPd+1(t).

Thus ΠS(t) =
1− tk
(1− t)d+2 =

1+ t+ . . .+ tk−1

(1− t)d+1 .

Lemma 4.1.3. For a projective quadric X of dimension d

Qd(t)
def
= ΠX(t) =

1 + t

(1− t)d+1 .

Proposition 4.1.4. If 0→ F ′ → F → F ′′ → 0 is an exact sequence ofOX - modules
and either F ′, F ′′ are regular or F , F ′(1) are regular, then

ΠF (t) = ΠF ′(t) + ΠF ′′(t).

Proof. By [7], Sect. 8, Lemma 1.2 either F ′, F , F ′′ are regular or F ′(1), F , F ′′ are
regular. Hence each exact sequence of sheaves

0→ F ′(i)→ F(i)→ F ′′(i)→ 0
induces an exact sequence of global sections.
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4.2 The generating function for the canonical resolution

The recursive method of finding a canonical resolution

· · · → OX(−p)kp → · · · → OX(−1)k1 → OXk0 → F → 0

of a regular sheaf F , described in 3.5 above, namely the identity 3.5.1, yields following
identities for the generating function GF (t)

def
=

∞∑

i=0

kit
i:

ΠF (t) = GF (−t) ·ΠX(t) and GF (t) =
ΠF (−t)
Qd(−t)

.

Example 4.2.1. The generating function for the canonical resolution of the sheaf
OX(1):

ΠOX(1)(t) =
ΠOX (t)− 1

t
,

so

GOX(1)(t) =
ΠOX (−t)
Qd(−t)

=
Qd(−t)− 1
−tQd(−t)

=

1−t
(1+t)d+1 − 1
−t 1−t
(1+t)d+1

=
(1 + t)d+1 − (1− t)

t(1− t) .

Example 4.2.2. For a linear section H l = (1− [OX(−1)])l of codimension l in X

GHl = (1 + t)
l.

Example 4.2.3. Continue the notation of 3.1. Since X splits, it contains linear
subvarieties Sk = ProjF [x0, . . . , xk] given by the following equations:
a) in case of an even d = 2m:

y0 = . . . = ym = xk+1 = . . . = xm = 0 for k < m and

y0 = . . . = ym = 0 for k = m;

b) in case of an odd d = 2m+ 1:

y0 = . . . = ym = zd = xk+1 = . . . = xm = 0 for k < m and

y0 = . . . = ym = zd = 0 for k = m.

Sk is isomorphic to PkF , in particular its structural sheaf Lk is regular. Therefore

GLk(t) =
Pk(−t)
Qd(−t)

=
(1 + t)−k−1

1−t
(1+t)d+1

=
(1 + t)d−k

1− t .

Lemma 4.2.4.

2GLk −GLk−1 = (1 + t)d−k.
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4.3 The generating function for a truncated canonical resolution

Truncating a generating function GF one obtains a polynomial TF . For l < d the
canonical resolution for H l is itself truncated:

THl = (1 + t)
l

for l < d.

The sequence (ci) of coefficients of the canonical resolution of the sheaf Lk sta-
bilizes from the degree d− k onwards:

GLk =
(1 + t)d−k

1− t = (1 + t)d−k ·
∞∑

i=0

ti =
∞∑

i=0

cit
i

so

cd−k = cd−k+1 = . . . = 2
d−k.

Thus

TLk(t) =
(1− t)d−k − 2td

1− t .

Proposition 4.3.1. If, for fixed k, Lk is a structural sheaf of a linear subvariety Sk
of dimension k in X, then in K0(X):
a) in case of an odd d = 2m+ 1

[Lk] =
d−1∑

i=0

(
i∑

p=0

(
d− k
p

))
(−1)i[OX(−i)] + 2m−k[V];

b) in case of an even d = 2m for a suitable integer a

[Lk] =
d−1∑

i=0

(
i∑

p=0

(
d− k
p

))
(−1)i[OX(−i)] + a[V0] + (2m−k − a)[V1].

Proof. Substituting t = −[OX(−1)] into the expansion for TLk(t) yields, depending
on the parity of d, the expressions

[Lk] =
d−1∑

i=0

(
i∑

p=0

(
d− k
p

))
(−1)i[OX(−i)] + a[V];

[Lk] =
d−1∑

i=0

(
i∑

p=0

(
d− k
p

))
(−1)i[OX(−i)] + a[V0] + b[V1].

for suitable integers a, b. Thus

0 = rank[Lk] =





TLk(−1) + (−1)da · 2m =
= (−1)d(2ma− 2d−k−1) for d = 2m+ 1

TLk(−1) + (−1)d(a+ b) · 2m−1 =
= (−1)d(2m−1(a+ b)− 2d−k−1) for d = 2m.
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4.4 The topological filtration

Now we shall find a basis of K0(X) which is convenient for computations. Since the
quadric X is regular, K ′0(X) = K0(X) and one may transfer the topological filtration

FpK ′0(X) = subgroup generated by{
[F ] : the stalk Fx = 0 for all generic points

x of subvarieties of codimension < p

}

of K ′0(X) to K0(X). We omit the standard proof of following

Proposition 4.4.1. For a split projective quadric X the Chow groups Ap(X) are
isomorphic to the corresponding factors of the topological filtration:

Ap(X) ∼= FpK0(X)/Fp+1K0(X).

Continue the notation of 3.1. Recall the classical computation of the Chow ring
of a split projective quadric.

Proposition 4.4.2. For a split projective quadric X of dimension d
a) in case of an even d = 2m

Ap(X) ∼= Z for p 6= m, 0 ≤ p ≤ 2m and Am(X) ∼= Z⊕ Z;

b) in case of an odd d = 2m+ 1

Ap(X) ∼= Z for all p, 0 ≤ p ≤ 2m.

Explicit generators are given as follows:
Case d = 2m:
i) for p > m, a class of any linear subvariety of dimension d− p, e.g.,

Sd−p : y0 = . . . = ym = xd−p+1 = . . . = xm = 0;
ii) for p < m, a class Hp of a linear section of codimension p;
iii) for p = m, Am(X) is generated by two classes of linear subvarieties

S′m : x0 = . . . = xm = 0 and S
′′
m : y0 = x1 = . . . = xm = 0;

the classes in Am(X) remain unchanged if an even number of xi, yi are
exchanged in these equations.

Case d = 2m+ 1:
i) for p > m, a class of any linear subvariety of dimension d− p, e.g.

Sd−p : y0 = . . . = ym = zd+1 = xd−p+1 = . . . = xm = 0;
ii) for p ≤ m, a class Hp of a linear section of codimension p.

For a sketch of proof and references see [10], Thm. 13.3.

Now we can give an explicit description of the ring structure and the action of
the involution ∧ on K0(X). To do this denote Lp = [Lp] the class of the structural
sheaf of the linear subvariety Sp of dimension p. Moreover, in case of an even d = 2m
denote by L′m and L

′′
m the class of the structural sheaf of S

′
m and S

′′
m respectively.
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Theorem 4.1. Let X be a split projective quadric of dimension d. Then

i) in case of an odd d = 2m+ 1 classes 1, H, H2, . . . , Hm, Lm, . . . , L0 form a
basis of the free Abelian group K0(X);

ii) in case of an even d = 2m classes 1, H, H2, . . . , Hm−1, L′m, L
′′
m, Lm−1,

. . . , L0 form a basis of the free Abelian group K0(X);

iii) in case of an even d = 2m classes may be chosen as follows:

L′m =
d−1∑

i=0

(
i∑

p=0

(
m

p

))
(−1)i[OX(−i)] + [V0],

L′′m =
d−1∑

i=0

(
i∑

p=0

(
m

p

))
(−1)i[OX(−i)] + [V1]

and for dimensions k < m

Lk =
d−1∑

i=0

(
i∑

p=0

(
d− k
p

))
(−1)i[OX(−i)] + 2m−k−1([V0] + [V1]);

iv) if d = 2m, then Hm = L′m + L
′′
m − Lm−1;

v) H · Lp = Lp−1 , H · L′m = H · L′′m = Lm−1;

vi) Hd−k = 2Lk − Lk−1 for k ≤
d− 1
2
, Hd = 2L0, H

d+1 = 0;

vii) Lp · Lq = Lp · L′m = Lp · L′′m = 0;

viii) if d = 2m and m is even, then L′m
2
= L′′m

2
= L0, L

′
m · L′′m = 0, if d = 2m and

m is odd, then L′m
2 = L′′m

2 = 0, L′m · L′′m = L0 .

Proof. First of all note that the classes Hk, Lk for k ≤ d−1
2 and the pair {L′m, L′′m}

are determined uniquely by the conditions of irreducibility of the underlying subva-
riety and to form a basis of some appropriate Ap(X). In fact, by Proposition 4.4.1
this is clear for FdK0(X) ∼= Ad(X). Thus, the general case results by induction.
Statements i) and ii) follow from Proposition 4.4.1 and 4.4.2. To verify iii), note
that the reflection ρv1 fixes v0, v2, . . . , vd+1 and changes v1 into the opposite (3.2
above). Thus, this reflection induces an automorphism of the symmetric algebra
S(V∧), which interchanges x0 with y0 and fixes other coordinates and q. Therefore
it induces an automorphism of S(V∧)/(q), X = ProjS(V∧)/(q), a semilinear auto-
morphism of OX(n) for all n, and an automorphism of K0(X). By Lemma 3.2.1 ii),
the reflection ρv1 interchanges the Pi’s with each other. So the induced automor-
phism of U interchanges direct summands U ′ = U ⊗ P0 and U ′′ = U ⊗ P1 of U and
their indecomposable components V0 , V1 . Therefore, the induced automorphism of
K0(X) fixes the basic elements [OX ], [OX(−1)], . . . , [OX(1− d)] and interchanges
[V0] with [V1]. By the uniqueness statement this automorphism fixes L0, . . . , Lm−1.
The explicit description given in Proposition 4.4.2 ii) shows that this automorphism
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interchanges L′m with L
′′
m. Hence, by the explicit formula of Proposition 4.3.1 ii) for

k < m

Lk = [Lk] =
d−1∑

i=0

(
i∑

p=0

(
d− k
p

))
(−1)i[OX(−i)] + a[V0] + (2m−k − a)[V1]

the integer a must be equal to 2m−k−1. This same argument for k = m yields

L′m =
d−1∑

i=0

(
i∑

p=0

(
d− k
p

))
(−1)i[OX(−i)] + a[V0] + (1− a)[V1]

and

L′′m =
d−1∑

i=0

(
i∑

p=0

(
d− k
p

))
(−1)i[OX(−i)] + (1− a)[V0] + a[V1].

Since the statement ii) of the theorem holds, the integer a must be 0 or 1 (this
follows from the regularity of the structural sheaves of S′m and S

′′
m , too). Statements

iv) - vii) are obvious consequences of the uniqueness and the explicit equations of
Proposition 4.4.2. For to prove viii) assume, without loss of generality, that L′m is
the class of S′m and L

′′
m is the class of S

′′
m. Consider the class Lm of the subvariety

Sm : y0 = . . . = ym = 0. In case of an even m the classes L
′′
m and Lm coincide, and

Sm meets S
′
m transversally at the empty set of points, so L

′
m · L′′m = 0. Moreover,

Sm meets S
′′
m transversally at the rational point S0, so L

′′
m
2
= L0. Analogously,

L′m
2
= L0.

In case of an odd m L′m = Lm, so L
′
m
2
= L′′m

2
= 0, L′m · L′′m = L0 .

Theorem 4.2. For a split projective quadric X of dimension d, the involution ∧ acts
as follows:

i) Lk
∧ = (−1)d−k ·

k∑

i=0

(
d− k − 2 + i

i

)
Lk−i for k ≤

d− 1
2
;

ii) in case of an even d = 2m:

L′m
∧ = (−1)m ·

(
L′m +

m∑

i=1

(
m− 2 + i

i

)
Lm−i

)
,

L′′m
∧ = (−1)m ·

(
L′′m +

m∑

i=1

(
m− 2 + i

i

)
Lm−i

)
,

Hk∧ =(−1)k ·



m−1∑

j=k

(
j − 1
k − 1

)
Hj +

(
m− 1
k − 1

)
(L′m + L

′′
m)




+ (−1)k ·




d∑

j=m+1

((
j − 1
k − 1

)
−
(
j − 1
k − 2

))
· Ld−j


 ;
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iii) in case of an odd d = 2m+ 1

Hk∧ =(−1)k ·



m−1∑

j=k

(
j − 1
k − 1

)
Hj + 2

(
m− 1
k − 1

)
Lm




+ (−1)k



d∑

j=m+1

((
j − 1
k − 1

)
−
(
j − 1
k − 2

))
· Ld−j


 .

Proof. i) Since Hd−k = 2Lk − Lk−1 = 2Lk −H · Lk by the Theorem 4.1 iv), vi),

Lk =
Hd−k

2−H and H∧ =
−H
1−H

by Lemma 2.1.2 iii),

Lk
∧ =

( −H
1−H

)d−k

2 +
H

1−H
=

(−H)d−k
(2−H)(1−H)d−k−1 = (−1)

d−kLk
1

(1−H)d−k−1

= (−1)d−kLk
d∑

i=0

(
d− k − 2 + i

i

)
Hi = (−1)d−k

d∑

i=0

(
d− k − 2 + i

i

)
Lk−i.

ii) To obtain the formula for Hk∧ substitute Hd−k = 2Lk − Lk−1 and Hm = L′m +
L′′m−Lm−1 into the formula of Lemma 2.1.2 iv). Analogously one proves iii). In case
d = 2m

L′m + L
′′
m = H

m + Lm−1 = H
m +

Hm+1

2−H =
2Hm

2−H ,

so

(L′m + L
′′
m)
∧ = 2

( −H
1−H

)m
1

2 +
H

1−H
= (−1)m · 2 · Hm

2−H ·
1

(1−H)m−1

= (−1)m · (L′m + L′′m)
1

(1−H)m−1 = (−1)
m · (L′m + L′′m)

d∑

i=0

(
m− 2 + i

i

)
Hi,

and thus

(L′m + L
′′
m)
∧ = (−1)m ·

(
L′m + L

′′
m + 2

m∑

i=1

(
m− 2 + i

i

)
Lm−i

)
.

On the other hand, by Theorem 4.1 iii)

L′m − L′′m = [V0]− [V1]
and by Corollary 3.4.9 iii)

(L′m − L′′m)∧ = (−1)m · ([V0]− [V1]) = (−1)m · (L′m − L′′m).
The formula for L′m

∧ and L′′m
∧ follows directly, since we know their sum and difference.
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Consider the matrix A of the involution ∧ in the free Abelian group K0(X) with
respect to the basis given in Theorem 4.1 i), ii). We shall write it in a slightly unusual
way:

A = [ai,j ] , 0 ≤ i, j ≤ 2m+ 1.
In case of an even d = 2m we regard A as a block matrix B, arranging two central
rows and two central columns into separate blocks:

bm,m =

[
am,m am,m+1
am+1,m am+1,m+1

]
∈ Hom(Z2,Z2),

bm,i =

[
am,i
am+1,i

]
∈ Hom(Z,Z2),

bi,m = [ai,m ai,m+1] ∈ Hom(Z2,Z) for i 6= m,

bi,j =





ai,j for i, j < m

ai,j+1 for i < m, j > m

ai+1,j for i > m, j < m

ai+1,j+1 for i, j > m.

As one may expect in view of Proposition 1.3.2 iv), the matrix A is triangular in the
odd dimensional case and the matrix B is triangular in the even dimensional case.
We summarize the most important results of Theorem 4.2 as follows:

Corollary 4.4.3. a) In case of an odd d = 2m+ 1 the matrix A is triangular with

ai,i = (−1)i for i = 0, 1, . . . , 2m+ 1,
ai,0 = 0 for i > 0,

ai+1,i =





(−1)ii for i = 0, 1, . . . ,m− 1
(−1)m · 2m for i = m

(−1)i(i− 1) for i = m+ 1, . . . , 2m.
b) In case of an even d = 2m the matrix B is block triangular with

bi,i = (−1)ifor i 6= m,

bm,m = (−1)m
[
1 0
0 1

]

bi,0 = 0for i > 0,

bi+1,i =

{
(−1)ii for i = 0, 1, . . . ,m− 2
(−1)i(i− 1) for i = m+ 1, . . . , 2m,

bm,m−1 = (−1)m−1(m− 1)
[
1
1

]
,

bm+1,m = (−1)m(m− 1) [1 1] ,

b2m,m = (−1)m
(
2m− 2
m

)
[1 1] .
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Theorem 4.3. Let X be a split projective quadric of dimension d.
a) If d = 2m+ 1 is odd, then

EX = Z/2Z · [OX ],

E−X =

{
Z/2Z · [Lm] for even m

Z/2Z · [Hm] for odd m;

b) If d = 2m is even, then

EX = Z/2Z · [OX ]⊕ Z/2Z · [L0],

E−X =

{
0 for even m

Z/2Z · [L′m]⊕ Z/2Z · [L′′m] for odd m.

Proof. Consider the complex 1.3.1:

· · · → K0(X)
1+∧−−→ K0X

1−∧−−−→ K0(X)
1+∧−−→ K0(X)→ · · ·

with the topological filtration

K0(X) = F
0K0(X) ⊃ F1K0(X) ⊃ · · · ⊃ FdK0(X) ⊃ Fd+1K0(X) = 0,

and the corresponding spectral sequence

Ep,q1 = Ker(1− (−1)p+q · ∧)/ Im(1 + (−1)p+q · ∧) =⇒ E(−1)
p+q

X

where E1X = EX, E−1X = E−X. The E1 - term has period 2 with respect to q.
a) In case of an odd d = 2m+ 1 the term E1 looks like

...
...

...
...

... · · ·
...

...
...

...
q=1 0 0 · · · 0 0
q=0 Z/2Z

∂0−→ Z/2Z
∂1−→ · · · → Z/2Z

∂d−1−−−→ Z/2Z

The differential ∂i is induced by the multiplication by the entry ai+1,i of the matrix
A of ∧. Thus, for each even q, we have complex E·,q1 :

Z/2Z
0·−→ Z/2Z 1·−→ Z/2Z 2·−→ · · ·

(m−1)·−−−−→ Z/2Z 2m·−−→ Z/2Z m·−→ · · ·

→ Z/2Z (2m−1)·−−−−−→ Z/2Z

Therefore for even m we have E2 0, q = E
m+1,q
2 = Z/2Z and Ei,q2 = 0 for other values

of i. Since the left (the zeroth) column of A has zero entries except a0,0 = 1, all the
differentials starting from E0,qr are trivial. So EX = Z/2Z · [OX ], E−X = Z/2Z · [Lm].
Analogously, for an oddm, we have E0,q2 = E

m,q
2 = Z/2Z and Ei,q2 = 0 for other values

of i, so EX = Z/2Z · [OX ], E−X = Z/2Z · [Hm].
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b) In case of an even d = 2m, the term E1 looks like

...
... · · ·

...
...

...
...

... · · ·
...

...
0 · · · 0 0 0 · · · 0

Z/2Z
∂0−→ · · · Z/2Z ∂m−1−−−→ (Z/2Z)2

∂m−−→ Z/2Z · · · ∂d−1−−−→ Z/2Z.

The differential ∂i is induced by the corresponding block of the matrix B of
∧. For

each even q we have a complex E·,q1 :

Z/2Z
0·−→ Z/2Z 1·−→ Z/2Z 2·−→ · · ·

(m−2)−−−−→ Z/2Z
(m−1)


1
1




−−−−−−−→ (Z/2Z)2 (m−1)[1 1]·−−−−−−−→ Z/2Z m·−→ · · ·

→ Z/2Z (2m−2)·−−−−−→ Z/2Z

Thus for evenm and even q only E0,q2 = E
2m,q
2 = Z/2Z are nonzero. By the dimension

argument the sequence degenerates from E2 onwards. Hence

EX = Z/2Z · [OX ]⊕ Z/2Z · [L0], E −X = 0 for even m.
For odd m and even q only E0,q2 = E

2m,q
2 = Z/2Z and Em,q2 = (Z/2Z)2 are nonzero.

There is no nonzero differential starting from E0,qr since the entries of the left (zeroth)
column of B are 0 except b0,0 = 1. All the differentials but E

m,q
m → E2m,q−m+1m

must be zero. This exceptional one is zero too, since it is induced by b2m,m =

(−1)m ·
(
2m− 2
m

)
[1 1], and

(
2m− 2
m

)
is even for odd m. Therefore the spectral

sequence degenerates, and finally

EX = Z/2Z · [OX ]⊕ Z/2Z · [L0], E−X = Z/2Z · [L′m]⊕ Z/2Z · [L′′m] for odd m.
The theorem is proved.

5 Non-extended Witt classes on certain split projective quadrics

We shall show here that if the dimension d of a split projective quadric X is even and
greater than two, then the invariant e0 :W (X)→ EX ∼= (Z/2Z)2 is surjective.
5.1 For an arbitrary locally free coherent sheaf M the sheaf E = EndOX (M) =
M ⊗M∧ is self-dual and supports a canonical symmetric bilinear form θ, which
reduces to the trace of a product on stalks:

θ(α)(β) = tr(α · β) for α, β ∈ Ex, x ∈ X
or if µ : E⊗OXE → E is the multiplication map, then θ : E → E∧ is adjoint of
tr ◦µ : E⊗OXE → OX .
Theorem 5.1. If X is a split projective quadric of dimension d = 2m, m > 1, then,
for an indecomposable component V0 of the Swan sheaf U ,

e0(EndOX (V0), θ) = [L0].
Thus (EndOX (V0), θ) represents a non-extended Witt class in W (X).
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Proof. The case m = 0 is special, so assume m > 0. We shall compute the class of
[V0] · [V0]∧ = [V0(d)] · [V0(d)]∧ in EX. We know from Proposition 3.4.8 b) iv) that,
for d = 2m,

[V0(d)] + [V1(d− 1)] = 2m.
On the other hand by Corollary 3.4.9 ii) and Theorem 4.1 iii)

[V0(d− 1)]− [V1(d− 1)] = [V0]− [V1] = L′m − L′′m.
Thus

[V0(d)](1 + [OX(−1)]) = [V0(d)] + [V1(d− 1)] = 2m + L′m − L′′m.
or

[V0(d)](2 +H) = 2m + L′m − L′′m.
The rules of multiplication in K0(X), given in Theorem 4.1 and Lemma 2.1.2 yield
that multiplying both sides of this equality by

d∑

i=0

2d−iHi =
m−1∑

i=0

2d−iHi + 2m · (L′m + L′′m − Lm−1) +
m∑

j=1

2m−jHm+j

=
m−1∑

i=0

2d−iHi + 2m · (L′m + L′′m − Lm−1) +
m∑

j=1

2m−j(2Lm−j − Lm−j−1)

=
m−1∑

i=0

2d−iHi + 2m · (L′m + L′′m)

we obtain

2d+1[V0(d)] = [V0(d)](2d+1 +Hd+1)

=

(
m−1∑

i=0

2d−iHi + 2m · (L′m + L′′m)
)
· (L′m + L′′m − Lm−1)

=

(
2m+1

m−1∑

i=0

2m−i−1Hi + 2m · (L′m + L′′m)
)
· (L′m + L′′m − Lm−1)

= 2d+1
m−1∑

i=0

2m−i−1Hi + 2d · (L′m + L′′m) + 2d · (L′m − L′′m)

= 2d+1 ·
m−1∑

i=0

2m−i−1Hi + 2d+1 · L′m.

Since K0(X) is torsion free, [V0(d)] =
m−1∑

i=0

2m−i−1Hi + L′m. Thus

[V0(d)]∧ =
m−1∑

i=0

2m−i−1Hi∧ + L′m
∧.
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Note that (α+β) · (α+β)∧ ≡ α ·α∧+β ·β∧ mod Im(1+∧), since α∧ ·β+α ·β∧
is a member of Im(1 + ∧). Also 2α · α∧ ≡ 0 mod Im(1 + ∧). Therefore

[E ] = [V0]⊗ [V0∧] = [V0(d)] · [V0(d)]∧

≡
m−1∑

i=0

22(m−i−1)HiHi∧ + L′mL
′
m
∧ mod Im(1 + ∧).

If m = 1, then the first summand equals 1 while the second is 0. For m > 1

[E ] ≡
m−1∑

i=0

2d−2i−2HiHi∧ + L′mL
′
m
∧

=
m−2∑

i=0

2d−2i−2HiHi∧ +Hm−1Hm−1∧ + L′mL
′
m
∧

≡ Hm−1Hm−1∧ + L′mL
′
m
∧ since 2αα∧ ≡ 0

≡ Hm−1Hm−1
(
1

(
m− 1
1

)
H +

(
m

2

)
H2
)
+ L′mL

′
m
∧ by Lemma 2.1.2;

≡ Hd−2 + (m− 1)Hd−1 +
m(m− 1)
2

Hd + L′mL
′
m
∧

≡ 2L2 − L1 + 2(m− 1)L1 − (m− 1)L0 +m(m− 1)L0
+ L′mL

′
m
∧ by Theorem 4.1 vi);

≡ 2L2 + (d− 3)L1 − (m− 1)2L0 + L′mL′m∧
≡ L2 + L2∧ − (m− 2)L0
+ (−1)mL′m(L′m + terms of higher codim) by Theorem 4.2 i);

≡
{
(2−m)L0 + L0 for even m
(2−m)L0 for odd m

by Theorem 4.1 viii);

≡ L0 mod Im(1 + ∧).

Anyway, e0((V0), θ) = [L0] for m > 1.

5.2 In the particular case d = 4 there exists another symmetric bilinear form ϑ on
E = V0⊗OXV0∧ : the tensor product of exterior multiplications

V0⊗OXV0 →
∧2
V0 ∼= OX(−7) and V0∧⊗OXV0∧ →

∧2
V0∧ ∼= OX(7).

On the stalks the associated quadratic form is the determinant map. Since the
value of e0 depends only on supporting bundle, (E , ϑ) is non-extended as well as (E , θ).
The symmetric bilinear space (E , ϑ) has the following interesting property: it is

not metabolic (since it has a nontrivial e0) but is hyperbolic on stalks, i.e., locally
hyperbolic. In fact, any stalk V0,x at x ∈ X is a free rank two OX,x - module, so
any stalk of (E , ϑ) is (M2(OX,x), det), which is hyperbolic. Thus, there is no local
invariant to detect the symmetric bilinear space (E , ϑ) and such a global invariant as
e0 is useful. If −1 is a sum of two squares in F , then (E , θ) is locally hyperbolic, too.
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Note that the case d = 4 is of particular interest, since the split four-dimensional
quadric X is the smallest non-trivial Graßmann variety G2(4). Thus on general
Graßmann varieties there may exist non-extended Witt classes contrary to the case
of projective spaces, i.e., Graßmann varieties G1(n).
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Abstract. We consider a finite-dimensional, typically noncompact Rie-
mannian manifold M with a differentiable proper action of a possibly non-
compact Lie group G. We describe G-equivariant flows in a tubular neigh-
borhood U of a relative equilibrium G ·u0, u0 ∈M , with compact isotropy H
of u0, by a skew product flow ġ = ga(v), v̇ = ϕ(v). Here g ∈ G, a ∈ alg(G).
The vector v is in a linear slice V to the group action. The induced local flow
on G×V is equivariant under the action of (g0, h) ∈ G×H on (g, v) ∈ G×V,
given by (g0, h)(g, v) = (g0gh

−1, hv). The original flow on U is equivalent to
the induced flow on {id} ×H-orbits in G× V.
Applications to relative equivariant Hopf bifurcation in V are presented, clar-
ifying phenomena like periodicity, meandering, and drifting. Specific illus-
trations involving Euclidean groups G are meandering spirals, in the plane,
and drifting twisted scroll rings, in three-dimensional Belousov-Zhabotinsky
media.

1991 Mathematics Subject Classification: 58F35, 57S20, 55R91

1 Introduction

Going beyond rigidly rotating spirals, meandering and drifting spiral wave patterns
have been observed in Belousov-Zhabotinsky media [UNUM93], [JSW89], [BE93] and
in low pressure CO-oxidation on platinum monocrystals [NvORE93]. Mathemati-
cally speaking, the wave patterns are described by concentration vectors u = u(t, x)
depending on time t and location x ∈ IR2. The partial differential equations, which
model the dynamics of the solutions u(t, x), are equivariant with respect to the stan-
dard affine action of the planar Euclidean group E(2).
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The Euclidean group E(N), N = 2, 3, . . . , is a semidirect product E(N) =
O(N) × IRN of the orthogonal group O(N) with the Abelian translation group IRN .
The composition for (R,S), (R′, S′) ∈ O(N)× IRN is defined by

(R,S) ◦ (R′, S′) := (RR′, S +RS′); (1.1)

this rule is compatible with the standard affine representation

(R,S)x := Rx+ S (1.2)

on x ∈ IRN . Equivariance of our dynamical system means that u(t, ·) is a solution if,
and only if, (R,S)u(t, ·) is a solution for any (R,S). Here the linear representation of
(R,S) in the state space X of solution x-profiles u(t, ·) is given by

((R,S)u(t, ·)) (x) := u(t, (R,S)−1x). (1.3)

The inverse (R,S)−1x is, of course, given explicitly by

(R,S)−1 = (R−1,−R−1S). (1.4)

A spiral wave u(t, ·) is a special time periodic solution, for which the time orbit
is contained in a single group orbit. After a fixed shift of x-coordinates, it can be
written as

u(t, ·) = (R(t), 0)u(0, ·). (1.5)

The rotations R(t) ∈ SO(N) are given as a periodic one-parameter subgroup

R(t) = exp(r0t) (1.6)

generated by r0 in the Lie algebra so(N) of anti-symmetric matrices. In the terminol-
ogy of [Fie88], non-stationary spiral waves are called rotating waves; see also section
3. The term “spiral” arises from the above applied context, where the concentration
patterns largely follow Archimedean spirals. Quite analogously, a meandering wave
u(t, ·) is a special solution of the form

u(t, ·) = (R(t), S(t)) v(t, ·), (1.7)

where this time v(t, ·) is a nonstationary time periodic solution and the shifts S(t)
remain bounded. If the shifts S(t) are unbounded, we call the solution u(t, ·) drifting.
Numerically, meandering and drifting one-armed spirals have been observed in

planar (N = 2) models by Barkley [Bar94]. Emphasizing the lack of a theoreti-
cal framework, based on Euclidean E(2) equivariance, he also presented an ad-hoc
heuristic ODE model exhibiting meandering and drifting solutions.
The first mathematically rigorous analysis of these phenomena has recently

been achieved by Wulff, see [Wul96]. Her result is based on a careful Lyapunov-
Schmidt reduction in a scale of Banach spaces. This resolves the difficulties of non-
differentiability and, in some cases, non-continuity of the group action (1.3) on the
infinite-dimensional Banach space u(t, ·) ∈ X. For technically related earlier results,
restricted to compact group actions, see [Ren82] and [Ran82]. It has recently been
shown, for the first time, that a center manifold reduction to a finite-dimensional
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globally group-invariant and locally time-invariant Ck+1 manifold M ⊆ X can also
be achieved in an E(2)-equivariant context, if the nonlinearity of the differential equa-
tion governing the dynamics of the spiral waves is smooth; see [SSW96a], [SSW96b].
The reduction is based on the assumption that the linearization at the spiral wave
does not exhibit continuous spectrum near the imaginary axis. Most notably, the
group action becomes differentiable on M , albeit its possible noncontinuity on X.
Communicated by one of the present authors, this idea is already being used suc-
cessfully to investigate meandering of multi-armed spirals [GLM96]. The method of
center bundles, there, is similar in spirit to a previous approach to bifurcation from
relative equilibria of compact group actions [Kru90].
In the present paper we give an alternative, new description of the flow near

relative equilibria inside a finite-dimensional Riemannian Ck+1-manifoldM, typically
noncompact, with a Ck+1-smooth action of a possibly noncompact Lie group G. Our
principal aim is to represent the flow as a skew product flow on a trivial disk bundle
G × V over G, see (1.19). The alternative approach by [GLM96], instead, works
on a center bundle over the coset space G/H with respect to some discrete isotropy
subgroupH. In our approach this amounts to working in the spaceG×HV ofH-orbits
on G× V, as defined in (1.15), (2.6) below.
Also, we will allow for general compact isotropies H, rather than requiring H to

be finite or even trivial. In the following, the reader may find some background in Lie
groups helpful; see for example [Bre72], [BtD85], [tD91], [Hel62], [Pal61], or [Die72].
To set up, we assume g in the Lie group G to act as a Ck+1-diffeomorphism

u 7→ gu on the finite-dimensional Riemannian Ck+1-manifold M , such that the map

ρ : G×M → M
(g, u) 7→ gu = ρ(g, u)

(1.8)

is Ck+1. Of course, we assume that G acts on M , that is (gg′)u = g(g′u) for all
g, g′ ∈ G and u ∈ M. We also require the action to be proper, that is, the map
ρ̃(g, u) := (gu, u) ∈M×M is closed (mapping closed sets to closed sets) with compact
preimages ρ̃−1(u1, u2), for any u1, u2 ∈M. As a caveat, we note that G = IR activing
by shift on BCunif (IR, IR), for example, does not define a proper IR action. Still,
the action of G = SE(2) on a center manifold M is proper [SSW96b]. Picking
u1 = u2 = u0, in particular, we observe that the isotropy subgroup

H = H(u0) := {g ∈ G | gu0 = u0} (1.9)

is compact, for any u0 ∈ M. Indeed, H × {u0} = ρ̃−1(u0, u0) is compact. Although
M,G are allowed to be compact, in principle, we note here that the interesting new
cases arise for noncompact M and G.
We fix u0 and its isotropy H, henceforth. We construct the disk V of the trivial

bundle G×V as a geometric cross section to the action of G near u0. Using the Haar
measure on the compact Lie group H, we may first assume the given Riemannian
metric on M to be H-invariant, without loss of generality; see [Bre72], section VI.2.
In particular, any h ∈ H acts linearly and orthogonally on the tangent space Tu0M to
M in u0, by the derivative of u 7→ ρ(h, u) at u = u0. Similarly, ρ induces a C

k-action
of G on the Ck tangent bundle TM ; we cannot assume G to act as an isometry on
tangent spaces in general, if G is non-compact. It should be noted, however, that
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the special action (1.3) of the Euclidean group, arising in spiral wave motion, is an
isometry in the usual Lp and W k,p spaces. In that case, G would automatically act
as an isometry on a center manifold M ; see [SSW96a], [SSW96b].
We will construct V as a linear version of a slice to the action ofG in an arbitrarily

small G-invariant neighborhood U , called a tube, around the G-orbit

G · u0 := {gu0 | g ∈ G} (1.10)

of u0 as follows. Let alg(G) = Tid G denote the Lie algebra of G and

Tu0(Gu0) = alg(G) · u0 (1.11)

the tangent space to the group orbit G ·u0 at u0. The Lie algebra of G acts on u ∈M
by the derivative of g 7→ ρ(g, u) at g = id. Now let the desired disk V of the bundle
G×V be defined as the open ǫ0-ball, centered at u0, inside the orthogonal complement

V ⊂ (Tu0(G · u0))⊥ ⊆ Tu0M (1.12)

to the orbit tangent space Tu0(G · u0) in Tu0M. Note that the isotropy H of u0 acts
linearly and orthogonally on V, as it does on Tu0M and Tu0(G · u0).
To define the slice to the G-action and the G-invariant tube U around G · u0, let

ψ : (Tu0M)loc →M denote a local Ck+1-chart of M which is H-equivariant, that is

ψ(hv) = hψ(v), (1.13)

for all v ∈ (Tu0M)loc and h ∈ H. Here (Tu0M)loc denotes an ǫ0-ball in Tu0M. In fact
we construct ψ−1, first, such that ψ−1(u0) = u0, and then achieve H-equivariance, by
Haar measure, preserving the property that ψ−1 is a diffeomorphism; see for example
[tD91], section I.5. Then ψ(V ) ⊂M is a slice to the G-action at u0 ∈ ψ(V ), and

U := G · ψ(V ) (1.14)

is an open G-invariant tube around the G-orbit G · u0. For convenience, we also call
the ǫ0-disk V ⊂ Tu0M around u0 a (linear) slice. We will take license to identify
u0 ∈ V with the origin in IRl = Tu0V sometimes.
To describe the dynamics in the tube U well, we consider the Ck-action of the

direct product Lie group G×H on the Cartesian product G× V, given by

(g0, h)(g, v) := (g0gh
−1, hv). (1.15)

Because the derivative of this action at (id, u0) is surjective, by the choice (1.12) of
V , the G-equivariant map

τ̄ : G× V → U ⊃ G · u0
(g, v) 7→ gψ(v)

(1.16)

is a submersion for small radius ǫ0 of the disk V . In fact, the triple (G × V,U ; τ̄)
identifies the trivial product G × V as a (generally nontrivial) Ck+1 principal fiber
bundle over U with fiber, alias structure group, H. For more details, we refer to
section 2.
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Returning to dynamics, consider aG-equivariantCk vector field f on the “center”
manifold M , that is

gf(u) = f(gu), (1.17)

for all u ∈ M, g ∈ G. Of course, here we define gf(u) by the induced (differential)
Ck-action of G on the tangent space TM. We seek a representation of the (local)
G-equivariant flow

u̇ = f(u) (1.18)

on M near the G-orbit G · u0 by the skew product flow

ġ = ga(v)
v̇ = ϕ(v)

(1.19)

on G × V. Here the maps a : V → alg(G) and ϕ : V → Tu0V are requested to be of
class Ck and H-equivariant in the following sense:

a(hv) = Ad(h)a(v) = ha(v)h−1,
ϕ(hv) = hϕ(v),

(1.20)

for all h ∈ H and all v ∈ V. Here Ad(h) denotes the standard adjoint representation
on the Lie algebra, and hϕ is again understood to be differential on the linear ball
V ⊆ Tu0M.

Theorem 1.1 Let f be a G-equivariant Ck vector field on the Riemannian Ck+1-
manifold M,k ≥ 1, with proper Ck+1-action of G on M . Let u0 ∈M.

Then the isotropy H of u0 is compact. Moreover, there exists a disk slice V , an
open G-invariant tube U around the group orbit G · u0, and H-equivariant Ck-maps
a, ϕ, as in (1.20), such that the projection u := τ̄(g, v) ∈ U of any solution (g, v) of
the skew product system (1.19) satisfies the original differential equation (1.18) in U .
The projection τ̄ is defined in (1.16).
Conversely, for the local G×H-equivariant flow defined on (g, v) ∈ G×V by any

Ck vector field (1.19), which is H-equivariant in the sense of (1.20), the projection
u := τ̄(g, v) ∈ U induces a G-equivariant Ck vector field f on U such that (1.17),
(1.18) hold.

We do not think that this theorem is particularly surprising: our proof, given in
section 2, is essentially based on a coordinatization of U by the space G×H V of the
orbits in G× V under the action of the group {id} ×H. This point of view is due to
[Pal61] and is concisely presented in the beautiful topology textbook [tD91], section
I.5.
We do think, however, that our theorem is particularly useful: in the present

paper, it enables us to analyze drifting and meandering solutions on the “center
manifold” M . To be precise, we fix nomenclature.
Definition 1.2 Consider u0 ∈M with isotropy H and a G-equivariant vector field f
on M , as in the theorem, with lifted skew product ġ = ga(v), v̇ = ϕ(v) as in (1.19),
(1.20).

We call u0 a relative equilibrium, if

ϕ(u0) = 0 (1.21)
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In other words, u0 ∈ M is a relative equilibrium if, and only if, the time orbit of u0
remains inside the group orbit G · u0 :

{(u(t)|t ∈ IR} ⊆ G · u0. (1.22)

Equivalently, G · u0 is a flow invariant manifold.
Next, take any solution u(t) ∈ U. Suppose that u(t) is neither stationary nor

periodic. Then, we call u(t) meandering if

{(g(t), v(t)) | t ∈ IR} ⊂ G× V (1.23)

is globally defined and relatively compact. If, in contrast, the G-component

{g(t) | t ∈ IR} (1.24)

is globally defined but not relatively compact, then we call u(t) drifting.
Equilibria, as well as rotating waves (spirals) are examples of relative equilibria.

The reference point u0 ∈M is not required to be a relative equilibrium in theorem 1.1,
although it will typically be in applications, and may be forced to be, by nontrivial
H-equivariance of the skew product.
While the notion (1.22) of a relative equilibrium u0 is intrinsically flow-defined,

the definition (1.21) refers to a specific G × V lifting with respect to the isotropy H
of u0, as stated. For example, to apply condition (1.21) to any given point ũ0 ∈ U
other than u0, the vector field (1.19) has to be constructed with respect to ũ0 instead
of u0. This subtlety, however, is irrelevant for small tubular neighborhoods U , as long
as H is finite.
In the very special case G = {id} the maximal isolated invariant set, in the

sense of [Con78], of an isolating neighborhood V = U of u0 consists precisely of the
equilibria, the periodic solutions, and the meanders in U = V. A similar statement
holds for the case of compact G.
As mentioned above, we prove our theorem in section 2. In section 3 we discuss

H-equivariant Hopf bifurcation in V , in general. Section 4 collects some useful facts
on actions of the Euclidean groups SE(N) before we proceed sorting out drifts and
meanders for N = 2, in section 5. We conclude, in section 6, with a slow-fast analysis
of drifting circular filaments of scroll waves, so-called twisted scroll rings, in N = 3
dimensions.
Acknowledgment. We gratefully acknowledge helpful advice by Christian Leis. We
are also much indebted to Marty Golubitsky for sharing his insight into the behavior
of multi-armed spirals, as well as for some inciting competitiveness. Regina Löhr
helped us with careful and very patient typesetting.

2 Tubes, slices, and skew products

In this section we prove theorem 1.1. So, let its assumptions hold. We specifically
recall that

u̇ = f(u) (2.1)

is a G-equivariant Ck vector field on the Riemannian Ck+1-manifold M with proper
Ck+1-action of the Lie group G on M . Given u0 ∈ M with isotropy H, tube U, and

Documenta Mathematica 1 (1996) 479–505



Bifurcation from Relative Equilibria . . . 485

linear slice V , we will relate (2.1) to a G×H-equivariant Ck skew product flow

ġ = ga(v)
v̇ = ϕ(v)

(2.2)

on G× V. The G×H-action on G× V is defined as

(g0, h)(g, v) = (g0gh
−1, hv); (2.3)

see in particular (1.15)–(1.20). Talking about the H-action on G× V, below, we will
mean the action of {id} ×H. Similarly, G-action refers to G× {id}.
Our proof can be outlined as follows. First, we check G × H-equivariance of

(2.2). After a brief digression clarifying the structure of G× V over U as a principal
H bundle, we project (2.2) from G× V down to the tube U ⊂M by the submersion

τ̄(g, v) = gψ(v), (2.4)

defined in (1.16), to obtain a G-equivariant Ck vector field (2.1) on U from the skew
product (2.2). To complete the proof, we finally lift a given G-equivariant Ck vector
field f on U back to a G×H-equivariant Ck skew product (2.2) on G× V, such that
the skew product projects down to the prescribed f, by τ̄ .
Checking G × H-equivariance of the skew product (2.2) on G × V is easy: fix

(g0, h) ∈ G×H and (g, v) ∈ G× V. Then (2.3), (1.20) imply

(g0, h)(ga(v), ϕ(v)) = (g0ga(v)h
−1, hϕ(v)) =

= (g0gh
−1ha(v)h−1, hϕ(v)) = ((g0gh−1)a(hv), ϕ(hv)).

(2.5)

In other words, (g0, h)(g(t), v(t)) is a solution of the skew product (2.2) if, and
only if, (g(t), v(t)) is. This proves G×H-equivariance of the skew product on G× V.
In passing, we note that the skew product (2.2) with equivariance condition (1.20)

is the most general form of a G×H-equivariant Ck vector field on G×V. Indeed, (left)
G-equivariance forces the ġ component to be of the form ga(v) with a(v) ∈ alg(G).
Moreover, the v̇ component must be independent of g. Then H-equivariance provides
the equivariance conditions (1.20).
We briefly digress now, to clarify the structure of G× V as an H principal Ck+1

bundle over U with fiber, alias structure group, H. Our presentation essentially
follows [Pal61] and the textbook [tD91].
Identifying H-orbits of the free H-action on G× V, we obtain the H orbit space

G×H V := G× V / {id} ×H. (2.6)

It turns out that the G(×{id})-equivariant Ck+1-submersion τ̄ factorizes over
the H orbit space G×H V, such that

τ̄ : G× V p→ G×H V
τ→ U. (2.7)

Here p is the canonical G-equivariant Ck+1-submersion which projects (g, v) onto
its H-orbit; it induces the structure of a Ck+1-manifold on G ×H V because the
free H-action on G× V is Ck+1. In fact, (G× V,G×H V, p) is a G-equivariant Ck+1

principal fiber bundle with compact fiber, alias structure group,H. The G-equivariant
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map τ, called tube map, is a Ck+1 diffeomorphism onto the open tube U around the
group orbit G · u0. We emphasize that these results are by no means original. They
are essentially due to [Pal61], and are concisely summarized in the textbook [tD91],
sections I.5, II.6.
After our bundle digression, we now project the skew product (2.2) down to

M with the submersion τ̄ , aiming at the second part of our theorem. Let u ∈ M.
Since the Ck+1-submersion τ̄ : G × V → U is surjective, there exists (g, v) such that
τ̄(g, v) = u. By the bundle digression, any other (g′, v′) in τ̄−1(u) is on the same
H-orbit: there exists h ∈ H such that

(g′, v′) = (gh−1, hv). (2.8)

We define f(u) via the differential Dτ̄(g, v) of τ̄ with respect to g and v,

f(u) := Dτ̄(g, v) · (ga(v), ϕ(v)). (2.9)

To show that f is well-defined, we use the action of H on G×V. In fact, we prefer an
explicit calculation even though we could also argue “elegantly” with the H bundle
structure. We start from

τ̄(gh−1, hv) = τ̄(g, v), (2.10)

for all h ∈ H. Differentiating with respect to g and v, we obtain

Dτ̄(gh−1, hv) · (gah−1, hϕ) = Dτ̄(g, v) · (ga, ϕ), (2.11)

for any a ∈ alg(G), ϕ ∈ Tu0V. Therefore, f(u) does not depend on the choice of
(g′, v′) ∈ τ̄−1(u), because (2.8)–(2.11) and equivariance (1.20) imply

Dτ̄(g′, v′) · (g′a(v′), ϕ(v′)) =
= Dτ̄(gh−1, hv) · (gh−1a(hv), ϕ(hv)) =
= Dτ̄(gh−1, hv) · (gh−1ha(v)h−1, hϕ(v)) =
= Dτ̄(gh−1, hv) · (ga(v)h−1, hϕ(v)) =
= Dτ̄(g, v) · (ga(v), ϕ(v)) = f(u).

(2.12)

This proves that f(u) is indeed well-defined on u ∈ U, by (2.9).
Because τ̄ ∈ Ck+1 and a, ϕ ∈ Ck, it is obvious that f is a Ck vector field on

the tube U. It remains to check G-equivariance (1.17) of f. Fixing (g, v) ∈ τ̄−1(u),
this follows directly from G-equivariance of τ̄ and of the skew product (ga(v), ϕ(v)).
Explicitly, we have τ̄(g0g, v) = g0τ̄(g, v) = g0u, and hence

f(g0u) = Dτ̄(g0g, v) · (g0ga(v), ϕ(v)) =
= g0Dτ̄(g, v) · (ga(v), ϕ(v)) =
= g0f(u).

(2.13)

This proves the second part of our theorem: the submersion τ̄ projects any G ×H-
equivariant Ck vector field (2.2) on G× V down to a G-equivariant Ck vector field f
on U .
It remains to, conversely, lift f from U ⊂ M up to a skew product on G × V,

such that the lift projects back onto the prescribed f , by τ̄ . Since the fiber is the
isotropy group H, this is trivial if H happens to be discrete, that is, finite. Then we
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can simply lift the flow in U , and f, back to any sheet h0 of the covering space G×V
of U , by the local diffeomorphism τ̄−1h0 . Lifting f back to any other sheet h1, locally
near u0, where h1 = h

−1h0 for some h ∈ H, we see that

(gh−1, hv) = (τ̄−1h0 ◦ τ̄h1)(g, v) (2.14)

induces, by linearization with respect to (g, v), the claimed H-equivariance of the
lifted vector fields, where h ∈ H acts freely as a permutation of the sheets in the
covering space G × V. The trivial case H = id was first presented by one of the
authors, explaining meandering and drifting spirals [Fie95]; for a recent version see
also [BHN96].
We now return to the general case of compact isotropy H. It is convenient to

describe the lift of f in slightly more abstract notation. Let w = (g0, v) ∈W := G×V
with left action gw := (gg0, v) of G and right action wh := (g0h

−1, hv) of H describe
the action of the direct product G ×H on W. Note that G,H act freely, separately.
It remains to construct a G×H-equivariant Ck vector field F on the total space W
of our principal H bundle

τ̄ : G× V → U, (2.15)

such that F projects down to f by τ̄ , that is,

Dτ̄(w)F (w) = f(τ̄(w)) (2.16)

for all w ∈W.
We first define F on the linear slice w ∈ {id} × V ⊆ G × V. Let Pv denote

the orthogonal projection, with respect to the H × H-invariant Riemannian metric
on W, in the tangent space T(id,v)W = alg(G) × V onto the orthogonal complement(
T(id,v)((id, v) ·H)

)⊥
of the right H-action. So Pv projects onto the second summand

of the orthogonal decomposition

T(id,v)W = T(id,v)((id, v) ·H)⊕
(
T(id,v)(id, v) ·H)

)⊥
. (2.17)

Then we define the lifted vector field F at w = (id, v) as

F (w) := Pv(Dτ̄(w))
−1f(τ̄(w)). (2.18)

Note that F is now well defined on {id}×V. Indeed τ̄−1(u) = wH, for u = τ̄(w), and

Dτ̄(w) : TwW → Tτ̄(w)U (2.19)

is surjective. Hence the kernel of Dτ̄(w) is given by

kerDτ̄(w) = Tw(w ·H) (2.20)

in the H principal fiber bundle τ̄ : G× V → U, and Pv annihilates that kernel. Thus
(2.18) defines F (w) properly on w ∈ {id}×V.Moreover, F is of class Ck on {id}×V,
as are Pv, Dτ̄ , and f.
We extend F to W = G× V by the left action of G on W , defining

F (g, v) := gF (id, v) ∈ T(g,v)W, (2.21)
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for all g ∈ G. The vector field F is still Ck, by smoothness of the free G-action. By
construction, F is G-equivariant.
We verify the projection property (2.16) next. Because τ̄ , F, and f are all G-

equivariant, it is sufficient to verify (2.16) at w = (id, v), that is,

Dτ̄(id, v)F (id, v) = f(τ̄(id, v)). (2.22)

This follows trivially from definition (2.18) of F at w = (id, v), because Pv projects
onto a complement of kerDτ̄(w).
To complete the proof of theorem 1.1, it remains to show equivariance of F under

the right action of H, that is

F (gh−1, hv) = F (g, v) · h, (2.23)

for all g ∈ G, h ∈ H, v ∈ V. By left G-equivariance of F , this is equivalent to showing
F (hw · h)− hF (w) · h = 0 (2.24)

for any w = (id, v) ∈ {id}×V, h ∈ H. To show (2.24), we first differentiate the relation
τ̄(gw · h) = gτ̄(w) with respect to w to obtain

Dτ̄(gw · h)(gw̃ · h) = gDτ̄(w)w̃, (2.25)

for any g ∈ G, h ∈ H, and (w, w̃) ∈ TW. Putting w = (id, v), g := h, and w̃ := F (w),
this implies

Dτ̄(hw · h)(hF (w) · h) = hDτ̄(w)F (w) =
= hf(τ̄(w)) = f(hτ̄(w)) = f(τ̄(hw)) =
= f(τ̄(hw · h)),

(2.26)

so that hF (w) · h is indeed a candidate for F (hw · h) in (2.24): the difference lies in
the kernel of Dτ̄(hw · h).
To complete the proof of (2.24), and of theorem 1.1, we finally show that hF (w)·h

is orthogonal to kerDτ̄(hw ·h), as is F (hw ·h) by definition (2.18), at hw ·h = (id, hv).
Indeed, by invariance of the Riemannian metric on W with respect to the action of
the compact group H ×H, we conclude from (2.18) at w and (2.25) that

hF (w) · h ∈ h(kerDτ̄(w))⊥ · h =
= (h(kerDτ̄(w)) · h)⊥ =
= (kerDτ̄(hw · h))⊥.

(2.27)

This completes the proof of G×H-equivariance of F , and of theorem 1.1. 2

We note that our orthogonality condition in (2.18) at w ∈ {id}×V determines the
lifted vector field F uniquely. We formalize this statement for F (id, v) = (a(v), ϕ(v)).
Corollary 2.1 Let the assumptions of theorem 1.1 hold. Let 〈·, ·〉alg(G) denote an
invariant scalar product on alg(G) under the adjoint action Ad(h) of h ∈ H, and let
(·, ·)V denote an H-invariant scalar product on the linear slice space V.
Then the lifted vector field F (id, v) = (a(v), ϕ(v)) can be chosen such that

(ϕ(v), ηv)V = 〈a(v), η〉alg(G), (2.28)

for any v ∈ V, η ∈ alg(H). The above conditions, together with the vector field f on
the base U , determine F uniquely.
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3 Equivariant periodic orbits in a slice

By theorem 1.1 we can discuss any local bifurcation from a relative equilibrium u0
with isotropy H in the associated G×H-equivariant skew product system

ġ = ga(v),
v̇ = ϕ(v).

(3.1)

To interpret results in terms of u = τ̄(g, v) in the tube U around G · u0, we just have
to identify points w = (g, v) on the same rightH-orbit w ·H ∈ G×H V. In this section,
we investigate some elementary consequences of our decomposition (3.1) in case the
H-equivariant v̇ equation possesses a periodic orbit. Such periodic orbits may arise
by H-equivariant Hopf bifurcation from the H-invariant equilibrium v = u0 of the v̇
equation; for a detailed background using compactness of H see [GSS88] or [Fie88].
The spatio-temporal symmetry of any periodic solution v(t) of v̇ = ϕ(v), with

minimal period normalized to 1, can be described by a triple (L,K,Θ) as follows.
Let L denote the set of h ∈ H mapping some point v(t1) to any point v(t2) on the
periodic orbit. Denoting Θ(h) := t2 − t1, equivariance of ϕ then implies

hv(t) = v(t+Θ(h)), (3.2)

for all real t. Moreover
Θ : L→ S1 := IR/ ZZ (3.3)

is a homomorphism into the additively written circle group. Letting K := kerΘ,
we have a normal subgroup of L, and L/K ∼= image(Θ). Note that the groups
L,K, image(Θ) are closed. The kernel K is the isotropy of some, and hence all,
v(t) with t ∈ IR. Following [Fie88], we call v(·) a discrete wave, if image(Θ) = ZZ n =
{0, 1/n, · · · , (n− 1)/n} is finite. A rotating wave has image(Θ) = S1.
The periodic solution v(t) gives rise to solutions g(t) of ġ = ga(v). By left G-

equivariance, any solution g(t) with initial condition g(0) = g0 is given by

g(t) = g0g∗(t), (3.4)

where g∗(t) denotes the fundamental solution

ġ∗(t) = g∗(t)a(t)
g∗(0) = id

(3.5)

with the abbreviation a(t) := a(v(t)).
Theorem 3.1 Let v(t) be a rotating wave solution of v̇ = ϕ(v) in (3.1).
Then there exist η ∈ alg(H),a0 ∈ alg(G) such that

v(t) = exp(ηt)v0
g∗(t) = exp((a0 + η)t) exp(−ηt). (3.6)

The projected solution u(t) = τ̄(g∗(t), v(t)) near the relative equilibrium u0 is
again a relative equilibrium and can be represented as

u(t) = exp((a0 + η)t)u(0). (3.7)
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Proof: To construct η, just note that v0 := v(0) is a relative equilibrium to the
action of H on V because v(t) is a rotating wave. In particular

v̇(0) ∈ Tv0(Hv0) = alg(H) · v0. (3.8)

Pick η ∈ alg(H) such that ηv0 = v̇(0) = ϕ(v0). Let v∗(t) := exp(ηt)v0. Then v∗(0) =
v0 and H-equivariance (1.20) of ϕ implies

v̇∗(t) = exp(ηt)ηv0 = exp(ηt)ϕ(v0) =
= ϕ(exp(ηt)v0) = ϕ(v∗(t)),

(3.9)

for all t. Therefore v(t) = v∗(t), for all t.
Let a0 := a(v(0)) and define g∗(t) as in (3.6). We have to show that g∗(t) solves

(3.5). Trivially g∗(0) = id. Using H-equivariance (1.20) of a(v(t)) = a(t) yields

ġ∗(t) = exp((a0 + η)t) (a0 + η) exp(−ηt)−
− exp((a0 + η)t) η exp(−ηt) =

= exp((a0 + η)t) exp(−ηt) exp(ηt) a(v(0)) exp(−ηt) =
= g∗(t) a(exp(ηt)v(0)) =
= g∗(t) a(v(t)) =
= g∗(t) a(t).

(3.10)

This proves (3.6). To prove (3.7), we remember that τ̄ is left G equivariant and
collapses right H-orbits. Therefore (3.6) implies

u(t) := τ̄(g∗(t), v(t)) = τ̄(exp(a0 + η)t)(id, v0) · exp(ηt)) =
= exp((a0 + η)t)τ̄ (id, v0) = exp((a0 + η)t)u(0),

and the theorem is proved. 2

Note that the relative equilibrium u(t) above can be stationary, periodic, mean-
dering, or drifting, depending on the values of the infinitesimal generator a0 + η ∈
alg(G). In particular, the closure of the orbit u(·) can have large dimension, for ex-
ample if G contains large dimensional tori. Although the motion of u(·) can then be
quasiperiodic in time, the associated rotation numbers given by a0+ η vary smoothly
with parameters, and phase locking does not occur.
Next let v(t) be a discrete wave with symmetry (L,K,Θ), L/K ∼= ZZ n. We de-

scribe the spatio-temporal symmetry of the associated not necessarily periodic solu-
tion u(t) = τ̄(g∗(t), v(t)) by a triple (L̃, K̃, Θ̃) similarly to the periodic case. Let L̃
denote the set of g ∈ G such that gu(t1) = u(t2), for some t1, t2. Letting Θ̃(g) := t2−t1,
we obtain

gu(t) = u(t+ Θ̃(g)), (3.11)

for all real t and g ∈ L̃, similarly to (3.2). Let Σ := IR/p ZZ if u is periodic with
minimal period p > 0, and Σ := IR if u is nonperiodic (p =∞). Then

Θ̃ : L̃→ Σ (3.12)

is a homomorphism with kernel, alias isotropy of any u(t), denoted by K̃.

Documenta Mathematica 1 (1996) 479–505



Bifurcation from Relative Equilibria . . . 491

Theorem 3.2 Let v be a discrete wave solution of v̇ = ϕ(v) in (3.1) with symmetry
(L,K,Θ), image (Θ) = ZZ n, and minimal period 1, as above. Let g∗(t) denote the
associated solution of (3.5), a nonautonomous, 1-periodic, G-equivariant equation.
Then, for any k ∈ ZZ , h0 ∈ K,h ∈ L, t ∈ IR, we have

g∗(t) = h0g∗(t)h
−1
0

g∗(t+Θ(h) + k) = g∗(k)g∗(Θ(h))hg∗(t)h−1.
(3.13)

For the stroboscope map g∗(1) of (3.5) we obtain

g∗(1) = (g∗(1/n)h∗)nh−n∗
g∗(k) = g∗(1)k

(3.14)

where h∗ ∈ L can be chosen arbitrarily such that Θ(h∗) = 1/n generates image(Θ) =
ZZ n = {0, 1/n, · · · , (n−1)/n}. In particular, the stroboscope maps g∗(k) commute with
g∗(Θ(h))h, for all k ∈ ZZ and h ∈ L.
For g∗(Θ(h)),Θ(h) = k/n, k = 0, 1, · · · , n−1, we have the more explicit expression

g∗(k/n) = (g∗(1/n)h∗)
k h−k∗ . (3.15)

The symmetry (L̃, K̃, Θ̃) of the projected solution u(t) = τ̄(g∗(t), v(t)) with min-
imal “period” 0 < p ≤ ∞ satisfies

K̃ = K,

L̃ = {g∗(k)g∗(Θ(h))h | k ∈ ZZ , h ∈ L}, and
Θ̃(g∗(k)g∗(Θ(h))h) = Θ(h) + k (mod p),

(3.16)

where we fix representatives 0 ≤ Θ(h) < 1. In particular we obtain for k := 0, h := h∗

u(1/n) = g∗(1/n)h∗u(0). (3.17)

Proof: To prove (3.13), we first claim that

g♯(t) := h
−1g∗(Θ(h))

−1g∗(k)
−1g∗(t+Θ(h) + k)h (3.18)

solves the same initial value problem (3.5) as g∗(t) does. Then g♯ ≡ g∗, of course.
To prove the claim, differentiate (3.18) with an eye on H-equivariance (1.20) and
1-periodicity of a(t) :

ġ♯(t) = h−1g∗(Θ(h))−1g∗(k)−1ġ∗(t+Θ(h) + k)h =
= g♯(t)h

−1a(t+Θ(h) + k)h =
= g♯(t)h

−1a(v(t +Θ(h)))h =
= g♯(t)a(t).

(3.19)

We now show that g♯(t) satisfies the same initial condition g♯(0) = id as g∗(t),
for any choice of h ∈ L. Consider the special case h = id, first. Then Θ(h) = 0 and
g♯(0) = id is trivial. In particular g♯(t) = g∗(t), in that case, proving

g∗(t) = g∗(k)
−1g∗(t+ k) (3.20)
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for all t ∈ IR, k ∈ ZZ . Now (3.20) with t := Θ(h) implies g♯(0) = id, for all choices of
h ∈ L. This proves g♯(t) = g∗(t) in (3.18).
Inserting h := h0 ∈ K = kerΘ and k := 0 into (3.18) with g♯ = g∗, g∗(0) = id,

we immediately see that g∗(t) and h0 commute. Together with (3.18), g♯ = g∗, this
proves (3.13).
The choice t = 1 in (3.20) yields

g∗(1 + k) = g∗(k)g∗(1), (3.21)

whence g∗(k) = g∗(1)k, for all k ∈ ZZ . This also follows directly, because multiplication
by g∗(1) is the time 1 stroboscope map for the nonautonomous equation ġ = ga(t)
with time period 1.
Inserting k := 0, h := h∗ with Θ(h∗) = 1/n in (3.13) yields

g∗(t+ 1/n) = g∗(1/n)h∗g∗(t)h
−1
∗ . (3.22)

An n-fold iteration of (3.22), evaluated at t = 0, yields the expression for g∗(1) in
(3.14). Together with (3.21), this proves (3.14).
Similarly, a k-fold iteration of (3.22) for k = 0, 1, · · · , n− 1 proves (3.15). Since

h−n∗ ∈ K commutes with h∗ and, by (3.13), with g∗(1/n), the stroboscope map g∗(1)
in (3.14) also commutes with g∗(1/n)h∗. Since g∗(1) also commutes with K, and
because h∗ generates H/K, the stroboscope g∗(1) and its iterates g∗(k) also commute
with all g∗(Θ(h))h, h ∈ L.
To prove (3.16), let g ∈ L̃. Then gu(t) = u(t+ ϑ) for some real ϑ and all t ∈ IR.

Upstairs, there exists h ∈ H such that

(g∗(t+ ϑ), v(t + ϑ)) = g(g∗(t), v(t)) · h =
= (gg∗(t)h−1, hv(t))

(3.23)

for some, and hence all, real t. Comparing the second components we see that h ∈ L
and there exists a unique k ∈ ZZ such that

ϑ = Θ(h) + k, (3.24)

if we fix representatives 0 ≤ Θ(h) < 1. Comparing the first components, in view of
(3.13), (3.24), we find

g∗(k)g∗(Θ(h))h = g, (3.25)

after cancellation of g∗(t)h−1. Conversely, any such g lies in L̃, by (3.13), (3.23),
(3.24). Letting Θ̃(g) = ϑ (mod p), it only remains to prove K̃ = K.
Note that g ∈ K̃ = ker Θ̃ if, and only if, (3.23) holds with ϑ = 0 and for some

(hence all) t, say t = 0. Comparing components and using g∗(0) = id, this is equivalent
to gh−1 = id with h ∈ K. Hence K̃ = K, and the proof is complete. 2

The simple fact K̃ = K, in our notation, implies that the isotropy groups occur-
ring in the tube U are precisely the conjugates gKg−1, g ∈ G, of isotropy groups K
occurring in the (linear) slice V. Concisely: the isotropy types in U and V coincide.
We emphasize that the spatio-temporal symmetry L̃ of u(t), given in (3.16), is

a group, and Θ̃ : L̃ → Σ is a group homomorphism. For suitable H-equivariant
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choices of a(v), the element g∗(1/n) can be thought of as an arbitrary element of
the connected component G0 of the identity in G. Indeed, H-equivariance does not
impose any significant restriction on a(t), 0 ≤ t < 1/n, thus leaving sufficient freedom
to prescribe a path g∗(t) ∈ G from g∗(0) = id to g∗(1/n). However, the skew product
consequences of the interplay of the various spatio-temporal symmetries (L,K,Θ) in
equivariant Hopf bifurcation certainly deserve further investigation.

4 Basic facts on Euclidean groups

We collect some background material concerning G = E(N) (or SE(N)), the (special)
Euclidean groups on IRN . In lemma 4.1 below, we identify the compact subgroups of
G as translation conjugates of purely orthogonal groups. In lemma 4.2 this is applied
to distinguish meandering from drifting solutions. We recall the semidirect product
structure (S)E(N) = (S)O(N) × IRN and the composition rule, coming from the
standard affine action on IRN ; see (1.1)–(1.4).
For computations involving the Lie algebras se(N) it is convenient to represent

(R,S) ∈ SE(N) = SO(N)× IRN isomorphically as an element in SL(N + 1),

(R,S) 7→
(
R S
0 1

)
, (4.1)

in block matrix notation. With this identification, an element (r, s) of the Lie algebra
se(N) becomes the (N + 1)× (N × 1) matrix

(r, s) 7→
(
r s
0 0

)
. (4.2)

In particular, conjugation, iterates, the exponential map exp, the adjoint representa-
tion Ad of E(N) on se(N), and the commutator [·, ·] are given by

(R,S)(R′, S′)(R,S)−1 = (RR′R−1, (id−RR′R−1)S +RS′);
(R,S)n = (Rn, (id +R+ · · ·+Rn−1)S);
(r, s)n = (rn, rn−1s);

exp (r, s) = (exp (r), r−1(exp (r)− id)s);
(R,S)(r, s) = (Rr, Rs);

(R,S)(r, s)(R,S)−1 = (RrR−1,−RrR−1S +Rs);
[(r, s), (r′, s′)] = ([r, r′], rs′ − r′s).

(4.3)

The notation in (4.3) is concise, but somewhat tricky. The first/last two relations
hold in the group/algebra, respectively. Similarly, exp(r, s) is in the group. The
expressions for (r, s)n, (R,S)(r, s) are neither in the group nor in the algebra, in
general, and are evaluated in SL(N + 1) in the sense of (4.1), (4.2). Similarly, all
equations of (4.3) are easily checked in SL(N + 1).
In the settings of theorems 1.1, 3.1, 3.2, the compact isotropy subgroup H of G

was playing a central role. We determine the compact subgroups H of E(N) next.
We use the equivariant projection

p : E(N) = O(N) × IRN → O(N) (4.4)

onto the first component.
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Lemma 4.1 Let H be a compact subgroup of E(N). Then H is conjugate to its pro-
jection p(H) ≤ O(N) by a fixed translation S0 ∈ IRN :

H = (id, S0) p(H) (id,−S0) (4.5)

Proof: We will first prove that there exists a map

σ : p(H)→ IRN (4.6)

such that H has the form

H = p(H)σ := {(R, σ(R)) | R ∈ p(H)}. (4.7)

In a second step, we identify a fixed S0 ∈ IRN such that

σ(R) = (id−R)S0, (4.8)

for all R ∈ p(H). Then (4.5) is proved.
To construct σ, let (R,S), (R,S′) ∈ H possess the same projection R ∈ p(H).

Then, for any integer n,

H ∋ ((R,S)(R,S′)−1)n = (id, n(S − S′)). (4.9)

Since H is compact, this implies S′ = S and σ := S is well-defined. This proves (4.6),
(4.7).
For the second step note that σ is at least continuous. Indeed, H is compact and

the bijection p : H → p(H) is continuous, with inverse determined by σ. Therefore p
is a homeomorphism, and σ is continuous.
Multiplying (R,S), (R′, S′) in H yields the functional equation

σ(RR′) = σ(R) +Rσ(R′). (4.10)

Note continuous dependence on R′. We integrate (4.10) over R′ with respect to the
left invariant Haar measure on the compact Lie group p(H). With the abbreviation

S0 :=

∫

p(H)

σ(R′)dR′, (4.11)

we obtain

σ(R) =
∫
σ(R)dR′ =

∫
σ(RR′)dR′ −

∫
Rσ(R′)dR′ =

= (id−R)S0. (4.12)

This proves the lemma. 2

The lemma holds, more generally, for any compact subgroup H of the general
affine group GL(N) × RN . The proof is the same, and the compact group p(H) ≤
GL(N) may in fact be assumed to act orthogonally.
Using the notation of section 3, we now consider a periodic solution v(t) of

v̇ = ϕ(v) in the skew product, with period 1, and with associated fundamental solution
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g∗(t) of (3.5). We derive a criterion to decide whether the projected solution u(t) =
τ̄(g∗(t), v(t)) is meandering or drifting, in the sense of definition 1.2.
Lemma 4.2 Let G = SE(N) or E(N). Consider v of period 1, and g∗, u as above.
Assume u(t) is neither stationary nor periodic. Let

(R∗, S∗) := g∗(1). (4.13)

Then u(t) is meandering, if S∗ is orthogonal to the fix space of the rotation
R∗ ∈ SO(N) in IRN , that is,

S∗ ⊥ ker(id−R∗) =: (IRN )R∗ . (4.14)

If, on the other hand, (4.14) does not hold, then u(t) is drifting.
Proof: By definition 1.2, the nonstationary, nonperiodic solution u(t) is meandering
if the orbit g∗(t), t ∈ IR, is relatively compact, and drifting otherwise. By theorem
3.2 and the differential equation (3.5) for g∗(t), this orbit is relatively compact if, and
only if,

H ′ := clos{g∗(k) | k ∈ ZZ }
= clos{g∗(1)k | k ∈ ZZ } (4.15)

is a compact subgroup of SE(2). (Note here that theorem 3.2 also applies to rotating
waves v(t), viewed as discrete waves with arbitrary n ∈ IN. By lemma 4.1, the groupH ′
is compact if, and only if, it can be conjugated to its projection p(H ′) ⊆ (S)O(N), by
a pure translation S0 ∈ IRN . This is possible if, and only if, the translation component
of

(id,−S0)(R∗, S∗)(id, S0) = (R∗,−S0 + S∗ +R∗S0) (4.16)

vanishes. Using orthogonality of R∗, this is equivalent to

S∗ ∈ image(id−R∗) = ker(id−R∗)⊥, (4.17)

proving claim (4.14), and the lemma. 2

We note a dichotomy with respect to dimension N , here, which was also observed
by [AM96]. For even N, we have (IRN )R∗ = {0}, for generic rotations R∗, and hence
generic meandering. For odd N , in contrast, dim(IRN )R∗ = 1, generically, which
implies generic drifting.
If the 1-periodic solution v(t) ∈ V possesses spatio-temporal symmetry (L,K,Θ)

with non-trivial pointwise isotropy K, we obtain a particularly simple criterion ex-
cluding drifts.
Lemma 4.3 Let G = SE(N) or E(N), consider v, u, g∗ as above, and let g∗(1) =
(R∗, S∗). Assume the compact isotropy group K of v(t) to be contained in O(N), after
conjugation by a translation as in lemma 4.1.
Then the translation component S∗ of the stroboscope map g∗(1) is fixed under

K, that is
S∗ ∈ (IRN )K . (4.18)

In particular, drifting is excluded if

(IRN )K⊥(IRN )R∗ . (4.19)
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Most trivially, of course, condition (4.19) holds if (IRN )K = {0} or (IRN )R∗ = {0}.
Proof: Lemma 4.2 and (4.18) imply claim (4.19). To prove (4.18), we let h0 ∈ K ≤
O(N). Since h0 and g∗(1) commute, by theorem 3.2, (3.13), this implies

(R∗, S∗) = g∗(1) = h0g∗(1)h
−1
0 =

= (h0R∗h
−1
0 , h0S∗).

(4.20)

Therefore h0S∗ = S∗, and the lemma is proved. 2

The projected solution u(t) satisfies

u(k) = τ̄(g∗(k), v(k)) = (g∗(1))k τ̄(id, v(0)) =
= g∗(1)ku(0)

(4.21)

for all stroboscope times k ∈ ZZ . Let g∗(1)k = (Rk∗ , Sk∗ ). Aside from a compact part,
due to Rk∗ , and possibly the isotropy H of u0, the displacement of u(0) is therefore
given by the translation component Sk∗ of the k-fold iterated stroboscope g∗(1)

k. From
(4.3), we recall Sk∗ = (id +R∗ + · · ·+Rk−1∗ )S∗ and Rk∗ = (R∗)

k.
To analyze Sk∗ , we consider the meandering case S∗⊥ ker(id − R∗) next, for the

stroboscope map g∗(1) = (R∗, S∗). Let (id−R∗)† denote the pseudo-inverse of (id−
R∗), that is, the isomorphism inverting (id − R∗) within the R∗-invariant subspace
(ker(id−R∗))⊥ = image(id−R∗). Define

S† := (id−R∗)†S∗. (4.22)

Lemma 4.4 As in the above setting, let S∗⊥ ker(id−R∗). Then g∗(1)k, k ∈ ZZ , are all
conjugate to the rotations (Rk∗, 0) around the origin, by the fixed translation S† :

g∗(1)k = (id, S†)(Rk∗ , 0)(id,−S†)
= (Rk∗, S† −Rk∗S†).

(4.23)

In particular, the translation components Sk∗ ∈ IRN of (g∗(1))k all lie on a sphere
around S† ∈ IRN with radius |S†|2.
Proof: By (4.3), applied to (Rk∗, S

k
∗ ) = (g∗(1))

k, k > 0, and geometric summation,
we have

Sk∗ = (id +R∗ + · · ·+Rk−1∗ )S∗ =
= (id−Rk∗)(id− R∗)†S∗ = (id−Rk∗)S†
= S† −Rk∗S†.

(4.24)

In case k < 0, the same formula holds, by (g∗(1))k = ((g∗(1))−1)−1 and (1.4). This
proves (4.23) and, by orthogonality of Rk∗, the lemma. 2

The radius |S†|2 defined in (4.22) and lemma 4.4 relates to the “radius” of a
meandering solution u(t) = g∗(t)v(t) as follows. Let u0(t) = (exp(r0t), 0)u0 be a
primary rotating wave solution, as in the introduction (1.5), (1.6). Then u0(t) rotates
around its core point centered at zero. For v(0) near u0, we can consider zero also
as the core point of u(0) = id v(0). Then Sk∗ , the translation component of g∗(k) =
g∗(1)k, is the core position of u(k) = g∗(k)v(0), by 1-periodicity of v(·). Since Sk∗ all
lie on a sphere around S† with radius |S†|2, we can call the Euclidean length |S†|2
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the stroboscope radius of u(t). In section 5, (5.7) we will see how |S†|2 → ∞, when
a planar meandering spiral passes through a drift resonance, for which S∗ 6= 0 and
R∗ = id.
We caution our reader that our notion of a stroboscope radius requires u0(t) to

rotate around the origin. Moreover, the precise value of |S†|2 depends on our choice
of t = 0 as a reference point within the period of v. Indeed, other choices lead to
expressions

S̃† = R∗(t)
−1(S† − P∗S∗(t)), (4.25)

0 ≤ t ≤ 1, replacing S†, with correspondingly modified radii |S̃†|2. Here P∗ projects
onto ker(id−R∗), orthogonally. Note that (4.25) has period 1 in t, by definition (4.22)
of S†. Bounded modifications as in (4.25), however, do not affect the asymptotics of
|S†|2 →∞, when passage through a drift resonance occurs.

2

5 The planar case E(2): meandering and drifting multi-armed spirals

First rigorous results on meandering and drifting one-armed spirals in the plane were
obtained by [Wul96], using a Lyapunov-Schmidt procedure in scales of Banach spaces.
First formal results on meandering and drifting multi-armed spirals in the plane were
obtained by [GLM96], using a formal center bundle reduction in the spirit of [Kru90].
Using the rigorous center manifold reduction due to [SSW96a], [SSW96b], the skew
product structure developed in the present paper applies. We recover results of
[GLM96], and investigate the behavior of meander radii at drift resonance.
Throughout this section, G = E(2), and H is a compact subgroup which we may

consider to be a subgroup of O(2), after conjugation by a fixed translation, without
loss of generality. As in section 3, we consider H-equivariant Hopf bifurcation for
v̇ = ϕ(λ, v) in the slice v ∈ V of our skew product (3.1). Let (L,K,Θ) denote
the spatio-temporal symmetry of our periodic solution v(t), with minimal period
normalized to 1. We also normalize the primary relative equilibrium u0 to become
v = 0, without loss of generality. The case of a rigidly rotating “primary” spiral
wave with n identical arms, in the setting of the introduction, now corresponds to a
rotating wave u0 with H = ZZ n ≤ SO(2).
We begin with a simple criterion excluding drifting solutions u(t) := τ̄(g∗(t), v(t))

for general H ≤ O(2).
Corollary 5.1 In the above planar setting, assume the isotropy group K of v(t)
contains some nontrivial rotation, that is, K ≤ O(2) is neither trivial nor generated
by a single reflection.
Then u(t) cannot drift, in the sense of definition 1.2.

Proof: Suppose K ≤ O(2) contains some nontrivial rotation. Then K fixes only the
origin, in IR2, that is (IR2)K = {0}. By lemma 4.3, this excludes drifting. 2

We look at meandering and drifting for spatio-temporal symmetries (H,K,Θ)
of v(·) next. Throughout, we identify IR2 = CI and write (R,S) ∈ SE(2) in complex
notation:

R = e2πiα, α ∈ IR/ ZZ , S ∈ CI . (5.1)
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We consider solutions v(·) with spatio-temporal symmetry (H,K,Θ) given by

H = ZZ n = {e2πik/n | k = 0, . . . , n− 1}, n ≥ 2,
K = {1},

Θ(e2πik/n) = mk/n ∈ S1 = IR/ ZZ , k = 0, . . . , n− 1.
(5.2)

We requireK = {1}, to give drifting a chance. Note that this is equivalent to requiring
the integer m ∈ {1, . . . , n− 1} to be relatively prime to n.
Meandering, meander radii, drifting, and drift resonance will follow from theo-

rem 3.2 and lemma 4.4. We will express all these effects in terms of the fractional
stroboscope map

g∗(1/n) =
(
exp(2πiα1/n), S1/n

)
. (5.3)

Also, we have to choose h∗ ∈ H such that Θ(h∗) = 1/n generates image(Θ). Of
course, we have to choose

h∗ = exp(2πim′/n), where
m′m ≡ 1 (mod n).

(5.4)

In other words, m′ is the unique multiplicative inverse of m,mod n.
Corollary 5.2With the above notation, the stroboscope map g∗(1) is given explicitly
by

g∗(1) =

(
exp(2πinα1/n),

(
n−1∑

k=0

exp(2πik(α1/n +m
′/n))

)
S1/n

)
. (5.5)

The solution u(t) = τ̄(g∗(t), v(t)) satisfies

u (1/n) = (exp(2πi(α1/n +m
′/n)), S1/n)u(0). (5.6)

In particular, the solution u(t) is
(i) periodic, if S1/n = 0 and α1/n ∈ QI ;
(ii) periodic, if α1/n +m

′/n /∈ ZZ and α1/n ∈ QI ;
(iii) meandering, if (α1/n +m

′/n) /∈ ZZ and α1/n /∈ QI ;
(iv) drifting, if α1/n +m

′/n ∈ ZZ and S1/n 6= 0.
In case (iii), the meandering stroboscope radius r is given explicitly by

r =
1

2
| sin((α1/n +m′/n)π)|−1 · |S1/n|2. (5.7)

Proof: By theorem 3.2, (3.14), we compute the stroboscope map g∗(1) as

(exp(2πiα∗), S∗) := g∗(1) = (g∗(1/n)h∗)nh−n∗ =
= (exp(2πi(α1/n +m

′/n)), S1/n)
n.

(5.8)

In particular (4.3) implies

α∗ = nα1/n (mod 1)

S∗ =

(
n−1∑

k=0

exp(2πik(α1/n +m
′/n))

)
S1/n.

(5.9)
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This proves (5.5) and case (i).
We now have to distinguish two cases. If α1/n +m

′/n is integer, then

α∗ = 0 (mod 1),
S∗ = nS1/n,

(5.10)

proving case (iv). If, on the other hand, α1/n+m
′/n /∈ ZZ , then we can easily compute

S∗ =
exp(2πiα∗)− 1

exp(2πi(α1/n +m′/n))− 1
S1/n. (5.11)

In view of formula (4.3) for the iterates g∗(n) = (g∗(1))n = (exp(2πiα∗), S∗)n, this
proves cases (ii), (iii).
In case (iii), we can apply lemma 4.4 to compute the meandering radius r, because

ker(id−R∗) = {0} for α∗ = nα1/n /∈ ZZ . Therefore (5.11) implies

r = |S†|2 = |(id−R∗)−1S∗|2 =
= |S1/n|2/| exp(2πi(α1/n +m′/n))− 1| =
= 1

2 |S1/n|2/| sin((α1/n +m′/n)π)|.
(5.12)

This proves the corollary. 2

In a Hopf bifurcation situation, it is easy to derive expansions for the various
cases of the previous corollary. Indeed, consider a primary n-armed spiral u0(t) =
exp(iωrott)u0(0) with isotropy H = ZZ n and minimal period Trot = 2π/(nωrot). As-
sume an additional pair ±2πi of imaginary eigenvalues of the linearization (in rotating
coordinates). Then we can parameterize

v(t) = ǫe2πit +O(ǫ2) (5.13)

at parameter λ = λ0 + λ2ǫ
2 +O(ǫ3). The equation for g∗(t) becomes

ġ∗ = g∗(a0 + a1v(t) + · · ·), (5.14)

where a0 = a(v = 0) and a1 = Da(v = 0). For simplicity of presentation, we focus
on the rotational component R∗(t) = exp(2πiα(t)) of g∗(t). Inserting the v-expansion
(5.13) we obtain

2πα̇(t) = ωrot + · · · , α(0) = 0, (5.15)

omitting time dependent terms of order ǫ. Note that, indeed, ωrot is the rotation
frequency of the rotating spiral u0(t). Solving (5.15), up to terms of order ǫ, we get
for g∗(1/n) = (α1/n, S1/n)

α1/n = α(1/n) =
ωrot
2πn

+ · · · . (5.16)

Letting 2π = ωHopf denote the (normalized) frequency of the nontrivial Hopf eigen-
values, the transition to the drift case (iv) occurs, for example, at

nα1/n +m
′ =

ωrot
ωHopf

+m′ ≡ 0 (mod n). (5.17)
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From (5.7) we see how the meandering stroboscope radius blows up, at this resonance,
provided S1/n 6= 0.
To analyze S1/n in more detail, we write the differential equation for the compo-

nent S(t) of g∗(t) as

Ṡ(t) = e2πiα(t) · ξ(v(t)). (5.18)

In view of the v-expansion (5.13), we can restrict our attention to the case v ∈ CI .
Note that the spatio-temporal symmetry

v(t+Θ(h)) = h · v(t) (5.19)

then forces h ∈ H = ZZ n ⊆ CI to act on v as complex multiplication by hm, to
be consistent with (5.2) and (5.13). Writing the H-action in this complex notation,
equivariance condition (1.20) becomes

ξ(hmv) = hξ(v). (5.20)

Expanding, as far as necessary, by

ξ(v) =
∞∑

k,l=0

ξkl v
k v̄l, (5.21)

we see that ξkl = 0, unless

(k − l)m ≡ 1 (mod n). (5.22)

Requiring m coprime to n, still, this yields

k ≡ l+m′ (mod n) (5.23)

with the mod nmultiplicative inversem′ ofm. The terms of leading order are ξm′,0vm
′

,

if 0 < m′ ≤ n/2, and ξ0,n−m′ v̄n−m
′

, in case n/2 ≤ m′ < n. Integrating the Ṡ equation,
up to higher order in ǫ, yields

S(1/n) = ǫm
′ ξm′,0
ωrot + 2πm′

(
ei(ωrot+2πm

′)/n − 1
)
6= 0. (5.24)

for ǫ, ξm′,0 6= 0, in case 0 < m′ < n/2. The case n/2 < m′ < n reads

S(1/n) = ǫn−m
′ ξ0,n−m′

ωrot + 2π(m′ − n)
(
ei(ωrot+2πm

′)/n − 1
)
6= 0. (5.25)

for ǫ, ξ0,n−m′ 6= 0. For m′ = n/2, the coefficients of ξm′,0 and ξ0,n−m′ add. Most
notably, we see a stroboscopic radius of meandering r proportional to higher powers
of ǫ, in these cases; see (5.7). A similar calculation for H = {id}, n = 1, yields r
proportional to ǫ.
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6 Meandering and drifting in three dimensions: twisted scroll rings

Let G = SE(3), in this section. We first consider a primary wave u0(t) with trivial
isotropy H = {id}. At the end of this section, we comment on the case H = ZZ n.
Pictorially, we think of u0 as a hypothetical one parameter family of one-armed spi-
rals with a core filament aligned along a unit circle parallel to the (x, y)-plane. The
spiral patterns occur, locally, in the bundle of normal planes to the core circle. Such
patterns have been called scroll waves by [Win73]. Moreover, assume the spirals to
possess a phase difference along the family of normal planes. For simplicity, we as-
sume that phase difference to equal the angle difference of the core points on the unit
circle (rather than equaling an integer multiple of that angle.) While that pattern
rotates, horizontally, around the vertical z-axis, as a rotating wave, it also propa-
gates, vertically, along the z-axis, at constant speed. We call such a hypothetical
pattern (if it exists) a twisted scroll ring [PW85]. The so inclined reader may also
visualize smoke rings, with an inner rotating structure. For another recent example
involving rigid body motion (of submarines) with SE(3) symmetry see [LM96]. More
mathematically, we require

u0(t) = exp(a0t)u0(0), (6.1)

where u0 has trivial isotropy H, and a0 = (r0, s0) in the Lie algebra of SE(3) has the
special form

r0 =

(
iω0 0
0 0

)
, s0 =



0
0
1


 . (6.2)

We use complex notation in the horizontal (x, y)-plane, here, writing IR3 = CI × IR.
We assume ω0 6= 0 for the horizontal rotation frequency. Technically speaking, we
might call u0(t) a drifting and rotating relative equilibrium. Lemma 4.2 explains why
we choose the translation s0 to be vertical to the rotation plane.
Because the isotropy H is trivial, the skew product

ġ∗ = g∗a(v), g∗(0) = id,
v̇ = ϕ(v),

(6.3)

describes the flow in a neighborhood U of G · u0. We consider a family of periodic
solutions v = v(ǫ, t) of period normalized to 1, bifurcating from the trivial solution
v ≡ u0. The parameter λ, so necessary for such a Hopf bifurcation, is suppressed.
Instead, we represent dependence of a(v) on v = v(ǫ, t) by a differentiable function

a(ǫ, t) := a(v(ǫ, t)) (6.4)

in the Lie algebra, directly. Note that

a0 := a(0, t) = a(u0) (6.5)

does not depend on time, while a(ǫ, ·) has (normalized) period 1 for ǫ > 0.
As in any differential equation, we can differentiate the solution g∗ = g∗(ǫ, t) with

respect to ǫ. Writing
γ(ǫ, t) := (∂ǫg∗)g−1∗
η(ǫ, t) := g−1∗ ∂ǫg∗

(6.6)
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with γ, η ∈ alg(G), the differential equations for γ, η, respectively, are

γ̇ = g∗(∂ǫa)g−1∗ ,
η̇ = [η,a] + ∂ǫa,

(6.7)

with initial conditions γ = η = 0 at t = 0 and ˙= ∂t. For example, at ǫ = 0 and t = 1,
the derivative of the stroboscope map g∗ with respect to ǫ becomes

∂ǫg∗ = γ · g∗ =
∫ 1

0

exp(a0t
′)∂ǫa(t

′) exp(−a0t′)dt′ g∗, (6.8)

because g∗(0, t) = exp(a0t).
What are the effects of this ǫ-expansion on the dynamics, alias on the iterates of

the stroboscope map g∗(ǫ, 1) = (R(ǫ), S(ǫ))? At ǫ = 0, we have

R(0) =

(
exp(iω0) 0
0 1

)
,

S(0) =

(
0
1

)
∈ CI × IR.

(6.9)

For small positive ǫ, by (6.8), we get a rotation axis of R(ǫ) near the z-axis, tilted
by an angle proportionally to ǫ. Conjugating by a small rotation around a horizontal
axis orthogonal to that angle, we can assume

R(ǫ) =

(
exp(iω) 0
0 1

)
, (6.10)

with ω = ω(ǫ) near ω0. Conjugating by yet another rotation around the z-axis, after-
wards, we can assume

S(ǫ) =

(
σ(ǫ)
1 + s(ǫ)

)
, (6.11)

with small complex σ and small real s. Now we can iterate the stroboscope map
g∗(ǫ, 1) = (R,S). Using (3.14) and (4.3),

g∗(ǫ, n) = (Rn, Sn) = (R,S)
n = (Rn,

n−1∑

k=0

RkS). (6.12)

With (6.10) we obtain the rotation

Rn =

(
exp(iωn) 0
0 1

)
. (6.13)

Similarly, the translation Sn = (σn, n+ sn) is given by

σn = (
n−1∑

k=0

eiωk)σ. (6.14)

Summarizing, the propagation speed of our original twisted scroll ring u0 expe-
riences periodic fluctuations, due to v(t). The period near 1 has been scaled to 1,
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here. Lighted with a stroboscope at (normalized) integer times t = n, we observe
identical shapes of the twisted scroll ring. It propagates along the (slightly tilted)
z-axis at a slightly modified average speed 1 + s. This oscillating propagation is a
three-dimensional analogue of Hopf bifurcation from a traveling wave in one space
dimension; for the latter see [Pos92]. In a plane perpendicular to the vertical propa-
gation direction, our scroll ring performs a planar meandering motion of stroboscopic
radius

r =
1

2
| sin(πωrot/ωHopf)|−1 · |σ|, (6.15)

as has been investigated in section 5. (We have returned to the notation ωrot =
ω, ωHopf ≈ 2π used there). Typically, |σ| will be of order ǫ. Note the horizontal drift
resonance which occurs at integer values

ωrot/ωHopf ∈ ZZ . (6.16)

At these values, the meandering propagation along a spiral around the z-axis becomes
a slow sidewards drift, away from the z-axis.
Additional isotropies H = ZZ n, commuting with the primary rotation exp(r0t)

of u0(t) in (6.1), (6.2), can be incorporated. Note that H rotates around the vertical
z-axis. For the horizontal planar meandering, the results of section 5 will reappear.
Specifically, let (H,K,Θ) be the spatio-temporal symmetry of a bifurcating periodic
solution v(t) in the skew product. According to lemma 4.3, nontrivial rotations in K
will force translations S∗ in the stroboscope map g∗(1) = (R∗, S∗) to point along the
z-axis. Likewise, R∗ near exp r0 will rotate around the z-axis, unless R∗ = id. Indeed
R∗ ∈ SO(3) \ {id} commutes with K, by (3.13) and lemma 4.3, and hence R∗ and
K fix the same axis of rotation. Therefore horizontal meandering is impossible, if K
contains a nontrivial rotation. Pure drifts g∗(1) = (id, S∗) can only point along the
z-axis.
If K = {id} is trivial, transverse meandering perpendicular to the direction of

propagation becomes possible. Indeed, let g∗(1/n) = (R1/n, S1/n). Again we conju-
gate the axis of R1/n to be vertical, so that

R1/n =

(
exp(iα1/n) 0

0 1

)
. (6.17)

Then S1/n possesses a rather irrelevant vertical component, which only modifies the
vertical propagation speed. The important horizontal component, however, produces
periodicity, meandering, and drifting phenomena transversely to the propagation di-
rection. Note how the ǫ-expansions (5.24), (5.25) force the transverse drifting to be
of small radius, or the transverse drifting to be slow.
Arrows by American Indians and other early, even neolithic civilizations are a

practical visualization of some of the results discussed here. In fact, elastic vibrations
and interaction with the air flow could lead to destabilization of the straight flight
path. However, the feathers can provide an isotropy K, if they prevent rotation
around the axis of the arrow. This isotropy, in turn, prevents transverse drifting and
fixes the direction of propagation to be, quite literally, “straight as an arrow”. Even
in the case of a rotating feathered arrow, transverse deviations caused by symmetry
breaking bifurcations from the straight path will be slow, due to (5.24), (5.25).
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Lösungen zu einem System von Reaktions-Diffusions-Gleichungen. Dis-
sertation, Heidelberg, 1992.

[Ran82] D. Rand. Dynamics and symmetry: Predictions for modulated waves in
rotating fluids. Arch. Rat. Mech. Analysis, 79, 1–38, 1982.

[Ren82] M. Renardy. Bifurcation from rotating waves. Arch. Rat. Mech. Analysis,
79, 49–84, 1982.

[SSW96a] B. Sandstede, A. Scheel, and C. Wulff. Center-manifold reduction for
spiral waves. C.R. Acad. Sc., Série I, to appear.

[SSW96b] B. Sandstede, A. Scheel, and C. Wulff. Dynamics of spiral waves in
unbounded domains using center-manifold reductions. In preparation,
1996.

[tD91] T. tom Dieck. Topologie. Walter de Gruyter, Berlin, 1991.

[UNUM93] Zs. Ungvarai-Nagy, J. Ungvarai, and S.C. Müller. Complexity in spiral
wave dynamics. Chaos, 3(1), 15–19, 1993.

[Win73] A. T. Winfree. Scroll-shaped waves of chemical activity in three dimen-
sions. Science, 181, 937–939, 1973.

[Wul96] C. Wulff. Theory of meandering and drifting spiral waves in reaction-
diffusion systems. Dissertation, Berlin, 1996.

[Reference added in proof:]

[AM96] P. Ashwin and I. Melbourne. Noncompact drift for relative equilibria
and relative periodic orbits. Preprint, University of Houston, 1996.

Bernold Fiedler
Institut für Mathematik I
Freie Universität Berlin
Arnimallee 2-6
D-14195 Berlin, Germany
fiedler@fu-berlin.de

Björn Sandstede
Div. of Applied Mathematics
Brown University
Providence, RI 02912, USA

Arnd Scheel
Institut für Mathematik I
Freie Universität Berlin
Arnimallee 2-6
D-14195 Berlin, Germany

Claudia Wulff
Institut für Mathematik I
Freie Universität Berlin
Arnimallee 2-6
D-14195 Berlin, Germany

Documenta Mathematica 1 (1996) 479–505



506

Documenta Mathematica 1 (1996)


