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Let F be a field of characteristic different from 2 and ¢ be a non-degenerate quadratic
form on an F-vector space V, by which V gets the structure of a non-degenerate
quadratic space. Choosing an orthogonal basis of V' we can write ¢ in the form
a1e? + -+ adxi. In this case we use the notation ¢ = (ay,...,aq).

A quadratic form or space ¢ is called isotropic if p(v) = 0 for some nonzero vector
v € V. We say that ¢ is anisotropic otherwise. Up to isometry, there is exactly
one non-degenerated isotropic 2-dimensional quadratic space, namely the hyperbolic
plane H equipped with the form (1, —1). A non-degenerate quadratic space is called
hyperbolic if it is isometric to the orthogonal sum of hyperbolic planes mH = H L
cer |LHL

According to Witt’s main theorem any non-degenerate quadratic space V' can be
decomposed in the orthogonal sum V = V,, L V,, where V,,, is anisotropic and
Vi 2 mH is a hyperbolic space. (We will use = to denote isometry of quadratic forms
or spaces.) Moreover the quadratic space V,, is uniquely determined up to isometry.
The restriction ¢|y,, is called the anisotropic part (or anisotropic kernel) of ¢ and is
denoted by ¢4,. The number m = % dim V}, is called the Witt index of ¢.

For any quadratic space V and any field extension L/F one can provide Vi =
V ®@p L with a structure of a quadratic space. The corresponding quadratic form we
shall denote by . We say that a quadratic form ¢ over L is defined over F if there
is a quadratic form & over F' such that ¢ = .

1 This work was partially supported by grant GAP300 of The International Science Foundation.
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128 O. T. IzHBOLDIN

It is an important problem to study the behavior of the anisotropic part of forms
over F' under a field extension L/F. It occurs sometimes that any anisotropic form
over F' is still anisotropic over L (for example if L/F is of odd degree). In this case
for any quadratic form ¢ over F' the anisotropic part (¢r )., of ¢ over L coincides
with (pan)r, and hence is defined over F.

However, very often ¢ becomes isotropic over L. In this case we do not know if
the anisotropic part of ¢ over L is defined over F.

A field extension L/F is called ezxcellent if for any quadratic form ¢ over F' the
anisotropic part (¢r)an of ¢ over L is defined over F' (i.e., there is a form £ over F'
such that (¢r1)en = £L)-

It is well known that any quadratic extension is excellent. Since any anisotropic
quadratic form ¢ over F is still anisotropic over the field of rational functions F'(t),
every purely transcendental field extension is excellent.

Among all field extensions the fields F(¢) of rational functions on the quadric
hyper-surface defined by the equation ¢ = 0 are of special interest in the theory of
quadratic forms. One of the important problems is to find a condition on ¢ so that
the field extension F'(¢)/F is excellent.

We say that F'(¢)/F is universally excellent if for any extension K/F the extension
K(p)/K is excellent.

If ¢ is isotropic then F'(p)/F is purely transcendental, and it follows from Springer’s
theorem that F(p)/F is excellent and moreover is universally excellent. Thus it is
sufficient to consider only the case of anisotropic forms (.

In [Kn] Knebusch has proved that if ¢ is an anisotropic form such that F(p)/F
is excellent then ¢ is a Pfister neighbor. This means that there is a quadratic form
m={l,—a1) ® - ® (1, —ay) (called n-fold Pfister form) such that ¢ is similar to a
subform of 7 and dim(yp) > 1 dim(7). This result gives rise to the natural question
whether the field extension F'(y)/F is excellent for any Pfister neighbor . This
problem can be easily reduced to the case of an n-fold Pfister forms (.

If n = 1 then F(p)/F is obviously excellent since F'(¢)/F is a quadratic extension.
Arason [ELW1, Appendix IT] has proved that, for n = 2, F(¢)/F is always excellent
(see also [R], [LVG]). Thus the answer to our question is yes for n-fold Pfister forms
with n < 2. It was an open problem whether F'(¢)/F is excellent for any field F' and
any n-fold Pfister form ¢ over F' (with n > 3).

In [ELW?2] some special cases of this problem were considered: for an n-fold Pfister
form ¢ with n > 3, the excellence of the field extension F(¢)/F was proved for all
fields with 4(F') < 4. In [H2] Hoffmann considered another special case of the problem.
An extension L/F is called d-ezxcellent if for any quadratic form 1 of dimension < d
the anisotropic part (11,)an of ¥ over L is defined over F. Hoffmann has proved that
the extension F(p)/F is 6-excellent for any Pfister neighbor .

In this paper we prove that for any n > 3 there is a field F' and an n-fold Pfister
form ¢ such that the field extension F'(¢)/F is not excellent. Moreover Theorem 1.1
of our paper says that F(p)/F is universally excellent if and only if ¢ is a Pfister
neighbor of an n-fold Pfister form with n < 2, (i.e., either dimp < 3 or ¢ is a 4-
dimensional form with det(¢) = 1). In §3 we use the main construction of the paper
to study “splitting pairs” ¢, ¥ of quadratic forms. More precisely, we construct a
“non standard pair” ¢, 9 such that ¢ is isotropic over the function field F(¢)) of the
quadric .
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Remark. Some results of this paper were developed further by D. Hoffmann in
[H4].

1. MAIN THEOREM

We will use the following notation throughout the paper: by ¢ L ¥, p 2, and [¢]
we denote respectively orthogonal sum of forms, isometry of forms, and the class of
¢ in the Witt ring W (F) of the field F. The maximal ideal of W (F') generated by
the classes of even dimensional forms is denoted by I(F). We write ¢ ~ ¢ if ¢ is
similar to ¢, i.e., ko = 1 for some k € F*. The anisotropic part of ¢ is denoted by
wan and 1w () denotes the Witt index of . We denote by {(a1,...,a,)) the n-fold
Pfister form

(17 _al) Q- ® (17 _an)

and by P, (F) the set of all n-fold Pfister forms. The set of all forms similar to n-fold
Pfister forms we denote by GP,(F). For any field extension L/F we put ¢, = ¢ ® L,
W(L/F) = ker(W (F) — W(L)).

MAIN THEOREM 1.1. Let ¢ be an anisotropic form over F. Then the following
conditions are equivalent.

(i) The field extension F(p)/F is universally excellent, i.e., for any field exten-
sion E/F the extension E(p)/E is excellent.
(ii) Either dim(p) < 3 or ¢ € GP(F).

Proof of (ii) = (i). The case dim(yp) = 2 is obvious. If dim(p) = 3 or ¢ € GP(F)
the excellence of the extension E(yp)/E was proved by Arason (see the introduction).

Proof of (i) = (ii). Since E(p)/E is excellent for any extension E/F, we see that
F()/F is excellent. It was shown in [Kn, 7.13] that for F/(p)/F to be excellent it
is necessary that ¢ is a Pfister neighbor. Let ¢ be a Pfister neighbor of the n-fold
Pfister form 7. Since F(p) and F(r) are F-equivalent, we can replace ¢ by =, i.e.,
we can suppose that ¢ = 7w is an n-fold Pfister form. Thus it is sufficient to prove
the following proposition.

PROPOSITION 1.2. Let 7 be anisotropic n-fold Pfister form over the field F. Ifn > 3
then there is a field extension E/F such that E(w)/E is not excellent.

2. PROOF OF PROPOSITION 1.2

LEMMA 2.1. Let m and 7 be anisotropic n-fold Pfister forms over the field F. Then
there is a field extension K/F such that the following conditions hold.

a) TK = TK,
b) 7k and Tk are anisotropic.

Proof. Let ¢ be a Pfister neighbor of 7 of dimension 2"~! + 1. Tt follows from [H3,
Theorem 4] that there exists a field extension K/F such that mk is anisotropic and
¢x C . Hence pg is a Pfister neighbor of mx. Since ¢k is a Pfister neighbor of
TK, we have g = 7. O
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LEMMA 2.2. Let 7 and w be anisotropic n-fold Pfister forms over F. Suppose that
there is a € F* such that Tp( /) and Tp( /) are isotropic. Then there is an extension
E/F and z € E* such that the following conditions hold.

1) "oz = Te(/m):

2) TE(yz) ond Tg(/z) are anisotropic,

3) E/F is unirational.

Remark: We say that E/F is unirational, if there is a purely transcendental finitely
generated field extension K/F such that F C E C K.

Proof. Since 7 is an n-fold Pfister form and 7p( ;) is isotropic, we can write 7
in the form 7 = {((a,b1,...,bp—1)). Similarly, we can write 7 in the form = =
{a,c1,-.-,en—1). Let F = F(A,By,...,By—1,C1,...,Cph_1) be the rational func-
tion field in 2n — 1 variables over F.

Put 7 = (A,B1,...,Bp—1)) and T = (A,C4,...,Cph1)). Let v =7 L —7 and
¥y=7 1 —7. Let E/ﬁ be the universal field extension such that vg = g, i.e.,
E = ﬁh, where F = fb, ﬁl, e ,ﬁh is a generic splitting tower of the quadratic form
vl —5.

It is well known that the following universal property of E holds: For any field
extension K/ F the condition vk = 7k implies that EK/K is purely transcendental.

Now we prove that conditions 1)-3) of the lemma hold for z = A.

1) We have [t /4| = [75va)] = [Ve(va)l = Oeva)l = Teva)) = T =0-

Hence [75/2)] = [Tpva)]-

2) Let K/F be as in Lemma 2.1, i.e., Tk, mx are anisotropic and 7x = 7. We
have ["}/K] = [TK] - [71'[(] =0

Let K = K(A,By,...,B,-1,C1,...,Cph_1) be the rational function field in 2n — 1
variables over K. We have [fyf((\/z)] = [Tf((\/z)] - [71';((\/;)] = 0 and W}?(\/Z)] =
[T#(va))—[F&/z)] = 0. Therefore [y /)] = [V (/a)]- Using the universal property
of E/F we see that EK (v/A)/K(v/A) is purely transcendental.

It is clear that K(vA)/K is purely transcendental. Therefore EK(VA)/K is
purely transcendental. Hence TER(VA) and TpR(VA) are anisotropic. Therefore
Tp(va) and g ) are anisotropic.

3) Let L = ﬁ'(\/A/a, \/Bl/bl,...,\/Bn_l/bn_l,\/C’l/cl,...,\/Cn_l/cn_l). It is
clear that m, = 7, and 7, = 7p. Therefore v, = 7. Using the universal property
of E/ﬁ‘ we see that EL/L is purely transcendental. It is clear that L/F is purely

transcendental. Hence EL/F is purely transcendental. Since E C EL we see that
E/F is unirational. O

LEMMA 2.3. Let F be a field and w be anisotropic n-fold Pfister form over F. Then
there are a unirational extension E/F, an n-fold Pfister form T over E, and © € E*
such that the following conditions hold.

1) Tovm) = Te(/m)

2) TE(yz) ond Tg(/z) are anisotropic,

3) d1m(7rE 1 _TE)an = 2n+1 —4.

DOCUMENTA MATHEMATICA 1 (1996) 127-136



ON THE NONEXCELLENCE OF FIELD EXTENSIONS F'(7)/F 131

Proof. Write  in the form 7 = ((a, by, b, ...,ba_1)). Let F = F(Ty,...,T,_1) be the
rational function field in n —1 variables over F. Let 7 = ((a,T1,...,Th—_1)). Obviously

(m5 L =T)an = (a1, -, bna ) L —(a)(T1, -, Tna))'-

Therefore dim (s L —7)an, = 2" — 4.
The quadratic forms 7= F(va) and Ti(ya) are hyperbolic, i.e., all the conditions of

Lemma 2.2 hold for F 7, 7. Hence there is a unirational extension E/ F such that

1) TE(yz) = TE(Va))
2) Tr(yz) and Tp(z) are anisotropic,
Since E/F is unirational, we have dim(rg L —7g)an = dim(mz L —7)q, = 2"+ — 4.
Finally E/F is unirational since E/F is unirational and F'/F is purely transcenden-
tal. O

LEMMA 2.4. Let E be a field, n > 3, x € E*. Let 7,7 € P,(E) be such that
1) To(va) = Te(vE)-
2) Tr(yz) 0nd Tg( /) are anisotropic.
3) dim(m L —7)4, =271 — 4.
Let vp = 7' L (x) where 7' is such that 7 = 7" L (1).
Then
a) ¥ is anisotropic.
) V() is isotropic.
c¢) There is no quadratic form y over E such that (Vg(x))an = VE(r)-
) For any subform & C 4 the form {p(r) is anisotropic, i.e., ¥ is a minimal

F(7)-form.

Proof. a) Obviously VYE(yz) = TE(Z)- BY assumption we see that 75, /) is anisotro-
pic. Hence ¢ g /) is anisotropic. Therefore 1) is anisotropic too.

b) Suppose that ¢E (r) 18 amsotroplc Since Vg z) = Te(yvz) = WE(\/—) we have
Ve (va)] = [TE(x)(va)] = 0- Since g () is anisotropic and ¥ g(r)(/z) is hyperbolic,
we conclude that ¢ E(,r) = ((:U))§ where ¢ is a quadratic form over E(r). Since dim(§) =
2""! is even, we have { € I(E(m)). Therefore g = (z)¢ € I*(E(r)). Hence
Y € I?(E). Therefore [(z))] = [r] — [¢] € I*(E), a contradiction.

¢) Suppose that (¥ g(r))an = VE(x) Where 7 is a quadratic form over E. It is clear
that dim(y) < 2™ — 2. We have (¢ J_ —Y)an € W(E(m)/E). Since 7 is a Pfister form
we conclude that (¢ L —7v)a, = 7, with p a quadratic form over E.

Since 2 = 2" — (2" — 2) < dim(¢p L —7)gn = 2% + (27 — 2) = 27+ — 2 and
dim(7) = 2" divides dim(mwp) we conclude that dim(p) = 1. Writing p in the form
u = (k) we have (¢ L —v)4u, = kw. Hence [kn] = [¢)] — [y]. Therefore

[r L —kn] = [7] = [kx] = ([¥] + [(=)]) — (0] = 0]) = [{=) LA

Hence 7 and km contain a common subform of dimension

(2" +2m —2") =2""1 > 231 =4 >3

l\DI»—l

%(dim(r) + dim(k7) — dim({(z)) L v)) >
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Therefore there is a 3-dimensional form p such that p C 7, p C kxw. Let a,b € E be
such that p ~ (1, —a, —b). Let ¢ = ((a,b)). Obviously Tp(.) and 7g(.) are isotropic.
Since 7, 7, and ¢ are anisotropic Pfister forms, we conclude that ¢ C 7 and ¢ C .
Therefore dim(r L —7)4, < dim(7) +dim(7) — 2dim(e) = 2" +2" —2-4 = 2"+1 — 8
a contradiction.

d) We can suppose that £ is a (2™ — 1)-dimensional subform of ¢. let k € E* be
such that & L (—k) = 1. Set £ = £ L (—zk). We have

7] = €] = [7] = ([¢] = [ak)]) = ([ + [(2D]) = () + [(R)] = [{k)]) = [(a, k)],

Let p = ((#,k). We have [1g(,)] = [gE(p)]. Comparing dimensions we see that

TE(p) = EB(p)- Therefore Tp(, ) = Ep(p,r)-

Our goal is to prove that () is anisotropic. Let us suppose that {p () is isotropic.
Then E E(p,r) 18 isotropic too. Therefore 75, r) is isotropic. Hence the Pfister form
TE(p) becomes isotropic over the function field of the Pfister form mp(,). Therefore
either 7p(,) or Tg(,) = g, is hyperbolic.

Suppose first that 75, is hyperbolic. Since pg( /z) = {(z, k) g(/z) is isotropic we
conclude that 7, ) is isotropic. This contradicts the assumption in this lemma.

Let now 7, = Tg(,). Then (7 L —7)an € W(E(p)/E). Hence (1 L —7)an = pA
with A a quadratic form over E ([S, Ch.4,5.6]). Since dim(7 L —m)an = 2" — 4 and
dim(p) = 4 we conclude that dim(\) = (2" — 4)/4 = 2"72 — 1. Since n > 3 we
see that dim()) is odd and hence [A] = [(1)] (mod I(E)). Since p € I?(E) we have
[pA] = [p] (mod I*(E)). Since 7,7 € P,(E) and n > 3, we see that [(T L —7)a,] =0

(mod I*(E)). We have

p)-

[ = [pN = [(T L =7)an] =0 (mod I*(E)).
Since dim(p) = 4 < 8 we conclude that p is hyperbolic. Therefore (7 L —7)4, = pA
is hyperbolic. However dim(7 L —7),, = 2" —4 > 0, a contradiction. O

COROLLARY 2.5. Let m be an anisotropic n-fold Pfister form over the field F. If
n > 3 then there is a unirational extension E/F such that E(m)/E is not excellent. O

This corollary completes the proof of Proposition 1.2 and Theorem 1.1.

COROLLARY 2.6. Letn > 3. Then there are a field E, an n-fold Pfister form m over
E, and a 2"-dimensional form 1 over E such that v is an E(x)-minimal form. O

COROLLARY 2.7. Let n > 3. Then there are a field E and 2"™-dimensional forms 1
and 7 over E such that 1 is an E(7)-minimal form and 1 is not similar to =. O

3. NONSTANDARD SPLITTING

An important problem in the theory of quadratic forms is to determine when an
anisotropic quadratic form ¢ over F' becomes isotropic over the function field F'(¢))
of another form . There are some well-known situations when this occurs and we
list some of them in the following two definitions.
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DEFINITION 3.1. Let ¢ and % be anisotropic quadratic forms. We say that the or-
dered pair @, ¢ is elementary splitting (or elementary) if one of the following conditions
holds.

1) There is a k € F* such that kv C ¢;

2) There is a k € F*, such that k¢ C ¢ and dim(p) > dim(v) — i1 (¥);

3) Thereisa p € W(F(1)/F) such that dim(p) < 2dim(p) and k¢ C p for some
ke F*.

DEFINITION 3.2. Let ¢ and % be anisotropic quadratic forms. We say that the
ordered pair ¢, v is standard if there is a collection

Yo =P, P15+ Pn-1,¥n =¢

such that the pair ¢; 1, ¢; is elementary for each i =1,2,...,n.

It is clear that if the pair (¢, ) is elementary splitting or standard, then @p(y) is
isotropic.

ExAMPLES 3.3. Let ¢ and v be anisotropic quadratic forms such that pp(y) is
isotropic. Suppose that at least one of the following conditions holds

a) ¢ is a Pfister neighbor;
b) dim(¢) <3, or ¢ € GPy(F);
c) dim(p) < 5;

Then the pair @, v is elementary.

Proof. a) Let ¢ be a Pfister neighbor of p. Then condition 3) of Definition 3.1 is
fulfilled.

b) By the excellence property of the field extension F'(1))/F there exists an aniso-
tropic form & over F' such that (¢r(y))an = Ep(y)- Setting p = ¢ L —& one can see
that condition 3) of Definition 3.1 holds.

c) Let dim(¢) < 5. We can suppose that ¢ is not a Pfister neighbor and v ¢
GPy(F) (see a),b)). Then gy is isotropic if and only if ¢ contains a subform
similar to ¢ (see [H1, Th. 1, Main Theorem]). Therefore condition 1) of Definition 3.1
holds. O

ExampLE 3.4. Let F = R(T), ¢ = (T,T7,T7,1,1,1,1,1), v = (T,T7,1,1,1,1,1,1).
Then the pair ¢, v is standard but not elementary.

Proof. Let p = (T,T,1,1,1,1,1). Since p C ¢, the pair (¢, p) is elementary. Since
p C ¢ and dim(p) = 7 > 8 — 2 = dim(¢)) — i1(¢0), we see that the pair (p, ¥) is
elementary. Since the pairs (¢, p) and (p, ¥) are elementary, we see that the pair

(p, ©) is standard. Tt follows from Lemma 3.7 below that the pair (¢, %) is not
elementary. O

In this section we construct a pair of anisotropic forms ¢ and ¢ with ¢y isotropic
which is not standard.

LEMMA 3.5. Let F be a field, n >3, x € F*. Let m,7 € P,(F) be such that

1) mn#7,

2) Tr(ya) = TR(va)
3) Tr(yz) ond Tp(z) are anisotropic.
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Let o =7' L (z) and v =7 L (z). Then
a) ¥ and ¢ are anisotropic,

b) @r(y) and PYp(,) are isotropic,
c) @ Fp.

Proof. a) Obviously ¥p( /z) = Tr(z) and Y g z) = Tp(yz)- 1t follows from condition
3) that ¢ and ¢ are anisotropic.

b) Let us suppose that ¢y is anisotropic. Since Yr(yz) = Tr(ye) and Yp(z) =
Tr(yz) = Tr(yF) We see that wp(y z) = Tp(r, /7). Since m € P,(F) we conclude that
©F(y,v/7) 18 hyperbolic. Therefore ¢p(y) = (z))§ where { is a quadratic form over
F(¢). Since dim(¢) = 2" is even, we have £ € I(F(¢)). Therefore tp(y) = (@)¢ €
I*(F(¢)). Hence 1 € I?(F). Therefore [(z))] = [r] — [¢] € I*(F), a contradiction.

c) Suppose that kp = 9. Then [kn] — [k{(z)] = [k¢] = [¢] = [7] — [{=))]. Therefore
[(z, k)] = [r]—[kr] € I"(F) C I3(F). Since dim({{x, k))) = 4 < 8, we have [7]—[k7] =
[(x,y)] = 0. Hence 7 ~ 7. Since 7,7 € P, (F) we see that 7 = 7, a contradiction. O

LEMMA 3.6. Let w € P3(F) and x € F* (x ¢ F*?) be such that wp( /z) is anisotropic.
Let o = 7' L (x). Suppose that ¢ is an anisotropic quadratic form such that 1 p(,)
and ©p(y) are isotropic. Then dim(z)) = 8.

By C(p) (resp. Co(p)) we will denote the Clifford algebra (resp. even Clifford
algebra) of the quadratic form ¢. If they are central simple we denote their classes in
the Brauer group of the underlying field by [C'(¢)] (resp. [Co(p)]).

Proof. Since dim(p) = 8 and @p(y) is isotropic, it follows from Hoffmann’s theorem
[H3, §1, Theorem 1] that dim(y) < 8.

Suppose that dim(¢)) < 6. Since dim(p) = 8 and ¥, is isotropic, it follows
from Hoffmann’s theorems [H1], [H2] that ¢ € GP3(F'). Therefore z = det(p) =1, a
contradiction.

Consider now the case dim(¢)) = 7. Since TRy /z) = PF(4,y/z) 1S 1sotropic we see
that ¢p(z) is a Pfister neighbor of 7p( 7). Therefore [Co(¢)p( /)] = 0. Hence
there is y € F* such that [Co(¢)] = [("%Y)]. Let p = (=, y).

We claim that 1 p(,) is an anisotropic Pfister neighbor. To prove this we consider
the quadratic form ¢ = ¢ L (det(¢)). Since dim(¢)) = 8 and [O(ZZF(p))] = [(;f(fj))] =0

we have Jp(p) € GP3(F(p)). If Yp(,) is isotropic then @F(p) is isotropic too and hence

hyperbolic. Therefore, (1), = pp- Since dim(¢)) = 6 or 8 we must have dim pu = 2
which implies ¢, = ¢ € GP3(F). Therefore [C(p)] = [Co(1)] = [C(4)] = 0. Hence,
p is hyperbolic and 1 stays anisotropic over F(p), a contradiction.

Since tp(,) is isotropic, ¥r(,) becomes isotropic over the functional field of the
form ¢p(,). Since ¢p(,) is an anisotropic Pfister neighbor and dim(pp(,)) = 8 we
see that @ p(,) € GP3(F(p)) C I?(F(p)). Since W(F)/I*(F) — W (F(p))/I*(F(p)) is
injective we have ¢ € I?(F). Hence = det(p) = 1, a contradiction. 0O

LeMMA 3.7. Let ¢ and v be anisotropic 8-dimensional quadratic form such that
¥ ¢ GP3(F) and the pair @, ¢ is elementary. Then ¢ ~ 1.

Proof. Since the pair ¢, 9 is elementary, one of conditions 1)-3) of Definition 3.1
holds. Since dim(y) = dim(¢), both the conditions 1), 2) imply that ¢ ~ 1. Now
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we suppose that condition 3) holds, i.e., there is p € W(F(¢))/F) such that dim(p) <
2dim(p) = 16 and k¢ C p. Since dim(¢)) > 4, the homomorphism W (F)/I*(F) —
W (F(¢))/I?(F(¢)) is injective. Hence p € I3(F). Let 0 € Py(F) be such that
1 contains a Pfister neighbor of . Then p € W(F(¢)/F) C W(F(0)/F) and
thus pa, = op for some p. If dim g is odd then ¢ = o = p = 0 (mod I*(F)), a
contradiction. Thus dim p is even and 8| dim(p,y,). Therefore dim(p,,) = 8. Hence
pan € GP3(F). Since pp(y) is hyperbolic, ¢ is a Pfister neighbor in py,. Since
dim(v) = dim(papn) = 8 we have ¥ ~ p,n, € GP3(F), a contradiction. O

LeMMA 3.8. Let n =3, and let ¢, ¥ be as in Lemma 3.5. Then the pair @, ¥ is not
standard.

Proof. Assume that the pair ¢, ¥ is standard. Then there is a collection

Yo =Py L1y Pn—1,Yn :7/1

such that the pair ¢;_1, ¢; is elementary for each i = 1,2,...,n. Obviously, the
quadratic forms @p(,,) and (p;)p(y) are isotropic. Since ¥, is isotropic (see
Lemma 3.5) and (i) r(y) is isotropic, we see that (¢;)r(,) is isotropic too. Thus
©F(p;) and (i) p(,) are isotropic. It follows from Lemma 3.6 that dim(ep;) = 8.

Consider first the case 1; € GP3(F'). Since (¢;) () and is isotropic, ¢ is a Pfister
neighbor of ;. Since dim(y) = dim(¢;) = 8 we have ¢ ~ ;. Hence ¢ € GP3(F), a
contradiction.

Thus we have proved that dim(¢;) = 8 and ¢; ¢ GP3(F) for each i =1,2,...,n.
It follows from Lemma 3.7 that ¢;—1 ~ ;. We have

P=po~ P~~~ =

On the other hand, it follows from Lemma, 3.5 that ¢ # 1. The contradiction obtained
proves the lemma. O

THEOREM 3.9. For any field F there is a unirational field extension E/F and a
pair of 8-dimensional anisotropic quadratic forms ¢ and b over E such that pp(y) is
isotropic, but the pair @, ¥ is not standard.

Proof. Let n = 3. Let E, m and 7 be such as in Lemma 2.3. Set ¢ = 7' L (z),
¥ =71" 1L (x). Tt is clear that all the conditions of Lemma 3.5 hold. Now the desired
result follows immediately from Lemma 3.5 and Lemma 3.8. O
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