DOCUMENTA MATH. 141

ISOTROPY AND FACTORIZATION IN REDUCED WITT RINGS
ROBERT W. FITZGERALD

Received: April 5, 2001

Communicated by Ulf Rehmann

ABSTRACT. We consider reduced Witt rings of finite chain length. We
show there is a bound, in terms of the chain length and maximal signature,
on the dimension of anisotropic, totally indefinite forms. From this we get
the ascending chain condition on principal ideals and hence factorization
of forms into products of irreducible forms.
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R will denote a (real) reduced Witt ring. A form ¢ € R is totally indefinite
if [sgn,q| < dimgq for all orderings « of R. It is well-known that such a form
need not be isotropic. However, when R has finite chain length, cl(R), we
show there are restrictions on the possible dimensions of anisotropic, totally
indefinite forms. To be specific,

dimg < $cl(R) m(iix{| sgnaql?},

unless R = Z and ¢ is one-dimensional. The proof depends on Marshall’s
classification of reduced Witt rings of finite chain length.

This bound allows us to show that R, of finite chain length, satisfies the as-
cending chain condition on principal ideals. One consequence of this result is
that chains of basic clopen sets H(aq,... ,ay), for fixed n, stabilize. Another
consequence is that non-zero, non-units of R factor into a finite product of ir-
reducible elements (in the sense of Anderson and Valdes-Leon). This had been
previously known only for odd dimensional forms in rings with only finitely
many orderings.

Conversely, we show, for a wide class of reduced Witt rings R, that the ascend-
ing chain condition on principal ideals implies R has finite chain length. The
proof relies on Marshall’s notion of a sheaf product. We close with examples of
factorization into irreducible elements. These illustrate how the factorization
of even dimensional forms is less well behaved than the factorization of odd
dimensional forms studied in [8].
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142 ROBERT W. FITZGERALD

We set some of the notation. R will be an abstract Witt ring, in the sense
of Marshall [11], and reduced. The main case of interest is the Witt ring of a
Pythagorean field. Xg, or just X if the ring is understood, denotes the set of
orderings (equivalently, signatures) on R. We always assume X is non-empty.
For a form ¢ € R and ordering o € X, the signature of ¢ at « will be denoted
by either sgn,q or g().

We let Gpg, or just G when R is understood, denote the group of one-
dimensional forms of R. When R is the Witt ring of a field, G = F*/F*2.
Forms in R are written as (ay,... ,a,), with each a; € G. An n-fold Pfister
form is a product (1,a1)(1,a2) - (1,a,), denoted by ({(a1,az,...,an)). The
set of orderings X has a topology with basic clopen sets

H(ai,...,an) ={@€ X :a; >, 0 foralli},

where each a; € G. The chain length of R, denoted by cl(R), is the supremum
of the set of integers k for which there is a chain

H(ao) € H(a1) € -+ € H(ax)

of length k (each a; € G).

A subgroup F' C G is a fan if it satisfies : any subgroup P D F such that
—1 ¢ P and P has index 2 in G is an ordering. The index of the fan is [G : F.
The set of orderings P that contain F is denoted X/F. Note that | X/F| = 27!
if F has index 2". The stability indez of R, denoted by st(R), is the supremum
of log, | X/F| over all fans in G.

If Ry and Ry are reduced Witt rings then so is the product

RiM Ry ={(r1,r2) : 71 € Ry,r2 € Ry and dimr; =dimry (mod 2)}.

FE will always denote a group of exponent 2. If R is a reduced Witt ring then so
is the group ring generated by E, denoted by R[E]. Ej will denote the group
of exponent 2 and order 2*. We will always take t,,... ,t, as generators of E},
(except when k = 1 when we use just ). For an arbitrary E we use t1,t2,... as
generators. When F is uncountable we are assuming the use of infinite ordinals
as indices. Lastly, if S C G we write sp(S) for the subgroup generated by S.

1. ISOTROPY.

Over R a form ¢ is hyperbolic iff sgn ¢ = 0 and isotropic iff [sgn ¢| < dim g. The
first statement holds for any reduced Witt ring but not the second. Our goal is
to find a limit on the difference between |sgn g| and dim ¢ for anisotropic forms.
We restrict ourselves to reduced Witt rings with a finite chain length. Recall
(12, 4.4.2] (5] in the field case) that such rings are built up from copies of Z
by finite products and arbitrary group ring extensions. The decomposition is
unique except that Z M Z = Z[Ey].

We introduce some notation. Recall that Ej is generated by tq1,...,tx. We
fix a listing x1,...,29r of the elements of Ej as follows. The list for F; is
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ISOTROPY AND FACTORIZATION 143

1,¢1. The list for Ex1 is the list of Ej followed by t;41 times the list for Ey.
We also fix a listing «, ... ,agn of the orderings on Z[E}]. For the k = 1 we
take a1 to be the ordering with ¢; positive and as to be the ordering with t;
negative. The list for Z[F}1] consists of the orderings on Z[E)] extended by
taking tr+1 positive, followed by the extensions with ¢4 negative. Lastly, we
define Py, to be the 2% x 2k-matrix whose (4, j) entry is the sign of z; at the «;

ordering. Thus P; = (i 711)

LEMMA 1.1. For each k> 1

(1) Py is symmetric.

(2) P2 =21,
(3) For q =Y nr; € Z[Ey] let s; = G(;). Setn = (n1,...n9x)T, where T
denotes the transpose, and 5 = (s1,... ,50x)%. Then Pyn = 5.

Proof. We use induction on k to prove (1) and (2). Both are clear for k = 1.
By our construction,
(P B
Pk‘—‘rl(Pk _Pk>

Thus P, symmetric implies Pg1 is also. And

2 2P 0 kil
Pk-i-l:(()k 2P? =2

Statement (3) is simple to check. O

The reader may notice that each Pj is a Hadamard matrix, indeed the sim-
plest examples of Hadamard matrices, namely Kronecker products of copies of

11
(1)
NoOTATION. Let M(q) = max{|§(a)|: @ € X}.

PROPOSITION 1.2. Let R = Z[E], where E is an arbitrary group of exponent
two. Suppose q € R is anisotropic. Then dimq < M(q)?.

Proof. We may assume q € Z[E}] for some k. Write ¢ = > n;z; where n; € Z
and the z; form the list of the elements of E}. described above. Let n and § be
as in (1.1). Then:

P.n=35
2k = P = P5
1
S n2=aTa= 22ksTPkTPks
1, 1 )
= kas S = 27 Zsi

Now for each i we have s?

< M(q)%. So >_n? < M(q)?. Further, |n;| < n? so
dimg = X ] < M(g)?. D
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144 ROBERT W. FITZGERALD

Remarks. (1) The bound in (1.2) is sharp infinitely often. Let € = (eq,... ,€x)
be a choice of signs, that is, each ¢, = £1. Pick a one-to-one correspondence
between the 2¥ many sign choices and the elements of sp{tyyi1,... ,tar}, say
€ — 2.. Then consider

q= er«fltla e ,Ektk>> S Z[Egk],

where the sum is over all possible sign choices. At each ordering of Z[Ey]
exactly one of the Pfister forms has signature 2*, the others having signature
zero. In any extension of this ordering to Z[Eo;] we get sgngq = £2*. Thus ¢
is anisotropic, dim ¢ = 22* and M (q) = 2*. Hence dim ¢ = M (q)?.

(2) The bound of (1.2) is not sharp for M’s that are not 2-powers. For instance,
suppose ¢ is anisotropic and M(q) = 3. We may assume (see (2.6)) that ¢ has
signature 3 or —1 at each ordering. Let ¢y = (¢ — 1)4n, the anisotropic part.
Then M(qp) = 2 and so dim g < 4. Thus dimg < 5 < M(q)?%.

The bound of (1.2) can also be improved if k is fixed. For instance, one can
show for anisotropic ¢ € Z[Es] that dimg < M (q).

THEOREM 1.3. Suppose R is a reduced Witt ring of finite chain length. Let
q € R be anisotropic. Then dimq < %cl(R)M(q)Q, unless R = 7Z and q is
one-dimensional.

Proof. The result is clear if dimg = 1 so assume dimg > 2. We may thus
ignore the exceptional case. We will prove the result for R = S[E], any E, by
induction on the chain length of S. Say cl(S) = 1 so that S = Z. If E = 1 then
dimg = M(q) < $M(q)? as dimg > 2. If E # 1 then we are done by (1.2) as
cl(Z[E)]) = 2.

In the general case we may assume S = S7 .S, with at least one of S7 or Sy
not Z. Then both S; and S; have smaller chain length than S and so we are
assuming the result holds for S;[F], i = 1,2 and any E.

First suppose E = 1. Write ¢ = (a,b) with a € S; and b € S3. We may assume
that dima > dimb. Then dim ¢ = dim a. We have by induction

dimg =dima <

IN
N= D= N

cl(R)M (a)?, since cl(R) = cl(S;) + cl(S2)
)M (q)

IN

as G(o) = a() or b(a) for every o € X so that M(a) < M(q).

Next suppose E # 1. Since ¢ has only finitely many entries we may assume
that ¢ € (S1 M .S2)[Ey], for some k. Write ¢ = >_(a;, b;)x;, where each a; € S;
and b; € Sy and the z;’s are our listing of the elements of Ej. Set

Y= (Z aixi,O) + ’/‘(0, szxl) € (Sl[Ek] M Sg[Ek])[El]
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ISOTROPY AND FACTORIZATION 145
Now
dimg = Z max{dim a;, dim b, }
dim ¢y = Zdimai + Zdimbi > dimgq.

We check the signatures. If o € Xg, and o is an extension of o to R =
(S1 M S2)[Ex] then 4(af) = > a;(a)e; (here e, = 1 depending on the sign of
x; in the extension). Similarly, if § € Xg, and ¢ is an extension to R then
() = 2 bi(B)es.

We may also view a° as an extension of « to S1[Ej] and hence to S1[E;]MS2[Ey].
Let at denote the further extension to (S1[Ex] M So[Ex])[E1] with r positive.
We also have the other extensions o™, 3T and 3¢~. Then:

pla) = ai(a)e
pla) = aia)e
GBT) = bi(B)es
P(B7) == bi(B)e

Thus M(p) = M(q).
Set ¢1 = > a;x; € S1[Ex] and @2 = > bix; € So[Ex]. Then by induction we
have:

IN

dim ¢

A

dim @9

The previous computation shows that for any ordering v of (S1[Ex]MS2[Ex])[E1]
that @¢(v) equals ¢1 () or £p2(0) where v restricts to either o on S1[Ey] or 3
on So[Ex]. Thus M(p;) < M(y) for i = 1,2. We obtain

dim ¢ = dim g1 + dim ¢y < 2(cl(S1) + cl(S2)) M (¢)?
1
2

using [12, 4.2.1]. Lastly, we have already checked that dimg¢ < dim ¢ and
M(q) = M(p), giving the desired bound. O

Remarks. (1) The bound of (1.3) is sometimes achieved. For example, in

R = (Z[E2) N Z[E3) M Z[Es))[Ea],
where the last Eo is generated by si,s2, let ¢ = (1,¢1,t2, —t1t2) and set ¢ =
(p,0,0) +51(0,¢,0) + 52(0,0, ). Then g is anisotropic, dimq = 12, M (q) = 2
and cl(R) = 6. Thus dimq = 3cl(R)M(q)*.
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146 ROBERT W. FITZGERALD

(2) Brocker [3] has a result that looks similar to (1.3) but is apparently unre-
lated. There, in the version of [12, 7.7.3], if ¢ is anisotropic, §(a) = +2* for
all @ and Y = {a : §(a) = 2*} is the union of basic open sets each of stability
index at most k + 1, then dim ¢ < 22¥ = M(q)2.

(3) Bonnard [2] also has a result that looks like (1.3), which in fact uses
Brocker’s result in the proof. In our notation, her result is: if R has finite
stability index s and ¢ € R is anisotropic then dim ¢ < 2571M(q). Her bound
is slightly better than this. Chain length and stability index are independent in-
variants so again there is no apparent connection between (1.3) and Bonnard’s
result.

Recall that a form g is weakly isotropic if mq is isotropic for some m € N.

COROLLARY 1.4. Let R be a real Witt ring (not necessarily reduced) of fi-
nite chain length. Let ¢ € R be a form of dimension at least 2. If dimq >
2cl(R)M (q)? then q is weakly isotropic.

Proof. Let q. = ¢+ Ry € Ryeq, the reduced Witt ring. Then ¢, is isotropic
by (1.3). Hence ¢, ~ (1,—1) 4+ ¢, for some form ¢, = ¢ + Rt € Rycq. Then
2Fq ~ 2K(1, 1) + 2F ¢, for some k, and so ¢ is weakly isotropic. [

2. CHAINS OF PRINCIPAL IDEALS.
We use the standard abbreviation ACC for ascending chain condition.

ProprosITION 2.1. If ACC holds for the principal ideals of R then R has finite
chain length.

Proof. Suppose we have a tower
H(a1) 2 H(ag) 2 -+ 2 H(ap) 2 -

Set ¢, = (1,1,a,). Then §,(a) is 1 or 3, with §,(a) = 3 iff & € H(ay). In
particular, for every n we have §,+1(«) divides G, (), for every @ € X. Then
Gn+1 divides g, by [7, 1.7]. Thus we have a tower of principal ideals :

(1) C(g2) €~ C(gn) -+

The ACC implies there exists a N such that (¢n) = (¢m) for all m > N. Then
gy () divides G, () for all @ € X and so H(an) = H(ay,), for allm > N. O

We need some technical terms for the next result.

DEFINITIONS. A fan tower is a strictly decreasing tower of fans F; > Fy >

- > F, > ---, each of finite index plus a fixed choice of complements C,,
where G = C, x F,,. We set F, = NF,. A separating set of fan towers is a
finite set of fan towers s1,... ,s¢, with s; = {Fj,,} such that

(1) Given any ¢q € R there exists m, possibly depending on ¢, such that all
entries of q are in Cj,, Fjs, for each i between 1 and /.
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ISOTROPY AND FACTORIZATION 147

(2) Given K C Z and forms ¢1,q2 € R, there exists N, depending on ¢;
and g2 but not K, such that if for some n > N

G (K) N (X/Fip) = G (K) N (X/Fin)
for all 4 then ¢, *(K) = g5 *(K).

EXAMPLE. For a simple example, let R = Z[E] with E countably infinite. Let
Fi = Sp{ti+17ti+27 - } and Cz = Sp{—l,tl, v ,ti}. Then each Fi is a fan of
finite index, each C} is a complement and the F; are strictly decreasing. Hence
{F;} is a fan tower. Note that here F, = 1. This fan tower is a separating
(singleton) set of fan towers. A given form ¢ has entries involving only a finite
number of ¢;’s and so its entries lie in some C,,; this is the first condition. If we
are given two forms ¢; and ¢o then again all of their entries lie in some C'y. So
the signatures of the ¢; depend only on the signs of ¢1,...¢y in that ordering.
Hence if ¢; and ¢» agree on X/Fx then they agree at every ordering. This is
the second condition.

Roughly, our fan towers will look like this example. When there is a product
we will need one tower in each coordinate, hence a separating set.

LEMMA 2.2. If R has finite chain length then R has a separating set of fan
towers.

Proof. We prove this by induction on the chain length. When cl(R) = 1 then
R = Z and the result is clear. We first consider the case R = S M .Sy. Write
Gy and X for Gg, and Xg, and similarly for Gy and Xs. Let {si,...,s; }
be a separating set of fan towers for S;. Here s; = {F{,} with complements
C,}Z Set Fj; = FklZ X Gy, which is a fan in G = G X G5 with complement
Cri = C}, x 1. Then for 1 < k < {1, r, = {F;} is a fan tower. Note that
Fkoc = Fkloo X GQ.

Similarly, let {s{,...,s7,} be a separating set of fan towers for S, with
si = {F,fl} and complements C’,fi. Set Fy i = G1 % F,fi and Cp, 4 = 1 % C’,fi.
Then for 1 < k < fy, ro,1x = {Fo,1k:} is a fan tower. We check that

Tlyeuw 700, T0i41,--- > Tt +4, 1S & separating set of fan towers for R.

We check the first condition. We are given a form g = ((a1,b1),... ,(an,bn)) €
R. By induction, there exists a m; such that ai,...,a, € C}, Fi for all k.
So

(a1,b1), -+, (@, bn) € Chim, Froo = Ot Fioo G2,

for all k£ with 1 < k < ¢;. Similarly, there exists a mo such that by,... b, €
Chm, Fitso, for all 1 < k < f5. Hence (a1,b1), ..., (an,bn) € Crm, Froo for all k
with ¢ < k < /¥¢; + ¥f5. So take m to be the maximum of m; and ms.

We next check the second condition. We are given K C Z and forms ¢; =
(u1,v1) and g2 = (ug,v2). Note that ¢; 1 (K) = a7 " (K)Ud H(K) C X1 UXs, a
disjoint union. By induction there exists a N7 satisfying the second condition
for K, u; and us and a N, satisfying the second condition for K, v; and vs.

Let N be the maximum of Ny and N,. Suppose for some n > N we have

4 (K) N (X/Fi) = G5 " (K) N (X/Fin),
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148 ROBERT W. FITZGERALD
forall 1 <k </{;+ 4. For1 <k </; we have:

@ (K) N (X Frn) = 7 ' (K) 0 (X1 /Fyy)
=y {(K) N (X1/Fy,,).

We thus obtain
@ (K) N (X1 /FL,) = iy ' (K) N (X1 /F,),

for all 1 < k < ¢;. By the second condition on S; we have 4, *(K) = 15 *(K).
Similarly, 9, ' (K) = o5 *(K) and so ¢; (K) = ¢, *(K).

Now suppose R = S[E]. Set T; = sp{tit1,tit2,..-}. Let {s1,...,5¢} be a
separating set of fan towers for S where s, = {F},;} and the complements are
C},;- Then Fy; = F|,T; is a fan of finite index in R with complement Cy; =
Clsp{t1, ... ,ti}. Then ry = {F};} is a fan tower. Note that Fj = F]_ . We
show that {ry,... 7/} is a separating set of fan towers for R.

For the first condition we are given a form ¢ € R = S[E]. There exists a p such
that ¢ € S[E,]. Write ¢ = Y a;z; where each a; € S and the z;’s are some list
of the elements of E,. By induction, for each ¢ there exists a m(¢) such that
every entry of a; is in C,’Cm(i)F,éoo for all k, 1 < k < /. Let m be the maximum
of the m(i) and p. Then every entry of every a; lies in C}, F] . C CimFroo
and each x; lies in sp{t1,... ,tp} C Cim. So every entry of ¢ lies in Cip, Froo,
for all k.

For the second condition we are given K C Z and two forms ¢q1,¢2 € R. Again
there exists a p such that ¢1,¢q2 € S[E,]. Write ¢1 = Y a;z; and ¢o = > biw;
with a;,b; € S and the z; as before. Let € € {£1}? be a choice of sign for
t1,...,tp. Let €(z;) be the resulting sign of x;. Set:

gt = welw;) g5 =Y bie(w:),
both forms in S. For each e there exists a IV, so that condition 2 holds for ¢}
and ¢5. Let N be the maximum of the N, and p.

If @ € Xg we let a be the extension of « to S[E,] with ¢t; > 0 iff €(¢;) = 1.
Then we claim that:

Gy () N X, = J1@5) ()]
Namely if a € Xg(g,) and ¢i1(a) € K then
Q%) = ) ai(a)e(zi) = gi(a).
Hence o € (¢5)~1(K)¢. The reverse inclusion is similar.
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ISOTROPY AND FACTORIZATION 149

Now let a“® denote any extension of a¢ to R = S[E]. Then by the claim we
have:

(2.3) i " (K) = (U[(@a—l(K)r)

So ¢ H(K) N (X/Fin) = 45 "(K) N (X/Fyy) implies that

(@) ~HE) N (Xs/Fr) = (32) 7 (K) N (Xs/Fr),

for all sign choices . Hence by condition 2 applied to S we obtain (¢5) ' (K) =
(¢5)"Y(K) for all e. Then (2.3) gives ¢; *(K) = ¢; " (K). O

LEMMA 2.4. Suppose R has a separating set of fan towers {si,...,s¢}. Let
q € R and K C Z. Let m be the index such that every entry of q lies in
CimFroo, for all1 < k <{. Let n > m. Then for each k we have:

_ X/ Fnl

1Y EK) N (X/Frp)| = | X/ Fiom|

|47 (K) N (X Fiom)-

Proof. Pick a k with 1 < k < {. Fy, C Fgmn are both fans of finite index
so we can write Fi,, = H X Fy, with H spanned by hq,... ,hp, where 2P =
| X/ Finl/| X/ Fiem|. Every a € X/ Fp, has 2P extensions to X/ Fy,, one for each
choice of signs (£1) for the h;. Specifically, if € is a sign choice for the h; and
h € H, let €(h) be the resulting sign of h. Since G = Cy,, H F},,,, the extension
of @« € X/Fym to X/Fy, via € is: a(chf) = a(c)e(h), where ¢ € Ciyn, h € H
and f € Fy,. We thus have

X/Frn = | J(X/Fim)*.

€

Write ¢ = (a1, a2,...). By assumption, each a; is in CimFroo C ChmFin-
Hence a(a;) = a(a;). Thus :

() N (X[ Frn) = | J (@ (K) N (X/ Fin)) "

€

So |§7H(K) N (X/Fky) = 2P|~ (K) N (X/Fkm)|, and the result follows. O

LEMMA 2.5. Let ¢ € R be a form of dimension n. Let F be a fan of finite
index and let K C Z. Then :

47 () 1 (X/F)| = 5| X/,
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150 ROBERT W. FITZGERALD

for some integer k, 0 < k <27,

Proof. Write ¢ = {ai,...,a,). Then ¢ '(K) is a disjoint union of
H(ejay,... €epay,) for various choices of € = (e1,...,€6,) € {£1}". Set
pe = {{€1a1, ... ,€nay,)). Then by the easy half of the representation theorem

> pe(@) =0 (mod |X/F|)

aeX/F
2"|H(e1aq,... ,ena,) N(X/F)| = k| X/F|,

for some non-negative integer k.. Then :
Al ke k
41 (K) N (X/F)| = 3 SEIX/F| = o |X/F),

for some non-negative integer k. [

The following is essentially from [9]. For a form ¢ = (ai,...,a,) the dis-
criminant is dis ¢ = (—1)""~Y/2q, ... q,. This is sometimes called the signed
discriminant.

LEMMA 2.6. Let g be an odd dimensional form.
(1) disq >4 0 iff (@) =1 (mod 4).
(2) sgnadis(q)g =1 (mod 4) for all a € X.
(3) If 0 # a = be and a(o) = £b(e) for all a € X with a(a) # 0 then there
exists d € G such that {(dya = b.

Proof. (1) Suppose n = dimgq. Let s = ¢(a). If r is the number of a-negative
entries in ¢ then

n(n—1) n—s
sgngdisq = (—1)" V21 = (-1)" 2 Tz = (fl)(n%S)/?

This is positive iff n2 —s = 0 (mod 4). As n is odd we get that the discriminant
is positive iff (o) = s =n? =1 (mod 4).

(2) is easy to check. For (3), let A = {a € X : a(a) # 0}. Then é(a) = £1
for all & € A. In particular ¢ is odd dimensional and () = 0 iff b(er) = 0.Let
d = disc. Then (d)c has signature 1 for all « € A by (2). Hence (d)bc and b
have the same signature at each o € B, and also at each a ¢ A (as both have
signature 0 there). Thus (d)a = (d)bc =b. O

THEOREM 2.7. Let R be a reduced Witt ring. Then ACC holds for principal
ideals iff the chain length of R is finite.

Proof. (2.1) gives (—). For the converse, let (q¢) C (q1) C (g2) C -+ be an
ascending chain of principal ideals in R. Note that as each g; divides ¢ we have
M(q;) < M(q). Let M = M(q). Then (1.3) gives dimg; < 1cl(R)M? for all i
(note ¢ is not one-dimensional else all (¢;) = R).
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We begin with some simple reductions. If all g; are 0 then the result is clear. If
some g; is not zero then all the later ¢;’s are not zero. We may start our tower
there, that is, we may assume ¢ # 0. For a non-zero form ¢ define deg ¢ to be
the largest d such that 2¢ divides ¢(«a) for all @ € X. Since g;,; divides ¢; we
have deg ;11 < deggq;. Let dyp be the minimum of the degrees of the ¢;. We
may start our tower at a g; of minimal degree, that is, we may assume that
deg g = deg g; for all i. Now we may write ¢ = ¢;p; for some form ;. We check
that ; is odd dimensional. If instead ¢; is even dimensional then 2 divides
¢i(a) for all o and so 29+! divides §(«) for all @, contradicting our reduction
to a tower of uniform degree. Hence ¢; is odd dimensional. In particular,
d(a) = 0 iff Gi(a) = 0.
Let D be the set of integers d > 1 that divide some non-zero (), a € X.
Write D = {dl,... ,dz} with dqy < dy < --- < d,. Set A(Z,d]) = (L_l(:l:d])
Let di be the largest element of D (if any) for which {A(i,dg) : ¢ > 1} is not
finite. Our goal is to show that there is in fact no such di. Our assumption on
dr means that for each j > k we have a t; such that A(¢,d;) = A(t;,d;) for all
t > t;. Let T be the maximum of the ¢;, j > k. Then by starting our tower of
ideals with ¢r, we may assume A(i,d;) = A(1,d;) for all j > k and all 4 > 1.
We first check that A(i + 1,d) C A(4,dg) for any i. Namely, ¢; = g; 1 for
some form ¢. So if « € A(i + 1,dy) then +dj, divides §(«). Also |§;(«)]| is not
of the d; with j > k else a € A(i,d;) = A(¢ + 1,d;), which is impossible as
a € A(i+1,dg). Thus |§;(a)] < dy and is divisible by dj. Hence §;(«) = £d
and o € A(7,dy) as desired.
Let s = {F},,} be one fan tower in a separating set of fan towers for R (which
exists by (2.2)). The first condition for a separating set, plus a simple induction
argument, shows that for each i there exists a least m(:) with every entry of
q1,- .., in CpyiyFio. Note that m(i + 1) > m(i). Let p(i) be the number of
distinct values of

|A(j; di) N (X/Fr)|

| X/ Foa)

=7(3,7),
over j with 1 < j <. Now, by (2.4)

Wi+ 1) = |A(J'ad|1;)(/ﬁF(X/Fm(i+1))|
m(i+1)]
X/ Fanl [AG, di) N (X Foga)
X/ E | X/ Fonivn)l
= (4, 7).

Hence p(i + 1) > p(4), with only (i + 1,7 + 1) possibly being a new value.

Since every dim ¢; < 3cl(R)M?, (2.5) implies each p(i) < 2eMR)M?/2 1 Hence
there is a tg such that p(t) = p(to) for all t > ty. Let p = p(to) and m = m(to).
Say v(to,71),--- ,v(to, jp) are the distinct ~-values over 1 < j < to. Let ¢ > tg
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and set n = m(t). Then ~(t,t) = y(to, js) for some js. That is,

| A, di) O (X/ )| |A(s, die) 0 (X/F)|
| X/ Fyl | X/ Fon|
|A(j87 dk) N (X/Fn)|

| X/ Fxl ’

using (2.4) again. Further, A(t,dy) C A(to,dr) C A(Js,dk) so that we have
[A(t, di) N (X/Fn)| = [A(to, di) N (X/F)l,

and this holds for all ¢ > t;.

We can repeat this argument for each fan tower in the separating set. Let
{s1,..., 8¢} be the separating set and let s; = {F;,}. Hence there exist an N
and a T such that |A(t,d) N (X/Fin)| = |A(T,dp) N (X/Fyp)| forall 1 <i < ¢
and all ¢t > T'. By the second property of a separating set we have A(t, dy) =
A(T,dy) for all t > T. This contradicts our choice of d.

Hence we have a T such that A(t,d;) = A(T,d;) for all t > T and all d; € D.
Thus (o) = £¢r(a) for all o in the union of the A(T,d;), that is, for all
a with §(a) # 0. By our early reduction, ¢(a) # 0 iff gr(a) # 0. Thus
Gi(a) = £¢r(a) for all a with gr(a) # 0 and also ¢; divides ¢r. By (2.6) we
obtain (q;) = (qr), for allt > T. O

COROLLARY 2.8. Let R be a real (but necessarily reduced) Witt ring. If R
has finite chain length then ACC holds for principal ideals generated by odd
dimensional forms.

Proof. Every ideal containing an odd dimensional form contains the torsion
ideal R; by [7, 1.5]. Hence passing to the reduced Witt ring maintains a tower
of principal ideals generated by odd dimensional forms. This reduced tower
stabilizes by (2.7). Hence the original tower stabilizes. [

COROLLARY 2.9. Let (G, X) be a space of orderings. Let S denote the collec-
tion of subsets of G of order n. If X has finite chain length then any tower
H(S1) C H(Se)C---H(SE) C---.

with each S € S, stabilizes.

Proof. Suppose S; = {aj1,...,ain}. Set ¢ = {{aj1,...,a;n)) + 1. Then
Gi(X) = {1,2" + 1} and ¢; ' (2" + 1) = H(S;). Thus gi11() divides §;(a)
for all @« € X. So g;+1 divides g; by [7, 1.7]. We thus have a tower of principal
ideals (g1) C (g2) C ---. This stabilizes by (2.7) and so the tower of H(S;)’s
also stabilizes. [

DOCUMENTA MATHEMATICA -+ QUADRATIC FOorMS LSU 2001 - 141-163



ISOTROPY AND FACTORIZATION 153

3. FACTORIZATION.

Anderson and Valdes-Leon [1] have several notions of an associate in a commu-
tative ring R. We need three of these. Two elements a and b are associates if
their principal ideals are equal, (a) = (b). They are strong associates if a = bu,
for some unit u € R. Lastly, a and b are very strong associates if (a) = (b) and
either a = b =0 or a # 0 and a = br implies r is a unit.

An non-unit a is irreducible if a = bc implies either b or ¢ is an associate
of a. Similarly, a is strongly irreducible (very strongly irreducible) if a = be
implies either b or ¢ is a strong associate (respectively, very strong associate)
of a. Lastly, R is atomic if every non-zero non-unit of R can be written as a
finite product of irreducible elements. Define strongly atomic and very strongly
atomic similarly.

ProproOSITION 3.1. Let R be a reduced Witt ring and let a,b € R. Then a,b
are associates iff a,b are strong associates. In particular, R is atomic iff R is
strongly atomic.

Proof. Strong associates are always associates so we check the converse. Sup-
pose (a) = (b). Write a = bx and b = ay. Then a = azy and a(l — zy) = 0.
Let Z ={a € X : a(a) = 0}. Then for all @ ¢ Z we have &(a) = £1. From
a = bz and (2.6) we get (d)a = b for some d € G. Clearly (d) is a unit. 0O

Strong associates need not be very strong associates in a reduced Witt ring. If
+1 # g € G then (1,g) is not even a very strong associate of itself. Namely,
(1,9) = (1,9)(1,1,—g) and (1,g) # 0 and (1,1, —g) is not a unit. So, except
for R =7, R will not be very strongly atomic.

COROLLARY 3.2. Let R be a real Witt ring (not necessarily reduced) and sup-
pose R has finite chain length.

(1) Ewvery odd dimensional form can be written as a finite product of irre-
ducible forms.
(2) If R is reduced then R is atomic.

Proof. These are standard consequences of (2.8) and (2.7), see [1, 3.2]. O

We are unable to prove the converse to (3.2)(2) for all reduced Witt rings R.
However, we can prove the converse for a wide class of rings. For this we need
Marshall’s notion of a sheaf product [11]. Start with a non-empty Boolean
space I, a collection of reduced Witt rings R¢, one for each clopen C' C [
and a collection of ring homomorphisms resc.p : Rc — Rp, defined whenever
D C C are clopen in I. We assume the usual sheaf properties, namely,

(1) Ry =7Z/27 and R¢ # Z/27 if C # (.

(2) resc,c is the identity map on C.

(3) If E C D C C then resc,g = resp,gresc,p.

(4) If C = U;C;j and if r; € R; are given such that

rescj7cjﬁck (r]) = reSCk,CjﬂCk (Tk>7
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for all j, k, then there exists a unique r € R such that resc ¢, (r) = 75,
for all j.

For fixed ¢ € I we form the stalk

eC

Each R; is a reduced Witt ring. We call the reduced Witt ring R; the sheaf
product of the R;’s and write Ry = Hiel R;. When I is finite and discrete this
is the usual product of Witt rings.

We next define a sequence of classes of reduced Witt rings (which is slightly
different from the sequence of Marshall [11, p. 219]). Let C; denote the class
of finitely generated reduced Witt rings. Inductively define C, to be sheaf
products of R;[E?], where E' is a group of exponent two (not necessarily finite)
and R; € C,,, for some m < n. Lastly, let C,, be the union of all C,,. This is a
large class. Already Co contains all SAP reduced Witt rings and C,, contains all
reduced Witt rings where X has only a finite number of accumulation points
11, 8.17].

We will prove that R € C,, atomic implies R has finite chain length. We begin
with a lemma.

LEMMA 3.3. Let S = R[E] and let T C Gg be a fan of finite index. Set
To=TNGR.
(1) Ty is a fan in Gg.
(2) Suppose Xr/To = {P,Q}. Then Xg/T consists of extensions of P,Q to
S. If x € Gs\ Gg then either none, exactly half or all of the extensions
of P that lie in Xg/T make x positive.

Proof. (1) Write T = ToH for some subgroup H of Gg with H N Gr = 1.
Extend H to subgroup L of Gg such that Gg = Gr x L. Suppose P C GpR is
a subgroup of index 2, containing Ty but not —1. Then PL is a subgroup of
index at most 2 containing T'. If —1 € PL then for some p € P and y € L we
have —p =y € PN L = 1. But then —1 = p € P, a contradiction. Thus PL is
an ordering in Gg. It is easy to check that P is then an ordering in Gr. This
shows T is a fan.

(2) The first statement is clear. Suppose Pi,... P, Q1,... ,Q, are the exten-
sions of P, @ that lie in Xg/T. Pick a € Gg with a(P) = 1 and a(Q) = —1.
Let k£ be the number of P; for which z is positive. From the easy half of the
Representation Theorem [11, 7.13]

Z sgng ((a, z)) =0 (mod 2m)
OCGXS/T
4k =0 (mod 2m).

So m divides 2k and clearly k < m. Hence k = 0, %m orm. [
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Our proof that R € C, atomic implies finite chain length is not the usual
induction argument since we are unable to show R[E] atomic implies R atomic.
Instead we explicitly construct a form which does not factor into a finite product
of irreducibles. Unfortunately, the construction requires considerable notation.
We introduce this notation by first looking at a special case. Let * denote a
group ring extension. A ring in C,, looks like

R= ] w(*

a€A,

II( 11 w<a,ﬁ>*)*

a€A; “pBeAz(a)

(I (I wes)).

a€A1 “BeEAs(a) WEAs(a,B)

where each Aj, As(a) and As(«, 3) is a Boolean space and each W(a, 3,7) is
in C,,, for some m < n — 3.

Suppose we want to single out the product over As(«yg, By), for some particular
ag and [y. We set :

Ry

IIT W B,m)"

Y€A3(0,00)

re= T (I wews)

BEA2(ao) “vEAs(0,8)
B#Bo

Rs = H( H ( H W(O‘aﬁ»"/)*> ) :
gix;l; BEA2(a) “vEA3(cv,8)

Then R = ((Rf M R3)* M R3)*.
We will want to single out the first infinite sheaf product. We have:

R=((..(RIMR)* MR N...)*MRY",
with R; an infinite sheaf product, say

Rl = H W(é)*a

d€A

and each W(4) in some C,,, m < n—s. We will need explicit extension groups.
We use the notation

R=(...(Ri[E )N Ry[F'D[E* M R3[F2))[E3 N ... 0 RJF)[E?].
We further take {t}} as generators of E".
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Lastly, we need notation to express the orderings on R. Let X; denote Xg,.
Let X;(e1) denote the extensions of X; to Ry [El] Here ¢; is an arbitrary
choice of signs. The extension is determined by the values el(t;) e {£1}.
To save on indices we will write €;(j) for el(t}). Next, Xa(1m1) denotes the
extensions from Ry to Ra[F!']. Xj(e1,e2) denotes the extensions from R; to
(R1[EY)N Ry [F1))[E?], with €3 a sign choice for E?. Continue with this pattern.

We obtain for Xg

U[Xl(el,... J€s) U Xa(mi,€a,. .. €65) U X3(m2,€3,... ,€65) U U Xs(n5-1,€s)].
€n

THEOREM 3.4. Suppose R € C,,. The following are equivalent:

(1) R has finite chain length.
(2) R has ACC on principal ideals.
(3) R is atomic.

Proof. We need only show R atomic implies R has finite chain length, by (2.7)
and (3.2). Suppose R € C,, and let s be the first level (if any) with an infinite
sheaf product. We follow the above notation. Fix some §y € A and define
a € Gg, with —1 in the 0y coordinate and 1 in the other coordinates. Set

b=((...(a,~1),~1),...),—1) € G,

and set ¢ = (b, t},bt1).
Let X5 be the orderings on W (4)* so that X; = UX;. Set C' = ¢~1(3). Then:

c= U <U X5)(617'--7ES)UX2(7717€2,...,ES)U...UXS(nS1,65))

en 545
e (1)=1 760

We are assuming R is atomic, so let ¢ = ¢1 - - - ¢, with each ; irreducible. We
may assume ¢;(X) = {3, —1} by (2.6). Set D; = ¢; *(3). Note D; C C. We
will show that in fact one of the ¢; factors and hence that no sheaf product in
R is infinite.

Our first goal is to show that each D; consists of all extensions, with ] positive,
of some subset of X;. Pick P € X;, and ) € X with 6 # Jy. Fix some k and
j. Let

et =sp{th,. ..t i}

el = sp{ty,t3,... }.
Let T be the fan
(..((PNQ)[eNGRr,[F[E?... )[ek] M...NGg,[F*)]E®).
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Then X /T has 8 orderings, namely the extensions of P and @ with all ¢} positive
except possibly t1 and ti. Write these orderings as P(+1,+1) and Q(=£1, +1),
where the first coordinate gives the sign of 1 and the second gives the sign of
tk.

C]’ N(X/T) ={Q(1,£1)} so that |C N (X/T)| = 2. To ease notation slightly,
write D for one of the D;. Let w = |D N (X/T)|. Then by the easy part of the
Representation Theorem we have:

Y. @(y) =0 (mod |X/T])
yeX/T
3w— (8 —w) =0 (mod 8)
w=0 (mod 2).

As DN (X/T) ¢ CnN (X/T) we have D N (X/T) is either empty or all of
CN(X/T).

Suppose for some k and j we are in the second case, DN (X/T) = C N (X/T).
Choose another pair g,h. Pick the fan 7" generated over P N Q by E° for
i # 1,k, g, the same e' as before and

e = sp{th, ... ,t?_l,—t?,tfﬂ...}
ed = sp{tl, ...t _ 1t 4 )

Then X/T" has 8 orderings, namely the extensions of P and @ with all ¢}
positive except tf negative and t%,t‘z arbitrary. Write these as P(£1,—1,+1)
and Q(#£1, —1, +1) with the first coordinate the sign of ¢1, the second coordinate
indicating that t;? is negative and the third coordinate the sign of ¢1.
Again C' N (X/T") consists of two orderings, Q(1,—1,+1). And as before we
get that DN (X/T") is either empty or all of CN(X/T"). But Q(1,—1,1) is the
same ordering that was denoted by Q(1, —1) before (that is, with ¢! positive, t?
negative and all other #’s positive). Hence we have DN (X/T") = C N (X/T").
We continue to assume D N (X/T) = C N (X/T). If we repeat this argument
( first with a fan having tf and ¢ negative) we get that any extension @ with
t{ positive and only a finite number of ¢} negative is in D. Now D = ¢~1(3)
and the entries of ¢ involve only a finite number of ¢;. Hence we have that any
extension of @ with ¢} positive is in D.
The assumption that D N (X/T) # ) means we are assuming some extension
of @ with t} positive is in D. From this we conclude that all such extensions
are in D.
Let X7 denote the orderings on R;[E'], namely the extensions €; of X;. Write
D|X; for the orderings in D restricted to Ri[E']. We have shown that D| X}
consists of all extensions, with #1 positive, of some subset (call it D|X7) of Xj.
Each factor ; of g has its set D;. We have C = UD,; and
U(Di|Xy) = C|X1 = ] Xs.
dEA
6#00
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A is infinite so some D;|X; meets at least two Xs’s. For simplicity, call this D;
simply D and the corresponding form ¢. Suppose D|X; meets X5, and Xs,,
01 # 02 Set
Dy = |J [(DIX1) N X5](er) C X7
e(1)=1

In words, Dy consists of the extensions for X5, that lie in D|X7. We will use
Dy to construct a factor of ¢.

Let f: X{ —Zby f(P)=3if P € Dy and f(P)=—1if P ¢ Dy. We want to
use the Representation Theorem [11,7.13] to show f is represented by a form
in R1[EY]. Let T C Gr,E! be a fan of finite index. Then T} = T N Gpg, is a
fan in Gg, by (3.3)

Case 1: (X1/T1) C Xs for some 6 € A.

Here X7 /T = (X5/T1)(¢), over some set of extensions € to E*. If § # §; then
f(P)=—1forall P e (X}/T) since Dy only has extensions from Xs,. Thus

S f(P)=—|Xi/TI=0 (mod |X{/T)).

PeX;/T

If § = §; then P € Dy iff P € D| X7 iff some (equivalently, every) extension,
with t1 positive, of P to Xy lies in D iff $(P) = 3. So f(P) = ¢(P) for all
P e X{/T. We obtain

Yo )= Y ¢(P)=0 (mod|X]/T]).

PeX}/T PeX;/T

Case 2: (X1/T1) ¢ Xs for some 6 € A.

Here we must have |X;/71| = 2 by [11, 8.12] Write X;/T1 = {P,, P3} where
a, (8 are distinct elements of A and P, € X, and P € Xg. Then X{ /T consists
of some set of extensions, to E', applied to P, and Pg.

Again, if neither o nor 3 are ¢; then all f(P) = —1 and we are done. So
say @ = 01 (and so 8 # 01). If P, ¢ D|X; then no extension is in Dy and
all f(P) = —1 again. So suppose P, € (D|X1) N X5,. Since Pg ¢ X5, no
extension of Pz in X7 /T is in Dgy. This is half of X;/T. The other half
consists of extensions of P, and by (3.3) either none, exactly half or all of these
extensions make t] positive, and hence lie in Dgy. Thus |Do N (X7)| = d| X7 /T,

where d is either (i) 0, or (i) 1 or (iii) 5. In case (i) we have

> f(P)=—|X{/T|=0 (mod |X}/T)).
PeX}

In case (ii) we have

ST F(P)=1X5/T| -3+ 2X7/T|- (-1) =0 (mod | X} /T)).
PcX;

DOCUMENTA MATHEMATICA -+ QUADRATIC FOorMS LSU 2001 - 141-163



ISOTROPY AND FACTORIZATION 159

In case (iii) we have

S F(P) = 3IX5/T] -3+ 3X;/T|-(~1) =0 (mod |X;/T)).
PEX;

Thus in all cases we have Y f(P) =0 (mod |X;/T]). By the non-trivial half
of the Representation Theorem we have f = 1) for some form 1 € Ry [E1]. By
construction ¢(X7) = {3, -1} and ¢)~1(3) = Dy < D. Hence by [7, 1.7] ¢ is a
proper divisor of ¢. Hence ¢ is not irreducible, a contradiction.

We thus have if R € C, is atomic then all sheaf products are finite. Hence
cl(R) < oo, using [12, 4.2.1]. O

COROLLARY 3.5. Let R € C,,. If R[E] is atomic then so is R.

Proof. R[E] atomic implies R[F] has finite chain length by (3.4). Then , as
cl(R[E]) = cl(R), R has finite chain length and so is atomic by (3.2). O

It is unknown if the reduced Witt rings of finite stability index lie in C,, so the
following may improve (3.4), although (3.4) includes many atomic Witt rings
with X infinite.

PROPOSITION 3.6. Suppose R has finite stability index. The following are
equivalent:

(1) R has finite chain length.

(2) R has ACC on principal ideals.

(3) R is atomic.

(4) X is finite.
Proof. (1) and (4) are equivalent by [10] (first shown, in the field case in [4]).
As in the proof of (3.4) we need only show (3) implies (1). Suppose the stability
index of R is n. We can find a prime p congruent to 1 mod 2™ by Dirichlet’s
Theorem. R is atomic so p = 5 - -- ¢y for some irreducible elements ¢;. Note
that for each i we have |¢;(X)| = {p,1}. Let A; = $; ' (4p). The A;’s form a
clopen cover of X.
We wish to show R has finite chain length. So suppose we have a tower

H(al) >H(a2) >H(a3) >

First suppose there is an s, 1 < s < ¢ and a k such that A, N H(ag) is a
non-empty, proper subset of Ag. Define f: X — Z by

[ if o € A; N H(ag)
f(a)_{l, if a ¢ As N H(ag).

Let T be a fan, | X/T| = 2™, where m < n by definition of the stability index.
Set w = |As N H(ar) N (X/T)|. Then

Z fla)=wp+ (2™ —w)=wp—-1)=0 (mod 2™),
aeX/T
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since p — 1 is a multiple of 2”. By the Representation Theorem, f = 1[1 for
some form 1. Then (a) divides $4() for all o and for a € A, \ H(ax),
() # £ps(). So, using [7, 1.7], we have ¢ is proper divisor of ¢, which is
impossible.

Thus there does not exists a pair s,k such that H(ag) N As is a non-empty,
proper subset of A;. That is, for all ¢,j we have H(a;) N A; # (0 implies
A; C H(a;). The Aj’s cover X so each H(a;) is a union of A;’s. Let n(i) be
the number of A,’s required to cover H(a;). Then 1 < n(i+ 1) < n(i) <t for
all 4. Thus the tower is finite and we are done. [

4. IRREDUCIBLE ELEMENTS.
We look at some examples to illustrate factorization in reduced Witt rings.

PROPOSITION 4.1. If 1 # a € G then (1,—a) is irreducible in R.

Proof. Suppose (1,—a) = qp in R. We may assume ¢ is even dimensional and
¢ is odd dimensional. If a <, 0 then 2 = §(a)@(a). Thus §(a) = £2 =
+sgn, (1, —a), for all a with sgny(1,—a) # 0. By (2.6) there exists a d € G
such that (d)(1,—a) = ¢ and so ¢ is an associate of (1, —a). O

ExXAMPLE. If R # Z then factorization into irreducible elements is not unique.
Namely, if @ # £1 then (1, —a)(1,—a) = (1,1)(1, —a) gives two different fac-
torizations of the Pfister form. This is quite different from the case of factoring
odd dimensional forms. When X is finite there is unique factorization of odd
dimensional forms if the ideal class group of R is trivial or, equivalently, the
stability index is at most 2, by [6, 2.7] and [7, 1.17].

We next find the irreducible elements in Z[E;]. Note that any form ¢ in this
ring is associate to some n + mt with n > |m]|.

PROPOSITION 4.2. Let g = n+mt € Z[E;] with n > |m|. Then q is irreducible
iff (n,m) or (n,—m) equals one of the following:

(1) (1,1)

(2) (2% +1,2F — 1), for some k >0

(3) (3(p+1),5(p—1)), for some odd prime p.

Proof. Let q be irreducible. First suppose ¢ is even dimensional. If both n and
m are even then 2 is a factor of g. So we have n and m odd. If n = +m then n
is a factor of ¢ and we must have n = 1. Thus (n,m) = (1, £1). We may thus
suppose n +m and n — m are non-zero. Write n + m = 29h and n —m = 2%/¢
with h and ¢ odd and g,k > 1. Set

1= 2(29 +2%) + 4(29 — 2M)¢
2 =2(h+0)+ 3(h—O)t.

Then g = 12 and @9 is odd dimensional and so not an associate of q. Thus
1 is an associate of ¢. If « is the ordering with ¢ positive then n+m = §(a) =
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+¢1 (o) = £29. Since n > —m we obtain n +m = 29 and h = 1. Similarly,
taking signatures at the ordering 8 with ¢ negative gives £ = 1. If both g and &
are at least 2 then n and m are even which is not possible. Suppose n+m = 29
and n—m = 2. Then we get case (2). The reverse , n+m = 2 and n —m = 2*
gives case (2) for the pair (n, —m).

Now suppose ¢ is odd dimensional. If n+m is composite, say n+m = ab with
a,b > 1, then set

p1=
P2 =

(a+1)+ 3(a— 1)t
(b+n—m)+ 3(b—n+m)t.

NI NI

Then ¢ = p1p2. Neither 1 nor ¢y is an associate of ¢ as §(a) = ab while
$1(a) = a and @2(a) = b. Hence n 4+ m is not composite. Similarly, n —m is
not composite. If both n + m and n — m are prime then set
$1 =
Y2 =

(n+m+1)+in+m—1)
(n—m+1)+1(1—n+m)t.

N= N

We have g = p1¢o. Neither @1 nor ¢ is an associate of ¢ as §(«) = n+m while
Pa(a) =1 and ¢(B) = n — m while ¢1(8) = 1. Thus we must have n +m = p,
p an odd prime, and n —m =1 (or the reverse). This gives case (3).

It is straightforward to check the forms in cases (1) - (3) are irreducible. O

EXAMPLE. Already for Z[F1], and in fact for any R # Z, the number of irre-
ducible factors in factorization of a given element can be arbitrarily large. For
instance, (1,1,t) is irreducible (take p = 3 in (4.2)(3)) and (1, —¢t)(1,1,t) =
(1, —t). Hence

(1, =) = (1L, 1)(1,1,£)"(1, -t

is a factorization into irreducible elements for any n. Again the situation is quite
different if we consider only factorizations of odd dimensional forms. When X is
finite, the number of irreducible factors in a factorization is uniquely determined
iff the stability index is at most 3 and R has no factor of the type (Z*®)[Es],
with s > 3, see [7].

Notice that the even prime of Z remains irreducible in Z[FE;] while the odd

primes of Z all factor in Z[E;]. This holds more generally.

PROPOSITION 4.3. Let g € R be irreducible.

(1) If q is even dimensional then q remains irreducible in R[E].
(2) If q is odd dimensional then q remains irreducible in R[E1] iff q is not
associate to 1 4 2qq, for some qo € R.

Proof. First say q = 1 + 2qq, for some gy € R. Since ¢ is not a unit, there
exists an a € Xp with ¢(a) # £1. Let ot and a~ denote the extensions of «
to R[FE;] with, respectively, ¢ positive and ¢ negative. Now

q= (1 + q0<1>t>)(1 + qo<1’ _t>)'
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Neither factor is an associate of ¢ as the first has signature 1 at o~ and the
second has signature 1 at a. Thus ¢ is not irreducible in R[F].
Now suppose we have an irreducible ¢ that factors in R[F;]. We want to show
¢ is odd dimensional and associate to some 1+ 2¢gg. Write ¢ = (a + b(1,t))(c+
d(1,—t)), with a, b, ¢,d € R and neither factor an associate of q. The coefficient
of ¢, namely bc — ad, must be zero and so ¢ = ac + ad + bc. Then

(4.4) q = ac+ 2bc = c(a + 2b)
(4.5) = ac+ 2ad = a(c+ 2d).

As g is irreducible in R, (4.4) shows that either ¢ or a + 2b is an associate of g.
We may assume c is the associate of q. Namely, if a + 2b is the associate then
rewrite q as

q = ((¢ +2d) + (=d)(1,))((a + 2b) + (=b)(1, =t))

(" +b'(1,)( +d'(1,-1)).

Then ¢’ = a + 2b is associate to q.

Write ug = ¢ for some unit ¢ € R. Equation (4.5) shows that either a or ¢+ 2d
is an associate of q. Assume by way of contradiction that vqg = ¢+ 2d for some
unit v € R. Note (v —u)q = 2d; set x =v —u. Let Z = {a € X : §(a) # 0}.
From (4.4), ¢ = qu(a + 2b) so that @& = @+ 2b on Z. Similarly, from (4.5)
q = qua so that v =a on Z. Thus,on Z, x =0 —u = —2b. Now u and v are
units and so have signatures +1 at all orderings. Thus x(Xg) C {2,0,—2}. If
b is even dimensional then we must have b = 0 on Z. Then { = 0 on Z and
0 = gx = 2d. But then d = 0 and the second factor of ¢, ¢ + d(1,—t) = ¢ = uq
is an associate of ¢, a contradiction. Hence b is odd dimensional. In particular,
b is never zero. So ¥ — 4 is not zero on Z. We must have & = —i (as & and ©
are always £1). So x = 20 on Z. Then 2vq = gx = 2d and vg = d. But then
the second factor of ¢ is ¢ 4+ d(1, —t) = uq + vg(l, —t) = q(u + v — vt) = —vtq,
an associate of g. This is impossible.

Hence we must have that ¢ is an associate of a as well as ¢. Write ug = ¢ and
vq = a for units u,v € R. Equation (4.4) gives ¢ = ug(a + 2b). If ¢ is even
dimensional then a + 2b is odd dimensional and so a is odd dimensional. But
a is an associate of the even dimensional ¢ so a must be even dimensional, a
contradiction.

We have then that ¢ is odd dimensional. Then g = ug(a+2b) implies u(a+2b) =
1. So uvg = ua = 1 — 2ub, as desired. [

It can be shown that a 4+ bt € R[E}] is irreducible if a + b is irreducible in R
and a — b is a unit. Thus in the factorization of (4.3) 1+ 2qp = (1 + qo +
qot)(1 4+ go — qot), both factors are irreducible. However, not every irreducible
a + bt € R[E] satisfies a + b irreducible and a — b a unit. For instance, one
may easily check that ¢ = (1) + ((t1,t2,t3)) € Z[Es] is irreducible. As a form
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in R[E:], where R = Z[Es], we have ¢ = a + bt with a = (1) 4+ ((¢1,%2)) and
b= ({t1,t2)). Then a —bis a unit but a+b =1+ 2({t1,t2)) = (1 — ({t1,t2)))2.
In fact, we have been unable to determine the irreducible elements of R[F]
in terms of the irreducibles of R. For products, we can determine only the
irreducible odd dimensional forms.

PROPOSITION 4.6. If R = Ry M Ry and (a,b) € R is odd dimensional then
(a,b) is irreducible iff a is irreducible in R and b is a unit or the reverse, a is
a unit and b is irreducible.

Proof. We have (a,b) = (a,1)(1,b). So (a,b) irreducible implies either a or b
is a unit. Say b is a unit. If @ = zy then (a,b) = (x,b)(y,1), so a must be
irreducible in R. [
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